]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/doc/extend.texi
c-tree.texi: Use `@.' where appropriate.
[thirdparty/gcc.git] / gcc / doc / extend.texi
1 @c Copyright (C) 1988, 1989, 1992, 1993, 1994, 1996, 1998, 1999, 2000, 2001,
2 @c 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
3
4 @c This is part of the GCC manual.
5 @c For copying conditions, see the file gcc.texi.
6
7 @node C Extensions
8 @chapter Extensions to the C Language Family
9 @cindex extensions, C language
10 @cindex C language extensions
11
12 @opindex pedantic
13 GNU C provides several language features not found in ISO standard C@.
14 (The @option{-pedantic} option directs GCC to print a warning message if
15 any of these features is used.) To test for the availability of these
16 features in conditional compilation, check for a predefined macro
17 @code{__GNUC__}, which is always defined under GCC@.
18
19 These extensions are available in C and Objective-C@. Most of them are
20 also available in C++. @xref{C++ Extensions,,Extensions to the
21 C++ Language}, for extensions that apply @emph{only} to C++.
22
23 Some features that are in ISO C99 but not C89 or C++ are also, as
24 extensions, accepted by GCC in C89 mode and in C++.
25
26 @menu
27 * Statement Exprs:: Putting statements and declarations inside expressions.
28 * Local Labels:: Labels local to a block.
29 * Labels as Values:: Getting pointers to labels, and computed gotos.
30 * Nested Functions:: As in Algol and Pascal, lexical scoping of functions.
31 * Constructing Calls:: Dispatching a call to another function.
32 * Typeof:: @code{typeof}: referring to the type of an expression.
33 * Conditionals:: Omitting the middle operand of a @samp{?:} expression.
34 * Long Long:: Double-word integers---@code{long long int}.
35 * Complex:: Data types for complex numbers.
36 * Floating Types:: Additional Floating Types.
37 * Decimal Float:: Decimal Floating Types.
38 * Hex Floats:: Hexadecimal floating-point constants.
39 * Fixed-Point:: Fixed-Point Types.
40 * Zero Length:: Zero-length arrays.
41 * Variable Length:: Arrays whose length is computed at run time.
42 * Empty Structures:: Structures with no members.
43 * Variadic Macros:: Macros with a variable number of arguments.
44 * Escaped Newlines:: Slightly looser rules for escaped newlines.
45 * Subscripting:: Any array can be subscripted, even if not an lvalue.
46 * Pointer Arith:: Arithmetic on @code{void}-pointers and function pointers.
47 * Initializers:: Non-constant initializers.
48 * Compound Literals:: Compound literals give structures, unions
49 or arrays as values.
50 * Designated Inits:: Labeling elements of initializers.
51 * Cast to Union:: Casting to union type from any member of the union.
52 * Case Ranges:: `case 1 ... 9' and such.
53 * Mixed Declarations:: Mixing declarations and code.
54 * Function Attributes:: Declaring that functions have no side effects,
55 or that they can never return.
56 * Attribute Syntax:: Formal syntax for attributes.
57 * Function Prototypes:: Prototype declarations and old-style definitions.
58 * C++ Comments:: C++ comments are recognized.
59 * Dollar Signs:: Dollar sign is allowed in identifiers.
60 * Character Escapes:: @samp{\e} stands for the character @key{ESC}.
61 * Variable Attributes:: Specifying attributes of variables.
62 * Type Attributes:: Specifying attributes of types.
63 * Alignment:: Inquiring about the alignment of a type or variable.
64 * Inline:: Defining inline functions (as fast as macros).
65 * Extended Asm:: Assembler instructions with C expressions as operands.
66 (With them you can define ``built-in'' functions.)
67 * Constraints:: Constraints for asm operands
68 * Asm Labels:: Specifying the assembler name to use for a C symbol.
69 * Explicit Reg Vars:: Defining variables residing in specified registers.
70 * Alternate Keywords:: @code{__const__}, @code{__asm__}, etc., for header files.
71 * Incomplete Enums:: @code{enum foo;}, with details to follow.
72 * Function Names:: Printable strings which are the name of the current
73 function.
74 * Return Address:: Getting the return or frame address of a function.
75 * Vector Extensions:: Using vector instructions through built-in functions.
76 * Offsetof:: Special syntax for implementing @code{offsetof}.
77 * Atomic Builtins:: Built-in functions for atomic memory access.
78 * Object Size Checking:: Built-in functions for limited buffer overflow
79 checking.
80 * Other Builtins:: Other built-in functions.
81 * Target Builtins:: Built-in functions specific to particular targets.
82 * Target Format Checks:: Format checks specific to particular targets.
83 * Pragmas:: Pragmas accepted by GCC.
84 * Unnamed Fields:: Unnamed struct/union fields within structs/unions.
85 * Thread-Local:: Per-thread variables.
86 * Binary constants:: Binary constants using the @samp{0b} prefix.
87 @end menu
88
89 @node Statement Exprs
90 @section Statements and Declarations in Expressions
91 @cindex statements inside expressions
92 @cindex declarations inside expressions
93 @cindex expressions containing statements
94 @cindex macros, statements in expressions
95
96 @c the above section title wrapped and causes an underfull hbox.. i
97 @c changed it from "within" to "in". --mew 4feb93
98 A compound statement enclosed in parentheses may appear as an expression
99 in GNU C@. This allows you to use loops, switches, and local variables
100 within an expression.
101
102 Recall that a compound statement is a sequence of statements surrounded
103 by braces; in this construct, parentheses go around the braces. For
104 example:
105
106 @smallexample
107 (@{ int y = foo (); int z;
108 if (y > 0) z = y;
109 else z = - y;
110 z; @})
111 @end smallexample
112
113 @noindent
114 is a valid (though slightly more complex than necessary) expression
115 for the absolute value of @code{foo ()}.
116
117 The last thing in the compound statement should be an expression
118 followed by a semicolon; the value of this subexpression serves as the
119 value of the entire construct. (If you use some other kind of statement
120 last within the braces, the construct has type @code{void}, and thus
121 effectively no value.)
122
123 This feature is especially useful in making macro definitions ``safe'' (so
124 that they evaluate each operand exactly once). For example, the
125 ``maximum'' function is commonly defined as a macro in standard C as
126 follows:
127
128 @smallexample
129 #define max(a,b) ((a) > (b) ? (a) : (b))
130 @end smallexample
131
132 @noindent
133 @cindex side effects, macro argument
134 But this definition computes either @var{a} or @var{b} twice, with bad
135 results if the operand has side effects. In GNU C, if you know the
136 type of the operands (here taken as @code{int}), you can define
137 the macro safely as follows:
138
139 @smallexample
140 #define maxint(a,b) \
141 (@{int _a = (a), _b = (b); _a > _b ? _a : _b; @})
142 @end smallexample
143
144 Embedded statements are not allowed in constant expressions, such as
145 the value of an enumeration constant, the width of a bit-field, or
146 the initial value of a static variable.
147
148 If you don't know the type of the operand, you can still do this, but you
149 must use @code{typeof} (@pxref{Typeof}).
150
151 In G++, the result value of a statement expression undergoes array and
152 function pointer decay, and is returned by value to the enclosing
153 expression. For instance, if @code{A} is a class, then
154
155 @smallexample
156 A a;
157
158 (@{a;@}).Foo ()
159 @end smallexample
160
161 @noindent
162 will construct a temporary @code{A} object to hold the result of the
163 statement expression, and that will be used to invoke @code{Foo}.
164 Therefore the @code{this} pointer observed by @code{Foo} will not be the
165 address of @code{a}.
166
167 Any temporaries created within a statement within a statement expression
168 will be destroyed at the statement's end. This makes statement
169 expressions inside macros slightly different from function calls. In
170 the latter case temporaries introduced during argument evaluation will
171 be destroyed at the end of the statement that includes the function
172 call. In the statement expression case they will be destroyed during
173 the statement expression. For instance,
174
175 @smallexample
176 #define macro(a) (@{__typeof__(a) b = (a); b + 3; @})
177 template<typename T> T function(T a) @{ T b = a; return b + 3; @}
178
179 void foo ()
180 @{
181 macro (X ());
182 function (X ());
183 @}
184 @end smallexample
185
186 @noindent
187 will have different places where temporaries are destroyed. For the
188 @code{macro} case, the temporary @code{X} will be destroyed just after
189 the initialization of @code{b}. In the @code{function} case that
190 temporary will be destroyed when the function returns.
191
192 These considerations mean that it is probably a bad idea to use
193 statement-expressions of this form in header files that are designed to
194 work with C++. (Note that some versions of the GNU C Library contained
195 header files using statement-expression that lead to precisely this
196 bug.)
197
198 Jumping into a statement expression with @code{goto} or using a
199 @code{switch} statement outside the statement expression with a
200 @code{case} or @code{default} label inside the statement expression is
201 not permitted. Jumping into a statement expression with a computed
202 @code{goto} (@pxref{Labels as Values}) yields undefined behavior.
203 Jumping out of a statement expression is permitted, but if the
204 statement expression is part of a larger expression then it is
205 unspecified which other subexpressions of that expression have been
206 evaluated except where the language definition requires certain
207 subexpressions to be evaluated before or after the statement
208 expression. In any case, as with a function call the evaluation of a
209 statement expression is not interleaved with the evaluation of other
210 parts of the containing expression. For example,
211
212 @smallexample
213 foo (), ((@{ bar1 (); goto a; 0; @}) + bar2 ()), baz();
214 @end smallexample
215
216 @noindent
217 will call @code{foo} and @code{bar1} and will not call @code{baz} but
218 may or may not call @code{bar2}. If @code{bar2} is called, it will be
219 called after @code{foo} and before @code{bar1}
220
221 @node Local Labels
222 @section Locally Declared Labels
223 @cindex local labels
224 @cindex macros, local labels
225
226 GCC allows you to declare @dfn{local labels} in any nested block
227 scope. A local label is just like an ordinary label, but you can
228 only reference it (with a @code{goto} statement, or by taking its
229 address) within the block in which it was declared.
230
231 A local label declaration looks like this:
232
233 @smallexample
234 __label__ @var{label};
235 @end smallexample
236
237 @noindent
238 or
239
240 @smallexample
241 __label__ @var{label1}, @var{label2}, /* @r{@dots{}} */;
242 @end smallexample
243
244 Local label declarations must come at the beginning of the block,
245 before any ordinary declarations or statements.
246
247 The label declaration defines the label @emph{name}, but does not define
248 the label itself. You must do this in the usual way, with
249 @code{@var{label}:}, within the statements of the statement expression.
250
251 The local label feature is useful for complex macros. If a macro
252 contains nested loops, a @code{goto} can be useful for breaking out of
253 them. However, an ordinary label whose scope is the whole function
254 cannot be used: if the macro can be expanded several times in one
255 function, the label will be multiply defined in that function. A
256 local label avoids this problem. For example:
257
258 @smallexample
259 #define SEARCH(value, array, target) \
260 do @{ \
261 __label__ found; \
262 typeof (target) _SEARCH_target = (target); \
263 typeof (*(array)) *_SEARCH_array = (array); \
264 int i, j; \
265 int value; \
266 for (i = 0; i < max; i++) \
267 for (j = 0; j < max; j++) \
268 if (_SEARCH_array[i][j] == _SEARCH_target) \
269 @{ (value) = i; goto found; @} \
270 (value) = -1; \
271 found:; \
272 @} while (0)
273 @end smallexample
274
275 This could also be written using a statement-expression:
276
277 @smallexample
278 #define SEARCH(array, target) \
279 (@{ \
280 __label__ found; \
281 typeof (target) _SEARCH_target = (target); \
282 typeof (*(array)) *_SEARCH_array = (array); \
283 int i, j; \
284 int value; \
285 for (i = 0; i < max; i++) \
286 for (j = 0; j < max; j++) \
287 if (_SEARCH_array[i][j] == _SEARCH_target) \
288 @{ value = i; goto found; @} \
289 value = -1; \
290 found: \
291 value; \
292 @})
293 @end smallexample
294
295 Local label declarations also make the labels they declare visible to
296 nested functions, if there are any. @xref{Nested Functions}, for details.
297
298 @node Labels as Values
299 @section Labels as Values
300 @cindex labels as values
301 @cindex computed gotos
302 @cindex goto with computed label
303 @cindex address of a label
304
305 You can get the address of a label defined in the current function
306 (or a containing function) with the unary operator @samp{&&}. The
307 value has type @code{void *}. This value is a constant and can be used
308 wherever a constant of that type is valid. For example:
309
310 @smallexample
311 void *ptr;
312 /* @r{@dots{}} */
313 ptr = &&foo;
314 @end smallexample
315
316 To use these values, you need to be able to jump to one. This is done
317 with the computed goto statement@footnote{The analogous feature in
318 Fortran is called an assigned goto, but that name seems inappropriate in
319 C, where one can do more than simply store label addresses in label
320 variables.}, @code{goto *@var{exp};}. For example,
321
322 @smallexample
323 goto *ptr;
324 @end smallexample
325
326 @noindent
327 Any expression of type @code{void *} is allowed.
328
329 One way of using these constants is in initializing a static array that
330 will serve as a jump table:
331
332 @smallexample
333 static void *array[] = @{ &&foo, &&bar, &&hack @};
334 @end smallexample
335
336 Then you can select a label with indexing, like this:
337
338 @smallexample
339 goto *array[i];
340 @end smallexample
341
342 @noindent
343 Note that this does not check whether the subscript is in bounds---array
344 indexing in C never does that.
345
346 Such an array of label values serves a purpose much like that of the
347 @code{switch} statement. The @code{switch} statement is cleaner, so
348 use that rather than an array unless the problem does not fit a
349 @code{switch} statement very well.
350
351 Another use of label values is in an interpreter for threaded code.
352 The labels within the interpreter function can be stored in the
353 threaded code for super-fast dispatching.
354
355 You may not use this mechanism to jump to code in a different function.
356 If you do that, totally unpredictable things will happen. The best way to
357 avoid this is to store the label address only in automatic variables and
358 never pass it as an argument.
359
360 An alternate way to write the above example is
361
362 @smallexample
363 static const int array[] = @{ &&foo - &&foo, &&bar - &&foo,
364 &&hack - &&foo @};
365 goto *(&&foo + array[i]);
366 @end smallexample
367
368 @noindent
369 This is more friendly to code living in shared libraries, as it reduces
370 the number of dynamic relocations that are needed, and by consequence,
371 allows the data to be read-only.
372
373 The @code{&&foo} expressions for the same label might have different values
374 if the containing function is inlined or cloned. If a program relies on
375 them being always the same, @code{__attribute__((__noinline__))} should
376 be used to prevent inlining. If @code{&&foo} is used
377 in a static variable initializer, inlining is forbidden.
378
379 @node Nested Functions
380 @section Nested Functions
381 @cindex nested functions
382 @cindex downward funargs
383 @cindex thunks
384
385 A @dfn{nested function} is a function defined inside another function.
386 (Nested functions are not supported for GNU C++.) The nested function's
387 name is local to the block where it is defined. For example, here we
388 define a nested function named @code{square}, and call it twice:
389
390 @smallexample
391 @group
392 foo (double a, double b)
393 @{
394 double square (double z) @{ return z * z; @}
395
396 return square (a) + square (b);
397 @}
398 @end group
399 @end smallexample
400
401 The nested function can access all the variables of the containing
402 function that are visible at the point of its definition. This is
403 called @dfn{lexical scoping}. For example, here we show a nested
404 function which uses an inherited variable named @code{offset}:
405
406 @smallexample
407 @group
408 bar (int *array, int offset, int size)
409 @{
410 int access (int *array, int index)
411 @{ return array[index + offset]; @}
412 int i;
413 /* @r{@dots{}} */
414 for (i = 0; i < size; i++)
415 /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
416 @}
417 @end group
418 @end smallexample
419
420 Nested function definitions are permitted within functions in the places
421 where variable definitions are allowed; that is, in any block, mixed
422 with the other declarations and statements in the block.
423
424 It is possible to call the nested function from outside the scope of its
425 name by storing its address or passing the address to another function:
426
427 @smallexample
428 hack (int *array, int size)
429 @{
430 void store (int index, int value)
431 @{ array[index] = value; @}
432
433 intermediate (store, size);
434 @}
435 @end smallexample
436
437 Here, the function @code{intermediate} receives the address of
438 @code{store} as an argument. If @code{intermediate} calls @code{store},
439 the arguments given to @code{store} are used to store into @code{array}.
440 But this technique works only so long as the containing function
441 (@code{hack}, in this example) does not exit.
442
443 If you try to call the nested function through its address after the
444 containing function has exited, all hell will break loose. If you try
445 to call it after a containing scope level has exited, and if it refers
446 to some of the variables that are no longer in scope, you may be lucky,
447 but it's not wise to take the risk. If, however, the nested function
448 does not refer to anything that has gone out of scope, you should be
449 safe.
450
451 GCC implements taking the address of a nested function using a technique
452 called @dfn{trampolines}. A paper describing them is available as
453
454 @noindent
455 @uref{http://people.debian.org/~aaronl/Usenix88-lexic.pdf}.
456
457 A nested function can jump to a label inherited from a containing
458 function, provided the label was explicitly declared in the containing
459 function (@pxref{Local Labels}). Such a jump returns instantly to the
460 containing function, exiting the nested function which did the
461 @code{goto} and any intermediate functions as well. Here is an example:
462
463 @smallexample
464 @group
465 bar (int *array, int offset, int size)
466 @{
467 __label__ failure;
468 int access (int *array, int index)
469 @{
470 if (index > size)
471 goto failure;
472 return array[index + offset];
473 @}
474 int i;
475 /* @r{@dots{}} */
476 for (i = 0; i < size; i++)
477 /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
478 /* @r{@dots{}} */
479 return 0;
480
481 /* @r{Control comes here from @code{access}
482 if it detects an error.} */
483 failure:
484 return -1;
485 @}
486 @end group
487 @end smallexample
488
489 A nested function always has no linkage. Declaring one with
490 @code{extern} or @code{static} is erroneous. If you need to declare the nested function
491 before its definition, use @code{auto} (which is otherwise meaningless
492 for function declarations).
493
494 @smallexample
495 bar (int *array, int offset, int size)
496 @{
497 __label__ failure;
498 auto int access (int *, int);
499 /* @r{@dots{}} */
500 int access (int *array, int index)
501 @{
502 if (index > size)
503 goto failure;
504 return array[index + offset];
505 @}
506 /* @r{@dots{}} */
507 @}
508 @end smallexample
509
510 @node Constructing Calls
511 @section Constructing Function Calls
512 @cindex constructing calls
513 @cindex forwarding calls
514
515 Using the built-in functions described below, you can record
516 the arguments a function received, and call another function
517 with the same arguments, without knowing the number or types
518 of the arguments.
519
520 You can also record the return value of that function call,
521 and later return that value, without knowing what data type
522 the function tried to return (as long as your caller expects
523 that data type).
524
525 However, these built-in functions may interact badly with some
526 sophisticated features or other extensions of the language. It
527 is, therefore, not recommended to use them outside very simple
528 functions acting as mere forwarders for their arguments.
529
530 @deftypefn {Built-in Function} {void *} __builtin_apply_args ()
531 This built-in function returns a pointer to data
532 describing how to perform a call with the same arguments as were passed
533 to the current function.
534
535 The function saves the arg pointer register, structure value address,
536 and all registers that might be used to pass arguments to a function
537 into a block of memory allocated on the stack. Then it returns the
538 address of that block.
539 @end deftypefn
540
541 @deftypefn {Built-in Function} {void *} __builtin_apply (void (*@var{function})(), void *@var{arguments}, size_t @var{size})
542 This built-in function invokes @var{function}
543 with a copy of the parameters described by @var{arguments}
544 and @var{size}.
545
546 The value of @var{arguments} should be the value returned by
547 @code{__builtin_apply_args}. The argument @var{size} specifies the size
548 of the stack argument data, in bytes.
549
550 This function returns a pointer to data describing
551 how to return whatever value was returned by @var{function}. The data
552 is saved in a block of memory allocated on the stack.
553
554 It is not always simple to compute the proper value for @var{size}. The
555 value is used by @code{__builtin_apply} to compute the amount of data
556 that should be pushed on the stack and copied from the incoming argument
557 area.
558 @end deftypefn
559
560 @deftypefn {Built-in Function} {void} __builtin_return (void *@var{result})
561 This built-in function returns the value described by @var{result} from
562 the containing function. You should specify, for @var{result}, a value
563 returned by @code{__builtin_apply}.
564 @end deftypefn
565
566 @deftypefn {Built-in Function} __builtin_va_arg_pack ()
567 This built-in function represents all anonymous arguments of an inline
568 function. It can be used only in inline functions which will be always
569 inlined, never compiled as a separate function, such as those using
570 @code{__attribute__ ((__always_inline__))} or
571 @code{__attribute__ ((__gnu_inline__))} extern inline functions.
572 It must be only passed as last argument to some other function
573 with variable arguments. This is useful for writing small wrapper
574 inlines for variable argument functions, when using preprocessor
575 macros is undesirable. For example:
576 @smallexample
577 extern int myprintf (FILE *f, const char *format, ...);
578 extern inline __attribute__ ((__gnu_inline__)) int
579 myprintf (FILE *f, const char *format, ...)
580 @{
581 int r = fprintf (f, "myprintf: ");
582 if (r < 0)
583 return r;
584 int s = fprintf (f, format, __builtin_va_arg_pack ());
585 if (s < 0)
586 return s;
587 return r + s;
588 @}
589 @end smallexample
590 @end deftypefn
591
592 @deftypefn {Built-in Function} __builtin_va_arg_pack_len ()
593 This built-in function returns the number of anonymous arguments of
594 an inline function. It can be used only in inline functions which
595 will be always inlined, never compiled as a separate function, such
596 as those using @code{__attribute__ ((__always_inline__))} or
597 @code{__attribute__ ((__gnu_inline__))} extern inline functions.
598 For example following will do link or runtime checking of open
599 arguments for optimized code:
600 @smallexample
601 #ifdef __OPTIMIZE__
602 extern inline __attribute__((__gnu_inline__)) int
603 myopen (const char *path, int oflag, ...)
604 @{
605 if (__builtin_va_arg_pack_len () > 1)
606 warn_open_too_many_arguments ();
607
608 if (__builtin_constant_p (oflag))
609 @{
610 if ((oflag & O_CREAT) != 0 && __builtin_va_arg_pack_len () < 1)
611 @{
612 warn_open_missing_mode ();
613 return __open_2 (path, oflag);
614 @}
615 return open (path, oflag, __builtin_va_arg_pack ());
616 @}
617
618 if (__builtin_va_arg_pack_len () < 1)
619 return __open_2 (path, oflag);
620
621 return open (path, oflag, __builtin_va_arg_pack ());
622 @}
623 #endif
624 @end smallexample
625 @end deftypefn
626
627 @node Typeof
628 @section Referring to a Type with @code{typeof}
629 @findex typeof
630 @findex sizeof
631 @cindex macros, types of arguments
632
633 Another way to refer to the type of an expression is with @code{typeof}.
634 The syntax of using of this keyword looks like @code{sizeof}, but the
635 construct acts semantically like a type name defined with @code{typedef}.
636
637 There are two ways of writing the argument to @code{typeof}: with an
638 expression or with a type. Here is an example with an expression:
639
640 @smallexample
641 typeof (x[0](1))
642 @end smallexample
643
644 @noindent
645 This assumes that @code{x} is an array of pointers to functions;
646 the type described is that of the values of the functions.
647
648 Here is an example with a typename as the argument:
649
650 @smallexample
651 typeof (int *)
652 @end smallexample
653
654 @noindent
655 Here the type described is that of pointers to @code{int}.
656
657 If you are writing a header file that must work when included in ISO C
658 programs, write @code{__typeof__} instead of @code{typeof}.
659 @xref{Alternate Keywords}.
660
661 A @code{typeof}-construct can be used anywhere a typedef name could be
662 used. For example, you can use it in a declaration, in a cast, or inside
663 of @code{sizeof} or @code{typeof}.
664
665 @code{typeof} is often useful in conjunction with the
666 statements-within-expressions feature. Here is how the two together can
667 be used to define a safe ``maximum'' macro that operates on any
668 arithmetic type and evaluates each of its arguments exactly once:
669
670 @smallexample
671 #define max(a,b) \
672 (@{ typeof (a) _a = (a); \
673 typeof (b) _b = (b); \
674 _a > _b ? _a : _b; @})
675 @end smallexample
676
677 @cindex underscores in variables in macros
678 @cindex @samp{_} in variables in macros
679 @cindex local variables in macros
680 @cindex variables, local, in macros
681 @cindex macros, local variables in
682
683 The reason for using names that start with underscores for the local
684 variables is to avoid conflicts with variable names that occur within the
685 expressions that are substituted for @code{a} and @code{b}. Eventually we
686 hope to design a new form of declaration syntax that allows you to declare
687 variables whose scopes start only after their initializers; this will be a
688 more reliable way to prevent such conflicts.
689
690 @noindent
691 Some more examples of the use of @code{typeof}:
692
693 @itemize @bullet
694 @item
695 This declares @code{y} with the type of what @code{x} points to.
696
697 @smallexample
698 typeof (*x) y;
699 @end smallexample
700
701 @item
702 This declares @code{y} as an array of such values.
703
704 @smallexample
705 typeof (*x) y[4];
706 @end smallexample
707
708 @item
709 This declares @code{y} as an array of pointers to characters:
710
711 @smallexample
712 typeof (typeof (char *)[4]) y;
713 @end smallexample
714
715 @noindent
716 It is equivalent to the following traditional C declaration:
717
718 @smallexample
719 char *y[4];
720 @end smallexample
721
722 To see the meaning of the declaration using @code{typeof}, and why it
723 might be a useful way to write, rewrite it with these macros:
724
725 @smallexample
726 #define pointer(T) typeof(T *)
727 #define array(T, N) typeof(T [N])
728 @end smallexample
729
730 @noindent
731 Now the declaration can be rewritten this way:
732
733 @smallexample
734 array (pointer (char), 4) y;
735 @end smallexample
736
737 @noindent
738 Thus, @code{array (pointer (char), 4)} is the type of arrays of 4
739 pointers to @code{char}.
740 @end itemize
741
742 @emph{Compatibility Note:} In addition to @code{typeof}, GCC 2 supported
743 a more limited extension which permitted one to write
744
745 @smallexample
746 typedef @var{T} = @var{expr};
747 @end smallexample
748
749 @noindent
750 with the effect of declaring @var{T} to have the type of the expression
751 @var{expr}. This extension does not work with GCC 3 (versions between
752 3.0 and 3.2 will crash; 3.2.1 and later give an error). Code which
753 relies on it should be rewritten to use @code{typeof}:
754
755 @smallexample
756 typedef typeof(@var{expr}) @var{T};
757 @end smallexample
758
759 @noindent
760 This will work with all versions of GCC@.
761
762 @node Conditionals
763 @section Conditionals with Omitted Operands
764 @cindex conditional expressions, extensions
765 @cindex omitted middle-operands
766 @cindex middle-operands, omitted
767 @cindex extensions, @code{?:}
768 @cindex @code{?:} extensions
769
770 The middle operand in a conditional expression may be omitted. Then
771 if the first operand is nonzero, its value is the value of the conditional
772 expression.
773
774 Therefore, the expression
775
776 @smallexample
777 x ? : y
778 @end smallexample
779
780 @noindent
781 has the value of @code{x} if that is nonzero; otherwise, the value of
782 @code{y}.
783
784 This example is perfectly equivalent to
785
786 @smallexample
787 x ? x : y
788 @end smallexample
789
790 @cindex side effect in ?:
791 @cindex ?: side effect
792 @noindent
793 In this simple case, the ability to omit the middle operand is not
794 especially useful. When it becomes useful is when the first operand does,
795 or may (if it is a macro argument), contain a side effect. Then repeating
796 the operand in the middle would perform the side effect twice. Omitting
797 the middle operand uses the value already computed without the undesirable
798 effects of recomputing it.
799
800 @node Long Long
801 @section Double-Word Integers
802 @cindex @code{long long} data types
803 @cindex double-word arithmetic
804 @cindex multiprecision arithmetic
805 @cindex @code{LL} integer suffix
806 @cindex @code{ULL} integer suffix
807
808 ISO C99 supports data types for integers that are at least 64 bits wide,
809 and as an extension GCC supports them in C89 mode and in C++.
810 Simply write @code{long long int} for a signed integer, or
811 @code{unsigned long long int} for an unsigned integer. To make an
812 integer constant of type @code{long long int}, add the suffix @samp{LL}
813 to the integer. To make an integer constant of type @code{unsigned long
814 long int}, add the suffix @samp{ULL} to the integer.
815
816 You can use these types in arithmetic like any other integer types.
817 Addition, subtraction, and bitwise boolean operations on these types
818 are open-coded on all types of machines. Multiplication is open-coded
819 if the machine supports fullword-to-doubleword a widening multiply
820 instruction. Division and shifts are open-coded only on machines that
821 provide special support. The operations that are not open-coded use
822 special library routines that come with GCC@.
823
824 There may be pitfalls when you use @code{long long} types for function
825 arguments, unless you declare function prototypes. If a function
826 expects type @code{int} for its argument, and you pass a value of type
827 @code{long long int}, confusion will result because the caller and the
828 subroutine will disagree about the number of bytes for the argument.
829 Likewise, if the function expects @code{long long int} and you pass
830 @code{int}. The best way to avoid such problems is to use prototypes.
831
832 @node Complex
833 @section Complex Numbers
834 @cindex complex numbers
835 @cindex @code{_Complex} keyword
836 @cindex @code{__complex__} keyword
837
838 ISO C99 supports complex floating data types, and as an extension GCC
839 supports them in C89 mode and in C++, and supports complex integer data
840 types which are not part of ISO C99. You can declare complex types
841 using the keyword @code{_Complex}. As an extension, the older GNU
842 keyword @code{__complex__} is also supported.
843
844 For example, @samp{_Complex double x;} declares @code{x} as a
845 variable whose real part and imaginary part are both of type
846 @code{double}. @samp{_Complex short int y;} declares @code{y} to
847 have real and imaginary parts of type @code{short int}; this is not
848 likely to be useful, but it shows that the set of complex types is
849 complete.
850
851 To write a constant with a complex data type, use the suffix @samp{i} or
852 @samp{j} (either one; they are equivalent). For example, @code{2.5fi}
853 has type @code{_Complex float} and @code{3i} has type
854 @code{_Complex int}. Such a constant always has a pure imaginary
855 value, but you can form any complex value you like by adding one to a
856 real constant. This is a GNU extension; if you have an ISO C99
857 conforming C library (such as GNU libc), and want to construct complex
858 constants of floating type, you should include @code{<complex.h>} and
859 use the macros @code{I} or @code{_Complex_I} instead.
860
861 @cindex @code{__real__} keyword
862 @cindex @code{__imag__} keyword
863 To extract the real part of a complex-valued expression @var{exp}, write
864 @code{__real__ @var{exp}}. Likewise, use @code{__imag__} to
865 extract the imaginary part. This is a GNU extension; for values of
866 floating type, you should use the ISO C99 functions @code{crealf},
867 @code{creal}, @code{creall}, @code{cimagf}, @code{cimag} and
868 @code{cimagl}, declared in @code{<complex.h>} and also provided as
869 built-in functions by GCC@.
870
871 @cindex complex conjugation
872 The operator @samp{~} performs complex conjugation when used on a value
873 with a complex type. This is a GNU extension; for values of
874 floating type, you should use the ISO C99 functions @code{conjf},
875 @code{conj} and @code{conjl}, declared in @code{<complex.h>} and also
876 provided as built-in functions by GCC@.
877
878 GCC can allocate complex automatic variables in a noncontiguous
879 fashion; it's even possible for the real part to be in a register while
880 the imaginary part is on the stack (or vice-versa). Only the DWARF2
881 debug info format can represent this, so use of DWARF2 is recommended.
882 If you are using the stabs debug info format, GCC describes a noncontiguous
883 complex variable as if it were two separate variables of noncomplex type.
884 If the variable's actual name is @code{foo}, the two fictitious
885 variables are named @code{foo$real} and @code{foo$imag}. You can
886 examine and set these two fictitious variables with your debugger.
887
888 @node Floating Types
889 @section Additional Floating Types
890 @cindex additional floating types
891 @cindex @code{__float80} data type
892 @cindex @code{__float128} data type
893 @cindex @code{w} floating point suffix
894 @cindex @code{q} floating point suffix
895 @cindex @code{W} floating point suffix
896 @cindex @code{Q} floating point suffix
897
898 As an extension, the GNU C compiler supports additional floating
899 types, @code{__float80} and @code{__float128} to support 80bit
900 (@code{XFmode}) and 128 bit (@code{TFmode}) floating types.
901 Support for additional types includes the arithmetic operators:
902 add, subtract, multiply, divide; unary arithmetic operators;
903 relational operators; equality operators; and conversions to and from
904 integer and other floating types. Use a suffix @samp{w} or @samp{W}
905 in a literal constant of type @code{__float80} and @samp{q} or @samp{Q}
906 for @code{_float128}. You can declare complex types using the
907 corresponding internal complex type, @code{XCmode} for @code{__float80}
908 type and @code{TCmode} for @code{__float128} type:
909
910 @smallexample
911 typedef _Complex float __attribute__((mode(TC))) _Complex128;
912 typedef _Complex float __attribute__((mode(XC))) _Complex80;
913 @end smallexample
914
915 Not all targets support additional floating point types. @code{__float80}
916 is supported on i386, x86_64 and ia64 targets and target @code{__float128}
917 is supported on x86_64 and ia64 targets.
918
919 @node Decimal Float
920 @section Decimal Floating Types
921 @cindex decimal floating types
922 @cindex @code{_Decimal32} data type
923 @cindex @code{_Decimal64} data type
924 @cindex @code{_Decimal128} data type
925 @cindex @code{df} integer suffix
926 @cindex @code{dd} integer suffix
927 @cindex @code{dl} integer suffix
928 @cindex @code{DF} integer suffix
929 @cindex @code{DD} integer suffix
930 @cindex @code{DL} integer suffix
931
932 As an extension, the GNU C compiler supports decimal floating types as
933 defined in the N1176 draft of ISO/IEC WDTR24732. Support for decimal
934 floating types in GCC will evolve as the draft technical report changes.
935 Calling conventions for any target might also change. Not all targets
936 support decimal floating types.
937
938 The decimal floating types are @code{_Decimal32}, @code{_Decimal64}, and
939 @code{_Decimal128}. They use a radix of ten, unlike the floating types
940 @code{float}, @code{double}, and @code{long double} whose radix is not
941 specified by the C standard but is usually two.
942
943 Support for decimal floating types includes the arithmetic operators
944 add, subtract, multiply, divide; unary arithmetic operators;
945 relational operators; equality operators; and conversions to and from
946 integer and other floating types. Use a suffix @samp{df} or
947 @samp{DF} in a literal constant of type @code{_Decimal32}, @samp{dd}
948 or @samp{DD} for @code{_Decimal64}, and @samp{dl} or @samp{DL} for
949 @code{_Decimal128}.
950
951 GCC support of decimal float as specified by the draft technical report
952 is incomplete:
953
954 @itemize @bullet
955 @item
956 Translation time data type (TTDT) is not supported.
957
958 @item
959 When the value of a decimal floating type cannot be represented in the
960 integer type to which it is being converted, the result is undefined
961 rather than the result value specified by the draft technical report.
962 @end itemize
963
964 Types @code{_Decimal32}, @code{_Decimal64}, and @code{_Decimal128}
965 are supported by the DWARF2 debug information format.
966
967 @node Hex Floats
968 @section Hex Floats
969 @cindex hex floats
970
971 ISO C99 supports floating-point numbers written not only in the usual
972 decimal notation, such as @code{1.55e1}, but also numbers such as
973 @code{0x1.fp3} written in hexadecimal format. As a GNU extension, GCC
974 supports this in C89 mode (except in some cases when strictly
975 conforming) and in C++. In that format the
976 @samp{0x} hex introducer and the @samp{p} or @samp{P} exponent field are
977 mandatory. The exponent is a decimal number that indicates the power of
978 2 by which the significant part will be multiplied. Thus @samp{0x1.f} is
979 @tex
980 $1 {15\over16}$,
981 @end tex
982 @ifnottex
983 1 15/16,
984 @end ifnottex
985 @samp{p3} multiplies it by 8, and the value of @code{0x1.fp3}
986 is the same as @code{1.55e1}.
987
988 Unlike for floating-point numbers in the decimal notation the exponent
989 is always required in the hexadecimal notation. Otherwise the compiler
990 would not be able to resolve the ambiguity of, e.g., @code{0x1.f}. This
991 could mean @code{1.0f} or @code{1.9375} since @samp{f} is also the
992 extension for floating-point constants of type @code{float}.
993
994 @node Fixed-Point
995 @section Fixed-Point Types
996 @cindex fixed-point types
997 @cindex @code{_Fract} data type
998 @cindex @code{_Accum} data type
999 @cindex @code{_Sat} data type
1000 @cindex @code{hr} fixed-suffix
1001 @cindex @code{r} fixed-suffix
1002 @cindex @code{lr} fixed-suffix
1003 @cindex @code{llr} fixed-suffix
1004 @cindex @code{uhr} fixed-suffix
1005 @cindex @code{ur} fixed-suffix
1006 @cindex @code{ulr} fixed-suffix
1007 @cindex @code{ullr} fixed-suffix
1008 @cindex @code{hk} fixed-suffix
1009 @cindex @code{k} fixed-suffix
1010 @cindex @code{lk} fixed-suffix
1011 @cindex @code{llk} fixed-suffix
1012 @cindex @code{uhk} fixed-suffix
1013 @cindex @code{uk} fixed-suffix
1014 @cindex @code{ulk} fixed-suffix
1015 @cindex @code{ullk} fixed-suffix
1016 @cindex @code{HR} fixed-suffix
1017 @cindex @code{R} fixed-suffix
1018 @cindex @code{LR} fixed-suffix
1019 @cindex @code{LLR} fixed-suffix
1020 @cindex @code{UHR} fixed-suffix
1021 @cindex @code{UR} fixed-suffix
1022 @cindex @code{ULR} fixed-suffix
1023 @cindex @code{ULLR} fixed-suffix
1024 @cindex @code{HK} fixed-suffix
1025 @cindex @code{K} fixed-suffix
1026 @cindex @code{LK} fixed-suffix
1027 @cindex @code{LLK} fixed-suffix
1028 @cindex @code{UHK} fixed-suffix
1029 @cindex @code{UK} fixed-suffix
1030 @cindex @code{ULK} fixed-suffix
1031 @cindex @code{ULLK} fixed-suffix
1032
1033 As an extension, the GNU C compiler supports fixed-point types as
1034 defined in the N1169 draft of ISO/IEC DTR 18037. Support for fixed-point
1035 types in GCC will evolve as the draft technical report changes.
1036 Calling conventions for any target might also change. Not all targets
1037 support fixed-point types.
1038
1039 The fixed-point types are
1040 @code{short _Fract},
1041 @code{_Fract},
1042 @code{long _Fract},
1043 @code{long long _Fract},
1044 @code{unsigned short _Fract},
1045 @code{unsigned _Fract},
1046 @code{unsigned long _Fract},
1047 @code{unsigned long long _Fract},
1048 @code{_Sat short _Fract},
1049 @code{_Sat _Fract},
1050 @code{_Sat long _Fract},
1051 @code{_Sat long long _Fract},
1052 @code{_Sat unsigned short _Fract},
1053 @code{_Sat unsigned _Fract},
1054 @code{_Sat unsigned long _Fract},
1055 @code{_Sat unsigned long long _Fract},
1056 @code{short _Accum},
1057 @code{_Accum},
1058 @code{long _Accum},
1059 @code{long long _Accum},
1060 @code{unsigned short _Accum},
1061 @code{unsigned _Accum},
1062 @code{unsigned long _Accum},
1063 @code{unsigned long long _Accum},
1064 @code{_Sat short _Accum},
1065 @code{_Sat _Accum},
1066 @code{_Sat long _Accum},
1067 @code{_Sat long long _Accum},
1068 @code{_Sat unsigned short _Accum},
1069 @code{_Sat unsigned _Accum},
1070 @code{_Sat unsigned long _Accum},
1071 @code{_Sat unsigned long long _Accum}.
1072 Fixed-point data values contain fractional and optional integral parts.
1073 The format of fixed-point data varies and depends on the target machine.
1074
1075 Support for fixed-point types includes prefix and postfix increment
1076 and decrement operators (@code{++}, @code{--}); unary arithmetic operators
1077 (@code{+}, @code{-}, @code{!}); binary arithmetic operators (@code{+},
1078 @code{-}, @code{*}, @code{/}); binary shift operators (@code{<<}, @code{>>});
1079 relational operators (@code{<}, @code{<=}, @code{>=}, @code{>});
1080 equality operators (@code{==}, @code{!=}); assignment operators
1081 (@code{+=}, @code{-=}, @code{*=}, @code{/=}, @code{<<=}, @code{>>=});
1082 and conversions to and from integer, floating-point, or fixed-point types.
1083
1084 Use a suffix @samp{hr} or @samp{HR} in a literal constant of type
1085 @code{short _Fract} and @code{_Sat short _Fract},
1086 @samp{r} or @samp{R} for @code{_Fract} and @code{_Sat _Fract},
1087 @samp{lr} or @samp{LR} for @code{long _Fract} and @code{_Sat long _Fract},
1088 @samp{llr} or @samp{LLR} for @code{long long _Fract} and
1089 @code{_Sat long long _Fract},
1090 @samp{uhr} or @samp{UHR} for @code{unsigned short _Fract} and
1091 @code{_Sat unsigned short _Fract},
1092 @samp{ur} or @samp{UR} for @code{unsigned _Fract} and
1093 @code{_Sat unsigned _Fract},
1094 @samp{ulr} or @samp{ULR} for @code{unsigned long _Fract} and
1095 @code{_Sat unsigned long _Fract},
1096 @samp{ullr} or @samp{ULLR} for @code{unsigned long long _Fract}
1097 and @code{_Sat unsigned long long _Fract},
1098 @samp{hk} or @samp{HK} for @code{short _Accum} and @code{_Sat short _Accum},
1099 @samp{k} or @samp{K} for @code{_Accum} and @code{_Sat _Accum},
1100 @samp{lk} or @samp{LK} for @code{long _Accum} and @code{_Sat long _Accum},
1101 @samp{llk} or @samp{LLK} for @code{long long _Accum} and
1102 @code{_Sat long long _Accum},
1103 @samp{uhk} or @samp{UHK} for @code{unsigned short _Accum} and
1104 @code{_Sat unsigned short _Accum},
1105 @samp{uk} or @samp{UK} for @code{unsigned _Accum} and
1106 @code{_Sat unsigned _Accum},
1107 @samp{ulk} or @samp{ULK} for @code{unsigned long _Accum} and
1108 @code{_Sat unsigned long _Accum},
1109 and @samp{ullk} or @samp{ULLK} for @code{unsigned long long _Accum}
1110 and @code{_Sat unsigned long long _Accum}.
1111
1112 GCC support of fixed-point types as specified by the draft technical report
1113 is incomplete:
1114
1115 @itemize @bullet
1116 @item
1117 Pragmas to control overflow and rounding behaviors are not implemented.
1118 @end itemize
1119
1120 Fixed-point types are supported by the DWARF2 debug information format.
1121
1122 @node Zero Length
1123 @section Arrays of Length Zero
1124 @cindex arrays of length zero
1125 @cindex zero-length arrays
1126 @cindex length-zero arrays
1127 @cindex flexible array members
1128
1129 Zero-length arrays are allowed in GNU C@. They are very useful as the
1130 last element of a structure which is really a header for a variable-length
1131 object:
1132
1133 @smallexample
1134 struct line @{
1135 int length;
1136 char contents[0];
1137 @};
1138
1139 struct line *thisline = (struct line *)
1140 malloc (sizeof (struct line) + this_length);
1141 thisline->length = this_length;
1142 @end smallexample
1143
1144 In ISO C90, you would have to give @code{contents} a length of 1, which
1145 means either you waste space or complicate the argument to @code{malloc}.
1146
1147 In ISO C99, you would use a @dfn{flexible array member}, which is
1148 slightly different in syntax and semantics:
1149
1150 @itemize @bullet
1151 @item
1152 Flexible array members are written as @code{contents[]} without
1153 the @code{0}.
1154
1155 @item
1156 Flexible array members have incomplete type, and so the @code{sizeof}
1157 operator may not be applied. As a quirk of the original implementation
1158 of zero-length arrays, @code{sizeof} evaluates to zero.
1159
1160 @item
1161 Flexible array members may only appear as the last member of a
1162 @code{struct} that is otherwise non-empty.
1163
1164 @item
1165 A structure containing a flexible array member, or a union containing
1166 such a structure (possibly recursively), may not be a member of a
1167 structure or an element of an array. (However, these uses are
1168 permitted by GCC as extensions.)
1169 @end itemize
1170
1171 GCC versions before 3.0 allowed zero-length arrays to be statically
1172 initialized, as if they were flexible arrays. In addition to those
1173 cases that were useful, it also allowed initializations in situations
1174 that would corrupt later data. Non-empty initialization of zero-length
1175 arrays is now treated like any case where there are more initializer
1176 elements than the array holds, in that a suitable warning about "excess
1177 elements in array" is given, and the excess elements (all of them, in
1178 this case) are ignored.
1179
1180 Instead GCC allows static initialization of flexible array members.
1181 This is equivalent to defining a new structure containing the original
1182 structure followed by an array of sufficient size to contain the data.
1183 I.e.@: in the following, @code{f1} is constructed as if it were declared
1184 like @code{f2}.
1185
1186 @smallexample
1187 struct f1 @{
1188 int x; int y[];
1189 @} f1 = @{ 1, @{ 2, 3, 4 @} @};
1190
1191 struct f2 @{
1192 struct f1 f1; int data[3];
1193 @} f2 = @{ @{ 1 @}, @{ 2, 3, 4 @} @};
1194 @end smallexample
1195
1196 @noindent
1197 The convenience of this extension is that @code{f1} has the desired
1198 type, eliminating the need to consistently refer to @code{f2.f1}.
1199
1200 This has symmetry with normal static arrays, in that an array of
1201 unknown size is also written with @code{[]}.
1202
1203 Of course, this extension only makes sense if the extra data comes at
1204 the end of a top-level object, as otherwise we would be overwriting
1205 data at subsequent offsets. To avoid undue complication and confusion
1206 with initialization of deeply nested arrays, we simply disallow any
1207 non-empty initialization except when the structure is the top-level
1208 object. For example:
1209
1210 @smallexample
1211 struct foo @{ int x; int y[]; @};
1212 struct bar @{ struct foo z; @};
1213
1214 struct foo a = @{ 1, @{ 2, 3, 4 @} @}; // @r{Valid.}
1215 struct bar b = @{ @{ 1, @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
1216 struct bar c = @{ @{ 1, @{ @} @} @}; // @r{Valid.}
1217 struct foo d[1] = @{ @{ 1 @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
1218 @end smallexample
1219
1220 @node Empty Structures
1221 @section Structures With No Members
1222 @cindex empty structures
1223 @cindex zero-size structures
1224
1225 GCC permits a C structure to have no members:
1226
1227 @smallexample
1228 struct empty @{
1229 @};
1230 @end smallexample
1231
1232 The structure will have size zero. In C++, empty structures are part
1233 of the language. G++ treats empty structures as if they had a single
1234 member of type @code{char}.
1235
1236 @node Variable Length
1237 @section Arrays of Variable Length
1238 @cindex variable-length arrays
1239 @cindex arrays of variable length
1240 @cindex VLAs
1241
1242 Variable-length automatic arrays are allowed in ISO C99, and as an
1243 extension GCC accepts them in C89 mode and in C++. (However, GCC's
1244 implementation of variable-length arrays does not yet conform in detail
1245 to the ISO C99 standard.) These arrays are
1246 declared like any other automatic arrays, but with a length that is not
1247 a constant expression. The storage is allocated at the point of
1248 declaration and deallocated when the brace-level is exited. For
1249 example:
1250
1251 @smallexample
1252 FILE *
1253 concat_fopen (char *s1, char *s2, char *mode)
1254 @{
1255 char str[strlen (s1) + strlen (s2) + 1];
1256 strcpy (str, s1);
1257 strcat (str, s2);
1258 return fopen (str, mode);
1259 @}
1260 @end smallexample
1261
1262 @cindex scope of a variable length array
1263 @cindex variable-length array scope
1264 @cindex deallocating variable length arrays
1265 Jumping or breaking out of the scope of the array name deallocates the
1266 storage. Jumping into the scope is not allowed; you get an error
1267 message for it.
1268
1269 @cindex @code{alloca} vs variable-length arrays
1270 You can use the function @code{alloca} to get an effect much like
1271 variable-length arrays. The function @code{alloca} is available in
1272 many other C implementations (but not in all). On the other hand,
1273 variable-length arrays are more elegant.
1274
1275 There are other differences between these two methods. Space allocated
1276 with @code{alloca} exists until the containing @emph{function} returns.
1277 The space for a variable-length array is deallocated as soon as the array
1278 name's scope ends. (If you use both variable-length arrays and
1279 @code{alloca} in the same function, deallocation of a variable-length array
1280 will also deallocate anything more recently allocated with @code{alloca}.)
1281
1282 You can also use variable-length arrays as arguments to functions:
1283
1284 @smallexample
1285 struct entry
1286 tester (int len, char data[len][len])
1287 @{
1288 /* @r{@dots{}} */
1289 @}
1290 @end smallexample
1291
1292 The length of an array is computed once when the storage is allocated
1293 and is remembered for the scope of the array in case you access it with
1294 @code{sizeof}.
1295
1296 If you want to pass the array first and the length afterward, you can
1297 use a forward declaration in the parameter list---another GNU extension.
1298
1299 @smallexample
1300 struct entry
1301 tester (int len; char data[len][len], int len)
1302 @{
1303 /* @r{@dots{}} */
1304 @}
1305 @end smallexample
1306
1307 @cindex parameter forward declaration
1308 The @samp{int len} before the semicolon is a @dfn{parameter forward
1309 declaration}, and it serves the purpose of making the name @code{len}
1310 known when the declaration of @code{data} is parsed.
1311
1312 You can write any number of such parameter forward declarations in the
1313 parameter list. They can be separated by commas or semicolons, but the
1314 last one must end with a semicolon, which is followed by the ``real''
1315 parameter declarations. Each forward declaration must match a ``real''
1316 declaration in parameter name and data type. ISO C99 does not support
1317 parameter forward declarations.
1318
1319 @node Variadic Macros
1320 @section Macros with a Variable Number of Arguments.
1321 @cindex variable number of arguments
1322 @cindex macro with variable arguments
1323 @cindex rest argument (in macro)
1324 @cindex variadic macros
1325
1326 In the ISO C standard of 1999, a macro can be declared to accept a
1327 variable number of arguments much as a function can. The syntax for
1328 defining the macro is similar to that of a function. Here is an
1329 example:
1330
1331 @smallexample
1332 #define debug(format, ...) fprintf (stderr, format, __VA_ARGS__)
1333 @end smallexample
1334
1335 Here @samp{@dots{}} is a @dfn{variable argument}. In the invocation of
1336 such a macro, it represents the zero or more tokens until the closing
1337 parenthesis that ends the invocation, including any commas. This set of
1338 tokens replaces the identifier @code{__VA_ARGS__} in the macro body
1339 wherever it appears. See the CPP manual for more information.
1340
1341 GCC has long supported variadic macros, and used a different syntax that
1342 allowed you to give a name to the variable arguments just like any other
1343 argument. Here is an example:
1344
1345 @smallexample
1346 #define debug(format, args...) fprintf (stderr, format, args)
1347 @end smallexample
1348
1349 This is in all ways equivalent to the ISO C example above, but arguably
1350 more readable and descriptive.
1351
1352 GNU CPP has two further variadic macro extensions, and permits them to
1353 be used with either of the above forms of macro definition.
1354
1355 In standard C, you are not allowed to leave the variable argument out
1356 entirely; but you are allowed to pass an empty argument. For example,
1357 this invocation is invalid in ISO C, because there is no comma after
1358 the string:
1359
1360 @smallexample
1361 debug ("A message")
1362 @end smallexample
1363
1364 GNU CPP permits you to completely omit the variable arguments in this
1365 way. In the above examples, the compiler would complain, though since
1366 the expansion of the macro still has the extra comma after the format
1367 string.
1368
1369 To help solve this problem, CPP behaves specially for variable arguments
1370 used with the token paste operator, @samp{##}. If instead you write
1371
1372 @smallexample
1373 #define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__)
1374 @end smallexample
1375
1376 and if the variable arguments are omitted or empty, the @samp{##}
1377 operator causes the preprocessor to remove the comma before it. If you
1378 do provide some variable arguments in your macro invocation, GNU CPP
1379 does not complain about the paste operation and instead places the
1380 variable arguments after the comma. Just like any other pasted macro
1381 argument, these arguments are not macro expanded.
1382
1383 @node Escaped Newlines
1384 @section Slightly Looser Rules for Escaped Newlines
1385 @cindex escaped newlines
1386 @cindex newlines (escaped)
1387
1388 Recently, the preprocessor has relaxed its treatment of escaped
1389 newlines. Previously, the newline had to immediately follow a
1390 backslash. The current implementation allows whitespace in the form
1391 of spaces, horizontal and vertical tabs, and form feeds between the
1392 backslash and the subsequent newline. The preprocessor issues a
1393 warning, but treats it as a valid escaped newline and combines the two
1394 lines to form a single logical line. This works within comments and
1395 tokens, as well as between tokens. Comments are @emph{not} treated as
1396 whitespace for the purposes of this relaxation, since they have not
1397 yet been replaced with spaces.
1398
1399 @node Subscripting
1400 @section Non-Lvalue Arrays May Have Subscripts
1401 @cindex subscripting
1402 @cindex arrays, non-lvalue
1403
1404 @cindex subscripting and function values
1405 In ISO C99, arrays that are not lvalues still decay to pointers, and
1406 may be subscripted, although they may not be modified or used after
1407 the next sequence point and the unary @samp{&} operator may not be
1408 applied to them. As an extension, GCC allows such arrays to be
1409 subscripted in C89 mode, though otherwise they do not decay to
1410 pointers outside C99 mode. For example,
1411 this is valid in GNU C though not valid in C89:
1412
1413 @smallexample
1414 @group
1415 struct foo @{int a[4];@};
1416
1417 struct foo f();
1418
1419 bar (int index)
1420 @{
1421 return f().a[index];
1422 @}
1423 @end group
1424 @end smallexample
1425
1426 @node Pointer Arith
1427 @section Arithmetic on @code{void}- and Function-Pointers
1428 @cindex void pointers, arithmetic
1429 @cindex void, size of pointer to
1430 @cindex function pointers, arithmetic
1431 @cindex function, size of pointer to
1432
1433 In GNU C, addition and subtraction operations are supported on pointers to
1434 @code{void} and on pointers to functions. This is done by treating the
1435 size of a @code{void} or of a function as 1.
1436
1437 A consequence of this is that @code{sizeof} is also allowed on @code{void}
1438 and on function types, and returns 1.
1439
1440 @opindex Wpointer-arith
1441 The option @option{-Wpointer-arith} requests a warning if these extensions
1442 are used.
1443
1444 @node Initializers
1445 @section Non-Constant Initializers
1446 @cindex initializers, non-constant
1447 @cindex non-constant initializers
1448
1449 As in standard C++ and ISO C99, the elements of an aggregate initializer for an
1450 automatic variable are not required to be constant expressions in GNU C@.
1451 Here is an example of an initializer with run-time varying elements:
1452
1453 @smallexample
1454 foo (float f, float g)
1455 @{
1456 float beat_freqs[2] = @{ f-g, f+g @};
1457 /* @r{@dots{}} */
1458 @}
1459 @end smallexample
1460
1461 @node Compound Literals
1462 @section Compound Literals
1463 @cindex constructor expressions
1464 @cindex initializations in expressions
1465 @cindex structures, constructor expression
1466 @cindex expressions, constructor
1467 @cindex compound literals
1468 @c The GNU C name for what C99 calls compound literals was "constructor expressions".
1469
1470 ISO C99 supports compound literals. A compound literal looks like
1471 a cast containing an initializer. Its value is an object of the
1472 type specified in the cast, containing the elements specified in
1473 the initializer; it is an lvalue. As an extension, GCC supports
1474 compound literals in C89 mode and in C++.
1475
1476 Usually, the specified type is a structure. Assume that
1477 @code{struct foo} and @code{structure} are declared as shown:
1478
1479 @smallexample
1480 struct foo @{int a; char b[2];@} structure;
1481 @end smallexample
1482
1483 @noindent
1484 Here is an example of constructing a @code{struct foo} with a compound literal:
1485
1486 @smallexample
1487 structure = ((struct foo) @{x + y, 'a', 0@});
1488 @end smallexample
1489
1490 @noindent
1491 This is equivalent to writing the following:
1492
1493 @smallexample
1494 @{
1495 struct foo temp = @{x + y, 'a', 0@};
1496 structure = temp;
1497 @}
1498 @end smallexample
1499
1500 You can also construct an array. If all the elements of the compound literal
1501 are (made up of) simple constant expressions, suitable for use in
1502 initializers of objects of static storage duration, then the compound
1503 literal can be coerced to a pointer to its first element and used in
1504 such an initializer, as shown here:
1505
1506 @smallexample
1507 char **foo = (char *[]) @{ "x", "y", "z" @};
1508 @end smallexample
1509
1510 Compound literals for scalar types and union types are is
1511 also allowed, but then the compound literal is equivalent
1512 to a cast.
1513
1514 As a GNU extension, GCC allows initialization of objects with static storage
1515 duration by compound literals (which is not possible in ISO C99, because
1516 the initializer is not a constant).
1517 It is handled as if the object was initialized only with the bracket
1518 enclosed list if the types of the compound literal and the object match.
1519 The initializer list of the compound literal must be constant.
1520 If the object being initialized has array type of unknown size, the size is
1521 determined by compound literal size.
1522
1523 @smallexample
1524 static struct foo x = (struct foo) @{1, 'a', 'b'@};
1525 static int y[] = (int []) @{1, 2, 3@};
1526 static int z[] = (int [3]) @{1@};
1527 @end smallexample
1528
1529 @noindent
1530 The above lines are equivalent to the following:
1531 @smallexample
1532 static struct foo x = @{1, 'a', 'b'@};
1533 static int y[] = @{1, 2, 3@};
1534 static int z[] = @{1, 0, 0@};
1535 @end smallexample
1536
1537 @node Designated Inits
1538 @section Designated Initializers
1539 @cindex initializers with labeled elements
1540 @cindex labeled elements in initializers
1541 @cindex case labels in initializers
1542 @cindex designated initializers
1543
1544 Standard C89 requires the elements of an initializer to appear in a fixed
1545 order, the same as the order of the elements in the array or structure
1546 being initialized.
1547
1548 In ISO C99 you can give the elements in any order, specifying the array
1549 indices or structure field names they apply to, and GNU C allows this as
1550 an extension in C89 mode as well. This extension is not
1551 implemented in GNU C++.
1552
1553 To specify an array index, write
1554 @samp{[@var{index}] =} before the element value. For example,
1555
1556 @smallexample
1557 int a[6] = @{ [4] = 29, [2] = 15 @};
1558 @end smallexample
1559
1560 @noindent
1561 is equivalent to
1562
1563 @smallexample
1564 int a[6] = @{ 0, 0, 15, 0, 29, 0 @};
1565 @end smallexample
1566
1567 @noindent
1568 The index values must be constant expressions, even if the array being
1569 initialized is automatic.
1570
1571 An alternative syntax for this which has been obsolete since GCC 2.5 but
1572 GCC still accepts is to write @samp{[@var{index}]} before the element
1573 value, with no @samp{=}.
1574
1575 To initialize a range of elements to the same value, write
1576 @samp{[@var{first} ... @var{last}] = @var{value}}. This is a GNU
1577 extension. For example,
1578
1579 @smallexample
1580 int widths[] = @{ [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 @};
1581 @end smallexample
1582
1583 @noindent
1584 If the value in it has side-effects, the side-effects will happen only once,
1585 not for each initialized field by the range initializer.
1586
1587 @noindent
1588 Note that the length of the array is the highest value specified
1589 plus one.
1590
1591 In a structure initializer, specify the name of a field to initialize
1592 with @samp{.@var{fieldname} =} before the element value. For example,
1593 given the following structure,
1594
1595 @smallexample
1596 struct point @{ int x, y; @};
1597 @end smallexample
1598
1599 @noindent
1600 the following initialization
1601
1602 @smallexample
1603 struct point p = @{ .y = yvalue, .x = xvalue @};
1604 @end smallexample
1605
1606 @noindent
1607 is equivalent to
1608
1609 @smallexample
1610 struct point p = @{ xvalue, yvalue @};
1611 @end smallexample
1612
1613 Another syntax which has the same meaning, obsolete since GCC 2.5, is
1614 @samp{@var{fieldname}:}, as shown here:
1615
1616 @smallexample
1617 struct point p = @{ y: yvalue, x: xvalue @};
1618 @end smallexample
1619
1620 @cindex designators
1621 The @samp{[@var{index}]} or @samp{.@var{fieldname}} is known as a
1622 @dfn{designator}. You can also use a designator (or the obsolete colon
1623 syntax) when initializing a union, to specify which element of the union
1624 should be used. For example,
1625
1626 @smallexample
1627 union foo @{ int i; double d; @};
1628
1629 union foo f = @{ .d = 4 @};
1630 @end smallexample
1631
1632 @noindent
1633 will convert 4 to a @code{double} to store it in the union using
1634 the second element. By contrast, casting 4 to type @code{union foo}
1635 would store it into the union as the integer @code{i}, since it is
1636 an integer. (@xref{Cast to Union}.)
1637
1638 You can combine this technique of naming elements with ordinary C
1639 initialization of successive elements. Each initializer element that
1640 does not have a designator applies to the next consecutive element of the
1641 array or structure. For example,
1642
1643 @smallexample
1644 int a[6] = @{ [1] = v1, v2, [4] = v4 @};
1645 @end smallexample
1646
1647 @noindent
1648 is equivalent to
1649
1650 @smallexample
1651 int a[6] = @{ 0, v1, v2, 0, v4, 0 @};
1652 @end smallexample
1653
1654 Labeling the elements of an array initializer is especially useful
1655 when the indices are characters or belong to an @code{enum} type.
1656 For example:
1657
1658 @smallexample
1659 int whitespace[256]
1660 = @{ [' '] = 1, ['\t'] = 1, ['\h'] = 1,
1661 ['\f'] = 1, ['\n'] = 1, ['\r'] = 1 @};
1662 @end smallexample
1663
1664 @cindex designator lists
1665 You can also write a series of @samp{.@var{fieldname}} and
1666 @samp{[@var{index}]} designators before an @samp{=} to specify a
1667 nested subobject to initialize; the list is taken relative to the
1668 subobject corresponding to the closest surrounding brace pair. For
1669 example, with the @samp{struct point} declaration above:
1670
1671 @smallexample
1672 struct point ptarray[10] = @{ [2].y = yv2, [2].x = xv2, [0].x = xv0 @};
1673 @end smallexample
1674
1675 @noindent
1676 If the same field is initialized multiple times, it will have value from
1677 the last initialization. If any such overridden initialization has
1678 side-effect, it is unspecified whether the side-effect happens or not.
1679 Currently, GCC will discard them and issue a warning.
1680
1681 @node Case Ranges
1682 @section Case Ranges
1683 @cindex case ranges
1684 @cindex ranges in case statements
1685
1686 You can specify a range of consecutive values in a single @code{case} label,
1687 like this:
1688
1689 @smallexample
1690 case @var{low} ... @var{high}:
1691 @end smallexample
1692
1693 @noindent
1694 This has the same effect as the proper number of individual @code{case}
1695 labels, one for each integer value from @var{low} to @var{high}, inclusive.
1696
1697 This feature is especially useful for ranges of ASCII character codes:
1698
1699 @smallexample
1700 case 'A' ... 'Z':
1701 @end smallexample
1702
1703 @strong{Be careful:} Write spaces around the @code{...}, for otherwise
1704 it may be parsed wrong when you use it with integer values. For example,
1705 write this:
1706
1707 @smallexample
1708 case 1 ... 5:
1709 @end smallexample
1710
1711 @noindent
1712 rather than this:
1713
1714 @smallexample
1715 case 1...5:
1716 @end smallexample
1717
1718 @node Cast to Union
1719 @section Cast to a Union Type
1720 @cindex cast to a union
1721 @cindex union, casting to a
1722
1723 A cast to union type is similar to other casts, except that the type
1724 specified is a union type. You can specify the type either with
1725 @code{union @var{tag}} or with a typedef name. A cast to union is actually
1726 a constructor though, not a cast, and hence does not yield an lvalue like
1727 normal casts. (@xref{Compound Literals}.)
1728
1729 The types that may be cast to the union type are those of the members
1730 of the union. Thus, given the following union and variables:
1731
1732 @smallexample
1733 union foo @{ int i; double d; @};
1734 int x;
1735 double y;
1736 @end smallexample
1737
1738 @noindent
1739 both @code{x} and @code{y} can be cast to type @code{union foo}.
1740
1741 Using the cast as the right-hand side of an assignment to a variable of
1742 union type is equivalent to storing in a member of the union:
1743
1744 @smallexample
1745 union foo u;
1746 /* @r{@dots{}} */
1747 u = (union foo) x @equiv{} u.i = x
1748 u = (union foo) y @equiv{} u.d = y
1749 @end smallexample
1750
1751 You can also use the union cast as a function argument:
1752
1753 @smallexample
1754 void hack (union foo);
1755 /* @r{@dots{}} */
1756 hack ((union foo) x);
1757 @end smallexample
1758
1759 @node Mixed Declarations
1760 @section Mixed Declarations and Code
1761 @cindex mixed declarations and code
1762 @cindex declarations, mixed with code
1763 @cindex code, mixed with declarations
1764
1765 ISO C99 and ISO C++ allow declarations and code to be freely mixed
1766 within compound statements. As an extension, GCC also allows this in
1767 C89 mode. For example, you could do:
1768
1769 @smallexample
1770 int i;
1771 /* @r{@dots{}} */
1772 i++;
1773 int j = i + 2;
1774 @end smallexample
1775
1776 Each identifier is visible from where it is declared until the end of
1777 the enclosing block.
1778
1779 @node Function Attributes
1780 @section Declaring Attributes of Functions
1781 @cindex function attributes
1782 @cindex declaring attributes of functions
1783 @cindex functions that never return
1784 @cindex functions that return more than once
1785 @cindex functions that have no side effects
1786 @cindex functions in arbitrary sections
1787 @cindex functions that behave like malloc
1788 @cindex @code{volatile} applied to function
1789 @cindex @code{const} applied to function
1790 @cindex functions with @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style arguments
1791 @cindex functions with non-null pointer arguments
1792 @cindex functions that are passed arguments in registers on the 386
1793 @cindex functions that pop the argument stack on the 386
1794 @cindex functions that do not pop the argument stack on the 386
1795
1796 In GNU C, you declare certain things about functions called in your program
1797 which help the compiler optimize function calls and check your code more
1798 carefully.
1799
1800 The keyword @code{__attribute__} allows you to specify special
1801 attributes when making a declaration. This keyword is followed by an
1802 attribute specification inside double parentheses. The following
1803 attributes are currently defined for functions on all targets:
1804 @code{aligned}, @code{alloc_size}, @code{noreturn},
1805 @code{returns_twice}, @code{noinline}, @code{always_inline},
1806 @code{flatten}, @code{pure}, @code{const}, @code{nothrow},
1807 @code{sentinel}, @code{format}, @code{format_arg},
1808 @code{no_instrument_function}, @code{section}, @code{constructor},
1809 @code{destructor}, @code{used}, @code{unused}, @code{deprecated},
1810 @code{weak}, @code{malloc}, @code{alias}, @code{warn_unused_result},
1811 @code{nonnull}, @code{gnu_inline}, @code{externally_visible},
1812 @code{hot}, @code{cold}, @code{artificial}, @code{error}
1813 and @code{warning}.
1814 Several other attributes are defined for functions on particular
1815 target systems. Other attributes, including @code{section} are
1816 supported for variables declarations (@pxref{Variable Attributes}) and
1817 for types (@pxref{Type Attributes}).
1818
1819 You may also specify attributes with @samp{__} preceding and following
1820 each keyword. This allows you to use them in header files without
1821 being concerned about a possible macro of the same name. For example,
1822 you may use @code{__noreturn__} instead of @code{noreturn}.
1823
1824 @xref{Attribute Syntax}, for details of the exact syntax for using
1825 attributes.
1826
1827 @table @code
1828 @c Keep this table alphabetized by attribute name. Treat _ as space.
1829
1830 @item alias ("@var{target}")
1831 @cindex @code{alias} attribute
1832 The @code{alias} attribute causes the declaration to be emitted as an
1833 alias for another symbol, which must be specified. For instance,
1834
1835 @smallexample
1836 void __f () @{ /* @r{Do something.} */; @}
1837 void f () __attribute__ ((weak, alias ("__f")));
1838 @end smallexample
1839
1840 defines @samp{f} to be a weak alias for @samp{__f}. In C++, the
1841 mangled name for the target must be used. It is an error if @samp{__f}
1842 is not defined in the same translation unit.
1843
1844 Not all target machines support this attribute.
1845
1846 @item aligned (@var{alignment})
1847 @cindex @code{aligned} attribute
1848 This attribute specifies a minimum alignment for the function,
1849 measured in bytes.
1850
1851 You cannot use this attribute to decrease the alignment of a function,
1852 only to increase it. However, when you explicitly specify a function
1853 alignment this will override the effect of the
1854 @option{-falign-functions} (@pxref{Optimize Options}) option for this
1855 function.
1856
1857 Note that the effectiveness of @code{aligned} attributes may be
1858 limited by inherent limitations in your linker. On many systems, the
1859 linker is only able to arrange for functions to be aligned up to a
1860 certain maximum alignment. (For some linkers, the maximum supported
1861 alignment may be very very small.) See your linker documentation for
1862 further information.
1863
1864 The @code{aligned} attribute can also be used for variables and fields
1865 (@pxref{Variable Attributes}.)
1866
1867 @item alloc_size
1868 @cindex @code{alloc_size} attribute
1869 The @code{alloc_size} attribute is used to tell the compiler that the
1870 function return value points to memory, where the size is given by
1871 one or two of the functions parameters. GCC uses this
1872 information to improve the correctness of @code{__builtin_object_size}.
1873
1874 The function parameter(s) denoting the allocated size are specified by
1875 one or two integer arguments supplied to the attribute. The allocated size
1876 is either the value of the single function argument specified or the product
1877 of the two function arguments specified. Argument numbering starts at
1878 one.
1879
1880 For instance,
1881
1882 @smallexample
1883 void* my_calloc(size_t, size_t) __attribute__((alloc_size(1,2)))
1884 void my_realloc(void* size_t) __attribute__((alloc_size(2)))
1885 @end smallexample
1886
1887 declares that my_calloc will return memory of the size given by
1888 the product of parameter 1 and 2 and that my_realloc will return memory
1889 of the size given by parameter 2.
1890
1891 @item always_inline
1892 @cindex @code{always_inline} function attribute
1893 Generally, functions are not inlined unless optimization is specified.
1894 For functions declared inline, this attribute inlines the function even
1895 if no optimization level was specified.
1896
1897 @item gnu_inline
1898 @cindex @code{gnu_inline} function attribute
1899 This attribute should be used with a function which is also declared
1900 with the @code{inline} keyword. It directs GCC to treat the function
1901 as if it were defined in gnu89 mode even when compiling in C99 or
1902 gnu99 mode.
1903
1904 If the function is declared @code{extern}, then this definition of the
1905 function is used only for inlining. In no case is the function
1906 compiled as a standalone function, not even if you take its address
1907 explicitly. Such an address becomes an external reference, as if you
1908 had only declared the function, and had not defined it. This has
1909 almost the effect of a macro. The way to use this is to put a
1910 function definition in a header file with this attribute, and put
1911 another copy of the function, without @code{extern}, in a library
1912 file. The definition in the header file will cause most calls to the
1913 function to be inlined. If any uses of the function remain, they will
1914 refer to the single copy in the library. Note that the two
1915 definitions of the functions need not be precisely the same, although
1916 if they do not have the same effect your program may behave oddly.
1917
1918 In C, if the function is neither @code{extern} nor @code{static}, then
1919 the function is compiled as a standalone function, as well as being
1920 inlined where possible.
1921
1922 This is how GCC traditionally handled functions declared
1923 @code{inline}. Since ISO C99 specifies a different semantics for
1924 @code{inline}, this function attribute is provided as a transition
1925 measure and as a useful feature in its own right. This attribute is
1926 available in GCC 4.1.3 and later. It is available if either of the
1927 preprocessor macros @code{__GNUC_GNU_INLINE__} or
1928 @code{__GNUC_STDC_INLINE__} are defined. @xref{Inline,,An Inline
1929 Function is As Fast As a Macro}.
1930
1931 In C++, this attribute does not depend on @code{extern} in any way,
1932 but it still requires the @code{inline} keyword to enable its special
1933 behavior.
1934
1935 @cindex @code{artificial} function attribute
1936 @item artificial
1937 This attribute is useful for small inline wrappers which if possible
1938 should appear during debugging as a unit, depending on the debug
1939 info format it will either mean marking the function as artificial
1940 or using the caller location for all instructions within the inlined
1941 body.
1942
1943 @cindex @code{flatten} function attribute
1944 @item flatten
1945 Generally, inlining into a function is limited. For a function marked with
1946 this attribute, every call inside this function will be inlined, if possible.
1947 Whether the function itself is considered for inlining depends on its size and
1948 the current inlining parameters. The @code{flatten} attribute only works
1949 reliably in unit-at-a-time mode.
1950
1951 @item error ("@var{message}")
1952 @cindex @code{error} function attribute
1953 If this attribute is used on a function declaration and a call to such a function
1954 is not eliminated through dead code elimination or other optimizations, an error
1955 which will include @var{message} will be diagnosed. This is useful
1956 for compile time checking, especially together with @code{__builtin_constant_p}
1957 and inline functions where checking the inline function arguments is not
1958 possible through @code{extern char [(condition) ? 1 : -1];} tricks.
1959 While it is possible to leave the function undefined and thus invoke
1960 a link failure, when using this attribute the problem will be diagnosed
1961 earlier and with exact location of the call even in presence of inline
1962 functions or when not emitting debugging information.
1963
1964 @item warning ("@var{message}")
1965 @cindex @code{warning} function attribute
1966 If this attribute is used on a function declaration and a call to such a function
1967 is not eliminated through dead code elimination or other optimizations, a warning
1968 which will include @var{message} will be diagnosed. This is useful
1969 for compile time checking, especially together with @code{__builtin_constant_p}
1970 and inline functions. While it is possible to define the function with
1971 a message in @code{.gnu.warning*} section, when using this attribute the problem
1972 will be diagnosed earlier and with exact location of the call even in presence
1973 of inline functions or when not emitting debugging information.
1974
1975 @item cdecl
1976 @cindex functions that do pop the argument stack on the 386
1977 @opindex mrtd
1978 On the Intel 386, the @code{cdecl} attribute causes the compiler to
1979 assume that the calling function will pop off the stack space used to
1980 pass arguments. This is
1981 useful to override the effects of the @option{-mrtd} switch.
1982
1983 @item const
1984 @cindex @code{const} function attribute
1985 Many functions do not examine any values except their arguments, and
1986 have no effects except the return value. Basically this is just slightly
1987 more strict class than the @code{pure} attribute below, since function is not
1988 allowed to read global memory.
1989
1990 @cindex pointer arguments
1991 Note that a function that has pointer arguments and examines the data
1992 pointed to must @emph{not} be declared @code{const}. Likewise, a
1993 function that calls a non-@code{const} function usually must not be
1994 @code{const}. It does not make sense for a @code{const} function to
1995 return @code{void}.
1996
1997 The attribute @code{const} is not implemented in GCC versions earlier
1998 than 2.5. An alternative way to declare that a function has no side
1999 effects, which works in the current version and in some older versions,
2000 is as follows:
2001
2002 @smallexample
2003 typedef int intfn ();
2004
2005 extern const intfn square;
2006 @end smallexample
2007
2008 This approach does not work in GNU C++ from 2.6.0 on, since the language
2009 specifies that the @samp{const} must be attached to the return value.
2010
2011 @item constructor
2012 @itemx destructor
2013 @itemx constructor (@var{priority})
2014 @itemx destructor (@var{priority})
2015 @cindex @code{constructor} function attribute
2016 @cindex @code{destructor} function attribute
2017 The @code{constructor} attribute causes the function to be called
2018 automatically before execution enters @code{main ()}. Similarly, the
2019 @code{destructor} attribute causes the function to be called
2020 automatically after @code{main ()} has completed or @code{exit ()} has
2021 been called. Functions with these attributes are useful for
2022 initializing data that will be used implicitly during the execution of
2023 the program.
2024
2025 You may provide an optional integer priority to control the order in
2026 which constructor and destructor functions are run. A constructor
2027 with a smaller priority number runs before a constructor with a larger
2028 priority number; the opposite relationship holds for destructors. So,
2029 if you have a constructor that allocates a resource and a destructor
2030 that deallocates the same resource, both functions typically have the
2031 same priority. The priorities for constructor and destructor
2032 functions are the same as those specified for namespace-scope C++
2033 objects (@pxref{C++ Attributes}).
2034
2035 These attributes are not currently implemented for Objective-C@.
2036
2037 @item deprecated
2038 @cindex @code{deprecated} attribute.
2039 The @code{deprecated} attribute results in a warning if the function
2040 is used anywhere in the source file. This is useful when identifying
2041 functions that are expected to be removed in a future version of a
2042 program. The warning also includes the location of the declaration
2043 of the deprecated function, to enable users to easily find further
2044 information about why the function is deprecated, or what they should
2045 do instead. Note that the warnings only occurs for uses:
2046
2047 @smallexample
2048 int old_fn () __attribute__ ((deprecated));
2049 int old_fn ();
2050 int (*fn_ptr)() = old_fn;
2051 @end smallexample
2052
2053 results in a warning on line 3 but not line 2.
2054
2055 The @code{deprecated} attribute can also be used for variables and
2056 types (@pxref{Variable Attributes}, @pxref{Type Attributes}.)
2057
2058 @item dllexport
2059 @cindex @code{__declspec(dllexport)}
2060 On Microsoft Windows targets and Symbian OS targets the
2061 @code{dllexport} attribute causes the compiler to provide a global
2062 pointer to a pointer in a DLL, so that it can be referenced with the
2063 @code{dllimport} attribute. On Microsoft Windows targets, the pointer
2064 name is formed by combining @code{_imp__} and the function or variable
2065 name.
2066
2067 You can use @code{__declspec(dllexport)} as a synonym for
2068 @code{__attribute__ ((dllexport))} for compatibility with other
2069 compilers.
2070
2071 On systems that support the @code{visibility} attribute, this
2072 attribute also implies ``default'' visibility. It is an error to
2073 explicitly specify any other visibility.
2074
2075 Currently, the @code{dllexport} attribute is ignored for inlined
2076 functions, unless the @option{-fkeep-inline-functions} flag has been
2077 used. The attribute is also ignored for undefined symbols.
2078
2079 When applied to C++ classes, the attribute marks defined non-inlined
2080 member functions and static data members as exports. Static consts
2081 initialized in-class are not marked unless they are also defined
2082 out-of-class.
2083
2084 For Microsoft Windows targets there are alternative methods for
2085 including the symbol in the DLL's export table such as using a
2086 @file{.def} file with an @code{EXPORTS} section or, with GNU ld, using
2087 the @option{--export-all} linker flag.
2088
2089 @item dllimport
2090 @cindex @code{__declspec(dllimport)}
2091 On Microsoft Windows and Symbian OS targets, the @code{dllimport}
2092 attribute causes the compiler to reference a function or variable via
2093 a global pointer to a pointer that is set up by the DLL exporting the
2094 symbol. The attribute implies @code{extern}. On Microsoft Windows
2095 targets, the pointer name is formed by combining @code{_imp__} and the
2096 function or variable name.
2097
2098 You can use @code{__declspec(dllimport)} as a synonym for
2099 @code{__attribute__ ((dllimport))} for compatibility with other
2100 compilers.
2101
2102 On systems that support the @code{visibility} attribute, this
2103 attribute also implies ``default'' visibility. It is an error to
2104 explicitly specify any other visibility.
2105
2106 Currently, the attribute is ignored for inlined functions. If the
2107 attribute is applied to a symbol @emph{definition}, an error is reported.
2108 If a symbol previously declared @code{dllimport} is later defined, the
2109 attribute is ignored in subsequent references, and a warning is emitted.
2110 The attribute is also overridden by a subsequent declaration as
2111 @code{dllexport}.
2112
2113 When applied to C++ classes, the attribute marks non-inlined
2114 member functions and static data members as imports. However, the
2115 attribute is ignored for virtual methods to allow creation of vtables
2116 using thunks.
2117
2118 On the SH Symbian OS target the @code{dllimport} attribute also has
2119 another affect---it can cause the vtable and run-time type information
2120 for a class to be exported. This happens when the class has a
2121 dllimport'ed constructor or a non-inline, non-pure virtual function
2122 and, for either of those two conditions, the class also has a inline
2123 constructor or destructor and has a key function that is defined in
2124 the current translation unit.
2125
2126 For Microsoft Windows based targets the use of the @code{dllimport}
2127 attribute on functions is not necessary, but provides a small
2128 performance benefit by eliminating a thunk in the DLL@. The use of the
2129 @code{dllimport} attribute on imported variables was required on older
2130 versions of the GNU linker, but can now be avoided by passing the
2131 @option{--enable-auto-import} switch to the GNU linker. As with
2132 functions, using the attribute for a variable eliminates a thunk in
2133 the DLL@.
2134
2135 One drawback to using this attribute is that a pointer to a
2136 @emph{variable} marked as @code{dllimport} cannot be used as a constant
2137 address. However, a pointer to a @emph{function} with the
2138 @code{dllimport} attribute can be used as a constant initializer; in
2139 this case, the address of a stub function in the import lib is
2140 referenced. On Microsoft Windows targets, the attribute can be disabled
2141 for functions by setting the @option{-mnop-fun-dllimport} flag.
2142
2143 @item eightbit_data
2144 @cindex eight bit data on the H8/300, H8/300H, and H8S
2145 Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
2146 variable should be placed into the eight bit data section.
2147 The compiler will generate more efficient code for certain operations
2148 on data in the eight bit data area. Note the eight bit data area is limited to
2149 256 bytes of data.
2150
2151 You must use GAS and GLD from GNU binutils version 2.7 or later for
2152 this attribute to work correctly.
2153
2154 @item exception_handler
2155 @cindex exception handler functions on the Blackfin processor
2156 Use this attribute on the Blackfin to indicate that the specified function
2157 is an exception handler. The compiler will generate function entry and
2158 exit sequences suitable for use in an exception handler when this
2159 attribute is present.
2160
2161 @item far
2162 @cindex functions which handle memory bank switching
2163 On 68HC11 and 68HC12 the @code{far} attribute causes the compiler to
2164 use a calling convention that takes care of switching memory banks when
2165 entering and leaving a function. This calling convention is also the
2166 default when using the @option{-mlong-calls} option.
2167
2168 On 68HC12 the compiler will use the @code{call} and @code{rtc} instructions
2169 to call and return from a function.
2170
2171 On 68HC11 the compiler will generate a sequence of instructions
2172 to invoke a board-specific routine to switch the memory bank and call the
2173 real function. The board-specific routine simulates a @code{call}.
2174 At the end of a function, it will jump to a board-specific routine
2175 instead of using @code{rts}. The board-specific return routine simulates
2176 the @code{rtc}.
2177
2178 @item fastcall
2179 @cindex functions that pop the argument stack on the 386
2180 On the Intel 386, the @code{fastcall} attribute causes the compiler to
2181 pass the first argument (if of integral type) in the register ECX and
2182 the second argument (if of integral type) in the register EDX@. Subsequent
2183 and other typed arguments are passed on the stack. The called function will
2184 pop the arguments off the stack. If the number of arguments is variable all
2185 arguments are pushed on the stack.
2186
2187 @item format (@var{archetype}, @var{string-index}, @var{first-to-check})
2188 @cindex @code{format} function attribute
2189 @opindex Wformat
2190 The @code{format} attribute specifies that a function takes @code{printf},
2191 @code{scanf}, @code{strftime} or @code{strfmon} style arguments which
2192 should be type-checked against a format string. For example, the
2193 declaration:
2194
2195 @smallexample
2196 extern int
2197 my_printf (void *my_object, const char *my_format, ...)
2198 __attribute__ ((format (printf, 2, 3)));
2199 @end smallexample
2200
2201 @noindent
2202 causes the compiler to check the arguments in calls to @code{my_printf}
2203 for consistency with the @code{printf} style format string argument
2204 @code{my_format}.
2205
2206 The parameter @var{archetype} determines how the format string is
2207 interpreted, and should be @code{printf}, @code{scanf}, @code{strftime}
2208 or @code{strfmon}. (You can also use @code{__printf__},
2209 @code{__scanf__}, @code{__strftime__} or @code{__strfmon__}.) The
2210 parameter @var{string-index} specifies which argument is the format
2211 string argument (starting from 1), while @var{first-to-check} is the
2212 number of the first argument to check against the format string. For
2213 functions where the arguments are not available to be checked (such as
2214 @code{vprintf}), specify the third parameter as zero. In this case the
2215 compiler only checks the format string for consistency. For
2216 @code{strftime} formats, the third parameter is required to be zero.
2217 Since non-static C++ methods have an implicit @code{this} argument, the
2218 arguments of such methods should be counted from two, not one, when
2219 giving values for @var{string-index} and @var{first-to-check}.
2220
2221 In the example above, the format string (@code{my_format}) is the second
2222 argument of the function @code{my_print}, and the arguments to check
2223 start with the third argument, so the correct parameters for the format
2224 attribute are 2 and 3.
2225
2226 @opindex ffreestanding
2227 @opindex fno-builtin
2228 The @code{format} attribute allows you to identify your own functions
2229 which take format strings as arguments, so that GCC can check the
2230 calls to these functions for errors. The compiler always (unless
2231 @option{-ffreestanding} or @option{-fno-builtin} is used) checks formats
2232 for the standard library functions @code{printf}, @code{fprintf},
2233 @code{sprintf}, @code{scanf}, @code{fscanf}, @code{sscanf}, @code{strftime},
2234 @code{vprintf}, @code{vfprintf} and @code{vsprintf} whenever such
2235 warnings are requested (using @option{-Wformat}), so there is no need to
2236 modify the header file @file{stdio.h}. In C99 mode, the functions
2237 @code{snprintf}, @code{vsnprintf}, @code{vscanf}, @code{vfscanf} and
2238 @code{vsscanf} are also checked. Except in strictly conforming C
2239 standard modes, the X/Open function @code{strfmon} is also checked as
2240 are @code{printf_unlocked} and @code{fprintf_unlocked}.
2241 @xref{C Dialect Options,,Options Controlling C Dialect}.
2242
2243 The target may provide additional types of format checks.
2244 @xref{Target Format Checks,,Format Checks Specific to Particular
2245 Target Machines}.
2246
2247 @item format_arg (@var{string-index})
2248 @cindex @code{format_arg} function attribute
2249 @opindex Wformat-nonliteral
2250 The @code{format_arg} attribute specifies that a function takes a format
2251 string for a @code{printf}, @code{scanf}, @code{strftime} or
2252 @code{strfmon} style function and modifies it (for example, to translate
2253 it into another language), so the result can be passed to a
2254 @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style
2255 function (with the remaining arguments to the format function the same
2256 as they would have been for the unmodified string). For example, the
2257 declaration:
2258
2259 @smallexample
2260 extern char *
2261 my_dgettext (char *my_domain, const char *my_format)
2262 __attribute__ ((format_arg (2)));
2263 @end smallexample
2264
2265 @noindent
2266 causes the compiler to check the arguments in calls to a @code{printf},
2267 @code{scanf}, @code{strftime} or @code{strfmon} type function, whose
2268 format string argument is a call to the @code{my_dgettext} function, for
2269 consistency with the format string argument @code{my_format}. If the
2270 @code{format_arg} attribute had not been specified, all the compiler
2271 could tell in such calls to format functions would be that the format
2272 string argument is not constant; this would generate a warning when
2273 @option{-Wformat-nonliteral} is used, but the calls could not be checked
2274 without the attribute.
2275
2276 The parameter @var{string-index} specifies which argument is the format
2277 string argument (starting from one). Since non-static C++ methods have
2278 an implicit @code{this} argument, the arguments of such methods should
2279 be counted from two.
2280
2281 The @code{format-arg} attribute allows you to identify your own
2282 functions which modify format strings, so that GCC can check the
2283 calls to @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon}
2284 type function whose operands are a call to one of your own function.
2285 The compiler always treats @code{gettext}, @code{dgettext}, and
2286 @code{dcgettext} in this manner except when strict ISO C support is
2287 requested by @option{-ansi} or an appropriate @option{-std} option, or
2288 @option{-ffreestanding} or @option{-fno-builtin}
2289 is used. @xref{C Dialect Options,,Options
2290 Controlling C Dialect}.
2291
2292 @item function_vector
2293 @cindex calling functions through the function vector on H8/300, M16C, and M32C processors
2294 Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
2295 function should be called through the function vector. Calling a
2296 function through the function vector will reduce code size, however;
2297 the function vector has a limited size (maximum 128 entries on the H8/300
2298 and 64 entries on the H8/300H and H8S) and shares space with the interrupt vector.
2299
2300 You must use GAS and GLD from GNU binutils version 2.7 or later for
2301 this attribute to work correctly.
2302
2303 On M16C/M32C targets, the @code{function_vector} attribute declares a
2304 special page subroutine call function. Use of this attribute reduces
2305 the code size by 2 bytes for each call generated to the
2306 subroutine. The argument to the attribute is the vector number entry
2307 from the special page vector table which contains the 16 low-order
2308 bits of the subroutine's entry address. Each vector table has special
2309 page number (18 to 255) which are used in @code{jsrs} instruction.
2310 Jump addresses of the routines are generated by adding 0x0F0000 (in
2311 case of M16C targets) or 0xFF0000 (in case of M32C targets), to the 2
2312 byte addresses set in the vector table. Therefore you need to ensure
2313 that all the special page vector routines should get mapped within the
2314 address range 0x0F0000 to 0x0FFFFF (for M16C) and 0xFF0000 to 0xFFFFFF
2315 (for M32C).
2316
2317 In the following example 2 bytes will be saved for each call to
2318 function @code{foo}.
2319
2320 @smallexample
2321 void foo (void) __attribute__((function_vector(0x18)));
2322 void foo (void)
2323 @{
2324 @}
2325
2326 void bar (void)
2327 @{
2328 foo();
2329 @}
2330 @end smallexample
2331
2332 If functions are defined in one file and are called in another file,
2333 then be sure to write this declaration in both files.
2334
2335 This attribute is ignored for R8C target.
2336
2337 @item interrupt
2338 @cindex interrupt handler functions
2339 Use this attribute on the ARM, AVR, CRX, M32C, M32R/D, m68k, MS1,
2340 and Xstormy16 ports to indicate that the specified function is an
2341 interrupt handler. The compiler will generate function entry and exit
2342 sequences suitable for use in an interrupt handler when this attribute
2343 is present.
2344
2345 Note, interrupt handlers for the Blackfin, H8/300, H8/300H, H8S, and
2346 SH processors can be specified via the @code{interrupt_handler} attribute.
2347
2348 Note, on the AVR, interrupts will be enabled inside the function.
2349
2350 Note, for the ARM, you can specify the kind of interrupt to be handled by
2351 adding an optional parameter to the interrupt attribute like this:
2352
2353 @smallexample
2354 void f () __attribute__ ((interrupt ("IRQ")));
2355 @end smallexample
2356
2357 Permissible values for this parameter are: IRQ, FIQ, SWI, ABORT and UNDEF@.
2358
2359 On ARMv7-M the interrupt type is ignored, and the attribute means the function
2360 may be called with a word aligned stack pointer.
2361
2362 @item interrupt_handler
2363 @cindex interrupt handler functions on the Blackfin, m68k, H8/300 and SH processors
2364 Use this attribute on the Blackfin, m68k, H8/300, H8/300H, H8S, and SH to
2365 indicate that the specified function is an interrupt handler. The compiler
2366 will generate function entry and exit sequences suitable for use in an
2367 interrupt handler when this attribute is present.
2368
2369 @item interrupt_thread
2370 @cindex interrupt thread functions on fido
2371 Use this attribute on fido, a subarchitecture of the m68k, to indicate
2372 that the specified function is an interrupt handler that is designed
2373 to run as a thread. The compiler omits generate prologue/epilogue
2374 sequences and replaces the return instruction with a @code{sleep}
2375 instruction. This attribute is available only on fido.
2376
2377 @item kspisusp
2378 @cindex User stack pointer in interrupts on the Blackfin
2379 When used together with @code{interrupt_handler}, @code{exception_handler}
2380 or @code{nmi_handler}, code will be generated to load the stack pointer
2381 from the USP register in the function prologue.
2382
2383 @item l1_text
2384 @cindex @code{l1_text} function attribute
2385 This attribute specifies a function to be placed into L1 Instruction
2386 SRAM@. The function will be put into a specific section named @code{.l1.text}.
2387 With @option{-mfdpic}, function calls with a such function as the callee
2388 or caller will use inlined PLT.
2389
2390 @item long_call/short_call
2391 @cindex indirect calls on ARM
2392 This attribute specifies how a particular function is called on
2393 ARM@. Both attributes override the @option{-mlong-calls} (@pxref{ARM Options})
2394 command line switch and @code{#pragma long_calls} settings. The
2395 @code{long_call} attribute indicates that the function might be far
2396 away from the call site and require a different (more expensive)
2397 calling sequence. The @code{short_call} attribute always places
2398 the offset to the function from the call site into the @samp{BL}
2399 instruction directly.
2400
2401 @item longcall/shortcall
2402 @cindex functions called via pointer on the RS/6000 and PowerPC
2403 On the Blackfin, RS/6000 and PowerPC, the @code{longcall} attribute
2404 indicates that the function might be far away from the call site and
2405 require a different (more expensive) calling sequence. The
2406 @code{shortcall} attribute indicates that the function is always close
2407 enough for the shorter calling sequence to be used. These attributes
2408 override both the @option{-mlongcall} switch and, on the RS/6000 and
2409 PowerPC, the @code{#pragma longcall} setting.
2410
2411 @xref{RS/6000 and PowerPC Options}, for more information on whether long
2412 calls are necessary.
2413
2414 @item long_call/near/far
2415 @cindex indirect calls on MIPS
2416 These attributes specify how a particular function is called on MIPS@.
2417 The attributes override the @option{-mlong-calls} (@pxref{MIPS Options})
2418 command-line switch. The @code{long_call} and @code{far} attributes are
2419 synonyms, and cause the compiler to always call
2420 the function by first loading its address into a register, and then using
2421 the contents of that register. The @code{near} attribute has the opposite
2422 effect; it specifies that non-PIC calls should be made using the more
2423 efficient @code{jal} instruction.
2424
2425 @item malloc
2426 @cindex @code{malloc} attribute
2427 The @code{malloc} attribute is used to tell the compiler that a function
2428 may be treated as if any non-@code{NULL} pointer it returns cannot
2429 alias any other pointer valid when the function returns.
2430 This will often improve optimization.
2431 Standard functions with this property include @code{malloc} and
2432 @code{calloc}. @code{realloc}-like functions have this property as
2433 long as the old pointer is never referred to (including comparing it
2434 to the new pointer) after the function returns a non-@code{NULL}
2435 value.
2436
2437 @item mips16/nomips16
2438 @cindex @code{mips16} attribute
2439 @cindex @code{nomips16} attribute
2440
2441 On MIPS targets, you can use the @code{mips16} and @code{nomips16}
2442 function attributes to locally select or turn off MIPS16 code generation.
2443 A function with the @code{mips16} attribute is emitted as MIPS16 code,
2444 while MIPS16 code generation is disabled for functions with the
2445 @code{nomips16} attribute. These attributes override the
2446 @option{-mips16} and @option{-mno-mips16} options on the command line
2447 (@pxref{MIPS Options}).
2448
2449 When compiling files containing mixed MIPS16 and non-MIPS16 code, the
2450 preprocessor symbol @code{__mips16} reflects the setting on the command line,
2451 not that within individual functions. Mixed MIPS16 and non-MIPS16 code
2452 may interact badly with some GCC extensions such as @code{__builtin_apply}
2453 (@pxref{Constructing Calls}).
2454
2455 @item model (@var{model-name})
2456 @cindex function addressability on the M32R/D
2457 @cindex variable addressability on the IA-64
2458
2459 On the M32R/D, use this attribute to set the addressability of an
2460 object, and of the code generated for a function. The identifier
2461 @var{model-name} is one of @code{small}, @code{medium}, or
2462 @code{large}, representing each of the code models.
2463
2464 Small model objects live in the lower 16MB of memory (so that their
2465 addresses can be loaded with the @code{ld24} instruction), and are
2466 callable with the @code{bl} instruction.
2467
2468 Medium model objects may live anywhere in the 32-bit address space (the
2469 compiler will generate @code{seth/add3} instructions to load their addresses),
2470 and are callable with the @code{bl} instruction.
2471
2472 Large model objects may live anywhere in the 32-bit address space (the
2473 compiler will generate @code{seth/add3} instructions to load their addresses),
2474 and may not be reachable with the @code{bl} instruction (the compiler will
2475 generate the much slower @code{seth/add3/jl} instruction sequence).
2476
2477 On IA-64, use this attribute to set the addressability of an object.
2478 At present, the only supported identifier for @var{model-name} is
2479 @code{small}, indicating addressability via ``small'' (22-bit)
2480 addresses (so that their addresses can be loaded with the @code{addl}
2481 instruction). Caveat: such addressing is by definition not position
2482 independent and hence this attribute must not be used for objects
2483 defined by shared libraries.
2484
2485 @item naked
2486 @cindex function without a prologue/epilogue code
2487 Use this attribute on the ARM, AVR, IP2K and SPU ports to indicate that
2488 the specified function does not need prologue/epilogue sequences generated by
2489 the compiler. It is up to the programmer to provide these sequences.
2490
2491 @item near
2492 @cindex functions which do not handle memory bank switching on 68HC11/68HC12
2493 On 68HC11 and 68HC12 the @code{near} attribute causes the compiler to
2494 use the normal calling convention based on @code{jsr} and @code{rts}.
2495 This attribute can be used to cancel the effect of the @option{-mlong-calls}
2496 option.
2497
2498 @item nesting
2499 @cindex Allow nesting in an interrupt handler on the Blackfin processor.
2500 Use this attribute together with @code{interrupt_handler},
2501 @code{exception_handler} or @code{nmi_handler} to indicate that the function
2502 entry code should enable nested interrupts or exceptions.
2503
2504 @item nmi_handler
2505 @cindex NMI handler functions on the Blackfin processor
2506 Use this attribute on the Blackfin to indicate that the specified function
2507 is an NMI handler. The compiler will generate function entry and
2508 exit sequences suitable for use in an NMI handler when this
2509 attribute is present.
2510
2511 @item no_instrument_function
2512 @cindex @code{no_instrument_function} function attribute
2513 @opindex finstrument-functions
2514 If @option{-finstrument-functions} is given, profiling function calls will
2515 be generated at entry and exit of most user-compiled functions.
2516 Functions with this attribute will not be so instrumented.
2517
2518 @item noinline
2519 @cindex @code{noinline} function attribute
2520 This function attribute prevents a function from being considered for
2521 inlining.
2522 @c Don't enumerate the optimizations by name here; we try to be
2523 @c future-compatible with this mechanism.
2524 If the function does not have side-effects, there are optimizations
2525 other than inlining that causes function calls to be optimized away,
2526 although the function call is live. To keep such calls from being
2527 optimized away, put
2528 @smallexample
2529 asm ("");
2530 @end smallexample
2531 (@pxref{Extended Asm}) in the called function, to serve as a special
2532 side-effect.
2533
2534 @item nonnull (@var{arg-index}, @dots{})
2535 @cindex @code{nonnull} function attribute
2536 The @code{nonnull} attribute specifies that some function parameters should
2537 be non-null pointers. For instance, the declaration:
2538
2539 @smallexample
2540 extern void *
2541 my_memcpy (void *dest, const void *src, size_t len)
2542 __attribute__((nonnull (1, 2)));
2543 @end smallexample
2544
2545 @noindent
2546 causes the compiler to check that, in calls to @code{my_memcpy},
2547 arguments @var{dest} and @var{src} are non-null. If the compiler
2548 determines that a null pointer is passed in an argument slot marked
2549 as non-null, and the @option{-Wnonnull} option is enabled, a warning
2550 is issued. The compiler may also choose to make optimizations based
2551 on the knowledge that certain function arguments will not be null.
2552
2553 If no argument index list is given to the @code{nonnull} attribute,
2554 all pointer arguments are marked as non-null. To illustrate, the
2555 following declaration is equivalent to the previous example:
2556
2557 @smallexample
2558 extern void *
2559 my_memcpy (void *dest, const void *src, size_t len)
2560 __attribute__((nonnull));
2561 @end smallexample
2562
2563 @item noreturn
2564 @cindex @code{noreturn} function attribute
2565 A few standard library functions, such as @code{abort} and @code{exit},
2566 cannot return. GCC knows this automatically. Some programs define
2567 their own functions that never return. You can declare them
2568 @code{noreturn} to tell the compiler this fact. For example,
2569
2570 @smallexample
2571 @group
2572 void fatal () __attribute__ ((noreturn));
2573
2574 void
2575 fatal (/* @r{@dots{}} */)
2576 @{
2577 /* @r{@dots{}} */ /* @r{Print error message.} */ /* @r{@dots{}} */
2578 exit (1);
2579 @}
2580 @end group
2581 @end smallexample
2582
2583 The @code{noreturn} keyword tells the compiler to assume that
2584 @code{fatal} cannot return. It can then optimize without regard to what
2585 would happen if @code{fatal} ever did return. This makes slightly
2586 better code. More importantly, it helps avoid spurious warnings of
2587 uninitialized variables.
2588
2589 The @code{noreturn} keyword does not affect the exceptional path when that
2590 applies: a @code{noreturn}-marked function may still return to the caller
2591 by throwing an exception or calling @code{longjmp}.
2592
2593 Do not assume that registers saved by the calling function are
2594 restored before calling the @code{noreturn} function.
2595
2596 It does not make sense for a @code{noreturn} function to have a return
2597 type other than @code{void}.
2598
2599 The attribute @code{noreturn} is not implemented in GCC versions
2600 earlier than 2.5. An alternative way to declare that a function does
2601 not return, which works in the current version and in some older
2602 versions, is as follows:
2603
2604 @smallexample
2605 typedef void voidfn ();
2606
2607 volatile voidfn fatal;
2608 @end smallexample
2609
2610 This approach does not work in GNU C++.
2611
2612 @item nothrow
2613 @cindex @code{nothrow} function attribute
2614 The @code{nothrow} attribute is used to inform the compiler that a
2615 function cannot throw an exception. For example, most functions in
2616 the standard C library can be guaranteed not to throw an exception
2617 with the notable exceptions of @code{qsort} and @code{bsearch} that
2618 take function pointer arguments. The @code{nothrow} attribute is not
2619 implemented in GCC versions earlier than 3.3.
2620
2621 @item pure
2622 @cindex @code{pure} function attribute
2623 Many functions have no effects except the return value and their
2624 return value depends only on the parameters and/or global variables.
2625 Such a function can be subject
2626 to common subexpression elimination and loop optimization just as an
2627 arithmetic operator would be. These functions should be declared
2628 with the attribute @code{pure}. For example,
2629
2630 @smallexample
2631 int square (int) __attribute__ ((pure));
2632 @end smallexample
2633
2634 @noindent
2635 says that the hypothetical function @code{square} is safe to call
2636 fewer times than the program says.
2637
2638 Some of common examples of pure functions are @code{strlen} or @code{memcmp}.
2639 Interesting non-pure functions are functions with infinite loops or those
2640 depending on volatile memory or other system resource, that may change between
2641 two consecutive calls (such as @code{feof} in a multithreading environment).
2642
2643 The attribute @code{pure} is not implemented in GCC versions earlier
2644 than 2.96.
2645
2646 @item hot
2647 @cindex @code{hot} function attribute
2648 The @code{hot} attribute is used to inform the compiler that a function is a
2649 hot spot of the compiled program. The function is optimized more aggressively
2650 and on many target it is placed into special subsection of the text section so
2651 all hot functions appears close together improving locality.
2652
2653 When profile feedback is available, via @option{-fprofile-use}, hot functions
2654 are automatically detected and this attribute is ignored.
2655
2656 The @code{hot} attribute is not implemented in GCC versions earlier than 4.3.
2657
2658 @item cold
2659 @cindex @code{cold} function attribute
2660 The @code{cold} attribute is used to inform the compiler that a function is
2661 unlikely executed. The function is optimized for size rather than speed and on
2662 many targets it is placed into special subsection of the text section so all
2663 cold functions appears close together improving code locality of non-cold parts
2664 of program. The paths leading to call of cold functions within code are marked
2665 as unlikely by the branch prediction mechanism. It is thus useful to mark
2666 functions used to handle unlikely conditions, such as @code{perror}, as cold to
2667 improve optimization of hot functions that do call marked functions in rare
2668 occasions.
2669
2670 When profile feedback is available, via @option{-fprofile-use}, hot functions
2671 are automatically detected and this attribute is ignored.
2672
2673 The @code{hot} attribute is not implemented in GCC versions earlier than 4.3.
2674
2675 @item regparm (@var{number})
2676 @cindex @code{regparm} attribute
2677 @cindex functions that are passed arguments in registers on the 386
2678 On the Intel 386, the @code{regparm} attribute causes the compiler to
2679 pass arguments number one to @var{number} if they are of integral type
2680 in registers EAX, EDX, and ECX instead of on the stack. Functions that
2681 take a variable number of arguments will continue to be passed all of their
2682 arguments on the stack.
2683
2684 Beware that on some ELF systems this attribute is unsuitable for
2685 global functions in shared libraries with lazy binding (which is the
2686 default). Lazy binding will send the first call via resolving code in
2687 the loader, which might assume EAX, EDX and ECX can be clobbered, as
2688 per the standard calling conventions. Solaris 8 is affected by this.
2689 GNU systems with GLIBC 2.1 or higher, and FreeBSD, are believed to be
2690 safe since the loaders there save all registers. (Lazy binding can be
2691 disabled with the linker or the loader if desired, to avoid the
2692 problem.)
2693
2694 @item sseregparm
2695 @cindex @code{sseregparm} attribute
2696 On the Intel 386 with SSE support, the @code{sseregparm} attribute
2697 causes the compiler to pass up to 3 floating point arguments in
2698 SSE registers instead of on the stack. Functions that take a
2699 variable number of arguments will continue to pass all of their
2700 floating point arguments on the stack.
2701
2702 @item force_align_arg_pointer
2703 @cindex @code{force_align_arg_pointer} attribute
2704 On the Intel x86, the @code{force_align_arg_pointer} attribute may be
2705 applied to individual function definitions, generating an alternate
2706 prologue and epilogue that realigns the runtime stack. This supports
2707 mixing legacy codes that run with a 4-byte aligned stack with modern
2708 codes that keep a 16-byte stack for SSE compatibility. The alternate
2709 prologue and epilogue are slower and bigger than the regular ones, and
2710 the alternate prologue requires a scratch register; this lowers the
2711 number of registers available if used in conjunction with the
2712 @code{regparm} attribute. The @code{force_align_arg_pointer}
2713 attribute is incompatible with nested functions; this is considered a
2714 hard error.
2715
2716 @item returns_twice
2717 @cindex @code{returns_twice} attribute
2718 The @code{returns_twice} attribute tells the compiler that a function may
2719 return more than one time. The compiler will ensure that all registers
2720 are dead before calling such a function and will emit a warning about
2721 the variables that may be clobbered after the second return from the
2722 function. Examples of such functions are @code{setjmp} and @code{vfork}.
2723 The @code{longjmp}-like counterpart of such function, if any, might need
2724 to be marked with the @code{noreturn} attribute.
2725
2726 @item saveall
2727 @cindex save all registers on the Blackfin, H8/300, H8/300H, and H8S
2728 Use this attribute on the Blackfin, H8/300, H8/300H, and H8S to indicate that
2729 all registers except the stack pointer should be saved in the prologue
2730 regardless of whether they are used or not.
2731
2732 @item section ("@var{section-name}")
2733 @cindex @code{section} function attribute
2734 Normally, the compiler places the code it generates in the @code{text} section.
2735 Sometimes, however, you need additional sections, or you need certain
2736 particular functions to appear in special sections. The @code{section}
2737 attribute specifies that a function lives in a particular section.
2738 For example, the declaration:
2739
2740 @smallexample
2741 extern void foobar (void) __attribute__ ((section ("bar")));
2742 @end smallexample
2743
2744 @noindent
2745 puts the function @code{foobar} in the @code{bar} section.
2746
2747 Some file formats do not support arbitrary sections so the @code{section}
2748 attribute is not available on all platforms.
2749 If you need to map the entire contents of a module to a particular
2750 section, consider using the facilities of the linker instead.
2751
2752 @item sentinel
2753 @cindex @code{sentinel} function attribute
2754 This function attribute ensures that a parameter in a function call is
2755 an explicit @code{NULL}. The attribute is only valid on variadic
2756 functions. By default, the sentinel is located at position zero, the
2757 last parameter of the function call. If an optional integer position
2758 argument P is supplied to the attribute, the sentinel must be located at
2759 position P counting backwards from the end of the argument list.
2760
2761 @smallexample
2762 __attribute__ ((sentinel))
2763 is equivalent to
2764 __attribute__ ((sentinel(0)))
2765 @end smallexample
2766
2767 The attribute is automatically set with a position of 0 for the built-in
2768 functions @code{execl} and @code{execlp}. The built-in function
2769 @code{execle} has the attribute set with a position of 1.
2770
2771 A valid @code{NULL} in this context is defined as zero with any pointer
2772 type. If your system defines the @code{NULL} macro with an integer type
2773 then you need to add an explicit cast. GCC replaces @code{stddef.h}
2774 with a copy that redefines NULL appropriately.
2775
2776 The warnings for missing or incorrect sentinels are enabled with
2777 @option{-Wformat}.
2778
2779 @item short_call
2780 See long_call/short_call.
2781
2782 @item shortcall
2783 See longcall/shortcall.
2784
2785 @item signal
2786 @cindex signal handler functions on the AVR processors
2787 Use this attribute on the AVR to indicate that the specified
2788 function is a signal handler. The compiler will generate function
2789 entry and exit sequences suitable for use in a signal handler when this
2790 attribute is present. Interrupts will be disabled inside the function.
2791
2792 @item sp_switch
2793 Use this attribute on the SH to indicate an @code{interrupt_handler}
2794 function should switch to an alternate stack. It expects a string
2795 argument that names a global variable holding the address of the
2796 alternate stack.
2797
2798 @smallexample
2799 void *alt_stack;
2800 void f () __attribute__ ((interrupt_handler,
2801 sp_switch ("alt_stack")));
2802 @end smallexample
2803
2804 @item stdcall
2805 @cindex functions that pop the argument stack on the 386
2806 On the Intel 386, the @code{stdcall} attribute causes the compiler to
2807 assume that the called function will pop off the stack space used to
2808 pass arguments, unless it takes a variable number of arguments.
2809
2810 @item tiny_data
2811 @cindex tiny data section on the H8/300H and H8S
2812 Use this attribute on the H8/300H and H8S to indicate that the specified
2813 variable should be placed into the tiny data section.
2814 The compiler will generate more efficient code for loads and stores
2815 on data in the tiny data section. Note the tiny data area is limited to
2816 slightly under 32kbytes of data.
2817
2818 @item trap_exit
2819 Use this attribute on the SH for an @code{interrupt_handler} to return using
2820 @code{trapa} instead of @code{rte}. This attribute expects an integer
2821 argument specifying the trap number to be used.
2822
2823 @item unused
2824 @cindex @code{unused} attribute.
2825 This attribute, attached to a function, means that the function is meant
2826 to be possibly unused. GCC will not produce a warning for this
2827 function.
2828
2829 @item used
2830 @cindex @code{used} attribute.
2831 This attribute, attached to a function, means that code must be emitted
2832 for the function even if it appears that the function is not referenced.
2833 This is useful, for example, when the function is referenced only in
2834 inline assembly.
2835
2836 @item version_id
2837 @cindex @code{version_id} attribute on IA64 HP-UX
2838 This attribute, attached to a global variable or function, renames a
2839 symbol to contain a version string, thus allowing for function level
2840 versioning. HP-UX system header files may use version level functioning
2841 for some system calls.
2842
2843 @smallexample
2844 extern int foo () __attribute__((version_id ("20040821")));
2845 @end smallexample
2846
2847 Calls to @var{foo} will be mapped to calls to @var{foo@{20040821@}}.
2848
2849 @item visibility ("@var{visibility_type}")
2850 @cindex @code{visibility} attribute
2851 This attribute affects the linkage of the declaration to which it is attached.
2852 There are four supported @var{visibility_type} values: default,
2853 hidden, protected or internal visibility.
2854
2855 @smallexample
2856 void __attribute__ ((visibility ("protected")))
2857 f () @{ /* @r{Do something.} */; @}
2858 int i __attribute__ ((visibility ("hidden")));
2859 @end smallexample
2860
2861 The possible values of @var{visibility_type} correspond to the
2862 visibility settings in the ELF gABI.
2863
2864 @table @dfn
2865 @c keep this list of visibilities in alphabetical order.
2866
2867 @item default
2868 Default visibility is the normal case for the object file format.
2869 This value is available for the visibility attribute to override other
2870 options that may change the assumed visibility of entities.
2871
2872 On ELF, default visibility means that the declaration is visible to other
2873 modules and, in shared libraries, means that the declared entity may be
2874 overridden.
2875
2876 On Darwin, default visibility means that the declaration is visible to
2877 other modules.
2878
2879 Default visibility corresponds to ``external linkage'' in the language.
2880
2881 @item hidden
2882 Hidden visibility indicates that the entity declared will have a new
2883 form of linkage, which we'll call ``hidden linkage''. Two
2884 declarations of an object with hidden linkage refer to the same object
2885 if they are in the same shared object.
2886
2887 @item internal
2888 Internal visibility is like hidden visibility, but with additional
2889 processor specific semantics. Unless otherwise specified by the
2890 psABI, GCC defines internal visibility to mean that a function is
2891 @emph{never} called from another module. Compare this with hidden
2892 functions which, while they cannot be referenced directly by other
2893 modules, can be referenced indirectly via function pointers. By
2894 indicating that a function cannot be called from outside the module,
2895 GCC may for instance omit the load of a PIC register since it is known
2896 that the calling function loaded the correct value.
2897
2898 @item protected
2899 Protected visibility is like default visibility except that it
2900 indicates that references within the defining module will bind to the
2901 definition in that module. That is, the declared entity cannot be
2902 overridden by another module.
2903
2904 @end table
2905
2906 All visibilities are supported on many, but not all, ELF targets
2907 (supported when the assembler supports the @samp{.visibility}
2908 pseudo-op). Default visibility is supported everywhere. Hidden
2909 visibility is supported on Darwin targets.
2910
2911 The visibility attribute should be applied only to declarations which
2912 would otherwise have external linkage. The attribute should be applied
2913 consistently, so that the same entity should not be declared with
2914 different settings of the attribute.
2915
2916 In C++, the visibility attribute applies to types as well as functions
2917 and objects, because in C++ types have linkage. A class must not have
2918 greater visibility than its non-static data member types and bases,
2919 and class members default to the visibility of their class. Also, a
2920 declaration without explicit visibility is limited to the visibility
2921 of its type.
2922
2923 In C++, you can mark member functions and static member variables of a
2924 class with the visibility attribute. This is useful if if you know a
2925 particular method or static member variable should only be used from
2926 one shared object; then you can mark it hidden while the rest of the
2927 class has default visibility. Care must be taken to avoid breaking
2928 the One Definition Rule; for example, it is usually not useful to mark
2929 an inline method as hidden without marking the whole class as hidden.
2930
2931 A C++ namespace declaration can also have the visibility attribute.
2932 This attribute applies only to the particular namespace body, not to
2933 other definitions of the same namespace; it is equivalent to using
2934 @samp{#pragma GCC visibility} before and after the namespace
2935 definition (@pxref{Visibility Pragmas}).
2936
2937 In C++, if a template argument has limited visibility, this
2938 restriction is implicitly propagated to the template instantiation.
2939 Otherwise, template instantiations and specializations default to the
2940 visibility of their template.
2941
2942 If both the template and enclosing class have explicit visibility, the
2943 visibility from the template is used.
2944
2945 @item warn_unused_result
2946 @cindex @code{warn_unused_result} attribute
2947 The @code{warn_unused_result} attribute causes a warning to be emitted
2948 if a caller of the function with this attribute does not use its
2949 return value. This is useful for functions where not checking
2950 the result is either a security problem or always a bug, such as
2951 @code{realloc}.
2952
2953 @smallexample
2954 int fn () __attribute__ ((warn_unused_result));
2955 int foo ()
2956 @{
2957 if (fn () < 0) return -1;
2958 fn ();
2959 return 0;
2960 @}
2961 @end smallexample
2962
2963 results in warning on line 5.
2964
2965 @item weak
2966 @cindex @code{weak} attribute
2967 The @code{weak} attribute causes the declaration to be emitted as a weak
2968 symbol rather than a global. This is primarily useful in defining
2969 library functions which can be overridden in user code, though it can
2970 also be used with non-function declarations. Weak symbols are supported
2971 for ELF targets, and also for a.out targets when using the GNU assembler
2972 and linker.
2973
2974 @item weakref
2975 @itemx weakref ("@var{target}")
2976 @cindex @code{weakref} attribute
2977 The @code{weakref} attribute marks a declaration as a weak reference.
2978 Without arguments, it should be accompanied by an @code{alias} attribute
2979 naming the target symbol. Optionally, the @var{target} may be given as
2980 an argument to @code{weakref} itself. In either case, @code{weakref}
2981 implicitly marks the declaration as @code{weak}. Without a
2982 @var{target}, given as an argument to @code{weakref} or to @code{alias},
2983 @code{weakref} is equivalent to @code{weak}.
2984
2985 @smallexample
2986 static int x() __attribute__ ((weakref ("y")));
2987 /* is equivalent to... */
2988 static int x() __attribute__ ((weak, weakref, alias ("y")));
2989 /* and to... */
2990 static int x() __attribute__ ((weakref));
2991 static int x() __attribute__ ((alias ("y")));
2992 @end smallexample
2993
2994 A weak reference is an alias that does not by itself require a
2995 definition to be given for the target symbol. If the target symbol is
2996 only referenced through weak references, then the becomes a @code{weak}
2997 undefined symbol. If it is directly referenced, however, then such
2998 strong references prevail, and a definition will be required for the
2999 symbol, not necessarily in the same translation unit.
3000
3001 The effect is equivalent to moving all references to the alias to a
3002 separate translation unit, renaming the alias to the aliased symbol,
3003 declaring it as weak, compiling the two separate translation units and
3004 performing a reloadable link on them.
3005
3006 At present, a declaration to which @code{weakref} is attached can
3007 only be @code{static}.
3008
3009 @item externally_visible
3010 @cindex @code{externally_visible} attribute.
3011 This attribute, attached to a global variable or function nullify
3012 effect of @option{-fwhole-program} command line option, so the object
3013 remain visible outside the current compilation unit
3014
3015 @end table
3016
3017 You can specify multiple attributes in a declaration by separating them
3018 by commas within the double parentheses or by immediately following an
3019 attribute declaration with another attribute declaration.
3020
3021 @cindex @code{#pragma}, reason for not using
3022 @cindex pragma, reason for not using
3023 Some people object to the @code{__attribute__} feature, suggesting that
3024 ISO C's @code{#pragma} should be used instead. At the time
3025 @code{__attribute__} was designed, there were two reasons for not doing
3026 this.
3027
3028 @enumerate
3029 @item
3030 It is impossible to generate @code{#pragma} commands from a macro.
3031
3032 @item
3033 There is no telling what the same @code{#pragma} might mean in another
3034 compiler.
3035 @end enumerate
3036
3037 These two reasons applied to almost any application that might have been
3038 proposed for @code{#pragma}. It was basically a mistake to use
3039 @code{#pragma} for @emph{anything}.
3040
3041 The ISO C99 standard includes @code{_Pragma}, which now allows pragmas
3042 to be generated from macros. In addition, a @code{#pragma GCC}
3043 namespace is now in use for GCC-specific pragmas. However, it has been
3044 found convenient to use @code{__attribute__} to achieve a natural
3045 attachment of attributes to their corresponding declarations, whereas
3046 @code{#pragma GCC} is of use for constructs that do not naturally form
3047 part of the grammar. @xref{Other Directives,,Miscellaneous
3048 Preprocessing Directives, cpp, The GNU C Preprocessor}.
3049
3050 @node Attribute Syntax
3051 @section Attribute Syntax
3052 @cindex attribute syntax
3053
3054 This section describes the syntax with which @code{__attribute__} may be
3055 used, and the constructs to which attribute specifiers bind, for the C
3056 language. Some details may vary for C++ and Objective-C@. Because of
3057 infelicities in the grammar for attributes, some forms described here
3058 may not be successfully parsed in all cases.
3059
3060 There are some problems with the semantics of attributes in C++. For
3061 example, there are no manglings for attributes, although they may affect
3062 code generation, so problems may arise when attributed types are used in
3063 conjunction with templates or overloading. Similarly, @code{typeid}
3064 does not distinguish between types with different attributes. Support
3065 for attributes in C++ may be restricted in future to attributes on
3066 declarations only, but not on nested declarators.
3067
3068 @xref{Function Attributes}, for details of the semantics of attributes
3069 applying to functions. @xref{Variable Attributes}, for details of the
3070 semantics of attributes applying to variables. @xref{Type Attributes},
3071 for details of the semantics of attributes applying to structure, union
3072 and enumerated types.
3073
3074 An @dfn{attribute specifier} is of the form
3075 @code{__attribute__ ((@var{attribute-list}))}. An @dfn{attribute list}
3076 is a possibly empty comma-separated sequence of @dfn{attributes}, where
3077 each attribute is one of the following:
3078
3079 @itemize @bullet
3080 @item
3081 Empty. Empty attributes are ignored.
3082
3083 @item
3084 A word (which may be an identifier such as @code{unused}, or a reserved
3085 word such as @code{const}).
3086
3087 @item
3088 A word, followed by, in parentheses, parameters for the attribute.
3089 These parameters take one of the following forms:
3090
3091 @itemize @bullet
3092 @item
3093 An identifier. For example, @code{mode} attributes use this form.
3094
3095 @item
3096 An identifier followed by a comma and a non-empty comma-separated list
3097 of expressions. For example, @code{format} attributes use this form.
3098
3099 @item
3100 A possibly empty comma-separated list of expressions. For example,
3101 @code{format_arg} attributes use this form with the list being a single
3102 integer constant expression, and @code{alias} attributes use this form
3103 with the list being a single string constant.
3104 @end itemize
3105 @end itemize
3106
3107 An @dfn{attribute specifier list} is a sequence of one or more attribute
3108 specifiers, not separated by any other tokens.
3109
3110 In GNU C, an attribute specifier list may appear after the colon following a
3111 label, other than a @code{case} or @code{default} label. The only
3112 attribute it makes sense to use after a label is @code{unused}. This
3113 feature is intended for code generated by programs which contains labels
3114 that may be unused but which is compiled with @option{-Wall}. It would
3115 not normally be appropriate to use in it human-written code, though it
3116 could be useful in cases where the code that jumps to the label is
3117 contained within an @code{#ifdef} conditional. GNU C++ does not permit
3118 such placement of attribute lists, as it is permissible for a
3119 declaration, which could begin with an attribute list, to be labelled in
3120 C++. Declarations cannot be labelled in C90 or C99, so the ambiguity
3121 does not arise there.
3122
3123 An attribute specifier list may appear as part of a @code{struct},
3124 @code{union} or @code{enum} specifier. It may go either immediately
3125 after the @code{struct}, @code{union} or @code{enum} keyword, or after
3126 the closing brace. The former syntax is preferred.
3127 Where attribute specifiers follow the closing brace, they are considered
3128 to relate to the structure, union or enumerated type defined, not to any
3129 enclosing declaration the type specifier appears in, and the type
3130 defined is not complete until after the attribute specifiers.
3131 @c Otherwise, there would be the following problems: a shift/reduce
3132 @c conflict between attributes binding the struct/union/enum and
3133 @c binding to the list of specifiers/qualifiers; and "aligned"
3134 @c attributes could use sizeof for the structure, but the size could be
3135 @c changed later by "packed" attributes.
3136
3137 Otherwise, an attribute specifier appears as part of a declaration,
3138 counting declarations of unnamed parameters and type names, and relates
3139 to that declaration (which may be nested in another declaration, for
3140 example in the case of a parameter declaration), or to a particular declarator
3141 within a declaration. Where an
3142 attribute specifier is applied to a parameter declared as a function or
3143 an array, it should apply to the function or array rather than the
3144 pointer to which the parameter is implicitly converted, but this is not
3145 yet correctly implemented.
3146
3147 Any list of specifiers and qualifiers at the start of a declaration may
3148 contain attribute specifiers, whether or not such a list may in that
3149 context contain storage class specifiers. (Some attributes, however,
3150 are essentially in the nature of storage class specifiers, and only make
3151 sense where storage class specifiers may be used; for example,
3152 @code{section}.) There is one necessary limitation to this syntax: the
3153 first old-style parameter declaration in a function definition cannot
3154 begin with an attribute specifier, because such an attribute applies to
3155 the function instead by syntax described below (which, however, is not
3156 yet implemented in this case). In some other cases, attribute
3157 specifiers are permitted by this grammar but not yet supported by the
3158 compiler. All attribute specifiers in this place relate to the
3159 declaration as a whole. In the obsolescent usage where a type of
3160 @code{int} is implied by the absence of type specifiers, such a list of
3161 specifiers and qualifiers may be an attribute specifier list with no
3162 other specifiers or qualifiers.
3163
3164 At present, the first parameter in a function prototype must have some
3165 type specifier which is not an attribute specifier; this resolves an
3166 ambiguity in the interpretation of @code{void f(int
3167 (__attribute__((foo)) x))}, but is subject to change. At present, if
3168 the parentheses of a function declarator contain only attributes then
3169 those attributes are ignored, rather than yielding an error or warning
3170 or implying a single parameter of type int, but this is subject to
3171 change.
3172
3173 An attribute specifier list may appear immediately before a declarator
3174 (other than the first) in a comma-separated list of declarators in a
3175 declaration of more than one identifier using a single list of
3176 specifiers and qualifiers. Such attribute specifiers apply
3177 only to the identifier before whose declarator they appear. For
3178 example, in
3179
3180 @smallexample
3181 __attribute__((noreturn)) void d0 (void),
3182 __attribute__((format(printf, 1, 2))) d1 (const char *, ...),
3183 d2 (void)
3184 @end smallexample
3185
3186 @noindent
3187 the @code{noreturn} attribute applies to all the functions
3188 declared; the @code{format} attribute only applies to @code{d1}.
3189
3190 An attribute specifier list may appear immediately before the comma,
3191 @code{=} or semicolon terminating the declaration of an identifier other
3192 than a function definition. Such attribute specifiers apply
3193 to the declared object or function. Where an
3194 assembler name for an object or function is specified (@pxref{Asm
3195 Labels}), the attribute must follow the @code{asm}
3196 specification.
3197
3198 An attribute specifier list may, in future, be permitted to appear after
3199 the declarator in a function definition (before any old-style parameter
3200 declarations or the function body).
3201
3202 Attribute specifiers may be mixed with type qualifiers appearing inside
3203 the @code{[]} of a parameter array declarator, in the C99 construct by
3204 which such qualifiers are applied to the pointer to which the array is
3205 implicitly converted. Such attribute specifiers apply to the pointer,
3206 not to the array, but at present this is not implemented and they are
3207 ignored.
3208
3209 An attribute specifier list may appear at the start of a nested
3210 declarator. At present, there are some limitations in this usage: the
3211 attributes correctly apply to the declarator, but for most individual
3212 attributes the semantics this implies are not implemented.
3213 When attribute specifiers follow the @code{*} of a pointer
3214 declarator, they may be mixed with any type qualifiers present.
3215 The following describes the formal semantics of this syntax. It will make the
3216 most sense if you are familiar with the formal specification of
3217 declarators in the ISO C standard.
3218
3219 Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration @code{T
3220 D1}, where @code{T} contains declaration specifiers that specify a type
3221 @var{Type} (such as @code{int}) and @code{D1} is a declarator that
3222 contains an identifier @var{ident}. The type specified for @var{ident}
3223 for derived declarators whose type does not include an attribute
3224 specifier is as in the ISO C standard.
3225
3226 If @code{D1} has the form @code{( @var{attribute-specifier-list} D )},
3227 and the declaration @code{T D} specifies the type
3228 ``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
3229 @code{T D1} specifies the type ``@var{derived-declarator-type-list}
3230 @var{attribute-specifier-list} @var{Type}'' for @var{ident}.
3231
3232 If @code{D1} has the form @code{*
3233 @var{type-qualifier-and-attribute-specifier-list} D}, and the
3234 declaration @code{T D} specifies the type
3235 ``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
3236 @code{T D1} specifies the type ``@var{derived-declarator-type-list}
3237 @var{type-qualifier-and-attribute-specifier-list} @var{Type}'' for
3238 @var{ident}.
3239
3240 For example,
3241
3242 @smallexample
3243 void (__attribute__((noreturn)) ****f) (void);
3244 @end smallexample
3245
3246 @noindent
3247 specifies the type ``pointer to pointer to pointer to pointer to
3248 non-returning function returning @code{void}''. As another example,
3249
3250 @smallexample
3251 char *__attribute__((aligned(8))) *f;
3252 @end smallexample
3253
3254 @noindent
3255 specifies the type ``pointer to 8-byte-aligned pointer to @code{char}''.
3256 Note again that this does not work with most attributes; for example,
3257 the usage of @samp{aligned} and @samp{noreturn} attributes given above
3258 is not yet supported.
3259
3260 For compatibility with existing code written for compiler versions that
3261 did not implement attributes on nested declarators, some laxity is
3262 allowed in the placing of attributes. If an attribute that only applies
3263 to types is applied to a declaration, it will be treated as applying to
3264 the type of that declaration. If an attribute that only applies to
3265 declarations is applied to the type of a declaration, it will be treated
3266 as applying to that declaration; and, for compatibility with code
3267 placing the attributes immediately before the identifier declared, such
3268 an attribute applied to a function return type will be treated as
3269 applying to the function type, and such an attribute applied to an array
3270 element type will be treated as applying to the array type. If an
3271 attribute that only applies to function types is applied to a
3272 pointer-to-function type, it will be treated as applying to the pointer
3273 target type; if such an attribute is applied to a function return type
3274 that is not a pointer-to-function type, it will be treated as applying
3275 to the function type.
3276
3277 @node Function Prototypes
3278 @section Prototypes and Old-Style Function Definitions
3279 @cindex function prototype declarations
3280 @cindex old-style function definitions
3281 @cindex promotion of formal parameters
3282
3283 GNU C extends ISO C to allow a function prototype to override a later
3284 old-style non-prototype definition. Consider the following example:
3285
3286 @smallexample
3287 /* @r{Use prototypes unless the compiler is old-fashioned.} */
3288 #ifdef __STDC__
3289 #define P(x) x
3290 #else
3291 #define P(x) ()
3292 #endif
3293
3294 /* @r{Prototype function declaration.} */
3295 int isroot P((uid_t));
3296
3297 /* @r{Old-style function definition.} */
3298 int
3299 isroot (x) /* @r{??? lossage here ???} */
3300 uid_t x;
3301 @{
3302 return x == 0;
3303 @}
3304 @end smallexample
3305
3306 Suppose the type @code{uid_t} happens to be @code{short}. ISO C does
3307 not allow this example, because subword arguments in old-style
3308 non-prototype definitions are promoted. Therefore in this example the
3309 function definition's argument is really an @code{int}, which does not
3310 match the prototype argument type of @code{short}.
3311
3312 This restriction of ISO C makes it hard to write code that is portable
3313 to traditional C compilers, because the programmer does not know
3314 whether the @code{uid_t} type is @code{short}, @code{int}, or
3315 @code{long}. Therefore, in cases like these GNU C allows a prototype
3316 to override a later old-style definition. More precisely, in GNU C, a
3317 function prototype argument type overrides the argument type specified
3318 by a later old-style definition if the former type is the same as the
3319 latter type before promotion. Thus in GNU C the above example is
3320 equivalent to the following:
3321
3322 @smallexample
3323 int isroot (uid_t);
3324
3325 int
3326 isroot (uid_t x)
3327 @{
3328 return x == 0;
3329 @}
3330 @end smallexample
3331
3332 @noindent
3333 GNU C++ does not support old-style function definitions, so this
3334 extension is irrelevant.
3335
3336 @node C++ Comments
3337 @section C++ Style Comments
3338 @cindex //
3339 @cindex C++ comments
3340 @cindex comments, C++ style
3341
3342 In GNU C, you may use C++ style comments, which start with @samp{//} and
3343 continue until the end of the line. Many other C implementations allow
3344 such comments, and they are included in the 1999 C standard. However,
3345 C++ style comments are not recognized if you specify an @option{-std}
3346 option specifying a version of ISO C before C99, or @option{-ansi}
3347 (equivalent to @option{-std=c89}).
3348
3349 @node Dollar Signs
3350 @section Dollar Signs in Identifier Names
3351 @cindex $
3352 @cindex dollar signs in identifier names
3353 @cindex identifier names, dollar signs in
3354
3355 In GNU C, you may normally use dollar signs in identifier names.
3356 This is because many traditional C implementations allow such identifiers.
3357 However, dollar signs in identifiers are not supported on a few target
3358 machines, typically because the target assembler does not allow them.
3359
3360 @node Character Escapes
3361 @section The Character @key{ESC} in Constants
3362
3363 You can use the sequence @samp{\e} in a string or character constant to
3364 stand for the ASCII character @key{ESC}.
3365
3366 @node Alignment
3367 @section Inquiring on Alignment of Types or Variables
3368 @cindex alignment
3369 @cindex type alignment
3370 @cindex variable alignment
3371
3372 The keyword @code{__alignof__} allows you to inquire about how an object
3373 is aligned, or the minimum alignment usually required by a type. Its
3374 syntax is just like @code{sizeof}.
3375
3376 For example, if the target machine requires a @code{double} value to be
3377 aligned on an 8-byte boundary, then @code{__alignof__ (double)} is 8.
3378 This is true on many RISC machines. On more traditional machine
3379 designs, @code{__alignof__ (double)} is 4 or even 2.
3380
3381 Some machines never actually require alignment; they allow reference to any
3382 data type even at an odd address. For these machines, @code{__alignof__}
3383 reports the @emph{recommended} alignment of a type.
3384
3385 If the operand of @code{__alignof__} is an lvalue rather than a type,
3386 its value is the required alignment for its type, taking into account
3387 any minimum alignment specified with GCC's @code{__attribute__}
3388 extension (@pxref{Variable Attributes}). For example, after this
3389 declaration:
3390
3391 @smallexample
3392 struct foo @{ int x; char y; @} foo1;
3393 @end smallexample
3394
3395 @noindent
3396 the value of @code{__alignof__ (foo1.y)} is 1, even though its actual
3397 alignment is probably 2 or 4, the same as @code{__alignof__ (int)}.
3398
3399 It is an error to ask for the alignment of an incomplete type.
3400
3401 @node Variable Attributes
3402 @section Specifying Attributes of Variables
3403 @cindex attribute of variables
3404 @cindex variable attributes
3405
3406 The keyword @code{__attribute__} allows you to specify special
3407 attributes of variables or structure fields. This keyword is followed
3408 by an attribute specification inside double parentheses. Some
3409 attributes are currently defined generically for variables.
3410 Other attributes are defined for variables on particular target
3411 systems. Other attributes are available for functions
3412 (@pxref{Function Attributes}) and for types (@pxref{Type Attributes}).
3413 Other front ends might define more attributes
3414 (@pxref{C++ Extensions,,Extensions to the C++ Language}).
3415
3416 You may also specify attributes with @samp{__} preceding and following
3417 each keyword. This allows you to use them in header files without
3418 being concerned about a possible macro of the same name. For example,
3419 you may use @code{__aligned__} instead of @code{aligned}.
3420
3421 @xref{Attribute Syntax}, for details of the exact syntax for using
3422 attributes.
3423
3424 @table @code
3425 @cindex @code{aligned} attribute
3426 @item aligned (@var{alignment})
3427 This attribute specifies a minimum alignment for the variable or
3428 structure field, measured in bytes. For example, the declaration:
3429
3430 @smallexample
3431 int x __attribute__ ((aligned (16))) = 0;
3432 @end smallexample
3433
3434 @noindent
3435 causes the compiler to allocate the global variable @code{x} on a
3436 16-byte boundary. On a 68040, this could be used in conjunction with
3437 an @code{asm} expression to access the @code{move16} instruction which
3438 requires 16-byte aligned operands.
3439
3440 You can also specify the alignment of structure fields. For example, to
3441 create a double-word aligned @code{int} pair, you could write:
3442
3443 @smallexample
3444 struct foo @{ int x[2] __attribute__ ((aligned (8))); @};
3445 @end smallexample
3446
3447 @noindent
3448 This is an alternative to creating a union with a @code{double} member
3449 that forces the union to be double-word aligned.
3450
3451 As in the preceding examples, you can explicitly specify the alignment
3452 (in bytes) that you wish the compiler to use for a given variable or
3453 structure field. Alternatively, you can leave out the alignment factor
3454 and just ask the compiler to align a variable or field to the maximum
3455 useful alignment for the target machine you are compiling for. For
3456 example, you could write:
3457
3458 @smallexample
3459 short array[3] __attribute__ ((aligned));
3460 @end smallexample
3461
3462 Whenever you leave out the alignment factor in an @code{aligned} attribute
3463 specification, the compiler automatically sets the alignment for the declared
3464 variable or field to the largest alignment which is ever used for any data
3465 type on the target machine you are compiling for. Doing this can often make
3466 copy operations more efficient, because the compiler can use whatever
3467 instructions copy the biggest chunks of memory when performing copies to
3468 or from the variables or fields that you have aligned this way.
3469
3470 When used on a struct, or struct member, the @code{aligned} attribute can
3471 only increase the alignment; in order to decrease it, the @code{packed}
3472 attribute must be specified as well. When used as part of a typedef, the
3473 @code{aligned} attribute can both increase and decrease alignment, and
3474 specifying the @code{packed} attribute will generate a warning.
3475
3476 Note that the effectiveness of @code{aligned} attributes may be limited
3477 by inherent limitations in your linker. On many systems, the linker is
3478 only able to arrange for variables to be aligned up to a certain maximum
3479 alignment. (For some linkers, the maximum supported alignment may
3480 be very very small.) If your linker is only able to align variables
3481 up to a maximum of 8 byte alignment, then specifying @code{aligned(16)}
3482 in an @code{__attribute__} will still only provide you with 8 byte
3483 alignment. See your linker documentation for further information.
3484
3485 The @code{aligned} attribute can also be used for functions
3486 (@pxref{Function Attributes}.)
3487
3488 @item cleanup (@var{cleanup_function})
3489 @cindex @code{cleanup} attribute
3490 The @code{cleanup} attribute runs a function when the variable goes
3491 out of scope. This attribute can only be applied to auto function
3492 scope variables; it may not be applied to parameters or variables
3493 with static storage duration. The function must take one parameter,
3494 a pointer to a type compatible with the variable. The return value
3495 of the function (if any) is ignored.
3496
3497 If @option{-fexceptions} is enabled, then @var{cleanup_function}
3498 will be run during the stack unwinding that happens during the
3499 processing of the exception. Note that the @code{cleanup} attribute
3500 does not allow the exception to be caught, only to perform an action.
3501 It is undefined what happens if @var{cleanup_function} does not
3502 return normally.
3503
3504 @item common
3505 @itemx nocommon
3506 @cindex @code{common} attribute
3507 @cindex @code{nocommon} attribute
3508 @opindex fcommon
3509 @opindex fno-common
3510 The @code{common} attribute requests GCC to place a variable in
3511 ``common'' storage. The @code{nocommon} attribute requests the
3512 opposite---to allocate space for it directly.
3513
3514 These attributes override the default chosen by the
3515 @option{-fno-common} and @option{-fcommon} flags respectively.
3516
3517 @item deprecated
3518 @cindex @code{deprecated} attribute
3519 The @code{deprecated} attribute results in a warning if the variable
3520 is used anywhere in the source file. This is useful when identifying
3521 variables that are expected to be removed in a future version of a
3522 program. The warning also includes the location of the declaration
3523 of the deprecated variable, to enable users to easily find further
3524 information about why the variable is deprecated, or what they should
3525 do instead. Note that the warning only occurs for uses:
3526
3527 @smallexample
3528 extern int old_var __attribute__ ((deprecated));
3529 extern int old_var;
3530 int new_fn () @{ return old_var; @}
3531 @end smallexample
3532
3533 results in a warning on line 3 but not line 2.
3534
3535 The @code{deprecated} attribute can also be used for functions and
3536 types (@pxref{Function Attributes}, @pxref{Type Attributes}.)
3537
3538 @item mode (@var{mode})
3539 @cindex @code{mode} attribute
3540 This attribute specifies the data type for the declaration---whichever
3541 type corresponds to the mode @var{mode}. This in effect lets you
3542 request an integer or floating point type according to its width.
3543
3544 You may also specify a mode of @samp{byte} or @samp{__byte__} to
3545 indicate the mode corresponding to a one-byte integer, @samp{word} or
3546 @samp{__word__} for the mode of a one-word integer, and @samp{pointer}
3547 or @samp{__pointer__} for the mode used to represent pointers.
3548
3549 @item packed
3550 @cindex @code{packed} attribute
3551 The @code{packed} attribute specifies that a variable or structure field
3552 should have the smallest possible alignment---one byte for a variable,
3553 and one bit for a field, unless you specify a larger value with the
3554 @code{aligned} attribute.
3555
3556 Here is a structure in which the field @code{x} is packed, so that it
3557 immediately follows @code{a}:
3558
3559 @smallexample
3560 struct foo
3561 @{
3562 char a;
3563 int x[2] __attribute__ ((packed));
3564 @};
3565 @end smallexample
3566
3567 @item section ("@var{section-name}")
3568 @cindex @code{section} variable attribute
3569 Normally, the compiler places the objects it generates in sections like
3570 @code{data} and @code{bss}. Sometimes, however, you need additional sections,
3571 or you need certain particular variables to appear in special sections,
3572 for example to map to special hardware. The @code{section}
3573 attribute specifies that a variable (or function) lives in a particular
3574 section. For example, this small program uses several specific section names:
3575
3576 @smallexample
3577 struct duart a __attribute__ ((section ("DUART_A"))) = @{ 0 @};
3578 struct duart b __attribute__ ((section ("DUART_B"))) = @{ 0 @};
3579 char stack[10000] __attribute__ ((section ("STACK"))) = @{ 0 @};
3580 int init_data __attribute__ ((section ("INITDATA"))) = 0;
3581
3582 main()
3583 @{
3584 /* @r{Initialize stack pointer} */
3585 init_sp (stack + sizeof (stack));
3586
3587 /* @r{Initialize initialized data} */
3588 memcpy (&init_data, &data, &edata - &data);
3589
3590 /* @r{Turn on the serial ports} */
3591 init_duart (&a);
3592 init_duart (&b);
3593 @}
3594 @end smallexample
3595
3596 @noindent
3597 Use the @code{section} attribute with an @emph{initialized} definition
3598 of a @emph{global} variable, as shown in the example. GCC issues
3599 a warning and otherwise ignores the @code{section} attribute in
3600 uninitialized variable declarations.
3601
3602 You may only use the @code{section} attribute with a fully initialized
3603 global definition because of the way linkers work. The linker requires
3604 each object be defined once, with the exception that uninitialized
3605 variables tentatively go in the @code{common} (or @code{bss}) section
3606 and can be multiply ``defined''. You can force a variable to be
3607 initialized with the @option{-fno-common} flag or the @code{nocommon}
3608 attribute.
3609
3610 Some file formats do not support arbitrary sections so the @code{section}
3611 attribute is not available on all platforms.
3612 If you need to map the entire contents of a module to a particular
3613 section, consider using the facilities of the linker instead.
3614
3615 @item shared
3616 @cindex @code{shared} variable attribute
3617 On Microsoft Windows, in addition to putting variable definitions in a named
3618 section, the section can also be shared among all running copies of an
3619 executable or DLL@. For example, this small program defines shared data
3620 by putting it in a named section @code{shared} and marking the section
3621 shareable:
3622
3623 @smallexample
3624 int foo __attribute__((section ("shared"), shared)) = 0;
3625
3626 int
3627 main()
3628 @{
3629 /* @r{Read and write foo. All running
3630 copies see the same value.} */
3631 return 0;
3632 @}
3633 @end smallexample
3634
3635 @noindent
3636 You may only use the @code{shared} attribute along with @code{section}
3637 attribute with a fully initialized global definition because of the way
3638 linkers work. See @code{section} attribute for more information.
3639
3640 The @code{shared} attribute is only available on Microsoft Windows@.
3641
3642 @item tls_model ("@var{tls_model}")
3643 @cindex @code{tls_model} attribute
3644 The @code{tls_model} attribute sets thread-local storage model
3645 (@pxref{Thread-Local}) of a particular @code{__thread} variable,
3646 overriding @option{-ftls-model=} command line switch on a per-variable
3647 basis.
3648 The @var{tls_model} argument should be one of @code{global-dynamic},
3649 @code{local-dynamic}, @code{initial-exec} or @code{local-exec}.
3650
3651 Not all targets support this attribute.
3652
3653 @item unused
3654 This attribute, attached to a variable, means that the variable is meant
3655 to be possibly unused. GCC will not produce a warning for this
3656 variable.
3657
3658 @item used
3659 This attribute, attached to a variable, means that the variable must be
3660 emitted even if it appears that the variable is not referenced.
3661
3662 @item vector_size (@var{bytes})
3663 This attribute specifies the vector size for the variable, measured in
3664 bytes. For example, the declaration:
3665
3666 @smallexample
3667 int foo __attribute__ ((vector_size (16)));
3668 @end smallexample
3669
3670 @noindent
3671 causes the compiler to set the mode for @code{foo}, to be 16 bytes,
3672 divided into @code{int} sized units. Assuming a 32-bit int (a vector of
3673 4 units of 4 bytes), the corresponding mode of @code{foo} will be V4SI@.
3674
3675 This attribute is only applicable to integral and float scalars,
3676 although arrays, pointers, and function return values are allowed in
3677 conjunction with this construct.
3678
3679 Aggregates with this attribute are invalid, even if they are of the same
3680 size as a corresponding scalar. For example, the declaration:
3681
3682 @smallexample
3683 struct S @{ int a; @};
3684 struct S __attribute__ ((vector_size (16))) foo;
3685 @end smallexample
3686
3687 @noindent
3688 is invalid even if the size of the structure is the same as the size of
3689 the @code{int}.
3690
3691 @item selectany
3692 The @code{selectany} attribute causes an initialized global variable to
3693 have link-once semantics. When multiple definitions of the variable are
3694 encountered by the linker, the first is selected and the remainder are
3695 discarded. Following usage by the Microsoft compiler, the linker is told
3696 @emph{not} to warn about size or content differences of the multiple
3697 definitions.
3698
3699 Although the primary usage of this attribute is for POD types, the
3700 attribute can also be applied to global C++ objects that are initialized
3701 by a constructor. In this case, the static initialization and destruction
3702 code for the object is emitted in each translation defining the object,
3703 but the calls to the constructor and destructor are protected by a
3704 link-once guard variable.
3705
3706 The @code{selectany} attribute is only available on Microsoft Windows
3707 targets. You can use @code{__declspec (selectany)} as a synonym for
3708 @code{__attribute__ ((selectany))} for compatibility with other
3709 compilers.
3710
3711 @item weak
3712 The @code{weak} attribute is described in @xref{Function Attributes}.
3713
3714 @item dllimport
3715 The @code{dllimport} attribute is described in @xref{Function Attributes}.
3716
3717 @item dllexport
3718 The @code{dllexport} attribute is described in @xref{Function Attributes}.
3719
3720 @end table
3721
3722 @subsection Blackfin Variable Attributes
3723
3724 Three attributes are currently defined for the Blackfin.
3725
3726 @table @code
3727 @item l1_data
3728 @item l1_data_A
3729 @item l1_data_B
3730 @cindex @code{l1_data} variable attribute
3731 @cindex @code{l1_data_A} variable attribute
3732 @cindex @code{l1_data_B} variable attribute
3733 Use these attributes on the Blackfin to place the variable into L1 Data SRAM.
3734 Variables with @code{l1_data} attribute will be put into the specific section
3735 named @code{.l1.data}. Those with @code{l1_data_A} attribute will be put into
3736 the specific section named @code{.l1.data.A}. Those with @code{l1_data_B}
3737 attribute will be put into the specific section named @code{.l1.data.B}.
3738 @end table
3739
3740 @subsection M32R/D Variable Attributes
3741
3742 One attribute is currently defined for the M32R/D@.
3743
3744 @table @code
3745 @item model (@var{model-name})
3746 @cindex variable addressability on the M32R/D
3747 Use this attribute on the M32R/D to set the addressability of an object.
3748 The identifier @var{model-name} is one of @code{small}, @code{medium},
3749 or @code{large}, representing each of the code models.
3750
3751 Small model objects live in the lower 16MB of memory (so that their
3752 addresses can be loaded with the @code{ld24} instruction).
3753
3754 Medium and large model objects may live anywhere in the 32-bit address space
3755 (the compiler will generate @code{seth/add3} instructions to load their
3756 addresses).
3757 @end table
3758
3759 @anchor{i386 Variable Attributes}
3760 @subsection i386 Variable Attributes
3761
3762 Two attributes are currently defined for i386 configurations:
3763 @code{ms_struct} and @code{gcc_struct}
3764
3765 @table @code
3766 @item ms_struct
3767 @itemx gcc_struct
3768 @cindex @code{ms_struct} attribute
3769 @cindex @code{gcc_struct} attribute
3770
3771 If @code{packed} is used on a structure, or if bit-fields are used
3772 it may be that the Microsoft ABI packs them differently
3773 than GCC would normally pack them. Particularly when moving packed
3774 data between functions compiled with GCC and the native Microsoft compiler
3775 (either via function call or as data in a file), it may be necessary to access
3776 either format.
3777
3778 Currently @option{-m[no-]ms-bitfields} is provided for the Microsoft Windows X86
3779 compilers to match the native Microsoft compiler.
3780
3781 The Microsoft structure layout algorithm is fairly simple with the exception
3782 of the bitfield packing:
3783
3784 The padding and alignment of members of structures and whether a bit field
3785 can straddle a storage-unit boundary
3786
3787 @enumerate
3788 @item Structure members are stored sequentially in the order in which they are
3789 declared: the first member has the lowest memory address and the last member
3790 the highest.
3791
3792 @item Every data object has an alignment-requirement. The alignment-requirement
3793 for all data except structures, unions, and arrays is either the size of the
3794 object or the current packing size (specified with either the aligned attribute
3795 or the pack pragma), whichever is less. For structures, unions, and arrays,
3796 the alignment-requirement is the largest alignment-requirement of its members.
3797 Every object is allocated an offset so that:
3798
3799 offset % alignment-requirement == 0
3800
3801 @item Adjacent bit fields are packed into the same 1-, 2-, or 4-byte allocation
3802 unit if the integral types are the same size and if the next bit field fits
3803 into the current allocation unit without crossing the boundary imposed by the
3804 common alignment requirements of the bit fields.
3805 @end enumerate
3806
3807 Handling of zero-length bitfields:
3808
3809 MSVC interprets zero-length bitfields in the following ways:
3810
3811 @enumerate
3812 @item If a zero-length bitfield is inserted between two bitfields that would
3813 normally be coalesced, the bitfields will not be coalesced.
3814
3815 For example:
3816
3817 @smallexample
3818 struct
3819 @{
3820 unsigned long bf_1 : 12;
3821 unsigned long : 0;
3822 unsigned long bf_2 : 12;
3823 @} t1;
3824 @end smallexample
3825
3826 The size of @code{t1} would be 8 bytes with the zero-length bitfield. If the
3827 zero-length bitfield were removed, @code{t1}'s size would be 4 bytes.
3828
3829 @item If a zero-length bitfield is inserted after a bitfield, @code{foo}, and the
3830 alignment of the zero-length bitfield is greater than the member that follows it,
3831 @code{bar}, @code{bar} will be aligned as the type of the zero-length bitfield.
3832
3833 For example:
3834
3835 @smallexample
3836 struct
3837 @{
3838 char foo : 4;
3839 short : 0;
3840 char bar;
3841 @} t2;
3842
3843 struct
3844 @{
3845 char foo : 4;
3846 short : 0;
3847 double bar;
3848 @} t3;
3849 @end smallexample
3850
3851 For @code{t2}, @code{bar} will be placed at offset 2, rather than offset 1.
3852 Accordingly, the size of @code{t2} will be 4. For @code{t3}, the zero-length
3853 bitfield will not affect the alignment of @code{bar} or, as a result, the size
3854 of the structure.
3855
3856 Taking this into account, it is important to note the following:
3857
3858 @enumerate
3859 @item If a zero-length bitfield follows a normal bitfield, the type of the
3860 zero-length bitfield may affect the alignment of the structure as whole. For
3861 example, @code{t2} has a size of 4 bytes, since the zero-length bitfield follows a
3862 normal bitfield, and is of type short.
3863
3864 @item Even if a zero-length bitfield is not followed by a normal bitfield, it may
3865 still affect the alignment of the structure:
3866
3867 @smallexample
3868 struct
3869 @{
3870 char foo : 6;
3871 long : 0;
3872 @} t4;
3873 @end smallexample
3874
3875 Here, @code{t4} will take up 4 bytes.
3876 @end enumerate
3877
3878 @item Zero-length bitfields following non-bitfield members are ignored:
3879
3880 @smallexample
3881 struct
3882 @{
3883 char foo;
3884 long : 0;
3885 char bar;
3886 @} t5;
3887 @end smallexample
3888
3889 Here, @code{t5} will take up 2 bytes.
3890 @end enumerate
3891 @end table
3892
3893 @subsection PowerPC Variable Attributes
3894
3895 Three attributes currently are defined for PowerPC configurations:
3896 @code{altivec}, @code{ms_struct} and @code{gcc_struct}.
3897
3898 For full documentation of the struct attributes please see the
3899 documentation in the @xref{i386 Variable Attributes}, section.
3900
3901 For documentation of @code{altivec} attribute please see the
3902 documentation in the @xref{PowerPC Type Attributes}, section.
3903
3904 @subsection SPU Variable Attributes
3905
3906 The SPU supports the @code{spu_vector} attribute for variables. For
3907 documentation of this attribute please see the documentation in the
3908 @xref{SPU Type Attributes}, section.
3909
3910 @subsection Xstormy16 Variable Attributes
3911
3912 One attribute is currently defined for xstormy16 configurations:
3913 @code{below100}
3914
3915 @table @code
3916 @item below100
3917 @cindex @code{below100} attribute
3918
3919 If a variable has the @code{below100} attribute (@code{BELOW100} is
3920 allowed also), GCC will place the variable in the first 0x100 bytes of
3921 memory and use special opcodes to access it. Such variables will be
3922 placed in either the @code{.bss_below100} section or the
3923 @code{.data_below100} section.
3924
3925 @end table
3926
3927 @subsection AVR Variable Attributes
3928
3929 @table @code
3930 @item progmem
3931 @cindex @code{progmem} variable attribute
3932 The @code{progmem} attribute is used on the AVR to place data in the Program
3933 Memory address space. The AVR is a Harvard Architecture processor and data
3934 normally resides in the Data Memory address space.
3935 @end table
3936
3937 @node Type Attributes
3938 @section Specifying Attributes of Types
3939 @cindex attribute of types
3940 @cindex type attributes
3941
3942 The keyword @code{__attribute__} allows you to specify special
3943 attributes of @code{struct} and @code{union} types when you define
3944 such types. This keyword is followed by an attribute specification
3945 inside double parentheses. Seven attributes are currently defined for
3946 types: @code{aligned}, @code{packed}, @code{transparent_union},
3947 @code{unused}, @code{deprecated}, @code{visibility}, and
3948 @code{may_alias}. Other attributes are defined for functions
3949 (@pxref{Function Attributes}) and for variables (@pxref{Variable
3950 Attributes}).
3951
3952 You may also specify any one of these attributes with @samp{__}
3953 preceding and following its keyword. This allows you to use these
3954 attributes in header files without being concerned about a possible
3955 macro of the same name. For example, you may use @code{__aligned__}
3956 instead of @code{aligned}.
3957
3958 You may specify type attributes in an enum, struct or union type
3959 declaration or definition, or for other types in a @code{typedef}
3960 declaration.
3961
3962 For an enum, struct or union type, you may specify attributes either
3963 between the enum, struct or union tag and the name of the type, or
3964 just past the closing curly brace of the @emph{definition}. The
3965 former syntax is preferred.
3966
3967 @xref{Attribute Syntax}, for details of the exact syntax for using
3968 attributes.
3969
3970 @table @code
3971 @cindex @code{aligned} attribute
3972 @item aligned (@var{alignment})
3973 This attribute specifies a minimum alignment (in bytes) for variables
3974 of the specified type. For example, the declarations:
3975
3976 @smallexample
3977 struct S @{ short f[3]; @} __attribute__ ((aligned (8)));
3978 typedef int more_aligned_int __attribute__ ((aligned (8)));
3979 @end smallexample
3980
3981 @noindent
3982 force the compiler to insure (as far as it can) that each variable whose
3983 type is @code{struct S} or @code{more_aligned_int} will be allocated and
3984 aligned @emph{at least} on a 8-byte boundary. On a SPARC, having all
3985 variables of type @code{struct S} aligned to 8-byte boundaries allows
3986 the compiler to use the @code{ldd} and @code{std} (doubleword load and
3987 store) instructions when copying one variable of type @code{struct S} to
3988 another, thus improving run-time efficiency.
3989
3990 Note that the alignment of any given @code{struct} or @code{union} type
3991 is required by the ISO C standard to be at least a perfect multiple of
3992 the lowest common multiple of the alignments of all of the members of
3993 the @code{struct} or @code{union} in question. This means that you @emph{can}
3994 effectively adjust the alignment of a @code{struct} or @code{union}
3995 type by attaching an @code{aligned} attribute to any one of the members
3996 of such a type, but the notation illustrated in the example above is a
3997 more obvious, intuitive, and readable way to request the compiler to
3998 adjust the alignment of an entire @code{struct} or @code{union} type.
3999
4000 As in the preceding example, you can explicitly specify the alignment
4001 (in bytes) that you wish the compiler to use for a given @code{struct}
4002 or @code{union} type. Alternatively, you can leave out the alignment factor
4003 and just ask the compiler to align a type to the maximum
4004 useful alignment for the target machine you are compiling for. For
4005 example, you could write:
4006
4007 @smallexample
4008 struct S @{ short f[3]; @} __attribute__ ((aligned));
4009 @end smallexample
4010
4011 Whenever you leave out the alignment factor in an @code{aligned}
4012 attribute specification, the compiler automatically sets the alignment
4013 for the type to the largest alignment which is ever used for any data
4014 type on the target machine you are compiling for. Doing this can often
4015 make copy operations more efficient, because the compiler can use
4016 whatever instructions copy the biggest chunks of memory when performing
4017 copies to or from the variables which have types that you have aligned
4018 this way.
4019
4020 In the example above, if the size of each @code{short} is 2 bytes, then
4021 the size of the entire @code{struct S} type is 6 bytes. The smallest
4022 power of two which is greater than or equal to that is 8, so the
4023 compiler sets the alignment for the entire @code{struct S} type to 8
4024 bytes.
4025
4026 Note that although you can ask the compiler to select a time-efficient
4027 alignment for a given type and then declare only individual stand-alone
4028 objects of that type, the compiler's ability to select a time-efficient
4029 alignment is primarily useful only when you plan to create arrays of
4030 variables having the relevant (efficiently aligned) type. If you
4031 declare or use arrays of variables of an efficiently-aligned type, then
4032 it is likely that your program will also be doing pointer arithmetic (or
4033 subscripting, which amounts to the same thing) on pointers to the
4034 relevant type, and the code that the compiler generates for these
4035 pointer arithmetic operations will often be more efficient for
4036 efficiently-aligned types than for other types.
4037
4038 The @code{aligned} attribute can only increase the alignment; but you
4039 can decrease it by specifying @code{packed} as well. See below.
4040
4041 Note that the effectiveness of @code{aligned} attributes may be limited
4042 by inherent limitations in your linker. On many systems, the linker is
4043 only able to arrange for variables to be aligned up to a certain maximum
4044 alignment. (For some linkers, the maximum supported alignment may
4045 be very very small.) If your linker is only able to align variables
4046 up to a maximum of 8 byte alignment, then specifying @code{aligned(16)}
4047 in an @code{__attribute__} will still only provide you with 8 byte
4048 alignment. See your linker documentation for further information.
4049
4050 @item packed
4051 This attribute, attached to @code{struct} or @code{union} type
4052 definition, specifies that each member (other than zero-width bitfields)
4053 of the structure or union is placed to minimize the memory required. When
4054 attached to an @code{enum} definition, it indicates that the smallest
4055 integral type should be used.
4056
4057 @opindex fshort-enums
4058 Specifying this attribute for @code{struct} and @code{union} types is
4059 equivalent to specifying the @code{packed} attribute on each of the
4060 structure or union members. Specifying the @option{-fshort-enums}
4061 flag on the line is equivalent to specifying the @code{packed}
4062 attribute on all @code{enum} definitions.
4063
4064 In the following example @code{struct my_packed_struct}'s members are
4065 packed closely together, but the internal layout of its @code{s} member
4066 is not packed---to do that, @code{struct my_unpacked_struct} would need to
4067 be packed too.
4068
4069 @smallexample
4070 struct my_unpacked_struct
4071 @{
4072 char c;
4073 int i;
4074 @};
4075
4076 struct __attribute__ ((__packed__)) my_packed_struct
4077 @{
4078 char c;
4079 int i;
4080 struct my_unpacked_struct s;
4081 @};
4082 @end smallexample
4083
4084 You may only specify this attribute on the definition of a @code{enum},
4085 @code{struct} or @code{union}, not on a @code{typedef} which does not
4086 also define the enumerated type, structure or union.
4087
4088 @item transparent_union
4089 This attribute, attached to a @code{union} type definition, indicates
4090 that any function parameter having that union type causes calls to that
4091 function to be treated in a special way.
4092
4093 First, the argument corresponding to a transparent union type can be of
4094 any type in the union; no cast is required. Also, if the union contains
4095 a pointer type, the corresponding argument can be a null pointer
4096 constant or a void pointer expression; and if the union contains a void
4097 pointer type, the corresponding argument can be any pointer expression.
4098 If the union member type is a pointer, qualifiers like @code{const} on
4099 the referenced type must be respected, just as with normal pointer
4100 conversions.
4101
4102 Second, the argument is passed to the function using the calling
4103 conventions of the first member of the transparent union, not the calling
4104 conventions of the union itself. All members of the union must have the
4105 same machine representation; this is necessary for this argument passing
4106 to work properly.
4107
4108 Transparent unions are designed for library functions that have multiple
4109 interfaces for compatibility reasons. For example, suppose the
4110 @code{wait} function must accept either a value of type @code{int *} to
4111 comply with Posix, or a value of type @code{union wait *} to comply with
4112 the 4.1BSD interface. If @code{wait}'s parameter were @code{void *},
4113 @code{wait} would accept both kinds of arguments, but it would also
4114 accept any other pointer type and this would make argument type checking
4115 less useful. Instead, @code{<sys/wait.h>} might define the interface
4116 as follows:
4117
4118 @smallexample
4119 typedef union __attribute__ ((__transparent_union__))
4120 @{
4121 int *__ip;
4122 union wait *__up;
4123 @} wait_status_ptr_t;
4124
4125 pid_t wait (wait_status_ptr_t);
4126 @end smallexample
4127
4128 This interface allows either @code{int *} or @code{union wait *}
4129 arguments to be passed, using the @code{int *} calling convention.
4130 The program can call @code{wait} with arguments of either type:
4131
4132 @smallexample
4133 int w1 () @{ int w; return wait (&w); @}
4134 int w2 () @{ union wait w; return wait (&w); @}
4135 @end smallexample
4136
4137 With this interface, @code{wait}'s implementation might look like this:
4138
4139 @smallexample
4140 pid_t wait (wait_status_ptr_t p)
4141 @{
4142 return waitpid (-1, p.__ip, 0);
4143 @}
4144 @end smallexample
4145
4146 @item unused
4147 When attached to a type (including a @code{union} or a @code{struct}),
4148 this attribute means that variables of that type are meant to appear
4149 possibly unused. GCC will not produce a warning for any variables of
4150 that type, even if the variable appears to do nothing. This is often
4151 the case with lock or thread classes, which are usually defined and then
4152 not referenced, but contain constructors and destructors that have
4153 nontrivial bookkeeping functions.
4154
4155 @item deprecated
4156 The @code{deprecated} attribute results in a warning if the type
4157 is used anywhere in the source file. This is useful when identifying
4158 types that are expected to be removed in a future version of a program.
4159 If possible, the warning also includes the location of the declaration
4160 of the deprecated type, to enable users to easily find further
4161 information about why the type is deprecated, or what they should do
4162 instead. Note that the warnings only occur for uses and then only
4163 if the type is being applied to an identifier that itself is not being
4164 declared as deprecated.
4165
4166 @smallexample
4167 typedef int T1 __attribute__ ((deprecated));
4168 T1 x;
4169 typedef T1 T2;
4170 T2 y;
4171 typedef T1 T3 __attribute__ ((deprecated));
4172 T3 z __attribute__ ((deprecated));
4173 @end smallexample
4174
4175 results in a warning on line 2 and 3 but not lines 4, 5, or 6. No
4176 warning is issued for line 4 because T2 is not explicitly
4177 deprecated. Line 5 has no warning because T3 is explicitly
4178 deprecated. Similarly for line 6.
4179
4180 The @code{deprecated} attribute can also be used for functions and
4181 variables (@pxref{Function Attributes}, @pxref{Variable Attributes}.)
4182
4183 @item may_alias
4184 Accesses to objects with types with this attribute are not subjected to
4185 type-based alias analysis, but are instead assumed to be able to alias
4186 any other type of objects, just like the @code{char} type. See
4187 @option{-fstrict-aliasing} for more information on aliasing issues.
4188
4189 Example of use:
4190
4191 @smallexample
4192 typedef short __attribute__((__may_alias__)) short_a;
4193
4194 int
4195 main (void)
4196 @{
4197 int a = 0x12345678;
4198 short_a *b = (short_a *) &a;
4199
4200 b[1] = 0;
4201
4202 if (a == 0x12345678)
4203 abort();
4204
4205 exit(0);
4206 @}
4207 @end smallexample
4208
4209 If you replaced @code{short_a} with @code{short} in the variable
4210 declaration, the above program would abort when compiled with
4211 @option{-fstrict-aliasing}, which is on by default at @option{-O2} or
4212 above in recent GCC versions.
4213
4214 @item visibility
4215 In C++, attribute visibility (@pxref{Function Attributes}) can also be
4216 applied to class, struct, union and enum types. Unlike other type
4217 attributes, the attribute must appear between the initial keyword and
4218 the name of the type; it cannot appear after the body of the type.
4219
4220 Note that the type visibility is applied to vague linkage entities
4221 associated with the class (vtable, typeinfo node, etc.). In
4222 particular, if a class is thrown as an exception in one shared object
4223 and caught in another, the class must have default visibility.
4224 Otherwise the two shared objects will be unable to use the same
4225 typeinfo node and exception handling will break.
4226
4227 @subsection ARM Type Attributes
4228
4229 On those ARM targets that support @code{dllimport} (such as Symbian
4230 OS), you can use the @code{notshared} attribute to indicate that the
4231 virtual table and other similar data for a class should not be
4232 exported from a DLL@. For example:
4233
4234 @smallexample
4235 class __declspec(notshared) C @{
4236 public:
4237 __declspec(dllimport) C();
4238 virtual void f();
4239 @}
4240
4241 __declspec(dllexport)
4242 C::C() @{@}
4243 @end smallexample
4244
4245 In this code, @code{C::C} is exported from the current DLL, but the
4246 virtual table for @code{C} is not exported. (You can use
4247 @code{__attribute__} instead of @code{__declspec} if you prefer, but
4248 most Symbian OS code uses @code{__declspec}.)
4249
4250 @anchor{i386 Type Attributes}
4251 @subsection i386 Type Attributes
4252
4253 Two attributes are currently defined for i386 configurations:
4254 @code{ms_struct} and @code{gcc_struct}
4255
4256 @item ms_struct
4257 @itemx gcc_struct
4258 @cindex @code{ms_struct}
4259 @cindex @code{gcc_struct}
4260
4261 If @code{packed} is used on a structure, or if bit-fields are used
4262 it may be that the Microsoft ABI packs them differently
4263 than GCC would normally pack them. Particularly when moving packed
4264 data between functions compiled with GCC and the native Microsoft compiler
4265 (either via function call or as data in a file), it may be necessary to access
4266 either format.
4267
4268 Currently @option{-m[no-]ms-bitfields} is provided for the Microsoft Windows X86
4269 compilers to match the native Microsoft compiler.
4270 @end table
4271
4272 To specify multiple attributes, separate them by commas within the
4273 double parentheses: for example, @samp{__attribute__ ((aligned (16),
4274 packed))}.
4275
4276 @anchor{PowerPC Type Attributes}
4277 @subsection PowerPC Type Attributes
4278
4279 Three attributes currently are defined for PowerPC configurations:
4280 @code{altivec}, @code{ms_struct} and @code{gcc_struct}.
4281
4282 For full documentation of the struct attributes please see the
4283 documentation in the @xref{i386 Type Attributes}, section.
4284
4285 The @code{altivec} attribute allows one to declare AltiVec vector data
4286 types supported by the AltiVec Programming Interface Manual. The
4287 attribute requires an argument to specify one of three vector types:
4288 @code{vector__}, @code{pixel__} (always followed by unsigned short),
4289 and @code{bool__} (always followed by unsigned).
4290
4291 @smallexample
4292 __attribute__((altivec(vector__)))
4293 __attribute__((altivec(pixel__))) unsigned short
4294 __attribute__((altivec(bool__))) unsigned
4295 @end smallexample
4296
4297 These attributes mainly are intended to support the @code{__vector},
4298 @code{__pixel}, and @code{__bool} AltiVec keywords.
4299
4300 @anchor{SPU Type Attributes}
4301 @subsection SPU Type Attributes
4302
4303 The SPU supports the @code{spu_vector} attribute for types. This attribute
4304 allows one to declare vector data types supported by the Sony/Toshiba/IBM SPU
4305 Language Extensions Specification. It is intended to support the
4306 @code{__vector} keyword.
4307
4308
4309 @node Inline
4310 @section An Inline Function is As Fast As a Macro
4311 @cindex inline functions
4312 @cindex integrating function code
4313 @cindex open coding
4314 @cindex macros, inline alternative
4315
4316 By declaring a function inline, you can direct GCC to make
4317 calls to that function faster. One way GCC can achieve this is to
4318 integrate that function's code into the code for its callers. This
4319 makes execution faster by eliminating the function-call overhead; in
4320 addition, if any of the actual argument values are constant, their
4321 known values may permit simplifications at compile time so that not
4322 all of the inline function's code needs to be included. The effect on
4323 code size is less predictable; object code may be larger or smaller
4324 with function inlining, depending on the particular case. You can
4325 also direct GCC to try to integrate all ``simple enough'' functions
4326 into their callers with the option @option{-finline-functions}.
4327
4328 GCC implements three different semantics of declaring a function
4329 inline. One is available with @option{-std=gnu89} or
4330 @option{-fgnu89-inline} or when @code{gnu_inline} attribute is present
4331 on all inline declarations, another when @option{-std=c99} or
4332 @option{-std=gnu99} (without @option{-fgnu89-inline}), and the third
4333 is used when compiling C++.
4334
4335 To declare a function inline, use the @code{inline} keyword in its
4336 declaration, like this:
4337
4338 @smallexample
4339 static inline int
4340 inc (int *a)
4341 @{
4342 (*a)++;
4343 @}
4344 @end smallexample
4345
4346 If you are writing a header file to be included in ISO C89 programs, write
4347 @code{__inline__} instead of @code{inline}. @xref{Alternate Keywords}.
4348
4349 The three types of inlining behave similarly in two important cases:
4350 when the @code{inline} keyword is used on a @code{static} function,
4351 like the example above, and when a function is first declared without
4352 using the @code{inline} keyword and then is defined with
4353 @code{inline}, like this:
4354
4355 @smallexample
4356 extern int inc (int *a);
4357 inline int
4358 inc (int *a)
4359 @{
4360 (*a)++;
4361 @}
4362 @end smallexample
4363
4364 In both of these common cases, the program behaves the same as if you
4365 had not used the @code{inline} keyword, except for its speed.
4366
4367 @cindex inline functions, omission of
4368 @opindex fkeep-inline-functions
4369 When a function is both inline and @code{static}, if all calls to the
4370 function are integrated into the caller, and the function's address is
4371 never used, then the function's own assembler code is never referenced.
4372 In this case, GCC does not actually output assembler code for the
4373 function, unless you specify the option @option{-fkeep-inline-functions}.
4374 Some calls cannot be integrated for various reasons (in particular,
4375 calls that precede the function's definition cannot be integrated, and
4376 neither can recursive calls within the definition). If there is a
4377 nonintegrated call, then the function is compiled to assembler code as
4378 usual. The function must also be compiled as usual if the program
4379 refers to its address, because that can't be inlined.
4380
4381 @opindex Winline
4382 Note that certain usages in a function definition can make it unsuitable
4383 for inline substitution. Among these usages are: use of varargs, use of
4384 alloca, use of variable sized data types (@pxref{Variable Length}),
4385 use of computed goto (@pxref{Labels as Values}), use of nonlocal goto,
4386 and nested functions (@pxref{Nested Functions}). Using @option{-Winline}
4387 will warn when a function marked @code{inline} could not be substituted,
4388 and will give the reason for the failure.
4389
4390 @cindex automatic @code{inline} for C++ member fns
4391 @cindex @code{inline} automatic for C++ member fns
4392 @cindex member fns, automatically @code{inline}
4393 @cindex C++ member fns, automatically @code{inline}
4394 @opindex fno-default-inline
4395 As required by ISO C++, GCC considers member functions defined within
4396 the body of a class to be marked inline even if they are
4397 not explicitly declared with the @code{inline} keyword. You can
4398 override this with @option{-fno-default-inline}; @pxref{C++ Dialect
4399 Options,,Options Controlling C++ Dialect}.
4400
4401 GCC does not inline any functions when not optimizing unless you specify
4402 the @samp{always_inline} attribute for the function, like this:
4403
4404 @smallexample
4405 /* @r{Prototype.} */
4406 inline void foo (const char) __attribute__((always_inline));
4407 @end smallexample
4408
4409 The remainder of this section is specific to GNU C89 inlining.
4410
4411 @cindex non-static inline function
4412 When an inline function is not @code{static}, then the compiler must assume
4413 that there may be calls from other source files; since a global symbol can
4414 be defined only once in any program, the function must not be defined in
4415 the other source files, so the calls therein cannot be integrated.
4416 Therefore, a non-@code{static} inline function is always compiled on its
4417 own in the usual fashion.
4418
4419 If you specify both @code{inline} and @code{extern} in the function
4420 definition, then the definition is used only for inlining. In no case
4421 is the function compiled on its own, not even if you refer to its
4422 address explicitly. Such an address becomes an external reference, as
4423 if you had only declared the function, and had not defined it.
4424
4425 This combination of @code{inline} and @code{extern} has almost the
4426 effect of a macro. The way to use it is to put a function definition in
4427 a header file with these keywords, and put another copy of the
4428 definition (lacking @code{inline} and @code{extern}) in a library file.
4429 The definition in the header file will cause most calls to the function
4430 to be inlined. If any uses of the function remain, they will refer to
4431 the single copy in the library.
4432
4433 @node Extended Asm
4434 @section Assembler Instructions with C Expression Operands
4435 @cindex extended @code{asm}
4436 @cindex @code{asm} expressions
4437 @cindex assembler instructions
4438 @cindex registers
4439
4440 In an assembler instruction using @code{asm}, you can specify the
4441 operands of the instruction using C expressions. This means you need not
4442 guess which registers or memory locations will contain the data you want
4443 to use.
4444
4445 You must specify an assembler instruction template much like what
4446 appears in a machine description, plus an operand constraint string for
4447 each operand.
4448
4449 For example, here is how to use the 68881's @code{fsinx} instruction:
4450
4451 @smallexample
4452 asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));
4453 @end smallexample
4454
4455 @noindent
4456 Here @code{angle} is the C expression for the input operand while
4457 @code{result} is that of the output operand. Each has @samp{"f"} as its
4458 operand constraint, saying that a floating point register is required.
4459 The @samp{=} in @samp{=f} indicates that the operand is an output; all
4460 output operands' constraints must use @samp{=}. The constraints use the
4461 same language used in the machine description (@pxref{Constraints}).
4462
4463 Each operand is described by an operand-constraint string followed by
4464 the C expression in parentheses. A colon separates the assembler
4465 template from the first output operand and another separates the last
4466 output operand from the first input, if any. Commas separate the
4467 operands within each group. The total number of operands is currently
4468 limited to 30; this limitation may be lifted in some future version of
4469 GCC@.
4470
4471 If there are no output operands but there are input operands, you must
4472 place two consecutive colons surrounding the place where the output
4473 operands would go.
4474
4475 As of GCC version 3.1, it is also possible to specify input and output
4476 operands using symbolic names which can be referenced within the
4477 assembler code. These names are specified inside square brackets
4478 preceding the constraint string, and can be referenced inside the
4479 assembler code using @code{%[@var{name}]} instead of a percentage sign
4480 followed by the operand number. Using named operands the above example
4481 could look like:
4482
4483 @smallexample
4484 asm ("fsinx %[angle],%[output]"
4485 : [output] "=f" (result)
4486 : [angle] "f" (angle));
4487 @end smallexample
4488
4489 @noindent
4490 Note that the symbolic operand names have no relation whatsoever to
4491 other C identifiers. You may use any name you like, even those of
4492 existing C symbols, but you must ensure that no two operands within the same
4493 assembler construct use the same symbolic name.
4494
4495 Output operand expressions must be lvalues; the compiler can check this.
4496 The input operands need not be lvalues. The compiler cannot check
4497 whether the operands have data types that are reasonable for the
4498 instruction being executed. It does not parse the assembler instruction
4499 template and does not know what it means or even whether it is valid
4500 assembler input. The extended @code{asm} feature is most often used for
4501 machine instructions the compiler itself does not know exist. If
4502 the output expression cannot be directly addressed (for example, it is a
4503 bit-field), your constraint must allow a register. In that case, GCC
4504 will use the register as the output of the @code{asm}, and then store
4505 that register into the output.
4506
4507 The ordinary output operands must be write-only; GCC will assume that
4508 the values in these operands before the instruction are dead and need
4509 not be generated. Extended asm supports input-output or read-write
4510 operands. Use the constraint character @samp{+} to indicate such an
4511 operand and list it with the output operands. You should only use
4512 read-write operands when the constraints for the operand (or the
4513 operand in which only some of the bits are to be changed) allow a
4514 register.
4515
4516 You may, as an alternative, logically split its function into two
4517 separate operands, one input operand and one write-only output
4518 operand. The connection between them is expressed by constraints
4519 which say they need to be in the same location when the instruction
4520 executes. You can use the same C expression for both operands, or
4521 different expressions. For example, here we write the (fictitious)
4522 @samp{combine} instruction with @code{bar} as its read-only source
4523 operand and @code{foo} as its read-write destination:
4524
4525 @smallexample
4526 asm ("combine %2,%0" : "=r" (foo) : "0" (foo), "g" (bar));
4527 @end smallexample
4528
4529 @noindent
4530 The constraint @samp{"0"} for operand 1 says that it must occupy the
4531 same location as operand 0. A number in constraint is allowed only in
4532 an input operand and it must refer to an output operand.
4533
4534 Only a number in the constraint can guarantee that one operand will be in
4535 the same place as another. The mere fact that @code{foo} is the value
4536 of both operands is not enough to guarantee that they will be in the
4537 same place in the generated assembler code. The following would not
4538 work reliably:
4539
4540 @smallexample
4541 asm ("combine %2,%0" : "=r" (foo) : "r" (foo), "g" (bar));
4542 @end smallexample
4543
4544 Various optimizations or reloading could cause operands 0 and 1 to be in
4545 different registers; GCC knows no reason not to do so. For example, the
4546 compiler might find a copy of the value of @code{foo} in one register and
4547 use it for operand 1, but generate the output operand 0 in a different
4548 register (copying it afterward to @code{foo}'s own address). Of course,
4549 since the register for operand 1 is not even mentioned in the assembler
4550 code, the result will not work, but GCC can't tell that.
4551
4552 As of GCC version 3.1, one may write @code{[@var{name}]} instead of
4553 the operand number for a matching constraint. For example:
4554
4555 @smallexample
4556 asm ("cmoveq %1,%2,%[result]"
4557 : [result] "=r"(result)
4558 : "r" (test), "r"(new), "[result]"(old));
4559 @end smallexample
4560
4561 Sometimes you need to make an @code{asm} operand be a specific register,
4562 but there's no matching constraint letter for that register @emph{by
4563 itself}. To force the operand into that register, use a local variable
4564 for the operand and specify the register in the variable declaration.
4565 @xref{Explicit Reg Vars}. Then for the @code{asm} operand, use any
4566 register constraint letter that matches the register:
4567
4568 @smallexample
4569 register int *p1 asm ("r0") = @dots{};
4570 register int *p2 asm ("r1") = @dots{};
4571 register int *result asm ("r0");
4572 asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
4573 @end smallexample
4574
4575 @anchor{Example of asm with clobbered asm reg}
4576 In the above example, beware that a register that is call-clobbered by
4577 the target ABI will be overwritten by any function call in the
4578 assignment, including library calls for arithmetic operators.
4579 Assuming it is a call-clobbered register, this may happen to @code{r0}
4580 above by the assignment to @code{p2}. If you have to use such a
4581 register, use temporary variables for expressions between the register
4582 assignment and use:
4583
4584 @smallexample
4585 int t1 = @dots{};
4586 register int *p1 asm ("r0") = @dots{};
4587 register int *p2 asm ("r1") = t1;
4588 register int *result asm ("r0");
4589 asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
4590 @end smallexample
4591
4592 Some instructions clobber specific hard registers. To describe this,
4593 write a third colon after the input operands, followed by the names of
4594 the clobbered hard registers (given as strings). Here is a realistic
4595 example for the VAX:
4596
4597 @smallexample
4598 asm volatile ("movc3 %0,%1,%2"
4599 : /* @r{no outputs} */
4600 : "g" (from), "g" (to), "g" (count)
4601 : "r0", "r1", "r2", "r3", "r4", "r5");
4602 @end smallexample
4603
4604 You may not write a clobber description in a way that overlaps with an
4605 input or output operand. For example, you may not have an operand
4606 describing a register class with one member if you mention that register
4607 in the clobber list. Variables declared to live in specific registers
4608 (@pxref{Explicit Reg Vars}), and used as asm input or output operands must
4609 have no part mentioned in the clobber description.
4610 There is no way for you to specify that an input
4611 operand is modified without also specifying it as an output
4612 operand. Note that if all the output operands you specify are for this
4613 purpose (and hence unused), you will then also need to specify
4614 @code{volatile} for the @code{asm} construct, as described below, to
4615 prevent GCC from deleting the @code{asm} statement as unused.
4616
4617 If you refer to a particular hardware register from the assembler code,
4618 you will probably have to list the register after the third colon to
4619 tell the compiler the register's value is modified. In some assemblers,
4620 the register names begin with @samp{%}; to produce one @samp{%} in the
4621 assembler code, you must write @samp{%%} in the input.
4622
4623 If your assembler instruction can alter the condition code register, add
4624 @samp{cc} to the list of clobbered registers. GCC on some machines
4625 represents the condition codes as a specific hardware register;
4626 @samp{cc} serves to name this register. On other machines, the
4627 condition code is handled differently, and specifying @samp{cc} has no
4628 effect. But it is valid no matter what the machine.
4629
4630 If your assembler instructions access memory in an unpredictable
4631 fashion, add @samp{memory} to the list of clobbered registers. This
4632 will cause GCC to not keep memory values cached in registers across the
4633 assembler instruction and not optimize stores or loads to that memory.
4634 You will also want to add the @code{volatile} keyword if the memory
4635 affected is not listed in the inputs or outputs of the @code{asm}, as
4636 the @samp{memory} clobber does not count as a side-effect of the
4637 @code{asm}. If you know how large the accessed memory is, you can add
4638 it as input or output but if this is not known, you should add
4639 @samp{memory}. As an example, if you access ten bytes of a string, you
4640 can use a memory input like:
4641
4642 @smallexample
4643 @{"m"( (@{ struct @{ char x[10]; @} *p = (void *)ptr ; *p; @}) )@}.
4644 @end smallexample
4645
4646 Note that in the following example the memory input is necessary,
4647 otherwise GCC might optimize the store to @code{x} away:
4648 @smallexample
4649 int foo ()
4650 @{
4651 int x = 42;
4652 int *y = &x;
4653 int result;
4654 asm ("magic stuff accessing an 'int' pointed to by '%1'"
4655 "=&d" (r) : "a" (y), "m" (*y));
4656 return result;
4657 @}
4658 @end smallexample
4659
4660 You can put multiple assembler instructions together in a single
4661 @code{asm} template, separated by the characters normally used in assembly
4662 code for the system. A combination that works in most places is a newline
4663 to break the line, plus a tab character to move to the instruction field
4664 (written as @samp{\n\t}). Sometimes semicolons can be used, if the
4665 assembler allows semicolons as a line-breaking character. Note that some
4666 assembler dialects use semicolons to start a comment.
4667 The input operands are guaranteed not to use any of the clobbered
4668 registers, and neither will the output operands' addresses, so you can
4669 read and write the clobbered registers as many times as you like. Here
4670 is an example of multiple instructions in a template; it assumes the
4671 subroutine @code{_foo} accepts arguments in registers 9 and 10:
4672
4673 @smallexample
4674 asm ("movl %0,r9\n\tmovl %1,r10\n\tcall _foo"
4675 : /* no outputs */
4676 : "g" (from), "g" (to)
4677 : "r9", "r10");
4678 @end smallexample
4679
4680 Unless an output operand has the @samp{&} constraint modifier, GCC
4681 may allocate it in the same register as an unrelated input operand, on
4682 the assumption the inputs are consumed before the outputs are produced.
4683 This assumption may be false if the assembler code actually consists of
4684 more than one instruction. In such a case, use @samp{&} for each output
4685 operand that may not overlap an input. @xref{Modifiers}.
4686
4687 If you want to test the condition code produced by an assembler
4688 instruction, you must include a branch and a label in the @code{asm}
4689 construct, as follows:
4690
4691 @smallexample
4692 asm ("clr %0\n\tfrob %1\n\tbeq 0f\n\tmov #1,%0\n0:"
4693 : "g" (result)
4694 : "g" (input));
4695 @end smallexample
4696
4697 @noindent
4698 This assumes your assembler supports local labels, as the GNU assembler
4699 and most Unix assemblers do.
4700
4701 Speaking of labels, jumps from one @code{asm} to another are not
4702 supported. The compiler's optimizers do not know about these jumps, and
4703 therefore they cannot take account of them when deciding how to
4704 optimize.
4705
4706 @cindex macros containing @code{asm}
4707 Usually the most convenient way to use these @code{asm} instructions is to
4708 encapsulate them in macros that look like functions. For example,
4709
4710 @smallexample
4711 #define sin(x) \
4712 (@{ double __value, __arg = (x); \
4713 asm ("fsinx %1,%0": "=f" (__value): "f" (__arg)); \
4714 __value; @})
4715 @end smallexample
4716
4717 @noindent
4718 Here the variable @code{__arg} is used to make sure that the instruction
4719 operates on a proper @code{double} value, and to accept only those
4720 arguments @code{x} which can convert automatically to a @code{double}.
4721
4722 Another way to make sure the instruction operates on the correct data
4723 type is to use a cast in the @code{asm}. This is different from using a
4724 variable @code{__arg} in that it converts more different types. For
4725 example, if the desired type were @code{int}, casting the argument to
4726 @code{int} would accept a pointer with no complaint, while assigning the
4727 argument to an @code{int} variable named @code{__arg} would warn about
4728 using a pointer unless the caller explicitly casts it.
4729
4730 If an @code{asm} has output operands, GCC assumes for optimization
4731 purposes the instruction has no side effects except to change the output
4732 operands. This does not mean instructions with a side effect cannot be
4733 used, but you must be careful, because the compiler may eliminate them
4734 if the output operands aren't used, or move them out of loops, or
4735 replace two with one if they constitute a common subexpression. Also,
4736 if your instruction does have a side effect on a variable that otherwise
4737 appears not to change, the old value of the variable may be reused later
4738 if it happens to be found in a register.
4739
4740 You can prevent an @code{asm} instruction from being deleted
4741 by writing the keyword @code{volatile} after
4742 the @code{asm}. For example:
4743
4744 @smallexample
4745 #define get_and_set_priority(new) \
4746 (@{ int __old; \
4747 asm volatile ("get_and_set_priority %0, %1" \
4748 : "=g" (__old) : "g" (new)); \
4749 __old; @})
4750 @end smallexample
4751
4752 @noindent
4753 The @code{volatile} keyword indicates that the instruction has
4754 important side-effects. GCC will not delete a volatile @code{asm} if
4755 it is reachable. (The instruction can still be deleted if GCC can
4756 prove that control-flow will never reach the location of the
4757 instruction.) Note that even a volatile @code{asm} instruction
4758 can be moved relative to other code, including across jump
4759 instructions. For example, on many targets there is a system
4760 register which can be set to control the rounding mode of
4761 floating point operations. You might try
4762 setting it with a volatile @code{asm}, like this PowerPC example:
4763
4764 @smallexample
4765 asm volatile("mtfsf 255,%0" : : "f" (fpenv));
4766 sum = x + y;
4767 @end smallexample
4768
4769 @noindent
4770 This will not work reliably, as the compiler may move the addition back
4771 before the volatile @code{asm}. To make it work you need to add an
4772 artificial dependency to the @code{asm} referencing a variable in the code
4773 you don't want moved, for example:
4774
4775 @smallexample
4776 asm volatile ("mtfsf 255,%1" : "=X"(sum): "f"(fpenv));
4777 sum = x + y;
4778 @end smallexample
4779
4780 Similarly, you can't expect a
4781 sequence of volatile @code{asm} instructions to remain perfectly
4782 consecutive. If you want consecutive output, use a single @code{asm}.
4783 Also, GCC will perform some optimizations across a volatile @code{asm}
4784 instruction; GCC does not ``forget everything'' when it encounters
4785 a volatile @code{asm} instruction the way some other compilers do.
4786
4787 An @code{asm} instruction without any output operands will be treated
4788 identically to a volatile @code{asm} instruction.
4789
4790 It is a natural idea to look for a way to give access to the condition
4791 code left by the assembler instruction. However, when we attempted to
4792 implement this, we found no way to make it work reliably. The problem
4793 is that output operands might need reloading, which would result in
4794 additional following ``store'' instructions. On most machines, these
4795 instructions would alter the condition code before there was time to
4796 test it. This problem doesn't arise for ordinary ``test'' and
4797 ``compare'' instructions because they don't have any output operands.
4798
4799 For reasons similar to those described above, it is not possible to give
4800 an assembler instruction access to the condition code left by previous
4801 instructions.
4802
4803 If you are writing a header file that should be includable in ISO C
4804 programs, write @code{__asm__} instead of @code{asm}. @xref{Alternate
4805 Keywords}.
4806
4807 @subsection Size of an @code{asm}
4808
4809 Some targets require that GCC track the size of each instruction used in
4810 order to generate correct code. Because the final length of an
4811 @code{asm} is only known by the assembler, GCC must make an estimate as
4812 to how big it will be. The estimate is formed by counting the number of
4813 statements in the pattern of the @code{asm} and multiplying that by the
4814 length of the longest instruction on that processor. Statements in the
4815 @code{asm} are identified by newline characters and whatever statement
4816 separator characters are supported by the assembler; on most processors
4817 this is the `@code{;}' character.
4818
4819 Normally, GCC's estimate is perfectly adequate to ensure that correct
4820 code is generated, but it is possible to confuse the compiler if you use
4821 pseudo instructions or assembler macros that expand into multiple real
4822 instructions or if you use assembler directives that expand to more
4823 space in the object file than would be needed for a single instruction.
4824 If this happens then the assembler will produce a diagnostic saying that
4825 a label is unreachable.
4826
4827 @subsection i386 floating point asm operands
4828
4829 There are several rules on the usage of stack-like regs in
4830 asm_operands insns. These rules apply only to the operands that are
4831 stack-like regs:
4832
4833 @enumerate
4834 @item
4835 Given a set of input regs that die in an asm_operands, it is
4836 necessary to know which are implicitly popped by the asm, and
4837 which must be explicitly popped by gcc.
4838
4839 An input reg that is implicitly popped by the asm must be
4840 explicitly clobbered, unless it is constrained to match an
4841 output operand.
4842
4843 @item
4844 For any input reg that is implicitly popped by an asm, it is
4845 necessary to know how to adjust the stack to compensate for the pop.
4846 If any non-popped input is closer to the top of the reg-stack than
4847 the implicitly popped reg, it would not be possible to know what the
4848 stack looked like---it's not clear how the rest of the stack ``slides
4849 up''.
4850
4851 All implicitly popped input regs must be closer to the top of
4852 the reg-stack than any input that is not implicitly popped.
4853
4854 It is possible that if an input dies in an insn, reload might
4855 use the input reg for an output reload. Consider this example:
4856
4857 @smallexample
4858 asm ("foo" : "=t" (a) : "f" (b));
4859 @end smallexample
4860
4861 This asm says that input B is not popped by the asm, and that
4862 the asm pushes a result onto the reg-stack, i.e., the stack is one
4863 deeper after the asm than it was before. But, it is possible that
4864 reload will think that it can use the same reg for both the input and
4865 the output, if input B dies in this insn.
4866
4867 If any input operand uses the @code{f} constraint, all output reg
4868 constraints must use the @code{&} earlyclobber.
4869
4870 The asm above would be written as
4871
4872 @smallexample
4873 asm ("foo" : "=&t" (a) : "f" (b));
4874 @end smallexample
4875
4876 @item
4877 Some operands need to be in particular places on the stack. All
4878 output operands fall in this category---there is no other way to
4879 know which regs the outputs appear in unless the user indicates
4880 this in the constraints.
4881
4882 Output operands must specifically indicate which reg an output
4883 appears in after an asm. @code{=f} is not allowed: the operand
4884 constraints must select a class with a single reg.
4885
4886 @item
4887 Output operands may not be ``inserted'' between existing stack regs.
4888 Since no 387 opcode uses a read/write operand, all output operands
4889 are dead before the asm_operands, and are pushed by the asm_operands.
4890 It makes no sense to push anywhere but the top of the reg-stack.
4891
4892 Output operands must start at the top of the reg-stack: output
4893 operands may not ``skip'' a reg.
4894
4895 @item
4896 Some asm statements may need extra stack space for internal
4897 calculations. This can be guaranteed by clobbering stack registers
4898 unrelated to the inputs and outputs.
4899
4900 @end enumerate
4901
4902 Here are a couple of reasonable asms to want to write. This asm
4903 takes one input, which is internally popped, and produces two outputs.
4904
4905 @smallexample
4906 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
4907 @end smallexample
4908
4909 This asm takes two inputs, which are popped by the @code{fyl2xp1} opcode,
4910 and replaces them with one output. The user must code the @code{st(1)}
4911 clobber for reg-stack.c to know that @code{fyl2xp1} pops both inputs.
4912
4913 @smallexample
4914 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
4915 @end smallexample
4916
4917 @include md.texi
4918
4919 @node Asm Labels
4920 @section Controlling Names Used in Assembler Code
4921 @cindex assembler names for identifiers
4922 @cindex names used in assembler code
4923 @cindex identifiers, names in assembler code
4924
4925 You can specify the name to be used in the assembler code for a C
4926 function or variable by writing the @code{asm} (or @code{__asm__})
4927 keyword after the declarator as follows:
4928
4929 @smallexample
4930 int foo asm ("myfoo") = 2;
4931 @end smallexample
4932
4933 @noindent
4934 This specifies that the name to be used for the variable @code{foo} in
4935 the assembler code should be @samp{myfoo} rather than the usual
4936 @samp{_foo}.
4937
4938 On systems where an underscore is normally prepended to the name of a C
4939 function or variable, this feature allows you to define names for the
4940 linker that do not start with an underscore.
4941
4942 It does not make sense to use this feature with a non-static local
4943 variable since such variables do not have assembler names. If you are
4944 trying to put the variable in a particular register, see @ref{Explicit
4945 Reg Vars}. GCC presently accepts such code with a warning, but will
4946 probably be changed to issue an error, rather than a warning, in the
4947 future.
4948
4949 You cannot use @code{asm} in this way in a function @emph{definition}; but
4950 you can get the same effect by writing a declaration for the function
4951 before its definition and putting @code{asm} there, like this:
4952
4953 @smallexample
4954 extern func () asm ("FUNC");
4955
4956 func (x, y)
4957 int x, y;
4958 /* @r{@dots{}} */
4959 @end smallexample
4960
4961 It is up to you to make sure that the assembler names you choose do not
4962 conflict with any other assembler symbols. Also, you must not use a
4963 register name; that would produce completely invalid assembler code. GCC
4964 does not as yet have the ability to store static variables in registers.
4965 Perhaps that will be added.
4966
4967 @node Explicit Reg Vars
4968 @section Variables in Specified Registers
4969 @cindex explicit register variables
4970 @cindex variables in specified registers
4971 @cindex specified registers
4972 @cindex registers, global allocation
4973
4974 GNU C allows you to put a few global variables into specified hardware
4975 registers. You can also specify the register in which an ordinary
4976 register variable should be allocated.
4977
4978 @itemize @bullet
4979 @item
4980 Global register variables reserve registers throughout the program.
4981 This may be useful in programs such as programming language
4982 interpreters which have a couple of global variables that are accessed
4983 very often.
4984
4985 @item
4986 Local register variables in specific registers do not reserve the
4987 registers, except at the point where they are used as input or output
4988 operands in an @code{asm} statement and the @code{asm} statement itself is
4989 not deleted. The compiler's data flow analysis is capable of determining
4990 where the specified registers contain live values, and where they are
4991 available for other uses. Stores into local register variables may be deleted
4992 when they appear to be dead according to dataflow analysis. References
4993 to local register variables may be deleted or moved or simplified.
4994
4995 These local variables are sometimes convenient for use with the extended
4996 @code{asm} feature (@pxref{Extended Asm}), if you want to write one
4997 output of the assembler instruction directly into a particular register.
4998 (This will work provided the register you specify fits the constraints
4999 specified for that operand in the @code{asm}.)
5000 @end itemize
5001
5002 @menu
5003 * Global Reg Vars::
5004 * Local Reg Vars::
5005 @end menu
5006
5007 @node Global Reg Vars
5008 @subsection Defining Global Register Variables
5009 @cindex global register variables
5010 @cindex registers, global variables in
5011
5012 You can define a global register variable in GNU C like this:
5013
5014 @smallexample
5015 register int *foo asm ("a5");
5016 @end smallexample
5017
5018 @noindent
5019 Here @code{a5} is the name of the register which should be used. Choose a
5020 register which is normally saved and restored by function calls on your
5021 machine, so that library routines will not clobber it.
5022
5023 Naturally the register name is cpu-dependent, so you would need to
5024 conditionalize your program according to cpu type. The register
5025 @code{a5} would be a good choice on a 68000 for a variable of pointer
5026 type. On machines with register windows, be sure to choose a ``global''
5027 register that is not affected magically by the function call mechanism.
5028
5029 In addition, operating systems on one type of cpu may differ in how they
5030 name the registers; then you would need additional conditionals. For
5031 example, some 68000 operating systems call this register @code{%a5}.
5032
5033 Eventually there may be a way of asking the compiler to choose a register
5034 automatically, but first we need to figure out how it should choose and
5035 how to enable you to guide the choice. No solution is evident.
5036
5037 Defining a global register variable in a certain register reserves that
5038 register entirely for this use, at least within the current compilation.
5039 The register will not be allocated for any other purpose in the functions
5040 in the current compilation. The register will not be saved and restored by
5041 these functions. Stores into this register are never deleted even if they
5042 would appear to be dead, but references may be deleted or moved or
5043 simplified.
5044
5045 It is not safe to access the global register variables from signal
5046 handlers, or from more than one thread of control, because the system
5047 library routines may temporarily use the register for other things (unless
5048 you recompile them specially for the task at hand).
5049
5050 @cindex @code{qsort}, and global register variables
5051 It is not safe for one function that uses a global register variable to
5052 call another such function @code{foo} by way of a third function
5053 @code{lose} that was compiled without knowledge of this variable (i.e.@: in a
5054 different source file in which the variable wasn't declared). This is
5055 because @code{lose} might save the register and put some other value there.
5056 For example, you can't expect a global register variable to be available in
5057 the comparison-function that you pass to @code{qsort}, since @code{qsort}
5058 might have put something else in that register. (If you are prepared to
5059 recompile @code{qsort} with the same global register variable, you can
5060 solve this problem.)
5061
5062 If you want to recompile @code{qsort} or other source files which do not
5063 actually use your global register variable, so that they will not use that
5064 register for any other purpose, then it suffices to specify the compiler
5065 option @option{-ffixed-@var{reg}}. You need not actually add a global
5066 register declaration to their source code.
5067
5068 A function which can alter the value of a global register variable cannot
5069 safely be called from a function compiled without this variable, because it
5070 could clobber the value the caller expects to find there on return.
5071 Therefore, the function which is the entry point into the part of the
5072 program that uses the global register variable must explicitly save and
5073 restore the value which belongs to its caller.
5074
5075 @cindex register variable after @code{longjmp}
5076 @cindex global register after @code{longjmp}
5077 @cindex value after @code{longjmp}
5078 @findex longjmp
5079 @findex setjmp
5080 On most machines, @code{longjmp} will restore to each global register
5081 variable the value it had at the time of the @code{setjmp}. On some
5082 machines, however, @code{longjmp} will not change the value of global
5083 register variables. To be portable, the function that called @code{setjmp}
5084 should make other arrangements to save the values of the global register
5085 variables, and to restore them in a @code{longjmp}. This way, the same
5086 thing will happen regardless of what @code{longjmp} does.
5087
5088 All global register variable declarations must precede all function
5089 definitions. If such a declaration could appear after function
5090 definitions, the declaration would be too late to prevent the register from
5091 being used for other purposes in the preceding functions.
5092
5093 Global register variables may not have initial values, because an
5094 executable file has no means to supply initial contents for a register.
5095
5096 On the SPARC, there are reports that g3 @dots{} g7 are suitable
5097 registers, but certain library functions, such as @code{getwd}, as well
5098 as the subroutines for division and remainder, modify g3 and g4. g1 and
5099 g2 are local temporaries.
5100
5101 On the 68000, a2 @dots{} a5 should be suitable, as should d2 @dots{} d7.
5102 Of course, it will not do to use more than a few of those.
5103
5104 @node Local Reg Vars
5105 @subsection Specifying Registers for Local Variables
5106 @cindex local variables, specifying registers
5107 @cindex specifying registers for local variables
5108 @cindex registers for local variables
5109
5110 You can define a local register variable with a specified register
5111 like this:
5112
5113 @smallexample
5114 register int *foo asm ("a5");
5115 @end smallexample
5116
5117 @noindent
5118 Here @code{a5} is the name of the register which should be used. Note
5119 that this is the same syntax used for defining global register
5120 variables, but for a local variable it would appear within a function.
5121
5122 Naturally the register name is cpu-dependent, but this is not a
5123 problem, since specific registers are most often useful with explicit
5124 assembler instructions (@pxref{Extended Asm}). Both of these things
5125 generally require that you conditionalize your program according to
5126 cpu type.
5127
5128 In addition, operating systems on one type of cpu may differ in how they
5129 name the registers; then you would need additional conditionals. For
5130 example, some 68000 operating systems call this register @code{%a5}.
5131
5132 Defining such a register variable does not reserve the register; it
5133 remains available for other uses in places where flow control determines
5134 the variable's value is not live.
5135
5136 This option does not guarantee that GCC will generate code that has
5137 this variable in the register you specify at all times. You may not
5138 code an explicit reference to this register in the @emph{assembler
5139 instruction template} part of an @code{asm} statement and assume it will
5140 always refer to this variable. However, using the variable as an
5141 @code{asm} @emph{operand} guarantees that the specified register is used
5142 for the operand.
5143
5144 Stores into local register variables may be deleted when they appear to be dead
5145 according to dataflow analysis. References to local register variables may
5146 be deleted or moved or simplified.
5147
5148 As for global register variables, it's recommended that you choose a
5149 register which is normally saved and restored by function calls on
5150 your machine, so that library routines will not clobber it. A common
5151 pitfall is to initialize multiple call-clobbered registers with
5152 arbitrary expressions, where a function call or library call for an
5153 arithmetic operator will overwrite a register value from a previous
5154 assignment, for example @code{r0} below:
5155 @smallexample
5156 register int *p1 asm ("r0") = @dots{};
5157 register int *p2 asm ("r1") = @dots{};
5158 @end smallexample
5159 In those cases, a solution is to use a temporary variable for
5160 each arbitrary expression. @xref{Example of asm with clobbered asm reg}.
5161
5162 @node Alternate Keywords
5163 @section Alternate Keywords
5164 @cindex alternate keywords
5165 @cindex keywords, alternate
5166
5167 @option{-ansi} and the various @option{-std} options disable certain
5168 keywords. This causes trouble when you want to use GNU C extensions, or
5169 a general-purpose header file that should be usable by all programs,
5170 including ISO C programs. The keywords @code{asm}, @code{typeof} and
5171 @code{inline} are not available in programs compiled with
5172 @option{-ansi} or @option{-std} (although @code{inline} can be used in a
5173 program compiled with @option{-std=c99}). The ISO C99 keyword
5174 @code{restrict} is only available when @option{-std=gnu99} (which will
5175 eventually be the default) or @option{-std=c99} (or the equivalent
5176 @option{-std=iso9899:1999}) is used.
5177
5178 The way to solve these problems is to put @samp{__} at the beginning and
5179 end of each problematical keyword. For example, use @code{__asm__}
5180 instead of @code{asm}, and @code{__inline__} instead of @code{inline}.
5181
5182 Other C compilers won't accept these alternative keywords; if you want to
5183 compile with another compiler, you can define the alternate keywords as
5184 macros to replace them with the customary keywords. It looks like this:
5185
5186 @smallexample
5187 #ifndef __GNUC__
5188 #define __asm__ asm
5189 #endif
5190 @end smallexample
5191
5192 @findex __extension__
5193 @opindex pedantic
5194 @option{-pedantic} and other options cause warnings for many GNU C extensions.
5195 You can
5196 prevent such warnings within one expression by writing
5197 @code{__extension__} before the expression. @code{__extension__} has no
5198 effect aside from this.
5199
5200 @node Incomplete Enums
5201 @section Incomplete @code{enum} Types
5202
5203 You can define an @code{enum} tag without specifying its possible values.
5204 This results in an incomplete type, much like what you get if you write
5205 @code{struct foo} without describing the elements. A later declaration
5206 which does specify the possible values completes the type.
5207
5208 You can't allocate variables or storage using the type while it is
5209 incomplete. However, you can work with pointers to that type.
5210
5211 This extension may not be very useful, but it makes the handling of
5212 @code{enum} more consistent with the way @code{struct} and @code{union}
5213 are handled.
5214
5215 This extension is not supported by GNU C++.
5216
5217 @node Function Names
5218 @section Function Names as Strings
5219 @cindex @code{__func__} identifier
5220 @cindex @code{__FUNCTION__} identifier
5221 @cindex @code{__PRETTY_FUNCTION__} identifier
5222
5223 GCC provides three magic variables which hold the name of the current
5224 function, as a string. The first of these is @code{__func__}, which
5225 is part of the C99 standard:
5226
5227 @display
5228 The identifier @code{__func__} is implicitly declared by the translator
5229 as if, immediately following the opening brace of each function
5230 definition, the declaration
5231
5232 @smallexample
5233 static const char __func__[] = "function-name";
5234 @end smallexample
5235
5236 appeared, where function-name is the name of the lexically-enclosing
5237 function. This name is the unadorned name of the function.
5238 @end display
5239
5240 @code{__FUNCTION__} is another name for @code{__func__}. Older
5241 versions of GCC recognize only this name. However, it is not
5242 standardized. For maximum portability, we recommend you use
5243 @code{__func__}, but provide a fallback definition with the
5244 preprocessor:
5245
5246 @smallexample
5247 #if __STDC_VERSION__ < 199901L
5248 # if __GNUC__ >= 2
5249 # define __func__ __FUNCTION__
5250 # else
5251 # define __func__ "<unknown>"
5252 # endif
5253 #endif
5254 @end smallexample
5255
5256 In C, @code{__PRETTY_FUNCTION__} is yet another name for
5257 @code{__func__}. However, in C++, @code{__PRETTY_FUNCTION__} contains
5258 the type signature of the function as well as its bare name. For
5259 example, this program:
5260
5261 @smallexample
5262 extern "C" @{
5263 extern int printf (char *, ...);
5264 @}
5265
5266 class a @{
5267 public:
5268 void sub (int i)
5269 @{
5270 printf ("__FUNCTION__ = %s\n", __FUNCTION__);
5271 printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);
5272 @}
5273 @};
5274
5275 int
5276 main (void)
5277 @{
5278 a ax;
5279 ax.sub (0);
5280 return 0;
5281 @}
5282 @end smallexample
5283
5284 @noindent
5285 gives this output:
5286
5287 @smallexample
5288 __FUNCTION__ = sub
5289 __PRETTY_FUNCTION__ = void a::sub(int)
5290 @end smallexample
5291
5292 These identifiers are not preprocessor macros. In GCC 3.3 and
5293 earlier, in C only, @code{__FUNCTION__} and @code{__PRETTY_FUNCTION__}
5294 were treated as string literals; they could be used to initialize
5295 @code{char} arrays, and they could be concatenated with other string
5296 literals. GCC 3.4 and later treat them as variables, like
5297 @code{__func__}. In C++, @code{__FUNCTION__} and
5298 @code{__PRETTY_FUNCTION__} have always been variables.
5299
5300 @node Return Address
5301 @section Getting the Return or Frame Address of a Function
5302
5303 These functions may be used to get information about the callers of a
5304 function.
5305
5306 @deftypefn {Built-in Function} {void *} __builtin_return_address (unsigned int @var{level})
5307 This function returns the return address of the current function, or of
5308 one of its callers. The @var{level} argument is number of frames to
5309 scan up the call stack. A value of @code{0} yields the return address
5310 of the current function, a value of @code{1} yields the return address
5311 of the caller of the current function, and so forth. When inlining
5312 the expected behavior is that the function will return the address of
5313 the function that will be returned to. To work around this behavior use
5314 the @code{noinline} function attribute.
5315
5316 The @var{level} argument must be a constant integer.
5317
5318 On some machines it may be impossible to determine the return address of
5319 any function other than the current one; in such cases, or when the top
5320 of the stack has been reached, this function will return @code{0} or a
5321 random value. In addition, @code{__builtin_frame_address} may be used
5322 to determine if the top of the stack has been reached.
5323
5324 This function should only be used with a nonzero argument for debugging
5325 purposes.
5326 @end deftypefn
5327
5328 @deftypefn {Built-in Function} {void *} __builtin_frame_address (unsigned int @var{level})
5329 This function is similar to @code{__builtin_return_address}, but it
5330 returns the address of the function frame rather than the return address
5331 of the function. Calling @code{__builtin_frame_address} with a value of
5332 @code{0} yields the frame address of the current function, a value of
5333 @code{1} yields the frame address of the caller of the current function,
5334 and so forth.
5335
5336 The frame is the area on the stack which holds local variables and saved
5337 registers. The frame address is normally the address of the first word
5338 pushed on to the stack by the function. However, the exact definition
5339 depends upon the processor and the calling convention. If the processor
5340 has a dedicated frame pointer register, and the function has a frame,
5341 then @code{__builtin_frame_address} will return the value of the frame
5342 pointer register.
5343
5344 On some machines it may be impossible to determine the frame address of
5345 any function other than the current one; in such cases, or when the top
5346 of the stack has been reached, this function will return @code{0} if
5347 the first frame pointer is properly initialized by the startup code.
5348
5349 This function should only be used with a nonzero argument for debugging
5350 purposes.
5351 @end deftypefn
5352
5353 @node Vector Extensions
5354 @section Using vector instructions through built-in functions
5355
5356 On some targets, the instruction set contains SIMD vector instructions that
5357 operate on multiple values contained in one large register at the same time.
5358 For example, on the i386 the MMX, 3Dnow! and SSE extensions can be used
5359 this way.
5360
5361 The first step in using these extensions is to provide the necessary data
5362 types. This should be done using an appropriate @code{typedef}:
5363
5364 @smallexample
5365 typedef int v4si __attribute__ ((vector_size (16)));
5366 @end smallexample
5367
5368 The @code{int} type specifies the base type, while the attribute specifies
5369 the vector size for the variable, measured in bytes. For example, the
5370 declaration above causes the compiler to set the mode for the @code{v4si}
5371 type to be 16 bytes wide and divided into @code{int} sized units. For
5372 a 32-bit @code{int} this means a vector of 4 units of 4 bytes, and the
5373 corresponding mode of @code{foo} will be @acronym{V4SI}.
5374
5375 The @code{vector_size} attribute is only applicable to integral and
5376 float scalars, although arrays, pointers, and function return values
5377 are allowed in conjunction with this construct.
5378
5379 All the basic integer types can be used as base types, both as signed
5380 and as unsigned: @code{char}, @code{short}, @code{int}, @code{long},
5381 @code{long long}. In addition, @code{float} and @code{double} can be
5382 used to build floating-point vector types.
5383
5384 Specifying a combination that is not valid for the current architecture
5385 will cause GCC to synthesize the instructions using a narrower mode.
5386 For example, if you specify a variable of type @code{V4SI} and your
5387 architecture does not allow for this specific SIMD type, GCC will
5388 produce code that uses 4 @code{SIs}.
5389
5390 The types defined in this manner can be used with a subset of normal C
5391 operations. Currently, GCC will allow using the following operators
5392 on these types: @code{+, -, *, /, unary minus, ^, |, &, ~}@.
5393
5394 The operations behave like C++ @code{valarrays}. Addition is defined as
5395 the addition of the corresponding elements of the operands. For
5396 example, in the code below, each of the 4 elements in @var{a} will be
5397 added to the corresponding 4 elements in @var{b} and the resulting
5398 vector will be stored in @var{c}.
5399
5400 @smallexample
5401 typedef int v4si __attribute__ ((vector_size (16)));
5402
5403 v4si a, b, c;
5404
5405 c = a + b;
5406 @end smallexample
5407
5408 Subtraction, multiplication, division, and the logical operations
5409 operate in a similar manner. Likewise, the result of using the unary
5410 minus or complement operators on a vector type is a vector whose
5411 elements are the negative or complemented values of the corresponding
5412 elements in the operand.
5413
5414 You can declare variables and use them in function calls and returns, as
5415 well as in assignments and some casts. You can specify a vector type as
5416 a return type for a function. Vector types can also be used as function
5417 arguments. It is possible to cast from one vector type to another,
5418 provided they are of the same size (in fact, you can also cast vectors
5419 to and from other datatypes of the same size).
5420
5421 You cannot operate between vectors of different lengths or different
5422 signedness without a cast.
5423
5424 A port that supports hardware vector operations, usually provides a set
5425 of built-in functions that can be used to operate on vectors. For
5426 example, a function to add two vectors and multiply the result by a
5427 third could look like this:
5428
5429 @smallexample
5430 v4si f (v4si a, v4si b, v4si c)
5431 @{
5432 v4si tmp = __builtin_addv4si (a, b);
5433 return __builtin_mulv4si (tmp, c);
5434 @}
5435
5436 @end smallexample
5437
5438 @node Offsetof
5439 @section Offsetof
5440 @findex __builtin_offsetof
5441
5442 GCC implements for both C and C++ a syntactic extension to implement
5443 the @code{offsetof} macro.
5444
5445 @smallexample
5446 primary:
5447 "__builtin_offsetof" "(" @code{typename} "," offsetof_member_designator ")"
5448
5449 offsetof_member_designator:
5450 @code{identifier}
5451 | offsetof_member_designator "." @code{identifier}
5452 | offsetof_member_designator "[" @code{expr} "]"
5453 @end smallexample
5454
5455 This extension is sufficient such that
5456
5457 @smallexample
5458 #define offsetof(@var{type}, @var{member}) __builtin_offsetof (@var{type}, @var{member})
5459 @end smallexample
5460
5461 is a suitable definition of the @code{offsetof} macro. In C++, @var{type}
5462 may be dependent. In either case, @var{member} may consist of a single
5463 identifier, or a sequence of member accesses and array references.
5464
5465 @node Atomic Builtins
5466 @section Built-in functions for atomic memory access
5467
5468 The following builtins are intended to be compatible with those described
5469 in the @cite{Intel Itanium Processor-specific Application Binary Interface},
5470 section 7.4. As such, they depart from the normal GCC practice of using
5471 the ``__builtin_'' prefix, and further that they are overloaded such that
5472 they work on multiple types.
5473
5474 The definition given in the Intel documentation allows only for the use of
5475 the types @code{int}, @code{long}, @code{long long} as well as their unsigned
5476 counterparts. GCC will allow any integral scalar or pointer type that is
5477 1, 2, 4 or 8 bytes in length.
5478
5479 Not all operations are supported by all target processors. If a particular
5480 operation cannot be implemented on the target processor, a warning will be
5481 generated and a call an external function will be generated. The external
5482 function will carry the same name as the builtin, with an additional suffix
5483 @samp{_@var{n}} where @var{n} is the size of the data type.
5484
5485 @c ??? Should we have a mechanism to suppress this warning? This is almost
5486 @c useful for implementing the operation under the control of an external
5487 @c mutex.
5488
5489 In most cases, these builtins are considered a @dfn{full barrier}. That is,
5490 no memory operand will be moved across the operation, either forward or
5491 backward. Further, instructions will be issued as necessary to prevent the
5492 processor from speculating loads across the operation and from queuing stores
5493 after the operation.
5494
5495 All of the routines are are described in the Intel documentation to take
5496 ``an optional list of variables protected by the memory barrier''. It's
5497 not clear what is meant by that; it could mean that @emph{only} the
5498 following variables are protected, or it could mean that these variables
5499 should in addition be protected. At present GCC ignores this list and
5500 protects all variables which are globally accessible. If in the future
5501 we make some use of this list, an empty list will continue to mean all
5502 globally accessible variables.
5503
5504 @table @code
5505 @item @var{type} __sync_fetch_and_add (@var{type} *ptr, @var{type} value, ...)
5506 @itemx @var{type} __sync_fetch_and_sub (@var{type} *ptr, @var{type} value, ...)
5507 @itemx @var{type} __sync_fetch_and_or (@var{type} *ptr, @var{type} value, ...)
5508 @itemx @var{type} __sync_fetch_and_and (@var{type} *ptr, @var{type} value, ...)
5509 @itemx @var{type} __sync_fetch_and_xor (@var{type} *ptr, @var{type} value, ...)
5510 @itemx @var{type} __sync_fetch_and_nand (@var{type} *ptr, @var{type} value, ...)
5511 @findex __sync_fetch_and_add
5512 @findex __sync_fetch_and_sub
5513 @findex __sync_fetch_and_or
5514 @findex __sync_fetch_and_and
5515 @findex __sync_fetch_and_xor
5516 @findex __sync_fetch_and_nand
5517 These builtins perform the operation suggested by the name, and
5518 returns the value that had previously been in memory. That is,
5519
5520 @smallexample
5521 @{ tmp = *ptr; *ptr @var{op}= value; return tmp; @}
5522 @{ tmp = *ptr; *ptr = ~tmp & value; return tmp; @} // nand
5523 @end smallexample
5524
5525 @item @var{type} __sync_add_and_fetch (@var{type} *ptr, @var{type} value, ...)
5526 @itemx @var{type} __sync_sub_and_fetch (@var{type} *ptr, @var{type} value, ...)
5527 @itemx @var{type} __sync_or_and_fetch (@var{type} *ptr, @var{type} value, ...)
5528 @itemx @var{type} __sync_and_and_fetch (@var{type} *ptr, @var{type} value, ...)
5529 @itemx @var{type} __sync_xor_and_fetch (@var{type} *ptr, @var{type} value, ...)
5530 @itemx @var{type} __sync_nand_and_fetch (@var{type} *ptr, @var{type} value, ...)
5531 @findex __sync_add_and_fetch
5532 @findex __sync_sub_and_fetch
5533 @findex __sync_or_and_fetch
5534 @findex __sync_and_and_fetch
5535 @findex __sync_xor_and_fetch
5536 @findex __sync_nand_and_fetch
5537 These builtins perform the operation suggested by the name, and
5538 return the new value. That is,
5539
5540 @smallexample
5541 @{ *ptr @var{op}= value; return *ptr; @}
5542 @{ *ptr = ~*ptr & value; return *ptr; @} // nand
5543 @end smallexample
5544
5545 @item bool __sync_bool_compare_and_swap (@var{type} *ptr, @var{type} oldval @var{type} newval, ...)
5546 @itemx @var{type} __sync_val_compare_and_swap (@var{type} *ptr, @var{type} oldval @var{type} newval, ...)
5547 @findex __sync_bool_compare_and_swap
5548 @findex __sync_val_compare_and_swap
5549 These builtins perform an atomic compare and swap. That is, if the current
5550 value of @code{*@var{ptr}} is @var{oldval}, then write @var{newval} into
5551 @code{*@var{ptr}}.
5552
5553 The ``bool'' version returns true if the comparison is successful and
5554 @var{newval} was written. The ``val'' version returns the contents
5555 of @code{*@var{ptr}} before the operation.
5556
5557 @item __sync_synchronize (...)
5558 @findex __sync_synchronize
5559 This builtin issues a full memory barrier.
5560
5561 @item @var{type} __sync_lock_test_and_set (@var{type} *ptr, @var{type} value, ...)
5562 @findex __sync_lock_test_and_set
5563 This builtin, as described by Intel, is not a traditional test-and-set
5564 operation, but rather an atomic exchange operation. It writes @var{value}
5565 into @code{*@var{ptr}}, and returns the previous contents of
5566 @code{*@var{ptr}}.
5567
5568 Many targets have only minimal support for such locks, and do not support
5569 a full exchange operation. In this case, a target may support reduced
5570 functionality here by which the @emph{only} valid value to store is the
5571 immediate constant 1. The exact value actually stored in @code{*@var{ptr}}
5572 is implementation defined.
5573
5574 This builtin is not a full barrier, but rather an @dfn{acquire barrier}.
5575 This means that references after the builtin cannot move to (or be
5576 speculated to) before the builtin, but previous memory stores may not
5577 be globally visible yet, and previous memory loads may not yet be
5578 satisfied.
5579
5580 @item void __sync_lock_release (@var{type} *ptr, ...)
5581 @findex __sync_lock_release
5582 This builtin releases the lock acquired by @code{__sync_lock_test_and_set}.
5583 Normally this means writing the constant 0 to @code{*@var{ptr}}.
5584
5585 This builtin is not a full barrier, but rather a @dfn{release barrier}.
5586 This means that all previous memory stores are globally visible, and all
5587 previous memory loads have been satisfied, but following memory reads
5588 are not prevented from being speculated to before the barrier.
5589 @end table
5590
5591 @node Object Size Checking
5592 @section Object Size Checking Builtins
5593 @findex __builtin_object_size
5594 @findex __builtin___memcpy_chk
5595 @findex __builtin___mempcpy_chk
5596 @findex __builtin___memmove_chk
5597 @findex __builtin___memset_chk
5598 @findex __builtin___strcpy_chk
5599 @findex __builtin___stpcpy_chk
5600 @findex __builtin___strncpy_chk
5601 @findex __builtin___strcat_chk
5602 @findex __builtin___strncat_chk
5603 @findex __builtin___sprintf_chk
5604 @findex __builtin___snprintf_chk
5605 @findex __builtin___vsprintf_chk
5606 @findex __builtin___vsnprintf_chk
5607 @findex __builtin___printf_chk
5608 @findex __builtin___vprintf_chk
5609 @findex __builtin___fprintf_chk
5610 @findex __builtin___vfprintf_chk
5611
5612 GCC implements a limited buffer overflow protection mechanism
5613 that can prevent some buffer overflow attacks.
5614
5615 @deftypefn {Built-in Function} {size_t} __builtin_object_size (void * @var{ptr}, int @var{type})
5616 is a built-in construct that returns a constant number of bytes from
5617 @var{ptr} to the end of the object @var{ptr} pointer points to
5618 (if known at compile time). @code{__builtin_object_size} never evaluates
5619 its arguments for side-effects. If there are any side-effects in them, it
5620 returns @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
5621 for @var{type} 2 or 3. If there are multiple objects @var{ptr} can
5622 point to and all of them are known at compile time, the returned number
5623 is the maximum of remaining byte counts in those objects if @var{type} & 2 is
5624 0 and minimum if nonzero. If it is not possible to determine which objects
5625 @var{ptr} points to at compile time, @code{__builtin_object_size} should
5626 return @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
5627 for @var{type} 2 or 3.
5628
5629 @var{type} is an integer constant from 0 to 3. If the least significant
5630 bit is clear, objects are whole variables, if it is set, a closest
5631 surrounding subobject is considered the object a pointer points to.
5632 The second bit determines if maximum or minimum of remaining bytes
5633 is computed.
5634
5635 @smallexample
5636 struct V @{ char buf1[10]; int b; char buf2[10]; @} var;
5637 char *p = &var.buf1[1], *q = &var.b;
5638
5639 /* Here the object p points to is var. */
5640 assert (__builtin_object_size (p, 0) == sizeof (var) - 1);
5641 /* The subobject p points to is var.buf1. */
5642 assert (__builtin_object_size (p, 1) == sizeof (var.buf1) - 1);
5643 /* The object q points to is var. */
5644 assert (__builtin_object_size (q, 0)
5645 == (char *) (&var + 1) - (char *) &var.b);
5646 /* The subobject q points to is var.b. */
5647 assert (__builtin_object_size (q, 1) == sizeof (var.b));
5648 @end smallexample
5649 @end deftypefn
5650
5651 There are built-in functions added for many common string operation
5652 functions, e.g., for @code{memcpy} @code{__builtin___memcpy_chk}
5653 built-in is provided. This built-in has an additional last argument,
5654 which is the number of bytes remaining in object the @var{dest}
5655 argument points to or @code{(size_t) -1} if the size is not known.
5656
5657 The built-in functions are optimized into the normal string functions
5658 like @code{memcpy} if the last argument is @code{(size_t) -1} or if
5659 it is known at compile time that the destination object will not
5660 be overflown. If the compiler can determine at compile time the
5661 object will be always overflown, it issues a warning.
5662
5663 The intended use can be e.g.
5664
5665 @smallexample
5666 #undef memcpy
5667 #define bos0(dest) __builtin_object_size (dest, 0)
5668 #define memcpy(dest, src, n) \
5669 __builtin___memcpy_chk (dest, src, n, bos0 (dest))
5670
5671 char *volatile p;
5672 char buf[10];
5673 /* It is unknown what object p points to, so this is optimized
5674 into plain memcpy - no checking is possible. */
5675 memcpy (p, "abcde", n);
5676 /* Destination is known and length too. It is known at compile
5677 time there will be no overflow. */
5678 memcpy (&buf[5], "abcde", 5);
5679 /* Destination is known, but the length is not known at compile time.
5680 This will result in __memcpy_chk call that can check for overflow
5681 at runtime. */
5682 memcpy (&buf[5], "abcde", n);
5683 /* Destination is known and it is known at compile time there will
5684 be overflow. There will be a warning and __memcpy_chk call that
5685 will abort the program at runtime. */
5686 memcpy (&buf[6], "abcde", 5);
5687 @end smallexample
5688
5689 Such built-in functions are provided for @code{memcpy}, @code{mempcpy},
5690 @code{memmove}, @code{memset}, @code{strcpy}, @code{stpcpy}, @code{strncpy},
5691 @code{strcat} and @code{strncat}.
5692
5693 There are also checking built-in functions for formatted output functions.
5694 @smallexample
5695 int __builtin___sprintf_chk (char *s, int flag, size_t os, const char *fmt, ...);
5696 int __builtin___snprintf_chk (char *s, size_t maxlen, int flag, size_t os,
5697 const char *fmt, ...);
5698 int __builtin___vsprintf_chk (char *s, int flag, size_t os, const char *fmt,
5699 va_list ap);
5700 int __builtin___vsnprintf_chk (char *s, size_t maxlen, int flag, size_t os,
5701 const char *fmt, va_list ap);
5702 @end smallexample
5703
5704 The added @var{flag} argument is passed unchanged to @code{__sprintf_chk}
5705 etc.@: functions and can contain implementation specific flags on what
5706 additional security measures the checking function might take, such as
5707 handling @code{%n} differently.
5708
5709 The @var{os} argument is the object size @var{s} points to, like in the
5710 other built-in functions. There is a small difference in the behavior
5711 though, if @var{os} is @code{(size_t) -1}, the built-in functions are
5712 optimized into the non-checking functions only if @var{flag} is 0, otherwise
5713 the checking function is called with @var{os} argument set to
5714 @code{(size_t) -1}.
5715
5716 In addition to this, there are checking built-in functions
5717 @code{__builtin___printf_chk}, @code{__builtin___vprintf_chk},
5718 @code{__builtin___fprintf_chk} and @code{__builtin___vfprintf_chk}.
5719 These have just one additional argument, @var{flag}, right before
5720 format string @var{fmt}. If the compiler is able to optimize them to
5721 @code{fputc} etc.@: functions, it will, otherwise the checking function
5722 should be called and the @var{flag} argument passed to it.
5723
5724 @node Other Builtins
5725 @section Other built-in functions provided by GCC
5726 @cindex built-in functions
5727 @findex __builtin_isfinite
5728 @findex __builtin_isnormal
5729 @findex __builtin_isgreater
5730 @findex __builtin_isgreaterequal
5731 @findex __builtin_isless
5732 @findex __builtin_islessequal
5733 @findex __builtin_islessgreater
5734 @findex __builtin_isunordered
5735 @findex __builtin_powi
5736 @findex __builtin_powif
5737 @findex __builtin_powil
5738 @findex _Exit
5739 @findex _exit
5740 @findex abort
5741 @findex abs
5742 @findex acos
5743 @findex acosf
5744 @findex acosh
5745 @findex acoshf
5746 @findex acoshl
5747 @findex acosl
5748 @findex alloca
5749 @findex asin
5750 @findex asinf
5751 @findex asinh
5752 @findex asinhf
5753 @findex asinhl
5754 @findex asinl
5755 @findex atan
5756 @findex atan2
5757 @findex atan2f
5758 @findex atan2l
5759 @findex atanf
5760 @findex atanh
5761 @findex atanhf
5762 @findex atanhl
5763 @findex atanl
5764 @findex bcmp
5765 @findex bzero
5766 @findex cabs
5767 @findex cabsf
5768 @findex cabsl
5769 @findex cacos
5770 @findex cacosf
5771 @findex cacosh
5772 @findex cacoshf
5773 @findex cacoshl
5774 @findex cacosl
5775 @findex calloc
5776 @findex carg
5777 @findex cargf
5778 @findex cargl
5779 @findex casin
5780 @findex casinf
5781 @findex casinh
5782 @findex casinhf
5783 @findex casinhl
5784 @findex casinl
5785 @findex catan
5786 @findex catanf
5787 @findex catanh
5788 @findex catanhf
5789 @findex catanhl
5790 @findex catanl
5791 @findex cbrt
5792 @findex cbrtf
5793 @findex cbrtl
5794 @findex ccos
5795 @findex ccosf
5796 @findex ccosh
5797 @findex ccoshf
5798 @findex ccoshl
5799 @findex ccosl
5800 @findex ceil
5801 @findex ceilf
5802 @findex ceill
5803 @findex cexp
5804 @findex cexpf
5805 @findex cexpl
5806 @findex cimag
5807 @findex cimagf
5808 @findex cimagl
5809 @findex clog
5810 @findex clogf
5811 @findex clogl
5812 @findex conj
5813 @findex conjf
5814 @findex conjl
5815 @findex copysign
5816 @findex copysignf
5817 @findex copysignl
5818 @findex cos
5819 @findex cosf
5820 @findex cosh
5821 @findex coshf
5822 @findex coshl
5823 @findex cosl
5824 @findex cpow
5825 @findex cpowf
5826 @findex cpowl
5827 @findex cproj
5828 @findex cprojf
5829 @findex cprojl
5830 @findex creal
5831 @findex crealf
5832 @findex creall
5833 @findex csin
5834 @findex csinf
5835 @findex csinh
5836 @findex csinhf
5837 @findex csinhl
5838 @findex csinl
5839 @findex csqrt
5840 @findex csqrtf
5841 @findex csqrtl
5842 @findex ctan
5843 @findex ctanf
5844 @findex ctanh
5845 @findex ctanhf
5846 @findex ctanhl
5847 @findex ctanl
5848 @findex dcgettext
5849 @findex dgettext
5850 @findex drem
5851 @findex dremf
5852 @findex dreml
5853 @findex erf
5854 @findex erfc
5855 @findex erfcf
5856 @findex erfcl
5857 @findex erff
5858 @findex erfl
5859 @findex exit
5860 @findex exp
5861 @findex exp10
5862 @findex exp10f
5863 @findex exp10l
5864 @findex exp2
5865 @findex exp2f
5866 @findex exp2l
5867 @findex expf
5868 @findex expl
5869 @findex expm1
5870 @findex expm1f
5871 @findex expm1l
5872 @findex fabs
5873 @findex fabsf
5874 @findex fabsl
5875 @findex fdim
5876 @findex fdimf
5877 @findex fdiml
5878 @findex ffs
5879 @findex floor
5880 @findex floorf
5881 @findex floorl
5882 @findex fma
5883 @findex fmaf
5884 @findex fmal
5885 @findex fmax
5886 @findex fmaxf
5887 @findex fmaxl
5888 @findex fmin
5889 @findex fminf
5890 @findex fminl
5891 @findex fmod
5892 @findex fmodf
5893 @findex fmodl
5894 @findex fprintf
5895 @findex fprintf_unlocked
5896 @findex fputs
5897 @findex fputs_unlocked
5898 @findex frexp
5899 @findex frexpf
5900 @findex frexpl
5901 @findex fscanf
5902 @findex gamma
5903 @findex gammaf
5904 @findex gammal
5905 @findex gamma_r
5906 @findex gammaf_r
5907 @findex gammal_r
5908 @findex gettext
5909 @findex hypot
5910 @findex hypotf
5911 @findex hypotl
5912 @findex ilogb
5913 @findex ilogbf
5914 @findex ilogbl
5915 @findex imaxabs
5916 @findex index
5917 @findex isalnum
5918 @findex isalpha
5919 @findex isascii
5920 @findex isblank
5921 @findex iscntrl
5922 @findex isdigit
5923 @findex isgraph
5924 @findex islower
5925 @findex isprint
5926 @findex ispunct
5927 @findex isspace
5928 @findex isupper
5929 @findex iswalnum
5930 @findex iswalpha
5931 @findex iswblank
5932 @findex iswcntrl
5933 @findex iswdigit
5934 @findex iswgraph
5935 @findex iswlower
5936 @findex iswprint
5937 @findex iswpunct
5938 @findex iswspace
5939 @findex iswupper
5940 @findex iswxdigit
5941 @findex isxdigit
5942 @findex j0
5943 @findex j0f
5944 @findex j0l
5945 @findex j1
5946 @findex j1f
5947 @findex j1l
5948 @findex jn
5949 @findex jnf
5950 @findex jnl
5951 @findex labs
5952 @findex ldexp
5953 @findex ldexpf
5954 @findex ldexpl
5955 @findex lgamma
5956 @findex lgammaf
5957 @findex lgammal
5958 @findex lgamma_r
5959 @findex lgammaf_r
5960 @findex lgammal_r
5961 @findex llabs
5962 @findex llrint
5963 @findex llrintf
5964 @findex llrintl
5965 @findex llround
5966 @findex llroundf
5967 @findex llroundl
5968 @findex log
5969 @findex log10
5970 @findex log10f
5971 @findex log10l
5972 @findex log1p
5973 @findex log1pf
5974 @findex log1pl
5975 @findex log2
5976 @findex log2f
5977 @findex log2l
5978 @findex logb
5979 @findex logbf
5980 @findex logbl
5981 @findex logf
5982 @findex logl
5983 @findex lrint
5984 @findex lrintf
5985 @findex lrintl
5986 @findex lround
5987 @findex lroundf
5988 @findex lroundl
5989 @findex malloc
5990 @findex memchr
5991 @findex memcmp
5992 @findex memcpy
5993 @findex mempcpy
5994 @findex memset
5995 @findex modf
5996 @findex modff
5997 @findex modfl
5998 @findex nearbyint
5999 @findex nearbyintf
6000 @findex nearbyintl
6001 @findex nextafter
6002 @findex nextafterf
6003 @findex nextafterl
6004 @findex nexttoward
6005 @findex nexttowardf
6006 @findex nexttowardl
6007 @findex pow
6008 @findex pow10
6009 @findex pow10f
6010 @findex pow10l
6011 @findex powf
6012 @findex powl
6013 @findex printf
6014 @findex printf_unlocked
6015 @findex putchar
6016 @findex puts
6017 @findex remainder
6018 @findex remainderf
6019 @findex remainderl
6020 @findex remquo
6021 @findex remquof
6022 @findex remquol
6023 @findex rindex
6024 @findex rint
6025 @findex rintf
6026 @findex rintl
6027 @findex round
6028 @findex roundf
6029 @findex roundl
6030 @findex scalb
6031 @findex scalbf
6032 @findex scalbl
6033 @findex scalbln
6034 @findex scalblnf
6035 @findex scalblnf
6036 @findex scalbn
6037 @findex scalbnf
6038 @findex scanfnl
6039 @findex signbit
6040 @findex signbitf
6041 @findex signbitl
6042 @findex signbitd32
6043 @findex signbitd64
6044 @findex signbitd128
6045 @findex significand
6046 @findex significandf
6047 @findex significandl
6048 @findex sin
6049 @findex sincos
6050 @findex sincosf
6051 @findex sincosl
6052 @findex sinf
6053 @findex sinh
6054 @findex sinhf
6055 @findex sinhl
6056 @findex sinl
6057 @findex snprintf
6058 @findex sprintf
6059 @findex sqrt
6060 @findex sqrtf
6061 @findex sqrtl
6062 @findex sscanf
6063 @findex stpcpy
6064 @findex stpncpy
6065 @findex strcasecmp
6066 @findex strcat
6067 @findex strchr
6068 @findex strcmp
6069 @findex strcpy
6070 @findex strcspn
6071 @findex strdup
6072 @findex strfmon
6073 @findex strftime
6074 @findex strlen
6075 @findex strncasecmp
6076 @findex strncat
6077 @findex strncmp
6078 @findex strncpy
6079 @findex strndup
6080 @findex strpbrk
6081 @findex strrchr
6082 @findex strspn
6083 @findex strstr
6084 @findex tan
6085 @findex tanf
6086 @findex tanh
6087 @findex tanhf
6088 @findex tanhl
6089 @findex tanl
6090 @findex tgamma
6091 @findex tgammaf
6092 @findex tgammal
6093 @findex toascii
6094 @findex tolower
6095 @findex toupper
6096 @findex towlower
6097 @findex towupper
6098 @findex trunc
6099 @findex truncf
6100 @findex truncl
6101 @findex vfprintf
6102 @findex vfscanf
6103 @findex vprintf
6104 @findex vscanf
6105 @findex vsnprintf
6106 @findex vsprintf
6107 @findex vsscanf
6108 @findex y0
6109 @findex y0f
6110 @findex y0l
6111 @findex y1
6112 @findex y1f
6113 @findex y1l
6114 @findex yn
6115 @findex ynf
6116 @findex ynl
6117
6118 GCC provides a large number of built-in functions other than the ones
6119 mentioned above. Some of these are for internal use in the processing
6120 of exceptions or variable-length argument lists and will not be
6121 documented here because they may change from time to time; we do not
6122 recommend general use of these functions.
6123
6124 The remaining functions are provided for optimization purposes.
6125
6126 @opindex fno-builtin
6127 GCC includes built-in versions of many of the functions in the standard
6128 C library. The versions prefixed with @code{__builtin_} will always be
6129 treated as having the same meaning as the C library function even if you
6130 specify the @option{-fno-builtin} option. (@pxref{C Dialect Options})
6131 Many of these functions are only optimized in certain cases; if they are
6132 not optimized in a particular case, a call to the library function will
6133 be emitted.
6134
6135 @opindex ansi
6136 @opindex std
6137 Outside strict ISO C mode (@option{-ansi}, @option{-std=c89} or
6138 @option{-std=c99}), the functions
6139 @code{_exit}, @code{alloca}, @code{bcmp}, @code{bzero},
6140 @code{dcgettext}, @code{dgettext}, @code{dremf}, @code{dreml},
6141 @code{drem}, @code{exp10f}, @code{exp10l}, @code{exp10}, @code{ffsll},
6142 @code{ffsl}, @code{ffs}, @code{fprintf_unlocked},
6143 @code{fputs_unlocked}, @code{gammaf}, @code{gammal}, @code{gamma},
6144 @code{gammaf_r}, @code{gammal_r}, @code{gamma_r}, @code{gettext},
6145 @code{index}, @code{isascii}, @code{j0f}, @code{j0l}, @code{j0},
6146 @code{j1f}, @code{j1l}, @code{j1}, @code{jnf}, @code{jnl}, @code{jn},
6147 @code{lgammaf_r}, @code{lgammal_r}, @code{lgamma_r}, @code{mempcpy},
6148 @code{pow10f}, @code{pow10l}, @code{pow10}, @code{printf_unlocked},
6149 @code{rindex}, @code{scalbf}, @code{scalbl}, @code{scalb},
6150 @code{signbit}, @code{signbitf}, @code{signbitl}, @code{signbitd32},
6151 @code{signbitd64}, @code{signbitd128}, @code{significandf},
6152 @code{significandl}, @code{significand}, @code{sincosf},
6153 @code{sincosl}, @code{sincos}, @code{stpcpy}, @code{stpncpy},
6154 @code{strcasecmp}, @code{strdup}, @code{strfmon}, @code{strncasecmp},
6155 @code{strndup}, @code{toascii}, @code{y0f}, @code{y0l}, @code{y0},
6156 @code{y1f}, @code{y1l}, @code{y1}, @code{ynf}, @code{ynl} and
6157 @code{yn}
6158 may be handled as built-in functions.
6159 All these functions have corresponding versions
6160 prefixed with @code{__builtin_}, which may be used even in strict C89
6161 mode.
6162
6163 The ISO C99 functions
6164 @code{_Exit}, @code{acoshf}, @code{acoshl}, @code{acosh}, @code{asinhf},
6165 @code{asinhl}, @code{asinh}, @code{atanhf}, @code{atanhl}, @code{atanh},
6166 @code{cabsf}, @code{cabsl}, @code{cabs}, @code{cacosf}, @code{cacoshf},
6167 @code{cacoshl}, @code{cacosh}, @code{cacosl}, @code{cacos},
6168 @code{cargf}, @code{cargl}, @code{carg}, @code{casinf}, @code{casinhf},
6169 @code{casinhl}, @code{casinh}, @code{casinl}, @code{casin},
6170 @code{catanf}, @code{catanhf}, @code{catanhl}, @code{catanh},
6171 @code{catanl}, @code{catan}, @code{cbrtf}, @code{cbrtl}, @code{cbrt},
6172 @code{ccosf}, @code{ccoshf}, @code{ccoshl}, @code{ccosh}, @code{ccosl},
6173 @code{ccos}, @code{cexpf}, @code{cexpl}, @code{cexp}, @code{cimagf},
6174 @code{cimagl}, @code{cimag}, @code{clogf}, @code{clogl}, @code{clog},
6175 @code{conjf}, @code{conjl}, @code{conj}, @code{copysignf}, @code{copysignl},
6176 @code{copysign}, @code{cpowf}, @code{cpowl}, @code{cpow}, @code{cprojf},
6177 @code{cprojl}, @code{cproj}, @code{crealf}, @code{creall}, @code{creal},
6178 @code{csinf}, @code{csinhf}, @code{csinhl}, @code{csinh}, @code{csinl},
6179 @code{csin}, @code{csqrtf}, @code{csqrtl}, @code{csqrt}, @code{ctanf},
6180 @code{ctanhf}, @code{ctanhl}, @code{ctanh}, @code{ctanl}, @code{ctan},
6181 @code{erfcf}, @code{erfcl}, @code{erfc}, @code{erff}, @code{erfl},
6182 @code{erf}, @code{exp2f}, @code{exp2l}, @code{exp2}, @code{expm1f},
6183 @code{expm1l}, @code{expm1}, @code{fdimf}, @code{fdiml}, @code{fdim},
6184 @code{fmaf}, @code{fmal}, @code{fmaxf}, @code{fmaxl}, @code{fmax},
6185 @code{fma}, @code{fminf}, @code{fminl}, @code{fmin}, @code{hypotf},
6186 @code{hypotl}, @code{hypot}, @code{ilogbf}, @code{ilogbl}, @code{ilogb},
6187 @code{imaxabs}, @code{isblank}, @code{iswblank}, @code{lgammaf},
6188 @code{lgammal}, @code{lgamma}, @code{llabs}, @code{llrintf}, @code{llrintl},
6189 @code{llrint}, @code{llroundf}, @code{llroundl}, @code{llround},
6190 @code{log1pf}, @code{log1pl}, @code{log1p}, @code{log2f}, @code{log2l},
6191 @code{log2}, @code{logbf}, @code{logbl}, @code{logb}, @code{lrintf},
6192 @code{lrintl}, @code{lrint}, @code{lroundf}, @code{lroundl},
6193 @code{lround}, @code{nearbyintf}, @code{nearbyintl}, @code{nearbyint},
6194 @code{nextafterf}, @code{nextafterl}, @code{nextafter},
6195 @code{nexttowardf}, @code{nexttowardl}, @code{nexttoward},
6196 @code{remainderf}, @code{remainderl}, @code{remainder}, @code{remquof},
6197 @code{remquol}, @code{remquo}, @code{rintf}, @code{rintl}, @code{rint},
6198 @code{roundf}, @code{roundl}, @code{round}, @code{scalblnf},
6199 @code{scalblnl}, @code{scalbln}, @code{scalbnf}, @code{scalbnl},
6200 @code{scalbn}, @code{snprintf}, @code{tgammaf}, @code{tgammal},
6201 @code{tgamma}, @code{truncf}, @code{truncl}, @code{trunc},
6202 @code{vfscanf}, @code{vscanf}, @code{vsnprintf} and @code{vsscanf}
6203 are handled as built-in functions
6204 except in strict ISO C90 mode (@option{-ansi} or @option{-std=c89}).
6205
6206 There are also built-in versions of the ISO C99 functions
6207 @code{acosf}, @code{acosl}, @code{asinf}, @code{asinl}, @code{atan2f},
6208 @code{atan2l}, @code{atanf}, @code{atanl}, @code{ceilf}, @code{ceill},
6209 @code{cosf}, @code{coshf}, @code{coshl}, @code{cosl}, @code{expf},
6210 @code{expl}, @code{fabsf}, @code{fabsl}, @code{floorf}, @code{floorl},
6211 @code{fmodf}, @code{fmodl}, @code{frexpf}, @code{frexpl}, @code{ldexpf},
6212 @code{ldexpl}, @code{log10f}, @code{log10l}, @code{logf}, @code{logl},
6213 @code{modfl}, @code{modf}, @code{powf}, @code{powl}, @code{sinf},
6214 @code{sinhf}, @code{sinhl}, @code{sinl}, @code{sqrtf}, @code{sqrtl},
6215 @code{tanf}, @code{tanhf}, @code{tanhl} and @code{tanl}
6216 that are recognized in any mode since ISO C90 reserves these names for
6217 the purpose to which ISO C99 puts them. All these functions have
6218 corresponding versions prefixed with @code{__builtin_}.
6219
6220 The ISO C94 functions
6221 @code{iswalnum}, @code{iswalpha}, @code{iswcntrl}, @code{iswdigit},
6222 @code{iswgraph}, @code{iswlower}, @code{iswprint}, @code{iswpunct},
6223 @code{iswspace}, @code{iswupper}, @code{iswxdigit}, @code{towlower} and
6224 @code{towupper}
6225 are handled as built-in functions
6226 except in strict ISO C90 mode (@option{-ansi} or @option{-std=c89}).
6227
6228 The ISO C90 functions
6229 @code{abort}, @code{abs}, @code{acos}, @code{asin}, @code{atan2},
6230 @code{atan}, @code{calloc}, @code{ceil}, @code{cosh}, @code{cos},
6231 @code{exit}, @code{exp}, @code{fabs}, @code{floor}, @code{fmod},
6232 @code{fprintf}, @code{fputs}, @code{frexp}, @code{fscanf},
6233 @code{isalnum}, @code{isalpha}, @code{iscntrl}, @code{isdigit},
6234 @code{isgraph}, @code{islower}, @code{isprint}, @code{ispunct},
6235 @code{isspace}, @code{isupper}, @code{isxdigit}, @code{tolower},
6236 @code{toupper}, @code{labs}, @code{ldexp}, @code{log10}, @code{log},
6237 @code{malloc}, @code{memchr}, @code{memcmp}, @code{memcpy},
6238 @code{memset}, @code{modf}, @code{pow}, @code{printf}, @code{putchar},
6239 @code{puts}, @code{scanf}, @code{sinh}, @code{sin}, @code{snprintf},
6240 @code{sprintf}, @code{sqrt}, @code{sscanf}, @code{strcat},
6241 @code{strchr}, @code{strcmp}, @code{strcpy}, @code{strcspn},
6242 @code{strlen}, @code{strncat}, @code{strncmp}, @code{strncpy},
6243 @code{strpbrk}, @code{strrchr}, @code{strspn}, @code{strstr},
6244 @code{tanh}, @code{tan}, @code{vfprintf}, @code{vprintf} and @code{vsprintf}
6245 are all recognized as built-in functions unless
6246 @option{-fno-builtin} is specified (or @option{-fno-builtin-@var{function}}
6247 is specified for an individual function). All of these functions have
6248 corresponding versions prefixed with @code{__builtin_}.
6249
6250 GCC provides built-in versions of the ISO C99 floating point comparison
6251 macros that avoid raising exceptions for unordered operands. They have
6252 the same names as the standard macros ( @code{isgreater},
6253 @code{isgreaterequal}, @code{isless}, @code{islessequal},
6254 @code{islessgreater}, and @code{isunordered}) , with @code{__builtin_}
6255 prefixed. We intend for a library implementor to be able to simply
6256 @code{#define} each standard macro to its built-in equivalent.
6257 In the same fashion, GCC provides @code{isfinite} and @code{isnormal}
6258 built-ins used with @code{__builtin_} prefixed.
6259
6260 @deftypefn {Built-in Function} int __builtin_types_compatible_p (@var{type1}, @var{type2})
6261
6262 You can use the built-in function @code{__builtin_types_compatible_p} to
6263 determine whether two types are the same.
6264
6265 This built-in function returns 1 if the unqualified versions of the
6266 types @var{type1} and @var{type2} (which are types, not expressions) are
6267 compatible, 0 otherwise. The result of this built-in function can be
6268 used in integer constant expressions.
6269
6270 This built-in function ignores top level qualifiers (e.g., @code{const},
6271 @code{volatile}). For example, @code{int} is equivalent to @code{const
6272 int}.
6273
6274 The type @code{int[]} and @code{int[5]} are compatible. On the other
6275 hand, @code{int} and @code{char *} are not compatible, even if the size
6276 of their types, on the particular architecture are the same. Also, the
6277 amount of pointer indirection is taken into account when determining
6278 similarity. Consequently, @code{short *} is not similar to
6279 @code{short **}. Furthermore, two types that are typedefed are
6280 considered compatible if their underlying types are compatible.
6281
6282 An @code{enum} type is not considered to be compatible with another
6283 @code{enum} type even if both are compatible with the same integer
6284 type; this is what the C standard specifies.
6285 For example, @code{enum @{foo, bar@}} is not similar to
6286 @code{enum @{hot, dog@}}.
6287
6288 You would typically use this function in code whose execution varies
6289 depending on the arguments' types. For example:
6290
6291 @smallexample
6292 #define foo(x) \
6293 (@{ \
6294 typeof (x) tmp = (x); \
6295 if (__builtin_types_compatible_p (typeof (x), long double)) \
6296 tmp = foo_long_double (tmp); \
6297 else if (__builtin_types_compatible_p (typeof (x), double)) \
6298 tmp = foo_double (tmp); \
6299 else if (__builtin_types_compatible_p (typeof (x), float)) \
6300 tmp = foo_float (tmp); \
6301 else \
6302 abort (); \
6303 tmp; \
6304 @})
6305 @end smallexample
6306
6307 @emph{Note:} This construct is only available for C@.
6308
6309 @end deftypefn
6310
6311 @deftypefn {Built-in Function} @var{type} __builtin_choose_expr (@var{const_exp}, @var{exp1}, @var{exp2})
6312
6313 You can use the built-in function @code{__builtin_choose_expr} to
6314 evaluate code depending on the value of a constant expression. This
6315 built-in function returns @var{exp1} if @var{const_exp}, which is a
6316 constant expression that must be able to be determined at compile time,
6317 is nonzero. Otherwise it returns 0.
6318
6319 This built-in function is analogous to the @samp{? :} operator in C,
6320 except that the expression returned has its type unaltered by promotion
6321 rules. Also, the built-in function does not evaluate the expression
6322 that was not chosen. For example, if @var{const_exp} evaluates to true,
6323 @var{exp2} is not evaluated even if it has side-effects.
6324
6325 This built-in function can return an lvalue if the chosen argument is an
6326 lvalue.
6327
6328 If @var{exp1} is returned, the return type is the same as @var{exp1}'s
6329 type. Similarly, if @var{exp2} is returned, its return type is the same
6330 as @var{exp2}.
6331
6332 Example:
6333
6334 @smallexample
6335 #define foo(x) \
6336 __builtin_choose_expr ( \
6337 __builtin_types_compatible_p (typeof (x), double), \
6338 foo_double (x), \
6339 __builtin_choose_expr ( \
6340 __builtin_types_compatible_p (typeof (x), float), \
6341 foo_float (x), \
6342 /* @r{The void expression results in a compile-time error} \
6343 @r{when assigning the result to something.} */ \
6344 (void)0))
6345 @end smallexample
6346
6347 @emph{Note:} This construct is only available for C@. Furthermore, the
6348 unused expression (@var{exp1} or @var{exp2} depending on the value of
6349 @var{const_exp}) may still generate syntax errors. This may change in
6350 future revisions.
6351
6352 @end deftypefn
6353
6354 @deftypefn {Built-in Function} int __builtin_constant_p (@var{exp})
6355 You can use the built-in function @code{__builtin_constant_p} to
6356 determine if a value is known to be constant at compile-time and hence
6357 that GCC can perform constant-folding on expressions involving that
6358 value. The argument of the function is the value to test. The function
6359 returns the integer 1 if the argument is known to be a compile-time
6360 constant and 0 if it is not known to be a compile-time constant. A
6361 return of 0 does not indicate that the value is @emph{not} a constant,
6362 but merely that GCC cannot prove it is a constant with the specified
6363 value of the @option{-O} option.
6364
6365 You would typically use this function in an embedded application where
6366 memory was a critical resource. If you have some complex calculation,
6367 you may want it to be folded if it involves constants, but need to call
6368 a function if it does not. For example:
6369
6370 @smallexample
6371 #define Scale_Value(X) \
6372 (__builtin_constant_p (X) \
6373 ? ((X) * SCALE + OFFSET) : Scale (X))
6374 @end smallexample
6375
6376 You may use this built-in function in either a macro or an inline
6377 function. However, if you use it in an inlined function and pass an
6378 argument of the function as the argument to the built-in, GCC will
6379 never return 1 when you call the inline function with a string constant
6380 or compound literal (@pxref{Compound Literals}) and will not return 1
6381 when you pass a constant numeric value to the inline function unless you
6382 specify the @option{-O} option.
6383
6384 You may also use @code{__builtin_constant_p} in initializers for static
6385 data. For instance, you can write
6386
6387 @smallexample
6388 static const int table[] = @{
6389 __builtin_constant_p (EXPRESSION) ? (EXPRESSION) : -1,
6390 /* @r{@dots{}} */
6391 @};
6392 @end smallexample
6393
6394 @noindent
6395 This is an acceptable initializer even if @var{EXPRESSION} is not a
6396 constant expression. GCC must be more conservative about evaluating the
6397 built-in in this case, because it has no opportunity to perform
6398 optimization.
6399
6400 Previous versions of GCC did not accept this built-in in data
6401 initializers. The earliest version where it is completely safe is
6402 3.0.1.
6403 @end deftypefn
6404
6405 @deftypefn {Built-in Function} long __builtin_expect (long @var{exp}, long @var{c})
6406 @opindex fprofile-arcs
6407 You may use @code{__builtin_expect} to provide the compiler with
6408 branch prediction information. In general, you should prefer to
6409 use actual profile feedback for this (@option{-fprofile-arcs}), as
6410 programmers are notoriously bad at predicting how their programs
6411 actually perform. However, there are applications in which this
6412 data is hard to collect.
6413
6414 The return value is the value of @var{exp}, which should be an integral
6415 expression. The semantics of the built-in are that it is expected that
6416 @var{exp} == @var{c}. For example:
6417
6418 @smallexample
6419 if (__builtin_expect (x, 0))
6420 foo ();
6421 @end smallexample
6422
6423 @noindent
6424 would indicate that we do not expect to call @code{foo}, since
6425 we expect @code{x} to be zero. Since you are limited to integral
6426 expressions for @var{exp}, you should use constructions such as
6427
6428 @smallexample
6429 if (__builtin_expect (ptr != NULL, 1))
6430 error ();
6431 @end smallexample
6432
6433 @noindent
6434 when testing pointer or floating-point values.
6435 @end deftypefn
6436
6437 @deftypefn {Built-in Function} void __builtin_trap (void)
6438 This function causes the program to exit abnormally. GCC implements
6439 this function by using a target-dependent mechanism (such as
6440 intentionally executing an illegal instruction) or by calling
6441 @code{abort}. The mechanism used may vary from release to release so
6442 you should not rely on any particular implementation.
6443 @end deftypefn
6444
6445 @deftypefn {Built-in Function} void __builtin___clear_cache (char *@var{begin}, char *@var{end})
6446 This function is used to flush the processor's instruction cache for
6447 the region of memory between @var{begin} inclusive and @var{end}
6448 exclusive. Some targets require that the instruction cache be
6449 flushed, after modifying memory containing code, in order to obtain
6450 deterministic behavior.
6451
6452 If the target does not require instruction cache flushes,
6453 @code{__builtin___clear_cache} has no effect. Otherwise either
6454 instructions are emitted in-line to clear the instruction cache or a
6455 call to the @code{__clear_cache} function in libgcc is made.
6456 @end deftypefn
6457
6458 @deftypefn {Built-in Function} void __builtin_prefetch (const void *@var{addr}, ...)
6459 This function is used to minimize cache-miss latency by moving data into
6460 a cache before it is accessed.
6461 You can insert calls to @code{__builtin_prefetch} into code for which
6462 you know addresses of data in memory that is likely to be accessed soon.
6463 If the target supports them, data prefetch instructions will be generated.
6464 If the prefetch is done early enough before the access then the data will
6465 be in the cache by the time it is accessed.
6466
6467 The value of @var{addr} is the address of the memory to prefetch.
6468 There are two optional arguments, @var{rw} and @var{locality}.
6469 The value of @var{rw} is a compile-time constant one or zero; one
6470 means that the prefetch is preparing for a write to the memory address
6471 and zero, the default, means that the prefetch is preparing for a read.
6472 The value @var{locality} must be a compile-time constant integer between
6473 zero and three. A value of zero means that the data has no temporal
6474 locality, so it need not be left in the cache after the access. A value
6475 of three means that the data has a high degree of temporal locality and
6476 should be left in all levels of cache possible. Values of one and two
6477 mean, respectively, a low or moderate degree of temporal locality. The
6478 default is three.
6479
6480 @smallexample
6481 for (i = 0; i < n; i++)
6482 @{
6483 a[i] = a[i] + b[i];
6484 __builtin_prefetch (&a[i+j], 1, 1);
6485 __builtin_prefetch (&b[i+j], 0, 1);
6486 /* @r{@dots{}} */
6487 @}
6488 @end smallexample
6489
6490 Data prefetch does not generate faults if @var{addr} is invalid, but
6491 the address expression itself must be valid. For example, a prefetch
6492 of @code{p->next} will not fault if @code{p->next} is not a valid
6493 address, but evaluation will fault if @code{p} is not a valid address.
6494
6495 If the target does not support data prefetch, the address expression
6496 is evaluated if it includes side effects but no other code is generated
6497 and GCC does not issue a warning.
6498 @end deftypefn
6499
6500 @deftypefn {Built-in Function} double __builtin_huge_val (void)
6501 Returns a positive infinity, if supported by the floating-point format,
6502 else @code{DBL_MAX}. This function is suitable for implementing the
6503 ISO C macro @code{HUGE_VAL}.
6504 @end deftypefn
6505
6506 @deftypefn {Built-in Function} float __builtin_huge_valf (void)
6507 Similar to @code{__builtin_huge_val}, except the return type is @code{float}.
6508 @end deftypefn
6509
6510 @deftypefn {Built-in Function} {long double} __builtin_huge_vall (void)
6511 Similar to @code{__builtin_huge_val}, except the return
6512 type is @code{long double}.
6513 @end deftypefn
6514
6515 @deftypefn {Built-in Function} double __builtin_inf (void)
6516 Similar to @code{__builtin_huge_val}, except a warning is generated
6517 if the target floating-point format does not support infinities.
6518 @end deftypefn
6519
6520 @deftypefn {Built-in Function} _Decimal32 __builtin_infd32 (void)
6521 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal32}.
6522 @end deftypefn
6523
6524 @deftypefn {Built-in Function} _Decimal64 __builtin_infd64 (void)
6525 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal64}.
6526 @end deftypefn
6527
6528 @deftypefn {Built-in Function} _Decimal128 __builtin_infd128 (void)
6529 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal128}.
6530 @end deftypefn
6531
6532 @deftypefn {Built-in Function} float __builtin_inff (void)
6533 Similar to @code{__builtin_inf}, except the return type is @code{float}.
6534 This function is suitable for implementing the ISO C99 macro @code{INFINITY}.
6535 @end deftypefn
6536
6537 @deftypefn {Built-in Function} {long double} __builtin_infl (void)
6538 Similar to @code{__builtin_inf}, except the return
6539 type is @code{long double}.
6540 @end deftypefn
6541
6542 @deftypefn {Built-in Function} double __builtin_nan (const char *str)
6543 This is an implementation of the ISO C99 function @code{nan}.
6544
6545 Since ISO C99 defines this function in terms of @code{strtod}, which we
6546 do not implement, a description of the parsing is in order. The string
6547 is parsed as by @code{strtol}; that is, the base is recognized by
6548 leading @samp{0} or @samp{0x} prefixes. The number parsed is placed
6549 in the significand such that the least significant bit of the number
6550 is at the least significant bit of the significand. The number is
6551 truncated to fit the significand field provided. The significand is
6552 forced to be a quiet NaN@.
6553
6554 This function, if given a string literal all of which would have been
6555 consumed by strtol, is evaluated early enough that it is considered a
6556 compile-time constant.
6557 @end deftypefn
6558
6559 @deftypefn {Built-in Function} _Decimal32 __builtin_nand32 (const char *str)
6560 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal32}.
6561 @end deftypefn
6562
6563 @deftypefn {Built-in Function} _Decimal64 __builtin_nand64 (const char *str)
6564 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal64}.
6565 @end deftypefn
6566
6567 @deftypefn {Built-in Function} _Decimal128 __builtin_nand128 (const char *str)
6568 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal128}.
6569 @end deftypefn
6570
6571 @deftypefn {Built-in Function} float __builtin_nanf (const char *str)
6572 Similar to @code{__builtin_nan}, except the return type is @code{float}.
6573 @end deftypefn
6574
6575 @deftypefn {Built-in Function} {long double} __builtin_nanl (const char *str)
6576 Similar to @code{__builtin_nan}, except the return type is @code{long double}.
6577 @end deftypefn
6578
6579 @deftypefn {Built-in Function} double __builtin_nans (const char *str)
6580 Similar to @code{__builtin_nan}, except the significand is forced
6581 to be a signaling NaN@. The @code{nans} function is proposed by
6582 @uref{http://www.open-std.org/jtc1/sc22/wg14/www/docs/n965.htm,,WG14 N965}.
6583 @end deftypefn
6584
6585 @deftypefn {Built-in Function} float __builtin_nansf (const char *str)
6586 Similar to @code{__builtin_nans}, except the return type is @code{float}.
6587 @end deftypefn
6588
6589 @deftypefn {Built-in Function} {long double} __builtin_nansl (const char *str)
6590 Similar to @code{__builtin_nans}, except the return type is @code{long double}.
6591 @end deftypefn
6592
6593 @deftypefn {Built-in Function} int __builtin_ffs (unsigned int x)
6594 Returns one plus the index of the least significant 1-bit of @var{x}, or
6595 if @var{x} is zero, returns zero.
6596 @end deftypefn
6597
6598 @deftypefn {Built-in Function} int __builtin_clz (unsigned int x)
6599 Returns the number of leading 0-bits in @var{x}, starting at the most
6600 significant bit position. If @var{x} is 0, the result is undefined.
6601 @end deftypefn
6602
6603 @deftypefn {Built-in Function} int __builtin_ctz (unsigned int x)
6604 Returns the number of trailing 0-bits in @var{x}, starting at the least
6605 significant bit position. If @var{x} is 0, the result is undefined.
6606 @end deftypefn
6607
6608 @deftypefn {Built-in Function} int __builtin_popcount (unsigned int x)
6609 Returns the number of 1-bits in @var{x}.
6610 @end deftypefn
6611
6612 @deftypefn {Built-in Function} int __builtin_parity (unsigned int x)
6613 Returns the parity of @var{x}, i.e.@: the number of 1-bits in @var{x}
6614 modulo 2.
6615 @end deftypefn
6616
6617 @deftypefn {Built-in Function} int __builtin_ffsl (unsigned long)
6618 Similar to @code{__builtin_ffs}, except the argument type is
6619 @code{unsigned long}.
6620 @end deftypefn
6621
6622 @deftypefn {Built-in Function} int __builtin_clzl (unsigned long)
6623 Similar to @code{__builtin_clz}, except the argument type is
6624 @code{unsigned long}.
6625 @end deftypefn
6626
6627 @deftypefn {Built-in Function} int __builtin_ctzl (unsigned long)
6628 Similar to @code{__builtin_ctz}, except the argument type is
6629 @code{unsigned long}.
6630 @end deftypefn
6631
6632 @deftypefn {Built-in Function} int __builtin_popcountl (unsigned long)
6633 Similar to @code{__builtin_popcount}, except the argument type is
6634 @code{unsigned long}.
6635 @end deftypefn
6636
6637 @deftypefn {Built-in Function} int __builtin_parityl (unsigned long)
6638 Similar to @code{__builtin_parity}, except the argument type is
6639 @code{unsigned long}.
6640 @end deftypefn
6641
6642 @deftypefn {Built-in Function} int __builtin_ffsll (unsigned long long)
6643 Similar to @code{__builtin_ffs}, except the argument type is
6644 @code{unsigned long long}.
6645 @end deftypefn
6646
6647 @deftypefn {Built-in Function} int __builtin_clzll (unsigned long long)
6648 Similar to @code{__builtin_clz}, except the argument type is
6649 @code{unsigned long long}.
6650 @end deftypefn
6651
6652 @deftypefn {Built-in Function} int __builtin_ctzll (unsigned long long)
6653 Similar to @code{__builtin_ctz}, except the argument type is
6654 @code{unsigned long long}.
6655 @end deftypefn
6656
6657 @deftypefn {Built-in Function} int __builtin_popcountll (unsigned long long)
6658 Similar to @code{__builtin_popcount}, except the argument type is
6659 @code{unsigned long long}.
6660 @end deftypefn
6661
6662 @deftypefn {Built-in Function} int __builtin_parityll (unsigned long long)
6663 Similar to @code{__builtin_parity}, except the argument type is
6664 @code{unsigned long long}.
6665 @end deftypefn
6666
6667 @deftypefn {Built-in Function} double __builtin_powi (double, int)
6668 Returns the first argument raised to the power of the second. Unlike the
6669 @code{pow} function no guarantees about precision and rounding are made.
6670 @end deftypefn
6671
6672 @deftypefn {Built-in Function} float __builtin_powif (float, int)
6673 Similar to @code{__builtin_powi}, except the argument and return types
6674 are @code{float}.
6675 @end deftypefn
6676
6677 @deftypefn {Built-in Function} {long double} __builtin_powil (long double, int)
6678 Similar to @code{__builtin_powi}, except the argument and return types
6679 are @code{long double}.
6680 @end deftypefn
6681
6682 @deftypefn {Built-in Function} int32_t __builtin_bswap32 (int32_t x)
6683 Returns @var{x} with the order of the bytes reversed; for example,
6684 @code{0xaabbccdd} becomes @code{0xddccbbaa}. Byte here always means
6685 exactly 8 bits.
6686 @end deftypefn
6687
6688 @deftypefn {Built-in Function} int64_t __builtin_bswap64 (int64_t x)
6689 Similar to @code{__builtin_bswap32}, except the argument and return types
6690 are 64-bit.
6691 @end deftypefn
6692
6693 @node Target Builtins
6694 @section Built-in Functions Specific to Particular Target Machines
6695
6696 On some target machines, GCC supports many built-in functions specific
6697 to those machines. Generally these generate calls to specific machine
6698 instructions, but allow the compiler to schedule those calls.
6699
6700 @menu
6701 * Alpha Built-in Functions::
6702 * ARM iWMMXt Built-in Functions::
6703 * ARM NEON Intrinsics::
6704 * Blackfin Built-in Functions::
6705 * FR-V Built-in Functions::
6706 * X86 Built-in Functions::
6707 * MIPS DSP Built-in Functions::
6708 * MIPS Paired-Single Support::
6709 * PowerPC AltiVec Built-in Functions::
6710 * SPARC VIS Built-in Functions::
6711 * SPU Built-in Functions::
6712 @end menu
6713
6714 @node Alpha Built-in Functions
6715 @subsection Alpha Built-in Functions
6716
6717 These built-in functions are available for the Alpha family of
6718 processors, depending on the command-line switches used.
6719
6720 The following built-in functions are always available. They
6721 all generate the machine instruction that is part of the name.
6722
6723 @smallexample
6724 long __builtin_alpha_implver (void)
6725 long __builtin_alpha_rpcc (void)
6726 long __builtin_alpha_amask (long)
6727 long __builtin_alpha_cmpbge (long, long)
6728 long __builtin_alpha_extbl (long, long)
6729 long __builtin_alpha_extwl (long, long)
6730 long __builtin_alpha_extll (long, long)
6731 long __builtin_alpha_extql (long, long)
6732 long __builtin_alpha_extwh (long, long)
6733 long __builtin_alpha_extlh (long, long)
6734 long __builtin_alpha_extqh (long, long)
6735 long __builtin_alpha_insbl (long, long)
6736 long __builtin_alpha_inswl (long, long)
6737 long __builtin_alpha_insll (long, long)
6738 long __builtin_alpha_insql (long, long)
6739 long __builtin_alpha_inswh (long, long)
6740 long __builtin_alpha_inslh (long, long)
6741 long __builtin_alpha_insqh (long, long)
6742 long __builtin_alpha_mskbl (long, long)
6743 long __builtin_alpha_mskwl (long, long)
6744 long __builtin_alpha_mskll (long, long)
6745 long __builtin_alpha_mskql (long, long)
6746 long __builtin_alpha_mskwh (long, long)
6747 long __builtin_alpha_msklh (long, long)
6748 long __builtin_alpha_mskqh (long, long)
6749 long __builtin_alpha_umulh (long, long)
6750 long __builtin_alpha_zap (long, long)
6751 long __builtin_alpha_zapnot (long, long)
6752 @end smallexample
6753
6754 The following built-in functions are always with @option{-mmax}
6755 or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{pca56} or
6756 later. They all generate the machine instruction that is part
6757 of the name.
6758
6759 @smallexample
6760 long __builtin_alpha_pklb (long)
6761 long __builtin_alpha_pkwb (long)
6762 long __builtin_alpha_unpkbl (long)
6763 long __builtin_alpha_unpkbw (long)
6764 long __builtin_alpha_minub8 (long, long)
6765 long __builtin_alpha_minsb8 (long, long)
6766 long __builtin_alpha_minuw4 (long, long)
6767 long __builtin_alpha_minsw4 (long, long)
6768 long __builtin_alpha_maxub8 (long, long)
6769 long __builtin_alpha_maxsb8 (long, long)
6770 long __builtin_alpha_maxuw4 (long, long)
6771 long __builtin_alpha_maxsw4 (long, long)
6772 long __builtin_alpha_perr (long, long)
6773 @end smallexample
6774
6775 The following built-in functions are always with @option{-mcix}
6776 or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{ev67} or
6777 later. They all generate the machine instruction that is part
6778 of the name.
6779
6780 @smallexample
6781 long __builtin_alpha_cttz (long)
6782 long __builtin_alpha_ctlz (long)
6783 long __builtin_alpha_ctpop (long)
6784 @end smallexample
6785
6786 The following builtins are available on systems that use the OSF/1
6787 PALcode. Normally they invoke the @code{rduniq} and @code{wruniq}
6788 PAL calls, but when invoked with @option{-mtls-kernel}, they invoke
6789 @code{rdval} and @code{wrval}.
6790
6791 @smallexample
6792 void *__builtin_thread_pointer (void)
6793 void __builtin_set_thread_pointer (void *)
6794 @end smallexample
6795
6796 @node ARM iWMMXt Built-in Functions
6797 @subsection ARM iWMMXt Built-in Functions
6798
6799 These built-in functions are available for the ARM family of
6800 processors when the @option{-mcpu=iwmmxt} switch is used:
6801
6802 @smallexample
6803 typedef int v2si __attribute__ ((vector_size (8)));
6804 typedef short v4hi __attribute__ ((vector_size (8)));
6805 typedef char v8qi __attribute__ ((vector_size (8)));
6806
6807 int __builtin_arm_getwcx (int)
6808 void __builtin_arm_setwcx (int, int)
6809 int __builtin_arm_textrmsb (v8qi, int)
6810 int __builtin_arm_textrmsh (v4hi, int)
6811 int __builtin_arm_textrmsw (v2si, int)
6812 int __builtin_arm_textrmub (v8qi, int)
6813 int __builtin_arm_textrmuh (v4hi, int)
6814 int __builtin_arm_textrmuw (v2si, int)
6815 v8qi __builtin_arm_tinsrb (v8qi, int)
6816 v4hi __builtin_arm_tinsrh (v4hi, int)
6817 v2si __builtin_arm_tinsrw (v2si, int)
6818 long long __builtin_arm_tmia (long long, int, int)
6819 long long __builtin_arm_tmiabb (long long, int, int)
6820 long long __builtin_arm_tmiabt (long long, int, int)
6821 long long __builtin_arm_tmiaph (long long, int, int)
6822 long long __builtin_arm_tmiatb (long long, int, int)
6823 long long __builtin_arm_tmiatt (long long, int, int)
6824 int __builtin_arm_tmovmskb (v8qi)
6825 int __builtin_arm_tmovmskh (v4hi)
6826 int __builtin_arm_tmovmskw (v2si)
6827 long long __builtin_arm_waccb (v8qi)
6828 long long __builtin_arm_wacch (v4hi)
6829 long long __builtin_arm_waccw (v2si)
6830 v8qi __builtin_arm_waddb (v8qi, v8qi)
6831 v8qi __builtin_arm_waddbss (v8qi, v8qi)
6832 v8qi __builtin_arm_waddbus (v8qi, v8qi)
6833 v4hi __builtin_arm_waddh (v4hi, v4hi)
6834 v4hi __builtin_arm_waddhss (v4hi, v4hi)
6835 v4hi __builtin_arm_waddhus (v4hi, v4hi)
6836 v2si __builtin_arm_waddw (v2si, v2si)
6837 v2si __builtin_arm_waddwss (v2si, v2si)
6838 v2si __builtin_arm_waddwus (v2si, v2si)
6839 v8qi __builtin_arm_walign (v8qi, v8qi, int)
6840 long long __builtin_arm_wand(long long, long long)
6841 long long __builtin_arm_wandn (long long, long long)
6842 v8qi __builtin_arm_wavg2b (v8qi, v8qi)
6843 v8qi __builtin_arm_wavg2br (v8qi, v8qi)
6844 v4hi __builtin_arm_wavg2h (v4hi, v4hi)
6845 v4hi __builtin_arm_wavg2hr (v4hi, v4hi)
6846 v8qi __builtin_arm_wcmpeqb (v8qi, v8qi)
6847 v4hi __builtin_arm_wcmpeqh (v4hi, v4hi)
6848 v2si __builtin_arm_wcmpeqw (v2si, v2si)
6849 v8qi __builtin_arm_wcmpgtsb (v8qi, v8qi)
6850 v4hi __builtin_arm_wcmpgtsh (v4hi, v4hi)
6851 v2si __builtin_arm_wcmpgtsw (v2si, v2si)
6852 v8qi __builtin_arm_wcmpgtub (v8qi, v8qi)
6853 v4hi __builtin_arm_wcmpgtuh (v4hi, v4hi)
6854 v2si __builtin_arm_wcmpgtuw (v2si, v2si)
6855 long long __builtin_arm_wmacs (long long, v4hi, v4hi)
6856 long long __builtin_arm_wmacsz (v4hi, v4hi)
6857 long long __builtin_arm_wmacu (long long, v4hi, v4hi)
6858 long long __builtin_arm_wmacuz (v4hi, v4hi)
6859 v4hi __builtin_arm_wmadds (v4hi, v4hi)
6860 v4hi __builtin_arm_wmaddu (v4hi, v4hi)
6861 v8qi __builtin_arm_wmaxsb (v8qi, v8qi)
6862 v4hi __builtin_arm_wmaxsh (v4hi, v4hi)
6863 v2si __builtin_arm_wmaxsw (v2si, v2si)
6864 v8qi __builtin_arm_wmaxub (v8qi, v8qi)
6865 v4hi __builtin_arm_wmaxuh (v4hi, v4hi)
6866 v2si __builtin_arm_wmaxuw (v2si, v2si)
6867 v8qi __builtin_arm_wminsb (v8qi, v8qi)
6868 v4hi __builtin_arm_wminsh (v4hi, v4hi)
6869 v2si __builtin_arm_wminsw (v2si, v2si)
6870 v8qi __builtin_arm_wminub (v8qi, v8qi)
6871 v4hi __builtin_arm_wminuh (v4hi, v4hi)
6872 v2si __builtin_arm_wminuw (v2si, v2si)
6873 v4hi __builtin_arm_wmulsm (v4hi, v4hi)
6874 v4hi __builtin_arm_wmulul (v4hi, v4hi)
6875 v4hi __builtin_arm_wmulum (v4hi, v4hi)
6876 long long __builtin_arm_wor (long long, long long)
6877 v2si __builtin_arm_wpackdss (long long, long long)
6878 v2si __builtin_arm_wpackdus (long long, long long)
6879 v8qi __builtin_arm_wpackhss (v4hi, v4hi)
6880 v8qi __builtin_arm_wpackhus (v4hi, v4hi)
6881 v4hi __builtin_arm_wpackwss (v2si, v2si)
6882 v4hi __builtin_arm_wpackwus (v2si, v2si)
6883 long long __builtin_arm_wrord (long long, long long)
6884 long long __builtin_arm_wrordi (long long, int)
6885 v4hi __builtin_arm_wrorh (v4hi, long long)
6886 v4hi __builtin_arm_wrorhi (v4hi, int)
6887 v2si __builtin_arm_wrorw (v2si, long long)
6888 v2si __builtin_arm_wrorwi (v2si, int)
6889 v2si __builtin_arm_wsadb (v8qi, v8qi)
6890 v2si __builtin_arm_wsadbz (v8qi, v8qi)
6891 v2si __builtin_arm_wsadh (v4hi, v4hi)
6892 v2si __builtin_arm_wsadhz (v4hi, v4hi)
6893 v4hi __builtin_arm_wshufh (v4hi, int)
6894 long long __builtin_arm_wslld (long long, long long)
6895 long long __builtin_arm_wslldi (long long, int)
6896 v4hi __builtin_arm_wsllh (v4hi, long long)
6897 v4hi __builtin_arm_wsllhi (v4hi, int)
6898 v2si __builtin_arm_wsllw (v2si, long long)
6899 v2si __builtin_arm_wsllwi (v2si, int)
6900 long long __builtin_arm_wsrad (long long, long long)
6901 long long __builtin_arm_wsradi (long long, int)
6902 v4hi __builtin_arm_wsrah (v4hi, long long)
6903 v4hi __builtin_arm_wsrahi (v4hi, int)
6904 v2si __builtin_arm_wsraw (v2si, long long)
6905 v2si __builtin_arm_wsrawi (v2si, int)
6906 long long __builtin_arm_wsrld (long long, long long)
6907 long long __builtin_arm_wsrldi (long long, int)
6908 v4hi __builtin_arm_wsrlh (v4hi, long long)
6909 v4hi __builtin_arm_wsrlhi (v4hi, int)
6910 v2si __builtin_arm_wsrlw (v2si, long long)
6911 v2si __builtin_arm_wsrlwi (v2si, int)
6912 v8qi __builtin_arm_wsubb (v8qi, v8qi)
6913 v8qi __builtin_arm_wsubbss (v8qi, v8qi)
6914 v8qi __builtin_arm_wsubbus (v8qi, v8qi)
6915 v4hi __builtin_arm_wsubh (v4hi, v4hi)
6916 v4hi __builtin_arm_wsubhss (v4hi, v4hi)
6917 v4hi __builtin_arm_wsubhus (v4hi, v4hi)
6918 v2si __builtin_arm_wsubw (v2si, v2si)
6919 v2si __builtin_arm_wsubwss (v2si, v2si)
6920 v2si __builtin_arm_wsubwus (v2si, v2si)
6921 v4hi __builtin_arm_wunpckehsb (v8qi)
6922 v2si __builtin_arm_wunpckehsh (v4hi)
6923 long long __builtin_arm_wunpckehsw (v2si)
6924 v4hi __builtin_arm_wunpckehub (v8qi)
6925 v2si __builtin_arm_wunpckehuh (v4hi)
6926 long long __builtin_arm_wunpckehuw (v2si)
6927 v4hi __builtin_arm_wunpckelsb (v8qi)
6928 v2si __builtin_arm_wunpckelsh (v4hi)
6929 long long __builtin_arm_wunpckelsw (v2si)
6930 v4hi __builtin_arm_wunpckelub (v8qi)
6931 v2si __builtin_arm_wunpckeluh (v4hi)
6932 long long __builtin_arm_wunpckeluw (v2si)
6933 v8qi __builtin_arm_wunpckihb (v8qi, v8qi)
6934 v4hi __builtin_arm_wunpckihh (v4hi, v4hi)
6935 v2si __builtin_arm_wunpckihw (v2si, v2si)
6936 v8qi __builtin_arm_wunpckilb (v8qi, v8qi)
6937 v4hi __builtin_arm_wunpckilh (v4hi, v4hi)
6938 v2si __builtin_arm_wunpckilw (v2si, v2si)
6939 long long __builtin_arm_wxor (long long, long long)
6940 long long __builtin_arm_wzero ()
6941 @end smallexample
6942
6943 @node ARM NEON Intrinsics
6944 @subsection ARM NEON Intrinsics
6945
6946 These built-in intrinsics for the ARM Advanced SIMD extension are available
6947 when the @option{-mfpu=neon} switch is used:
6948
6949 @include arm-neon-intrinsics.texi
6950
6951 @node Blackfin Built-in Functions
6952 @subsection Blackfin Built-in Functions
6953
6954 Currently, there are two Blackfin-specific built-in functions. These are
6955 used for generating @code{CSYNC} and @code{SSYNC} machine insns without
6956 using inline assembly; by using these built-in functions the compiler can
6957 automatically add workarounds for hardware errata involving these
6958 instructions. These functions are named as follows:
6959
6960 @smallexample
6961 void __builtin_bfin_csync (void)
6962 void __builtin_bfin_ssync (void)
6963 @end smallexample
6964
6965 @node FR-V Built-in Functions
6966 @subsection FR-V Built-in Functions
6967
6968 GCC provides many FR-V-specific built-in functions. In general,
6969 these functions are intended to be compatible with those described
6970 by @cite{FR-V Family, Softune C/C++ Compiler Manual (V6), Fujitsu
6971 Semiconductor}. The two exceptions are @code{__MDUNPACKH} and
6972 @code{__MBTOHE}, the gcc forms of which pass 128-bit values by
6973 pointer rather than by value.
6974
6975 Most of the functions are named after specific FR-V instructions.
6976 Such functions are said to be ``directly mapped'' and are summarized
6977 here in tabular form.
6978
6979 @menu
6980 * Argument Types::
6981 * Directly-mapped Integer Functions::
6982 * Directly-mapped Media Functions::
6983 * Raw read/write Functions::
6984 * Other Built-in Functions::
6985 @end menu
6986
6987 @node Argument Types
6988 @subsubsection Argument Types
6989
6990 The arguments to the built-in functions can be divided into three groups:
6991 register numbers, compile-time constants and run-time values. In order
6992 to make this classification clear at a glance, the arguments and return
6993 values are given the following pseudo types:
6994
6995 @multitable @columnfractions .20 .30 .15 .35
6996 @item Pseudo type @tab Real C type @tab Constant? @tab Description
6997 @item @code{uh} @tab @code{unsigned short} @tab No @tab an unsigned halfword
6998 @item @code{uw1} @tab @code{unsigned int} @tab No @tab an unsigned word
6999 @item @code{sw1} @tab @code{int} @tab No @tab a signed word
7000 @item @code{uw2} @tab @code{unsigned long long} @tab No
7001 @tab an unsigned doubleword
7002 @item @code{sw2} @tab @code{long long} @tab No @tab a signed doubleword
7003 @item @code{const} @tab @code{int} @tab Yes @tab an integer constant
7004 @item @code{acc} @tab @code{int} @tab Yes @tab an ACC register number
7005 @item @code{iacc} @tab @code{int} @tab Yes @tab an IACC register number
7006 @end multitable
7007
7008 These pseudo types are not defined by GCC, they are simply a notational
7009 convenience used in this manual.
7010
7011 Arguments of type @code{uh}, @code{uw1}, @code{sw1}, @code{uw2}
7012 and @code{sw2} are evaluated at run time. They correspond to
7013 register operands in the underlying FR-V instructions.
7014
7015 @code{const} arguments represent immediate operands in the underlying
7016 FR-V instructions. They must be compile-time constants.
7017
7018 @code{acc} arguments are evaluated at compile time and specify the number
7019 of an accumulator register. For example, an @code{acc} argument of 2
7020 will select the ACC2 register.
7021
7022 @code{iacc} arguments are similar to @code{acc} arguments but specify the
7023 number of an IACC register. See @pxref{Other Built-in Functions}
7024 for more details.
7025
7026 @node Directly-mapped Integer Functions
7027 @subsubsection Directly-mapped Integer Functions
7028
7029 The functions listed below map directly to FR-V I-type instructions.
7030
7031 @multitable @columnfractions .45 .32 .23
7032 @item Function prototype @tab Example usage @tab Assembly output
7033 @item @code{sw1 __ADDSS (sw1, sw1)}
7034 @tab @code{@var{c} = __ADDSS (@var{a}, @var{b})}
7035 @tab @code{ADDSS @var{a},@var{b},@var{c}}
7036 @item @code{sw1 __SCAN (sw1, sw1)}
7037 @tab @code{@var{c} = __SCAN (@var{a}, @var{b})}
7038 @tab @code{SCAN @var{a},@var{b},@var{c}}
7039 @item @code{sw1 __SCUTSS (sw1)}
7040 @tab @code{@var{b} = __SCUTSS (@var{a})}
7041 @tab @code{SCUTSS @var{a},@var{b}}
7042 @item @code{sw1 __SLASS (sw1, sw1)}
7043 @tab @code{@var{c} = __SLASS (@var{a}, @var{b})}
7044 @tab @code{SLASS @var{a},@var{b},@var{c}}
7045 @item @code{void __SMASS (sw1, sw1)}
7046 @tab @code{__SMASS (@var{a}, @var{b})}
7047 @tab @code{SMASS @var{a},@var{b}}
7048 @item @code{void __SMSSS (sw1, sw1)}
7049 @tab @code{__SMSSS (@var{a}, @var{b})}
7050 @tab @code{SMSSS @var{a},@var{b}}
7051 @item @code{void __SMU (sw1, sw1)}
7052 @tab @code{__SMU (@var{a}, @var{b})}
7053 @tab @code{SMU @var{a},@var{b}}
7054 @item @code{sw2 __SMUL (sw1, sw1)}
7055 @tab @code{@var{c} = __SMUL (@var{a}, @var{b})}
7056 @tab @code{SMUL @var{a},@var{b},@var{c}}
7057 @item @code{sw1 __SUBSS (sw1, sw1)}
7058 @tab @code{@var{c} = __SUBSS (@var{a}, @var{b})}
7059 @tab @code{SUBSS @var{a},@var{b},@var{c}}
7060 @item @code{uw2 __UMUL (uw1, uw1)}
7061 @tab @code{@var{c} = __UMUL (@var{a}, @var{b})}
7062 @tab @code{UMUL @var{a},@var{b},@var{c}}
7063 @end multitable
7064
7065 @node Directly-mapped Media Functions
7066 @subsubsection Directly-mapped Media Functions
7067
7068 The functions listed below map directly to FR-V M-type instructions.
7069
7070 @multitable @columnfractions .45 .32 .23
7071 @item Function prototype @tab Example usage @tab Assembly output
7072 @item @code{uw1 __MABSHS (sw1)}
7073 @tab @code{@var{b} = __MABSHS (@var{a})}
7074 @tab @code{MABSHS @var{a},@var{b}}
7075 @item @code{void __MADDACCS (acc, acc)}
7076 @tab @code{__MADDACCS (@var{b}, @var{a})}
7077 @tab @code{MADDACCS @var{a},@var{b}}
7078 @item @code{sw1 __MADDHSS (sw1, sw1)}
7079 @tab @code{@var{c} = __MADDHSS (@var{a}, @var{b})}
7080 @tab @code{MADDHSS @var{a},@var{b},@var{c}}
7081 @item @code{uw1 __MADDHUS (uw1, uw1)}
7082 @tab @code{@var{c} = __MADDHUS (@var{a}, @var{b})}
7083 @tab @code{MADDHUS @var{a},@var{b},@var{c}}
7084 @item @code{uw1 __MAND (uw1, uw1)}
7085 @tab @code{@var{c} = __MAND (@var{a}, @var{b})}
7086 @tab @code{MAND @var{a},@var{b},@var{c}}
7087 @item @code{void __MASACCS (acc, acc)}
7088 @tab @code{__MASACCS (@var{b}, @var{a})}
7089 @tab @code{MASACCS @var{a},@var{b}}
7090 @item @code{uw1 __MAVEH (uw1, uw1)}
7091 @tab @code{@var{c} = __MAVEH (@var{a}, @var{b})}
7092 @tab @code{MAVEH @var{a},@var{b},@var{c}}
7093 @item @code{uw2 __MBTOH (uw1)}
7094 @tab @code{@var{b} = __MBTOH (@var{a})}
7095 @tab @code{MBTOH @var{a},@var{b}}
7096 @item @code{void __MBTOHE (uw1 *, uw1)}
7097 @tab @code{__MBTOHE (&@var{b}, @var{a})}
7098 @tab @code{MBTOHE @var{a},@var{b}}
7099 @item @code{void __MCLRACC (acc)}
7100 @tab @code{__MCLRACC (@var{a})}
7101 @tab @code{MCLRACC @var{a}}
7102 @item @code{void __MCLRACCA (void)}
7103 @tab @code{__MCLRACCA ()}
7104 @tab @code{MCLRACCA}
7105 @item @code{uw1 __Mcop1 (uw1, uw1)}
7106 @tab @code{@var{c} = __Mcop1 (@var{a}, @var{b})}
7107 @tab @code{Mcop1 @var{a},@var{b},@var{c}}
7108 @item @code{uw1 __Mcop2 (uw1, uw1)}
7109 @tab @code{@var{c} = __Mcop2 (@var{a}, @var{b})}
7110 @tab @code{Mcop2 @var{a},@var{b},@var{c}}
7111 @item @code{uw1 __MCPLHI (uw2, const)}
7112 @tab @code{@var{c} = __MCPLHI (@var{a}, @var{b})}
7113 @tab @code{MCPLHI @var{a},#@var{b},@var{c}}
7114 @item @code{uw1 __MCPLI (uw2, const)}
7115 @tab @code{@var{c} = __MCPLI (@var{a}, @var{b})}
7116 @tab @code{MCPLI @var{a},#@var{b},@var{c}}
7117 @item @code{void __MCPXIS (acc, sw1, sw1)}
7118 @tab @code{__MCPXIS (@var{c}, @var{a}, @var{b})}
7119 @tab @code{MCPXIS @var{a},@var{b},@var{c}}
7120 @item @code{void __MCPXIU (acc, uw1, uw1)}
7121 @tab @code{__MCPXIU (@var{c}, @var{a}, @var{b})}
7122 @tab @code{MCPXIU @var{a},@var{b},@var{c}}
7123 @item @code{void __MCPXRS (acc, sw1, sw1)}
7124 @tab @code{__MCPXRS (@var{c}, @var{a}, @var{b})}
7125 @tab @code{MCPXRS @var{a},@var{b},@var{c}}
7126 @item @code{void __MCPXRU (acc, uw1, uw1)}
7127 @tab @code{__MCPXRU (@var{c}, @var{a}, @var{b})}
7128 @tab @code{MCPXRU @var{a},@var{b},@var{c}}
7129 @item @code{uw1 __MCUT (acc, uw1)}
7130 @tab @code{@var{c} = __MCUT (@var{a}, @var{b})}
7131 @tab @code{MCUT @var{a},@var{b},@var{c}}
7132 @item @code{uw1 __MCUTSS (acc, sw1)}
7133 @tab @code{@var{c} = __MCUTSS (@var{a}, @var{b})}
7134 @tab @code{MCUTSS @var{a},@var{b},@var{c}}
7135 @item @code{void __MDADDACCS (acc, acc)}
7136 @tab @code{__MDADDACCS (@var{b}, @var{a})}
7137 @tab @code{MDADDACCS @var{a},@var{b}}
7138 @item @code{void __MDASACCS (acc, acc)}
7139 @tab @code{__MDASACCS (@var{b}, @var{a})}
7140 @tab @code{MDASACCS @var{a},@var{b}}
7141 @item @code{uw2 __MDCUTSSI (acc, const)}
7142 @tab @code{@var{c} = __MDCUTSSI (@var{a}, @var{b})}
7143 @tab @code{MDCUTSSI @var{a},#@var{b},@var{c}}
7144 @item @code{uw2 __MDPACKH (uw2, uw2)}
7145 @tab @code{@var{c} = __MDPACKH (@var{a}, @var{b})}
7146 @tab @code{MDPACKH @var{a},@var{b},@var{c}}
7147 @item @code{uw2 __MDROTLI (uw2, const)}
7148 @tab @code{@var{c} = __MDROTLI (@var{a}, @var{b})}
7149 @tab @code{MDROTLI @var{a},#@var{b},@var{c}}
7150 @item @code{void __MDSUBACCS (acc, acc)}
7151 @tab @code{__MDSUBACCS (@var{b}, @var{a})}
7152 @tab @code{MDSUBACCS @var{a},@var{b}}
7153 @item @code{void __MDUNPACKH (uw1 *, uw2)}
7154 @tab @code{__MDUNPACKH (&@var{b}, @var{a})}
7155 @tab @code{MDUNPACKH @var{a},@var{b}}
7156 @item @code{uw2 __MEXPDHD (uw1, const)}
7157 @tab @code{@var{c} = __MEXPDHD (@var{a}, @var{b})}
7158 @tab @code{MEXPDHD @var{a},#@var{b},@var{c}}
7159 @item @code{uw1 __MEXPDHW (uw1, const)}
7160 @tab @code{@var{c} = __MEXPDHW (@var{a}, @var{b})}
7161 @tab @code{MEXPDHW @var{a},#@var{b},@var{c}}
7162 @item @code{uw1 __MHDSETH (uw1, const)}
7163 @tab @code{@var{c} = __MHDSETH (@var{a}, @var{b})}
7164 @tab @code{MHDSETH @var{a},#@var{b},@var{c}}
7165 @item @code{sw1 __MHDSETS (const)}
7166 @tab @code{@var{b} = __MHDSETS (@var{a})}
7167 @tab @code{MHDSETS #@var{a},@var{b}}
7168 @item @code{uw1 __MHSETHIH (uw1, const)}
7169 @tab @code{@var{b} = __MHSETHIH (@var{b}, @var{a})}
7170 @tab @code{MHSETHIH #@var{a},@var{b}}
7171 @item @code{sw1 __MHSETHIS (sw1, const)}
7172 @tab @code{@var{b} = __MHSETHIS (@var{b}, @var{a})}
7173 @tab @code{MHSETHIS #@var{a},@var{b}}
7174 @item @code{uw1 __MHSETLOH (uw1, const)}
7175 @tab @code{@var{b} = __MHSETLOH (@var{b}, @var{a})}
7176 @tab @code{MHSETLOH #@var{a},@var{b}}
7177 @item @code{sw1 __MHSETLOS (sw1, const)}
7178 @tab @code{@var{b} = __MHSETLOS (@var{b}, @var{a})}
7179 @tab @code{MHSETLOS #@var{a},@var{b}}
7180 @item @code{uw1 __MHTOB (uw2)}
7181 @tab @code{@var{b} = __MHTOB (@var{a})}
7182 @tab @code{MHTOB @var{a},@var{b}}
7183 @item @code{void __MMACHS (acc, sw1, sw1)}
7184 @tab @code{__MMACHS (@var{c}, @var{a}, @var{b})}
7185 @tab @code{MMACHS @var{a},@var{b},@var{c}}
7186 @item @code{void __MMACHU (acc, uw1, uw1)}
7187 @tab @code{__MMACHU (@var{c}, @var{a}, @var{b})}
7188 @tab @code{MMACHU @var{a},@var{b},@var{c}}
7189 @item @code{void __MMRDHS (acc, sw1, sw1)}
7190 @tab @code{__MMRDHS (@var{c}, @var{a}, @var{b})}
7191 @tab @code{MMRDHS @var{a},@var{b},@var{c}}
7192 @item @code{void __MMRDHU (acc, uw1, uw1)}
7193 @tab @code{__MMRDHU (@var{c}, @var{a}, @var{b})}
7194 @tab @code{MMRDHU @var{a},@var{b},@var{c}}
7195 @item @code{void __MMULHS (acc, sw1, sw1)}
7196 @tab @code{__MMULHS (@var{c}, @var{a}, @var{b})}
7197 @tab @code{MMULHS @var{a},@var{b},@var{c}}
7198 @item @code{void __MMULHU (acc, uw1, uw1)}
7199 @tab @code{__MMULHU (@var{c}, @var{a}, @var{b})}
7200 @tab @code{MMULHU @var{a},@var{b},@var{c}}
7201 @item @code{void __MMULXHS (acc, sw1, sw1)}
7202 @tab @code{__MMULXHS (@var{c}, @var{a}, @var{b})}
7203 @tab @code{MMULXHS @var{a},@var{b},@var{c}}
7204 @item @code{void __MMULXHU (acc, uw1, uw1)}
7205 @tab @code{__MMULXHU (@var{c}, @var{a}, @var{b})}
7206 @tab @code{MMULXHU @var{a},@var{b},@var{c}}
7207 @item @code{uw1 __MNOT (uw1)}
7208 @tab @code{@var{b} = __MNOT (@var{a})}
7209 @tab @code{MNOT @var{a},@var{b}}
7210 @item @code{uw1 __MOR (uw1, uw1)}
7211 @tab @code{@var{c} = __MOR (@var{a}, @var{b})}
7212 @tab @code{MOR @var{a},@var{b},@var{c}}
7213 @item @code{uw1 __MPACKH (uh, uh)}
7214 @tab @code{@var{c} = __MPACKH (@var{a}, @var{b})}
7215 @tab @code{MPACKH @var{a},@var{b},@var{c}}
7216 @item @code{sw2 __MQADDHSS (sw2, sw2)}
7217 @tab @code{@var{c} = __MQADDHSS (@var{a}, @var{b})}
7218 @tab @code{MQADDHSS @var{a},@var{b},@var{c}}
7219 @item @code{uw2 __MQADDHUS (uw2, uw2)}
7220 @tab @code{@var{c} = __MQADDHUS (@var{a}, @var{b})}
7221 @tab @code{MQADDHUS @var{a},@var{b},@var{c}}
7222 @item @code{void __MQCPXIS (acc, sw2, sw2)}
7223 @tab @code{__MQCPXIS (@var{c}, @var{a}, @var{b})}
7224 @tab @code{MQCPXIS @var{a},@var{b},@var{c}}
7225 @item @code{void __MQCPXIU (acc, uw2, uw2)}
7226 @tab @code{__MQCPXIU (@var{c}, @var{a}, @var{b})}
7227 @tab @code{MQCPXIU @var{a},@var{b},@var{c}}
7228 @item @code{void __MQCPXRS (acc, sw2, sw2)}
7229 @tab @code{__MQCPXRS (@var{c}, @var{a}, @var{b})}
7230 @tab @code{MQCPXRS @var{a},@var{b},@var{c}}
7231 @item @code{void __MQCPXRU (acc, uw2, uw2)}
7232 @tab @code{__MQCPXRU (@var{c}, @var{a}, @var{b})}
7233 @tab @code{MQCPXRU @var{a},@var{b},@var{c}}
7234 @item @code{sw2 __MQLCLRHS (sw2, sw2)}
7235 @tab @code{@var{c} = __MQLCLRHS (@var{a}, @var{b})}
7236 @tab @code{MQLCLRHS @var{a},@var{b},@var{c}}
7237 @item @code{sw2 __MQLMTHS (sw2, sw2)}
7238 @tab @code{@var{c} = __MQLMTHS (@var{a}, @var{b})}
7239 @tab @code{MQLMTHS @var{a},@var{b},@var{c}}
7240 @item @code{void __MQMACHS (acc, sw2, sw2)}
7241 @tab @code{__MQMACHS (@var{c}, @var{a}, @var{b})}
7242 @tab @code{MQMACHS @var{a},@var{b},@var{c}}
7243 @item @code{void __MQMACHU (acc, uw2, uw2)}
7244 @tab @code{__MQMACHU (@var{c}, @var{a}, @var{b})}
7245 @tab @code{MQMACHU @var{a},@var{b},@var{c}}
7246 @item @code{void __MQMACXHS (acc, sw2, sw2)}
7247 @tab @code{__MQMACXHS (@var{c}, @var{a}, @var{b})}
7248 @tab @code{MQMACXHS @var{a},@var{b},@var{c}}
7249 @item @code{void __MQMULHS (acc, sw2, sw2)}
7250 @tab @code{__MQMULHS (@var{c}, @var{a}, @var{b})}
7251 @tab @code{MQMULHS @var{a},@var{b},@var{c}}
7252 @item @code{void __MQMULHU (acc, uw2, uw2)}
7253 @tab @code{__MQMULHU (@var{c}, @var{a}, @var{b})}
7254 @tab @code{MQMULHU @var{a},@var{b},@var{c}}
7255 @item @code{void __MQMULXHS (acc, sw2, sw2)}
7256 @tab @code{__MQMULXHS (@var{c}, @var{a}, @var{b})}
7257 @tab @code{MQMULXHS @var{a},@var{b},@var{c}}
7258 @item @code{void __MQMULXHU (acc, uw2, uw2)}
7259 @tab @code{__MQMULXHU (@var{c}, @var{a}, @var{b})}
7260 @tab @code{MQMULXHU @var{a},@var{b},@var{c}}
7261 @item @code{sw2 __MQSATHS (sw2, sw2)}
7262 @tab @code{@var{c} = __MQSATHS (@var{a}, @var{b})}
7263 @tab @code{MQSATHS @var{a},@var{b},@var{c}}
7264 @item @code{uw2 __MQSLLHI (uw2, int)}
7265 @tab @code{@var{c} = __MQSLLHI (@var{a}, @var{b})}
7266 @tab @code{MQSLLHI @var{a},@var{b},@var{c}}
7267 @item @code{sw2 __MQSRAHI (sw2, int)}
7268 @tab @code{@var{c} = __MQSRAHI (@var{a}, @var{b})}
7269 @tab @code{MQSRAHI @var{a},@var{b},@var{c}}
7270 @item @code{sw2 __MQSUBHSS (sw2, sw2)}
7271 @tab @code{@var{c} = __MQSUBHSS (@var{a}, @var{b})}
7272 @tab @code{MQSUBHSS @var{a},@var{b},@var{c}}
7273 @item @code{uw2 __MQSUBHUS (uw2, uw2)}
7274 @tab @code{@var{c} = __MQSUBHUS (@var{a}, @var{b})}
7275 @tab @code{MQSUBHUS @var{a},@var{b},@var{c}}
7276 @item @code{void __MQXMACHS (acc, sw2, sw2)}
7277 @tab @code{__MQXMACHS (@var{c}, @var{a}, @var{b})}
7278 @tab @code{MQXMACHS @var{a},@var{b},@var{c}}
7279 @item @code{void __MQXMACXHS (acc, sw2, sw2)}
7280 @tab @code{__MQXMACXHS (@var{c}, @var{a}, @var{b})}
7281 @tab @code{MQXMACXHS @var{a},@var{b},@var{c}}
7282 @item @code{uw1 __MRDACC (acc)}
7283 @tab @code{@var{b} = __MRDACC (@var{a})}
7284 @tab @code{MRDACC @var{a},@var{b}}
7285 @item @code{uw1 __MRDACCG (acc)}
7286 @tab @code{@var{b} = __MRDACCG (@var{a})}
7287 @tab @code{MRDACCG @var{a},@var{b}}
7288 @item @code{uw1 __MROTLI (uw1, const)}
7289 @tab @code{@var{c} = __MROTLI (@var{a}, @var{b})}
7290 @tab @code{MROTLI @var{a},#@var{b},@var{c}}
7291 @item @code{uw1 __MROTRI (uw1, const)}
7292 @tab @code{@var{c} = __MROTRI (@var{a}, @var{b})}
7293 @tab @code{MROTRI @var{a},#@var{b},@var{c}}
7294 @item @code{sw1 __MSATHS (sw1, sw1)}
7295 @tab @code{@var{c} = __MSATHS (@var{a}, @var{b})}
7296 @tab @code{MSATHS @var{a},@var{b},@var{c}}
7297 @item @code{uw1 __MSATHU (uw1, uw1)}
7298 @tab @code{@var{c} = __MSATHU (@var{a}, @var{b})}
7299 @tab @code{MSATHU @var{a},@var{b},@var{c}}
7300 @item @code{uw1 __MSLLHI (uw1, const)}
7301 @tab @code{@var{c} = __MSLLHI (@var{a}, @var{b})}
7302 @tab @code{MSLLHI @var{a},#@var{b},@var{c}}
7303 @item @code{sw1 __MSRAHI (sw1, const)}
7304 @tab @code{@var{c} = __MSRAHI (@var{a}, @var{b})}
7305 @tab @code{MSRAHI @var{a},#@var{b},@var{c}}
7306 @item @code{uw1 __MSRLHI (uw1, const)}
7307 @tab @code{@var{c} = __MSRLHI (@var{a}, @var{b})}
7308 @tab @code{MSRLHI @var{a},#@var{b},@var{c}}
7309 @item @code{void __MSUBACCS (acc, acc)}
7310 @tab @code{__MSUBACCS (@var{b}, @var{a})}
7311 @tab @code{MSUBACCS @var{a},@var{b}}
7312 @item @code{sw1 __MSUBHSS (sw1, sw1)}
7313 @tab @code{@var{c} = __MSUBHSS (@var{a}, @var{b})}
7314 @tab @code{MSUBHSS @var{a},@var{b},@var{c}}
7315 @item @code{uw1 __MSUBHUS (uw1, uw1)}
7316 @tab @code{@var{c} = __MSUBHUS (@var{a}, @var{b})}
7317 @tab @code{MSUBHUS @var{a},@var{b},@var{c}}
7318 @item @code{void __MTRAP (void)}
7319 @tab @code{__MTRAP ()}
7320 @tab @code{MTRAP}
7321 @item @code{uw2 __MUNPACKH (uw1)}
7322 @tab @code{@var{b} = __MUNPACKH (@var{a})}
7323 @tab @code{MUNPACKH @var{a},@var{b}}
7324 @item @code{uw1 __MWCUT (uw2, uw1)}
7325 @tab @code{@var{c} = __MWCUT (@var{a}, @var{b})}
7326 @tab @code{MWCUT @var{a},@var{b},@var{c}}
7327 @item @code{void __MWTACC (acc, uw1)}
7328 @tab @code{__MWTACC (@var{b}, @var{a})}
7329 @tab @code{MWTACC @var{a},@var{b}}
7330 @item @code{void __MWTACCG (acc, uw1)}
7331 @tab @code{__MWTACCG (@var{b}, @var{a})}
7332 @tab @code{MWTACCG @var{a},@var{b}}
7333 @item @code{uw1 __MXOR (uw1, uw1)}
7334 @tab @code{@var{c} = __MXOR (@var{a}, @var{b})}
7335 @tab @code{MXOR @var{a},@var{b},@var{c}}
7336 @end multitable
7337
7338 @node Raw read/write Functions
7339 @subsubsection Raw read/write Functions
7340
7341 This sections describes built-in functions related to read and write
7342 instructions to access memory. These functions generate
7343 @code{membar} instructions to flush the I/O load and stores where
7344 appropriate, as described in Fujitsu's manual described above.
7345
7346 @table @code
7347
7348 @item unsigned char __builtin_read8 (void *@var{data})
7349 @item unsigned short __builtin_read16 (void *@var{data})
7350 @item unsigned long __builtin_read32 (void *@var{data})
7351 @item unsigned long long __builtin_read64 (void *@var{data})
7352
7353 @item void __builtin_write8 (void *@var{data}, unsigned char @var{datum})
7354 @item void __builtin_write16 (void *@var{data}, unsigned short @var{datum})
7355 @item void __builtin_write32 (void *@var{data}, unsigned long @var{datum})
7356 @item void __builtin_write64 (void *@var{data}, unsigned long long @var{datum})
7357 @end table
7358
7359 @node Other Built-in Functions
7360 @subsubsection Other Built-in Functions
7361
7362 This section describes built-in functions that are not named after
7363 a specific FR-V instruction.
7364
7365 @table @code
7366 @item sw2 __IACCreadll (iacc @var{reg})
7367 Return the full 64-bit value of IACC0@. The @var{reg} argument is reserved
7368 for future expansion and must be 0.
7369
7370 @item sw1 __IACCreadl (iacc @var{reg})
7371 Return the value of IACC0H if @var{reg} is 0 and IACC0L if @var{reg} is 1.
7372 Other values of @var{reg} are rejected as invalid.
7373
7374 @item void __IACCsetll (iacc @var{reg}, sw2 @var{x})
7375 Set the full 64-bit value of IACC0 to @var{x}. The @var{reg} argument
7376 is reserved for future expansion and must be 0.
7377
7378 @item void __IACCsetl (iacc @var{reg}, sw1 @var{x})
7379 Set IACC0H to @var{x} if @var{reg} is 0 and IACC0L to @var{x} if @var{reg}
7380 is 1. Other values of @var{reg} are rejected as invalid.
7381
7382 @item void __data_prefetch0 (const void *@var{x})
7383 Use the @code{dcpl} instruction to load the contents of address @var{x}
7384 into the data cache.
7385
7386 @item void __data_prefetch (const void *@var{x})
7387 Use the @code{nldub} instruction to load the contents of address @var{x}
7388 into the data cache. The instruction will be issued in slot I1@.
7389 @end table
7390
7391 @node X86 Built-in Functions
7392 @subsection X86 Built-in Functions
7393
7394 These built-in functions are available for the i386 and x86-64 family
7395 of computers, depending on the command-line switches used.
7396
7397 Note that, if you specify command-line switches such as @option{-msse},
7398 the compiler could use the extended instruction sets even if the built-ins
7399 are not used explicitly in the program. For this reason, applications
7400 which perform runtime CPU detection must compile separate files for each
7401 supported architecture, using the appropriate flags. In particular,
7402 the file containing the CPU detection code should be compiled without
7403 these options.
7404
7405 The following machine modes are available for use with MMX built-in functions
7406 (@pxref{Vector Extensions}): @code{V2SI} for a vector of two 32-bit integers,
7407 @code{V4HI} for a vector of four 16-bit integers, and @code{V8QI} for a
7408 vector of eight 8-bit integers. Some of the built-in functions operate on
7409 MMX registers as a whole 64-bit entity, these use @code{DI} as their mode.
7410
7411 If 3Dnow extensions are enabled, @code{V2SF} is used as a mode for a vector
7412 of two 32-bit floating point values.
7413
7414 If SSE extensions are enabled, @code{V4SF} is used for a vector of four 32-bit
7415 floating point values. Some instructions use a vector of four 32-bit
7416 integers, these use @code{V4SI}. Finally, some instructions operate on an
7417 entire vector register, interpreting it as a 128-bit integer, these use mode
7418 @code{TI}.
7419
7420 In 64-bit mode, the x86-64 family of processors uses additional built-in
7421 functions for efficient use of @code{TF} (@code{__float128}) 128-bit
7422 floating point and @code{TC} 128-bit complex floating point values.
7423
7424 The following floating point built-in functions are available in 64-bit
7425 mode. All of them implement the function that is part of the name.
7426
7427 @smallexample
7428 __float128 __builtin_fabsq (__float128)
7429 __float128 __builtin_copysignq (__float128, __float128)
7430 @end smallexample
7431
7432 The following floating point built-in functions are made available in the
7433 64-bit mode.
7434
7435 @table @code
7436 @item __float128 __builtin_infq (void)
7437 Similar to @code{__builtin_inf}, except the return type is @code{__float128}.
7438 @end table
7439
7440 The following built-in functions are made available by @option{-mmmx}.
7441 All of them generate the machine instruction that is part of the name.
7442
7443 @smallexample
7444 v8qi __builtin_ia32_paddb (v8qi, v8qi)
7445 v4hi __builtin_ia32_paddw (v4hi, v4hi)
7446 v2si __builtin_ia32_paddd (v2si, v2si)
7447 v8qi __builtin_ia32_psubb (v8qi, v8qi)
7448 v4hi __builtin_ia32_psubw (v4hi, v4hi)
7449 v2si __builtin_ia32_psubd (v2si, v2si)
7450 v8qi __builtin_ia32_paddsb (v8qi, v8qi)
7451 v4hi __builtin_ia32_paddsw (v4hi, v4hi)
7452 v8qi __builtin_ia32_psubsb (v8qi, v8qi)
7453 v4hi __builtin_ia32_psubsw (v4hi, v4hi)
7454 v8qi __builtin_ia32_paddusb (v8qi, v8qi)
7455 v4hi __builtin_ia32_paddusw (v4hi, v4hi)
7456 v8qi __builtin_ia32_psubusb (v8qi, v8qi)
7457 v4hi __builtin_ia32_psubusw (v4hi, v4hi)
7458 v4hi __builtin_ia32_pmullw (v4hi, v4hi)
7459 v4hi __builtin_ia32_pmulhw (v4hi, v4hi)
7460 di __builtin_ia32_pand (di, di)
7461 di __builtin_ia32_pandn (di,di)
7462 di __builtin_ia32_por (di, di)
7463 di __builtin_ia32_pxor (di, di)
7464 v8qi __builtin_ia32_pcmpeqb (v8qi, v8qi)
7465 v4hi __builtin_ia32_pcmpeqw (v4hi, v4hi)
7466 v2si __builtin_ia32_pcmpeqd (v2si, v2si)
7467 v8qi __builtin_ia32_pcmpgtb (v8qi, v8qi)
7468 v4hi __builtin_ia32_pcmpgtw (v4hi, v4hi)
7469 v2si __builtin_ia32_pcmpgtd (v2si, v2si)
7470 v8qi __builtin_ia32_punpckhbw (v8qi, v8qi)
7471 v4hi __builtin_ia32_punpckhwd (v4hi, v4hi)
7472 v2si __builtin_ia32_punpckhdq (v2si, v2si)
7473 v8qi __builtin_ia32_punpcklbw (v8qi, v8qi)
7474 v4hi __builtin_ia32_punpcklwd (v4hi, v4hi)
7475 v2si __builtin_ia32_punpckldq (v2si, v2si)
7476 v8qi __builtin_ia32_packsswb (v4hi, v4hi)
7477 v4hi __builtin_ia32_packssdw (v2si, v2si)
7478 v8qi __builtin_ia32_packuswb (v4hi, v4hi)
7479 @end smallexample
7480
7481 The following built-in functions are made available either with
7482 @option{-msse}, or with a combination of @option{-m3dnow} and
7483 @option{-march=athlon}. All of them generate the machine
7484 instruction that is part of the name.
7485
7486 @smallexample
7487 v4hi __builtin_ia32_pmulhuw (v4hi, v4hi)
7488 v8qi __builtin_ia32_pavgb (v8qi, v8qi)
7489 v4hi __builtin_ia32_pavgw (v4hi, v4hi)
7490 v4hi __builtin_ia32_psadbw (v8qi, v8qi)
7491 v8qi __builtin_ia32_pmaxub (v8qi, v8qi)
7492 v4hi __builtin_ia32_pmaxsw (v4hi, v4hi)
7493 v8qi __builtin_ia32_pminub (v8qi, v8qi)
7494 v4hi __builtin_ia32_pminsw (v4hi, v4hi)
7495 int __builtin_ia32_pextrw (v4hi, int)
7496 v4hi __builtin_ia32_pinsrw (v4hi, int, int)
7497 int __builtin_ia32_pmovmskb (v8qi)
7498 void __builtin_ia32_maskmovq (v8qi, v8qi, char *)
7499 void __builtin_ia32_movntq (di *, di)
7500 void __builtin_ia32_sfence (void)
7501 @end smallexample
7502
7503 The following built-in functions are available when @option{-msse} is used.
7504 All of them generate the machine instruction that is part of the name.
7505
7506 @smallexample
7507 int __builtin_ia32_comieq (v4sf, v4sf)
7508 int __builtin_ia32_comineq (v4sf, v4sf)
7509 int __builtin_ia32_comilt (v4sf, v4sf)
7510 int __builtin_ia32_comile (v4sf, v4sf)
7511 int __builtin_ia32_comigt (v4sf, v4sf)
7512 int __builtin_ia32_comige (v4sf, v4sf)
7513 int __builtin_ia32_ucomieq (v4sf, v4sf)
7514 int __builtin_ia32_ucomineq (v4sf, v4sf)
7515 int __builtin_ia32_ucomilt (v4sf, v4sf)
7516 int __builtin_ia32_ucomile (v4sf, v4sf)
7517 int __builtin_ia32_ucomigt (v4sf, v4sf)
7518 int __builtin_ia32_ucomige (v4sf, v4sf)
7519 v4sf __builtin_ia32_addps (v4sf, v4sf)
7520 v4sf __builtin_ia32_subps (v4sf, v4sf)
7521 v4sf __builtin_ia32_mulps (v4sf, v4sf)
7522 v4sf __builtin_ia32_divps (v4sf, v4sf)
7523 v4sf __builtin_ia32_addss (v4sf, v4sf)
7524 v4sf __builtin_ia32_subss (v4sf, v4sf)
7525 v4sf __builtin_ia32_mulss (v4sf, v4sf)
7526 v4sf __builtin_ia32_divss (v4sf, v4sf)
7527 v4si __builtin_ia32_cmpeqps (v4sf, v4sf)
7528 v4si __builtin_ia32_cmpltps (v4sf, v4sf)
7529 v4si __builtin_ia32_cmpleps (v4sf, v4sf)
7530 v4si __builtin_ia32_cmpgtps (v4sf, v4sf)
7531 v4si __builtin_ia32_cmpgeps (v4sf, v4sf)
7532 v4si __builtin_ia32_cmpunordps (v4sf, v4sf)
7533 v4si __builtin_ia32_cmpneqps (v4sf, v4sf)
7534 v4si __builtin_ia32_cmpnltps (v4sf, v4sf)
7535 v4si __builtin_ia32_cmpnleps (v4sf, v4sf)
7536 v4si __builtin_ia32_cmpngtps (v4sf, v4sf)
7537 v4si __builtin_ia32_cmpngeps (v4sf, v4sf)
7538 v4si __builtin_ia32_cmpordps (v4sf, v4sf)
7539 v4si __builtin_ia32_cmpeqss (v4sf, v4sf)
7540 v4si __builtin_ia32_cmpltss (v4sf, v4sf)
7541 v4si __builtin_ia32_cmpless (v4sf, v4sf)
7542 v4si __builtin_ia32_cmpunordss (v4sf, v4sf)
7543 v4si __builtin_ia32_cmpneqss (v4sf, v4sf)
7544 v4si __builtin_ia32_cmpnlts (v4sf, v4sf)
7545 v4si __builtin_ia32_cmpnless (v4sf, v4sf)
7546 v4si __builtin_ia32_cmpordss (v4sf, v4sf)
7547 v4sf __builtin_ia32_maxps (v4sf, v4sf)
7548 v4sf __builtin_ia32_maxss (v4sf, v4sf)
7549 v4sf __builtin_ia32_minps (v4sf, v4sf)
7550 v4sf __builtin_ia32_minss (v4sf, v4sf)
7551 v4sf __builtin_ia32_andps (v4sf, v4sf)
7552 v4sf __builtin_ia32_andnps (v4sf, v4sf)
7553 v4sf __builtin_ia32_orps (v4sf, v4sf)
7554 v4sf __builtin_ia32_xorps (v4sf, v4sf)
7555 v4sf __builtin_ia32_movss (v4sf, v4sf)
7556 v4sf __builtin_ia32_movhlps (v4sf, v4sf)
7557 v4sf __builtin_ia32_movlhps (v4sf, v4sf)
7558 v4sf __builtin_ia32_unpckhps (v4sf, v4sf)
7559 v4sf __builtin_ia32_unpcklps (v4sf, v4sf)
7560 v4sf __builtin_ia32_cvtpi2ps (v4sf, v2si)
7561 v4sf __builtin_ia32_cvtsi2ss (v4sf, int)
7562 v2si __builtin_ia32_cvtps2pi (v4sf)
7563 int __builtin_ia32_cvtss2si (v4sf)
7564 v2si __builtin_ia32_cvttps2pi (v4sf)
7565 int __builtin_ia32_cvttss2si (v4sf)
7566 v4sf __builtin_ia32_rcpps (v4sf)
7567 v4sf __builtin_ia32_rsqrtps (v4sf)
7568 v4sf __builtin_ia32_sqrtps (v4sf)
7569 v4sf __builtin_ia32_rcpss (v4sf)
7570 v4sf __builtin_ia32_rsqrtss (v4sf)
7571 v4sf __builtin_ia32_sqrtss (v4sf)
7572 v4sf __builtin_ia32_shufps (v4sf, v4sf, int)
7573 void __builtin_ia32_movntps (float *, v4sf)
7574 int __builtin_ia32_movmskps (v4sf)
7575 @end smallexample
7576
7577 The following built-in functions are available when @option{-msse} is used.
7578
7579 @table @code
7580 @item v4sf __builtin_ia32_loadaps (float *)
7581 Generates the @code{movaps} machine instruction as a load from memory.
7582 @item void __builtin_ia32_storeaps (float *, v4sf)
7583 Generates the @code{movaps} machine instruction as a store to memory.
7584 @item v4sf __builtin_ia32_loadups (float *)
7585 Generates the @code{movups} machine instruction as a load from memory.
7586 @item void __builtin_ia32_storeups (float *, v4sf)
7587 Generates the @code{movups} machine instruction as a store to memory.
7588 @item v4sf __builtin_ia32_loadsss (float *)
7589 Generates the @code{movss} machine instruction as a load from memory.
7590 @item void __builtin_ia32_storess (float *, v4sf)
7591 Generates the @code{movss} machine instruction as a store to memory.
7592 @item v4sf __builtin_ia32_loadhps (v4sf, v2si *)
7593 Generates the @code{movhps} machine instruction as a load from memory.
7594 @item v4sf __builtin_ia32_loadlps (v4sf, v2si *)
7595 Generates the @code{movlps} machine instruction as a load from memory
7596 @item void __builtin_ia32_storehps (v4sf, v2si *)
7597 Generates the @code{movhps} machine instruction as a store to memory.
7598 @item void __builtin_ia32_storelps (v4sf, v2si *)
7599 Generates the @code{movlps} machine instruction as a store to memory.
7600 @end table
7601
7602 The following built-in functions are available when @option{-msse2} is used.
7603 All of them generate the machine instruction that is part of the name.
7604
7605 @smallexample
7606 int __builtin_ia32_comisdeq (v2df, v2df)
7607 int __builtin_ia32_comisdlt (v2df, v2df)
7608 int __builtin_ia32_comisdle (v2df, v2df)
7609 int __builtin_ia32_comisdgt (v2df, v2df)
7610 int __builtin_ia32_comisdge (v2df, v2df)
7611 int __builtin_ia32_comisdneq (v2df, v2df)
7612 int __builtin_ia32_ucomisdeq (v2df, v2df)
7613 int __builtin_ia32_ucomisdlt (v2df, v2df)
7614 int __builtin_ia32_ucomisdle (v2df, v2df)
7615 int __builtin_ia32_ucomisdgt (v2df, v2df)
7616 int __builtin_ia32_ucomisdge (v2df, v2df)
7617 int __builtin_ia32_ucomisdneq (v2df, v2df)
7618 v2df __builtin_ia32_cmpeqpd (v2df, v2df)
7619 v2df __builtin_ia32_cmpltpd (v2df, v2df)
7620 v2df __builtin_ia32_cmplepd (v2df, v2df)
7621 v2df __builtin_ia32_cmpgtpd (v2df, v2df)
7622 v2df __builtin_ia32_cmpgepd (v2df, v2df)
7623 v2df __builtin_ia32_cmpunordpd (v2df, v2df)
7624 v2df __builtin_ia32_cmpneqpd (v2df, v2df)
7625 v2df __builtin_ia32_cmpnltpd (v2df, v2df)
7626 v2df __builtin_ia32_cmpnlepd (v2df, v2df)
7627 v2df __builtin_ia32_cmpngtpd (v2df, v2df)
7628 v2df __builtin_ia32_cmpngepd (v2df, v2df)
7629 v2df __builtin_ia32_cmpordpd (v2df, v2df)
7630 v2df __builtin_ia32_cmpeqsd (v2df, v2df)
7631 v2df __builtin_ia32_cmpltsd (v2df, v2df)
7632 v2df __builtin_ia32_cmplesd (v2df, v2df)
7633 v2df __builtin_ia32_cmpunordsd (v2df, v2df)
7634 v2df __builtin_ia32_cmpneqsd (v2df, v2df)
7635 v2df __builtin_ia32_cmpnltsd (v2df, v2df)
7636 v2df __builtin_ia32_cmpnlesd (v2df, v2df)
7637 v2df __builtin_ia32_cmpordsd (v2df, v2df)
7638 v2di __builtin_ia32_paddq (v2di, v2di)
7639 v2di __builtin_ia32_psubq (v2di, v2di)
7640 v2df __builtin_ia32_addpd (v2df, v2df)
7641 v2df __builtin_ia32_subpd (v2df, v2df)
7642 v2df __builtin_ia32_mulpd (v2df, v2df)
7643 v2df __builtin_ia32_divpd (v2df, v2df)
7644 v2df __builtin_ia32_addsd (v2df, v2df)
7645 v2df __builtin_ia32_subsd (v2df, v2df)
7646 v2df __builtin_ia32_mulsd (v2df, v2df)
7647 v2df __builtin_ia32_divsd (v2df, v2df)
7648 v2df __builtin_ia32_minpd (v2df, v2df)
7649 v2df __builtin_ia32_maxpd (v2df, v2df)
7650 v2df __builtin_ia32_minsd (v2df, v2df)
7651 v2df __builtin_ia32_maxsd (v2df, v2df)
7652 v2df __builtin_ia32_andpd (v2df, v2df)
7653 v2df __builtin_ia32_andnpd (v2df, v2df)
7654 v2df __builtin_ia32_orpd (v2df, v2df)
7655 v2df __builtin_ia32_xorpd (v2df, v2df)
7656 v2df __builtin_ia32_movsd (v2df, v2df)
7657 v2df __builtin_ia32_unpckhpd (v2df, v2df)
7658 v2df __builtin_ia32_unpcklpd (v2df, v2df)
7659 v16qi __builtin_ia32_paddb128 (v16qi, v16qi)
7660 v8hi __builtin_ia32_paddw128 (v8hi, v8hi)
7661 v4si __builtin_ia32_paddd128 (v4si, v4si)
7662 v2di __builtin_ia32_paddq128 (v2di, v2di)
7663 v16qi __builtin_ia32_psubb128 (v16qi, v16qi)
7664 v8hi __builtin_ia32_psubw128 (v8hi, v8hi)
7665 v4si __builtin_ia32_psubd128 (v4si, v4si)
7666 v2di __builtin_ia32_psubq128 (v2di, v2di)
7667 v8hi __builtin_ia32_pmullw128 (v8hi, v8hi)
7668 v8hi __builtin_ia32_pmulhw128 (v8hi, v8hi)
7669 v2di __builtin_ia32_pand128 (v2di, v2di)
7670 v2di __builtin_ia32_pandn128 (v2di, v2di)
7671 v2di __builtin_ia32_por128 (v2di, v2di)
7672 v2di __builtin_ia32_pxor128 (v2di, v2di)
7673 v16qi __builtin_ia32_pavgb128 (v16qi, v16qi)
7674 v8hi __builtin_ia32_pavgw128 (v8hi, v8hi)
7675 v16qi __builtin_ia32_pcmpeqb128 (v16qi, v16qi)
7676 v8hi __builtin_ia32_pcmpeqw128 (v8hi, v8hi)
7677 v4si __builtin_ia32_pcmpeqd128 (v4si, v4si)
7678 v16qi __builtin_ia32_pcmpgtb128 (v16qi, v16qi)
7679 v8hi __builtin_ia32_pcmpgtw128 (v8hi, v8hi)
7680 v4si __builtin_ia32_pcmpgtd128 (v4si, v4si)
7681 v16qi __builtin_ia32_pmaxub128 (v16qi, v16qi)
7682 v8hi __builtin_ia32_pmaxsw128 (v8hi, v8hi)
7683 v16qi __builtin_ia32_pminub128 (v16qi, v16qi)
7684 v8hi __builtin_ia32_pminsw128 (v8hi, v8hi)
7685 v16qi __builtin_ia32_punpckhbw128 (v16qi, v16qi)
7686 v8hi __builtin_ia32_punpckhwd128 (v8hi, v8hi)
7687 v4si __builtin_ia32_punpckhdq128 (v4si, v4si)
7688 v2di __builtin_ia32_punpckhqdq128 (v2di, v2di)
7689 v16qi __builtin_ia32_punpcklbw128 (v16qi, v16qi)
7690 v8hi __builtin_ia32_punpcklwd128 (v8hi, v8hi)
7691 v4si __builtin_ia32_punpckldq128 (v4si, v4si)
7692 v2di __builtin_ia32_punpcklqdq128 (v2di, v2di)
7693 v16qi __builtin_ia32_packsswb128 (v16qi, v16qi)
7694 v8hi __builtin_ia32_packssdw128 (v8hi, v8hi)
7695 v16qi __builtin_ia32_packuswb128 (v16qi, v16qi)
7696 v8hi __builtin_ia32_pmulhuw128 (v8hi, v8hi)
7697 void __builtin_ia32_maskmovdqu (v16qi, v16qi)
7698 v2df __builtin_ia32_loadupd (double *)
7699 void __builtin_ia32_storeupd (double *, v2df)
7700 v2df __builtin_ia32_loadhpd (v2df, double *)
7701 v2df __builtin_ia32_loadlpd (v2df, double *)
7702 int __builtin_ia32_movmskpd (v2df)
7703 int __builtin_ia32_pmovmskb128 (v16qi)
7704 void __builtin_ia32_movnti (int *, int)
7705 void __builtin_ia32_movntpd (double *, v2df)
7706 void __builtin_ia32_movntdq (v2df *, v2df)
7707 v4si __builtin_ia32_pshufd (v4si, int)
7708 v8hi __builtin_ia32_pshuflw (v8hi, int)
7709 v8hi __builtin_ia32_pshufhw (v8hi, int)
7710 v2di __builtin_ia32_psadbw128 (v16qi, v16qi)
7711 v2df __builtin_ia32_sqrtpd (v2df)
7712 v2df __builtin_ia32_sqrtsd (v2df)
7713 v2df __builtin_ia32_shufpd (v2df, v2df, int)
7714 v2df __builtin_ia32_cvtdq2pd (v4si)
7715 v4sf __builtin_ia32_cvtdq2ps (v4si)
7716 v4si __builtin_ia32_cvtpd2dq (v2df)
7717 v2si __builtin_ia32_cvtpd2pi (v2df)
7718 v4sf __builtin_ia32_cvtpd2ps (v2df)
7719 v4si __builtin_ia32_cvttpd2dq (v2df)
7720 v2si __builtin_ia32_cvttpd2pi (v2df)
7721 v2df __builtin_ia32_cvtpi2pd (v2si)
7722 int __builtin_ia32_cvtsd2si (v2df)
7723 int __builtin_ia32_cvttsd2si (v2df)
7724 long long __builtin_ia32_cvtsd2si64 (v2df)
7725 long long __builtin_ia32_cvttsd2si64 (v2df)
7726 v4si __builtin_ia32_cvtps2dq (v4sf)
7727 v2df __builtin_ia32_cvtps2pd (v4sf)
7728 v4si __builtin_ia32_cvttps2dq (v4sf)
7729 v2df __builtin_ia32_cvtsi2sd (v2df, int)
7730 v2df __builtin_ia32_cvtsi642sd (v2df, long long)
7731 v4sf __builtin_ia32_cvtsd2ss (v4sf, v2df)
7732 v2df __builtin_ia32_cvtss2sd (v2df, v4sf)
7733 void __builtin_ia32_clflush (const void *)
7734 void __builtin_ia32_lfence (void)
7735 void __builtin_ia32_mfence (void)
7736 v16qi __builtin_ia32_loaddqu (const char *)
7737 void __builtin_ia32_storedqu (char *, v16qi)
7738 unsigned long long __builtin_ia32_pmuludq (v2si, v2si)
7739 v2di __builtin_ia32_pmuludq128 (v4si, v4si)
7740 v8hi __builtin_ia32_psllw128 (v8hi, v2di)
7741 v4si __builtin_ia32_pslld128 (v4si, v2di)
7742 v2di __builtin_ia32_psllq128 (v4si, v2di)
7743 v8hi __builtin_ia32_psrlw128 (v8hi, v2di)
7744 v4si __builtin_ia32_psrld128 (v4si, v2di)
7745 v2di __builtin_ia32_psrlq128 (v2di, v2di)
7746 v8hi __builtin_ia32_psraw128 (v8hi, v2di)
7747 v4si __builtin_ia32_psrad128 (v4si, v2di)
7748 v2di __builtin_ia32_pslldqi128 (v2di, int)
7749 v8hi __builtin_ia32_psllwi128 (v8hi, int)
7750 v4si __builtin_ia32_pslldi128 (v4si, int)
7751 v2di __builtin_ia32_psllqi128 (v2di, int)
7752 v2di __builtin_ia32_psrldqi128 (v2di, int)
7753 v8hi __builtin_ia32_psrlwi128 (v8hi, int)
7754 v4si __builtin_ia32_psrldi128 (v4si, int)
7755 v2di __builtin_ia32_psrlqi128 (v2di, int)
7756 v8hi __builtin_ia32_psrawi128 (v8hi, int)
7757 v4si __builtin_ia32_psradi128 (v4si, int)
7758 v4si __builtin_ia32_pmaddwd128 (v8hi, v8hi)
7759 @end smallexample
7760
7761 The following built-in functions are available when @option{-msse3} is used.
7762 All of them generate the machine instruction that is part of the name.
7763
7764 @smallexample
7765 v2df __builtin_ia32_addsubpd (v2df, v2df)
7766 v4sf __builtin_ia32_addsubps (v4sf, v4sf)
7767 v2df __builtin_ia32_haddpd (v2df, v2df)
7768 v4sf __builtin_ia32_haddps (v4sf, v4sf)
7769 v2df __builtin_ia32_hsubpd (v2df, v2df)
7770 v4sf __builtin_ia32_hsubps (v4sf, v4sf)
7771 v16qi __builtin_ia32_lddqu (char const *)
7772 void __builtin_ia32_monitor (void *, unsigned int, unsigned int)
7773 v2df __builtin_ia32_movddup (v2df)
7774 v4sf __builtin_ia32_movshdup (v4sf)
7775 v4sf __builtin_ia32_movsldup (v4sf)
7776 void __builtin_ia32_mwait (unsigned int, unsigned int)
7777 @end smallexample
7778
7779 The following built-in functions are available when @option{-msse3} is used.
7780
7781 @table @code
7782 @item v2df __builtin_ia32_loadddup (double const *)
7783 Generates the @code{movddup} machine instruction as a load from memory.
7784 @end table
7785
7786 The following built-in functions are available when @option{-mssse3} is used.
7787 All of them generate the machine instruction that is part of the name
7788 with MMX registers.
7789
7790 @smallexample
7791 v2si __builtin_ia32_phaddd (v2si, v2si)
7792 v4hi __builtin_ia32_phaddw (v4hi, v4hi)
7793 v4hi __builtin_ia32_phaddsw (v4hi, v4hi)
7794 v2si __builtin_ia32_phsubd (v2si, v2si)
7795 v4hi __builtin_ia32_phsubw (v4hi, v4hi)
7796 v4hi __builtin_ia32_phsubsw (v4hi, v4hi)
7797 v8qi __builtin_ia32_pmaddubsw (v8qi, v8qi)
7798 v4hi __builtin_ia32_pmulhrsw (v4hi, v4hi)
7799 v8qi __builtin_ia32_pshufb (v8qi, v8qi)
7800 v8qi __builtin_ia32_psignb (v8qi, v8qi)
7801 v2si __builtin_ia32_psignd (v2si, v2si)
7802 v4hi __builtin_ia32_psignw (v4hi, v4hi)
7803 long long __builtin_ia32_palignr (long long, long long, int)
7804 v8qi __builtin_ia32_pabsb (v8qi)
7805 v2si __builtin_ia32_pabsd (v2si)
7806 v4hi __builtin_ia32_pabsw (v4hi)
7807 @end smallexample
7808
7809 The following built-in functions are available when @option{-mssse3} is used.
7810 All of them generate the machine instruction that is part of the name
7811 with SSE registers.
7812
7813 @smallexample
7814 v4si __builtin_ia32_phaddd128 (v4si, v4si)
7815 v8hi __builtin_ia32_phaddw128 (v8hi, v8hi)
7816 v8hi __builtin_ia32_phaddsw128 (v8hi, v8hi)
7817 v4si __builtin_ia32_phsubd128 (v4si, v4si)
7818 v8hi __builtin_ia32_phsubw128 (v8hi, v8hi)
7819 v8hi __builtin_ia32_phsubsw128 (v8hi, v8hi)
7820 v16qi __builtin_ia32_pmaddubsw128 (v16qi, v16qi)
7821 v8hi __builtin_ia32_pmulhrsw128 (v8hi, v8hi)
7822 v16qi __builtin_ia32_pshufb128 (v16qi, v16qi)
7823 v16qi __builtin_ia32_psignb128 (v16qi, v16qi)
7824 v4si __builtin_ia32_psignd128 (v4si, v4si)
7825 v8hi __builtin_ia32_psignw128 (v8hi, v8hi)
7826 v2di __builtin_ia32_palignr (v2di, v2di, int)
7827 v16qi __builtin_ia32_pabsb128 (v16qi)
7828 v4si __builtin_ia32_pabsd128 (v4si)
7829 v8hi __builtin_ia32_pabsw128 (v8hi)
7830 @end smallexample
7831
7832 The following built-in functions are available when @option{-msse4.1} is
7833 used. All of them generate the machine instruction that is part of the
7834 name.
7835
7836 @smallexample
7837 v2df __builtin_ia32_blendpd (v2df, v2df, const int)
7838 v4sf __builtin_ia32_blendps (v4sf, v4sf, const int)
7839 v2df __builtin_ia32_blendvpd (v2df, v2df, v2df)
7840 v4sf __builtin_ia32_blendvps (v4sf, v4sf, v4sf)
7841 v2df __builtin_ia32_dppd (v2df, v2df, const int)
7842 v4sf __builtin_ia32_dpps (v4sf, v4sf, const int)
7843 v4sf __builtin_ia32_insertps128 (v4sf, v4sf, const int)
7844 v2di __builtin_ia32_movntdqa (v2di *);
7845 v16qi __builtin_ia32_mpsadbw128 (v16qi, v16qi, const int)
7846 v8hi __builtin_ia32_packusdw128 (v4si, v4si)
7847 v16qi __builtin_ia32_pblendvb128 (v16qi, v16qi, v16qi)
7848 v8hi __builtin_ia32_pblendw128 (v8hi, v8hi, const int)
7849 v2di __builtin_ia32_pcmpeqq (v2di, v2di)
7850 v8hi __builtin_ia32_phminposuw128 (v8hi)
7851 v16qi __builtin_ia32_pmaxsb128 (v16qi, v16qi)
7852 v4si __builtin_ia32_pmaxsd128 (v4si, v4si)
7853 v4si __builtin_ia32_pmaxud128 (v4si, v4si)
7854 v8hi __builtin_ia32_pmaxuw128 (v8hi, v8hi)
7855 v16qi __builtin_ia32_pminsb128 (v16qi, v16qi)
7856 v4si __builtin_ia32_pminsd128 (v4si, v4si)
7857 v4si __builtin_ia32_pminud128 (v4si, v4si)
7858 v8hi __builtin_ia32_pminuw128 (v8hi, v8hi)
7859 v4si __builtin_ia32_pmovsxbd128 (v16qi)
7860 v2di __builtin_ia32_pmovsxbq128 (v16qi)
7861 v8hi __builtin_ia32_pmovsxbw128 (v16qi)
7862 v2di __builtin_ia32_pmovsxdq128 (v4si)
7863 v4si __builtin_ia32_pmovsxwd128 (v8hi)
7864 v2di __builtin_ia32_pmovsxwq128 (v8hi)
7865 v4si __builtin_ia32_pmovzxbd128 (v16qi)
7866 v2di __builtin_ia32_pmovzxbq128 (v16qi)
7867 v8hi __builtin_ia32_pmovzxbw128 (v16qi)
7868 v2di __builtin_ia32_pmovzxdq128 (v4si)
7869 v4si __builtin_ia32_pmovzxwd128 (v8hi)
7870 v2di __builtin_ia32_pmovzxwq128 (v8hi)
7871 v2di __builtin_ia32_pmuldq128 (v4si, v4si)
7872 v4si __builtin_ia32_pmulld128 (v4si, v4si)
7873 int __builtin_ia32_ptestc128 (v2di, v2di)
7874 int __builtin_ia32_ptestnzc128 (v2di, v2di)
7875 int __builtin_ia32_ptestz128 (v2di, v2di)
7876 v2df __builtin_ia32_roundpd (v2df, const int)
7877 v4sf __builtin_ia32_roundps (v4sf, const int)
7878 v2df __builtin_ia32_roundsd (v2df, v2df, const int)
7879 v4sf __builtin_ia32_roundss (v4sf, v4sf, const int)
7880 @end smallexample
7881
7882 The following built-in functions are available when @option{-msse4.1} is
7883 used.
7884
7885 @table @code
7886 @item v4sf __builtin_ia32_vec_set_v4sf (v4sf, float, const int)
7887 Generates the @code{insertps} machine instruction.
7888 @item int __builtin_ia32_vec_ext_v16qi (v16qi, const int)
7889 Generates the @code{pextrb} machine instruction.
7890 @item v16qi __builtin_ia32_vec_set_v16qi (v16qi, int, const int)
7891 Generates the @code{pinsrb} machine instruction.
7892 @item v4si __builtin_ia32_vec_set_v4si (v4si, int, const int)
7893 Generates the @code{pinsrd} machine instruction.
7894 @item v2di __builtin_ia32_vec_set_v2di (v2di, long long, const int)
7895 Generates the @code{pinsrq} machine instruction in 64bit mode.
7896 @end table
7897
7898 The following built-in functions are changed to generate new SSE4.1
7899 instructions when @option{-msse4.1} is used.
7900
7901 @table @code
7902 @item float __builtin_ia32_vec_ext_v4sf (v4sf, const int)
7903 Generates the @code{extractps} machine instruction.
7904 @item int __builtin_ia32_vec_ext_v4si (v4si, const int)
7905 Generates the @code{pextrd} machine instruction.
7906 @item long long __builtin_ia32_vec_ext_v2di (v2di, const int)
7907 Generates the @code{pextrq} machine instruction in 64bit mode.
7908 @end table
7909
7910 The following built-in functions are available when @option{-msse4.2} is
7911 used. All of them generate the machine instruction that is part of the
7912 name.
7913
7914 @smallexample
7915 v16qi __builtin_ia32_pcmpestrm128 (v16qi, int, v16qi, int, const int)
7916 int __builtin_ia32_pcmpestri128 (v16qi, int, v16qi, int, const int)
7917 int __builtin_ia32_pcmpestria128 (v16qi, int, v16qi, int, const int)
7918 int __builtin_ia32_pcmpestric128 (v16qi, int, v16qi, int, const int)
7919 int __builtin_ia32_pcmpestrio128 (v16qi, int, v16qi, int, const int)
7920 int __builtin_ia32_pcmpestris128 (v16qi, int, v16qi, int, const int)
7921 int __builtin_ia32_pcmpestriz128 (v16qi, int, v16qi, int, const int)
7922 v16qi __builtin_ia32_pcmpistrm128 (v16qi, v16qi, const int)
7923 int __builtin_ia32_pcmpistri128 (v16qi, v16qi, const int)
7924 int __builtin_ia32_pcmpistria128 (v16qi, v16qi, const int)
7925 int __builtin_ia32_pcmpistric128 (v16qi, v16qi, const int)
7926 int __builtin_ia32_pcmpistrio128 (v16qi, v16qi, const int)
7927 int __builtin_ia32_pcmpistris128 (v16qi, v16qi, const int)
7928 int __builtin_ia32_pcmpistriz128 (v16qi, v16qi, const int)
7929 v2di __builtin_ia32_pcmpgtq (v2di, v2di)
7930 @end smallexample
7931
7932 The following built-in functions are available when @option{-msse4.2} is
7933 used.
7934
7935 @table @code
7936 @item unsigned int __builtin_ia32_crc32qi (unsigned int, unsigned char)
7937 Generates the @code{crc32b} machine instruction.
7938 @item unsigned int __builtin_ia32_crc32hi (unsigned int, unsigned short)
7939 Generates the @code{crc32w} machine instruction.
7940 @item unsigned int __builtin_ia32_crc32si (unsigned int, unsigned int)
7941 Generates the @code{crc32l} machine instruction.
7942 @item unsigned long long __builtin_ia32_crc32di (unsigned int, unsigned long long)
7943 @end table
7944
7945 The following built-in functions are changed to generate new SSE4.2
7946 instructions when @option{-msse4.2} is used.
7947
7948 @table @code
7949 @item int __builtin_popcount (unsigned int)
7950 Generates the @code{popcntl} machine instruction.
7951 @item int __builtin_popcountl (unsigned long)
7952 Generates the @code{popcntl} or @code{popcntq} machine instruction,
7953 depending on the size of @code{unsigned long}.
7954 @item int __builtin_popcountll (unsigned long long)
7955 Generates the @code{popcntq} machine instruction.
7956 @end table
7957
7958 The following built-in functions are available when @option{-msse4a} is used.
7959 All of them generate the machine instruction that is part of the name.
7960
7961 @smallexample
7962 void __builtin_ia32_movntsd (double *, v2df)
7963 void __builtin_ia32_movntss (float *, v4sf)
7964 v2di __builtin_ia32_extrq (v2di, v16qi)
7965 v2di __builtin_ia32_extrqi (v2di, const unsigned int, const unsigned int)
7966 v2di __builtin_ia32_insertq (v2di, v2di)
7967 v2di __builtin_ia32_insertqi (v2di, v2di, const unsigned int, const unsigned int)
7968 @end smallexample
7969
7970 The following built-in functions are available when @option{-msse5} is used.
7971 All of them generate the machine instruction that is part of the name
7972 with MMX registers.
7973
7974 @smallexample
7975 v2df __builtin_ia32_comeqpd (v2df, v2df)
7976 v2df __builtin_ia32_comeqps (v2df, v2df)
7977 v4sf __builtin_ia32_comeqsd (v4sf, v4sf)
7978 v4sf __builtin_ia32_comeqss (v4sf, v4sf)
7979 v2df __builtin_ia32_comfalsepd (v2df, v2df)
7980 v2df __builtin_ia32_comfalseps (v2df, v2df)
7981 v4sf __builtin_ia32_comfalsesd (v4sf, v4sf)
7982 v4sf __builtin_ia32_comfalsess (v4sf, v4sf)
7983 v2df __builtin_ia32_comgepd (v2df, v2df)
7984 v2df __builtin_ia32_comgeps (v2df, v2df)
7985 v4sf __builtin_ia32_comgesd (v4sf, v4sf)
7986 v4sf __builtin_ia32_comgess (v4sf, v4sf)
7987 v2df __builtin_ia32_comgtpd (v2df, v2df)
7988 v2df __builtin_ia32_comgtps (v2df, v2df)
7989 v4sf __builtin_ia32_comgtsd (v4sf, v4sf)
7990 v4sf __builtin_ia32_comgtss (v4sf, v4sf)
7991 v2df __builtin_ia32_comlepd (v2df, v2df)
7992 v2df __builtin_ia32_comleps (v2df, v2df)
7993 v4sf __builtin_ia32_comlesd (v4sf, v4sf)
7994 v4sf __builtin_ia32_comless (v4sf, v4sf)
7995 v2df __builtin_ia32_comltpd (v2df, v2df)
7996 v2df __builtin_ia32_comltps (v2df, v2df)
7997 v4sf __builtin_ia32_comltsd (v4sf, v4sf)
7998 v4sf __builtin_ia32_comltss (v4sf, v4sf)
7999 v2df __builtin_ia32_comnepd (v2df, v2df)
8000 v2df __builtin_ia32_comneps (v2df, v2df)
8001 v4sf __builtin_ia32_comnesd (v4sf, v4sf)
8002 v4sf __builtin_ia32_comness (v4sf, v4sf)
8003 v2df __builtin_ia32_comordpd (v2df, v2df)
8004 v2df __builtin_ia32_comordps (v2df, v2df)
8005 v4sf __builtin_ia32_comordsd (v4sf, v4sf)
8006 v4sf __builtin_ia32_comordss (v4sf, v4sf)
8007 v2df __builtin_ia32_comtruepd (v2df, v2df)
8008 v2df __builtin_ia32_comtrueps (v2df, v2df)
8009 v4sf __builtin_ia32_comtruesd (v4sf, v4sf)
8010 v4sf __builtin_ia32_comtruess (v4sf, v4sf)
8011 v2df __builtin_ia32_comueqpd (v2df, v2df)
8012 v2df __builtin_ia32_comueqps (v2df, v2df)
8013 v4sf __builtin_ia32_comueqsd (v4sf, v4sf)
8014 v4sf __builtin_ia32_comueqss (v4sf, v4sf)
8015 v2df __builtin_ia32_comugepd (v2df, v2df)
8016 v2df __builtin_ia32_comugeps (v2df, v2df)
8017 v4sf __builtin_ia32_comugesd (v4sf, v4sf)
8018 v4sf __builtin_ia32_comugess (v4sf, v4sf)
8019 v2df __builtin_ia32_comugtpd (v2df, v2df)
8020 v2df __builtin_ia32_comugtps (v2df, v2df)
8021 v4sf __builtin_ia32_comugtsd (v4sf, v4sf)
8022 v4sf __builtin_ia32_comugtss (v4sf, v4sf)
8023 v2df __builtin_ia32_comulepd (v2df, v2df)
8024 v2df __builtin_ia32_comuleps (v2df, v2df)
8025 v4sf __builtin_ia32_comulesd (v4sf, v4sf)
8026 v4sf __builtin_ia32_comuless (v4sf, v4sf)
8027 v2df __builtin_ia32_comultpd (v2df, v2df)
8028 v2df __builtin_ia32_comultps (v2df, v2df)
8029 v4sf __builtin_ia32_comultsd (v4sf, v4sf)
8030 v4sf __builtin_ia32_comultss (v4sf, v4sf)
8031 v2df __builtin_ia32_comunepd (v2df, v2df)
8032 v2df __builtin_ia32_comuneps (v2df, v2df)
8033 v4sf __builtin_ia32_comunesd (v4sf, v4sf)
8034 v4sf __builtin_ia32_comuness (v4sf, v4sf)
8035 v2df __builtin_ia32_comunordpd (v2df, v2df)
8036 v2df __builtin_ia32_comunordps (v2df, v2df)
8037 v4sf __builtin_ia32_comunordsd (v4sf, v4sf)
8038 v4sf __builtin_ia32_comunordss (v4sf, v4sf)
8039 v2df __builtin_ia32_fmaddpd (v2df, v2df, v2df)
8040 v4sf __builtin_ia32_fmaddps (v4sf, v4sf, v4sf)
8041 v2df __builtin_ia32_fmaddsd (v2df, v2df, v2df)
8042 v4sf __builtin_ia32_fmaddss (v4sf, v4sf, v4sf)
8043 v2df __builtin_ia32_fmsubpd (v2df, v2df, v2df)
8044 v4sf __builtin_ia32_fmsubps (v4sf, v4sf, v4sf)
8045 v2df __builtin_ia32_fmsubsd (v2df, v2df, v2df)
8046 v4sf __builtin_ia32_fmsubss (v4sf, v4sf, v4sf)
8047 v2df __builtin_ia32_fnmaddpd (v2df, v2df, v2df)
8048 v4sf __builtin_ia32_fnmaddps (v4sf, v4sf, v4sf)
8049 v2df __builtin_ia32_fnmaddsd (v2df, v2df, v2df)
8050 v4sf __builtin_ia32_fnmaddss (v4sf, v4sf, v4sf)
8051 v2df __builtin_ia32_fnmsubpd (v2df, v2df, v2df)
8052 v4sf __builtin_ia32_fnmsubps (v4sf, v4sf, v4sf)
8053 v2df __builtin_ia32_fnmsubsd (v2df, v2df, v2df)
8054 v4sf __builtin_ia32_fnmsubss (v4sf, v4sf, v4sf)
8055 v2df __builtin_ia32_frczpd (v2df)
8056 v4sf __builtin_ia32_frczps (v4sf)
8057 v2df __builtin_ia32_frczsd (v2df, v2df)
8058 v4sf __builtin_ia32_frczss (v4sf, v4sf)
8059 v2di __builtin_ia32_pcmov (v2di, v2di, v2di)
8060 v2di __builtin_ia32_pcmov_v2di (v2di, v2di, v2di)
8061 v4si __builtin_ia32_pcmov_v4si (v4si, v4si, v4si)
8062 v8hi __builtin_ia32_pcmov_v8hi (v8hi, v8hi, v8hi)
8063 v16qi __builtin_ia32_pcmov_v16qi (v16qi, v16qi, v16qi)
8064 v2df __builtin_ia32_pcmov_v2df (v2df, v2df, v2df)
8065 v4sf __builtin_ia32_pcmov_v4sf (v4sf, v4sf, v4sf)
8066 v16qi __builtin_ia32_pcomeqb (v16qi, v16qi)
8067 v8hi __builtin_ia32_pcomeqw (v8hi, v8hi)
8068 v4si __builtin_ia32_pcomeqd (v4si, v4si)
8069 v2di __builtin_ia32_pcomeqq (v2di, v2di)
8070 v16qi __builtin_ia32_pcomequb (v16qi, v16qi)
8071 v4si __builtin_ia32_pcomequd (v4si, v4si)
8072 v2di __builtin_ia32_pcomequq (v2di, v2di)
8073 v8hi __builtin_ia32_pcomequw (v8hi, v8hi)
8074 v8hi __builtin_ia32_pcomeqw (v8hi, v8hi)
8075 v16qi __builtin_ia32_pcomfalseb (v16qi, v16qi)
8076 v4si __builtin_ia32_pcomfalsed (v4si, v4si)
8077 v2di __builtin_ia32_pcomfalseq (v2di, v2di)
8078 v16qi __builtin_ia32_pcomfalseub (v16qi, v16qi)
8079 v4si __builtin_ia32_pcomfalseud (v4si, v4si)
8080 v2di __builtin_ia32_pcomfalseuq (v2di, v2di)
8081 v8hi __builtin_ia32_pcomfalseuw (v8hi, v8hi)
8082 v8hi __builtin_ia32_pcomfalsew (v8hi, v8hi)
8083 v16qi __builtin_ia32_pcomgeb (v16qi, v16qi)
8084 v4si __builtin_ia32_pcomged (v4si, v4si)
8085 v2di __builtin_ia32_pcomgeq (v2di, v2di)
8086 v16qi __builtin_ia32_pcomgeub (v16qi, v16qi)
8087 v4si __builtin_ia32_pcomgeud (v4si, v4si)
8088 v2di __builtin_ia32_pcomgeuq (v2di, v2di)
8089 v8hi __builtin_ia32_pcomgeuw (v8hi, v8hi)
8090 v8hi __builtin_ia32_pcomgew (v8hi, v8hi)
8091 v16qi __builtin_ia32_pcomgtb (v16qi, v16qi)
8092 v4si __builtin_ia32_pcomgtd (v4si, v4si)
8093 v2di __builtin_ia32_pcomgtq (v2di, v2di)
8094 v16qi __builtin_ia32_pcomgtub (v16qi, v16qi)
8095 v4si __builtin_ia32_pcomgtud (v4si, v4si)
8096 v2di __builtin_ia32_pcomgtuq (v2di, v2di)
8097 v8hi __builtin_ia32_pcomgtuw (v8hi, v8hi)
8098 v8hi __builtin_ia32_pcomgtw (v8hi, v8hi)
8099 v16qi __builtin_ia32_pcomleb (v16qi, v16qi)
8100 v4si __builtin_ia32_pcomled (v4si, v4si)
8101 v2di __builtin_ia32_pcomleq (v2di, v2di)
8102 v16qi __builtin_ia32_pcomleub (v16qi, v16qi)
8103 v4si __builtin_ia32_pcomleud (v4si, v4si)
8104 v2di __builtin_ia32_pcomleuq (v2di, v2di)
8105 v8hi __builtin_ia32_pcomleuw (v8hi, v8hi)
8106 v8hi __builtin_ia32_pcomlew (v8hi, v8hi)
8107 v16qi __builtin_ia32_pcomltb (v16qi, v16qi)
8108 v4si __builtin_ia32_pcomltd (v4si, v4si)
8109 v2di __builtin_ia32_pcomltq (v2di, v2di)
8110 v16qi __builtin_ia32_pcomltub (v16qi, v16qi)
8111 v4si __builtin_ia32_pcomltud (v4si, v4si)
8112 v2di __builtin_ia32_pcomltuq (v2di, v2di)
8113 v8hi __builtin_ia32_pcomltuw (v8hi, v8hi)
8114 v8hi __builtin_ia32_pcomltw (v8hi, v8hi)
8115 v16qi __builtin_ia32_pcomneb (v16qi, v16qi)
8116 v4si __builtin_ia32_pcomned (v4si, v4si)
8117 v2di __builtin_ia32_pcomneq (v2di, v2di)
8118 v16qi __builtin_ia32_pcomneub (v16qi, v16qi)
8119 v4si __builtin_ia32_pcomneud (v4si, v4si)
8120 v2di __builtin_ia32_pcomneuq (v2di, v2di)
8121 v8hi __builtin_ia32_pcomneuw (v8hi, v8hi)
8122 v8hi __builtin_ia32_pcomnew (v8hi, v8hi)
8123 v16qi __builtin_ia32_pcomtrueb (v16qi, v16qi)
8124 v4si __builtin_ia32_pcomtrued (v4si, v4si)
8125 v2di __builtin_ia32_pcomtrueq (v2di, v2di)
8126 v16qi __builtin_ia32_pcomtrueub (v16qi, v16qi)
8127 v4si __builtin_ia32_pcomtrueud (v4si, v4si)
8128 v2di __builtin_ia32_pcomtrueuq (v2di, v2di)
8129 v8hi __builtin_ia32_pcomtrueuw (v8hi, v8hi)
8130 v8hi __builtin_ia32_pcomtruew (v8hi, v8hi)
8131 v4df __builtin_ia32_permpd (v2df, v2df, v16qi)
8132 v4sf __builtin_ia32_permps (v4sf, v4sf, v16qi)
8133 v4si __builtin_ia32_phaddbd (v16qi)
8134 v2di __builtin_ia32_phaddbq (v16qi)
8135 v8hi __builtin_ia32_phaddbw (v16qi)
8136 v2di __builtin_ia32_phadddq (v4si)
8137 v4si __builtin_ia32_phaddubd (v16qi)
8138 v2di __builtin_ia32_phaddubq (v16qi)
8139 v8hi __builtin_ia32_phaddubw (v16qi)
8140 v2di __builtin_ia32_phaddudq (v4si)
8141 v4si __builtin_ia32_phadduwd (v8hi)
8142 v2di __builtin_ia32_phadduwq (v8hi)
8143 v4si __builtin_ia32_phaddwd (v8hi)
8144 v2di __builtin_ia32_phaddwq (v8hi)
8145 v8hi __builtin_ia32_phsubbw (v16qi)
8146 v2di __builtin_ia32_phsubdq (v4si)
8147 v4si __builtin_ia32_phsubwd (v8hi)
8148 v4si __builtin_ia32_pmacsdd (v4si, v4si, v4si)
8149 v2di __builtin_ia32_pmacsdqh (v4si, v4si, v2di)
8150 v2di __builtin_ia32_pmacsdql (v4si, v4si, v2di)
8151 v4si __builtin_ia32_pmacssdd (v4si, v4si, v4si)
8152 v2di __builtin_ia32_pmacssdqh (v4si, v4si, v2di)
8153 v2di __builtin_ia32_pmacssdql (v4si, v4si, v2di)
8154 v4si __builtin_ia32_pmacsswd (v8hi, v8hi, v4si)
8155 v8hi __builtin_ia32_pmacssww (v8hi, v8hi, v8hi)
8156 v4si __builtin_ia32_pmacswd (v8hi, v8hi, v4si)
8157 v8hi __builtin_ia32_pmacsww (v8hi, v8hi, v8hi)
8158 v4si __builtin_ia32_pmadcsswd (v8hi, v8hi, v4si)
8159 v4si __builtin_ia32_pmadcswd (v8hi, v8hi, v4si)
8160 v16qi __builtin_ia32_pperm (v16qi, v16qi, v16qi)
8161 v16qi __builtin_ia32_protb (v16qi, v16qi)
8162 v4si __builtin_ia32_protd (v4si, v4si)
8163 v2di __builtin_ia32_protq (v2di, v2di)
8164 v8hi __builtin_ia32_protw (v8hi, v8hi)
8165 v16qi __builtin_ia32_pshab (v16qi, v16qi)
8166 v4si __builtin_ia32_pshad (v4si, v4si)
8167 v2di __builtin_ia32_pshaq (v2di, v2di)
8168 v8hi __builtin_ia32_pshaw (v8hi, v8hi)
8169 v16qi __builtin_ia32_pshlb (v16qi, v16qi)
8170 v4si __builtin_ia32_pshld (v4si, v4si)
8171 v2di __builtin_ia32_pshlq (v2di, v2di)
8172 v8hi __builtin_ia32_pshlw (v8hi, v8hi)
8173 @end smallexample
8174
8175 The following builtin-in functions are available when @option{-msse5}
8176 is used. The second argument must be an integer constant and generate
8177 the machine instruction that is part of the name with the @samp{_imm}
8178 suffix removed.
8179
8180 @smallexample
8181 v16qi __builtin_ia32_protb_imm (v16qi, int)
8182 v4si __builtin_ia32_protd_imm (v4si, int)
8183 v2di __builtin_ia32_protq_imm (v2di, int)
8184 v8hi __builtin_ia32_protw_imm (v8hi, int)
8185 @end smallexample
8186
8187 The following built-in functions are available when @option{-m3dnow} is used.
8188 All of them generate the machine instruction that is part of the name.
8189
8190 @smallexample
8191 void __builtin_ia32_femms (void)
8192 v8qi __builtin_ia32_pavgusb (v8qi, v8qi)
8193 v2si __builtin_ia32_pf2id (v2sf)
8194 v2sf __builtin_ia32_pfacc (v2sf, v2sf)
8195 v2sf __builtin_ia32_pfadd (v2sf, v2sf)
8196 v2si __builtin_ia32_pfcmpeq (v2sf, v2sf)
8197 v2si __builtin_ia32_pfcmpge (v2sf, v2sf)
8198 v2si __builtin_ia32_pfcmpgt (v2sf, v2sf)
8199 v2sf __builtin_ia32_pfmax (v2sf, v2sf)
8200 v2sf __builtin_ia32_pfmin (v2sf, v2sf)
8201 v2sf __builtin_ia32_pfmul (v2sf, v2sf)
8202 v2sf __builtin_ia32_pfrcp (v2sf)
8203 v2sf __builtin_ia32_pfrcpit1 (v2sf, v2sf)
8204 v2sf __builtin_ia32_pfrcpit2 (v2sf, v2sf)
8205 v2sf __builtin_ia32_pfrsqrt (v2sf)
8206 v2sf __builtin_ia32_pfrsqrtit1 (v2sf, v2sf)
8207 v2sf __builtin_ia32_pfsub (v2sf, v2sf)
8208 v2sf __builtin_ia32_pfsubr (v2sf, v2sf)
8209 v2sf __builtin_ia32_pi2fd (v2si)
8210 v4hi __builtin_ia32_pmulhrw (v4hi, v4hi)
8211 @end smallexample
8212
8213 The following built-in functions are available when both @option{-m3dnow}
8214 and @option{-march=athlon} are used. All of them generate the machine
8215 instruction that is part of the name.
8216
8217 @smallexample
8218 v2si __builtin_ia32_pf2iw (v2sf)
8219 v2sf __builtin_ia32_pfnacc (v2sf, v2sf)
8220 v2sf __builtin_ia32_pfpnacc (v2sf, v2sf)
8221 v2sf __builtin_ia32_pi2fw (v2si)
8222 v2sf __builtin_ia32_pswapdsf (v2sf)
8223 v2si __builtin_ia32_pswapdsi (v2si)
8224 @end smallexample
8225
8226 @node MIPS DSP Built-in Functions
8227 @subsection MIPS DSP Built-in Functions
8228
8229 The MIPS DSP Application-Specific Extension (ASE) includes new
8230 instructions that are designed to improve the performance of DSP and
8231 media applications. It provides instructions that operate on packed
8232 8-bit/16-bit integer data, Q7, Q15 and Q31 fractional data.
8233
8234 GCC supports MIPS DSP operations using both the generic
8235 vector extensions (@pxref{Vector Extensions}) and a collection of
8236 MIPS-specific built-in functions. Both kinds of support are
8237 enabled by the @option{-mdsp} command-line option.
8238
8239 Revision 2 of the ASE was introduced in the second half of 2006.
8240 This revision adds extra instructions to the original ASE, but is
8241 otherwise backwards-compatible with it. You can select revision 2
8242 using the command-line option @option{-mdspr2}; this option implies
8243 @option{-mdsp}.
8244
8245 At present, GCC only provides support for operations on 32-bit
8246 vectors. The vector type associated with 8-bit integer data is
8247 usually called @code{v4i8}, the vector type associated with Q7
8248 is usually called @code{v4q7}, the vector type associated with 16-bit
8249 integer data is usually called @code{v2i16}, and the vector type
8250 associated with Q15 is usually called @code{v2q15}. They can be
8251 defined in C as follows:
8252
8253 @smallexample
8254 typedef signed char v4i8 __attribute__ ((vector_size(4)));
8255 typedef signed char v4q7 __attribute__ ((vector_size(4)));
8256 typedef short v2i16 __attribute__ ((vector_size(4)));
8257 typedef short v2q15 __attribute__ ((vector_size(4)));
8258 @end smallexample
8259
8260 @code{v4i8}, @code{v4q7}, @code{v2i16} and @code{v2q15} values are
8261 initialized in the same way as aggregates. For example:
8262
8263 @smallexample
8264 v4i8 a = @{1, 2, 3, 4@};
8265 v4i8 b;
8266 b = (v4i8) @{5, 6, 7, 8@};
8267
8268 v2q15 c = @{0x0fcb, 0x3a75@};
8269 v2q15 d;
8270 d = (v2q15) @{0.1234 * 0x1.0p15, 0.4567 * 0x1.0p15@};
8271 @end smallexample
8272
8273 @emph{Note:} The CPU's endianness determines the order in which values
8274 are packed. On little-endian targets, the first value is the least
8275 significant and the last value is the most significant. The opposite
8276 order applies to big-endian targets. For example, the code above will
8277 set the lowest byte of @code{a} to @code{1} on little-endian targets
8278 and @code{4} on big-endian targets.
8279
8280 @emph{Note:} Q7, Q15 and Q31 values must be initialized with their integer
8281 representation. As shown in this example, the integer representation
8282 of a Q7 value can be obtained by multiplying the fractional value by
8283 @code{0x1.0p7}. The equivalent for Q15 values is to multiply by
8284 @code{0x1.0p15}. The equivalent for Q31 values is to multiply by
8285 @code{0x1.0p31}.
8286
8287 The table below lists the @code{v4i8} and @code{v2q15} operations for which
8288 hardware support exists. @code{a} and @code{b} are @code{v4i8} values,
8289 and @code{c} and @code{d} are @code{v2q15} values.
8290
8291 @multitable @columnfractions .50 .50
8292 @item C code @tab MIPS instruction
8293 @item @code{a + b} @tab @code{addu.qb}
8294 @item @code{c + d} @tab @code{addq.ph}
8295 @item @code{a - b} @tab @code{subu.qb}
8296 @item @code{c - d} @tab @code{subq.ph}
8297 @end multitable
8298
8299 The table below lists the @code{v2i16} operation for which
8300 hardware support exists for the DSP ASE REV 2. @code{e} and @code{f} are
8301 @code{v2i16} values.
8302
8303 @multitable @columnfractions .50 .50
8304 @item C code @tab MIPS instruction
8305 @item @code{e * f} @tab @code{mul.ph}
8306 @end multitable
8307
8308 It is easier to describe the DSP built-in functions if we first define
8309 the following types:
8310
8311 @smallexample
8312 typedef int q31;
8313 typedef int i32;
8314 typedef unsigned int ui32;
8315 typedef long long a64;
8316 @end smallexample
8317
8318 @code{q31} and @code{i32} are actually the same as @code{int}, but we
8319 use @code{q31} to indicate a Q31 fractional value and @code{i32} to
8320 indicate a 32-bit integer value. Similarly, @code{a64} is the same as
8321 @code{long long}, but we use @code{a64} to indicate values that will
8322 be placed in one of the four DSP accumulators (@code{$ac0},
8323 @code{$ac1}, @code{$ac2} or @code{$ac3}).
8324
8325 Also, some built-in functions prefer or require immediate numbers as
8326 parameters, because the corresponding DSP instructions accept both immediate
8327 numbers and register operands, or accept immediate numbers only. The
8328 immediate parameters are listed as follows.
8329
8330 @smallexample
8331 imm0_3: 0 to 3.
8332 imm0_7: 0 to 7.
8333 imm0_15: 0 to 15.
8334 imm0_31: 0 to 31.
8335 imm0_63: 0 to 63.
8336 imm0_255: 0 to 255.
8337 imm_n32_31: -32 to 31.
8338 imm_n512_511: -512 to 511.
8339 @end smallexample
8340
8341 The following built-in functions map directly to a particular MIPS DSP
8342 instruction. Please refer to the architecture specification
8343 for details on what each instruction does.
8344
8345 @smallexample
8346 v2q15 __builtin_mips_addq_ph (v2q15, v2q15)
8347 v2q15 __builtin_mips_addq_s_ph (v2q15, v2q15)
8348 q31 __builtin_mips_addq_s_w (q31, q31)
8349 v4i8 __builtin_mips_addu_qb (v4i8, v4i8)
8350 v4i8 __builtin_mips_addu_s_qb (v4i8, v4i8)
8351 v2q15 __builtin_mips_subq_ph (v2q15, v2q15)
8352 v2q15 __builtin_mips_subq_s_ph (v2q15, v2q15)
8353 q31 __builtin_mips_subq_s_w (q31, q31)
8354 v4i8 __builtin_mips_subu_qb (v4i8, v4i8)
8355 v4i8 __builtin_mips_subu_s_qb (v4i8, v4i8)
8356 i32 __builtin_mips_addsc (i32, i32)
8357 i32 __builtin_mips_addwc (i32, i32)
8358 i32 __builtin_mips_modsub (i32, i32)
8359 i32 __builtin_mips_raddu_w_qb (v4i8)
8360 v2q15 __builtin_mips_absq_s_ph (v2q15)
8361 q31 __builtin_mips_absq_s_w (q31)
8362 v4i8 __builtin_mips_precrq_qb_ph (v2q15, v2q15)
8363 v2q15 __builtin_mips_precrq_ph_w (q31, q31)
8364 v2q15 __builtin_mips_precrq_rs_ph_w (q31, q31)
8365 v4i8 __builtin_mips_precrqu_s_qb_ph (v2q15, v2q15)
8366 q31 __builtin_mips_preceq_w_phl (v2q15)
8367 q31 __builtin_mips_preceq_w_phr (v2q15)
8368 v2q15 __builtin_mips_precequ_ph_qbl (v4i8)
8369 v2q15 __builtin_mips_precequ_ph_qbr (v4i8)
8370 v2q15 __builtin_mips_precequ_ph_qbla (v4i8)
8371 v2q15 __builtin_mips_precequ_ph_qbra (v4i8)
8372 v2q15 __builtin_mips_preceu_ph_qbl (v4i8)
8373 v2q15 __builtin_mips_preceu_ph_qbr (v4i8)
8374 v2q15 __builtin_mips_preceu_ph_qbla (v4i8)
8375 v2q15 __builtin_mips_preceu_ph_qbra (v4i8)
8376 v4i8 __builtin_mips_shll_qb (v4i8, imm0_7)
8377 v4i8 __builtin_mips_shll_qb (v4i8, i32)
8378 v2q15 __builtin_mips_shll_ph (v2q15, imm0_15)
8379 v2q15 __builtin_mips_shll_ph (v2q15, i32)
8380 v2q15 __builtin_mips_shll_s_ph (v2q15, imm0_15)
8381 v2q15 __builtin_mips_shll_s_ph (v2q15, i32)
8382 q31 __builtin_mips_shll_s_w (q31, imm0_31)
8383 q31 __builtin_mips_shll_s_w (q31, i32)
8384 v4i8 __builtin_mips_shrl_qb (v4i8, imm0_7)
8385 v4i8 __builtin_mips_shrl_qb (v4i8, i32)
8386 v2q15 __builtin_mips_shra_ph (v2q15, imm0_15)
8387 v2q15 __builtin_mips_shra_ph (v2q15, i32)
8388 v2q15 __builtin_mips_shra_r_ph (v2q15, imm0_15)
8389 v2q15 __builtin_mips_shra_r_ph (v2q15, i32)
8390 q31 __builtin_mips_shra_r_w (q31, imm0_31)
8391 q31 __builtin_mips_shra_r_w (q31, i32)
8392 v2q15 __builtin_mips_muleu_s_ph_qbl (v4i8, v2q15)
8393 v2q15 __builtin_mips_muleu_s_ph_qbr (v4i8, v2q15)
8394 v2q15 __builtin_mips_mulq_rs_ph (v2q15, v2q15)
8395 q31 __builtin_mips_muleq_s_w_phl (v2q15, v2q15)
8396 q31 __builtin_mips_muleq_s_w_phr (v2q15, v2q15)
8397 a64 __builtin_mips_dpau_h_qbl (a64, v4i8, v4i8)
8398 a64 __builtin_mips_dpau_h_qbr (a64, v4i8, v4i8)
8399 a64 __builtin_mips_dpsu_h_qbl (a64, v4i8, v4i8)
8400 a64 __builtin_mips_dpsu_h_qbr (a64, v4i8, v4i8)
8401 a64 __builtin_mips_dpaq_s_w_ph (a64, v2q15, v2q15)
8402 a64 __builtin_mips_dpaq_sa_l_w (a64, q31, q31)
8403 a64 __builtin_mips_dpsq_s_w_ph (a64, v2q15, v2q15)
8404 a64 __builtin_mips_dpsq_sa_l_w (a64, q31, q31)
8405 a64 __builtin_mips_mulsaq_s_w_ph (a64, v2q15, v2q15)
8406 a64 __builtin_mips_maq_s_w_phl (a64, v2q15, v2q15)
8407 a64 __builtin_mips_maq_s_w_phr (a64, v2q15, v2q15)
8408 a64 __builtin_mips_maq_sa_w_phl (a64, v2q15, v2q15)
8409 a64 __builtin_mips_maq_sa_w_phr (a64, v2q15, v2q15)
8410 i32 __builtin_mips_bitrev (i32)
8411 i32 __builtin_mips_insv (i32, i32)
8412 v4i8 __builtin_mips_repl_qb (imm0_255)
8413 v4i8 __builtin_mips_repl_qb (i32)
8414 v2q15 __builtin_mips_repl_ph (imm_n512_511)
8415 v2q15 __builtin_mips_repl_ph (i32)
8416 void __builtin_mips_cmpu_eq_qb (v4i8, v4i8)
8417 void __builtin_mips_cmpu_lt_qb (v4i8, v4i8)
8418 void __builtin_mips_cmpu_le_qb (v4i8, v4i8)
8419 i32 __builtin_mips_cmpgu_eq_qb (v4i8, v4i8)
8420 i32 __builtin_mips_cmpgu_lt_qb (v4i8, v4i8)
8421 i32 __builtin_mips_cmpgu_le_qb (v4i8, v4i8)
8422 void __builtin_mips_cmp_eq_ph (v2q15, v2q15)
8423 void __builtin_mips_cmp_lt_ph (v2q15, v2q15)
8424 void __builtin_mips_cmp_le_ph (v2q15, v2q15)
8425 v4i8 __builtin_mips_pick_qb (v4i8, v4i8)
8426 v2q15 __builtin_mips_pick_ph (v2q15, v2q15)
8427 v2q15 __builtin_mips_packrl_ph (v2q15, v2q15)
8428 i32 __builtin_mips_extr_w (a64, imm0_31)
8429 i32 __builtin_mips_extr_w (a64, i32)
8430 i32 __builtin_mips_extr_r_w (a64, imm0_31)
8431 i32 __builtin_mips_extr_s_h (a64, i32)
8432 i32 __builtin_mips_extr_rs_w (a64, imm0_31)
8433 i32 __builtin_mips_extr_rs_w (a64, i32)
8434 i32 __builtin_mips_extr_s_h (a64, imm0_31)
8435 i32 __builtin_mips_extr_r_w (a64, i32)
8436 i32 __builtin_mips_extp (a64, imm0_31)
8437 i32 __builtin_mips_extp (a64, i32)
8438 i32 __builtin_mips_extpdp (a64, imm0_31)
8439 i32 __builtin_mips_extpdp (a64, i32)
8440 a64 __builtin_mips_shilo (a64, imm_n32_31)
8441 a64 __builtin_mips_shilo (a64, i32)
8442 a64 __builtin_mips_mthlip (a64, i32)
8443 void __builtin_mips_wrdsp (i32, imm0_63)
8444 i32 __builtin_mips_rddsp (imm0_63)
8445 i32 __builtin_mips_lbux (void *, i32)
8446 i32 __builtin_mips_lhx (void *, i32)
8447 i32 __builtin_mips_lwx (void *, i32)
8448 i32 __builtin_mips_bposge32 (void)
8449 @end smallexample
8450
8451 The following built-in functions map directly to a particular MIPS DSP REV 2
8452 instruction. Please refer to the architecture specification
8453 for details on what each instruction does.
8454
8455 @smallexample
8456 v4q7 __builtin_mips_absq_s_qb (v4q7);
8457 v2i16 __builtin_mips_addu_ph (v2i16, v2i16);
8458 v2i16 __builtin_mips_addu_s_ph (v2i16, v2i16);
8459 v4i8 __builtin_mips_adduh_qb (v4i8, v4i8);
8460 v4i8 __builtin_mips_adduh_r_qb (v4i8, v4i8);
8461 i32 __builtin_mips_append (i32, i32, imm0_31);
8462 i32 __builtin_mips_balign (i32, i32, imm0_3);
8463 i32 __builtin_mips_cmpgdu_eq_qb (v4i8, v4i8);
8464 i32 __builtin_mips_cmpgdu_lt_qb (v4i8, v4i8);
8465 i32 __builtin_mips_cmpgdu_le_qb (v4i8, v4i8);
8466 a64 __builtin_mips_dpa_w_ph (a64, v2i16, v2i16);
8467 a64 __builtin_mips_dps_w_ph (a64, v2i16, v2i16);
8468 a64 __builtin_mips_madd (a64, i32, i32);
8469 a64 __builtin_mips_maddu (a64, ui32, ui32);
8470 a64 __builtin_mips_msub (a64, i32, i32);
8471 a64 __builtin_mips_msubu (a64, ui32, ui32);
8472 v2i16 __builtin_mips_mul_ph (v2i16, v2i16);
8473 v2i16 __builtin_mips_mul_s_ph (v2i16, v2i16);
8474 q31 __builtin_mips_mulq_rs_w (q31, q31);
8475 v2q15 __builtin_mips_mulq_s_ph (v2q15, v2q15);
8476 q31 __builtin_mips_mulq_s_w (q31, q31);
8477 a64 __builtin_mips_mulsa_w_ph (a64, v2i16, v2i16);
8478 a64 __builtin_mips_mult (i32, i32);
8479 a64 __builtin_mips_multu (ui32, ui32);
8480 v4i8 __builtin_mips_precr_qb_ph (v2i16, v2i16);
8481 v2i16 __builtin_mips_precr_sra_ph_w (i32, i32, imm0_31);
8482 v2i16 __builtin_mips_precr_sra_r_ph_w (i32, i32, imm0_31);
8483 i32 __builtin_mips_prepend (i32, i32, imm0_31);
8484 v4i8 __builtin_mips_shra_qb (v4i8, imm0_7);
8485 v4i8 __builtin_mips_shra_r_qb (v4i8, imm0_7);
8486 v4i8 __builtin_mips_shra_qb (v4i8, i32);
8487 v4i8 __builtin_mips_shra_r_qb (v4i8, i32);
8488 v2i16 __builtin_mips_shrl_ph (v2i16, imm0_15);
8489 v2i16 __builtin_mips_shrl_ph (v2i16, i32);
8490 v2i16 __builtin_mips_subu_ph (v2i16, v2i16);
8491 v2i16 __builtin_mips_subu_s_ph (v2i16, v2i16);
8492 v4i8 __builtin_mips_subuh_qb (v4i8, v4i8);
8493 v4i8 __builtin_mips_subuh_r_qb (v4i8, v4i8);
8494 v2q15 __builtin_mips_addqh_ph (v2q15, v2q15);
8495 v2q15 __builtin_mips_addqh_r_ph (v2q15, v2q15);
8496 q31 __builtin_mips_addqh_w (q31, q31);
8497 q31 __builtin_mips_addqh_r_w (q31, q31);
8498 v2q15 __builtin_mips_subqh_ph (v2q15, v2q15);
8499 v2q15 __builtin_mips_subqh_r_ph (v2q15, v2q15);
8500 q31 __builtin_mips_subqh_w (q31, q31);
8501 q31 __builtin_mips_subqh_r_w (q31, q31);
8502 a64 __builtin_mips_dpax_w_ph (a64, v2i16, v2i16);
8503 a64 __builtin_mips_dpsx_w_ph (a64, v2i16, v2i16);
8504 a64 __builtin_mips_dpaqx_s_w_ph (a64, v2q15, v2q15);
8505 a64 __builtin_mips_dpaqx_sa_w_ph (a64, v2q15, v2q15);
8506 a64 __builtin_mips_dpsqx_s_w_ph (a64, v2q15, v2q15);
8507 a64 __builtin_mips_dpsqx_sa_w_ph (a64, v2q15, v2q15);
8508 @end smallexample
8509
8510
8511 @node MIPS Paired-Single Support
8512 @subsection MIPS Paired-Single Support
8513
8514 The MIPS64 architecture includes a number of instructions that
8515 operate on pairs of single-precision floating-point values.
8516 Each pair is packed into a 64-bit floating-point register,
8517 with one element being designated the ``upper half'' and
8518 the other being designated the ``lower half''.
8519
8520 GCC supports paired-single operations using both the generic
8521 vector extensions (@pxref{Vector Extensions}) and a collection of
8522 MIPS-specific built-in functions. Both kinds of support are
8523 enabled by the @option{-mpaired-single} command-line option.
8524
8525 The vector type associated with paired-single values is usually
8526 called @code{v2sf}. It can be defined in C as follows:
8527
8528 @smallexample
8529 typedef float v2sf __attribute__ ((vector_size (8)));
8530 @end smallexample
8531
8532 @code{v2sf} values are initialized in the same way as aggregates.
8533 For example:
8534
8535 @smallexample
8536 v2sf a = @{1.5, 9.1@};
8537 v2sf b;
8538 float e, f;
8539 b = (v2sf) @{e, f@};
8540 @end smallexample
8541
8542 @emph{Note:} The CPU's endianness determines which value is stored in
8543 the upper half of a register and which value is stored in the lower half.
8544 On little-endian targets, the first value is the lower one and the second
8545 value is the upper one. The opposite order applies to big-endian targets.
8546 For example, the code above will set the lower half of @code{a} to
8547 @code{1.5} on little-endian targets and @code{9.1} on big-endian targets.
8548
8549 @menu
8550 * Paired-Single Arithmetic::
8551 * Paired-Single Built-in Functions::
8552 * MIPS-3D Built-in Functions::
8553 @end menu
8554
8555 @node Paired-Single Arithmetic
8556 @subsubsection Paired-Single Arithmetic
8557
8558 The table below lists the @code{v2sf} operations for which hardware
8559 support exists. @code{a}, @code{b} and @code{c} are @code{v2sf}
8560 values and @code{x} is an integral value.
8561
8562 @multitable @columnfractions .50 .50
8563 @item C code @tab MIPS instruction
8564 @item @code{a + b} @tab @code{add.ps}
8565 @item @code{a - b} @tab @code{sub.ps}
8566 @item @code{-a} @tab @code{neg.ps}
8567 @item @code{a * b} @tab @code{mul.ps}
8568 @item @code{a * b + c} @tab @code{madd.ps}
8569 @item @code{a * b - c} @tab @code{msub.ps}
8570 @item @code{-(a * b + c)} @tab @code{nmadd.ps}
8571 @item @code{-(a * b - c)} @tab @code{nmsub.ps}
8572 @item @code{x ? a : b} @tab @code{movn.ps}/@code{movz.ps}
8573 @end multitable
8574
8575 Note that the multiply-accumulate instructions can be disabled
8576 using the command-line option @code{-mno-fused-madd}.
8577
8578 @node Paired-Single Built-in Functions
8579 @subsubsection Paired-Single Built-in Functions
8580
8581 The following paired-single functions map directly to a particular
8582 MIPS instruction. Please refer to the architecture specification
8583 for details on what each instruction does.
8584
8585 @table @code
8586 @item v2sf __builtin_mips_pll_ps (v2sf, v2sf)
8587 Pair lower lower (@code{pll.ps}).
8588
8589 @item v2sf __builtin_mips_pul_ps (v2sf, v2sf)
8590 Pair upper lower (@code{pul.ps}).
8591
8592 @item v2sf __builtin_mips_plu_ps (v2sf, v2sf)
8593 Pair lower upper (@code{plu.ps}).
8594
8595 @item v2sf __builtin_mips_puu_ps (v2sf, v2sf)
8596 Pair upper upper (@code{puu.ps}).
8597
8598 @item v2sf __builtin_mips_cvt_ps_s (float, float)
8599 Convert pair to paired single (@code{cvt.ps.s}).
8600
8601 @item float __builtin_mips_cvt_s_pl (v2sf)
8602 Convert pair lower to single (@code{cvt.s.pl}).
8603
8604 @item float __builtin_mips_cvt_s_pu (v2sf)
8605 Convert pair upper to single (@code{cvt.s.pu}).
8606
8607 @item v2sf __builtin_mips_abs_ps (v2sf)
8608 Absolute value (@code{abs.ps}).
8609
8610 @item v2sf __builtin_mips_alnv_ps (v2sf, v2sf, int)
8611 Align variable (@code{alnv.ps}).
8612
8613 @emph{Note:} The value of the third parameter must be 0 or 4
8614 modulo 8, otherwise the result will be unpredictable. Please read the
8615 instruction description for details.
8616 @end table
8617
8618 The following multi-instruction functions are also available.
8619 In each case, @var{cond} can be any of the 16 floating-point conditions:
8620 @code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
8621 @code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq}, @code{ngl},
8622 @code{lt}, @code{nge}, @code{le} or @code{ngt}.
8623
8624 @table @code
8625 @item v2sf __builtin_mips_movt_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
8626 @itemx v2sf __builtin_mips_movf_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
8627 Conditional move based on floating point comparison (@code{c.@var{cond}.ps},
8628 @code{movt.ps}/@code{movf.ps}).
8629
8630 The @code{movt} functions return the value @var{x} computed by:
8631
8632 @smallexample
8633 c.@var{cond}.ps @var{cc},@var{a},@var{b}
8634 mov.ps @var{x},@var{c}
8635 movt.ps @var{x},@var{d},@var{cc}
8636 @end smallexample
8637
8638 The @code{movf} functions are similar but use @code{movf.ps} instead
8639 of @code{movt.ps}.
8640
8641 @item int __builtin_mips_upper_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
8642 @itemx int __builtin_mips_lower_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
8643 Comparison of two paired-single values (@code{c.@var{cond}.ps},
8644 @code{bc1t}/@code{bc1f}).
8645
8646 These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
8647 and return either the upper or lower half of the result. For example:
8648
8649 @smallexample
8650 v2sf a, b;
8651 if (__builtin_mips_upper_c_eq_ps (a, b))
8652 upper_halves_are_equal ();
8653 else
8654 upper_halves_are_unequal ();
8655
8656 if (__builtin_mips_lower_c_eq_ps (a, b))
8657 lower_halves_are_equal ();
8658 else
8659 lower_halves_are_unequal ();
8660 @end smallexample
8661 @end table
8662
8663 @node MIPS-3D Built-in Functions
8664 @subsubsection MIPS-3D Built-in Functions
8665
8666 The MIPS-3D Application-Specific Extension (ASE) includes additional
8667 paired-single instructions that are designed to improve the performance
8668 of 3D graphics operations. Support for these instructions is controlled
8669 by the @option{-mips3d} command-line option.
8670
8671 The functions listed below map directly to a particular MIPS-3D
8672 instruction. Please refer to the architecture specification for
8673 more details on what each instruction does.
8674
8675 @table @code
8676 @item v2sf __builtin_mips_addr_ps (v2sf, v2sf)
8677 Reduction add (@code{addr.ps}).
8678
8679 @item v2sf __builtin_mips_mulr_ps (v2sf, v2sf)
8680 Reduction multiply (@code{mulr.ps}).
8681
8682 @item v2sf __builtin_mips_cvt_pw_ps (v2sf)
8683 Convert paired single to paired word (@code{cvt.pw.ps}).
8684
8685 @item v2sf __builtin_mips_cvt_ps_pw (v2sf)
8686 Convert paired word to paired single (@code{cvt.ps.pw}).
8687
8688 @item float __builtin_mips_recip1_s (float)
8689 @itemx double __builtin_mips_recip1_d (double)
8690 @itemx v2sf __builtin_mips_recip1_ps (v2sf)
8691 Reduced precision reciprocal (sequence step 1) (@code{recip1.@var{fmt}}).
8692
8693 @item float __builtin_mips_recip2_s (float, float)
8694 @itemx double __builtin_mips_recip2_d (double, double)
8695 @itemx v2sf __builtin_mips_recip2_ps (v2sf, v2sf)
8696 Reduced precision reciprocal (sequence step 2) (@code{recip2.@var{fmt}}).
8697
8698 @item float __builtin_mips_rsqrt1_s (float)
8699 @itemx double __builtin_mips_rsqrt1_d (double)
8700 @itemx v2sf __builtin_mips_rsqrt1_ps (v2sf)
8701 Reduced precision reciprocal square root (sequence step 1)
8702 (@code{rsqrt1.@var{fmt}}).
8703
8704 @item float __builtin_mips_rsqrt2_s (float, float)
8705 @itemx double __builtin_mips_rsqrt2_d (double, double)
8706 @itemx v2sf __builtin_mips_rsqrt2_ps (v2sf, v2sf)
8707 Reduced precision reciprocal square root (sequence step 2)
8708 (@code{rsqrt2.@var{fmt}}).
8709 @end table
8710
8711 The following multi-instruction functions are also available.
8712 In each case, @var{cond} can be any of the 16 floating-point conditions:
8713 @code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
8714 @code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq},
8715 @code{ngl}, @code{lt}, @code{nge}, @code{le} or @code{ngt}.
8716
8717 @table @code
8718 @item int __builtin_mips_cabs_@var{cond}_s (float @var{a}, float @var{b})
8719 @itemx int __builtin_mips_cabs_@var{cond}_d (double @var{a}, double @var{b})
8720 Absolute comparison of two scalar values (@code{cabs.@var{cond}.@var{fmt}},
8721 @code{bc1t}/@code{bc1f}).
8722
8723 These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.s}
8724 or @code{cabs.@var{cond}.d} and return the result as a boolean value.
8725 For example:
8726
8727 @smallexample
8728 float a, b;
8729 if (__builtin_mips_cabs_eq_s (a, b))
8730 true ();
8731 else
8732 false ();
8733 @end smallexample
8734
8735 @item int __builtin_mips_upper_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
8736 @itemx int __builtin_mips_lower_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
8737 Absolute comparison of two paired-single values (@code{cabs.@var{cond}.ps},
8738 @code{bc1t}/@code{bc1f}).
8739
8740 These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.ps}
8741 and return either the upper or lower half of the result. For example:
8742
8743 @smallexample
8744 v2sf a, b;
8745 if (__builtin_mips_upper_cabs_eq_ps (a, b))
8746 upper_halves_are_equal ();
8747 else
8748 upper_halves_are_unequal ();
8749
8750 if (__builtin_mips_lower_cabs_eq_ps (a, b))
8751 lower_halves_are_equal ();
8752 else
8753 lower_halves_are_unequal ();
8754 @end smallexample
8755
8756 @item v2sf __builtin_mips_movt_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
8757 @itemx v2sf __builtin_mips_movf_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
8758 Conditional move based on absolute comparison (@code{cabs.@var{cond}.ps},
8759 @code{movt.ps}/@code{movf.ps}).
8760
8761 The @code{movt} functions return the value @var{x} computed by:
8762
8763 @smallexample
8764 cabs.@var{cond}.ps @var{cc},@var{a},@var{b}
8765 mov.ps @var{x},@var{c}
8766 movt.ps @var{x},@var{d},@var{cc}
8767 @end smallexample
8768
8769 The @code{movf} functions are similar but use @code{movf.ps} instead
8770 of @code{movt.ps}.
8771
8772 @item int __builtin_mips_any_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
8773 @itemx int __builtin_mips_all_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
8774 @itemx int __builtin_mips_any_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
8775 @itemx int __builtin_mips_all_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
8776 Comparison of two paired-single values
8777 (@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
8778 @code{bc1any2t}/@code{bc1any2f}).
8779
8780 These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
8781 or @code{cabs.@var{cond}.ps}. The @code{any} forms return true if either
8782 result is true and the @code{all} forms return true if both results are true.
8783 For example:
8784
8785 @smallexample
8786 v2sf a, b;
8787 if (__builtin_mips_any_c_eq_ps (a, b))
8788 one_is_true ();
8789 else
8790 both_are_false ();
8791
8792 if (__builtin_mips_all_c_eq_ps (a, b))
8793 both_are_true ();
8794 else
8795 one_is_false ();
8796 @end smallexample
8797
8798 @item int __builtin_mips_any_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
8799 @itemx int __builtin_mips_all_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
8800 @itemx int __builtin_mips_any_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
8801 @itemx int __builtin_mips_all_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
8802 Comparison of four paired-single values
8803 (@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
8804 @code{bc1any4t}/@code{bc1any4f}).
8805
8806 These functions use @code{c.@var{cond}.ps} or @code{cabs.@var{cond}.ps}
8807 to compare @var{a} with @var{b} and to compare @var{c} with @var{d}.
8808 The @code{any} forms return true if any of the four results are true
8809 and the @code{all} forms return true if all four results are true.
8810 For example:
8811
8812 @smallexample
8813 v2sf a, b, c, d;
8814 if (__builtin_mips_any_c_eq_4s (a, b, c, d))
8815 some_are_true ();
8816 else
8817 all_are_false ();
8818
8819 if (__builtin_mips_all_c_eq_4s (a, b, c, d))
8820 all_are_true ();
8821 else
8822 some_are_false ();
8823 @end smallexample
8824 @end table
8825
8826 @node PowerPC AltiVec Built-in Functions
8827 @subsection PowerPC AltiVec Built-in Functions
8828
8829 GCC provides an interface for the PowerPC family of processors to access
8830 the AltiVec operations described in Motorola's AltiVec Programming
8831 Interface Manual. The interface is made available by including
8832 @code{<altivec.h>} and using @option{-maltivec} and
8833 @option{-mabi=altivec}. The interface supports the following vector
8834 types.
8835
8836 @smallexample
8837 vector unsigned char
8838 vector signed char
8839 vector bool char
8840
8841 vector unsigned short
8842 vector signed short
8843 vector bool short
8844 vector pixel
8845
8846 vector unsigned int
8847 vector signed int
8848 vector bool int
8849 vector float
8850 @end smallexample
8851
8852 GCC's implementation of the high-level language interface available from
8853 C and C++ code differs from Motorola's documentation in several ways.
8854
8855 @itemize @bullet
8856
8857 @item
8858 A vector constant is a list of constant expressions within curly braces.
8859
8860 @item
8861 A vector initializer requires no cast if the vector constant is of the
8862 same type as the variable it is initializing.
8863
8864 @item
8865 If @code{signed} or @code{unsigned} is omitted, the signedness of the
8866 vector type is the default signedness of the base type. The default
8867 varies depending on the operating system, so a portable program should
8868 always specify the signedness.
8869
8870 @item
8871 Compiling with @option{-maltivec} adds keywords @code{__vector},
8872 @code{__pixel}, and @code{__bool}. Macros @option{vector},
8873 @code{pixel}, and @code{bool} are defined in @code{<altivec.h>} and can
8874 be undefined.
8875
8876 @item
8877 GCC allows using a @code{typedef} name as the type specifier for a
8878 vector type.
8879
8880 @item
8881 For C, overloaded functions are implemented with macros so the following
8882 does not work:
8883
8884 @smallexample
8885 vec_add ((vector signed int)@{1, 2, 3, 4@}, foo);
8886 @end smallexample
8887
8888 Since @code{vec_add} is a macro, the vector constant in the example
8889 is treated as four separate arguments. Wrap the entire argument in
8890 parentheses for this to work.
8891 @end itemize
8892
8893 @emph{Note:} Only the @code{<altivec.h>} interface is supported.
8894 Internally, GCC uses built-in functions to achieve the functionality in
8895 the aforementioned header file, but they are not supported and are
8896 subject to change without notice.
8897
8898 The following interfaces are supported for the generic and specific
8899 AltiVec operations and the AltiVec predicates. In cases where there
8900 is a direct mapping between generic and specific operations, only the
8901 generic names are shown here, although the specific operations can also
8902 be used.
8903
8904 Arguments that are documented as @code{const int} require literal
8905 integral values within the range required for that operation.
8906
8907 @smallexample
8908 vector signed char vec_abs (vector signed char);
8909 vector signed short vec_abs (vector signed short);
8910 vector signed int vec_abs (vector signed int);
8911 vector float vec_abs (vector float);
8912
8913 vector signed char vec_abss (vector signed char);
8914 vector signed short vec_abss (vector signed short);
8915 vector signed int vec_abss (vector signed int);
8916
8917 vector signed char vec_add (vector bool char, vector signed char);
8918 vector signed char vec_add (vector signed char, vector bool char);
8919 vector signed char vec_add (vector signed char, vector signed char);
8920 vector unsigned char vec_add (vector bool char, vector unsigned char);
8921 vector unsigned char vec_add (vector unsigned char, vector bool char);
8922 vector unsigned char vec_add (vector unsigned char,
8923 vector unsigned char);
8924 vector signed short vec_add (vector bool short, vector signed short);
8925 vector signed short vec_add (vector signed short, vector bool short);
8926 vector signed short vec_add (vector signed short, vector signed short);
8927 vector unsigned short vec_add (vector bool short,
8928 vector unsigned short);
8929 vector unsigned short vec_add (vector unsigned short,
8930 vector bool short);
8931 vector unsigned short vec_add (vector unsigned short,
8932 vector unsigned short);
8933 vector signed int vec_add (vector bool int, vector signed int);
8934 vector signed int vec_add (vector signed int, vector bool int);
8935 vector signed int vec_add (vector signed int, vector signed int);
8936 vector unsigned int vec_add (vector bool int, vector unsigned int);
8937 vector unsigned int vec_add (vector unsigned int, vector bool int);
8938 vector unsigned int vec_add (vector unsigned int, vector unsigned int);
8939 vector float vec_add (vector float, vector float);
8940
8941 vector float vec_vaddfp (vector float, vector float);
8942
8943 vector signed int vec_vadduwm (vector bool int, vector signed int);
8944 vector signed int vec_vadduwm (vector signed int, vector bool int);
8945 vector signed int vec_vadduwm (vector signed int, vector signed int);
8946 vector unsigned int vec_vadduwm (vector bool int, vector unsigned int);
8947 vector unsigned int vec_vadduwm (vector unsigned int, vector bool int);
8948 vector unsigned int vec_vadduwm (vector unsigned int,
8949 vector unsigned int);
8950
8951 vector signed short vec_vadduhm (vector bool short,
8952 vector signed short);
8953 vector signed short vec_vadduhm (vector signed short,
8954 vector bool short);
8955 vector signed short vec_vadduhm (vector signed short,
8956 vector signed short);
8957 vector unsigned short vec_vadduhm (vector bool short,
8958 vector unsigned short);
8959 vector unsigned short vec_vadduhm (vector unsigned short,
8960 vector bool short);
8961 vector unsigned short vec_vadduhm (vector unsigned short,
8962 vector unsigned short);
8963
8964 vector signed char vec_vaddubm (vector bool char, vector signed char);
8965 vector signed char vec_vaddubm (vector signed char, vector bool char);
8966 vector signed char vec_vaddubm (vector signed char, vector signed char);
8967 vector unsigned char vec_vaddubm (vector bool char,
8968 vector unsigned char);
8969 vector unsigned char vec_vaddubm (vector unsigned char,
8970 vector bool char);
8971 vector unsigned char vec_vaddubm (vector unsigned char,
8972 vector unsigned char);
8973
8974 vector unsigned int vec_addc (vector unsigned int, vector unsigned int);
8975
8976 vector unsigned char vec_adds (vector bool char, vector unsigned char);
8977 vector unsigned char vec_adds (vector unsigned char, vector bool char);
8978 vector unsigned char vec_adds (vector unsigned char,
8979 vector unsigned char);
8980 vector signed char vec_adds (vector bool char, vector signed char);
8981 vector signed char vec_adds (vector signed char, vector bool char);
8982 vector signed char vec_adds (vector signed char, vector signed char);
8983 vector unsigned short vec_adds (vector bool short,
8984 vector unsigned short);
8985 vector unsigned short vec_adds (vector unsigned short,
8986 vector bool short);
8987 vector unsigned short vec_adds (vector unsigned short,
8988 vector unsigned short);
8989 vector signed short vec_adds (vector bool short, vector signed short);
8990 vector signed short vec_adds (vector signed short, vector bool short);
8991 vector signed short vec_adds (vector signed short, vector signed short);
8992 vector unsigned int vec_adds (vector bool int, vector unsigned int);
8993 vector unsigned int vec_adds (vector unsigned int, vector bool int);
8994 vector unsigned int vec_adds (vector unsigned int, vector unsigned int);
8995 vector signed int vec_adds (vector bool int, vector signed int);
8996 vector signed int vec_adds (vector signed int, vector bool int);
8997 vector signed int vec_adds (vector signed int, vector signed int);
8998
8999 vector signed int vec_vaddsws (vector bool int, vector signed int);
9000 vector signed int vec_vaddsws (vector signed int, vector bool int);
9001 vector signed int vec_vaddsws (vector signed int, vector signed int);
9002
9003 vector unsigned int vec_vadduws (vector bool int, vector unsigned int);
9004 vector unsigned int vec_vadduws (vector unsigned int, vector bool int);
9005 vector unsigned int vec_vadduws (vector unsigned int,
9006 vector unsigned int);
9007
9008 vector signed short vec_vaddshs (vector bool short,
9009 vector signed short);
9010 vector signed short vec_vaddshs (vector signed short,
9011 vector bool short);
9012 vector signed short vec_vaddshs (vector signed short,
9013 vector signed short);
9014
9015 vector unsigned short vec_vadduhs (vector bool short,
9016 vector unsigned short);
9017 vector unsigned short vec_vadduhs (vector unsigned short,
9018 vector bool short);
9019 vector unsigned short vec_vadduhs (vector unsigned short,
9020 vector unsigned short);
9021
9022 vector signed char vec_vaddsbs (vector bool char, vector signed char);
9023 vector signed char vec_vaddsbs (vector signed char, vector bool char);
9024 vector signed char vec_vaddsbs (vector signed char, vector signed char);
9025
9026 vector unsigned char vec_vaddubs (vector bool char,
9027 vector unsigned char);
9028 vector unsigned char vec_vaddubs (vector unsigned char,
9029 vector bool char);
9030 vector unsigned char vec_vaddubs (vector unsigned char,
9031 vector unsigned char);
9032
9033 vector float vec_and (vector float, vector float);
9034 vector float vec_and (vector float, vector bool int);
9035 vector float vec_and (vector bool int, vector float);
9036 vector bool int vec_and (vector bool int, vector bool int);
9037 vector signed int vec_and (vector bool int, vector signed int);
9038 vector signed int vec_and (vector signed int, vector bool int);
9039 vector signed int vec_and (vector signed int, vector signed int);
9040 vector unsigned int vec_and (vector bool int, vector unsigned int);
9041 vector unsigned int vec_and (vector unsigned int, vector bool int);
9042 vector unsigned int vec_and (vector unsigned int, vector unsigned int);
9043 vector bool short vec_and (vector bool short, vector bool short);
9044 vector signed short vec_and (vector bool short, vector signed short);
9045 vector signed short vec_and (vector signed short, vector bool short);
9046 vector signed short vec_and (vector signed short, vector signed short);
9047 vector unsigned short vec_and (vector bool short,
9048 vector unsigned short);
9049 vector unsigned short vec_and (vector unsigned short,
9050 vector bool short);
9051 vector unsigned short vec_and (vector unsigned short,
9052 vector unsigned short);
9053 vector signed char vec_and (vector bool char, vector signed char);
9054 vector bool char vec_and (vector bool char, vector bool char);
9055 vector signed char vec_and (vector signed char, vector bool char);
9056 vector signed char vec_and (vector signed char, vector signed char);
9057 vector unsigned char vec_and (vector bool char, vector unsigned char);
9058 vector unsigned char vec_and (vector unsigned char, vector bool char);
9059 vector unsigned char vec_and (vector unsigned char,
9060 vector unsigned char);
9061
9062 vector float vec_andc (vector float, vector float);
9063 vector float vec_andc (vector float, vector bool int);
9064 vector float vec_andc (vector bool int, vector float);
9065 vector bool int vec_andc (vector bool int, vector bool int);
9066 vector signed int vec_andc (vector bool int, vector signed int);
9067 vector signed int vec_andc (vector signed int, vector bool int);
9068 vector signed int vec_andc (vector signed int, vector signed int);
9069 vector unsigned int vec_andc (vector bool int, vector unsigned int);
9070 vector unsigned int vec_andc (vector unsigned int, vector bool int);
9071 vector unsigned int vec_andc (vector unsigned int, vector unsigned int);
9072 vector bool short vec_andc (vector bool short, vector bool short);
9073 vector signed short vec_andc (vector bool short, vector signed short);
9074 vector signed short vec_andc (vector signed short, vector bool short);
9075 vector signed short vec_andc (vector signed short, vector signed short);
9076 vector unsigned short vec_andc (vector bool short,
9077 vector unsigned short);
9078 vector unsigned short vec_andc (vector unsigned short,
9079 vector bool short);
9080 vector unsigned short vec_andc (vector unsigned short,
9081 vector unsigned short);
9082 vector signed char vec_andc (vector bool char, vector signed char);
9083 vector bool char vec_andc (vector bool char, vector bool char);
9084 vector signed char vec_andc (vector signed char, vector bool char);
9085 vector signed char vec_andc (vector signed char, vector signed char);
9086 vector unsigned char vec_andc (vector bool char, vector unsigned char);
9087 vector unsigned char vec_andc (vector unsigned char, vector bool char);
9088 vector unsigned char vec_andc (vector unsigned char,
9089 vector unsigned char);
9090
9091 vector unsigned char vec_avg (vector unsigned char,
9092 vector unsigned char);
9093 vector signed char vec_avg (vector signed char, vector signed char);
9094 vector unsigned short vec_avg (vector unsigned short,
9095 vector unsigned short);
9096 vector signed short vec_avg (vector signed short, vector signed short);
9097 vector unsigned int vec_avg (vector unsigned int, vector unsigned int);
9098 vector signed int vec_avg (vector signed int, vector signed int);
9099
9100 vector signed int vec_vavgsw (vector signed int, vector signed int);
9101
9102 vector unsigned int vec_vavguw (vector unsigned int,
9103 vector unsigned int);
9104
9105 vector signed short vec_vavgsh (vector signed short,
9106 vector signed short);
9107
9108 vector unsigned short vec_vavguh (vector unsigned short,
9109 vector unsigned short);
9110
9111 vector signed char vec_vavgsb (vector signed char, vector signed char);
9112
9113 vector unsigned char vec_vavgub (vector unsigned char,
9114 vector unsigned char);
9115
9116 vector float vec_ceil (vector float);
9117
9118 vector signed int vec_cmpb (vector float, vector float);
9119
9120 vector bool char vec_cmpeq (vector signed char, vector signed char);
9121 vector bool char vec_cmpeq (vector unsigned char, vector unsigned char);
9122 vector bool short vec_cmpeq (vector signed short, vector signed short);
9123 vector bool short vec_cmpeq (vector unsigned short,
9124 vector unsigned short);
9125 vector bool int vec_cmpeq (vector signed int, vector signed int);
9126 vector bool int vec_cmpeq (vector unsigned int, vector unsigned int);
9127 vector bool int vec_cmpeq (vector float, vector float);
9128
9129 vector bool int vec_vcmpeqfp (vector float, vector float);
9130
9131 vector bool int vec_vcmpequw (vector signed int, vector signed int);
9132 vector bool int vec_vcmpequw (vector unsigned int, vector unsigned int);
9133
9134 vector bool short vec_vcmpequh (vector signed short,
9135 vector signed short);
9136 vector bool short vec_vcmpequh (vector unsigned short,
9137 vector unsigned short);
9138
9139 vector bool char vec_vcmpequb (vector signed char, vector signed char);
9140 vector bool char vec_vcmpequb (vector unsigned char,
9141 vector unsigned char);
9142
9143 vector bool int vec_cmpge (vector float, vector float);
9144
9145 vector bool char vec_cmpgt (vector unsigned char, vector unsigned char);
9146 vector bool char vec_cmpgt (vector signed char, vector signed char);
9147 vector bool short vec_cmpgt (vector unsigned short,
9148 vector unsigned short);
9149 vector bool short vec_cmpgt (vector signed short, vector signed short);
9150 vector bool int vec_cmpgt (vector unsigned int, vector unsigned int);
9151 vector bool int vec_cmpgt (vector signed int, vector signed int);
9152 vector bool int vec_cmpgt (vector float, vector float);
9153
9154 vector bool int vec_vcmpgtfp (vector float, vector float);
9155
9156 vector bool int vec_vcmpgtsw (vector signed int, vector signed int);
9157
9158 vector bool int vec_vcmpgtuw (vector unsigned int, vector unsigned int);
9159
9160 vector bool short vec_vcmpgtsh (vector signed short,
9161 vector signed short);
9162
9163 vector bool short vec_vcmpgtuh (vector unsigned short,
9164 vector unsigned short);
9165
9166 vector bool char vec_vcmpgtsb (vector signed char, vector signed char);
9167
9168 vector bool char vec_vcmpgtub (vector unsigned char,
9169 vector unsigned char);
9170
9171 vector bool int vec_cmple (vector float, vector float);
9172
9173 vector bool char vec_cmplt (vector unsigned char, vector unsigned char);
9174 vector bool char vec_cmplt (vector signed char, vector signed char);
9175 vector bool short vec_cmplt (vector unsigned short,
9176 vector unsigned short);
9177 vector bool short vec_cmplt (vector signed short, vector signed short);
9178 vector bool int vec_cmplt (vector unsigned int, vector unsigned int);
9179 vector bool int vec_cmplt (vector signed int, vector signed int);
9180 vector bool int vec_cmplt (vector float, vector float);
9181
9182 vector float vec_ctf (vector unsigned int, const int);
9183 vector float vec_ctf (vector signed int, const int);
9184
9185 vector float vec_vcfsx (vector signed int, const int);
9186
9187 vector float vec_vcfux (vector unsigned int, const int);
9188
9189 vector signed int vec_cts (vector float, const int);
9190
9191 vector unsigned int vec_ctu (vector float, const int);
9192
9193 void vec_dss (const int);
9194
9195 void vec_dssall (void);
9196
9197 void vec_dst (const vector unsigned char *, int, const int);
9198 void vec_dst (const vector signed char *, int, const int);
9199 void vec_dst (const vector bool char *, int, const int);
9200 void vec_dst (const vector unsigned short *, int, const int);
9201 void vec_dst (const vector signed short *, int, const int);
9202 void vec_dst (const vector bool short *, int, const int);
9203 void vec_dst (const vector pixel *, int, const int);
9204 void vec_dst (const vector unsigned int *, int, const int);
9205 void vec_dst (const vector signed int *, int, const int);
9206 void vec_dst (const vector bool int *, int, const int);
9207 void vec_dst (const vector float *, int, const int);
9208 void vec_dst (const unsigned char *, int, const int);
9209 void vec_dst (const signed char *, int, const int);
9210 void vec_dst (const unsigned short *, int, const int);
9211 void vec_dst (const short *, int, const int);
9212 void vec_dst (const unsigned int *, int, const int);
9213 void vec_dst (const int *, int, const int);
9214 void vec_dst (const unsigned long *, int, const int);
9215 void vec_dst (const long *, int, const int);
9216 void vec_dst (const float *, int, const int);
9217
9218 void vec_dstst (const vector unsigned char *, int, const int);
9219 void vec_dstst (const vector signed char *, int, const int);
9220 void vec_dstst (const vector bool char *, int, const int);
9221 void vec_dstst (const vector unsigned short *, int, const int);
9222 void vec_dstst (const vector signed short *, int, const int);
9223 void vec_dstst (const vector bool short *, int, const int);
9224 void vec_dstst (const vector pixel *, int, const int);
9225 void vec_dstst (const vector unsigned int *, int, const int);
9226 void vec_dstst (const vector signed int *, int, const int);
9227 void vec_dstst (const vector bool int *, int, const int);
9228 void vec_dstst (const vector float *, int, const int);
9229 void vec_dstst (const unsigned char *, int, const int);
9230 void vec_dstst (const signed char *, int, const int);
9231 void vec_dstst (const unsigned short *, int, const int);
9232 void vec_dstst (const short *, int, const int);
9233 void vec_dstst (const unsigned int *, int, const int);
9234 void vec_dstst (const int *, int, const int);
9235 void vec_dstst (const unsigned long *, int, const int);
9236 void vec_dstst (const long *, int, const int);
9237 void vec_dstst (const float *, int, const int);
9238
9239 void vec_dststt (const vector unsigned char *, int, const int);
9240 void vec_dststt (const vector signed char *, int, const int);
9241 void vec_dststt (const vector bool char *, int, const int);
9242 void vec_dststt (const vector unsigned short *, int, const int);
9243 void vec_dststt (const vector signed short *, int, const int);
9244 void vec_dststt (const vector bool short *, int, const int);
9245 void vec_dststt (const vector pixel *, int, const int);
9246 void vec_dststt (const vector unsigned int *, int, const int);
9247 void vec_dststt (const vector signed int *, int, const int);
9248 void vec_dststt (const vector bool int *, int, const int);
9249 void vec_dststt (const vector float *, int, const int);
9250 void vec_dststt (const unsigned char *, int, const int);
9251 void vec_dststt (const signed char *, int, const int);
9252 void vec_dststt (const unsigned short *, int, const int);
9253 void vec_dststt (const short *, int, const int);
9254 void vec_dststt (const unsigned int *, int, const int);
9255 void vec_dststt (const int *, int, const int);
9256 void vec_dststt (const unsigned long *, int, const int);
9257 void vec_dststt (const long *, int, const int);
9258 void vec_dststt (const float *, int, const int);
9259
9260 void vec_dstt (const vector unsigned char *, int, const int);
9261 void vec_dstt (const vector signed char *, int, const int);
9262 void vec_dstt (const vector bool char *, int, const int);
9263 void vec_dstt (const vector unsigned short *, int, const int);
9264 void vec_dstt (const vector signed short *, int, const int);
9265 void vec_dstt (const vector bool short *, int, const int);
9266 void vec_dstt (const vector pixel *, int, const int);
9267 void vec_dstt (const vector unsigned int *, int, const int);
9268 void vec_dstt (const vector signed int *, int, const int);
9269 void vec_dstt (const vector bool int *, int, const int);
9270 void vec_dstt (const vector float *, int, const int);
9271 void vec_dstt (const unsigned char *, int, const int);
9272 void vec_dstt (const signed char *, int, const int);
9273 void vec_dstt (const unsigned short *, int, const int);
9274 void vec_dstt (const short *, int, const int);
9275 void vec_dstt (const unsigned int *, int, const int);
9276 void vec_dstt (const int *, int, const int);
9277 void vec_dstt (const unsigned long *, int, const int);
9278 void vec_dstt (const long *, int, const int);
9279 void vec_dstt (const float *, int, const int);
9280
9281 vector float vec_expte (vector float);
9282
9283 vector float vec_floor (vector float);
9284
9285 vector float vec_ld (int, const vector float *);
9286 vector float vec_ld (int, const float *);
9287 vector bool int vec_ld (int, const vector bool int *);
9288 vector signed int vec_ld (int, const vector signed int *);
9289 vector signed int vec_ld (int, const int *);
9290 vector signed int vec_ld (int, const long *);
9291 vector unsigned int vec_ld (int, const vector unsigned int *);
9292 vector unsigned int vec_ld (int, const unsigned int *);
9293 vector unsigned int vec_ld (int, const unsigned long *);
9294 vector bool short vec_ld (int, const vector bool short *);
9295 vector pixel vec_ld (int, const vector pixel *);
9296 vector signed short vec_ld (int, const vector signed short *);
9297 vector signed short vec_ld (int, const short *);
9298 vector unsigned short vec_ld (int, const vector unsigned short *);
9299 vector unsigned short vec_ld (int, const unsigned short *);
9300 vector bool char vec_ld (int, const vector bool char *);
9301 vector signed char vec_ld (int, const vector signed char *);
9302 vector signed char vec_ld (int, const signed char *);
9303 vector unsigned char vec_ld (int, const vector unsigned char *);
9304 vector unsigned char vec_ld (int, const unsigned char *);
9305
9306 vector signed char vec_lde (int, const signed char *);
9307 vector unsigned char vec_lde (int, const unsigned char *);
9308 vector signed short vec_lde (int, const short *);
9309 vector unsigned short vec_lde (int, const unsigned short *);
9310 vector float vec_lde (int, const float *);
9311 vector signed int vec_lde (int, const int *);
9312 vector unsigned int vec_lde (int, const unsigned int *);
9313 vector signed int vec_lde (int, const long *);
9314 vector unsigned int vec_lde (int, const unsigned long *);
9315
9316 vector float vec_lvewx (int, float *);
9317 vector signed int vec_lvewx (int, int *);
9318 vector unsigned int vec_lvewx (int, unsigned int *);
9319 vector signed int vec_lvewx (int, long *);
9320 vector unsigned int vec_lvewx (int, unsigned long *);
9321
9322 vector signed short vec_lvehx (int, short *);
9323 vector unsigned short vec_lvehx (int, unsigned short *);
9324
9325 vector signed char vec_lvebx (int, char *);
9326 vector unsigned char vec_lvebx (int, unsigned char *);
9327
9328 vector float vec_ldl (int, const vector float *);
9329 vector float vec_ldl (int, const float *);
9330 vector bool int vec_ldl (int, const vector bool int *);
9331 vector signed int vec_ldl (int, const vector signed int *);
9332 vector signed int vec_ldl (int, const int *);
9333 vector signed int vec_ldl (int, const long *);
9334 vector unsigned int vec_ldl (int, const vector unsigned int *);
9335 vector unsigned int vec_ldl (int, const unsigned int *);
9336 vector unsigned int vec_ldl (int, const unsigned long *);
9337 vector bool short vec_ldl (int, const vector bool short *);
9338 vector pixel vec_ldl (int, const vector pixel *);
9339 vector signed short vec_ldl (int, const vector signed short *);
9340 vector signed short vec_ldl (int, const short *);
9341 vector unsigned short vec_ldl (int, const vector unsigned short *);
9342 vector unsigned short vec_ldl (int, const unsigned short *);
9343 vector bool char vec_ldl (int, const vector bool char *);
9344 vector signed char vec_ldl (int, const vector signed char *);
9345 vector signed char vec_ldl (int, const signed char *);
9346 vector unsigned char vec_ldl (int, const vector unsigned char *);
9347 vector unsigned char vec_ldl (int, const unsigned char *);
9348
9349 vector float vec_loge (vector float);
9350
9351 vector unsigned char vec_lvsl (int, const volatile unsigned char *);
9352 vector unsigned char vec_lvsl (int, const volatile signed char *);
9353 vector unsigned char vec_lvsl (int, const volatile unsigned short *);
9354 vector unsigned char vec_lvsl (int, const volatile short *);
9355 vector unsigned char vec_lvsl (int, const volatile unsigned int *);
9356 vector unsigned char vec_lvsl (int, const volatile int *);
9357 vector unsigned char vec_lvsl (int, const volatile unsigned long *);
9358 vector unsigned char vec_lvsl (int, const volatile long *);
9359 vector unsigned char vec_lvsl (int, const volatile float *);
9360
9361 vector unsigned char vec_lvsr (int, const volatile unsigned char *);
9362 vector unsigned char vec_lvsr (int, const volatile signed char *);
9363 vector unsigned char vec_lvsr (int, const volatile unsigned short *);
9364 vector unsigned char vec_lvsr (int, const volatile short *);
9365 vector unsigned char vec_lvsr (int, const volatile unsigned int *);
9366 vector unsigned char vec_lvsr (int, const volatile int *);
9367 vector unsigned char vec_lvsr (int, const volatile unsigned long *);
9368 vector unsigned char vec_lvsr (int, const volatile long *);
9369 vector unsigned char vec_lvsr (int, const volatile float *);
9370
9371 vector float vec_madd (vector float, vector float, vector float);
9372
9373 vector signed short vec_madds (vector signed short,
9374 vector signed short,
9375 vector signed short);
9376
9377 vector unsigned char vec_max (vector bool char, vector unsigned char);
9378 vector unsigned char vec_max (vector unsigned char, vector bool char);
9379 vector unsigned char vec_max (vector unsigned char,
9380 vector unsigned char);
9381 vector signed char vec_max (vector bool char, vector signed char);
9382 vector signed char vec_max (vector signed char, vector bool char);
9383 vector signed char vec_max (vector signed char, vector signed char);
9384 vector unsigned short vec_max (vector bool short,
9385 vector unsigned short);
9386 vector unsigned short vec_max (vector unsigned short,
9387 vector bool short);
9388 vector unsigned short vec_max (vector unsigned short,
9389 vector unsigned short);
9390 vector signed short vec_max (vector bool short, vector signed short);
9391 vector signed short vec_max (vector signed short, vector bool short);
9392 vector signed short vec_max (vector signed short, vector signed short);
9393 vector unsigned int vec_max (vector bool int, vector unsigned int);
9394 vector unsigned int vec_max (vector unsigned int, vector bool int);
9395 vector unsigned int vec_max (vector unsigned int, vector unsigned int);
9396 vector signed int vec_max (vector bool int, vector signed int);
9397 vector signed int vec_max (vector signed int, vector bool int);
9398 vector signed int vec_max (vector signed int, vector signed int);
9399 vector float vec_max (vector float, vector float);
9400
9401 vector float vec_vmaxfp (vector float, vector float);
9402
9403 vector signed int vec_vmaxsw (vector bool int, vector signed int);
9404 vector signed int vec_vmaxsw (vector signed int, vector bool int);
9405 vector signed int vec_vmaxsw (vector signed int, vector signed int);
9406
9407 vector unsigned int vec_vmaxuw (vector bool int, vector unsigned int);
9408 vector unsigned int vec_vmaxuw (vector unsigned int, vector bool int);
9409 vector unsigned int vec_vmaxuw (vector unsigned int,
9410 vector unsigned int);
9411
9412 vector signed short vec_vmaxsh (vector bool short, vector signed short);
9413 vector signed short vec_vmaxsh (vector signed short, vector bool short);
9414 vector signed short vec_vmaxsh (vector signed short,
9415 vector signed short);
9416
9417 vector unsigned short vec_vmaxuh (vector bool short,
9418 vector unsigned short);
9419 vector unsigned short vec_vmaxuh (vector unsigned short,
9420 vector bool short);
9421 vector unsigned short vec_vmaxuh (vector unsigned short,
9422 vector unsigned short);
9423
9424 vector signed char vec_vmaxsb (vector bool char, vector signed char);
9425 vector signed char vec_vmaxsb (vector signed char, vector bool char);
9426 vector signed char vec_vmaxsb (vector signed char, vector signed char);
9427
9428 vector unsigned char vec_vmaxub (vector bool char,
9429 vector unsigned char);
9430 vector unsigned char vec_vmaxub (vector unsigned char,
9431 vector bool char);
9432 vector unsigned char vec_vmaxub (vector unsigned char,
9433 vector unsigned char);
9434
9435 vector bool char vec_mergeh (vector bool char, vector bool char);
9436 vector signed char vec_mergeh (vector signed char, vector signed char);
9437 vector unsigned char vec_mergeh (vector unsigned char,
9438 vector unsigned char);
9439 vector bool short vec_mergeh (vector bool short, vector bool short);
9440 vector pixel vec_mergeh (vector pixel, vector pixel);
9441 vector signed short vec_mergeh (vector signed short,
9442 vector signed short);
9443 vector unsigned short vec_mergeh (vector unsigned short,
9444 vector unsigned short);
9445 vector float vec_mergeh (vector float, vector float);
9446 vector bool int vec_mergeh (vector bool int, vector bool int);
9447 vector signed int vec_mergeh (vector signed int, vector signed int);
9448 vector unsigned int vec_mergeh (vector unsigned int,
9449 vector unsigned int);
9450
9451 vector float vec_vmrghw (vector float, vector float);
9452 vector bool int vec_vmrghw (vector bool int, vector bool int);
9453 vector signed int vec_vmrghw (vector signed int, vector signed int);
9454 vector unsigned int vec_vmrghw (vector unsigned int,
9455 vector unsigned int);
9456
9457 vector bool short vec_vmrghh (vector bool short, vector bool short);
9458 vector signed short vec_vmrghh (vector signed short,
9459 vector signed short);
9460 vector unsigned short vec_vmrghh (vector unsigned short,
9461 vector unsigned short);
9462 vector pixel vec_vmrghh (vector pixel, vector pixel);
9463
9464 vector bool char vec_vmrghb (vector bool char, vector bool char);
9465 vector signed char vec_vmrghb (vector signed char, vector signed char);
9466 vector unsigned char vec_vmrghb (vector unsigned char,
9467 vector unsigned char);
9468
9469 vector bool char vec_mergel (vector bool char, vector bool char);
9470 vector signed char vec_mergel (vector signed char, vector signed char);
9471 vector unsigned char vec_mergel (vector unsigned char,
9472 vector unsigned char);
9473 vector bool short vec_mergel (vector bool short, vector bool short);
9474 vector pixel vec_mergel (vector pixel, vector pixel);
9475 vector signed short vec_mergel (vector signed short,
9476 vector signed short);
9477 vector unsigned short vec_mergel (vector unsigned short,
9478 vector unsigned short);
9479 vector float vec_mergel (vector float, vector float);
9480 vector bool int vec_mergel (vector bool int, vector bool int);
9481 vector signed int vec_mergel (vector signed int, vector signed int);
9482 vector unsigned int vec_mergel (vector unsigned int,
9483 vector unsigned int);
9484
9485 vector float vec_vmrglw (vector float, vector float);
9486 vector signed int vec_vmrglw (vector signed int, vector signed int);
9487 vector unsigned int vec_vmrglw (vector unsigned int,
9488 vector unsigned int);
9489 vector bool int vec_vmrglw (vector bool int, vector bool int);
9490
9491 vector bool short vec_vmrglh (vector bool short, vector bool short);
9492 vector signed short vec_vmrglh (vector signed short,
9493 vector signed short);
9494 vector unsigned short vec_vmrglh (vector unsigned short,
9495 vector unsigned short);
9496 vector pixel vec_vmrglh (vector pixel, vector pixel);
9497
9498 vector bool char vec_vmrglb (vector bool char, vector bool char);
9499 vector signed char vec_vmrglb (vector signed char, vector signed char);
9500 vector unsigned char vec_vmrglb (vector unsigned char,
9501 vector unsigned char);
9502
9503 vector unsigned short vec_mfvscr (void);
9504
9505 vector unsigned char vec_min (vector bool char, vector unsigned char);
9506 vector unsigned char vec_min (vector unsigned char, vector bool char);
9507 vector unsigned char vec_min (vector unsigned char,
9508 vector unsigned char);
9509 vector signed char vec_min (vector bool char, vector signed char);
9510 vector signed char vec_min (vector signed char, vector bool char);
9511 vector signed char vec_min (vector signed char, vector signed char);
9512 vector unsigned short vec_min (vector bool short,
9513 vector unsigned short);
9514 vector unsigned short vec_min (vector unsigned short,
9515 vector bool short);
9516 vector unsigned short vec_min (vector unsigned short,
9517 vector unsigned short);
9518 vector signed short vec_min (vector bool short, vector signed short);
9519 vector signed short vec_min (vector signed short, vector bool short);
9520 vector signed short vec_min (vector signed short, vector signed short);
9521 vector unsigned int vec_min (vector bool int, vector unsigned int);
9522 vector unsigned int vec_min (vector unsigned int, vector bool int);
9523 vector unsigned int vec_min (vector unsigned int, vector unsigned int);
9524 vector signed int vec_min (vector bool int, vector signed int);
9525 vector signed int vec_min (vector signed int, vector bool int);
9526 vector signed int vec_min (vector signed int, vector signed int);
9527 vector float vec_min (vector float, vector float);
9528
9529 vector float vec_vminfp (vector float, vector float);
9530
9531 vector signed int vec_vminsw (vector bool int, vector signed int);
9532 vector signed int vec_vminsw (vector signed int, vector bool int);
9533 vector signed int vec_vminsw (vector signed int, vector signed int);
9534
9535 vector unsigned int vec_vminuw (vector bool int, vector unsigned int);
9536 vector unsigned int vec_vminuw (vector unsigned int, vector bool int);
9537 vector unsigned int vec_vminuw (vector unsigned int,
9538 vector unsigned int);
9539
9540 vector signed short vec_vminsh (vector bool short, vector signed short);
9541 vector signed short vec_vminsh (vector signed short, vector bool short);
9542 vector signed short vec_vminsh (vector signed short,
9543 vector signed short);
9544
9545 vector unsigned short vec_vminuh (vector bool short,
9546 vector unsigned short);
9547 vector unsigned short vec_vminuh (vector unsigned short,
9548 vector bool short);
9549 vector unsigned short vec_vminuh (vector unsigned short,
9550 vector unsigned short);
9551
9552 vector signed char vec_vminsb (vector bool char, vector signed char);
9553 vector signed char vec_vminsb (vector signed char, vector bool char);
9554 vector signed char vec_vminsb (vector signed char, vector signed char);
9555
9556 vector unsigned char vec_vminub (vector bool char,
9557 vector unsigned char);
9558 vector unsigned char vec_vminub (vector unsigned char,
9559 vector bool char);
9560 vector unsigned char vec_vminub (vector unsigned char,
9561 vector unsigned char);
9562
9563 vector signed short vec_mladd (vector signed short,
9564 vector signed short,
9565 vector signed short);
9566 vector signed short vec_mladd (vector signed short,
9567 vector unsigned short,
9568 vector unsigned short);
9569 vector signed short vec_mladd (vector unsigned short,
9570 vector signed short,
9571 vector signed short);
9572 vector unsigned short vec_mladd (vector unsigned short,
9573 vector unsigned short,
9574 vector unsigned short);
9575
9576 vector signed short vec_mradds (vector signed short,
9577 vector signed short,
9578 vector signed short);
9579
9580 vector unsigned int vec_msum (vector unsigned char,
9581 vector unsigned char,
9582 vector unsigned int);
9583 vector signed int vec_msum (vector signed char,
9584 vector unsigned char,
9585 vector signed int);
9586 vector unsigned int vec_msum (vector unsigned short,
9587 vector unsigned short,
9588 vector unsigned int);
9589 vector signed int vec_msum (vector signed short,
9590 vector signed short,
9591 vector signed int);
9592
9593 vector signed int vec_vmsumshm (vector signed short,
9594 vector signed short,
9595 vector signed int);
9596
9597 vector unsigned int vec_vmsumuhm (vector unsigned short,
9598 vector unsigned short,
9599 vector unsigned int);
9600
9601 vector signed int vec_vmsummbm (vector signed char,
9602 vector unsigned char,
9603 vector signed int);
9604
9605 vector unsigned int vec_vmsumubm (vector unsigned char,
9606 vector unsigned char,
9607 vector unsigned int);
9608
9609 vector unsigned int vec_msums (vector unsigned short,
9610 vector unsigned short,
9611 vector unsigned int);
9612 vector signed int vec_msums (vector signed short,
9613 vector signed short,
9614 vector signed int);
9615
9616 vector signed int vec_vmsumshs (vector signed short,
9617 vector signed short,
9618 vector signed int);
9619
9620 vector unsigned int vec_vmsumuhs (vector unsigned short,
9621 vector unsigned short,
9622 vector unsigned int);
9623
9624 void vec_mtvscr (vector signed int);
9625 void vec_mtvscr (vector unsigned int);
9626 void vec_mtvscr (vector bool int);
9627 void vec_mtvscr (vector signed short);
9628 void vec_mtvscr (vector unsigned short);
9629 void vec_mtvscr (vector bool short);
9630 void vec_mtvscr (vector pixel);
9631 void vec_mtvscr (vector signed char);
9632 void vec_mtvscr (vector unsigned char);
9633 void vec_mtvscr (vector bool char);
9634
9635 vector unsigned short vec_mule (vector unsigned char,
9636 vector unsigned char);
9637 vector signed short vec_mule (vector signed char,
9638 vector signed char);
9639 vector unsigned int vec_mule (vector unsigned short,
9640 vector unsigned short);
9641 vector signed int vec_mule (vector signed short, vector signed short);
9642
9643 vector signed int vec_vmulesh (vector signed short,
9644 vector signed short);
9645
9646 vector unsigned int vec_vmuleuh (vector unsigned short,
9647 vector unsigned short);
9648
9649 vector signed short vec_vmulesb (vector signed char,
9650 vector signed char);
9651
9652 vector unsigned short vec_vmuleub (vector unsigned char,
9653 vector unsigned char);
9654
9655 vector unsigned short vec_mulo (vector unsigned char,
9656 vector unsigned char);
9657 vector signed short vec_mulo (vector signed char, vector signed char);
9658 vector unsigned int vec_mulo (vector unsigned short,
9659 vector unsigned short);
9660 vector signed int vec_mulo (vector signed short, vector signed short);
9661
9662 vector signed int vec_vmulosh (vector signed short,
9663 vector signed short);
9664
9665 vector unsigned int vec_vmulouh (vector unsigned short,
9666 vector unsigned short);
9667
9668 vector signed short vec_vmulosb (vector signed char,
9669 vector signed char);
9670
9671 vector unsigned short vec_vmuloub (vector unsigned char,
9672 vector unsigned char);
9673
9674 vector float vec_nmsub (vector float, vector float, vector float);
9675
9676 vector float vec_nor (vector float, vector float);
9677 vector signed int vec_nor (vector signed int, vector signed int);
9678 vector unsigned int vec_nor (vector unsigned int, vector unsigned int);
9679 vector bool int vec_nor (vector bool int, vector bool int);
9680 vector signed short vec_nor (vector signed short, vector signed short);
9681 vector unsigned short vec_nor (vector unsigned short,
9682 vector unsigned short);
9683 vector bool short vec_nor (vector bool short, vector bool short);
9684 vector signed char vec_nor (vector signed char, vector signed char);
9685 vector unsigned char vec_nor (vector unsigned char,
9686 vector unsigned char);
9687 vector bool char vec_nor (vector bool char, vector bool char);
9688
9689 vector float vec_or (vector float, vector float);
9690 vector float vec_or (vector float, vector bool int);
9691 vector float vec_or (vector bool int, vector float);
9692 vector bool int vec_or (vector bool int, vector bool int);
9693 vector signed int vec_or (vector bool int, vector signed int);
9694 vector signed int vec_or (vector signed int, vector bool int);
9695 vector signed int vec_or (vector signed int, vector signed int);
9696 vector unsigned int vec_or (vector bool int, vector unsigned int);
9697 vector unsigned int vec_or (vector unsigned int, vector bool int);
9698 vector unsigned int vec_or (vector unsigned int, vector unsigned int);
9699 vector bool short vec_or (vector bool short, vector bool short);
9700 vector signed short vec_or (vector bool short, vector signed short);
9701 vector signed short vec_or (vector signed short, vector bool short);
9702 vector signed short vec_or (vector signed short, vector signed short);
9703 vector unsigned short vec_or (vector bool short, vector unsigned short);
9704 vector unsigned short vec_or (vector unsigned short, vector bool short);
9705 vector unsigned short vec_or (vector unsigned short,
9706 vector unsigned short);
9707 vector signed char vec_or (vector bool char, vector signed char);
9708 vector bool char vec_or (vector bool char, vector bool char);
9709 vector signed char vec_or (vector signed char, vector bool char);
9710 vector signed char vec_or (vector signed char, vector signed char);
9711 vector unsigned char vec_or (vector bool char, vector unsigned char);
9712 vector unsigned char vec_or (vector unsigned char, vector bool char);
9713 vector unsigned char vec_or (vector unsigned char,
9714 vector unsigned char);
9715
9716 vector signed char vec_pack (vector signed short, vector signed short);
9717 vector unsigned char vec_pack (vector unsigned short,
9718 vector unsigned short);
9719 vector bool char vec_pack (vector bool short, vector bool short);
9720 vector signed short vec_pack (vector signed int, vector signed int);
9721 vector unsigned short vec_pack (vector unsigned int,
9722 vector unsigned int);
9723 vector bool short vec_pack (vector bool int, vector bool int);
9724
9725 vector bool short vec_vpkuwum (vector bool int, vector bool int);
9726 vector signed short vec_vpkuwum (vector signed int, vector signed int);
9727 vector unsigned short vec_vpkuwum (vector unsigned int,
9728 vector unsigned int);
9729
9730 vector bool char vec_vpkuhum (vector bool short, vector bool short);
9731 vector signed char vec_vpkuhum (vector signed short,
9732 vector signed short);
9733 vector unsigned char vec_vpkuhum (vector unsigned short,
9734 vector unsigned short);
9735
9736 vector pixel vec_packpx (vector unsigned int, vector unsigned int);
9737
9738 vector unsigned char vec_packs (vector unsigned short,
9739 vector unsigned short);
9740 vector signed char vec_packs (vector signed short, vector signed short);
9741 vector unsigned short vec_packs (vector unsigned int,
9742 vector unsigned int);
9743 vector signed short vec_packs (vector signed int, vector signed int);
9744
9745 vector signed short vec_vpkswss (vector signed int, vector signed int);
9746
9747 vector unsigned short vec_vpkuwus (vector unsigned int,
9748 vector unsigned int);
9749
9750 vector signed char vec_vpkshss (vector signed short,
9751 vector signed short);
9752
9753 vector unsigned char vec_vpkuhus (vector unsigned short,
9754 vector unsigned short);
9755
9756 vector unsigned char vec_packsu (vector unsigned short,
9757 vector unsigned short);
9758 vector unsigned char vec_packsu (vector signed short,
9759 vector signed short);
9760 vector unsigned short vec_packsu (vector unsigned int,
9761 vector unsigned int);
9762 vector unsigned short vec_packsu (vector signed int, vector signed int);
9763
9764 vector unsigned short vec_vpkswus (vector signed int,
9765 vector signed int);
9766
9767 vector unsigned char vec_vpkshus (vector signed short,
9768 vector signed short);
9769
9770 vector float vec_perm (vector float,
9771 vector float,
9772 vector unsigned char);
9773 vector signed int vec_perm (vector signed int,
9774 vector signed int,
9775 vector unsigned char);
9776 vector unsigned int vec_perm (vector unsigned int,
9777 vector unsigned int,
9778 vector unsigned char);
9779 vector bool int vec_perm (vector bool int,
9780 vector bool int,
9781 vector unsigned char);
9782 vector signed short vec_perm (vector signed short,
9783 vector signed short,
9784 vector unsigned char);
9785 vector unsigned short vec_perm (vector unsigned short,
9786 vector unsigned short,
9787 vector unsigned char);
9788 vector bool short vec_perm (vector bool short,
9789 vector bool short,
9790 vector unsigned char);
9791 vector pixel vec_perm (vector pixel,
9792 vector pixel,
9793 vector unsigned char);
9794 vector signed char vec_perm (vector signed char,
9795 vector signed char,
9796 vector unsigned char);
9797 vector unsigned char vec_perm (vector unsigned char,
9798 vector unsigned char,
9799 vector unsigned char);
9800 vector bool char vec_perm (vector bool char,
9801 vector bool char,
9802 vector unsigned char);
9803
9804 vector float vec_re (vector float);
9805
9806 vector signed char vec_rl (vector signed char,
9807 vector unsigned char);
9808 vector unsigned char vec_rl (vector unsigned char,
9809 vector unsigned char);
9810 vector signed short vec_rl (vector signed short, vector unsigned short);
9811 vector unsigned short vec_rl (vector unsigned short,
9812 vector unsigned short);
9813 vector signed int vec_rl (vector signed int, vector unsigned int);
9814 vector unsigned int vec_rl (vector unsigned int, vector unsigned int);
9815
9816 vector signed int vec_vrlw (vector signed int, vector unsigned int);
9817 vector unsigned int vec_vrlw (vector unsigned int, vector unsigned int);
9818
9819 vector signed short vec_vrlh (vector signed short,
9820 vector unsigned short);
9821 vector unsigned short vec_vrlh (vector unsigned short,
9822 vector unsigned short);
9823
9824 vector signed char vec_vrlb (vector signed char, vector unsigned char);
9825 vector unsigned char vec_vrlb (vector unsigned char,
9826 vector unsigned char);
9827
9828 vector float vec_round (vector float);
9829
9830 vector float vec_rsqrte (vector float);
9831
9832 vector float vec_sel (vector float, vector float, vector bool int);
9833 vector float vec_sel (vector float, vector float, vector unsigned int);
9834 vector signed int vec_sel (vector signed int,
9835 vector signed int,
9836 vector bool int);
9837 vector signed int vec_sel (vector signed int,
9838 vector signed int,
9839 vector unsigned int);
9840 vector unsigned int vec_sel (vector unsigned int,
9841 vector unsigned int,
9842 vector bool int);
9843 vector unsigned int vec_sel (vector unsigned int,
9844 vector unsigned int,
9845 vector unsigned int);
9846 vector bool int vec_sel (vector bool int,
9847 vector bool int,
9848 vector bool int);
9849 vector bool int vec_sel (vector bool int,
9850 vector bool int,
9851 vector unsigned int);
9852 vector signed short vec_sel (vector signed short,
9853 vector signed short,
9854 vector bool short);
9855 vector signed short vec_sel (vector signed short,
9856 vector signed short,
9857 vector unsigned short);
9858 vector unsigned short vec_sel (vector unsigned short,
9859 vector unsigned short,
9860 vector bool short);
9861 vector unsigned short vec_sel (vector unsigned short,
9862 vector unsigned short,
9863 vector unsigned short);
9864 vector bool short vec_sel (vector bool short,
9865 vector bool short,
9866 vector bool short);
9867 vector bool short vec_sel (vector bool short,
9868 vector bool short,
9869 vector unsigned short);
9870 vector signed char vec_sel (vector signed char,
9871 vector signed char,
9872 vector bool char);
9873 vector signed char vec_sel (vector signed char,
9874 vector signed char,
9875 vector unsigned char);
9876 vector unsigned char vec_sel (vector unsigned char,
9877 vector unsigned char,
9878 vector bool char);
9879 vector unsigned char vec_sel (vector unsigned char,
9880 vector unsigned char,
9881 vector unsigned char);
9882 vector bool char vec_sel (vector bool char,
9883 vector bool char,
9884 vector bool char);
9885 vector bool char vec_sel (vector bool char,
9886 vector bool char,
9887 vector unsigned char);
9888
9889 vector signed char vec_sl (vector signed char,
9890 vector unsigned char);
9891 vector unsigned char vec_sl (vector unsigned char,
9892 vector unsigned char);
9893 vector signed short vec_sl (vector signed short, vector unsigned short);
9894 vector unsigned short vec_sl (vector unsigned short,
9895 vector unsigned short);
9896 vector signed int vec_sl (vector signed int, vector unsigned int);
9897 vector unsigned int vec_sl (vector unsigned int, vector unsigned int);
9898
9899 vector signed int vec_vslw (vector signed int, vector unsigned int);
9900 vector unsigned int vec_vslw (vector unsigned int, vector unsigned int);
9901
9902 vector signed short vec_vslh (vector signed short,
9903 vector unsigned short);
9904 vector unsigned short vec_vslh (vector unsigned short,
9905 vector unsigned short);
9906
9907 vector signed char vec_vslb (vector signed char, vector unsigned char);
9908 vector unsigned char vec_vslb (vector unsigned char,
9909 vector unsigned char);
9910
9911 vector float vec_sld (vector float, vector float, const int);
9912 vector signed int vec_sld (vector signed int,
9913 vector signed int,
9914 const int);
9915 vector unsigned int vec_sld (vector unsigned int,
9916 vector unsigned int,
9917 const int);
9918 vector bool int vec_sld (vector bool int,
9919 vector bool int,
9920 const int);
9921 vector signed short vec_sld (vector signed short,
9922 vector signed short,
9923 const int);
9924 vector unsigned short vec_sld (vector unsigned short,
9925 vector unsigned short,
9926 const int);
9927 vector bool short vec_sld (vector bool short,
9928 vector bool short,
9929 const int);
9930 vector pixel vec_sld (vector pixel,
9931 vector pixel,
9932 const int);
9933 vector signed char vec_sld (vector signed char,
9934 vector signed char,
9935 const int);
9936 vector unsigned char vec_sld (vector unsigned char,
9937 vector unsigned char,
9938 const int);
9939 vector bool char vec_sld (vector bool char,
9940 vector bool char,
9941 const int);
9942
9943 vector signed int vec_sll (vector signed int,
9944 vector unsigned int);
9945 vector signed int vec_sll (vector signed int,
9946 vector unsigned short);
9947 vector signed int vec_sll (vector signed int,
9948 vector unsigned char);
9949 vector unsigned int vec_sll (vector unsigned int,
9950 vector unsigned int);
9951 vector unsigned int vec_sll (vector unsigned int,
9952 vector unsigned short);
9953 vector unsigned int vec_sll (vector unsigned int,
9954 vector unsigned char);
9955 vector bool int vec_sll (vector bool int,
9956 vector unsigned int);
9957 vector bool int vec_sll (vector bool int,
9958 vector unsigned short);
9959 vector bool int vec_sll (vector bool int,
9960 vector unsigned char);
9961 vector signed short vec_sll (vector signed short,
9962 vector unsigned int);
9963 vector signed short vec_sll (vector signed short,
9964 vector unsigned short);
9965 vector signed short vec_sll (vector signed short,
9966 vector unsigned char);
9967 vector unsigned short vec_sll (vector unsigned short,
9968 vector unsigned int);
9969 vector unsigned short vec_sll (vector unsigned short,
9970 vector unsigned short);
9971 vector unsigned short vec_sll (vector unsigned short,
9972 vector unsigned char);
9973 vector bool short vec_sll (vector bool short, vector unsigned int);
9974 vector bool short vec_sll (vector bool short, vector unsigned short);
9975 vector bool short vec_sll (vector bool short, vector unsigned char);
9976 vector pixel vec_sll (vector pixel, vector unsigned int);
9977 vector pixel vec_sll (vector pixel, vector unsigned short);
9978 vector pixel vec_sll (vector pixel, vector unsigned char);
9979 vector signed char vec_sll (vector signed char, vector unsigned int);
9980 vector signed char vec_sll (vector signed char, vector unsigned short);
9981 vector signed char vec_sll (vector signed char, vector unsigned char);
9982 vector unsigned char vec_sll (vector unsigned char,
9983 vector unsigned int);
9984 vector unsigned char vec_sll (vector unsigned char,
9985 vector unsigned short);
9986 vector unsigned char vec_sll (vector unsigned char,
9987 vector unsigned char);
9988 vector bool char vec_sll (vector bool char, vector unsigned int);
9989 vector bool char vec_sll (vector bool char, vector unsigned short);
9990 vector bool char vec_sll (vector bool char, vector unsigned char);
9991
9992 vector float vec_slo (vector float, vector signed char);
9993 vector float vec_slo (vector float, vector unsigned char);
9994 vector signed int vec_slo (vector signed int, vector signed char);
9995 vector signed int vec_slo (vector signed int, vector unsigned char);
9996 vector unsigned int vec_slo (vector unsigned int, vector signed char);
9997 vector unsigned int vec_slo (vector unsigned int, vector unsigned char);
9998 vector signed short vec_slo (vector signed short, vector signed char);
9999 vector signed short vec_slo (vector signed short, vector unsigned char);
10000 vector unsigned short vec_slo (vector unsigned short,
10001 vector signed char);
10002 vector unsigned short vec_slo (vector unsigned short,
10003 vector unsigned char);
10004 vector pixel vec_slo (vector pixel, vector signed char);
10005 vector pixel vec_slo (vector pixel, vector unsigned char);
10006 vector signed char vec_slo (vector signed char, vector signed char);
10007 vector signed char vec_slo (vector signed char, vector unsigned char);
10008 vector unsigned char vec_slo (vector unsigned char, vector signed char);
10009 vector unsigned char vec_slo (vector unsigned char,
10010 vector unsigned char);
10011
10012 vector signed char vec_splat (vector signed char, const int);
10013 vector unsigned char vec_splat (vector unsigned char, const int);
10014 vector bool char vec_splat (vector bool char, const int);
10015 vector signed short vec_splat (vector signed short, const int);
10016 vector unsigned short vec_splat (vector unsigned short, const int);
10017 vector bool short vec_splat (vector bool short, const int);
10018 vector pixel vec_splat (vector pixel, const int);
10019 vector float vec_splat (vector float, const int);
10020 vector signed int vec_splat (vector signed int, const int);
10021 vector unsigned int vec_splat (vector unsigned int, const int);
10022 vector bool int vec_splat (vector bool int, const int);
10023
10024 vector float vec_vspltw (vector float, const int);
10025 vector signed int vec_vspltw (vector signed int, const int);
10026 vector unsigned int vec_vspltw (vector unsigned int, const int);
10027 vector bool int vec_vspltw (vector bool int, const int);
10028
10029 vector bool short vec_vsplth (vector bool short, const int);
10030 vector signed short vec_vsplth (vector signed short, const int);
10031 vector unsigned short vec_vsplth (vector unsigned short, const int);
10032 vector pixel vec_vsplth (vector pixel, const int);
10033
10034 vector signed char vec_vspltb (vector signed char, const int);
10035 vector unsigned char vec_vspltb (vector unsigned char, const int);
10036 vector bool char vec_vspltb (vector bool char, const int);
10037
10038 vector signed char vec_splat_s8 (const int);
10039
10040 vector signed short vec_splat_s16 (const int);
10041
10042 vector signed int vec_splat_s32 (const int);
10043
10044 vector unsigned char vec_splat_u8 (const int);
10045
10046 vector unsigned short vec_splat_u16 (const int);
10047
10048 vector unsigned int vec_splat_u32 (const int);
10049
10050 vector signed char vec_sr (vector signed char, vector unsigned char);
10051 vector unsigned char vec_sr (vector unsigned char,
10052 vector unsigned char);
10053 vector signed short vec_sr (vector signed short,
10054 vector unsigned short);
10055 vector unsigned short vec_sr (vector unsigned short,
10056 vector unsigned short);
10057 vector signed int vec_sr (vector signed int, vector unsigned int);
10058 vector unsigned int vec_sr (vector unsigned int, vector unsigned int);
10059
10060 vector signed int vec_vsrw (vector signed int, vector unsigned int);
10061 vector unsigned int vec_vsrw (vector unsigned int, vector unsigned int);
10062
10063 vector signed short vec_vsrh (vector signed short,
10064 vector unsigned short);
10065 vector unsigned short vec_vsrh (vector unsigned short,
10066 vector unsigned short);
10067
10068 vector signed char vec_vsrb (vector signed char, vector unsigned char);
10069 vector unsigned char vec_vsrb (vector unsigned char,
10070 vector unsigned char);
10071
10072 vector signed char vec_sra (vector signed char, vector unsigned char);
10073 vector unsigned char vec_sra (vector unsigned char,
10074 vector unsigned char);
10075 vector signed short vec_sra (vector signed short,
10076 vector unsigned short);
10077 vector unsigned short vec_sra (vector unsigned short,
10078 vector unsigned short);
10079 vector signed int vec_sra (vector signed int, vector unsigned int);
10080 vector unsigned int vec_sra (vector unsigned int, vector unsigned int);
10081
10082 vector signed int vec_vsraw (vector signed int, vector unsigned int);
10083 vector unsigned int vec_vsraw (vector unsigned int,
10084 vector unsigned int);
10085
10086 vector signed short vec_vsrah (vector signed short,
10087 vector unsigned short);
10088 vector unsigned short vec_vsrah (vector unsigned short,
10089 vector unsigned short);
10090
10091 vector signed char vec_vsrab (vector signed char, vector unsigned char);
10092 vector unsigned char vec_vsrab (vector unsigned char,
10093 vector unsigned char);
10094
10095 vector signed int vec_srl (vector signed int, vector unsigned int);
10096 vector signed int vec_srl (vector signed int, vector unsigned short);
10097 vector signed int vec_srl (vector signed int, vector unsigned char);
10098 vector unsigned int vec_srl (vector unsigned int, vector unsigned int);
10099 vector unsigned int vec_srl (vector unsigned int,
10100 vector unsigned short);
10101 vector unsigned int vec_srl (vector unsigned int, vector unsigned char);
10102 vector bool int vec_srl (vector bool int, vector unsigned int);
10103 vector bool int vec_srl (vector bool int, vector unsigned short);
10104 vector bool int vec_srl (vector bool int, vector unsigned char);
10105 vector signed short vec_srl (vector signed short, vector unsigned int);
10106 vector signed short vec_srl (vector signed short,
10107 vector unsigned short);
10108 vector signed short vec_srl (vector signed short, vector unsigned char);
10109 vector unsigned short vec_srl (vector unsigned short,
10110 vector unsigned int);
10111 vector unsigned short vec_srl (vector unsigned short,
10112 vector unsigned short);
10113 vector unsigned short vec_srl (vector unsigned short,
10114 vector unsigned char);
10115 vector bool short vec_srl (vector bool short, vector unsigned int);
10116 vector bool short vec_srl (vector bool short, vector unsigned short);
10117 vector bool short vec_srl (vector bool short, vector unsigned char);
10118 vector pixel vec_srl (vector pixel, vector unsigned int);
10119 vector pixel vec_srl (vector pixel, vector unsigned short);
10120 vector pixel vec_srl (vector pixel, vector unsigned char);
10121 vector signed char vec_srl (vector signed char, vector unsigned int);
10122 vector signed char vec_srl (vector signed char, vector unsigned short);
10123 vector signed char vec_srl (vector signed char, vector unsigned char);
10124 vector unsigned char vec_srl (vector unsigned char,
10125 vector unsigned int);
10126 vector unsigned char vec_srl (vector unsigned char,
10127 vector unsigned short);
10128 vector unsigned char vec_srl (vector unsigned char,
10129 vector unsigned char);
10130 vector bool char vec_srl (vector bool char, vector unsigned int);
10131 vector bool char vec_srl (vector bool char, vector unsigned short);
10132 vector bool char vec_srl (vector bool char, vector unsigned char);
10133
10134 vector float vec_sro (vector float, vector signed char);
10135 vector float vec_sro (vector float, vector unsigned char);
10136 vector signed int vec_sro (vector signed int, vector signed char);
10137 vector signed int vec_sro (vector signed int, vector unsigned char);
10138 vector unsigned int vec_sro (vector unsigned int, vector signed char);
10139 vector unsigned int vec_sro (vector unsigned int, vector unsigned char);
10140 vector signed short vec_sro (vector signed short, vector signed char);
10141 vector signed short vec_sro (vector signed short, vector unsigned char);
10142 vector unsigned short vec_sro (vector unsigned short,
10143 vector signed char);
10144 vector unsigned short vec_sro (vector unsigned short,
10145 vector unsigned char);
10146 vector pixel vec_sro (vector pixel, vector signed char);
10147 vector pixel vec_sro (vector pixel, vector unsigned char);
10148 vector signed char vec_sro (vector signed char, vector signed char);
10149 vector signed char vec_sro (vector signed char, vector unsigned char);
10150 vector unsigned char vec_sro (vector unsigned char, vector signed char);
10151 vector unsigned char vec_sro (vector unsigned char,
10152 vector unsigned char);
10153
10154 void vec_st (vector float, int, vector float *);
10155 void vec_st (vector float, int, float *);
10156 void vec_st (vector signed int, int, vector signed int *);
10157 void vec_st (vector signed int, int, int *);
10158 void vec_st (vector unsigned int, int, vector unsigned int *);
10159 void vec_st (vector unsigned int, int, unsigned int *);
10160 void vec_st (vector bool int, int, vector bool int *);
10161 void vec_st (vector bool int, int, unsigned int *);
10162 void vec_st (vector bool int, int, int *);
10163 void vec_st (vector signed short, int, vector signed short *);
10164 void vec_st (vector signed short, int, short *);
10165 void vec_st (vector unsigned short, int, vector unsigned short *);
10166 void vec_st (vector unsigned short, int, unsigned short *);
10167 void vec_st (vector bool short, int, vector bool short *);
10168 void vec_st (vector bool short, int, unsigned short *);
10169 void vec_st (vector pixel, int, vector pixel *);
10170 void vec_st (vector pixel, int, unsigned short *);
10171 void vec_st (vector pixel, int, short *);
10172 void vec_st (vector bool short, int, short *);
10173 void vec_st (vector signed char, int, vector signed char *);
10174 void vec_st (vector signed char, int, signed char *);
10175 void vec_st (vector unsigned char, int, vector unsigned char *);
10176 void vec_st (vector unsigned char, int, unsigned char *);
10177 void vec_st (vector bool char, int, vector bool char *);
10178 void vec_st (vector bool char, int, unsigned char *);
10179 void vec_st (vector bool char, int, signed char *);
10180
10181 void vec_ste (vector signed char, int, signed char *);
10182 void vec_ste (vector unsigned char, int, unsigned char *);
10183 void vec_ste (vector bool char, int, signed char *);
10184 void vec_ste (vector bool char, int, unsigned char *);
10185 void vec_ste (vector signed short, int, short *);
10186 void vec_ste (vector unsigned short, int, unsigned short *);
10187 void vec_ste (vector bool short, int, short *);
10188 void vec_ste (vector bool short, int, unsigned short *);
10189 void vec_ste (vector pixel, int, short *);
10190 void vec_ste (vector pixel, int, unsigned short *);
10191 void vec_ste (vector float, int, float *);
10192 void vec_ste (vector signed int, int, int *);
10193 void vec_ste (vector unsigned int, int, unsigned int *);
10194 void vec_ste (vector bool int, int, int *);
10195 void vec_ste (vector bool int, int, unsigned int *);
10196
10197 void vec_stvewx (vector float, int, float *);
10198 void vec_stvewx (vector signed int, int, int *);
10199 void vec_stvewx (vector unsigned int, int, unsigned int *);
10200 void vec_stvewx (vector bool int, int, int *);
10201 void vec_stvewx (vector bool int, int, unsigned int *);
10202
10203 void vec_stvehx (vector signed short, int, short *);
10204 void vec_stvehx (vector unsigned short, int, unsigned short *);
10205 void vec_stvehx (vector bool short, int, short *);
10206 void vec_stvehx (vector bool short, int, unsigned short *);
10207 void vec_stvehx (vector pixel, int, short *);
10208 void vec_stvehx (vector pixel, int, unsigned short *);
10209
10210 void vec_stvebx (vector signed char, int, signed char *);
10211 void vec_stvebx (vector unsigned char, int, unsigned char *);
10212 void vec_stvebx (vector bool char, int, signed char *);
10213 void vec_stvebx (vector bool char, int, unsigned char *);
10214
10215 void vec_stl (vector float, int, vector float *);
10216 void vec_stl (vector float, int, float *);
10217 void vec_stl (vector signed int, int, vector signed int *);
10218 void vec_stl (vector signed int, int, int *);
10219 void vec_stl (vector unsigned int, int, vector unsigned int *);
10220 void vec_stl (vector unsigned int, int, unsigned int *);
10221 void vec_stl (vector bool int, int, vector bool int *);
10222 void vec_stl (vector bool int, int, unsigned int *);
10223 void vec_stl (vector bool int, int, int *);
10224 void vec_stl (vector signed short, int, vector signed short *);
10225 void vec_stl (vector signed short, int, short *);
10226 void vec_stl (vector unsigned short, int, vector unsigned short *);
10227 void vec_stl (vector unsigned short, int, unsigned short *);
10228 void vec_stl (vector bool short, int, vector bool short *);
10229 void vec_stl (vector bool short, int, unsigned short *);
10230 void vec_stl (vector bool short, int, short *);
10231 void vec_stl (vector pixel, int, vector pixel *);
10232 void vec_stl (vector pixel, int, unsigned short *);
10233 void vec_stl (vector pixel, int, short *);
10234 void vec_stl (vector signed char, int, vector signed char *);
10235 void vec_stl (vector signed char, int, signed char *);
10236 void vec_stl (vector unsigned char, int, vector unsigned char *);
10237 void vec_stl (vector unsigned char, int, unsigned char *);
10238 void vec_stl (vector bool char, int, vector bool char *);
10239 void vec_stl (vector bool char, int, unsigned char *);
10240 void vec_stl (vector bool char, int, signed char *);
10241
10242 vector signed char vec_sub (vector bool char, vector signed char);
10243 vector signed char vec_sub (vector signed char, vector bool char);
10244 vector signed char vec_sub (vector signed char, vector signed char);
10245 vector unsigned char vec_sub (vector bool char, vector unsigned char);
10246 vector unsigned char vec_sub (vector unsigned char, vector bool char);
10247 vector unsigned char vec_sub (vector unsigned char,
10248 vector unsigned char);
10249 vector signed short vec_sub (vector bool short, vector signed short);
10250 vector signed short vec_sub (vector signed short, vector bool short);
10251 vector signed short vec_sub (vector signed short, vector signed short);
10252 vector unsigned short vec_sub (vector bool short,
10253 vector unsigned short);
10254 vector unsigned short vec_sub (vector unsigned short,
10255 vector bool short);
10256 vector unsigned short vec_sub (vector unsigned short,
10257 vector unsigned short);
10258 vector signed int vec_sub (vector bool int, vector signed int);
10259 vector signed int vec_sub (vector signed int, vector bool int);
10260 vector signed int vec_sub (vector signed int, vector signed int);
10261 vector unsigned int vec_sub (vector bool int, vector unsigned int);
10262 vector unsigned int vec_sub (vector unsigned int, vector bool int);
10263 vector unsigned int vec_sub (vector unsigned int, vector unsigned int);
10264 vector float vec_sub (vector float, vector float);
10265
10266 vector float vec_vsubfp (vector float, vector float);
10267
10268 vector signed int vec_vsubuwm (vector bool int, vector signed int);
10269 vector signed int vec_vsubuwm (vector signed int, vector bool int);
10270 vector signed int vec_vsubuwm (vector signed int, vector signed int);
10271 vector unsigned int vec_vsubuwm (vector bool int, vector unsigned int);
10272 vector unsigned int vec_vsubuwm (vector unsigned int, vector bool int);
10273 vector unsigned int vec_vsubuwm (vector unsigned int,
10274 vector unsigned int);
10275
10276 vector signed short vec_vsubuhm (vector bool short,
10277 vector signed short);
10278 vector signed short vec_vsubuhm (vector signed short,
10279 vector bool short);
10280 vector signed short vec_vsubuhm (vector signed short,
10281 vector signed short);
10282 vector unsigned short vec_vsubuhm (vector bool short,
10283 vector unsigned short);
10284 vector unsigned short vec_vsubuhm (vector unsigned short,
10285 vector bool short);
10286 vector unsigned short vec_vsubuhm (vector unsigned short,
10287 vector unsigned short);
10288
10289 vector signed char vec_vsububm (vector bool char, vector signed char);
10290 vector signed char vec_vsububm (vector signed char, vector bool char);
10291 vector signed char vec_vsububm (vector signed char, vector signed char);
10292 vector unsigned char vec_vsububm (vector bool char,
10293 vector unsigned char);
10294 vector unsigned char vec_vsububm (vector unsigned char,
10295 vector bool char);
10296 vector unsigned char vec_vsububm (vector unsigned char,
10297 vector unsigned char);
10298
10299 vector unsigned int vec_subc (vector unsigned int, vector unsigned int);
10300
10301 vector unsigned char vec_subs (vector bool char, vector unsigned char);
10302 vector unsigned char vec_subs (vector unsigned char, vector bool char);
10303 vector unsigned char vec_subs (vector unsigned char,
10304 vector unsigned char);
10305 vector signed char vec_subs (vector bool char, vector signed char);
10306 vector signed char vec_subs (vector signed char, vector bool char);
10307 vector signed char vec_subs (vector signed char, vector signed char);
10308 vector unsigned short vec_subs (vector bool short,
10309 vector unsigned short);
10310 vector unsigned short vec_subs (vector unsigned short,
10311 vector bool short);
10312 vector unsigned short vec_subs (vector unsigned short,
10313 vector unsigned short);
10314 vector signed short vec_subs (vector bool short, vector signed short);
10315 vector signed short vec_subs (vector signed short, vector bool short);
10316 vector signed short vec_subs (vector signed short, vector signed short);
10317 vector unsigned int vec_subs (vector bool int, vector unsigned int);
10318 vector unsigned int vec_subs (vector unsigned int, vector bool int);
10319 vector unsigned int vec_subs (vector unsigned int, vector unsigned int);
10320 vector signed int vec_subs (vector bool int, vector signed int);
10321 vector signed int vec_subs (vector signed int, vector bool int);
10322 vector signed int vec_subs (vector signed int, vector signed int);
10323
10324 vector signed int vec_vsubsws (vector bool int, vector signed int);
10325 vector signed int vec_vsubsws (vector signed int, vector bool int);
10326 vector signed int vec_vsubsws (vector signed int, vector signed int);
10327
10328 vector unsigned int vec_vsubuws (vector bool int, vector unsigned int);
10329 vector unsigned int vec_vsubuws (vector unsigned int, vector bool int);
10330 vector unsigned int vec_vsubuws (vector unsigned int,
10331 vector unsigned int);
10332
10333 vector signed short vec_vsubshs (vector bool short,
10334 vector signed short);
10335 vector signed short vec_vsubshs (vector signed short,
10336 vector bool short);
10337 vector signed short vec_vsubshs (vector signed short,
10338 vector signed short);
10339
10340 vector unsigned short vec_vsubuhs (vector bool short,
10341 vector unsigned short);
10342 vector unsigned short vec_vsubuhs (vector unsigned short,
10343 vector bool short);
10344 vector unsigned short vec_vsubuhs (vector unsigned short,
10345 vector unsigned short);
10346
10347 vector signed char vec_vsubsbs (vector bool char, vector signed char);
10348 vector signed char vec_vsubsbs (vector signed char, vector bool char);
10349 vector signed char vec_vsubsbs (vector signed char, vector signed char);
10350
10351 vector unsigned char vec_vsububs (vector bool char,
10352 vector unsigned char);
10353 vector unsigned char vec_vsububs (vector unsigned char,
10354 vector bool char);
10355 vector unsigned char vec_vsububs (vector unsigned char,
10356 vector unsigned char);
10357
10358 vector unsigned int vec_sum4s (vector unsigned char,
10359 vector unsigned int);
10360 vector signed int vec_sum4s (vector signed char, vector signed int);
10361 vector signed int vec_sum4s (vector signed short, vector signed int);
10362
10363 vector signed int vec_vsum4shs (vector signed short, vector signed int);
10364
10365 vector signed int vec_vsum4sbs (vector signed char, vector signed int);
10366
10367 vector unsigned int vec_vsum4ubs (vector unsigned char,
10368 vector unsigned int);
10369
10370 vector signed int vec_sum2s (vector signed int, vector signed int);
10371
10372 vector signed int vec_sums (vector signed int, vector signed int);
10373
10374 vector float vec_trunc (vector float);
10375
10376 vector signed short vec_unpackh (vector signed char);
10377 vector bool short vec_unpackh (vector bool char);
10378 vector signed int vec_unpackh (vector signed short);
10379 vector bool int vec_unpackh (vector bool short);
10380 vector unsigned int vec_unpackh (vector pixel);
10381
10382 vector bool int vec_vupkhsh (vector bool short);
10383 vector signed int vec_vupkhsh (vector signed short);
10384
10385 vector unsigned int vec_vupkhpx (vector pixel);
10386
10387 vector bool short vec_vupkhsb (vector bool char);
10388 vector signed short vec_vupkhsb (vector signed char);
10389
10390 vector signed short vec_unpackl (vector signed char);
10391 vector bool short vec_unpackl (vector bool char);
10392 vector unsigned int vec_unpackl (vector pixel);
10393 vector signed int vec_unpackl (vector signed short);
10394 vector bool int vec_unpackl (vector bool short);
10395
10396 vector unsigned int vec_vupklpx (vector pixel);
10397
10398 vector bool int vec_vupklsh (vector bool short);
10399 vector signed int vec_vupklsh (vector signed short);
10400
10401 vector bool short vec_vupklsb (vector bool char);
10402 vector signed short vec_vupklsb (vector signed char);
10403
10404 vector float vec_xor (vector float, vector float);
10405 vector float vec_xor (vector float, vector bool int);
10406 vector float vec_xor (vector bool int, vector float);
10407 vector bool int vec_xor (vector bool int, vector bool int);
10408 vector signed int vec_xor (vector bool int, vector signed int);
10409 vector signed int vec_xor (vector signed int, vector bool int);
10410 vector signed int vec_xor (vector signed int, vector signed int);
10411 vector unsigned int vec_xor (vector bool int, vector unsigned int);
10412 vector unsigned int vec_xor (vector unsigned int, vector bool int);
10413 vector unsigned int vec_xor (vector unsigned int, vector unsigned int);
10414 vector bool short vec_xor (vector bool short, vector bool short);
10415 vector signed short vec_xor (vector bool short, vector signed short);
10416 vector signed short vec_xor (vector signed short, vector bool short);
10417 vector signed short vec_xor (vector signed short, vector signed short);
10418 vector unsigned short vec_xor (vector bool short,
10419 vector unsigned short);
10420 vector unsigned short vec_xor (vector unsigned short,
10421 vector bool short);
10422 vector unsigned short vec_xor (vector unsigned short,
10423 vector unsigned short);
10424 vector signed char vec_xor (vector bool char, vector signed char);
10425 vector bool char vec_xor (vector bool char, vector bool char);
10426 vector signed char vec_xor (vector signed char, vector bool char);
10427 vector signed char vec_xor (vector signed char, vector signed char);
10428 vector unsigned char vec_xor (vector bool char, vector unsigned char);
10429 vector unsigned char vec_xor (vector unsigned char, vector bool char);
10430 vector unsigned char vec_xor (vector unsigned char,
10431 vector unsigned char);
10432
10433 int vec_all_eq (vector signed char, vector bool char);
10434 int vec_all_eq (vector signed char, vector signed char);
10435 int vec_all_eq (vector unsigned char, vector bool char);
10436 int vec_all_eq (vector unsigned char, vector unsigned char);
10437 int vec_all_eq (vector bool char, vector bool char);
10438 int vec_all_eq (vector bool char, vector unsigned char);
10439 int vec_all_eq (vector bool char, vector signed char);
10440 int vec_all_eq (vector signed short, vector bool short);
10441 int vec_all_eq (vector signed short, vector signed short);
10442 int vec_all_eq (vector unsigned short, vector bool short);
10443 int vec_all_eq (vector unsigned short, vector unsigned short);
10444 int vec_all_eq (vector bool short, vector bool short);
10445 int vec_all_eq (vector bool short, vector unsigned short);
10446 int vec_all_eq (vector bool short, vector signed short);
10447 int vec_all_eq (vector pixel, vector pixel);
10448 int vec_all_eq (vector signed int, vector bool int);
10449 int vec_all_eq (vector signed int, vector signed int);
10450 int vec_all_eq (vector unsigned int, vector bool int);
10451 int vec_all_eq (vector unsigned int, vector unsigned int);
10452 int vec_all_eq (vector bool int, vector bool int);
10453 int vec_all_eq (vector bool int, vector unsigned int);
10454 int vec_all_eq (vector bool int, vector signed int);
10455 int vec_all_eq (vector float, vector float);
10456
10457 int vec_all_ge (vector bool char, vector unsigned char);
10458 int vec_all_ge (vector unsigned char, vector bool char);
10459 int vec_all_ge (vector unsigned char, vector unsigned char);
10460 int vec_all_ge (vector bool char, vector signed char);
10461 int vec_all_ge (vector signed char, vector bool char);
10462 int vec_all_ge (vector signed char, vector signed char);
10463 int vec_all_ge (vector bool short, vector unsigned short);
10464 int vec_all_ge (vector unsigned short, vector bool short);
10465 int vec_all_ge (vector unsigned short, vector unsigned short);
10466 int vec_all_ge (vector signed short, vector signed short);
10467 int vec_all_ge (vector bool short, vector signed short);
10468 int vec_all_ge (vector signed short, vector bool short);
10469 int vec_all_ge (vector bool int, vector unsigned int);
10470 int vec_all_ge (vector unsigned int, vector bool int);
10471 int vec_all_ge (vector unsigned int, vector unsigned int);
10472 int vec_all_ge (vector bool int, vector signed int);
10473 int vec_all_ge (vector signed int, vector bool int);
10474 int vec_all_ge (vector signed int, vector signed int);
10475 int vec_all_ge (vector float, vector float);
10476
10477 int vec_all_gt (vector bool char, vector unsigned char);
10478 int vec_all_gt (vector unsigned char, vector bool char);
10479 int vec_all_gt (vector unsigned char, vector unsigned char);
10480 int vec_all_gt (vector bool char, vector signed char);
10481 int vec_all_gt (vector signed char, vector bool char);
10482 int vec_all_gt (vector signed char, vector signed char);
10483 int vec_all_gt (vector bool short, vector unsigned short);
10484 int vec_all_gt (vector unsigned short, vector bool short);
10485 int vec_all_gt (vector unsigned short, vector unsigned short);
10486 int vec_all_gt (vector bool short, vector signed short);
10487 int vec_all_gt (vector signed short, vector bool short);
10488 int vec_all_gt (vector signed short, vector signed short);
10489 int vec_all_gt (vector bool int, vector unsigned int);
10490 int vec_all_gt (vector unsigned int, vector bool int);
10491 int vec_all_gt (vector unsigned int, vector unsigned int);
10492 int vec_all_gt (vector bool int, vector signed int);
10493 int vec_all_gt (vector signed int, vector bool int);
10494 int vec_all_gt (vector signed int, vector signed int);
10495 int vec_all_gt (vector float, vector float);
10496
10497 int vec_all_in (vector float, vector float);
10498
10499 int vec_all_le (vector bool char, vector unsigned char);
10500 int vec_all_le (vector unsigned char, vector bool char);
10501 int vec_all_le (vector unsigned char, vector unsigned char);
10502 int vec_all_le (vector bool char, vector signed char);
10503 int vec_all_le (vector signed char, vector bool char);
10504 int vec_all_le (vector signed char, vector signed char);
10505 int vec_all_le (vector bool short, vector unsigned short);
10506 int vec_all_le (vector unsigned short, vector bool short);
10507 int vec_all_le (vector unsigned short, vector unsigned short);
10508 int vec_all_le (vector bool short, vector signed short);
10509 int vec_all_le (vector signed short, vector bool short);
10510 int vec_all_le (vector signed short, vector signed short);
10511 int vec_all_le (vector bool int, vector unsigned int);
10512 int vec_all_le (vector unsigned int, vector bool int);
10513 int vec_all_le (vector unsigned int, vector unsigned int);
10514 int vec_all_le (vector bool int, vector signed int);
10515 int vec_all_le (vector signed int, vector bool int);
10516 int vec_all_le (vector signed int, vector signed int);
10517 int vec_all_le (vector float, vector float);
10518
10519 int vec_all_lt (vector bool char, vector unsigned char);
10520 int vec_all_lt (vector unsigned char, vector bool char);
10521 int vec_all_lt (vector unsigned char, vector unsigned char);
10522 int vec_all_lt (vector bool char, vector signed char);
10523 int vec_all_lt (vector signed char, vector bool char);
10524 int vec_all_lt (vector signed char, vector signed char);
10525 int vec_all_lt (vector bool short, vector unsigned short);
10526 int vec_all_lt (vector unsigned short, vector bool short);
10527 int vec_all_lt (vector unsigned short, vector unsigned short);
10528 int vec_all_lt (vector bool short, vector signed short);
10529 int vec_all_lt (vector signed short, vector bool short);
10530 int vec_all_lt (vector signed short, vector signed short);
10531 int vec_all_lt (vector bool int, vector unsigned int);
10532 int vec_all_lt (vector unsigned int, vector bool int);
10533 int vec_all_lt (vector unsigned int, vector unsigned int);
10534 int vec_all_lt (vector bool int, vector signed int);
10535 int vec_all_lt (vector signed int, vector bool int);
10536 int vec_all_lt (vector signed int, vector signed int);
10537 int vec_all_lt (vector float, vector float);
10538
10539 int vec_all_nan (vector float);
10540
10541 int vec_all_ne (vector signed char, vector bool char);
10542 int vec_all_ne (vector signed char, vector signed char);
10543 int vec_all_ne (vector unsigned char, vector bool char);
10544 int vec_all_ne (vector unsigned char, vector unsigned char);
10545 int vec_all_ne (vector bool char, vector bool char);
10546 int vec_all_ne (vector bool char, vector unsigned char);
10547 int vec_all_ne (vector bool char, vector signed char);
10548 int vec_all_ne (vector signed short, vector bool short);
10549 int vec_all_ne (vector signed short, vector signed short);
10550 int vec_all_ne (vector unsigned short, vector bool short);
10551 int vec_all_ne (vector unsigned short, vector unsigned short);
10552 int vec_all_ne (vector bool short, vector bool short);
10553 int vec_all_ne (vector bool short, vector unsigned short);
10554 int vec_all_ne (vector bool short, vector signed short);
10555 int vec_all_ne (vector pixel, vector pixel);
10556 int vec_all_ne (vector signed int, vector bool int);
10557 int vec_all_ne (vector signed int, vector signed int);
10558 int vec_all_ne (vector unsigned int, vector bool int);
10559 int vec_all_ne (vector unsigned int, vector unsigned int);
10560 int vec_all_ne (vector bool int, vector bool int);
10561 int vec_all_ne (vector bool int, vector unsigned int);
10562 int vec_all_ne (vector bool int, vector signed int);
10563 int vec_all_ne (vector float, vector float);
10564
10565 int vec_all_nge (vector float, vector float);
10566
10567 int vec_all_ngt (vector float, vector float);
10568
10569 int vec_all_nle (vector float, vector float);
10570
10571 int vec_all_nlt (vector float, vector float);
10572
10573 int vec_all_numeric (vector float);
10574
10575 int vec_any_eq (vector signed char, vector bool char);
10576 int vec_any_eq (vector signed char, vector signed char);
10577 int vec_any_eq (vector unsigned char, vector bool char);
10578 int vec_any_eq (vector unsigned char, vector unsigned char);
10579 int vec_any_eq (vector bool char, vector bool char);
10580 int vec_any_eq (vector bool char, vector unsigned char);
10581 int vec_any_eq (vector bool char, vector signed char);
10582 int vec_any_eq (vector signed short, vector bool short);
10583 int vec_any_eq (vector signed short, vector signed short);
10584 int vec_any_eq (vector unsigned short, vector bool short);
10585 int vec_any_eq (vector unsigned short, vector unsigned short);
10586 int vec_any_eq (vector bool short, vector bool short);
10587 int vec_any_eq (vector bool short, vector unsigned short);
10588 int vec_any_eq (vector bool short, vector signed short);
10589 int vec_any_eq (vector pixel, vector pixel);
10590 int vec_any_eq (vector signed int, vector bool int);
10591 int vec_any_eq (vector signed int, vector signed int);
10592 int vec_any_eq (vector unsigned int, vector bool int);
10593 int vec_any_eq (vector unsigned int, vector unsigned int);
10594 int vec_any_eq (vector bool int, vector bool int);
10595 int vec_any_eq (vector bool int, vector unsigned int);
10596 int vec_any_eq (vector bool int, vector signed int);
10597 int vec_any_eq (vector float, vector float);
10598
10599 int vec_any_ge (vector signed char, vector bool char);
10600 int vec_any_ge (vector unsigned char, vector bool char);
10601 int vec_any_ge (vector unsigned char, vector unsigned char);
10602 int vec_any_ge (vector signed char, vector signed char);
10603 int vec_any_ge (vector bool char, vector unsigned char);
10604 int vec_any_ge (vector bool char, vector signed char);
10605 int vec_any_ge (vector unsigned short, vector bool short);
10606 int vec_any_ge (vector unsigned short, vector unsigned short);
10607 int vec_any_ge (vector signed short, vector signed short);
10608 int vec_any_ge (vector signed short, vector bool short);
10609 int vec_any_ge (vector bool short, vector unsigned short);
10610 int vec_any_ge (vector bool short, vector signed short);
10611 int vec_any_ge (vector signed int, vector bool int);
10612 int vec_any_ge (vector unsigned int, vector bool int);
10613 int vec_any_ge (vector unsigned int, vector unsigned int);
10614 int vec_any_ge (vector signed int, vector signed int);
10615 int vec_any_ge (vector bool int, vector unsigned int);
10616 int vec_any_ge (vector bool int, vector signed int);
10617 int vec_any_ge (vector float, vector float);
10618
10619 int vec_any_gt (vector bool char, vector unsigned char);
10620 int vec_any_gt (vector unsigned char, vector bool char);
10621 int vec_any_gt (vector unsigned char, vector unsigned char);
10622 int vec_any_gt (vector bool char, vector signed char);
10623 int vec_any_gt (vector signed char, vector bool char);
10624 int vec_any_gt (vector signed char, vector signed char);
10625 int vec_any_gt (vector bool short, vector unsigned short);
10626 int vec_any_gt (vector unsigned short, vector bool short);
10627 int vec_any_gt (vector unsigned short, vector unsigned short);
10628 int vec_any_gt (vector bool short, vector signed short);
10629 int vec_any_gt (vector signed short, vector bool short);
10630 int vec_any_gt (vector signed short, vector signed short);
10631 int vec_any_gt (vector bool int, vector unsigned int);
10632 int vec_any_gt (vector unsigned int, vector bool int);
10633 int vec_any_gt (vector unsigned int, vector unsigned int);
10634 int vec_any_gt (vector bool int, vector signed int);
10635 int vec_any_gt (vector signed int, vector bool int);
10636 int vec_any_gt (vector signed int, vector signed int);
10637 int vec_any_gt (vector float, vector float);
10638
10639 int vec_any_le (vector bool char, vector unsigned char);
10640 int vec_any_le (vector unsigned char, vector bool char);
10641 int vec_any_le (vector unsigned char, vector unsigned char);
10642 int vec_any_le (vector bool char, vector signed char);
10643 int vec_any_le (vector signed char, vector bool char);
10644 int vec_any_le (vector signed char, vector signed char);
10645 int vec_any_le (vector bool short, vector unsigned short);
10646 int vec_any_le (vector unsigned short, vector bool short);
10647 int vec_any_le (vector unsigned short, vector unsigned short);
10648 int vec_any_le (vector bool short, vector signed short);
10649 int vec_any_le (vector signed short, vector bool short);
10650 int vec_any_le (vector signed short, vector signed short);
10651 int vec_any_le (vector bool int, vector unsigned int);
10652 int vec_any_le (vector unsigned int, vector bool int);
10653 int vec_any_le (vector unsigned int, vector unsigned int);
10654 int vec_any_le (vector bool int, vector signed int);
10655 int vec_any_le (vector signed int, vector bool int);
10656 int vec_any_le (vector signed int, vector signed int);
10657 int vec_any_le (vector float, vector float);
10658
10659 int vec_any_lt (vector bool char, vector unsigned char);
10660 int vec_any_lt (vector unsigned char, vector bool char);
10661 int vec_any_lt (vector unsigned char, vector unsigned char);
10662 int vec_any_lt (vector bool char, vector signed char);
10663 int vec_any_lt (vector signed char, vector bool char);
10664 int vec_any_lt (vector signed char, vector signed char);
10665 int vec_any_lt (vector bool short, vector unsigned short);
10666 int vec_any_lt (vector unsigned short, vector bool short);
10667 int vec_any_lt (vector unsigned short, vector unsigned short);
10668 int vec_any_lt (vector bool short, vector signed short);
10669 int vec_any_lt (vector signed short, vector bool short);
10670 int vec_any_lt (vector signed short, vector signed short);
10671 int vec_any_lt (vector bool int, vector unsigned int);
10672 int vec_any_lt (vector unsigned int, vector bool int);
10673 int vec_any_lt (vector unsigned int, vector unsigned int);
10674 int vec_any_lt (vector bool int, vector signed int);
10675 int vec_any_lt (vector signed int, vector bool int);
10676 int vec_any_lt (vector signed int, vector signed int);
10677 int vec_any_lt (vector float, vector float);
10678
10679 int vec_any_nan (vector float);
10680
10681 int vec_any_ne (vector signed char, vector bool char);
10682 int vec_any_ne (vector signed char, vector signed char);
10683 int vec_any_ne (vector unsigned char, vector bool char);
10684 int vec_any_ne (vector unsigned char, vector unsigned char);
10685 int vec_any_ne (vector bool char, vector bool char);
10686 int vec_any_ne (vector bool char, vector unsigned char);
10687 int vec_any_ne (vector bool char, vector signed char);
10688 int vec_any_ne (vector signed short, vector bool short);
10689 int vec_any_ne (vector signed short, vector signed short);
10690 int vec_any_ne (vector unsigned short, vector bool short);
10691 int vec_any_ne (vector unsigned short, vector unsigned short);
10692 int vec_any_ne (vector bool short, vector bool short);
10693 int vec_any_ne (vector bool short, vector unsigned short);
10694 int vec_any_ne (vector bool short, vector signed short);
10695 int vec_any_ne (vector pixel, vector pixel);
10696 int vec_any_ne (vector signed int, vector bool int);
10697 int vec_any_ne (vector signed int, vector signed int);
10698 int vec_any_ne (vector unsigned int, vector bool int);
10699 int vec_any_ne (vector unsigned int, vector unsigned int);
10700 int vec_any_ne (vector bool int, vector bool int);
10701 int vec_any_ne (vector bool int, vector unsigned int);
10702 int vec_any_ne (vector bool int, vector signed int);
10703 int vec_any_ne (vector float, vector float);
10704
10705 int vec_any_nge (vector float, vector float);
10706
10707 int vec_any_ngt (vector float, vector float);
10708
10709 int vec_any_nle (vector float, vector float);
10710
10711 int vec_any_nlt (vector float, vector float);
10712
10713 int vec_any_numeric (vector float);
10714
10715 int vec_any_out (vector float, vector float);
10716 @end smallexample
10717
10718 @node SPARC VIS Built-in Functions
10719 @subsection SPARC VIS Built-in Functions
10720
10721 GCC supports SIMD operations on the SPARC using both the generic vector
10722 extensions (@pxref{Vector Extensions}) as well as built-in functions for
10723 the SPARC Visual Instruction Set (VIS). When you use the @option{-mvis}
10724 switch, the VIS extension is exposed as the following built-in functions:
10725
10726 @smallexample
10727 typedef int v2si __attribute__ ((vector_size (8)));
10728 typedef short v4hi __attribute__ ((vector_size (8)));
10729 typedef short v2hi __attribute__ ((vector_size (4)));
10730 typedef char v8qi __attribute__ ((vector_size (8)));
10731 typedef char v4qi __attribute__ ((vector_size (4)));
10732
10733 void * __builtin_vis_alignaddr (void *, long);
10734 int64_t __builtin_vis_faligndatadi (int64_t, int64_t);
10735 v2si __builtin_vis_faligndatav2si (v2si, v2si);
10736 v4hi __builtin_vis_faligndatav4hi (v4si, v4si);
10737 v8qi __builtin_vis_faligndatav8qi (v8qi, v8qi);
10738
10739 v4hi __builtin_vis_fexpand (v4qi);
10740
10741 v4hi __builtin_vis_fmul8x16 (v4qi, v4hi);
10742 v4hi __builtin_vis_fmul8x16au (v4qi, v4hi);
10743 v4hi __builtin_vis_fmul8x16al (v4qi, v4hi);
10744 v4hi __builtin_vis_fmul8sux16 (v8qi, v4hi);
10745 v4hi __builtin_vis_fmul8ulx16 (v8qi, v4hi);
10746 v2si __builtin_vis_fmuld8sux16 (v4qi, v2hi);
10747 v2si __builtin_vis_fmuld8ulx16 (v4qi, v2hi);
10748
10749 v4qi __builtin_vis_fpack16 (v4hi);
10750 v8qi __builtin_vis_fpack32 (v2si, v2si);
10751 v2hi __builtin_vis_fpackfix (v2si);
10752 v8qi __builtin_vis_fpmerge (v4qi, v4qi);
10753
10754 int64_t __builtin_vis_pdist (v8qi, v8qi, int64_t);
10755 @end smallexample
10756
10757 @node SPU Built-in Functions
10758 @subsection SPU Built-in Functions
10759
10760 GCC provides extensions for the SPU processor as described in the
10761 Sony/Toshiba/IBM SPU Language Extensions Specification, which can be
10762 found at @uref{http://cell.scei.co.jp/} or
10763 @uref{http://www.ibm.com/developerworks/power/cell/}. GCC's
10764 implementation differs in several ways.
10765
10766 @itemize @bullet
10767
10768 @item
10769 The optional extension of specifying vector constants in parentheses is
10770 not supported.
10771
10772 @item
10773 A vector initializer requires no cast if the vector constant is of the
10774 same type as the variable it is initializing.
10775
10776 @item
10777 If @code{signed} or @code{unsigned} is omitted, the signedness of the
10778 vector type is the default signedness of the base type. The default
10779 varies depending on the operating system, so a portable program should
10780 always specify the signedness.
10781
10782 @item
10783 By default, the keyword @code{__vector} is added. The macro
10784 @code{vector} is defined in @code{<spu_intrinsics.h>} and can be
10785 undefined.
10786
10787 @item
10788 GCC allows using a @code{typedef} name as the type specifier for a
10789 vector type.
10790
10791 @item
10792 For C, overloaded functions are implemented with macros so the following
10793 does not work:
10794
10795 @smallexample
10796 spu_add ((vector signed int)@{1, 2, 3, 4@}, foo);
10797 @end smallexample
10798
10799 Since @code{spu_add} is a macro, the vector constant in the example
10800 is treated as four separate arguments. Wrap the entire argument in
10801 parentheses for this to work.
10802
10803 @item
10804 The extended version of @code{__builtin_expect} is not supported.
10805
10806 @end itemize
10807
10808 @emph{Note:} Only the interface described in the aforementioned
10809 specification is supported. Internally, GCC uses built-in functions to
10810 implement the required functionality, but these are not supported and
10811 are subject to change without notice.
10812
10813 @node Target Format Checks
10814 @section Format Checks Specific to Particular Target Machines
10815
10816 For some target machines, GCC supports additional options to the
10817 format attribute
10818 (@pxref{Function Attributes,,Declaring Attributes of Functions}).
10819
10820 @menu
10821 * Solaris Format Checks::
10822 @end menu
10823
10824 @node Solaris Format Checks
10825 @subsection Solaris Format Checks
10826
10827 Solaris targets support the @code{cmn_err} (or @code{__cmn_err__}) format
10828 check. @code{cmn_err} accepts a subset of the standard @code{printf}
10829 conversions, and the two-argument @code{%b} conversion for displaying
10830 bit-fields. See the Solaris man page for @code{cmn_err} for more information.
10831
10832 @node Pragmas
10833 @section Pragmas Accepted by GCC
10834 @cindex pragmas
10835 @cindex #pragma
10836
10837 GCC supports several types of pragmas, primarily in order to compile
10838 code originally written for other compilers. Note that in general
10839 we do not recommend the use of pragmas; @xref{Function Attributes},
10840 for further explanation.
10841
10842 @menu
10843 * ARM Pragmas::
10844 * M32C Pragmas::
10845 * RS/6000 and PowerPC Pragmas::
10846 * Darwin Pragmas::
10847 * Solaris Pragmas::
10848 * Symbol-Renaming Pragmas::
10849 * Structure-Packing Pragmas::
10850 * Weak Pragmas::
10851 * Diagnostic Pragmas::
10852 * Visibility Pragmas::
10853 @end menu
10854
10855 @node ARM Pragmas
10856 @subsection ARM Pragmas
10857
10858 The ARM target defines pragmas for controlling the default addition of
10859 @code{long_call} and @code{short_call} attributes to functions.
10860 @xref{Function Attributes}, for information about the effects of these
10861 attributes.
10862
10863 @table @code
10864 @item long_calls
10865 @cindex pragma, long_calls
10866 Set all subsequent functions to have the @code{long_call} attribute.
10867
10868 @item no_long_calls
10869 @cindex pragma, no_long_calls
10870 Set all subsequent functions to have the @code{short_call} attribute.
10871
10872 @item long_calls_off
10873 @cindex pragma, long_calls_off
10874 Do not affect the @code{long_call} or @code{short_call} attributes of
10875 subsequent functions.
10876 @end table
10877
10878 @node M32C Pragmas
10879 @subsection M32C Pragmas
10880
10881 @table @code
10882 @item memregs @var{number}
10883 @cindex pragma, memregs
10884 Overrides the command line option @code{-memregs=} for the current
10885 file. Use with care! This pragma must be before any function in the
10886 file, and mixing different memregs values in different objects may
10887 make them incompatible. This pragma is useful when a
10888 performance-critical function uses a memreg for temporary values,
10889 as it may allow you to reduce the number of memregs used.
10890
10891 @end table
10892
10893 @node RS/6000 and PowerPC Pragmas
10894 @subsection RS/6000 and PowerPC Pragmas
10895
10896 The RS/6000 and PowerPC targets define one pragma for controlling
10897 whether or not the @code{longcall} attribute is added to function
10898 declarations by default. This pragma overrides the @option{-mlongcall}
10899 option, but not the @code{longcall} and @code{shortcall} attributes.
10900 @xref{RS/6000 and PowerPC Options}, for more information about when long
10901 calls are and are not necessary.
10902
10903 @table @code
10904 @item longcall (1)
10905 @cindex pragma, longcall
10906 Apply the @code{longcall} attribute to all subsequent function
10907 declarations.
10908
10909 @item longcall (0)
10910 Do not apply the @code{longcall} attribute to subsequent function
10911 declarations.
10912 @end table
10913
10914 @c Describe h8300 pragmas here.
10915 @c Describe sh pragmas here.
10916 @c Describe v850 pragmas here.
10917
10918 @node Darwin Pragmas
10919 @subsection Darwin Pragmas
10920
10921 The following pragmas are available for all architectures running the
10922 Darwin operating system. These are useful for compatibility with other
10923 Mac OS compilers.
10924
10925 @table @code
10926 @item mark @var{tokens}@dots{}
10927 @cindex pragma, mark
10928 This pragma is accepted, but has no effect.
10929
10930 @item options align=@var{alignment}
10931 @cindex pragma, options align
10932 This pragma sets the alignment of fields in structures. The values of
10933 @var{alignment} may be @code{mac68k}, to emulate m68k alignment, or
10934 @code{power}, to emulate PowerPC alignment. Uses of this pragma nest
10935 properly; to restore the previous setting, use @code{reset} for the
10936 @var{alignment}.
10937
10938 @item segment @var{tokens}@dots{}
10939 @cindex pragma, segment
10940 This pragma is accepted, but has no effect.
10941
10942 @item unused (@var{var} [, @var{var}]@dots{})
10943 @cindex pragma, unused
10944 This pragma declares variables to be possibly unused. GCC will not
10945 produce warnings for the listed variables. The effect is similar to
10946 that of the @code{unused} attribute, except that this pragma may appear
10947 anywhere within the variables' scopes.
10948 @end table
10949
10950 @node Solaris Pragmas
10951 @subsection Solaris Pragmas
10952
10953 The Solaris target supports @code{#pragma redefine_extname}
10954 (@pxref{Symbol-Renaming Pragmas}). It also supports additional
10955 @code{#pragma} directives for compatibility with the system compiler.
10956
10957 @table @code
10958 @item align @var{alignment} (@var{variable} [, @var{variable}]...)
10959 @cindex pragma, align
10960
10961 Increase the minimum alignment of each @var{variable} to @var{alignment}.
10962 This is the same as GCC's @code{aligned} attribute @pxref{Variable
10963 Attributes}). Macro expansion occurs on the arguments to this pragma
10964 when compiling C and Objective-C@. It does not currently occur when
10965 compiling C++, but this is a bug which may be fixed in a future
10966 release.
10967
10968 @item fini (@var{function} [, @var{function}]...)
10969 @cindex pragma, fini
10970
10971 This pragma causes each listed @var{function} to be called after
10972 main, or during shared module unloading, by adding a call to the
10973 @code{.fini} section.
10974
10975 @item init (@var{function} [, @var{function}]...)
10976 @cindex pragma, init
10977
10978 This pragma causes each listed @var{function} to be called during
10979 initialization (before @code{main}) or during shared module loading, by
10980 adding a call to the @code{.init} section.
10981
10982 @end table
10983
10984 @node Symbol-Renaming Pragmas
10985 @subsection Symbol-Renaming Pragmas
10986
10987 For compatibility with the Solaris and Tru64 UNIX system headers, GCC
10988 supports two @code{#pragma} directives which change the name used in
10989 assembly for a given declaration. These pragmas are only available on
10990 platforms whose system headers need them. To get this effect on all
10991 platforms supported by GCC, use the asm labels extension (@pxref{Asm
10992 Labels}).
10993
10994 @table @code
10995 @item redefine_extname @var{oldname} @var{newname}
10996 @cindex pragma, redefine_extname
10997
10998 This pragma gives the C function @var{oldname} the assembly symbol
10999 @var{newname}. The preprocessor macro @code{__PRAGMA_REDEFINE_EXTNAME}
11000 will be defined if this pragma is available (currently only on
11001 Solaris).
11002
11003 @item extern_prefix @var{string}
11004 @cindex pragma, extern_prefix
11005
11006 This pragma causes all subsequent external function and variable
11007 declarations to have @var{string} prepended to their assembly symbols.
11008 This effect may be terminated with another @code{extern_prefix} pragma
11009 whose argument is an empty string. The preprocessor macro
11010 @code{__PRAGMA_EXTERN_PREFIX} will be defined if this pragma is
11011 available (currently only on Tru64 UNIX)@.
11012 @end table
11013
11014 These pragmas and the asm labels extension interact in a complicated
11015 manner. Here are some corner cases you may want to be aware of.
11016
11017 @enumerate
11018 @item Both pragmas silently apply only to declarations with external
11019 linkage. Asm labels do not have this restriction.
11020
11021 @item In C++, both pragmas silently apply only to declarations with
11022 ``C'' linkage. Again, asm labels do not have this restriction.
11023
11024 @item If any of the three ways of changing the assembly name of a
11025 declaration is applied to a declaration whose assembly name has
11026 already been determined (either by a previous use of one of these
11027 features, or because the compiler needed the assembly name in order to
11028 generate code), and the new name is different, a warning issues and
11029 the name does not change.
11030
11031 @item The @var{oldname} used by @code{#pragma redefine_extname} is
11032 always the C-language name.
11033
11034 @item If @code{#pragma extern_prefix} is in effect, and a declaration
11035 occurs with an asm label attached, the prefix is silently ignored for
11036 that declaration.
11037
11038 @item If @code{#pragma extern_prefix} and @code{#pragma redefine_extname}
11039 apply to the same declaration, whichever triggered first wins, and a
11040 warning issues if they contradict each other. (We would like to have
11041 @code{#pragma redefine_extname} always win, for consistency with asm
11042 labels, but if @code{#pragma extern_prefix} triggers first we have no
11043 way of knowing that that happened.)
11044 @end enumerate
11045
11046 @node Structure-Packing Pragmas
11047 @subsection Structure-Packing Pragmas
11048
11049 For compatibility with Win32, GCC supports a set of @code{#pragma}
11050 directives which change the maximum alignment of members of structures
11051 (other than zero-width bitfields), unions, and classes subsequently
11052 defined. The @var{n} value below always is required to be a small power
11053 of two and specifies the new alignment in bytes.
11054
11055 @enumerate
11056 @item @code{#pragma pack(@var{n})} simply sets the new alignment.
11057 @item @code{#pragma pack()} sets the alignment to the one that was in
11058 effect when compilation started (see also command line option
11059 @option{-fpack-struct[=<n>]} @pxref{Code Gen Options}).
11060 @item @code{#pragma pack(push[,@var{n}])} pushes the current alignment
11061 setting on an internal stack and then optionally sets the new alignment.
11062 @item @code{#pragma pack(pop)} restores the alignment setting to the one
11063 saved at the top of the internal stack (and removes that stack entry).
11064 Note that @code{#pragma pack([@var{n}])} does not influence this internal
11065 stack; thus it is possible to have @code{#pragma pack(push)} followed by
11066 multiple @code{#pragma pack(@var{n})} instances and finalized by a single
11067 @code{#pragma pack(pop)}.
11068 @end enumerate
11069
11070 Some targets, e.g.@: i386 and powerpc, support the @code{ms_struct}
11071 @code{#pragma} which lays out a structure as the documented
11072 @code{__attribute__ ((ms_struct))}.
11073 @enumerate
11074 @item @code{#pragma ms_struct on} turns on the layout for structures
11075 declared.
11076 @item @code{#pragma ms_struct off} turns off the layout for structures
11077 declared.
11078 @item @code{#pragma ms_struct reset} goes back to the default layout.
11079 @end enumerate
11080
11081 @node Weak Pragmas
11082 @subsection Weak Pragmas
11083
11084 For compatibility with SVR4, GCC supports a set of @code{#pragma}
11085 directives for declaring symbols to be weak, and defining weak
11086 aliases.
11087
11088 @table @code
11089 @item #pragma weak @var{symbol}
11090 @cindex pragma, weak
11091 This pragma declares @var{symbol} to be weak, as if the declaration
11092 had the attribute of the same name. The pragma may appear before
11093 or after the declaration of @var{symbol}, but must appear before
11094 either its first use or its definition. It is not an error for
11095 @var{symbol} to never be defined at all.
11096
11097 @item #pragma weak @var{symbol1} = @var{symbol2}
11098 This pragma declares @var{symbol1} to be a weak alias of @var{symbol2}.
11099 It is an error if @var{symbol2} is not defined in the current
11100 translation unit.
11101 @end table
11102
11103 @node Diagnostic Pragmas
11104 @subsection Diagnostic Pragmas
11105
11106 GCC allows the user to selectively enable or disable certain types of
11107 diagnostics, and change the kind of the diagnostic. For example, a
11108 project's policy might require that all sources compile with
11109 @option{-Werror} but certain files might have exceptions allowing
11110 specific types of warnings. Or, a project might selectively enable
11111 diagnostics and treat them as errors depending on which preprocessor
11112 macros are defined.
11113
11114 @table @code
11115 @item #pragma GCC diagnostic @var{kind} @var{option}
11116 @cindex pragma, diagnostic
11117
11118 Modifies the disposition of a diagnostic. Note that not all
11119 diagnostics are modifiable; at the moment only warnings (normally
11120 controlled by @samp{-W...}) can be controlled, and not all of them.
11121 Use @option{-fdiagnostics-show-option} to determine which diagnostics
11122 are controllable and which option controls them.
11123
11124 @var{kind} is @samp{error} to treat this diagnostic as an error,
11125 @samp{warning} to treat it like a warning (even if @option{-Werror} is
11126 in effect), or @samp{ignored} if the diagnostic is to be ignored.
11127 @var{option} is a double quoted string which matches the command line
11128 option.
11129
11130 @example
11131 #pragma GCC diagnostic warning "-Wformat"
11132 #pragma GCC diagnostic error "-Wformat"
11133 #pragma GCC diagnostic ignored "-Wformat"
11134 @end example
11135
11136 Note that these pragmas override any command line options. Also,
11137 while it is syntactically valid to put these pragmas anywhere in your
11138 sources, the only supported location for them is before any data or
11139 functions are defined. Doing otherwise may result in unpredictable
11140 results depending on how the optimizer manages your sources. If the
11141 same option is listed multiple times, the last one specified is the
11142 one that is in effect. This pragma is not intended to be a general
11143 purpose replacement for command line options, but for implementing
11144 strict control over project policies.
11145
11146 @end table
11147
11148 @node Visibility Pragmas
11149 @subsection Visibility Pragmas
11150
11151 @table @code
11152 @item #pragma GCC visibility push(@var{visibility})
11153 @itemx #pragma GCC visibility pop
11154 @cindex pragma, visibility
11155
11156 This pragma allows the user to set the visibility for multiple
11157 declarations without having to give each a visibility attribute
11158 @xref{Function Attributes}, for more information about visibility and
11159 the attribute syntax.
11160
11161 In C++, @samp{#pragma GCC visibility} affects only namespace-scope
11162 declarations. Class members and template specializations are not
11163 affected; if you want to override the visibility for a particular
11164 member or instantiation, you must use an attribute.
11165
11166 @end table
11167
11168 @node Unnamed Fields
11169 @section Unnamed struct/union fields within structs/unions
11170 @cindex struct
11171 @cindex union
11172
11173 For compatibility with other compilers, GCC allows you to define
11174 a structure or union that contains, as fields, structures and unions
11175 without names. For example:
11176
11177 @smallexample
11178 struct @{
11179 int a;
11180 union @{
11181 int b;
11182 float c;
11183 @};
11184 int d;
11185 @} foo;
11186 @end smallexample
11187
11188 In this example, the user would be able to access members of the unnamed
11189 union with code like @samp{foo.b}. Note that only unnamed structs and
11190 unions are allowed, you may not have, for example, an unnamed
11191 @code{int}.
11192
11193 You must never create such structures that cause ambiguous field definitions.
11194 For example, this structure:
11195
11196 @smallexample
11197 struct @{
11198 int a;
11199 struct @{
11200 int a;
11201 @};
11202 @} foo;
11203 @end smallexample
11204
11205 It is ambiguous which @code{a} is being referred to with @samp{foo.a}.
11206 Such constructs are not supported and must be avoided. In the future,
11207 such constructs may be detected and treated as compilation errors.
11208
11209 @opindex fms-extensions
11210 Unless @option{-fms-extensions} is used, the unnamed field must be a
11211 structure or union definition without a tag (for example, @samp{struct
11212 @{ int a; @};}). If @option{-fms-extensions} is used, the field may
11213 also be a definition with a tag such as @samp{struct foo @{ int a;
11214 @};}, a reference to a previously defined structure or union such as
11215 @samp{struct foo;}, or a reference to a @code{typedef} name for a
11216 previously defined structure or union type.
11217
11218 @node Thread-Local
11219 @section Thread-Local Storage
11220 @cindex Thread-Local Storage
11221 @cindex @acronym{TLS}
11222 @cindex __thread
11223
11224 Thread-local storage (@acronym{TLS}) is a mechanism by which variables
11225 are allocated such that there is one instance of the variable per extant
11226 thread. The run-time model GCC uses to implement this originates
11227 in the IA-64 processor-specific ABI, but has since been migrated
11228 to other processors as well. It requires significant support from
11229 the linker (@command{ld}), dynamic linker (@command{ld.so}), and
11230 system libraries (@file{libc.so} and @file{libpthread.so}), so it
11231 is not available everywhere.
11232
11233 At the user level, the extension is visible with a new storage
11234 class keyword: @code{__thread}. For example:
11235
11236 @smallexample
11237 __thread int i;
11238 extern __thread struct state s;
11239 static __thread char *p;
11240 @end smallexample
11241
11242 The @code{__thread} specifier may be used alone, with the @code{extern}
11243 or @code{static} specifiers, but with no other storage class specifier.
11244 When used with @code{extern} or @code{static}, @code{__thread} must appear
11245 immediately after the other storage class specifier.
11246
11247 The @code{__thread} specifier may be applied to any global, file-scoped
11248 static, function-scoped static, or static data member of a class. It may
11249 not be applied to block-scoped automatic or non-static data member.
11250
11251 When the address-of operator is applied to a thread-local variable, it is
11252 evaluated at run-time and returns the address of the current thread's
11253 instance of that variable. An address so obtained may be used by any
11254 thread. When a thread terminates, any pointers to thread-local variables
11255 in that thread become invalid.
11256
11257 No static initialization may refer to the address of a thread-local variable.
11258
11259 In C++, if an initializer is present for a thread-local variable, it must
11260 be a @var{constant-expression}, as defined in 5.19.2 of the ANSI/ISO C++
11261 standard.
11262
11263 See @uref{http://people.redhat.com/drepper/tls.pdf,
11264 ELF Handling For Thread-Local Storage} for a detailed explanation of
11265 the four thread-local storage addressing models, and how the run-time
11266 is expected to function.
11267
11268 @menu
11269 * C99 Thread-Local Edits::
11270 * C++98 Thread-Local Edits::
11271 @end menu
11272
11273 @node C99 Thread-Local Edits
11274 @subsection ISO/IEC 9899:1999 Edits for Thread-Local Storage
11275
11276 The following are a set of changes to ISO/IEC 9899:1999 (aka C99)
11277 that document the exact semantics of the language extension.
11278
11279 @itemize @bullet
11280 @item
11281 @cite{5.1.2 Execution environments}
11282
11283 Add new text after paragraph 1
11284
11285 @quotation
11286 Within either execution environment, a @dfn{thread} is a flow of
11287 control within a program. It is implementation defined whether
11288 or not there may be more than one thread associated with a program.
11289 It is implementation defined how threads beyond the first are
11290 created, the name and type of the function called at thread
11291 startup, and how threads may be terminated. However, objects
11292 with thread storage duration shall be initialized before thread
11293 startup.
11294 @end quotation
11295
11296 @item
11297 @cite{6.2.4 Storage durations of objects}
11298
11299 Add new text before paragraph 3
11300
11301 @quotation
11302 An object whose identifier is declared with the storage-class
11303 specifier @w{@code{__thread}} has @dfn{thread storage duration}.
11304 Its lifetime is the entire execution of the thread, and its
11305 stored value is initialized only once, prior to thread startup.
11306 @end quotation
11307
11308 @item
11309 @cite{6.4.1 Keywords}
11310
11311 Add @code{__thread}.
11312
11313 @item
11314 @cite{6.7.1 Storage-class specifiers}
11315
11316 Add @code{__thread} to the list of storage class specifiers in
11317 paragraph 1.
11318
11319 Change paragraph 2 to
11320
11321 @quotation
11322 With the exception of @code{__thread}, at most one storage-class
11323 specifier may be given [@dots{}]. The @code{__thread} specifier may
11324 be used alone, or immediately following @code{extern} or
11325 @code{static}.
11326 @end quotation
11327
11328 Add new text after paragraph 6
11329
11330 @quotation
11331 The declaration of an identifier for a variable that has
11332 block scope that specifies @code{__thread} shall also
11333 specify either @code{extern} or @code{static}.
11334
11335 The @code{__thread} specifier shall be used only with
11336 variables.
11337 @end quotation
11338 @end itemize
11339
11340 @node C++98 Thread-Local Edits
11341 @subsection ISO/IEC 14882:1998 Edits for Thread-Local Storage
11342
11343 The following are a set of changes to ISO/IEC 14882:1998 (aka C++98)
11344 that document the exact semantics of the language extension.
11345
11346 @itemize @bullet
11347 @item
11348 @b{[intro.execution]}
11349
11350 New text after paragraph 4
11351
11352 @quotation
11353 A @dfn{thread} is a flow of control within the abstract machine.
11354 It is implementation defined whether or not there may be more than
11355 one thread.
11356 @end quotation
11357
11358 New text after paragraph 7
11359
11360 @quotation
11361 It is unspecified whether additional action must be taken to
11362 ensure when and whether side effects are visible to other threads.
11363 @end quotation
11364
11365 @item
11366 @b{[lex.key]}
11367
11368 Add @code{__thread}.
11369
11370 @item
11371 @b{[basic.start.main]}
11372
11373 Add after paragraph 5
11374
11375 @quotation
11376 The thread that begins execution at the @code{main} function is called
11377 the @dfn{main thread}. It is implementation defined how functions
11378 beginning threads other than the main thread are designated or typed.
11379 A function so designated, as well as the @code{main} function, is called
11380 a @dfn{thread startup function}. It is implementation defined what
11381 happens if a thread startup function returns. It is implementation
11382 defined what happens to other threads when any thread calls @code{exit}.
11383 @end quotation
11384
11385 @item
11386 @b{[basic.start.init]}
11387
11388 Add after paragraph 4
11389
11390 @quotation
11391 The storage for an object of thread storage duration shall be
11392 statically initialized before the first statement of the thread startup
11393 function. An object of thread storage duration shall not require
11394 dynamic initialization.
11395 @end quotation
11396
11397 @item
11398 @b{[basic.start.term]}
11399
11400 Add after paragraph 3
11401
11402 @quotation
11403 The type of an object with thread storage duration shall not have a
11404 non-trivial destructor, nor shall it be an array type whose elements
11405 (directly or indirectly) have non-trivial destructors.
11406 @end quotation
11407
11408 @item
11409 @b{[basic.stc]}
11410
11411 Add ``thread storage duration'' to the list in paragraph 1.
11412
11413 Change paragraph 2
11414
11415 @quotation
11416 Thread, static, and automatic storage durations are associated with
11417 objects introduced by declarations [@dots{}].
11418 @end quotation
11419
11420 Add @code{__thread} to the list of specifiers in paragraph 3.
11421
11422 @item
11423 @b{[basic.stc.thread]}
11424
11425 New section before @b{[basic.stc.static]}
11426
11427 @quotation
11428 The keyword @code{__thread} applied to a non-local object gives the
11429 object thread storage duration.
11430
11431 A local variable or class data member declared both @code{static}
11432 and @code{__thread} gives the variable or member thread storage
11433 duration.
11434 @end quotation
11435
11436 @item
11437 @b{[basic.stc.static]}
11438
11439 Change paragraph 1
11440
11441 @quotation
11442 All objects which have neither thread storage duration, dynamic
11443 storage duration nor are local [@dots{}].
11444 @end quotation
11445
11446 @item
11447 @b{[dcl.stc]}
11448
11449 Add @code{__thread} to the list in paragraph 1.
11450
11451 Change paragraph 1
11452
11453 @quotation
11454 With the exception of @code{__thread}, at most one
11455 @var{storage-class-specifier} shall appear in a given
11456 @var{decl-specifier-seq}. The @code{__thread} specifier may
11457 be used alone, or immediately following the @code{extern} or
11458 @code{static} specifiers. [@dots{}]
11459 @end quotation
11460
11461 Add after paragraph 5
11462
11463 @quotation
11464 The @code{__thread} specifier can be applied only to the names of objects
11465 and to anonymous unions.
11466 @end quotation
11467
11468 @item
11469 @b{[class.mem]}
11470
11471 Add after paragraph 6
11472
11473 @quotation
11474 Non-@code{static} members shall not be @code{__thread}.
11475 @end quotation
11476 @end itemize
11477
11478 @node Binary constants
11479 @section Binary constants using the @samp{0b} prefix
11480 @cindex Binary constants using the @samp{0b} prefix
11481
11482 Integer constants can be written as binary constants, consisting of a
11483 sequence of @samp{0} and @samp{1} digits, prefixed by @samp{0b} or
11484 @samp{0B}. This is particularly useful in environments that operate a
11485 lot on the bit-level (like microcontrollers).
11486
11487 The following statements are identical:
11488
11489 @smallexample
11490 i = 42;
11491 i = 0x2a;
11492 i = 052;
11493 i = 0b101010;
11494 @end smallexample
11495
11496 The type of these constants follows the same rules as for octal or
11497 hexadecimal integer constants, so suffixes like @samp{L} or @samp{UL}
11498 can be applied.
11499
11500 @node C++ Extensions
11501 @chapter Extensions to the C++ Language
11502 @cindex extensions, C++ language
11503 @cindex C++ language extensions
11504
11505 The GNU compiler provides these extensions to the C++ language (and you
11506 can also use most of the C language extensions in your C++ programs). If you
11507 want to write code that checks whether these features are available, you can
11508 test for the GNU compiler the same way as for C programs: check for a
11509 predefined macro @code{__GNUC__}. You can also use @code{__GNUG__} to
11510 test specifically for GNU C++ (@pxref{Common Predefined Macros,,
11511 Predefined Macros,cpp,The GNU C Preprocessor}).
11512
11513 @menu
11514 * Volatiles:: What constitutes an access to a volatile object.
11515 * Restricted Pointers:: C99 restricted pointers and references.
11516 * Vague Linkage:: Where G++ puts inlines, vtables and such.
11517 * C++ Interface:: You can use a single C++ header file for both
11518 declarations and definitions.
11519 * Template Instantiation:: Methods for ensuring that exactly one copy of
11520 each needed template instantiation is emitted.
11521 * Bound member functions:: You can extract a function pointer to the
11522 method denoted by a @samp{->*} or @samp{.*} expression.
11523 * C++ Attributes:: Variable, function, and type attributes for C++ only.
11524 * Namespace Association:: Strong using-directives for namespace association.
11525 * Type Traits:: Compiler support for type traits
11526 * Java Exceptions:: Tweaking exception handling to work with Java.
11527 * Deprecated Features:: Things will disappear from g++.
11528 * Backwards Compatibility:: Compatibilities with earlier definitions of C++.
11529 @end menu
11530
11531 @node Volatiles
11532 @section When is a Volatile Object Accessed?
11533 @cindex accessing volatiles
11534 @cindex volatile read
11535 @cindex volatile write
11536 @cindex volatile access
11537
11538 Both the C and C++ standard have the concept of volatile objects. These
11539 are normally accessed by pointers and used for accessing hardware. The
11540 standards encourage compilers to refrain from optimizations concerning
11541 accesses to volatile objects. The C standard leaves it implementation
11542 defined as to what constitutes a volatile access. The C++ standard omits
11543 to specify this, except to say that C++ should behave in a similar manner
11544 to C with respect to volatiles, where possible. The minimum either
11545 standard specifies is that at a sequence point all previous accesses to
11546 volatile objects have stabilized and no subsequent accesses have
11547 occurred. Thus an implementation is free to reorder and combine
11548 volatile accesses which occur between sequence points, but cannot do so
11549 for accesses across a sequence point. The use of volatiles does not
11550 allow you to violate the restriction on updating objects multiple times
11551 within a sequence point.
11552
11553 @xref{Qualifiers implementation, , Volatile qualifier and the C compiler}.
11554
11555 The behavior differs slightly between C and C++ in the non-obvious cases:
11556
11557 @smallexample
11558 volatile int *src = @var{somevalue};
11559 *src;
11560 @end smallexample
11561
11562 With C, such expressions are rvalues, and GCC interprets this either as a
11563 read of the volatile object being pointed to or only as request to evaluate
11564 the side-effects. The C++ standard specifies that such expressions do not
11565 undergo lvalue to rvalue conversion, and that the type of the dereferenced
11566 object may be incomplete. The C++ standard does not specify explicitly
11567 that it is this lvalue to rvalue conversion which may be responsible for
11568 causing an access. However, there is reason to believe that it is,
11569 because otherwise certain simple expressions become undefined. However,
11570 because it would surprise most programmers, G++ treats dereferencing a
11571 pointer to volatile object of complete type when the value is unused as
11572 GCC would do for an equivalent type in C@. When the object has incomplete
11573 type, G++ issues a warning; if you wish to force an error, you must
11574 force a conversion to rvalue with, for instance, a static cast.
11575
11576 When using a reference to volatile, G++ does not treat equivalent
11577 expressions as accesses to volatiles, but instead issues a warning that
11578 no volatile is accessed. The rationale for this is that otherwise it
11579 becomes difficult to determine where volatile access occur, and not
11580 possible to ignore the return value from functions returning volatile
11581 references. Again, if you wish to force a read, cast the reference to
11582 an rvalue.
11583
11584 @node Restricted Pointers
11585 @section Restricting Pointer Aliasing
11586 @cindex restricted pointers
11587 @cindex restricted references
11588 @cindex restricted this pointer
11589
11590 As with the C front end, G++ understands the C99 feature of restricted pointers,
11591 specified with the @code{__restrict__}, or @code{__restrict} type
11592 qualifier. Because you cannot compile C++ by specifying the @option{-std=c99}
11593 language flag, @code{restrict} is not a keyword in C++.
11594
11595 In addition to allowing restricted pointers, you can specify restricted
11596 references, which indicate that the reference is not aliased in the local
11597 context.
11598
11599 @smallexample
11600 void fn (int *__restrict__ rptr, int &__restrict__ rref)
11601 @{
11602 /* @r{@dots{}} */
11603 @}
11604 @end smallexample
11605
11606 @noindent
11607 In the body of @code{fn}, @var{rptr} points to an unaliased integer and
11608 @var{rref} refers to a (different) unaliased integer.
11609
11610 You may also specify whether a member function's @var{this} pointer is
11611 unaliased by using @code{__restrict__} as a member function qualifier.
11612
11613 @smallexample
11614 void T::fn () __restrict__
11615 @{
11616 /* @r{@dots{}} */
11617 @}
11618 @end smallexample
11619
11620 @noindent
11621 Within the body of @code{T::fn}, @var{this} will have the effective
11622 definition @code{T *__restrict__ const this}. Notice that the
11623 interpretation of a @code{__restrict__} member function qualifier is
11624 different to that of @code{const} or @code{volatile} qualifier, in that it
11625 is applied to the pointer rather than the object. This is consistent with
11626 other compilers which implement restricted pointers.
11627
11628 As with all outermost parameter qualifiers, @code{__restrict__} is
11629 ignored in function definition matching. This means you only need to
11630 specify @code{__restrict__} in a function definition, rather than
11631 in a function prototype as well.
11632
11633 @node Vague Linkage
11634 @section Vague Linkage
11635 @cindex vague linkage
11636
11637 There are several constructs in C++ which require space in the object
11638 file but are not clearly tied to a single translation unit. We say that
11639 these constructs have ``vague linkage''. Typically such constructs are
11640 emitted wherever they are needed, though sometimes we can be more
11641 clever.
11642
11643 @table @asis
11644 @item Inline Functions
11645 Inline functions are typically defined in a header file which can be
11646 included in many different compilations. Hopefully they can usually be
11647 inlined, but sometimes an out-of-line copy is necessary, if the address
11648 of the function is taken or if inlining fails. In general, we emit an
11649 out-of-line copy in all translation units where one is needed. As an
11650 exception, we only emit inline virtual functions with the vtable, since
11651 it will always require a copy.
11652
11653 Local static variables and string constants used in an inline function
11654 are also considered to have vague linkage, since they must be shared
11655 between all inlined and out-of-line instances of the function.
11656
11657 @item VTables
11658 @cindex vtable
11659 C++ virtual functions are implemented in most compilers using a lookup
11660 table, known as a vtable. The vtable contains pointers to the virtual
11661 functions provided by a class, and each object of the class contains a
11662 pointer to its vtable (or vtables, in some multiple-inheritance
11663 situations). If the class declares any non-inline, non-pure virtual
11664 functions, the first one is chosen as the ``key method'' for the class,
11665 and the vtable is only emitted in the translation unit where the key
11666 method is defined.
11667
11668 @emph{Note:} If the chosen key method is later defined as inline, the
11669 vtable will still be emitted in every translation unit which defines it.
11670 Make sure that any inline virtuals are declared inline in the class
11671 body, even if they are not defined there.
11672
11673 @item type_info objects
11674 @cindex type_info
11675 @cindex RTTI
11676 C++ requires information about types to be written out in order to
11677 implement @samp{dynamic_cast}, @samp{typeid} and exception handling.
11678 For polymorphic classes (classes with virtual functions), the type_info
11679 object is written out along with the vtable so that @samp{dynamic_cast}
11680 can determine the dynamic type of a class object at runtime. For all
11681 other types, we write out the type_info object when it is used: when
11682 applying @samp{typeid} to an expression, throwing an object, or
11683 referring to a type in a catch clause or exception specification.
11684
11685 @item Template Instantiations
11686 Most everything in this section also applies to template instantiations,
11687 but there are other options as well.
11688 @xref{Template Instantiation,,Where's the Template?}.
11689
11690 @end table
11691
11692 When used with GNU ld version 2.8 or later on an ELF system such as
11693 GNU/Linux or Solaris 2, or on Microsoft Windows, duplicate copies of
11694 these constructs will be discarded at link time. This is known as
11695 COMDAT support.
11696
11697 On targets that don't support COMDAT, but do support weak symbols, GCC
11698 will use them. This way one copy will override all the others, but
11699 the unused copies will still take up space in the executable.
11700
11701 For targets which do not support either COMDAT or weak symbols,
11702 most entities with vague linkage will be emitted as local symbols to
11703 avoid duplicate definition errors from the linker. This will not happen
11704 for local statics in inlines, however, as having multiple copies will
11705 almost certainly break things.
11706
11707 @xref{C++ Interface,,Declarations and Definitions in One Header}, for
11708 another way to control placement of these constructs.
11709
11710 @node C++ Interface
11711 @section #pragma interface and implementation
11712
11713 @cindex interface and implementation headers, C++
11714 @cindex C++ interface and implementation headers
11715 @cindex pragmas, interface and implementation
11716
11717 @code{#pragma interface} and @code{#pragma implementation} provide the
11718 user with a way of explicitly directing the compiler to emit entities
11719 with vague linkage (and debugging information) in a particular
11720 translation unit.
11721
11722 @emph{Note:} As of GCC 2.7.2, these @code{#pragma}s are not useful in
11723 most cases, because of COMDAT support and the ``key method'' heuristic
11724 mentioned in @ref{Vague Linkage}. Using them can actually cause your
11725 program to grow due to unnecessary out-of-line copies of inline
11726 functions. Currently (3.4) the only benefit of these
11727 @code{#pragma}s is reduced duplication of debugging information, and
11728 that should be addressed soon on DWARF 2 targets with the use of
11729 COMDAT groups.
11730
11731 @table @code
11732 @item #pragma interface
11733 @itemx #pragma interface "@var{subdir}/@var{objects}.h"
11734 @kindex #pragma interface
11735 Use this directive in @emph{header files} that define object classes, to save
11736 space in most of the object files that use those classes. Normally,
11737 local copies of certain information (backup copies of inline member
11738 functions, debugging information, and the internal tables that implement
11739 virtual functions) must be kept in each object file that includes class
11740 definitions. You can use this pragma to avoid such duplication. When a
11741 header file containing @samp{#pragma interface} is included in a
11742 compilation, this auxiliary information will not be generated (unless
11743 the main input source file itself uses @samp{#pragma implementation}).
11744 Instead, the object files will contain references to be resolved at link
11745 time.
11746
11747 The second form of this directive is useful for the case where you have
11748 multiple headers with the same name in different directories. If you
11749 use this form, you must specify the same string to @samp{#pragma
11750 implementation}.
11751
11752 @item #pragma implementation
11753 @itemx #pragma implementation "@var{objects}.h"
11754 @kindex #pragma implementation
11755 Use this pragma in a @emph{main input file}, when you want full output from
11756 included header files to be generated (and made globally visible). The
11757 included header file, in turn, should use @samp{#pragma interface}.
11758 Backup copies of inline member functions, debugging information, and the
11759 internal tables used to implement virtual functions are all generated in
11760 implementation files.
11761
11762 @cindex implied @code{#pragma implementation}
11763 @cindex @code{#pragma implementation}, implied
11764 @cindex naming convention, implementation headers
11765 If you use @samp{#pragma implementation} with no argument, it applies to
11766 an include file with the same basename@footnote{A file's @dfn{basename}
11767 was the name stripped of all leading path information and of trailing
11768 suffixes, such as @samp{.h} or @samp{.C} or @samp{.cc}.} as your source
11769 file. For example, in @file{allclass.cc}, giving just
11770 @samp{#pragma implementation}
11771 by itself is equivalent to @samp{#pragma implementation "allclass.h"}.
11772
11773 In versions of GNU C++ prior to 2.6.0 @file{allclass.h} was treated as
11774 an implementation file whenever you would include it from
11775 @file{allclass.cc} even if you never specified @samp{#pragma
11776 implementation}. This was deemed to be more trouble than it was worth,
11777 however, and disabled.
11778
11779 Use the string argument if you want a single implementation file to
11780 include code from multiple header files. (You must also use
11781 @samp{#include} to include the header file; @samp{#pragma
11782 implementation} only specifies how to use the file---it doesn't actually
11783 include it.)
11784
11785 There is no way to split up the contents of a single header file into
11786 multiple implementation files.
11787 @end table
11788
11789 @cindex inlining and C++ pragmas
11790 @cindex C++ pragmas, effect on inlining
11791 @cindex pragmas in C++, effect on inlining
11792 @samp{#pragma implementation} and @samp{#pragma interface} also have an
11793 effect on function inlining.
11794
11795 If you define a class in a header file marked with @samp{#pragma
11796 interface}, the effect on an inline function defined in that class is
11797 similar to an explicit @code{extern} declaration---the compiler emits
11798 no code at all to define an independent version of the function. Its
11799 definition is used only for inlining with its callers.
11800
11801 @opindex fno-implement-inlines
11802 Conversely, when you include the same header file in a main source file
11803 that declares it as @samp{#pragma implementation}, the compiler emits
11804 code for the function itself; this defines a version of the function
11805 that can be found via pointers (or by callers compiled without
11806 inlining). If all calls to the function can be inlined, you can avoid
11807 emitting the function by compiling with @option{-fno-implement-inlines}.
11808 If any calls were not inlined, you will get linker errors.
11809
11810 @node Template Instantiation
11811 @section Where's the Template?
11812 @cindex template instantiation
11813
11814 C++ templates are the first language feature to require more
11815 intelligence from the environment than one usually finds on a UNIX
11816 system. Somehow the compiler and linker have to make sure that each
11817 template instance occurs exactly once in the executable if it is needed,
11818 and not at all otherwise. There are two basic approaches to this
11819 problem, which are referred to as the Borland model and the Cfront model.
11820
11821 @table @asis
11822 @item Borland model
11823 Borland C++ solved the template instantiation problem by adding the code
11824 equivalent of common blocks to their linker; the compiler emits template
11825 instances in each translation unit that uses them, and the linker
11826 collapses them together. The advantage of this model is that the linker
11827 only has to consider the object files themselves; there is no external
11828 complexity to worry about. This disadvantage is that compilation time
11829 is increased because the template code is being compiled repeatedly.
11830 Code written for this model tends to include definitions of all
11831 templates in the header file, since they must be seen to be
11832 instantiated.
11833
11834 @item Cfront model
11835 The AT&T C++ translator, Cfront, solved the template instantiation
11836 problem by creating the notion of a template repository, an
11837 automatically maintained place where template instances are stored. A
11838 more modern version of the repository works as follows: As individual
11839 object files are built, the compiler places any template definitions and
11840 instantiations encountered in the repository. At link time, the link
11841 wrapper adds in the objects in the repository and compiles any needed
11842 instances that were not previously emitted. The advantages of this
11843 model are more optimal compilation speed and the ability to use the
11844 system linker; to implement the Borland model a compiler vendor also
11845 needs to replace the linker. The disadvantages are vastly increased
11846 complexity, and thus potential for error; for some code this can be
11847 just as transparent, but in practice it can been very difficult to build
11848 multiple programs in one directory and one program in multiple
11849 directories. Code written for this model tends to separate definitions
11850 of non-inline member templates into a separate file, which should be
11851 compiled separately.
11852 @end table
11853
11854 When used with GNU ld version 2.8 or later on an ELF system such as
11855 GNU/Linux or Solaris 2, or on Microsoft Windows, G++ supports the
11856 Borland model. On other systems, G++ implements neither automatic
11857 model.
11858
11859 A future version of G++ will support a hybrid model whereby the compiler
11860 will emit any instantiations for which the template definition is
11861 included in the compile, and store template definitions and
11862 instantiation context information into the object file for the rest.
11863 The link wrapper will extract that information as necessary and invoke
11864 the compiler to produce the remaining instantiations. The linker will
11865 then combine duplicate instantiations.
11866
11867 In the mean time, you have the following options for dealing with
11868 template instantiations:
11869
11870 @enumerate
11871 @item
11872 @opindex frepo
11873 Compile your template-using code with @option{-frepo}. The compiler will
11874 generate files with the extension @samp{.rpo} listing all of the
11875 template instantiations used in the corresponding object files which
11876 could be instantiated there; the link wrapper, @samp{collect2}, will
11877 then update the @samp{.rpo} files to tell the compiler where to place
11878 those instantiations and rebuild any affected object files. The
11879 link-time overhead is negligible after the first pass, as the compiler
11880 will continue to place the instantiations in the same files.
11881
11882 This is your best option for application code written for the Borland
11883 model, as it will just work. Code written for the Cfront model will
11884 need to be modified so that the template definitions are available at
11885 one or more points of instantiation; usually this is as simple as adding
11886 @code{#include <tmethods.cc>} to the end of each template header.
11887
11888 For library code, if you want the library to provide all of the template
11889 instantiations it needs, just try to link all of its object files
11890 together; the link will fail, but cause the instantiations to be
11891 generated as a side effect. Be warned, however, that this may cause
11892 conflicts if multiple libraries try to provide the same instantiations.
11893 For greater control, use explicit instantiation as described in the next
11894 option.
11895
11896 @item
11897 @opindex fno-implicit-templates
11898 Compile your code with @option{-fno-implicit-templates} to disable the
11899 implicit generation of template instances, and explicitly instantiate
11900 all the ones you use. This approach requires more knowledge of exactly
11901 which instances you need than do the others, but it's less
11902 mysterious and allows greater control. You can scatter the explicit
11903 instantiations throughout your program, perhaps putting them in the
11904 translation units where the instances are used or the translation units
11905 that define the templates themselves; you can put all of the explicit
11906 instantiations you need into one big file; or you can create small files
11907 like
11908
11909 @smallexample
11910 #include "Foo.h"
11911 #include "Foo.cc"
11912
11913 template class Foo<int>;
11914 template ostream& operator <<
11915 (ostream&, const Foo<int>&);
11916 @end smallexample
11917
11918 for each of the instances you need, and create a template instantiation
11919 library from those.
11920
11921 If you are using Cfront-model code, you can probably get away with not
11922 using @option{-fno-implicit-templates} when compiling files that don't
11923 @samp{#include} the member template definitions.
11924
11925 If you use one big file to do the instantiations, you may want to
11926 compile it without @option{-fno-implicit-templates} so you get all of the
11927 instances required by your explicit instantiations (but not by any
11928 other files) without having to specify them as well.
11929
11930 G++ has extended the template instantiation syntax given in the ISO
11931 standard to allow forward declaration of explicit instantiations
11932 (with @code{extern}), instantiation of the compiler support data for a
11933 template class (i.e.@: the vtable) without instantiating any of its
11934 members (with @code{inline}), and instantiation of only the static data
11935 members of a template class, without the support data or member
11936 functions (with (@code{static}):
11937
11938 @smallexample
11939 extern template int max (int, int);
11940 inline template class Foo<int>;
11941 static template class Foo<int>;
11942 @end smallexample
11943
11944 @item
11945 Do nothing. Pretend G++ does implement automatic instantiation
11946 management. Code written for the Borland model will work fine, but
11947 each translation unit will contain instances of each of the templates it
11948 uses. In a large program, this can lead to an unacceptable amount of code
11949 duplication.
11950 @end enumerate
11951
11952 @node Bound member functions
11953 @section Extracting the function pointer from a bound pointer to member function
11954 @cindex pmf
11955 @cindex pointer to member function
11956 @cindex bound pointer to member function
11957
11958 In C++, pointer to member functions (PMFs) are implemented using a wide
11959 pointer of sorts to handle all the possible call mechanisms; the PMF
11960 needs to store information about how to adjust the @samp{this} pointer,
11961 and if the function pointed to is virtual, where to find the vtable, and
11962 where in the vtable to look for the member function. If you are using
11963 PMFs in an inner loop, you should really reconsider that decision. If
11964 that is not an option, you can extract the pointer to the function that
11965 would be called for a given object/PMF pair and call it directly inside
11966 the inner loop, to save a bit of time.
11967
11968 Note that you will still be paying the penalty for the call through a
11969 function pointer; on most modern architectures, such a call defeats the
11970 branch prediction features of the CPU@. This is also true of normal
11971 virtual function calls.
11972
11973 The syntax for this extension is
11974
11975 @smallexample
11976 extern A a;
11977 extern int (A::*fp)();
11978 typedef int (*fptr)(A *);
11979
11980 fptr p = (fptr)(a.*fp);
11981 @end smallexample
11982
11983 For PMF constants (i.e.@: expressions of the form @samp{&Klasse::Member}),
11984 no object is needed to obtain the address of the function. They can be
11985 converted to function pointers directly:
11986
11987 @smallexample
11988 fptr p1 = (fptr)(&A::foo);
11989 @end smallexample
11990
11991 @opindex Wno-pmf-conversions
11992 You must specify @option{-Wno-pmf-conversions} to use this extension.
11993
11994 @node C++ Attributes
11995 @section C++-Specific Variable, Function, and Type Attributes
11996
11997 Some attributes only make sense for C++ programs.
11998
11999 @table @code
12000 @item init_priority (@var{priority})
12001 @cindex init_priority attribute
12002
12003
12004 In Standard C++, objects defined at namespace scope are guaranteed to be
12005 initialized in an order in strict accordance with that of their definitions
12006 @emph{in a given translation unit}. No guarantee is made for initializations
12007 across translation units. However, GNU C++ allows users to control the
12008 order of initialization of objects defined at namespace scope with the
12009 @code{init_priority} attribute by specifying a relative @var{priority},
12010 a constant integral expression currently bounded between 101 and 65535
12011 inclusive. Lower numbers indicate a higher priority.
12012
12013 In the following example, @code{A} would normally be created before
12014 @code{B}, but the @code{init_priority} attribute has reversed that order:
12015
12016 @smallexample
12017 Some_Class A __attribute__ ((init_priority (2000)));
12018 Some_Class B __attribute__ ((init_priority (543)));
12019 @end smallexample
12020
12021 @noindent
12022 Note that the particular values of @var{priority} do not matter; only their
12023 relative ordering.
12024
12025 @item java_interface
12026 @cindex java_interface attribute
12027
12028 This type attribute informs C++ that the class is a Java interface. It may
12029 only be applied to classes declared within an @code{extern "Java"} block.
12030 Calls to methods declared in this interface will be dispatched using GCJ's
12031 interface table mechanism, instead of regular virtual table dispatch.
12032
12033 @end table
12034
12035 See also @xref{Namespace Association}.
12036
12037 @node Namespace Association
12038 @section Namespace Association
12039
12040 @strong{Caution:} The semantics of this extension are not fully
12041 defined. Users should refrain from using this extension as its
12042 semantics may change subtly over time. It is possible that this
12043 extension will be removed in future versions of G++.
12044
12045 A using-directive with @code{__attribute ((strong))} is stronger
12046 than a normal using-directive in two ways:
12047
12048 @itemize @bullet
12049 @item
12050 Templates from the used namespace can be specialized and explicitly
12051 instantiated as though they were members of the using namespace.
12052
12053 @item
12054 The using namespace is considered an associated namespace of all
12055 templates in the used namespace for purposes of argument-dependent
12056 name lookup.
12057 @end itemize
12058
12059 The used namespace must be nested within the using namespace so that
12060 normal unqualified lookup works properly.
12061
12062 This is useful for composing a namespace transparently from
12063 implementation namespaces. For example:
12064
12065 @smallexample
12066 namespace std @{
12067 namespace debug @{
12068 template <class T> struct A @{ @};
12069 @}
12070 using namespace debug __attribute ((__strong__));
12071 template <> struct A<int> @{ @}; // @r{ok to specialize}
12072
12073 template <class T> void f (A<T>);
12074 @}
12075
12076 int main()
12077 @{
12078 f (std::A<float>()); // @r{lookup finds} std::f
12079 f (std::A<int>());
12080 @}
12081 @end smallexample
12082
12083 @node Type Traits
12084 @section Type Traits
12085
12086 The C++ front-end implements syntactic extensions that allow to
12087 determine at compile time various characteristics of a type (or of a
12088 pair of types).
12089
12090 @table @code
12091 @item __has_nothrow_assign (type)
12092 If @code{type} is const qualified or is a reference type then the trait is
12093 false. Otherwise if @code{__has_trivial_assign (type)} is true then the trait
12094 is true, else if @code{type} is a cv class or union type with copy assignment
12095 operators that are known not to throw an exception then the trait is true,
12096 else it is false. Requires: @code{type} shall be a complete type, an array
12097 type of unknown bound, or is a @code{void} type.
12098
12099 @item __has_nothrow_copy (type)
12100 If @code{__has_trivial_copy (type)} is true then the trait is true, else if
12101 @code{type} is a cv class or union type with copy constructors that
12102 are known not to throw an exception then the trait is true, else it is false.
12103 Requires: @code{type} shall be a complete type, an array type of
12104 unknown bound, or is a @code{void} type.
12105
12106 @item __has_nothrow_constructor (type)
12107 If @code{__has_trivial_constructor (type)} is true then the trait is
12108 true, else if @code{type} is a cv class or union type (or array
12109 thereof) with a default constructor that is known not to throw an
12110 exception then the trait is true, else it is false. Requires:
12111 @code{type} shall be a complete type, an array type of unknown bound,
12112 or is a @code{void} type.
12113
12114 @item __has_trivial_assign (type)
12115 If @code{type} is const qualified or is a reference type then the trait is
12116 false. Otherwise if @code{__is_pod (type)} is true then the trait is
12117 true, else if @code{type} is a cv class or union type with a trivial
12118 copy assignment ([class.copy]) then the trait is true, else it is
12119 false. Requires: @code{type} shall be a complete type, an array type
12120 of unknown bound, or is a @code{void} type.
12121
12122 @item __has_trivial_copy (type)
12123 If @code{__is_pod (type)} is true or @code{type} is a reference type
12124 then the trait is true, else if @code{type} is a cv class or union type
12125 with a trivial copy constructor ([class.copy]) then the trait
12126 is true, else it is false. Requires: @code{type} shall be a complete
12127 type, an array type of unknown bound, or is a @code{void} type.
12128
12129 @item __has_trivial_constructor (type)
12130 If @code{__is_pod (type)} is true then the trait is true, else if
12131 @code{type} is a cv class or union type (or array thereof) with a
12132 trivial default constructor ([class.ctor]) then the trait is true,
12133 else it is false. Requires: @code{type} shall be a complete type, an
12134 array type of unknown bound, or is a @code{void} type.
12135
12136 @item __has_trivial_destructor (type)
12137 If @code{__is_pod (type)} is true or @code{type} is a reference type then
12138 the trait is true, else if @code{type} is a cv class or union type (or
12139 array thereof) with a trivial destructor ([class.dtor]) then the trait
12140 is true, else it is false. Requires: @code{type} shall be a complete
12141 type, an array type of unknown bound, or is a @code{void} type.
12142
12143 @item __has_virtual_destructor (type)
12144 If @code{type} is a class type with a virtual destructor
12145 ([class.dtor]) then the trait is true, else it is false. Requires:
12146 @code{type} shall be a complete type, an array type of unknown bound,
12147 or is a @code{void} type.
12148
12149 @item __is_abstract (type)
12150 If @code{type} is an abstract class ([class.abstract]) then the trait
12151 is true, else it is false. Requires: @code{type} shall be a complete
12152 type, an array type of unknown bound, or is a @code{void} type.
12153
12154 @item __is_base_of (base_type, derived_type)
12155 If @code{base_type} is a base class of @code{derived_type}
12156 ([class.derived]) then the trait is true, otherwise it is false.
12157 Top-level cv qualifications of @code{base_type} and
12158 @code{derived_type} are ignored. For the purposes of this trait, a
12159 class type is considered is own base. Requires: if @code{__is_class
12160 (base_type)} and @code{__is_class (derived_type)} are true and
12161 @code{base_type} and @code{derived_type} are not the same type
12162 (disregarding cv-qualifiers), @code{derived_type} shall be a complete
12163 type. Diagnostic is produced if this requirement is not met.
12164
12165 @item __is_class (type)
12166 If @code{type} is a cv class type, and not a union type
12167 ([basic.compound]) the the trait is true, else it is false.
12168
12169 @item __is_empty (type)
12170 If @code{__is_class (type)} is false then the trait is false.
12171 Otherwise @code{type} is considered empty if and only if: @code{type}
12172 has no non-static data members, or all non-static data members, if
12173 any, are bit-fields of lenght 0, and @code{type} has no virtual
12174 members, and @code{type} has no virtual base classes, and @code{type}
12175 has no base classes @code{base_type} for which
12176 @code{__is_empty (base_type)} is false. Requires: @code{type} shall
12177 be a complete type, an array type of unknown bound, or is a
12178 @code{void} type.
12179
12180 @item __is_enum (type)
12181 If @code{type} is a cv enumeration type ([basic.compound]) the the trait is
12182 true, else it is false.
12183
12184 @item __is_pod (type)
12185 If @code{type} is a cv POD type ([basic.types]) then the trait is true,
12186 else it is false. Requires: @code{type} shall be a complete type,
12187 an array type of unknown bound, or is a @code{void} type.
12188
12189 @item __is_polymorphic (type)
12190 If @code{type} is a polymorphic class ([class.virtual]) then the trait
12191 is true, else it is false. Requires: @code{type} shall be a complete
12192 type, an array type of unknown bound, or is a @code{void} type.
12193
12194 @item __is_union (type)
12195 If @code{type} is a cv union type ([basic.compound]) the the trait is
12196 true, else it is false.
12197
12198 @end table
12199
12200 @node Java Exceptions
12201 @section Java Exceptions
12202
12203 The Java language uses a slightly different exception handling model
12204 from C++. Normally, GNU C++ will automatically detect when you are
12205 writing C++ code that uses Java exceptions, and handle them
12206 appropriately. However, if C++ code only needs to execute destructors
12207 when Java exceptions are thrown through it, GCC will guess incorrectly.
12208 Sample problematic code is:
12209
12210 @smallexample
12211 struct S @{ ~S(); @};
12212 extern void bar(); // @r{is written in Java, and may throw exceptions}
12213 void foo()
12214 @{
12215 S s;
12216 bar();
12217 @}
12218 @end smallexample
12219
12220 @noindent
12221 The usual effect of an incorrect guess is a link failure, complaining of
12222 a missing routine called @samp{__gxx_personality_v0}.
12223
12224 You can inform the compiler that Java exceptions are to be used in a
12225 translation unit, irrespective of what it might think, by writing
12226 @samp{@w{#pragma GCC java_exceptions}} at the head of the file. This
12227 @samp{#pragma} must appear before any functions that throw or catch
12228 exceptions, or run destructors when exceptions are thrown through them.
12229
12230 You cannot mix Java and C++ exceptions in the same translation unit. It
12231 is believed to be safe to throw a C++ exception from one file through
12232 another file compiled for the Java exception model, or vice versa, but
12233 there may be bugs in this area.
12234
12235 @node Deprecated Features
12236 @section Deprecated Features
12237
12238 In the past, the GNU C++ compiler was extended to experiment with new
12239 features, at a time when the C++ language was still evolving. Now that
12240 the C++ standard is complete, some of those features are superseded by
12241 superior alternatives. Using the old features might cause a warning in
12242 some cases that the feature will be dropped in the future. In other
12243 cases, the feature might be gone already.
12244
12245 While the list below is not exhaustive, it documents some of the options
12246 that are now deprecated:
12247
12248 @table @code
12249 @item -fexternal-templates
12250 @itemx -falt-external-templates
12251 These are two of the many ways for G++ to implement template
12252 instantiation. @xref{Template Instantiation}. The C++ standard clearly
12253 defines how template definitions have to be organized across
12254 implementation units. G++ has an implicit instantiation mechanism that
12255 should work just fine for standard-conforming code.
12256
12257 @item -fstrict-prototype
12258 @itemx -fno-strict-prototype
12259 Previously it was possible to use an empty prototype parameter list to
12260 indicate an unspecified number of parameters (like C), rather than no
12261 parameters, as C++ demands. This feature has been removed, except where
12262 it is required for backwards compatibility @xref{Backwards Compatibility}.
12263 @end table
12264
12265 G++ allows a virtual function returning @samp{void *} to be overridden
12266 by one returning a different pointer type. This extension to the
12267 covariant return type rules is now deprecated and will be removed from a
12268 future version.
12269
12270 The G++ minimum and maximum operators (@samp{<?} and @samp{>?}) and
12271 their compound forms (@samp{<?=}) and @samp{>?=}) have been deprecated
12272 and are now removed from G++. Code using these operators should be
12273 modified to use @code{std::min} and @code{std::max} instead.
12274
12275 The named return value extension has been deprecated, and is now
12276 removed from G++.
12277
12278 The use of initializer lists with new expressions has been deprecated,
12279 and is now removed from G++.
12280
12281 Floating and complex non-type template parameters have been deprecated,
12282 and are now removed from G++.
12283
12284 The implicit typename extension has been deprecated and is now
12285 removed from G++.
12286
12287 The use of default arguments in function pointers, function typedefs
12288 and other places where they are not permitted by the standard is
12289 deprecated and will be removed from a future version of G++.
12290
12291 G++ allows floating-point literals to appear in integral constant expressions,
12292 e.g. @samp{ enum E @{ e = int(2.2 * 3.7) @} }
12293 This extension is deprecated and will be removed from a future version.
12294
12295 G++ allows static data members of const floating-point type to be declared
12296 with an initializer in a class definition. The standard only allows
12297 initializers for static members of const integral types and const
12298 enumeration types so this extension has been deprecated and will be removed
12299 from a future version.
12300
12301 @node Backwards Compatibility
12302 @section Backwards Compatibility
12303 @cindex Backwards Compatibility
12304 @cindex ARM [Annotated C++ Reference Manual]
12305
12306 Now that there is a definitive ISO standard C++, G++ has a specification
12307 to adhere to. The C++ language evolved over time, and features that
12308 used to be acceptable in previous drafts of the standard, such as the ARM
12309 [Annotated C++ Reference Manual], are no longer accepted. In order to allow
12310 compilation of C++ written to such drafts, G++ contains some backwards
12311 compatibilities. @emph{All such backwards compatibility features are
12312 liable to disappear in future versions of G++.} They should be considered
12313 deprecated @xref{Deprecated Features}.
12314
12315 @table @code
12316 @item For scope
12317 If a variable is declared at for scope, it used to remain in scope until
12318 the end of the scope which contained the for statement (rather than just
12319 within the for scope). G++ retains this, but issues a warning, if such a
12320 variable is accessed outside the for scope.
12321
12322 @item Implicit C language
12323 Old C system header files did not contain an @code{extern "C" @{@dots{}@}}
12324 scope to set the language. On such systems, all header files are
12325 implicitly scoped inside a C language scope. Also, an empty prototype
12326 @code{()} will be treated as an unspecified number of arguments, rather
12327 than no arguments, as C++ demands.
12328 @end table