]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/doc/extend.texi
extend.texi (Function Attributes): Fix typo in description of RX vector attribute.
[thirdparty/gcc.git] / gcc / doc / extend.texi
1 @c Copyright (C) 1988-2014 Free Software Foundation, Inc.
2
3 @c This is part of the GCC manual.
4 @c For copying conditions, see the file gcc.texi.
5
6 @node C Extensions
7 @chapter Extensions to the C Language Family
8 @cindex extensions, C language
9 @cindex C language extensions
10
11 @opindex pedantic
12 GNU C provides several language features not found in ISO standard C@.
13 (The @option{-pedantic} option directs GCC to print a warning message if
14 any of these features is used.) To test for the availability of these
15 features in conditional compilation, check for a predefined macro
16 @code{__GNUC__}, which is always defined under GCC@.
17
18 These extensions are available in C and Objective-C@. Most of them are
19 also available in C++. @xref{C++ Extensions,,Extensions to the
20 C++ Language}, for extensions that apply @emph{only} to C++.
21
22 Some features that are in ISO C99 but not C90 or C++ are also, as
23 extensions, accepted by GCC in C90 mode and in C++.
24
25 @menu
26 * Statement Exprs:: Putting statements and declarations inside expressions.
27 * Local Labels:: Labels local to a block.
28 * Labels as Values:: Getting pointers to labels, and computed gotos.
29 * Nested Functions:: As in Algol and Pascal, lexical scoping of functions.
30 * Constructing Calls:: Dispatching a call to another function.
31 * Typeof:: @code{typeof}: referring to the type of an expression.
32 * Conditionals:: Omitting the middle operand of a @samp{?:} expression.
33 * __int128:: 128-bit integers---@code{__int128}.
34 * Long Long:: Double-word integers---@code{long long int}.
35 * Complex:: Data types for complex numbers.
36 * Floating Types:: Additional Floating Types.
37 * Half-Precision:: Half-Precision Floating Point.
38 * Decimal Float:: Decimal Floating Types.
39 * Hex Floats:: Hexadecimal floating-point constants.
40 * Fixed-Point:: Fixed-Point Types.
41 * Named Address Spaces::Named address spaces.
42 * Zero Length:: Zero-length arrays.
43 * Empty Structures:: Structures with no members.
44 * Variable Length:: Arrays whose length is computed at run time.
45 * Variadic Macros:: Macros with a variable number of arguments.
46 * Escaped Newlines:: Slightly looser rules for escaped newlines.
47 * Subscripting:: Any array can be subscripted, even if not an lvalue.
48 * Pointer Arith:: Arithmetic on @code{void}-pointers and function pointers.
49 * Initializers:: Non-constant initializers.
50 * Compound Literals:: Compound literals give structures, unions
51 or arrays as values.
52 * Designated Inits:: Labeling elements of initializers.
53 * Case Ranges:: `case 1 ... 9' and such.
54 * Cast to Union:: Casting to union type from any member of the union.
55 * Mixed Declarations:: Mixing declarations and code.
56 * Function Attributes:: Declaring that functions have no side effects,
57 or that they can never return.
58 * Label Attributes:: Specifying attributes on labels.
59 * Attribute Syntax:: Formal syntax for attributes.
60 * Function Prototypes:: Prototype declarations and old-style definitions.
61 * C++ Comments:: C++ comments are recognized.
62 * Dollar Signs:: Dollar sign is allowed in identifiers.
63 * Character Escapes:: @samp{\e} stands for the character @key{ESC}.
64 * Variable Attributes:: Specifying attributes of variables.
65 * Type Attributes:: Specifying attributes of types.
66 * Alignment:: Inquiring about the alignment of a type or variable.
67 * Inline:: Defining inline functions (as fast as macros).
68 * Volatiles:: What constitutes an access to a volatile object.
69 * Using Assembly Language with C:: Instructions and extensions for interfacing C with assembler.
70 * Alternate Keywords:: @code{__const__}, @code{__asm__}, etc., for header files.
71 * Incomplete Enums:: @code{enum foo;}, with details to follow.
72 * Function Names:: Printable strings which are the name of the current
73 function.
74 * Return Address:: Getting the return or frame address of a function.
75 * Vector Extensions:: Using vector instructions through built-in functions.
76 * Offsetof:: Special syntax for implementing @code{offsetof}.
77 * __sync Builtins:: Legacy built-in functions for atomic memory access.
78 * __atomic Builtins:: Atomic built-in functions with memory model.
79 * x86 specific memory model extensions for transactional memory:: x86 memory models.
80 * Object Size Checking:: Built-in functions for limited buffer overflow
81 checking.
82 * Cilk Plus Builtins:: Built-in functions for the Cilk Plus language extension.
83 * Other Builtins:: Other built-in functions.
84 * Target Builtins:: Built-in functions specific to particular targets.
85 * Target Format Checks:: Format checks specific to particular targets.
86 * Pragmas:: Pragmas accepted by GCC.
87 * Unnamed Fields:: Unnamed struct/union fields within structs/unions.
88 * Thread-Local:: Per-thread variables.
89 * Binary constants:: Binary constants using the @samp{0b} prefix.
90 @end menu
91
92 @node Statement Exprs
93 @section Statements and Declarations in Expressions
94 @cindex statements inside expressions
95 @cindex declarations inside expressions
96 @cindex expressions containing statements
97 @cindex macros, statements in expressions
98
99 @c the above section title wrapped and causes an underfull hbox.. i
100 @c changed it from "within" to "in". --mew 4feb93
101 A compound statement enclosed in parentheses may appear as an expression
102 in GNU C@. This allows you to use loops, switches, and local variables
103 within an expression.
104
105 Recall that a compound statement is a sequence of statements surrounded
106 by braces; in this construct, parentheses go around the braces. For
107 example:
108
109 @smallexample
110 (@{ int y = foo (); int z;
111 if (y > 0) z = y;
112 else z = - y;
113 z; @})
114 @end smallexample
115
116 @noindent
117 is a valid (though slightly more complex than necessary) expression
118 for the absolute value of @code{foo ()}.
119
120 The last thing in the compound statement should be an expression
121 followed by a semicolon; the value of this subexpression serves as the
122 value of the entire construct. (If you use some other kind of statement
123 last within the braces, the construct has type @code{void}, and thus
124 effectively no value.)
125
126 This feature is especially useful in making macro definitions ``safe'' (so
127 that they evaluate each operand exactly once). For example, the
128 ``maximum'' function is commonly defined as a macro in standard C as
129 follows:
130
131 @smallexample
132 #define max(a,b) ((a) > (b) ? (a) : (b))
133 @end smallexample
134
135 @noindent
136 @cindex side effects, macro argument
137 But this definition computes either @var{a} or @var{b} twice, with bad
138 results if the operand has side effects. In GNU C, if you know the
139 type of the operands (here taken as @code{int}), you can define
140 the macro safely as follows:
141
142 @smallexample
143 #define maxint(a,b) \
144 (@{int _a = (a), _b = (b); _a > _b ? _a : _b; @})
145 @end smallexample
146
147 Embedded statements are not allowed in constant expressions, such as
148 the value of an enumeration constant, the width of a bit-field, or
149 the initial value of a static variable.
150
151 If you don't know the type of the operand, you can still do this, but you
152 must use @code{typeof} or @code{__auto_type} (@pxref{Typeof}).
153
154 In G++, the result value of a statement expression undergoes array and
155 function pointer decay, and is returned by value to the enclosing
156 expression. For instance, if @code{A} is a class, then
157
158 @smallexample
159 A a;
160
161 (@{a;@}).Foo ()
162 @end smallexample
163
164 @noindent
165 constructs a temporary @code{A} object to hold the result of the
166 statement expression, and that is used to invoke @code{Foo}.
167 Therefore the @code{this} pointer observed by @code{Foo} is not the
168 address of @code{a}.
169
170 In a statement expression, any temporaries created within a statement
171 are destroyed at that statement's end. This makes statement
172 expressions inside macros slightly different from function calls. In
173 the latter case temporaries introduced during argument evaluation are
174 destroyed at the end of the statement that includes the function
175 call. In the statement expression case they are destroyed during
176 the statement expression. For instance,
177
178 @smallexample
179 #define macro(a) (@{__typeof__(a) b = (a); b + 3; @})
180 template<typename T> T function(T a) @{ T b = a; return b + 3; @}
181
182 void foo ()
183 @{
184 macro (X ());
185 function (X ());
186 @}
187 @end smallexample
188
189 @noindent
190 has different places where temporaries are destroyed. For the
191 @code{macro} case, the temporary @code{X} is destroyed just after
192 the initialization of @code{b}. In the @code{function} case that
193 temporary is destroyed when the function returns.
194
195 These considerations mean that it is probably a bad idea to use
196 statement expressions of this form in header files that are designed to
197 work with C++. (Note that some versions of the GNU C Library contained
198 header files using statement expressions that lead to precisely this
199 bug.)
200
201 Jumping into a statement expression with @code{goto} or using a
202 @code{switch} statement outside the statement expression with a
203 @code{case} or @code{default} label inside the statement expression is
204 not permitted. Jumping into a statement expression with a computed
205 @code{goto} (@pxref{Labels as Values}) has undefined behavior.
206 Jumping out of a statement expression is permitted, but if the
207 statement expression is part of a larger expression then it is
208 unspecified which other subexpressions of that expression have been
209 evaluated except where the language definition requires certain
210 subexpressions to be evaluated before or after the statement
211 expression. In any case, as with a function call, the evaluation of a
212 statement expression is not interleaved with the evaluation of other
213 parts of the containing expression. For example,
214
215 @smallexample
216 foo (), ((@{ bar1 (); goto a; 0; @}) + bar2 ()), baz();
217 @end smallexample
218
219 @noindent
220 calls @code{foo} and @code{bar1} and does not call @code{baz} but
221 may or may not call @code{bar2}. If @code{bar2} is called, it is
222 called after @code{foo} and before @code{bar1}.
223
224 @node Local Labels
225 @section Locally Declared Labels
226 @cindex local labels
227 @cindex macros, local labels
228
229 GCC allows you to declare @dfn{local labels} in any nested block
230 scope. A local label is just like an ordinary label, but you can
231 only reference it (with a @code{goto} statement, or by taking its
232 address) within the block in which it is declared.
233
234 A local label declaration looks like this:
235
236 @smallexample
237 __label__ @var{label};
238 @end smallexample
239
240 @noindent
241 or
242
243 @smallexample
244 __label__ @var{label1}, @var{label2}, /* @r{@dots{}} */;
245 @end smallexample
246
247 Local label declarations must come at the beginning of the block,
248 before any ordinary declarations or statements.
249
250 The label declaration defines the label @emph{name}, but does not define
251 the label itself. You must do this in the usual way, with
252 @code{@var{label}:}, within the statements of the statement expression.
253
254 The local label feature is useful for complex macros. If a macro
255 contains nested loops, a @code{goto} can be useful for breaking out of
256 them. However, an ordinary label whose scope is the whole function
257 cannot be used: if the macro can be expanded several times in one
258 function, the label is multiply defined in that function. A
259 local label avoids this problem. For example:
260
261 @smallexample
262 #define SEARCH(value, array, target) \
263 do @{ \
264 __label__ found; \
265 typeof (target) _SEARCH_target = (target); \
266 typeof (*(array)) *_SEARCH_array = (array); \
267 int i, j; \
268 int value; \
269 for (i = 0; i < max; i++) \
270 for (j = 0; j < max; j++) \
271 if (_SEARCH_array[i][j] == _SEARCH_target) \
272 @{ (value) = i; goto found; @} \
273 (value) = -1; \
274 found:; \
275 @} while (0)
276 @end smallexample
277
278 This could also be written using a statement expression:
279
280 @smallexample
281 #define SEARCH(array, target) \
282 (@{ \
283 __label__ found; \
284 typeof (target) _SEARCH_target = (target); \
285 typeof (*(array)) *_SEARCH_array = (array); \
286 int i, j; \
287 int value; \
288 for (i = 0; i < max; i++) \
289 for (j = 0; j < max; j++) \
290 if (_SEARCH_array[i][j] == _SEARCH_target) \
291 @{ value = i; goto found; @} \
292 value = -1; \
293 found: \
294 value; \
295 @})
296 @end smallexample
297
298 Local label declarations also make the labels they declare visible to
299 nested functions, if there are any. @xref{Nested Functions}, for details.
300
301 @node Labels as Values
302 @section Labels as Values
303 @cindex labels as values
304 @cindex computed gotos
305 @cindex goto with computed label
306 @cindex address of a label
307
308 You can get the address of a label defined in the current function
309 (or a containing function) with the unary operator @samp{&&}. The
310 value has type @code{void *}. This value is a constant and can be used
311 wherever a constant of that type is valid. For example:
312
313 @smallexample
314 void *ptr;
315 /* @r{@dots{}} */
316 ptr = &&foo;
317 @end smallexample
318
319 To use these values, you need to be able to jump to one. This is done
320 with the computed goto statement@footnote{The analogous feature in
321 Fortran is called an assigned goto, but that name seems inappropriate in
322 C, where one can do more than simply store label addresses in label
323 variables.}, @code{goto *@var{exp};}. For example,
324
325 @smallexample
326 goto *ptr;
327 @end smallexample
328
329 @noindent
330 Any expression of type @code{void *} is allowed.
331
332 One way of using these constants is in initializing a static array that
333 serves as a jump table:
334
335 @smallexample
336 static void *array[] = @{ &&foo, &&bar, &&hack @};
337 @end smallexample
338
339 @noindent
340 Then you can select a label with indexing, like this:
341
342 @smallexample
343 goto *array[i];
344 @end smallexample
345
346 @noindent
347 Note that this does not check whether the subscript is in bounds---array
348 indexing in C never does that.
349
350 Such an array of label values serves a purpose much like that of the
351 @code{switch} statement. The @code{switch} statement is cleaner, so
352 use that rather than an array unless the problem does not fit a
353 @code{switch} statement very well.
354
355 Another use of label values is in an interpreter for threaded code.
356 The labels within the interpreter function can be stored in the
357 threaded code for super-fast dispatching.
358
359 You may not use this mechanism to jump to code in a different function.
360 If you do that, totally unpredictable things happen. The best way to
361 avoid this is to store the label address only in automatic variables and
362 never pass it as an argument.
363
364 An alternate way to write the above example is
365
366 @smallexample
367 static const int array[] = @{ &&foo - &&foo, &&bar - &&foo,
368 &&hack - &&foo @};
369 goto *(&&foo + array[i]);
370 @end smallexample
371
372 @noindent
373 This is more friendly to code living in shared libraries, as it reduces
374 the number of dynamic relocations that are needed, and by consequence,
375 allows the data to be read-only.
376 This alternative with label differences is not supported for the AVR target,
377 please use the first approach for AVR programs.
378
379 The @code{&&foo} expressions for the same label might have different
380 values if the containing function is inlined or cloned. If a program
381 relies on them being always the same,
382 @code{__attribute__((__noinline__,__noclone__))} should be used to
383 prevent inlining and cloning. If @code{&&foo} is used in a static
384 variable initializer, inlining and cloning is forbidden.
385
386 @node Nested Functions
387 @section Nested Functions
388 @cindex nested functions
389 @cindex downward funargs
390 @cindex thunks
391
392 A @dfn{nested function} is a function defined inside another function.
393 Nested functions are supported as an extension in GNU C, but are not
394 supported by GNU C++.
395
396 The nested function's name is local to the block where it is defined.
397 For example, here we define a nested function named @code{square}, and
398 call it twice:
399
400 @smallexample
401 @group
402 foo (double a, double b)
403 @{
404 double square (double z) @{ return z * z; @}
405
406 return square (a) + square (b);
407 @}
408 @end group
409 @end smallexample
410
411 The nested function can access all the variables of the containing
412 function that are visible at the point of its definition. This is
413 called @dfn{lexical scoping}. For example, here we show a nested
414 function which uses an inherited variable named @code{offset}:
415
416 @smallexample
417 @group
418 bar (int *array, int offset, int size)
419 @{
420 int access (int *array, int index)
421 @{ return array[index + offset]; @}
422 int i;
423 /* @r{@dots{}} */
424 for (i = 0; i < size; i++)
425 /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
426 @}
427 @end group
428 @end smallexample
429
430 Nested function definitions are permitted within functions in the places
431 where variable definitions are allowed; that is, in any block, mixed
432 with the other declarations and statements in the block.
433
434 It is possible to call the nested function from outside the scope of its
435 name by storing its address or passing the address to another function:
436
437 @smallexample
438 hack (int *array, int size)
439 @{
440 void store (int index, int value)
441 @{ array[index] = value; @}
442
443 intermediate (store, size);
444 @}
445 @end smallexample
446
447 Here, the function @code{intermediate} receives the address of
448 @code{store} as an argument. If @code{intermediate} calls @code{store},
449 the arguments given to @code{store} are used to store into @code{array}.
450 But this technique works only so long as the containing function
451 (@code{hack}, in this example) does not exit.
452
453 If you try to call the nested function through its address after the
454 containing function exits, all hell breaks loose. If you try
455 to call it after a containing scope level exits, and if it refers
456 to some of the variables that are no longer in scope, you may be lucky,
457 but it's not wise to take the risk. If, however, the nested function
458 does not refer to anything that has gone out of scope, you should be
459 safe.
460
461 GCC implements taking the address of a nested function using a technique
462 called @dfn{trampolines}. This technique was described in
463 @cite{Lexical Closures for C++} (Thomas M. Breuel, USENIX
464 C++ Conference Proceedings, October 17-21, 1988).
465
466 A nested function can jump to a label inherited from a containing
467 function, provided the label is explicitly declared in the containing
468 function (@pxref{Local Labels}). Such a jump returns instantly to the
469 containing function, exiting the nested function that did the
470 @code{goto} and any intermediate functions as well. Here is an example:
471
472 @smallexample
473 @group
474 bar (int *array, int offset, int size)
475 @{
476 __label__ failure;
477 int access (int *array, int index)
478 @{
479 if (index > size)
480 goto failure;
481 return array[index + offset];
482 @}
483 int i;
484 /* @r{@dots{}} */
485 for (i = 0; i < size; i++)
486 /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
487 /* @r{@dots{}} */
488 return 0;
489
490 /* @r{Control comes here from @code{access}
491 if it detects an error.} */
492 failure:
493 return -1;
494 @}
495 @end group
496 @end smallexample
497
498 A nested function always has no linkage. Declaring one with
499 @code{extern} or @code{static} is erroneous. If you need to declare the nested function
500 before its definition, use @code{auto} (which is otherwise meaningless
501 for function declarations).
502
503 @smallexample
504 bar (int *array, int offset, int size)
505 @{
506 __label__ failure;
507 auto int access (int *, int);
508 /* @r{@dots{}} */
509 int access (int *array, int index)
510 @{
511 if (index > size)
512 goto failure;
513 return array[index + offset];
514 @}
515 /* @r{@dots{}} */
516 @}
517 @end smallexample
518
519 @node Constructing Calls
520 @section Constructing Function Calls
521 @cindex constructing calls
522 @cindex forwarding calls
523
524 Using the built-in functions described below, you can record
525 the arguments a function received, and call another function
526 with the same arguments, without knowing the number or types
527 of the arguments.
528
529 You can also record the return value of that function call,
530 and later return that value, without knowing what data type
531 the function tried to return (as long as your caller expects
532 that data type).
533
534 However, these built-in functions may interact badly with some
535 sophisticated features or other extensions of the language. It
536 is, therefore, not recommended to use them outside very simple
537 functions acting as mere forwarders for their arguments.
538
539 @deftypefn {Built-in Function} {void *} __builtin_apply_args ()
540 This built-in function returns a pointer to data
541 describing how to perform a call with the same arguments as are passed
542 to the current function.
543
544 The function saves the arg pointer register, structure value address,
545 and all registers that might be used to pass arguments to a function
546 into a block of memory allocated on the stack. Then it returns the
547 address of that block.
548 @end deftypefn
549
550 @deftypefn {Built-in Function} {void *} __builtin_apply (void (*@var{function})(), void *@var{arguments}, size_t @var{size})
551 This built-in function invokes @var{function}
552 with a copy of the parameters described by @var{arguments}
553 and @var{size}.
554
555 The value of @var{arguments} should be the value returned by
556 @code{__builtin_apply_args}. The argument @var{size} specifies the size
557 of the stack argument data, in bytes.
558
559 This function returns a pointer to data describing
560 how to return whatever value is returned by @var{function}. The data
561 is saved in a block of memory allocated on the stack.
562
563 It is not always simple to compute the proper value for @var{size}. The
564 value is used by @code{__builtin_apply} to compute the amount of data
565 that should be pushed on the stack and copied from the incoming argument
566 area.
567 @end deftypefn
568
569 @deftypefn {Built-in Function} {void} __builtin_return (void *@var{result})
570 This built-in function returns the value described by @var{result} from
571 the containing function. You should specify, for @var{result}, a value
572 returned by @code{__builtin_apply}.
573 @end deftypefn
574
575 @deftypefn {Built-in Function} {} __builtin_va_arg_pack ()
576 This built-in function represents all anonymous arguments of an inline
577 function. It can be used only in inline functions that are always
578 inlined, never compiled as a separate function, such as those using
579 @code{__attribute__ ((__always_inline__))} or
580 @code{__attribute__ ((__gnu_inline__))} extern inline functions.
581 It must be only passed as last argument to some other function
582 with variable arguments. This is useful for writing small wrapper
583 inlines for variable argument functions, when using preprocessor
584 macros is undesirable. For example:
585 @smallexample
586 extern int myprintf (FILE *f, const char *format, ...);
587 extern inline __attribute__ ((__gnu_inline__)) int
588 myprintf (FILE *f, const char *format, ...)
589 @{
590 int r = fprintf (f, "myprintf: ");
591 if (r < 0)
592 return r;
593 int s = fprintf (f, format, __builtin_va_arg_pack ());
594 if (s < 0)
595 return s;
596 return r + s;
597 @}
598 @end smallexample
599 @end deftypefn
600
601 @deftypefn {Built-in Function} {size_t} __builtin_va_arg_pack_len ()
602 This built-in function returns the number of anonymous arguments of
603 an inline function. It can be used only in inline functions that
604 are always inlined, never compiled as a separate function, such
605 as those using @code{__attribute__ ((__always_inline__))} or
606 @code{__attribute__ ((__gnu_inline__))} extern inline functions.
607 For example following does link- or run-time checking of open
608 arguments for optimized code:
609 @smallexample
610 #ifdef __OPTIMIZE__
611 extern inline __attribute__((__gnu_inline__)) int
612 myopen (const char *path, int oflag, ...)
613 @{
614 if (__builtin_va_arg_pack_len () > 1)
615 warn_open_too_many_arguments ();
616
617 if (__builtin_constant_p (oflag))
618 @{
619 if ((oflag & O_CREAT) != 0 && __builtin_va_arg_pack_len () < 1)
620 @{
621 warn_open_missing_mode ();
622 return __open_2 (path, oflag);
623 @}
624 return open (path, oflag, __builtin_va_arg_pack ());
625 @}
626
627 if (__builtin_va_arg_pack_len () < 1)
628 return __open_2 (path, oflag);
629
630 return open (path, oflag, __builtin_va_arg_pack ());
631 @}
632 #endif
633 @end smallexample
634 @end deftypefn
635
636 @node Typeof
637 @section Referring to a Type with @code{typeof}
638 @findex typeof
639 @findex sizeof
640 @cindex macros, types of arguments
641
642 Another way to refer to the type of an expression is with @code{typeof}.
643 The syntax of using of this keyword looks like @code{sizeof}, but the
644 construct acts semantically like a type name defined with @code{typedef}.
645
646 There are two ways of writing the argument to @code{typeof}: with an
647 expression or with a type. Here is an example with an expression:
648
649 @smallexample
650 typeof (x[0](1))
651 @end smallexample
652
653 @noindent
654 This assumes that @code{x} is an array of pointers to functions;
655 the type described is that of the values of the functions.
656
657 Here is an example with a typename as the argument:
658
659 @smallexample
660 typeof (int *)
661 @end smallexample
662
663 @noindent
664 Here the type described is that of pointers to @code{int}.
665
666 If you are writing a header file that must work when included in ISO C
667 programs, write @code{__typeof__} instead of @code{typeof}.
668 @xref{Alternate Keywords}.
669
670 A @code{typeof} construct can be used anywhere a typedef name can be
671 used. For example, you can use it in a declaration, in a cast, or inside
672 of @code{sizeof} or @code{typeof}.
673
674 The operand of @code{typeof} is evaluated for its side effects if and
675 only if it is an expression of variably modified type or the name of
676 such a type.
677
678 @code{typeof} is often useful in conjunction with
679 statement expressions (@pxref{Statement Exprs}).
680 Here is how the two together can
681 be used to define a safe ``maximum'' macro which operates on any
682 arithmetic type and evaluates each of its arguments exactly once:
683
684 @smallexample
685 #define max(a,b) \
686 (@{ typeof (a) _a = (a); \
687 typeof (b) _b = (b); \
688 _a > _b ? _a : _b; @})
689 @end smallexample
690
691 @cindex underscores in variables in macros
692 @cindex @samp{_} in variables in macros
693 @cindex local variables in macros
694 @cindex variables, local, in macros
695 @cindex macros, local variables in
696
697 The reason for using names that start with underscores for the local
698 variables is to avoid conflicts with variable names that occur within the
699 expressions that are substituted for @code{a} and @code{b}. Eventually we
700 hope to design a new form of declaration syntax that allows you to declare
701 variables whose scopes start only after their initializers; this will be a
702 more reliable way to prevent such conflicts.
703
704 @noindent
705 Some more examples of the use of @code{typeof}:
706
707 @itemize @bullet
708 @item
709 This declares @code{y} with the type of what @code{x} points to.
710
711 @smallexample
712 typeof (*x) y;
713 @end smallexample
714
715 @item
716 This declares @code{y} as an array of such values.
717
718 @smallexample
719 typeof (*x) y[4];
720 @end smallexample
721
722 @item
723 This declares @code{y} as an array of pointers to characters:
724
725 @smallexample
726 typeof (typeof (char *)[4]) y;
727 @end smallexample
728
729 @noindent
730 It is equivalent to the following traditional C declaration:
731
732 @smallexample
733 char *y[4];
734 @end smallexample
735
736 To see the meaning of the declaration using @code{typeof}, and why it
737 might be a useful way to write, rewrite it with these macros:
738
739 @smallexample
740 #define pointer(T) typeof(T *)
741 #define array(T, N) typeof(T [N])
742 @end smallexample
743
744 @noindent
745 Now the declaration can be rewritten this way:
746
747 @smallexample
748 array (pointer (char), 4) y;
749 @end smallexample
750
751 @noindent
752 Thus, @code{array (pointer (char), 4)} is the type of arrays of 4
753 pointers to @code{char}.
754 @end itemize
755
756 In GNU C, but not GNU C++, you may also declare the type of a variable
757 as @code{__auto_type}. In that case, the declaration must declare
758 only one variable, whose declarator must just be an identifier, the
759 declaration must be initialized, and the type of the variable is
760 determined by the initializer; the name of the variable is not in
761 scope until after the initializer. (In C++, you should use C++11
762 @code{auto} for this purpose.) Using @code{__auto_type}, the
763 ``maximum'' macro above could be written as:
764
765 @smallexample
766 #define max(a,b) \
767 (@{ __auto_type _a = (a); \
768 __auto_type _b = (b); \
769 _a > _b ? _a : _b; @})
770 @end smallexample
771
772 Using @code{__auto_type} instead of @code{typeof} has two advantages:
773
774 @itemize @bullet
775 @item Each argument to the macro appears only once in the expansion of
776 the macro. This prevents the size of the macro expansion growing
777 exponentially when calls to such macros are nested inside arguments of
778 such macros.
779
780 @item If the argument to the macro has variably modified type, it is
781 evaluated only once when using @code{__auto_type}, but twice if
782 @code{typeof} is used.
783 @end itemize
784
785 @emph{Compatibility Note:} In addition to @code{typeof}, GCC 2 supported
786 a more limited extension that permitted one to write
787
788 @smallexample
789 typedef @var{T} = @var{expr};
790 @end smallexample
791
792 @noindent
793 with the effect of declaring @var{T} to have the type of the expression
794 @var{expr}. This extension does not work with GCC 3 (versions between
795 3.0 and 3.2 crash; 3.2.1 and later give an error). Code that
796 relies on it should be rewritten to use @code{typeof}:
797
798 @smallexample
799 typedef typeof(@var{expr}) @var{T};
800 @end smallexample
801
802 @noindent
803 This works with all versions of GCC@.
804
805 @node Conditionals
806 @section Conditionals with Omitted Operands
807 @cindex conditional expressions, extensions
808 @cindex omitted middle-operands
809 @cindex middle-operands, omitted
810 @cindex extensions, @code{?:}
811 @cindex @code{?:} extensions
812
813 The middle operand in a conditional expression may be omitted. Then
814 if the first operand is nonzero, its value is the value of the conditional
815 expression.
816
817 Therefore, the expression
818
819 @smallexample
820 x ? : y
821 @end smallexample
822
823 @noindent
824 has the value of @code{x} if that is nonzero; otherwise, the value of
825 @code{y}.
826
827 This example is perfectly equivalent to
828
829 @smallexample
830 x ? x : y
831 @end smallexample
832
833 @cindex side effect in @code{?:}
834 @cindex @code{?:} side effect
835 @noindent
836 In this simple case, the ability to omit the middle operand is not
837 especially useful. When it becomes useful is when the first operand does,
838 or may (if it is a macro argument), contain a side effect. Then repeating
839 the operand in the middle would perform the side effect twice. Omitting
840 the middle operand uses the value already computed without the undesirable
841 effects of recomputing it.
842
843 @node __int128
844 @section 128-bit integers
845 @cindex @code{__int128} data types
846
847 As an extension the integer scalar type @code{__int128} is supported for
848 targets which have an integer mode wide enough to hold 128 bits.
849 Simply write @code{__int128} for a signed 128-bit integer, or
850 @code{unsigned __int128} for an unsigned 128-bit integer. There is no
851 support in GCC for expressing an integer constant of type @code{__int128}
852 for targets with @code{long long} integer less than 128 bits wide.
853
854 @node Long Long
855 @section Double-Word Integers
856 @cindex @code{long long} data types
857 @cindex double-word arithmetic
858 @cindex multiprecision arithmetic
859 @cindex @code{LL} integer suffix
860 @cindex @code{ULL} integer suffix
861
862 ISO C99 supports data types for integers that are at least 64 bits wide,
863 and as an extension GCC supports them in C90 mode and in C++.
864 Simply write @code{long long int} for a signed integer, or
865 @code{unsigned long long int} for an unsigned integer. To make an
866 integer constant of type @code{long long int}, add the suffix @samp{LL}
867 to the integer. To make an integer constant of type @code{unsigned long
868 long int}, add the suffix @samp{ULL} to the integer.
869
870 You can use these types in arithmetic like any other integer types.
871 Addition, subtraction, and bitwise boolean operations on these types
872 are open-coded on all types of machines. Multiplication is open-coded
873 if the machine supports a fullword-to-doubleword widening multiply
874 instruction. Division and shifts are open-coded only on machines that
875 provide special support. The operations that are not open-coded use
876 special library routines that come with GCC@.
877
878 There may be pitfalls when you use @code{long long} types for function
879 arguments without function prototypes. If a function
880 expects type @code{int} for its argument, and you pass a value of type
881 @code{long long int}, confusion results because the caller and the
882 subroutine disagree about the number of bytes for the argument.
883 Likewise, if the function expects @code{long long int} and you pass
884 @code{int}. The best way to avoid such problems is to use prototypes.
885
886 @node Complex
887 @section Complex Numbers
888 @cindex complex numbers
889 @cindex @code{_Complex} keyword
890 @cindex @code{__complex__} keyword
891
892 ISO C99 supports complex floating data types, and as an extension GCC
893 supports them in C90 mode and in C++. GCC also supports complex integer data
894 types which are not part of ISO C99. You can declare complex types
895 using the keyword @code{_Complex}. As an extension, the older GNU
896 keyword @code{__complex__} is also supported.
897
898 For example, @samp{_Complex double x;} declares @code{x} as a
899 variable whose real part and imaginary part are both of type
900 @code{double}. @samp{_Complex short int y;} declares @code{y} to
901 have real and imaginary parts of type @code{short int}; this is not
902 likely to be useful, but it shows that the set of complex types is
903 complete.
904
905 To write a constant with a complex data type, use the suffix @samp{i} or
906 @samp{j} (either one; they are equivalent). For example, @code{2.5fi}
907 has type @code{_Complex float} and @code{3i} has type
908 @code{_Complex int}. Such a constant always has a pure imaginary
909 value, but you can form any complex value you like by adding one to a
910 real constant. This is a GNU extension; if you have an ISO C99
911 conforming C library (such as the GNU C Library), and want to construct complex
912 constants of floating type, you should include @code{<complex.h>} and
913 use the macros @code{I} or @code{_Complex_I} instead.
914
915 @cindex @code{__real__} keyword
916 @cindex @code{__imag__} keyword
917 To extract the real part of a complex-valued expression @var{exp}, write
918 @code{__real__ @var{exp}}. Likewise, use @code{__imag__} to
919 extract the imaginary part. This is a GNU extension; for values of
920 floating type, you should use the ISO C99 functions @code{crealf},
921 @code{creal}, @code{creall}, @code{cimagf}, @code{cimag} and
922 @code{cimagl}, declared in @code{<complex.h>} and also provided as
923 built-in functions by GCC@.
924
925 @cindex complex conjugation
926 The operator @samp{~} performs complex conjugation when used on a value
927 with a complex type. This is a GNU extension; for values of
928 floating type, you should use the ISO C99 functions @code{conjf},
929 @code{conj} and @code{conjl}, declared in @code{<complex.h>} and also
930 provided as built-in functions by GCC@.
931
932 GCC can allocate complex automatic variables in a noncontiguous
933 fashion; it's even possible for the real part to be in a register while
934 the imaginary part is on the stack (or vice versa). Only the DWARF 2
935 debug info format can represent this, so use of DWARF 2 is recommended.
936 If you are using the stabs debug info format, GCC describes a noncontiguous
937 complex variable as if it were two separate variables of noncomplex type.
938 If the variable's actual name is @code{foo}, the two fictitious
939 variables are named @code{foo$real} and @code{foo$imag}. You can
940 examine and set these two fictitious variables with your debugger.
941
942 @node Floating Types
943 @section Additional Floating Types
944 @cindex additional floating types
945 @cindex @code{__float80} data type
946 @cindex @code{__float128} data type
947 @cindex @code{w} floating point suffix
948 @cindex @code{q} floating point suffix
949 @cindex @code{W} floating point suffix
950 @cindex @code{Q} floating point suffix
951
952 As an extension, GNU C supports additional floating
953 types, @code{__float80} and @code{__float128} to support 80-bit
954 (@code{XFmode}) and 128-bit (@code{TFmode}) floating types.
955 Support for additional types includes the arithmetic operators:
956 add, subtract, multiply, divide; unary arithmetic operators;
957 relational operators; equality operators; and conversions to and from
958 integer and other floating types. Use a suffix @samp{w} or @samp{W}
959 in a literal constant of type @code{__float80} and @samp{q} or @samp{Q}
960 for @code{_float128}. You can declare complex types using the
961 corresponding internal complex type, @code{XCmode} for @code{__float80}
962 type and @code{TCmode} for @code{__float128} type:
963
964 @smallexample
965 typedef _Complex float __attribute__((mode(TC))) _Complex128;
966 typedef _Complex float __attribute__((mode(XC))) _Complex80;
967 @end smallexample
968
969 Not all targets support additional floating-point types. @code{__float80}
970 and @code{__float128} types are supported on i386, x86_64 and IA-64 targets.
971 The @code{__float128} type is supported on hppa HP-UX targets.
972
973 @node Half-Precision
974 @section Half-Precision Floating Point
975 @cindex half-precision floating point
976 @cindex @code{__fp16} data type
977
978 On ARM targets, GCC supports half-precision (16-bit) floating point via
979 the @code{__fp16} type. You must enable this type explicitly
980 with the @option{-mfp16-format} command-line option in order to use it.
981
982 ARM supports two incompatible representations for half-precision
983 floating-point values. You must choose one of the representations and
984 use it consistently in your program.
985
986 Specifying @option{-mfp16-format=ieee} selects the IEEE 754-2008 format.
987 This format can represent normalized values in the range of @math{2^{-14}} to 65504.
988 There are 11 bits of significand precision, approximately 3
989 decimal digits.
990
991 Specifying @option{-mfp16-format=alternative} selects the ARM
992 alternative format. This representation is similar to the IEEE
993 format, but does not support infinities or NaNs. Instead, the range
994 of exponents is extended, so that this format can represent normalized
995 values in the range of @math{2^{-14}} to 131008.
996
997 The @code{__fp16} type is a storage format only. For purposes
998 of arithmetic and other operations, @code{__fp16} values in C or C++
999 expressions are automatically promoted to @code{float}. In addition,
1000 you cannot declare a function with a return value or parameters
1001 of type @code{__fp16}.
1002
1003 Note that conversions from @code{double} to @code{__fp16}
1004 involve an intermediate conversion to @code{float}. Because
1005 of rounding, this can sometimes produce a different result than a
1006 direct conversion.
1007
1008 ARM provides hardware support for conversions between
1009 @code{__fp16} and @code{float} values
1010 as an extension to VFP and NEON (Advanced SIMD). GCC generates
1011 code using these hardware instructions if you compile with
1012 options to select an FPU that provides them;
1013 for example, @option{-mfpu=neon-fp16 -mfloat-abi=softfp},
1014 in addition to the @option{-mfp16-format} option to select
1015 a half-precision format.
1016
1017 Language-level support for the @code{__fp16} data type is
1018 independent of whether GCC generates code using hardware floating-point
1019 instructions. In cases where hardware support is not specified, GCC
1020 implements conversions between @code{__fp16} and @code{float} values
1021 as library calls.
1022
1023 @node Decimal Float
1024 @section Decimal Floating Types
1025 @cindex decimal floating types
1026 @cindex @code{_Decimal32} data type
1027 @cindex @code{_Decimal64} data type
1028 @cindex @code{_Decimal128} data type
1029 @cindex @code{df} integer suffix
1030 @cindex @code{dd} integer suffix
1031 @cindex @code{dl} integer suffix
1032 @cindex @code{DF} integer suffix
1033 @cindex @code{DD} integer suffix
1034 @cindex @code{DL} integer suffix
1035
1036 As an extension, GNU C supports decimal floating types as
1037 defined in the N1312 draft of ISO/IEC WDTR24732. Support for decimal
1038 floating types in GCC will evolve as the draft technical report changes.
1039 Calling conventions for any target might also change. Not all targets
1040 support decimal floating types.
1041
1042 The decimal floating types are @code{_Decimal32}, @code{_Decimal64}, and
1043 @code{_Decimal128}. They use a radix of ten, unlike the floating types
1044 @code{float}, @code{double}, and @code{long double} whose radix is not
1045 specified by the C standard but is usually two.
1046
1047 Support for decimal floating types includes the arithmetic operators
1048 add, subtract, multiply, divide; unary arithmetic operators;
1049 relational operators; equality operators; and conversions to and from
1050 integer and other floating types. Use a suffix @samp{df} or
1051 @samp{DF} in a literal constant of type @code{_Decimal32}, @samp{dd}
1052 or @samp{DD} for @code{_Decimal64}, and @samp{dl} or @samp{DL} for
1053 @code{_Decimal128}.
1054
1055 GCC support of decimal float as specified by the draft technical report
1056 is incomplete:
1057
1058 @itemize @bullet
1059 @item
1060 When the value of a decimal floating type cannot be represented in the
1061 integer type to which it is being converted, the result is undefined
1062 rather than the result value specified by the draft technical report.
1063
1064 @item
1065 GCC does not provide the C library functionality associated with
1066 @file{math.h}, @file{fenv.h}, @file{stdio.h}, @file{stdlib.h}, and
1067 @file{wchar.h}, which must come from a separate C library implementation.
1068 Because of this the GNU C compiler does not define macro
1069 @code{__STDC_DEC_FP__} to indicate that the implementation conforms to
1070 the technical report.
1071 @end itemize
1072
1073 Types @code{_Decimal32}, @code{_Decimal64}, and @code{_Decimal128}
1074 are supported by the DWARF 2 debug information format.
1075
1076 @node Hex Floats
1077 @section Hex Floats
1078 @cindex hex floats
1079
1080 ISO C99 supports floating-point numbers written not only in the usual
1081 decimal notation, such as @code{1.55e1}, but also numbers such as
1082 @code{0x1.fp3} written in hexadecimal format. As a GNU extension, GCC
1083 supports this in C90 mode (except in some cases when strictly
1084 conforming) and in C++. In that format the
1085 @samp{0x} hex introducer and the @samp{p} or @samp{P} exponent field are
1086 mandatory. The exponent is a decimal number that indicates the power of
1087 2 by which the significant part is multiplied. Thus @samp{0x1.f} is
1088 @tex
1089 $1 {15\over16}$,
1090 @end tex
1091 @ifnottex
1092 1 15/16,
1093 @end ifnottex
1094 @samp{p3} multiplies it by 8, and the value of @code{0x1.fp3}
1095 is the same as @code{1.55e1}.
1096
1097 Unlike for floating-point numbers in the decimal notation the exponent
1098 is always required in the hexadecimal notation. Otherwise the compiler
1099 would not be able to resolve the ambiguity of, e.g., @code{0x1.f}. This
1100 could mean @code{1.0f} or @code{1.9375} since @samp{f} is also the
1101 extension for floating-point constants of type @code{float}.
1102
1103 @node Fixed-Point
1104 @section Fixed-Point Types
1105 @cindex fixed-point types
1106 @cindex @code{_Fract} data type
1107 @cindex @code{_Accum} data type
1108 @cindex @code{_Sat} data type
1109 @cindex @code{hr} fixed-suffix
1110 @cindex @code{r} fixed-suffix
1111 @cindex @code{lr} fixed-suffix
1112 @cindex @code{llr} fixed-suffix
1113 @cindex @code{uhr} fixed-suffix
1114 @cindex @code{ur} fixed-suffix
1115 @cindex @code{ulr} fixed-suffix
1116 @cindex @code{ullr} fixed-suffix
1117 @cindex @code{hk} fixed-suffix
1118 @cindex @code{k} fixed-suffix
1119 @cindex @code{lk} fixed-suffix
1120 @cindex @code{llk} fixed-suffix
1121 @cindex @code{uhk} fixed-suffix
1122 @cindex @code{uk} fixed-suffix
1123 @cindex @code{ulk} fixed-suffix
1124 @cindex @code{ullk} fixed-suffix
1125 @cindex @code{HR} fixed-suffix
1126 @cindex @code{R} fixed-suffix
1127 @cindex @code{LR} fixed-suffix
1128 @cindex @code{LLR} fixed-suffix
1129 @cindex @code{UHR} fixed-suffix
1130 @cindex @code{UR} fixed-suffix
1131 @cindex @code{ULR} fixed-suffix
1132 @cindex @code{ULLR} fixed-suffix
1133 @cindex @code{HK} fixed-suffix
1134 @cindex @code{K} fixed-suffix
1135 @cindex @code{LK} fixed-suffix
1136 @cindex @code{LLK} fixed-suffix
1137 @cindex @code{UHK} fixed-suffix
1138 @cindex @code{UK} fixed-suffix
1139 @cindex @code{ULK} fixed-suffix
1140 @cindex @code{ULLK} fixed-suffix
1141
1142 As an extension, GNU C supports fixed-point types as
1143 defined in the N1169 draft of ISO/IEC DTR 18037. Support for fixed-point
1144 types in GCC will evolve as the draft technical report changes.
1145 Calling conventions for any target might also change. Not all targets
1146 support fixed-point types.
1147
1148 The fixed-point types are
1149 @code{short _Fract},
1150 @code{_Fract},
1151 @code{long _Fract},
1152 @code{long long _Fract},
1153 @code{unsigned short _Fract},
1154 @code{unsigned _Fract},
1155 @code{unsigned long _Fract},
1156 @code{unsigned long long _Fract},
1157 @code{_Sat short _Fract},
1158 @code{_Sat _Fract},
1159 @code{_Sat long _Fract},
1160 @code{_Sat long long _Fract},
1161 @code{_Sat unsigned short _Fract},
1162 @code{_Sat unsigned _Fract},
1163 @code{_Sat unsigned long _Fract},
1164 @code{_Sat unsigned long long _Fract},
1165 @code{short _Accum},
1166 @code{_Accum},
1167 @code{long _Accum},
1168 @code{long long _Accum},
1169 @code{unsigned short _Accum},
1170 @code{unsigned _Accum},
1171 @code{unsigned long _Accum},
1172 @code{unsigned long long _Accum},
1173 @code{_Sat short _Accum},
1174 @code{_Sat _Accum},
1175 @code{_Sat long _Accum},
1176 @code{_Sat long long _Accum},
1177 @code{_Sat unsigned short _Accum},
1178 @code{_Sat unsigned _Accum},
1179 @code{_Sat unsigned long _Accum},
1180 @code{_Sat unsigned long long _Accum}.
1181
1182 Fixed-point data values contain fractional and optional integral parts.
1183 The format of fixed-point data varies and depends on the target machine.
1184
1185 Support for fixed-point types includes:
1186 @itemize @bullet
1187 @item
1188 prefix and postfix increment and decrement operators (@code{++}, @code{--})
1189 @item
1190 unary arithmetic operators (@code{+}, @code{-}, @code{!})
1191 @item
1192 binary arithmetic operators (@code{+}, @code{-}, @code{*}, @code{/})
1193 @item
1194 binary shift operators (@code{<<}, @code{>>})
1195 @item
1196 relational operators (@code{<}, @code{<=}, @code{>=}, @code{>})
1197 @item
1198 equality operators (@code{==}, @code{!=})
1199 @item
1200 assignment operators (@code{+=}, @code{-=}, @code{*=}, @code{/=},
1201 @code{<<=}, @code{>>=})
1202 @item
1203 conversions to and from integer, floating-point, or fixed-point types
1204 @end itemize
1205
1206 Use a suffix in a fixed-point literal constant:
1207 @itemize
1208 @item @samp{hr} or @samp{HR} for @code{short _Fract} and
1209 @code{_Sat short _Fract}
1210 @item @samp{r} or @samp{R} for @code{_Fract} and @code{_Sat _Fract}
1211 @item @samp{lr} or @samp{LR} for @code{long _Fract} and
1212 @code{_Sat long _Fract}
1213 @item @samp{llr} or @samp{LLR} for @code{long long _Fract} and
1214 @code{_Sat long long _Fract}
1215 @item @samp{uhr} or @samp{UHR} for @code{unsigned short _Fract} and
1216 @code{_Sat unsigned short _Fract}
1217 @item @samp{ur} or @samp{UR} for @code{unsigned _Fract} and
1218 @code{_Sat unsigned _Fract}
1219 @item @samp{ulr} or @samp{ULR} for @code{unsigned long _Fract} and
1220 @code{_Sat unsigned long _Fract}
1221 @item @samp{ullr} or @samp{ULLR} for @code{unsigned long long _Fract}
1222 and @code{_Sat unsigned long long _Fract}
1223 @item @samp{hk} or @samp{HK} for @code{short _Accum} and
1224 @code{_Sat short _Accum}
1225 @item @samp{k} or @samp{K} for @code{_Accum} and @code{_Sat _Accum}
1226 @item @samp{lk} or @samp{LK} for @code{long _Accum} and
1227 @code{_Sat long _Accum}
1228 @item @samp{llk} or @samp{LLK} for @code{long long _Accum} and
1229 @code{_Sat long long _Accum}
1230 @item @samp{uhk} or @samp{UHK} for @code{unsigned short _Accum} and
1231 @code{_Sat unsigned short _Accum}
1232 @item @samp{uk} or @samp{UK} for @code{unsigned _Accum} and
1233 @code{_Sat unsigned _Accum}
1234 @item @samp{ulk} or @samp{ULK} for @code{unsigned long _Accum} and
1235 @code{_Sat unsigned long _Accum}
1236 @item @samp{ullk} or @samp{ULLK} for @code{unsigned long long _Accum}
1237 and @code{_Sat unsigned long long _Accum}
1238 @end itemize
1239
1240 GCC support of fixed-point types as specified by the draft technical report
1241 is incomplete:
1242
1243 @itemize @bullet
1244 @item
1245 Pragmas to control overflow and rounding behaviors are not implemented.
1246 @end itemize
1247
1248 Fixed-point types are supported by the DWARF 2 debug information format.
1249
1250 @node Named Address Spaces
1251 @section Named Address Spaces
1252 @cindex Named Address Spaces
1253
1254 As an extension, GNU C supports named address spaces as
1255 defined in the N1275 draft of ISO/IEC DTR 18037. Support for named
1256 address spaces in GCC will evolve as the draft technical report
1257 changes. Calling conventions for any target might also change. At
1258 present, only the AVR, SPU, M32C, and RL78 targets support address
1259 spaces other than the generic address space.
1260
1261 Address space identifiers may be used exactly like any other C type
1262 qualifier (e.g., @code{const} or @code{volatile}). See the N1275
1263 document for more details.
1264
1265 @anchor{AVR Named Address Spaces}
1266 @subsection AVR Named Address Spaces
1267
1268 On the AVR target, there are several address spaces that can be used
1269 in order to put read-only data into the flash memory and access that
1270 data by means of the special instructions @code{LPM} or @code{ELPM}
1271 needed to read from flash.
1272
1273 Per default, any data including read-only data is located in RAM
1274 (the generic address space) so that non-generic address spaces are
1275 needed to locate read-only data in flash memory
1276 @emph{and} to generate the right instructions to access this data
1277 without using (inline) assembler code.
1278
1279 @table @code
1280 @item __flash
1281 @cindex @code{__flash} AVR Named Address Spaces
1282 The @code{__flash} qualifier locates data in the
1283 @code{.progmem.data} section. Data is read using the @code{LPM}
1284 instruction. Pointers to this address space are 16 bits wide.
1285
1286 @item __flash1
1287 @itemx __flash2
1288 @itemx __flash3
1289 @itemx __flash4
1290 @itemx __flash5
1291 @cindex @code{__flash1} AVR Named Address Spaces
1292 @cindex @code{__flash2} AVR Named Address Spaces
1293 @cindex @code{__flash3} AVR Named Address Spaces
1294 @cindex @code{__flash4} AVR Named Address Spaces
1295 @cindex @code{__flash5} AVR Named Address Spaces
1296 These are 16-bit address spaces locating data in section
1297 @code{.progmem@var{N}.data} where @var{N} refers to
1298 address space @code{__flash@var{N}}.
1299 The compiler sets the @code{RAMPZ} segment register appropriately
1300 before reading data by means of the @code{ELPM} instruction.
1301
1302 @item __memx
1303 @cindex @code{__memx} AVR Named Address Spaces
1304 This is a 24-bit address space that linearizes flash and RAM:
1305 If the high bit of the address is set, data is read from
1306 RAM using the lower two bytes as RAM address.
1307 If the high bit of the address is clear, data is read from flash
1308 with @code{RAMPZ} set according to the high byte of the address.
1309 @xref{AVR Built-in Functions,,@code{__builtin_avr_flash_segment}}.
1310
1311 Objects in this address space are located in @code{.progmemx.data}.
1312 @end table
1313
1314 @b{Example}
1315
1316 @smallexample
1317 char my_read (const __flash char ** p)
1318 @{
1319 /* p is a pointer to RAM that points to a pointer to flash.
1320 The first indirection of p reads that flash pointer
1321 from RAM and the second indirection reads a char from this
1322 flash address. */
1323
1324 return **p;
1325 @}
1326
1327 /* Locate array[] in flash memory */
1328 const __flash int array[] = @{ 3, 5, 7, 11, 13, 17, 19 @};
1329
1330 int i = 1;
1331
1332 int main (void)
1333 @{
1334 /* Return 17 by reading from flash memory */
1335 return array[array[i]];
1336 @}
1337 @end smallexample
1338
1339 @noindent
1340 For each named address space supported by avr-gcc there is an equally
1341 named but uppercase built-in macro defined.
1342 The purpose is to facilitate testing if respective address space
1343 support is available or not:
1344
1345 @smallexample
1346 #ifdef __FLASH
1347 const __flash int var = 1;
1348
1349 int read_var (void)
1350 @{
1351 return var;
1352 @}
1353 #else
1354 #include <avr/pgmspace.h> /* From AVR-LibC */
1355
1356 const int var PROGMEM = 1;
1357
1358 int read_var (void)
1359 @{
1360 return (int) pgm_read_word (&var);
1361 @}
1362 #endif /* __FLASH */
1363 @end smallexample
1364
1365 @noindent
1366 Notice that attribute @ref{AVR Variable Attributes,,@code{progmem}}
1367 locates data in flash but
1368 accesses to these data read from generic address space, i.e.@:
1369 from RAM,
1370 so that you need special accessors like @code{pgm_read_byte}
1371 from @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC}}
1372 together with attribute @code{progmem}.
1373
1374 @noindent
1375 @b{Limitations and caveats}
1376
1377 @itemize
1378 @item
1379 Reading across the 64@tie{}KiB section boundary of
1380 the @code{__flash} or @code{__flash@var{N}} address spaces
1381 shows undefined behavior. The only address space that
1382 supports reading across the 64@tie{}KiB flash segment boundaries is
1383 @code{__memx}.
1384
1385 @item
1386 If you use one of the @code{__flash@var{N}} address spaces
1387 you must arrange your linker script to locate the
1388 @code{.progmem@var{N}.data} sections according to your needs.
1389
1390 @item
1391 Any data or pointers to the non-generic address spaces must
1392 be qualified as @code{const}, i.e.@: as read-only data.
1393 This still applies if the data in one of these address
1394 spaces like software version number or calibration lookup table are intended to
1395 be changed after load time by, say, a boot loader. In this case
1396 the right qualification is @code{const} @code{volatile} so that the compiler
1397 must not optimize away known values or insert them
1398 as immediates into operands of instructions.
1399
1400 @item
1401 The following code initializes a variable @code{pfoo}
1402 located in static storage with a 24-bit address:
1403 @smallexample
1404 extern const __memx char foo;
1405 const __memx void *pfoo = &foo;
1406 @end smallexample
1407
1408 @noindent
1409 Such code requires at least binutils 2.23, see
1410 @w{@uref{http://sourceware.org/PR13503,PR13503}}.
1411
1412 @end itemize
1413
1414 @subsection M32C Named Address Spaces
1415 @cindex @code{__far} M32C Named Address Spaces
1416
1417 On the M32C target, with the R8C and M16C CPU variants, variables
1418 qualified with @code{__far} are accessed using 32-bit addresses in
1419 order to access memory beyond the first 64@tie{}Ki bytes. If
1420 @code{__far} is used with the M32CM or M32C CPU variants, it has no
1421 effect.
1422
1423 @subsection RL78 Named Address Spaces
1424 @cindex @code{__far} RL78 Named Address Spaces
1425
1426 On the RL78 target, variables qualified with @code{__far} are accessed
1427 with 32-bit pointers (20-bit addresses) rather than the default 16-bit
1428 addresses. Non-far variables are assumed to appear in the topmost
1429 64@tie{}KiB of the address space.
1430
1431 @subsection SPU Named Address Spaces
1432 @cindex @code{__ea} SPU Named Address Spaces
1433
1434 On the SPU target variables may be declared as
1435 belonging to another address space by qualifying the type with the
1436 @code{__ea} address space identifier:
1437
1438 @smallexample
1439 extern int __ea i;
1440 @end smallexample
1441
1442 @noindent
1443 The compiler generates special code to access the variable @code{i}.
1444 It may use runtime library
1445 support, or generate special machine instructions to access that address
1446 space.
1447
1448 @node Zero Length
1449 @section Arrays of Length Zero
1450 @cindex arrays of length zero
1451 @cindex zero-length arrays
1452 @cindex length-zero arrays
1453 @cindex flexible array members
1454
1455 Zero-length arrays are allowed in GNU C@. They are very useful as the
1456 last element of a structure that is really a header for a variable-length
1457 object:
1458
1459 @smallexample
1460 struct line @{
1461 int length;
1462 char contents[0];
1463 @};
1464
1465 struct line *thisline = (struct line *)
1466 malloc (sizeof (struct line) + this_length);
1467 thisline->length = this_length;
1468 @end smallexample
1469
1470 In ISO C90, you would have to give @code{contents} a length of 1, which
1471 means either you waste space or complicate the argument to @code{malloc}.
1472
1473 In ISO C99, you would use a @dfn{flexible array member}, which is
1474 slightly different in syntax and semantics:
1475
1476 @itemize @bullet
1477 @item
1478 Flexible array members are written as @code{contents[]} without
1479 the @code{0}.
1480
1481 @item
1482 Flexible array members have incomplete type, and so the @code{sizeof}
1483 operator may not be applied. As a quirk of the original implementation
1484 of zero-length arrays, @code{sizeof} evaluates to zero.
1485
1486 @item
1487 Flexible array members may only appear as the last member of a
1488 @code{struct} that is otherwise non-empty.
1489
1490 @item
1491 A structure containing a flexible array member, or a union containing
1492 such a structure (possibly recursively), may not be a member of a
1493 structure or an element of an array. (However, these uses are
1494 permitted by GCC as extensions.)
1495 @end itemize
1496
1497 GCC versions before 3.0 allowed zero-length arrays to be statically
1498 initialized, as if they were flexible arrays. In addition to those
1499 cases that were useful, it also allowed initializations in situations
1500 that would corrupt later data. Non-empty initialization of zero-length
1501 arrays is now treated like any case where there are more initializer
1502 elements than the array holds, in that a suitable warning about ``excess
1503 elements in array'' is given, and the excess elements (all of them, in
1504 this case) are ignored.
1505
1506 Instead GCC allows static initialization of flexible array members.
1507 This is equivalent to defining a new structure containing the original
1508 structure followed by an array of sufficient size to contain the data.
1509 E.g.@: in the following, @code{f1} is constructed as if it were declared
1510 like @code{f2}.
1511
1512 @smallexample
1513 struct f1 @{
1514 int x; int y[];
1515 @} f1 = @{ 1, @{ 2, 3, 4 @} @};
1516
1517 struct f2 @{
1518 struct f1 f1; int data[3];
1519 @} f2 = @{ @{ 1 @}, @{ 2, 3, 4 @} @};
1520 @end smallexample
1521
1522 @noindent
1523 The convenience of this extension is that @code{f1} has the desired
1524 type, eliminating the need to consistently refer to @code{f2.f1}.
1525
1526 This has symmetry with normal static arrays, in that an array of
1527 unknown size is also written with @code{[]}.
1528
1529 Of course, this extension only makes sense if the extra data comes at
1530 the end of a top-level object, as otherwise we would be overwriting
1531 data at subsequent offsets. To avoid undue complication and confusion
1532 with initialization of deeply nested arrays, we simply disallow any
1533 non-empty initialization except when the structure is the top-level
1534 object. For example:
1535
1536 @smallexample
1537 struct foo @{ int x; int y[]; @};
1538 struct bar @{ struct foo z; @};
1539
1540 struct foo a = @{ 1, @{ 2, 3, 4 @} @}; // @r{Valid.}
1541 struct bar b = @{ @{ 1, @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
1542 struct bar c = @{ @{ 1, @{ @} @} @}; // @r{Valid.}
1543 struct foo d[1] = @{ @{ 1 @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
1544 @end smallexample
1545
1546 @node Empty Structures
1547 @section Structures With No Members
1548 @cindex empty structures
1549 @cindex zero-size structures
1550
1551 GCC permits a C structure to have no members:
1552
1553 @smallexample
1554 struct empty @{
1555 @};
1556 @end smallexample
1557
1558 The structure has size zero. In C++, empty structures are part
1559 of the language. G++ treats empty structures as if they had a single
1560 member of type @code{char}.
1561
1562 @node Variable Length
1563 @section Arrays of Variable Length
1564 @cindex variable-length arrays
1565 @cindex arrays of variable length
1566 @cindex VLAs
1567
1568 Variable-length automatic arrays are allowed in ISO C99, and as an
1569 extension GCC accepts them in C90 mode and in C++. These arrays are
1570 declared like any other automatic arrays, but with a length that is not
1571 a constant expression. The storage is allocated at the point of
1572 declaration and deallocated when the block scope containing the declaration
1573 exits. For
1574 example:
1575
1576 @smallexample
1577 FILE *
1578 concat_fopen (char *s1, char *s2, char *mode)
1579 @{
1580 char str[strlen (s1) + strlen (s2) + 1];
1581 strcpy (str, s1);
1582 strcat (str, s2);
1583 return fopen (str, mode);
1584 @}
1585 @end smallexample
1586
1587 @cindex scope of a variable length array
1588 @cindex variable-length array scope
1589 @cindex deallocating variable length arrays
1590 Jumping or breaking out of the scope of the array name deallocates the
1591 storage. Jumping into the scope is not allowed; you get an error
1592 message for it.
1593
1594 @cindex variable-length array in a structure
1595 As an extension, GCC accepts variable-length arrays as a member of
1596 a structure or a union. For example:
1597
1598 @smallexample
1599 void
1600 foo (int n)
1601 @{
1602 struct S @{ int x[n]; @};
1603 @}
1604 @end smallexample
1605
1606 @cindex @code{alloca} vs variable-length arrays
1607 You can use the function @code{alloca} to get an effect much like
1608 variable-length arrays. The function @code{alloca} is available in
1609 many other C implementations (but not in all). On the other hand,
1610 variable-length arrays are more elegant.
1611
1612 There are other differences between these two methods. Space allocated
1613 with @code{alloca} exists until the containing @emph{function} returns.
1614 The space for a variable-length array is deallocated as soon as the array
1615 name's scope ends. (If you use both variable-length arrays and
1616 @code{alloca} in the same function, deallocation of a variable-length array
1617 also deallocates anything more recently allocated with @code{alloca}.)
1618
1619 You can also use variable-length arrays as arguments to functions:
1620
1621 @smallexample
1622 struct entry
1623 tester (int len, char data[len][len])
1624 @{
1625 /* @r{@dots{}} */
1626 @}
1627 @end smallexample
1628
1629 The length of an array is computed once when the storage is allocated
1630 and is remembered for the scope of the array in case you access it with
1631 @code{sizeof}.
1632
1633 If you want to pass the array first and the length afterward, you can
1634 use a forward declaration in the parameter list---another GNU extension.
1635
1636 @smallexample
1637 struct entry
1638 tester (int len; char data[len][len], int len)
1639 @{
1640 /* @r{@dots{}} */
1641 @}
1642 @end smallexample
1643
1644 @cindex parameter forward declaration
1645 The @samp{int len} before the semicolon is a @dfn{parameter forward
1646 declaration}, and it serves the purpose of making the name @code{len}
1647 known when the declaration of @code{data} is parsed.
1648
1649 You can write any number of such parameter forward declarations in the
1650 parameter list. They can be separated by commas or semicolons, but the
1651 last one must end with a semicolon, which is followed by the ``real''
1652 parameter declarations. Each forward declaration must match a ``real''
1653 declaration in parameter name and data type. ISO C99 does not support
1654 parameter forward declarations.
1655
1656 @node Variadic Macros
1657 @section Macros with a Variable Number of Arguments.
1658 @cindex variable number of arguments
1659 @cindex macro with variable arguments
1660 @cindex rest argument (in macro)
1661 @cindex variadic macros
1662
1663 In the ISO C standard of 1999, a macro can be declared to accept a
1664 variable number of arguments much as a function can. The syntax for
1665 defining the macro is similar to that of a function. Here is an
1666 example:
1667
1668 @smallexample
1669 #define debug(format, ...) fprintf (stderr, format, __VA_ARGS__)
1670 @end smallexample
1671
1672 @noindent
1673 Here @samp{@dots{}} is a @dfn{variable argument}. In the invocation of
1674 such a macro, it represents the zero or more tokens until the closing
1675 parenthesis that ends the invocation, including any commas. This set of
1676 tokens replaces the identifier @code{__VA_ARGS__} in the macro body
1677 wherever it appears. See the CPP manual for more information.
1678
1679 GCC has long supported variadic macros, and used a different syntax that
1680 allowed you to give a name to the variable arguments just like any other
1681 argument. Here is an example:
1682
1683 @smallexample
1684 #define debug(format, args...) fprintf (stderr, format, args)
1685 @end smallexample
1686
1687 @noindent
1688 This is in all ways equivalent to the ISO C example above, but arguably
1689 more readable and descriptive.
1690
1691 GNU CPP has two further variadic macro extensions, and permits them to
1692 be used with either of the above forms of macro definition.
1693
1694 In standard C, you are not allowed to leave the variable argument out
1695 entirely; but you are allowed to pass an empty argument. For example,
1696 this invocation is invalid in ISO C, because there is no comma after
1697 the string:
1698
1699 @smallexample
1700 debug ("A message")
1701 @end smallexample
1702
1703 GNU CPP permits you to completely omit the variable arguments in this
1704 way. In the above examples, the compiler would complain, though since
1705 the expansion of the macro still has the extra comma after the format
1706 string.
1707
1708 To help solve this problem, CPP behaves specially for variable arguments
1709 used with the token paste operator, @samp{##}. If instead you write
1710
1711 @smallexample
1712 #define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__)
1713 @end smallexample
1714
1715 @noindent
1716 and if the variable arguments are omitted or empty, the @samp{##}
1717 operator causes the preprocessor to remove the comma before it. If you
1718 do provide some variable arguments in your macro invocation, GNU CPP
1719 does not complain about the paste operation and instead places the
1720 variable arguments after the comma. Just like any other pasted macro
1721 argument, these arguments are not macro expanded.
1722
1723 @node Escaped Newlines
1724 @section Slightly Looser Rules for Escaped Newlines
1725 @cindex escaped newlines
1726 @cindex newlines (escaped)
1727
1728 Recently, the preprocessor has relaxed its treatment of escaped
1729 newlines. Previously, the newline had to immediately follow a
1730 backslash. The current implementation allows whitespace in the form
1731 of spaces, horizontal and vertical tabs, and form feeds between the
1732 backslash and the subsequent newline. The preprocessor issues a
1733 warning, but treats it as a valid escaped newline and combines the two
1734 lines to form a single logical line. This works within comments and
1735 tokens, as well as between tokens. Comments are @emph{not} treated as
1736 whitespace for the purposes of this relaxation, since they have not
1737 yet been replaced with spaces.
1738
1739 @node Subscripting
1740 @section Non-Lvalue Arrays May Have Subscripts
1741 @cindex subscripting
1742 @cindex arrays, non-lvalue
1743
1744 @cindex subscripting and function values
1745 In ISO C99, arrays that are not lvalues still decay to pointers, and
1746 may be subscripted, although they may not be modified or used after
1747 the next sequence point and the unary @samp{&} operator may not be
1748 applied to them. As an extension, GNU C allows such arrays to be
1749 subscripted in C90 mode, though otherwise they do not decay to
1750 pointers outside C99 mode. For example,
1751 this is valid in GNU C though not valid in C90:
1752
1753 @smallexample
1754 @group
1755 struct foo @{int a[4];@};
1756
1757 struct foo f();
1758
1759 bar (int index)
1760 @{
1761 return f().a[index];
1762 @}
1763 @end group
1764 @end smallexample
1765
1766 @node Pointer Arith
1767 @section Arithmetic on @code{void}- and Function-Pointers
1768 @cindex void pointers, arithmetic
1769 @cindex void, size of pointer to
1770 @cindex function pointers, arithmetic
1771 @cindex function, size of pointer to
1772
1773 In GNU C, addition and subtraction operations are supported on pointers to
1774 @code{void} and on pointers to functions. This is done by treating the
1775 size of a @code{void} or of a function as 1.
1776
1777 A consequence of this is that @code{sizeof} is also allowed on @code{void}
1778 and on function types, and returns 1.
1779
1780 @opindex Wpointer-arith
1781 The option @option{-Wpointer-arith} requests a warning if these extensions
1782 are used.
1783
1784 @node Initializers
1785 @section Non-Constant Initializers
1786 @cindex initializers, non-constant
1787 @cindex non-constant initializers
1788
1789 As in standard C++ and ISO C99, the elements of an aggregate initializer for an
1790 automatic variable are not required to be constant expressions in GNU C@.
1791 Here is an example of an initializer with run-time varying elements:
1792
1793 @smallexample
1794 foo (float f, float g)
1795 @{
1796 float beat_freqs[2] = @{ f-g, f+g @};
1797 /* @r{@dots{}} */
1798 @}
1799 @end smallexample
1800
1801 @node Compound Literals
1802 @section Compound Literals
1803 @cindex constructor expressions
1804 @cindex initializations in expressions
1805 @cindex structures, constructor expression
1806 @cindex expressions, constructor
1807 @cindex compound literals
1808 @c The GNU C name for what C99 calls compound literals was "constructor expressions".
1809
1810 ISO C99 supports compound literals. A compound literal looks like
1811 a cast containing an initializer. Its value is an object of the
1812 type specified in the cast, containing the elements specified in
1813 the initializer; it is an lvalue. As an extension, GCC supports
1814 compound literals in C90 mode and in C++, though the semantics are
1815 somewhat different in C++.
1816
1817 Usually, the specified type is a structure. Assume that
1818 @code{struct foo} and @code{structure} are declared as shown:
1819
1820 @smallexample
1821 struct foo @{int a; char b[2];@} structure;
1822 @end smallexample
1823
1824 @noindent
1825 Here is an example of constructing a @code{struct foo} with a compound literal:
1826
1827 @smallexample
1828 structure = ((struct foo) @{x + y, 'a', 0@});
1829 @end smallexample
1830
1831 @noindent
1832 This is equivalent to writing the following:
1833
1834 @smallexample
1835 @{
1836 struct foo temp = @{x + y, 'a', 0@};
1837 structure = temp;
1838 @}
1839 @end smallexample
1840
1841 You can also construct an array, though this is dangerous in C++, as
1842 explained below. If all the elements of the compound literal are
1843 (made up of) simple constant expressions, suitable for use in
1844 initializers of objects of static storage duration, then the compound
1845 literal can be coerced to a pointer to its first element and used in
1846 such an initializer, as shown here:
1847
1848 @smallexample
1849 char **foo = (char *[]) @{ "x", "y", "z" @};
1850 @end smallexample
1851
1852 Compound literals for scalar types and union types are
1853 also allowed, but then the compound literal is equivalent
1854 to a cast.
1855
1856 As a GNU extension, GCC allows initialization of objects with static storage
1857 duration by compound literals (which is not possible in ISO C99, because
1858 the initializer is not a constant).
1859 It is handled as if the object is initialized only with the bracket
1860 enclosed list if the types of the compound literal and the object match.
1861 The initializer list of the compound literal must be constant.
1862 If the object being initialized has array type of unknown size, the size is
1863 determined by compound literal size.
1864
1865 @smallexample
1866 static struct foo x = (struct foo) @{1, 'a', 'b'@};
1867 static int y[] = (int []) @{1, 2, 3@};
1868 static int z[] = (int [3]) @{1@};
1869 @end smallexample
1870
1871 @noindent
1872 The above lines are equivalent to the following:
1873 @smallexample
1874 static struct foo x = @{1, 'a', 'b'@};
1875 static int y[] = @{1, 2, 3@};
1876 static int z[] = @{1, 0, 0@};
1877 @end smallexample
1878
1879 In C, a compound literal designates an unnamed object with static or
1880 automatic storage duration. In C++, a compound literal designates a
1881 temporary object, which only lives until the end of its
1882 full-expression. As a result, well-defined C code that takes the
1883 address of a subobject of a compound literal can be undefined in C++.
1884 For instance, if the array compound literal example above appeared
1885 inside a function, any subsequent use of @samp{foo} in C++ has
1886 undefined behavior because the lifetime of the array ends after the
1887 declaration of @samp{foo}. As a result, the C++ compiler now rejects
1888 the conversion of a temporary array to a pointer.
1889
1890 As an optimization, the C++ compiler sometimes gives array compound
1891 literals longer lifetimes: when the array either appears outside a
1892 function or has const-qualified type. If @samp{foo} and its
1893 initializer had elements of @samp{char *const} type rather than
1894 @samp{char *}, or if @samp{foo} were a global variable, the array
1895 would have static storage duration. But it is probably safest just to
1896 avoid the use of array compound literals in code compiled as C++.
1897
1898 @node Designated Inits
1899 @section Designated Initializers
1900 @cindex initializers with labeled elements
1901 @cindex labeled elements in initializers
1902 @cindex case labels in initializers
1903 @cindex designated initializers
1904
1905 Standard C90 requires the elements of an initializer to appear in a fixed
1906 order, the same as the order of the elements in the array or structure
1907 being initialized.
1908
1909 In ISO C99 you can give the elements in any order, specifying the array
1910 indices or structure field names they apply to, and GNU C allows this as
1911 an extension in C90 mode as well. This extension is not
1912 implemented in GNU C++.
1913
1914 To specify an array index, write
1915 @samp{[@var{index}] =} before the element value. For example,
1916
1917 @smallexample
1918 int a[6] = @{ [4] = 29, [2] = 15 @};
1919 @end smallexample
1920
1921 @noindent
1922 is equivalent to
1923
1924 @smallexample
1925 int a[6] = @{ 0, 0, 15, 0, 29, 0 @};
1926 @end smallexample
1927
1928 @noindent
1929 The index values must be constant expressions, even if the array being
1930 initialized is automatic.
1931
1932 An alternative syntax for this that has been obsolete since GCC 2.5 but
1933 GCC still accepts is to write @samp{[@var{index}]} before the element
1934 value, with no @samp{=}.
1935
1936 To initialize a range of elements to the same value, write
1937 @samp{[@var{first} ... @var{last}] = @var{value}}. This is a GNU
1938 extension. For example,
1939
1940 @smallexample
1941 int widths[] = @{ [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 @};
1942 @end smallexample
1943
1944 @noindent
1945 If the value in it has side-effects, the side-effects happen only once,
1946 not for each initialized field by the range initializer.
1947
1948 @noindent
1949 Note that the length of the array is the highest value specified
1950 plus one.
1951
1952 In a structure initializer, specify the name of a field to initialize
1953 with @samp{.@var{fieldname} =} before the element value. For example,
1954 given the following structure,
1955
1956 @smallexample
1957 struct point @{ int x, y; @};
1958 @end smallexample
1959
1960 @noindent
1961 the following initialization
1962
1963 @smallexample
1964 struct point p = @{ .y = yvalue, .x = xvalue @};
1965 @end smallexample
1966
1967 @noindent
1968 is equivalent to
1969
1970 @smallexample
1971 struct point p = @{ xvalue, yvalue @};
1972 @end smallexample
1973
1974 Another syntax that has the same meaning, obsolete since GCC 2.5, is
1975 @samp{@var{fieldname}:}, as shown here:
1976
1977 @smallexample
1978 struct point p = @{ y: yvalue, x: xvalue @};
1979 @end smallexample
1980
1981 Omitted field members are implicitly initialized the same as objects
1982 that have static storage duration.
1983
1984 @cindex designators
1985 The @samp{[@var{index}]} or @samp{.@var{fieldname}} is known as a
1986 @dfn{designator}. You can also use a designator (or the obsolete colon
1987 syntax) when initializing a union, to specify which element of the union
1988 should be used. For example,
1989
1990 @smallexample
1991 union foo @{ int i; double d; @};
1992
1993 union foo f = @{ .d = 4 @};
1994 @end smallexample
1995
1996 @noindent
1997 converts 4 to a @code{double} to store it in the union using
1998 the second element. By contrast, casting 4 to type @code{union foo}
1999 stores it into the union as the integer @code{i}, since it is
2000 an integer. (@xref{Cast to Union}.)
2001
2002 You can combine this technique of naming elements with ordinary C
2003 initialization of successive elements. Each initializer element that
2004 does not have a designator applies to the next consecutive element of the
2005 array or structure. For example,
2006
2007 @smallexample
2008 int a[6] = @{ [1] = v1, v2, [4] = v4 @};
2009 @end smallexample
2010
2011 @noindent
2012 is equivalent to
2013
2014 @smallexample
2015 int a[6] = @{ 0, v1, v2, 0, v4, 0 @};
2016 @end smallexample
2017
2018 Labeling the elements of an array initializer is especially useful
2019 when the indices are characters or belong to an @code{enum} type.
2020 For example:
2021
2022 @smallexample
2023 int whitespace[256]
2024 = @{ [' '] = 1, ['\t'] = 1, ['\h'] = 1,
2025 ['\f'] = 1, ['\n'] = 1, ['\r'] = 1 @};
2026 @end smallexample
2027
2028 @cindex designator lists
2029 You can also write a series of @samp{.@var{fieldname}} and
2030 @samp{[@var{index}]} designators before an @samp{=} to specify a
2031 nested subobject to initialize; the list is taken relative to the
2032 subobject corresponding to the closest surrounding brace pair. For
2033 example, with the @samp{struct point} declaration above:
2034
2035 @smallexample
2036 struct point ptarray[10] = @{ [2].y = yv2, [2].x = xv2, [0].x = xv0 @};
2037 @end smallexample
2038
2039 @noindent
2040 If the same field is initialized multiple times, it has the value from
2041 the last initialization. If any such overridden initialization has
2042 side-effect, it is unspecified whether the side-effect happens or not.
2043 Currently, GCC discards them and issues a warning.
2044
2045 @node Case Ranges
2046 @section Case Ranges
2047 @cindex case ranges
2048 @cindex ranges in case statements
2049
2050 You can specify a range of consecutive values in a single @code{case} label,
2051 like this:
2052
2053 @smallexample
2054 case @var{low} ... @var{high}:
2055 @end smallexample
2056
2057 @noindent
2058 This has the same effect as the proper number of individual @code{case}
2059 labels, one for each integer value from @var{low} to @var{high}, inclusive.
2060
2061 This feature is especially useful for ranges of ASCII character codes:
2062
2063 @smallexample
2064 case 'A' ... 'Z':
2065 @end smallexample
2066
2067 @strong{Be careful:} Write spaces around the @code{...}, for otherwise
2068 it may be parsed wrong when you use it with integer values. For example,
2069 write this:
2070
2071 @smallexample
2072 case 1 ... 5:
2073 @end smallexample
2074
2075 @noindent
2076 rather than this:
2077
2078 @smallexample
2079 case 1...5:
2080 @end smallexample
2081
2082 @node Cast to Union
2083 @section Cast to a Union Type
2084 @cindex cast to a union
2085 @cindex union, casting to a
2086
2087 A cast to union type is similar to other casts, except that the type
2088 specified is a union type. You can specify the type either with
2089 @code{union @var{tag}} or with a typedef name. A cast to union is actually
2090 a constructor, not a cast, and hence does not yield an lvalue like
2091 normal casts. (@xref{Compound Literals}.)
2092
2093 The types that may be cast to the union type are those of the members
2094 of the union. Thus, given the following union and variables:
2095
2096 @smallexample
2097 union foo @{ int i; double d; @};
2098 int x;
2099 double y;
2100 @end smallexample
2101
2102 @noindent
2103 both @code{x} and @code{y} can be cast to type @code{union foo}.
2104
2105 Using the cast as the right-hand side of an assignment to a variable of
2106 union type is equivalent to storing in a member of the union:
2107
2108 @smallexample
2109 union foo u;
2110 /* @r{@dots{}} */
2111 u = (union foo) x @equiv{} u.i = x
2112 u = (union foo) y @equiv{} u.d = y
2113 @end smallexample
2114
2115 You can also use the union cast as a function argument:
2116
2117 @smallexample
2118 void hack (union foo);
2119 /* @r{@dots{}} */
2120 hack ((union foo) x);
2121 @end smallexample
2122
2123 @node Mixed Declarations
2124 @section Mixed Declarations and Code
2125 @cindex mixed declarations and code
2126 @cindex declarations, mixed with code
2127 @cindex code, mixed with declarations
2128
2129 ISO C99 and ISO C++ allow declarations and code to be freely mixed
2130 within compound statements. As an extension, GNU C also allows this in
2131 C90 mode. For example, you could do:
2132
2133 @smallexample
2134 int i;
2135 /* @r{@dots{}} */
2136 i++;
2137 int j = i + 2;
2138 @end smallexample
2139
2140 Each identifier is visible from where it is declared until the end of
2141 the enclosing block.
2142
2143 @node Function Attributes
2144 @section Declaring Attributes of Functions
2145 @cindex function attributes
2146 @cindex declaring attributes of functions
2147 @cindex functions that never return
2148 @cindex functions that return more than once
2149 @cindex functions that have no side effects
2150 @cindex functions in arbitrary sections
2151 @cindex functions that behave like malloc
2152 @cindex @code{volatile} applied to function
2153 @cindex @code{const} applied to function
2154 @cindex functions with @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style arguments
2155 @cindex functions with non-null pointer arguments
2156 @cindex functions that are passed arguments in registers on the 386
2157 @cindex functions that pop the argument stack on the 386
2158 @cindex functions that do not pop the argument stack on the 386
2159 @cindex functions that have different compilation options on the 386
2160 @cindex functions that have different optimization options
2161 @cindex functions that are dynamically resolved
2162
2163 In GNU C, you declare certain things about functions called in your program
2164 which help the compiler optimize function calls and check your code more
2165 carefully.
2166
2167 The keyword @code{__attribute__} allows you to specify special
2168 attributes when making a declaration. This keyword is followed by an
2169 attribute specification inside double parentheses. The following
2170 attributes are currently defined for functions on all targets:
2171 @code{aligned}, @code{alloc_size}, @code{alloc_align}, @code{assume_aligned},
2172 @code{noreturn}, @code{returns_twice}, @code{noinline}, @code{noclone},
2173 @code{always_inline}, @code{flatten}, @code{pure}, @code{const},
2174 @code{nothrow}, @code{sentinel}, @code{format}, @code{format_arg},
2175 @code{no_instrument_function}, @code{no_split_stack},
2176 @code{section}, @code{constructor},
2177 @code{destructor}, @code{used}, @code{unused}, @code{deprecated},
2178 @code{weak}, @code{malloc}, @code{alias}, @code{ifunc},
2179 @code{warn_unused_result}, @code{nonnull},
2180 @code{returns_nonnull}, @code{gnu_inline},
2181 @code{externally_visible}, @code{hot}, @code{cold}, @code{artificial},
2182 @code{no_sanitize_address}, @code{no_address_safety_analysis},
2183 @code{no_sanitize_undefined},
2184 @code{error} and @code{warning}.
2185 Several other attributes are defined for functions on particular
2186 target systems. Other attributes, including @code{section} are
2187 supported for variables declarations (@pxref{Variable Attributes}),
2188 labels (@pxref{Label Attributes})
2189 and for types (@pxref{Type Attributes}).
2190
2191 GCC plugins may provide their own attributes.
2192
2193 You may also specify attributes with @samp{__} preceding and following
2194 each keyword. This allows you to use them in header files without
2195 being concerned about a possible macro of the same name. For example,
2196 you may use @code{__noreturn__} instead of @code{noreturn}.
2197
2198 @xref{Attribute Syntax}, for details of the exact syntax for using
2199 attributes.
2200
2201 @table @code
2202 @c Keep this table alphabetized by attribute name. Treat _ as space.
2203
2204 @item alias ("@var{target}")
2205 @cindex @code{alias} attribute
2206 The @code{alias} attribute causes the declaration to be emitted as an
2207 alias for another symbol, which must be specified. For instance,
2208
2209 @smallexample
2210 void __f () @{ /* @r{Do something.} */; @}
2211 void f () __attribute__ ((weak, alias ("__f")));
2212 @end smallexample
2213
2214 @noindent
2215 defines @samp{f} to be a weak alias for @samp{__f}. In C++, the
2216 mangled name for the target must be used. It is an error if @samp{__f}
2217 is not defined in the same translation unit.
2218
2219 Not all target machines support this attribute.
2220
2221 @item aligned (@var{alignment})
2222 @cindex @code{aligned} attribute
2223 This attribute specifies a minimum alignment for the function,
2224 measured in bytes.
2225
2226 You cannot use this attribute to decrease the alignment of a function,
2227 only to increase it. However, when you explicitly specify a function
2228 alignment this overrides the effect of the
2229 @option{-falign-functions} (@pxref{Optimize Options}) option for this
2230 function.
2231
2232 Note that the effectiveness of @code{aligned} attributes may be
2233 limited by inherent limitations in your linker. On many systems, the
2234 linker is only able to arrange for functions to be aligned up to a
2235 certain maximum alignment. (For some linkers, the maximum supported
2236 alignment may be very very small.) See your linker documentation for
2237 further information.
2238
2239 The @code{aligned} attribute can also be used for variables and fields
2240 (@pxref{Variable Attributes}.)
2241
2242 @item alloc_size
2243 @cindex @code{alloc_size} attribute
2244 The @code{alloc_size} attribute is used to tell the compiler that the
2245 function return value points to memory, where the size is given by
2246 one or two of the functions parameters. GCC uses this
2247 information to improve the correctness of @code{__builtin_object_size}.
2248
2249 The function parameter(s) denoting the allocated size are specified by
2250 one or two integer arguments supplied to the attribute. The allocated size
2251 is either the value of the single function argument specified or the product
2252 of the two function arguments specified. Argument numbering starts at
2253 one.
2254
2255 For instance,
2256
2257 @smallexample
2258 void* my_calloc(size_t, size_t) __attribute__((alloc_size(1,2)))
2259 void* my_realloc(void*, size_t) __attribute__((alloc_size(2)))
2260 @end smallexample
2261
2262 @noindent
2263 declares that @code{my_calloc} returns memory of the size given by
2264 the product of parameter 1 and 2 and that @code{my_realloc} returns memory
2265 of the size given by parameter 2.
2266
2267 @item alloc_align
2268 @cindex @code{alloc_align} attribute
2269 The @code{alloc_align} attribute is used to tell the compiler that the
2270 function return value points to memory, where the returned pointer minimum
2271 alignment is given by one of the functions parameters. GCC uses this
2272 information to improve pointer alignment analysis.
2273
2274 The function parameter denoting the allocated alignment is specified by
2275 one integer argument, whose number is the argument of the attribute.
2276 Argument numbering starts at one.
2277
2278 For instance,
2279
2280 @smallexample
2281 void* my_memalign(size_t, size_t) __attribute__((alloc_align(1)))
2282 @end smallexample
2283
2284 @noindent
2285 declares that @code{my_memalign} returns memory with minimum alignment
2286 given by parameter 1.
2287
2288 @item assume_aligned
2289 @cindex @code{assume_aligned} attribute
2290 The @code{assume_aligned} attribute is used to tell the compiler that the
2291 function return value points to memory, where the returned pointer minimum
2292 alignment is given by the first argument.
2293 If the attribute has two arguments, the second argument is misalignment offset.
2294
2295 For instance
2296
2297 @smallexample
2298 void* my_alloc1(size_t) __attribute__((assume_aligned(16)))
2299 void* my_alloc2(size_t) __attribute__((assume_aligned(32, 8)))
2300 @end smallexample
2301
2302 @noindent
2303 declares that @code{my_alloc1} returns 16-byte aligned pointer and
2304 that @code{my_alloc2} returns a pointer whose value modulo 32 is equal
2305 to 8.
2306
2307 @item always_inline
2308 @cindex @code{always_inline} function attribute
2309 Generally, functions are not inlined unless optimization is specified.
2310 For functions declared inline, this attribute inlines the function even
2311 if no optimization level is specified.
2312
2313 @item gnu_inline
2314 @cindex @code{gnu_inline} function attribute
2315 This attribute should be used with a function that is also declared
2316 with the @code{inline} keyword. It directs GCC to treat the function
2317 as if it were defined in gnu90 mode even when compiling in C99 or
2318 gnu99 mode.
2319
2320 If the function is declared @code{extern}, then this definition of the
2321 function is used only for inlining. In no case is the function
2322 compiled as a standalone function, not even if you take its address
2323 explicitly. Such an address becomes an external reference, as if you
2324 had only declared the function, and had not defined it. This has
2325 almost the effect of a macro. The way to use this is to put a
2326 function definition in a header file with this attribute, and put
2327 another copy of the function, without @code{extern}, in a library
2328 file. The definition in the header file causes most calls to the
2329 function to be inlined. If any uses of the function remain, they
2330 refer to the single copy in the library. Note that the two
2331 definitions of the functions need not be precisely the same, although
2332 if they do not have the same effect your program may behave oddly.
2333
2334 In C, if the function is neither @code{extern} nor @code{static}, then
2335 the function is compiled as a standalone function, as well as being
2336 inlined where possible.
2337
2338 This is how GCC traditionally handled functions declared
2339 @code{inline}. Since ISO C99 specifies a different semantics for
2340 @code{inline}, this function attribute is provided as a transition
2341 measure and as a useful feature in its own right. This attribute is
2342 available in GCC 4.1.3 and later. It is available if either of the
2343 preprocessor macros @code{__GNUC_GNU_INLINE__} or
2344 @code{__GNUC_STDC_INLINE__} are defined. @xref{Inline,,An Inline
2345 Function is As Fast As a Macro}.
2346
2347 In C++, this attribute does not depend on @code{extern} in any way,
2348 but it still requires the @code{inline} keyword to enable its special
2349 behavior.
2350
2351 @item artificial
2352 @cindex @code{artificial} function attribute
2353 This attribute is useful for small inline wrappers that if possible
2354 should appear during debugging as a unit. Depending on the debug
2355 info format it either means marking the function as artificial
2356 or using the caller location for all instructions within the inlined
2357 body.
2358
2359 @item bank_switch
2360 @cindex interrupt handler functions
2361 When added to an interrupt handler with the M32C port, causes the
2362 prologue and epilogue to use bank switching to preserve the registers
2363 rather than saving them on the stack.
2364
2365 @item flatten
2366 @cindex @code{flatten} function attribute
2367 Generally, inlining into a function is limited. For a function marked with
2368 this attribute, every call inside this function is inlined, if possible.
2369 Whether the function itself is considered for inlining depends on its size and
2370 the current inlining parameters.
2371
2372 @item error ("@var{message}")
2373 @cindex @code{error} function attribute
2374 If this attribute is used on a function declaration and a call to such a function
2375 is not eliminated through dead code elimination or other optimizations, an error
2376 that includes @var{message} is diagnosed. This is useful
2377 for compile-time checking, especially together with @code{__builtin_constant_p}
2378 and inline functions where checking the inline function arguments is not
2379 possible through @code{extern char [(condition) ? 1 : -1];} tricks.
2380 While it is possible to leave the function undefined and thus invoke
2381 a link failure, when using this attribute the problem is diagnosed
2382 earlier and with exact location of the call even in presence of inline
2383 functions or when not emitting debugging information.
2384
2385 @item warning ("@var{message}")
2386 @cindex @code{warning} function attribute
2387 If this attribute is used on a function declaration and a call to such a function
2388 is not eliminated through dead code elimination or other optimizations, a warning
2389 that includes @var{message} is diagnosed. This is useful
2390 for compile-time checking, especially together with @code{__builtin_constant_p}
2391 and inline functions. While it is possible to define the function with
2392 a message in @code{.gnu.warning*} section, when using this attribute the problem
2393 is diagnosed earlier and with exact location of the call even in presence
2394 of inline functions or when not emitting debugging information.
2395
2396 @item cdecl
2397 @cindex functions that do pop the argument stack on the 386
2398 @opindex mrtd
2399 On the Intel 386, the @code{cdecl} attribute causes the compiler to
2400 assume that the calling function pops off the stack space used to
2401 pass arguments. This is
2402 useful to override the effects of the @option{-mrtd} switch.
2403
2404 @item const
2405 @cindex @code{const} function attribute
2406 Many functions do not examine any values except their arguments, and
2407 have no effects except the return value. Basically this is just slightly
2408 more strict class than the @code{pure} attribute below, since function is not
2409 allowed to read global memory.
2410
2411 @cindex pointer arguments
2412 Note that a function that has pointer arguments and examines the data
2413 pointed to must @emph{not} be declared @code{const}. Likewise, a
2414 function that calls a non-@code{const} function usually must not be
2415 @code{const}. It does not make sense for a @code{const} function to
2416 return @code{void}.
2417
2418 The attribute @code{const} is not implemented in GCC versions earlier
2419 than 2.5. An alternative way to declare that a function has no side
2420 effects, which works in the current version and in some older versions,
2421 is as follows:
2422
2423 @smallexample
2424 typedef int intfn ();
2425
2426 extern const intfn square;
2427 @end smallexample
2428
2429 @noindent
2430 This approach does not work in GNU C++ from 2.6.0 on, since the language
2431 specifies that the @samp{const} must be attached to the return value.
2432
2433 @item constructor
2434 @itemx destructor
2435 @itemx constructor (@var{priority})
2436 @itemx destructor (@var{priority})
2437 @cindex @code{constructor} function attribute
2438 @cindex @code{destructor} function attribute
2439 The @code{constructor} attribute causes the function to be called
2440 automatically before execution enters @code{main ()}. Similarly, the
2441 @code{destructor} attribute causes the function to be called
2442 automatically after @code{main ()} completes or @code{exit ()} is
2443 called. Functions with these attributes are useful for
2444 initializing data that is used implicitly during the execution of
2445 the program.
2446
2447 You may provide an optional integer priority to control the order in
2448 which constructor and destructor functions are run. A constructor
2449 with a smaller priority number runs before a constructor with a larger
2450 priority number; the opposite relationship holds for destructors. So,
2451 if you have a constructor that allocates a resource and a destructor
2452 that deallocates the same resource, both functions typically have the
2453 same priority. The priorities for constructor and destructor
2454 functions are the same as those specified for namespace-scope C++
2455 objects (@pxref{C++ Attributes}).
2456
2457 These attributes are not currently implemented for Objective-C@.
2458
2459 @item deprecated
2460 @itemx deprecated (@var{msg})
2461 @cindex @code{deprecated} attribute.
2462 The @code{deprecated} attribute results in a warning if the function
2463 is used anywhere in the source file. This is useful when identifying
2464 functions that are expected to be removed in a future version of a
2465 program. The warning also includes the location of the declaration
2466 of the deprecated function, to enable users to easily find further
2467 information about why the function is deprecated, or what they should
2468 do instead. Note that the warnings only occurs for uses:
2469
2470 @smallexample
2471 int old_fn () __attribute__ ((deprecated));
2472 int old_fn ();
2473 int (*fn_ptr)() = old_fn;
2474 @end smallexample
2475
2476 @noindent
2477 results in a warning on line 3 but not line 2. The optional @var{msg}
2478 argument, which must be a string, is printed in the warning if
2479 present.
2480
2481 The @code{deprecated} attribute can also be used for variables and
2482 types (@pxref{Variable Attributes}, @pxref{Type Attributes}.)
2483
2484 @item disinterrupt
2485 @cindex @code{disinterrupt} attribute
2486 On Epiphany and MeP targets, this attribute causes the compiler to emit
2487 instructions to disable interrupts for the duration of the given
2488 function.
2489
2490 @item dllexport
2491 @cindex @code{__declspec(dllexport)}
2492 On Microsoft Windows targets and Symbian OS targets the
2493 @code{dllexport} attribute causes the compiler to provide a global
2494 pointer to a pointer in a DLL, so that it can be referenced with the
2495 @code{dllimport} attribute. On Microsoft Windows targets, the pointer
2496 name is formed by combining @code{_imp__} and the function or variable
2497 name.
2498
2499 You can use @code{__declspec(dllexport)} as a synonym for
2500 @code{__attribute__ ((dllexport))} for compatibility with other
2501 compilers.
2502
2503 On systems that support the @code{visibility} attribute, this
2504 attribute also implies ``default'' visibility. It is an error to
2505 explicitly specify any other visibility.
2506
2507 In previous versions of GCC, the @code{dllexport} attribute was ignored
2508 for inlined functions, unless the @option{-fkeep-inline-functions} flag
2509 had been used. The default behavior now is to emit all dllexported
2510 inline functions; however, this can cause object file-size bloat, in
2511 which case the old behavior can be restored by using
2512 @option{-fno-keep-inline-dllexport}.
2513
2514 The attribute is also ignored for undefined symbols.
2515
2516 When applied to C++ classes, the attribute marks defined non-inlined
2517 member functions and static data members as exports. Static consts
2518 initialized in-class are not marked unless they are also defined
2519 out-of-class.
2520
2521 For Microsoft Windows targets there are alternative methods for
2522 including the symbol in the DLL's export table such as using a
2523 @file{.def} file with an @code{EXPORTS} section or, with GNU ld, using
2524 the @option{--export-all} linker flag.
2525
2526 @item dllimport
2527 @cindex @code{__declspec(dllimport)}
2528 On Microsoft Windows and Symbian OS targets, the @code{dllimport}
2529 attribute causes the compiler to reference a function or variable via
2530 a global pointer to a pointer that is set up by the DLL exporting the
2531 symbol. The attribute implies @code{extern}. On Microsoft Windows
2532 targets, the pointer name is formed by combining @code{_imp__} and the
2533 function or variable name.
2534
2535 You can use @code{__declspec(dllimport)} as a synonym for
2536 @code{__attribute__ ((dllimport))} for compatibility with other
2537 compilers.
2538
2539 On systems that support the @code{visibility} attribute, this
2540 attribute also implies ``default'' visibility. It is an error to
2541 explicitly specify any other visibility.
2542
2543 Currently, the attribute is ignored for inlined functions. If the
2544 attribute is applied to a symbol @emph{definition}, an error is reported.
2545 If a symbol previously declared @code{dllimport} is later defined, the
2546 attribute is ignored in subsequent references, and a warning is emitted.
2547 The attribute is also overridden by a subsequent declaration as
2548 @code{dllexport}.
2549
2550 When applied to C++ classes, the attribute marks non-inlined
2551 member functions and static data members as imports. However, the
2552 attribute is ignored for virtual methods to allow creation of vtables
2553 using thunks.
2554
2555 On the SH Symbian OS target the @code{dllimport} attribute also has
2556 another affect---it can cause the vtable and run-time type information
2557 for a class to be exported. This happens when the class has a
2558 dllimported constructor or a non-inline, non-pure virtual function
2559 and, for either of those two conditions, the class also has an inline
2560 constructor or destructor and has a key function that is defined in
2561 the current translation unit.
2562
2563 For Microsoft Windows targets the use of the @code{dllimport}
2564 attribute on functions is not necessary, but provides a small
2565 performance benefit by eliminating a thunk in the DLL@. The use of the
2566 @code{dllimport} attribute on imported variables was required on older
2567 versions of the GNU linker, but can now be avoided by passing the
2568 @option{--enable-auto-import} switch to the GNU linker. As with
2569 functions, using the attribute for a variable eliminates a thunk in
2570 the DLL@.
2571
2572 One drawback to using this attribute is that a pointer to a
2573 @emph{variable} marked as @code{dllimport} cannot be used as a constant
2574 address. However, a pointer to a @emph{function} with the
2575 @code{dllimport} attribute can be used as a constant initializer; in
2576 this case, the address of a stub function in the import lib is
2577 referenced. On Microsoft Windows targets, the attribute can be disabled
2578 for functions by setting the @option{-mnop-fun-dllimport} flag.
2579
2580 @item eightbit_data
2581 @cindex eight-bit data on the H8/300, H8/300H, and H8S
2582 Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
2583 variable should be placed into the eight-bit data section.
2584 The compiler generates more efficient code for certain operations
2585 on data in the eight-bit data area. Note the eight-bit data area is limited to
2586 256 bytes of data.
2587
2588 You must use GAS and GLD from GNU binutils version 2.7 or later for
2589 this attribute to work correctly.
2590
2591 @item exception
2592 @cindex exception handler functions
2593 Use this attribute on the NDS32 target to indicate that the specified function
2594 is an exception handler. The compiler will generate corresponding sections
2595 for use in an exception handler.
2596
2597 @item exception_handler
2598 @cindex exception handler functions on the Blackfin processor
2599 Use this attribute on the Blackfin to indicate that the specified function
2600 is an exception handler. The compiler generates function entry and
2601 exit sequences suitable for use in an exception handler when this
2602 attribute is present.
2603
2604 @item externally_visible
2605 @cindex @code{externally_visible} attribute.
2606 This attribute, attached to a global variable or function, nullifies
2607 the effect of the @option{-fwhole-program} command-line option, so the
2608 object remains visible outside the current compilation unit.
2609
2610 If @option{-fwhole-program} is used together with @option{-flto} and
2611 @command{gold} is used as the linker plugin,
2612 @code{externally_visible} attributes are automatically added to functions
2613 (not variable yet due to a current @command{gold} issue)
2614 that are accessed outside of LTO objects according to resolution file
2615 produced by @command{gold}.
2616 For other linkers that cannot generate resolution file,
2617 explicit @code{externally_visible} attributes are still necessary.
2618
2619 @item far
2620 @cindex functions that handle memory bank switching
2621 On 68HC11 and 68HC12 the @code{far} attribute causes the compiler to
2622 use a calling convention that takes care of switching memory banks when
2623 entering and leaving a function. This calling convention is also the
2624 default when using the @option{-mlong-calls} option.
2625
2626 On 68HC12 the compiler uses the @code{call} and @code{rtc} instructions
2627 to call and return from a function.
2628
2629 On 68HC11 the compiler generates a sequence of instructions
2630 to invoke a board-specific routine to switch the memory bank and call the
2631 real function. The board-specific routine simulates a @code{call}.
2632 At the end of a function, it jumps to a board-specific routine
2633 instead of using @code{rts}. The board-specific return routine simulates
2634 the @code{rtc}.
2635
2636 On MeP targets this causes the compiler to use a calling convention
2637 that assumes the called function is too far away for the built-in
2638 addressing modes.
2639
2640 @item fast_interrupt
2641 @cindex interrupt handler functions
2642 Use this attribute on the M32C and RX ports to indicate that the specified
2643 function is a fast interrupt handler. This is just like the
2644 @code{interrupt} attribute, except that @code{freit} is used to return
2645 instead of @code{reit}.
2646
2647 @item fastcall
2648 @cindex functions that pop the argument stack on the 386
2649 On the Intel 386, the @code{fastcall} attribute causes the compiler to
2650 pass the first argument (if of integral type) in the register ECX and
2651 the second argument (if of integral type) in the register EDX@. Subsequent
2652 and other typed arguments are passed on the stack. The called function
2653 pops the arguments off the stack. If the number of arguments is variable all
2654 arguments are pushed on the stack.
2655
2656 @item thiscall
2657 @cindex functions that pop the argument stack on the 386
2658 On the Intel 386, the @code{thiscall} attribute causes the compiler to
2659 pass the first argument (if of integral type) in the register ECX.
2660 Subsequent and other typed arguments are passed on the stack. The called
2661 function pops the arguments off the stack.
2662 If the number of arguments is variable all arguments are pushed on the
2663 stack.
2664 The @code{thiscall} attribute is intended for C++ non-static member functions.
2665 As a GCC extension, this calling convention can be used for C functions
2666 and for static member methods.
2667
2668 @item format (@var{archetype}, @var{string-index}, @var{first-to-check})
2669 @cindex @code{format} function attribute
2670 @opindex Wformat
2671 The @code{format} attribute specifies that a function takes @code{printf},
2672 @code{scanf}, @code{strftime} or @code{strfmon} style arguments that
2673 should be type-checked against a format string. For example, the
2674 declaration:
2675
2676 @smallexample
2677 extern int
2678 my_printf (void *my_object, const char *my_format, ...)
2679 __attribute__ ((format (printf, 2, 3)));
2680 @end smallexample
2681
2682 @noindent
2683 causes the compiler to check the arguments in calls to @code{my_printf}
2684 for consistency with the @code{printf} style format string argument
2685 @code{my_format}.
2686
2687 The parameter @var{archetype} determines how the format string is
2688 interpreted, and should be @code{printf}, @code{scanf}, @code{strftime},
2689 @code{gnu_printf}, @code{gnu_scanf}, @code{gnu_strftime} or
2690 @code{strfmon}. (You can also use @code{__printf__},
2691 @code{__scanf__}, @code{__strftime__} or @code{__strfmon__}.) On
2692 MinGW targets, @code{ms_printf}, @code{ms_scanf}, and
2693 @code{ms_strftime} are also present.
2694 @var{archetype} values such as @code{printf} refer to the formats accepted
2695 by the system's C runtime library,
2696 while values prefixed with @samp{gnu_} always refer
2697 to the formats accepted by the GNU C Library. On Microsoft Windows
2698 targets, values prefixed with @samp{ms_} refer to the formats accepted by the
2699 @file{msvcrt.dll} library.
2700 The parameter @var{string-index}
2701 specifies which argument is the format string argument (starting
2702 from 1), while @var{first-to-check} is the number of the first
2703 argument to check against the format string. For functions
2704 where the arguments are not available to be checked (such as
2705 @code{vprintf}), specify the third parameter as zero. In this case the
2706 compiler only checks the format string for consistency. For
2707 @code{strftime} formats, the third parameter is required to be zero.
2708 Since non-static C++ methods have an implicit @code{this} argument, the
2709 arguments of such methods should be counted from two, not one, when
2710 giving values for @var{string-index} and @var{first-to-check}.
2711
2712 In the example above, the format string (@code{my_format}) is the second
2713 argument of the function @code{my_print}, and the arguments to check
2714 start with the third argument, so the correct parameters for the format
2715 attribute are 2 and 3.
2716
2717 @opindex ffreestanding
2718 @opindex fno-builtin
2719 The @code{format} attribute allows you to identify your own functions
2720 that take format strings as arguments, so that GCC can check the
2721 calls to these functions for errors. The compiler always (unless
2722 @option{-ffreestanding} or @option{-fno-builtin} is used) checks formats
2723 for the standard library functions @code{printf}, @code{fprintf},
2724 @code{sprintf}, @code{scanf}, @code{fscanf}, @code{sscanf}, @code{strftime},
2725 @code{vprintf}, @code{vfprintf} and @code{vsprintf} whenever such
2726 warnings are requested (using @option{-Wformat}), so there is no need to
2727 modify the header file @file{stdio.h}. In C99 mode, the functions
2728 @code{snprintf}, @code{vsnprintf}, @code{vscanf}, @code{vfscanf} and
2729 @code{vsscanf} are also checked. Except in strictly conforming C
2730 standard modes, the X/Open function @code{strfmon} is also checked as
2731 are @code{printf_unlocked} and @code{fprintf_unlocked}.
2732 @xref{C Dialect Options,,Options Controlling C Dialect}.
2733
2734 For Objective-C dialects, @code{NSString} (or @code{__NSString__}) is
2735 recognized in the same context. Declarations including these format attributes
2736 are parsed for correct syntax, however the result of checking of such format
2737 strings is not yet defined, and is not carried out by this version of the
2738 compiler.
2739
2740 The target may also provide additional types of format checks.
2741 @xref{Target Format Checks,,Format Checks Specific to Particular
2742 Target Machines}.
2743
2744 @item format_arg (@var{string-index})
2745 @cindex @code{format_arg} function attribute
2746 @opindex Wformat-nonliteral
2747 The @code{format_arg} attribute specifies that a function takes a format
2748 string for a @code{printf}, @code{scanf}, @code{strftime} or
2749 @code{strfmon} style function and modifies it (for example, to translate
2750 it into another language), so the result can be passed to a
2751 @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style
2752 function (with the remaining arguments to the format function the same
2753 as they would have been for the unmodified string). For example, the
2754 declaration:
2755
2756 @smallexample
2757 extern char *
2758 my_dgettext (char *my_domain, const char *my_format)
2759 __attribute__ ((format_arg (2)));
2760 @end smallexample
2761
2762 @noindent
2763 causes the compiler to check the arguments in calls to a @code{printf},
2764 @code{scanf}, @code{strftime} or @code{strfmon} type function, whose
2765 format string argument is a call to the @code{my_dgettext} function, for
2766 consistency with the format string argument @code{my_format}. If the
2767 @code{format_arg} attribute had not been specified, all the compiler
2768 could tell in such calls to format functions would be that the format
2769 string argument is not constant; this would generate a warning when
2770 @option{-Wformat-nonliteral} is used, but the calls could not be checked
2771 without the attribute.
2772
2773 The parameter @var{string-index} specifies which argument is the format
2774 string argument (starting from one). Since non-static C++ methods have
2775 an implicit @code{this} argument, the arguments of such methods should
2776 be counted from two.
2777
2778 The @code{format_arg} attribute allows you to identify your own
2779 functions that modify format strings, so that GCC can check the
2780 calls to @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon}
2781 type function whose operands are a call to one of your own function.
2782 The compiler always treats @code{gettext}, @code{dgettext}, and
2783 @code{dcgettext} in this manner except when strict ISO C support is
2784 requested by @option{-ansi} or an appropriate @option{-std} option, or
2785 @option{-ffreestanding} or @option{-fno-builtin}
2786 is used. @xref{C Dialect Options,,Options
2787 Controlling C Dialect}.
2788
2789 For Objective-C dialects, the @code{format-arg} attribute may refer to an
2790 @code{NSString} reference for compatibility with the @code{format} attribute
2791 above.
2792
2793 The target may also allow additional types in @code{format-arg} attributes.
2794 @xref{Target Format Checks,,Format Checks Specific to Particular
2795 Target Machines}.
2796
2797 @item function_vector
2798 @cindex calling functions through the function vector on H8/300, M16C, M32C and SH2A processors
2799 Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
2800 function should be called through the function vector. Calling a
2801 function through the function vector reduces code size, however;
2802 the function vector has a limited size (maximum 128 entries on the H8/300
2803 and 64 entries on the H8/300H and H8S) and shares space with the interrupt vector.
2804
2805 On SH2A targets, this attribute declares a function to be called using the
2806 TBR relative addressing mode. The argument to this attribute is the entry
2807 number of the same function in a vector table containing all the TBR
2808 relative addressable functions. For correct operation the TBR must be setup
2809 accordingly to point to the start of the vector table before any functions with
2810 this attribute are invoked. Usually a good place to do the initialization is
2811 the startup routine. The TBR relative vector table can have at max 256 function
2812 entries. The jumps to these functions are generated using a SH2A specific,
2813 non delayed branch instruction JSR/N @@(disp8,TBR). You must use GAS and GLD
2814 from GNU binutils version 2.7 or later for this attribute to work correctly.
2815
2816 Please refer the example of M16C target, to see the use of this
2817 attribute while declaring a function,
2818
2819 In an application, for a function being called once, this attribute
2820 saves at least 8 bytes of code; and if other successive calls are being
2821 made to the same function, it saves 2 bytes of code per each of these
2822 calls.
2823
2824 On M16C/M32C targets, the @code{function_vector} attribute declares a
2825 special page subroutine call function. Use of this attribute reduces
2826 the code size by 2 bytes for each call generated to the
2827 subroutine. The argument to the attribute is the vector number entry
2828 from the special page vector table which contains the 16 low-order
2829 bits of the subroutine's entry address. Each vector table has special
2830 page number (18 to 255) that is used in @code{jsrs} instructions.
2831 Jump addresses of the routines are generated by adding 0x0F0000 (in
2832 case of M16C targets) or 0xFF0000 (in case of M32C targets), to the
2833 2-byte addresses set in the vector table. Therefore you need to ensure
2834 that all the special page vector routines should get mapped within the
2835 address range 0x0F0000 to 0x0FFFFF (for M16C) and 0xFF0000 to 0xFFFFFF
2836 (for M32C).
2837
2838 In the following example 2 bytes are saved for each call to
2839 function @code{foo}.
2840
2841 @smallexample
2842 void foo (void) __attribute__((function_vector(0x18)));
2843 void foo (void)
2844 @{
2845 @}
2846
2847 void bar (void)
2848 @{
2849 foo();
2850 @}
2851 @end smallexample
2852
2853 If functions are defined in one file and are called in another file,
2854 then be sure to write this declaration in both files.
2855
2856 This attribute is ignored for R8C target.
2857
2858 @item ifunc ("@var{resolver}")
2859 @cindex @code{ifunc} attribute
2860 The @code{ifunc} attribute is used to mark a function as an indirect
2861 function using the STT_GNU_IFUNC symbol type extension to the ELF
2862 standard. This allows the resolution of the symbol value to be
2863 determined dynamically at load time, and an optimized version of the
2864 routine can be selected for the particular processor or other system
2865 characteristics determined then. To use this attribute, first define
2866 the implementation functions available, and a resolver function that
2867 returns a pointer to the selected implementation function. The
2868 implementation functions' declarations must match the API of the
2869 function being implemented, the resolver's declaration is be a
2870 function returning pointer to void function returning void:
2871
2872 @smallexample
2873 void *my_memcpy (void *dst, const void *src, size_t len)
2874 @{
2875 @dots{}
2876 @}
2877
2878 static void (*resolve_memcpy (void)) (void)
2879 @{
2880 return my_memcpy; // we'll just always select this routine
2881 @}
2882 @end smallexample
2883
2884 @noindent
2885 The exported header file declaring the function the user calls would
2886 contain:
2887
2888 @smallexample
2889 extern void *memcpy (void *, const void *, size_t);
2890 @end smallexample
2891
2892 @noindent
2893 allowing the user to call this as a regular function, unaware of the
2894 implementation. Finally, the indirect function needs to be defined in
2895 the same translation unit as the resolver function:
2896
2897 @smallexample
2898 void *memcpy (void *, const void *, size_t)
2899 __attribute__ ((ifunc ("resolve_memcpy")));
2900 @end smallexample
2901
2902 Indirect functions cannot be weak, and require a recent binutils (at
2903 least version 2.20.1), and GNU C library (at least version 2.11.1).
2904
2905 @item interrupt
2906 @cindex interrupt handler functions
2907 Use this attribute on the ARC, ARM, AVR, CR16, Epiphany, M32C, M32R/D,
2908 m68k, MeP, MIPS, MSP430, RL78, RX and Xstormy16 ports to indicate that
2909 the specified function is an
2910 interrupt handler. The compiler generates function entry and exit
2911 sequences suitable for use in an interrupt handler when this attribute
2912 is present. With Epiphany targets it may also generate a special section with
2913 code to initialize the interrupt vector table.
2914
2915 Note, interrupt handlers for the Blackfin, H8/300, H8/300H, H8S, MicroBlaze,
2916 and SH processors can be specified via the @code{interrupt_handler} attribute.
2917
2918 Note, on the ARC, you must specify the kind of interrupt to be handled
2919 in a parameter to the interrupt attribute like this:
2920
2921 @smallexample
2922 void f () __attribute__ ((interrupt ("ilink1")));
2923 @end smallexample
2924
2925 Permissible values for this parameter are: @w{@code{ilink1}} and
2926 @w{@code{ilink2}}.
2927
2928 Note, on the AVR, the hardware globally disables interrupts when an
2929 interrupt is executed. The first instruction of an interrupt handler
2930 declared with this attribute is a @code{SEI} instruction to
2931 re-enable interrupts. See also the @code{signal} function attribute
2932 that does not insert a @code{SEI} instruction. If both @code{signal} and
2933 @code{interrupt} are specified for the same function, @code{signal}
2934 is silently ignored.
2935
2936 Note, for the ARM, you can specify the kind of interrupt to be handled by
2937 adding an optional parameter to the interrupt attribute like this:
2938
2939 @smallexample
2940 void f () __attribute__ ((interrupt ("IRQ")));
2941 @end smallexample
2942
2943 @noindent
2944 Permissible values for this parameter are: @code{IRQ}, @code{FIQ},
2945 @code{SWI}, @code{ABORT} and @code{UNDEF}.
2946
2947 On ARMv7-M the interrupt type is ignored, and the attribute means the function
2948 may be called with a word-aligned stack pointer.
2949
2950 Note, for the MSP430 you can provide an argument to the interrupt
2951 attribute which specifies a name or number. If the argument is a
2952 number it indicates the slot in the interrupt vector table (0 - 31) to
2953 which this handler should be assigned. If the argument is a name it
2954 is treated as a symbolic name for the vector slot. These names should
2955 match up with appropriate entries in the linker script. By default
2956 the names @code{watchdog} for vector 26, @code{nmi} for vector 30 and
2957 @code{reset} for vector 31 are recognised.
2958
2959 You can also use the following function attributes to modify how
2960 normal functions interact with interrupt functions:
2961
2962 @table @code
2963 @item critical
2964 @cindex @code{critical} attribute
2965 Critical functions disable interrupts upon entry and restore the
2966 previous interrupt state upon exit. Critical functions cannot also
2967 have the @code{naked} or @code{reentrant} attributes. They can have
2968 the @code{interrupt} attribute.
2969
2970 @item reentrant
2971 @cindex @code{reentrant} attribute
2972 Reentrant functions disable interrupts upon entry and enable them
2973 upon exit. Reentrant functions cannot also have the @code{naked}
2974 or @code{critical} attributes. They can have the @code{interrupt}
2975 attribute.
2976
2977 @item wakeup
2978 @cindex @code{wakeup} attribute
2979 This attribute only applies to interrupt functions. It is silently
2980 ignored if applied to a non-interrupt function. A wakeup interrupt
2981 function will rouse the processor from any low-power state that it
2982 might be in when the function exits.
2983
2984 @end table
2985
2986 On Epiphany targets one or more optional parameters can be added like this:
2987
2988 @smallexample
2989 void __attribute__ ((interrupt ("dma0, dma1"))) universal_dma_handler ();
2990 @end smallexample
2991
2992 Permissible values for these parameters are: @w{@code{reset}},
2993 @w{@code{software_exception}}, @w{@code{page_miss}},
2994 @w{@code{timer0}}, @w{@code{timer1}}, @w{@code{message}},
2995 @w{@code{dma0}}, @w{@code{dma1}}, @w{@code{wand}} and @w{@code{swi}}.
2996 Multiple parameters indicate that multiple entries in the interrupt
2997 vector table should be initialized for this function, i.e.@: for each
2998 parameter @w{@var{name}}, a jump to the function is emitted in
2999 the section @w{ivt_entry_@var{name}}. The parameter(s) may be omitted
3000 entirely, in which case no interrupt vector table entry is provided.
3001
3002 Note, on Epiphany targets, interrupts are enabled inside the function
3003 unless the @code{disinterrupt} attribute is also specified.
3004
3005 On Epiphany targets, you can also use the following attribute to
3006 modify the behavior of an interrupt handler:
3007 @table @code
3008 @item forwarder_section
3009 @cindex @code{forwarder_section} attribute
3010 The interrupt handler may be in external memory which cannot be
3011 reached by a branch instruction, so generate a local memory trampoline
3012 to transfer control. The single parameter identifies the section where
3013 the trampoline is placed.
3014 @end table
3015
3016 The following examples are all valid uses of these attributes on
3017 Epiphany targets:
3018 @smallexample
3019 void __attribute__ ((interrupt)) universal_handler ();
3020 void __attribute__ ((interrupt ("dma1"))) dma1_handler ();
3021 void __attribute__ ((interrupt ("dma0, dma1"))) universal_dma_handler ();
3022 void __attribute__ ((interrupt ("timer0"), disinterrupt))
3023 fast_timer_handler ();
3024 void __attribute__ ((interrupt ("dma0, dma1"), forwarder_section ("tramp")))
3025 external_dma_handler ();
3026 @end smallexample
3027
3028 On MIPS targets, you can use the following attributes to modify the behavior
3029 of an interrupt handler:
3030 @table @code
3031 @item use_shadow_register_set
3032 @cindex @code{use_shadow_register_set} attribute
3033 Assume that the handler uses a shadow register set, instead of
3034 the main general-purpose registers.
3035
3036 @item keep_interrupts_masked
3037 @cindex @code{keep_interrupts_masked} attribute
3038 Keep interrupts masked for the whole function. Without this attribute,
3039 GCC tries to reenable interrupts for as much of the function as it can.
3040
3041 @item use_debug_exception_return
3042 @cindex @code{use_debug_exception_return} attribute
3043 Return using the @code{deret} instruction. Interrupt handlers that don't
3044 have this attribute return using @code{eret} instead.
3045 @end table
3046
3047 You can use any combination of these attributes, as shown below:
3048 @smallexample
3049 void __attribute__ ((interrupt)) v0 ();
3050 void __attribute__ ((interrupt, use_shadow_register_set)) v1 ();
3051 void __attribute__ ((interrupt, keep_interrupts_masked)) v2 ();
3052 void __attribute__ ((interrupt, use_debug_exception_return)) v3 ();
3053 void __attribute__ ((interrupt, use_shadow_register_set,
3054 keep_interrupts_masked)) v4 ();
3055 void __attribute__ ((interrupt, use_shadow_register_set,
3056 use_debug_exception_return)) v5 ();
3057 void __attribute__ ((interrupt, keep_interrupts_masked,
3058 use_debug_exception_return)) v6 ();
3059 void __attribute__ ((interrupt, use_shadow_register_set,
3060 keep_interrupts_masked,
3061 use_debug_exception_return)) v7 ();
3062 @end smallexample
3063
3064 On NDS32 target, this attribute is to indicate that the specified function
3065 is an interrupt handler. The compiler will generate corresponding sections
3066 for use in an interrupt handler. You can use the following attributes
3067 to modify the behavior:
3068 @table @code
3069 @item nested
3070 @cindex @code{nested} attribute
3071 This interrupt service routine is interruptible.
3072 @item not_nested
3073 @cindex @code{not_nested} attribute
3074 This interrupt service routine is not interruptible.
3075 @item nested_ready
3076 @cindex @code{nested_ready} attribute
3077 This interrupt service routine is interruptible after @code{PSW.GIE}
3078 (global interrupt enable) is set. This allows interrupt service routine to
3079 finish some short critical code before enabling interrupts.
3080 @item save_all
3081 @cindex @code{save_all} attribute
3082 The system will help save all registers into stack before entering
3083 interrupt handler.
3084 @item partial_save
3085 @cindex @code{partial_save} attribute
3086 The system will help save caller registers into stack before entering
3087 interrupt handler.
3088 @end table
3089
3090 On RL78, use @code{brk_interrupt} instead of @code{interrupt} for
3091 handlers intended to be used with the @code{BRK} opcode (i.e.@: those
3092 that must end with @code{RETB} instead of @code{RETI}).
3093
3094 On RX targets, you may specify one or more vector numbers as arguments
3095 to the attribute, as well as naming an alternate table name.
3096 Parameters are handled sequentially, so one handler can be assigned to
3097 multiple entries in multiple tables. One may also pass the magic
3098 string @code{"$default"} which causes the function to be used for any
3099 unfilled slots in the current table.
3100
3101 This example shows a simple assignment of a function to one vector in
3102 the default table (note that preprocessor macros may be used for
3103 chip-specific symbolic vector names):
3104 @smallexample
3105 void __attribute__ ((interrupt (5))) txd1_handler ();
3106 @end smallexample
3107
3108 This example assigns a function to two slots in the default table
3109 (using preprocessor macros defined elsewhere) and makes it the default
3110 for the @code{dct} table:
3111 @smallexample
3112 void __attribute__ ((interrupt (RXD1_VECT,RXD2_VECT,"dct","$default")))
3113 txd1_handler ();
3114 @end smallexample
3115
3116 @item interrupt_handler
3117 @cindex interrupt handler functions on the Blackfin, m68k, H8/300 and SH processors
3118 Use this attribute on the Blackfin, m68k, H8/300, H8/300H, H8S, and SH to
3119 indicate that the specified function is an interrupt handler. The compiler
3120 generates function entry and exit sequences suitable for use in an
3121 interrupt handler when this attribute is present.
3122
3123 @item interrupt_thread
3124 @cindex interrupt thread functions on fido
3125 Use this attribute on fido, a subarchitecture of the m68k, to indicate
3126 that the specified function is an interrupt handler that is designed
3127 to run as a thread. The compiler omits generate prologue/epilogue
3128 sequences and replaces the return instruction with a @code{sleep}
3129 instruction. This attribute is available only on fido.
3130
3131 @item isr
3132 @cindex interrupt service routines on ARM
3133 Use this attribute on ARM to write Interrupt Service Routines. This is an
3134 alias to the @code{interrupt} attribute above.
3135
3136 @item kspisusp
3137 @cindex User stack pointer in interrupts on the Blackfin
3138 When used together with @code{interrupt_handler}, @code{exception_handler}
3139 or @code{nmi_handler}, code is generated to load the stack pointer
3140 from the USP register in the function prologue.
3141
3142 @item l1_text
3143 @cindex @code{l1_text} function attribute
3144 This attribute specifies a function to be placed into L1 Instruction
3145 SRAM@. The function is put into a specific section named @code{.l1.text}.
3146 With @option{-mfdpic}, function calls with a such function as the callee
3147 or caller uses inlined PLT.
3148
3149 @item l2
3150 @cindex @code{l2} function attribute
3151 On the Blackfin, this attribute specifies a function to be placed into L2
3152 SRAM. The function is put into a specific section named
3153 @code{.l1.text}. With @option{-mfdpic}, callers of such functions use
3154 an inlined PLT.
3155
3156 @item leaf
3157 @cindex @code{leaf} function attribute
3158 Calls to external functions with this attribute must return to the current
3159 compilation unit only by return or by exception handling. In particular, leaf
3160 functions are not allowed to call callback function passed to it from the current
3161 compilation unit or directly call functions exported by the unit or longjmp
3162 into the unit. Leaf function might still call functions from other compilation
3163 units and thus they are not necessarily leaf in the sense that they contain no
3164 function calls at all.
3165
3166 The attribute is intended for library functions to improve dataflow analysis.
3167 The compiler takes the hint that any data not escaping the current compilation unit can
3168 not be used or modified by the leaf function. For example, the @code{sin} function
3169 is a leaf function, but @code{qsort} is not.
3170
3171 Note that leaf functions might invoke signals and signal handlers might be
3172 defined in the current compilation unit and use static variables. The only
3173 compliant way to write such a signal handler is to declare such variables
3174 @code{volatile}.
3175
3176 The attribute has no effect on functions defined within the current compilation
3177 unit. This is to allow easy merging of multiple compilation units into one,
3178 for example, by using the link-time optimization. For this reason the
3179 attribute is not allowed on types to annotate indirect calls.
3180
3181 @item long_call/medium_call/short_call
3182 @cindex indirect calls on ARC
3183 @cindex indirect calls on ARM
3184 @cindex indirect calls on Epiphany
3185 These attributes specify how a particular function is called on
3186 ARC, ARM and Epiphany - with @code{medium_call} being specific to ARC.
3187 These attributes override the
3188 @option{-mlong-calls} (@pxref{ARM Options} and @ref{ARC Options})
3189 and @option{-mmedium-calls} (@pxref{ARC Options})
3190 command-line switches and @code{#pragma long_calls} settings. For ARM, the
3191 @code{long_call} attribute indicates that the function might be far
3192 away from the call site and require a different (more expensive)
3193 calling sequence. The @code{short_call} attribute always places
3194 the offset to the function from the call site into the @samp{BL}
3195 instruction directly.
3196
3197 For ARC, a function marked with the @code{long_call} attribute is
3198 always called using register-indirect jump-and-link instructions,
3199 thereby enabling the called function to be placed anywhere within the
3200 32-bit address space. A function marked with the @code{medium_call}
3201 attribute will always be close enough to be called with an unconditional
3202 branch-and-link instruction, which has a 25-bit offset from
3203 the call site. A function marked with the @code{short_call}
3204 attribute will always be close enough to be called with a conditional
3205 branch-and-link instruction, which has a 21-bit offset from
3206 the call site.
3207
3208 @item longcall/shortcall
3209 @cindex functions called via pointer on the RS/6000 and PowerPC
3210 On the Blackfin, RS/6000 and PowerPC, the @code{longcall} attribute
3211 indicates that the function might be far away from the call site and
3212 require a different (more expensive) calling sequence. The
3213 @code{shortcall} attribute indicates that the function is always close
3214 enough for the shorter calling sequence to be used. These attributes
3215 override both the @option{-mlongcall} switch and, on the RS/6000 and
3216 PowerPC, the @code{#pragma longcall} setting.
3217
3218 @xref{RS/6000 and PowerPC Options}, for more information on whether long
3219 calls are necessary.
3220
3221 @item long_call/near/far
3222 @cindex indirect calls on MIPS
3223 These attributes specify how a particular function is called on MIPS@.
3224 The attributes override the @option{-mlong-calls} (@pxref{MIPS Options})
3225 command-line switch. The @code{long_call} and @code{far} attributes are
3226 synonyms, and cause the compiler to always call
3227 the function by first loading its address into a register, and then using
3228 the contents of that register. The @code{near} attribute has the opposite
3229 effect; it specifies that non-PIC calls should be made using the more
3230 efficient @code{jal} instruction.
3231
3232 @item malloc
3233 @cindex @code{malloc} attribute
3234 This tells the compiler that a function is @code{malloc}-like, i.e.,
3235 that the pointer @var{P} returned by the function cannot alias any
3236 other pointer valid when the function returns, and moreover no
3237 pointers to valid objects occur in any storage addressed by @var{P}.
3238
3239 Using this attribute can improve optimization. Functions like
3240 @code{malloc} and @code{calloc} have this property because they return
3241 a pointer to uninitialized or zeroed-out storage. However, functions
3242 like @code{realloc} do not have this property, as they can return a
3243 pointer to storage containing pointers.
3244
3245 @item mips16/nomips16
3246 @cindex @code{mips16} attribute
3247 @cindex @code{nomips16} attribute
3248
3249 On MIPS targets, you can use the @code{mips16} and @code{nomips16}
3250 function attributes to locally select or turn off MIPS16 code generation.
3251 A function with the @code{mips16} attribute is emitted as MIPS16 code,
3252 while MIPS16 code generation is disabled for functions with the
3253 @code{nomips16} attribute. These attributes override the
3254 @option{-mips16} and @option{-mno-mips16} options on the command line
3255 (@pxref{MIPS Options}).
3256
3257 When compiling files containing mixed MIPS16 and non-MIPS16 code, the
3258 preprocessor symbol @code{__mips16} reflects the setting on the command line,
3259 not that within individual functions. Mixed MIPS16 and non-MIPS16 code
3260 may interact badly with some GCC extensions such as @code{__builtin_apply}
3261 (@pxref{Constructing Calls}).
3262
3263 @item micromips/nomicromips
3264 @cindex @code{micromips} attribute
3265 @cindex @code{nomicromips} attribute
3266
3267 On MIPS targets, you can use the @code{micromips} and @code{nomicromips}
3268 function attributes to locally select or turn off microMIPS code generation.
3269 A function with the @code{micromips} attribute is emitted as microMIPS code,
3270 while microMIPS code generation is disabled for functions with the
3271 @code{nomicromips} attribute. These attributes override the
3272 @option{-mmicromips} and @option{-mno-micromips} options on the command line
3273 (@pxref{MIPS Options}).
3274
3275 When compiling files containing mixed microMIPS and non-microMIPS code, the
3276 preprocessor symbol @code{__mips_micromips} reflects the setting on the
3277 command line,
3278 not that within individual functions. Mixed microMIPS and non-microMIPS code
3279 may interact badly with some GCC extensions such as @code{__builtin_apply}
3280 (@pxref{Constructing Calls}).
3281
3282 @item model (@var{model-name})
3283 @cindex function addressability on the M32R/D
3284 @cindex variable addressability on the IA-64
3285
3286 On the M32R/D, use this attribute to set the addressability of an
3287 object, and of the code generated for a function. The identifier
3288 @var{model-name} is one of @code{small}, @code{medium}, or
3289 @code{large}, representing each of the code models.
3290
3291 Small model objects live in the lower 16MB of memory (so that their
3292 addresses can be loaded with the @code{ld24} instruction), and are
3293 callable with the @code{bl} instruction.
3294
3295 Medium model objects may live anywhere in the 32-bit address space (the
3296 compiler generates @code{seth/add3} instructions to load their addresses),
3297 and are callable with the @code{bl} instruction.
3298
3299 Large model objects may live anywhere in the 32-bit address space (the
3300 compiler generates @code{seth/add3} instructions to load their addresses),
3301 and may not be reachable with the @code{bl} instruction (the compiler
3302 generates the much slower @code{seth/add3/jl} instruction sequence).
3303
3304 On IA-64, use this attribute to set the addressability of an object.
3305 At present, the only supported identifier for @var{model-name} is
3306 @code{small}, indicating addressability via ``small'' (22-bit)
3307 addresses (so that their addresses can be loaded with the @code{addl}
3308 instruction). Caveat: such addressing is by definition not position
3309 independent and hence this attribute must not be used for objects
3310 defined by shared libraries.
3311
3312 @item ms_abi/sysv_abi
3313 @cindex @code{ms_abi} attribute
3314 @cindex @code{sysv_abi} attribute
3315
3316 On 32-bit and 64-bit (i?86|x86_64)-*-* targets, you can use an ABI attribute
3317 to indicate which calling convention should be used for a function. The
3318 @code{ms_abi} attribute tells the compiler to use the Microsoft ABI,
3319 while the @code{sysv_abi} attribute tells the compiler to use the ABI
3320 used on GNU/Linux and other systems. The default is to use the Microsoft ABI
3321 when targeting Windows. On all other systems, the default is the x86/AMD ABI.
3322
3323 Note, the @code{ms_abi} attribute for Microsoft Windows 64-bit targets currently
3324 requires the @option{-maccumulate-outgoing-args} option.
3325
3326 @item callee_pop_aggregate_return (@var{number})
3327 @cindex @code{callee_pop_aggregate_return} attribute
3328
3329 On 32-bit i?86-*-* targets, you can use this attribute to control how
3330 aggregates are returned in memory. If the caller is responsible for
3331 popping the hidden pointer together with the rest of the arguments, specify
3332 @var{number} equal to zero. If callee is responsible for popping the
3333 hidden pointer, specify @var{number} equal to one.
3334
3335 The default i386 ABI assumes that the callee pops the
3336 stack for hidden pointer. However, on 32-bit i386 Microsoft Windows targets,
3337 the compiler assumes that the
3338 caller pops the stack for hidden pointer.
3339
3340 @item ms_hook_prologue
3341 @cindex @code{ms_hook_prologue} attribute
3342
3343 On 32-bit i[34567]86-*-* targets and 64-bit x86_64-*-* targets, you can use
3344 this function attribute to make GCC generate the ``hot-patching'' function
3345 prologue used in Win32 API functions in Microsoft Windows XP Service Pack 2
3346 and newer.
3347
3348 @item hotpatch [(@var{prologue-halfwords})]
3349 @cindex @code{hotpatch} attribute
3350
3351 On S/390 System z targets, you can use this function attribute to
3352 make GCC generate a ``hot-patching'' function prologue. The
3353 @code{hotpatch} has no effect on funtions that are explicitly
3354 inline. If the @option{-mhotpatch} or @option{-mno-hotpatch}
3355 command-line option is used at the same time, the @code{hotpatch}
3356 attribute takes precedence. If an argument is given, the maximum
3357 allowed value is 1000000.
3358
3359 @item naked
3360 @cindex function without a prologue/epilogue code
3361 Use this attribute on the ARM, AVR, MCORE, MSP430, NDS32, RL78, RX and SPU
3362 ports to indicate that the specified function does not need prologue/epilogue
3363 sequences generated by the compiler.
3364 It is up to the programmer to provide these sequences. The
3365 only statements that can be safely included in naked functions are
3366 @code{asm} statements that do not have operands. All other statements,
3367 including declarations of local variables, @code{if} statements, and so
3368 forth, should be avoided. Naked functions should be used to implement the
3369 body of an assembly function, while allowing the compiler to construct
3370 the requisite function declaration for the assembler.
3371
3372 @item near
3373 @cindex functions that do not handle memory bank switching on 68HC11/68HC12
3374 On 68HC11 and 68HC12 the @code{near} attribute causes the compiler to
3375 use the normal calling convention based on @code{jsr} and @code{rts}.
3376 This attribute can be used to cancel the effect of the @option{-mlong-calls}
3377 option.
3378
3379 On MeP targets this attribute causes the compiler to assume the called
3380 function is close enough to use the normal calling convention,
3381 overriding the @option{-mtf} command-line option.
3382
3383 @item nesting
3384 @cindex Allow nesting in an interrupt handler on the Blackfin processor.
3385 Use this attribute together with @code{interrupt_handler},
3386 @code{exception_handler} or @code{nmi_handler} to indicate that the function
3387 entry code should enable nested interrupts or exceptions.
3388
3389 @item nmi_handler
3390 @cindex NMI handler functions on the Blackfin processor
3391 Use this attribute on the Blackfin to indicate that the specified function
3392 is an NMI handler. The compiler generates function entry and
3393 exit sequences suitable for use in an NMI handler when this
3394 attribute is present.
3395
3396 @item nocompression
3397 @cindex @code{nocompression} attribute
3398 On MIPS targets, you can use the @code{nocompression} function attribute
3399 to locally turn off MIPS16 and microMIPS code generation. This attribute
3400 overrides the @option{-mips16} and @option{-mmicromips} options on the
3401 command line (@pxref{MIPS Options}).
3402
3403 @item no_instrument_function
3404 @cindex @code{no_instrument_function} function attribute
3405 @opindex finstrument-functions
3406 If @option{-finstrument-functions} is given, profiling function calls are
3407 generated at entry and exit of most user-compiled functions.
3408 Functions with this attribute are not so instrumented.
3409
3410 @item no_split_stack
3411 @cindex @code{no_split_stack} function attribute
3412 @opindex fsplit-stack
3413 If @option{-fsplit-stack} is given, functions have a small
3414 prologue which decides whether to split the stack. Functions with the
3415 @code{no_split_stack} attribute do not have that prologue, and thus
3416 may run with only a small amount of stack space available.
3417
3418 @item noinline
3419 @cindex @code{noinline} function attribute
3420 This function attribute prevents a function from being considered for
3421 inlining.
3422 @c Don't enumerate the optimizations by name here; we try to be
3423 @c future-compatible with this mechanism.
3424 If the function does not have side-effects, there are optimizations
3425 other than inlining that cause function calls to be optimized away,
3426 although the function call is live. To keep such calls from being
3427 optimized away, put
3428 @smallexample
3429 asm ("");
3430 @end smallexample
3431
3432 @noindent
3433 (@pxref{Extended Asm}) in the called function, to serve as a special
3434 side-effect.
3435
3436 @item noclone
3437 @cindex @code{noclone} function attribute
3438 This function attribute prevents a function from being considered for
3439 cloning---a mechanism that produces specialized copies of functions
3440 and which is (currently) performed by interprocedural constant
3441 propagation.
3442
3443 @item nonnull (@var{arg-index}, @dots{})
3444 @cindex @code{nonnull} function attribute
3445 The @code{nonnull} attribute specifies that some function parameters should
3446 be non-null pointers. For instance, the declaration:
3447
3448 @smallexample
3449 extern void *
3450 my_memcpy (void *dest, const void *src, size_t len)
3451 __attribute__((nonnull (1, 2)));
3452 @end smallexample
3453
3454 @noindent
3455 causes the compiler to check that, in calls to @code{my_memcpy},
3456 arguments @var{dest} and @var{src} are non-null. If the compiler
3457 determines that a null pointer is passed in an argument slot marked
3458 as non-null, and the @option{-Wnonnull} option is enabled, a warning
3459 is issued. The compiler may also choose to make optimizations based
3460 on the knowledge that certain function arguments will never be null.
3461
3462 If no argument index list is given to the @code{nonnull} attribute,
3463 all pointer arguments are marked as non-null. To illustrate, the
3464 following declaration is equivalent to the previous example:
3465
3466 @smallexample
3467 extern void *
3468 my_memcpy (void *dest, const void *src, size_t len)
3469 __attribute__((nonnull));
3470 @end smallexample
3471
3472 @item returns_nonnull
3473 @cindex @code{returns_nonnull} function attribute
3474 The @code{returns_nonnull} attribute specifies that the function
3475 return value should be a non-null pointer. For instance, the declaration:
3476
3477 @smallexample
3478 extern void *
3479 mymalloc (size_t len) __attribute__((returns_nonnull));
3480 @end smallexample
3481
3482 @noindent
3483 lets the compiler optimize callers based on the knowledge
3484 that the return value will never be null.
3485
3486 @item noreturn
3487 @cindex @code{noreturn} function attribute
3488 A few standard library functions, such as @code{abort} and @code{exit},
3489 cannot return. GCC knows this automatically. Some programs define
3490 their own functions that never return. You can declare them
3491 @code{noreturn} to tell the compiler this fact. For example,
3492
3493 @smallexample
3494 @group
3495 void fatal () __attribute__ ((noreturn));
3496
3497 void
3498 fatal (/* @r{@dots{}} */)
3499 @{
3500 /* @r{@dots{}} */ /* @r{Print error message.} */ /* @r{@dots{}} */
3501 exit (1);
3502 @}
3503 @end group
3504 @end smallexample
3505
3506 The @code{noreturn} keyword tells the compiler to assume that
3507 @code{fatal} cannot return. It can then optimize without regard to what
3508 would happen if @code{fatal} ever did return. This makes slightly
3509 better code. More importantly, it helps avoid spurious warnings of
3510 uninitialized variables.
3511
3512 The @code{noreturn} keyword does not affect the exceptional path when that
3513 applies: a @code{noreturn}-marked function may still return to the caller
3514 by throwing an exception or calling @code{longjmp}.
3515
3516 Do not assume that registers saved by the calling function are
3517 restored before calling the @code{noreturn} function.
3518
3519 It does not make sense for a @code{noreturn} function to have a return
3520 type other than @code{void}.
3521
3522 The attribute @code{noreturn} is not implemented in GCC versions
3523 earlier than 2.5. An alternative way to declare that a function does
3524 not return, which works in the current version and in some older
3525 versions, is as follows:
3526
3527 @smallexample
3528 typedef void voidfn ();
3529
3530 volatile voidfn fatal;
3531 @end smallexample
3532
3533 @noindent
3534 This approach does not work in GNU C++.
3535
3536 @item nothrow
3537 @cindex @code{nothrow} function attribute
3538 The @code{nothrow} attribute is used to inform the compiler that a
3539 function cannot throw an exception. For example, most functions in
3540 the standard C library can be guaranteed not to throw an exception
3541 with the notable exceptions of @code{qsort} and @code{bsearch} that
3542 take function pointer arguments. The @code{nothrow} attribute is not
3543 implemented in GCC versions earlier than 3.3.
3544
3545 @item nosave_low_regs
3546 @cindex @code{nosave_low_regs} attribute
3547 Use this attribute on SH targets to indicate that an @code{interrupt_handler}
3548 function should not save and restore registers R0..R7. This can be used on SH3*
3549 and SH4* targets that have a second R0..R7 register bank for non-reentrant
3550 interrupt handlers.
3551
3552 @item optimize
3553 @cindex @code{optimize} function attribute
3554 The @code{optimize} attribute is used to specify that a function is to
3555 be compiled with different optimization options than specified on the
3556 command line. Arguments can either be numbers or strings. Numbers
3557 are assumed to be an optimization level. Strings that begin with
3558 @code{O} are assumed to be an optimization option, while other options
3559 are assumed to be used with a @code{-f} prefix. You can also use the
3560 @samp{#pragma GCC optimize} pragma to set the optimization options
3561 that affect more than one function.
3562 @xref{Function Specific Option Pragmas}, for details about the
3563 @samp{#pragma GCC optimize} pragma.
3564
3565 This can be used for instance to have frequently-executed functions
3566 compiled with more aggressive optimization options that produce faster
3567 and larger code, while other functions can be compiled with less
3568 aggressive options.
3569
3570 @item OS_main/OS_task
3571 @cindex @code{OS_main} AVR function attribute
3572 @cindex @code{OS_task} AVR function attribute
3573 On AVR, functions with the @code{OS_main} or @code{OS_task} attribute
3574 do not save/restore any call-saved register in their prologue/epilogue.
3575
3576 The @code{OS_main} attribute can be used when there @emph{is
3577 guarantee} that interrupts are disabled at the time when the function
3578 is entered. This saves resources when the stack pointer has to be
3579 changed to set up a frame for local variables.
3580
3581 The @code{OS_task} attribute can be used when there is @emph{no
3582 guarantee} that interrupts are disabled at that time when the function
3583 is entered like for, e@.g@. task functions in a multi-threading operating
3584 system. In that case, changing the stack pointer register is
3585 guarded by save/clear/restore of the global interrupt enable flag.
3586
3587 The differences to the @code{naked} function attribute are:
3588 @itemize @bullet
3589 @item @code{naked} functions do not have a return instruction whereas
3590 @code{OS_main} and @code{OS_task} functions have a @code{RET} or
3591 @code{RETI} return instruction.
3592 @item @code{naked} functions do not set up a frame for local variables
3593 or a frame pointer whereas @code{OS_main} and @code{OS_task} do this
3594 as needed.
3595 @end itemize
3596
3597 @item pcs
3598 @cindex @code{pcs} function attribute
3599
3600 The @code{pcs} attribute can be used to control the calling convention
3601 used for a function on ARM. The attribute takes an argument that specifies
3602 the calling convention to use.
3603
3604 When compiling using the AAPCS ABI (or a variant of it) then valid
3605 values for the argument are @code{"aapcs"} and @code{"aapcs-vfp"}. In
3606 order to use a variant other than @code{"aapcs"} then the compiler must
3607 be permitted to use the appropriate co-processor registers (i.e., the
3608 VFP registers must be available in order to use @code{"aapcs-vfp"}).
3609 For example,
3610
3611 @smallexample
3612 /* Argument passed in r0, and result returned in r0+r1. */
3613 double f2d (float) __attribute__((pcs("aapcs")));
3614 @end smallexample
3615
3616 Variadic functions always use the @code{"aapcs"} calling convention and
3617 the compiler rejects attempts to specify an alternative.
3618
3619 @item pure
3620 @cindex @code{pure} function attribute
3621 Many functions have no effects except the return value and their
3622 return value depends only on the parameters and/or global variables.
3623 Such a function can be subject
3624 to common subexpression elimination and loop optimization just as an
3625 arithmetic operator would be. These functions should be declared
3626 with the attribute @code{pure}. For example,
3627
3628 @smallexample
3629 int square (int) __attribute__ ((pure));
3630 @end smallexample
3631
3632 @noindent
3633 says that the hypothetical function @code{square} is safe to call
3634 fewer times than the program says.
3635
3636 Some of common examples of pure functions are @code{strlen} or @code{memcmp}.
3637 Interesting non-pure functions are functions with infinite loops or those
3638 depending on volatile memory or other system resource, that may change between
3639 two consecutive calls (such as @code{feof} in a multithreading environment).
3640
3641 The attribute @code{pure} is not implemented in GCC versions earlier
3642 than 2.96.
3643
3644 @item hot
3645 @cindex @code{hot} function attribute
3646 The @code{hot} attribute on a function is used to inform the compiler that
3647 the function is a hot spot of the compiled program. The function is
3648 optimized more aggressively and on many targets it is placed into a special
3649 subsection of the text section so all hot functions appear close together,
3650 improving locality.
3651
3652 When profile feedback is available, via @option{-fprofile-use}, hot functions
3653 are automatically detected and this attribute is ignored.
3654
3655 The @code{hot} attribute on functions is not implemented in GCC versions
3656 earlier than 4.3.
3657
3658 @item cold
3659 @cindex @code{cold} function attribute
3660 The @code{cold} attribute on functions is used to inform the compiler that
3661 the function is unlikely to be executed. The function is optimized for
3662 size rather than speed and on many targets it is placed into a special
3663 subsection of the text section so all cold functions appear close together,
3664 improving code locality of non-cold parts of program. The paths leading
3665 to calls of cold functions within code are marked as unlikely by the branch
3666 prediction mechanism. It is thus useful to mark functions used to handle
3667 unlikely conditions, such as @code{perror}, as cold to improve optimization
3668 of hot functions that do call marked functions in rare occasions.
3669
3670 When profile feedback is available, via @option{-fprofile-use}, cold functions
3671 are automatically detected and this attribute is ignored.
3672
3673 The @code{cold} attribute on functions is not implemented in GCC versions
3674 earlier than 4.3.
3675
3676 @item no_sanitize_address
3677 @itemx no_address_safety_analysis
3678 @cindex @code{no_sanitize_address} function attribute
3679 The @code{no_sanitize_address} attribute on functions is used
3680 to inform the compiler that it should not instrument memory accesses
3681 in the function when compiling with the @option{-fsanitize=address} option.
3682 The @code{no_address_safety_analysis} is a deprecated alias of the
3683 @code{no_sanitize_address} attribute, new code should use
3684 @code{no_sanitize_address}.
3685
3686 @item no_sanitize_undefined
3687 @cindex @code{no_sanitize_undefined} function attribute
3688 The @code{no_sanitize_undefined} attribute on functions is used
3689 to inform the compiler that it should not check for undefined behavior
3690 in the function when compiling with the @option{-fsanitize=undefined} option.
3691
3692 @item regparm (@var{number})
3693 @cindex @code{regparm} attribute
3694 @cindex functions that are passed arguments in registers on the 386
3695 On the Intel 386, the @code{regparm} attribute causes the compiler to
3696 pass arguments number one to @var{number} if they are of integral type
3697 in registers EAX, EDX, and ECX instead of on the stack. Functions that
3698 take a variable number of arguments continue to be passed all of their
3699 arguments on the stack.
3700
3701 Beware that on some ELF systems this attribute is unsuitable for
3702 global functions in shared libraries with lazy binding (which is the
3703 default). Lazy binding sends the first call via resolving code in
3704 the loader, which might assume EAX, EDX and ECX can be clobbered, as
3705 per the standard calling conventions. Solaris 8 is affected by this.
3706 Systems with the GNU C Library version 2.1 or higher
3707 and FreeBSD are believed to be
3708 safe since the loaders there save EAX, EDX and ECX. (Lazy binding can be
3709 disabled with the linker or the loader if desired, to avoid the
3710 problem.)
3711
3712 @item reset
3713 @cindex reset handler functions
3714 Use this attribute on the NDS32 target to indicate that the specified function
3715 is a reset handler. The compiler will generate corresponding sections
3716 for use in a reset handler. You can use the following attributes
3717 to provide extra exception handling:
3718 @table @code
3719 @item nmi
3720 @cindex @code{nmi} attribute
3721 Provide a user-defined function to handle NMI exception.
3722 @item warm
3723 @cindex @code{warm} attribute
3724 Provide a user-defined function to handle warm reset exception.
3725 @end table
3726
3727 @item sseregparm
3728 @cindex @code{sseregparm} attribute
3729 On the Intel 386 with SSE support, the @code{sseregparm} attribute
3730 causes the compiler to pass up to 3 floating-point arguments in
3731 SSE registers instead of on the stack. Functions that take a
3732 variable number of arguments continue to pass all of their
3733 floating-point arguments on the stack.
3734
3735 @item force_align_arg_pointer
3736 @cindex @code{force_align_arg_pointer} attribute
3737 On the Intel x86, the @code{force_align_arg_pointer} attribute may be
3738 applied to individual function definitions, generating an alternate
3739 prologue and epilogue that realigns the run-time stack if necessary.
3740 This supports mixing legacy codes that run with a 4-byte aligned stack
3741 with modern codes that keep a 16-byte stack for SSE compatibility.
3742
3743 @item renesas
3744 @cindex @code{renesas} attribute
3745 On SH targets this attribute specifies that the function or struct follows the
3746 Renesas ABI.
3747
3748 @item resbank
3749 @cindex @code{resbank} attribute
3750 On the SH2A target, this attribute enables the high-speed register
3751 saving and restoration using a register bank for @code{interrupt_handler}
3752 routines. Saving to the bank is performed automatically after the CPU
3753 accepts an interrupt that uses a register bank.
3754
3755 The nineteen 32-bit registers comprising general register R0 to R14,
3756 control register GBR, and system registers MACH, MACL, and PR and the
3757 vector table address offset are saved into a register bank. Register
3758 banks are stacked in first-in last-out (FILO) sequence. Restoration
3759 from the bank is executed by issuing a RESBANK instruction.
3760
3761 @item returns_twice
3762 @cindex @code{returns_twice} attribute
3763 The @code{returns_twice} attribute tells the compiler that a function may
3764 return more than one time. The compiler ensures that all registers
3765 are dead before calling such a function and emits a warning about
3766 the variables that may be clobbered after the second return from the
3767 function. Examples of such functions are @code{setjmp} and @code{vfork}.
3768 The @code{longjmp}-like counterpart of such function, if any, might need
3769 to be marked with the @code{noreturn} attribute.
3770
3771 @item saveall
3772 @cindex save all registers on the Blackfin, H8/300, H8/300H, and H8S
3773 Use this attribute on the Blackfin, H8/300, H8/300H, and H8S to indicate that
3774 all registers except the stack pointer should be saved in the prologue
3775 regardless of whether they are used or not.
3776
3777 @item save_volatiles
3778 @cindex save volatile registers on the MicroBlaze
3779 Use this attribute on the MicroBlaze to indicate that the function is
3780 an interrupt handler. All volatile registers (in addition to non-volatile
3781 registers) are saved in the function prologue. If the function is a leaf
3782 function, only volatiles used by the function are saved. A normal function
3783 return is generated instead of a return from interrupt.
3784
3785 @item break_handler
3786 @cindex break handler functions
3787 Use this attribute on the MicroBlaze ports to indicate that
3788 the specified function is an break handler. The compiler generates function
3789 entry and exit sequences suitable for use in an break handler when this
3790 attribute is present. The return from @code{break_handler} is done through
3791 the @code{rtbd} instead of @code{rtsd}.
3792
3793 @smallexample
3794 void f () __attribute__ ((break_handler));
3795 @end smallexample
3796
3797 @item section ("@var{section-name}")
3798 @cindex @code{section} function attribute
3799 Normally, the compiler places the code it generates in the @code{text} section.
3800 Sometimes, however, you need additional sections, or you need certain
3801 particular functions to appear in special sections. The @code{section}
3802 attribute specifies that a function lives in a particular section.
3803 For example, the declaration:
3804
3805 @smallexample
3806 extern void foobar (void) __attribute__ ((section ("bar")));
3807 @end smallexample
3808
3809 @noindent
3810 puts the function @code{foobar} in the @code{bar} section.
3811
3812 Some file formats do not support arbitrary sections so the @code{section}
3813 attribute is not available on all platforms.
3814 If you need to map the entire contents of a module to a particular
3815 section, consider using the facilities of the linker instead.
3816
3817 @item sentinel
3818 @cindex @code{sentinel} function attribute
3819 This function attribute ensures that a parameter in a function call is
3820 an explicit @code{NULL}. The attribute is only valid on variadic
3821 functions. By default, the sentinel is located at position zero, the
3822 last parameter of the function call. If an optional integer position
3823 argument P is supplied to the attribute, the sentinel must be located at
3824 position P counting backwards from the end of the argument list.
3825
3826 @smallexample
3827 __attribute__ ((sentinel))
3828 is equivalent to
3829 __attribute__ ((sentinel(0)))
3830 @end smallexample
3831
3832 The attribute is automatically set with a position of 0 for the built-in
3833 functions @code{execl} and @code{execlp}. The built-in function
3834 @code{execle} has the attribute set with a position of 1.
3835
3836 A valid @code{NULL} in this context is defined as zero with any pointer
3837 type. If your system defines the @code{NULL} macro with an integer type
3838 then you need to add an explicit cast. GCC replaces @code{stddef.h}
3839 with a copy that redefines NULL appropriately.
3840
3841 The warnings for missing or incorrect sentinels are enabled with
3842 @option{-Wformat}.
3843
3844 @item short_call
3845 See @code{long_call/short_call}.
3846
3847 @item shortcall
3848 See @code{longcall/shortcall}.
3849
3850 @item signal
3851 @cindex interrupt handler functions on the AVR processors
3852 Use this attribute on the AVR to indicate that the specified
3853 function is an interrupt handler. The compiler generates function
3854 entry and exit sequences suitable for use in an interrupt handler when this
3855 attribute is present.
3856
3857 See also the @code{interrupt} function attribute.
3858
3859 The AVR hardware globally disables interrupts when an interrupt is executed.
3860 Interrupt handler functions defined with the @code{signal} attribute
3861 do not re-enable interrupts. It is save to enable interrupts in a
3862 @code{signal} handler. This ``save'' only applies to the code
3863 generated by the compiler and not to the IRQ layout of the
3864 application which is responsibility of the application.
3865
3866 If both @code{signal} and @code{interrupt} are specified for the same
3867 function, @code{signal} is silently ignored.
3868
3869 @item sp_switch
3870 @cindex @code{sp_switch} attribute
3871 Use this attribute on the SH to indicate an @code{interrupt_handler}
3872 function should switch to an alternate stack. It expects a string
3873 argument that names a global variable holding the address of the
3874 alternate stack.
3875
3876 @smallexample
3877 void *alt_stack;
3878 void f () __attribute__ ((interrupt_handler,
3879 sp_switch ("alt_stack")));
3880 @end smallexample
3881
3882 @item stdcall
3883 @cindex functions that pop the argument stack on the 386
3884 On the Intel 386, the @code{stdcall} attribute causes the compiler to
3885 assume that the called function pops off the stack space used to
3886 pass arguments, unless it takes a variable number of arguments.
3887
3888 @item syscall_linkage
3889 @cindex @code{syscall_linkage} attribute
3890 This attribute is used to modify the IA-64 calling convention by marking
3891 all input registers as live at all function exits. This makes it possible
3892 to restart a system call after an interrupt without having to save/restore
3893 the input registers. This also prevents kernel data from leaking into
3894 application code.
3895
3896 @item target
3897 @cindex @code{target} function attribute
3898 The @code{target} attribute is used to specify that a function is to
3899 be compiled with different target options than specified on the
3900 command line. This can be used for instance to have functions
3901 compiled with a different ISA (instruction set architecture) than the
3902 default. You can also use the @samp{#pragma GCC target} pragma to set
3903 more than one function to be compiled with specific target options.
3904 @xref{Function Specific Option Pragmas}, for details about the
3905 @samp{#pragma GCC target} pragma.
3906
3907 For instance on a 386, you could compile one function with
3908 @code{target("sse4.1,arch=core2")} and another with
3909 @code{target("sse4a,arch=amdfam10")}. This is equivalent to
3910 compiling the first function with @option{-msse4.1} and
3911 @option{-march=core2} options, and the second function with
3912 @option{-msse4a} and @option{-march=amdfam10} options. It is up to the
3913 user to make sure that a function is only invoked on a machine that
3914 supports the particular ISA it is compiled for (for example by using
3915 @code{cpuid} on 386 to determine what feature bits and architecture
3916 family are used).
3917
3918 @smallexample
3919 int core2_func (void) __attribute__ ((__target__ ("arch=core2")));
3920 int sse3_func (void) __attribute__ ((__target__ ("sse3")));
3921 @end smallexample
3922
3923 You can either use multiple
3924 strings to specify multiple options, or separate the options
3925 with a comma (@samp{,}).
3926
3927 The @code{target} attribute is presently implemented for
3928 i386/x86_64, PowerPC, and Nios II targets only.
3929 The options supported are specific to each target.
3930
3931 On the 386, the following options are allowed:
3932
3933 @table @samp
3934 @item abm
3935 @itemx no-abm
3936 @cindex @code{target("abm")} attribute
3937 Enable/disable the generation of the advanced bit instructions.
3938
3939 @item aes
3940 @itemx no-aes
3941 @cindex @code{target("aes")} attribute
3942 Enable/disable the generation of the AES instructions.
3943
3944 @item default
3945 @cindex @code{target("default")} attribute
3946 @xref{Function Multiversioning}, where it is used to specify the
3947 default function version.
3948
3949 @item mmx
3950 @itemx no-mmx
3951 @cindex @code{target("mmx")} attribute
3952 Enable/disable the generation of the MMX instructions.
3953
3954 @item pclmul
3955 @itemx no-pclmul
3956 @cindex @code{target("pclmul")} attribute
3957 Enable/disable the generation of the PCLMUL instructions.
3958
3959 @item popcnt
3960 @itemx no-popcnt
3961 @cindex @code{target("popcnt")} attribute
3962 Enable/disable the generation of the POPCNT instruction.
3963
3964 @item sse
3965 @itemx no-sse
3966 @cindex @code{target("sse")} attribute
3967 Enable/disable the generation of the SSE instructions.
3968
3969 @item sse2
3970 @itemx no-sse2
3971 @cindex @code{target("sse2")} attribute
3972 Enable/disable the generation of the SSE2 instructions.
3973
3974 @item sse3
3975 @itemx no-sse3
3976 @cindex @code{target("sse3")} attribute
3977 Enable/disable the generation of the SSE3 instructions.
3978
3979 @item sse4
3980 @itemx no-sse4
3981 @cindex @code{target("sse4")} attribute
3982 Enable/disable the generation of the SSE4 instructions (both SSE4.1
3983 and SSE4.2).
3984
3985 @item sse4.1
3986 @itemx no-sse4.1
3987 @cindex @code{target("sse4.1")} attribute
3988 Enable/disable the generation of the sse4.1 instructions.
3989
3990 @item sse4.2
3991 @itemx no-sse4.2
3992 @cindex @code{target("sse4.2")} attribute
3993 Enable/disable the generation of the sse4.2 instructions.
3994
3995 @item sse4a
3996 @itemx no-sse4a
3997 @cindex @code{target("sse4a")} attribute
3998 Enable/disable the generation of the SSE4A instructions.
3999
4000 @item fma4
4001 @itemx no-fma4
4002 @cindex @code{target("fma4")} attribute
4003 Enable/disable the generation of the FMA4 instructions.
4004
4005 @item xop
4006 @itemx no-xop
4007 @cindex @code{target("xop")} attribute
4008 Enable/disable the generation of the XOP instructions.
4009
4010 @item lwp
4011 @itemx no-lwp
4012 @cindex @code{target("lwp")} attribute
4013 Enable/disable the generation of the LWP instructions.
4014
4015 @item ssse3
4016 @itemx no-ssse3
4017 @cindex @code{target("ssse3")} attribute
4018 Enable/disable the generation of the SSSE3 instructions.
4019
4020 @item cld
4021 @itemx no-cld
4022 @cindex @code{target("cld")} attribute
4023 Enable/disable the generation of the CLD before string moves.
4024
4025 @item fancy-math-387
4026 @itemx no-fancy-math-387
4027 @cindex @code{target("fancy-math-387")} attribute
4028 Enable/disable the generation of the @code{sin}, @code{cos}, and
4029 @code{sqrt} instructions on the 387 floating-point unit.
4030
4031 @item fused-madd
4032 @itemx no-fused-madd
4033 @cindex @code{target("fused-madd")} attribute
4034 Enable/disable the generation of the fused multiply/add instructions.
4035
4036 @item ieee-fp
4037 @itemx no-ieee-fp
4038 @cindex @code{target("ieee-fp")} attribute
4039 Enable/disable the generation of floating point that depends on IEEE arithmetic.
4040
4041 @item inline-all-stringops
4042 @itemx no-inline-all-stringops
4043 @cindex @code{target("inline-all-stringops")} attribute
4044 Enable/disable inlining of string operations.
4045
4046 @item inline-stringops-dynamically
4047 @itemx no-inline-stringops-dynamically
4048 @cindex @code{target("inline-stringops-dynamically")} attribute
4049 Enable/disable the generation of the inline code to do small string
4050 operations and calling the library routines for large operations.
4051
4052 @item align-stringops
4053 @itemx no-align-stringops
4054 @cindex @code{target("align-stringops")} attribute
4055 Do/do not align destination of inlined string operations.
4056
4057 @item recip
4058 @itemx no-recip
4059 @cindex @code{target("recip")} attribute
4060 Enable/disable the generation of RCPSS, RCPPS, RSQRTSS and RSQRTPS
4061 instructions followed an additional Newton-Raphson step instead of
4062 doing a floating-point division.
4063
4064 @item arch=@var{ARCH}
4065 @cindex @code{target("arch=@var{ARCH}")} attribute
4066 Specify the architecture to generate code for in compiling the function.
4067
4068 @item tune=@var{TUNE}
4069 @cindex @code{target("tune=@var{TUNE}")} attribute
4070 Specify the architecture to tune for in compiling the function.
4071
4072 @item fpmath=@var{FPMATH}
4073 @cindex @code{target("fpmath=@var{FPMATH}")} attribute
4074 Specify which floating-point unit to use. The
4075 @code{target("fpmath=sse,387")} option must be specified as
4076 @code{target("fpmath=sse+387")} because the comma would separate
4077 different options.
4078 @end table
4079
4080 On the PowerPC, the following options are allowed:
4081
4082 @table @samp
4083 @item altivec
4084 @itemx no-altivec
4085 @cindex @code{target("altivec")} attribute
4086 Generate code that uses (does not use) AltiVec instructions. In
4087 32-bit code, you cannot enable AltiVec instructions unless
4088 @option{-mabi=altivec} is used on the command line.
4089
4090 @item cmpb
4091 @itemx no-cmpb
4092 @cindex @code{target("cmpb")} attribute
4093 Generate code that uses (does not use) the compare bytes instruction
4094 implemented on the POWER6 processor and other processors that support
4095 the PowerPC V2.05 architecture.
4096
4097 @item dlmzb
4098 @itemx no-dlmzb
4099 @cindex @code{target("dlmzb")} attribute
4100 Generate code that uses (does not use) the string-search @samp{dlmzb}
4101 instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
4102 generated by default when targeting those processors.
4103
4104 @item fprnd
4105 @itemx no-fprnd
4106 @cindex @code{target("fprnd")} attribute
4107 Generate code that uses (does not use) the FP round to integer
4108 instructions implemented on the POWER5+ processor and other processors
4109 that support the PowerPC V2.03 architecture.
4110
4111 @item hard-dfp
4112 @itemx no-hard-dfp
4113 @cindex @code{target("hard-dfp")} attribute
4114 Generate code that uses (does not use) the decimal floating-point
4115 instructions implemented on some POWER processors.
4116
4117 @item isel
4118 @itemx no-isel
4119 @cindex @code{target("isel")} attribute
4120 Generate code that uses (does not use) ISEL instruction.
4121
4122 @item mfcrf
4123 @itemx no-mfcrf
4124 @cindex @code{target("mfcrf")} attribute
4125 Generate code that uses (does not use) the move from condition
4126 register field instruction implemented on the POWER4 processor and
4127 other processors that support the PowerPC V2.01 architecture.
4128
4129 @item mfpgpr
4130 @itemx no-mfpgpr
4131 @cindex @code{target("mfpgpr")} attribute
4132 Generate code that uses (does not use) the FP move to/from general
4133 purpose register instructions implemented on the POWER6X processor and
4134 other processors that support the extended PowerPC V2.05 architecture.
4135
4136 @item mulhw
4137 @itemx no-mulhw
4138 @cindex @code{target("mulhw")} attribute
4139 Generate code that uses (does not use) the half-word multiply and
4140 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
4141 These instructions are generated by default when targeting those
4142 processors.
4143
4144 @item multiple
4145 @itemx no-multiple
4146 @cindex @code{target("multiple")} attribute
4147 Generate code that uses (does not use) the load multiple word
4148 instructions and the store multiple word instructions.
4149
4150 @item update
4151 @itemx no-update
4152 @cindex @code{target("update")} attribute
4153 Generate code that uses (does not use) the load or store instructions
4154 that update the base register to the address of the calculated memory
4155 location.
4156
4157 @item popcntb
4158 @itemx no-popcntb
4159 @cindex @code{target("popcntb")} attribute
4160 Generate code that uses (does not use) the popcount and double-precision
4161 FP reciprocal estimate instruction implemented on the POWER5
4162 processor and other processors that support the PowerPC V2.02
4163 architecture.
4164
4165 @item popcntd
4166 @itemx no-popcntd
4167 @cindex @code{target("popcntd")} attribute
4168 Generate code that uses (does not use) the popcount instruction
4169 implemented on the POWER7 processor and other processors that support
4170 the PowerPC V2.06 architecture.
4171
4172 @item powerpc-gfxopt
4173 @itemx no-powerpc-gfxopt
4174 @cindex @code{target("powerpc-gfxopt")} attribute
4175 Generate code that uses (does not use) the optional PowerPC
4176 architecture instructions in the Graphics group, including
4177 floating-point select.
4178
4179 @item powerpc-gpopt
4180 @itemx no-powerpc-gpopt
4181 @cindex @code{target("powerpc-gpopt")} attribute
4182 Generate code that uses (does not use) the optional PowerPC
4183 architecture instructions in the General Purpose group, including
4184 floating-point square root.
4185
4186 @item recip-precision
4187 @itemx no-recip-precision
4188 @cindex @code{target("recip-precision")} attribute
4189 Assume (do not assume) that the reciprocal estimate instructions
4190 provide higher-precision estimates than is mandated by the powerpc
4191 ABI.
4192
4193 @item string
4194 @itemx no-string
4195 @cindex @code{target("string")} attribute
4196 Generate code that uses (does not use) the load string instructions
4197 and the store string word instructions to save multiple registers and
4198 do small block moves.
4199
4200 @item vsx
4201 @itemx no-vsx
4202 @cindex @code{target("vsx")} attribute
4203 Generate code that uses (does not use) vector/scalar (VSX)
4204 instructions, and also enable the use of built-in functions that allow
4205 more direct access to the VSX instruction set. In 32-bit code, you
4206 cannot enable VSX or AltiVec instructions unless
4207 @option{-mabi=altivec} is used on the command line.
4208
4209 @item friz
4210 @itemx no-friz
4211 @cindex @code{target("friz")} attribute
4212 Generate (do not generate) the @code{friz} instruction when the
4213 @option{-funsafe-math-optimizations} option is used to optimize
4214 rounding a floating-point value to 64-bit integer and back to floating
4215 point. The @code{friz} instruction does not return the same value if
4216 the floating-point number is too large to fit in an integer.
4217
4218 @item avoid-indexed-addresses
4219 @itemx no-avoid-indexed-addresses
4220 @cindex @code{target("avoid-indexed-addresses")} attribute
4221 Generate code that tries to avoid (not avoid) the use of indexed load
4222 or store instructions.
4223
4224 @item paired
4225 @itemx no-paired
4226 @cindex @code{target("paired")} attribute
4227 Generate code that uses (does not use) the generation of PAIRED simd
4228 instructions.
4229
4230 @item longcall
4231 @itemx no-longcall
4232 @cindex @code{target("longcall")} attribute
4233 Generate code that assumes (does not assume) that all calls are far
4234 away so that a longer more expensive calling sequence is required.
4235
4236 @item cpu=@var{CPU}
4237 @cindex @code{target("cpu=@var{CPU}")} attribute
4238 Specify the architecture to generate code for when compiling the
4239 function. If you select the @code{target("cpu=power7")} attribute when
4240 generating 32-bit code, VSX and AltiVec instructions are not generated
4241 unless you use the @option{-mabi=altivec} option on the command line.
4242
4243 @item tune=@var{TUNE}
4244 @cindex @code{target("tune=@var{TUNE}")} attribute
4245 Specify the architecture to tune for when compiling the function. If
4246 you do not specify the @code{target("tune=@var{TUNE}")} attribute and
4247 you do specify the @code{target("cpu=@var{CPU}")} attribute,
4248 compilation tunes for the @var{CPU} architecture, and not the
4249 default tuning specified on the command line.
4250 @end table
4251
4252 When compiling for Nios II, the following options are allowed:
4253
4254 @table @samp
4255 @item custom-@var{insn}=@var{N}
4256 @itemx no-custom-@var{insn}
4257 @cindex @code{target("custom-@var{insn}=@var{N}")} attribute
4258 @cindex @code{target("no-custom-@var{insn}")} attribute
4259 Each @samp{custom-@var{insn}=@var{N}} attribute locally enables use of a
4260 custom instruction with encoding @var{N} when generating code that uses
4261 @var{insn}. Similarly, @samp{no-custom-@var{insn}} locally inhibits use of
4262 the custom instruction @var{insn}.
4263 These target attributes correspond to the
4264 @option{-mcustom-@var{insn}=@var{N}} and @option{-mno-custom-@var{insn}}
4265 command-line options, and support the same set of @var{insn} keywords.
4266 @xref{Nios II Options}, for more information.
4267
4268 @item custom-fpu-cfg=@var{name}
4269 @cindex @code{target("custom-fpu-cfg=@var{name}")} attribute
4270 This attribute corresponds to the @option{-mcustom-fpu-cfg=@var{name}}
4271 command-line option, to select a predefined set of custom instructions
4272 named @var{name}.
4273 @xref{Nios II Options}, for more information.
4274 @end table
4275
4276 On the 386/x86_64 and PowerPC back ends, the inliner does not inline a
4277 function that has different target options than the caller, unless the
4278 callee has a subset of the target options of the caller. For example
4279 a function declared with @code{target("sse3")} can inline a function
4280 with @code{target("sse2")}, since @code{-msse3} implies @code{-msse2}.
4281
4282 @item tiny_data
4283 @cindex tiny data section on the H8/300H and H8S
4284 Use this attribute on the H8/300H and H8S to indicate that the specified
4285 variable should be placed into the tiny data section.
4286 The compiler generates more efficient code for loads and stores
4287 on data in the tiny data section. Note the tiny data area is limited to
4288 slightly under 32KB of data.
4289
4290 @item trap_exit
4291 @cindex @code{trap_exit} attribute
4292 Use this attribute on the SH for an @code{interrupt_handler} to return using
4293 @code{trapa} instead of @code{rte}. This attribute expects an integer
4294 argument specifying the trap number to be used.
4295
4296 @item trapa_handler
4297 @cindex @code{trapa_handler} attribute
4298 On SH targets this function attribute is similar to @code{interrupt_handler}
4299 but it does not save and restore all registers.
4300
4301 @item unused
4302 @cindex @code{unused} attribute.
4303 This attribute, attached to a function, means that the function is meant
4304 to be possibly unused. GCC does not produce a warning for this
4305 function.
4306
4307 @item used
4308 @cindex @code{used} attribute.
4309 This attribute, attached to a function, means that code must be emitted
4310 for the function even if it appears that the function is not referenced.
4311 This is useful, for example, when the function is referenced only in
4312 inline assembly.
4313
4314 When applied to a member function of a C++ class template, the
4315 attribute also means that the function is instantiated if the
4316 class itself is instantiated.
4317
4318 @item vector
4319 @cindex @code{vector} attribute
4320 This RX attribute is similar to the @code{interrupt} attribute, including its
4321 parameters, but does not make the function an interrupt-handler type
4322 function (i.e. it retains the normal C function calling ABI). See the
4323 @code{interrupt} attribute for a description of its arguments.
4324
4325 @item version_id
4326 @cindex @code{version_id} attribute
4327 This IA-64 HP-UX attribute, attached to a global variable or function, renames a
4328 symbol to contain a version string, thus allowing for function level
4329 versioning. HP-UX system header files may use function level versioning
4330 for some system calls.
4331
4332 @smallexample
4333 extern int foo () __attribute__((version_id ("20040821")));
4334 @end smallexample
4335
4336 @noindent
4337 Calls to @var{foo} are mapped to calls to @var{foo@{20040821@}}.
4338
4339 @item visibility ("@var{visibility_type}")
4340 @cindex @code{visibility} attribute
4341 This attribute affects the linkage of the declaration to which it is attached.
4342 There are four supported @var{visibility_type} values: default,
4343 hidden, protected or internal visibility.
4344
4345 @smallexample
4346 void __attribute__ ((visibility ("protected")))
4347 f () @{ /* @r{Do something.} */; @}
4348 int i __attribute__ ((visibility ("hidden")));
4349 @end smallexample
4350
4351 The possible values of @var{visibility_type} correspond to the
4352 visibility settings in the ELF gABI.
4353
4354 @table @dfn
4355 @c keep this list of visibilities in alphabetical order.
4356
4357 @item default
4358 Default visibility is the normal case for the object file format.
4359 This value is available for the visibility attribute to override other
4360 options that may change the assumed visibility of entities.
4361
4362 On ELF, default visibility means that the declaration is visible to other
4363 modules and, in shared libraries, means that the declared entity may be
4364 overridden.
4365
4366 On Darwin, default visibility means that the declaration is visible to
4367 other modules.
4368
4369 Default visibility corresponds to ``external linkage'' in the language.
4370
4371 @item hidden
4372 Hidden visibility indicates that the entity declared has a new
4373 form of linkage, which we call ``hidden linkage''. Two
4374 declarations of an object with hidden linkage refer to the same object
4375 if they are in the same shared object.
4376
4377 @item internal
4378 Internal visibility is like hidden visibility, but with additional
4379 processor specific semantics. Unless otherwise specified by the
4380 psABI, GCC defines internal visibility to mean that a function is
4381 @emph{never} called from another module. Compare this with hidden
4382 functions which, while they cannot be referenced directly by other
4383 modules, can be referenced indirectly via function pointers. By
4384 indicating that a function cannot be called from outside the module,
4385 GCC may for instance omit the load of a PIC register since it is known
4386 that the calling function loaded the correct value.
4387
4388 @item protected
4389 Protected visibility is like default visibility except that it
4390 indicates that references within the defining module bind to the
4391 definition in that module. That is, the declared entity cannot be
4392 overridden by another module.
4393
4394 @end table
4395
4396 All visibilities are supported on many, but not all, ELF targets
4397 (supported when the assembler supports the @samp{.visibility}
4398 pseudo-op). Default visibility is supported everywhere. Hidden
4399 visibility is supported on Darwin targets.
4400
4401 The visibility attribute should be applied only to declarations that
4402 would otherwise have external linkage. The attribute should be applied
4403 consistently, so that the same entity should not be declared with
4404 different settings of the attribute.
4405
4406 In C++, the visibility attribute applies to types as well as functions
4407 and objects, because in C++ types have linkage. A class must not have
4408 greater visibility than its non-static data member types and bases,
4409 and class members default to the visibility of their class. Also, a
4410 declaration without explicit visibility is limited to the visibility
4411 of its type.
4412
4413 In C++, you can mark member functions and static member variables of a
4414 class with the visibility attribute. This is useful if you know a
4415 particular method or static member variable should only be used from
4416 one shared object; then you can mark it hidden while the rest of the
4417 class has default visibility. Care must be taken to avoid breaking
4418 the One Definition Rule; for example, it is usually not useful to mark
4419 an inline method as hidden without marking the whole class as hidden.
4420
4421 A C++ namespace declaration can also have the visibility attribute.
4422
4423 @smallexample
4424 namespace nspace1 __attribute__ ((visibility ("protected")))
4425 @{ /* @r{Do something.} */; @}
4426 @end smallexample
4427
4428 This attribute applies only to the particular namespace body, not to
4429 other definitions of the same namespace; it is equivalent to using
4430 @samp{#pragma GCC visibility} before and after the namespace
4431 definition (@pxref{Visibility Pragmas}).
4432
4433 In C++, if a template argument has limited visibility, this
4434 restriction is implicitly propagated to the template instantiation.
4435 Otherwise, template instantiations and specializations default to the
4436 visibility of their template.
4437
4438 If both the template and enclosing class have explicit visibility, the
4439 visibility from the template is used.
4440
4441 @item vliw
4442 @cindex @code{vliw} attribute
4443 On MeP, the @code{vliw} attribute tells the compiler to emit
4444 instructions in VLIW mode instead of core mode. Note that this
4445 attribute is not allowed unless a VLIW coprocessor has been configured
4446 and enabled through command-line options.
4447
4448 @item warn_unused_result
4449 @cindex @code{warn_unused_result} attribute
4450 The @code{warn_unused_result} attribute causes a warning to be emitted
4451 if a caller of the function with this attribute does not use its
4452 return value. This is useful for functions where not checking
4453 the result is either a security problem or always a bug, such as
4454 @code{realloc}.
4455
4456 @smallexample
4457 int fn () __attribute__ ((warn_unused_result));
4458 int foo ()
4459 @{
4460 if (fn () < 0) return -1;
4461 fn ();
4462 return 0;
4463 @}
4464 @end smallexample
4465
4466 @noindent
4467 results in warning on line 5.
4468
4469 @item weak
4470 @cindex @code{weak} attribute
4471 The @code{weak} attribute causes the declaration to be emitted as a weak
4472 symbol rather than a global. This is primarily useful in defining
4473 library functions that can be overridden in user code, though it can
4474 also be used with non-function declarations. Weak symbols are supported
4475 for ELF targets, and also for a.out targets when using the GNU assembler
4476 and linker.
4477
4478 @item weakref
4479 @itemx weakref ("@var{target}")
4480 @cindex @code{weakref} attribute
4481 The @code{weakref} attribute marks a declaration as a weak reference.
4482 Without arguments, it should be accompanied by an @code{alias} attribute
4483 naming the target symbol. Optionally, the @var{target} may be given as
4484 an argument to @code{weakref} itself. In either case, @code{weakref}
4485 implicitly marks the declaration as @code{weak}. Without a
4486 @var{target}, given as an argument to @code{weakref} or to @code{alias},
4487 @code{weakref} is equivalent to @code{weak}.
4488
4489 @smallexample
4490 static int x() __attribute__ ((weakref ("y")));
4491 /* is equivalent to... */
4492 static int x() __attribute__ ((weak, weakref, alias ("y")));
4493 /* and to... */
4494 static int x() __attribute__ ((weakref));
4495 static int x() __attribute__ ((alias ("y")));
4496 @end smallexample
4497
4498 A weak reference is an alias that does not by itself require a
4499 definition to be given for the target symbol. If the target symbol is
4500 only referenced through weak references, then it becomes a @code{weak}
4501 undefined symbol. If it is directly referenced, however, then such
4502 strong references prevail, and a definition is required for the
4503 symbol, not necessarily in the same translation unit.
4504
4505 The effect is equivalent to moving all references to the alias to a
4506 separate translation unit, renaming the alias to the aliased symbol,
4507 declaring it as weak, compiling the two separate translation units and
4508 performing a reloadable link on them.
4509
4510 At present, a declaration to which @code{weakref} is attached can
4511 only be @code{static}.
4512
4513 @end table
4514
4515 You can specify multiple attributes in a declaration by separating them
4516 by commas within the double parentheses or by immediately following an
4517 attribute declaration with another attribute declaration.
4518
4519 @cindex @code{#pragma}, reason for not using
4520 @cindex pragma, reason for not using
4521 Some people object to the @code{__attribute__} feature, suggesting that
4522 ISO C's @code{#pragma} should be used instead. At the time
4523 @code{__attribute__} was designed, there were two reasons for not doing
4524 this.
4525
4526 @enumerate
4527 @item
4528 It is impossible to generate @code{#pragma} commands from a macro.
4529
4530 @item
4531 There is no telling what the same @code{#pragma} might mean in another
4532 compiler.
4533 @end enumerate
4534
4535 These two reasons applied to almost any application that might have been
4536 proposed for @code{#pragma}. It was basically a mistake to use
4537 @code{#pragma} for @emph{anything}.
4538
4539 The ISO C99 standard includes @code{_Pragma}, which now allows pragmas
4540 to be generated from macros. In addition, a @code{#pragma GCC}
4541 namespace is now in use for GCC-specific pragmas. However, it has been
4542 found convenient to use @code{__attribute__} to achieve a natural
4543 attachment of attributes to their corresponding declarations, whereas
4544 @code{#pragma GCC} is of use for constructs that do not naturally form
4545 part of the grammar. @xref{Pragmas,,Pragmas Accepted by GCC}.
4546
4547 @node Label Attributes
4548 @section Label Attributes
4549 @cindex Label Attributes
4550
4551 GCC allows attributes to be set on C labels. @xref{Attribute Syntax}, for
4552 details of the exact syntax for using attributes. Other attributes are
4553 available for functions (@pxref{Function Attributes}), variables
4554 (@pxref{Variable Attributes}) and for types (@pxref{Type Attributes}).
4555
4556 This example uses the @code{cold} label attribute to indicate the
4557 @code{ErrorHandling} branch is unlikely to be taken and that the
4558 @code{ErrorHandling} label is unused:
4559
4560 @smallexample
4561
4562 asm goto ("some asm" : : : : NoError);
4563
4564 /* This branch (the fallthru from the asm) is less commonly used */
4565 ErrorHandling:
4566 __attribute__((cold, unused)); /* Semi-colon is required here */
4567 printf("error\n");
4568 return 0;
4569
4570 NoError:
4571 printf("no error\n");
4572 return 1;
4573 @end smallexample
4574
4575 @table @code
4576 @item unused
4577 @cindex @code{unused} label attribute
4578 This feature is intended for program-generated code that may contain
4579 unused labels, but which is compiled with @option{-Wall}. It is
4580 not normally appropriate to use in it human-written code, though it
4581 could be useful in cases where the code that jumps to the label is
4582 contained within an @code{#ifdef} conditional.
4583
4584 @item hot
4585 @cindex @code{hot} label attribute
4586 The @code{hot} attribute on a label is used to inform the compiler that
4587 the path following the label is more likely than paths that are not so
4588 annotated. This attribute is used in cases where @code{__builtin_expect}
4589 cannot be used, for instance with computed goto or @code{asm goto}.
4590
4591 The @code{hot} attribute on labels is not implemented in GCC versions
4592 earlier than 4.8.
4593
4594 @item cold
4595 @cindex @code{cold} label attribute
4596 The @code{cold} attribute on labels is used to inform the compiler that
4597 the path following the label is unlikely to be executed. This attribute
4598 is used in cases where @code{__builtin_expect} cannot be used, for instance
4599 with computed goto or @code{asm goto}.
4600
4601 The @code{cold} attribute on labels is not implemented in GCC versions
4602 earlier than 4.8.
4603
4604 @end table
4605
4606 @node Attribute Syntax
4607 @section Attribute Syntax
4608 @cindex attribute syntax
4609
4610 This section describes the syntax with which @code{__attribute__} may be
4611 used, and the constructs to which attribute specifiers bind, for the C
4612 language. Some details may vary for C++ and Objective-C@. Because of
4613 infelicities in the grammar for attributes, some forms described here
4614 may not be successfully parsed in all cases.
4615
4616 There are some problems with the semantics of attributes in C++. For
4617 example, there are no manglings for attributes, although they may affect
4618 code generation, so problems may arise when attributed types are used in
4619 conjunction with templates or overloading. Similarly, @code{typeid}
4620 does not distinguish between types with different attributes. Support
4621 for attributes in C++ may be restricted in future to attributes on
4622 declarations only, but not on nested declarators.
4623
4624 @xref{Function Attributes}, for details of the semantics of attributes
4625 applying to functions. @xref{Variable Attributes}, for details of the
4626 semantics of attributes applying to variables. @xref{Type Attributes},
4627 for details of the semantics of attributes applying to structure, union
4628 and enumerated types.
4629 @xref{Label Attributes}, for details of the semantics of attributes
4630 applying to labels.
4631
4632 An @dfn{attribute specifier} is of the form
4633 @code{__attribute__ ((@var{attribute-list}))}. An @dfn{attribute list}
4634 is a possibly empty comma-separated sequence of @dfn{attributes}, where
4635 each attribute is one of the following:
4636
4637 @itemize @bullet
4638 @item
4639 Empty. Empty attributes are ignored.
4640
4641 @item
4642 A word (which may be an identifier such as @code{unused}, or a reserved
4643 word such as @code{const}).
4644
4645 @item
4646 A word, followed by, in parentheses, parameters for the attribute.
4647 These parameters take one of the following forms:
4648
4649 @itemize @bullet
4650 @item
4651 An identifier. For example, @code{mode} attributes use this form.
4652
4653 @item
4654 An identifier followed by a comma and a non-empty comma-separated list
4655 of expressions. For example, @code{format} attributes use this form.
4656
4657 @item
4658 A possibly empty comma-separated list of expressions. For example,
4659 @code{format_arg} attributes use this form with the list being a single
4660 integer constant expression, and @code{alias} attributes use this form
4661 with the list being a single string constant.
4662 @end itemize
4663 @end itemize
4664
4665 An @dfn{attribute specifier list} is a sequence of one or more attribute
4666 specifiers, not separated by any other tokens.
4667
4668 @subsubheading Label Attributes
4669
4670 In GNU C, an attribute specifier list may appear after the colon following a
4671 label, other than a @code{case} or @code{default} label. GNU C++ only permits
4672 attributes on labels if the attribute specifier is immediately
4673 followed by a semicolon (i.e., the label applies to an empty
4674 statement). If the semicolon is missing, C++ label attributes are
4675 ambiguous, as it is permissible for a declaration, which could begin
4676 with an attribute list, to be labelled in C++. Declarations cannot be
4677 labelled in C90 or C99, so the ambiguity does not arise there.
4678
4679 @subsubheading Type Attributes
4680
4681 An attribute specifier list may appear as part of a @code{struct},
4682 @code{union} or @code{enum} specifier. It may go either immediately
4683 after the @code{struct}, @code{union} or @code{enum} keyword, or after
4684 the closing brace. The former syntax is preferred.
4685 Where attribute specifiers follow the closing brace, they are considered
4686 to relate to the structure, union or enumerated type defined, not to any
4687 enclosing declaration the type specifier appears in, and the type
4688 defined is not complete until after the attribute specifiers.
4689 @c Otherwise, there would be the following problems: a shift/reduce
4690 @c conflict between attributes binding the struct/union/enum and
4691 @c binding to the list of specifiers/qualifiers; and "aligned"
4692 @c attributes could use sizeof for the structure, but the size could be
4693 @c changed later by "packed" attributes.
4694
4695
4696 @subsubheading All other attributes
4697
4698 Otherwise, an attribute specifier appears as part of a declaration,
4699 counting declarations of unnamed parameters and type names, and relates
4700 to that declaration (which may be nested in another declaration, for
4701 example in the case of a parameter declaration), or to a particular declarator
4702 within a declaration. Where an
4703 attribute specifier is applied to a parameter declared as a function or
4704 an array, it should apply to the function or array rather than the
4705 pointer to which the parameter is implicitly converted, but this is not
4706 yet correctly implemented.
4707
4708 Any list of specifiers and qualifiers at the start of a declaration may
4709 contain attribute specifiers, whether or not such a list may in that
4710 context contain storage class specifiers. (Some attributes, however,
4711 are essentially in the nature of storage class specifiers, and only make
4712 sense where storage class specifiers may be used; for example,
4713 @code{section}.) There is one necessary limitation to this syntax: the
4714 first old-style parameter declaration in a function definition cannot
4715 begin with an attribute specifier, because such an attribute applies to
4716 the function instead by syntax described below (which, however, is not
4717 yet implemented in this case). In some other cases, attribute
4718 specifiers are permitted by this grammar but not yet supported by the
4719 compiler. All attribute specifiers in this place relate to the
4720 declaration as a whole. In the obsolescent usage where a type of
4721 @code{int} is implied by the absence of type specifiers, such a list of
4722 specifiers and qualifiers may be an attribute specifier list with no
4723 other specifiers or qualifiers.
4724
4725 At present, the first parameter in a function prototype must have some
4726 type specifier that is not an attribute specifier; this resolves an
4727 ambiguity in the interpretation of @code{void f(int
4728 (__attribute__((foo)) x))}, but is subject to change. At present, if
4729 the parentheses of a function declarator contain only attributes then
4730 those attributes are ignored, rather than yielding an error or warning
4731 or implying a single parameter of type int, but this is subject to
4732 change.
4733
4734 An attribute specifier list may appear immediately before a declarator
4735 (other than the first) in a comma-separated list of declarators in a
4736 declaration of more than one identifier using a single list of
4737 specifiers and qualifiers. Such attribute specifiers apply
4738 only to the identifier before whose declarator they appear. For
4739 example, in
4740
4741 @smallexample
4742 __attribute__((noreturn)) void d0 (void),
4743 __attribute__((format(printf, 1, 2))) d1 (const char *, ...),
4744 d2 (void)
4745 @end smallexample
4746
4747 @noindent
4748 the @code{noreturn} attribute applies to all the functions
4749 declared; the @code{format} attribute only applies to @code{d1}.
4750
4751 An attribute specifier list may appear immediately before the comma,
4752 @code{=} or semicolon terminating the declaration of an identifier other
4753 than a function definition. Such attribute specifiers apply
4754 to the declared object or function. Where an
4755 assembler name for an object or function is specified (@pxref{Asm
4756 Labels}), the attribute must follow the @code{asm}
4757 specification.
4758
4759 An attribute specifier list may, in future, be permitted to appear after
4760 the declarator in a function definition (before any old-style parameter
4761 declarations or the function body).
4762
4763 Attribute specifiers may be mixed with type qualifiers appearing inside
4764 the @code{[]} of a parameter array declarator, in the C99 construct by
4765 which such qualifiers are applied to the pointer to which the array is
4766 implicitly converted. Such attribute specifiers apply to the pointer,
4767 not to the array, but at present this is not implemented and they are
4768 ignored.
4769
4770 An attribute specifier list may appear at the start of a nested
4771 declarator. At present, there are some limitations in this usage: the
4772 attributes correctly apply to the declarator, but for most individual
4773 attributes the semantics this implies are not implemented.
4774 When attribute specifiers follow the @code{*} of a pointer
4775 declarator, they may be mixed with any type qualifiers present.
4776 The following describes the formal semantics of this syntax. It makes the
4777 most sense if you are familiar with the formal specification of
4778 declarators in the ISO C standard.
4779
4780 Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration @code{T
4781 D1}, where @code{T} contains declaration specifiers that specify a type
4782 @var{Type} (such as @code{int}) and @code{D1} is a declarator that
4783 contains an identifier @var{ident}. The type specified for @var{ident}
4784 for derived declarators whose type does not include an attribute
4785 specifier is as in the ISO C standard.
4786
4787 If @code{D1} has the form @code{( @var{attribute-specifier-list} D )},
4788 and the declaration @code{T D} specifies the type
4789 ``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
4790 @code{T D1} specifies the type ``@var{derived-declarator-type-list}
4791 @var{attribute-specifier-list} @var{Type}'' for @var{ident}.
4792
4793 If @code{D1} has the form @code{*
4794 @var{type-qualifier-and-attribute-specifier-list} D}, and the
4795 declaration @code{T D} specifies the type
4796 ``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
4797 @code{T D1} specifies the type ``@var{derived-declarator-type-list}
4798 @var{type-qualifier-and-attribute-specifier-list} pointer to @var{Type}'' for
4799 @var{ident}.
4800
4801 For example,
4802
4803 @smallexample
4804 void (__attribute__((noreturn)) ****f) (void);
4805 @end smallexample
4806
4807 @noindent
4808 specifies the type ``pointer to pointer to pointer to pointer to
4809 non-returning function returning @code{void}''. As another example,
4810
4811 @smallexample
4812 char *__attribute__((aligned(8))) *f;
4813 @end smallexample
4814
4815 @noindent
4816 specifies the type ``pointer to 8-byte-aligned pointer to @code{char}''.
4817 Note again that this does not work with most attributes; for example,
4818 the usage of @samp{aligned} and @samp{noreturn} attributes given above
4819 is not yet supported.
4820
4821 For compatibility with existing code written for compiler versions that
4822 did not implement attributes on nested declarators, some laxity is
4823 allowed in the placing of attributes. If an attribute that only applies
4824 to types is applied to a declaration, it is treated as applying to
4825 the type of that declaration. If an attribute that only applies to
4826 declarations is applied to the type of a declaration, it is treated
4827 as applying to that declaration; and, for compatibility with code
4828 placing the attributes immediately before the identifier declared, such
4829 an attribute applied to a function return type is treated as
4830 applying to the function type, and such an attribute applied to an array
4831 element type is treated as applying to the array type. If an
4832 attribute that only applies to function types is applied to a
4833 pointer-to-function type, it is treated as applying to the pointer
4834 target type; if such an attribute is applied to a function return type
4835 that is not a pointer-to-function type, it is treated as applying
4836 to the function type.
4837
4838 @node Function Prototypes
4839 @section Prototypes and Old-Style Function Definitions
4840 @cindex function prototype declarations
4841 @cindex old-style function definitions
4842 @cindex promotion of formal parameters
4843
4844 GNU C extends ISO C to allow a function prototype to override a later
4845 old-style non-prototype definition. Consider the following example:
4846
4847 @smallexample
4848 /* @r{Use prototypes unless the compiler is old-fashioned.} */
4849 #ifdef __STDC__
4850 #define P(x) x
4851 #else
4852 #define P(x) ()
4853 #endif
4854
4855 /* @r{Prototype function declaration.} */
4856 int isroot P((uid_t));
4857
4858 /* @r{Old-style function definition.} */
4859 int
4860 isroot (x) /* @r{??? lossage here ???} */
4861 uid_t x;
4862 @{
4863 return x == 0;
4864 @}
4865 @end smallexample
4866
4867 Suppose the type @code{uid_t} happens to be @code{short}. ISO C does
4868 not allow this example, because subword arguments in old-style
4869 non-prototype definitions are promoted. Therefore in this example the
4870 function definition's argument is really an @code{int}, which does not
4871 match the prototype argument type of @code{short}.
4872
4873 This restriction of ISO C makes it hard to write code that is portable
4874 to traditional C compilers, because the programmer does not know
4875 whether the @code{uid_t} type is @code{short}, @code{int}, or
4876 @code{long}. Therefore, in cases like these GNU C allows a prototype
4877 to override a later old-style definition. More precisely, in GNU C, a
4878 function prototype argument type overrides the argument type specified
4879 by a later old-style definition if the former type is the same as the
4880 latter type before promotion. Thus in GNU C the above example is
4881 equivalent to the following:
4882
4883 @smallexample
4884 int isroot (uid_t);
4885
4886 int
4887 isroot (uid_t x)
4888 @{
4889 return x == 0;
4890 @}
4891 @end smallexample
4892
4893 @noindent
4894 GNU C++ does not support old-style function definitions, so this
4895 extension is irrelevant.
4896
4897 @node C++ Comments
4898 @section C++ Style Comments
4899 @cindex @code{//}
4900 @cindex C++ comments
4901 @cindex comments, C++ style
4902
4903 In GNU C, you may use C++ style comments, which start with @samp{//} and
4904 continue until the end of the line. Many other C implementations allow
4905 such comments, and they are included in the 1999 C standard. However,
4906 C++ style comments are not recognized if you specify an @option{-std}
4907 option specifying a version of ISO C before C99, or @option{-ansi}
4908 (equivalent to @option{-std=c90}).
4909
4910 @node Dollar Signs
4911 @section Dollar Signs in Identifier Names
4912 @cindex $
4913 @cindex dollar signs in identifier names
4914 @cindex identifier names, dollar signs in
4915
4916 In GNU C, you may normally use dollar signs in identifier names.
4917 This is because many traditional C implementations allow such identifiers.
4918 However, dollar signs in identifiers are not supported on a few target
4919 machines, typically because the target assembler does not allow them.
4920
4921 @node Character Escapes
4922 @section The Character @key{ESC} in Constants
4923
4924 You can use the sequence @samp{\e} in a string or character constant to
4925 stand for the ASCII character @key{ESC}.
4926
4927 @node Variable Attributes
4928 @section Specifying Attributes of Variables
4929 @cindex attribute of variables
4930 @cindex variable attributes
4931
4932 The keyword @code{__attribute__} allows you to specify special
4933 attributes of variables or structure fields. This keyword is followed
4934 by an attribute specification inside double parentheses. Some
4935 attributes are currently defined generically for variables.
4936 Other attributes are defined for variables on particular target
4937 systems. Other attributes are available for functions
4938 (@pxref{Function Attributes}), labels (@pxref{Label Attributes}) and for
4939 types (@pxref{Type Attributes}).
4940 Other front ends might define more attributes
4941 (@pxref{C++ Extensions,,Extensions to the C++ Language}).
4942
4943 You may also specify attributes with @samp{__} preceding and following
4944 each keyword. This allows you to use them in header files without
4945 being concerned about a possible macro of the same name. For example,
4946 you may use @code{__aligned__} instead of @code{aligned}.
4947
4948 @xref{Attribute Syntax}, for details of the exact syntax for using
4949 attributes.
4950
4951 @table @code
4952 @cindex @code{aligned} attribute
4953 @item aligned (@var{alignment})
4954 This attribute specifies a minimum alignment for the variable or
4955 structure field, measured in bytes. For example, the declaration:
4956
4957 @smallexample
4958 int x __attribute__ ((aligned (16))) = 0;
4959 @end smallexample
4960
4961 @noindent
4962 causes the compiler to allocate the global variable @code{x} on a
4963 16-byte boundary. On a 68040, this could be used in conjunction with
4964 an @code{asm} expression to access the @code{move16} instruction which
4965 requires 16-byte aligned operands.
4966
4967 You can also specify the alignment of structure fields. For example, to
4968 create a double-word aligned @code{int} pair, you could write:
4969
4970 @smallexample
4971 struct foo @{ int x[2] __attribute__ ((aligned (8))); @};
4972 @end smallexample
4973
4974 @noindent
4975 This is an alternative to creating a union with a @code{double} member,
4976 which forces the union to be double-word aligned.
4977
4978 As in the preceding examples, you can explicitly specify the alignment
4979 (in bytes) that you wish the compiler to use for a given variable or
4980 structure field. Alternatively, you can leave out the alignment factor
4981 and just ask the compiler to align a variable or field to the
4982 default alignment for the target architecture you are compiling for.
4983 The default alignment is sufficient for all scalar types, but may not be
4984 enough for all vector types on a target that supports vector operations.
4985 The default alignment is fixed for a particular target ABI.
4986
4987 GCC also provides a target specific macro @code{__BIGGEST_ALIGNMENT__},
4988 which is the largest alignment ever used for any data type on the
4989 target machine you are compiling for. For example, you could write:
4990
4991 @smallexample
4992 short array[3] __attribute__ ((aligned (__BIGGEST_ALIGNMENT__)));
4993 @end smallexample
4994
4995 The compiler automatically sets the alignment for the declared
4996 variable or field to @code{__BIGGEST_ALIGNMENT__}. Doing this can
4997 often make copy operations more efficient, because the compiler can
4998 use whatever instructions copy the biggest chunks of memory when
4999 performing copies to or from the variables or fields that you have
5000 aligned this way. Note that the value of @code{__BIGGEST_ALIGNMENT__}
5001 may change depending on command-line options.
5002
5003 When used on a struct, or struct member, the @code{aligned} attribute can
5004 only increase the alignment; in order to decrease it, the @code{packed}
5005 attribute must be specified as well. When used as part of a typedef, the
5006 @code{aligned} attribute can both increase and decrease alignment, and
5007 specifying the @code{packed} attribute generates a warning.
5008
5009 Note that the effectiveness of @code{aligned} attributes may be limited
5010 by inherent limitations in your linker. On many systems, the linker is
5011 only able to arrange for variables to be aligned up to a certain maximum
5012 alignment. (For some linkers, the maximum supported alignment may
5013 be very very small.) If your linker is only able to align variables
5014 up to a maximum of 8-byte alignment, then specifying @code{aligned(16)}
5015 in an @code{__attribute__} still only provides you with 8-byte
5016 alignment. See your linker documentation for further information.
5017
5018 The @code{aligned} attribute can also be used for functions
5019 (@pxref{Function Attributes}.)
5020
5021 @item cleanup (@var{cleanup_function})
5022 @cindex @code{cleanup} attribute
5023 The @code{cleanup} attribute runs a function when the variable goes
5024 out of scope. This attribute can only be applied to auto function
5025 scope variables; it may not be applied to parameters or variables
5026 with static storage duration. The function must take one parameter,
5027 a pointer to a type compatible with the variable. The return value
5028 of the function (if any) is ignored.
5029
5030 If @option{-fexceptions} is enabled, then @var{cleanup_function}
5031 is run during the stack unwinding that happens during the
5032 processing of the exception. Note that the @code{cleanup} attribute
5033 does not allow the exception to be caught, only to perform an action.
5034 It is undefined what happens if @var{cleanup_function} does not
5035 return normally.
5036
5037 @item common
5038 @itemx nocommon
5039 @cindex @code{common} attribute
5040 @cindex @code{nocommon} attribute
5041 @opindex fcommon
5042 @opindex fno-common
5043 The @code{common} attribute requests GCC to place a variable in
5044 ``common'' storage. The @code{nocommon} attribute requests the
5045 opposite---to allocate space for it directly.
5046
5047 These attributes override the default chosen by the
5048 @option{-fno-common} and @option{-fcommon} flags respectively.
5049
5050 @item deprecated
5051 @itemx deprecated (@var{msg})
5052 @cindex @code{deprecated} attribute
5053 The @code{deprecated} attribute results in a warning if the variable
5054 is used anywhere in the source file. This is useful when identifying
5055 variables that are expected to be removed in a future version of a
5056 program. The warning also includes the location of the declaration
5057 of the deprecated variable, to enable users to easily find further
5058 information about why the variable is deprecated, or what they should
5059 do instead. Note that the warning only occurs for uses:
5060
5061 @smallexample
5062 extern int old_var __attribute__ ((deprecated));
5063 extern int old_var;
5064 int new_fn () @{ return old_var; @}
5065 @end smallexample
5066
5067 @noindent
5068 results in a warning on line 3 but not line 2. The optional @var{msg}
5069 argument, which must be a string, is printed in the warning if
5070 present.
5071
5072 The @code{deprecated} attribute can also be used for functions and
5073 types (@pxref{Function Attributes}, @pxref{Type Attributes}.)
5074
5075 @item mode (@var{mode})
5076 @cindex @code{mode} attribute
5077 This attribute specifies the data type for the declaration---whichever
5078 type corresponds to the mode @var{mode}. This in effect lets you
5079 request an integer or floating-point type according to its width.
5080
5081 You may also specify a mode of @code{byte} or @code{__byte__} to
5082 indicate the mode corresponding to a one-byte integer, @code{word} or
5083 @code{__word__} for the mode of a one-word integer, and @code{pointer}
5084 or @code{__pointer__} for the mode used to represent pointers.
5085
5086 @item packed
5087 @cindex @code{packed} attribute
5088 The @code{packed} attribute specifies that a variable or structure field
5089 should have the smallest possible alignment---one byte for a variable,
5090 and one bit for a field, unless you specify a larger value with the
5091 @code{aligned} attribute.
5092
5093 Here is a structure in which the field @code{x} is packed, so that it
5094 immediately follows @code{a}:
5095
5096 @smallexample
5097 struct foo
5098 @{
5099 char a;
5100 int x[2] __attribute__ ((packed));
5101 @};
5102 @end smallexample
5103
5104 @emph{Note:} The 4.1, 4.2 and 4.3 series of GCC ignore the
5105 @code{packed} attribute on bit-fields of type @code{char}. This has
5106 been fixed in GCC 4.4 but the change can lead to differences in the
5107 structure layout. See the documentation of
5108 @option{-Wpacked-bitfield-compat} for more information.
5109
5110 @item section ("@var{section-name}")
5111 @cindex @code{section} variable attribute
5112 Normally, the compiler places the objects it generates in sections like
5113 @code{data} and @code{bss}. Sometimes, however, you need additional sections,
5114 or you need certain particular variables to appear in special sections,
5115 for example to map to special hardware. The @code{section}
5116 attribute specifies that a variable (or function) lives in a particular
5117 section. For example, this small program uses several specific section names:
5118
5119 @smallexample
5120 struct duart a __attribute__ ((section ("DUART_A"))) = @{ 0 @};
5121 struct duart b __attribute__ ((section ("DUART_B"))) = @{ 0 @};
5122 char stack[10000] __attribute__ ((section ("STACK"))) = @{ 0 @};
5123 int init_data __attribute__ ((section ("INITDATA")));
5124
5125 main()
5126 @{
5127 /* @r{Initialize stack pointer} */
5128 init_sp (stack + sizeof (stack));
5129
5130 /* @r{Initialize initialized data} */
5131 memcpy (&init_data, &data, &edata - &data);
5132
5133 /* @r{Turn on the serial ports} */
5134 init_duart (&a);
5135 init_duart (&b);
5136 @}
5137 @end smallexample
5138
5139 @noindent
5140 Use the @code{section} attribute with
5141 @emph{global} variables and not @emph{local} variables,
5142 as shown in the example.
5143
5144 You may use the @code{section} attribute with initialized or
5145 uninitialized global variables but the linker requires
5146 each object be defined once, with the exception that uninitialized
5147 variables tentatively go in the @code{common} (or @code{bss}) section
5148 and can be multiply ``defined''. Using the @code{section} attribute
5149 changes what section the variable goes into and may cause the
5150 linker to issue an error if an uninitialized variable has multiple
5151 definitions. You can force a variable to be initialized with the
5152 @option{-fno-common} flag or the @code{nocommon} attribute.
5153
5154 Some file formats do not support arbitrary sections so the @code{section}
5155 attribute is not available on all platforms.
5156 If you need to map the entire contents of a module to a particular
5157 section, consider using the facilities of the linker instead.
5158
5159 @item shared
5160 @cindex @code{shared} variable attribute
5161 On Microsoft Windows, in addition to putting variable definitions in a named
5162 section, the section can also be shared among all running copies of an
5163 executable or DLL@. For example, this small program defines shared data
5164 by putting it in a named section @code{shared} and marking the section
5165 shareable:
5166
5167 @smallexample
5168 int foo __attribute__((section ("shared"), shared)) = 0;
5169
5170 int
5171 main()
5172 @{
5173 /* @r{Read and write foo. All running
5174 copies see the same value.} */
5175 return 0;
5176 @}
5177 @end smallexample
5178
5179 @noindent
5180 You may only use the @code{shared} attribute along with @code{section}
5181 attribute with a fully-initialized global definition because of the way
5182 linkers work. See @code{section} attribute for more information.
5183
5184 The @code{shared} attribute is only available on Microsoft Windows@.
5185
5186 @item tls_model ("@var{tls_model}")
5187 @cindex @code{tls_model} attribute
5188 The @code{tls_model} attribute sets thread-local storage model
5189 (@pxref{Thread-Local}) of a particular @code{__thread} variable,
5190 overriding @option{-ftls-model=} command-line switch on a per-variable
5191 basis.
5192 The @var{tls_model} argument should be one of @code{global-dynamic},
5193 @code{local-dynamic}, @code{initial-exec} or @code{local-exec}.
5194
5195 Not all targets support this attribute.
5196
5197 @item unused
5198 This attribute, attached to a variable, means that the variable is meant
5199 to be possibly unused. GCC does not produce a warning for this
5200 variable.
5201
5202 @item used
5203 This attribute, attached to a variable with the static storage, means that
5204 the variable must be emitted even if it appears that the variable is not
5205 referenced.
5206
5207 When applied to a static data member of a C++ class template, the
5208 attribute also means that the member is instantiated if the
5209 class itself is instantiated.
5210
5211 @item vector_size (@var{bytes})
5212 This attribute specifies the vector size for the variable, measured in
5213 bytes. For example, the declaration:
5214
5215 @smallexample
5216 int foo __attribute__ ((vector_size (16)));
5217 @end smallexample
5218
5219 @noindent
5220 causes the compiler to set the mode for @code{foo}, to be 16 bytes,
5221 divided into @code{int} sized units. Assuming a 32-bit int (a vector of
5222 4 units of 4 bytes), the corresponding mode of @code{foo} is V4SI@.
5223
5224 This attribute is only applicable to integral and float scalars,
5225 although arrays, pointers, and function return values are allowed in
5226 conjunction with this construct.
5227
5228 Aggregates with this attribute are invalid, even if they are of the same
5229 size as a corresponding scalar. For example, the declaration:
5230
5231 @smallexample
5232 struct S @{ int a; @};
5233 struct S __attribute__ ((vector_size (16))) foo;
5234 @end smallexample
5235
5236 @noindent
5237 is invalid even if the size of the structure is the same as the size of
5238 the @code{int}.
5239
5240 @item selectany
5241 The @code{selectany} attribute causes an initialized global variable to
5242 have link-once semantics. When multiple definitions of the variable are
5243 encountered by the linker, the first is selected and the remainder are
5244 discarded. Following usage by the Microsoft compiler, the linker is told
5245 @emph{not} to warn about size or content differences of the multiple
5246 definitions.
5247
5248 Although the primary usage of this attribute is for POD types, the
5249 attribute can also be applied to global C++ objects that are initialized
5250 by a constructor. In this case, the static initialization and destruction
5251 code for the object is emitted in each translation defining the object,
5252 but the calls to the constructor and destructor are protected by a
5253 link-once guard variable.
5254
5255 The @code{selectany} attribute is only available on Microsoft Windows
5256 targets. You can use @code{__declspec (selectany)} as a synonym for
5257 @code{__attribute__ ((selectany))} for compatibility with other
5258 compilers.
5259
5260 @item weak
5261 The @code{weak} attribute is described in @ref{Function Attributes}.
5262
5263 @item dllimport
5264 The @code{dllimport} attribute is described in @ref{Function Attributes}.
5265
5266 @item dllexport
5267 The @code{dllexport} attribute is described in @ref{Function Attributes}.
5268
5269 @end table
5270
5271 @anchor{AVR Variable Attributes}
5272 @subsection AVR Variable Attributes
5273
5274 @table @code
5275 @item progmem
5276 @cindex @code{progmem} AVR variable attribute
5277 The @code{progmem} attribute is used on the AVR to place read-only
5278 data in the non-volatile program memory (flash). The @code{progmem}
5279 attribute accomplishes this by putting respective variables into a
5280 section whose name starts with @code{.progmem}.
5281
5282 This attribute works similar to the @code{section} attribute
5283 but adds additional checking. Notice that just like the
5284 @code{section} attribute, @code{progmem} affects the location
5285 of the data but not how this data is accessed.
5286
5287 In order to read data located with the @code{progmem} attribute
5288 (inline) assembler must be used.
5289 @smallexample
5290 /* Use custom macros from @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC}} */
5291 #include <avr/pgmspace.h>
5292
5293 /* Locate var in flash memory */
5294 const int var[2] PROGMEM = @{ 1, 2 @};
5295
5296 int read_var (int i)
5297 @{
5298 /* Access var[] by accessor macro from avr/pgmspace.h */
5299 return (int) pgm_read_word (& var[i]);
5300 @}
5301 @end smallexample
5302
5303 AVR is a Harvard architecture processor and data and read-only data
5304 normally resides in the data memory (RAM).
5305
5306 See also the @ref{AVR Named Address Spaces} section for
5307 an alternate way to locate and access data in flash memory.
5308 @end table
5309
5310 @subsection Blackfin Variable Attributes
5311
5312 Three attributes are currently defined for the Blackfin.
5313
5314 @table @code
5315 @item l1_data
5316 @itemx l1_data_A
5317 @itemx l1_data_B
5318 @cindex @code{l1_data} variable attribute
5319 @cindex @code{l1_data_A} variable attribute
5320 @cindex @code{l1_data_B} variable attribute
5321 Use these attributes on the Blackfin to place the variable into L1 Data SRAM.
5322 Variables with @code{l1_data} attribute are put into the specific section
5323 named @code{.l1.data}. Those with @code{l1_data_A} attribute are put into
5324 the specific section named @code{.l1.data.A}. Those with @code{l1_data_B}
5325 attribute are put into the specific section named @code{.l1.data.B}.
5326
5327 @item l2
5328 @cindex @code{l2} variable attribute
5329 Use this attribute on the Blackfin to place the variable into L2 SRAM.
5330 Variables with @code{l2} attribute are put into the specific section
5331 named @code{.l2.data}.
5332 @end table
5333
5334 @subsection M32R/D Variable Attributes
5335
5336 One attribute is currently defined for the M32R/D@.
5337
5338 @table @code
5339 @item model (@var{model-name})
5340 @cindex variable addressability on the M32R/D
5341 Use this attribute on the M32R/D to set the addressability of an object.
5342 The identifier @var{model-name} is one of @code{small}, @code{medium},
5343 or @code{large}, representing each of the code models.
5344
5345 Small model objects live in the lower 16MB of memory (so that their
5346 addresses can be loaded with the @code{ld24} instruction).
5347
5348 Medium and large model objects may live anywhere in the 32-bit address space
5349 (the compiler generates @code{seth/add3} instructions to load their
5350 addresses).
5351 @end table
5352
5353 @anchor{MeP Variable Attributes}
5354 @subsection MeP Variable Attributes
5355
5356 The MeP target has a number of addressing modes and busses. The
5357 @code{near} space spans the standard memory space's first 16 megabytes
5358 (24 bits). The @code{far} space spans the entire 32-bit memory space.
5359 The @code{based} space is a 128-byte region in the memory space that
5360 is addressed relative to the @code{$tp} register. The @code{tiny}
5361 space is a 65536-byte region relative to the @code{$gp} register. In
5362 addition to these memory regions, the MeP target has a separate 16-bit
5363 control bus which is specified with @code{cb} attributes.
5364
5365 @table @code
5366
5367 @item based
5368 Any variable with the @code{based} attribute is assigned to the
5369 @code{.based} section, and is accessed with relative to the
5370 @code{$tp} register.
5371
5372 @item tiny
5373 Likewise, the @code{tiny} attribute assigned variables to the
5374 @code{.tiny} section, relative to the @code{$gp} register.
5375
5376 @item near
5377 Variables with the @code{near} attribute are assumed to have addresses
5378 that fit in a 24-bit addressing mode. This is the default for large
5379 variables (@code{-mtiny=4} is the default) but this attribute can
5380 override @code{-mtiny=} for small variables, or override @code{-ml}.
5381
5382 @item far
5383 Variables with the @code{far} attribute are addressed using a full
5384 32-bit address. Since this covers the entire memory space, this
5385 allows modules to make no assumptions about where variables might be
5386 stored.
5387
5388 @item io
5389 @itemx io (@var{addr})
5390 Variables with the @code{io} attribute are used to address
5391 memory-mapped peripherals. If an address is specified, the variable
5392 is assigned that address, else it is not assigned an address (it is
5393 assumed some other module assigns an address). Example:
5394
5395 @smallexample
5396 int timer_count __attribute__((io(0x123)));
5397 @end smallexample
5398
5399 @item cb
5400 @itemx cb (@var{addr})
5401 Variables with the @code{cb} attribute are used to access the control
5402 bus, using special instructions. @code{addr} indicates the control bus
5403 address. Example:
5404
5405 @smallexample
5406 int cpu_clock __attribute__((cb(0x123)));
5407 @end smallexample
5408
5409 @end table
5410
5411 @anchor{i386 Variable Attributes}
5412 @subsection i386 Variable Attributes
5413
5414 Two attributes are currently defined for i386 configurations:
5415 @code{ms_struct} and @code{gcc_struct}
5416
5417 @table @code
5418 @item ms_struct
5419 @itemx gcc_struct
5420 @cindex @code{ms_struct} attribute
5421 @cindex @code{gcc_struct} attribute
5422
5423 If @code{packed} is used on a structure, or if bit-fields are used,
5424 it may be that the Microsoft ABI lays out the structure differently
5425 than the way GCC normally does. Particularly when moving packed
5426 data between functions compiled with GCC and the native Microsoft compiler
5427 (either via function call or as data in a file), it may be necessary to access
5428 either format.
5429
5430 Currently @option{-m[no-]ms-bitfields} is provided for the Microsoft Windows X86
5431 compilers to match the native Microsoft compiler.
5432
5433 The Microsoft structure layout algorithm is fairly simple with the exception
5434 of the bit-field packing.
5435 The padding and alignment of members of structures and whether a bit-field
5436 can straddle a storage-unit boundary are determine by these rules:
5437
5438 @enumerate
5439 @item Structure members are stored sequentially in the order in which they are
5440 declared: the first member has the lowest memory address and the last member
5441 the highest.
5442
5443 @item Every data object has an alignment requirement. The alignment requirement
5444 for all data except structures, unions, and arrays is either the size of the
5445 object or the current packing size (specified with either the
5446 @code{aligned} attribute or the @code{pack} pragma),
5447 whichever is less. For structures, unions, and arrays,
5448 the alignment requirement is the largest alignment requirement of its members.
5449 Every object is allocated an offset so that:
5450
5451 @smallexample
5452 offset % alignment_requirement == 0
5453 @end smallexample
5454
5455 @item Adjacent bit-fields are packed into the same 1-, 2-, or 4-byte allocation
5456 unit if the integral types are the same size and if the next bit-field fits
5457 into the current allocation unit without crossing the boundary imposed by the
5458 common alignment requirements of the bit-fields.
5459 @end enumerate
5460
5461 MSVC interprets zero-length bit-fields in the following ways:
5462
5463 @enumerate
5464 @item If a zero-length bit-field is inserted between two bit-fields that
5465 are normally coalesced, the bit-fields are not coalesced.
5466
5467 For example:
5468
5469 @smallexample
5470 struct
5471 @{
5472 unsigned long bf_1 : 12;
5473 unsigned long : 0;
5474 unsigned long bf_2 : 12;
5475 @} t1;
5476 @end smallexample
5477
5478 @noindent
5479 The size of @code{t1} is 8 bytes with the zero-length bit-field. If the
5480 zero-length bit-field were removed, @code{t1}'s size would be 4 bytes.
5481
5482 @item If a zero-length bit-field is inserted after a bit-field, @code{foo}, and the
5483 alignment of the zero-length bit-field is greater than the member that follows it,
5484 @code{bar}, @code{bar} is aligned as the type of the zero-length bit-field.
5485
5486 For example:
5487
5488 @smallexample
5489 struct
5490 @{
5491 char foo : 4;
5492 short : 0;
5493 char bar;
5494 @} t2;
5495
5496 struct
5497 @{
5498 char foo : 4;
5499 short : 0;
5500 double bar;
5501 @} t3;
5502 @end smallexample
5503
5504 @noindent
5505 For @code{t2}, @code{bar} is placed at offset 2, rather than offset 1.
5506 Accordingly, the size of @code{t2} is 4. For @code{t3}, the zero-length
5507 bit-field does not affect the alignment of @code{bar} or, as a result, the size
5508 of the structure.
5509
5510 Taking this into account, it is important to note the following:
5511
5512 @enumerate
5513 @item If a zero-length bit-field follows a normal bit-field, the type of the
5514 zero-length bit-field may affect the alignment of the structure as whole. For
5515 example, @code{t2} has a size of 4 bytes, since the zero-length bit-field follows a
5516 normal bit-field, and is of type short.
5517
5518 @item Even if a zero-length bit-field is not followed by a normal bit-field, it may
5519 still affect the alignment of the structure:
5520
5521 @smallexample
5522 struct
5523 @{
5524 char foo : 6;
5525 long : 0;
5526 @} t4;
5527 @end smallexample
5528
5529 @noindent
5530 Here, @code{t4} takes up 4 bytes.
5531 @end enumerate
5532
5533 @item Zero-length bit-fields following non-bit-field members are ignored:
5534
5535 @smallexample
5536 struct
5537 @{
5538 char foo;
5539 long : 0;
5540 char bar;
5541 @} t5;
5542 @end smallexample
5543
5544 @noindent
5545 Here, @code{t5} takes up 2 bytes.
5546 @end enumerate
5547 @end table
5548
5549 @subsection PowerPC Variable Attributes
5550
5551 Three attributes currently are defined for PowerPC configurations:
5552 @code{altivec}, @code{ms_struct} and @code{gcc_struct}.
5553
5554 For full documentation of the struct attributes please see the
5555 documentation in @ref{i386 Variable Attributes}.
5556
5557 For documentation of @code{altivec} attribute please see the
5558 documentation in @ref{PowerPC Type Attributes}.
5559
5560 @subsection SPU Variable Attributes
5561
5562 The SPU supports the @code{spu_vector} attribute for variables. For
5563 documentation of this attribute please see the documentation in
5564 @ref{SPU Type Attributes}.
5565
5566 @subsection Xstormy16 Variable Attributes
5567
5568 One attribute is currently defined for xstormy16 configurations:
5569 @code{below100}.
5570
5571 @table @code
5572 @item below100
5573 @cindex @code{below100} attribute
5574
5575 If a variable has the @code{below100} attribute (@code{BELOW100} is
5576 allowed also), GCC places the variable in the first 0x100 bytes of
5577 memory and use special opcodes to access it. Such variables are
5578 placed in either the @code{.bss_below100} section or the
5579 @code{.data_below100} section.
5580
5581 @end table
5582
5583 @node Type Attributes
5584 @section Specifying Attributes of Types
5585 @cindex attribute of types
5586 @cindex type attributes
5587
5588 The keyword @code{__attribute__} allows you to specify special
5589 attributes of @code{struct} and @code{union} types when you define
5590 such types. This keyword is followed by an attribute specification
5591 inside double parentheses. Seven attributes are currently defined for
5592 types: @code{aligned}, @code{packed}, @code{transparent_union},
5593 @code{unused}, @code{deprecated}, @code{visibility}, and
5594 @code{may_alias}. Other attributes are defined for functions
5595 (@pxref{Function Attributes}), labels (@pxref{Label
5596 Attributes}) and for variables (@pxref{Variable Attributes}).
5597
5598 You may also specify any one of these attributes with @samp{__}
5599 preceding and following its keyword. This allows you to use these
5600 attributes in header files without being concerned about a possible
5601 macro of the same name. For example, you may use @code{__aligned__}
5602 instead of @code{aligned}.
5603
5604 You may specify type attributes in an enum, struct or union type
5605 declaration or definition, or for other types in a @code{typedef}
5606 declaration.
5607
5608 For an enum, struct or union type, you may specify attributes either
5609 between the enum, struct or union tag and the name of the type, or
5610 just past the closing curly brace of the @emph{definition}. The
5611 former syntax is preferred.
5612
5613 @xref{Attribute Syntax}, for details of the exact syntax for using
5614 attributes.
5615
5616 @table @code
5617 @cindex @code{aligned} attribute
5618 @item aligned (@var{alignment})
5619 This attribute specifies a minimum alignment (in bytes) for variables
5620 of the specified type. For example, the declarations:
5621
5622 @smallexample
5623 struct S @{ short f[3]; @} __attribute__ ((aligned (8)));
5624 typedef int more_aligned_int __attribute__ ((aligned (8)));
5625 @end smallexample
5626
5627 @noindent
5628 force the compiler to ensure (as far as it can) that each variable whose
5629 type is @code{struct S} or @code{more_aligned_int} is allocated and
5630 aligned @emph{at least} on a 8-byte boundary. On a SPARC, having all
5631 variables of type @code{struct S} aligned to 8-byte boundaries allows
5632 the compiler to use the @code{ldd} and @code{std} (doubleword load and
5633 store) instructions when copying one variable of type @code{struct S} to
5634 another, thus improving run-time efficiency.
5635
5636 Note that the alignment of any given @code{struct} or @code{union} type
5637 is required by the ISO C standard to be at least a perfect multiple of
5638 the lowest common multiple of the alignments of all of the members of
5639 the @code{struct} or @code{union} in question. This means that you @emph{can}
5640 effectively adjust the alignment of a @code{struct} or @code{union}
5641 type by attaching an @code{aligned} attribute to any one of the members
5642 of such a type, but the notation illustrated in the example above is a
5643 more obvious, intuitive, and readable way to request the compiler to
5644 adjust the alignment of an entire @code{struct} or @code{union} type.
5645
5646 As in the preceding example, you can explicitly specify the alignment
5647 (in bytes) that you wish the compiler to use for a given @code{struct}
5648 or @code{union} type. Alternatively, you can leave out the alignment factor
5649 and just ask the compiler to align a type to the maximum
5650 useful alignment for the target machine you are compiling for. For
5651 example, you could write:
5652
5653 @smallexample
5654 struct S @{ short f[3]; @} __attribute__ ((aligned));
5655 @end smallexample
5656
5657 Whenever you leave out the alignment factor in an @code{aligned}
5658 attribute specification, the compiler automatically sets the alignment
5659 for the type to the largest alignment that is ever used for any data
5660 type on the target machine you are compiling for. Doing this can often
5661 make copy operations more efficient, because the compiler can use
5662 whatever instructions copy the biggest chunks of memory when performing
5663 copies to or from the variables that have types that you have aligned
5664 this way.
5665
5666 In the example above, if the size of each @code{short} is 2 bytes, then
5667 the size of the entire @code{struct S} type is 6 bytes. The smallest
5668 power of two that is greater than or equal to that is 8, so the
5669 compiler sets the alignment for the entire @code{struct S} type to 8
5670 bytes.
5671
5672 Note that although you can ask the compiler to select a time-efficient
5673 alignment for a given type and then declare only individual stand-alone
5674 objects of that type, the compiler's ability to select a time-efficient
5675 alignment is primarily useful only when you plan to create arrays of
5676 variables having the relevant (efficiently aligned) type. If you
5677 declare or use arrays of variables of an efficiently-aligned type, then
5678 it is likely that your program also does pointer arithmetic (or
5679 subscripting, which amounts to the same thing) on pointers to the
5680 relevant type, and the code that the compiler generates for these
5681 pointer arithmetic operations is often more efficient for
5682 efficiently-aligned types than for other types.
5683
5684 The @code{aligned} attribute can only increase the alignment; but you
5685 can decrease it by specifying @code{packed} as well. See below.
5686
5687 Note that the effectiveness of @code{aligned} attributes may be limited
5688 by inherent limitations in your linker. On many systems, the linker is
5689 only able to arrange for variables to be aligned up to a certain maximum
5690 alignment. (For some linkers, the maximum supported alignment may
5691 be very very small.) If your linker is only able to align variables
5692 up to a maximum of 8-byte alignment, then specifying @code{aligned(16)}
5693 in an @code{__attribute__} still only provides you with 8-byte
5694 alignment. See your linker documentation for further information.
5695
5696 @item packed
5697 This attribute, attached to @code{struct} or @code{union} type
5698 definition, specifies that each member (other than zero-width bit-fields)
5699 of the structure or union is placed to minimize the memory required. When
5700 attached to an @code{enum} definition, it indicates that the smallest
5701 integral type should be used.
5702
5703 @opindex fshort-enums
5704 Specifying this attribute for @code{struct} and @code{union} types is
5705 equivalent to specifying the @code{packed} attribute on each of the
5706 structure or union members. Specifying the @option{-fshort-enums}
5707 flag on the line is equivalent to specifying the @code{packed}
5708 attribute on all @code{enum} definitions.
5709
5710 In the following example @code{struct my_packed_struct}'s members are
5711 packed closely together, but the internal layout of its @code{s} member
5712 is not packed---to do that, @code{struct my_unpacked_struct} needs to
5713 be packed too.
5714
5715 @smallexample
5716 struct my_unpacked_struct
5717 @{
5718 char c;
5719 int i;
5720 @};
5721
5722 struct __attribute__ ((__packed__)) my_packed_struct
5723 @{
5724 char c;
5725 int i;
5726 struct my_unpacked_struct s;
5727 @};
5728 @end smallexample
5729
5730 You may only specify this attribute on the definition of an @code{enum},
5731 @code{struct} or @code{union}, not on a @code{typedef} that does not
5732 also define the enumerated type, structure or union.
5733
5734 @item transparent_union
5735 @cindex @code{transparent_union} attribute
5736
5737 This attribute, attached to a @code{union} type definition, indicates
5738 that any function parameter having that union type causes calls to that
5739 function to be treated in a special way.
5740
5741 First, the argument corresponding to a transparent union type can be of
5742 any type in the union; no cast is required. Also, if the union contains
5743 a pointer type, the corresponding argument can be a null pointer
5744 constant or a void pointer expression; and if the union contains a void
5745 pointer type, the corresponding argument can be any pointer expression.
5746 If the union member type is a pointer, qualifiers like @code{const} on
5747 the referenced type must be respected, just as with normal pointer
5748 conversions.
5749
5750 Second, the argument is passed to the function using the calling
5751 conventions of the first member of the transparent union, not the calling
5752 conventions of the union itself. All members of the union must have the
5753 same machine representation; this is necessary for this argument passing
5754 to work properly.
5755
5756 Transparent unions are designed for library functions that have multiple
5757 interfaces for compatibility reasons. For example, suppose the
5758 @code{wait} function must accept either a value of type @code{int *} to
5759 comply with POSIX, or a value of type @code{union wait *} to comply with
5760 the 4.1BSD interface. If @code{wait}'s parameter were @code{void *},
5761 @code{wait} would accept both kinds of arguments, but it would also
5762 accept any other pointer type and this would make argument type checking
5763 less useful. Instead, @code{<sys/wait.h>} might define the interface
5764 as follows:
5765
5766 @smallexample
5767 typedef union __attribute__ ((__transparent_union__))
5768 @{
5769 int *__ip;
5770 union wait *__up;
5771 @} wait_status_ptr_t;
5772
5773 pid_t wait (wait_status_ptr_t);
5774 @end smallexample
5775
5776 @noindent
5777 This interface allows either @code{int *} or @code{union wait *}
5778 arguments to be passed, using the @code{int *} calling convention.
5779 The program can call @code{wait} with arguments of either type:
5780
5781 @smallexample
5782 int w1 () @{ int w; return wait (&w); @}
5783 int w2 () @{ union wait w; return wait (&w); @}
5784 @end smallexample
5785
5786 @noindent
5787 With this interface, @code{wait}'s implementation might look like this:
5788
5789 @smallexample
5790 pid_t wait (wait_status_ptr_t p)
5791 @{
5792 return waitpid (-1, p.__ip, 0);
5793 @}
5794 @end smallexample
5795
5796 @item unused
5797 When attached to a type (including a @code{union} or a @code{struct}),
5798 this attribute means that variables of that type are meant to appear
5799 possibly unused. GCC does not produce a warning for any variables of
5800 that type, even if the variable appears to do nothing. This is often
5801 the case with lock or thread classes, which are usually defined and then
5802 not referenced, but contain constructors and destructors that have
5803 nontrivial bookkeeping functions.
5804
5805 @item deprecated
5806 @itemx deprecated (@var{msg})
5807 The @code{deprecated} attribute results in a warning if the type
5808 is used anywhere in the source file. This is useful when identifying
5809 types that are expected to be removed in a future version of a program.
5810 If possible, the warning also includes the location of the declaration
5811 of the deprecated type, to enable users to easily find further
5812 information about why the type is deprecated, or what they should do
5813 instead. Note that the warnings only occur for uses and then only
5814 if the type is being applied to an identifier that itself is not being
5815 declared as deprecated.
5816
5817 @smallexample
5818 typedef int T1 __attribute__ ((deprecated));
5819 T1 x;
5820 typedef T1 T2;
5821 T2 y;
5822 typedef T1 T3 __attribute__ ((deprecated));
5823 T3 z __attribute__ ((deprecated));
5824 @end smallexample
5825
5826 @noindent
5827 results in a warning on line 2 and 3 but not lines 4, 5, or 6. No
5828 warning is issued for line 4 because T2 is not explicitly
5829 deprecated. Line 5 has no warning because T3 is explicitly
5830 deprecated. Similarly for line 6. The optional @var{msg}
5831 argument, which must be a string, is printed in the warning if
5832 present.
5833
5834 The @code{deprecated} attribute can also be used for functions and
5835 variables (@pxref{Function Attributes}, @pxref{Variable Attributes}.)
5836
5837 @item may_alias
5838 Accesses through pointers to types with this attribute are not subject
5839 to type-based alias analysis, but are instead assumed to be able to alias
5840 any other type of objects.
5841 In the context of section 6.5 paragraph 7 of the C99 standard,
5842 an lvalue expression
5843 dereferencing such a pointer is treated like having a character type.
5844 See @option{-fstrict-aliasing} for more information on aliasing issues.
5845 This extension exists to support some vector APIs, in which pointers to
5846 one vector type are permitted to alias pointers to a different vector type.
5847
5848 Note that an object of a type with this attribute does not have any
5849 special semantics.
5850
5851 Example of use:
5852
5853 @smallexample
5854 typedef short __attribute__((__may_alias__)) short_a;
5855
5856 int
5857 main (void)
5858 @{
5859 int a = 0x12345678;
5860 short_a *b = (short_a *) &a;
5861
5862 b[1] = 0;
5863
5864 if (a == 0x12345678)
5865 abort();
5866
5867 exit(0);
5868 @}
5869 @end smallexample
5870
5871 @noindent
5872 If you replaced @code{short_a} with @code{short} in the variable
5873 declaration, the above program would abort when compiled with
5874 @option{-fstrict-aliasing}, which is on by default at @option{-O2} or
5875 above in recent GCC versions.
5876
5877 @item visibility
5878 In C++, attribute visibility (@pxref{Function Attributes}) can also be
5879 applied to class, struct, union and enum types. Unlike other type
5880 attributes, the attribute must appear between the initial keyword and
5881 the name of the type; it cannot appear after the body of the type.
5882
5883 Note that the type visibility is applied to vague linkage entities
5884 associated with the class (vtable, typeinfo node, etc.). In
5885 particular, if a class is thrown as an exception in one shared object
5886 and caught in another, the class must have default visibility.
5887 Otherwise the two shared objects are unable to use the same
5888 typeinfo node and exception handling will break.
5889
5890 @end table
5891
5892 To specify multiple attributes, separate them by commas within the
5893 double parentheses: for example, @samp{__attribute__ ((aligned (16),
5894 packed))}.
5895
5896 @subsection ARM Type Attributes
5897
5898 On those ARM targets that support @code{dllimport} (such as Symbian
5899 OS), you can use the @code{notshared} attribute to indicate that the
5900 virtual table and other similar data for a class should not be
5901 exported from a DLL@. For example:
5902
5903 @smallexample
5904 class __declspec(notshared) C @{
5905 public:
5906 __declspec(dllimport) C();
5907 virtual void f();
5908 @}
5909
5910 __declspec(dllexport)
5911 C::C() @{@}
5912 @end smallexample
5913
5914 @noindent
5915 In this code, @code{C::C} is exported from the current DLL, but the
5916 virtual table for @code{C} is not exported. (You can use
5917 @code{__attribute__} instead of @code{__declspec} if you prefer, but
5918 most Symbian OS code uses @code{__declspec}.)
5919
5920 @anchor{MeP Type Attributes}
5921 @subsection MeP Type Attributes
5922
5923 Many of the MeP variable attributes may be applied to types as well.
5924 Specifically, the @code{based}, @code{tiny}, @code{near}, and
5925 @code{far} attributes may be applied to either. The @code{io} and
5926 @code{cb} attributes may not be applied to types.
5927
5928 @anchor{i386 Type Attributes}
5929 @subsection i386 Type Attributes
5930
5931 Two attributes are currently defined for i386 configurations:
5932 @code{ms_struct} and @code{gcc_struct}.
5933
5934 @table @code
5935
5936 @item ms_struct
5937 @itemx gcc_struct
5938 @cindex @code{ms_struct}
5939 @cindex @code{gcc_struct}
5940
5941 If @code{packed} is used on a structure, or if bit-fields are used
5942 it may be that the Microsoft ABI packs them differently
5943 than GCC normally packs them. Particularly when moving packed
5944 data between functions compiled with GCC and the native Microsoft compiler
5945 (either via function call or as data in a file), it may be necessary to access
5946 either format.
5947
5948 Currently @option{-m[no-]ms-bitfields} is provided for the Microsoft Windows X86
5949 compilers to match the native Microsoft compiler.
5950 @end table
5951
5952 @anchor{PowerPC Type Attributes}
5953 @subsection PowerPC Type Attributes
5954
5955 Three attributes currently are defined for PowerPC configurations:
5956 @code{altivec}, @code{ms_struct} and @code{gcc_struct}.
5957
5958 For full documentation of the @code{ms_struct} and @code{gcc_struct}
5959 attributes please see the documentation in @ref{i386 Type Attributes}.
5960
5961 The @code{altivec} attribute allows one to declare AltiVec vector data
5962 types supported by the AltiVec Programming Interface Manual. The
5963 attribute requires an argument to specify one of three vector types:
5964 @code{vector__}, @code{pixel__} (always followed by unsigned short),
5965 and @code{bool__} (always followed by unsigned).
5966
5967 @smallexample
5968 __attribute__((altivec(vector__)))
5969 __attribute__((altivec(pixel__))) unsigned short
5970 __attribute__((altivec(bool__))) unsigned
5971 @end smallexample
5972
5973 These attributes mainly are intended to support the @code{__vector},
5974 @code{__pixel}, and @code{__bool} AltiVec keywords.
5975
5976 @anchor{SPU Type Attributes}
5977 @subsection SPU Type Attributes
5978
5979 The SPU supports the @code{spu_vector} attribute for types. This attribute
5980 allows one to declare vector data types supported by the Sony/Toshiba/IBM SPU
5981 Language Extensions Specification. It is intended to support the
5982 @code{__vector} keyword.
5983
5984 @node Alignment
5985 @section Inquiring on Alignment of Types or Variables
5986 @cindex alignment
5987 @cindex type alignment
5988 @cindex variable alignment
5989
5990 The keyword @code{__alignof__} allows you to inquire about how an object
5991 is aligned, or the minimum alignment usually required by a type. Its
5992 syntax is just like @code{sizeof}.
5993
5994 For example, if the target machine requires a @code{double} value to be
5995 aligned on an 8-byte boundary, then @code{__alignof__ (double)} is 8.
5996 This is true on many RISC machines. On more traditional machine
5997 designs, @code{__alignof__ (double)} is 4 or even 2.
5998
5999 Some machines never actually require alignment; they allow reference to any
6000 data type even at an odd address. For these machines, @code{__alignof__}
6001 reports the smallest alignment that GCC gives the data type, usually as
6002 mandated by the target ABI.
6003
6004 If the operand of @code{__alignof__} is an lvalue rather than a type,
6005 its value is the required alignment for its type, taking into account
6006 any minimum alignment specified with GCC's @code{__attribute__}
6007 extension (@pxref{Variable Attributes}). For example, after this
6008 declaration:
6009
6010 @smallexample
6011 struct foo @{ int x; char y; @} foo1;
6012 @end smallexample
6013
6014 @noindent
6015 the value of @code{__alignof__ (foo1.y)} is 1, even though its actual
6016 alignment is probably 2 or 4, the same as @code{__alignof__ (int)}.
6017
6018 It is an error to ask for the alignment of an incomplete type.
6019
6020
6021 @node Inline
6022 @section An Inline Function is As Fast As a Macro
6023 @cindex inline functions
6024 @cindex integrating function code
6025 @cindex open coding
6026 @cindex macros, inline alternative
6027
6028 By declaring a function inline, you can direct GCC to make
6029 calls to that function faster. One way GCC can achieve this is to
6030 integrate that function's code into the code for its callers. This
6031 makes execution faster by eliminating the function-call overhead; in
6032 addition, if any of the actual argument values are constant, their
6033 known values may permit simplifications at compile time so that not
6034 all of the inline function's code needs to be included. The effect on
6035 code size is less predictable; object code may be larger or smaller
6036 with function inlining, depending on the particular case. You can
6037 also direct GCC to try to integrate all ``simple enough'' functions
6038 into their callers with the option @option{-finline-functions}.
6039
6040 GCC implements three different semantics of declaring a function
6041 inline. One is available with @option{-std=gnu89} or
6042 @option{-fgnu89-inline} or when @code{gnu_inline} attribute is present
6043 on all inline declarations, another when
6044 @option{-std=c99}, @option{-std=c11},
6045 @option{-std=gnu99} or @option{-std=gnu11}
6046 (without @option{-fgnu89-inline}), and the third
6047 is used when compiling C++.
6048
6049 To declare a function inline, use the @code{inline} keyword in its
6050 declaration, like this:
6051
6052 @smallexample
6053 static inline int
6054 inc (int *a)
6055 @{
6056 return (*a)++;
6057 @}
6058 @end smallexample
6059
6060 If you are writing a header file to be included in ISO C90 programs, write
6061 @code{__inline__} instead of @code{inline}. @xref{Alternate Keywords}.
6062
6063 The three types of inlining behave similarly in two important cases:
6064 when the @code{inline} keyword is used on a @code{static} function,
6065 like the example above, and when a function is first declared without
6066 using the @code{inline} keyword and then is defined with
6067 @code{inline}, like this:
6068
6069 @smallexample
6070 extern int inc (int *a);
6071 inline int
6072 inc (int *a)
6073 @{
6074 return (*a)++;
6075 @}
6076 @end smallexample
6077
6078 In both of these common cases, the program behaves the same as if you
6079 had not used the @code{inline} keyword, except for its speed.
6080
6081 @cindex inline functions, omission of
6082 @opindex fkeep-inline-functions
6083 When a function is both inline and @code{static}, if all calls to the
6084 function are integrated into the caller, and the function's address is
6085 never used, then the function's own assembler code is never referenced.
6086 In this case, GCC does not actually output assembler code for the
6087 function, unless you specify the option @option{-fkeep-inline-functions}.
6088 Some calls cannot be integrated for various reasons (in particular,
6089 calls that precede the function's definition cannot be integrated, and
6090 neither can recursive calls within the definition). If there is a
6091 nonintegrated call, then the function is compiled to assembler code as
6092 usual. The function must also be compiled as usual if the program
6093 refers to its address, because that can't be inlined.
6094
6095 @opindex Winline
6096 Note that certain usages in a function definition can make it unsuitable
6097 for inline substitution. Among these usages are: variadic functions, use of
6098 @code{alloca}, use of variable-length data types (@pxref{Variable Length}),
6099 use of computed goto (@pxref{Labels as Values}), use of nonlocal goto,
6100 and nested functions (@pxref{Nested Functions}). Using @option{-Winline}
6101 warns when a function marked @code{inline} could not be substituted,
6102 and gives the reason for the failure.
6103
6104 @cindex automatic @code{inline} for C++ member fns
6105 @cindex @code{inline} automatic for C++ member fns
6106 @cindex member fns, automatically @code{inline}
6107 @cindex C++ member fns, automatically @code{inline}
6108 @opindex fno-default-inline
6109 As required by ISO C++, GCC considers member functions defined within
6110 the body of a class to be marked inline even if they are
6111 not explicitly declared with the @code{inline} keyword. You can
6112 override this with @option{-fno-default-inline}; @pxref{C++ Dialect
6113 Options,,Options Controlling C++ Dialect}.
6114
6115 GCC does not inline any functions when not optimizing unless you specify
6116 the @samp{always_inline} attribute for the function, like this:
6117
6118 @smallexample
6119 /* @r{Prototype.} */
6120 inline void foo (const char) __attribute__((always_inline));
6121 @end smallexample
6122
6123 The remainder of this section is specific to GNU C90 inlining.
6124
6125 @cindex non-static inline function
6126 When an inline function is not @code{static}, then the compiler must assume
6127 that there may be calls from other source files; since a global symbol can
6128 be defined only once in any program, the function must not be defined in
6129 the other source files, so the calls therein cannot be integrated.
6130 Therefore, a non-@code{static} inline function is always compiled on its
6131 own in the usual fashion.
6132
6133 If you specify both @code{inline} and @code{extern} in the function
6134 definition, then the definition is used only for inlining. In no case
6135 is the function compiled on its own, not even if you refer to its
6136 address explicitly. Such an address becomes an external reference, as
6137 if you had only declared the function, and had not defined it.
6138
6139 This combination of @code{inline} and @code{extern} has almost the
6140 effect of a macro. The way to use it is to put a function definition in
6141 a header file with these keywords, and put another copy of the
6142 definition (lacking @code{inline} and @code{extern}) in a library file.
6143 The definition in the header file causes most calls to the function
6144 to be inlined. If any uses of the function remain, they refer to
6145 the single copy in the library.
6146
6147 @node Volatiles
6148 @section When is a Volatile Object Accessed?
6149 @cindex accessing volatiles
6150 @cindex volatile read
6151 @cindex volatile write
6152 @cindex volatile access
6153
6154 C has the concept of volatile objects. These are normally accessed by
6155 pointers and used for accessing hardware or inter-thread
6156 communication. The standard encourages compilers to refrain from
6157 optimizations concerning accesses to volatile objects, but leaves it
6158 implementation defined as to what constitutes a volatile access. The
6159 minimum requirement is that at a sequence point all previous accesses
6160 to volatile objects have stabilized and no subsequent accesses have
6161 occurred. Thus an implementation is free to reorder and combine
6162 volatile accesses that occur between sequence points, but cannot do
6163 so for accesses across a sequence point. The use of volatile does
6164 not allow you to violate the restriction on updating objects multiple
6165 times between two sequence points.
6166
6167 Accesses to non-volatile objects are not ordered with respect to
6168 volatile accesses. You cannot use a volatile object as a memory
6169 barrier to order a sequence of writes to non-volatile memory. For
6170 instance:
6171
6172 @smallexample
6173 int *ptr = @var{something};
6174 volatile int vobj;
6175 *ptr = @var{something};
6176 vobj = 1;
6177 @end smallexample
6178
6179 @noindent
6180 Unless @var{*ptr} and @var{vobj} can be aliased, it is not guaranteed
6181 that the write to @var{*ptr} occurs by the time the update
6182 of @var{vobj} happens. If you need this guarantee, you must use
6183 a stronger memory barrier such as:
6184
6185 @smallexample
6186 int *ptr = @var{something};
6187 volatile int vobj;
6188 *ptr = @var{something};
6189 asm volatile ("" : : : "memory");
6190 vobj = 1;
6191 @end smallexample
6192
6193 A scalar volatile object is read when it is accessed in a void context:
6194
6195 @smallexample
6196 volatile int *src = @var{somevalue};
6197 *src;
6198 @end smallexample
6199
6200 Such expressions are rvalues, and GCC implements this as a
6201 read of the volatile object being pointed to.
6202
6203 Assignments are also expressions and have an rvalue. However when
6204 assigning to a scalar volatile, the volatile object is not reread,
6205 regardless of whether the assignment expression's rvalue is used or
6206 not. If the assignment's rvalue is used, the value is that assigned
6207 to the volatile object. For instance, there is no read of @var{vobj}
6208 in all the following cases:
6209
6210 @smallexample
6211 int obj;
6212 volatile int vobj;
6213 vobj = @var{something};
6214 obj = vobj = @var{something};
6215 obj ? vobj = @var{onething} : vobj = @var{anotherthing};
6216 obj = (@var{something}, vobj = @var{anotherthing});
6217 @end smallexample
6218
6219 If you need to read the volatile object after an assignment has
6220 occurred, you must use a separate expression with an intervening
6221 sequence point.
6222
6223 As bit-fields are not individually addressable, volatile bit-fields may
6224 be implicitly read when written to, or when adjacent bit-fields are
6225 accessed. Bit-field operations may be optimized such that adjacent
6226 bit-fields are only partially accessed, if they straddle a storage unit
6227 boundary. For these reasons it is unwise to use volatile bit-fields to
6228 access hardware.
6229
6230 @node Using Assembly Language with C
6231 @section How to Use Inline Assembly Language in C Code
6232
6233 GCC provides various extensions that allow you to embed assembler within
6234 C code.
6235
6236 @menu
6237 * Basic Asm:: Inline assembler with no operands.
6238 * Extended Asm:: Inline assembler with operands.
6239 * Constraints:: Constraints for @code{asm} operands
6240 * Asm Labels:: Specifying the assembler name to use for a C symbol.
6241 * Explicit Reg Vars:: Defining variables residing in specified registers.
6242 * Size of an asm:: How GCC calculates the size of an @code{asm} block.
6243 @end menu
6244
6245 @node Basic Asm
6246 @subsection Basic Asm --- Assembler Instructions with No Operands
6247 @cindex basic @code{asm}
6248
6249 The @code{asm} keyword allows you to embed assembler instructions within
6250 C code.
6251
6252 @example
6253 asm [ volatile ] ( AssemblerInstructions )
6254 @end example
6255
6256 To create headers compatible with ISO C, write @code{__asm__} instead of
6257 @code{asm} (@pxref{Alternate Keywords}).
6258
6259 By definition, a Basic @code{asm} statement is one with no operands.
6260 @code{asm} statements that contain one or more colons (used to delineate
6261 operands) are considered to be Extended (for example, @code{asm("int $3")}
6262 is Basic, and @code{asm("int $3" : )} is Extended). @xref{Extended Asm}.
6263
6264 @subsubheading Qualifiers
6265 @emph{volatile}
6266 @*
6267 This optional qualifier has no effect. All Basic @code{asm} blocks are
6268 implicitly volatile.
6269
6270 @subsubheading Parameters
6271 @emph{AssemblerInstructions}
6272 @*
6273 This is a literal string that specifies the assembler code. The string can
6274 contain any instructions recognized by the assembler, including directives.
6275 GCC does not parse the assembler instructions themselves and
6276 does not know what they mean or even whether they are valid assembler input.
6277 The compiler copies it verbatim to the assembly language output file, without
6278 processing dialects or any of the "%" operators that are available with
6279 Extended @code{asm}. This results in minor differences between Basic
6280 @code{asm} strings and Extended @code{asm} templates. For example, to refer to
6281 registers you might use %%eax in Extended @code{asm} and %eax in Basic
6282 @code{asm}.
6283
6284 You may place multiple assembler instructions together in a single @code{asm}
6285 string, separated by the characters normally used in assembly code for the
6286 system. A combination that works in most places is a newline to break the
6287 line, plus a tab character (written as "\n\t").
6288 Some assemblers allow semicolons as a line separator. However,
6289 note that some assembler dialects use semicolons to start a comment.
6290
6291 Do not expect a sequence of @code{asm} statements to remain perfectly
6292 consecutive after compilation. If certain instructions need to remain
6293 consecutive in the output, put them in a single multi-instruction asm
6294 statement. Note that GCC's optimizers can move @code{asm} statements
6295 relative to other code, including across jumps.
6296
6297 @code{asm} statements may not perform jumps into other @code{asm} statements.
6298 GCC does not know about these jumps, and therefore cannot take
6299 account of them when deciding how to optimize. Jumps from @code{asm} to C
6300 labels are only supported in Extended @code{asm}.
6301
6302 @subsubheading Remarks
6303 Using Extended @code{asm} will typically produce smaller, safer, and more
6304 efficient code, and in most cases it is a better solution. When writing
6305 inline assembly language outside of C functions, however, you must use Basic
6306 @code{asm}. Extended @code{asm} statements have to be inside a C function.
6307
6308 Under certain circumstances, GCC may duplicate (or remove duplicates of) your
6309 assembly code when optimizing. This can lead to unexpected duplicate
6310 symbol errors during compilation if your assembly code defines symbols or
6311 labels.
6312
6313 Safely accessing C data and calling functions from Basic @code{asm} is more
6314 complex than it may appear. To access C data, it is better to use Extended
6315 @code{asm}.
6316
6317 Since GCC does not parse the AssemblerInstructions, it has no
6318 visibility of any symbols it references. This may result in GCC discarding
6319 those symbols as unreferenced.
6320
6321 Unlike Extended @code{asm}, all Basic @code{asm} blocks are implicitly
6322 volatile. @xref{Volatile}. Similarly, Basic @code{asm} blocks are not treated
6323 as though they used a "memory" clobber (@pxref{Clobbers}).
6324
6325 All Basic @code{asm} blocks use the assembler dialect specified by the
6326 @option{-masm} command-line option. Basic @code{asm} provides no
6327 mechanism to provide different assembler strings for different dialects.
6328
6329 Here is an example of Basic @code{asm} for i386:
6330
6331 @example
6332 /* Note that this code will not compile with -masm=intel */
6333 #define DebugBreak() asm("int $3")
6334 @end example
6335
6336 @node Extended Asm
6337 @subsection Extended Asm - Assembler Instructions with C Expression Operands
6338 @cindex @code{asm} keyword
6339 @cindex extended @code{asm}
6340 @cindex assembler instructions
6341
6342 The @code{asm} keyword allows you to embed assembler instructions within C
6343 code. With Extended @code{asm} you can read and write C variables from
6344 assembler and perform jumps from assembler code to C labels.
6345
6346 @example
6347 @ifhtml
6348 asm [volatile] ( AssemblerTemplate : [OutputOperands] [ : [InputOperands] [ : [Clobbers] ] ] )
6349
6350 asm [volatile] goto ( AssemblerTemplate : : [InputOperands] : [Clobbers] : GotoLabels )
6351 @end ifhtml
6352 @ifnothtml
6353 asm [volatile] ( AssemblerTemplate
6354 : [OutputOperands]
6355 [ : [InputOperands]
6356 [ : [Clobbers] ] ])
6357
6358 asm [volatile] goto ( AssemblerTemplate
6359 :
6360 : [InputOperands]
6361 : [Clobbers]
6362 : GotoLabels)
6363 @end ifnothtml
6364 @end example
6365
6366 To create headers compatible with ISO C, write @code{__asm__} instead of
6367 @code{asm} and @code{__volatile__} instead of @code{volatile}
6368 (@pxref{Alternate Keywords}). There is no alternate for @code{goto}.
6369
6370 By definition, Extended @code{asm} is an @code{asm} statement that contains
6371 operands. To separate the classes of operands, you use colons. Basic
6372 @code{asm} statements contain no colons. (So, for example,
6373 @code{asm("int $3")} is Basic @code{asm}, and @code{asm("int $3" : )} is
6374 Extended @code{asm}. @pxref{Basic Asm}.)
6375
6376 @subsubheading Qualifiers
6377 @emph{volatile}
6378 @*
6379 The typical use of Extended @code{asm} statements is to manipulate input
6380 values to produce output values. However, your @code{asm} statements may
6381 also produce side effects. If so, you may need to use the @code{volatile}
6382 qualifier to disable certain optimizations. @xref{Volatile}.
6383
6384 @emph{goto}
6385 @*
6386 This qualifier informs the compiler that the @code{asm} statement may
6387 perform a jump to one of the labels listed in the GotoLabels section.
6388 @xref{GotoLabels}.
6389
6390 @subsubheading Parameters
6391 @emph{AssemblerTemplate}
6392 @*
6393 This is a literal string that contains the assembler code. It is a
6394 combination of fixed text and tokens that refer to the input, output,
6395 and goto parameters. @xref{AssemblerTemplate}.
6396
6397 @emph{OutputOperands}
6398 @*
6399 A comma-separated list of the C variables modified by the instructions in the
6400 AssemblerTemplate. @xref{OutputOperands}.
6401
6402 @emph{InputOperands}
6403 @*
6404 A comma-separated list of C expressions read by the instructions in the
6405 AssemblerTemplate. @xref{InputOperands}.
6406
6407 @emph{Clobbers}
6408 @*
6409 A comma-separated list of registers or other values changed by the
6410 AssemblerTemplate, beyond those listed as outputs. @xref{Clobbers}.
6411
6412 @emph{GotoLabels}
6413 @*
6414 When you are using the @code{goto} form of @code{asm}, this section contains
6415 the list of all C labels to which the AssemblerTemplate may jump.
6416 @xref{GotoLabels}.
6417
6418 @subsubheading Remarks
6419 The @code{asm} statement allows you to include assembly instructions directly
6420 within C code. This may help you to maximize performance in time-sensitive
6421 code or to access assembly instructions that are not readily available to C
6422 programs.
6423
6424 Note that Extended @code{asm} statements must be inside a function. Only
6425 Basic @code{asm} may be outside functions (@pxref{Basic Asm}).
6426
6427 While the uses of @code{asm} are many and varied, it may help to think of an
6428 @code{asm} statement as a series of low-level instructions that convert input
6429 parameters to output parameters. So a simple (if not particularly useful)
6430 example for i386 using @code{asm} might look like this:
6431
6432 @example
6433 int src = 1;
6434 int dst;
6435
6436 asm ("mov %1, %0\n\t"
6437 "add $1, %0"
6438 : "=r" (dst)
6439 : "r" (src));
6440
6441 printf("%d\n", dst);
6442 @end example
6443
6444 This code will copy @var{src} to @var{dst} and add 1 to @var{dst}.
6445
6446 @anchor{Volatile}
6447 @subsubsection Volatile
6448 @cindex volatile @code{asm}
6449 @cindex @code{asm} volatile
6450
6451 GCC's optimizers sometimes discard @code{asm} statements if they determine
6452 there is no need for the output variables. Also, the optimizers may move
6453 code out of loops if they believe that the code will always return the same
6454 result (i.e. none of its input values change between calls). Using the
6455 @code{volatile} qualifier disables these optimizations. @code{asm} statements
6456 that have no output operands are implicitly volatile.
6457
6458 Examples:
6459
6460 This i386 code demonstrates a case that does not use (or require) the
6461 @code{volatile} qualifier. If it is performing assertion checking, this code
6462 uses @code{asm} to perform the validation. Otherwise, @var{dwRes} is
6463 unreferenced by any code. As a result, the optimizers can discard the
6464 @code{asm} statement, which in turn removes the need for the entire
6465 @code{DoCheck} routine. By omitting the @code{volatile} qualifier when it
6466 isn't needed you allow the optimizers to produce the most efficient code
6467 possible.
6468
6469 @example
6470 void DoCheck(uint32_t dwSomeValue)
6471 @{
6472 uint32_t dwRes;
6473
6474 // Assumes dwSomeValue is not zero.
6475 asm ("bsfl %1,%0"
6476 : "=r" (dwRes)
6477 : "r" (dwSomeValue)
6478 : "cc");
6479
6480 assert(dwRes > 3);
6481 @}
6482 @end example
6483
6484 The next example shows a case where the optimizers can recognize that the input
6485 (@var{dwSomeValue}) never changes during the execution of the function and can
6486 therefore move the @code{asm} outside the loop to produce more efficient code.
6487 Again, using @code{volatile} disables this type of optimization.
6488
6489 @example
6490 void do_print(uint32_t dwSomeValue)
6491 @{
6492 uint32_t dwRes;
6493
6494 for (uint32_t x=0; x < 5; x++)
6495 @{
6496 // Assumes dwSomeValue is not zero.
6497 asm ("bsfl %1,%0"
6498 : "=r" (dwRes)
6499 : "r" (dwSomeValue)
6500 : "cc");
6501
6502 printf("%u: %u %u\n", x, dwSomeValue, dwRes);
6503 @}
6504 @}
6505 @end example
6506
6507 The following example demonstrates a case where you need to use the
6508 @code{volatile} qualifier. It uses the i386 RDTSC instruction, which reads
6509 the computer's time-stamp counter. Without the @code{volatile} qualifier,
6510 the optimizers might assume that the @code{asm} block will always return the
6511 same value and therefore optimize away the second call.
6512
6513 @example
6514 uint64_t msr;
6515
6516 asm volatile ( "rdtsc\n\t" // Returns the time in EDX:EAX.
6517 "shl $32, %%rdx\n\t" // Shift the upper bits left.
6518 "or %%rdx, %0" // 'Or' in the lower bits.
6519 : "=a" (msr)
6520 :
6521 : "rdx");
6522
6523 printf("msr: %llx\n", msr);
6524
6525 // Do other work...
6526
6527 // Reprint the timestamp
6528 asm volatile ( "rdtsc\n\t" // Returns the time in EDX:EAX.
6529 "shl $32, %%rdx\n\t" // Shift the upper bits left.
6530 "or %%rdx, %0" // 'Or' in the lower bits.
6531 : "=a" (msr)
6532 :
6533 : "rdx");
6534
6535 printf("msr: %llx\n", msr);
6536 @end example
6537
6538 GCC's optimizers will not treat this code like the non-volatile code in the
6539 earlier examples. They do not move it out of loops or omit it on the
6540 assumption that the result from a previous call is still valid.
6541
6542 Note that the compiler can move even volatile @code{asm} instructions relative
6543 to other code, including across jump instructions. For example, on many
6544 targets there is a system register that controls the rounding mode of
6545 floating-point operations. Setting it with a volatile @code{asm}, as in the
6546 following PowerPC example, will not work reliably.
6547
6548 @example
6549 asm volatile("mtfsf 255, %0" : : "f" (fpenv));
6550 sum = x + y;
6551 @end example
6552
6553 The compiler may move the addition back before the volatile @code{asm}. To
6554 make it work as expected, add an artificial dependency to the @code{asm} by
6555 referencing a variable in the subsequent code, for example:
6556
6557 @example
6558 asm volatile ("mtfsf 255,%1" : "=X" (sum) : "f" (fpenv));
6559 sum = x + y;
6560 @end example
6561
6562 Under certain circumstances, GCC may duplicate (or remove duplicates of) your
6563 assembly code when optimizing. This can lead to unexpected duplicate symbol
6564 errors during compilation if your asm code defines symbols or labels. Using %=
6565 (@pxref{AssemblerTemplate}) may help resolve this problem.
6566
6567 @anchor{AssemblerTemplate}
6568 @subsubsection Assembler Template
6569 @cindex @code{asm} assembler template
6570
6571 An assembler template is a literal string containing assembler instructions.
6572 The compiler will replace any references to inputs, outputs, and goto labels
6573 in the template, and then output the resulting string to the assembler. The
6574 string can contain any instructions recognized by the assembler, including
6575 directives. GCC does not parse the assembler instructions
6576 themselves and does not know what they mean or even whether they are valid
6577 assembler input. However, it does count the statements
6578 (@pxref{Size of an asm}).
6579
6580 You may place multiple assembler instructions together in a single @code{asm}
6581 string, separated by the characters normally used in assembly code for the
6582 system. A combination that works in most places is a newline to break the
6583 line, plus a tab character to move to the instruction field (written as
6584 "\n\t"). Some assemblers allow semicolons as a line separator. However, note
6585 that some assembler dialects use semicolons to start a comment.
6586
6587 Do not expect a sequence of @code{asm} statements to remain perfectly
6588 consecutive after compilation, even when you are using the @code{volatile}
6589 qualifier. If certain instructions need to remain consecutive in the output,
6590 put them in a single multi-instruction asm statement.
6591
6592 Accessing data from C programs without using input/output operands (such as
6593 by using global symbols directly from the assembler template) may not work as
6594 expected. Similarly, calling functions directly from an assembler template
6595 requires a detailed understanding of the target assembler and ABI.
6596
6597 Since GCC does not parse the AssemblerTemplate, it has no visibility of any
6598 symbols it references. This may result in GCC discarding those symbols as
6599 unreferenced unless they are also listed as input, output, or goto operands.
6600
6601 GCC can support multiple assembler dialects (for example, GCC for i386
6602 supports "att" and "intel" dialects) for inline assembler. In builds that
6603 support this capability, the @option{-masm} option controls which dialect
6604 GCC uses as its default. The hardware-specific documentation for the
6605 @option{-masm} option contains the list of supported dialects, as well as the
6606 default dialect if the option is not specified. This information may be
6607 important to understand, since assembler code that works correctly when
6608 compiled using one dialect will likely fail if compiled using another.
6609
6610 @subsubheading Using braces in @code{asm} templates
6611
6612 If your code needs to support multiple assembler dialects (for example, if
6613 you are writing public headers that need to support a variety of compilation
6614 options), use constructs of this form:
6615
6616 @example
6617 @{ dialect0 | dialect1 | dialect2... @}
6618 @end example
6619
6620 This construct outputs 'dialect0' when using dialect #0 to compile the code,
6621 'dialect1' for dialect #1, etc. If there are fewer alternatives within the
6622 braces than the number of dialects the compiler supports, the construct
6623 outputs nothing.
6624
6625 For example, if an i386 compiler supports two dialects (att, intel), an
6626 assembler template such as this:
6627
6628 @example
6629 "bt@{l %[Offset],%[Base] | %[Base],%[Offset]@}; jc %l2"
6630 @end example
6631
6632 would produce the output:
6633
6634 @example
6635 For att: "btl %[Offset],%[Base] ; jc %l2"
6636 For intel: "bt %[Base],%[Offset]; jc %l2"
6637 @end example
6638
6639 Using that same compiler, this code:
6640
6641 @example
6642 "xchg@{l@}\t@{%%@}ebx, %1"
6643 @end example
6644
6645 would produce
6646
6647 @example
6648 For att: "xchgl\t%%ebx, %1"
6649 For intel: "xchg\tebx, %1"
6650 @end example
6651
6652 There is no support for nesting dialect alternatives. Also, there is no
6653 ``escape'' for an open brace (@{), so do not use open braces in an Extended
6654 @code{asm} template other than as a dialect indicator.
6655
6656 @subsubheading Other format strings
6657
6658 In addition to the tokens described by the input, output, and goto operands,
6659 there are a few special cases:
6660
6661 @itemize
6662 @item
6663 "%%" outputs a single "%" into the assembler code.
6664
6665 @item
6666 "%=" outputs a number that is unique to each instance of the @code{asm}
6667 statement in the entire compilation. This option is useful when creating local
6668 labels and referring to them multiple times in a single template that
6669 generates multiple assembler instructions.
6670
6671 @end itemize
6672
6673 @anchor{OutputOperands}
6674 @subsubsection Output Operands
6675 @cindex @code{asm} output operands
6676
6677 An @code{asm} statement has zero or more output operands indicating the names
6678 of C variables modified by the assembler code.
6679
6680 In this i386 example, @var{old} (referred to in the template string as
6681 @code{%0}) and @var{*Base} (as @code{%1}) are outputs and @var{Offset}
6682 (@code{%2}) is an input:
6683
6684 @example
6685 bool old;
6686
6687 __asm__ ("btsl %2,%1\n\t" // Turn on zero-based bit #Offset in Base.
6688 "sbb %0,%0" // Use the CF to calculate old.
6689 : "=r" (old), "+rm" (*Base)
6690 : "Ir" (Offset)
6691 : "cc");
6692
6693 return old;
6694 @end example
6695
6696 Operands use this format:
6697
6698 @example
6699 [ [asmSymbolicName] ] "constraint" (cvariablename)
6700 @end example
6701
6702 @emph{asmSymbolicName}
6703 @*
6704
6705 When not using asmSymbolicNames, use the (zero-based) position of the operand
6706 in the list of operands in the assembler template. For example if there are
6707 three output operands, use @code{%0} in the template to refer to the first,
6708 @code{%1} for the second, and @code{%2} for the third. When using an
6709 asmSymbolicName, reference it by enclosing the name in square brackets
6710 (i.e. @code{%[Value]}). The scope of the name is the @code{asm} statement
6711 that contains the definition. Any valid C variable name is acceptable,
6712 including names already defined in the surrounding code. No two operands
6713 within the same @code{asm} statement can use the same symbolic name.
6714
6715 @emph{constraint}
6716 @*
6717 Output constraints must begin with either @code{"="} (a variable overwriting an
6718 existing value) or @code{"+"} (when reading and writing). When using
6719 @code{"="}, do not assume the location will contain the existing value (except
6720 when tying the variable to an input; @pxref{InputOperands,,Input Operands}).
6721
6722 After the prefix, there must be one or more additional constraints
6723 (@pxref{Constraints}) that describe where the value resides. Common
6724 constraints include @code{"r"} for register and @code{"m"} for memory.
6725 When you list more than one possible location (for example @code{"=rm"}), the
6726 compiler chooses the most efficient one based on the current context. If you
6727 list as many alternates as the @code{asm} statement allows, you will permit
6728 the optimizers to produce the best possible code. If you must use a specific
6729 register, but your Machine Constraints do not provide sufficient
6730 control to select the specific register you want, Local Reg Vars may provide
6731 a solution (@pxref{Local Reg Vars}).
6732
6733 @emph{cvariablename}
6734 @*
6735 Specifies the C variable name of the output (enclosed by parentheses). Accepts
6736 any (non-constant) variable within scope.
6737
6738 Remarks:
6739
6740 The total number of input + output + goto operands has a limit of 30. Commas
6741 separate the operands. When the compiler selects the registers to use to
6742 represent the output operands, it will not use any of the clobbered registers
6743 (@pxref{Clobbers}).
6744
6745 Output operand expressions must be lvalues. The compiler cannot check whether
6746 the operands have data types that are reasonable for the instruction being
6747 executed. For output expressions that are not directly addressable (for
6748 example a bit-field), the constraint must allow a register. In that case, GCC
6749 uses the register as the output of the @code{asm}, and then stores that
6750 register into the output.
6751
6752 Unless an output operand has the '@code{&}' constraint modifier
6753 (@pxref{Modifiers}), GCC may allocate it in the same register as an unrelated
6754 input operand, on the assumption that the assembler code will consume its
6755 inputs before producing outputs. This assumption may be false if the assembler
6756 code actually consists of more than one instruction. In this case, use
6757 '@code{&}' on each output operand that must not overlap an input.
6758
6759 The same problem can occur if one output parameter (@var{a}) allows a register
6760 constraint and another output parameter (@var{b}) allows a memory constraint.
6761 The code generated by GCC to access the memory address in @var{b} can contain
6762 registers which @emph{might} be shared by @var{a}, and GCC considers those
6763 registers to be inputs to the asm. As above, GCC assumes that such input
6764 registers are consumed before any outputs are written. This assumption may
6765 result in incorrect behavior if the asm writes to @var{a} before using
6766 @var{b}. Combining the `@code{&}' constraint with the register constraint
6767 ensures that modifying @var{a} will not affect what address is referenced by
6768 @var{b}. Omitting the `@code{&}' constraint means that the location of @var{b}
6769 will be undefined if @var{a} is modified before using @var{b}.
6770
6771 @code{asm} supports operand modifiers on operands (for example @code{%k2}
6772 instead of simply @code{%2}). Typically these qualifiers are hardware
6773 dependent. The list of supported modifiers for i386 is found at
6774 @ref{i386Operandmodifiers,i386 Operand modifiers}.
6775
6776 If the C code that follows the @code{asm} makes no use of any of the output
6777 operands, use @code{volatile} for the @code{asm} statement to prevent the
6778 optimizers from discarding the @code{asm} statement as unneeded
6779 (see @ref{Volatile}).
6780
6781 Examples:
6782
6783 This code makes no use of the optional asmSymbolicName. Therefore it
6784 references the first output operand as @code{%0} (were there a second, it
6785 would be @code{%1}, etc). The number of the first input operand is one greater
6786 than that of the last output operand. In this i386 example, that makes
6787 @var{Mask} @code{%1}:
6788
6789 @example
6790 uint32_t Mask = 1234;
6791 uint32_t Index;
6792
6793 asm ("bsfl %1, %0"
6794 : "=r" (Index)
6795 : "r" (Mask)
6796 : "cc");
6797 @end example
6798
6799 That code overwrites the variable Index ("="), placing the value in a register
6800 ("r"). The generic "r" constraint instead of a constraint for a specific
6801 register allows the compiler to pick the register to use, which can result
6802 in more efficient code. This may not be possible if an assembler instruction
6803 requires a specific register.
6804
6805 The following i386 example uses the asmSymbolicName operand. It produces the
6806 same result as the code above, but some may consider it more readable or more
6807 maintainable since reordering index numbers is not necessary when adding or
6808 removing operands. The names aIndex and aMask are only used to emphasize which
6809 names get used where. It is acceptable to reuse the names Index and Mask.
6810
6811 @example
6812 uint32_t Mask = 1234;
6813 uint32_t Index;
6814
6815 asm ("bsfl %[aMask], %[aIndex]"
6816 : [aIndex] "=r" (Index)
6817 : [aMask] "r" (Mask)
6818 : "cc");
6819 @end example
6820
6821 Here are some more examples of output operands.
6822
6823 @example
6824 uint32_t c = 1;
6825 uint32_t d;
6826 uint32_t *e = &c;
6827
6828 asm ("mov %[e], %[d]"
6829 : [d] "=rm" (d)
6830 : [e] "rm" (*e));
6831 @end example
6832
6833 Here, @var{d} may either be in a register or in memory. Since the compiler
6834 might already have the current value of the uint32_t pointed to by @var{e}
6835 in a register, you can enable it to choose the best location
6836 for @var{d} by specifying both constraints.
6837
6838 @anchor{InputOperands}
6839 @subsubsection Input Operands
6840 @cindex @code{asm} input operands
6841 @cindex @code{asm} expressions
6842
6843 Input operands make inputs from C variables and expressions available to the
6844 assembly code.
6845
6846 Specify input operands by using the format:
6847
6848 @example
6849 [ [asmSymbolicName] ] "constraint" (cexpression)
6850 @end example
6851
6852 @emph{asmSymbolicName}
6853 @*
6854 When not using asmSymbolicNames, use the (zero-based) position of the operand
6855 in the list of operands, including outputs, in the assembler template. For
6856 example, if there are two output parameters and three inputs, @code{%2} refers
6857 to the first input, @code{%3} to the second, and @code{%4} to the third.
6858 When using an asmSymbolicName, reference it by enclosing the name in square
6859 brackets (e.g. @code{%[Value]}). The scope of the name is the @code{asm}
6860 statement that contains the definition. Any valid C variable name is
6861 acceptable, including names already defined in the surrounding code. No two
6862 operands within the same @code{asm} statement can use the same symbolic name.
6863
6864 @emph{constraint}
6865 @*
6866 Input constraints must be a string containing one or more constraints
6867 (@pxref{Constraints}). When you give more than one possible constraint
6868 (for example, @code{"irm"}), the compiler will choose the most efficient
6869 method based on the current context. Input constraints may not begin with
6870 either "=" or "+". If you must use a specific register, but your Machine
6871 Constraints do not provide sufficient control to select the specific
6872 register you want, Local Reg Vars may provide a solution
6873 (@pxref{Local Reg Vars}).
6874
6875 Input constraints can also be digits (for example, @code{"0"}). This indicates
6876 that the specified input will be in the same place as the output constraint
6877 at the (zero-based) index in the output constraint list. When using
6878 asmSymbolicNames for the output operands, you may use these names (enclosed
6879 in brackets []) instead of digits.
6880
6881 @emph{cexpression}
6882 @*
6883 This is the C variable or expression being passed to the @code{asm} statement
6884 as input.
6885
6886 When the compiler selects the registers to use to represent the input
6887 operands, it will not use any of the clobbered registers (@pxref{Clobbers}).
6888
6889 If there are no output operands but there are input operands, place two
6890 consecutive colons where the output operands would go:
6891
6892 @example
6893 __asm__ ("some instructions"
6894 : /* No outputs. */
6895 : "r" (Offset / 8);
6896 @end example
6897
6898 @strong{Warning:} Do @emph{not} modify the contents of input-only operands
6899 (except for inputs tied to outputs). The compiler assumes that on exit from
6900 the @code{asm} statement these operands will contain the same values as they
6901 had before executing the assembler. It is @emph{not} possible to use Clobbers
6902 to inform the compiler that the values in these inputs are changing. One
6903 common work-around is to tie the changing input variable to an output variable
6904 that never gets used. Note, however, that if the code that follows the
6905 @code{asm} statement makes no use of any of the output operands, the GCC
6906 optimizers may discard the @code{asm} statement as unneeded
6907 (see @ref{Volatile}).
6908
6909 Remarks:
6910
6911 The total number of input + output + goto operands has a limit of 30.
6912
6913 @code{asm} supports operand modifiers on operands (for example @code{%k2}
6914 instead of simply @code{%2}). Typically these qualifiers are hardware
6915 dependent. The list of supported modifiers for i386 is found at
6916 @ref{i386Operandmodifiers,i386 Operand modifiers}.
6917
6918 Examples:
6919
6920 In this example using the fictitious @code{combine} instruction, the
6921 constraint @code{"0"} for input operand 1 says that it must occupy the same
6922 location as output operand 0. Only input operands may use numbers in
6923 constraints, and they must each refer to an output operand. Only a number (or
6924 the symbolic assembler name) in the constraint can guarantee that one operand
6925 is in the same place as another. The mere fact that @var{foo} is the value of
6926 both operands is not enough to guarantee that they are in the same place in
6927 the generated assembler code.
6928
6929 @example
6930 asm ("combine %2, %0"
6931 : "=r" (foo)
6932 : "0" (foo), "g" (bar));
6933 @end example
6934
6935 Here is an example using symbolic names.
6936
6937 @example
6938 asm ("cmoveq %1, %2, %[result]"
6939 : [result] "=r"(result)
6940 : "r" (test), "r" (new), "[result]" (old));
6941 @end example
6942
6943 @anchor{Clobbers}
6944 @subsubsection Clobbers
6945 @cindex @code{asm} clobbers
6946
6947 While the compiler is aware of changes to entries listed in the output
6948 operands, the assembler code may modify more than just the outputs. For
6949 example, calculations may require additional registers, or the processor may
6950 overwrite a register as a side effect of a particular assembler instruction.
6951 In order to inform the compiler of these changes, list them in the clobber
6952 list. Clobber list items are either register names or the special clobbers
6953 (listed below). Each clobber list item is enclosed in double quotes and
6954 separated by commas.
6955
6956 Clobber descriptions may not in any way overlap with an input or output
6957 operand. For example, you may not have an operand describing a register class
6958 with one member when listing that register in the clobber list. Variables
6959 declared to live in specific registers (@pxref{Explicit Reg Vars}), and used
6960 as @code{asm} input or output operands, must have no part mentioned in the
6961 clobber description. In particular, there is no way to specify that input
6962 operands get modified without also specifying them as output operands.
6963
6964 When the compiler selects which registers to use to represent input and output
6965 operands, it will not use any of the clobbered registers. As a result,
6966 clobbered registers are available for any use in the assembler code.
6967
6968 Here is a realistic example for the VAX showing the use of clobbered
6969 registers:
6970
6971 @example
6972 asm volatile ("movc3 %0, %1, %2"
6973 : /* No outputs. */
6974 : "g" (from), "g" (to), "g" (count)
6975 : "r0", "r1", "r2", "r3", "r4", "r5");
6976 @end example
6977
6978 Also, there are two special clobber arguments:
6979
6980 @enumerate
6981 @item
6982 The @code{"cc"} clobber indicates that the assembler code modifies the flags
6983 register. On some machines, GCC represents the condition codes as a specific
6984 hardware register; "cc" serves to name this register. On other machines,
6985 condition code handling is different, and specifying "cc" has no effect. But
6986 it is valid no matter what the machine.
6987
6988 @item
6989 The "memory" clobber tells the compiler that the assembly code performs memory
6990 reads or writes to items other than those listed in the input and output
6991 operands (for example accessing the memory pointed to by one of the input
6992 parameters). To ensure memory contains correct values, GCC may need to flush
6993 specific register values to memory before executing the @code{asm}. Further,
6994 the compiler will not assume that any values read from memory before an
6995 @code{asm} will remain unchanged after that @code{asm}; it will reload them as
6996 needed. This effectively forms a read/write memory barrier for the compiler.
6997
6998 Note that this clobber does not prevent the @emph{processor} from doing
6999 speculative reads past the @code{asm} statement. To prevent that, you need
7000 processor-specific fence instructions.
7001
7002 Flushing registers to memory has performance implications and may be an issue
7003 for time-sensitive code. One trick to avoid this is available if the size of
7004 the memory being accessed is known at compile time. For example, if accessing
7005 ten bytes of a string, use a memory input like:
7006
7007 @code{@{"m"( (@{ struct @{ char x[10]; @} *p = (void *)ptr ; *p; @}) )@}}.
7008
7009 @end enumerate
7010
7011 @anchor{GotoLabels}
7012 @subsubsection Goto Labels
7013 @cindex @code{asm} goto labels
7014
7015 @code{asm goto} allows assembly code to jump to one or more C labels. The
7016 GotoLabels section in an @code{asm goto} statement contains a comma-separated
7017 list of all C labels to which the assembler code may jump. GCC assumes that
7018 @code{asm} execution falls through to the next statement (if this is not the
7019 case, consider using the @code{__builtin_unreachable} intrinsic after the
7020 @code{asm} statement). Optimization of @code{asm goto} may be improved by
7021 using the @code{hot} and @code{cold} label attributes (@pxref{Label
7022 Attributes}). The total number of input + output + goto operands has
7023 a limit of 30.
7024
7025 An @code{asm goto} statement can not have outputs (which means that the
7026 statement is implicitly volatile). This is due to an internal restriction of
7027 the compiler: control transfer instructions cannot have outputs. If the
7028 assembler code does modify anything, use the "memory" clobber to force the
7029 optimizers to flush all register values to memory, and reload them if
7030 necessary, after the @code{asm} statement.
7031
7032 To reference a label, prefix it with @code{%l} (that's a lowercase L) followed
7033 by its (zero-based) position in GotoLabels plus the number of input
7034 arguments. For example, if the @code{asm} has three inputs and references two
7035 labels, refer to the first label as @code{%l3} and the second as @code{%l4}).
7036
7037 @code{asm} statements may not perform jumps into other @code{asm} statements.
7038 GCC's optimizers do not know about these jumps; therefore they cannot take
7039 account of them when deciding how to optimize.
7040
7041 Example code for i386 might look like:
7042
7043 @example
7044 asm goto (
7045 "btl %1, %0\n\t"
7046 "jc %l2"
7047 : /* No outputs. */
7048 : "r" (p1), "r" (p2)
7049 : "cc"
7050 : carry);
7051
7052 return 0;
7053
7054 carry:
7055 return 1;
7056 @end example
7057
7058 The following example shows an @code{asm goto} that uses the memory clobber.
7059
7060 @example
7061 int frob(int x)
7062 @{
7063 int y;
7064 asm goto ("frob %%r5, %1; jc %l[error]; mov (%2), %%r5"
7065 : /* No outputs. */
7066 : "r"(x), "r"(&y)
7067 : "r5", "memory"
7068 : error);
7069 return y;
7070 error:
7071 return -1;
7072 @}
7073 @end example
7074
7075 @anchor{i386Operandmodifiers}
7076 @subsubsection i386 Operand modifiers
7077
7078 Input, output, and goto operands for extended @code{asm} statements can use
7079 modifiers to affect the code output to the assembler. For example, the
7080 following code uses the "h" and "b" modifiers for i386:
7081
7082 @example
7083 uint16_t num;
7084 asm volatile ("xchg %h0, %b0" : "+a" (num) );
7085 @end example
7086
7087 These modifiers generate this assembler code:
7088
7089 @example
7090 xchg %ah, %al
7091 @end example
7092
7093 The rest of this discussion uses the following code for illustrative purposes.
7094
7095 @example
7096 int main()
7097 @{
7098 int iInt = 1;
7099
7100 top:
7101
7102 asm volatile goto ("some assembler instructions here"
7103 : /* No outputs. */
7104 : "q" (iInt), "X" (sizeof(unsigned char) + 1)
7105 : /* No clobbers. */
7106 : top);
7107 @}
7108 @end example
7109
7110 With no modifiers, this is what the output from the operands would be for the
7111 att and intel dialects of assembler:
7112
7113 @multitable {Operand} {masm=att} {OFFSET FLAT:.L2}
7114 @headitem Operand @tab masm=att @tab masm=intel
7115 @item @code{%0}
7116 @tab @code{%eax}
7117 @tab @code{eax}
7118 @item @code{%1}
7119 @tab @code{$2}
7120 @tab @code{2}
7121 @item @code{%2}
7122 @tab @code{$.L2}
7123 @tab @code{OFFSET FLAT:.L2}
7124 @end multitable
7125
7126 The table below shows the list of supported modifiers and their effects.
7127
7128 @multitable {Modifier} {Print the opcode suffix for the size of th} {Operand} {masm=att} {masm=intel}
7129 @headitem Modifier @tab Description @tab Operand @tab @option{masm=att} @tab @option{masm=intel}
7130 @item @code{z}
7131 @tab Print the opcode suffix for the size of the current integer operand (one of @code{b}/@code{w}/@code{l}/@code{q}).
7132 @tab @code{%z0}
7133 @tab @code{l}
7134 @tab
7135 @item @code{b}
7136 @tab Print the QImode name of the register.
7137 @tab @code{%b0}
7138 @tab @code{%al}
7139 @tab @code{al}
7140 @item @code{h}
7141 @tab Print the QImode name for a ``high'' register.
7142 @tab @code{%h0}
7143 @tab @code{%ah}
7144 @tab @code{ah}
7145 @item @code{w}
7146 @tab Print the HImode name of the register.
7147 @tab @code{%w0}
7148 @tab @code{%ax}
7149 @tab @code{ax}
7150 @item @code{k}
7151 @tab Print the SImode name of the register.
7152 @tab @code{%k0}
7153 @tab @code{%eax}
7154 @tab @code{eax}
7155 @item @code{q}
7156 @tab Print the DImode name of the register.
7157 @tab @code{%q0}
7158 @tab @code{%rax}
7159 @tab @code{rax}
7160 @item @code{l}
7161 @tab Print the label name with no punctuation.
7162 @tab @code{%l2}
7163 @tab @code{.L2}
7164 @tab @code{.L2}
7165 @item @code{c}
7166 @tab Require a constant operand and print the constant expression with no punctuation.
7167 @tab @code{%c1}
7168 @tab @code{2}
7169 @tab @code{2}
7170 @end multitable
7171
7172 @anchor{i386floatingpointasmoperands}
7173 @subsubsection i386 floating-point asm operands
7174
7175 On i386 targets, there are several rules on the usage of stack-like registers
7176 in the operands of an @code{asm}. These rules apply only to the operands
7177 that are stack-like registers:
7178
7179 @enumerate
7180 @item
7181 Given a set of input registers that die in an @code{asm}, it is
7182 necessary to know which are implicitly popped by the @code{asm}, and
7183 which must be explicitly popped by GCC@.
7184
7185 An input register that is implicitly popped by the @code{asm} must be
7186 explicitly clobbered, unless it is constrained to match an
7187 output operand.
7188
7189 @item
7190 For any input register that is implicitly popped by an @code{asm}, it is
7191 necessary to know how to adjust the stack to compensate for the pop.
7192 If any non-popped input is closer to the top of the reg-stack than
7193 the implicitly popped register, it would not be possible to know what the
7194 stack looked like---it's not clear how the rest of the stack ``slides
7195 up''.
7196
7197 All implicitly popped input registers must be closer to the top of
7198 the reg-stack than any input that is not implicitly popped.
7199
7200 It is possible that if an input dies in an @code{asm}, the compiler might
7201 use the input register for an output reload. Consider this example:
7202
7203 @smallexample
7204 asm ("foo" : "=t" (a) : "f" (b));
7205 @end smallexample
7206
7207 @noindent
7208 This code says that input @code{b} is not popped by the @code{asm}, and that
7209 the @code{asm} pushes a result onto the reg-stack, i.e., the stack is one
7210 deeper after the @code{asm} than it was before. But, it is possible that
7211 reload may think that it can use the same register for both the input and
7212 the output.
7213
7214 To prevent this from happening,
7215 if any input operand uses the @code{f} constraint, all output register
7216 constraints must use the @code{&} early-clobber modifier.
7217
7218 The example above would be correctly written as:
7219
7220 @smallexample
7221 asm ("foo" : "=&t" (a) : "f" (b));
7222 @end smallexample
7223
7224 @item
7225 Some operands need to be in particular places on the stack. All
7226 output operands fall in this category---GCC has no other way to
7227 know which registers the outputs appear in unless you indicate
7228 this in the constraints.
7229
7230 Output operands must specifically indicate which register an output
7231 appears in after an @code{asm}. @code{=f} is not allowed: the operand
7232 constraints must select a class with a single register.
7233
7234 @item
7235 Output operands may not be ``inserted'' between existing stack registers.
7236 Since no 387 opcode uses a read/write operand, all output operands
7237 are dead before the @code{asm}, and are pushed by the @code{asm}.
7238 It makes no sense to push anywhere but the top of the reg-stack.
7239
7240 Output operands must start at the top of the reg-stack: output
7241 operands may not ``skip'' a register.
7242
7243 @item
7244 Some @code{asm} statements may need extra stack space for internal
7245 calculations. This can be guaranteed by clobbering stack registers
7246 unrelated to the inputs and outputs.
7247
7248 @end enumerate
7249
7250 Here are a couple of reasonable @code{asm}s to want to write. This
7251 @code{asm}
7252 takes one input, which is internally popped, and produces two outputs.
7253
7254 @smallexample
7255 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
7256 @end smallexample
7257
7258 @noindent
7259 This @code{asm} takes two inputs, which are popped by the @code{fyl2xp1} opcode,
7260 and replaces them with one output. The @code{st(1)} clobber is necessary
7261 for the compiler to know that @code{fyl2xp1} pops both inputs.
7262
7263 @smallexample
7264 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
7265 @end smallexample
7266
7267 @lowersections
7268 @include md.texi
7269 @raisesections
7270
7271 @node Asm Labels
7272 @subsection Controlling Names Used in Assembler Code
7273 @cindex assembler names for identifiers
7274 @cindex names used in assembler code
7275 @cindex identifiers, names in assembler code
7276
7277 You can specify the name to be used in the assembler code for a C
7278 function or variable by writing the @code{asm} (or @code{__asm__})
7279 keyword after the declarator as follows:
7280
7281 @smallexample
7282 int foo asm ("myfoo") = 2;
7283 @end smallexample
7284
7285 @noindent
7286 This specifies that the name to be used for the variable @code{foo} in
7287 the assembler code should be @samp{myfoo} rather than the usual
7288 @samp{_foo}.
7289
7290 On systems where an underscore is normally prepended to the name of a C
7291 function or variable, this feature allows you to define names for the
7292 linker that do not start with an underscore.
7293
7294 It does not make sense to use this feature with a non-static local
7295 variable since such variables do not have assembler names. If you are
7296 trying to put the variable in a particular register, see @ref{Explicit
7297 Reg Vars}. GCC presently accepts such code with a warning, but will
7298 probably be changed to issue an error, rather than a warning, in the
7299 future.
7300
7301 You cannot use @code{asm} in this way in a function @emph{definition}; but
7302 you can get the same effect by writing a declaration for the function
7303 before its definition and putting @code{asm} there, like this:
7304
7305 @smallexample
7306 extern func () asm ("FUNC");
7307
7308 func (x, y)
7309 int x, y;
7310 /* @r{@dots{}} */
7311 @end smallexample
7312
7313 It is up to you to make sure that the assembler names you choose do not
7314 conflict with any other assembler symbols. Also, you must not use a
7315 register name; that would produce completely invalid assembler code. GCC
7316 does not as yet have the ability to store static variables in registers.
7317 Perhaps that will be added.
7318
7319 @node Explicit Reg Vars
7320 @subsection Variables in Specified Registers
7321 @cindex explicit register variables
7322 @cindex variables in specified registers
7323 @cindex specified registers
7324 @cindex registers, global allocation
7325
7326 GNU C allows you to put a few global variables into specified hardware
7327 registers. You can also specify the register in which an ordinary
7328 register variable should be allocated.
7329
7330 @itemize @bullet
7331 @item
7332 Global register variables reserve registers throughout the program.
7333 This may be useful in programs such as programming language
7334 interpreters that have a couple of global variables that are accessed
7335 very often.
7336
7337 @item
7338 Local register variables in specific registers do not reserve the
7339 registers, except at the point where they are used as input or output
7340 operands in an @code{asm} statement and the @code{asm} statement itself is
7341 not deleted. The compiler's data flow analysis is capable of determining
7342 where the specified registers contain live values, and where they are
7343 available for other uses. Stores into local register variables may be deleted
7344 when they appear to be dead according to dataflow analysis. References
7345 to local register variables may be deleted or moved or simplified.
7346
7347 These local variables are sometimes convenient for use with the extended
7348 @code{asm} feature (@pxref{Extended Asm}), if you want to write one
7349 output of the assembler instruction directly into a particular register.
7350 (This works provided the register you specify fits the constraints
7351 specified for that operand in the @code{asm}.)
7352 @end itemize
7353
7354 @menu
7355 * Global Reg Vars::
7356 * Local Reg Vars::
7357 @end menu
7358
7359 @node Global Reg Vars
7360 @subsubsection Defining Global Register Variables
7361 @cindex global register variables
7362 @cindex registers, global variables in
7363
7364 You can define a global register variable in GNU C like this:
7365
7366 @smallexample
7367 register int *foo asm ("a5");
7368 @end smallexample
7369
7370 @noindent
7371 Here @code{a5} is the name of the register that should be used. Choose a
7372 register that is normally saved and restored by function calls on your
7373 machine, so that library routines will not clobber it.
7374
7375 Naturally the register name is cpu-dependent, so you need to
7376 conditionalize your program according to cpu type. The register
7377 @code{a5} is a good choice on a 68000 for a variable of pointer
7378 type. On machines with register windows, be sure to choose a ``global''
7379 register that is not affected magically by the function call mechanism.
7380
7381 In addition, different operating systems on the same CPU may differ in how they
7382 name the registers; then you need additional conditionals. For
7383 example, some 68000 operating systems call this register @code{%a5}.
7384
7385 Eventually there may be a way of asking the compiler to choose a register
7386 automatically, but first we need to figure out how it should choose and
7387 how to enable you to guide the choice. No solution is evident.
7388
7389 Defining a global register variable in a certain register reserves that
7390 register entirely for this use, at least within the current compilation.
7391 The register is not allocated for any other purpose in the functions
7392 in the current compilation, and is not saved and restored by
7393 these functions. Stores into this register are never deleted even if they
7394 appear to be dead, but references may be deleted or moved or
7395 simplified.
7396
7397 It is not safe to access the global register variables from signal
7398 handlers, or from more than one thread of control, because the system
7399 library routines may temporarily use the register for other things (unless
7400 you recompile them specially for the task at hand).
7401
7402 @cindex @code{qsort}, and global register variables
7403 It is not safe for one function that uses a global register variable to
7404 call another such function @code{foo} by way of a third function
7405 @code{lose} that is compiled without knowledge of this variable (i.e.@: in a
7406 different source file in which the variable isn't declared). This is
7407 because @code{lose} might save the register and put some other value there.
7408 For example, you can't expect a global register variable to be available in
7409 the comparison-function that you pass to @code{qsort}, since @code{qsort}
7410 might have put something else in that register. (If you are prepared to
7411 recompile @code{qsort} with the same global register variable, you can
7412 solve this problem.)
7413
7414 If you want to recompile @code{qsort} or other source files that do not
7415 actually use your global register variable, so that they do not use that
7416 register for any other purpose, then it suffices to specify the compiler
7417 option @option{-ffixed-@var{reg}}. You need not actually add a global
7418 register declaration to their source code.
7419
7420 A function that can alter the value of a global register variable cannot
7421 safely be called from a function compiled without this variable, because it
7422 could clobber the value the caller expects to find there on return.
7423 Therefore, the function that is the entry point into the part of the
7424 program that uses the global register variable must explicitly save and
7425 restore the value that belongs to its caller.
7426
7427 @cindex register variable after @code{longjmp}
7428 @cindex global register after @code{longjmp}
7429 @cindex value after @code{longjmp}
7430 @findex longjmp
7431 @findex setjmp
7432 On most machines, @code{longjmp} restores to each global register
7433 variable the value it had at the time of the @code{setjmp}. On some
7434 machines, however, @code{longjmp} does not change the value of global
7435 register variables. To be portable, the function that called @code{setjmp}
7436 should make other arrangements to save the values of the global register
7437 variables, and to restore them in a @code{longjmp}. This way, the same
7438 thing happens regardless of what @code{longjmp} does.
7439
7440 All global register variable declarations must precede all function
7441 definitions. If such a declaration could appear after function
7442 definitions, the declaration would be too late to prevent the register from
7443 being used for other purposes in the preceding functions.
7444
7445 Global register variables may not have initial values, because an
7446 executable file has no means to supply initial contents for a register.
7447
7448 On the SPARC, there are reports that g3 @dots{} g7 are suitable
7449 registers, but certain library functions, such as @code{getwd}, as well
7450 as the subroutines for division and remainder, modify g3 and g4. g1 and
7451 g2 are local temporaries.
7452
7453 On the 68000, a2 @dots{} a5 should be suitable, as should d2 @dots{} d7.
7454 Of course, it does not do to use more than a few of those.
7455
7456 @node Local Reg Vars
7457 @subsubsection Specifying Registers for Local Variables
7458 @cindex local variables, specifying registers
7459 @cindex specifying registers for local variables
7460 @cindex registers for local variables
7461
7462 You can define a local register variable with a specified register
7463 like this:
7464
7465 @smallexample
7466 register int *foo asm ("a5");
7467 @end smallexample
7468
7469 @noindent
7470 Here @code{a5} is the name of the register that should be used. Note
7471 that this is the same syntax used for defining global register
7472 variables, but for a local variable it appears within a function.
7473
7474 Naturally the register name is cpu-dependent, but this is not a
7475 problem, since specific registers are most often useful with explicit
7476 assembler instructions (@pxref{Extended Asm}). Both of these things
7477 generally require that you conditionalize your program according to
7478 cpu type.
7479
7480 In addition, operating systems on one type of cpu may differ in how they
7481 name the registers; then you need additional conditionals. For
7482 example, some 68000 operating systems call this register @code{%a5}.
7483
7484 Defining such a register variable does not reserve the register; it
7485 remains available for other uses in places where flow control determines
7486 the variable's value is not live.
7487
7488 This option does not guarantee that GCC generates code that has
7489 this variable in the register you specify at all times. You may not
7490 code an explicit reference to this register in the @emph{assembler
7491 instruction template} part of an @code{asm} statement and assume it
7492 always refers to this variable. However, using the variable as an
7493 @code{asm} @emph{operand} guarantees that the specified register is used
7494 for the operand.
7495
7496 Stores into local register variables may be deleted when they appear to be dead
7497 according to dataflow analysis. References to local register variables may
7498 be deleted or moved or simplified.
7499
7500 As with global register variables, it is recommended that you choose a
7501 register that is normally saved and restored by function calls on
7502 your machine, so that library routines will not clobber it.
7503
7504 Sometimes when writing inline @code{asm} code, you need to make an operand be a
7505 specific register, but there's no matching constraint letter for that
7506 register. To force the operand into that register, create a local variable
7507 and specify the register in the variable's declaration. Then use the local
7508 variable for the asm operand and specify any constraint letter that matches
7509 the register:
7510
7511 @smallexample
7512 register int *p1 asm ("r0") = @dots{};
7513 register int *p2 asm ("r1") = @dots{};
7514 register int *result asm ("r0");
7515 asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
7516 @end smallexample
7517
7518 @emph{Warning:} In the above example, be aware that a register (for example r0) can be
7519 call-clobbered by subsequent code, including function calls and library calls
7520 for arithmetic operators on other variables (for example the initialization
7521 of p2). In this case, use temporary variables for expressions between the
7522 register assignments:
7523
7524 @smallexample
7525 int t1 = @dots{};
7526 register int *p1 asm ("r0") = @dots{};
7527 register int *p2 asm ("r1") = t1;
7528 register int *result asm ("r0");
7529 asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
7530 @end smallexample
7531
7532 @node Size of an asm
7533 @subsection Size of an @code{asm}
7534
7535 Some targets require that GCC track the size of each instruction used
7536 in order to generate correct code. Because the final length of the
7537 code produced by an @code{asm} statement is only known by the
7538 assembler, GCC must make an estimate as to how big it will be. It
7539 does this by counting the number of instructions in the pattern of the
7540 @code{asm} and multiplying that by the length of the longest
7541 instruction supported by that processor. (When working out the number
7542 of instructions, it assumes that any occurrence of a newline or of
7543 whatever statement separator character is supported by the assembler --
7544 typically @samp{;} --- indicates the end of an instruction.)
7545
7546 Normally, GCC's estimate is adequate to ensure that correct
7547 code is generated, but it is possible to confuse the compiler if you use
7548 pseudo instructions or assembler macros that expand into multiple real
7549 instructions, or if you use assembler directives that expand to more
7550 space in the object file than is needed for a single instruction.
7551 If this happens then the assembler may produce a diagnostic saying that
7552 a label is unreachable.
7553
7554 @node Alternate Keywords
7555 @section Alternate Keywords
7556 @cindex alternate keywords
7557 @cindex keywords, alternate
7558
7559 @option{-ansi} and the various @option{-std} options disable certain
7560 keywords. This causes trouble when you want to use GNU C extensions, or
7561 a general-purpose header file that should be usable by all programs,
7562 including ISO C programs. The keywords @code{asm}, @code{typeof} and
7563 @code{inline} are not available in programs compiled with
7564 @option{-ansi} or @option{-std} (although @code{inline} can be used in a
7565 program compiled with @option{-std=c99} or @option{-std=c11}). The
7566 ISO C99 keyword
7567 @code{restrict} is only available when @option{-std=gnu99} (which will
7568 eventually be the default) or @option{-std=c99} (or the equivalent
7569 @option{-std=iso9899:1999}), or an option for a later standard
7570 version, is used.
7571
7572 The way to solve these problems is to put @samp{__} at the beginning and
7573 end of each problematical keyword. For example, use @code{__asm__}
7574 instead of @code{asm}, and @code{__inline__} instead of @code{inline}.
7575
7576 Other C compilers won't accept these alternative keywords; if you want to
7577 compile with another compiler, you can define the alternate keywords as
7578 macros to replace them with the customary keywords. It looks like this:
7579
7580 @smallexample
7581 #ifndef __GNUC__
7582 #define __asm__ asm
7583 #endif
7584 @end smallexample
7585
7586 @findex __extension__
7587 @opindex pedantic
7588 @option{-pedantic} and other options cause warnings for many GNU C extensions.
7589 You can
7590 prevent such warnings within one expression by writing
7591 @code{__extension__} before the expression. @code{__extension__} has no
7592 effect aside from this.
7593
7594 @node Incomplete Enums
7595 @section Incomplete @code{enum} Types
7596
7597 You can define an @code{enum} tag without specifying its possible values.
7598 This results in an incomplete type, much like what you get if you write
7599 @code{struct foo} without describing the elements. A later declaration
7600 that does specify the possible values completes the type.
7601
7602 You can't allocate variables or storage using the type while it is
7603 incomplete. However, you can work with pointers to that type.
7604
7605 This extension may not be very useful, but it makes the handling of
7606 @code{enum} more consistent with the way @code{struct} and @code{union}
7607 are handled.
7608
7609 This extension is not supported by GNU C++.
7610
7611 @node Function Names
7612 @section Function Names as Strings
7613 @cindex @code{__func__} identifier
7614 @cindex @code{__FUNCTION__} identifier
7615 @cindex @code{__PRETTY_FUNCTION__} identifier
7616
7617 GCC provides three magic variables that hold the name of the current
7618 function, as a string. The first of these is @code{__func__}, which
7619 is part of the C99 standard:
7620
7621 The identifier @code{__func__} is implicitly declared by the translator
7622 as if, immediately following the opening brace of each function
7623 definition, the declaration
7624
7625 @smallexample
7626 static const char __func__[] = "function-name";
7627 @end smallexample
7628
7629 @noindent
7630 appeared, where function-name is the name of the lexically-enclosing
7631 function. This name is the unadorned name of the function.
7632
7633 @code{__FUNCTION__} is another name for @code{__func__}. Older
7634 versions of GCC recognize only this name. However, it is not
7635 standardized. For maximum portability, we recommend you use
7636 @code{__func__}, but provide a fallback definition with the
7637 preprocessor:
7638
7639 @smallexample
7640 #if __STDC_VERSION__ < 199901L
7641 # if __GNUC__ >= 2
7642 # define __func__ __FUNCTION__
7643 # else
7644 # define __func__ "<unknown>"
7645 # endif
7646 #endif
7647 @end smallexample
7648
7649 In C, @code{__PRETTY_FUNCTION__} is yet another name for
7650 @code{__func__}. However, in C++, @code{__PRETTY_FUNCTION__} contains
7651 the type signature of the function as well as its bare name. For
7652 example, this program:
7653
7654 @smallexample
7655 extern "C" @{
7656 extern int printf (char *, ...);
7657 @}
7658
7659 class a @{
7660 public:
7661 void sub (int i)
7662 @{
7663 printf ("__FUNCTION__ = %s\n", __FUNCTION__);
7664 printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);
7665 @}
7666 @};
7667
7668 int
7669 main (void)
7670 @{
7671 a ax;
7672 ax.sub (0);
7673 return 0;
7674 @}
7675 @end smallexample
7676
7677 @noindent
7678 gives this output:
7679
7680 @smallexample
7681 __FUNCTION__ = sub
7682 __PRETTY_FUNCTION__ = void a::sub(int)
7683 @end smallexample
7684
7685 These identifiers are not preprocessor macros. In GCC 3.3 and
7686 earlier, in C only, @code{__FUNCTION__} and @code{__PRETTY_FUNCTION__}
7687 were treated as string literals; they could be used to initialize
7688 @code{char} arrays, and they could be concatenated with other string
7689 literals. GCC 3.4 and later treat them as variables, like
7690 @code{__func__}. In C++, @code{__FUNCTION__} and
7691 @code{__PRETTY_FUNCTION__} have always been variables.
7692
7693 @node Return Address
7694 @section Getting the Return or Frame Address of a Function
7695
7696 These functions may be used to get information about the callers of a
7697 function.
7698
7699 @deftypefn {Built-in Function} {void *} __builtin_return_address (unsigned int @var{level})
7700 This function returns the return address of the current function, or of
7701 one of its callers. The @var{level} argument is number of frames to
7702 scan up the call stack. A value of @code{0} yields the return address
7703 of the current function, a value of @code{1} yields the return address
7704 of the caller of the current function, and so forth. When inlining
7705 the expected behavior is that the function returns the address of
7706 the function that is returned to. To work around this behavior use
7707 the @code{noinline} function attribute.
7708
7709 The @var{level} argument must be a constant integer.
7710
7711 On some machines it may be impossible to determine the return address of
7712 any function other than the current one; in such cases, or when the top
7713 of the stack has been reached, this function returns @code{0} or a
7714 random value. In addition, @code{__builtin_frame_address} may be used
7715 to determine if the top of the stack has been reached.
7716
7717 Additional post-processing of the returned value may be needed, see
7718 @code{__builtin_extract_return_addr}.
7719
7720 This function should only be used with a nonzero argument for debugging
7721 purposes.
7722 @end deftypefn
7723
7724 @deftypefn {Built-in Function} {void *} __builtin_extract_return_addr (void *@var{addr})
7725 The address as returned by @code{__builtin_return_address} may have to be fed
7726 through this function to get the actual encoded address. For example, on the
7727 31-bit S/390 platform the highest bit has to be masked out, or on SPARC
7728 platforms an offset has to be added for the true next instruction to be
7729 executed.
7730
7731 If no fixup is needed, this function simply passes through @var{addr}.
7732 @end deftypefn
7733
7734 @deftypefn {Built-in Function} {void *} __builtin_frob_return_address (void *@var{addr})
7735 This function does the reverse of @code{__builtin_extract_return_addr}.
7736 @end deftypefn
7737
7738 @deftypefn {Built-in Function} {void *} __builtin_frame_address (unsigned int @var{level})
7739 This function is similar to @code{__builtin_return_address}, but it
7740 returns the address of the function frame rather than the return address
7741 of the function. Calling @code{__builtin_frame_address} with a value of
7742 @code{0} yields the frame address of the current function, a value of
7743 @code{1} yields the frame address of the caller of the current function,
7744 and so forth.
7745
7746 The frame is the area on the stack that holds local variables and saved
7747 registers. The frame address is normally the address of the first word
7748 pushed on to the stack by the function. However, the exact definition
7749 depends upon the processor and the calling convention. If the processor
7750 has a dedicated frame pointer register, and the function has a frame,
7751 then @code{__builtin_frame_address} returns the value of the frame
7752 pointer register.
7753
7754 On some machines it may be impossible to determine the frame address of
7755 any function other than the current one; in such cases, or when the top
7756 of the stack has been reached, this function returns @code{0} if
7757 the first frame pointer is properly initialized by the startup code.
7758
7759 This function should only be used with a nonzero argument for debugging
7760 purposes.
7761 @end deftypefn
7762
7763 @node Vector Extensions
7764 @section Using Vector Instructions through Built-in Functions
7765
7766 On some targets, the instruction set contains SIMD vector instructions which
7767 operate on multiple values contained in one large register at the same time.
7768 For example, on the i386 the MMX, 3DNow!@: and SSE extensions can be used
7769 this way.
7770
7771 The first step in using these extensions is to provide the necessary data
7772 types. This should be done using an appropriate @code{typedef}:
7773
7774 @smallexample
7775 typedef int v4si __attribute__ ((vector_size (16)));
7776 @end smallexample
7777
7778 @noindent
7779 The @code{int} type specifies the base type, while the attribute specifies
7780 the vector size for the variable, measured in bytes. For example, the
7781 declaration above causes the compiler to set the mode for the @code{v4si}
7782 type to be 16 bytes wide and divided into @code{int} sized units. For
7783 a 32-bit @code{int} this means a vector of 4 units of 4 bytes, and the
7784 corresponding mode of @code{foo} is @acronym{V4SI}.
7785
7786 The @code{vector_size} attribute is only applicable to integral and
7787 float scalars, although arrays, pointers, and function return values
7788 are allowed in conjunction with this construct. Only sizes that are
7789 a power of two are currently allowed.
7790
7791 All the basic integer types can be used as base types, both as signed
7792 and as unsigned: @code{char}, @code{short}, @code{int}, @code{long},
7793 @code{long long}. In addition, @code{float} and @code{double} can be
7794 used to build floating-point vector types.
7795
7796 Specifying a combination that is not valid for the current architecture
7797 causes GCC to synthesize the instructions using a narrower mode.
7798 For example, if you specify a variable of type @code{V4SI} and your
7799 architecture does not allow for this specific SIMD type, GCC
7800 produces code that uses 4 @code{SIs}.
7801
7802 The types defined in this manner can be used with a subset of normal C
7803 operations. Currently, GCC allows using the following operators
7804 on these types: @code{+, -, *, /, unary minus, ^, |, &, ~, %}@.
7805
7806 The operations behave like C++ @code{valarrays}. Addition is defined as
7807 the addition of the corresponding elements of the operands. For
7808 example, in the code below, each of the 4 elements in @var{a} is
7809 added to the corresponding 4 elements in @var{b} and the resulting
7810 vector is stored in @var{c}.
7811
7812 @smallexample
7813 typedef int v4si __attribute__ ((vector_size (16)));
7814
7815 v4si a, b, c;
7816
7817 c = a + b;
7818 @end smallexample
7819
7820 Subtraction, multiplication, division, and the logical operations
7821 operate in a similar manner. Likewise, the result of using the unary
7822 minus or complement operators on a vector type is a vector whose
7823 elements are the negative or complemented values of the corresponding
7824 elements in the operand.
7825
7826 It is possible to use shifting operators @code{<<}, @code{>>} on
7827 integer-type vectors. The operation is defined as following: @code{@{a0,
7828 a1, @dots{}, an@} >> @{b0, b1, @dots{}, bn@} == @{a0 >> b0, a1 >> b1,
7829 @dots{}, an >> bn@}}@. Vector operands must have the same number of
7830 elements.
7831
7832 For convenience, it is allowed to use a binary vector operation
7833 where one operand is a scalar. In that case the compiler transforms
7834 the scalar operand into a vector where each element is the scalar from
7835 the operation. The transformation happens only if the scalar could be
7836 safely converted to the vector-element type.
7837 Consider the following code.
7838
7839 @smallexample
7840 typedef int v4si __attribute__ ((vector_size (16)));
7841
7842 v4si a, b, c;
7843 long l;
7844
7845 a = b + 1; /* a = b + @{1,1,1,1@}; */
7846 a = 2 * b; /* a = @{2,2,2,2@} * b; */
7847
7848 a = l + a; /* Error, cannot convert long to int. */
7849 @end smallexample
7850
7851 Vectors can be subscripted as if the vector were an array with
7852 the same number of elements and base type. Out of bound accesses
7853 invoke undefined behavior at run time. Warnings for out of bound
7854 accesses for vector subscription can be enabled with
7855 @option{-Warray-bounds}.
7856
7857 Vector comparison is supported with standard comparison
7858 operators: @code{==, !=, <, <=, >, >=}. Comparison operands can be
7859 vector expressions of integer-type or real-type. Comparison between
7860 integer-type vectors and real-type vectors are not supported. The
7861 result of the comparison is a vector of the same width and number of
7862 elements as the comparison operands with a signed integral element
7863 type.
7864
7865 Vectors are compared element-wise producing 0 when comparison is false
7866 and -1 (constant of the appropriate type where all bits are set)
7867 otherwise. Consider the following example.
7868
7869 @smallexample
7870 typedef int v4si __attribute__ ((vector_size (16)));
7871
7872 v4si a = @{1,2,3,4@};
7873 v4si b = @{3,2,1,4@};
7874 v4si c;
7875
7876 c = a > b; /* The result would be @{0, 0,-1, 0@} */
7877 c = a == b; /* The result would be @{0,-1, 0,-1@} */
7878 @end smallexample
7879
7880 In C++, the ternary operator @code{?:} is available. @code{a?b:c}, where
7881 @code{b} and @code{c} are vectors of the same type and @code{a} is an
7882 integer vector with the same number of elements of the same size as @code{b}
7883 and @code{c}, computes all three arguments and creates a vector
7884 @code{@{a[0]?b[0]:c[0], a[1]?b[1]:c[1], @dots{}@}}. Note that unlike in
7885 OpenCL, @code{a} is thus interpreted as @code{a != 0} and not @code{a < 0}.
7886 As in the case of binary operations, this syntax is also accepted when
7887 one of @code{b} or @code{c} is a scalar that is then transformed into a
7888 vector. If both @code{b} and @code{c} are scalars and the type of
7889 @code{true?b:c} has the same size as the element type of @code{a}, then
7890 @code{b} and @code{c} are converted to a vector type whose elements have
7891 this type and with the same number of elements as @code{a}.
7892
7893 Vector shuffling is available using functions
7894 @code{__builtin_shuffle (vec, mask)} and
7895 @code{__builtin_shuffle (vec0, vec1, mask)}.
7896 Both functions construct a permutation of elements from one or two
7897 vectors and return a vector of the same type as the input vector(s).
7898 The @var{mask} is an integral vector with the same width (@var{W})
7899 and element count (@var{N}) as the output vector.
7900
7901 The elements of the input vectors are numbered in memory ordering of
7902 @var{vec0} beginning at 0 and @var{vec1} beginning at @var{N}. The
7903 elements of @var{mask} are considered modulo @var{N} in the single-operand
7904 case and modulo @math{2*@var{N}} in the two-operand case.
7905
7906 Consider the following example,
7907
7908 @smallexample
7909 typedef int v4si __attribute__ ((vector_size (16)));
7910
7911 v4si a = @{1,2,3,4@};
7912 v4si b = @{5,6,7,8@};
7913 v4si mask1 = @{0,1,1,3@};
7914 v4si mask2 = @{0,4,2,5@};
7915 v4si res;
7916
7917 res = __builtin_shuffle (a, mask1); /* res is @{1,2,2,4@} */
7918 res = __builtin_shuffle (a, b, mask2); /* res is @{1,5,3,6@} */
7919 @end smallexample
7920
7921 Note that @code{__builtin_shuffle} is intentionally semantically
7922 compatible with the OpenCL @code{shuffle} and @code{shuffle2} functions.
7923
7924 You can declare variables and use them in function calls and returns, as
7925 well as in assignments and some casts. You can specify a vector type as
7926 a return type for a function. Vector types can also be used as function
7927 arguments. It is possible to cast from one vector type to another,
7928 provided they are of the same size (in fact, you can also cast vectors
7929 to and from other datatypes of the same size).
7930
7931 You cannot operate between vectors of different lengths or different
7932 signedness without a cast.
7933
7934 @node Offsetof
7935 @section Offsetof
7936 @findex __builtin_offsetof
7937
7938 GCC implements for both C and C++ a syntactic extension to implement
7939 the @code{offsetof} macro.
7940
7941 @smallexample
7942 primary:
7943 "__builtin_offsetof" "(" @code{typename} "," offsetof_member_designator ")"
7944
7945 offsetof_member_designator:
7946 @code{identifier}
7947 | offsetof_member_designator "." @code{identifier}
7948 | offsetof_member_designator "[" @code{expr} "]"
7949 @end smallexample
7950
7951 This extension is sufficient such that
7952
7953 @smallexample
7954 #define offsetof(@var{type}, @var{member}) __builtin_offsetof (@var{type}, @var{member})
7955 @end smallexample
7956
7957 @noindent
7958 is a suitable definition of the @code{offsetof} macro. In C++, @var{type}
7959 may be dependent. In either case, @var{member} may consist of a single
7960 identifier, or a sequence of member accesses and array references.
7961
7962 @node __sync Builtins
7963 @section Legacy __sync Built-in Functions for Atomic Memory Access
7964
7965 The following built-in functions
7966 are intended to be compatible with those described
7967 in the @cite{Intel Itanium Processor-specific Application Binary Interface},
7968 section 7.4. As such, they depart from the normal GCC practice of using
7969 the @samp{__builtin_} prefix, and further that they are overloaded such that
7970 they work on multiple types.
7971
7972 The definition given in the Intel documentation allows only for the use of
7973 the types @code{int}, @code{long}, @code{long long} as well as their unsigned
7974 counterparts. GCC allows any integral scalar or pointer type that is
7975 1, 2, 4 or 8 bytes in length.
7976
7977 Not all operations are supported by all target processors. If a particular
7978 operation cannot be implemented on the target processor, a warning is
7979 generated and a call an external function is generated. The external
7980 function carries the same name as the built-in version,
7981 with an additional suffix
7982 @samp{_@var{n}} where @var{n} is the size of the data type.
7983
7984 @c ??? Should we have a mechanism to suppress this warning? This is almost
7985 @c useful for implementing the operation under the control of an external
7986 @c mutex.
7987
7988 In most cases, these built-in functions are considered a @dfn{full barrier}.
7989 That is,
7990 no memory operand is moved across the operation, either forward or
7991 backward. Further, instructions are issued as necessary to prevent the
7992 processor from speculating loads across the operation and from queuing stores
7993 after the operation.
7994
7995 All of the routines are described in the Intel documentation to take
7996 ``an optional list of variables protected by the memory barrier''. It's
7997 not clear what is meant by that; it could mean that @emph{only} the
7998 following variables are protected, or it could mean that these variables
7999 should in addition be protected. At present GCC ignores this list and
8000 protects all variables that are globally accessible. If in the future
8001 we make some use of this list, an empty list will continue to mean all
8002 globally accessible variables.
8003
8004 @table @code
8005 @item @var{type} __sync_fetch_and_add (@var{type} *ptr, @var{type} value, ...)
8006 @itemx @var{type} __sync_fetch_and_sub (@var{type} *ptr, @var{type} value, ...)
8007 @itemx @var{type} __sync_fetch_and_or (@var{type} *ptr, @var{type} value, ...)
8008 @itemx @var{type} __sync_fetch_and_and (@var{type} *ptr, @var{type} value, ...)
8009 @itemx @var{type} __sync_fetch_and_xor (@var{type} *ptr, @var{type} value, ...)
8010 @itemx @var{type} __sync_fetch_and_nand (@var{type} *ptr, @var{type} value, ...)
8011 @findex __sync_fetch_and_add
8012 @findex __sync_fetch_and_sub
8013 @findex __sync_fetch_and_or
8014 @findex __sync_fetch_and_and
8015 @findex __sync_fetch_and_xor
8016 @findex __sync_fetch_and_nand
8017 These built-in functions perform the operation suggested by the name, and
8018 returns the value that had previously been in memory. That is,
8019
8020 @smallexample
8021 @{ tmp = *ptr; *ptr @var{op}= value; return tmp; @}
8022 @{ tmp = *ptr; *ptr = ~(tmp & value); return tmp; @} // nand
8023 @end smallexample
8024
8025 @emph{Note:} GCC 4.4 and later implement @code{__sync_fetch_and_nand}
8026 as @code{*ptr = ~(tmp & value)} instead of @code{*ptr = ~tmp & value}.
8027
8028 @item @var{type} __sync_add_and_fetch (@var{type} *ptr, @var{type} value, ...)
8029 @itemx @var{type} __sync_sub_and_fetch (@var{type} *ptr, @var{type} value, ...)
8030 @itemx @var{type} __sync_or_and_fetch (@var{type} *ptr, @var{type} value, ...)
8031 @itemx @var{type} __sync_and_and_fetch (@var{type} *ptr, @var{type} value, ...)
8032 @itemx @var{type} __sync_xor_and_fetch (@var{type} *ptr, @var{type} value, ...)
8033 @itemx @var{type} __sync_nand_and_fetch (@var{type} *ptr, @var{type} value, ...)
8034 @findex __sync_add_and_fetch
8035 @findex __sync_sub_and_fetch
8036 @findex __sync_or_and_fetch
8037 @findex __sync_and_and_fetch
8038 @findex __sync_xor_and_fetch
8039 @findex __sync_nand_and_fetch
8040 These built-in functions perform the operation suggested by the name, and
8041 return the new value. That is,
8042
8043 @smallexample
8044 @{ *ptr @var{op}= value; return *ptr; @}
8045 @{ *ptr = ~(*ptr & value); return *ptr; @} // nand
8046 @end smallexample
8047
8048 @emph{Note:} GCC 4.4 and later implement @code{__sync_nand_and_fetch}
8049 as @code{*ptr = ~(*ptr & value)} instead of
8050 @code{*ptr = ~*ptr & value}.
8051
8052 @item bool __sync_bool_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
8053 @itemx @var{type} __sync_val_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
8054 @findex __sync_bool_compare_and_swap
8055 @findex __sync_val_compare_and_swap
8056 These built-in functions perform an atomic compare and swap.
8057 That is, if the current
8058 value of @code{*@var{ptr}} is @var{oldval}, then write @var{newval} into
8059 @code{*@var{ptr}}.
8060
8061 The ``bool'' version returns true if the comparison is successful and
8062 @var{newval} is written. The ``val'' version returns the contents
8063 of @code{*@var{ptr}} before the operation.
8064
8065 @item __sync_synchronize (...)
8066 @findex __sync_synchronize
8067 This built-in function issues a full memory barrier.
8068
8069 @item @var{type} __sync_lock_test_and_set (@var{type} *ptr, @var{type} value, ...)
8070 @findex __sync_lock_test_and_set
8071 This built-in function, as described by Intel, is not a traditional test-and-set
8072 operation, but rather an atomic exchange operation. It writes @var{value}
8073 into @code{*@var{ptr}}, and returns the previous contents of
8074 @code{*@var{ptr}}.
8075
8076 Many targets have only minimal support for such locks, and do not support
8077 a full exchange operation. In this case, a target may support reduced
8078 functionality here by which the @emph{only} valid value to store is the
8079 immediate constant 1. The exact value actually stored in @code{*@var{ptr}}
8080 is implementation defined.
8081
8082 This built-in function is not a full barrier,
8083 but rather an @dfn{acquire barrier}.
8084 This means that references after the operation cannot move to (or be
8085 speculated to) before the operation, but previous memory stores may not
8086 be globally visible yet, and previous memory loads may not yet be
8087 satisfied.
8088
8089 @item void __sync_lock_release (@var{type} *ptr, ...)
8090 @findex __sync_lock_release
8091 This built-in function releases the lock acquired by
8092 @code{__sync_lock_test_and_set}.
8093 Normally this means writing the constant 0 to @code{*@var{ptr}}.
8094
8095 This built-in function is not a full barrier,
8096 but rather a @dfn{release barrier}.
8097 This means that all previous memory stores are globally visible, and all
8098 previous memory loads have been satisfied, but following memory reads
8099 are not prevented from being speculated to before the barrier.
8100 @end table
8101
8102 @node __atomic Builtins
8103 @section Built-in functions for memory model aware atomic operations
8104
8105 The following built-in functions approximately match the requirements for
8106 C++11 memory model. Many are similar to the @samp{__sync} prefixed built-in
8107 functions, but all also have a memory model parameter. These are all
8108 identified by being prefixed with @samp{__atomic}, and most are overloaded
8109 such that they work with multiple types.
8110
8111 GCC allows any integral scalar or pointer type that is 1, 2, 4, or 8
8112 bytes in length. 16-byte integral types are also allowed if
8113 @samp{__int128} (@pxref{__int128}) is supported by the architecture.
8114
8115 Target architectures are encouraged to provide their own patterns for
8116 each of these built-in functions. If no target is provided, the original
8117 non-memory model set of @samp{__sync} atomic built-in functions are
8118 utilized, along with any required synchronization fences surrounding it in
8119 order to achieve the proper behavior. Execution in this case is subject
8120 to the same restrictions as those built-in functions.
8121
8122 If there is no pattern or mechanism to provide a lock free instruction
8123 sequence, a call is made to an external routine with the same parameters
8124 to be resolved at run time.
8125
8126 The four non-arithmetic functions (load, store, exchange, and
8127 compare_exchange) all have a generic version as well. This generic
8128 version works on any data type. If the data type size maps to one
8129 of the integral sizes that may have lock free support, the generic
8130 version utilizes the lock free built-in function. Otherwise an
8131 external call is left to be resolved at run time. This external call is
8132 the same format with the addition of a @samp{size_t} parameter inserted
8133 as the first parameter indicating the size of the object being pointed to.
8134 All objects must be the same size.
8135
8136 There are 6 different memory models that can be specified. These map
8137 to the same names in the C++11 standard. Refer there or to the
8138 @uref{http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync,GCC wiki on
8139 atomic synchronization} for more detailed definitions. These memory
8140 models integrate both barriers to code motion as well as synchronization
8141 requirements with other threads. These are listed in approximately
8142 ascending order of strength. It is also possible to use target specific
8143 flags for memory model flags, like Hardware Lock Elision.
8144
8145 @table @code
8146 @item __ATOMIC_RELAXED
8147 No barriers or synchronization.
8148 @item __ATOMIC_CONSUME
8149 Data dependency only for both barrier and synchronization with another
8150 thread.
8151 @item __ATOMIC_ACQUIRE
8152 Barrier to hoisting of code and synchronizes with release (or stronger)
8153 semantic stores from another thread.
8154 @item __ATOMIC_RELEASE
8155 Barrier to sinking of code and synchronizes with acquire (or stronger)
8156 semantic loads from another thread.
8157 @item __ATOMIC_ACQ_REL
8158 Full barrier in both directions and synchronizes with acquire loads and
8159 release stores in another thread.
8160 @item __ATOMIC_SEQ_CST
8161 Full barrier in both directions and synchronizes with acquire loads and
8162 release stores in all threads.
8163 @end table
8164
8165 When implementing patterns for these built-in functions, the memory model
8166 parameter can be ignored as long as the pattern implements the most
8167 restrictive @code{__ATOMIC_SEQ_CST} model. Any of the other memory models
8168 execute correctly with this memory model but they may not execute as
8169 efficiently as they could with a more appropriate implementation of the
8170 relaxed requirements.
8171
8172 Note that the C++11 standard allows for the memory model parameter to be
8173 determined at run time rather than at compile time. These built-in
8174 functions map any run-time value to @code{__ATOMIC_SEQ_CST} rather
8175 than invoke a runtime library call or inline a switch statement. This is
8176 standard compliant, safe, and the simplest approach for now.
8177
8178 The memory model parameter is a signed int, but only the lower 8 bits are
8179 reserved for the memory model. The remainder of the signed int is reserved
8180 for future use and should be 0. Use of the predefined atomic values
8181 ensures proper usage.
8182
8183 @deftypefn {Built-in Function} @var{type} __atomic_load_n (@var{type} *ptr, int memmodel)
8184 This built-in function implements an atomic load operation. It returns the
8185 contents of @code{*@var{ptr}}.
8186
8187 The valid memory model variants are
8188 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
8189 and @code{__ATOMIC_CONSUME}.
8190
8191 @end deftypefn
8192
8193 @deftypefn {Built-in Function} void __atomic_load (@var{type} *ptr, @var{type} *ret, int memmodel)
8194 This is the generic version of an atomic load. It returns the
8195 contents of @code{*@var{ptr}} in @code{*@var{ret}}.
8196
8197 @end deftypefn
8198
8199 @deftypefn {Built-in Function} void __atomic_store_n (@var{type} *ptr, @var{type} val, int memmodel)
8200 This built-in function implements an atomic store operation. It writes
8201 @code{@var{val}} into @code{*@var{ptr}}.
8202
8203 The valid memory model variants are
8204 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and @code{__ATOMIC_RELEASE}.
8205
8206 @end deftypefn
8207
8208 @deftypefn {Built-in Function} void __atomic_store (@var{type} *ptr, @var{type} *val, int memmodel)
8209 This is the generic version of an atomic store. It stores the value
8210 of @code{*@var{val}} into @code{*@var{ptr}}.
8211
8212 @end deftypefn
8213
8214 @deftypefn {Built-in Function} @var{type} __atomic_exchange_n (@var{type} *ptr, @var{type} val, int memmodel)
8215 This built-in function implements an atomic exchange operation. It writes
8216 @var{val} into @code{*@var{ptr}}, and returns the previous contents of
8217 @code{*@var{ptr}}.
8218
8219 The valid memory model variants are
8220 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
8221 @code{__ATOMIC_RELEASE}, and @code{__ATOMIC_ACQ_REL}.
8222
8223 @end deftypefn
8224
8225 @deftypefn {Built-in Function} void __atomic_exchange (@var{type} *ptr, @var{type} *val, @var{type} *ret, int memmodel)
8226 This is the generic version of an atomic exchange. It stores the
8227 contents of @code{*@var{val}} into @code{*@var{ptr}}. The original value
8228 of @code{*@var{ptr}} is copied into @code{*@var{ret}}.
8229
8230 @end deftypefn
8231
8232 @deftypefn {Built-in Function} bool __atomic_compare_exchange_n (@var{type} *ptr, @var{type} *expected, @var{type} desired, bool weak, int success_memmodel, int failure_memmodel)
8233 This built-in function implements an atomic compare and exchange operation.
8234 This compares the contents of @code{*@var{ptr}} with the contents of
8235 @code{*@var{expected}} and if equal, writes @var{desired} into
8236 @code{*@var{ptr}}. If they are not equal, the current contents of
8237 @code{*@var{ptr}} is written into @code{*@var{expected}}. @var{weak} is true
8238 for weak compare_exchange, and false for the strong variation. Many targets
8239 only offer the strong variation and ignore the parameter. When in doubt, use
8240 the strong variation.
8241
8242 True is returned if @var{desired} is written into
8243 @code{*@var{ptr}} and the execution is considered to conform to the
8244 memory model specified by @var{success_memmodel}. There are no
8245 restrictions on what memory model can be used here.
8246
8247 False is returned otherwise, and the execution is considered to conform
8248 to @var{failure_memmodel}. This memory model cannot be
8249 @code{__ATOMIC_RELEASE} nor @code{__ATOMIC_ACQ_REL}. It also cannot be a
8250 stronger model than that specified by @var{success_memmodel}.
8251
8252 @end deftypefn
8253
8254 @deftypefn {Built-in Function} bool __atomic_compare_exchange (@var{type} *ptr, @var{type} *expected, @var{type} *desired, bool weak, int success_memmodel, int failure_memmodel)
8255 This built-in function implements the generic version of
8256 @code{__atomic_compare_exchange}. The function is virtually identical to
8257 @code{__atomic_compare_exchange_n}, except the desired value is also a
8258 pointer.
8259
8260 @end deftypefn
8261
8262 @deftypefn {Built-in Function} @var{type} __atomic_add_fetch (@var{type} *ptr, @var{type} val, int memmodel)
8263 @deftypefnx {Built-in Function} @var{type} __atomic_sub_fetch (@var{type} *ptr, @var{type} val, int memmodel)
8264 @deftypefnx {Built-in Function} @var{type} __atomic_and_fetch (@var{type} *ptr, @var{type} val, int memmodel)
8265 @deftypefnx {Built-in Function} @var{type} __atomic_xor_fetch (@var{type} *ptr, @var{type} val, int memmodel)
8266 @deftypefnx {Built-in Function} @var{type} __atomic_or_fetch (@var{type} *ptr, @var{type} val, int memmodel)
8267 @deftypefnx {Built-in Function} @var{type} __atomic_nand_fetch (@var{type} *ptr, @var{type} val, int memmodel)
8268 These built-in functions perform the operation suggested by the name, and
8269 return the result of the operation. That is,
8270
8271 @smallexample
8272 @{ *ptr @var{op}= val; return *ptr; @}
8273 @end smallexample
8274
8275 All memory models are valid.
8276
8277 @end deftypefn
8278
8279 @deftypefn {Built-in Function} @var{type} __atomic_fetch_add (@var{type} *ptr, @var{type} val, int memmodel)
8280 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_sub (@var{type} *ptr, @var{type} val, int memmodel)
8281 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_and (@var{type} *ptr, @var{type} val, int memmodel)
8282 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_xor (@var{type} *ptr, @var{type} val, int memmodel)
8283 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_or (@var{type} *ptr, @var{type} val, int memmodel)
8284 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_nand (@var{type} *ptr, @var{type} val, int memmodel)
8285 These built-in functions perform the operation suggested by the name, and
8286 return the value that had previously been in @code{*@var{ptr}}. That is,
8287
8288 @smallexample
8289 @{ tmp = *ptr; *ptr @var{op}= val; return tmp; @}
8290 @end smallexample
8291
8292 All memory models are valid.
8293
8294 @end deftypefn
8295
8296 @deftypefn {Built-in Function} bool __atomic_test_and_set (void *ptr, int memmodel)
8297
8298 This built-in function performs an atomic test-and-set operation on
8299 the byte at @code{*@var{ptr}}. The byte is set to some implementation
8300 defined nonzero ``set'' value and the return value is @code{true} if and only
8301 if the previous contents were ``set''.
8302 It should be only used for operands of type @code{bool} or @code{char}. For
8303 other types only part of the value may be set.
8304
8305 All memory models are valid.
8306
8307 @end deftypefn
8308
8309 @deftypefn {Built-in Function} void __atomic_clear (bool *ptr, int memmodel)
8310
8311 This built-in function performs an atomic clear operation on
8312 @code{*@var{ptr}}. After the operation, @code{*@var{ptr}} contains 0.
8313 It should be only used for operands of type @code{bool} or @code{char} and
8314 in conjunction with @code{__atomic_test_and_set}.
8315 For other types it may only clear partially. If the type is not @code{bool}
8316 prefer using @code{__atomic_store}.
8317
8318 The valid memory model variants are
8319 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and
8320 @code{__ATOMIC_RELEASE}.
8321
8322 @end deftypefn
8323
8324 @deftypefn {Built-in Function} void __atomic_thread_fence (int memmodel)
8325
8326 This built-in function acts as a synchronization fence between threads
8327 based on the specified memory model.
8328
8329 All memory orders are valid.
8330
8331 @end deftypefn
8332
8333 @deftypefn {Built-in Function} void __atomic_signal_fence (int memmodel)
8334
8335 This built-in function acts as a synchronization fence between a thread
8336 and signal handlers based in the same thread.
8337
8338 All memory orders are valid.
8339
8340 @end deftypefn
8341
8342 @deftypefn {Built-in Function} bool __atomic_always_lock_free (size_t size, void *ptr)
8343
8344 This built-in function returns true if objects of @var{size} bytes always
8345 generate lock free atomic instructions for the target architecture.
8346 @var{size} must resolve to a compile-time constant and the result also
8347 resolves to a compile-time constant.
8348
8349 @var{ptr} is an optional pointer to the object that may be used to determine
8350 alignment. A value of 0 indicates typical alignment should be used. The
8351 compiler may also ignore this parameter.
8352
8353 @smallexample
8354 if (_atomic_always_lock_free (sizeof (long long), 0))
8355 @end smallexample
8356
8357 @end deftypefn
8358
8359 @deftypefn {Built-in Function} bool __atomic_is_lock_free (size_t size, void *ptr)
8360
8361 This built-in function returns true if objects of @var{size} bytes always
8362 generate lock free atomic instructions for the target architecture. If
8363 it is not known to be lock free a call is made to a runtime routine named
8364 @code{__atomic_is_lock_free}.
8365
8366 @var{ptr} is an optional pointer to the object that may be used to determine
8367 alignment. A value of 0 indicates typical alignment should be used. The
8368 compiler may also ignore this parameter.
8369 @end deftypefn
8370
8371 @node x86 specific memory model extensions for transactional memory
8372 @section x86 specific memory model extensions for transactional memory
8373
8374 The i386 architecture supports additional memory ordering flags
8375 to mark lock critical sections for hardware lock elision.
8376 These must be specified in addition to an existing memory model to
8377 atomic intrinsics.
8378
8379 @table @code
8380 @item __ATOMIC_HLE_ACQUIRE
8381 Start lock elision on a lock variable.
8382 Memory model must be @code{__ATOMIC_ACQUIRE} or stronger.
8383 @item __ATOMIC_HLE_RELEASE
8384 End lock elision on a lock variable.
8385 Memory model must be @code{__ATOMIC_RELEASE} or stronger.
8386 @end table
8387
8388 When a lock acquire fails it is required for good performance to abort
8389 the transaction quickly. This can be done with a @code{_mm_pause}
8390
8391 @smallexample
8392 #include <immintrin.h> // For _mm_pause
8393
8394 int lockvar;
8395
8396 /* Acquire lock with lock elision */
8397 while (__atomic_exchange_n(&lockvar, 1, __ATOMIC_ACQUIRE|__ATOMIC_HLE_ACQUIRE))
8398 _mm_pause(); /* Abort failed transaction */
8399 ...
8400 /* Free lock with lock elision */
8401 __atomic_store_n(&lockvar, 0, __ATOMIC_RELEASE|__ATOMIC_HLE_RELEASE);
8402 @end smallexample
8403
8404 @node Object Size Checking
8405 @section Object Size Checking Built-in Functions
8406 @findex __builtin_object_size
8407 @findex __builtin___memcpy_chk
8408 @findex __builtin___mempcpy_chk
8409 @findex __builtin___memmove_chk
8410 @findex __builtin___memset_chk
8411 @findex __builtin___strcpy_chk
8412 @findex __builtin___stpcpy_chk
8413 @findex __builtin___strncpy_chk
8414 @findex __builtin___strcat_chk
8415 @findex __builtin___strncat_chk
8416 @findex __builtin___sprintf_chk
8417 @findex __builtin___snprintf_chk
8418 @findex __builtin___vsprintf_chk
8419 @findex __builtin___vsnprintf_chk
8420 @findex __builtin___printf_chk
8421 @findex __builtin___vprintf_chk
8422 @findex __builtin___fprintf_chk
8423 @findex __builtin___vfprintf_chk
8424
8425 GCC implements a limited buffer overflow protection mechanism
8426 that can prevent some buffer overflow attacks.
8427
8428 @deftypefn {Built-in Function} {size_t} __builtin_object_size (void * @var{ptr}, int @var{type})
8429 is a built-in construct that returns a constant number of bytes from
8430 @var{ptr} to the end of the object @var{ptr} pointer points to
8431 (if known at compile time). @code{__builtin_object_size} never evaluates
8432 its arguments for side-effects. If there are any side-effects in them, it
8433 returns @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
8434 for @var{type} 2 or 3. If there are multiple objects @var{ptr} can
8435 point to and all of them are known at compile time, the returned number
8436 is the maximum of remaining byte counts in those objects if @var{type} & 2 is
8437 0 and minimum if nonzero. If it is not possible to determine which objects
8438 @var{ptr} points to at compile time, @code{__builtin_object_size} should
8439 return @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
8440 for @var{type} 2 or 3.
8441
8442 @var{type} is an integer constant from 0 to 3. If the least significant
8443 bit is clear, objects are whole variables, if it is set, a closest
8444 surrounding subobject is considered the object a pointer points to.
8445 The second bit determines if maximum or minimum of remaining bytes
8446 is computed.
8447
8448 @smallexample
8449 struct V @{ char buf1[10]; int b; char buf2[10]; @} var;
8450 char *p = &var.buf1[1], *q = &var.b;
8451
8452 /* Here the object p points to is var. */
8453 assert (__builtin_object_size (p, 0) == sizeof (var) - 1);
8454 /* The subobject p points to is var.buf1. */
8455 assert (__builtin_object_size (p, 1) == sizeof (var.buf1) - 1);
8456 /* The object q points to is var. */
8457 assert (__builtin_object_size (q, 0)
8458 == (char *) (&var + 1) - (char *) &var.b);
8459 /* The subobject q points to is var.b. */
8460 assert (__builtin_object_size (q, 1) == sizeof (var.b));
8461 @end smallexample
8462 @end deftypefn
8463
8464 There are built-in functions added for many common string operation
8465 functions, e.g., for @code{memcpy} @code{__builtin___memcpy_chk}
8466 built-in is provided. This built-in has an additional last argument,
8467 which is the number of bytes remaining in object the @var{dest}
8468 argument points to or @code{(size_t) -1} if the size is not known.
8469
8470 The built-in functions are optimized into the normal string functions
8471 like @code{memcpy} if the last argument is @code{(size_t) -1} or if
8472 it is known at compile time that the destination object will not
8473 be overflown. If the compiler can determine at compile time the
8474 object will be always overflown, it issues a warning.
8475
8476 The intended use can be e.g.@:
8477
8478 @smallexample
8479 #undef memcpy
8480 #define bos0(dest) __builtin_object_size (dest, 0)
8481 #define memcpy(dest, src, n) \
8482 __builtin___memcpy_chk (dest, src, n, bos0 (dest))
8483
8484 char *volatile p;
8485 char buf[10];
8486 /* It is unknown what object p points to, so this is optimized
8487 into plain memcpy - no checking is possible. */
8488 memcpy (p, "abcde", n);
8489 /* Destination is known and length too. It is known at compile
8490 time there will be no overflow. */
8491 memcpy (&buf[5], "abcde", 5);
8492 /* Destination is known, but the length is not known at compile time.
8493 This will result in __memcpy_chk call that can check for overflow
8494 at run time. */
8495 memcpy (&buf[5], "abcde", n);
8496 /* Destination is known and it is known at compile time there will
8497 be overflow. There will be a warning and __memcpy_chk call that
8498 will abort the program at run time. */
8499 memcpy (&buf[6], "abcde", 5);
8500 @end smallexample
8501
8502 Such built-in functions are provided for @code{memcpy}, @code{mempcpy},
8503 @code{memmove}, @code{memset}, @code{strcpy}, @code{stpcpy}, @code{strncpy},
8504 @code{strcat} and @code{strncat}.
8505
8506 There are also checking built-in functions for formatted output functions.
8507 @smallexample
8508 int __builtin___sprintf_chk (char *s, int flag, size_t os, const char *fmt, ...);
8509 int __builtin___snprintf_chk (char *s, size_t maxlen, int flag, size_t os,
8510 const char *fmt, ...);
8511 int __builtin___vsprintf_chk (char *s, int flag, size_t os, const char *fmt,
8512 va_list ap);
8513 int __builtin___vsnprintf_chk (char *s, size_t maxlen, int flag, size_t os,
8514 const char *fmt, va_list ap);
8515 @end smallexample
8516
8517 The added @var{flag} argument is passed unchanged to @code{__sprintf_chk}
8518 etc.@: functions and can contain implementation specific flags on what
8519 additional security measures the checking function might take, such as
8520 handling @code{%n} differently.
8521
8522 The @var{os} argument is the object size @var{s} points to, like in the
8523 other built-in functions. There is a small difference in the behavior
8524 though, if @var{os} is @code{(size_t) -1}, the built-in functions are
8525 optimized into the non-checking functions only if @var{flag} is 0, otherwise
8526 the checking function is called with @var{os} argument set to
8527 @code{(size_t) -1}.
8528
8529 In addition to this, there are checking built-in functions
8530 @code{__builtin___printf_chk}, @code{__builtin___vprintf_chk},
8531 @code{__builtin___fprintf_chk} and @code{__builtin___vfprintf_chk}.
8532 These have just one additional argument, @var{flag}, right before
8533 format string @var{fmt}. If the compiler is able to optimize them to
8534 @code{fputc} etc.@: functions, it does, otherwise the checking function
8535 is called and the @var{flag} argument passed to it.
8536
8537 @node Cilk Plus Builtins
8538 @section Cilk Plus C/C++ language extension Built-in Functions.
8539
8540 GCC provides support for the following built-in reduction funtions if Cilk Plus
8541 is enabled. Cilk Plus can be enabled using the @option{-fcilkplus} flag.
8542
8543 @itemize @bullet
8544 @item __sec_implicit_index
8545 @item __sec_reduce
8546 @item __sec_reduce_add
8547 @item __sec_reduce_all_nonzero
8548 @item __sec_reduce_all_zero
8549 @item __sec_reduce_any_nonzero
8550 @item __sec_reduce_any_zero
8551 @item __sec_reduce_max
8552 @item __sec_reduce_min
8553 @item __sec_reduce_max_ind
8554 @item __sec_reduce_min_ind
8555 @item __sec_reduce_mul
8556 @item __sec_reduce_mutating
8557 @end itemize
8558
8559 Further details and examples about these built-in functions are described
8560 in the Cilk Plus language manual which can be found at
8561 @uref{http://www.cilkplus.org}.
8562
8563 @node Other Builtins
8564 @section Other Built-in Functions Provided by GCC
8565 @cindex built-in functions
8566 @findex __builtin_fpclassify
8567 @findex __builtin_isfinite
8568 @findex __builtin_isnormal
8569 @findex __builtin_isgreater
8570 @findex __builtin_isgreaterequal
8571 @findex __builtin_isinf_sign
8572 @findex __builtin_isless
8573 @findex __builtin_islessequal
8574 @findex __builtin_islessgreater
8575 @findex __builtin_isunordered
8576 @findex __builtin_powi
8577 @findex __builtin_powif
8578 @findex __builtin_powil
8579 @findex _Exit
8580 @findex _exit
8581 @findex abort
8582 @findex abs
8583 @findex acos
8584 @findex acosf
8585 @findex acosh
8586 @findex acoshf
8587 @findex acoshl
8588 @findex acosl
8589 @findex alloca
8590 @findex asin
8591 @findex asinf
8592 @findex asinh
8593 @findex asinhf
8594 @findex asinhl
8595 @findex asinl
8596 @findex atan
8597 @findex atan2
8598 @findex atan2f
8599 @findex atan2l
8600 @findex atanf
8601 @findex atanh
8602 @findex atanhf
8603 @findex atanhl
8604 @findex atanl
8605 @findex bcmp
8606 @findex bzero
8607 @findex cabs
8608 @findex cabsf
8609 @findex cabsl
8610 @findex cacos
8611 @findex cacosf
8612 @findex cacosh
8613 @findex cacoshf
8614 @findex cacoshl
8615 @findex cacosl
8616 @findex calloc
8617 @findex carg
8618 @findex cargf
8619 @findex cargl
8620 @findex casin
8621 @findex casinf
8622 @findex casinh
8623 @findex casinhf
8624 @findex casinhl
8625 @findex casinl
8626 @findex catan
8627 @findex catanf
8628 @findex catanh
8629 @findex catanhf
8630 @findex catanhl
8631 @findex catanl
8632 @findex cbrt
8633 @findex cbrtf
8634 @findex cbrtl
8635 @findex ccos
8636 @findex ccosf
8637 @findex ccosh
8638 @findex ccoshf
8639 @findex ccoshl
8640 @findex ccosl
8641 @findex ceil
8642 @findex ceilf
8643 @findex ceill
8644 @findex cexp
8645 @findex cexpf
8646 @findex cexpl
8647 @findex cimag
8648 @findex cimagf
8649 @findex cimagl
8650 @findex clog
8651 @findex clogf
8652 @findex clogl
8653 @findex conj
8654 @findex conjf
8655 @findex conjl
8656 @findex copysign
8657 @findex copysignf
8658 @findex copysignl
8659 @findex cos
8660 @findex cosf
8661 @findex cosh
8662 @findex coshf
8663 @findex coshl
8664 @findex cosl
8665 @findex cpow
8666 @findex cpowf
8667 @findex cpowl
8668 @findex cproj
8669 @findex cprojf
8670 @findex cprojl
8671 @findex creal
8672 @findex crealf
8673 @findex creall
8674 @findex csin
8675 @findex csinf
8676 @findex csinh
8677 @findex csinhf
8678 @findex csinhl
8679 @findex csinl
8680 @findex csqrt
8681 @findex csqrtf
8682 @findex csqrtl
8683 @findex ctan
8684 @findex ctanf
8685 @findex ctanh
8686 @findex ctanhf
8687 @findex ctanhl
8688 @findex ctanl
8689 @findex dcgettext
8690 @findex dgettext
8691 @findex drem
8692 @findex dremf
8693 @findex dreml
8694 @findex erf
8695 @findex erfc
8696 @findex erfcf
8697 @findex erfcl
8698 @findex erff
8699 @findex erfl
8700 @findex exit
8701 @findex exp
8702 @findex exp10
8703 @findex exp10f
8704 @findex exp10l
8705 @findex exp2
8706 @findex exp2f
8707 @findex exp2l
8708 @findex expf
8709 @findex expl
8710 @findex expm1
8711 @findex expm1f
8712 @findex expm1l
8713 @findex fabs
8714 @findex fabsf
8715 @findex fabsl
8716 @findex fdim
8717 @findex fdimf
8718 @findex fdiml
8719 @findex ffs
8720 @findex floor
8721 @findex floorf
8722 @findex floorl
8723 @findex fma
8724 @findex fmaf
8725 @findex fmal
8726 @findex fmax
8727 @findex fmaxf
8728 @findex fmaxl
8729 @findex fmin
8730 @findex fminf
8731 @findex fminl
8732 @findex fmod
8733 @findex fmodf
8734 @findex fmodl
8735 @findex fprintf
8736 @findex fprintf_unlocked
8737 @findex fputs
8738 @findex fputs_unlocked
8739 @findex frexp
8740 @findex frexpf
8741 @findex frexpl
8742 @findex fscanf
8743 @findex gamma
8744 @findex gammaf
8745 @findex gammal
8746 @findex gamma_r
8747 @findex gammaf_r
8748 @findex gammal_r
8749 @findex gettext
8750 @findex hypot
8751 @findex hypotf
8752 @findex hypotl
8753 @findex ilogb
8754 @findex ilogbf
8755 @findex ilogbl
8756 @findex imaxabs
8757 @findex index
8758 @findex isalnum
8759 @findex isalpha
8760 @findex isascii
8761 @findex isblank
8762 @findex iscntrl
8763 @findex isdigit
8764 @findex isgraph
8765 @findex islower
8766 @findex isprint
8767 @findex ispunct
8768 @findex isspace
8769 @findex isupper
8770 @findex iswalnum
8771 @findex iswalpha
8772 @findex iswblank
8773 @findex iswcntrl
8774 @findex iswdigit
8775 @findex iswgraph
8776 @findex iswlower
8777 @findex iswprint
8778 @findex iswpunct
8779 @findex iswspace
8780 @findex iswupper
8781 @findex iswxdigit
8782 @findex isxdigit
8783 @findex j0
8784 @findex j0f
8785 @findex j0l
8786 @findex j1
8787 @findex j1f
8788 @findex j1l
8789 @findex jn
8790 @findex jnf
8791 @findex jnl
8792 @findex labs
8793 @findex ldexp
8794 @findex ldexpf
8795 @findex ldexpl
8796 @findex lgamma
8797 @findex lgammaf
8798 @findex lgammal
8799 @findex lgamma_r
8800 @findex lgammaf_r
8801 @findex lgammal_r
8802 @findex llabs
8803 @findex llrint
8804 @findex llrintf
8805 @findex llrintl
8806 @findex llround
8807 @findex llroundf
8808 @findex llroundl
8809 @findex log
8810 @findex log10
8811 @findex log10f
8812 @findex log10l
8813 @findex log1p
8814 @findex log1pf
8815 @findex log1pl
8816 @findex log2
8817 @findex log2f
8818 @findex log2l
8819 @findex logb
8820 @findex logbf
8821 @findex logbl
8822 @findex logf
8823 @findex logl
8824 @findex lrint
8825 @findex lrintf
8826 @findex lrintl
8827 @findex lround
8828 @findex lroundf
8829 @findex lroundl
8830 @findex malloc
8831 @findex memchr
8832 @findex memcmp
8833 @findex memcpy
8834 @findex mempcpy
8835 @findex memset
8836 @findex modf
8837 @findex modff
8838 @findex modfl
8839 @findex nearbyint
8840 @findex nearbyintf
8841 @findex nearbyintl
8842 @findex nextafter
8843 @findex nextafterf
8844 @findex nextafterl
8845 @findex nexttoward
8846 @findex nexttowardf
8847 @findex nexttowardl
8848 @findex pow
8849 @findex pow10
8850 @findex pow10f
8851 @findex pow10l
8852 @findex powf
8853 @findex powl
8854 @findex printf
8855 @findex printf_unlocked
8856 @findex putchar
8857 @findex puts
8858 @findex remainder
8859 @findex remainderf
8860 @findex remainderl
8861 @findex remquo
8862 @findex remquof
8863 @findex remquol
8864 @findex rindex
8865 @findex rint
8866 @findex rintf
8867 @findex rintl
8868 @findex round
8869 @findex roundf
8870 @findex roundl
8871 @findex scalb
8872 @findex scalbf
8873 @findex scalbl
8874 @findex scalbln
8875 @findex scalblnf
8876 @findex scalblnf
8877 @findex scalbn
8878 @findex scalbnf
8879 @findex scanfnl
8880 @findex signbit
8881 @findex signbitf
8882 @findex signbitl
8883 @findex signbitd32
8884 @findex signbitd64
8885 @findex signbitd128
8886 @findex significand
8887 @findex significandf
8888 @findex significandl
8889 @findex sin
8890 @findex sincos
8891 @findex sincosf
8892 @findex sincosl
8893 @findex sinf
8894 @findex sinh
8895 @findex sinhf
8896 @findex sinhl
8897 @findex sinl
8898 @findex snprintf
8899 @findex sprintf
8900 @findex sqrt
8901 @findex sqrtf
8902 @findex sqrtl
8903 @findex sscanf
8904 @findex stpcpy
8905 @findex stpncpy
8906 @findex strcasecmp
8907 @findex strcat
8908 @findex strchr
8909 @findex strcmp
8910 @findex strcpy
8911 @findex strcspn
8912 @findex strdup
8913 @findex strfmon
8914 @findex strftime
8915 @findex strlen
8916 @findex strncasecmp
8917 @findex strncat
8918 @findex strncmp
8919 @findex strncpy
8920 @findex strndup
8921 @findex strpbrk
8922 @findex strrchr
8923 @findex strspn
8924 @findex strstr
8925 @findex tan
8926 @findex tanf
8927 @findex tanh
8928 @findex tanhf
8929 @findex tanhl
8930 @findex tanl
8931 @findex tgamma
8932 @findex tgammaf
8933 @findex tgammal
8934 @findex toascii
8935 @findex tolower
8936 @findex toupper
8937 @findex towlower
8938 @findex towupper
8939 @findex trunc
8940 @findex truncf
8941 @findex truncl
8942 @findex vfprintf
8943 @findex vfscanf
8944 @findex vprintf
8945 @findex vscanf
8946 @findex vsnprintf
8947 @findex vsprintf
8948 @findex vsscanf
8949 @findex y0
8950 @findex y0f
8951 @findex y0l
8952 @findex y1
8953 @findex y1f
8954 @findex y1l
8955 @findex yn
8956 @findex ynf
8957 @findex ynl
8958
8959 GCC provides a large number of built-in functions other than the ones
8960 mentioned above. Some of these are for internal use in the processing
8961 of exceptions or variable-length argument lists and are not
8962 documented here because they may change from time to time; we do not
8963 recommend general use of these functions.
8964
8965 The remaining functions are provided for optimization purposes.
8966
8967 @opindex fno-builtin
8968 GCC includes built-in versions of many of the functions in the standard
8969 C library. The versions prefixed with @code{__builtin_} are always
8970 treated as having the same meaning as the C library function even if you
8971 specify the @option{-fno-builtin} option. (@pxref{C Dialect Options})
8972 Many of these functions are only optimized in certain cases; if they are
8973 not optimized in a particular case, a call to the library function is
8974 emitted.
8975
8976 @opindex ansi
8977 @opindex std
8978 Outside strict ISO C mode (@option{-ansi}, @option{-std=c90},
8979 @option{-std=c99} or @option{-std=c11}), the functions
8980 @code{_exit}, @code{alloca}, @code{bcmp}, @code{bzero},
8981 @code{dcgettext}, @code{dgettext}, @code{dremf}, @code{dreml},
8982 @code{drem}, @code{exp10f}, @code{exp10l}, @code{exp10}, @code{ffsll},
8983 @code{ffsl}, @code{ffs}, @code{fprintf_unlocked},
8984 @code{fputs_unlocked}, @code{gammaf}, @code{gammal}, @code{gamma},
8985 @code{gammaf_r}, @code{gammal_r}, @code{gamma_r}, @code{gettext},
8986 @code{index}, @code{isascii}, @code{j0f}, @code{j0l}, @code{j0},
8987 @code{j1f}, @code{j1l}, @code{j1}, @code{jnf}, @code{jnl}, @code{jn},
8988 @code{lgammaf_r}, @code{lgammal_r}, @code{lgamma_r}, @code{mempcpy},
8989 @code{pow10f}, @code{pow10l}, @code{pow10}, @code{printf_unlocked},
8990 @code{rindex}, @code{scalbf}, @code{scalbl}, @code{scalb},
8991 @code{signbit}, @code{signbitf}, @code{signbitl}, @code{signbitd32},
8992 @code{signbitd64}, @code{signbitd128}, @code{significandf},
8993 @code{significandl}, @code{significand}, @code{sincosf},
8994 @code{sincosl}, @code{sincos}, @code{stpcpy}, @code{stpncpy},
8995 @code{strcasecmp}, @code{strdup}, @code{strfmon}, @code{strncasecmp},
8996 @code{strndup}, @code{toascii}, @code{y0f}, @code{y0l}, @code{y0},
8997 @code{y1f}, @code{y1l}, @code{y1}, @code{ynf}, @code{ynl} and
8998 @code{yn}
8999 may be handled as built-in functions.
9000 All these functions have corresponding versions
9001 prefixed with @code{__builtin_}, which may be used even in strict C90
9002 mode.
9003
9004 The ISO C99 functions
9005 @code{_Exit}, @code{acoshf}, @code{acoshl}, @code{acosh}, @code{asinhf},
9006 @code{asinhl}, @code{asinh}, @code{atanhf}, @code{atanhl}, @code{atanh},
9007 @code{cabsf}, @code{cabsl}, @code{cabs}, @code{cacosf}, @code{cacoshf},
9008 @code{cacoshl}, @code{cacosh}, @code{cacosl}, @code{cacos},
9009 @code{cargf}, @code{cargl}, @code{carg}, @code{casinf}, @code{casinhf},
9010 @code{casinhl}, @code{casinh}, @code{casinl}, @code{casin},
9011 @code{catanf}, @code{catanhf}, @code{catanhl}, @code{catanh},
9012 @code{catanl}, @code{catan}, @code{cbrtf}, @code{cbrtl}, @code{cbrt},
9013 @code{ccosf}, @code{ccoshf}, @code{ccoshl}, @code{ccosh}, @code{ccosl},
9014 @code{ccos}, @code{cexpf}, @code{cexpl}, @code{cexp}, @code{cimagf},
9015 @code{cimagl}, @code{cimag}, @code{clogf}, @code{clogl}, @code{clog},
9016 @code{conjf}, @code{conjl}, @code{conj}, @code{copysignf}, @code{copysignl},
9017 @code{copysign}, @code{cpowf}, @code{cpowl}, @code{cpow}, @code{cprojf},
9018 @code{cprojl}, @code{cproj}, @code{crealf}, @code{creall}, @code{creal},
9019 @code{csinf}, @code{csinhf}, @code{csinhl}, @code{csinh}, @code{csinl},
9020 @code{csin}, @code{csqrtf}, @code{csqrtl}, @code{csqrt}, @code{ctanf},
9021 @code{ctanhf}, @code{ctanhl}, @code{ctanh}, @code{ctanl}, @code{ctan},
9022 @code{erfcf}, @code{erfcl}, @code{erfc}, @code{erff}, @code{erfl},
9023 @code{erf}, @code{exp2f}, @code{exp2l}, @code{exp2}, @code{expm1f},
9024 @code{expm1l}, @code{expm1}, @code{fdimf}, @code{fdiml}, @code{fdim},
9025 @code{fmaf}, @code{fmal}, @code{fmaxf}, @code{fmaxl}, @code{fmax},
9026 @code{fma}, @code{fminf}, @code{fminl}, @code{fmin}, @code{hypotf},
9027 @code{hypotl}, @code{hypot}, @code{ilogbf}, @code{ilogbl}, @code{ilogb},
9028 @code{imaxabs}, @code{isblank}, @code{iswblank}, @code{lgammaf},
9029 @code{lgammal}, @code{lgamma}, @code{llabs}, @code{llrintf}, @code{llrintl},
9030 @code{llrint}, @code{llroundf}, @code{llroundl}, @code{llround},
9031 @code{log1pf}, @code{log1pl}, @code{log1p}, @code{log2f}, @code{log2l},
9032 @code{log2}, @code{logbf}, @code{logbl}, @code{logb}, @code{lrintf},
9033 @code{lrintl}, @code{lrint}, @code{lroundf}, @code{lroundl},
9034 @code{lround}, @code{nearbyintf}, @code{nearbyintl}, @code{nearbyint},
9035 @code{nextafterf}, @code{nextafterl}, @code{nextafter},
9036 @code{nexttowardf}, @code{nexttowardl}, @code{nexttoward},
9037 @code{remainderf}, @code{remainderl}, @code{remainder}, @code{remquof},
9038 @code{remquol}, @code{remquo}, @code{rintf}, @code{rintl}, @code{rint},
9039 @code{roundf}, @code{roundl}, @code{round}, @code{scalblnf},
9040 @code{scalblnl}, @code{scalbln}, @code{scalbnf}, @code{scalbnl},
9041 @code{scalbn}, @code{snprintf}, @code{tgammaf}, @code{tgammal},
9042 @code{tgamma}, @code{truncf}, @code{truncl}, @code{trunc},
9043 @code{vfscanf}, @code{vscanf}, @code{vsnprintf} and @code{vsscanf}
9044 are handled as built-in functions
9045 except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
9046
9047 There are also built-in versions of the ISO C99 functions
9048 @code{acosf}, @code{acosl}, @code{asinf}, @code{asinl}, @code{atan2f},
9049 @code{atan2l}, @code{atanf}, @code{atanl}, @code{ceilf}, @code{ceill},
9050 @code{cosf}, @code{coshf}, @code{coshl}, @code{cosl}, @code{expf},
9051 @code{expl}, @code{fabsf}, @code{fabsl}, @code{floorf}, @code{floorl},
9052 @code{fmodf}, @code{fmodl}, @code{frexpf}, @code{frexpl}, @code{ldexpf},
9053 @code{ldexpl}, @code{log10f}, @code{log10l}, @code{logf}, @code{logl},
9054 @code{modfl}, @code{modf}, @code{powf}, @code{powl}, @code{sinf},
9055 @code{sinhf}, @code{sinhl}, @code{sinl}, @code{sqrtf}, @code{sqrtl},
9056 @code{tanf}, @code{tanhf}, @code{tanhl} and @code{tanl}
9057 that are recognized in any mode since ISO C90 reserves these names for
9058 the purpose to which ISO C99 puts them. All these functions have
9059 corresponding versions prefixed with @code{__builtin_}.
9060
9061 The ISO C94 functions
9062 @code{iswalnum}, @code{iswalpha}, @code{iswcntrl}, @code{iswdigit},
9063 @code{iswgraph}, @code{iswlower}, @code{iswprint}, @code{iswpunct},
9064 @code{iswspace}, @code{iswupper}, @code{iswxdigit}, @code{towlower} and
9065 @code{towupper}
9066 are handled as built-in functions
9067 except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
9068
9069 The ISO C90 functions
9070 @code{abort}, @code{abs}, @code{acos}, @code{asin}, @code{atan2},
9071 @code{atan}, @code{calloc}, @code{ceil}, @code{cosh}, @code{cos},
9072 @code{exit}, @code{exp}, @code{fabs}, @code{floor}, @code{fmod},
9073 @code{fprintf}, @code{fputs}, @code{frexp}, @code{fscanf},
9074 @code{isalnum}, @code{isalpha}, @code{iscntrl}, @code{isdigit},
9075 @code{isgraph}, @code{islower}, @code{isprint}, @code{ispunct},
9076 @code{isspace}, @code{isupper}, @code{isxdigit}, @code{tolower},
9077 @code{toupper}, @code{labs}, @code{ldexp}, @code{log10}, @code{log},
9078 @code{malloc}, @code{memchr}, @code{memcmp}, @code{memcpy},
9079 @code{memset}, @code{modf}, @code{pow}, @code{printf}, @code{putchar},
9080 @code{puts}, @code{scanf}, @code{sinh}, @code{sin}, @code{snprintf},
9081 @code{sprintf}, @code{sqrt}, @code{sscanf}, @code{strcat},
9082 @code{strchr}, @code{strcmp}, @code{strcpy}, @code{strcspn},
9083 @code{strlen}, @code{strncat}, @code{strncmp}, @code{strncpy},
9084 @code{strpbrk}, @code{strrchr}, @code{strspn}, @code{strstr},
9085 @code{tanh}, @code{tan}, @code{vfprintf}, @code{vprintf} and @code{vsprintf}
9086 are all recognized as built-in functions unless
9087 @option{-fno-builtin} is specified (or @option{-fno-builtin-@var{function}}
9088 is specified for an individual function). All of these functions have
9089 corresponding versions prefixed with @code{__builtin_}.
9090
9091 GCC provides built-in versions of the ISO C99 floating-point comparison
9092 macros that avoid raising exceptions for unordered operands. They have
9093 the same names as the standard macros ( @code{isgreater},
9094 @code{isgreaterequal}, @code{isless}, @code{islessequal},
9095 @code{islessgreater}, and @code{isunordered}) , with @code{__builtin_}
9096 prefixed. We intend for a library implementor to be able to simply
9097 @code{#define} each standard macro to its built-in equivalent.
9098 In the same fashion, GCC provides @code{fpclassify}, @code{isfinite},
9099 @code{isinf_sign} and @code{isnormal} built-ins used with
9100 @code{__builtin_} prefixed. The @code{isinf} and @code{isnan}
9101 built-in functions appear both with and without the @code{__builtin_} prefix.
9102
9103 @deftypefn {Built-in Function} int __builtin_types_compatible_p (@var{type1}, @var{type2})
9104
9105 You can use the built-in function @code{__builtin_types_compatible_p} to
9106 determine whether two types are the same.
9107
9108 This built-in function returns 1 if the unqualified versions of the
9109 types @var{type1} and @var{type2} (which are types, not expressions) are
9110 compatible, 0 otherwise. The result of this built-in function can be
9111 used in integer constant expressions.
9112
9113 This built-in function ignores top level qualifiers (e.g., @code{const},
9114 @code{volatile}). For example, @code{int} is equivalent to @code{const
9115 int}.
9116
9117 The type @code{int[]} and @code{int[5]} are compatible. On the other
9118 hand, @code{int} and @code{char *} are not compatible, even if the size
9119 of their types, on the particular architecture are the same. Also, the
9120 amount of pointer indirection is taken into account when determining
9121 similarity. Consequently, @code{short *} is not similar to
9122 @code{short **}. Furthermore, two types that are typedefed are
9123 considered compatible if their underlying types are compatible.
9124
9125 An @code{enum} type is not considered to be compatible with another
9126 @code{enum} type even if both are compatible with the same integer
9127 type; this is what the C standard specifies.
9128 For example, @code{enum @{foo, bar@}} is not similar to
9129 @code{enum @{hot, dog@}}.
9130
9131 You typically use this function in code whose execution varies
9132 depending on the arguments' types. For example:
9133
9134 @smallexample
9135 #define foo(x) \
9136 (@{ \
9137 typeof (x) tmp = (x); \
9138 if (__builtin_types_compatible_p (typeof (x), long double)) \
9139 tmp = foo_long_double (tmp); \
9140 else if (__builtin_types_compatible_p (typeof (x), double)) \
9141 tmp = foo_double (tmp); \
9142 else if (__builtin_types_compatible_p (typeof (x), float)) \
9143 tmp = foo_float (tmp); \
9144 else \
9145 abort (); \
9146 tmp; \
9147 @})
9148 @end smallexample
9149
9150 @emph{Note:} This construct is only available for C@.
9151
9152 @end deftypefn
9153
9154 @deftypefn {Built-in Function} @var{type} __builtin_choose_expr (@var{const_exp}, @var{exp1}, @var{exp2})
9155
9156 You can use the built-in function @code{__builtin_choose_expr} to
9157 evaluate code depending on the value of a constant expression. This
9158 built-in function returns @var{exp1} if @var{const_exp}, which is an
9159 integer constant expression, is nonzero. Otherwise it returns @var{exp2}.
9160
9161 This built-in function is analogous to the @samp{? :} operator in C,
9162 except that the expression returned has its type unaltered by promotion
9163 rules. Also, the built-in function does not evaluate the expression
9164 that is not chosen. For example, if @var{const_exp} evaluates to true,
9165 @var{exp2} is not evaluated even if it has side-effects.
9166
9167 This built-in function can return an lvalue if the chosen argument is an
9168 lvalue.
9169
9170 If @var{exp1} is returned, the return type is the same as @var{exp1}'s
9171 type. Similarly, if @var{exp2} is returned, its return type is the same
9172 as @var{exp2}.
9173
9174 Example:
9175
9176 @smallexample
9177 #define foo(x) \
9178 __builtin_choose_expr ( \
9179 __builtin_types_compatible_p (typeof (x), double), \
9180 foo_double (x), \
9181 __builtin_choose_expr ( \
9182 __builtin_types_compatible_p (typeof (x), float), \
9183 foo_float (x), \
9184 /* @r{The void expression results in a compile-time error} \
9185 @r{when assigning the result to something.} */ \
9186 (void)0))
9187 @end smallexample
9188
9189 @emph{Note:} This construct is only available for C@. Furthermore, the
9190 unused expression (@var{exp1} or @var{exp2} depending on the value of
9191 @var{const_exp}) may still generate syntax errors. This may change in
9192 future revisions.
9193
9194 @end deftypefn
9195
9196 @deftypefn {Built-in Function} @var{type} __builtin_complex (@var{real}, @var{imag})
9197
9198 The built-in function @code{__builtin_complex} is provided for use in
9199 implementing the ISO C11 macros @code{CMPLXF}, @code{CMPLX} and
9200 @code{CMPLXL}. @var{real} and @var{imag} must have the same type, a
9201 real binary floating-point type, and the result has the corresponding
9202 complex type with real and imaginary parts @var{real} and @var{imag}.
9203 Unlike @samp{@var{real} + I * @var{imag}}, this works even when
9204 infinities, NaNs and negative zeros are involved.
9205
9206 @end deftypefn
9207
9208 @deftypefn {Built-in Function} int __builtin_constant_p (@var{exp})
9209 You can use the built-in function @code{__builtin_constant_p} to
9210 determine if a value is known to be constant at compile time and hence
9211 that GCC can perform constant-folding on expressions involving that
9212 value. The argument of the function is the value to test. The function
9213 returns the integer 1 if the argument is known to be a compile-time
9214 constant and 0 if it is not known to be a compile-time constant. A
9215 return of 0 does not indicate that the value is @emph{not} a constant,
9216 but merely that GCC cannot prove it is a constant with the specified
9217 value of the @option{-O} option.
9218
9219 You typically use this function in an embedded application where
9220 memory is a critical resource. If you have some complex calculation,
9221 you may want it to be folded if it involves constants, but need to call
9222 a function if it does not. For example:
9223
9224 @smallexample
9225 #define Scale_Value(X) \
9226 (__builtin_constant_p (X) \
9227 ? ((X) * SCALE + OFFSET) : Scale (X))
9228 @end smallexample
9229
9230 You may use this built-in function in either a macro or an inline
9231 function. However, if you use it in an inlined function and pass an
9232 argument of the function as the argument to the built-in, GCC
9233 never returns 1 when you call the inline function with a string constant
9234 or compound literal (@pxref{Compound Literals}) and does not return 1
9235 when you pass a constant numeric value to the inline function unless you
9236 specify the @option{-O} option.
9237
9238 You may also use @code{__builtin_constant_p} in initializers for static
9239 data. For instance, you can write
9240
9241 @smallexample
9242 static const int table[] = @{
9243 __builtin_constant_p (EXPRESSION) ? (EXPRESSION) : -1,
9244 /* @r{@dots{}} */
9245 @};
9246 @end smallexample
9247
9248 @noindent
9249 This is an acceptable initializer even if @var{EXPRESSION} is not a
9250 constant expression, including the case where
9251 @code{__builtin_constant_p} returns 1 because @var{EXPRESSION} can be
9252 folded to a constant but @var{EXPRESSION} contains operands that are
9253 not otherwise permitted in a static initializer (for example,
9254 @code{0 && foo ()}). GCC must be more conservative about evaluating the
9255 built-in in this case, because it has no opportunity to perform
9256 optimization.
9257
9258 Previous versions of GCC did not accept this built-in in data
9259 initializers. The earliest version where it is completely safe is
9260 3.0.1.
9261 @end deftypefn
9262
9263 @deftypefn {Built-in Function} long __builtin_expect (long @var{exp}, long @var{c})
9264 @opindex fprofile-arcs
9265 You may use @code{__builtin_expect} to provide the compiler with
9266 branch prediction information. In general, you should prefer to
9267 use actual profile feedback for this (@option{-fprofile-arcs}), as
9268 programmers are notoriously bad at predicting how their programs
9269 actually perform. However, there are applications in which this
9270 data is hard to collect.
9271
9272 The return value is the value of @var{exp}, which should be an integral
9273 expression. The semantics of the built-in are that it is expected that
9274 @var{exp} == @var{c}. For example:
9275
9276 @smallexample
9277 if (__builtin_expect (x, 0))
9278 foo ();
9279 @end smallexample
9280
9281 @noindent
9282 indicates that we do not expect to call @code{foo}, since
9283 we expect @code{x} to be zero. Since you are limited to integral
9284 expressions for @var{exp}, you should use constructions such as
9285
9286 @smallexample
9287 if (__builtin_expect (ptr != NULL, 1))
9288 foo (*ptr);
9289 @end smallexample
9290
9291 @noindent
9292 when testing pointer or floating-point values.
9293 @end deftypefn
9294
9295 @deftypefn {Built-in Function} void __builtin_trap (void)
9296 This function causes the program to exit abnormally. GCC implements
9297 this function by using a target-dependent mechanism (such as
9298 intentionally executing an illegal instruction) or by calling
9299 @code{abort}. The mechanism used may vary from release to release so
9300 you should not rely on any particular implementation.
9301 @end deftypefn
9302
9303 @deftypefn {Built-in Function} void __builtin_unreachable (void)
9304 If control flow reaches the point of the @code{__builtin_unreachable},
9305 the program is undefined. It is useful in situations where the
9306 compiler cannot deduce the unreachability of the code.
9307
9308 One such case is immediately following an @code{asm} statement that
9309 either never terminates, or one that transfers control elsewhere
9310 and never returns. In this example, without the
9311 @code{__builtin_unreachable}, GCC issues a warning that control
9312 reaches the end of a non-void function. It also generates code
9313 to return after the @code{asm}.
9314
9315 @smallexample
9316 int f (int c, int v)
9317 @{
9318 if (c)
9319 @{
9320 return v;
9321 @}
9322 else
9323 @{
9324 asm("jmp error_handler");
9325 __builtin_unreachable ();
9326 @}
9327 @}
9328 @end smallexample
9329
9330 @noindent
9331 Because the @code{asm} statement unconditionally transfers control out
9332 of the function, control never reaches the end of the function
9333 body. The @code{__builtin_unreachable} is in fact unreachable and
9334 communicates this fact to the compiler.
9335
9336 Another use for @code{__builtin_unreachable} is following a call a
9337 function that never returns but that is not declared
9338 @code{__attribute__((noreturn))}, as in this example:
9339
9340 @smallexample
9341 void function_that_never_returns (void);
9342
9343 int g (int c)
9344 @{
9345 if (c)
9346 @{
9347 return 1;
9348 @}
9349 else
9350 @{
9351 function_that_never_returns ();
9352 __builtin_unreachable ();
9353 @}
9354 @}
9355 @end smallexample
9356
9357 @end deftypefn
9358
9359 @deftypefn {Built-in Function} void *__builtin_assume_aligned (const void *@var{exp}, size_t @var{align}, ...)
9360 This function returns its first argument, and allows the compiler
9361 to assume that the returned pointer is at least @var{align} bytes
9362 aligned. This built-in can have either two or three arguments,
9363 if it has three, the third argument should have integer type, and
9364 if it is nonzero means misalignment offset. For example:
9365
9366 @smallexample
9367 void *x = __builtin_assume_aligned (arg, 16);
9368 @end smallexample
9369
9370 @noindent
9371 means that the compiler can assume @code{x}, set to @code{arg}, is at least
9372 16-byte aligned, while:
9373
9374 @smallexample
9375 void *x = __builtin_assume_aligned (arg, 32, 8);
9376 @end smallexample
9377
9378 @noindent
9379 means that the compiler can assume for @code{x}, set to @code{arg}, that
9380 @code{(char *) x - 8} is 32-byte aligned.
9381 @end deftypefn
9382
9383 @deftypefn {Built-in Function} int __builtin_LINE ()
9384 This function is the equivalent to the preprocessor @code{__LINE__}
9385 macro and returns the line number of the invocation of the built-in.
9386 In a C++ default argument for a function @var{F}, it gets the line number of
9387 the call to @var{F}.
9388 @end deftypefn
9389
9390 @deftypefn {Built-in Function} {const char *} __builtin_FUNCTION ()
9391 This function is the equivalent to the preprocessor @code{__FUNCTION__}
9392 macro and returns the function name the invocation of the built-in is in.
9393 @end deftypefn
9394
9395 @deftypefn {Built-in Function} {const char *} __builtin_FILE ()
9396 This function is the equivalent to the preprocessor @code{__FILE__}
9397 macro and returns the file name the invocation of the built-in is in.
9398 In a C++ default argument for a function @var{F}, it gets the file name of
9399 the call to @var{F}.
9400 @end deftypefn
9401
9402 @deftypefn {Built-in Function} void __builtin___clear_cache (char *@var{begin}, char *@var{end})
9403 This function is used to flush the processor's instruction cache for
9404 the region of memory between @var{begin} inclusive and @var{end}
9405 exclusive. Some targets require that the instruction cache be
9406 flushed, after modifying memory containing code, in order to obtain
9407 deterministic behavior.
9408
9409 If the target does not require instruction cache flushes,
9410 @code{__builtin___clear_cache} has no effect. Otherwise either
9411 instructions are emitted in-line to clear the instruction cache or a
9412 call to the @code{__clear_cache} function in libgcc is made.
9413 @end deftypefn
9414
9415 @deftypefn {Built-in Function} void __builtin_prefetch (const void *@var{addr}, ...)
9416 This function is used to minimize cache-miss latency by moving data into
9417 a cache before it is accessed.
9418 You can insert calls to @code{__builtin_prefetch} into code for which
9419 you know addresses of data in memory that is likely to be accessed soon.
9420 If the target supports them, data prefetch instructions are generated.
9421 If the prefetch is done early enough before the access then the data will
9422 be in the cache by the time it is accessed.
9423
9424 The value of @var{addr} is the address of the memory to prefetch.
9425 There are two optional arguments, @var{rw} and @var{locality}.
9426 The value of @var{rw} is a compile-time constant one or zero; one
9427 means that the prefetch is preparing for a write to the memory address
9428 and zero, the default, means that the prefetch is preparing for a read.
9429 The value @var{locality} must be a compile-time constant integer between
9430 zero and three. A value of zero means that the data has no temporal
9431 locality, so it need not be left in the cache after the access. A value
9432 of three means that the data has a high degree of temporal locality and
9433 should be left in all levels of cache possible. Values of one and two
9434 mean, respectively, a low or moderate degree of temporal locality. The
9435 default is three.
9436
9437 @smallexample
9438 for (i = 0; i < n; i++)
9439 @{
9440 a[i] = a[i] + b[i];
9441 __builtin_prefetch (&a[i+j], 1, 1);
9442 __builtin_prefetch (&b[i+j], 0, 1);
9443 /* @r{@dots{}} */
9444 @}
9445 @end smallexample
9446
9447 Data prefetch does not generate faults if @var{addr} is invalid, but
9448 the address expression itself must be valid. For example, a prefetch
9449 of @code{p->next} does not fault if @code{p->next} is not a valid
9450 address, but evaluation faults if @code{p} is not a valid address.
9451
9452 If the target does not support data prefetch, the address expression
9453 is evaluated if it includes side effects but no other code is generated
9454 and GCC does not issue a warning.
9455 @end deftypefn
9456
9457 @deftypefn {Built-in Function} double __builtin_huge_val (void)
9458 Returns a positive infinity, if supported by the floating-point format,
9459 else @code{DBL_MAX}. This function is suitable for implementing the
9460 ISO C macro @code{HUGE_VAL}.
9461 @end deftypefn
9462
9463 @deftypefn {Built-in Function} float __builtin_huge_valf (void)
9464 Similar to @code{__builtin_huge_val}, except the return type is @code{float}.
9465 @end deftypefn
9466
9467 @deftypefn {Built-in Function} {long double} __builtin_huge_vall (void)
9468 Similar to @code{__builtin_huge_val}, except the return
9469 type is @code{long double}.
9470 @end deftypefn
9471
9472 @deftypefn {Built-in Function} int __builtin_fpclassify (int, int, int, int, int, ...)
9473 This built-in implements the C99 fpclassify functionality. The first
9474 five int arguments should be the target library's notion of the
9475 possible FP classes and are used for return values. They must be
9476 constant values and they must appear in this order: @code{FP_NAN},
9477 @code{FP_INFINITE}, @code{FP_NORMAL}, @code{FP_SUBNORMAL} and
9478 @code{FP_ZERO}. The ellipsis is for exactly one floating-point value
9479 to classify. GCC treats the last argument as type-generic, which
9480 means it does not do default promotion from float to double.
9481 @end deftypefn
9482
9483 @deftypefn {Built-in Function} double __builtin_inf (void)
9484 Similar to @code{__builtin_huge_val}, except a warning is generated
9485 if the target floating-point format does not support infinities.
9486 @end deftypefn
9487
9488 @deftypefn {Built-in Function} _Decimal32 __builtin_infd32 (void)
9489 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal32}.
9490 @end deftypefn
9491
9492 @deftypefn {Built-in Function} _Decimal64 __builtin_infd64 (void)
9493 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal64}.
9494 @end deftypefn
9495
9496 @deftypefn {Built-in Function} _Decimal128 __builtin_infd128 (void)
9497 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal128}.
9498 @end deftypefn
9499
9500 @deftypefn {Built-in Function} float __builtin_inff (void)
9501 Similar to @code{__builtin_inf}, except the return type is @code{float}.
9502 This function is suitable for implementing the ISO C99 macro @code{INFINITY}.
9503 @end deftypefn
9504
9505 @deftypefn {Built-in Function} {long double} __builtin_infl (void)
9506 Similar to @code{__builtin_inf}, except the return
9507 type is @code{long double}.
9508 @end deftypefn
9509
9510 @deftypefn {Built-in Function} int __builtin_isinf_sign (...)
9511 Similar to @code{isinf}, except the return value is -1 for
9512 an argument of @code{-Inf} and 1 for an argument of @code{+Inf}.
9513 Note while the parameter list is an
9514 ellipsis, this function only accepts exactly one floating-point
9515 argument. GCC treats this parameter as type-generic, which means it
9516 does not do default promotion from float to double.
9517 @end deftypefn
9518
9519 @deftypefn {Built-in Function} double __builtin_nan (const char *str)
9520 This is an implementation of the ISO C99 function @code{nan}.
9521
9522 Since ISO C99 defines this function in terms of @code{strtod}, which we
9523 do not implement, a description of the parsing is in order. The string
9524 is parsed as by @code{strtol}; that is, the base is recognized by
9525 leading @samp{0} or @samp{0x} prefixes. The number parsed is placed
9526 in the significand such that the least significant bit of the number
9527 is at the least significant bit of the significand. The number is
9528 truncated to fit the significand field provided. The significand is
9529 forced to be a quiet NaN@.
9530
9531 This function, if given a string literal all of which would have been
9532 consumed by @code{strtol}, is evaluated early enough that it is considered a
9533 compile-time constant.
9534 @end deftypefn
9535
9536 @deftypefn {Built-in Function} _Decimal32 __builtin_nand32 (const char *str)
9537 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal32}.
9538 @end deftypefn
9539
9540 @deftypefn {Built-in Function} _Decimal64 __builtin_nand64 (const char *str)
9541 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal64}.
9542 @end deftypefn
9543
9544 @deftypefn {Built-in Function} _Decimal128 __builtin_nand128 (const char *str)
9545 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal128}.
9546 @end deftypefn
9547
9548 @deftypefn {Built-in Function} float __builtin_nanf (const char *str)
9549 Similar to @code{__builtin_nan}, except the return type is @code{float}.
9550 @end deftypefn
9551
9552 @deftypefn {Built-in Function} {long double} __builtin_nanl (const char *str)
9553 Similar to @code{__builtin_nan}, except the return type is @code{long double}.
9554 @end deftypefn
9555
9556 @deftypefn {Built-in Function} double __builtin_nans (const char *str)
9557 Similar to @code{__builtin_nan}, except the significand is forced
9558 to be a signaling NaN@. The @code{nans} function is proposed by
9559 @uref{http://www.open-std.org/jtc1/sc22/wg14/www/docs/n965.htm,,WG14 N965}.
9560 @end deftypefn
9561
9562 @deftypefn {Built-in Function} float __builtin_nansf (const char *str)
9563 Similar to @code{__builtin_nans}, except the return type is @code{float}.
9564 @end deftypefn
9565
9566 @deftypefn {Built-in Function} {long double} __builtin_nansl (const char *str)
9567 Similar to @code{__builtin_nans}, except the return type is @code{long double}.
9568 @end deftypefn
9569
9570 @deftypefn {Built-in Function} int __builtin_ffs (int x)
9571 Returns one plus the index of the least significant 1-bit of @var{x}, or
9572 if @var{x} is zero, returns zero.
9573 @end deftypefn
9574
9575 @deftypefn {Built-in Function} int __builtin_clz (unsigned int x)
9576 Returns the number of leading 0-bits in @var{x}, starting at the most
9577 significant bit position. If @var{x} is 0, the result is undefined.
9578 @end deftypefn
9579
9580 @deftypefn {Built-in Function} int __builtin_ctz (unsigned int x)
9581 Returns the number of trailing 0-bits in @var{x}, starting at the least
9582 significant bit position. If @var{x} is 0, the result is undefined.
9583 @end deftypefn
9584
9585 @deftypefn {Built-in Function} int __builtin_clrsb (int x)
9586 Returns the number of leading redundant sign bits in @var{x}, i.e.@: the
9587 number of bits following the most significant bit that are identical
9588 to it. There are no special cases for 0 or other values.
9589 @end deftypefn
9590
9591 @deftypefn {Built-in Function} int __builtin_popcount (unsigned int x)
9592 Returns the number of 1-bits in @var{x}.
9593 @end deftypefn
9594
9595 @deftypefn {Built-in Function} int __builtin_parity (unsigned int x)
9596 Returns the parity of @var{x}, i.e.@: the number of 1-bits in @var{x}
9597 modulo 2.
9598 @end deftypefn
9599
9600 @deftypefn {Built-in Function} int __builtin_ffsl (long)
9601 Similar to @code{__builtin_ffs}, except the argument type is
9602 @code{long}.
9603 @end deftypefn
9604
9605 @deftypefn {Built-in Function} int __builtin_clzl (unsigned long)
9606 Similar to @code{__builtin_clz}, except the argument type is
9607 @code{unsigned long}.
9608 @end deftypefn
9609
9610 @deftypefn {Built-in Function} int __builtin_ctzl (unsigned long)
9611 Similar to @code{__builtin_ctz}, except the argument type is
9612 @code{unsigned long}.
9613 @end deftypefn
9614
9615 @deftypefn {Built-in Function} int __builtin_clrsbl (long)
9616 Similar to @code{__builtin_clrsb}, except the argument type is
9617 @code{long}.
9618 @end deftypefn
9619
9620 @deftypefn {Built-in Function} int __builtin_popcountl (unsigned long)
9621 Similar to @code{__builtin_popcount}, except the argument type is
9622 @code{unsigned long}.
9623 @end deftypefn
9624
9625 @deftypefn {Built-in Function} int __builtin_parityl (unsigned long)
9626 Similar to @code{__builtin_parity}, except the argument type is
9627 @code{unsigned long}.
9628 @end deftypefn
9629
9630 @deftypefn {Built-in Function} int __builtin_ffsll (long long)
9631 Similar to @code{__builtin_ffs}, except the argument type is
9632 @code{long long}.
9633 @end deftypefn
9634
9635 @deftypefn {Built-in Function} int __builtin_clzll (unsigned long long)
9636 Similar to @code{__builtin_clz}, except the argument type is
9637 @code{unsigned long long}.
9638 @end deftypefn
9639
9640 @deftypefn {Built-in Function} int __builtin_ctzll (unsigned long long)
9641 Similar to @code{__builtin_ctz}, except the argument type is
9642 @code{unsigned long long}.
9643 @end deftypefn
9644
9645 @deftypefn {Built-in Function} int __builtin_clrsbll (long long)
9646 Similar to @code{__builtin_clrsb}, except the argument type is
9647 @code{long long}.
9648 @end deftypefn
9649
9650 @deftypefn {Built-in Function} int __builtin_popcountll (unsigned long long)
9651 Similar to @code{__builtin_popcount}, except the argument type is
9652 @code{unsigned long long}.
9653 @end deftypefn
9654
9655 @deftypefn {Built-in Function} int __builtin_parityll (unsigned long long)
9656 Similar to @code{__builtin_parity}, except the argument type is
9657 @code{unsigned long long}.
9658 @end deftypefn
9659
9660 @deftypefn {Built-in Function} double __builtin_powi (double, int)
9661 Returns the first argument raised to the power of the second. Unlike the
9662 @code{pow} function no guarantees about precision and rounding are made.
9663 @end deftypefn
9664
9665 @deftypefn {Built-in Function} float __builtin_powif (float, int)
9666 Similar to @code{__builtin_powi}, except the argument and return types
9667 are @code{float}.
9668 @end deftypefn
9669
9670 @deftypefn {Built-in Function} {long double} __builtin_powil (long double, int)
9671 Similar to @code{__builtin_powi}, except the argument and return types
9672 are @code{long double}.
9673 @end deftypefn
9674
9675 @deftypefn {Built-in Function} uint16_t __builtin_bswap16 (uint16_t x)
9676 Returns @var{x} with the order of the bytes reversed; for example,
9677 @code{0xaabb} becomes @code{0xbbaa}. Byte here always means
9678 exactly 8 bits.
9679 @end deftypefn
9680
9681 @deftypefn {Built-in Function} uint32_t __builtin_bswap32 (uint32_t x)
9682 Similar to @code{__builtin_bswap16}, except the argument and return types
9683 are 32 bit.
9684 @end deftypefn
9685
9686 @deftypefn {Built-in Function} uint64_t __builtin_bswap64 (uint64_t x)
9687 Similar to @code{__builtin_bswap32}, except the argument and return types
9688 are 64 bit.
9689 @end deftypefn
9690
9691 @node Target Builtins
9692 @section Built-in Functions Specific to Particular Target Machines
9693
9694 On some target machines, GCC supports many built-in functions specific
9695 to those machines. Generally these generate calls to specific machine
9696 instructions, but allow the compiler to schedule those calls.
9697
9698 @menu
9699 * AArch64 Built-in Functions::
9700 * AArch64 intrinsics::
9701 * Alpha Built-in Functions::
9702 * Altera Nios II Built-in Functions::
9703 * ARC Built-in Functions::
9704 * ARC SIMD Built-in Functions::
9705 * ARM iWMMXt Built-in Functions::
9706 * ARM NEON Intrinsics::
9707 * ARM ACLE Intrinsics::
9708 * ARM Floating Point Status and Control Intrinsics::
9709 * AVR Built-in Functions::
9710 * Blackfin Built-in Functions::
9711 * FR-V Built-in Functions::
9712 * X86 Built-in Functions::
9713 * X86 transactional memory intrinsics::
9714 * MIPS DSP Built-in Functions::
9715 * MIPS Paired-Single Support::
9716 * MIPS Loongson Built-in Functions::
9717 * Other MIPS Built-in Functions::
9718 * MSP430 Built-in Functions::
9719 * NDS32 Built-in Functions::
9720 * picoChip Built-in Functions::
9721 * PowerPC Built-in Functions::
9722 * PowerPC AltiVec/VSX Built-in Functions::
9723 * PowerPC Hardware Transactional Memory Built-in Functions::
9724 * RX Built-in Functions::
9725 * S/390 System z Built-in Functions::
9726 * SH Built-in Functions::
9727 * SPARC VIS Built-in Functions::
9728 * SPU Built-in Functions::
9729 * TI C6X Built-in Functions::
9730 * TILE-Gx Built-in Functions::
9731 * TILEPro Built-in Functions::
9732 @end menu
9733
9734 @node AArch64 Built-in Functions
9735 @subsection AArch64 Built-in Functions
9736
9737 These built-in functions are available for the AArch64 family of
9738 processors.
9739 @smallexample
9740 unsigned int __builtin_aarch64_get_fpcr ()
9741 void __builtin_aarch64_set_fpcr (unsigned int)
9742 unsigned int __builtin_aarch64_get_fpsr ()
9743 void __builtin_aarch64_set_fpsr (unsigned int)
9744 @end smallexample
9745
9746 @node AArch64 intrinsics
9747 @subsection ACLE Intrinsics for AArch64
9748
9749 @include aarch64-acle-intrinsics.texi
9750
9751 @node Alpha Built-in Functions
9752 @subsection Alpha Built-in Functions
9753
9754 These built-in functions are available for the Alpha family of
9755 processors, depending on the command-line switches used.
9756
9757 The following built-in functions are always available. They
9758 all generate the machine instruction that is part of the name.
9759
9760 @smallexample
9761 long __builtin_alpha_implver (void)
9762 long __builtin_alpha_rpcc (void)
9763 long __builtin_alpha_amask (long)
9764 long __builtin_alpha_cmpbge (long, long)
9765 long __builtin_alpha_extbl (long, long)
9766 long __builtin_alpha_extwl (long, long)
9767 long __builtin_alpha_extll (long, long)
9768 long __builtin_alpha_extql (long, long)
9769 long __builtin_alpha_extwh (long, long)
9770 long __builtin_alpha_extlh (long, long)
9771 long __builtin_alpha_extqh (long, long)
9772 long __builtin_alpha_insbl (long, long)
9773 long __builtin_alpha_inswl (long, long)
9774 long __builtin_alpha_insll (long, long)
9775 long __builtin_alpha_insql (long, long)
9776 long __builtin_alpha_inswh (long, long)
9777 long __builtin_alpha_inslh (long, long)
9778 long __builtin_alpha_insqh (long, long)
9779 long __builtin_alpha_mskbl (long, long)
9780 long __builtin_alpha_mskwl (long, long)
9781 long __builtin_alpha_mskll (long, long)
9782 long __builtin_alpha_mskql (long, long)
9783 long __builtin_alpha_mskwh (long, long)
9784 long __builtin_alpha_msklh (long, long)
9785 long __builtin_alpha_mskqh (long, long)
9786 long __builtin_alpha_umulh (long, long)
9787 long __builtin_alpha_zap (long, long)
9788 long __builtin_alpha_zapnot (long, long)
9789 @end smallexample
9790
9791 The following built-in functions are always with @option{-mmax}
9792 or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{pca56} or
9793 later. They all generate the machine instruction that is part
9794 of the name.
9795
9796 @smallexample
9797 long __builtin_alpha_pklb (long)
9798 long __builtin_alpha_pkwb (long)
9799 long __builtin_alpha_unpkbl (long)
9800 long __builtin_alpha_unpkbw (long)
9801 long __builtin_alpha_minub8 (long, long)
9802 long __builtin_alpha_minsb8 (long, long)
9803 long __builtin_alpha_minuw4 (long, long)
9804 long __builtin_alpha_minsw4 (long, long)
9805 long __builtin_alpha_maxub8 (long, long)
9806 long __builtin_alpha_maxsb8 (long, long)
9807 long __builtin_alpha_maxuw4 (long, long)
9808 long __builtin_alpha_maxsw4 (long, long)
9809 long __builtin_alpha_perr (long, long)
9810 @end smallexample
9811
9812 The following built-in functions are always with @option{-mcix}
9813 or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{ev67} or
9814 later. They all generate the machine instruction that is part
9815 of the name.
9816
9817 @smallexample
9818 long __builtin_alpha_cttz (long)
9819 long __builtin_alpha_ctlz (long)
9820 long __builtin_alpha_ctpop (long)
9821 @end smallexample
9822
9823 The following built-in functions are available on systems that use the OSF/1
9824 PALcode. Normally they invoke the @code{rduniq} and @code{wruniq}
9825 PAL calls, but when invoked with @option{-mtls-kernel}, they invoke
9826 @code{rdval} and @code{wrval}.
9827
9828 @smallexample
9829 void *__builtin_thread_pointer (void)
9830 void __builtin_set_thread_pointer (void *)
9831 @end smallexample
9832
9833 @node Altera Nios II Built-in Functions
9834 @subsection Altera Nios II Built-in Functions
9835
9836 These built-in functions are available for the Altera Nios II
9837 family of processors.
9838
9839 The following built-in functions are always available. They
9840 all generate the machine instruction that is part of the name.
9841
9842 @example
9843 int __builtin_ldbio (volatile const void *)
9844 int __builtin_ldbuio (volatile const void *)
9845 int __builtin_ldhio (volatile const void *)
9846 int __builtin_ldhuio (volatile const void *)
9847 int __builtin_ldwio (volatile const void *)
9848 void __builtin_stbio (volatile void *, int)
9849 void __builtin_sthio (volatile void *, int)
9850 void __builtin_stwio (volatile void *, int)
9851 void __builtin_sync (void)
9852 int __builtin_rdctl (int)
9853 void __builtin_wrctl (int, int)
9854 @end example
9855
9856 The following built-in functions are always available. They
9857 all generate a Nios II Custom Instruction. The name of the
9858 function represents the types that the function takes and
9859 returns. The letter before the @code{n} is the return type
9860 or void if absent. The @code{n} represents the first parameter
9861 to all the custom instructions, the custom instruction number.
9862 The two letters after the @code{n} represent the up to two
9863 parameters to the function.
9864
9865 The letters represent the following data types:
9866 @table @code
9867 @item <no letter>
9868 @code{void} for return type and no parameter for parameter types.
9869
9870 @item i
9871 @code{int} for return type and parameter type
9872
9873 @item f
9874 @code{float} for return type and parameter type
9875
9876 @item p
9877 @code{void *} for return type and parameter type
9878
9879 @end table
9880
9881 And the function names are:
9882 @example
9883 void __builtin_custom_n (void)
9884 void __builtin_custom_ni (int)
9885 void __builtin_custom_nf (float)
9886 void __builtin_custom_np (void *)
9887 void __builtin_custom_nii (int, int)
9888 void __builtin_custom_nif (int, float)
9889 void __builtin_custom_nip (int, void *)
9890 void __builtin_custom_nfi (float, int)
9891 void __builtin_custom_nff (float, float)
9892 void __builtin_custom_nfp (float, void *)
9893 void __builtin_custom_npi (void *, int)
9894 void __builtin_custom_npf (void *, float)
9895 void __builtin_custom_npp (void *, void *)
9896 int __builtin_custom_in (void)
9897 int __builtin_custom_ini (int)
9898 int __builtin_custom_inf (float)
9899 int __builtin_custom_inp (void *)
9900 int __builtin_custom_inii (int, int)
9901 int __builtin_custom_inif (int, float)
9902 int __builtin_custom_inip (int, void *)
9903 int __builtin_custom_infi (float, int)
9904 int __builtin_custom_inff (float, float)
9905 int __builtin_custom_infp (float, void *)
9906 int __builtin_custom_inpi (void *, int)
9907 int __builtin_custom_inpf (void *, float)
9908 int __builtin_custom_inpp (void *, void *)
9909 float __builtin_custom_fn (void)
9910 float __builtin_custom_fni (int)
9911 float __builtin_custom_fnf (float)
9912 float __builtin_custom_fnp (void *)
9913 float __builtin_custom_fnii (int, int)
9914 float __builtin_custom_fnif (int, float)
9915 float __builtin_custom_fnip (int, void *)
9916 float __builtin_custom_fnfi (float, int)
9917 float __builtin_custom_fnff (float, float)
9918 float __builtin_custom_fnfp (float, void *)
9919 float __builtin_custom_fnpi (void *, int)
9920 float __builtin_custom_fnpf (void *, float)
9921 float __builtin_custom_fnpp (void *, void *)
9922 void * __builtin_custom_pn (void)
9923 void * __builtin_custom_pni (int)
9924 void * __builtin_custom_pnf (float)
9925 void * __builtin_custom_pnp (void *)
9926 void * __builtin_custom_pnii (int, int)
9927 void * __builtin_custom_pnif (int, float)
9928 void * __builtin_custom_pnip (int, void *)
9929 void * __builtin_custom_pnfi (float, int)
9930 void * __builtin_custom_pnff (float, float)
9931 void * __builtin_custom_pnfp (float, void *)
9932 void * __builtin_custom_pnpi (void *, int)
9933 void * __builtin_custom_pnpf (void *, float)
9934 void * __builtin_custom_pnpp (void *, void *)
9935 @end example
9936
9937 @node ARC Built-in Functions
9938 @subsection ARC Built-in Functions
9939
9940 The following built-in functions are provided for ARC targets. The
9941 built-ins generate the corresponding assembly instructions. In the
9942 examples given below, the generated code often requires an operand or
9943 result to be in a register. Where necessary further code will be
9944 generated to ensure this is true, but for brevity this is not
9945 described in each case.
9946
9947 @emph{Note:} Using a built-in to generate an instruction not supported
9948 by a target may cause problems. At present the compiler is not
9949 guaranteed to detect such misuse, and as a result an internal compiler
9950 error may be generated.
9951
9952 @deftypefn {Built-in Function} int __builtin_arc_aligned (void *@var{val}, int @var{alignval})
9953 Return 1 if @var{val} is known to have the byte alignment given
9954 by @var{alignval}, otherwise return 0.
9955 Note that this is different from
9956 @smallexample
9957 __alignof__(*(char *)@var{val}) >= alignval
9958 @end smallexample
9959 because __alignof__ sees only the type of the dereference, whereas
9960 __builtin_arc_align uses alignment information from the pointer
9961 as well as from the pointed-to type.
9962 The information available will depend on optimization level.
9963 @end deftypefn
9964
9965 @deftypefn {Built-in Function} void __builtin_arc_brk (void)
9966 Generates
9967 @example
9968 brk
9969 @end example
9970 @end deftypefn
9971
9972 @deftypefn {Built-in Function} {unsigned int} __builtin_arc_core_read (unsigned int @var{regno})
9973 The operand is the number of a register to be read. Generates:
9974 @example
9975 mov @var{dest}, r@var{regno}
9976 @end example
9977 where the value in @var{dest} will be the result returned from the
9978 built-in.
9979 @end deftypefn
9980
9981 @deftypefn {Built-in Function} void __builtin_arc_core_write (unsigned int @var{regno}, unsigned int @var{val})
9982 The first operand is the number of a register to be written, the
9983 second operand is a compile time constant to write into that
9984 register. Generates:
9985 @example
9986 mov r@var{regno}, @var{val}
9987 @end example
9988 @end deftypefn
9989
9990 @deftypefn {Built-in Function} int __builtin_arc_divaw (int @var{a}, int @var{b})
9991 Only available if either @option{-mcpu=ARC700} or @option{-meA} is set.
9992 Generates:
9993 @example
9994 divaw @var{dest}, @var{a}, @var{b}
9995 @end example
9996 where the value in @var{dest} will be the result returned from the
9997 built-in.
9998 @end deftypefn
9999
10000 @deftypefn {Built-in Function} void __builtin_arc_flag (unsigned int @var{a})
10001 Generates
10002 @example
10003 flag @var{a}
10004 @end example
10005 @end deftypefn
10006
10007 @deftypefn {Built-in Function} {unsigned int} __builtin_arc_lr (unsigned int @var{auxr})
10008 The operand, @var{auxv}, is the address of an auxiliary register and
10009 must be a compile time constant. Generates:
10010 @example
10011 lr @var{dest}, [@var{auxr}]
10012 @end example
10013 Where the value in @var{dest} will be the result returned from the
10014 built-in.
10015 @end deftypefn
10016
10017 @deftypefn {Built-in Function} void __builtin_arc_mul64 (int @var{a}, int @var{b})
10018 Only available with @option{-mmul64}. Generates:
10019 @example
10020 mul64 @var{a}, @var{b}
10021 @end example
10022 @end deftypefn
10023
10024 @deftypefn {Built-in Function} void __builtin_arc_mulu64 (unsigned int @var{a}, unsigned int @var{b})
10025 Only available with @option{-mmul64}. Generates:
10026 @example
10027 mulu64 @var{a}, @var{b}
10028 @end example
10029 @end deftypefn
10030
10031 @deftypefn {Built-in Function} void __builtin_arc_nop (void)
10032 Generates:
10033 @example
10034 nop
10035 @end example
10036 @end deftypefn
10037
10038 @deftypefn {Built-in Function} int __builtin_arc_norm (int @var{src})
10039 Only valid if the @samp{norm} instruction is available through the
10040 @option{-mnorm} option or by default with @option{-mcpu=ARC700}.
10041 Generates:
10042 @example
10043 norm @var{dest}, @var{src}
10044 @end example
10045 Where the value in @var{dest} will be the result returned from the
10046 built-in.
10047 @end deftypefn
10048
10049 @deftypefn {Built-in Function} {short int} __builtin_arc_normw (short int @var{src})
10050 Only valid if the @samp{normw} instruction is available through the
10051 @option{-mnorm} option or by default with @option{-mcpu=ARC700}.
10052 Generates:
10053 @example
10054 normw @var{dest}, @var{src}
10055 @end example
10056 Where the value in @var{dest} will be the result returned from the
10057 built-in.
10058 @end deftypefn
10059
10060 @deftypefn {Built-in Function} void __builtin_arc_rtie (void)
10061 Generates:
10062 @example
10063 rtie
10064 @end example
10065 @end deftypefn
10066
10067 @deftypefn {Built-in Function} void __builtin_arc_sleep (int @var{a}
10068 Generates:
10069 @example
10070 sleep @var{a}
10071 @end example
10072 @end deftypefn
10073
10074 @deftypefn {Built-in Function} void __builtin_arc_sr (unsigned int @var{auxr}, unsigned int @var{val})
10075 The first argument, @var{auxv}, is the address of an auxiliary
10076 register, the second argument, @var{val}, is a compile time constant
10077 to be written to the register. Generates:
10078 @example
10079 sr @var{auxr}, [@var{val}]
10080 @end example
10081 @end deftypefn
10082
10083 @deftypefn {Built-in Function} int __builtin_arc_swap (int @var{src})
10084 Only valid with @option{-mswap}. Generates:
10085 @example
10086 swap @var{dest}, @var{src}
10087 @end example
10088 Where the value in @var{dest} will be the result returned from the
10089 built-in.
10090 @end deftypefn
10091
10092 @deftypefn {Built-in Function} void __builtin_arc_swi (void)
10093 Generates:
10094 @example
10095 swi
10096 @end example
10097 @end deftypefn
10098
10099 @deftypefn {Built-in Function} void __builtin_arc_sync (void)
10100 Only available with @option{-mcpu=ARC700}. Generates:
10101 @example
10102 sync
10103 @end example
10104 @end deftypefn
10105
10106 @deftypefn {Built-in Function} void __builtin_arc_trap_s (unsigned int @var{c})
10107 Only available with @option{-mcpu=ARC700}. Generates:
10108 @example
10109 trap_s @var{c}
10110 @end example
10111 @end deftypefn
10112
10113 @deftypefn {Built-in Function} void __builtin_arc_unimp_s (void)
10114 Only available with @option{-mcpu=ARC700}. Generates:
10115 @example
10116 unimp_s
10117 @end example
10118 @end deftypefn
10119
10120 The instructions generated by the following builtins are not
10121 considered as candidates for scheduling. They are not moved around by
10122 the compiler during scheduling, and thus can be expected to appear
10123 where they are put in the C code:
10124 @example
10125 __builtin_arc_brk()
10126 __builtin_arc_core_read()
10127 __builtin_arc_core_write()
10128 __builtin_arc_flag()
10129 __builtin_arc_lr()
10130 __builtin_arc_sleep()
10131 __builtin_arc_sr()
10132 __builtin_arc_swi()
10133 @end example
10134
10135 @node ARC SIMD Built-in Functions
10136 @subsection ARC SIMD Built-in Functions
10137
10138 SIMD builtins provided by the compiler can be used to generate the
10139 vector instructions. This section describes the available builtins
10140 and their usage in programs. With the @option{-msimd} option, the
10141 compiler provides 128-bit vector types, which can be specified using
10142 the @code{vector_size} attribute. The header file @file{arc-simd.h}
10143 can be included to use the following predefined types:
10144 @example
10145 typedef int __v4si __attribute__((vector_size(16)));
10146 typedef short __v8hi __attribute__((vector_size(16)));
10147 @end example
10148
10149 These types can be used to define 128-bit variables. The built-in
10150 functions listed in the following section can be used on these
10151 variables to generate the vector operations.
10152
10153 For all builtins, @code{__builtin_arc_@var{someinsn}}, the header file
10154 @file{arc-simd.h} also provides equivalent macros called
10155 @code{_@var{someinsn}} that can be used for programming ease and
10156 improved readability. The following macros for DMA control are also
10157 provided:
10158 @example
10159 #define _setup_dma_in_channel_reg _vdiwr
10160 #define _setup_dma_out_channel_reg _vdowr
10161 @end example
10162
10163 The following is a complete list of all the SIMD built-ins provided
10164 for ARC, grouped by calling signature.
10165
10166 The following take two @code{__v8hi} arguments and return a
10167 @code{__v8hi} result:
10168 @example
10169 __v8hi __builtin_arc_vaddaw (__v8hi, __v8hi)
10170 __v8hi __builtin_arc_vaddw (__v8hi, __v8hi)
10171 __v8hi __builtin_arc_vand (__v8hi, __v8hi)
10172 __v8hi __builtin_arc_vandaw (__v8hi, __v8hi)
10173 __v8hi __builtin_arc_vavb (__v8hi, __v8hi)
10174 __v8hi __builtin_arc_vavrb (__v8hi, __v8hi)
10175 __v8hi __builtin_arc_vbic (__v8hi, __v8hi)
10176 __v8hi __builtin_arc_vbicaw (__v8hi, __v8hi)
10177 __v8hi __builtin_arc_vdifaw (__v8hi, __v8hi)
10178 __v8hi __builtin_arc_vdifw (__v8hi, __v8hi)
10179 __v8hi __builtin_arc_veqw (__v8hi, __v8hi)
10180 __v8hi __builtin_arc_vh264f (__v8hi, __v8hi)
10181 __v8hi __builtin_arc_vh264ft (__v8hi, __v8hi)
10182 __v8hi __builtin_arc_vh264fw (__v8hi, __v8hi)
10183 __v8hi __builtin_arc_vlew (__v8hi, __v8hi)
10184 __v8hi __builtin_arc_vltw (__v8hi, __v8hi)
10185 __v8hi __builtin_arc_vmaxaw (__v8hi, __v8hi)
10186 __v8hi __builtin_arc_vmaxw (__v8hi, __v8hi)
10187 __v8hi __builtin_arc_vminaw (__v8hi, __v8hi)
10188 __v8hi __builtin_arc_vminw (__v8hi, __v8hi)
10189 __v8hi __builtin_arc_vmr1aw (__v8hi, __v8hi)
10190 __v8hi __builtin_arc_vmr1w (__v8hi, __v8hi)
10191 __v8hi __builtin_arc_vmr2aw (__v8hi, __v8hi)
10192 __v8hi __builtin_arc_vmr2w (__v8hi, __v8hi)
10193 __v8hi __builtin_arc_vmr3aw (__v8hi, __v8hi)
10194 __v8hi __builtin_arc_vmr3w (__v8hi, __v8hi)
10195 __v8hi __builtin_arc_vmr4aw (__v8hi, __v8hi)
10196 __v8hi __builtin_arc_vmr4w (__v8hi, __v8hi)
10197 __v8hi __builtin_arc_vmr5aw (__v8hi, __v8hi)
10198 __v8hi __builtin_arc_vmr5w (__v8hi, __v8hi)
10199 __v8hi __builtin_arc_vmr6aw (__v8hi, __v8hi)
10200 __v8hi __builtin_arc_vmr6w (__v8hi, __v8hi)
10201 __v8hi __builtin_arc_vmr7aw (__v8hi, __v8hi)
10202 __v8hi __builtin_arc_vmr7w (__v8hi, __v8hi)
10203 __v8hi __builtin_arc_vmrb (__v8hi, __v8hi)
10204 __v8hi __builtin_arc_vmulaw (__v8hi, __v8hi)
10205 __v8hi __builtin_arc_vmulfaw (__v8hi, __v8hi)
10206 __v8hi __builtin_arc_vmulfw (__v8hi, __v8hi)
10207 __v8hi __builtin_arc_vmulw (__v8hi, __v8hi)
10208 __v8hi __builtin_arc_vnew (__v8hi, __v8hi)
10209 __v8hi __builtin_arc_vor (__v8hi, __v8hi)
10210 __v8hi __builtin_arc_vsubaw (__v8hi, __v8hi)
10211 __v8hi __builtin_arc_vsubw (__v8hi, __v8hi)
10212 __v8hi __builtin_arc_vsummw (__v8hi, __v8hi)
10213 __v8hi __builtin_arc_vvc1f (__v8hi, __v8hi)
10214 __v8hi __builtin_arc_vvc1ft (__v8hi, __v8hi)
10215 __v8hi __builtin_arc_vxor (__v8hi, __v8hi)
10216 __v8hi __builtin_arc_vxoraw (__v8hi, __v8hi)
10217 @end example
10218
10219 The following take one @code{__v8hi} and one @code{int} argument and return a
10220 @code{__v8hi} result:
10221
10222 @example
10223 __v8hi __builtin_arc_vbaddw (__v8hi, int)
10224 __v8hi __builtin_arc_vbmaxw (__v8hi, int)
10225 __v8hi __builtin_arc_vbminw (__v8hi, int)
10226 __v8hi __builtin_arc_vbmulaw (__v8hi, int)
10227 __v8hi __builtin_arc_vbmulfw (__v8hi, int)
10228 __v8hi __builtin_arc_vbmulw (__v8hi, int)
10229 __v8hi __builtin_arc_vbrsubw (__v8hi, int)
10230 __v8hi __builtin_arc_vbsubw (__v8hi, int)
10231 @end example
10232
10233 The following take one @code{__v8hi} argument and one @code{int} argument which
10234 must be a 3-bit compile time constant indicating a register number
10235 I0-I7. They return a @code{__v8hi} result.
10236 @example
10237 __v8hi __builtin_arc_vasrw (__v8hi, const int)
10238 __v8hi __builtin_arc_vsr8 (__v8hi, const int)
10239 __v8hi __builtin_arc_vsr8aw (__v8hi, const int)
10240 @end example
10241
10242 The following take one @code{__v8hi} argument and one @code{int}
10243 argument which must be a 6-bit compile time constant. They return a
10244 @code{__v8hi} result.
10245 @example
10246 __v8hi __builtin_arc_vasrpwbi (__v8hi, const int)
10247 __v8hi __builtin_arc_vasrrpwbi (__v8hi, const int)
10248 __v8hi __builtin_arc_vasrrwi (__v8hi, const int)
10249 __v8hi __builtin_arc_vasrsrwi (__v8hi, const int)
10250 __v8hi __builtin_arc_vasrwi (__v8hi, const int)
10251 __v8hi __builtin_arc_vsr8awi (__v8hi, const int)
10252 __v8hi __builtin_arc_vsr8i (__v8hi, const int)
10253 @end example
10254
10255 The following take one @code{__v8hi} argument and one @code{int} argument which
10256 must be a 8-bit compile time constant. They return a @code{__v8hi}
10257 result.
10258 @example
10259 __v8hi __builtin_arc_vd6tapf (__v8hi, const int)
10260 __v8hi __builtin_arc_vmvaw (__v8hi, const int)
10261 __v8hi __builtin_arc_vmvw (__v8hi, const int)
10262 __v8hi __builtin_arc_vmvzw (__v8hi, const int)
10263 @end example
10264
10265 The following take two @code{int} arguments, the second of which which
10266 must be a 8-bit compile time constant. They return a @code{__v8hi}
10267 result:
10268 @example
10269 __v8hi __builtin_arc_vmovaw (int, const int)
10270 __v8hi __builtin_arc_vmovw (int, const int)
10271 __v8hi __builtin_arc_vmovzw (int, const int)
10272 @end example
10273
10274 The following take a single @code{__v8hi} argument and return a
10275 @code{__v8hi} result:
10276 @example
10277 __v8hi __builtin_arc_vabsaw (__v8hi)
10278 __v8hi __builtin_arc_vabsw (__v8hi)
10279 __v8hi __builtin_arc_vaddsuw (__v8hi)
10280 __v8hi __builtin_arc_vexch1 (__v8hi)
10281 __v8hi __builtin_arc_vexch2 (__v8hi)
10282 __v8hi __builtin_arc_vexch4 (__v8hi)
10283 __v8hi __builtin_arc_vsignw (__v8hi)
10284 __v8hi __builtin_arc_vupbaw (__v8hi)
10285 __v8hi __builtin_arc_vupbw (__v8hi)
10286 __v8hi __builtin_arc_vupsbaw (__v8hi)
10287 __v8hi __builtin_arc_vupsbw (__v8hi)
10288 @end example
10289
10290 The followign take two @code{int} arguments and return no result:
10291 @example
10292 void __builtin_arc_vdirun (int, int)
10293 void __builtin_arc_vdorun (int, int)
10294 @end example
10295
10296 The following take two @code{int} arguments and return no result. The
10297 first argument must a 3-bit compile time constant indicating one of
10298 the DR0-DR7 DMA setup channels:
10299 @example
10300 void __builtin_arc_vdiwr (const int, int)
10301 void __builtin_arc_vdowr (const int, int)
10302 @end example
10303
10304 The following take an @code{int} argument and return no result:
10305 @example
10306 void __builtin_arc_vendrec (int)
10307 void __builtin_arc_vrec (int)
10308 void __builtin_arc_vrecrun (int)
10309 void __builtin_arc_vrun (int)
10310 @end example
10311
10312 The following take a @code{__v8hi} argument and two @code{int}
10313 arguments and return a @code{__v8hi} result. The second argument must
10314 be a 3-bit compile time constants, indicating one the registers I0-I7,
10315 and the third argument must be an 8-bit compile time constant.
10316
10317 @emph{Note:} Although the equivalent hardware instructions do not take
10318 an SIMD register as an operand, these builtins overwrite the relevant
10319 bits of the @code{__v8hi} register provided as the first argument with
10320 the value loaded from the @code{[Ib, u8]} location in the SDM.
10321
10322 @example
10323 __v8hi __builtin_arc_vld32 (__v8hi, const int, const int)
10324 __v8hi __builtin_arc_vld32wh (__v8hi, const int, const int)
10325 __v8hi __builtin_arc_vld32wl (__v8hi, const int, const int)
10326 __v8hi __builtin_arc_vld64 (__v8hi, const int, const int)
10327 @end example
10328
10329 The following take two @code{int} arguments and return a @code{__v8hi}
10330 result. The first argument must be a 3-bit compile time constants,
10331 indicating one the registers I0-I7, and the second argument must be an
10332 8-bit compile time constant.
10333
10334 @example
10335 __v8hi __builtin_arc_vld128 (const int, const int)
10336 __v8hi __builtin_arc_vld64w (const int, const int)
10337 @end example
10338
10339 The following take a @code{__v8hi} argument and two @code{int}
10340 arguments and return no result. The second argument must be a 3-bit
10341 compile time constants, indicating one the registers I0-I7, and the
10342 third argument must be an 8-bit compile time constant.
10343
10344 @example
10345 void __builtin_arc_vst128 (__v8hi, const int, const int)
10346 void __builtin_arc_vst64 (__v8hi, const int, const int)
10347 @end example
10348
10349 The following take a @code{__v8hi} argument and three @code{int}
10350 arguments and return no result. The second argument must be a 3-bit
10351 compile-time constant, identifying the 16-bit sub-register to be
10352 stored, the third argument must be a 3-bit compile time constants,
10353 indicating one the registers I0-I7, and the fourth argument must be an
10354 8-bit compile time constant.
10355
10356 @example
10357 void __builtin_arc_vst16_n (__v8hi, const int, const int, const int)
10358 void __builtin_arc_vst32_n (__v8hi, const int, const int, const int)
10359 @end example
10360
10361 @node ARM iWMMXt Built-in Functions
10362 @subsection ARM iWMMXt Built-in Functions
10363
10364 These built-in functions are available for the ARM family of
10365 processors when the @option{-mcpu=iwmmxt} switch is used:
10366
10367 @smallexample
10368 typedef int v2si __attribute__ ((vector_size (8)));
10369 typedef short v4hi __attribute__ ((vector_size (8)));
10370 typedef char v8qi __attribute__ ((vector_size (8)));
10371
10372 int __builtin_arm_getwcgr0 (void)
10373 void __builtin_arm_setwcgr0 (int)
10374 int __builtin_arm_getwcgr1 (void)
10375 void __builtin_arm_setwcgr1 (int)
10376 int __builtin_arm_getwcgr2 (void)
10377 void __builtin_arm_setwcgr2 (int)
10378 int __builtin_arm_getwcgr3 (void)
10379 void __builtin_arm_setwcgr3 (int)
10380 int __builtin_arm_textrmsb (v8qi, int)
10381 int __builtin_arm_textrmsh (v4hi, int)
10382 int __builtin_arm_textrmsw (v2si, int)
10383 int __builtin_arm_textrmub (v8qi, int)
10384 int __builtin_arm_textrmuh (v4hi, int)
10385 int __builtin_arm_textrmuw (v2si, int)
10386 v8qi __builtin_arm_tinsrb (v8qi, int, int)
10387 v4hi __builtin_arm_tinsrh (v4hi, int, int)
10388 v2si __builtin_arm_tinsrw (v2si, int, int)
10389 long long __builtin_arm_tmia (long long, int, int)
10390 long long __builtin_arm_tmiabb (long long, int, int)
10391 long long __builtin_arm_tmiabt (long long, int, int)
10392 long long __builtin_arm_tmiaph (long long, int, int)
10393 long long __builtin_arm_tmiatb (long long, int, int)
10394 long long __builtin_arm_tmiatt (long long, int, int)
10395 int __builtin_arm_tmovmskb (v8qi)
10396 int __builtin_arm_tmovmskh (v4hi)
10397 int __builtin_arm_tmovmskw (v2si)
10398 long long __builtin_arm_waccb (v8qi)
10399 long long __builtin_arm_wacch (v4hi)
10400 long long __builtin_arm_waccw (v2si)
10401 v8qi __builtin_arm_waddb (v8qi, v8qi)
10402 v8qi __builtin_arm_waddbss (v8qi, v8qi)
10403 v8qi __builtin_arm_waddbus (v8qi, v8qi)
10404 v4hi __builtin_arm_waddh (v4hi, v4hi)
10405 v4hi __builtin_arm_waddhss (v4hi, v4hi)
10406 v4hi __builtin_arm_waddhus (v4hi, v4hi)
10407 v2si __builtin_arm_waddw (v2si, v2si)
10408 v2si __builtin_arm_waddwss (v2si, v2si)
10409 v2si __builtin_arm_waddwus (v2si, v2si)
10410 v8qi __builtin_arm_walign (v8qi, v8qi, int)
10411 long long __builtin_arm_wand(long long, long long)
10412 long long __builtin_arm_wandn (long long, long long)
10413 v8qi __builtin_arm_wavg2b (v8qi, v8qi)
10414 v8qi __builtin_arm_wavg2br (v8qi, v8qi)
10415 v4hi __builtin_arm_wavg2h (v4hi, v4hi)
10416 v4hi __builtin_arm_wavg2hr (v4hi, v4hi)
10417 v8qi __builtin_arm_wcmpeqb (v8qi, v8qi)
10418 v4hi __builtin_arm_wcmpeqh (v4hi, v4hi)
10419 v2si __builtin_arm_wcmpeqw (v2si, v2si)
10420 v8qi __builtin_arm_wcmpgtsb (v8qi, v8qi)
10421 v4hi __builtin_arm_wcmpgtsh (v4hi, v4hi)
10422 v2si __builtin_arm_wcmpgtsw (v2si, v2si)
10423 v8qi __builtin_arm_wcmpgtub (v8qi, v8qi)
10424 v4hi __builtin_arm_wcmpgtuh (v4hi, v4hi)
10425 v2si __builtin_arm_wcmpgtuw (v2si, v2si)
10426 long long __builtin_arm_wmacs (long long, v4hi, v4hi)
10427 long long __builtin_arm_wmacsz (v4hi, v4hi)
10428 long long __builtin_arm_wmacu (long long, v4hi, v4hi)
10429 long long __builtin_arm_wmacuz (v4hi, v4hi)
10430 v4hi __builtin_arm_wmadds (v4hi, v4hi)
10431 v4hi __builtin_arm_wmaddu (v4hi, v4hi)
10432 v8qi __builtin_arm_wmaxsb (v8qi, v8qi)
10433 v4hi __builtin_arm_wmaxsh (v4hi, v4hi)
10434 v2si __builtin_arm_wmaxsw (v2si, v2si)
10435 v8qi __builtin_arm_wmaxub (v8qi, v8qi)
10436 v4hi __builtin_arm_wmaxuh (v4hi, v4hi)
10437 v2si __builtin_arm_wmaxuw (v2si, v2si)
10438 v8qi __builtin_arm_wminsb (v8qi, v8qi)
10439 v4hi __builtin_arm_wminsh (v4hi, v4hi)
10440 v2si __builtin_arm_wminsw (v2si, v2si)
10441 v8qi __builtin_arm_wminub (v8qi, v8qi)
10442 v4hi __builtin_arm_wminuh (v4hi, v4hi)
10443 v2si __builtin_arm_wminuw (v2si, v2si)
10444 v4hi __builtin_arm_wmulsm (v4hi, v4hi)
10445 v4hi __builtin_arm_wmulul (v4hi, v4hi)
10446 v4hi __builtin_arm_wmulum (v4hi, v4hi)
10447 long long __builtin_arm_wor (long long, long long)
10448 v2si __builtin_arm_wpackdss (long long, long long)
10449 v2si __builtin_arm_wpackdus (long long, long long)
10450 v8qi __builtin_arm_wpackhss (v4hi, v4hi)
10451 v8qi __builtin_arm_wpackhus (v4hi, v4hi)
10452 v4hi __builtin_arm_wpackwss (v2si, v2si)
10453 v4hi __builtin_arm_wpackwus (v2si, v2si)
10454 long long __builtin_arm_wrord (long long, long long)
10455 long long __builtin_arm_wrordi (long long, int)
10456 v4hi __builtin_arm_wrorh (v4hi, long long)
10457 v4hi __builtin_arm_wrorhi (v4hi, int)
10458 v2si __builtin_arm_wrorw (v2si, long long)
10459 v2si __builtin_arm_wrorwi (v2si, int)
10460 v2si __builtin_arm_wsadb (v2si, v8qi, v8qi)
10461 v2si __builtin_arm_wsadbz (v8qi, v8qi)
10462 v2si __builtin_arm_wsadh (v2si, v4hi, v4hi)
10463 v2si __builtin_arm_wsadhz (v4hi, v4hi)
10464 v4hi __builtin_arm_wshufh (v4hi, int)
10465 long long __builtin_arm_wslld (long long, long long)
10466 long long __builtin_arm_wslldi (long long, int)
10467 v4hi __builtin_arm_wsllh (v4hi, long long)
10468 v4hi __builtin_arm_wsllhi (v4hi, int)
10469 v2si __builtin_arm_wsllw (v2si, long long)
10470 v2si __builtin_arm_wsllwi (v2si, int)
10471 long long __builtin_arm_wsrad (long long, long long)
10472 long long __builtin_arm_wsradi (long long, int)
10473 v4hi __builtin_arm_wsrah (v4hi, long long)
10474 v4hi __builtin_arm_wsrahi (v4hi, int)
10475 v2si __builtin_arm_wsraw (v2si, long long)
10476 v2si __builtin_arm_wsrawi (v2si, int)
10477 long long __builtin_arm_wsrld (long long, long long)
10478 long long __builtin_arm_wsrldi (long long, int)
10479 v4hi __builtin_arm_wsrlh (v4hi, long long)
10480 v4hi __builtin_arm_wsrlhi (v4hi, int)
10481 v2si __builtin_arm_wsrlw (v2si, long long)
10482 v2si __builtin_arm_wsrlwi (v2si, int)
10483 v8qi __builtin_arm_wsubb (v8qi, v8qi)
10484 v8qi __builtin_arm_wsubbss (v8qi, v8qi)
10485 v8qi __builtin_arm_wsubbus (v8qi, v8qi)
10486 v4hi __builtin_arm_wsubh (v4hi, v4hi)
10487 v4hi __builtin_arm_wsubhss (v4hi, v4hi)
10488 v4hi __builtin_arm_wsubhus (v4hi, v4hi)
10489 v2si __builtin_arm_wsubw (v2si, v2si)
10490 v2si __builtin_arm_wsubwss (v2si, v2si)
10491 v2si __builtin_arm_wsubwus (v2si, v2si)
10492 v4hi __builtin_arm_wunpckehsb (v8qi)
10493 v2si __builtin_arm_wunpckehsh (v4hi)
10494 long long __builtin_arm_wunpckehsw (v2si)
10495 v4hi __builtin_arm_wunpckehub (v8qi)
10496 v2si __builtin_arm_wunpckehuh (v4hi)
10497 long long __builtin_arm_wunpckehuw (v2si)
10498 v4hi __builtin_arm_wunpckelsb (v8qi)
10499 v2si __builtin_arm_wunpckelsh (v4hi)
10500 long long __builtin_arm_wunpckelsw (v2si)
10501 v4hi __builtin_arm_wunpckelub (v8qi)
10502 v2si __builtin_arm_wunpckeluh (v4hi)
10503 long long __builtin_arm_wunpckeluw (v2si)
10504 v8qi __builtin_arm_wunpckihb (v8qi, v8qi)
10505 v4hi __builtin_arm_wunpckihh (v4hi, v4hi)
10506 v2si __builtin_arm_wunpckihw (v2si, v2si)
10507 v8qi __builtin_arm_wunpckilb (v8qi, v8qi)
10508 v4hi __builtin_arm_wunpckilh (v4hi, v4hi)
10509 v2si __builtin_arm_wunpckilw (v2si, v2si)
10510 long long __builtin_arm_wxor (long long, long long)
10511 long long __builtin_arm_wzero ()
10512 @end smallexample
10513
10514 @node ARM NEON Intrinsics
10515 @subsection ARM NEON Intrinsics
10516
10517 These built-in intrinsics for the ARM Advanced SIMD extension are available
10518 when the @option{-mfpu=neon} switch is used:
10519
10520 @include arm-neon-intrinsics.texi
10521
10522 @node ARM ACLE Intrinsics
10523 @subsection ARM ACLE Intrinsics
10524
10525 @include arm-acle-intrinsics.texi
10526
10527 @node ARM Floating Point Status and Control Intrinsics
10528 @subsection ARM Floating Point Status and Control Intrinsics
10529
10530 These built-in functions are available for the ARM family of
10531 processors with floating-point unit.
10532
10533 @smallexample
10534 unsigned int __builtin_arm_get_fpscr ()
10535 void __builtin_arm_set_fpscr (unsigned int)
10536 @end smallexample
10537
10538 @node AVR Built-in Functions
10539 @subsection AVR Built-in Functions
10540
10541 For each built-in function for AVR, there is an equally named,
10542 uppercase built-in macro defined. That way users can easily query if
10543 or if not a specific built-in is implemented or not. For example, if
10544 @code{__builtin_avr_nop} is available the macro
10545 @code{__BUILTIN_AVR_NOP} is defined to @code{1} and undefined otherwise.
10546
10547 The following built-in functions map to the respective machine
10548 instruction, i.e.@: @code{nop}, @code{sei}, @code{cli}, @code{sleep},
10549 @code{wdr}, @code{swap}, @code{fmul}, @code{fmuls}
10550 resp. @code{fmulsu}. The three @code{fmul*} built-ins are implemented
10551 as library call if no hardware multiplier is available.
10552
10553 @smallexample
10554 void __builtin_avr_nop (void)
10555 void __builtin_avr_sei (void)
10556 void __builtin_avr_cli (void)
10557 void __builtin_avr_sleep (void)
10558 void __builtin_avr_wdr (void)
10559 unsigned char __builtin_avr_swap (unsigned char)
10560 unsigned int __builtin_avr_fmul (unsigned char, unsigned char)
10561 int __builtin_avr_fmuls (char, char)
10562 int __builtin_avr_fmulsu (char, unsigned char)
10563 @end smallexample
10564
10565 In order to delay execution for a specific number of cycles, GCC
10566 implements
10567 @smallexample
10568 void __builtin_avr_delay_cycles (unsigned long ticks)
10569 @end smallexample
10570
10571 @noindent
10572 @code{ticks} is the number of ticks to delay execution. Note that this
10573 built-in does not take into account the effect of interrupts that
10574 might increase delay time. @code{ticks} must be a compile-time
10575 integer constant; delays with a variable number of cycles are not supported.
10576
10577 @smallexample
10578 char __builtin_avr_flash_segment (const __memx void*)
10579 @end smallexample
10580
10581 @noindent
10582 This built-in takes a byte address to the 24-bit
10583 @ref{AVR Named Address Spaces,address space} @code{__memx} and returns
10584 the number of the flash segment (the 64 KiB chunk) where the address
10585 points to. Counting starts at @code{0}.
10586 If the address does not point to flash memory, return @code{-1}.
10587
10588 @smallexample
10589 unsigned char __builtin_avr_insert_bits (unsigned long map, unsigned char bits, unsigned char val)
10590 @end smallexample
10591
10592 @noindent
10593 Insert bits from @var{bits} into @var{val} and return the resulting
10594 value. The nibbles of @var{map} determine how the insertion is
10595 performed: Let @var{X} be the @var{n}-th nibble of @var{map}
10596 @enumerate
10597 @item If @var{X} is @code{0xf},
10598 then the @var{n}-th bit of @var{val} is returned unaltered.
10599
10600 @item If X is in the range 0@dots{}7,
10601 then the @var{n}-th result bit is set to the @var{X}-th bit of @var{bits}
10602
10603 @item If X is in the range 8@dots{}@code{0xe},
10604 then the @var{n}-th result bit is undefined.
10605 @end enumerate
10606
10607 @noindent
10608 One typical use case for this built-in is adjusting input and
10609 output values to non-contiguous port layouts. Some examples:
10610
10611 @smallexample
10612 // same as val, bits is unused
10613 __builtin_avr_insert_bits (0xffffffff, bits, val)
10614 @end smallexample
10615
10616 @smallexample
10617 // same as bits, val is unused
10618 __builtin_avr_insert_bits (0x76543210, bits, val)
10619 @end smallexample
10620
10621 @smallexample
10622 // same as rotating bits by 4
10623 __builtin_avr_insert_bits (0x32107654, bits, 0)
10624 @end smallexample
10625
10626 @smallexample
10627 // high nibble of result is the high nibble of val
10628 // low nibble of result is the low nibble of bits
10629 __builtin_avr_insert_bits (0xffff3210, bits, val)
10630 @end smallexample
10631
10632 @smallexample
10633 // reverse the bit order of bits
10634 __builtin_avr_insert_bits (0x01234567, bits, 0)
10635 @end smallexample
10636
10637 @node Blackfin Built-in Functions
10638 @subsection Blackfin Built-in Functions
10639
10640 Currently, there are two Blackfin-specific built-in functions. These are
10641 used for generating @code{CSYNC} and @code{SSYNC} machine insns without
10642 using inline assembly; by using these built-in functions the compiler can
10643 automatically add workarounds for hardware errata involving these
10644 instructions. These functions are named as follows:
10645
10646 @smallexample
10647 void __builtin_bfin_csync (void)
10648 void __builtin_bfin_ssync (void)
10649 @end smallexample
10650
10651 @node FR-V Built-in Functions
10652 @subsection FR-V Built-in Functions
10653
10654 GCC provides many FR-V-specific built-in functions. In general,
10655 these functions are intended to be compatible with those described
10656 by @cite{FR-V Family, Softune C/C++ Compiler Manual (V6), Fujitsu
10657 Semiconductor}. The two exceptions are @code{__MDUNPACKH} and
10658 @code{__MBTOHE}, the GCC forms of which pass 128-bit values by
10659 pointer rather than by value.
10660
10661 Most of the functions are named after specific FR-V instructions.
10662 Such functions are said to be ``directly mapped'' and are summarized
10663 here in tabular form.
10664
10665 @menu
10666 * Argument Types::
10667 * Directly-mapped Integer Functions::
10668 * Directly-mapped Media Functions::
10669 * Raw read/write Functions::
10670 * Other Built-in Functions::
10671 @end menu
10672
10673 @node Argument Types
10674 @subsubsection Argument Types
10675
10676 The arguments to the built-in functions can be divided into three groups:
10677 register numbers, compile-time constants and run-time values. In order
10678 to make this classification clear at a glance, the arguments and return
10679 values are given the following pseudo types:
10680
10681 @multitable @columnfractions .20 .30 .15 .35
10682 @item Pseudo type @tab Real C type @tab Constant? @tab Description
10683 @item @code{uh} @tab @code{unsigned short} @tab No @tab an unsigned halfword
10684 @item @code{uw1} @tab @code{unsigned int} @tab No @tab an unsigned word
10685 @item @code{sw1} @tab @code{int} @tab No @tab a signed word
10686 @item @code{uw2} @tab @code{unsigned long long} @tab No
10687 @tab an unsigned doubleword
10688 @item @code{sw2} @tab @code{long long} @tab No @tab a signed doubleword
10689 @item @code{const} @tab @code{int} @tab Yes @tab an integer constant
10690 @item @code{acc} @tab @code{int} @tab Yes @tab an ACC register number
10691 @item @code{iacc} @tab @code{int} @tab Yes @tab an IACC register number
10692 @end multitable
10693
10694 These pseudo types are not defined by GCC, they are simply a notational
10695 convenience used in this manual.
10696
10697 Arguments of type @code{uh}, @code{uw1}, @code{sw1}, @code{uw2}
10698 and @code{sw2} are evaluated at run time. They correspond to
10699 register operands in the underlying FR-V instructions.
10700
10701 @code{const} arguments represent immediate operands in the underlying
10702 FR-V instructions. They must be compile-time constants.
10703
10704 @code{acc} arguments are evaluated at compile time and specify the number
10705 of an accumulator register. For example, an @code{acc} argument of 2
10706 selects the ACC2 register.
10707
10708 @code{iacc} arguments are similar to @code{acc} arguments but specify the
10709 number of an IACC register. See @pxref{Other Built-in Functions}
10710 for more details.
10711
10712 @node Directly-mapped Integer Functions
10713 @subsubsection Directly-mapped Integer Functions
10714
10715 The functions listed below map directly to FR-V I-type instructions.
10716
10717 @multitable @columnfractions .45 .32 .23
10718 @item Function prototype @tab Example usage @tab Assembly output
10719 @item @code{sw1 __ADDSS (sw1, sw1)}
10720 @tab @code{@var{c} = __ADDSS (@var{a}, @var{b})}
10721 @tab @code{ADDSS @var{a},@var{b},@var{c}}
10722 @item @code{sw1 __SCAN (sw1, sw1)}
10723 @tab @code{@var{c} = __SCAN (@var{a}, @var{b})}
10724 @tab @code{SCAN @var{a},@var{b},@var{c}}
10725 @item @code{sw1 __SCUTSS (sw1)}
10726 @tab @code{@var{b} = __SCUTSS (@var{a})}
10727 @tab @code{SCUTSS @var{a},@var{b}}
10728 @item @code{sw1 __SLASS (sw1, sw1)}
10729 @tab @code{@var{c} = __SLASS (@var{a}, @var{b})}
10730 @tab @code{SLASS @var{a},@var{b},@var{c}}
10731 @item @code{void __SMASS (sw1, sw1)}
10732 @tab @code{__SMASS (@var{a}, @var{b})}
10733 @tab @code{SMASS @var{a},@var{b}}
10734 @item @code{void __SMSSS (sw1, sw1)}
10735 @tab @code{__SMSSS (@var{a}, @var{b})}
10736 @tab @code{SMSSS @var{a},@var{b}}
10737 @item @code{void __SMU (sw1, sw1)}
10738 @tab @code{__SMU (@var{a}, @var{b})}
10739 @tab @code{SMU @var{a},@var{b}}
10740 @item @code{sw2 __SMUL (sw1, sw1)}
10741 @tab @code{@var{c} = __SMUL (@var{a}, @var{b})}
10742 @tab @code{SMUL @var{a},@var{b},@var{c}}
10743 @item @code{sw1 __SUBSS (sw1, sw1)}
10744 @tab @code{@var{c} = __SUBSS (@var{a}, @var{b})}
10745 @tab @code{SUBSS @var{a},@var{b},@var{c}}
10746 @item @code{uw2 __UMUL (uw1, uw1)}
10747 @tab @code{@var{c} = __UMUL (@var{a}, @var{b})}
10748 @tab @code{UMUL @var{a},@var{b},@var{c}}
10749 @end multitable
10750
10751 @node Directly-mapped Media Functions
10752 @subsubsection Directly-mapped Media Functions
10753
10754 The functions listed below map directly to FR-V M-type instructions.
10755
10756 @multitable @columnfractions .45 .32 .23
10757 @item Function prototype @tab Example usage @tab Assembly output
10758 @item @code{uw1 __MABSHS (sw1)}
10759 @tab @code{@var{b} = __MABSHS (@var{a})}
10760 @tab @code{MABSHS @var{a},@var{b}}
10761 @item @code{void __MADDACCS (acc, acc)}
10762 @tab @code{__MADDACCS (@var{b}, @var{a})}
10763 @tab @code{MADDACCS @var{a},@var{b}}
10764 @item @code{sw1 __MADDHSS (sw1, sw1)}
10765 @tab @code{@var{c} = __MADDHSS (@var{a}, @var{b})}
10766 @tab @code{MADDHSS @var{a},@var{b},@var{c}}
10767 @item @code{uw1 __MADDHUS (uw1, uw1)}
10768 @tab @code{@var{c} = __MADDHUS (@var{a}, @var{b})}
10769 @tab @code{MADDHUS @var{a},@var{b},@var{c}}
10770 @item @code{uw1 __MAND (uw1, uw1)}
10771 @tab @code{@var{c} = __MAND (@var{a}, @var{b})}
10772 @tab @code{MAND @var{a},@var{b},@var{c}}
10773 @item @code{void __MASACCS (acc, acc)}
10774 @tab @code{__MASACCS (@var{b}, @var{a})}
10775 @tab @code{MASACCS @var{a},@var{b}}
10776 @item @code{uw1 __MAVEH (uw1, uw1)}
10777 @tab @code{@var{c} = __MAVEH (@var{a}, @var{b})}
10778 @tab @code{MAVEH @var{a},@var{b},@var{c}}
10779 @item @code{uw2 __MBTOH (uw1)}
10780 @tab @code{@var{b} = __MBTOH (@var{a})}
10781 @tab @code{MBTOH @var{a},@var{b}}
10782 @item @code{void __MBTOHE (uw1 *, uw1)}
10783 @tab @code{__MBTOHE (&@var{b}, @var{a})}
10784 @tab @code{MBTOHE @var{a},@var{b}}
10785 @item @code{void __MCLRACC (acc)}
10786 @tab @code{__MCLRACC (@var{a})}
10787 @tab @code{MCLRACC @var{a}}
10788 @item @code{void __MCLRACCA (void)}
10789 @tab @code{__MCLRACCA ()}
10790 @tab @code{MCLRACCA}
10791 @item @code{uw1 __Mcop1 (uw1, uw1)}
10792 @tab @code{@var{c} = __Mcop1 (@var{a}, @var{b})}
10793 @tab @code{Mcop1 @var{a},@var{b},@var{c}}
10794 @item @code{uw1 __Mcop2 (uw1, uw1)}
10795 @tab @code{@var{c} = __Mcop2 (@var{a}, @var{b})}
10796 @tab @code{Mcop2 @var{a},@var{b},@var{c}}
10797 @item @code{uw1 __MCPLHI (uw2, const)}
10798 @tab @code{@var{c} = __MCPLHI (@var{a}, @var{b})}
10799 @tab @code{MCPLHI @var{a},#@var{b},@var{c}}
10800 @item @code{uw1 __MCPLI (uw2, const)}
10801 @tab @code{@var{c} = __MCPLI (@var{a}, @var{b})}
10802 @tab @code{MCPLI @var{a},#@var{b},@var{c}}
10803 @item @code{void __MCPXIS (acc, sw1, sw1)}
10804 @tab @code{__MCPXIS (@var{c}, @var{a}, @var{b})}
10805 @tab @code{MCPXIS @var{a},@var{b},@var{c}}
10806 @item @code{void __MCPXIU (acc, uw1, uw1)}
10807 @tab @code{__MCPXIU (@var{c}, @var{a}, @var{b})}
10808 @tab @code{MCPXIU @var{a},@var{b},@var{c}}
10809 @item @code{void __MCPXRS (acc, sw1, sw1)}
10810 @tab @code{__MCPXRS (@var{c}, @var{a}, @var{b})}
10811 @tab @code{MCPXRS @var{a},@var{b},@var{c}}
10812 @item @code{void __MCPXRU (acc, uw1, uw1)}
10813 @tab @code{__MCPXRU (@var{c}, @var{a}, @var{b})}
10814 @tab @code{MCPXRU @var{a},@var{b},@var{c}}
10815 @item @code{uw1 __MCUT (acc, uw1)}
10816 @tab @code{@var{c} = __MCUT (@var{a}, @var{b})}
10817 @tab @code{MCUT @var{a},@var{b},@var{c}}
10818 @item @code{uw1 __MCUTSS (acc, sw1)}
10819 @tab @code{@var{c} = __MCUTSS (@var{a}, @var{b})}
10820 @tab @code{MCUTSS @var{a},@var{b},@var{c}}
10821 @item @code{void __MDADDACCS (acc, acc)}
10822 @tab @code{__MDADDACCS (@var{b}, @var{a})}
10823 @tab @code{MDADDACCS @var{a},@var{b}}
10824 @item @code{void __MDASACCS (acc, acc)}
10825 @tab @code{__MDASACCS (@var{b}, @var{a})}
10826 @tab @code{MDASACCS @var{a},@var{b}}
10827 @item @code{uw2 __MDCUTSSI (acc, const)}
10828 @tab @code{@var{c} = __MDCUTSSI (@var{a}, @var{b})}
10829 @tab @code{MDCUTSSI @var{a},#@var{b},@var{c}}
10830 @item @code{uw2 __MDPACKH (uw2, uw2)}
10831 @tab @code{@var{c} = __MDPACKH (@var{a}, @var{b})}
10832 @tab @code{MDPACKH @var{a},@var{b},@var{c}}
10833 @item @code{uw2 __MDROTLI (uw2, const)}
10834 @tab @code{@var{c} = __MDROTLI (@var{a}, @var{b})}
10835 @tab @code{MDROTLI @var{a},#@var{b},@var{c}}
10836 @item @code{void __MDSUBACCS (acc, acc)}
10837 @tab @code{__MDSUBACCS (@var{b}, @var{a})}
10838 @tab @code{MDSUBACCS @var{a},@var{b}}
10839 @item @code{void __MDUNPACKH (uw1 *, uw2)}
10840 @tab @code{__MDUNPACKH (&@var{b}, @var{a})}
10841 @tab @code{MDUNPACKH @var{a},@var{b}}
10842 @item @code{uw2 __MEXPDHD (uw1, const)}
10843 @tab @code{@var{c} = __MEXPDHD (@var{a}, @var{b})}
10844 @tab @code{MEXPDHD @var{a},#@var{b},@var{c}}
10845 @item @code{uw1 __MEXPDHW (uw1, const)}
10846 @tab @code{@var{c} = __MEXPDHW (@var{a}, @var{b})}
10847 @tab @code{MEXPDHW @var{a},#@var{b},@var{c}}
10848 @item @code{uw1 __MHDSETH (uw1, const)}
10849 @tab @code{@var{c} = __MHDSETH (@var{a}, @var{b})}
10850 @tab @code{MHDSETH @var{a},#@var{b},@var{c}}
10851 @item @code{sw1 __MHDSETS (const)}
10852 @tab @code{@var{b} = __MHDSETS (@var{a})}
10853 @tab @code{MHDSETS #@var{a},@var{b}}
10854 @item @code{uw1 __MHSETHIH (uw1, const)}
10855 @tab @code{@var{b} = __MHSETHIH (@var{b}, @var{a})}
10856 @tab @code{MHSETHIH #@var{a},@var{b}}
10857 @item @code{sw1 __MHSETHIS (sw1, const)}
10858 @tab @code{@var{b} = __MHSETHIS (@var{b}, @var{a})}
10859 @tab @code{MHSETHIS #@var{a},@var{b}}
10860 @item @code{uw1 __MHSETLOH (uw1, const)}
10861 @tab @code{@var{b} = __MHSETLOH (@var{b}, @var{a})}
10862 @tab @code{MHSETLOH #@var{a},@var{b}}
10863 @item @code{sw1 __MHSETLOS (sw1, const)}
10864 @tab @code{@var{b} = __MHSETLOS (@var{b}, @var{a})}
10865 @tab @code{MHSETLOS #@var{a},@var{b}}
10866 @item @code{uw1 __MHTOB (uw2)}
10867 @tab @code{@var{b} = __MHTOB (@var{a})}
10868 @tab @code{MHTOB @var{a},@var{b}}
10869 @item @code{void __MMACHS (acc, sw1, sw1)}
10870 @tab @code{__MMACHS (@var{c}, @var{a}, @var{b})}
10871 @tab @code{MMACHS @var{a},@var{b},@var{c}}
10872 @item @code{void __MMACHU (acc, uw1, uw1)}
10873 @tab @code{__MMACHU (@var{c}, @var{a}, @var{b})}
10874 @tab @code{MMACHU @var{a},@var{b},@var{c}}
10875 @item @code{void __MMRDHS (acc, sw1, sw1)}
10876 @tab @code{__MMRDHS (@var{c}, @var{a}, @var{b})}
10877 @tab @code{MMRDHS @var{a},@var{b},@var{c}}
10878 @item @code{void __MMRDHU (acc, uw1, uw1)}
10879 @tab @code{__MMRDHU (@var{c}, @var{a}, @var{b})}
10880 @tab @code{MMRDHU @var{a},@var{b},@var{c}}
10881 @item @code{void __MMULHS (acc, sw1, sw1)}
10882 @tab @code{__MMULHS (@var{c}, @var{a}, @var{b})}
10883 @tab @code{MMULHS @var{a},@var{b},@var{c}}
10884 @item @code{void __MMULHU (acc, uw1, uw1)}
10885 @tab @code{__MMULHU (@var{c}, @var{a}, @var{b})}
10886 @tab @code{MMULHU @var{a},@var{b},@var{c}}
10887 @item @code{void __MMULXHS (acc, sw1, sw1)}
10888 @tab @code{__MMULXHS (@var{c}, @var{a}, @var{b})}
10889 @tab @code{MMULXHS @var{a},@var{b},@var{c}}
10890 @item @code{void __MMULXHU (acc, uw1, uw1)}
10891 @tab @code{__MMULXHU (@var{c}, @var{a}, @var{b})}
10892 @tab @code{MMULXHU @var{a},@var{b},@var{c}}
10893 @item @code{uw1 __MNOT (uw1)}
10894 @tab @code{@var{b} = __MNOT (@var{a})}
10895 @tab @code{MNOT @var{a},@var{b}}
10896 @item @code{uw1 __MOR (uw1, uw1)}
10897 @tab @code{@var{c} = __MOR (@var{a}, @var{b})}
10898 @tab @code{MOR @var{a},@var{b},@var{c}}
10899 @item @code{uw1 __MPACKH (uh, uh)}
10900 @tab @code{@var{c} = __MPACKH (@var{a}, @var{b})}
10901 @tab @code{MPACKH @var{a},@var{b},@var{c}}
10902 @item @code{sw2 __MQADDHSS (sw2, sw2)}
10903 @tab @code{@var{c} = __MQADDHSS (@var{a}, @var{b})}
10904 @tab @code{MQADDHSS @var{a},@var{b},@var{c}}
10905 @item @code{uw2 __MQADDHUS (uw2, uw2)}
10906 @tab @code{@var{c} = __MQADDHUS (@var{a}, @var{b})}
10907 @tab @code{MQADDHUS @var{a},@var{b},@var{c}}
10908 @item @code{void __MQCPXIS (acc, sw2, sw2)}
10909 @tab @code{__MQCPXIS (@var{c}, @var{a}, @var{b})}
10910 @tab @code{MQCPXIS @var{a},@var{b},@var{c}}
10911 @item @code{void __MQCPXIU (acc, uw2, uw2)}
10912 @tab @code{__MQCPXIU (@var{c}, @var{a}, @var{b})}
10913 @tab @code{MQCPXIU @var{a},@var{b},@var{c}}
10914 @item @code{void __MQCPXRS (acc, sw2, sw2)}
10915 @tab @code{__MQCPXRS (@var{c}, @var{a}, @var{b})}
10916 @tab @code{MQCPXRS @var{a},@var{b},@var{c}}
10917 @item @code{void __MQCPXRU (acc, uw2, uw2)}
10918 @tab @code{__MQCPXRU (@var{c}, @var{a}, @var{b})}
10919 @tab @code{MQCPXRU @var{a},@var{b},@var{c}}
10920 @item @code{sw2 __MQLCLRHS (sw2, sw2)}
10921 @tab @code{@var{c} = __MQLCLRHS (@var{a}, @var{b})}
10922 @tab @code{MQLCLRHS @var{a},@var{b},@var{c}}
10923 @item @code{sw2 __MQLMTHS (sw2, sw2)}
10924 @tab @code{@var{c} = __MQLMTHS (@var{a}, @var{b})}
10925 @tab @code{MQLMTHS @var{a},@var{b},@var{c}}
10926 @item @code{void __MQMACHS (acc, sw2, sw2)}
10927 @tab @code{__MQMACHS (@var{c}, @var{a}, @var{b})}
10928 @tab @code{MQMACHS @var{a},@var{b},@var{c}}
10929 @item @code{void __MQMACHU (acc, uw2, uw2)}
10930 @tab @code{__MQMACHU (@var{c}, @var{a}, @var{b})}
10931 @tab @code{MQMACHU @var{a},@var{b},@var{c}}
10932 @item @code{void __MQMACXHS (acc, sw2, sw2)}
10933 @tab @code{__MQMACXHS (@var{c}, @var{a}, @var{b})}
10934 @tab @code{MQMACXHS @var{a},@var{b},@var{c}}
10935 @item @code{void __MQMULHS (acc, sw2, sw2)}
10936 @tab @code{__MQMULHS (@var{c}, @var{a}, @var{b})}
10937 @tab @code{MQMULHS @var{a},@var{b},@var{c}}
10938 @item @code{void __MQMULHU (acc, uw2, uw2)}
10939 @tab @code{__MQMULHU (@var{c}, @var{a}, @var{b})}
10940 @tab @code{MQMULHU @var{a},@var{b},@var{c}}
10941 @item @code{void __MQMULXHS (acc, sw2, sw2)}
10942 @tab @code{__MQMULXHS (@var{c}, @var{a}, @var{b})}
10943 @tab @code{MQMULXHS @var{a},@var{b},@var{c}}
10944 @item @code{void __MQMULXHU (acc, uw2, uw2)}
10945 @tab @code{__MQMULXHU (@var{c}, @var{a}, @var{b})}
10946 @tab @code{MQMULXHU @var{a},@var{b},@var{c}}
10947 @item @code{sw2 __MQSATHS (sw2, sw2)}
10948 @tab @code{@var{c} = __MQSATHS (@var{a}, @var{b})}
10949 @tab @code{MQSATHS @var{a},@var{b},@var{c}}
10950 @item @code{uw2 __MQSLLHI (uw2, int)}
10951 @tab @code{@var{c} = __MQSLLHI (@var{a}, @var{b})}
10952 @tab @code{MQSLLHI @var{a},@var{b},@var{c}}
10953 @item @code{sw2 __MQSRAHI (sw2, int)}
10954 @tab @code{@var{c} = __MQSRAHI (@var{a}, @var{b})}
10955 @tab @code{MQSRAHI @var{a},@var{b},@var{c}}
10956 @item @code{sw2 __MQSUBHSS (sw2, sw2)}
10957 @tab @code{@var{c} = __MQSUBHSS (@var{a}, @var{b})}
10958 @tab @code{MQSUBHSS @var{a},@var{b},@var{c}}
10959 @item @code{uw2 __MQSUBHUS (uw2, uw2)}
10960 @tab @code{@var{c} = __MQSUBHUS (@var{a}, @var{b})}
10961 @tab @code{MQSUBHUS @var{a},@var{b},@var{c}}
10962 @item @code{void __MQXMACHS (acc, sw2, sw2)}
10963 @tab @code{__MQXMACHS (@var{c}, @var{a}, @var{b})}
10964 @tab @code{MQXMACHS @var{a},@var{b},@var{c}}
10965 @item @code{void __MQXMACXHS (acc, sw2, sw2)}
10966 @tab @code{__MQXMACXHS (@var{c}, @var{a}, @var{b})}
10967 @tab @code{MQXMACXHS @var{a},@var{b},@var{c}}
10968 @item @code{uw1 __MRDACC (acc)}
10969 @tab @code{@var{b} = __MRDACC (@var{a})}
10970 @tab @code{MRDACC @var{a},@var{b}}
10971 @item @code{uw1 __MRDACCG (acc)}
10972 @tab @code{@var{b} = __MRDACCG (@var{a})}
10973 @tab @code{MRDACCG @var{a},@var{b}}
10974 @item @code{uw1 __MROTLI (uw1, const)}
10975 @tab @code{@var{c} = __MROTLI (@var{a}, @var{b})}
10976 @tab @code{MROTLI @var{a},#@var{b},@var{c}}
10977 @item @code{uw1 __MROTRI (uw1, const)}
10978 @tab @code{@var{c} = __MROTRI (@var{a}, @var{b})}
10979 @tab @code{MROTRI @var{a},#@var{b},@var{c}}
10980 @item @code{sw1 __MSATHS (sw1, sw1)}
10981 @tab @code{@var{c} = __MSATHS (@var{a}, @var{b})}
10982 @tab @code{MSATHS @var{a},@var{b},@var{c}}
10983 @item @code{uw1 __MSATHU (uw1, uw1)}
10984 @tab @code{@var{c} = __MSATHU (@var{a}, @var{b})}
10985 @tab @code{MSATHU @var{a},@var{b},@var{c}}
10986 @item @code{uw1 __MSLLHI (uw1, const)}
10987 @tab @code{@var{c} = __MSLLHI (@var{a}, @var{b})}
10988 @tab @code{MSLLHI @var{a},#@var{b},@var{c}}
10989 @item @code{sw1 __MSRAHI (sw1, const)}
10990 @tab @code{@var{c} = __MSRAHI (@var{a}, @var{b})}
10991 @tab @code{MSRAHI @var{a},#@var{b},@var{c}}
10992 @item @code{uw1 __MSRLHI (uw1, const)}
10993 @tab @code{@var{c} = __MSRLHI (@var{a}, @var{b})}
10994 @tab @code{MSRLHI @var{a},#@var{b},@var{c}}
10995 @item @code{void __MSUBACCS (acc, acc)}
10996 @tab @code{__MSUBACCS (@var{b}, @var{a})}
10997 @tab @code{MSUBACCS @var{a},@var{b}}
10998 @item @code{sw1 __MSUBHSS (sw1, sw1)}
10999 @tab @code{@var{c} = __MSUBHSS (@var{a}, @var{b})}
11000 @tab @code{MSUBHSS @var{a},@var{b},@var{c}}
11001 @item @code{uw1 __MSUBHUS (uw1, uw1)}
11002 @tab @code{@var{c} = __MSUBHUS (@var{a}, @var{b})}
11003 @tab @code{MSUBHUS @var{a},@var{b},@var{c}}
11004 @item @code{void __MTRAP (void)}
11005 @tab @code{__MTRAP ()}
11006 @tab @code{MTRAP}
11007 @item @code{uw2 __MUNPACKH (uw1)}
11008 @tab @code{@var{b} = __MUNPACKH (@var{a})}
11009 @tab @code{MUNPACKH @var{a},@var{b}}
11010 @item @code{uw1 __MWCUT (uw2, uw1)}
11011 @tab @code{@var{c} = __MWCUT (@var{a}, @var{b})}
11012 @tab @code{MWCUT @var{a},@var{b},@var{c}}
11013 @item @code{void __MWTACC (acc, uw1)}
11014 @tab @code{__MWTACC (@var{b}, @var{a})}
11015 @tab @code{MWTACC @var{a},@var{b}}
11016 @item @code{void __MWTACCG (acc, uw1)}
11017 @tab @code{__MWTACCG (@var{b}, @var{a})}
11018 @tab @code{MWTACCG @var{a},@var{b}}
11019 @item @code{uw1 __MXOR (uw1, uw1)}
11020 @tab @code{@var{c} = __MXOR (@var{a}, @var{b})}
11021 @tab @code{MXOR @var{a},@var{b},@var{c}}
11022 @end multitable
11023
11024 @node Raw read/write Functions
11025 @subsubsection Raw read/write Functions
11026
11027 This sections describes built-in functions related to read and write
11028 instructions to access memory. These functions generate
11029 @code{membar} instructions to flush the I/O load and stores where
11030 appropriate, as described in Fujitsu's manual described above.
11031
11032 @table @code
11033
11034 @item unsigned char __builtin_read8 (void *@var{data})
11035 @item unsigned short __builtin_read16 (void *@var{data})
11036 @item unsigned long __builtin_read32 (void *@var{data})
11037 @item unsigned long long __builtin_read64 (void *@var{data})
11038
11039 @item void __builtin_write8 (void *@var{data}, unsigned char @var{datum})
11040 @item void __builtin_write16 (void *@var{data}, unsigned short @var{datum})
11041 @item void __builtin_write32 (void *@var{data}, unsigned long @var{datum})
11042 @item void __builtin_write64 (void *@var{data}, unsigned long long @var{datum})
11043 @end table
11044
11045 @node Other Built-in Functions
11046 @subsubsection Other Built-in Functions
11047
11048 This section describes built-in functions that are not named after
11049 a specific FR-V instruction.
11050
11051 @table @code
11052 @item sw2 __IACCreadll (iacc @var{reg})
11053 Return the full 64-bit value of IACC0@. The @var{reg} argument is reserved
11054 for future expansion and must be 0.
11055
11056 @item sw1 __IACCreadl (iacc @var{reg})
11057 Return the value of IACC0H if @var{reg} is 0 and IACC0L if @var{reg} is 1.
11058 Other values of @var{reg} are rejected as invalid.
11059
11060 @item void __IACCsetll (iacc @var{reg}, sw2 @var{x})
11061 Set the full 64-bit value of IACC0 to @var{x}. The @var{reg} argument
11062 is reserved for future expansion and must be 0.
11063
11064 @item void __IACCsetl (iacc @var{reg}, sw1 @var{x})
11065 Set IACC0H to @var{x} if @var{reg} is 0 and IACC0L to @var{x} if @var{reg}
11066 is 1. Other values of @var{reg} are rejected as invalid.
11067
11068 @item void __data_prefetch0 (const void *@var{x})
11069 Use the @code{dcpl} instruction to load the contents of address @var{x}
11070 into the data cache.
11071
11072 @item void __data_prefetch (const void *@var{x})
11073 Use the @code{nldub} instruction to load the contents of address @var{x}
11074 into the data cache. The instruction is issued in slot I1@.
11075 @end table
11076
11077 @node X86 Built-in Functions
11078 @subsection X86 Built-in Functions
11079
11080 These built-in functions are available for the i386 and x86-64 family
11081 of computers, depending on the command-line switches used.
11082
11083 If you specify command-line switches such as @option{-msse},
11084 the compiler could use the extended instruction sets even if the built-ins
11085 are not used explicitly in the program. For this reason, applications
11086 that perform run-time CPU detection must compile separate files for each
11087 supported architecture, using the appropriate flags. In particular,
11088 the file containing the CPU detection code should be compiled without
11089 these options.
11090
11091 The following machine modes are available for use with MMX built-in functions
11092 (@pxref{Vector Extensions}): @code{V2SI} for a vector of two 32-bit integers,
11093 @code{V4HI} for a vector of four 16-bit integers, and @code{V8QI} for a
11094 vector of eight 8-bit integers. Some of the built-in functions operate on
11095 MMX registers as a whole 64-bit entity, these use @code{V1DI} as their mode.
11096
11097 If 3DNow!@: extensions are enabled, @code{V2SF} is used as a mode for a vector
11098 of two 32-bit floating-point values.
11099
11100 If SSE extensions are enabled, @code{V4SF} is used for a vector of four 32-bit
11101 floating-point values. Some instructions use a vector of four 32-bit
11102 integers, these use @code{V4SI}. Finally, some instructions operate on an
11103 entire vector register, interpreting it as a 128-bit integer, these use mode
11104 @code{TI}.
11105
11106 In 64-bit mode, the x86-64 family of processors uses additional built-in
11107 functions for efficient use of @code{TF} (@code{__float128}) 128-bit
11108 floating point and @code{TC} 128-bit complex floating-point values.
11109
11110 The following floating-point built-in functions are available in 64-bit
11111 mode. All of them implement the function that is part of the name.
11112
11113 @smallexample
11114 __float128 __builtin_fabsq (__float128)
11115 __float128 __builtin_copysignq (__float128, __float128)
11116 @end smallexample
11117
11118 The following built-in function is always available.
11119
11120 @table @code
11121 @item void __builtin_ia32_pause (void)
11122 Generates the @code{pause} machine instruction with a compiler memory
11123 barrier.
11124 @end table
11125
11126 The following floating-point built-in functions are made available in the
11127 64-bit mode.
11128
11129 @table @code
11130 @item __float128 __builtin_infq (void)
11131 Similar to @code{__builtin_inf}, except the return type is @code{__float128}.
11132 @findex __builtin_infq
11133
11134 @item __float128 __builtin_huge_valq (void)
11135 Similar to @code{__builtin_huge_val}, except the return type is @code{__float128}.
11136 @findex __builtin_huge_valq
11137 @end table
11138
11139 The following built-in functions are always available and can be used to
11140 check the target platform type.
11141
11142 @deftypefn {Built-in Function} void __builtin_cpu_init (void)
11143 This function runs the CPU detection code to check the type of CPU and the
11144 features supported. This built-in function needs to be invoked along with the built-in functions
11145 to check CPU type and features, @code{__builtin_cpu_is} and
11146 @code{__builtin_cpu_supports}, only when used in a function that is
11147 executed before any constructors are called. The CPU detection code is
11148 automatically executed in a very high priority constructor.
11149
11150 For example, this function has to be used in @code{ifunc} resolvers that
11151 check for CPU type using the built-in functions @code{__builtin_cpu_is}
11152 and @code{__builtin_cpu_supports}, or in constructors on targets that
11153 don't support constructor priority.
11154 @smallexample
11155
11156 static void (*resolve_memcpy (void)) (void)
11157 @{
11158 // ifunc resolvers fire before constructors, explicitly call the init
11159 // function.
11160 __builtin_cpu_init ();
11161 if (__builtin_cpu_supports ("ssse3"))
11162 return ssse3_memcpy; // super fast memcpy with ssse3 instructions.
11163 else
11164 return default_memcpy;
11165 @}
11166
11167 void *memcpy (void *, const void *, size_t)
11168 __attribute__ ((ifunc ("resolve_memcpy")));
11169 @end smallexample
11170
11171 @end deftypefn
11172
11173 @deftypefn {Built-in Function} int __builtin_cpu_is (const char *@var{cpuname})
11174 This function returns a positive integer if the run-time CPU
11175 is of type @var{cpuname}
11176 and returns @code{0} otherwise. The following CPU names can be detected:
11177
11178 @table @samp
11179 @item intel
11180 Intel CPU.
11181
11182 @item atom
11183 Intel Atom CPU.
11184
11185 @item core2
11186 Intel Core 2 CPU.
11187
11188 @item corei7
11189 Intel Core i7 CPU.
11190
11191 @item nehalem
11192 Intel Core i7 Nehalem CPU.
11193
11194 @item westmere
11195 Intel Core i7 Westmere CPU.
11196
11197 @item sandybridge
11198 Intel Core i7 Sandy Bridge CPU.
11199
11200 @item amd
11201 AMD CPU.
11202
11203 @item amdfam10h
11204 AMD Family 10h CPU.
11205
11206 @item barcelona
11207 AMD Family 10h Barcelona CPU.
11208
11209 @item shanghai
11210 AMD Family 10h Shanghai CPU.
11211
11212 @item istanbul
11213 AMD Family 10h Istanbul CPU.
11214
11215 @item btver1
11216 AMD Family 14h CPU.
11217
11218 @item amdfam15h
11219 AMD Family 15h CPU.
11220
11221 @item bdver1
11222 AMD Family 15h Bulldozer version 1.
11223
11224 @item bdver2
11225 AMD Family 15h Bulldozer version 2.
11226
11227 @item bdver3
11228 AMD Family 15h Bulldozer version 3.
11229
11230 @item bdver4
11231 AMD Family 15h Bulldozer version 4.
11232
11233 @item btver2
11234 AMD Family 16h CPU.
11235 @end table
11236
11237 Here is an example:
11238 @smallexample
11239 if (__builtin_cpu_is ("corei7"))
11240 @{
11241 do_corei7 (); // Core i7 specific implementation.
11242 @}
11243 else
11244 @{
11245 do_generic (); // Generic implementation.
11246 @}
11247 @end smallexample
11248 @end deftypefn
11249
11250 @deftypefn {Built-in Function} int __builtin_cpu_supports (const char *@var{feature})
11251 This function returns a positive integer if the run-time CPU
11252 supports @var{feature}
11253 and returns @code{0} otherwise. The following features can be detected:
11254
11255 @table @samp
11256 @item cmov
11257 CMOV instruction.
11258 @item mmx
11259 MMX instructions.
11260 @item popcnt
11261 POPCNT instruction.
11262 @item sse
11263 SSE instructions.
11264 @item sse2
11265 SSE2 instructions.
11266 @item sse3
11267 SSE3 instructions.
11268 @item ssse3
11269 SSSE3 instructions.
11270 @item sse4.1
11271 SSE4.1 instructions.
11272 @item sse4.2
11273 SSE4.2 instructions.
11274 @item avx
11275 AVX instructions.
11276 @item avx2
11277 AVX2 instructions.
11278 @end table
11279
11280 Here is an example:
11281 @smallexample
11282 if (__builtin_cpu_supports ("popcnt"))
11283 @{
11284 asm("popcnt %1,%0" : "=r"(count) : "rm"(n) : "cc");
11285 @}
11286 else
11287 @{
11288 count = generic_countbits (n); //generic implementation.
11289 @}
11290 @end smallexample
11291 @end deftypefn
11292
11293
11294 The following built-in functions are made available by @option{-mmmx}.
11295 All of them generate the machine instruction that is part of the name.
11296
11297 @smallexample
11298 v8qi __builtin_ia32_paddb (v8qi, v8qi)
11299 v4hi __builtin_ia32_paddw (v4hi, v4hi)
11300 v2si __builtin_ia32_paddd (v2si, v2si)
11301 v8qi __builtin_ia32_psubb (v8qi, v8qi)
11302 v4hi __builtin_ia32_psubw (v4hi, v4hi)
11303 v2si __builtin_ia32_psubd (v2si, v2si)
11304 v8qi __builtin_ia32_paddsb (v8qi, v8qi)
11305 v4hi __builtin_ia32_paddsw (v4hi, v4hi)
11306 v8qi __builtin_ia32_psubsb (v8qi, v8qi)
11307 v4hi __builtin_ia32_psubsw (v4hi, v4hi)
11308 v8qi __builtin_ia32_paddusb (v8qi, v8qi)
11309 v4hi __builtin_ia32_paddusw (v4hi, v4hi)
11310 v8qi __builtin_ia32_psubusb (v8qi, v8qi)
11311 v4hi __builtin_ia32_psubusw (v4hi, v4hi)
11312 v4hi __builtin_ia32_pmullw (v4hi, v4hi)
11313 v4hi __builtin_ia32_pmulhw (v4hi, v4hi)
11314 di __builtin_ia32_pand (di, di)
11315 di __builtin_ia32_pandn (di,di)
11316 di __builtin_ia32_por (di, di)
11317 di __builtin_ia32_pxor (di, di)
11318 v8qi __builtin_ia32_pcmpeqb (v8qi, v8qi)
11319 v4hi __builtin_ia32_pcmpeqw (v4hi, v4hi)
11320 v2si __builtin_ia32_pcmpeqd (v2si, v2si)
11321 v8qi __builtin_ia32_pcmpgtb (v8qi, v8qi)
11322 v4hi __builtin_ia32_pcmpgtw (v4hi, v4hi)
11323 v2si __builtin_ia32_pcmpgtd (v2si, v2si)
11324 v8qi __builtin_ia32_punpckhbw (v8qi, v8qi)
11325 v4hi __builtin_ia32_punpckhwd (v4hi, v4hi)
11326 v2si __builtin_ia32_punpckhdq (v2si, v2si)
11327 v8qi __builtin_ia32_punpcklbw (v8qi, v8qi)
11328 v4hi __builtin_ia32_punpcklwd (v4hi, v4hi)
11329 v2si __builtin_ia32_punpckldq (v2si, v2si)
11330 v8qi __builtin_ia32_packsswb (v4hi, v4hi)
11331 v4hi __builtin_ia32_packssdw (v2si, v2si)
11332 v8qi __builtin_ia32_packuswb (v4hi, v4hi)
11333
11334 v4hi __builtin_ia32_psllw (v4hi, v4hi)
11335 v2si __builtin_ia32_pslld (v2si, v2si)
11336 v1di __builtin_ia32_psllq (v1di, v1di)
11337 v4hi __builtin_ia32_psrlw (v4hi, v4hi)
11338 v2si __builtin_ia32_psrld (v2si, v2si)
11339 v1di __builtin_ia32_psrlq (v1di, v1di)
11340 v4hi __builtin_ia32_psraw (v4hi, v4hi)
11341 v2si __builtin_ia32_psrad (v2si, v2si)
11342 v4hi __builtin_ia32_psllwi (v4hi, int)
11343 v2si __builtin_ia32_pslldi (v2si, int)
11344 v1di __builtin_ia32_psllqi (v1di, int)
11345 v4hi __builtin_ia32_psrlwi (v4hi, int)
11346 v2si __builtin_ia32_psrldi (v2si, int)
11347 v1di __builtin_ia32_psrlqi (v1di, int)
11348 v4hi __builtin_ia32_psrawi (v4hi, int)
11349 v2si __builtin_ia32_psradi (v2si, int)
11350
11351 @end smallexample
11352
11353 The following built-in functions are made available either with
11354 @option{-msse}, or with a combination of @option{-m3dnow} and
11355 @option{-march=athlon}. All of them generate the machine
11356 instruction that is part of the name.
11357
11358 @smallexample
11359 v4hi __builtin_ia32_pmulhuw (v4hi, v4hi)
11360 v8qi __builtin_ia32_pavgb (v8qi, v8qi)
11361 v4hi __builtin_ia32_pavgw (v4hi, v4hi)
11362 v1di __builtin_ia32_psadbw (v8qi, v8qi)
11363 v8qi __builtin_ia32_pmaxub (v8qi, v8qi)
11364 v4hi __builtin_ia32_pmaxsw (v4hi, v4hi)
11365 v8qi __builtin_ia32_pminub (v8qi, v8qi)
11366 v4hi __builtin_ia32_pminsw (v4hi, v4hi)
11367 int __builtin_ia32_pmovmskb (v8qi)
11368 void __builtin_ia32_maskmovq (v8qi, v8qi, char *)
11369 void __builtin_ia32_movntq (di *, di)
11370 void __builtin_ia32_sfence (void)
11371 @end smallexample
11372
11373 The following built-in functions are available when @option{-msse} is used.
11374 All of them generate the machine instruction that is part of the name.
11375
11376 @smallexample
11377 int __builtin_ia32_comieq (v4sf, v4sf)
11378 int __builtin_ia32_comineq (v4sf, v4sf)
11379 int __builtin_ia32_comilt (v4sf, v4sf)
11380 int __builtin_ia32_comile (v4sf, v4sf)
11381 int __builtin_ia32_comigt (v4sf, v4sf)
11382 int __builtin_ia32_comige (v4sf, v4sf)
11383 int __builtin_ia32_ucomieq (v4sf, v4sf)
11384 int __builtin_ia32_ucomineq (v4sf, v4sf)
11385 int __builtin_ia32_ucomilt (v4sf, v4sf)
11386 int __builtin_ia32_ucomile (v4sf, v4sf)
11387 int __builtin_ia32_ucomigt (v4sf, v4sf)
11388 int __builtin_ia32_ucomige (v4sf, v4sf)
11389 v4sf __builtin_ia32_addps (v4sf, v4sf)
11390 v4sf __builtin_ia32_subps (v4sf, v4sf)
11391 v4sf __builtin_ia32_mulps (v4sf, v4sf)
11392 v4sf __builtin_ia32_divps (v4sf, v4sf)
11393 v4sf __builtin_ia32_addss (v4sf, v4sf)
11394 v4sf __builtin_ia32_subss (v4sf, v4sf)
11395 v4sf __builtin_ia32_mulss (v4sf, v4sf)
11396 v4sf __builtin_ia32_divss (v4sf, v4sf)
11397 v4sf __builtin_ia32_cmpeqps (v4sf, v4sf)
11398 v4sf __builtin_ia32_cmpltps (v4sf, v4sf)
11399 v4sf __builtin_ia32_cmpleps (v4sf, v4sf)
11400 v4sf __builtin_ia32_cmpgtps (v4sf, v4sf)
11401 v4sf __builtin_ia32_cmpgeps (v4sf, v4sf)
11402 v4sf __builtin_ia32_cmpunordps (v4sf, v4sf)
11403 v4sf __builtin_ia32_cmpneqps (v4sf, v4sf)
11404 v4sf __builtin_ia32_cmpnltps (v4sf, v4sf)
11405 v4sf __builtin_ia32_cmpnleps (v4sf, v4sf)
11406 v4sf __builtin_ia32_cmpngtps (v4sf, v4sf)
11407 v4sf __builtin_ia32_cmpngeps (v4sf, v4sf)
11408 v4sf __builtin_ia32_cmpordps (v4sf, v4sf)
11409 v4sf __builtin_ia32_cmpeqss (v4sf, v4sf)
11410 v4sf __builtin_ia32_cmpltss (v4sf, v4sf)
11411 v4sf __builtin_ia32_cmpless (v4sf, v4sf)
11412 v4sf __builtin_ia32_cmpunordss (v4sf, v4sf)
11413 v4sf __builtin_ia32_cmpneqss (v4sf, v4sf)
11414 v4sf __builtin_ia32_cmpnltss (v4sf, v4sf)
11415 v4sf __builtin_ia32_cmpnless (v4sf, v4sf)
11416 v4sf __builtin_ia32_cmpordss (v4sf, v4sf)
11417 v4sf __builtin_ia32_maxps (v4sf, v4sf)
11418 v4sf __builtin_ia32_maxss (v4sf, v4sf)
11419 v4sf __builtin_ia32_minps (v4sf, v4sf)
11420 v4sf __builtin_ia32_minss (v4sf, v4sf)
11421 v4sf __builtin_ia32_andps (v4sf, v4sf)
11422 v4sf __builtin_ia32_andnps (v4sf, v4sf)
11423 v4sf __builtin_ia32_orps (v4sf, v4sf)
11424 v4sf __builtin_ia32_xorps (v4sf, v4sf)
11425 v4sf __builtin_ia32_movss (v4sf, v4sf)
11426 v4sf __builtin_ia32_movhlps (v4sf, v4sf)
11427 v4sf __builtin_ia32_movlhps (v4sf, v4sf)
11428 v4sf __builtin_ia32_unpckhps (v4sf, v4sf)
11429 v4sf __builtin_ia32_unpcklps (v4sf, v4sf)
11430 v4sf __builtin_ia32_cvtpi2ps (v4sf, v2si)
11431 v4sf __builtin_ia32_cvtsi2ss (v4sf, int)
11432 v2si __builtin_ia32_cvtps2pi (v4sf)
11433 int __builtin_ia32_cvtss2si (v4sf)
11434 v2si __builtin_ia32_cvttps2pi (v4sf)
11435 int __builtin_ia32_cvttss2si (v4sf)
11436 v4sf __builtin_ia32_rcpps (v4sf)
11437 v4sf __builtin_ia32_rsqrtps (v4sf)
11438 v4sf __builtin_ia32_sqrtps (v4sf)
11439 v4sf __builtin_ia32_rcpss (v4sf)
11440 v4sf __builtin_ia32_rsqrtss (v4sf)
11441 v4sf __builtin_ia32_sqrtss (v4sf)
11442 v4sf __builtin_ia32_shufps (v4sf, v4sf, int)
11443 void __builtin_ia32_movntps (float *, v4sf)
11444 int __builtin_ia32_movmskps (v4sf)
11445 @end smallexample
11446
11447 The following built-in functions are available when @option{-msse} is used.
11448
11449 @table @code
11450 @item v4sf __builtin_ia32_loadups (float *)
11451 Generates the @code{movups} machine instruction as a load from memory.
11452 @item void __builtin_ia32_storeups (float *, v4sf)
11453 Generates the @code{movups} machine instruction as a store to memory.
11454 @item v4sf __builtin_ia32_loadss (float *)
11455 Generates the @code{movss} machine instruction as a load from memory.
11456 @item v4sf __builtin_ia32_loadhps (v4sf, const v2sf *)
11457 Generates the @code{movhps} machine instruction as a load from memory.
11458 @item v4sf __builtin_ia32_loadlps (v4sf, const v2sf *)
11459 Generates the @code{movlps} machine instruction as a load from memory
11460 @item void __builtin_ia32_storehps (v2sf *, v4sf)
11461 Generates the @code{movhps} machine instruction as a store to memory.
11462 @item void __builtin_ia32_storelps (v2sf *, v4sf)
11463 Generates the @code{movlps} machine instruction as a store to memory.
11464 @end table
11465
11466 The following built-in functions are available when @option{-msse2} is used.
11467 All of them generate the machine instruction that is part of the name.
11468
11469 @smallexample
11470 int __builtin_ia32_comisdeq (v2df, v2df)
11471 int __builtin_ia32_comisdlt (v2df, v2df)
11472 int __builtin_ia32_comisdle (v2df, v2df)
11473 int __builtin_ia32_comisdgt (v2df, v2df)
11474 int __builtin_ia32_comisdge (v2df, v2df)
11475 int __builtin_ia32_comisdneq (v2df, v2df)
11476 int __builtin_ia32_ucomisdeq (v2df, v2df)
11477 int __builtin_ia32_ucomisdlt (v2df, v2df)
11478 int __builtin_ia32_ucomisdle (v2df, v2df)
11479 int __builtin_ia32_ucomisdgt (v2df, v2df)
11480 int __builtin_ia32_ucomisdge (v2df, v2df)
11481 int __builtin_ia32_ucomisdneq (v2df, v2df)
11482 v2df __builtin_ia32_cmpeqpd (v2df, v2df)
11483 v2df __builtin_ia32_cmpltpd (v2df, v2df)
11484 v2df __builtin_ia32_cmplepd (v2df, v2df)
11485 v2df __builtin_ia32_cmpgtpd (v2df, v2df)
11486 v2df __builtin_ia32_cmpgepd (v2df, v2df)
11487 v2df __builtin_ia32_cmpunordpd (v2df, v2df)
11488 v2df __builtin_ia32_cmpneqpd (v2df, v2df)
11489 v2df __builtin_ia32_cmpnltpd (v2df, v2df)
11490 v2df __builtin_ia32_cmpnlepd (v2df, v2df)
11491 v2df __builtin_ia32_cmpngtpd (v2df, v2df)
11492 v2df __builtin_ia32_cmpngepd (v2df, v2df)
11493 v2df __builtin_ia32_cmpordpd (v2df, v2df)
11494 v2df __builtin_ia32_cmpeqsd (v2df, v2df)
11495 v2df __builtin_ia32_cmpltsd (v2df, v2df)
11496 v2df __builtin_ia32_cmplesd (v2df, v2df)
11497 v2df __builtin_ia32_cmpunordsd (v2df, v2df)
11498 v2df __builtin_ia32_cmpneqsd (v2df, v2df)
11499 v2df __builtin_ia32_cmpnltsd (v2df, v2df)
11500 v2df __builtin_ia32_cmpnlesd (v2df, v2df)
11501 v2df __builtin_ia32_cmpordsd (v2df, v2df)
11502 v2di __builtin_ia32_paddq (v2di, v2di)
11503 v2di __builtin_ia32_psubq (v2di, v2di)
11504 v2df __builtin_ia32_addpd (v2df, v2df)
11505 v2df __builtin_ia32_subpd (v2df, v2df)
11506 v2df __builtin_ia32_mulpd (v2df, v2df)
11507 v2df __builtin_ia32_divpd (v2df, v2df)
11508 v2df __builtin_ia32_addsd (v2df, v2df)
11509 v2df __builtin_ia32_subsd (v2df, v2df)
11510 v2df __builtin_ia32_mulsd (v2df, v2df)
11511 v2df __builtin_ia32_divsd (v2df, v2df)
11512 v2df __builtin_ia32_minpd (v2df, v2df)
11513 v2df __builtin_ia32_maxpd (v2df, v2df)
11514 v2df __builtin_ia32_minsd (v2df, v2df)
11515 v2df __builtin_ia32_maxsd (v2df, v2df)
11516 v2df __builtin_ia32_andpd (v2df, v2df)
11517 v2df __builtin_ia32_andnpd (v2df, v2df)
11518 v2df __builtin_ia32_orpd (v2df, v2df)
11519 v2df __builtin_ia32_xorpd (v2df, v2df)
11520 v2df __builtin_ia32_movsd (v2df, v2df)
11521 v2df __builtin_ia32_unpckhpd (v2df, v2df)
11522 v2df __builtin_ia32_unpcklpd (v2df, v2df)
11523 v16qi __builtin_ia32_paddb128 (v16qi, v16qi)
11524 v8hi __builtin_ia32_paddw128 (v8hi, v8hi)
11525 v4si __builtin_ia32_paddd128 (v4si, v4si)
11526 v2di __builtin_ia32_paddq128 (v2di, v2di)
11527 v16qi __builtin_ia32_psubb128 (v16qi, v16qi)
11528 v8hi __builtin_ia32_psubw128 (v8hi, v8hi)
11529 v4si __builtin_ia32_psubd128 (v4si, v4si)
11530 v2di __builtin_ia32_psubq128 (v2di, v2di)
11531 v8hi __builtin_ia32_pmullw128 (v8hi, v8hi)
11532 v8hi __builtin_ia32_pmulhw128 (v8hi, v8hi)
11533 v2di __builtin_ia32_pand128 (v2di, v2di)
11534 v2di __builtin_ia32_pandn128 (v2di, v2di)
11535 v2di __builtin_ia32_por128 (v2di, v2di)
11536 v2di __builtin_ia32_pxor128 (v2di, v2di)
11537 v16qi __builtin_ia32_pavgb128 (v16qi, v16qi)
11538 v8hi __builtin_ia32_pavgw128 (v8hi, v8hi)
11539 v16qi __builtin_ia32_pcmpeqb128 (v16qi, v16qi)
11540 v8hi __builtin_ia32_pcmpeqw128 (v8hi, v8hi)
11541 v4si __builtin_ia32_pcmpeqd128 (v4si, v4si)
11542 v16qi __builtin_ia32_pcmpgtb128 (v16qi, v16qi)
11543 v8hi __builtin_ia32_pcmpgtw128 (v8hi, v8hi)
11544 v4si __builtin_ia32_pcmpgtd128 (v4si, v4si)
11545 v16qi __builtin_ia32_pmaxub128 (v16qi, v16qi)
11546 v8hi __builtin_ia32_pmaxsw128 (v8hi, v8hi)
11547 v16qi __builtin_ia32_pminub128 (v16qi, v16qi)
11548 v8hi __builtin_ia32_pminsw128 (v8hi, v8hi)
11549 v16qi __builtin_ia32_punpckhbw128 (v16qi, v16qi)
11550 v8hi __builtin_ia32_punpckhwd128 (v8hi, v8hi)
11551 v4si __builtin_ia32_punpckhdq128 (v4si, v4si)
11552 v2di __builtin_ia32_punpckhqdq128 (v2di, v2di)
11553 v16qi __builtin_ia32_punpcklbw128 (v16qi, v16qi)
11554 v8hi __builtin_ia32_punpcklwd128 (v8hi, v8hi)
11555 v4si __builtin_ia32_punpckldq128 (v4si, v4si)
11556 v2di __builtin_ia32_punpcklqdq128 (v2di, v2di)
11557 v16qi __builtin_ia32_packsswb128 (v8hi, v8hi)
11558 v8hi __builtin_ia32_packssdw128 (v4si, v4si)
11559 v16qi __builtin_ia32_packuswb128 (v8hi, v8hi)
11560 v8hi __builtin_ia32_pmulhuw128 (v8hi, v8hi)
11561 void __builtin_ia32_maskmovdqu (v16qi, v16qi)
11562 v2df __builtin_ia32_loadupd (double *)
11563 void __builtin_ia32_storeupd (double *, v2df)
11564 v2df __builtin_ia32_loadhpd (v2df, double const *)
11565 v2df __builtin_ia32_loadlpd (v2df, double const *)
11566 int __builtin_ia32_movmskpd (v2df)
11567 int __builtin_ia32_pmovmskb128 (v16qi)
11568 void __builtin_ia32_movnti (int *, int)
11569 void __builtin_ia32_movnti64 (long long int *, long long int)
11570 void __builtin_ia32_movntpd (double *, v2df)
11571 void __builtin_ia32_movntdq (v2df *, v2df)
11572 v4si __builtin_ia32_pshufd (v4si, int)
11573 v8hi __builtin_ia32_pshuflw (v8hi, int)
11574 v8hi __builtin_ia32_pshufhw (v8hi, int)
11575 v2di __builtin_ia32_psadbw128 (v16qi, v16qi)
11576 v2df __builtin_ia32_sqrtpd (v2df)
11577 v2df __builtin_ia32_sqrtsd (v2df)
11578 v2df __builtin_ia32_shufpd (v2df, v2df, int)
11579 v2df __builtin_ia32_cvtdq2pd (v4si)
11580 v4sf __builtin_ia32_cvtdq2ps (v4si)
11581 v4si __builtin_ia32_cvtpd2dq (v2df)
11582 v2si __builtin_ia32_cvtpd2pi (v2df)
11583 v4sf __builtin_ia32_cvtpd2ps (v2df)
11584 v4si __builtin_ia32_cvttpd2dq (v2df)
11585 v2si __builtin_ia32_cvttpd2pi (v2df)
11586 v2df __builtin_ia32_cvtpi2pd (v2si)
11587 int __builtin_ia32_cvtsd2si (v2df)
11588 int __builtin_ia32_cvttsd2si (v2df)
11589 long long __builtin_ia32_cvtsd2si64 (v2df)
11590 long long __builtin_ia32_cvttsd2si64 (v2df)
11591 v4si __builtin_ia32_cvtps2dq (v4sf)
11592 v2df __builtin_ia32_cvtps2pd (v4sf)
11593 v4si __builtin_ia32_cvttps2dq (v4sf)
11594 v2df __builtin_ia32_cvtsi2sd (v2df, int)
11595 v2df __builtin_ia32_cvtsi642sd (v2df, long long)
11596 v4sf __builtin_ia32_cvtsd2ss (v4sf, v2df)
11597 v2df __builtin_ia32_cvtss2sd (v2df, v4sf)
11598 void __builtin_ia32_clflush (const void *)
11599 void __builtin_ia32_lfence (void)
11600 void __builtin_ia32_mfence (void)
11601 v16qi __builtin_ia32_loaddqu (const char *)
11602 void __builtin_ia32_storedqu (char *, v16qi)
11603 v1di __builtin_ia32_pmuludq (v2si, v2si)
11604 v2di __builtin_ia32_pmuludq128 (v4si, v4si)
11605 v8hi __builtin_ia32_psllw128 (v8hi, v8hi)
11606 v4si __builtin_ia32_pslld128 (v4si, v4si)
11607 v2di __builtin_ia32_psllq128 (v2di, v2di)
11608 v8hi __builtin_ia32_psrlw128 (v8hi, v8hi)
11609 v4si __builtin_ia32_psrld128 (v4si, v4si)
11610 v2di __builtin_ia32_psrlq128 (v2di, v2di)
11611 v8hi __builtin_ia32_psraw128 (v8hi, v8hi)
11612 v4si __builtin_ia32_psrad128 (v4si, v4si)
11613 v2di __builtin_ia32_pslldqi128 (v2di, int)
11614 v8hi __builtin_ia32_psllwi128 (v8hi, int)
11615 v4si __builtin_ia32_pslldi128 (v4si, int)
11616 v2di __builtin_ia32_psllqi128 (v2di, int)
11617 v2di __builtin_ia32_psrldqi128 (v2di, int)
11618 v8hi __builtin_ia32_psrlwi128 (v8hi, int)
11619 v4si __builtin_ia32_psrldi128 (v4si, int)
11620 v2di __builtin_ia32_psrlqi128 (v2di, int)
11621 v8hi __builtin_ia32_psrawi128 (v8hi, int)
11622 v4si __builtin_ia32_psradi128 (v4si, int)
11623 v4si __builtin_ia32_pmaddwd128 (v8hi, v8hi)
11624 v2di __builtin_ia32_movq128 (v2di)
11625 @end smallexample
11626
11627 The following built-in functions are available when @option{-msse3} is used.
11628 All of them generate the machine instruction that is part of the name.
11629
11630 @smallexample
11631 v2df __builtin_ia32_addsubpd (v2df, v2df)
11632 v4sf __builtin_ia32_addsubps (v4sf, v4sf)
11633 v2df __builtin_ia32_haddpd (v2df, v2df)
11634 v4sf __builtin_ia32_haddps (v4sf, v4sf)
11635 v2df __builtin_ia32_hsubpd (v2df, v2df)
11636 v4sf __builtin_ia32_hsubps (v4sf, v4sf)
11637 v16qi __builtin_ia32_lddqu (char const *)
11638 void __builtin_ia32_monitor (void *, unsigned int, unsigned int)
11639 v4sf __builtin_ia32_movshdup (v4sf)
11640 v4sf __builtin_ia32_movsldup (v4sf)
11641 void __builtin_ia32_mwait (unsigned int, unsigned int)
11642 @end smallexample
11643
11644 The following built-in functions are available when @option{-mssse3} is used.
11645 All of them generate the machine instruction that is part of the name.
11646
11647 @smallexample
11648 v2si __builtin_ia32_phaddd (v2si, v2si)
11649 v4hi __builtin_ia32_phaddw (v4hi, v4hi)
11650 v4hi __builtin_ia32_phaddsw (v4hi, v4hi)
11651 v2si __builtin_ia32_phsubd (v2si, v2si)
11652 v4hi __builtin_ia32_phsubw (v4hi, v4hi)
11653 v4hi __builtin_ia32_phsubsw (v4hi, v4hi)
11654 v4hi __builtin_ia32_pmaddubsw (v8qi, v8qi)
11655 v4hi __builtin_ia32_pmulhrsw (v4hi, v4hi)
11656 v8qi __builtin_ia32_pshufb (v8qi, v8qi)
11657 v8qi __builtin_ia32_psignb (v8qi, v8qi)
11658 v2si __builtin_ia32_psignd (v2si, v2si)
11659 v4hi __builtin_ia32_psignw (v4hi, v4hi)
11660 v1di __builtin_ia32_palignr (v1di, v1di, int)
11661 v8qi __builtin_ia32_pabsb (v8qi)
11662 v2si __builtin_ia32_pabsd (v2si)
11663 v4hi __builtin_ia32_pabsw (v4hi)
11664 @end smallexample
11665
11666 The following built-in functions are available when @option{-mssse3} is used.
11667 All of them generate the machine instruction that is part of the name.
11668
11669 @smallexample
11670 v4si __builtin_ia32_phaddd128 (v4si, v4si)
11671 v8hi __builtin_ia32_phaddw128 (v8hi, v8hi)
11672 v8hi __builtin_ia32_phaddsw128 (v8hi, v8hi)
11673 v4si __builtin_ia32_phsubd128 (v4si, v4si)
11674 v8hi __builtin_ia32_phsubw128 (v8hi, v8hi)
11675 v8hi __builtin_ia32_phsubsw128 (v8hi, v8hi)
11676 v8hi __builtin_ia32_pmaddubsw128 (v16qi, v16qi)
11677 v8hi __builtin_ia32_pmulhrsw128 (v8hi, v8hi)
11678 v16qi __builtin_ia32_pshufb128 (v16qi, v16qi)
11679 v16qi __builtin_ia32_psignb128 (v16qi, v16qi)
11680 v4si __builtin_ia32_psignd128 (v4si, v4si)
11681 v8hi __builtin_ia32_psignw128 (v8hi, v8hi)
11682 v2di __builtin_ia32_palignr128 (v2di, v2di, int)
11683 v16qi __builtin_ia32_pabsb128 (v16qi)
11684 v4si __builtin_ia32_pabsd128 (v4si)
11685 v8hi __builtin_ia32_pabsw128 (v8hi)
11686 @end smallexample
11687
11688 The following built-in functions are available when @option{-msse4.1} is
11689 used. All of them generate the machine instruction that is part of the
11690 name.
11691
11692 @smallexample
11693 v2df __builtin_ia32_blendpd (v2df, v2df, const int)
11694 v4sf __builtin_ia32_blendps (v4sf, v4sf, const int)
11695 v2df __builtin_ia32_blendvpd (v2df, v2df, v2df)
11696 v4sf __builtin_ia32_blendvps (v4sf, v4sf, v4sf)
11697 v2df __builtin_ia32_dppd (v2df, v2df, const int)
11698 v4sf __builtin_ia32_dpps (v4sf, v4sf, const int)
11699 v4sf __builtin_ia32_insertps128 (v4sf, v4sf, const int)
11700 v2di __builtin_ia32_movntdqa (v2di *);
11701 v16qi __builtin_ia32_mpsadbw128 (v16qi, v16qi, const int)
11702 v8hi __builtin_ia32_packusdw128 (v4si, v4si)
11703 v16qi __builtin_ia32_pblendvb128 (v16qi, v16qi, v16qi)
11704 v8hi __builtin_ia32_pblendw128 (v8hi, v8hi, const int)
11705 v2di __builtin_ia32_pcmpeqq (v2di, v2di)
11706 v8hi __builtin_ia32_phminposuw128 (v8hi)
11707 v16qi __builtin_ia32_pmaxsb128 (v16qi, v16qi)
11708 v4si __builtin_ia32_pmaxsd128 (v4si, v4si)
11709 v4si __builtin_ia32_pmaxud128 (v4si, v4si)
11710 v8hi __builtin_ia32_pmaxuw128 (v8hi, v8hi)
11711 v16qi __builtin_ia32_pminsb128 (v16qi, v16qi)
11712 v4si __builtin_ia32_pminsd128 (v4si, v4si)
11713 v4si __builtin_ia32_pminud128 (v4si, v4si)
11714 v8hi __builtin_ia32_pminuw128 (v8hi, v8hi)
11715 v4si __builtin_ia32_pmovsxbd128 (v16qi)
11716 v2di __builtin_ia32_pmovsxbq128 (v16qi)
11717 v8hi __builtin_ia32_pmovsxbw128 (v16qi)
11718 v2di __builtin_ia32_pmovsxdq128 (v4si)
11719 v4si __builtin_ia32_pmovsxwd128 (v8hi)
11720 v2di __builtin_ia32_pmovsxwq128 (v8hi)
11721 v4si __builtin_ia32_pmovzxbd128 (v16qi)
11722 v2di __builtin_ia32_pmovzxbq128 (v16qi)
11723 v8hi __builtin_ia32_pmovzxbw128 (v16qi)
11724 v2di __builtin_ia32_pmovzxdq128 (v4si)
11725 v4si __builtin_ia32_pmovzxwd128 (v8hi)
11726 v2di __builtin_ia32_pmovzxwq128 (v8hi)
11727 v2di __builtin_ia32_pmuldq128 (v4si, v4si)
11728 v4si __builtin_ia32_pmulld128 (v4si, v4si)
11729 int __builtin_ia32_ptestc128 (v2di, v2di)
11730 int __builtin_ia32_ptestnzc128 (v2di, v2di)
11731 int __builtin_ia32_ptestz128 (v2di, v2di)
11732 v2df __builtin_ia32_roundpd (v2df, const int)
11733 v4sf __builtin_ia32_roundps (v4sf, const int)
11734 v2df __builtin_ia32_roundsd (v2df, v2df, const int)
11735 v4sf __builtin_ia32_roundss (v4sf, v4sf, const int)
11736 @end smallexample
11737
11738 The following built-in functions are available when @option{-msse4.1} is
11739 used.
11740
11741 @table @code
11742 @item v4sf __builtin_ia32_vec_set_v4sf (v4sf, float, const int)
11743 Generates the @code{insertps} machine instruction.
11744 @item int __builtin_ia32_vec_ext_v16qi (v16qi, const int)
11745 Generates the @code{pextrb} machine instruction.
11746 @item v16qi __builtin_ia32_vec_set_v16qi (v16qi, int, const int)
11747 Generates the @code{pinsrb} machine instruction.
11748 @item v4si __builtin_ia32_vec_set_v4si (v4si, int, const int)
11749 Generates the @code{pinsrd} machine instruction.
11750 @item v2di __builtin_ia32_vec_set_v2di (v2di, long long, const int)
11751 Generates the @code{pinsrq} machine instruction in 64bit mode.
11752 @end table
11753
11754 The following built-in functions are changed to generate new SSE4.1
11755 instructions when @option{-msse4.1} is used.
11756
11757 @table @code
11758 @item float __builtin_ia32_vec_ext_v4sf (v4sf, const int)
11759 Generates the @code{extractps} machine instruction.
11760 @item int __builtin_ia32_vec_ext_v4si (v4si, const int)
11761 Generates the @code{pextrd} machine instruction.
11762 @item long long __builtin_ia32_vec_ext_v2di (v2di, const int)
11763 Generates the @code{pextrq} machine instruction in 64bit mode.
11764 @end table
11765
11766 The following built-in functions are available when @option{-msse4.2} is
11767 used. All of them generate the machine instruction that is part of the
11768 name.
11769
11770 @smallexample
11771 v16qi __builtin_ia32_pcmpestrm128 (v16qi, int, v16qi, int, const int)
11772 int __builtin_ia32_pcmpestri128 (v16qi, int, v16qi, int, const int)
11773 int __builtin_ia32_pcmpestria128 (v16qi, int, v16qi, int, const int)
11774 int __builtin_ia32_pcmpestric128 (v16qi, int, v16qi, int, const int)
11775 int __builtin_ia32_pcmpestrio128 (v16qi, int, v16qi, int, const int)
11776 int __builtin_ia32_pcmpestris128 (v16qi, int, v16qi, int, const int)
11777 int __builtin_ia32_pcmpestriz128 (v16qi, int, v16qi, int, const int)
11778 v16qi __builtin_ia32_pcmpistrm128 (v16qi, v16qi, const int)
11779 int __builtin_ia32_pcmpistri128 (v16qi, v16qi, const int)
11780 int __builtin_ia32_pcmpistria128 (v16qi, v16qi, const int)
11781 int __builtin_ia32_pcmpistric128 (v16qi, v16qi, const int)
11782 int __builtin_ia32_pcmpistrio128 (v16qi, v16qi, const int)
11783 int __builtin_ia32_pcmpistris128 (v16qi, v16qi, const int)
11784 int __builtin_ia32_pcmpistriz128 (v16qi, v16qi, const int)
11785 v2di __builtin_ia32_pcmpgtq (v2di, v2di)
11786 @end smallexample
11787
11788 The following built-in functions are available when @option{-msse4.2} is
11789 used.
11790
11791 @table @code
11792 @item unsigned int __builtin_ia32_crc32qi (unsigned int, unsigned char)
11793 Generates the @code{crc32b} machine instruction.
11794 @item unsigned int __builtin_ia32_crc32hi (unsigned int, unsigned short)
11795 Generates the @code{crc32w} machine instruction.
11796 @item unsigned int __builtin_ia32_crc32si (unsigned int, unsigned int)
11797 Generates the @code{crc32l} machine instruction.
11798 @item unsigned long long __builtin_ia32_crc32di (unsigned long long, unsigned long long)
11799 Generates the @code{crc32q} machine instruction.
11800 @end table
11801
11802 The following built-in functions are changed to generate new SSE4.2
11803 instructions when @option{-msse4.2} is used.
11804
11805 @table @code
11806 @item int __builtin_popcount (unsigned int)
11807 Generates the @code{popcntl} machine instruction.
11808 @item int __builtin_popcountl (unsigned long)
11809 Generates the @code{popcntl} or @code{popcntq} machine instruction,
11810 depending on the size of @code{unsigned long}.
11811 @item int __builtin_popcountll (unsigned long long)
11812 Generates the @code{popcntq} machine instruction.
11813 @end table
11814
11815 The following built-in functions are available when @option{-mavx} is
11816 used. All of them generate the machine instruction that is part of the
11817 name.
11818
11819 @smallexample
11820 v4df __builtin_ia32_addpd256 (v4df,v4df)
11821 v8sf __builtin_ia32_addps256 (v8sf,v8sf)
11822 v4df __builtin_ia32_addsubpd256 (v4df,v4df)
11823 v8sf __builtin_ia32_addsubps256 (v8sf,v8sf)
11824 v4df __builtin_ia32_andnpd256 (v4df,v4df)
11825 v8sf __builtin_ia32_andnps256 (v8sf,v8sf)
11826 v4df __builtin_ia32_andpd256 (v4df,v4df)
11827 v8sf __builtin_ia32_andps256 (v8sf,v8sf)
11828 v4df __builtin_ia32_blendpd256 (v4df,v4df,int)
11829 v8sf __builtin_ia32_blendps256 (v8sf,v8sf,int)
11830 v4df __builtin_ia32_blendvpd256 (v4df,v4df,v4df)
11831 v8sf __builtin_ia32_blendvps256 (v8sf,v8sf,v8sf)
11832 v2df __builtin_ia32_cmppd (v2df,v2df,int)
11833 v4df __builtin_ia32_cmppd256 (v4df,v4df,int)
11834 v4sf __builtin_ia32_cmpps (v4sf,v4sf,int)
11835 v8sf __builtin_ia32_cmpps256 (v8sf,v8sf,int)
11836 v2df __builtin_ia32_cmpsd (v2df,v2df,int)
11837 v4sf __builtin_ia32_cmpss (v4sf,v4sf,int)
11838 v4df __builtin_ia32_cvtdq2pd256 (v4si)
11839 v8sf __builtin_ia32_cvtdq2ps256 (v8si)
11840 v4si __builtin_ia32_cvtpd2dq256 (v4df)
11841 v4sf __builtin_ia32_cvtpd2ps256 (v4df)
11842 v8si __builtin_ia32_cvtps2dq256 (v8sf)
11843 v4df __builtin_ia32_cvtps2pd256 (v4sf)
11844 v4si __builtin_ia32_cvttpd2dq256 (v4df)
11845 v8si __builtin_ia32_cvttps2dq256 (v8sf)
11846 v4df __builtin_ia32_divpd256 (v4df,v4df)
11847 v8sf __builtin_ia32_divps256 (v8sf,v8sf)
11848 v8sf __builtin_ia32_dpps256 (v8sf,v8sf,int)
11849 v4df __builtin_ia32_haddpd256 (v4df,v4df)
11850 v8sf __builtin_ia32_haddps256 (v8sf,v8sf)
11851 v4df __builtin_ia32_hsubpd256 (v4df,v4df)
11852 v8sf __builtin_ia32_hsubps256 (v8sf,v8sf)
11853 v32qi __builtin_ia32_lddqu256 (pcchar)
11854 v32qi __builtin_ia32_loaddqu256 (pcchar)
11855 v4df __builtin_ia32_loadupd256 (pcdouble)
11856 v8sf __builtin_ia32_loadups256 (pcfloat)
11857 v2df __builtin_ia32_maskloadpd (pcv2df,v2df)
11858 v4df __builtin_ia32_maskloadpd256 (pcv4df,v4df)
11859 v4sf __builtin_ia32_maskloadps (pcv4sf,v4sf)
11860 v8sf __builtin_ia32_maskloadps256 (pcv8sf,v8sf)
11861 void __builtin_ia32_maskstorepd (pv2df,v2df,v2df)
11862 void __builtin_ia32_maskstorepd256 (pv4df,v4df,v4df)
11863 void __builtin_ia32_maskstoreps (pv4sf,v4sf,v4sf)
11864 void __builtin_ia32_maskstoreps256 (pv8sf,v8sf,v8sf)
11865 v4df __builtin_ia32_maxpd256 (v4df,v4df)
11866 v8sf __builtin_ia32_maxps256 (v8sf,v8sf)
11867 v4df __builtin_ia32_minpd256 (v4df,v4df)
11868 v8sf __builtin_ia32_minps256 (v8sf,v8sf)
11869 v4df __builtin_ia32_movddup256 (v4df)
11870 int __builtin_ia32_movmskpd256 (v4df)
11871 int __builtin_ia32_movmskps256 (v8sf)
11872 v8sf __builtin_ia32_movshdup256 (v8sf)
11873 v8sf __builtin_ia32_movsldup256 (v8sf)
11874 v4df __builtin_ia32_mulpd256 (v4df,v4df)
11875 v8sf __builtin_ia32_mulps256 (v8sf,v8sf)
11876 v4df __builtin_ia32_orpd256 (v4df,v4df)
11877 v8sf __builtin_ia32_orps256 (v8sf,v8sf)
11878 v2df __builtin_ia32_pd_pd256 (v4df)
11879 v4df __builtin_ia32_pd256_pd (v2df)
11880 v4sf __builtin_ia32_ps_ps256 (v8sf)
11881 v8sf __builtin_ia32_ps256_ps (v4sf)
11882 int __builtin_ia32_ptestc256 (v4di,v4di,ptest)
11883 int __builtin_ia32_ptestnzc256 (v4di,v4di,ptest)
11884 int __builtin_ia32_ptestz256 (v4di,v4di,ptest)
11885 v8sf __builtin_ia32_rcpps256 (v8sf)
11886 v4df __builtin_ia32_roundpd256 (v4df,int)
11887 v8sf __builtin_ia32_roundps256 (v8sf,int)
11888 v8sf __builtin_ia32_rsqrtps_nr256 (v8sf)
11889 v8sf __builtin_ia32_rsqrtps256 (v8sf)
11890 v4df __builtin_ia32_shufpd256 (v4df,v4df,int)
11891 v8sf __builtin_ia32_shufps256 (v8sf,v8sf,int)
11892 v4si __builtin_ia32_si_si256 (v8si)
11893 v8si __builtin_ia32_si256_si (v4si)
11894 v4df __builtin_ia32_sqrtpd256 (v4df)
11895 v8sf __builtin_ia32_sqrtps_nr256 (v8sf)
11896 v8sf __builtin_ia32_sqrtps256 (v8sf)
11897 void __builtin_ia32_storedqu256 (pchar,v32qi)
11898 void __builtin_ia32_storeupd256 (pdouble,v4df)
11899 void __builtin_ia32_storeups256 (pfloat,v8sf)
11900 v4df __builtin_ia32_subpd256 (v4df,v4df)
11901 v8sf __builtin_ia32_subps256 (v8sf,v8sf)
11902 v4df __builtin_ia32_unpckhpd256 (v4df,v4df)
11903 v8sf __builtin_ia32_unpckhps256 (v8sf,v8sf)
11904 v4df __builtin_ia32_unpcklpd256 (v4df,v4df)
11905 v8sf __builtin_ia32_unpcklps256 (v8sf,v8sf)
11906 v4df __builtin_ia32_vbroadcastf128_pd256 (pcv2df)
11907 v8sf __builtin_ia32_vbroadcastf128_ps256 (pcv4sf)
11908 v4df __builtin_ia32_vbroadcastsd256 (pcdouble)
11909 v4sf __builtin_ia32_vbroadcastss (pcfloat)
11910 v8sf __builtin_ia32_vbroadcastss256 (pcfloat)
11911 v2df __builtin_ia32_vextractf128_pd256 (v4df,int)
11912 v4sf __builtin_ia32_vextractf128_ps256 (v8sf,int)
11913 v4si __builtin_ia32_vextractf128_si256 (v8si,int)
11914 v4df __builtin_ia32_vinsertf128_pd256 (v4df,v2df,int)
11915 v8sf __builtin_ia32_vinsertf128_ps256 (v8sf,v4sf,int)
11916 v8si __builtin_ia32_vinsertf128_si256 (v8si,v4si,int)
11917 v4df __builtin_ia32_vperm2f128_pd256 (v4df,v4df,int)
11918 v8sf __builtin_ia32_vperm2f128_ps256 (v8sf,v8sf,int)
11919 v8si __builtin_ia32_vperm2f128_si256 (v8si,v8si,int)
11920 v2df __builtin_ia32_vpermil2pd (v2df,v2df,v2di,int)
11921 v4df __builtin_ia32_vpermil2pd256 (v4df,v4df,v4di,int)
11922 v4sf __builtin_ia32_vpermil2ps (v4sf,v4sf,v4si,int)
11923 v8sf __builtin_ia32_vpermil2ps256 (v8sf,v8sf,v8si,int)
11924 v2df __builtin_ia32_vpermilpd (v2df,int)
11925 v4df __builtin_ia32_vpermilpd256 (v4df,int)
11926 v4sf __builtin_ia32_vpermilps (v4sf,int)
11927 v8sf __builtin_ia32_vpermilps256 (v8sf,int)
11928 v2df __builtin_ia32_vpermilvarpd (v2df,v2di)
11929 v4df __builtin_ia32_vpermilvarpd256 (v4df,v4di)
11930 v4sf __builtin_ia32_vpermilvarps (v4sf,v4si)
11931 v8sf __builtin_ia32_vpermilvarps256 (v8sf,v8si)
11932 int __builtin_ia32_vtestcpd (v2df,v2df,ptest)
11933 int __builtin_ia32_vtestcpd256 (v4df,v4df,ptest)
11934 int __builtin_ia32_vtestcps (v4sf,v4sf,ptest)
11935 int __builtin_ia32_vtestcps256 (v8sf,v8sf,ptest)
11936 int __builtin_ia32_vtestnzcpd (v2df,v2df,ptest)
11937 int __builtin_ia32_vtestnzcpd256 (v4df,v4df,ptest)
11938 int __builtin_ia32_vtestnzcps (v4sf,v4sf,ptest)
11939 int __builtin_ia32_vtestnzcps256 (v8sf,v8sf,ptest)
11940 int __builtin_ia32_vtestzpd (v2df,v2df,ptest)
11941 int __builtin_ia32_vtestzpd256 (v4df,v4df,ptest)
11942 int __builtin_ia32_vtestzps (v4sf,v4sf,ptest)
11943 int __builtin_ia32_vtestzps256 (v8sf,v8sf,ptest)
11944 void __builtin_ia32_vzeroall (void)
11945 void __builtin_ia32_vzeroupper (void)
11946 v4df __builtin_ia32_xorpd256 (v4df,v4df)
11947 v8sf __builtin_ia32_xorps256 (v8sf,v8sf)
11948 @end smallexample
11949
11950 The following built-in functions are available when @option{-mavx2} is
11951 used. All of them generate the machine instruction that is part of the
11952 name.
11953
11954 @smallexample
11955 v32qi __builtin_ia32_mpsadbw256 (v32qi,v32qi,int)
11956 v32qi __builtin_ia32_pabsb256 (v32qi)
11957 v16hi __builtin_ia32_pabsw256 (v16hi)
11958 v8si __builtin_ia32_pabsd256 (v8si)
11959 v16hi __builtin_ia32_packssdw256 (v8si,v8si)
11960 v32qi __builtin_ia32_packsswb256 (v16hi,v16hi)
11961 v16hi __builtin_ia32_packusdw256 (v8si,v8si)
11962 v32qi __builtin_ia32_packuswb256 (v16hi,v16hi)
11963 v32qi __builtin_ia32_paddb256 (v32qi,v32qi)
11964 v16hi __builtin_ia32_paddw256 (v16hi,v16hi)
11965 v8si __builtin_ia32_paddd256 (v8si,v8si)
11966 v4di __builtin_ia32_paddq256 (v4di,v4di)
11967 v32qi __builtin_ia32_paddsb256 (v32qi,v32qi)
11968 v16hi __builtin_ia32_paddsw256 (v16hi,v16hi)
11969 v32qi __builtin_ia32_paddusb256 (v32qi,v32qi)
11970 v16hi __builtin_ia32_paddusw256 (v16hi,v16hi)
11971 v4di __builtin_ia32_palignr256 (v4di,v4di,int)
11972 v4di __builtin_ia32_andsi256 (v4di,v4di)
11973 v4di __builtin_ia32_andnotsi256 (v4di,v4di)
11974 v32qi __builtin_ia32_pavgb256 (v32qi,v32qi)
11975 v16hi __builtin_ia32_pavgw256 (v16hi,v16hi)
11976 v32qi __builtin_ia32_pblendvb256 (v32qi,v32qi,v32qi)
11977 v16hi __builtin_ia32_pblendw256 (v16hi,v16hi,int)
11978 v32qi __builtin_ia32_pcmpeqb256 (v32qi,v32qi)
11979 v16hi __builtin_ia32_pcmpeqw256 (v16hi,v16hi)
11980 v8si __builtin_ia32_pcmpeqd256 (c8si,v8si)
11981 v4di __builtin_ia32_pcmpeqq256 (v4di,v4di)
11982 v32qi __builtin_ia32_pcmpgtb256 (v32qi,v32qi)
11983 v16hi __builtin_ia32_pcmpgtw256 (16hi,v16hi)
11984 v8si __builtin_ia32_pcmpgtd256 (v8si,v8si)
11985 v4di __builtin_ia32_pcmpgtq256 (v4di,v4di)
11986 v16hi __builtin_ia32_phaddw256 (v16hi,v16hi)
11987 v8si __builtin_ia32_phaddd256 (v8si,v8si)
11988 v16hi __builtin_ia32_phaddsw256 (v16hi,v16hi)
11989 v16hi __builtin_ia32_phsubw256 (v16hi,v16hi)
11990 v8si __builtin_ia32_phsubd256 (v8si,v8si)
11991 v16hi __builtin_ia32_phsubsw256 (v16hi,v16hi)
11992 v32qi __builtin_ia32_pmaddubsw256 (v32qi,v32qi)
11993 v16hi __builtin_ia32_pmaddwd256 (v16hi,v16hi)
11994 v32qi __builtin_ia32_pmaxsb256 (v32qi,v32qi)
11995 v16hi __builtin_ia32_pmaxsw256 (v16hi,v16hi)
11996 v8si __builtin_ia32_pmaxsd256 (v8si,v8si)
11997 v32qi __builtin_ia32_pmaxub256 (v32qi,v32qi)
11998 v16hi __builtin_ia32_pmaxuw256 (v16hi,v16hi)
11999 v8si __builtin_ia32_pmaxud256 (v8si,v8si)
12000 v32qi __builtin_ia32_pminsb256 (v32qi,v32qi)
12001 v16hi __builtin_ia32_pminsw256 (v16hi,v16hi)
12002 v8si __builtin_ia32_pminsd256 (v8si,v8si)
12003 v32qi __builtin_ia32_pminub256 (v32qi,v32qi)
12004 v16hi __builtin_ia32_pminuw256 (v16hi,v16hi)
12005 v8si __builtin_ia32_pminud256 (v8si,v8si)
12006 int __builtin_ia32_pmovmskb256 (v32qi)
12007 v16hi __builtin_ia32_pmovsxbw256 (v16qi)
12008 v8si __builtin_ia32_pmovsxbd256 (v16qi)
12009 v4di __builtin_ia32_pmovsxbq256 (v16qi)
12010 v8si __builtin_ia32_pmovsxwd256 (v8hi)
12011 v4di __builtin_ia32_pmovsxwq256 (v8hi)
12012 v4di __builtin_ia32_pmovsxdq256 (v4si)
12013 v16hi __builtin_ia32_pmovzxbw256 (v16qi)
12014 v8si __builtin_ia32_pmovzxbd256 (v16qi)
12015 v4di __builtin_ia32_pmovzxbq256 (v16qi)
12016 v8si __builtin_ia32_pmovzxwd256 (v8hi)
12017 v4di __builtin_ia32_pmovzxwq256 (v8hi)
12018 v4di __builtin_ia32_pmovzxdq256 (v4si)
12019 v4di __builtin_ia32_pmuldq256 (v8si,v8si)
12020 v16hi __builtin_ia32_pmulhrsw256 (v16hi, v16hi)
12021 v16hi __builtin_ia32_pmulhuw256 (v16hi,v16hi)
12022 v16hi __builtin_ia32_pmulhw256 (v16hi,v16hi)
12023 v16hi __builtin_ia32_pmullw256 (v16hi,v16hi)
12024 v8si __builtin_ia32_pmulld256 (v8si,v8si)
12025 v4di __builtin_ia32_pmuludq256 (v8si,v8si)
12026 v4di __builtin_ia32_por256 (v4di,v4di)
12027 v16hi __builtin_ia32_psadbw256 (v32qi,v32qi)
12028 v32qi __builtin_ia32_pshufb256 (v32qi,v32qi)
12029 v8si __builtin_ia32_pshufd256 (v8si,int)
12030 v16hi __builtin_ia32_pshufhw256 (v16hi,int)
12031 v16hi __builtin_ia32_pshuflw256 (v16hi,int)
12032 v32qi __builtin_ia32_psignb256 (v32qi,v32qi)
12033 v16hi __builtin_ia32_psignw256 (v16hi,v16hi)
12034 v8si __builtin_ia32_psignd256 (v8si,v8si)
12035 v4di __builtin_ia32_pslldqi256 (v4di,int)
12036 v16hi __builtin_ia32_psllwi256 (16hi,int)
12037 v16hi __builtin_ia32_psllw256(v16hi,v8hi)
12038 v8si __builtin_ia32_pslldi256 (v8si,int)
12039 v8si __builtin_ia32_pslld256(v8si,v4si)
12040 v4di __builtin_ia32_psllqi256 (v4di,int)
12041 v4di __builtin_ia32_psllq256(v4di,v2di)
12042 v16hi __builtin_ia32_psrawi256 (v16hi,int)
12043 v16hi __builtin_ia32_psraw256 (v16hi,v8hi)
12044 v8si __builtin_ia32_psradi256 (v8si,int)
12045 v8si __builtin_ia32_psrad256 (v8si,v4si)
12046 v4di __builtin_ia32_psrldqi256 (v4di, int)
12047 v16hi __builtin_ia32_psrlwi256 (v16hi,int)
12048 v16hi __builtin_ia32_psrlw256 (v16hi,v8hi)
12049 v8si __builtin_ia32_psrldi256 (v8si,int)
12050 v8si __builtin_ia32_psrld256 (v8si,v4si)
12051 v4di __builtin_ia32_psrlqi256 (v4di,int)
12052 v4di __builtin_ia32_psrlq256(v4di,v2di)
12053 v32qi __builtin_ia32_psubb256 (v32qi,v32qi)
12054 v32hi __builtin_ia32_psubw256 (v16hi,v16hi)
12055 v8si __builtin_ia32_psubd256 (v8si,v8si)
12056 v4di __builtin_ia32_psubq256 (v4di,v4di)
12057 v32qi __builtin_ia32_psubsb256 (v32qi,v32qi)
12058 v16hi __builtin_ia32_psubsw256 (v16hi,v16hi)
12059 v32qi __builtin_ia32_psubusb256 (v32qi,v32qi)
12060 v16hi __builtin_ia32_psubusw256 (v16hi,v16hi)
12061 v32qi __builtin_ia32_punpckhbw256 (v32qi,v32qi)
12062 v16hi __builtin_ia32_punpckhwd256 (v16hi,v16hi)
12063 v8si __builtin_ia32_punpckhdq256 (v8si,v8si)
12064 v4di __builtin_ia32_punpckhqdq256 (v4di,v4di)
12065 v32qi __builtin_ia32_punpcklbw256 (v32qi,v32qi)
12066 v16hi __builtin_ia32_punpcklwd256 (v16hi,v16hi)
12067 v8si __builtin_ia32_punpckldq256 (v8si,v8si)
12068 v4di __builtin_ia32_punpcklqdq256 (v4di,v4di)
12069 v4di __builtin_ia32_pxor256 (v4di,v4di)
12070 v4di __builtin_ia32_movntdqa256 (pv4di)
12071 v4sf __builtin_ia32_vbroadcastss_ps (v4sf)
12072 v8sf __builtin_ia32_vbroadcastss_ps256 (v4sf)
12073 v4df __builtin_ia32_vbroadcastsd_pd256 (v2df)
12074 v4di __builtin_ia32_vbroadcastsi256 (v2di)
12075 v4si __builtin_ia32_pblendd128 (v4si,v4si)
12076 v8si __builtin_ia32_pblendd256 (v8si,v8si)
12077 v32qi __builtin_ia32_pbroadcastb256 (v16qi)
12078 v16hi __builtin_ia32_pbroadcastw256 (v8hi)
12079 v8si __builtin_ia32_pbroadcastd256 (v4si)
12080 v4di __builtin_ia32_pbroadcastq256 (v2di)
12081 v16qi __builtin_ia32_pbroadcastb128 (v16qi)
12082 v8hi __builtin_ia32_pbroadcastw128 (v8hi)
12083 v4si __builtin_ia32_pbroadcastd128 (v4si)
12084 v2di __builtin_ia32_pbroadcastq128 (v2di)
12085 v8si __builtin_ia32_permvarsi256 (v8si,v8si)
12086 v4df __builtin_ia32_permdf256 (v4df,int)
12087 v8sf __builtin_ia32_permvarsf256 (v8sf,v8sf)
12088 v4di __builtin_ia32_permdi256 (v4di,int)
12089 v4di __builtin_ia32_permti256 (v4di,v4di,int)
12090 v4di __builtin_ia32_extract128i256 (v4di,int)
12091 v4di __builtin_ia32_insert128i256 (v4di,v2di,int)
12092 v8si __builtin_ia32_maskloadd256 (pcv8si,v8si)
12093 v4di __builtin_ia32_maskloadq256 (pcv4di,v4di)
12094 v4si __builtin_ia32_maskloadd (pcv4si,v4si)
12095 v2di __builtin_ia32_maskloadq (pcv2di,v2di)
12096 void __builtin_ia32_maskstored256 (pv8si,v8si,v8si)
12097 void __builtin_ia32_maskstoreq256 (pv4di,v4di,v4di)
12098 void __builtin_ia32_maskstored (pv4si,v4si,v4si)
12099 void __builtin_ia32_maskstoreq (pv2di,v2di,v2di)
12100 v8si __builtin_ia32_psllv8si (v8si,v8si)
12101 v4si __builtin_ia32_psllv4si (v4si,v4si)
12102 v4di __builtin_ia32_psllv4di (v4di,v4di)
12103 v2di __builtin_ia32_psllv2di (v2di,v2di)
12104 v8si __builtin_ia32_psrav8si (v8si,v8si)
12105 v4si __builtin_ia32_psrav4si (v4si,v4si)
12106 v8si __builtin_ia32_psrlv8si (v8si,v8si)
12107 v4si __builtin_ia32_psrlv4si (v4si,v4si)
12108 v4di __builtin_ia32_psrlv4di (v4di,v4di)
12109 v2di __builtin_ia32_psrlv2di (v2di,v2di)
12110 v2df __builtin_ia32_gathersiv2df (v2df, pcdouble,v4si,v2df,int)
12111 v4df __builtin_ia32_gathersiv4df (v4df, pcdouble,v4si,v4df,int)
12112 v2df __builtin_ia32_gatherdiv2df (v2df, pcdouble,v2di,v2df,int)
12113 v4df __builtin_ia32_gatherdiv4df (v4df, pcdouble,v4di,v4df,int)
12114 v4sf __builtin_ia32_gathersiv4sf (v4sf, pcfloat,v4si,v4sf,int)
12115 v8sf __builtin_ia32_gathersiv8sf (v8sf, pcfloat,v8si,v8sf,int)
12116 v4sf __builtin_ia32_gatherdiv4sf (v4sf, pcfloat,v2di,v4sf,int)
12117 v4sf __builtin_ia32_gatherdiv4sf256 (v4sf, pcfloat,v4di,v4sf,int)
12118 v2di __builtin_ia32_gathersiv2di (v2di, pcint64,v4si,v2di,int)
12119 v4di __builtin_ia32_gathersiv4di (v4di, pcint64,v4si,v4di,int)
12120 v2di __builtin_ia32_gatherdiv2di (v2di, pcint64,v2di,v2di,int)
12121 v4di __builtin_ia32_gatherdiv4di (v4di, pcint64,v4di,v4di,int)
12122 v4si __builtin_ia32_gathersiv4si (v4si, pcint,v4si,v4si,int)
12123 v8si __builtin_ia32_gathersiv8si (v8si, pcint,v8si,v8si,int)
12124 v4si __builtin_ia32_gatherdiv4si (v4si, pcint,v2di,v4si,int)
12125 v4si __builtin_ia32_gatherdiv4si256 (v4si, pcint,v4di,v4si,int)
12126 @end smallexample
12127
12128 The following built-in functions are available when @option{-maes} is
12129 used. All of them generate the machine instruction that is part of the
12130 name.
12131
12132 @smallexample
12133 v2di __builtin_ia32_aesenc128 (v2di, v2di)
12134 v2di __builtin_ia32_aesenclast128 (v2di, v2di)
12135 v2di __builtin_ia32_aesdec128 (v2di, v2di)
12136 v2di __builtin_ia32_aesdeclast128 (v2di, v2di)
12137 v2di __builtin_ia32_aeskeygenassist128 (v2di, const int)
12138 v2di __builtin_ia32_aesimc128 (v2di)
12139 @end smallexample
12140
12141 The following built-in function is available when @option{-mpclmul} is
12142 used.
12143
12144 @table @code
12145 @item v2di __builtin_ia32_pclmulqdq128 (v2di, v2di, const int)
12146 Generates the @code{pclmulqdq} machine instruction.
12147 @end table
12148
12149 The following built-in function is available when @option{-mfsgsbase} is
12150 used. All of them generate the machine instruction that is part of the
12151 name.
12152
12153 @smallexample
12154 unsigned int __builtin_ia32_rdfsbase32 (void)
12155 unsigned long long __builtin_ia32_rdfsbase64 (void)
12156 unsigned int __builtin_ia32_rdgsbase32 (void)
12157 unsigned long long __builtin_ia32_rdgsbase64 (void)
12158 void _writefsbase_u32 (unsigned int)
12159 void _writefsbase_u64 (unsigned long long)
12160 void _writegsbase_u32 (unsigned int)
12161 void _writegsbase_u64 (unsigned long long)
12162 @end smallexample
12163
12164 The following built-in function is available when @option{-mrdrnd} is
12165 used. All of them generate the machine instruction that is part of the
12166 name.
12167
12168 @smallexample
12169 unsigned int __builtin_ia32_rdrand16_step (unsigned short *)
12170 unsigned int __builtin_ia32_rdrand32_step (unsigned int *)
12171 unsigned int __builtin_ia32_rdrand64_step (unsigned long long *)
12172 @end smallexample
12173
12174 The following built-in functions are available when @option{-msse4a} is used.
12175 All of them generate the machine instruction that is part of the name.
12176
12177 @smallexample
12178 void __builtin_ia32_movntsd (double *, v2df)
12179 void __builtin_ia32_movntss (float *, v4sf)
12180 v2di __builtin_ia32_extrq (v2di, v16qi)
12181 v2di __builtin_ia32_extrqi (v2di, const unsigned int, const unsigned int)
12182 v2di __builtin_ia32_insertq (v2di, v2di)
12183 v2di __builtin_ia32_insertqi (v2di, v2di, const unsigned int, const unsigned int)
12184 @end smallexample
12185
12186 The following built-in functions are available when @option{-mxop} is used.
12187 @smallexample
12188 v2df __builtin_ia32_vfrczpd (v2df)
12189 v4sf __builtin_ia32_vfrczps (v4sf)
12190 v2df __builtin_ia32_vfrczsd (v2df)
12191 v4sf __builtin_ia32_vfrczss (v4sf)
12192 v4df __builtin_ia32_vfrczpd256 (v4df)
12193 v8sf __builtin_ia32_vfrczps256 (v8sf)
12194 v2di __builtin_ia32_vpcmov (v2di, v2di, v2di)
12195 v2di __builtin_ia32_vpcmov_v2di (v2di, v2di, v2di)
12196 v4si __builtin_ia32_vpcmov_v4si (v4si, v4si, v4si)
12197 v8hi __builtin_ia32_vpcmov_v8hi (v8hi, v8hi, v8hi)
12198 v16qi __builtin_ia32_vpcmov_v16qi (v16qi, v16qi, v16qi)
12199 v2df __builtin_ia32_vpcmov_v2df (v2df, v2df, v2df)
12200 v4sf __builtin_ia32_vpcmov_v4sf (v4sf, v4sf, v4sf)
12201 v4di __builtin_ia32_vpcmov_v4di256 (v4di, v4di, v4di)
12202 v8si __builtin_ia32_vpcmov_v8si256 (v8si, v8si, v8si)
12203 v16hi __builtin_ia32_vpcmov_v16hi256 (v16hi, v16hi, v16hi)
12204 v32qi __builtin_ia32_vpcmov_v32qi256 (v32qi, v32qi, v32qi)
12205 v4df __builtin_ia32_vpcmov_v4df256 (v4df, v4df, v4df)
12206 v8sf __builtin_ia32_vpcmov_v8sf256 (v8sf, v8sf, v8sf)
12207 v16qi __builtin_ia32_vpcomeqb (v16qi, v16qi)
12208 v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
12209 v4si __builtin_ia32_vpcomeqd (v4si, v4si)
12210 v2di __builtin_ia32_vpcomeqq (v2di, v2di)
12211 v16qi __builtin_ia32_vpcomequb (v16qi, v16qi)
12212 v4si __builtin_ia32_vpcomequd (v4si, v4si)
12213 v2di __builtin_ia32_vpcomequq (v2di, v2di)
12214 v8hi __builtin_ia32_vpcomequw (v8hi, v8hi)
12215 v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
12216 v16qi __builtin_ia32_vpcomfalseb (v16qi, v16qi)
12217 v4si __builtin_ia32_vpcomfalsed (v4si, v4si)
12218 v2di __builtin_ia32_vpcomfalseq (v2di, v2di)
12219 v16qi __builtin_ia32_vpcomfalseub (v16qi, v16qi)
12220 v4si __builtin_ia32_vpcomfalseud (v4si, v4si)
12221 v2di __builtin_ia32_vpcomfalseuq (v2di, v2di)
12222 v8hi __builtin_ia32_vpcomfalseuw (v8hi, v8hi)
12223 v8hi __builtin_ia32_vpcomfalsew (v8hi, v8hi)
12224 v16qi __builtin_ia32_vpcomgeb (v16qi, v16qi)
12225 v4si __builtin_ia32_vpcomged (v4si, v4si)
12226 v2di __builtin_ia32_vpcomgeq (v2di, v2di)
12227 v16qi __builtin_ia32_vpcomgeub (v16qi, v16qi)
12228 v4si __builtin_ia32_vpcomgeud (v4si, v4si)
12229 v2di __builtin_ia32_vpcomgeuq (v2di, v2di)
12230 v8hi __builtin_ia32_vpcomgeuw (v8hi, v8hi)
12231 v8hi __builtin_ia32_vpcomgew (v8hi, v8hi)
12232 v16qi __builtin_ia32_vpcomgtb (v16qi, v16qi)
12233 v4si __builtin_ia32_vpcomgtd (v4si, v4si)
12234 v2di __builtin_ia32_vpcomgtq (v2di, v2di)
12235 v16qi __builtin_ia32_vpcomgtub (v16qi, v16qi)
12236 v4si __builtin_ia32_vpcomgtud (v4si, v4si)
12237 v2di __builtin_ia32_vpcomgtuq (v2di, v2di)
12238 v8hi __builtin_ia32_vpcomgtuw (v8hi, v8hi)
12239 v8hi __builtin_ia32_vpcomgtw (v8hi, v8hi)
12240 v16qi __builtin_ia32_vpcomleb (v16qi, v16qi)
12241 v4si __builtin_ia32_vpcomled (v4si, v4si)
12242 v2di __builtin_ia32_vpcomleq (v2di, v2di)
12243 v16qi __builtin_ia32_vpcomleub (v16qi, v16qi)
12244 v4si __builtin_ia32_vpcomleud (v4si, v4si)
12245 v2di __builtin_ia32_vpcomleuq (v2di, v2di)
12246 v8hi __builtin_ia32_vpcomleuw (v8hi, v8hi)
12247 v8hi __builtin_ia32_vpcomlew (v8hi, v8hi)
12248 v16qi __builtin_ia32_vpcomltb (v16qi, v16qi)
12249 v4si __builtin_ia32_vpcomltd (v4si, v4si)
12250 v2di __builtin_ia32_vpcomltq (v2di, v2di)
12251 v16qi __builtin_ia32_vpcomltub (v16qi, v16qi)
12252 v4si __builtin_ia32_vpcomltud (v4si, v4si)
12253 v2di __builtin_ia32_vpcomltuq (v2di, v2di)
12254 v8hi __builtin_ia32_vpcomltuw (v8hi, v8hi)
12255 v8hi __builtin_ia32_vpcomltw (v8hi, v8hi)
12256 v16qi __builtin_ia32_vpcomneb (v16qi, v16qi)
12257 v4si __builtin_ia32_vpcomned (v4si, v4si)
12258 v2di __builtin_ia32_vpcomneq (v2di, v2di)
12259 v16qi __builtin_ia32_vpcomneub (v16qi, v16qi)
12260 v4si __builtin_ia32_vpcomneud (v4si, v4si)
12261 v2di __builtin_ia32_vpcomneuq (v2di, v2di)
12262 v8hi __builtin_ia32_vpcomneuw (v8hi, v8hi)
12263 v8hi __builtin_ia32_vpcomnew (v8hi, v8hi)
12264 v16qi __builtin_ia32_vpcomtrueb (v16qi, v16qi)
12265 v4si __builtin_ia32_vpcomtrued (v4si, v4si)
12266 v2di __builtin_ia32_vpcomtrueq (v2di, v2di)
12267 v16qi __builtin_ia32_vpcomtrueub (v16qi, v16qi)
12268 v4si __builtin_ia32_vpcomtrueud (v4si, v4si)
12269 v2di __builtin_ia32_vpcomtrueuq (v2di, v2di)
12270 v8hi __builtin_ia32_vpcomtrueuw (v8hi, v8hi)
12271 v8hi __builtin_ia32_vpcomtruew (v8hi, v8hi)
12272 v4si __builtin_ia32_vphaddbd (v16qi)
12273 v2di __builtin_ia32_vphaddbq (v16qi)
12274 v8hi __builtin_ia32_vphaddbw (v16qi)
12275 v2di __builtin_ia32_vphadddq (v4si)
12276 v4si __builtin_ia32_vphaddubd (v16qi)
12277 v2di __builtin_ia32_vphaddubq (v16qi)
12278 v8hi __builtin_ia32_vphaddubw (v16qi)
12279 v2di __builtin_ia32_vphaddudq (v4si)
12280 v4si __builtin_ia32_vphadduwd (v8hi)
12281 v2di __builtin_ia32_vphadduwq (v8hi)
12282 v4si __builtin_ia32_vphaddwd (v8hi)
12283 v2di __builtin_ia32_vphaddwq (v8hi)
12284 v8hi __builtin_ia32_vphsubbw (v16qi)
12285 v2di __builtin_ia32_vphsubdq (v4si)
12286 v4si __builtin_ia32_vphsubwd (v8hi)
12287 v4si __builtin_ia32_vpmacsdd (v4si, v4si, v4si)
12288 v2di __builtin_ia32_vpmacsdqh (v4si, v4si, v2di)
12289 v2di __builtin_ia32_vpmacsdql (v4si, v4si, v2di)
12290 v4si __builtin_ia32_vpmacssdd (v4si, v4si, v4si)
12291 v2di __builtin_ia32_vpmacssdqh (v4si, v4si, v2di)
12292 v2di __builtin_ia32_vpmacssdql (v4si, v4si, v2di)
12293 v4si __builtin_ia32_vpmacsswd (v8hi, v8hi, v4si)
12294 v8hi __builtin_ia32_vpmacssww (v8hi, v8hi, v8hi)
12295 v4si __builtin_ia32_vpmacswd (v8hi, v8hi, v4si)
12296 v8hi __builtin_ia32_vpmacsww (v8hi, v8hi, v8hi)
12297 v4si __builtin_ia32_vpmadcsswd (v8hi, v8hi, v4si)
12298 v4si __builtin_ia32_vpmadcswd (v8hi, v8hi, v4si)
12299 v16qi __builtin_ia32_vpperm (v16qi, v16qi, v16qi)
12300 v16qi __builtin_ia32_vprotb (v16qi, v16qi)
12301 v4si __builtin_ia32_vprotd (v4si, v4si)
12302 v2di __builtin_ia32_vprotq (v2di, v2di)
12303 v8hi __builtin_ia32_vprotw (v8hi, v8hi)
12304 v16qi __builtin_ia32_vpshab (v16qi, v16qi)
12305 v4si __builtin_ia32_vpshad (v4si, v4si)
12306 v2di __builtin_ia32_vpshaq (v2di, v2di)
12307 v8hi __builtin_ia32_vpshaw (v8hi, v8hi)
12308 v16qi __builtin_ia32_vpshlb (v16qi, v16qi)
12309 v4si __builtin_ia32_vpshld (v4si, v4si)
12310 v2di __builtin_ia32_vpshlq (v2di, v2di)
12311 v8hi __builtin_ia32_vpshlw (v8hi, v8hi)
12312 @end smallexample
12313
12314 The following built-in functions are available when @option{-mfma4} is used.
12315 All of them generate the machine instruction that is part of the name.
12316
12317 @smallexample
12318 v2df __builtin_ia32_vfmaddpd (v2df, v2df, v2df)
12319 v4sf __builtin_ia32_vfmaddps (v4sf, v4sf, v4sf)
12320 v2df __builtin_ia32_vfmaddsd (v2df, v2df, v2df)
12321 v4sf __builtin_ia32_vfmaddss (v4sf, v4sf, v4sf)
12322 v2df __builtin_ia32_vfmsubpd (v2df, v2df, v2df)
12323 v4sf __builtin_ia32_vfmsubps (v4sf, v4sf, v4sf)
12324 v2df __builtin_ia32_vfmsubsd (v2df, v2df, v2df)
12325 v4sf __builtin_ia32_vfmsubss (v4sf, v4sf, v4sf)
12326 v2df __builtin_ia32_vfnmaddpd (v2df, v2df, v2df)
12327 v4sf __builtin_ia32_vfnmaddps (v4sf, v4sf, v4sf)
12328 v2df __builtin_ia32_vfnmaddsd (v2df, v2df, v2df)
12329 v4sf __builtin_ia32_vfnmaddss (v4sf, v4sf, v4sf)
12330 v2df __builtin_ia32_vfnmsubpd (v2df, v2df, v2df)
12331 v4sf __builtin_ia32_vfnmsubps (v4sf, v4sf, v4sf)
12332 v2df __builtin_ia32_vfnmsubsd (v2df, v2df, v2df)
12333 v4sf __builtin_ia32_vfnmsubss (v4sf, v4sf, v4sf)
12334 v2df __builtin_ia32_vfmaddsubpd (v2df, v2df, v2df)
12335 v4sf __builtin_ia32_vfmaddsubps (v4sf, v4sf, v4sf)
12336 v2df __builtin_ia32_vfmsubaddpd (v2df, v2df, v2df)
12337 v4sf __builtin_ia32_vfmsubaddps (v4sf, v4sf, v4sf)
12338 v4df __builtin_ia32_vfmaddpd256 (v4df, v4df, v4df)
12339 v8sf __builtin_ia32_vfmaddps256 (v8sf, v8sf, v8sf)
12340 v4df __builtin_ia32_vfmsubpd256 (v4df, v4df, v4df)
12341 v8sf __builtin_ia32_vfmsubps256 (v8sf, v8sf, v8sf)
12342 v4df __builtin_ia32_vfnmaddpd256 (v4df, v4df, v4df)
12343 v8sf __builtin_ia32_vfnmaddps256 (v8sf, v8sf, v8sf)
12344 v4df __builtin_ia32_vfnmsubpd256 (v4df, v4df, v4df)
12345 v8sf __builtin_ia32_vfnmsubps256 (v8sf, v8sf, v8sf)
12346 v4df __builtin_ia32_vfmaddsubpd256 (v4df, v4df, v4df)
12347 v8sf __builtin_ia32_vfmaddsubps256 (v8sf, v8sf, v8sf)
12348 v4df __builtin_ia32_vfmsubaddpd256 (v4df, v4df, v4df)
12349 v8sf __builtin_ia32_vfmsubaddps256 (v8sf, v8sf, v8sf)
12350
12351 @end smallexample
12352
12353 The following built-in functions are available when @option{-mlwp} is used.
12354
12355 @smallexample
12356 void __builtin_ia32_llwpcb16 (void *);
12357 void __builtin_ia32_llwpcb32 (void *);
12358 void __builtin_ia32_llwpcb64 (void *);
12359 void * __builtin_ia32_llwpcb16 (void);
12360 void * __builtin_ia32_llwpcb32 (void);
12361 void * __builtin_ia32_llwpcb64 (void);
12362 void __builtin_ia32_lwpval16 (unsigned short, unsigned int, unsigned short)
12363 void __builtin_ia32_lwpval32 (unsigned int, unsigned int, unsigned int)
12364 void __builtin_ia32_lwpval64 (unsigned __int64, unsigned int, unsigned int)
12365 unsigned char __builtin_ia32_lwpins16 (unsigned short, unsigned int, unsigned short)
12366 unsigned char __builtin_ia32_lwpins32 (unsigned int, unsigned int, unsigned int)
12367 unsigned char __builtin_ia32_lwpins64 (unsigned __int64, unsigned int, unsigned int)
12368 @end smallexample
12369
12370 The following built-in functions are available when @option{-mbmi} is used.
12371 All of them generate the machine instruction that is part of the name.
12372 @smallexample
12373 unsigned int __builtin_ia32_bextr_u32(unsigned int, unsigned int);
12374 unsigned long long __builtin_ia32_bextr_u64 (unsigned long long, unsigned long long);
12375 @end smallexample
12376
12377 The following built-in functions are available when @option{-mbmi2} is used.
12378 All of them generate the machine instruction that is part of the name.
12379 @smallexample
12380 unsigned int _bzhi_u32 (unsigned int, unsigned int)
12381 unsigned int _pdep_u32 (unsigned int, unsigned int)
12382 unsigned int _pext_u32 (unsigned int, unsigned int)
12383 unsigned long long _bzhi_u64 (unsigned long long, unsigned long long)
12384 unsigned long long _pdep_u64 (unsigned long long, unsigned long long)
12385 unsigned long long _pext_u64 (unsigned long long, unsigned long long)
12386 @end smallexample
12387
12388 The following built-in functions are available when @option{-mlzcnt} is used.
12389 All of them generate the machine instruction that is part of the name.
12390 @smallexample
12391 unsigned short __builtin_ia32_lzcnt_16(unsigned short);
12392 unsigned int __builtin_ia32_lzcnt_u32(unsigned int);
12393 unsigned long long __builtin_ia32_lzcnt_u64 (unsigned long long);
12394 @end smallexample
12395
12396 The following built-in functions are available when @option{-mfxsr} is used.
12397 All of them generate the machine instruction that is part of the name.
12398 @smallexample
12399 void __builtin_ia32_fxsave (void *)
12400 void __builtin_ia32_fxrstor (void *)
12401 void __builtin_ia32_fxsave64 (void *)
12402 void __builtin_ia32_fxrstor64 (void *)
12403 @end smallexample
12404
12405 The following built-in functions are available when @option{-mxsave} is used.
12406 All of them generate the machine instruction that is part of the name.
12407 @smallexample
12408 void __builtin_ia32_xsave (void *, long long)
12409 void __builtin_ia32_xrstor (void *, long long)
12410 void __builtin_ia32_xsave64 (void *, long long)
12411 void __builtin_ia32_xrstor64 (void *, long long)
12412 @end smallexample
12413
12414 The following built-in functions are available when @option{-mxsaveopt} is used.
12415 All of them generate the machine instruction that is part of the name.
12416 @smallexample
12417 void __builtin_ia32_xsaveopt (void *, long long)
12418 void __builtin_ia32_xsaveopt64 (void *, long long)
12419 @end smallexample
12420
12421 The following built-in functions are available when @option{-mtbm} is used.
12422 Both of them generate the immediate form of the bextr machine instruction.
12423 @smallexample
12424 unsigned int __builtin_ia32_bextri_u32 (unsigned int, const unsigned int);
12425 unsigned long long __builtin_ia32_bextri_u64 (unsigned long long, const unsigned long long);
12426 @end smallexample
12427
12428
12429 The following built-in functions are available when @option{-m3dnow} is used.
12430 All of them generate the machine instruction that is part of the name.
12431
12432 @smallexample
12433 void __builtin_ia32_femms (void)
12434 v8qi __builtin_ia32_pavgusb (v8qi, v8qi)
12435 v2si __builtin_ia32_pf2id (v2sf)
12436 v2sf __builtin_ia32_pfacc (v2sf, v2sf)
12437 v2sf __builtin_ia32_pfadd (v2sf, v2sf)
12438 v2si __builtin_ia32_pfcmpeq (v2sf, v2sf)
12439 v2si __builtin_ia32_pfcmpge (v2sf, v2sf)
12440 v2si __builtin_ia32_pfcmpgt (v2sf, v2sf)
12441 v2sf __builtin_ia32_pfmax (v2sf, v2sf)
12442 v2sf __builtin_ia32_pfmin (v2sf, v2sf)
12443 v2sf __builtin_ia32_pfmul (v2sf, v2sf)
12444 v2sf __builtin_ia32_pfrcp (v2sf)
12445 v2sf __builtin_ia32_pfrcpit1 (v2sf, v2sf)
12446 v2sf __builtin_ia32_pfrcpit2 (v2sf, v2sf)
12447 v2sf __builtin_ia32_pfrsqrt (v2sf)
12448 v2sf __builtin_ia32_pfsub (v2sf, v2sf)
12449 v2sf __builtin_ia32_pfsubr (v2sf, v2sf)
12450 v2sf __builtin_ia32_pi2fd (v2si)
12451 v4hi __builtin_ia32_pmulhrw (v4hi, v4hi)
12452 @end smallexample
12453
12454 The following built-in functions are available when both @option{-m3dnow}
12455 and @option{-march=athlon} are used. All of them generate the machine
12456 instruction that is part of the name.
12457
12458 @smallexample
12459 v2si __builtin_ia32_pf2iw (v2sf)
12460 v2sf __builtin_ia32_pfnacc (v2sf, v2sf)
12461 v2sf __builtin_ia32_pfpnacc (v2sf, v2sf)
12462 v2sf __builtin_ia32_pi2fw (v2si)
12463 v2sf __builtin_ia32_pswapdsf (v2sf)
12464 v2si __builtin_ia32_pswapdsi (v2si)
12465 @end smallexample
12466
12467 The following built-in functions are available when @option{-mrtm} is used
12468 They are used for restricted transactional memory. These are the internal
12469 low level functions. Normally the functions in
12470 @ref{X86 transactional memory intrinsics} should be used instead.
12471
12472 @smallexample
12473 int __builtin_ia32_xbegin ()
12474 void __builtin_ia32_xend ()
12475 void __builtin_ia32_xabort (status)
12476 int __builtin_ia32_xtest ()
12477 @end smallexample
12478
12479 @node X86 transactional memory intrinsics
12480 @subsection X86 transaction memory intrinsics
12481
12482 Hardware transactional memory intrinsics for i386. These allow to use
12483 memory transactions with RTM (Restricted Transactional Memory).
12484 For using HLE (Hardware Lock Elision) see @ref{x86 specific memory model extensions for transactional memory} instead.
12485 This support is enabled with the @option{-mrtm} option.
12486
12487 A memory transaction commits all changes to memory in an atomic way,
12488 as visible to other threads. If the transaction fails it is rolled back
12489 and all side effects discarded.
12490
12491 Generally there is no guarantee that a memory transaction ever succeeds
12492 and suitable fallback code always needs to be supplied.
12493
12494 @deftypefn {RTM Function} {unsigned} _xbegin ()
12495 Start a RTM (Restricted Transactional Memory) transaction.
12496 Returns _XBEGIN_STARTED when the transaction
12497 started successfully (note this is not 0, so the constant has to be
12498 explicitely tested). When the transaction aborts all side effects
12499 are undone and an abort code is returned. There is no guarantee
12500 any transaction ever succeeds, so there always needs to be a valid
12501 tested fallback path.
12502 @end deftypefn
12503
12504 @smallexample
12505 #include <immintrin.h>
12506
12507 if ((status = _xbegin ()) == _XBEGIN_STARTED) @{
12508 ... transaction code...
12509 _xend ();
12510 @} else @{
12511 ... non transactional fallback path...
12512 @}
12513 @end smallexample
12514
12515 Valid abort status bits (when the value is not @code{_XBEGIN_STARTED}) are:
12516
12517 @table @code
12518 @item _XABORT_EXPLICIT
12519 Transaction explicitely aborted with @code{_xabort}. The parameter passed
12520 to @code{_xabort} is available with @code{_XABORT_CODE(status)}
12521 @item _XABORT_RETRY
12522 Transaction retry is possible.
12523 @item _XABORT_CONFLICT
12524 Transaction abort due to a memory conflict with another thread
12525 @item _XABORT_CAPACITY
12526 Transaction abort due to the transaction using too much memory
12527 @item _XABORT_DEBUG
12528 Transaction abort due to a debug trap
12529 @item _XABORT_NESTED
12530 Transaction abort in a inner nested transaction
12531 @end table
12532
12533 @deftypefn {RTM Function} {void} _xend ()
12534 Commit the current transaction. When no transaction is active this will
12535 fault. All memory side effects of the transactions will become visible
12536 to other threads in an atomic matter.
12537 @end deftypefn
12538
12539 @deftypefn {RTM Function} {int} _xtest ()
12540 Return a value not zero when a transaction is currently active, otherwise 0.
12541 @end deftypefn
12542
12543 @deftypefn {RTM Function} {void} _xabort (status)
12544 Abort the current transaction. When no transaction is active this is a no-op.
12545 status must be a 8bit constant, that is included in the status code returned
12546 by @code{_xbegin}
12547 @end deftypefn
12548
12549 @node MIPS DSP Built-in Functions
12550 @subsection MIPS DSP Built-in Functions
12551
12552 The MIPS DSP Application-Specific Extension (ASE) includes new
12553 instructions that are designed to improve the performance of DSP and
12554 media applications. It provides instructions that operate on packed
12555 8-bit/16-bit integer data, Q7, Q15 and Q31 fractional data.
12556
12557 GCC supports MIPS DSP operations using both the generic
12558 vector extensions (@pxref{Vector Extensions}) and a collection of
12559 MIPS-specific built-in functions. Both kinds of support are
12560 enabled by the @option{-mdsp} command-line option.
12561
12562 Revision 2 of the ASE was introduced in the second half of 2006.
12563 This revision adds extra instructions to the original ASE, but is
12564 otherwise backwards-compatible with it. You can select revision 2
12565 using the command-line option @option{-mdspr2}; this option implies
12566 @option{-mdsp}.
12567
12568 The SCOUNT and POS bits of the DSP control register are global. The
12569 WRDSP, EXTPDP, EXTPDPV and MTHLIP instructions modify the SCOUNT and
12570 POS bits. During optimization, the compiler does not delete these
12571 instructions and it does not delete calls to functions containing
12572 these instructions.
12573
12574 At present, GCC only provides support for operations on 32-bit
12575 vectors. The vector type associated with 8-bit integer data is
12576 usually called @code{v4i8}, the vector type associated with Q7
12577 is usually called @code{v4q7}, the vector type associated with 16-bit
12578 integer data is usually called @code{v2i16}, and the vector type
12579 associated with Q15 is usually called @code{v2q15}. They can be
12580 defined in C as follows:
12581
12582 @smallexample
12583 typedef signed char v4i8 __attribute__ ((vector_size(4)));
12584 typedef signed char v4q7 __attribute__ ((vector_size(4)));
12585 typedef short v2i16 __attribute__ ((vector_size(4)));
12586 typedef short v2q15 __attribute__ ((vector_size(4)));
12587 @end smallexample
12588
12589 @code{v4i8}, @code{v4q7}, @code{v2i16} and @code{v2q15} values are
12590 initialized in the same way as aggregates. For example:
12591
12592 @smallexample
12593 v4i8 a = @{1, 2, 3, 4@};
12594 v4i8 b;
12595 b = (v4i8) @{5, 6, 7, 8@};
12596
12597 v2q15 c = @{0x0fcb, 0x3a75@};
12598 v2q15 d;
12599 d = (v2q15) @{0.1234 * 0x1.0p15, 0.4567 * 0x1.0p15@};
12600 @end smallexample
12601
12602 @emph{Note:} The CPU's endianness determines the order in which values
12603 are packed. On little-endian targets, the first value is the least
12604 significant and the last value is the most significant. The opposite
12605 order applies to big-endian targets. For example, the code above
12606 sets the lowest byte of @code{a} to @code{1} on little-endian targets
12607 and @code{4} on big-endian targets.
12608
12609 @emph{Note:} Q7, Q15 and Q31 values must be initialized with their integer
12610 representation. As shown in this example, the integer representation
12611 of a Q7 value can be obtained by multiplying the fractional value by
12612 @code{0x1.0p7}. The equivalent for Q15 values is to multiply by
12613 @code{0x1.0p15}. The equivalent for Q31 values is to multiply by
12614 @code{0x1.0p31}.
12615
12616 The table below lists the @code{v4i8} and @code{v2q15} operations for which
12617 hardware support exists. @code{a} and @code{b} are @code{v4i8} values,
12618 and @code{c} and @code{d} are @code{v2q15} values.
12619
12620 @multitable @columnfractions .50 .50
12621 @item C code @tab MIPS instruction
12622 @item @code{a + b} @tab @code{addu.qb}
12623 @item @code{c + d} @tab @code{addq.ph}
12624 @item @code{a - b} @tab @code{subu.qb}
12625 @item @code{c - d} @tab @code{subq.ph}
12626 @end multitable
12627
12628 The table below lists the @code{v2i16} operation for which
12629 hardware support exists for the DSP ASE REV 2. @code{e} and @code{f} are
12630 @code{v2i16} values.
12631
12632 @multitable @columnfractions .50 .50
12633 @item C code @tab MIPS instruction
12634 @item @code{e * f} @tab @code{mul.ph}
12635 @end multitable
12636
12637 It is easier to describe the DSP built-in functions if we first define
12638 the following types:
12639
12640 @smallexample
12641 typedef int q31;
12642 typedef int i32;
12643 typedef unsigned int ui32;
12644 typedef long long a64;
12645 @end smallexample
12646
12647 @code{q31} and @code{i32} are actually the same as @code{int}, but we
12648 use @code{q31} to indicate a Q31 fractional value and @code{i32} to
12649 indicate a 32-bit integer value. Similarly, @code{a64} is the same as
12650 @code{long long}, but we use @code{a64} to indicate values that are
12651 placed in one of the four DSP accumulators (@code{$ac0},
12652 @code{$ac1}, @code{$ac2} or @code{$ac3}).
12653
12654 Also, some built-in functions prefer or require immediate numbers as
12655 parameters, because the corresponding DSP instructions accept both immediate
12656 numbers and register operands, or accept immediate numbers only. The
12657 immediate parameters are listed as follows.
12658
12659 @smallexample
12660 imm0_3: 0 to 3.
12661 imm0_7: 0 to 7.
12662 imm0_15: 0 to 15.
12663 imm0_31: 0 to 31.
12664 imm0_63: 0 to 63.
12665 imm0_255: 0 to 255.
12666 imm_n32_31: -32 to 31.
12667 imm_n512_511: -512 to 511.
12668 @end smallexample
12669
12670 The following built-in functions map directly to a particular MIPS DSP
12671 instruction. Please refer to the architecture specification
12672 for details on what each instruction does.
12673
12674 @smallexample
12675 v2q15 __builtin_mips_addq_ph (v2q15, v2q15)
12676 v2q15 __builtin_mips_addq_s_ph (v2q15, v2q15)
12677 q31 __builtin_mips_addq_s_w (q31, q31)
12678 v4i8 __builtin_mips_addu_qb (v4i8, v4i8)
12679 v4i8 __builtin_mips_addu_s_qb (v4i8, v4i8)
12680 v2q15 __builtin_mips_subq_ph (v2q15, v2q15)
12681 v2q15 __builtin_mips_subq_s_ph (v2q15, v2q15)
12682 q31 __builtin_mips_subq_s_w (q31, q31)
12683 v4i8 __builtin_mips_subu_qb (v4i8, v4i8)
12684 v4i8 __builtin_mips_subu_s_qb (v4i8, v4i8)
12685 i32 __builtin_mips_addsc (i32, i32)
12686 i32 __builtin_mips_addwc (i32, i32)
12687 i32 __builtin_mips_modsub (i32, i32)
12688 i32 __builtin_mips_raddu_w_qb (v4i8)
12689 v2q15 __builtin_mips_absq_s_ph (v2q15)
12690 q31 __builtin_mips_absq_s_w (q31)
12691 v4i8 __builtin_mips_precrq_qb_ph (v2q15, v2q15)
12692 v2q15 __builtin_mips_precrq_ph_w (q31, q31)
12693 v2q15 __builtin_mips_precrq_rs_ph_w (q31, q31)
12694 v4i8 __builtin_mips_precrqu_s_qb_ph (v2q15, v2q15)
12695 q31 __builtin_mips_preceq_w_phl (v2q15)
12696 q31 __builtin_mips_preceq_w_phr (v2q15)
12697 v2q15 __builtin_mips_precequ_ph_qbl (v4i8)
12698 v2q15 __builtin_mips_precequ_ph_qbr (v4i8)
12699 v2q15 __builtin_mips_precequ_ph_qbla (v4i8)
12700 v2q15 __builtin_mips_precequ_ph_qbra (v4i8)
12701 v2q15 __builtin_mips_preceu_ph_qbl (v4i8)
12702 v2q15 __builtin_mips_preceu_ph_qbr (v4i8)
12703 v2q15 __builtin_mips_preceu_ph_qbla (v4i8)
12704 v2q15 __builtin_mips_preceu_ph_qbra (v4i8)
12705 v4i8 __builtin_mips_shll_qb (v4i8, imm0_7)
12706 v4i8 __builtin_mips_shll_qb (v4i8, i32)
12707 v2q15 __builtin_mips_shll_ph (v2q15, imm0_15)
12708 v2q15 __builtin_mips_shll_ph (v2q15, i32)
12709 v2q15 __builtin_mips_shll_s_ph (v2q15, imm0_15)
12710 v2q15 __builtin_mips_shll_s_ph (v2q15, i32)
12711 q31 __builtin_mips_shll_s_w (q31, imm0_31)
12712 q31 __builtin_mips_shll_s_w (q31, i32)
12713 v4i8 __builtin_mips_shrl_qb (v4i8, imm0_7)
12714 v4i8 __builtin_mips_shrl_qb (v4i8, i32)
12715 v2q15 __builtin_mips_shra_ph (v2q15, imm0_15)
12716 v2q15 __builtin_mips_shra_ph (v2q15, i32)
12717 v2q15 __builtin_mips_shra_r_ph (v2q15, imm0_15)
12718 v2q15 __builtin_mips_shra_r_ph (v2q15, i32)
12719 q31 __builtin_mips_shra_r_w (q31, imm0_31)
12720 q31 __builtin_mips_shra_r_w (q31, i32)
12721 v2q15 __builtin_mips_muleu_s_ph_qbl (v4i8, v2q15)
12722 v2q15 __builtin_mips_muleu_s_ph_qbr (v4i8, v2q15)
12723 v2q15 __builtin_mips_mulq_rs_ph (v2q15, v2q15)
12724 q31 __builtin_mips_muleq_s_w_phl (v2q15, v2q15)
12725 q31 __builtin_mips_muleq_s_w_phr (v2q15, v2q15)
12726 a64 __builtin_mips_dpau_h_qbl (a64, v4i8, v4i8)
12727 a64 __builtin_mips_dpau_h_qbr (a64, v4i8, v4i8)
12728 a64 __builtin_mips_dpsu_h_qbl (a64, v4i8, v4i8)
12729 a64 __builtin_mips_dpsu_h_qbr (a64, v4i8, v4i8)
12730 a64 __builtin_mips_dpaq_s_w_ph (a64, v2q15, v2q15)
12731 a64 __builtin_mips_dpaq_sa_l_w (a64, q31, q31)
12732 a64 __builtin_mips_dpsq_s_w_ph (a64, v2q15, v2q15)
12733 a64 __builtin_mips_dpsq_sa_l_w (a64, q31, q31)
12734 a64 __builtin_mips_mulsaq_s_w_ph (a64, v2q15, v2q15)
12735 a64 __builtin_mips_maq_s_w_phl (a64, v2q15, v2q15)
12736 a64 __builtin_mips_maq_s_w_phr (a64, v2q15, v2q15)
12737 a64 __builtin_mips_maq_sa_w_phl (a64, v2q15, v2q15)
12738 a64 __builtin_mips_maq_sa_w_phr (a64, v2q15, v2q15)
12739 i32 __builtin_mips_bitrev (i32)
12740 i32 __builtin_mips_insv (i32, i32)
12741 v4i8 __builtin_mips_repl_qb (imm0_255)
12742 v4i8 __builtin_mips_repl_qb (i32)
12743 v2q15 __builtin_mips_repl_ph (imm_n512_511)
12744 v2q15 __builtin_mips_repl_ph (i32)
12745 void __builtin_mips_cmpu_eq_qb (v4i8, v4i8)
12746 void __builtin_mips_cmpu_lt_qb (v4i8, v4i8)
12747 void __builtin_mips_cmpu_le_qb (v4i8, v4i8)
12748 i32 __builtin_mips_cmpgu_eq_qb (v4i8, v4i8)
12749 i32 __builtin_mips_cmpgu_lt_qb (v4i8, v4i8)
12750 i32 __builtin_mips_cmpgu_le_qb (v4i8, v4i8)
12751 void __builtin_mips_cmp_eq_ph (v2q15, v2q15)
12752 void __builtin_mips_cmp_lt_ph (v2q15, v2q15)
12753 void __builtin_mips_cmp_le_ph (v2q15, v2q15)
12754 v4i8 __builtin_mips_pick_qb (v4i8, v4i8)
12755 v2q15 __builtin_mips_pick_ph (v2q15, v2q15)
12756 v2q15 __builtin_mips_packrl_ph (v2q15, v2q15)
12757 i32 __builtin_mips_extr_w (a64, imm0_31)
12758 i32 __builtin_mips_extr_w (a64, i32)
12759 i32 __builtin_mips_extr_r_w (a64, imm0_31)
12760 i32 __builtin_mips_extr_s_h (a64, i32)
12761 i32 __builtin_mips_extr_rs_w (a64, imm0_31)
12762 i32 __builtin_mips_extr_rs_w (a64, i32)
12763 i32 __builtin_mips_extr_s_h (a64, imm0_31)
12764 i32 __builtin_mips_extr_r_w (a64, i32)
12765 i32 __builtin_mips_extp (a64, imm0_31)
12766 i32 __builtin_mips_extp (a64, i32)
12767 i32 __builtin_mips_extpdp (a64, imm0_31)
12768 i32 __builtin_mips_extpdp (a64, i32)
12769 a64 __builtin_mips_shilo (a64, imm_n32_31)
12770 a64 __builtin_mips_shilo (a64, i32)
12771 a64 __builtin_mips_mthlip (a64, i32)
12772 void __builtin_mips_wrdsp (i32, imm0_63)
12773 i32 __builtin_mips_rddsp (imm0_63)
12774 i32 __builtin_mips_lbux (void *, i32)
12775 i32 __builtin_mips_lhx (void *, i32)
12776 i32 __builtin_mips_lwx (void *, i32)
12777 a64 __builtin_mips_ldx (void *, i32) [MIPS64 only]
12778 i32 __builtin_mips_bposge32 (void)
12779 a64 __builtin_mips_madd (a64, i32, i32);
12780 a64 __builtin_mips_maddu (a64, ui32, ui32);
12781 a64 __builtin_mips_msub (a64, i32, i32);
12782 a64 __builtin_mips_msubu (a64, ui32, ui32);
12783 a64 __builtin_mips_mult (i32, i32);
12784 a64 __builtin_mips_multu (ui32, ui32);
12785 @end smallexample
12786
12787 The following built-in functions map directly to a particular MIPS DSP REV 2
12788 instruction. Please refer to the architecture specification
12789 for details on what each instruction does.
12790
12791 @smallexample
12792 v4q7 __builtin_mips_absq_s_qb (v4q7);
12793 v2i16 __builtin_mips_addu_ph (v2i16, v2i16);
12794 v2i16 __builtin_mips_addu_s_ph (v2i16, v2i16);
12795 v4i8 __builtin_mips_adduh_qb (v4i8, v4i8);
12796 v4i8 __builtin_mips_adduh_r_qb (v4i8, v4i8);
12797 i32 __builtin_mips_append (i32, i32, imm0_31);
12798 i32 __builtin_mips_balign (i32, i32, imm0_3);
12799 i32 __builtin_mips_cmpgdu_eq_qb (v4i8, v4i8);
12800 i32 __builtin_mips_cmpgdu_lt_qb (v4i8, v4i8);
12801 i32 __builtin_mips_cmpgdu_le_qb (v4i8, v4i8);
12802 a64 __builtin_mips_dpa_w_ph (a64, v2i16, v2i16);
12803 a64 __builtin_mips_dps_w_ph (a64, v2i16, v2i16);
12804 v2i16 __builtin_mips_mul_ph (v2i16, v2i16);
12805 v2i16 __builtin_mips_mul_s_ph (v2i16, v2i16);
12806 q31 __builtin_mips_mulq_rs_w (q31, q31);
12807 v2q15 __builtin_mips_mulq_s_ph (v2q15, v2q15);
12808 q31 __builtin_mips_mulq_s_w (q31, q31);
12809 a64 __builtin_mips_mulsa_w_ph (a64, v2i16, v2i16);
12810 v4i8 __builtin_mips_precr_qb_ph (v2i16, v2i16);
12811 v2i16 __builtin_mips_precr_sra_ph_w (i32, i32, imm0_31);
12812 v2i16 __builtin_mips_precr_sra_r_ph_w (i32, i32, imm0_31);
12813 i32 __builtin_mips_prepend (i32, i32, imm0_31);
12814 v4i8 __builtin_mips_shra_qb (v4i8, imm0_7);
12815 v4i8 __builtin_mips_shra_r_qb (v4i8, imm0_7);
12816 v4i8 __builtin_mips_shra_qb (v4i8, i32);
12817 v4i8 __builtin_mips_shra_r_qb (v4i8, i32);
12818 v2i16 __builtin_mips_shrl_ph (v2i16, imm0_15);
12819 v2i16 __builtin_mips_shrl_ph (v2i16, i32);
12820 v2i16 __builtin_mips_subu_ph (v2i16, v2i16);
12821 v2i16 __builtin_mips_subu_s_ph (v2i16, v2i16);
12822 v4i8 __builtin_mips_subuh_qb (v4i8, v4i8);
12823 v4i8 __builtin_mips_subuh_r_qb (v4i8, v4i8);
12824 v2q15 __builtin_mips_addqh_ph (v2q15, v2q15);
12825 v2q15 __builtin_mips_addqh_r_ph (v2q15, v2q15);
12826 q31 __builtin_mips_addqh_w (q31, q31);
12827 q31 __builtin_mips_addqh_r_w (q31, q31);
12828 v2q15 __builtin_mips_subqh_ph (v2q15, v2q15);
12829 v2q15 __builtin_mips_subqh_r_ph (v2q15, v2q15);
12830 q31 __builtin_mips_subqh_w (q31, q31);
12831 q31 __builtin_mips_subqh_r_w (q31, q31);
12832 a64 __builtin_mips_dpax_w_ph (a64, v2i16, v2i16);
12833 a64 __builtin_mips_dpsx_w_ph (a64, v2i16, v2i16);
12834 a64 __builtin_mips_dpaqx_s_w_ph (a64, v2q15, v2q15);
12835 a64 __builtin_mips_dpaqx_sa_w_ph (a64, v2q15, v2q15);
12836 a64 __builtin_mips_dpsqx_s_w_ph (a64, v2q15, v2q15);
12837 a64 __builtin_mips_dpsqx_sa_w_ph (a64, v2q15, v2q15);
12838 @end smallexample
12839
12840
12841 @node MIPS Paired-Single Support
12842 @subsection MIPS Paired-Single Support
12843
12844 The MIPS64 architecture includes a number of instructions that
12845 operate on pairs of single-precision floating-point values.
12846 Each pair is packed into a 64-bit floating-point register,
12847 with one element being designated the ``upper half'' and
12848 the other being designated the ``lower half''.
12849
12850 GCC supports paired-single operations using both the generic
12851 vector extensions (@pxref{Vector Extensions}) and a collection of
12852 MIPS-specific built-in functions. Both kinds of support are
12853 enabled by the @option{-mpaired-single} command-line option.
12854
12855 The vector type associated with paired-single values is usually
12856 called @code{v2sf}. It can be defined in C as follows:
12857
12858 @smallexample
12859 typedef float v2sf __attribute__ ((vector_size (8)));
12860 @end smallexample
12861
12862 @code{v2sf} values are initialized in the same way as aggregates.
12863 For example:
12864
12865 @smallexample
12866 v2sf a = @{1.5, 9.1@};
12867 v2sf b;
12868 float e, f;
12869 b = (v2sf) @{e, f@};
12870 @end smallexample
12871
12872 @emph{Note:} The CPU's endianness determines which value is stored in
12873 the upper half of a register and which value is stored in the lower half.
12874 On little-endian targets, the first value is the lower one and the second
12875 value is the upper one. The opposite order applies to big-endian targets.
12876 For example, the code above sets the lower half of @code{a} to
12877 @code{1.5} on little-endian targets and @code{9.1} on big-endian targets.
12878
12879 @node MIPS Loongson Built-in Functions
12880 @subsection MIPS Loongson Built-in Functions
12881
12882 GCC provides intrinsics to access the SIMD instructions provided by the
12883 ST Microelectronics Loongson-2E and -2F processors. These intrinsics,
12884 available after inclusion of the @code{loongson.h} header file,
12885 operate on the following 64-bit vector types:
12886
12887 @itemize
12888 @item @code{uint8x8_t}, a vector of eight unsigned 8-bit integers;
12889 @item @code{uint16x4_t}, a vector of four unsigned 16-bit integers;
12890 @item @code{uint32x2_t}, a vector of two unsigned 32-bit integers;
12891 @item @code{int8x8_t}, a vector of eight signed 8-bit integers;
12892 @item @code{int16x4_t}, a vector of four signed 16-bit integers;
12893 @item @code{int32x2_t}, a vector of two signed 32-bit integers.
12894 @end itemize
12895
12896 The intrinsics provided are listed below; each is named after the
12897 machine instruction to which it corresponds, with suffixes added as
12898 appropriate to distinguish intrinsics that expand to the same machine
12899 instruction yet have different argument types. Refer to the architecture
12900 documentation for a description of the functionality of each
12901 instruction.
12902
12903 @smallexample
12904 int16x4_t packsswh (int32x2_t s, int32x2_t t);
12905 int8x8_t packsshb (int16x4_t s, int16x4_t t);
12906 uint8x8_t packushb (uint16x4_t s, uint16x4_t t);
12907 uint32x2_t paddw_u (uint32x2_t s, uint32x2_t t);
12908 uint16x4_t paddh_u (uint16x4_t s, uint16x4_t t);
12909 uint8x8_t paddb_u (uint8x8_t s, uint8x8_t t);
12910 int32x2_t paddw_s (int32x2_t s, int32x2_t t);
12911 int16x4_t paddh_s (int16x4_t s, int16x4_t t);
12912 int8x8_t paddb_s (int8x8_t s, int8x8_t t);
12913 uint64_t paddd_u (uint64_t s, uint64_t t);
12914 int64_t paddd_s (int64_t s, int64_t t);
12915 int16x4_t paddsh (int16x4_t s, int16x4_t t);
12916 int8x8_t paddsb (int8x8_t s, int8x8_t t);
12917 uint16x4_t paddush (uint16x4_t s, uint16x4_t t);
12918 uint8x8_t paddusb (uint8x8_t s, uint8x8_t t);
12919 uint64_t pandn_ud (uint64_t s, uint64_t t);
12920 uint32x2_t pandn_uw (uint32x2_t s, uint32x2_t t);
12921 uint16x4_t pandn_uh (uint16x4_t s, uint16x4_t t);
12922 uint8x8_t pandn_ub (uint8x8_t s, uint8x8_t t);
12923 int64_t pandn_sd (int64_t s, int64_t t);
12924 int32x2_t pandn_sw (int32x2_t s, int32x2_t t);
12925 int16x4_t pandn_sh (int16x4_t s, int16x4_t t);
12926 int8x8_t pandn_sb (int8x8_t s, int8x8_t t);
12927 uint16x4_t pavgh (uint16x4_t s, uint16x4_t t);
12928 uint8x8_t pavgb (uint8x8_t s, uint8x8_t t);
12929 uint32x2_t pcmpeqw_u (uint32x2_t s, uint32x2_t t);
12930 uint16x4_t pcmpeqh_u (uint16x4_t s, uint16x4_t t);
12931 uint8x8_t pcmpeqb_u (uint8x8_t s, uint8x8_t t);
12932 int32x2_t pcmpeqw_s (int32x2_t s, int32x2_t t);
12933 int16x4_t pcmpeqh_s (int16x4_t s, int16x4_t t);
12934 int8x8_t pcmpeqb_s (int8x8_t s, int8x8_t t);
12935 uint32x2_t pcmpgtw_u (uint32x2_t s, uint32x2_t t);
12936 uint16x4_t pcmpgth_u (uint16x4_t s, uint16x4_t t);
12937 uint8x8_t pcmpgtb_u (uint8x8_t s, uint8x8_t t);
12938 int32x2_t pcmpgtw_s (int32x2_t s, int32x2_t t);
12939 int16x4_t pcmpgth_s (int16x4_t s, int16x4_t t);
12940 int8x8_t pcmpgtb_s (int8x8_t s, int8x8_t t);
12941 uint16x4_t pextrh_u (uint16x4_t s, int field);
12942 int16x4_t pextrh_s (int16x4_t s, int field);
12943 uint16x4_t pinsrh_0_u (uint16x4_t s, uint16x4_t t);
12944 uint16x4_t pinsrh_1_u (uint16x4_t s, uint16x4_t t);
12945 uint16x4_t pinsrh_2_u (uint16x4_t s, uint16x4_t t);
12946 uint16x4_t pinsrh_3_u (uint16x4_t s, uint16x4_t t);
12947 int16x4_t pinsrh_0_s (int16x4_t s, int16x4_t t);
12948 int16x4_t pinsrh_1_s (int16x4_t s, int16x4_t t);
12949 int16x4_t pinsrh_2_s (int16x4_t s, int16x4_t t);
12950 int16x4_t pinsrh_3_s (int16x4_t s, int16x4_t t);
12951 int32x2_t pmaddhw (int16x4_t s, int16x4_t t);
12952 int16x4_t pmaxsh (int16x4_t s, int16x4_t t);
12953 uint8x8_t pmaxub (uint8x8_t s, uint8x8_t t);
12954 int16x4_t pminsh (int16x4_t s, int16x4_t t);
12955 uint8x8_t pminub (uint8x8_t s, uint8x8_t t);
12956 uint8x8_t pmovmskb_u (uint8x8_t s);
12957 int8x8_t pmovmskb_s (int8x8_t s);
12958 uint16x4_t pmulhuh (uint16x4_t s, uint16x4_t t);
12959 int16x4_t pmulhh (int16x4_t s, int16x4_t t);
12960 int16x4_t pmullh (int16x4_t s, int16x4_t t);
12961 int64_t pmuluw (uint32x2_t s, uint32x2_t t);
12962 uint8x8_t pasubub (uint8x8_t s, uint8x8_t t);
12963 uint16x4_t biadd (uint8x8_t s);
12964 uint16x4_t psadbh (uint8x8_t s, uint8x8_t t);
12965 uint16x4_t pshufh_u (uint16x4_t dest, uint16x4_t s, uint8_t order);
12966 int16x4_t pshufh_s (int16x4_t dest, int16x4_t s, uint8_t order);
12967 uint16x4_t psllh_u (uint16x4_t s, uint8_t amount);
12968 int16x4_t psllh_s (int16x4_t s, uint8_t amount);
12969 uint32x2_t psllw_u (uint32x2_t s, uint8_t amount);
12970 int32x2_t psllw_s (int32x2_t s, uint8_t amount);
12971 uint16x4_t psrlh_u (uint16x4_t s, uint8_t amount);
12972 int16x4_t psrlh_s (int16x4_t s, uint8_t amount);
12973 uint32x2_t psrlw_u (uint32x2_t s, uint8_t amount);
12974 int32x2_t psrlw_s (int32x2_t s, uint8_t amount);
12975 uint16x4_t psrah_u (uint16x4_t s, uint8_t amount);
12976 int16x4_t psrah_s (int16x4_t s, uint8_t amount);
12977 uint32x2_t psraw_u (uint32x2_t s, uint8_t amount);
12978 int32x2_t psraw_s (int32x2_t s, uint8_t amount);
12979 uint32x2_t psubw_u (uint32x2_t s, uint32x2_t t);
12980 uint16x4_t psubh_u (uint16x4_t s, uint16x4_t t);
12981 uint8x8_t psubb_u (uint8x8_t s, uint8x8_t t);
12982 int32x2_t psubw_s (int32x2_t s, int32x2_t t);
12983 int16x4_t psubh_s (int16x4_t s, int16x4_t t);
12984 int8x8_t psubb_s (int8x8_t s, int8x8_t t);
12985 uint64_t psubd_u (uint64_t s, uint64_t t);
12986 int64_t psubd_s (int64_t s, int64_t t);
12987 int16x4_t psubsh (int16x4_t s, int16x4_t t);
12988 int8x8_t psubsb (int8x8_t s, int8x8_t t);
12989 uint16x4_t psubush (uint16x4_t s, uint16x4_t t);
12990 uint8x8_t psubusb (uint8x8_t s, uint8x8_t t);
12991 uint32x2_t punpckhwd_u (uint32x2_t s, uint32x2_t t);
12992 uint16x4_t punpckhhw_u (uint16x4_t s, uint16x4_t t);
12993 uint8x8_t punpckhbh_u (uint8x8_t s, uint8x8_t t);
12994 int32x2_t punpckhwd_s (int32x2_t s, int32x2_t t);
12995 int16x4_t punpckhhw_s (int16x4_t s, int16x4_t t);
12996 int8x8_t punpckhbh_s (int8x8_t s, int8x8_t t);
12997 uint32x2_t punpcklwd_u (uint32x2_t s, uint32x2_t t);
12998 uint16x4_t punpcklhw_u (uint16x4_t s, uint16x4_t t);
12999 uint8x8_t punpcklbh_u (uint8x8_t s, uint8x8_t t);
13000 int32x2_t punpcklwd_s (int32x2_t s, int32x2_t t);
13001 int16x4_t punpcklhw_s (int16x4_t s, int16x4_t t);
13002 int8x8_t punpcklbh_s (int8x8_t s, int8x8_t t);
13003 @end smallexample
13004
13005 @menu
13006 * Paired-Single Arithmetic::
13007 * Paired-Single Built-in Functions::
13008 * MIPS-3D Built-in Functions::
13009 @end menu
13010
13011 @node Paired-Single Arithmetic
13012 @subsubsection Paired-Single Arithmetic
13013
13014 The table below lists the @code{v2sf} operations for which hardware
13015 support exists. @code{a}, @code{b} and @code{c} are @code{v2sf}
13016 values and @code{x} is an integral value.
13017
13018 @multitable @columnfractions .50 .50
13019 @item C code @tab MIPS instruction
13020 @item @code{a + b} @tab @code{add.ps}
13021 @item @code{a - b} @tab @code{sub.ps}
13022 @item @code{-a} @tab @code{neg.ps}
13023 @item @code{a * b} @tab @code{mul.ps}
13024 @item @code{a * b + c} @tab @code{madd.ps}
13025 @item @code{a * b - c} @tab @code{msub.ps}
13026 @item @code{-(a * b + c)} @tab @code{nmadd.ps}
13027 @item @code{-(a * b - c)} @tab @code{nmsub.ps}
13028 @item @code{x ? a : b} @tab @code{movn.ps}/@code{movz.ps}
13029 @end multitable
13030
13031 Note that the multiply-accumulate instructions can be disabled
13032 using the command-line option @code{-mno-fused-madd}.
13033
13034 @node Paired-Single Built-in Functions
13035 @subsubsection Paired-Single Built-in Functions
13036
13037 The following paired-single functions map directly to a particular
13038 MIPS instruction. Please refer to the architecture specification
13039 for details on what each instruction does.
13040
13041 @table @code
13042 @item v2sf __builtin_mips_pll_ps (v2sf, v2sf)
13043 Pair lower lower (@code{pll.ps}).
13044
13045 @item v2sf __builtin_mips_pul_ps (v2sf, v2sf)
13046 Pair upper lower (@code{pul.ps}).
13047
13048 @item v2sf __builtin_mips_plu_ps (v2sf, v2sf)
13049 Pair lower upper (@code{plu.ps}).
13050
13051 @item v2sf __builtin_mips_puu_ps (v2sf, v2sf)
13052 Pair upper upper (@code{puu.ps}).
13053
13054 @item v2sf __builtin_mips_cvt_ps_s (float, float)
13055 Convert pair to paired single (@code{cvt.ps.s}).
13056
13057 @item float __builtin_mips_cvt_s_pl (v2sf)
13058 Convert pair lower to single (@code{cvt.s.pl}).
13059
13060 @item float __builtin_mips_cvt_s_pu (v2sf)
13061 Convert pair upper to single (@code{cvt.s.pu}).
13062
13063 @item v2sf __builtin_mips_abs_ps (v2sf)
13064 Absolute value (@code{abs.ps}).
13065
13066 @item v2sf __builtin_mips_alnv_ps (v2sf, v2sf, int)
13067 Align variable (@code{alnv.ps}).
13068
13069 @emph{Note:} The value of the third parameter must be 0 or 4
13070 modulo 8, otherwise the result is unpredictable. Please read the
13071 instruction description for details.
13072 @end table
13073
13074 The following multi-instruction functions are also available.
13075 In each case, @var{cond} can be any of the 16 floating-point conditions:
13076 @code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
13077 @code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq}, @code{ngl},
13078 @code{lt}, @code{nge}, @code{le} or @code{ngt}.
13079
13080 @table @code
13081 @item v2sf __builtin_mips_movt_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13082 @itemx v2sf __builtin_mips_movf_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13083 Conditional move based on floating-point comparison (@code{c.@var{cond}.ps},
13084 @code{movt.ps}/@code{movf.ps}).
13085
13086 The @code{movt} functions return the value @var{x} computed by:
13087
13088 @smallexample
13089 c.@var{cond}.ps @var{cc},@var{a},@var{b}
13090 mov.ps @var{x},@var{c}
13091 movt.ps @var{x},@var{d},@var{cc}
13092 @end smallexample
13093
13094 The @code{movf} functions are similar but use @code{movf.ps} instead
13095 of @code{movt.ps}.
13096
13097 @item int __builtin_mips_upper_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13098 @itemx int __builtin_mips_lower_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13099 Comparison of two paired-single values (@code{c.@var{cond}.ps},
13100 @code{bc1t}/@code{bc1f}).
13101
13102 These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
13103 and return either the upper or lower half of the result. For example:
13104
13105 @smallexample
13106 v2sf a, b;
13107 if (__builtin_mips_upper_c_eq_ps (a, b))
13108 upper_halves_are_equal ();
13109 else
13110 upper_halves_are_unequal ();
13111
13112 if (__builtin_mips_lower_c_eq_ps (a, b))
13113 lower_halves_are_equal ();
13114 else
13115 lower_halves_are_unequal ();
13116 @end smallexample
13117 @end table
13118
13119 @node MIPS-3D Built-in Functions
13120 @subsubsection MIPS-3D Built-in Functions
13121
13122 The MIPS-3D Application-Specific Extension (ASE) includes additional
13123 paired-single instructions that are designed to improve the performance
13124 of 3D graphics operations. Support for these instructions is controlled
13125 by the @option{-mips3d} command-line option.
13126
13127 The functions listed below map directly to a particular MIPS-3D
13128 instruction. Please refer to the architecture specification for
13129 more details on what each instruction does.
13130
13131 @table @code
13132 @item v2sf __builtin_mips_addr_ps (v2sf, v2sf)
13133 Reduction add (@code{addr.ps}).
13134
13135 @item v2sf __builtin_mips_mulr_ps (v2sf, v2sf)
13136 Reduction multiply (@code{mulr.ps}).
13137
13138 @item v2sf __builtin_mips_cvt_pw_ps (v2sf)
13139 Convert paired single to paired word (@code{cvt.pw.ps}).
13140
13141 @item v2sf __builtin_mips_cvt_ps_pw (v2sf)
13142 Convert paired word to paired single (@code{cvt.ps.pw}).
13143
13144 @item float __builtin_mips_recip1_s (float)
13145 @itemx double __builtin_mips_recip1_d (double)
13146 @itemx v2sf __builtin_mips_recip1_ps (v2sf)
13147 Reduced-precision reciprocal (sequence step 1) (@code{recip1.@var{fmt}}).
13148
13149 @item float __builtin_mips_recip2_s (float, float)
13150 @itemx double __builtin_mips_recip2_d (double, double)
13151 @itemx v2sf __builtin_mips_recip2_ps (v2sf, v2sf)
13152 Reduced-precision reciprocal (sequence step 2) (@code{recip2.@var{fmt}}).
13153
13154 @item float __builtin_mips_rsqrt1_s (float)
13155 @itemx double __builtin_mips_rsqrt1_d (double)
13156 @itemx v2sf __builtin_mips_rsqrt1_ps (v2sf)
13157 Reduced-precision reciprocal square root (sequence step 1)
13158 (@code{rsqrt1.@var{fmt}}).
13159
13160 @item float __builtin_mips_rsqrt2_s (float, float)
13161 @itemx double __builtin_mips_rsqrt2_d (double, double)
13162 @itemx v2sf __builtin_mips_rsqrt2_ps (v2sf, v2sf)
13163 Reduced-precision reciprocal square root (sequence step 2)
13164 (@code{rsqrt2.@var{fmt}}).
13165 @end table
13166
13167 The following multi-instruction functions are also available.
13168 In each case, @var{cond} can be any of the 16 floating-point conditions:
13169 @code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
13170 @code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq},
13171 @code{ngl}, @code{lt}, @code{nge}, @code{le} or @code{ngt}.
13172
13173 @table @code
13174 @item int __builtin_mips_cabs_@var{cond}_s (float @var{a}, float @var{b})
13175 @itemx int __builtin_mips_cabs_@var{cond}_d (double @var{a}, double @var{b})
13176 Absolute comparison of two scalar values (@code{cabs.@var{cond}.@var{fmt}},
13177 @code{bc1t}/@code{bc1f}).
13178
13179 These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.s}
13180 or @code{cabs.@var{cond}.d} and return the result as a boolean value.
13181 For example:
13182
13183 @smallexample
13184 float a, b;
13185 if (__builtin_mips_cabs_eq_s (a, b))
13186 true ();
13187 else
13188 false ();
13189 @end smallexample
13190
13191 @item int __builtin_mips_upper_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13192 @itemx int __builtin_mips_lower_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13193 Absolute comparison of two paired-single values (@code{cabs.@var{cond}.ps},
13194 @code{bc1t}/@code{bc1f}).
13195
13196 These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.ps}
13197 and return either the upper or lower half of the result. For example:
13198
13199 @smallexample
13200 v2sf a, b;
13201 if (__builtin_mips_upper_cabs_eq_ps (a, b))
13202 upper_halves_are_equal ();
13203 else
13204 upper_halves_are_unequal ();
13205
13206 if (__builtin_mips_lower_cabs_eq_ps (a, b))
13207 lower_halves_are_equal ();
13208 else
13209 lower_halves_are_unequal ();
13210 @end smallexample
13211
13212 @item v2sf __builtin_mips_movt_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13213 @itemx v2sf __builtin_mips_movf_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13214 Conditional move based on absolute comparison (@code{cabs.@var{cond}.ps},
13215 @code{movt.ps}/@code{movf.ps}).
13216
13217 The @code{movt} functions return the value @var{x} computed by:
13218
13219 @smallexample
13220 cabs.@var{cond}.ps @var{cc},@var{a},@var{b}
13221 mov.ps @var{x},@var{c}
13222 movt.ps @var{x},@var{d},@var{cc}
13223 @end smallexample
13224
13225 The @code{movf} functions are similar but use @code{movf.ps} instead
13226 of @code{movt.ps}.
13227
13228 @item int __builtin_mips_any_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13229 @itemx int __builtin_mips_all_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13230 @itemx int __builtin_mips_any_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13231 @itemx int __builtin_mips_all_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
13232 Comparison of two paired-single values
13233 (@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
13234 @code{bc1any2t}/@code{bc1any2f}).
13235
13236 These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
13237 or @code{cabs.@var{cond}.ps}. The @code{any} forms return true if either
13238 result is true and the @code{all} forms return true if both results are true.
13239 For example:
13240
13241 @smallexample
13242 v2sf a, b;
13243 if (__builtin_mips_any_c_eq_ps (a, b))
13244 one_is_true ();
13245 else
13246 both_are_false ();
13247
13248 if (__builtin_mips_all_c_eq_ps (a, b))
13249 both_are_true ();
13250 else
13251 one_is_false ();
13252 @end smallexample
13253
13254 @item int __builtin_mips_any_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13255 @itemx int __builtin_mips_all_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13256 @itemx int __builtin_mips_any_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13257 @itemx int __builtin_mips_all_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
13258 Comparison of four paired-single values
13259 (@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
13260 @code{bc1any4t}/@code{bc1any4f}).
13261
13262 These functions use @code{c.@var{cond}.ps} or @code{cabs.@var{cond}.ps}
13263 to compare @var{a} with @var{b} and to compare @var{c} with @var{d}.
13264 The @code{any} forms return true if any of the four results are true
13265 and the @code{all} forms return true if all four results are true.
13266 For example:
13267
13268 @smallexample
13269 v2sf a, b, c, d;
13270 if (__builtin_mips_any_c_eq_4s (a, b, c, d))
13271 some_are_true ();
13272 else
13273 all_are_false ();
13274
13275 if (__builtin_mips_all_c_eq_4s (a, b, c, d))
13276 all_are_true ();
13277 else
13278 some_are_false ();
13279 @end smallexample
13280 @end table
13281
13282 @node Other MIPS Built-in Functions
13283 @subsection Other MIPS Built-in Functions
13284
13285 GCC provides other MIPS-specific built-in functions:
13286
13287 @table @code
13288 @item void __builtin_mips_cache (int @var{op}, const volatile void *@var{addr})
13289 Insert a @samp{cache} instruction with operands @var{op} and @var{addr}.
13290 GCC defines the preprocessor macro @code{___GCC_HAVE_BUILTIN_MIPS_CACHE}
13291 when this function is available.
13292
13293 @item unsigned int __builtin_mips_get_fcsr (void)
13294 @itemx void __builtin_mips_set_fcsr (unsigned int @var{value})
13295 Get and set the contents of the floating-point control and status register
13296 (FPU control register 31). These functions are only available in hard-float
13297 code but can be called in both MIPS16 and non-MIPS16 contexts.
13298
13299 @code{__builtin_mips_set_fcsr} can be used to change any bit of the
13300 register except the condition codes, which GCC assumes are preserved.
13301 @end table
13302
13303 @node MSP430 Built-in Functions
13304 @subsection MSP430 Built-in Functions
13305
13306 GCC provides a couple of special builtin functions to aid in the
13307 writing of interrupt handlers in C.
13308
13309 @table @code
13310 @item __bic_SR_register_on_exit (int @var{mask})
13311 This clears the indicated bits in the saved copy of the status register
13312 currently residing on the stack. This only works inside interrupt
13313 handlers and the changes to the status register will only take affect
13314 once the handler returns.
13315
13316 @item __bis_SR_register_on_exit (int @var{mask})
13317 This sets the indicated bits in the saved copy of the status register
13318 currently residing on the stack. This only works inside interrupt
13319 handlers and the changes to the status register will only take affect
13320 once the handler returns.
13321
13322 @item __delay_cycles (long long @var{cycles})
13323 This inserts an instruction sequence that takes exactly @var{cycles}
13324 cycles (between 0 and about 17E9) to complete. The inserted sequence
13325 may use jumps, loops, or no-ops, and does not interfere with any other
13326 instructions. Note that @var{cycles} must be a compile-time constant
13327 integer - that is, you must pass a number, not a variable that may be
13328 optimized to a constant later. The number of cycles delayed by this
13329 builtin is exact.
13330 @end table
13331
13332 @node NDS32 Built-in Functions
13333 @subsection NDS32 Built-in Functions
13334
13335 These built-in functions are available for the NDS32 target:
13336
13337 @deftypefn {Built-in Function} void __builtin_nds32_isync (int *@var{addr})
13338 Insert an ISYNC instruction into the instruction stream where
13339 @var{addr} is an instruction address for serialization.
13340 @end deftypefn
13341
13342 @deftypefn {Built-in Function} void __builtin_nds32_isb (void)
13343 Insert an ISB instruction into the instruction stream.
13344 @end deftypefn
13345
13346 @deftypefn {Built-in Function} int __builtin_nds32_mfsr (int @var{sr})
13347 Return the content of a system register which is mapped by @var{sr}.
13348 @end deftypefn
13349
13350 @deftypefn {Built-in Function} int __builtin_nds32_mfusr (int @var{usr})
13351 Return the content of a user space register which is mapped by @var{usr}.
13352 @end deftypefn
13353
13354 @deftypefn {Built-in Function} void __builtin_nds32_mtsr (int @var{value}, int @var{sr})
13355 Move the @var{value} to a system register which is mapped by @var{sr}.
13356 @end deftypefn
13357
13358 @deftypefn {Built-in Function} void __builtin_nds32_mtusr (int @var{value}, int @var{usr})
13359 Move the @var{value} to a user space register which is mapped by @var{usr}.
13360 @end deftypefn
13361
13362 @deftypefn {Built-in Function} void __builtin_nds32_setgie_en (void)
13363 Enable global interrupt.
13364 @end deftypefn
13365
13366 @deftypefn {Built-in Function} void __builtin_nds32_setgie_dis (void)
13367 Disable global interrupt.
13368 @end deftypefn
13369
13370 @node picoChip Built-in Functions
13371 @subsection picoChip Built-in Functions
13372
13373 GCC provides an interface to selected machine instructions from the
13374 picoChip instruction set.
13375
13376 @table @code
13377 @item int __builtin_sbc (int @var{value})
13378 Sign bit count. Return the number of consecutive bits in @var{value}
13379 that have the same value as the sign bit. The result is the number of
13380 leading sign bits minus one, giving the number of redundant sign bits in
13381 @var{value}.
13382
13383 @item int __builtin_byteswap (int @var{value})
13384 Byte swap. Return the result of swapping the upper and lower bytes of
13385 @var{value}.
13386
13387 @item int __builtin_brev (int @var{value})
13388 Bit reversal. Return the result of reversing the bits in
13389 @var{value}. Bit 15 is swapped with bit 0, bit 14 is swapped with bit 1,
13390 and so on.
13391
13392 @item int __builtin_adds (int @var{x}, int @var{y})
13393 Saturating addition. Return the result of adding @var{x} and @var{y},
13394 storing the value 32767 if the result overflows.
13395
13396 @item int __builtin_subs (int @var{x}, int @var{y})
13397 Saturating subtraction. Return the result of subtracting @var{y} from
13398 @var{x}, storing the value @minus{}32768 if the result overflows.
13399
13400 @item void __builtin_halt (void)
13401 Halt. The processor stops execution. This built-in is useful for
13402 implementing assertions.
13403
13404 @end table
13405
13406 @node PowerPC Built-in Functions
13407 @subsection PowerPC Built-in Functions
13408
13409 These built-in functions are available for the PowerPC family of
13410 processors:
13411 @smallexample
13412 float __builtin_recipdivf (float, float);
13413 float __builtin_rsqrtf (float);
13414 double __builtin_recipdiv (double, double);
13415 double __builtin_rsqrt (double);
13416 uint64_t __builtin_ppc_get_timebase ();
13417 unsigned long __builtin_ppc_mftb ();
13418 double __builtin_unpack_longdouble (long double, int);
13419 long double __builtin_pack_longdouble (double, double);
13420 @end smallexample
13421
13422 The @code{vec_rsqrt}, @code{__builtin_rsqrt}, and
13423 @code{__builtin_rsqrtf} functions generate multiple instructions to
13424 implement the reciprocal sqrt functionality using reciprocal sqrt
13425 estimate instructions.
13426
13427 The @code{__builtin_recipdiv}, and @code{__builtin_recipdivf}
13428 functions generate multiple instructions to implement division using
13429 the reciprocal estimate instructions.
13430
13431 The @code{__builtin_ppc_get_timebase} and @code{__builtin_ppc_mftb}
13432 functions generate instructions to read the Time Base Register. The
13433 @code{__builtin_ppc_get_timebase} function may generate multiple
13434 instructions and always returns the 64 bits of the Time Base Register.
13435 The @code{__builtin_ppc_mftb} function always generates one instruction and
13436 returns the Time Base Register value as an unsigned long, throwing away
13437 the most significant word on 32-bit environments.
13438
13439 The following built-in functions are available for the PowerPC family
13440 of processors, starting with ISA 2.06 or later (@option{-mcpu=power7}
13441 or @option{-mpopcntd}):
13442 @smallexample
13443 long __builtin_bpermd (long, long);
13444 int __builtin_divwe (int, int);
13445 int __builtin_divweo (int, int);
13446 unsigned int __builtin_divweu (unsigned int, unsigned int);
13447 unsigned int __builtin_divweuo (unsigned int, unsigned int);
13448 long __builtin_divde (long, long);
13449 long __builtin_divdeo (long, long);
13450 unsigned long __builtin_divdeu (unsigned long, unsigned long);
13451 unsigned long __builtin_divdeuo (unsigned long, unsigned long);
13452 unsigned int cdtbcd (unsigned int);
13453 unsigned int cbcdtd (unsigned int);
13454 unsigned int addg6s (unsigned int, unsigned int);
13455 @end smallexample
13456
13457 The @code{__builtin_divde}, @code{__builtin_divdeo},
13458 @code{__builitin_divdeu}, @code{__builtin_divdeou} functions require a
13459 64-bit environment support ISA 2.06 or later.
13460
13461 The following built-in functions are available for the PowerPC family
13462 of processors when hardware decimal floating point
13463 (@option{-mhard-dfp}) is available:
13464 @smallexample
13465 _Decimal64 __builtin_dxex (_Decimal64);
13466 _Decimal128 __builtin_dxexq (_Decimal128);
13467 _Decimal64 __builtin_ddedpd (int, _Decimal64);
13468 _Decimal128 __builtin_ddedpdq (int, _Decimal128);
13469 _Decimal64 __builtin_denbcd (int, _Decimal64);
13470 _Decimal128 __builtin_denbcdq (int, _Decimal128);
13471 _Decimal64 __builtin_diex (_Decimal64, _Decimal64);
13472 _Decimal128 _builtin_diexq (_Decimal128, _Decimal128);
13473 _Decimal64 __builtin_dscli (_Decimal64, int);
13474 _Decimal128 __builitn_dscliq (_Decimal128, int);
13475 _Decimal64 __builtin_dscri (_Decimal64, int);
13476 _Decimal128 __builitn_dscriq (_Decimal128, int);
13477 unsigned long long __builtin_unpack_dec128 (_Decimal128, int);
13478 _Decimal128 __builtin_pack_dec128 (unsigned long long, unsigned long long);
13479 @end smallexample
13480
13481 The following built-in functions are available for the PowerPC family
13482 of processors when the Vector Scalar (vsx) instruction set is
13483 available:
13484 @smallexample
13485 unsigned long long __builtin_unpack_vector_int128 (vector __int128_t, int);
13486 vector __int128_t __builtin_pack_vector_int128 (unsigned long long,
13487 unsigned long long);
13488 @end smallexample
13489
13490 @node PowerPC AltiVec/VSX Built-in Functions
13491 @subsection PowerPC AltiVec Built-in Functions
13492
13493 GCC provides an interface for the PowerPC family of processors to access
13494 the AltiVec operations described in Motorola's AltiVec Programming
13495 Interface Manual. The interface is made available by including
13496 @code{<altivec.h>} and using @option{-maltivec} and
13497 @option{-mabi=altivec}. The interface supports the following vector
13498 types.
13499
13500 @smallexample
13501 vector unsigned char
13502 vector signed char
13503 vector bool char
13504
13505 vector unsigned short
13506 vector signed short
13507 vector bool short
13508 vector pixel
13509
13510 vector unsigned int
13511 vector signed int
13512 vector bool int
13513 vector float
13514 @end smallexample
13515
13516 If @option{-mvsx} is used the following additional vector types are
13517 implemented.
13518
13519 @smallexample
13520 vector unsigned long
13521 vector signed long
13522 vector double
13523 @end smallexample
13524
13525 The long types are only implemented for 64-bit code generation, and
13526 the long type is only used in the floating point/integer conversion
13527 instructions.
13528
13529 GCC's implementation of the high-level language interface available from
13530 C and C++ code differs from Motorola's documentation in several ways.
13531
13532 @itemize @bullet
13533
13534 @item
13535 A vector constant is a list of constant expressions within curly braces.
13536
13537 @item
13538 A vector initializer requires no cast if the vector constant is of the
13539 same type as the variable it is initializing.
13540
13541 @item
13542 If @code{signed} or @code{unsigned} is omitted, the signedness of the
13543 vector type is the default signedness of the base type. The default
13544 varies depending on the operating system, so a portable program should
13545 always specify the signedness.
13546
13547 @item
13548 Compiling with @option{-maltivec} adds keywords @code{__vector},
13549 @code{vector}, @code{__pixel}, @code{pixel}, @code{__bool} and
13550 @code{bool}. When compiling ISO C, the context-sensitive substitution
13551 of the keywords @code{vector}, @code{pixel} and @code{bool} is
13552 disabled. To use them, you must include @code{<altivec.h>} instead.
13553
13554 @item
13555 GCC allows using a @code{typedef} name as the type specifier for a
13556 vector type.
13557
13558 @item
13559 For C, overloaded functions are implemented with macros so the following
13560 does not work:
13561
13562 @smallexample
13563 vec_add ((vector signed int)@{1, 2, 3, 4@}, foo);
13564 @end smallexample
13565
13566 @noindent
13567 Since @code{vec_add} is a macro, the vector constant in the example
13568 is treated as four separate arguments. Wrap the entire argument in
13569 parentheses for this to work.
13570 @end itemize
13571
13572 @emph{Note:} Only the @code{<altivec.h>} interface is supported.
13573 Internally, GCC uses built-in functions to achieve the functionality in
13574 the aforementioned header file, but they are not supported and are
13575 subject to change without notice.
13576
13577 The following interfaces are supported for the generic and specific
13578 AltiVec operations and the AltiVec predicates. In cases where there
13579 is a direct mapping between generic and specific operations, only the
13580 generic names are shown here, although the specific operations can also
13581 be used.
13582
13583 Arguments that are documented as @code{const int} require literal
13584 integral values within the range required for that operation.
13585
13586 @smallexample
13587 vector signed char vec_abs (vector signed char);
13588 vector signed short vec_abs (vector signed short);
13589 vector signed int vec_abs (vector signed int);
13590 vector float vec_abs (vector float);
13591
13592 vector signed char vec_abss (vector signed char);
13593 vector signed short vec_abss (vector signed short);
13594 vector signed int vec_abss (vector signed int);
13595
13596 vector signed char vec_add (vector bool char, vector signed char);
13597 vector signed char vec_add (vector signed char, vector bool char);
13598 vector signed char vec_add (vector signed char, vector signed char);
13599 vector unsigned char vec_add (vector bool char, vector unsigned char);
13600 vector unsigned char vec_add (vector unsigned char, vector bool char);
13601 vector unsigned char vec_add (vector unsigned char,
13602 vector unsigned char);
13603 vector signed short vec_add (vector bool short, vector signed short);
13604 vector signed short vec_add (vector signed short, vector bool short);
13605 vector signed short vec_add (vector signed short, vector signed short);
13606 vector unsigned short vec_add (vector bool short,
13607 vector unsigned short);
13608 vector unsigned short vec_add (vector unsigned short,
13609 vector bool short);
13610 vector unsigned short vec_add (vector unsigned short,
13611 vector unsigned short);
13612 vector signed int vec_add (vector bool int, vector signed int);
13613 vector signed int vec_add (vector signed int, vector bool int);
13614 vector signed int vec_add (vector signed int, vector signed int);
13615 vector unsigned int vec_add (vector bool int, vector unsigned int);
13616 vector unsigned int vec_add (vector unsigned int, vector bool int);
13617 vector unsigned int vec_add (vector unsigned int, vector unsigned int);
13618 vector float vec_add (vector float, vector float);
13619
13620 vector float vec_vaddfp (vector float, vector float);
13621
13622 vector signed int vec_vadduwm (vector bool int, vector signed int);
13623 vector signed int vec_vadduwm (vector signed int, vector bool int);
13624 vector signed int vec_vadduwm (vector signed int, vector signed int);
13625 vector unsigned int vec_vadduwm (vector bool int, vector unsigned int);
13626 vector unsigned int vec_vadduwm (vector unsigned int, vector bool int);
13627 vector unsigned int vec_vadduwm (vector unsigned int,
13628 vector unsigned int);
13629
13630 vector signed short vec_vadduhm (vector bool short,
13631 vector signed short);
13632 vector signed short vec_vadduhm (vector signed short,
13633 vector bool short);
13634 vector signed short vec_vadduhm (vector signed short,
13635 vector signed short);
13636 vector unsigned short vec_vadduhm (vector bool short,
13637 vector unsigned short);
13638 vector unsigned short vec_vadduhm (vector unsigned short,
13639 vector bool short);
13640 vector unsigned short vec_vadduhm (vector unsigned short,
13641 vector unsigned short);
13642
13643 vector signed char vec_vaddubm (vector bool char, vector signed char);
13644 vector signed char vec_vaddubm (vector signed char, vector bool char);
13645 vector signed char vec_vaddubm (vector signed char, vector signed char);
13646 vector unsigned char vec_vaddubm (vector bool char,
13647 vector unsigned char);
13648 vector unsigned char vec_vaddubm (vector unsigned char,
13649 vector bool char);
13650 vector unsigned char vec_vaddubm (vector unsigned char,
13651 vector unsigned char);
13652
13653 vector unsigned int vec_addc (vector unsigned int, vector unsigned int);
13654
13655 vector unsigned char vec_adds (vector bool char, vector unsigned char);
13656 vector unsigned char vec_adds (vector unsigned char, vector bool char);
13657 vector unsigned char vec_adds (vector unsigned char,
13658 vector unsigned char);
13659 vector signed char vec_adds (vector bool char, vector signed char);
13660 vector signed char vec_adds (vector signed char, vector bool char);
13661 vector signed char vec_adds (vector signed char, vector signed char);
13662 vector unsigned short vec_adds (vector bool short,
13663 vector unsigned short);
13664 vector unsigned short vec_adds (vector unsigned short,
13665 vector bool short);
13666 vector unsigned short vec_adds (vector unsigned short,
13667 vector unsigned short);
13668 vector signed short vec_adds (vector bool short, vector signed short);
13669 vector signed short vec_adds (vector signed short, vector bool short);
13670 vector signed short vec_adds (vector signed short, vector signed short);
13671 vector unsigned int vec_adds (vector bool int, vector unsigned int);
13672 vector unsigned int vec_adds (vector unsigned int, vector bool int);
13673 vector unsigned int vec_adds (vector unsigned int, vector unsigned int);
13674 vector signed int vec_adds (vector bool int, vector signed int);
13675 vector signed int vec_adds (vector signed int, vector bool int);
13676 vector signed int vec_adds (vector signed int, vector signed int);
13677
13678 vector signed int vec_vaddsws (vector bool int, vector signed int);
13679 vector signed int vec_vaddsws (vector signed int, vector bool int);
13680 vector signed int vec_vaddsws (vector signed int, vector signed int);
13681
13682 vector unsigned int vec_vadduws (vector bool int, vector unsigned int);
13683 vector unsigned int vec_vadduws (vector unsigned int, vector bool int);
13684 vector unsigned int vec_vadduws (vector unsigned int,
13685 vector unsigned int);
13686
13687 vector signed short vec_vaddshs (vector bool short,
13688 vector signed short);
13689 vector signed short vec_vaddshs (vector signed short,
13690 vector bool short);
13691 vector signed short vec_vaddshs (vector signed short,
13692 vector signed short);
13693
13694 vector unsigned short vec_vadduhs (vector bool short,
13695 vector unsigned short);
13696 vector unsigned short vec_vadduhs (vector unsigned short,
13697 vector bool short);
13698 vector unsigned short vec_vadduhs (vector unsigned short,
13699 vector unsigned short);
13700
13701 vector signed char vec_vaddsbs (vector bool char, vector signed char);
13702 vector signed char vec_vaddsbs (vector signed char, vector bool char);
13703 vector signed char vec_vaddsbs (vector signed char, vector signed char);
13704
13705 vector unsigned char vec_vaddubs (vector bool char,
13706 vector unsigned char);
13707 vector unsigned char vec_vaddubs (vector unsigned char,
13708 vector bool char);
13709 vector unsigned char vec_vaddubs (vector unsigned char,
13710 vector unsigned char);
13711
13712 vector float vec_and (vector float, vector float);
13713 vector float vec_and (vector float, vector bool int);
13714 vector float vec_and (vector bool int, vector float);
13715 vector bool int vec_and (vector bool int, vector bool int);
13716 vector signed int vec_and (vector bool int, vector signed int);
13717 vector signed int vec_and (vector signed int, vector bool int);
13718 vector signed int vec_and (vector signed int, vector signed int);
13719 vector unsigned int vec_and (vector bool int, vector unsigned int);
13720 vector unsigned int vec_and (vector unsigned int, vector bool int);
13721 vector unsigned int vec_and (vector unsigned int, vector unsigned int);
13722 vector bool short vec_and (vector bool short, vector bool short);
13723 vector signed short vec_and (vector bool short, vector signed short);
13724 vector signed short vec_and (vector signed short, vector bool short);
13725 vector signed short vec_and (vector signed short, vector signed short);
13726 vector unsigned short vec_and (vector bool short,
13727 vector unsigned short);
13728 vector unsigned short vec_and (vector unsigned short,
13729 vector bool short);
13730 vector unsigned short vec_and (vector unsigned short,
13731 vector unsigned short);
13732 vector signed char vec_and (vector bool char, vector signed char);
13733 vector bool char vec_and (vector bool char, vector bool char);
13734 vector signed char vec_and (vector signed char, vector bool char);
13735 vector signed char vec_and (vector signed char, vector signed char);
13736 vector unsigned char vec_and (vector bool char, vector unsigned char);
13737 vector unsigned char vec_and (vector unsigned char, vector bool char);
13738 vector unsigned char vec_and (vector unsigned char,
13739 vector unsigned char);
13740
13741 vector float vec_andc (vector float, vector float);
13742 vector float vec_andc (vector float, vector bool int);
13743 vector float vec_andc (vector bool int, vector float);
13744 vector bool int vec_andc (vector bool int, vector bool int);
13745 vector signed int vec_andc (vector bool int, vector signed int);
13746 vector signed int vec_andc (vector signed int, vector bool int);
13747 vector signed int vec_andc (vector signed int, vector signed int);
13748 vector unsigned int vec_andc (vector bool int, vector unsigned int);
13749 vector unsigned int vec_andc (vector unsigned int, vector bool int);
13750 vector unsigned int vec_andc (vector unsigned int, vector unsigned int);
13751 vector bool short vec_andc (vector bool short, vector bool short);
13752 vector signed short vec_andc (vector bool short, vector signed short);
13753 vector signed short vec_andc (vector signed short, vector bool short);
13754 vector signed short vec_andc (vector signed short, vector signed short);
13755 vector unsigned short vec_andc (vector bool short,
13756 vector unsigned short);
13757 vector unsigned short vec_andc (vector unsigned short,
13758 vector bool short);
13759 vector unsigned short vec_andc (vector unsigned short,
13760 vector unsigned short);
13761 vector signed char vec_andc (vector bool char, vector signed char);
13762 vector bool char vec_andc (vector bool char, vector bool char);
13763 vector signed char vec_andc (vector signed char, vector bool char);
13764 vector signed char vec_andc (vector signed char, vector signed char);
13765 vector unsigned char vec_andc (vector bool char, vector unsigned char);
13766 vector unsigned char vec_andc (vector unsigned char, vector bool char);
13767 vector unsigned char vec_andc (vector unsigned char,
13768 vector unsigned char);
13769
13770 vector unsigned char vec_avg (vector unsigned char,
13771 vector unsigned char);
13772 vector signed char vec_avg (vector signed char, vector signed char);
13773 vector unsigned short vec_avg (vector unsigned short,
13774 vector unsigned short);
13775 vector signed short vec_avg (vector signed short, vector signed short);
13776 vector unsigned int vec_avg (vector unsigned int, vector unsigned int);
13777 vector signed int vec_avg (vector signed int, vector signed int);
13778
13779 vector signed int vec_vavgsw (vector signed int, vector signed int);
13780
13781 vector unsigned int vec_vavguw (vector unsigned int,
13782 vector unsigned int);
13783
13784 vector signed short vec_vavgsh (vector signed short,
13785 vector signed short);
13786
13787 vector unsigned short vec_vavguh (vector unsigned short,
13788 vector unsigned short);
13789
13790 vector signed char vec_vavgsb (vector signed char, vector signed char);
13791
13792 vector unsigned char vec_vavgub (vector unsigned char,
13793 vector unsigned char);
13794
13795 vector float vec_copysign (vector float);
13796
13797 vector float vec_ceil (vector float);
13798
13799 vector signed int vec_cmpb (vector float, vector float);
13800
13801 vector bool char vec_cmpeq (vector signed char, vector signed char);
13802 vector bool char vec_cmpeq (vector unsigned char, vector unsigned char);
13803 vector bool short vec_cmpeq (vector signed short, vector signed short);
13804 vector bool short vec_cmpeq (vector unsigned short,
13805 vector unsigned short);
13806 vector bool int vec_cmpeq (vector signed int, vector signed int);
13807 vector bool int vec_cmpeq (vector unsigned int, vector unsigned int);
13808 vector bool int vec_cmpeq (vector float, vector float);
13809
13810 vector bool int vec_vcmpeqfp (vector float, vector float);
13811
13812 vector bool int vec_vcmpequw (vector signed int, vector signed int);
13813 vector bool int vec_vcmpequw (vector unsigned int, vector unsigned int);
13814
13815 vector bool short vec_vcmpequh (vector signed short,
13816 vector signed short);
13817 vector bool short vec_vcmpequh (vector unsigned short,
13818 vector unsigned short);
13819
13820 vector bool char vec_vcmpequb (vector signed char, vector signed char);
13821 vector bool char vec_vcmpequb (vector unsigned char,
13822 vector unsigned char);
13823
13824 vector bool int vec_cmpge (vector float, vector float);
13825
13826 vector bool char vec_cmpgt (vector unsigned char, vector unsigned char);
13827 vector bool char vec_cmpgt (vector signed char, vector signed char);
13828 vector bool short vec_cmpgt (vector unsigned short,
13829 vector unsigned short);
13830 vector bool short vec_cmpgt (vector signed short, vector signed short);
13831 vector bool int vec_cmpgt (vector unsigned int, vector unsigned int);
13832 vector bool int vec_cmpgt (vector signed int, vector signed int);
13833 vector bool int vec_cmpgt (vector float, vector float);
13834
13835 vector bool int vec_vcmpgtfp (vector float, vector float);
13836
13837 vector bool int vec_vcmpgtsw (vector signed int, vector signed int);
13838
13839 vector bool int vec_vcmpgtuw (vector unsigned int, vector unsigned int);
13840
13841 vector bool short vec_vcmpgtsh (vector signed short,
13842 vector signed short);
13843
13844 vector bool short vec_vcmpgtuh (vector unsigned short,
13845 vector unsigned short);
13846
13847 vector bool char vec_vcmpgtsb (vector signed char, vector signed char);
13848
13849 vector bool char vec_vcmpgtub (vector unsigned char,
13850 vector unsigned char);
13851
13852 vector bool int vec_cmple (vector float, vector float);
13853
13854 vector bool char vec_cmplt (vector unsigned char, vector unsigned char);
13855 vector bool char vec_cmplt (vector signed char, vector signed char);
13856 vector bool short vec_cmplt (vector unsigned short,
13857 vector unsigned short);
13858 vector bool short vec_cmplt (vector signed short, vector signed short);
13859 vector bool int vec_cmplt (vector unsigned int, vector unsigned int);
13860 vector bool int vec_cmplt (vector signed int, vector signed int);
13861 vector bool int vec_cmplt (vector float, vector float);
13862
13863 vector float vec_ctf (vector unsigned int, const int);
13864 vector float vec_ctf (vector signed int, const int);
13865
13866 vector float vec_vcfsx (vector signed int, const int);
13867
13868 vector float vec_vcfux (vector unsigned int, const int);
13869
13870 vector signed int vec_cts (vector float, const int);
13871
13872 vector unsigned int vec_ctu (vector float, const int);
13873
13874 void vec_dss (const int);
13875
13876 void vec_dssall (void);
13877
13878 void vec_dst (const vector unsigned char *, int, const int);
13879 void vec_dst (const vector signed char *, int, const int);
13880 void vec_dst (const vector bool char *, int, const int);
13881 void vec_dst (const vector unsigned short *, int, const int);
13882 void vec_dst (const vector signed short *, int, const int);
13883 void vec_dst (const vector bool short *, int, const int);
13884 void vec_dst (const vector pixel *, int, const int);
13885 void vec_dst (const vector unsigned int *, int, const int);
13886 void vec_dst (const vector signed int *, int, const int);
13887 void vec_dst (const vector bool int *, int, const int);
13888 void vec_dst (const vector float *, int, const int);
13889 void vec_dst (const unsigned char *, int, const int);
13890 void vec_dst (const signed char *, int, const int);
13891 void vec_dst (const unsigned short *, int, const int);
13892 void vec_dst (const short *, int, const int);
13893 void vec_dst (const unsigned int *, int, const int);
13894 void vec_dst (const int *, int, const int);
13895 void vec_dst (const unsigned long *, int, const int);
13896 void vec_dst (const long *, int, const int);
13897 void vec_dst (const float *, int, const int);
13898
13899 void vec_dstst (const vector unsigned char *, int, const int);
13900 void vec_dstst (const vector signed char *, int, const int);
13901 void vec_dstst (const vector bool char *, int, const int);
13902 void vec_dstst (const vector unsigned short *, int, const int);
13903 void vec_dstst (const vector signed short *, int, const int);
13904 void vec_dstst (const vector bool short *, int, const int);
13905 void vec_dstst (const vector pixel *, int, const int);
13906 void vec_dstst (const vector unsigned int *, int, const int);
13907 void vec_dstst (const vector signed int *, int, const int);
13908 void vec_dstst (const vector bool int *, int, const int);
13909 void vec_dstst (const vector float *, int, const int);
13910 void vec_dstst (const unsigned char *, int, const int);
13911 void vec_dstst (const signed char *, int, const int);
13912 void vec_dstst (const unsigned short *, int, const int);
13913 void vec_dstst (const short *, int, const int);
13914 void vec_dstst (const unsigned int *, int, const int);
13915 void vec_dstst (const int *, int, const int);
13916 void vec_dstst (const unsigned long *, int, const int);
13917 void vec_dstst (const long *, int, const int);
13918 void vec_dstst (const float *, int, const int);
13919
13920 void vec_dststt (const vector unsigned char *, int, const int);
13921 void vec_dststt (const vector signed char *, int, const int);
13922 void vec_dststt (const vector bool char *, int, const int);
13923 void vec_dststt (const vector unsigned short *, int, const int);
13924 void vec_dststt (const vector signed short *, int, const int);
13925 void vec_dststt (const vector bool short *, int, const int);
13926 void vec_dststt (const vector pixel *, int, const int);
13927 void vec_dststt (const vector unsigned int *, int, const int);
13928 void vec_dststt (const vector signed int *, int, const int);
13929 void vec_dststt (const vector bool int *, int, const int);
13930 void vec_dststt (const vector float *, int, const int);
13931 void vec_dststt (const unsigned char *, int, const int);
13932 void vec_dststt (const signed char *, int, const int);
13933 void vec_dststt (const unsigned short *, int, const int);
13934 void vec_dststt (const short *, int, const int);
13935 void vec_dststt (const unsigned int *, int, const int);
13936 void vec_dststt (const int *, int, const int);
13937 void vec_dststt (const unsigned long *, int, const int);
13938 void vec_dststt (const long *, int, const int);
13939 void vec_dststt (const float *, int, const int);
13940
13941 void vec_dstt (const vector unsigned char *, int, const int);
13942 void vec_dstt (const vector signed char *, int, const int);
13943 void vec_dstt (const vector bool char *, int, const int);
13944 void vec_dstt (const vector unsigned short *, int, const int);
13945 void vec_dstt (const vector signed short *, int, const int);
13946 void vec_dstt (const vector bool short *, int, const int);
13947 void vec_dstt (const vector pixel *, int, const int);
13948 void vec_dstt (const vector unsigned int *, int, const int);
13949 void vec_dstt (const vector signed int *, int, const int);
13950 void vec_dstt (const vector bool int *, int, const int);
13951 void vec_dstt (const vector float *, int, const int);
13952 void vec_dstt (const unsigned char *, int, const int);
13953 void vec_dstt (const signed char *, int, const int);
13954 void vec_dstt (const unsigned short *, int, const int);
13955 void vec_dstt (const short *, int, const int);
13956 void vec_dstt (const unsigned int *, int, const int);
13957 void vec_dstt (const int *, int, const int);
13958 void vec_dstt (const unsigned long *, int, const int);
13959 void vec_dstt (const long *, int, const int);
13960 void vec_dstt (const float *, int, const int);
13961
13962 vector float vec_expte (vector float);
13963
13964 vector float vec_floor (vector float);
13965
13966 vector float vec_ld (int, const vector float *);
13967 vector float vec_ld (int, const float *);
13968 vector bool int vec_ld (int, const vector bool int *);
13969 vector signed int vec_ld (int, const vector signed int *);
13970 vector signed int vec_ld (int, const int *);
13971 vector signed int vec_ld (int, const long *);
13972 vector unsigned int vec_ld (int, const vector unsigned int *);
13973 vector unsigned int vec_ld (int, const unsigned int *);
13974 vector unsigned int vec_ld (int, const unsigned long *);
13975 vector bool short vec_ld (int, const vector bool short *);
13976 vector pixel vec_ld (int, const vector pixel *);
13977 vector signed short vec_ld (int, const vector signed short *);
13978 vector signed short vec_ld (int, const short *);
13979 vector unsigned short vec_ld (int, const vector unsigned short *);
13980 vector unsigned short vec_ld (int, const unsigned short *);
13981 vector bool char vec_ld (int, const vector bool char *);
13982 vector signed char vec_ld (int, const vector signed char *);
13983 vector signed char vec_ld (int, const signed char *);
13984 vector unsigned char vec_ld (int, const vector unsigned char *);
13985 vector unsigned char vec_ld (int, const unsigned char *);
13986
13987 vector signed char vec_lde (int, const signed char *);
13988 vector unsigned char vec_lde (int, const unsigned char *);
13989 vector signed short vec_lde (int, const short *);
13990 vector unsigned short vec_lde (int, const unsigned short *);
13991 vector float vec_lde (int, const float *);
13992 vector signed int vec_lde (int, const int *);
13993 vector unsigned int vec_lde (int, const unsigned int *);
13994 vector signed int vec_lde (int, const long *);
13995 vector unsigned int vec_lde (int, const unsigned long *);
13996
13997 vector float vec_lvewx (int, float *);
13998 vector signed int vec_lvewx (int, int *);
13999 vector unsigned int vec_lvewx (int, unsigned int *);
14000 vector signed int vec_lvewx (int, long *);
14001 vector unsigned int vec_lvewx (int, unsigned long *);
14002
14003 vector signed short vec_lvehx (int, short *);
14004 vector unsigned short vec_lvehx (int, unsigned short *);
14005
14006 vector signed char vec_lvebx (int, char *);
14007 vector unsigned char vec_lvebx (int, unsigned char *);
14008
14009 vector float vec_ldl (int, const vector float *);
14010 vector float vec_ldl (int, const float *);
14011 vector bool int vec_ldl (int, const vector bool int *);
14012 vector signed int vec_ldl (int, const vector signed int *);
14013 vector signed int vec_ldl (int, const int *);
14014 vector signed int vec_ldl (int, const long *);
14015 vector unsigned int vec_ldl (int, const vector unsigned int *);
14016 vector unsigned int vec_ldl (int, const unsigned int *);
14017 vector unsigned int vec_ldl (int, const unsigned long *);
14018 vector bool short vec_ldl (int, const vector bool short *);
14019 vector pixel vec_ldl (int, const vector pixel *);
14020 vector signed short vec_ldl (int, const vector signed short *);
14021 vector signed short vec_ldl (int, const short *);
14022 vector unsigned short vec_ldl (int, const vector unsigned short *);
14023 vector unsigned short vec_ldl (int, const unsigned short *);
14024 vector bool char vec_ldl (int, const vector bool char *);
14025 vector signed char vec_ldl (int, const vector signed char *);
14026 vector signed char vec_ldl (int, const signed char *);
14027 vector unsigned char vec_ldl (int, const vector unsigned char *);
14028 vector unsigned char vec_ldl (int, const unsigned char *);
14029
14030 vector float vec_loge (vector float);
14031
14032 vector unsigned char vec_lvsl (int, const volatile unsigned char *);
14033 vector unsigned char vec_lvsl (int, const volatile signed char *);
14034 vector unsigned char vec_lvsl (int, const volatile unsigned short *);
14035 vector unsigned char vec_lvsl (int, const volatile short *);
14036 vector unsigned char vec_lvsl (int, const volatile unsigned int *);
14037 vector unsigned char vec_lvsl (int, const volatile int *);
14038 vector unsigned char vec_lvsl (int, const volatile unsigned long *);
14039 vector unsigned char vec_lvsl (int, const volatile long *);
14040 vector unsigned char vec_lvsl (int, const volatile float *);
14041
14042 vector unsigned char vec_lvsr (int, const volatile unsigned char *);
14043 vector unsigned char vec_lvsr (int, const volatile signed char *);
14044 vector unsigned char vec_lvsr (int, const volatile unsigned short *);
14045 vector unsigned char vec_lvsr (int, const volatile short *);
14046 vector unsigned char vec_lvsr (int, const volatile unsigned int *);
14047 vector unsigned char vec_lvsr (int, const volatile int *);
14048 vector unsigned char vec_lvsr (int, const volatile unsigned long *);
14049 vector unsigned char vec_lvsr (int, const volatile long *);
14050 vector unsigned char vec_lvsr (int, const volatile float *);
14051
14052 vector float vec_madd (vector float, vector float, vector float);
14053
14054 vector signed short vec_madds (vector signed short,
14055 vector signed short,
14056 vector signed short);
14057
14058 vector unsigned char vec_max (vector bool char, vector unsigned char);
14059 vector unsigned char vec_max (vector unsigned char, vector bool char);
14060 vector unsigned char vec_max (vector unsigned char,
14061 vector unsigned char);
14062 vector signed char vec_max (vector bool char, vector signed char);
14063 vector signed char vec_max (vector signed char, vector bool char);
14064 vector signed char vec_max (vector signed char, vector signed char);
14065 vector unsigned short vec_max (vector bool short,
14066 vector unsigned short);
14067 vector unsigned short vec_max (vector unsigned short,
14068 vector bool short);
14069 vector unsigned short vec_max (vector unsigned short,
14070 vector unsigned short);
14071 vector signed short vec_max (vector bool short, vector signed short);
14072 vector signed short vec_max (vector signed short, vector bool short);
14073 vector signed short vec_max (vector signed short, vector signed short);
14074 vector unsigned int vec_max (vector bool int, vector unsigned int);
14075 vector unsigned int vec_max (vector unsigned int, vector bool int);
14076 vector unsigned int vec_max (vector unsigned int, vector unsigned int);
14077 vector signed int vec_max (vector bool int, vector signed int);
14078 vector signed int vec_max (vector signed int, vector bool int);
14079 vector signed int vec_max (vector signed int, vector signed int);
14080 vector float vec_max (vector float, vector float);
14081
14082 vector float vec_vmaxfp (vector float, vector float);
14083
14084 vector signed int vec_vmaxsw (vector bool int, vector signed int);
14085 vector signed int vec_vmaxsw (vector signed int, vector bool int);
14086 vector signed int vec_vmaxsw (vector signed int, vector signed int);
14087
14088 vector unsigned int vec_vmaxuw (vector bool int, vector unsigned int);
14089 vector unsigned int vec_vmaxuw (vector unsigned int, vector bool int);
14090 vector unsigned int vec_vmaxuw (vector unsigned int,
14091 vector unsigned int);
14092
14093 vector signed short vec_vmaxsh (vector bool short, vector signed short);
14094 vector signed short vec_vmaxsh (vector signed short, vector bool short);
14095 vector signed short vec_vmaxsh (vector signed short,
14096 vector signed short);
14097
14098 vector unsigned short vec_vmaxuh (vector bool short,
14099 vector unsigned short);
14100 vector unsigned short vec_vmaxuh (vector unsigned short,
14101 vector bool short);
14102 vector unsigned short vec_vmaxuh (vector unsigned short,
14103 vector unsigned short);
14104
14105 vector signed char vec_vmaxsb (vector bool char, vector signed char);
14106 vector signed char vec_vmaxsb (vector signed char, vector bool char);
14107 vector signed char vec_vmaxsb (vector signed char, vector signed char);
14108
14109 vector unsigned char vec_vmaxub (vector bool char,
14110 vector unsigned char);
14111 vector unsigned char vec_vmaxub (vector unsigned char,
14112 vector bool char);
14113 vector unsigned char vec_vmaxub (vector unsigned char,
14114 vector unsigned char);
14115
14116 vector bool char vec_mergeh (vector bool char, vector bool char);
14117 vector signed char vec_mergeh (vector signed char, vector signed char);
14118 vector unsigned char vec_mergeh (vector unsigned char,
14119 vector unsigned char);
14120 vector bool short vec_mergeh (vector bool short, vector bool short);
14121 vector pixel vec_mergeh (vector pixel, vector pixel);
14122 vector signed short vec_mergeh (vector signed short,
14123 vector signed short);
14124 vector unsigned short vec_mergeh (vector unsigned short,
14125 vector unsigned short);
14126 vector float vec_mergeh (vector float, vector float);
14127 vector bool int vec_mergeh (vector bool int, vector bool int);
14128 vector signed int vec_mergeh (vector signed int, vector signed int);
14129 vector unsigned int vec_mergeh (vector unsigned int,
14130 vector unsigned int);
14131
14132 vector float vec_vmrghw (vector float, vector float);
14133 vector bool int vec_vmrghw (vector bool int, vector bool int);
14134 vector signed int vec_vmrghw (vector signed int, vector signed int);
14135 vector unsigned int vec_vmrghw (vector unsigned int,
14136 vector unsigned int);
14137
14138 vector bool short vec_vmrghh (vector bool short, vector bool short);
14139 vector signed short vec_vmrghh (vector signed short,
14140 vector signed short);
14141 vector unsigned short vec_vmrghh (vector unsigned short,
14142 vector unsigned short);
14143 vector pixel vec_vmrghh (vector pixel, vector pixel);
14144
14145 vector bool char vec_vmrghb (vector bool char, vector bool char);
14146 vector signed char vec_vmrghb (vector signed char, vector signed char);
14147 vector unsigned char vec_vmrghb (vector unsigned char,
14148 vector unsigned char);
14149
14150 vector bool char vec_mergel (vector bool char, vector bool char);
14151 vector signed char vec_mergel (vector signed char, vector signed char);
14152 vector unsigned char vec_mergel (vector unsigned char,
14153 vector unsigned char);
14154 vector bool short vec_mergel (vector bool short, vector bool short);
14155 vector pixel vec_mergel (vector pixel, vector pixel);
14156 vector signed short vec_mergel (vector signed short,
14157 vector signed short);
14158 vector unsigned short vec_mergel (vector unsigned short,
14159 vector unsigned short);
14160 vector float vec_mergel (vector float, vector float);
14161 vector bool int vec_mergel (vector bool int, vector bool int);
14162 vector signed int vec_mergel (vector signed int, vector signed int);
14163 vector unsigned int vec_mergel (vector unsigned int,
14164 vector unsigned int);
14165
14166 vector float vec_vmrglw (vector float, vector float);
14167 vector signed int vec_vmrglw (vector signed int, vector signed int);
14168 vector unsigned int vec_vmrglw (vector unsigned int,
14169 vector unsigned int);
14170 vector bool int vec_vmrglw (vector bool int, vector bool int);
14171
14172 vector bool short vec_vmrglh (vector bool short, vector bool short);
14173 vector signed short vec_vmrglh (vector signed short,
14174 vector signed short);
14175 vector unsigned short vec_vmrglh (vector unsigned short,
14176 vector unsigned short);
14177 vector pixel vec_vmrglh (vector pixel, vector pixel);
14178
14179 vector bool char vec_vmrglb (vector bool char, vector bool char);
14180 vector signed char vec_vmrglb (vector signed char, vector signed char);
14181 vector unsigned char vec_vmrglb (vector unsigned char,
14182 vector unsigned char);
14183
14184 vector unsigned short vec_mfvscr (void);
14185
14186 vector unsigned char vec_min (vector bool char, vector unsigned char);
14187 vector unsigned char vec_min (vector unsigned char, vector bool char);
14188 vector unsigned char vec_min (vector unsigned char,
14189 vector unsigned char);
14190 vector signed char vec_min (vector bool char, vector signed char);
14191 vector signed char vec_min (vector signed char, vector bool char);
14192 vector signed char vec_min (vector signed char, vector signed char);
14193 vector unsigned short vec_min (vector bool short,
14194 vector unsigned short);
14195 vector unsigned short vec_min (vector unsigned short,
14196 vector bool short);
14197 vector unsigned short vec_min (vector unsigned short,
14198 vector unsigned short);
14199 vector signed short vec_min (vector bool short, vector signed short);
14200 vector signed short vec_min (vector signed short, vector bool short);
14201 vector signed short vec_min (vector signed short, vector signed short);
14202 vector unsigned int vec_min (vector bool int, vector unsigned int);
14203 vector unsigned int vec_min (vector unsigned int, vector bool int);
14204 vector unsigned int vec_min (vector unsigned int, vector unsigned int);
14205 vector signed int vec_min (vector bool int, vector signed int);
14206 vector signed int vec_min (vector signed int, vector bool int);
14207 vector signed int vec_min (vector signed int, vector signed int);
14208 vector float vec_min (vector float, vector float);
14209
14210 vector float vec_vminfp (vector float, vector float);
14211
14212 vector signed int vec_vminsw (vector bool int, vector signed int);
14213 vector signed int vec_vminsw (vector signed int, vector bool int);
14214 vector signed int vec_vminsw (vector signed int, vector signed int);
14215
14216 vector unsigned int vec_vminuw (vector bool int, vector unsigned int);
14217 vector unsigned int vec_vminuw (vector unsigned int, vector bool int);
14218 vector unsigned int vec_vminuw (vector unsigned int,
14219 vector unsigned int);
14220
14221 vector signed short vec_vminsh (vector bool short, vector signed short);
14222 vector signed short vec_vminsh (vector signed short, vector bool short);
14223 vector signed short vec_vminsh (vector signed short,
14224 vector signed short);
14225
14226 vector unsigned short vec_vminuh (vector bool short,
14227 vector unsigned short);
14228 vector unsigned short vec_vminuh (vector unsigned short,
14229 vector bool short);
14230 vector unsigned short vec_vminuh (vector unsigned short,
14231 vector unsigned short);
14232
14233 vector signed char vec_vminsb (vector bool char, vector signed char);
14234 vector signed char vec_vminsb (vector signed char, vector bool char);
14235 vector signed char vec_vminsb (vector signed char, vector signed char);
14236
14237 vector unsigned char vec_vminub (vector bool char,
14238 vector unsigned char);
14239 vector unsigned char vec_vminub (vector unsigned char,
14240 vector bool char);
14241 vector unsigned char vec_vminub (vector unsigned char,
14242 vector unsigned char);
14243
14244 vector signed short vec_mladd (vector signed short,
14245 vector signed short,
14246 vector signed short);
14247 vector signed short vec_mladd (vector signed short,
14248 vector unsigned short,
14249 vector unsigned short);
14250 vector signed short vec_mladd (vector unsigned short,
14251 vector signed short,
14252 vector signed short);
14253 vector unsigned short vec_mladd (vector unsigned short,
14254 vector unsigned short,
14255 vector unsigned short);
14256
14257 vector signed short vec_mradds (vector signed short,
14258 vector signed short,
14259 vector signed short);
14260
14261 vector unsigned int vec_msum (vector unsigned char,
14262 vector unsigned char,
14263 vector unsigned int);
14264 vector signed int vec_msum (vector signed char,
14265 vector unsigned char,
14266 vector signed int);
14267 vector unsigned int vec_msum (vector unsigned short,
14268 vector unsigned short,
14269 vector unsigned int);
14270 vector signed int vec_msum (vector signed short,
14271 vector signed short,
14272 vector signed int);
14273
14274 vector signed int vec_vmsumshm (vector signed short,
14275 vector signed short,
14276 vector signed int);
14277
14278 vector unsigned int vec_vmsumuhm (vector unsigned short,
14279 vector unsigned short,
14280 vector unsigned int);
14281
14282 vector signed int vec_vmsummbm (vector signed char,
14283 vector unsigned char,
14284 vector signed int);
14285
14286 vector unsigned int vec_vmsumubm (vector unsigned char,
14287 vector unsigned char,
14288 vector unsigned int);
14289
14290 vector unsigned int vec_msums (vector unsigned short,
14291 vector unsigned short,
14292 vector unsigned int);
14293 vector signed int vec_msums (vector signed short,
14294 vector signed short,
14295 vector signed int);
14296
14297 vector signed int vec_vmsumshs (vector signed short,
14298 vector signed short,
14299 vector signed int);
14300
14301 vector unsigned int vec_vmsumuhs (vector unsigned short,
14302 vector unsigned short,
14303 vector unsigned int);
14304
14305 void vec_mtvscr (vector signed int);
14306 void vec_mtvscr (vector unsigned int);
14307 void vec_mtvscr (vector bool int);
14308 void vec_mtvscr (vector signed short);
14309 void vec_mtvscr (vector unsigned short);
14310 void vec_mtvscr (vector bool short);
14311 void vec_mtvscr (vector pixel);
14312 void vec_mtvscr (vector signed char);
14313 void vec_mtvscr (vector unsigned char);
14314 void vec_mtvscr (vector bool char);
14315
14316 vector unsigned short vec_mule (vector unsigned char,
14317 vector unsigned char);
14318 vector signed short vec_mule (vector signed char,
14319 vector signed char);
14320 vector unsigned int vec_mule (vector unsigned short,
14321 vector unsigned short);
14322 vector signed int vec_mule (vector signed short, vector signed short);
14323
14324 vector signed int vec_vmulesh (vector signed short,
14325 vector signed short);
14326
14327 vector unsigned int vec_vmuleuh (vector unsigned short,
14328 vector unsigned short);
14329
14330 vector signed short vec_vmulesb (vector signed char,
14331 vector signed char);
14332
14333 vector unsigned short vec_vmuleub (vector unsigned char,
14334 vector unsigned char);
14335
14336 vector unsigned short vec_mulo (vector unsigned char,
14337 vector unsigned char);
14338 vector signed short vec_mulo (vector signed char, vector signed char);
14339 vector unsigned int vec_mulo (vector unsigned short,
14340 vector unsigned short);
14341 vector signed int vec_mulo (vector signed short, vector signed short);
14342
14343 vector signed int vec_vmulosh (vector signed short,
14344 vector signed short);
14345
14346 vector unsigned int vec_vmulouh (vector unsigned short,
14347 vector unsigned short);
14348
14349 vector signed short vec_vmulosb (vector signed char,
14350 vector signed char);
14351
14352 vector unsigned short vec_vmuloub (vector unsigned char,
14353 vector unsigned char);
14354
14355 vector float vec_nmsub (vector float, vector float, vector float);
14356
14357 vector float vec_nor (vector float, vector float);
14358 vector signed int vec_nor (vector signed int, vector signed int);
14359 vector unsigned int vec_nor (vector unsigned int, vector unsigned int);
14360 vector bool int vec_nor (vector bool int, vector bool int);
14361 vector signed short vec_nor (vector signed short, vector signed short);
14362 vector unsigned short vec_nor (vector unsigned short,
14363 vector unsigned short);
14364 vector bool short vec_nor (vector bool short, vector bool short);
14365 vector signed char vec_nor (vector signed char, vector signed char);
14366 vector unsigned char vec_nor (vector unsigned char,
14367 vector unsigned char);
14368 vector bool char vec_nor (vector bool char, vector bool char);
14369
14370 vector float vec_or (vector float, vector float);
14371 vector float vec_or (vector float, vector bool int);
14372 vector float vec_or (vector bool int, vector float);
14373 vector bool int vec_or (vector bool int, vector bool int);
14374 vector signed int vec_or (vector bool int, vector signed int);
14375 vector signed int vec_or (vector signed int, vector bool int);
14376 vector signed int vec_or (vector signed int, vector signed int);
14377 vector unsigned int vec_or (vector bool int, vector unsigned int);
14378 vector unsigned int vec_or (vector unsigned int, vector bool int);
14379 vector unsigned int vec_or (vector unsigned int, vector unsigned int);
14380 vector bool short vec_or (vector bool short, vector bool short);
14381 vector signed short vec_or (vector bool short, vector signed short);
14382 vector signed short vec_or (vector signed short, vector bool short);
14383 vector signed short vec_or (vector signed short, vector signed short);
14384 vector unsigned short vec_or (vector bool short, vector unsigned short);
14385 vector unsigned short vec_or (vector unsigned short, vector bool short);
14386 vector unsigned short vec_or (vector unsigned short,
14387 vector unsigned short);
14388 vector signed char vec_or (vector bool char, vector signed char);
14389 vector bool char vec_or (vector bool char, vector bool char);
14390 vector signed char vec_or (vector signed char, vector bool char);
14391 vector signed char vec_or (vector signed char, vector signed char);
14392 vector unsigned char vec_or (vector bool char, vector unsigned char);
14393 vector unsigned char vec_or (vector unsigned char, vector bool char);
14394 vector unsigned char vec_or (vector unsigned char,
14395 vector unsigned char);
14396
14397 vector signed char vec_pack (vector signed short, vector signed short);
14398 vector unsigned char vec_pack (vector unsigned short,
14399 vector unsigned short);
14400 vector bool char vec_pack (vector bool short, vector bool short);
14401 vector signed short vec_pack (vector signed int, vector signed int);
14402 vector unsigned short vec_pack (vector unsigned int,
14403 vector unsigned int);
14404 vector bool short vec_pack (vector bool int, vector bool int);
14405
14406 vector bool short vec_vpkuwum (vector bool int, vector bool int);
14407 vector signed short vec_vpkuwum (vector signed int, vector signed int);
14408 vector unsigned short vec_vpkuwum (vector unsigned int,
14409 vector unsigned int);
14410
14411 vector bool char vec_vpkuhum (vector bool short, vector bool short);
14412 vector signed char vec_vpkuhum (vector signed short,
14413 vector signed short);
14414 vector unsigned char vec_vpkuhum (vector unsigned short,
14415 vector unsigned short);
14416
14417 vector pixel vec_packpx (vector unsigned int, vector unsigned int);
14418
14419 vector unsigned char vec_packs (vector unsigned short,
14420 vector unsigned short);
14421 vector signed char vec_packs (vector signed short, vector signed short);
14422 vector unsigned short vec_packs (vector unsigned int,
14423 vector unsigned int);
14424 vector signed short vec_packs (vector signed int, vector signed int);
14425
14426 vector signed short vec_vpkswss (vector signed int, vector signed int);
14427
14428 vector unsigned short vec_vpkuwus (vector unsigned int,
14429 vector unsigned int);
14430
14431 vector signed char vec_vpkshss (vector signed short,
14432 vector signed short);
14433
14434 vector unsigned char vec_vpkuhus (vector unsigned short,
14435 vector unsigned short);
14436
14437 vector unsigned char vec_packsu (vector unsigned short,
14438 vector unsigned short);
14439 vector unsigned char vec_packsu (vector signed short,
14440 vector signed short);
14441 vector unsigned short vec_packsu (vector unsigned int,
14442 vector unsigned int);
14443 vector unsigned short vec_packsu (vector signed int, vector signed int);
14444
14445 vector unsigned short vec_vpkswus (vector signed int,
14446 vector signed int);
14447
14448 vector unsigned char vec_vpkshus (vector signed short,
14449 vector signed short);
14450
14451 vector float vec_perm (vector float,
14452 vector float,
14453 vector unsigned char);
14454 vector signed int vec_perm (vector signed int,
14455 vector signed int,
14456 vector unsigned char);
14457 vector unsigned int vec_perm (vector unsigned int,
14458 vector unsigned int,
14459 vector unsigned char);
14460 vector bool int vec_perm (vector bool int,
14461 vector bool int,
14462 vector unsigned char);
14463 vector signed short vec_perm (vector signed short,
14464 vector signed short,
14465 vector unsigned char);
14466 vector unsigned short vec_perm (vector unsigned short,
14467 vector unsigned short,
14468 vector unsigned char);
14469 vector bool short vec_perm (vector bool short,
14470 vector bool short,
14471 vector unsigned char);
14472 vector pixel vec_perm (vector pixel,
14473 vector pixel,
14474 vector unsigned char);
14475 vector signed char vec_perm (vector signed char,
14476 vector signed char,
14477 vector unsigned char);
14478 vector unsigned char vec_perm (vector unsigned char,
14479 vector unsigned char,
14480 vector unsigned char);
14481 vector bool char vec_perm (vector bool char,
14482 vector bool char,
14483 vector unsigned char);
14484
14485 vector float vec_re (vector float);
14486
14487 vector signed char vec_rl (vector signed char,
14488 vector unsigned char);
14489 vector unsigned char vec_rl (vector unsigned char,
14490 vector unsigned char);
14491 vector signed short vec_rl (vector signed short, vector unsigned short);
14492 vector unsigned short vec_rl (vector unsigned short,
14493 vector unsigned short);
14494 vector signed int vec_rl (vector signed int, vector unsigned int);
14495 vector unsigned int vec_rl (vector unsigned int, vector unsigned int);
14496
14497 vector signed int vec_vrlw (vector signed int, vector unsigned int);
14498 vector unsigned int vec_vrlw (vector unsigned int, vector unsigned int);
14499
14500 vector signed short vec_vrlh (vector signed short,
14501 vector unsigned short);
14502 vector unsigned short vec_vrlh (vector unsigned short,
14503 vector unsigned short);
14504
14505 vector signed char vec_vrlb (vector signed char, vector unsigned char);
14506 vector unsigned char vec_vrlb (vector unsigned char,
14507 vector unsigned char);
14508
14509 vector float vec_round (vector float);
14510
14511 vector float vec_recip (vector float, vector float);
14512
14513 vector float vec_rsqrt (vector float);
14514
14515 vector float vec_rsqrte (vector float);
14516
14517 vector float vec_sel (vector float, vector float, vector bool int);
14518 vector float vec_sel (vector float, vector float, vector unsigned int);
14519 vector signed int vec_sel (vector signed int,
14520 vector signed int,
14521 vector bool int);
14522 vector signed int vec_sel (vector signed int,
14523 vector signed int,
14524 vector unsigned int);
14525 vector unsigned int vec_sel (vector unsigned int,
14526 vector unsigned int,
14527 vector bool int);
14528 vector unsigned int vec_sel (vector unsigned int,
14529 vector unsigned int,
14530 vector unsigned int);
14531 vector bool int vec_sel (vector bool int,
14532 vector bool int,
14533 vector bool int);
14534 vector bool int vec_sel (vector bool int,
14535 vector bool int,
14536 vector unsigned int);
14537 vector signed short vec_sel (vector signed short,
14538 vector signed short,
14539 vector bool short);
14540 vector signed short vec_sel (vector signed short,
14541 vector signed short,
14542 vector unsigned short);
14543 vector unsigned short vec_sel (vector unsigned short,
14544 vector unsigned short,
14545 vector bool short);
14546 vector unsigned short vec_sel (vector unsigned short,
14547 vector unsigned short,
14548 vector unsigned short);
14549 vector bool short vec_sel (vector bool short,
14550 vector bool short,
14551 vector bool short);
14552 vector bool short vec_sel (vector bool short,
14553 vector bool short,
14554 vector unsigned short);
14555 vector signed char vec_sel (vector signed char,
14556 vector signed char,
14557 vector bool char);
14558 vector signed char vec_sel (vector signed char,
14559 vector signed char,
14560 vector unsigned char);
14561 vector unsigned char vec_sel (vector unsigned char,
14562 vector unsigned char,
14563 vector bool char);
14564 vector unsigned char vec_sel (vector unsigned char,
14565 vector unsigned char,
14566 vector unsigned char);
14567 vector bool char vec_sel (vector bool char,
14568 vector bool char,
14569 vector bool char);
14570 vector bool char vec_sel (vector bool char,
14571 vector bool char,
14572 vector unsigned char);
14573
14574 vector signed char vec_sl (vector signed char,
14575 vector unsigned char);
14576 vector unsigned char vec_sl (vector unsigned char,
14577 vector unsigned char);
14578 vector signed short vec_sl (vector signed short, vector unsigned short);
14579 vector unsigned short vec_sl (vector unsigned short,
14580 vector unsigned short);
14581 vector signed int vec_sl (vector signed int, vector unsigned int);
14582 vector unsigned int vec_sl (vector unsigned int, vector unsigned int);
14583
14584 vector signed int vec_vslw (vector signed int, vector unsigned int);
14585 vector unsigned int vec_vslw (vector unsigned int, vector unsigned int);
14586
14587 vector signed short vec_vslh (vector signed short,
14588 vector unsigned short);
14589 vector unsigned short vec_vslh (vector unsigned short,
14590 vector unsigned short);
14591
14592 vector signed char vec_vslb (vector signed char, vector unsigned char);
14593 vector unsigned char vec_vslb (vector unsigned char,
14594 vector unsigned char);
14595
14596 vector float vec_sld (vector float, vector float, const int);
14597 vector signed int vec_sld (vector signed int,
14598 vector signed int,
14599 const int);
14600 vector unsigned int vec_sld (vector unsigned int,
14601 vector unsigned int,
14602 const int);
14603 vector bool int vec_sld (vector bool int,
14604 vector bool int,
14605 const int);
14606 vector signed short vec_sld (vector signed short,
14607 vector signed short,
14608 const int);
14609 vector unsigned short vec_sld (vector unsigned short,
14610 vector unsigned short,
14611 const int);
14612 vector bool short vec_sld (vector bool short,
14613 vector bool short,
14614 const int);
14615 vector pixel vec_sld (vector pixel,
14616 vector pixel,
14617 const int);
14618 vector signed char vec_sld (vector signed char,
14619 vector signed char,
14620 const int);
14621 vector unsigned char vec_sld (vector unsigned char,
14622 vector unsigned char,
14623 const int);
14624 vector bool char vec_sld (vector bool char,
14625 vector bool char,
14626 const int);
14627
14628 vector signed int vec_sll (vector signed int,
14629 vector unsigned int);
14630 vector signed int vec_sll (vector signed int,
14631 vector unsigned short);
14632 vector signed int vec_sll (vector signed int,
14633 vector unsigned char);
14634 vector unsigned int vec_sll (vector unsigned int,
14635 vector unsigned int);
14636 vector unsigned int vec_sll (vector unsigned int,
14637 vector unsigned short);
14638 vector unsigned int vec_sll (vector unsigned int,
14639 vector unsigned char);
14640 vector bool int vec_sll (vector bool int,
14641 vector unsigned int);
14642 vector bool int vec_sll (vector bool int,
14643 vector unsigned short);
14644 vector bool int vec_sll (vector bool int,
14645 vector unsigned char);
14646 vector signed short vec_sll (vector signed short,
14647 vector unsigned int);
14648 vector signed short vec_sll (vector signed short,
14649 vector unsigned short);
14650 vector signed short vec_sll (vector signed short,
14651 vector unsigned char);
14652 vector unsigned short vec_sll (vector unsigned short,
14653 vector unsigned int);
14654 vector unsigned short vec_sll (vector unsigned short,
14655 vector unsigned short);
14656 vector unsigned short vec_sll (vector unsigned short,
14657 vector unsigned char);
14658 vector bool short vec_sll (vector bool short, vector unsigned int);
14659 vector bool short vec_sll (vector bool short, vector unsigned short);
14660 vector bool short vec_sll (vector bool short, vector unsigned char);
14661 vector pixel vec_sll (vector pixel, vector unsigned int);
14662 vector pixel vec_sll (vector pixel, vector unsigned short);
14663 vector pixel vec_sll (vector pixel, vector unsigned char);
14664 vector signed char vec_sll (vector signed char, vector unsigned int);
14665 vector signed char vec_sll (vector signed char, vector unsigned short);
14666 vector signed char vec_sll (vector signed char, vector unsigned char);
14667 vector unsigned char vec_sll (vector unsigned char,
14668 vector unsigned int);
14669 vector unsigned char vec_sll (vector unsigned char,
14670 vector unsigned short);
14671 vector unsigned char vec_sll (vector unsigned char,
14672 vector unsigned char);
14673 vector bool char vec_sll (vector bool char, vector unsigned int);
14674 vector bool char vec_sll (vector bool char, vector unsigned short);
14675 vector bool char vec_sll (vector bool char, vector unsigned char);
14676
14677 vector float vec_slo (vector float, vector signed char);
14678 vector float vec_slo (vector float, vector unsigned char);
14679 vector signed int vec_slo (vector signed int, vector signed char);
14680 vector signed int vec_slo (vector signed int, vector unsigned char);
14681 vector unsigned int vec_slo (vector unsigned int, vector signed char);
14682 vector unsigned int vec_slo (vector unsigned int, vector unsigned char);
14683 vector signed short vec_slo (vector signed short, vector signed char);
14684 vector signed short vec_slo (vector signed short, vector unsigned char);
14685 vector unsigned short vec_slo (vector unsigned short,
14686 vector signed char);
14687 vector unsigned short vec_slo (vector unsigned short,
14688 vector unsigned char);
14689 vector pixel vec_slo (vector pixel, vector signed char);
14690 vector pixel vec_slo (vector pixel, vector unsigned char);
14691 vector signed char vec_slo (vector signed char, vector signed char);
14692 vector signed char vec_slo (vector signed char, vector unsigned char);
14693 vector unsigned char vec_slo (vector unsigned char, vector signed char);
14694 vector unsigned char vec_slo (vector unsigned char,
14695 vector unsigned char);
14696
14697 vector signed char vec_splat (vector signed char, const int);
14698 vector unsigned char vec_splat (vector unsigned char, const int);
14699 vector bool char vec_splat (vector bool char, const int);
14700 vector signed short vec_splat (vector signed short, const int);
14701 vector unsigned short vec_splat (vector unsigned short, const int);
14702 vector bool short vec_splat (vector bool short, const int);
14703 vector pixel vec_splat (vector pixel, const int);
14704 vector float vec_splat (vector float, const int);
14705 vector signed int vec_splat (vector signed int, const int);
14706 vector unsigned int vec_splat (vector unsigned int, const int);
14707 vector bool int vec_splat (vector bool int, const int);
14708
14709 vector float vec_vspltw (vector float, const int);
14710 vector signed int vec_vspltw (vector signed int, const int);
14711 vector unsigned int vec_vspltw (vector unsigned int, const int);
14712 vector bool int vec_vspltw (vector bool int, const int);
14713
14714 vector bool short vec_vsplth (vector bool short, const int);
14715 vector signed short vec_vsplth (vector signed short, const int);
14716 vector unsigned short vec_vsplth (vector unsigned short, const int);
14717 vector pixel vec_vsplth (vector pixel, const int);
14718
14719 vector signed char vec_vspltb (vector signed char, const int);
14720 vector unsigned char vec_vspltb (vector unsigned char, const int);
14721 vector bool char vec_vspltb (vector bool char, const int);
14722
14723 vector signed char vec_splat_s8 (const int);
14724
14725 vector signed short vec_splat_s16 (const int);
14726
14727 vector signed int vec_splat_s32 (const int);
14728
14729 vector unsigned char vec_splat_u8 (const int);
14730
14731 vector unsigned short vec_splat_u16 (const int);
14732
14733 vector unsigned int vec_splat_u32 (const int);
14734
14735 vector signed char vec_sr (vector signed char, vector unsigned char);
14736 vector unsigned char vec_sr (vector unsigned char,
14737 vector unsigned char);
14738 vector signed short vec_sr (vector signed short,
14739 vector unsigned short);
14740 vector unsigned short vec_sr (vector unsigned short,
14741 vector unsigned short);
14742 vector signed int vec_sr (vector signed int, vector unsigned int);
14743 vector unsigned int vec_sr (vector unsigned int, vector unsigned int);
14744
14745 vector signed int vec_vsrw (vector signed int, vector unsigned int);
14746 vector unsigned int vec_vsrw (vector unsigned int, vector unsigned int);
14747
14748 vector signed short vec_vsrh (vector signed short,
14749 vector unsigned short);
14750 vector unsigned short vec_vsrh (vector unsigned short,
14751 vector unsigned short);
14752
14753 vector signed char vec_vsrb (vector signed char, vector unsigned char);
14754 vector unsigned char vec_vsrb (vector unsigned char,
14755 vector unsigned char);
14756
14757 vector signed char vec_sra (vector signed char, vector unsigned char);
14758 vector unsigned char vec_sra (vector unsigned char,
14759 vector unsigned char);
14760 vector signed short vec_sra (vector signed short,
14761 vector unsigned short);
14762 vector unsigned short vec_sra (vector unsigned short,
14763 vector unsigned short);
14764 vector signed int vec_sra (vector signed int, vector unsigned int);
14765 vector unsigned int vec_sra (vector unsigned int, vector unsigned int);
14766
14767 vector signed int vec_vsraw (vector signed int, vector unsigned int);
14768 vector unsigned int vec_vsraw (vector unsigned int,
14769 vector unsigned int);
14770
14771 vector signed short vec_vsrah (vector signed short,
14772 vector unsigned short);
14773 vector unsigned short vec_vsrah (vector unsigned short,
14774 vector unsigned short);
14775
14776 vector signed char vec_vsrab (vector signed char, vector unsigned char);
14777 vector unsigned char vec_vsrab (vector unsigned char,
14778 vector unsigned char);
14779
14780 vector signed int vec_srl (vector signed int, vector unsigned int);
14781 vector signed int vec_srl (vector signed int, vector unsigned short);
14782 vector signed int vec_srl (vector signed int, vector unsigned char);
14783 vector unsigned int vec_srl (vector unsigned int, vector unsigned int);
14784 vector unsigned int vec_srl (vector unsigned int,
14785 vector unsigned short);
14786 vector unsigned int vec_srl (vector unsigned int, vector unsigned char);
14787 vector bool int vec_srl (vector bool int, vector unsigned int);
14788 vector bool int vec_srl (vector bool int, vector unsigned short);
14789 vector bool int vec_srl (vector bool int, vector unsigned char);
14790 vector signed short vec_srl (vector signed short, vector unsigned int);
14791 vector signed short vec_srl (vector signed short,
14792 vector unsigned short);
14793 vector signed short vec_srl (vector signed short, vector unsigned char);
14794 vector unsigned short vec_srl (vector unsigned short,
14795 vector unsigned int);
14796 vector unsigned short vec_srl (vector unsigned short,
14797 vector unsigned short);
14798 vector unsigned short vec_srl (vector unsigned short,
14799 vector unsigned char);
14800 vector bool short vec_srl (vector bool short, vector unsigned int);
14801 vector bool short vec_srl (vector bool short, vector unsigned short);
14802 vector bool short vec_srl (vector bool short, vector unsigned char);
14803 vector pixel vec_srl (vector pixel, vector unsigned int);
14804 vector pixel vec_srl (vector pixel, vector unsigned short);
14805 vector pixel vec_srl (vector pixel, vector unsigned char);
14806 vector signed char vec_srl (vector signed char, vector unsigned int);
14807 vector signed char vec_srl (vector signed char, vector unsigned short);
14808 vector signed char vec_srl (vector signed char, vector unsigned char);
14809 vector unsigned char vec_srl (vector unsigned char,
14810 vector unsigned int);
14811 vector unsigned char vec_srl (vector unsigned char,
14812 vector unsigned short);
14813 vector unsigned char vec_srl (vector unsigned char,
14814 vector unsigned char);
14815 vector bool char vec_srl (vector bool char, vector unsigned int);
14816 vector bool char vec_srl (vector bool char, vector unsigned short);
14817 vector bool char vec_srl (vector bool char, vector unsigned char);
14818
14819 vector float vec_sro (vector float, vector signed char);
14820 vector float vec_sro (vector float, vector unsigned char);
14821 vector signed int vec_sro (vector signed int, vector signed char);
14822 vector signed int vec_sro (vector signed int, vector unsigned char);
14823 vector unsigned int vec_sro (vector unsigned int, vector signed char);
14824 vector unsigned int vec_sro (vector unsigned int, vector unsigned char);
14825 vector signed short vec_sro (vector signed short, vector signed char);
14826 vector signed short vec_sro (vector signed short, vector unsigned char);
14827 vector unsigned short vec_sro (vector unsigned short,
14828 vector signed char);
14829 vector unsigned short vec_sro (vector unsigned short,
14830 vector unsigned char);
14831 vector pixel vec_sro (vector pixel, vector signed char);
14832 vector pixel vec_sro (vector pixel, vector unsigned char);
14833 vector signed char vec_sro (vector signed char, vector signed char);
14834 vector signed char vec_sro (vector signed char, vector unsigned char);
14835 vector unsigned char vec_sro (vector unsigned char, vector signed char);
14836 vector unsigned char vec_sro (vector unsigned char,
14837 vector unsigned char);
14838
14839 void vec_st (vector float, int, vector float *);
14840 void vec_st (vector float, int, float *);
14841 void vec_st (vector signed int, int, vector signed int *);
14842 void vec_st (vector signed int, int, int *);
14843 void vec_st (vector unsigned int, int, vector unsigned int *);
14844 void vec_st (vector unsigned int, int, unsigned int *);
14845 void vec_st (vector bool int, int, vector bool int *);
14846 void vec_st (vector bool int, int, unsigned int *);
14847 void vec_st (vector bool int, int, int *);
14848 void vec_st (vector signed short, int, vector signed short *);
14849 void vec_st (vector signed short, int, short *);
14850 void vec_st (vector unsigned short, int, vector unsigned short *);
14851 void vec_st (vector unsigned short, int, unsigned short *);
14852 void vec_st (vector bool short, int, vector bool short *);
14853 void vec_st (vector bool short, int, unsigned short *);
14854 void vec_st (vector pixel, int, vector pixel *);
14855 void vec_st (vector pixel, int, unsigned short *);
14856 void vec_st (vector pixel, int, short *);
14857 void vec_st (vector bool short, int, short *);
14858 void vec_st (vector signed char, int, vector signed char *);
14859 void vec_st (vector signed char, int, signed char *);
14860 void vec_st (vector unsigned char, int, vector unsigned char *);
14861 void vec_st (vector unsigned char, int, unsigned char *);
14862 void vec_st (vector bool char, int, vector bool char *);
14863 void vec_st (vector bool char, int, unsigned char *);
14864 void vec_st (vector bool char, int, signed char *);
14865
14866 void vec_ste (vector signed char, int, signed char *);
14867 void vec_ste (vector unsigned char, int, unsigned char *);
14868 void vec_ste (vector bool char, int, signed char *);
14869 void vec_ste (vector bool char, int, unsigned char *);
14870 void vec_ste (vector signed short, int, short *);
14871 void vec_ste (vector unsigned short, int, unsigned short *);
14872 void vec_ste (vector bool short, int, short *);
14873 void vec_ste (vector bool short, int, unsigned short *);
14874 void vec_ste (vector pixel, int, short *);
14875 void vec_ste (vector pixel, int, unsigned short *);
14876 void vec_ste (vector float, int, float *);
14877 void vec_ste (vector signed int, int, int *);
14878 void vec_ste (vector unsigned int, int, unsigned int *);
14879 void vec_ste (vector bool int, int, int *);
14880 void vec_ste (vector bool int, int, unsigned int *);
14881
14882 void vec_stvewx (vector float, int, float *);
14883 void vec_stvewx (vector signed int, int, int *);
14884 void vec_stvewx (vector unsigned int, int, unsigned int *);
14885 void vec_stvewx (vector bool int, int, int *);
14886 void vec_stvewx (vector bool int, int, unsigned int *);
14887
14888 void vec_stvehx (vector signed short, int, short *);
14889 void vec_stvehx (vector unsigned short, int, unsigned short *);
14890 void vec_stvehx (vector bool short, int, short *);
14891 void vec_stvehx (vector bool short, int, unsigned short *);
14892 void vec_stvehx (vector pixel, int, short *);
14893 void vec_stvehx (vector pixel, int, unsigned short *);
14894
14895 void vec_stvebx (vector signed char, int, signed char *);
14896 void vec_stvebx (vector unsigned char, int, unsigned char *);
14897 void vec_stvebx (vector bool char, int, signed char *);
14898 void vec_stvebx (vector bool char, int, unsigned char *);
14899
14900 void vec_stl (vector float, int, vector float *);
14901 void vec_stl (vector float, int, float *);
14902 void vec_stl (vector signed int, int, vector signed int *);
14903 void vec_stl (vector signed int, int, int *);
14904 void vec_stl (vector unsigned int, int, vector unsigned int *);
14905 void vec_stl (vector unsigned int, int, unsigned int *);
14906 void vec_stl (vector bool int, int, vector bool int *);
14907 void vec_stl (vector bool int, int, unsigned int *);
14908 void vec_stl (vector bool int, int, int *);
14909 void vec_stl (vector signed short, int, vector signed short *);
14910 void vec_stl (vector signed short, int, short *);
14911 void vec_stl (vector unsigned short, int, vector unsigned short *);
14912 void vec_stl (vector unsigned short, int, unsigned short *);
14913 void vec_stl (vector bool short, int, vector bool short *);
14914 void vec_stl (vector bool short, int, unsigned short *);
14915 void vec_stl (vector bool short, int, short *);
14916 void vec_stl (vector pixel, int, vector pixel *);
14917 void vec_stl (vector pixel, int, unsigned short *);
14918 void vec_stl (vector pixel, int, short *);
14919 void vec_stl (vector signed char, int, vector signed char *);
14920 void vec_stl (vector signed char, int, signed char *);
14921 void vec_stl (vector unsigned char, int, vector unsigned char *);
14922 void vec_stl (vector unsigned char, int, unsigned char *);
14923 void vec_stl (vector bool char, int, vector bool char *);
14924 void vec_stl (vector bool char, int, unsigned char *);
14925 void vec_stl (vector bool char, int, signed char *);
14926
14927 vector signed char vec_sub (vector bool char, vector signed char);
14928 vector signed char vec_sub (vector signed char, vector bool char);
14929 vector signed char vec_sub (vector signed char, vector signed char);
14930 vector unsigned char vec_sub (vector bool char, vector unsigned char);
14931 vector unsigned char vec_sub (vector unsigned char, vector bool char);
14932 vector unsigned char vec_sub (vector unsigned char,
14933 vector unsigned char);
14934 vector signed short vec_sub (vector bool short, vector signed short);
14935 vector signed short vec_sub (vector signed short, vector bool short);
14936 vector signed short vec_sub (vector signed short, vector signed short);
14937 vector unsigned short vec_sub (vector bool short,
14938 vector unsigned short);
14939 vector unsigned short vec_sub (vector unsigned short,
14940 vector bool short);
14941 vector unsigned short vec_sub (vector unsigned short,
14942 vector unsigned short);
14943 vector signed int vec_sub (vector bool int, vector signed int);
14944 vector signed int vec_sub (vector signed int, vector bool int);
14945 vector signed int vec_sub (vector signed int, vector signed int);
14946 vector unsigned int vec_sub (vector bool int, vector unsigned int);
14947 vector unsigned int vec_sub (vector unsigned int, vector bool int);
14948 vector unsigned int vec_sub (vector unsigned int, vector unsigned int);
14949 vector float vec_sub (vector float, vector float);
14950
14951 vector float vec_vsubfp (vector float, vector float);
14952
14953 vector signed int vec_vsubuwm (vector bool int, vector signed int);
14954 vector signed int vec_vsubuwm (vector signed int, vector bool int);
14955 vector signed int vec_vsubuwm (vector signed int, vector signed int);
14956 vector unsigned int vec_vsubuwm (vector bool int, vector unsigned int);
14957 vector unsigned int vec_vsubuwm (vector unsigned int, vector bool int);
14958 vector unsigned int vec_vsubuwm (vector unsigned int,
14959 vector unsigned int);
14960
14961 vector signed short vec_vsubuhm (vector bool short,
14962 vector signed short);
14963 vector signed short vec_vsubuhm (vector signed short,
14964 vector bool short);
14965 vector signed short vec_vsubuhm (vector signed short,
14966 vector signed short);
14967 vector unsigned short vec_vsubuhm (vector bool short,
14968 vector unsigned short);
14969 vector unsigned short vec_vsubuhm (vector unsigned short,
14970 vector bool short);
14971 vector unsigned short vec_vsubuhm (vector unsigned short,
14972 vector unsigned short);
14973
14974 vector signed char vec_vsububm (vector bool char, vector signed char);
14975 vector signed char vec_vsububm (vector signed char, vector bool char);
14976 vector signed char vec_vsububm (vector signed char, vector signed char);
14977 vector unsigned char vec_vsububm (vector bool char,
14978 vector unsigned char);
14979 vector unsigned char vec_vsububm (vector unsigned char,
14980 vector bool char);
14981 vector unsigned char vec_vsububm (vector unsigned char,
14982 vector unsigned char);
14983
14984 vector unsigned int vec_subc (vector unsigned int, vector unsigned int);
14985
14986 vector unsigned char vec_subs (vector bool char, vector unsigned char);
14987 vector unsigned char vec_subs (vector unsigned char, vector bool char);
14988 vector unsigned char vec_subs (vector unsigned char,
14989 vector unsigned char);
14990 vector signed char vec_subs (vector bool char, vector signed char);
14991 vector signed char vec_subs (vector signed char, vector bool char);
14992 vector signed char vec_subs (vector signed char, vector signed char);
14993 vector unsigned short vec_subs (vector bool short,
14994 vector unsigned short);
14995 vector unsigned short vec_subs (vector unsigned short,
14996 vector bool short);
14997 vector unsigned short vec_subs (vector unsigned short,
14998 vector unsigned short);
14999 vector signed short vec_subs (vector bool short, vector signed short);
15000 vector signed short vec_subs (vector signed short, vector bool short);
15001 vector signed short vec_subs (vector signed short, vector signed short);
15002 vector unsigned int vec_subs (vector bool int, vector unsigned int);
15003 vector unsigned int vec_subs (vector unsigned int, vector bool int);
15004 vector unsigned int vec_subs (vector unsigned int, vector unsigned int);
15005 vector signed int vec_subs (vector bool int, vector signed int);
15006 vector signed int vec_subs (vector signed int, vector bool int);
15007 vector signed int vec_subs (vector signed int, vector signed int);
15008
15009 vector signed int vec_vsubsws (vector bool int, vector signed int);
15010 vector signed int vec_vsubsws (vector signed int, vector bool int);
15011 vector signed int vec_vsubsws (vector signed int, vector signed int);
15012
15013 vector unsigned int vec_vsubuws (vector bool int, vector unsigned int);
15014 vector unsigned int vec_vsubuws (vector unsigned int, vector bool int);
15015 vector unsigned int vec_vsubuws (vector unsigned int,
15016 vector unsigned int);
15017
15018 vector signed short vec_vsubshs (vector bool short,
15019 vector signed short);
15020 vector signed short vec_vsubshs (vector signed short,
15021 vector bool short);
15022 vector signed short vec_vsubshs (vector signed short,
15023 vector signed short);
15024
15025 vector unsigned short vec_vsubuhs (vector bool short,
15026 vector unsigned short);
15027 vector unsigned short vec_vsubuhs (vector unsigned short,
15028 vector bool short);
15029 vector unsigned short vec_vsubuhs (vector unsigned short,
15030 vector unsigned short);
15031
15032 vector signed char vec_vsubsbs (vector bool char, vector signed char);
15033 vector signed char vec_vsubsbs (vector signed char, vector bool char);
15034 vector signed char vec_vsubsbs (vector signed char, vector signed char);
15035
15036 vector unsigned char vec_vsububs (vector bool char,
15037 vector unsigned char);
15038 vector unsigned char vec_vsububs (vector unsigned char,
15039 vector bool char);
15040 vector unsigned char vec_vsububs (vector unsigned char,
15041 vector unsigned char);
15042
15043 vector unsigned int vec_sum4s (vector unsigned char,
15044 vector unsigned int);
15045 vector signed int vec_sum4s (vector signed char, vector signed int);
15046 vector signed int vec_sum4s (vector signed short, vector signed int);
15047
15048 vector signed int vec_vsum4shs (vector signed short, vector signed int);
15049
15050 vector signed int vec_vsum4sbs (vector signed char, vector signed int);
15051
15052 vector unsigned int vec_vsum4ubs (vector unsigned char,
15053 vector unsigned int);
15054
15055 vector signed int vec_sum2s (vector signed int, vector signed int);
15056
15057 vector signed int vec_sums (vector signed int, vector signed int);
15058
15059 vector float vec_trunc (vector float);
15060
15061 vector signed short vec_unpackh (vector signed char);
15062 vector bool short vec_unpackh (vector bool char);
15063 vector signed int vec_unpackh (vector signed short);
15064 vector bool int vec_unpackh (vector bool short);
15065 vector unsigned int vec_unpackh (vector pixel);
15066
15067 vector bool int vec_vupkhsh (vector bool short);
15068 vector signed int vec_vupkhsh (vector signed short);
15069
15070 vector unsigned int vec_vupkhpx (vector pixel);
15071
15072 vector bool short vec_vupkhsb (vector bool char);
15073 vector signed short vec_vupkhsb (vector signed char);
15074
15075 vector signed short vec_unpackl (vector signed char);
15076 vector bool short vec_unpackl (vector bool char);
15077 vector unsigned int vec_unpackl (vector pixel);
15078 vector signed int vec_unpackl (vector signed short);
15079 vector bool int vec_unpackl (vector bool short);
15080
15081 vector unsigned int vec_vupklpx (vector pixel);
15082
15083 vector bool int vec_vupklsh (vector bool short);
15084 vector signed int vec_vupklsh (vector signed short);
15085
15086 vector bool short vec_vupklsb (vector bool char);
15087 vector signed short vec_vupklsb (vector signed char);
15088
15089 vector float vec_xor (vector float, vector float);
15090 vector float vec_xor (vector float, vector bool int);
15091 vector float vec_xor (vector bool int, vector float);
15092 vector bool int vec_xor (vector bool int, vector bool int);
15093 vector signed int vec_xor (vector bool int, vector signed int);
15094 vector signed int vec_xor (vector signed int, vector bool int);
15095 vector signed int vec_xor (vector signed int, vector signed int);
15096 vector unsigned int vec_xor (vector bool int, vector unsigned int);
15097 vector unsigned int vec_xor (vector unsigned int, vector bool int);
15098 vector unsigned int vec_xor (vector unsigned int, vector unsigned int);
15099 vector bool short vec_xor (vector bool short, vector bool short);
15100 vector signed short vec_xor (vector bool short, vector signed short);
15101 vector signed short vec_xor (vector signed short, vector bool short);
15102 vector signed short vec_xor (vector signed short, vector signed short);
15103 vector unsigned short vec_xor (vector bool short,
15104 vector unsigned short);
15105 vector unsigned short vec_xor (vector unsigned short,
15106 vector bool short);
15107 vector unsigned short vec_xor (vector unsigned short,
15108 vector unsigned short);
15109 vector signed char vec_xor (vector bool char, vector signed char);
15110 vector bool char vec_xor (vector bool char, vector bool char);
15111 vector signed char vec_xor (vector signed char, vector bool char);
15112 vector signed char vec_xor (vector signed char, vector signed char);
15113 vector unsigned char vec_xor (vector bool char, vector unsigned char);
15114 vector unsigned char vec_xor (vector unsigned char, vector bool char);
15115 vector unsigned char vec_xor (vector unsigned char,
15116 vector unsigned char);
15117
15118 int vec_all_eq (vector signed char, vector bool char);
15119 int vec_all_eq (vector signed char, vector signed char);
15120 int vec_all_eq (vector unsigned char, vector bool char);
15121 int vec_all_eq (vector unsigned char, vector unsigned char);
15122 int vec_all_eq (vector bool char, vector bool char);
15123 int vec_all_eq (vector bool char, vector unsigned char);
15124 int vec_all_eq (vector bool char, vector signed char);
15125 int vec_all_eq (vector signed short, vector bool short);
15126 int vec_all_eq (vector signed short, vector signed short);
15127 int vec_all_eq (vector unsigned short, vector bool short);
15128 int vec_all_eq (vector unsigned short, vector unsigned short);
15129 int vec_all_eq (vector bool short, vector bool short);
15130 int vec_all_eq (vector bool short, vector unsigned short);
15131 int vec_all_eq (vector bool short, vector signed short);
15132 int vec_all_eq (vector pixel, vector pixel);
15133 int vec_all_eq (vector signed int, vector bool int);
15134 int vec_all_eq (vector signed int, vector signed int);
15135 int vec_all_eq (vector unsigned int, vector bool int);
15136 int vec_all_eq (vector unsigned int, vector unsigned int);
15137 int vec_all_eq (vector bool int, vector bool int);
15138 int vec_all_eq (vector bool int, vector unsigned int);
15139 int vec_all_eq (vector bool int, vector signed int);
15140 int vec_all_eq (vector float, vector float);
15141
15142 int vec_all_ge (vector bool char, vector unsigned char);
15143 int vec_all_ge (vector unsigned char, vector bool char);
15144 int vec_all_ge (vector unsigned char, vector unsigned char);
15145 int vec_all_ge (vector bool char, vector signed char);
15146 int vec_all_ge (vector signed char, vector bool char);
15147 int vec_all_ge (vector signed char, vector signed char);
15148 int vec_all_ge (vector bool short, vector unsigned short);
15149 int vec_all_ge (vector unsigned short, vector bool short);
15150 int vec_all_ge (vector unsigned short, vector unsigned short);
15151 int vec_all_ge (vector signed short, vector signed short);
15152 int vec_all_ge (vector bool short, vector signed short);
15153 int vec_all_ge (vector signed short, vector bool short);
15154 int vec_all_ge (vector bool int, vector unsigned int);
15155 int vec_all_ge (vector unsigned int, vector bool int);
15156 int vec_all_ge (vector unsigned int, vector unsigned int);
15157 int vec_all_ge (vector bool int, vector signed int);
15158 int vec_all_ge (vector signed int, vector bool int);
15159 int vec_all_ge (vector signed int, vector signed int);
15160 int vec_all_ge (vector float, vector float);
15161
15162 int vec_all_gt (vector bool char, vector unsigned char);
15163 int vec_all_gt (vector unsigned char, vector bool char);
15164 int vec_all_gt (vector unsigned char, vector unsigned char);
15165 int vec_all_gt (vector bool char, vector signed char);
15166 int vec_all_gt (vector signed char, vector bool char);
15167 int vec_all_gt (vector signed char, vector signed char);
15168 int vec_all_gt (vector bool short, vector unsigned short);
15169 int vec_all_gt (vector unsigned short, vector bool short);
15170 int vec_all_gt (vector unsigned short, vector unsigned short);
15171 int vec_all_gt (vector bool short, vector signed short);
15172 int vec_all_gt (vector signed short, vector bool short);
15173 int vec_all_gt (vector signed short, vector signed short);
15174 int vec_all_gt (vector bool int, vector unsigned int);
15175 int vec_all_gt (vector unsigned int, vector bool int);
15176 int vec_all_gt (vector unsigned int, vector unsigned int);
15177 int vec_all_gt (vector bool int, vector signed int);
15178 int vec_all_gt (vector signed int, vector bool int);
15179 int vec_all_gt (vector signed int, vector signed int);
15180 int vec_all_gt (vector float, vector float);
15181
15182 int vec_all_in (vector float, vector float);
15183
15184 int vec_all_le (vector bool char, vector unsigned char);
15185 int vec_all_le (vector unsigned char, vector bool char);
15186 int vec_all_le (vector unsigned char, vector unsigned char);
15187 int vec_all_le (vector bool char, vector signed char);
15188 int vec_all_le (vector signed char, vector bool char);
15189 int vec_all_le (vector signed char, vector signed char);
15190 int vec_all_le (vector bool short, vector unsigned short);
15191 int vec_all_le (vector unsigned short, vector bool short);
15192 int vec_all_le (vector unsigned short, vector unsigned short);
15193 int vec_all_le (vector bool short, vector signed short);
15194 int vec_all_le (vector signed short, vector bool short);
15195 int vec_all_le (vector signed short, vector signed short);
15196 int vec_all_le (vector bool int, vector unsigned int);
15197 int vec_all_le (vector unsigned int, vector bool int);
15198 int vec_all_le (vector unsigned int, vector unsigned int);
15199 int vec_all_le (vector bool int, vector signed int);
15200 int vec_all_le (vector signed int, vector bool int);
15201 int vec_all_le (vector signed int, vector signed int);
15202 int vec_all_le (vector float, vector float);
15203
15204 int vec_all_lt (vector bool char, vector unsigned char);
15205 int vec_all_lt (vector unsigned char, vector bool char);
15206 int vec_all_lt (vector unsigned char, vector unsigned char);
15207 int vec_all_lt (vector bool char, vector signed char);
15208 int vec_all_lt (vector signed char, vector bool char);
15209 int vec_all_lt (vector signed char, vector signed char);
15210 int vec_all_lt (vector bool short, vector unsigned short);
15211 int vec_all_lt (vector unsigned short, vector bool short);
15212 int vec_all_lt (vector unsigned short, vector unsigned short);
15213 int vec_all_lt (vector bool short, vector signed short);
15214 int vec_all_lt (vector signed short, vector bool short);
15215 int vec_all_lt (vector signed short, vector signed short);
15216 int vec_all_lt (vector bool int, vector unsigned int);
15217 int vec_all_lt (vector unsigned int, vector bool int);
15218 int vec_all_lt (vector unsigned int, vector unsigned int);
15219 int vec_all_lt (vector bool int, vector signed int);
15220 int vec_all_lt (vector signed int, vector bool int);
15221 int vec_all_lt (vector signed int, vector signed int);
15222 int vec_all_lt (vector float, vector float);
15223
15224 int vec_all_nan (vector float);
15225
15226 int vec_all_ne (vector signed char, vector bool char);
15227 int vec_all_ne (vector signed char, vector signed char);
15228 int vec_all_ne (vector unsigned char, vector bool char);
15229 int vec_all_ne (vector unsigned char, vector unsigned char);
15230 int vec_all_ne (vector bool char, vector bool char);
15231 int vec_all_ne (vector bool char, vector unsigned char);
15232 int vec_all_ne (vector bool char, vector signed char);
15233 int vec_all_ne (vector signed short, vector bool short);
15234 int vec_all_ne (vector signed short, vector signed short);
15235 int vec_all_ne (vector unsigned short, vector bool short);
15236 int vec_all_ne (vector unsigned short, vector unsigned short);
15237 int vec_all_ne (vector bool short, vector bool short);
15238 int vec_all_ne (vector bool short, vector unsigned short);
15239 int vec_all_ne (vector bool short, vector signed short);
15240 int vec_all_ne (vector pixel, vector pixel);
15241 int vec_all_ne (vector signed int, vector bool int);
15242 int vec_all_ne (vector signed int, vector signed int);
15243 int vec_all_ne (vector unsigned int, vector bool int);
15244 int vec_all_ne (vector unsigned int, vector unsigned int);
15245 int vec_all_ne (vector bool int, vector bool int);
15246 int vec_all_ne (vector bool int, vector unsigned int);
15247 int vec_all_ne (vector bool int, vector signed int);
15248 int vec_all_ne (vector float, vector float);
15249
15250 int vec_all_nge (vector float, vector float);
15251
15252 int vec_all_ngt (vector float, vector float);
15253
15254 int vec_all_nle (vector float, vector float);
15255
15256 int vec_all_nlt (vector float, vector float);
15257
15258 int vec_all_numeric (vector float);
15259
15260 int vec_any_eq (vector signed char, vector bool char);
15261 int vec_any_eq (vector signed char, vector signed char);
15262 int vec_any_eq (vector unsigned char, vector bool char);
15263 int vec_any_eq (vector unsigned char, vector unsigned char);
15264 int vec_any_eq (vector bool char, vector bool char);
15265 int vec_any_eq (vector bool char, vector unsigned char);
15266 int vec_any_eq (vector bool char, vector signed char);
15267 int vec_any_eq (vector signed short, vector bool short);
15268 int vec_any_eq (vector signed short, vector signed short);
15269 int vec_any_eq (vector unsigned short, vector bool short);
15270 int vec_any_eq (vector unsigned short, vector unsigned short);
15271 int vec_any_eq (vector bool short, vector bool short);
15272 int vec_any_eq (vector bool short, vector unsigned short);
15273 int vec_any_eq (vector bool short, vector signed short);
15274 int vec_any_eq (vector pixel, vector pixel);
15275 int vec_any_eq (vector signed int, vector bool int);
15276 int vec_any_eq (vector signed int, vector signed int);
15277 int vec_any_eq (vector unsigned int, vector bool int);
15278 int vec_any_eq (vector unsigned int, vector unsigned int);
15279 int vec_any_eq (vector bool int, vector bool int);
15280 int vec_any_eq (vector bool int, vector unsigned int);
15281 int vec_any_eq (vector bool int, vector signed int);
15282 int vec_any_eq (vector float, vector float);
15283
15284 int vec_any_ge (vector signed char, vector bool char);
15285 int vec_any_ge (vector unsigned char, vector bool char);
15286 int vec_any_ge (vector unsigned char, vector unsigned char);
15287 int vec_any_ge (vector signed char, vector signed char);
15288 int vec_any_ge (vector bool char, vector unsigned char);
15289 int vec_any_ge (vector bool char, vector signed char);
15290 int vec_any_ge (vector unsigned short, vector bool short);
15291 int vec_any_ge (vector unsigned short, vector unsigned short);
15292 int vec_any_ge (vector signed short, vector signed short);
15293 int vec_any_ge (vector signed short, vector bool short);
15294 int vec_any_ge (vector bool short, vector unsigned short);
15295 int vec_any_ge (vector bool short, vector signed short);
15296 int vec_any_ge (vector signed int, vector bool int);
15297 int vec_any_ge (vector unsigned int, vector bool int);
15298 int vec_any_ge (vector unsigned int, vector unsigned int);
15299 int vec_any_ge (vector signed int, vector signed int);
15300 int vec_any_ge (vector bool int, vector unsigned int);
15301 int vec_any_ge (vector bool int, vector signed int);
15302 int vec_any_ge (vector float, vector float);
15303
15304 int vec_any_gt (vector bool char, vector unsigned char);
15305 int vec_any_gt (vector unsigned char, vector bool char);
15306 int vec_any_gt (vector unsigned char, vector unsigned char);
15307 int vec_any_gt (vector bool char, vector signed char);
15308 int vec_any_gt (vector signed char, vector bool char);
15309 int vec_any_gt (vector signed char, vector signed char);
15310 int vec_any_gt (vector bool short, vector unsigned short);
15311 int vec_any_gt (vector unsigned short, vector bool short);
15312 int vec_any_gt (vector unsigned short, vector unsigned short);
15313 int vec_any_gt (vector bool short, vector signed short);
15314 int vec_any_gt (vector signed short, vector bool short);
15315 int vec_any_gt (vector signed short, vector signed short);
15316 int vec_any_gt (vector bool int, vector unsigned int);
15317 int vec_any_gt (vector unsigned int, vector bool int);
15318 int vec_any_gt (vector unsigned int, vector unsigned int);
15319 int vec_any_gt (vector bool int, vector signed int);
15320 int vec_any_gt (vector signed int, vector bool int);
15321 int vec_any_gt (vector signed int, vector signed int);
15322 int vec_any_gt (vector float, vector float);
15323
15324 int vec_any_le (vector bool char, vector unsigned char);
15325 int vec_any_le (vector unsigned char, vector bool char);
15326 int vec_any_le (vector unsigned char, vector unsigned char);
15327 int vec_any_le (vector bool char, vector signed char);
15328 int vec_any_le (vector signed char, vector bool char);
15329 int vec_any_le (vector signed char, vector signed char);
15330 int vec_any_le (vector bool short, vector unsigned short);
15331 int vec_any_le (vector unsigned short, vector bool short);
15332 int vec_any_le (vector unsigned short, vector unsigned short);
15333 int vec_any_le (vector bool short, vector signed short);
15334 int vec_any_le (vector signed short, vector bool short);
15335 int vec_any_le (vector signed short, vector signed short);
15336 int vec_any_le (vector bool int, vector unsigned int);
15337 int vec_any_le (vector unsigned int, vector bool int);
15338 int vec_any_le (vector unsigned int, vector unsigned int);
15339 int vec_any_le (vector bool int, vector signed int);
15340 int vec_any_le (vector signed int, vector bool int);
15341 int vec_any_le (vector signed int, vector signed int);
15342 int vec_any_le (vector float, vector float);
15343
15344 int vec_any_lt (vector bool char, vector unsigned char);
15345 int vec_any_lt (vector unsigned char, vector bool char);
15346 int vec_any_lt (vector unsigned char, vector unsigned char);
15347 int vec_any_lt (vector bool char, vector signed char);
15348 int vec_any_lt (vector signed char, vector bool char);
15349 int vec_any_lt (vector signed char, vector signed char);
15350 int vec_any_lt (vector bool short, vector unsigned short);
15351 int vec_any_lt (vector unsigned short, vector bool short);
15352 int vec_any_lt (vector unsigned short, vector unsigned short);
15353 int vec_any_lt (vector bool short, vector signed short);
15354 int vec_any_lt (vector signed short, vector bool short);
15355 int vec_any_lt (vector signed short, vector signed short);
15356 int vec_any_lt (vector bool int, vector unsigned int);
15357 int vec_any_lt (vector unsigned int, vector bool int);
15358 int vec_any_lt (vector unsigned int, vector unsigned int);
15359 int vec_any_lt (vector bool int, vector signed int);
15360 int vec_any_lt (vector signed int, vector bool int);
15361 int vec_any_lt (vector signed int, vector signed int);
15362 int vec_any_lt (vector float, vector float);
15363
15364 int vec_any_nan (vector float);
15365
15366 int vec_any_ne (vector signed char, vector bool char);
15367 int vec_any_ne (vector signed char, vector signed char);
15368 int vec_any_ne (vector unsigned char, vector bool char);
15369 int vec_any_ne (vector unsigned char, vector unsigned char);
15370 int vec_any_ne (vector bool char, vector bool char);
15371 int vec_any_ne (vector bool char, vector unsigned char);
15372 int vec_any_ne (vector bool char, vector signed char);
15373 int vec_any_ne (vector signed short, vector bool short);
15374 int vec_any_ne (vector signed short, vector signed short);
15375 int vec_any_ne (vector unsigned short, vector bool short);
15376 int vec_any_ne (vector unsigned short, vector unsigned short);
15377 int vec_any_ne (vector bool short, vector bool short);
15378 int vec_any_ne (vector bool short, vector unsigned short);
15379 int vec_any_ne (vector bool short, vector signed short);
15380 int vec_any_ne (vector pixel, vector pixel);
15381 int vec_any_ne (vector signed int, vector bool int);
15382 int vec_any_ne (vector signed int, vector signed int);
15383 int vec_any_ne (vector unsigned int, vector bool int);
15384 int vec_any_ne (vector unsigned int, vector unsigned int);
15385 int vec_any_ne (vector bool int, vector bool int);
15386 int vec_any_ne (vector bool int, vector unsigned int);
15387 int vec_any_ne (vector bool int, vector signed int);
15388 int vec_any_ne (vector float, vector float);
15389
15390 int vec_any_nge (vector float, vector float);
15391
15392 int vec_any_ngt (vector float, vector float);
15393
15394 int vec_any_nle (vector float, vector float);
15395
15396 int vec_any_nlt (vector float, vector float);
15397
15398 int vec_any_numeric (vector float);
15399
15400 int vec_any_out (vector float, vector float);
15401 @end smallexample
15402
15403 If the vector/scalar (VSX) instruction set is available, the following
15404 additional functions are available:
15405
15406 @smallexample
15407 vector double vec_abs (vector double);
15408 vector double vec_add (vector double, vector double);
15409 vector double vec_and (vector double, vector double);
15410 vector double vec_and (vector double, vector bool long);
15411 vector double vec_and (vector bool long, vector double);
15412 vector double vec_andc (vector double, vector double);
15413 vector double vec_andc (vector double, vector bool long);
15414 vector double vec_andc (vector bool long, vector double);
15415 vector double vec_ceil (vector double);
15416 vector bool long vec_cmpeq (vector double, vector double);
15417 vector bool long vec_cmpge (vector double, vector double);
15418 vector bool long vec_cmpgt (vector double, vector double);
15419 vector bool long vec_cmple (vector double, vector double);
15420 vector bool long vec_cmplt (vector double, vector double);
15421 vector float vec_div (vector float, vector float);
15422 vector double vec_div (vector double, vector double);
15423 vector double vec_floor (vector double);
15424 vector double vec_ld (int, const vector double *);
15425 vector double vec_ld (int, const double *);
15426 vector double vec_ldl (int, const vector double *);
15427 vector double vec_ldl (int, const double *);
15428 vector unsigned char vec_lvsl (int, const volatile double *);
15429 vector unsigned char vec_lvsr (int, const volatile double *);
15430 vector double vec_madd (vector double, vector double, vector double);
15431 vector double vec_max (vector double, vector double);
15432 vector double vec_min (vector double, vector double);
15433 vector float vec_msub (vector float, vector float, vector float);
15434 vector double vec_msub (vector double, vector double, vector double);
15435 vector float vec_mul (vector float, vector float);
15436 vector double vec_mul (vector double, vector double);
15437 vector float vec_nearbyint (vector float);
15438 vector double vec_nearbyint (vector double);
15439 vector float vec_nmadd (vector float, vector float, vector float);
15440 vector double vec_nmadd (vector double, vector double, vector double);
15441 vector double vec_nmsub (vector double, vector double, vector double);
15442 vector double vec_nor (vector double, vector double);
15443 vector double vec_or (vector double, vector double);
15444 vector double vec_or (vector double, vector bool long);
15445 vector double vec_or (vector bool long, vector double);
15446 vector double vec_perm (vector double,
15447 vector double,
15448 vector unsigned char);
15449 vector double vec_rint (vector double);
15450 vector double vec_recip (vector double, vector double);
15451 vector double vec_rsqrt (vector double);
15452 vector double vec_rsqrte (vector double);
15453 vector double vec_sel (vector double, vector double, vector bool long);
15454 vector double vec_sel (vector double, vector double, vector unsigned long);
15455 vector double vec_sub (vector double, vector double);
15456 vector float vec_sqrt (vector float);
15457 vector double vec_sqrt (vector double);
15458 void vec_st (vector double, int, vector double *);
15459 void vec_st (vector double, int, double *);
15460 vector double vec_trunc (vector double);
15461 vector double vec_xor (vector double, vector double);
15462 vector double vec_xor (vector double, vector bool long);
15463 vector double vec_xor (vector bool long, vector double);
15464 int vec_all_eq (vector double, vector double);
15465 int vec_all_ge (vector double, vector double);
15466 int vec_all_gt (vector double, vector double);
15467 int vec_all_le (vector double, vector double);
15468 int vec_all_lt (vector double, vector double);
15469 int vec_all_nan (vector double);
15470 int vec_all_ne (vector double, vector double);
15471 int vec_all_nge (vector double, vector double);
15472 int vec_all_ngt (vector double, vector double);
15473 int vec_all_nle (vector double, vector double);
15474 int vec_all_nlt (vector double, vector double);
15475 int vec_all_numeric (vector double);
15476 int vec_any_eq (vector double, vector double);
15477 int vec_any_ge (vector double, vector double);
15478 int vec_any_gt (vector double, vector double);
15479 int vec_any_le (vector double, vector double);
15480 int vec_any_lt (vector double, vector double);
15481 int vec_any_nan (vector double);
15482 int vec_any_ne (vector double, vector double);
15483 int vec_any_nge (vector double, vector double);
15484 int vec_any_ngt (vector double, vector double);
15485 int vec_any_nle (vector double, vector double);
15486 int vec_any_nlt (vector double, vector double);
15487 int vec_any_numeric (vector double);
15488
15489 vector double vec_vsx_ld (int, const vector double *);
15490 vector double vec_vsx_ld (int, const double *);
15491 vector float vec_vsx_ld (int, const vector float *);
15492 vector float vec_vsx_ld (int, const float *);
15493 vector bool int vec_vsx_ld (int, const vector bool int *);
15494 vector signed int vec_vsx_ld (int, const vector signed int *);
15495 vector signed int vec_vsx_ld (int, const int *);
15496 vector signed int vec_vsx_ld (int, const long *);
15497 vector unsigned int vec_vsx_ld (int, const vector unsigned int *);
15498 vector unsigned int vec_vsx_ld (int, const unsigned int *);
15499 vector unsigned int vec_vsx_ld (int, const unsigned long *);
15500 vector bool short vec_vsx_ld (int, const vector bool short *);
15501 vector pixel vec_vsx_ld (int, const vector pixel *);
15502 vector signed short vec_vsx_ld (int, const vector signed short *);
15503 vector signed short vec_vsx_ld (int, const short *);
15504 vector unsigned short vec_vsx_ld (int, const vector unsigned short *);
15505 vector unsigned short vec_vsx_ld (int, const unsigned short *);
15506 vector bool char vec_vsx_ld (int, const vector bool char *);
15507 vector signed char vec_vsx_ld (int, const vector signed char *);
15508 vector signed char vec_vsx_ld (int, const signed char *);
15509 vector unsigned char vec_vsx_ld (int, const vector unsigned char *);
15510 vector unsigned char vec_vsx_ld (int, const unsigned char *);
15511
15512 void vec_vsx_st (vector double, int, vector double *);
15513 void vec_vsx_st (vector double, int, double *);
15514 void vec_vsx_st (vector float, int, vector float *);
15515 void vec_vsx_st (vector float, int, float *);
15516 void vec_vsx_st (vector signed int, int, vector signed int *);
15517 void vec_vsx_st (vector signed int, int, int *);
15518 void vec_vsx_st (vector unsigned int, int, vector unsigned int *);
15519 void vec_vsx_st (vector unsigned int, int, unsigned int *);
15520 void vec_vsx_st (vector bool int, int, vector bool int *);
15521 void vec_vsx_st (vector bool int, int, unsigned int *);
15522 void vec_vsx_st (vector bool int, int, int *);
15523 void vec_vsx_st (vector signed short, int, vector signed short *);
15524 void vec_vsx_st (vector signed short, int, short *);
15525 void vec_vsx_st (vector unsigned short, int, vector unsigned short *);
15526 void vec_vsx_st (vector unsigned short, int, unsigned short *);
15527 void vec_vsx_st (vector bool short, int, vector bool short *);
15528 void vec_vsx_st (vector bool short, int, unsigned short *);
15529 void vec_vsx_st (vector pixel, int, vector pixel *);
15530 void vec_vsx_st (vector pixel, int, unsigned short *);
15531 void vec_vsx_st (vector pixel, int, short *);
15532 void vec_vsx_st (vector bool short, int, short *);
15533 void vec_vsx_st (vector signed char, int, vector signed char *);
15534 void vec_vsx_st (vector signed char, int, signed char *);
15535 void vec_vsx_st (vector unsigned char, int, vector unsigned char *);
15536 void vec_vsx_st (vector unsigned char, int, unsigned char *);
15537 void vec_vsx_st (vector bool char, int, vector bool char *);
15538 void vec_vsx_st (vector bool char, int, unsigned char *);
15539 void vec_vsx_st (vector bool char, int, signed char *);
15540
15541 vector double vec_xxpermdi (vector double, vector double, int);
15542 vector float vec_xxpermdi (vector float, vector float, int);
15543 vector long long vec_xxpermdi (vector long long, vector long long, int);
15544 vector unsigned long long vec_xxpermdi (vector unsigned long long,
15545 vector unsigned long long, int);
15546 vector int vec_xxpermdi (vector int, vector int, int);
15547 vector unsigned int vec_xxpermdi (vector unsigned int,
15548 vector unsigned int, int);
15549 vector short vec_xxpermdi (vector short, vector short, int);
15550 vector unsigned short vec_xxpermdi (vector unsigned short,
15551 vector unsigned short, int);
15552 vector signed char vec_xxpermdi (vector signed char, vector signed char, int);
15553 vector unsigned char vec_xxpermdi (vector unsigned char,
15554 vector unsigned char, int);
15555
15556 vector double vec_xxsldi (vector double, vector double, int);
15557 vector float vec_xxsldi (vector float, vector float, int);
15558 vector long long vec_xxsldi (vector long long, vector long long, int);
15559 vector unsigned long long vec_xxsldi (vector unsigned long long,
15560 vector unsigned long long, int);
15561 vector int vec_xxsldi (vector int, vector int, int);
15562 vector unsigned int vec_xxsldi (vector unsigned int, vector unsigned int, int);
15563 vector short vec_xxsldi (vector short, vector short, int);
15564 vector unsigned short vec_xxsldi (vector unsigned short,
15565 vector unsigned short, int);
15566 vector signed char vec_xxsldi (vector signed char, vector signed char, int);
15567 vector unsigned char vec_xxsldi (vector unsigned char,
15568 vector unsigned char, int);
15569 @end smallexample
15570
15571 Note that the @samp{vec_ld} and @samp{vec_st} built-in functions always
15572 generate the AltiVec @samp{LVX} and @samp{STVX} instructions even
15573 if the VSX instruction set is available. The @samp{vec_vsx_ld} and
15574 @samp{vec_vsx_st} built-in functions always generate the VSX @samp{LXVD2X},
15575 @samp{LXVW4X}, @samp{STXVD2X}, and @samp{STXVW4X} instructions.
15576
15577 If the ISA 2.07 additions to the vector/scalar (power8-vector)
15578 instruction set is available, the following additional functions are
15579 available for both 32-bit and 64-bit targets. For 64-bit targets, you
15580 can use @var{vector long} instead of @var{vector long long},
15581 @var{vector bool long} instead of @var{vector bool long long}, and
15582 @var{vector unsigned long} instead of @var{vector unsigned long long}.
15583
15584 @smallexample
15585 vector long long vec_abs (vector long long);
15586
15587 vector long long vec_add (vector long long, vector long long);
15588 vector unsigned long long vec_add (vector unsigned long long,
15589 vector unsigned long long);
15590
15591 int vec_all_eq (vector long long, vector long long);
15592 int vec_all_ge (vector long long, vector long long);
15593 int vec_all_gt (vector long long, vector long long);
15594 int vec_all_le (vector long long, vector long long);
15595 int vec_all_lt (vector long long, vector long long);
15596 int vec_all_ne (vector long long, vector long long);
15597 int vec_any_eq (vector long long, vector long long);
15598 int vec_any_ge (vector long long, vector long long);
15599 int vec_any_gt (vector long long, vector long long);
15600 int vec_any_le (vector long long, vector long long);
15601 int vec_any_lt (vector long long, vector long long);
15602 int vec_any_ne (vector long long, vector long long);
15603
15604 vector long long vec_eqv (vector long long, vector long long);
15605 vector long long vec_eqv (vector bool long long, vector long long);
15606 vector long long vec_eqv (vector long long, vector bool long long);
15607 vector unsigned long long vec_eqv (vector unsigned long long,
15608 vector unsigned long long);
15609 vector unsigned long long vec_eqv (vector bool long long,
15610 vector unsigned long long);
15611 vector unsigned long long vec_eqv (vector unsigned long long,
15612 vector bool long long);
15613 vector int vec_eqv (vector int, vector int);
15614 vector int vec_eqv (vector bool int, vector int);
15615 vector int vec_eqv (vector int, vector bool int);
15616 vector unsigned int vec_eqv (vector unsigned int, vector unsigned int);
15617 vector unsigned int vec_eqv (vector bool unsigned int,
15618 vector unsigned int);
15619 vector unsigned int vec_eqv (vector unsigned int,
15620 vector bool unsigned int);
15621 vector short vec_eqv (vector short, vector short);
15622 vector short vec_eqv (vector bool short, vector short);
15623 vector short vec_eqv (vector short, vector bool short);
15624 vector unsigned short vec_eqv (vector unsigned short, vector unsigned short);
15625 vector unsigned short vec_eqv (vector bool unsigned short,
15626 vector unsigned short);
15627 vector unsigned short vec_eqv (vector unsigned short,
15628 vector bool unsigned short);
15629 vector signed char vec_eqv (vector signed char, vector signed char);
15630 vector signed char vec_eqv (vector bool signed char, vector signed char);
15631 vector signed char vec_eqv (vector signed char, vector bool signed char);
15632 vector unsigned char vec_eqv (vector unsigned char, vector unsigned char);
15633 vector unsigned char vec_eqv (vector bool unsigned char, vector unsigned char);
15634 vector unsigned char vec_eqv (vector unsigned char, vector bool unsigned char);
15635
15636 vector long long vec_max (vector long long, vector long long);
15637 vector unsigned long long vec_max (vector unsigned long long,
15638 vector unsigned long long);
15639
15640 vector long long vec_min (vector long long, vector long long);
15641 vector unsigned long long vec_min (vector unsigned long long,
15642 vector unsigned long long);
15643
15644 vector long long vec_nand (vector long long, vector long long);
15645 vector long long vec_nand (vector bool long long, vector long long);
15646 vector long long vec_nand (vector long long, vector bool long long);
15647 vector unsigned long long vec_nand (vector unsigned long long,
15648 vector unsigned long long);
15649 vector unsigned long long vec_nand (vector bool long long,
15650 vector unsigned long long);
15651 vector unsigned long long vec_nand (vector unsigned long long,
15652 vector bool long long);
15653 vector int vec_nand (vector int, vector int);
15654 vector int vec_nand (vector bool int, vector int);
15655 vector int vec_nand (vector int, vector bool int);
15656 vector unsigned int vec_nand (vector unsigned int, vector unsigned int);
15657 vector unsigned int vec_nand (vector bool unsigned int,
15658 vector unsigned int);
15659 vector unsigned int vec_nand (vector unsigned int,
15660 vector bool unsigned int);
15661 vector short vec_nand (vector short, vector short);
15662 vector short vec_nand (vector bool short, vector short);
15663 vector short vec_nand (vector short, vector bool short);
15664 vector unsigned short vec_nand (vector unsigned short, vector unsigned short);
15665 vector unsigned short vec_nand (vector bool unsigned short,
15666 vector unsigned short);
15667 vector unsigned short vec_nand (vector unsigned short,
15668 vector bool unsigned short);
15669 vector signed char vec_nand (vector signed char, vector signed char);
15670 vector signed char vec_nand (vector bool signed char, vector signed char);
15671 vector signed char vec_nand (vector signed char, vector bool signed char);
15672 vector unsigned char vec_nand (vector unsigned char, vector unsigned char);
15673 vector unsigned char vec_nand (vector bool unsigned char, vector unsigned char);
15674 vector unsigned char vec_nand (vector unsigned char, vector bool unsigned char);
15675
15676 vector long long vec_orc (vector long long, vector long long);
15677 vector long long vec_orc (vector bool long long, vector long long);
15678 vector long long vec_orc (vector long long, vector bool long long);
15679 vector unsigned long long vec_orc (vector unsigned long long,
15680 vector unsigned long long);
15681 vector unsigned long long vec_orc (vector bool long long,
15682 vector unsigned long long);
15683 vector unsigned long long vec_orc (vector unsigned long long,
15684 vector bool long long);
15685 vector int vec_orc (vector int, vector int);
15686 vector int vec_orc (vector bool int, vector int);
15687 vector int vec_orc (vector int, vector bool int);
15688 vector unsigned int vec_orc (vector unsigned int, vector unsigned int);
15689 vector unsigned int vec_orc (vector bool unsigned int,
15690 vector unsigned int);
15691 vector unsigned int vec_orc (vector unsigned int,
15692 vector bool unsigned int);
15693 vector short vec_orc (vector short, vector short);
15694 vector short vec_orc (vector bool short, vector short);
15695 vector short vec_orc (vector short, vector bool short);
15696 vector unsigned short vec_orc (vector unsigned short, vector unsigned short);
15697 vector unsigned short vec_orc (vector bool unsigned short,
15698 vector unsigned short);
15699 vector unsigned short vec_orc (vector unsigned short,
15700 vector bool unsigned short);
15701 vector signed char vec_orc (vector signed char, vector signed char);
15702 vector signed char vec_orc (vector bool signed char, vector signed char);
15703 vector signed char vec_orc (vector signed char, vector bool signed char);
15704 vector unsigned char vec_orc (vector unsigned char, vector unsigned char);
15705 vector unsigned char vec_orc (vector bool unsigned char, vector unsigned char);
15706 vector unsigned char vec_orc (vector unsigned char, vector bool unsigned char);
15707
15708 vector int vec_pack (vector long long, vector long long);
15709 vector unsigned int vec_pack (vector unsigned long long,
15710 vector unsigned long long);
15711 vector bool int vec_pack (vector bool long long, vector bool long long);
15712
15713 vector int vec_packs (vector long long, vector long long);
15714 vector unsigned int vec_packs (vector unsigned long long,
15715 vector unsigned long long);
15716
15717 vector unsigned int vec_packsu (vector long long, vector long long);
15718
15719 vector long long vec_rl (vector long long,
15720 vector unsigned long long);
15721 vector long long vec_rl (vector unsigned long long,
15722 vector unsigned long long);
15723
15724 vector long long vec_sl (vector long long, vector unsigned long long);
15725 vector long long vec_sl (vector unsigned long long,
15726 vector unsigned long long);
15727
15728 vector long long vec_sr (vector long long, vector unsigned long long);
15729 vector unsigned long long char vec_sr (vector unsigned long long,
15730 vector unsigned long long);
15731
15732 vector long long vec_sra (vector long long, vector unsigned long long);
15733 vector unsigned long long vec_sra (vector unsigned long long,
15734 vector unsigned long long);
15735
15736 vector long long vec_sub (vector long long, vector long long);
15737 vector unsigned long long vec_sub (vector unsigned long long,
15738 vector unsigned long long);
15739
15740 vector long long vec_unpackh (vector int);
15741 vector unsigned long long vec_unpackh (vector unsigned int);
15742
15743 vector long long vec_unpackl (vector int);
15744 vector unsigned long long vec_unpackl (vector unsigned int);
15745
15746 vector long long vec_vaddudm (vector long long, vector long long);
15747 vector long long vec_vaddudm (vector bool long long, vector long long);
15748 vector long long vec_vaddudm (vector long long, vector bool long long);
15749 vector unsigned long long vec_vaddudm (vector unsigned long long,
15750 vector unsigned long long);
15751 vector unsigned long long vec_vaddudm (vector bool unsigned long long,
15752 vector unsigned long long);
15753 vector unsigned long long vec_vaddudm (vector unsigned long long,
15754 vector bool unsigned long long);
15755
15756 vector long long vec_vbpermq (vector signed char, vector signed char);
15757 vector long long vec_vbpermq (vector unsigned char, vector unsigned char);
15758
15759 vector long long vec_vclz (vector long long);
15760 vector unsigned long long vec_vclz (vector unsigned long long);
15761 vector int vec_vclz (vector int);
15762 vector unsigned int vec_vclz (vector int);
15763 vector short vec_vclz (vector short);
15764 vector unsigned short vec_vclz (vector unsigned short);
15765 vector signed char vec_vclz (vector signed char);
15766 vector unsigned char vec_vclz (vector unsigned char);
15767
15768 vector signed char vec_vclzb (vector signed char);
15769 vector unsigned char vec_vclzb (vector unsigned char);
15770
15771 vector long long vec_vclzd (vector long long);
15772 vector unsigned long long vec_vclzd (vector unsigned long long);
15773
15774 vector short vec_vclzh (vector short);
15775 vector unsigned short vec_vclzh (vector unsigned short);
15776
15777 vector int vec_vclzw (vector int);
15778 vector unsigned int vec_vclzw (vector int);
15779
15780 vector signed char vec_vgbbd (vector signed char);
15781 vector unsigned char vec_vgbbd (vector unsigned char);
15782
15783 vector long long vec_vmaxsd (vector long long, vector long long);
15784
15785 vector unsigned long long vec_vmaxud (vector unsigned long long,
15786 unsigned vector long long);
15787
15788 vector long long vec_vminsd (vector long long, vector long long);
15789
15790 vector unsigned long long vec_vminud (vector long long,
15791 vector long long);
15792
15793 vector int vec_vpksdss (vector long long, vector long long);
15794 vector unsigned int vec_vpksdss (vector long long, vector long long);
15795
15796 vector unsigned int vec_vpkudus (vector unsigned long long,
15797 vector unsigned long long);
15798
15799 vector int vec_vpkudum (vector long long, vector long long);
15800 vector unsigned int vec_vpkudum (vector unsigned long long,
15801 vector unsigned long long);
15802 vector bool int vec_vpkudum (vector bool long long, vector bool long long);
15803
15804 vector long long vec_vpopcnt (vector long long);
15805 vector unsigned long long vec_vpopcnt (vector unsigned long long);
15806 vector int vec_vpopcnt (vector int);
15807 vector unsigned int vec_vpopcnt (vector int);
15808 vector short vec_vpopcnt (vector short);
15809 vector unsigned short vec_vpopcnt (vector unsigned short);
15810 vector signed char vec_vpopcnt (vector signed char);
15811 vector unsigned char vec_vpopcnt (vector unsigned char);
15812
15813 vector signed char vec_vpopcntb (vector signed char);
15814 vector unsigned char vec_vpopcntb (vector unsigned char);
15815
15816 vector long long vec_vpopcntd (vector long long);
15817 vector unsigned long long vec_vpopcntd (vector unsigned long long);
15818
15819 vector short vec_vpopcnth (vector short);
15820 vector unsigned short vec_vpopcnth (vector unsigned short);
15821
15822 vector int vec_vpopcntw (vector int);
15823 vector unsigned int vec_vpopcntw (vector int);
15824
15825 vector long long vec_vrld (vector long long, vector unsigned long long);
15826 vector unsigned long long vec_vrld (vector unsigned long long,
15827 vector unsigned long long);
15828
15829 vector long long vec_vsld (vector long long, vector unsigned long long);
15830 vector long long vec_vsld (vector unsigned long long,
15831 vector unsigned long long);
15832
15833 vector long long vec_vsrad (vector long long, vector unsigned long long);
15834 vector unsigned long long vec_vsrad (vector unsigned long long,
15835 vector unsigned long long);
15836
15837 vector long long vec_vsrd (vector long long, vector unsigned long long);
15838 vector unsigned long long char vec_vsrd (vector unsigned long long,
15839 vector unsigned long long);
15840
15841 vector long long vec_vsubudm (vector long long, vector long long);
15842 vector long long vec_vsubudm (vector bool long long, vector long long);
15843 vector long long vec_vsubudm (vector long long, vector bool long long);
15844 vector unsigned long long vec_vsubudm (vector unsigned long long,
15845 vector unsigned long long);
15846 vector unsigned long long vec_vsubudm (vector bool long long,
15847 vector unsigned long long);
15848 vector unsigned long long vec_vsubudm (vector unsigned long long,
15849 vector bool long long);
15850
15851 vector long long vec_vupkhsw (vector int);
15852 vector unsigned long long vec_vupkhsw (vector unsigned int);
15853
15854 vector long long vec_vupklsw (vector int);
15855 vector unsigned long long vec_vupklsw (vector int);
15856 @end smallexample
15857
15858 If the ISA 2.07 additions to the vector/scalar (power8-vector)
15859 instruction set is available, the following additional functions are
15860 available for 64-bit targets. New vector types
15861 (@var{vector __int128_t} and @var{vector __uint128_t}) are available
15862 to hold the @var{__int128_t} and @var{__uint128_t} types to use these
15863 builtins.
15864
15865 The normal vector extract, and set operations work on
15866 @var{vector __int128_t} and @var{vector __uint128_t} types,
15867 but the index value must be 0.
15868
15869 @smallexample
15870 vector __int128_t vec_vaddcuq (vector __int128_t, vector __int128_t);
15871 vector __uint128_t vec_vaddcuq (vector __uint128_t, vector __uint128_t);
15872
15873 vector __int128_t vec_vadduqm (vector __int128_t, vector __int128_t);
15874 vector __uint128_t vec_vadduqm (vector __uint128_t, vector __uint128_t);
15875
15876 vector __int128_t vec_vaddecuq (vector __int128_t, vector __int128_t,
15877 vector __int128_t);
15878 vector __uint128_t vec_vaddecuq (vector __uint128_t, vector __uint128_t,
15879 vector __uint128_t);
15880
15881 vector __int128_t vec_vaddeuqm (vector __int128_t, vector __int128_t,
15882 vector __int128_t);
15883 vector __uint128_t vec_vaddeuqm (vector __uint128_t, vector __uint128_t,
15884 vector __uint128_t);
15885
15886 vector __int128_t vec_vsubecuq (vector __int128_t, vector __int128_t,
15887 vector __int128_t);
15888 vector __uint128_t vec_vsubecuq (vector __uint128_t, vector __uint128_t,
15889 vector __uint128_t);
15890
15891 vector __int128_t vec_vsubeuqm (vector __int128_t, vector __int128_t,
15892 vector __int128_t);
15893 vector __uint128_t vec_vsubeuqm (vector __uint128_t, vector __uint128_t,
15894 vector __uint128_t);
15895
15896 vector __int128_t vec_vsubcuq (vector __int128_t, vector __int128_t);
15897 vector __uint128_t vec_vsubcuq (vector __uint128_t, vector __uint128_t);
15898
15899 __int128_t vec_vsubuqm (__int128_t, __int128_t);
15900 __uint128_t vec_vsubuqm (__uint128_t, __uint128_t);
15901
15902 vector __int128_t __builtin_bcdadd (vector __int128_t, vector__int128_t);
15903 int __builtin_bcdadd_lt (vector __int128_t, vector__int128_t);
15904 int __builtin_bcdadd_eq (vector __int128_t, vector__int128_t);
15905 int __builtin_bcdadd_gt (vector __int128_t, vector__int128_t);
15906 int __builtin_bcdadd_ov (vector __int128_t, vector__int128_t);
15907 vector __int128_t bcdsub (vector __int128_t, vector__int128_t);
15908 int __builtin_bcdsub_lt (vector __int128_t, vector__int128_t);
15909 int __builtin_bcdsub_eq (vector __int128_t, vector__int128_t);
15910 int __builtin_bcdsub_gt (vector __int128_t, vector__int128_t);
15911 int __builtin_bcdsub_ov (vector __int128_t, vector__int128_t);
15912 @end smallexample
15913
15914 If the cryptographic instructions are enabled (@option{-mcrypto} or
15915 @option{-mcpu=power8}), the following builtins are enabled.
15916
15917 @smallexample
15918 vector unsigned long long __builtin_crypto_vsbox (vector unsigned long long);
15919
15920 vector unsigned long long __builtin_crypto_vcipher (vector unsigned long long,
15921 vector unsigned long long);
15922
15923 vector unsigned long long __builtin_crypto_vcipherlast
15924 (vector unsigned long long,
15925 vector unsigned long long);
15926
15927 vector unsigned long long __builtin_crypto_vncipher (vector unsigned long long,
15928 vector unsigned long long);
15929
15930 vector unsigned long long __builtin_crypto_vncipherlast
15931 (vector unsigned long long,
15932 vector unsigned long long);
15933
15934 vector unsigned char __builtin_crypto_vpermxor (vector unsigned char,
15935 vector unsigned char,
15936 vector unsigned char);
15937
15938 vector unsigned short __builtin_crypto_vpermxor (vector unsigned short,
15939 vector unsigned short,
15940 vector unsigned short);
15941
15942 vector unsigned int __builtin_crypto_vpermxor (vector unsigned int,
15943 vector unsigned int,
15944 vector unsigned int);
15945
15946 vector unsigned long long __builtin_crypto_vpermxor (vector unsigned long long,
15947 vector unsigned long long,
15948 vector unsigned long long);
15949
15950 vector unsigned char __builtin_crypto_vpmsumb (vector unsigned char,
15951 vector unsigned char);
15952
15953 vector unsigned short __builtin_crypto_vpmsumb (vector unsigned short,
15954 vector unsigned short);
15955
15956 vector unsigned int __builtin_crypto_vpmsumb (vector unsigned int,
15957 vector unsigned int);
15958
15959 vector unsigned long long __builtin_crypto_vpmsumb (vector unsigned long long,
15960 vector unsigned long long);
15961
15962 vector unsigned long long __builtin_crypto_vshasigmad
15963 (vector unsigned long long, int, int);
15964
15965 vector unsigned int __builtin_crypto_vshasigmaw (vector unsigned int,
15966 int, int);
15967 @end smallexample
15968
15969 The second argument to the @var{__builtin_crypto_vshasigmad} and
15970 @var{__builtin_crypto_vshasigmaw} builtin functions must be a constant
15971 integer that is 0 or 1. The third argument to these builtin functions
15972 must be a constant integer in the range of 0 to 15.
15973
15974 @node PowerPC Hardware Transactional Memory Built-in Functions
15975 @subsection PowerPC Hardware Transactional Memory Built-in Functions
15976 GCC provides two interfaces for accessing the Hardware Transactional
15977 Memory (HTM) instructions available on some of the PowerPC family
15978 of prcoessors (eg, POWER8). The two interfaces come in a low level
15979 interface, consisting of built-in functions specific to PowerPC and a
15980 higher level interface consisting of inline functions that are common
15981 between PowerPC and S/390.
15982
15983 @subsubsection PowerPC HTM Low Level Built-in Functions
15984
15985 The following low level built-in functions are available with
15986 @option{-mhtm} or @option{-mcpu=CPU} where CPU is `power8' or later.
15987 They all generate the machine instruction that is part of the name.
15988
15989 The HTM built-ins return true or false depending on their success and
15990 their arguments match exactly the type and order of the associated
15991 hardware instruction's operands. Refer to the ISA manual for a
15992 description of each instruction's operands.
15993
15994 @smallexample
15995 unsigned int __builtin_tbegin (unsigned int)
15996 unsigned int __builtin_tend (unsigned int)
15997
15998 unsigned int __builtin_tabort (unsigned int)
15999 unsigned int __builtin_tabortdc (unsigned int, unsigned int, unsigned int)
16000 unsigned int __builtin_tabortdci (unsigned int, unsigned int, int)
16001 unsigned int __builtin_tabortwc (unsigned int, unsigned int, unsigned int)
16002 unsigned int __builtin_tabortwci (unsigned int, unsigned int, int)
16003
16004 unsigned int __builtin_tcheck (unsigned int)
16005 unsigned int __builtin_treclaim (unsigned int)
16006 unsigned int __builtin_trechkpt (void)
16007 unsigned int __builtin_tsr (unsigned int)
16008 @end smallexample
16009
16010 In addition to the above HTM built-ins, we have added built-ins for
16011 some common extended mnemonics of the HTM instructions:
16012
16013 @smallexample
16014 unsigned int __builtin_tendall (void)
16015 unsigned int __builtin_tresume (void)
16016 unsigned int __builtin_tsuspend (void)
16017 @end smallexample
16018
16019 The following set of built-in functions are available to gain access
16020 to the HTM specific special purpose registers.
16021
16022 @smallexample
16023 unsigned long __builtin_get_texasr (void)
16024 unsigned long __builtin_get_texasru (void)
16025 unsigned long __builtin_get_tfhar (void)
16026 unsigned long __builtin_get_tfiar (void)
16027
16028 void __builtin_set_texasr (unsigned long);
16029 void __builtin_set_texasru (unsigned long);
16030 void __builtin_set_tfhar (unsigned long);
16031 void __builtin_set_tfiar (unsigned long);
16032 @end smallexample
16033
16034 Example usage of these low level built-in functions may look like:
16035
16036 @smallexample
16037 #include <htmintrin.h>
16038
16039 int num_retries = 10;
16040
16041 while (1)
16042 @{
16043 if (__builtin_tbegin (0))
16044 @{
16045 /* Transaction State Initiated. */
16046 if (is_locked (lock))
16047 __builtin_tabort (0);
16048 ... transaction code...
16049 __builtin_tend (0);
16050 break;
16051 @}
16052 else
16053 @{
16054 /* Transaction State Failed. Use locks if the transaction
16055 failure is "persistent" or we've tried too many times. */
16056 if (num_retries-- <= 0
16057 || _TEXASRU_FAILURE_PERSISTENT (__builtin_get_texasru ()))
16058 @{
16059 acquire_lock (lock);
16060 ... non transactional fallback path...
16061 release_lock (lock);
16062 break;
16063 @}
16064 @}
16065 @}
16066 @end smallexample
16067
16068 One final built-in function has been added that returns the value of
16069 the 2-bit Transaction State field of the Machine Status Register (MSR)
16070 as stored in @code{CR0}.
16071
16072 @smallexample
16073 unsigned long __builtin_ttest (void)
16074 @end smallexample
16075
16076 This built-in can be used to determine the current transaction state
16077 using the following code example:
16078
16079 @smallexample
16080 #include <htmintrin.h>
16081
16082 unsigned char tx_state = _HTM_STATE (__builtin_ttest ());
16083
16084 if (tx_state == _HTM_TRANSACTIONAL)
16085 @{
16086 /* Code to use in transactional state. */
16087 @}
16088 else if (tx_state == _HTM_NONTRANSACTIONAL)
16089 @{
16090 /* Code to use in non-transactional state. */
16091 @}
16092 else if (tx_state == _HTM_SUSPENDED)
16093 @{
16094 /* Code to use in transaction suspended state. */
16095 @}
16096 @end smallexample
16097
16098 @subsubsection PowerPC HTM High Level Inline Functions
16099
16100 The following high level HTM interface is made available by including
16101 @code{<htmxlintrin.h>} and using @option{-mhtm} or @option{-mcpu=CPU}
16102 where CPU is `power8' or later. This interface is common between PowerPC
16103 and S/390, allowing users to write one HTM source implementation that
16104 can be compiled and executed on either system.
16105
16106 @smallexample
16107 long __TM_simple_begin (void)
16108 long __TM_begin (void* const TM_buff)
16109 long __TM_end (void)
16110 void __TM_abort (void)
16111 void __TM_named_abort (unsigned char const code)
16112 void __TM_resume (void)
16113 void __TM_suspend (void)
16114
16115 long __TM_is_user_abort (void* const TM_buff)
16116 long __TM_is_named_user_abort (void* const TM_buff, unsigned char *code)
16117 long __TM_is_illegal (void* const TM_buff)
16118 long __TM_is_footprint_exceeded (void* const TM_buff)
16119 long __TM_nesting_depth (void* const TM_buff)
16120 long __TM_is_nested_too_deep(void* const TM_buff)
16121 long __TM_is_conflict(void* const TM_buff)
16122 long __TM_is_failure_persistent(void* const TM_buff)
16123 long __TM_failure_address(void* const TM_buff)
16124 long long __TM_failure_code(void* const TM_buff)
16125 @end smallexample
16126
16127 Using these common set of HTM inline functions, we can create
16128 a more portable version of the HTM example in the previous
16129 section that will work on either PowerPC or S/390:
16130
16131 @smallexample
16132 #include <htmxlintrin.h>
16133
16134 int num_retries = 10;
16135 TM_buff_type TM_buff;
16136
16137 while (1)
16138 @{
16139 if (__TM_begin (TM_buff))
16140 @{
16141 /* Transaction State Initiated. */
16142 if (is_locked (lock))
16143 __TM_abort ();
16144 ... transaction code...
16145 __TM_end ();
16146 break;
16147 @}
16148 else
16149 @{
16150 /* Transaction State Failed. Use locks if the transaction
16151 failure is "persistent" or we've tried too many times. */
16152 if (num_retries-- <= 0
16153 || __TM_is_failure_persistent (TM_buff))
16154 @{
16155 acquire_lock (lock);
16156 ... non transactional fallback path...
16157 release_lock (lock);
16158 break;
16159 @}
16160 @}
16161 @}
16162 @end smallexample
16163
16164 @node RX Built-in Functions
16165 @subsection RX Built-in Functions
16166 GCC supports some of the RX instructions which cannot be expressed in
16167 the C programming language via the use of built-in functions. The
16168 following functions are supported:
16169
16170 @deftypefn {Built-in Function} void __builtin_rx_brk (void)
16171 Generates the @code{brk} machine instruction.
16172 @end deftypefn
16173
16174 @deftypefn {Built-in Function} void __builtin_rx_clrpsw (int)
16175 Generates the @code{clrpsw} machine instruction to clear the specified
16176 bit in the processor status word.
16177 @end deftypefn
16178
16179 @deftypefn {Built-in Function} void __builtin_rx_int (int)
16180 Generates the @code{int} machine instruction to generate an interrupt
16181 with the specified value.
16182 @end deftypefn
16183
16184 @deftypefn {Built-in Function} void __builtin_rx_machi (int, int)
16185 Generates the @code{machi} machine instruction to add the result of
16186 multiplying the top 16 bits of the two arguments into the
16187 accumulator.
16188 @end deftypefn
16189
16190 @deftypefn {Built-in Function} void __builtin_rx_maclo (int, int)
16191 Generates the @code{maclo} machine instruction to add the result of
16192 multiplying the bottom 16 bits of the two arguments into the
16193 accumulator.
16194 @end deftypefn
16195
16196 @deftypefn {Built-in Function} void __builtin_rx_mulhi (int, int)
16197 Generates the @code{mulhi} machine instruction to place the result of
16198 multiplying the top 16 bits of the two arguments into the
16199 accumulator.
16200 @end deftypefn
16201
16202 @deftypefn {Built-in Function} void __builtin_rx_mullo (int, int)
16203 Generates the @code{mullo} machine instruction to place the result of
16204 multiplying the bottom 16 bits of the two arguments into the
16205 accumulator.
16206 @end deftypefn
16207
16208 @deftypefn {Built-in Function} int __builtin_rx_mvfachi (void)
16209 Generates the @code{mvfachi} machine instruction to read the top
16210 32 bits of the accumulator.
16211 @end deftypefn
16212
16213 @deftypefn {Built-in Function} int __builtin_rx_mvfacmi (void)
16214 Generates the @code{mvfacmi} machine instruction to read the middle
16215 32 bits of the accumulator.
16216 @end deftypefn
16217
16218 @deftypefn {Built-in Function} int __builtin_rx_mvfc (int)
16219 Generates the @code{mvfc} machine instruction which reads the control
16220 register specified in its argument and returns its value.
16221 @end deftypefn
16222
16223 @deftypefn {Built-in Function} void __builtin_rx_mvtachi (int)
16224 Generates the @code{mvtachi} machine instruction to set the top
16225 32 bits of the accumulator.
16226 @end deftypefn
16227
16228 @deftypefn {Built-in Function} void __builtin_rx_mvtaclo (int)
16229 Generates the @code{mvtaclo} machine instruction to set the bottom
16230 32 bits of the accumulator.
16231 @end deftypefn
16232
16233 @deftypefn {Built-in Function} void __builtin_rx_mvtc (int reg, int val)
16234 Generates the @code{mvtc} machine instruction which sets control
16235 register number @code{reg} to @code{val}.
16236 @end deftypefn
16237
16238 @deftypefn {Built-in Function} void __builtin_rx_mvtipl (int)
16239 Generates the @code{mvtipl} machine instruction set the interrupt
16240 priority level.
16241 @end deftypefn
16242
16243 @deftypefn {Built-in Function} void __builtin_rx_racw (int)
16244 Generates the @code{racw} machine instruction to round the accumulator
16245 according to the specified mode.
16246 @end deftypefn
16247
16248 @deftypefn {Built-in Function} int __builtin_rx_revw (int)
16249 Generates the @code{revw} machine instruction which swaps the bytes in
16250 the argument so that bits 0--7 now occupy bits 8--15 and vice versa,
16251 and also bits 16--23 occupy bits 24--31 and vice versa.
16252 @end deftypefn
16253
16254 @deftypefn {Built-in Function} void __builtin_rx_rmpa (void)
16255 Generates the @code{rmpa} machine instruction which initiates a
16256 repeated multiply and accumulate sequence.
16257 @end deftypefn
16258
16259 @deftypefn {Built-in Function} void __builtin_rx_round (float)
16260 Generates the @code{round} machine instruction which returns the
16261 floating-point argument rounded according to the current rounding mode
16262 set in the floating-point status word register.
16263 @end deftypefn
16264
16265 @deftypefn {Built-in Function} int __builtin_rx_sat (int)
16266 Generates the @code{sat} machine instruction which returns the
16267 saturated value of the argument.
16268 @end deftypefn
16269
16270 @deftypefn {Built-in Function} void __builtin_rx_setpsw (int)
16271 Generates the @code{setpsw} machine instruction to set the specified
16272 bit in the processor status word.
16273 @end deftypefn
16274
16275 @deftypefn {Built-in Function} void __builtin_rx_wait (void)
16276 Generates the @code{wait} machine instruction.
16277 @end deftypefn
16278
16279 @node S/390 System z Built-in Functions
16280 @subsection S/390 System z Built-in Functions
16281 @deftypefn {Built-in Function} int __builtin_tbegin (void*)
16282 Generates the @code{tbegin} machine instruction starting a
16283 non-constraint hardware transaction. If the parameter is non-NULL the
16284 memory area is used to store the transaction diagnostic buffer and
16285 will be passed as first operand to @code{tbegin}. This buffer can be
16286 defined using the @code{struct __htm_tdb} C struct defined in
16287 @code{htmintrin.h} and must reside on a double-word boundary. The
16288 second tbegin operand is set to @code{0xff0c}. This enables
16289 save/restore of all GPRs and disables aborts for FPR and AR
16290 manipulations inside the transaction body. The condition code set by
16291 the tbegin instruction is returned as integer value. The tbegin
16292 instruction by definition overwrites the content of all FPRs. The
16293 compiler will generate code which saves and restores the FPRs. For
16294 soft-float code it is recommended to used the @code{*_nofloat}
16295 variant. In order to prevent a TDB from being written it is required
16296 to pass an constant zero value as parameter. Passing the zero value
16297 through a variable is not sufficient. Although modifications of
16298 access registers inside the transaction will not trigger an
16299 transaction abort it is not supported to actually modify them. Access
16300 registers do not get saved when entering a transaction. They will have
16301 undefined state when reaching the abort code.
16302 @end deftypefn
16303
16304 Macros for the possible return codes of tbegin are defined in the
16305 @code{htmintrin.h} header file:
16306
16307 @table @code
16308 @item _HTM_TBEGIN_STARTED
16309 @code{tbegin} has been executed as part of normal processing. The
16310 transaction body is supposed to be executed.
16311 @item _HTM_TBEGIN_INDETERMINATE
16312 The transaction was aborted due to an indeterminate condition which
16313 might be persistent.
16314 @item _HTM_TBEGIN_TRANSIENT
16315 The transaction aborted due to a transient failure. The transaction
16316 should be re-executed in that case.
16317 @item _HTM_TBEGIN_PERSISTENT
16318 The transaction aborted due to a persistent failure. Re-execution
16319 under same circumstances will not be productive.
16320 @end table
16321
16322 @defmac _HTM_FIRST_USER_ABORT_CODE
16323 The @code{_HTM_FIRST_USER_ABORT_CODE} defined in @code{htmintrin.h}
16324 specifies the first abort code which can be used for
16325 @code{__builtin_tabort}. Values below this threshold are reserved for
16326 machine use.
16327 @end defmac
16328
16329 @deftp {Data type} {struct __htm_tdb}
16330 The @code{struct __htm_tdb} defined in @code{htmintrin.h} describes
16331 the structure of the transaction diagnostic block as specified in the
16332 Principles of Operation manual chapter 5-91.
16333 @end deftp
16334
16335 @deftypefn {Built-in Function} int __builtin_tbegin_nofloat (void*)
16336 Same as @code{__builtin_tbegin} but without FPR saves and restores.
16337 Using this variant in code making use of FPRs will leave the FPRs in
16338 undefined state when entering the transaction abort handler code.
16339 @end deftypefn
16340
16341 @deftypefn {Built-in Function} int __builtin_tbegin_retry (void*, int)
16342 In addition to @code{__builtin_tbegin} a loop for transient failures
16343 is generated. If tbegin returns a condition code of 2 the transaction
16344 will be retried as often as specified in the second argument. The
16345 perform processor assist instruction is used to tell the CPU about the
16346 number of fails so far.
16347 @end deftypefn
16348
16349 @deftypefn {Built-in Function} int __builtin_tbegin_retry_nofloat (void*, int)
16350 Same as @code{__builtin_tbegin_retry} but without FPR saves and
16351 restores. Using this variant in code making use of FPRs will leave
16352 the FPRs in undefined state when entering the transaction abort
16353 handler code.
16354 @end deftypefn
16355
16356 @deftypefn {Built-in Function} void __builtin_tbeginc (void)
16357 Generates the @code{tbeginc} machine instruction starting a constraint
16358 hardware transaction. The second operand is set to @code{0xff08}.
16359 @end deftypefn
16360
16361 @deftypefn {Built-in Function} int __builtin_tend (void)
16362 Generates the @code{tend} machine instruction finishing a transaction
16363 and making the changes visible to other threads. The condition code
16364 generated by tend is returned as integer value.
16365 @end deftypefn
16366
16367 @deftypefn {Built-in Function} void __builtin_tabort (int)
16368 Generates the @code{tabort} machine instruction with the specified
16369 abort code. Abort codes from 0 through 255 are reserved and will
16370 result in an error message.
16371 @end deftypefn
16372
16373 @deftypefn {Built-in Function} void __builtin_tx_assist (int)
16374 Generates the @code{ppa rX,rY,1} machine instruction. Where the
16375 integer parameter is loaded into rX and a value of zero is loaded into
16376 rY. The integer parameter specifies the number of times the
16377 transaction repeatedly aborted.
16378 @end deftypefn
16379
16380 @deftypefn {Built-in Function} int __builtin_tx_nesting_depth (void)
16381 Generates the @code{etnd} machine instruction. The current nesting
16382 depth is returned as integer value. For a nesting depth of 0 the code
16383 is not executed as part of an transaction.
16384 @end deftypefn
16385
16386 @deftypefn {Built-in Function} void __builtin_non_tx_store (uint64_t *, uint64_t)
16387
16388 Generates the @code{ntstg} machine instruction. The second argument
16389 is written to the first arguments location. The store operation will
16390 not be rolled-back in case of an transaction abort.
16391 @end deftypefn
16392
16393 @node SH Built-in Functions
16394 @subsection SH Built-in Functions
16395 The following built-in functions are supported on the SH1, SH2, SH3 and SH4
16396 families of processors:
16397
16398 @deftypefn {Built-in Function} {void} __builtin_set_thread_pointer (void *@var{ptr})
16399 Sets the @samp{GBR} register to the specified value @var{ptr}. This is usually
16400 used by system code that manages threads and execution contexts. The compiler
16401 normally does not generate code that modifies the contents of @samp{GBR} and
16402 thus the value is preserved across function calls. Changing the @samp{GBR}
16403 value in user code must be done with caution, since the compiler might use
16404 @samp{GBR} in order to access thread local variables.
16405
16406 @end deftypefn
16407
16408 @deftypefn {Built-in Function} {void *} __builtin_thread_pointer (void)
16409 Returns the value that is currently set in the @samp{GBR} register.
16410 Memory loads and stores that use the thread pointer as a base address are
16411 turned into @samp{GBR} based displacement loads and stores, if possible.
16412 For example:
16413 @smallexample
16414 struct my_tcb
16415 @{
16416 int a, b, c, d, e;
16417 @};
16418
16419 int get_tcb_value (void)
16420 @{
16421 // Generate @samp{mov.l @@(8,gbr),r0} instruction
16422 return ((my_tcb*)__builtin_thread_pointer ())->c;
16423 @}
16424
16425 @end smallexample
16426 @end deftypefn
16427
16428 @node SPARC VIS Built-in Functions
16429 @subsection SPARC VIS Built-in Functions
16430
16431 GCC supports SIMD operations on the SPARC using both the generic vector
16432 extensions (@pxref{Vector Extensions}) as well as built-in functions for
16433 the SPARC Visual Instruction Set (VIS). When you use the @option{-mvis}
16434 switch, the VIS extension is exposed as the following built-in functions:
16435
16436 @smallexample
16437 typedef int v1si __attribute__ ((vector_size (4)));
16438 typedef int v2si __attribute__ ((vector_size (8)));
16439 typedef short v4hi __attribute__ ((vector_size (8)));
16440 typedef short v2hi __attribute__ ((vector_size (4)));
16441 typedef unsigned char v8qi __attribute__ ((vector_size (8)));
16442 typedef unsigned char v4qi __attribute__ ((vector_size (4)));
16443
16444 void __builtin_vis_write_gsr (int64_t);
16445 int64_t __builtin_vis_read_gsr (void);
16446
16447 void * __builtin_vis_alignaddr (void *, long);
16448 void * __builtin_vis_alignaddrl (void *, long);
16449 int64_t __builtin_vis_faligndatadi (int64_t, int64_t);
16450 v2si __builtin_vis_faligndatav2si (v2si, v2si);
16451 v4hi __builtin_vis_faligndatav4hi (v4si, v4si);
16452 v8qi __builtin_vis_faligndatav8qi (v8qi, v8qi);
16453
16454 v4hi __builtin_vis_fexpand (v4qi);
16455
16456 v4hi __builtin_vis_fmul8x16 (v4qi, v4hi);
16457 v4hi __builtin_vis_fmul8x16au (v4qi, v2hi);
16458 v4hi __builtin_vis_fmul8x16al (v4qi, v2hi);
16459 v4hi __builtin_vis_fmul8sux16 (v8qi, v4hi);
16460 v4hi __builtin_vis_fmul8ulx16 (v8qi, v4hi);
16461 v2si __builtin_vis_fmuld8sux16 (v4qi, v2hi);
16462 v2si __builtin_vis_fmuld8ulx16 (v4qi, v2hi);
16463
16464 v4qi __builtin_vis_fpack16 (v4hi);
16465 v8qi __builtin_vis_fpack32 (v2si, v8qi);
16466 v2hi __builtin_vis_fpackfix (v2si);
16467 v8qi __builtin_vis_fpmerge (v4qi, v4qi);
16468
16469 int64_t __builtin_vis_pdist (v8qi, v8qi, int64_t);
16470
16471 long __builtin_vis_edge8 (void *, void *);
16472 long __builtin_vis_edge8l (void *, void *);
16473 long __builtin_vis_edge16 (void *, void *);
16474 long __builtin_vis_edge16l (void *, void *);
16475 long __builtin_vis_edge32 (void *, void *);
16476 long __builtin_vis_edge32l (void *, void *);
16477
16478 long __builtin_vis_fcmple16 (v4hi, v4hi);
16479 long __builtin_vis_fcmple32 (v2si, v2si);
16480 long __builtin_vis_fcmpne16 (v4hi, v4hi);
16481 long __builtin_vis_fcmpne32 (v2si, v2si);
16482 long __builtin_vis_fcmpgt16 (v4hi, v4hi);
16483 long __builtin_vis_fcmpgt32 (v2si, v2si);
16484 long __builtin_vis_fcmpeq16 (v4hi, v4hi);
16485 long __builtin_vis_fcmpeq32 (v2si, v2si);
16486
16487 v4hi __builtin_vis_fpadd16 (v4hi, v4hi);
16488 v2hi __builtin_vis_fpadd16s (v2hi, v2hi);
16489 v2si __builtin_vis_fpadd32 (v2si, v2si);
16490 v1si __builtin_vis_fpadd32s (v1si, v1si);
16491 v4hi __builtin_vis_fpsub16 (v4hi, v4hi);
16492 v2hi __builtin_vis_fpsub16s (v2hi, v2hi);
16493 v2si __builtin_vis_fpsub32 (v2si, v2si);
16494 v1si __builtin_vis_fpsub32s (v1si, v1si);
16495
16496 long __builtin_vis_array8 (long, long);
16497 long __builtin_vis_array16 (long, long);
16498 long __builtin_vis_array32 (long, long);
16499 @end smallexample
16500
16501 When you use the @option{-mvis2} switch, the VIS version 2.0 built-in
16502 functions also become available:
16503
16504 @smallexample
16505 long __builtin_vis_bmask (long, long);
16506 int64_t __builtin_vis_bshuffledi (int64_t, int64_t);
16507 v2si __builtin_vis_bshufflev2si (v2si, v2si);
16508 v4hi __builtin_vis_bshufflev2si (v4hi, v4hi);
16509 v8qi __builtin_vis_bshufflev2si (v8qi, v8qi);
16510
16511 long __builtin_vis_edge8n (void *, void *);
16512 long __builtin_vis_edge8ln (void *, void *);
16513 long __builtin_vis_edge16n (void *, void *);
16514 long __builtin_vis_edge16ln (void *, void *);
16515 long __builtin_vis_edge32n (void *, void *);
16516 long __builtin_vis_edge32ln (void *, void *);
16517 @end smallexample
16518
16519 When you use the @option{-mvis3} switch, the VIS version 3.0 built-in
16520 functions also become available:
16521
16522 @smallexample
16523 void __builtin_vis_cmask8 (long);
16524 void __builtin_vis_cmask16 (long);
16525 void __builtin_vis_cmask32 (long);
16526
16527 v4hi __builtin_vis_fchksm16 (v4hi, v4hi);
16528
16529 v4hi __builtin_vis_fsll16 (v4hi, v4hi);
16530 v4hi __builtin_vis_fslas16 (v4hi, v4hi);
16531 v4hi __builtin_vis_fsrl16 (v4hi, v4hi);
16532 v4hi __builtin_vis_fsra16 (v4hi, v4hi);
16533 v2si __builtin_vis_fsll16 (v2si, v2si);
16534 v2si __builtin_vis_fslas16 (v2si, v2si);
16535 v2si __builtin_vis_fsrl16 (v2si, v2si);
16536 v2si __builtin_vis_fsra16 (v2si, v2si);
16537
16538 long __builtin_vis_pdistn (v8qi, v8qi);
16539
16540 v4hi __builtin_vis_fmean16 (v4hi, v4hi);
16541
16542 int64_t __builtin_vis_fpadd64 (int64_t, int64_t);
16543 int64_t __builtin_vis_fpsub64 (int64_t, int64_t);
16544
16545 v4hi __builtin_vis_fpadds16 (v4hi, v4hi);
16546 v2hi __builtin_vis_fpadds16s (v2hi, v2hi);
16547 v4hi __builtin_vis_fpsubs16 (v4hi, v4hi);
16548 v2hi __builtin_vis_fpsubs16s (v2hi, v2hi);
16549 v2si __builtin_vis_fpadds32 (v2si, v2si);
16550 v1si __builtin_vis_fpadds32s (v1si, v1si);
16551 v2si __builtin_vis_fpsubs32 (v2si, v2si);
16552 v1si __builtin_vis_fpsubs32s (v1si, v1si);
16553
16554 long __builtin_vis_fucmple8 (v8qi, v8qi);
16555 long __builtin_vis_fucmpne8 (v8qi, v8qi);
16556 long __builtin_vis_fucmpgt8 (v8qi, v8qi);
16557 long __builtin_vis_fucmpeq8 (v8qi, v8qi);
16558
16559 float __builtin_vis_fhadds (float, float);
16560 double __builtin_vis_fhaddd (double, double);
16561 float __builtin_vis_fhsubs (float, float);
16562 double __builtin_vis_fhsubd (double, double);
16563 float __builtin_vis_fnhadds (float, float);
16564 double __builtin_vis_fnhaddd (double, double);
16565
16566 int64_t __builtin_vis_umulxhi (int64_t, int64_t);
16567 int64_t __builtin_vis_xmulx (int64_t, int64_t);
16568 int64_t __builtin_vis_xmulxhi (int64_t, int64_t);
16569 @end smallexample
16570
16571 @node SPU Built-in Functions
16572 @subsection SPU Built-in Functions
16573
16574 GCC provides extensions for the SPU processor as described in the
16575 Sony/Toshiba/IBM SPU Language Extensions Specification, which can be
16576 found at @uref{http://cell.scei.co.jp/} or
16577 @uref{http://www.ibm.com/developerworks/power/cell/}. GCC's
16578 implementation differs in several ways.
16579
16580 @itemize @bullet
16581
16582 @item
16583 The optional extension of specifying vector constants in parentheses is
16584 not supported.
16585
16586 @item
16587 A vector initializer requires no cast if the vector constant is of the
16588 same type as the variable it is initializing.
16589
16590 @item
16591 If @code{signed} or @code{unsigned} is omitted, the signedness of the
16592 vector type is the default signedness of the base type. The default
16593 varies depending on the operating system, so a portable program should
16594 always specify the signedness.
16595
16596 @item
16597 By default, the keyword @code{__vector} is added. The macro
16598 @code{vector} is defined in @code{<spu_intrinsics.h>} and can be
16599 undefined.
16600
16601 @item
16602 GCC allows using a @code{typedef} name as the type specifier for a
16603 vector type.
16604
16605 @item
16606 For C, overloaded functions are implemented with macros so the following
16607 does not work:
16608
16609 @smallexample
16610 spu_add ((vector signed int)@{1, 2, 3, 4@}, foo);
16611 @end smallexample
16612
16613 @noindent
16614 Since @code{spu_add} is a macro, the vector constant in the example
16615 is treated as four separate arguments. Wrap the entire argument in
16616 parentheses for this to work.
16617
16618 @item
16619 The extended version of @code{__builtin_expect} is not supported.
16620
16621 @end itemize
16622
16623 @emph{Note:} Only the interface described in the aforementioned
16624 specification is supported. Internally, GCC uses built-in functions to
16625 implement the required functionality, but these are not supported and
16626 are subject to change without notice.
16627
16628 @node TI C6X Built-in Functions
16629 @subsection TI C6X Built-in Functions
16630
16631 GCC provides intrinsics to access certain instructions of the TI C6X
16632 processors. These intrinsics, listed below, are available after
16633 inclusion of the @code{c6x_intrinsics.h} header file. They map directly
16634 to C6X instructions.
16635
16636 @smallexample
16637
16638 int _sadd (int, int)
16639 int _ssub (int, int)
16640 int _sadd2 (int, int)
16641 int _ssub2 (int, int)
16642 long long _mpy2 (int, int)
16643 long long _smpy2 (int, int)
16644 int _add4 (int, int)
16645 int _sub4 (int, int)
16646 int _saddu4 (int, int)
16647
16648 int _smpy (int, int)
16649 int _smpyh (int, int)
16650 int _smpyhl (int, int)
16651 int _smpylh (int, int)
16652
16653 int _sshl (int, int)
16654 int _subc (int, int)
16655
16656 int _avg2 (int, int)
16657 int _avgu4 (int, int)
16658
16659 int _clrr (int, int)
16660 int _extr (int, int)
16661 int _extru (int, int)
16662 int _abs (int)
16663 int _abs2 (int)
16664
16665 @end smallexample
16666
16667 @node TILE-Gx Built-in Functions
16668 @subsection TILE-Gx Built-in Functions
16669
16670 GCC provides intrinsics to access every instruction of the TILE-Gx
16671 processor. The intrinsics are of the form:
16672
16673 @smallexample
16674
16675 unsigned long long __insn_@var{op} (...)
16676
16677 @end smallexample
16678
16679 Where @var{op} is the name of the instruction. Refer to the ISA manual
16680 for the complete list of instructions.
16681
16682 GCC also provides intrinsics to directly access the network registers.
16683 The intrinsics are:
16684
16685 @smallexample
16686
16687 unsigned long long __tile_idn0_receive (void)
16688 unsigned long long __tile_idn1_receive (void)
16689 unsigned long long __tile_udn0_receive (void)
16690 unsigned long long __tile_udn1_receive (void)
16691 unsigned long long __tile_udn2_receive (void)
16692 unsigned long long __tile_udn3_receive (void)
16693 void __tile_idn_send (unsigned long long)
16694 void __tile_udn_send (unsigned long long)
16695
16696 @end smallexample
16697
16698 The intrinsic @code{void __tile_network_barrier (void)} is used to
16699 guarantee that no network operations before it are reordered with
16700 those after it.
16701
16702 @node TILEPro Built-in Functions
16703 @subsection TILEPro Built-in Functions
16704
16705 GCC provides intrinsics to access every instruction of the TILEPro
16706 processor. The intrinsics are of the form:
16707
16708 @smallexample
16709
16710 unsigned __insn_@var{op} (...)
16711
16712 @end smallexample
16713
16714 @noindent
16715 where @var{op} is the name of the instruction. Refer to the ISA manual
16716 for the complete list of instructions.
16717
16718 GCC also provides intrinsics to directly access the network registers.
16719 The intrinsics are:
16720
16721 @smallexample
16722
16723 unsigned __tile_idn0_receive (void)
16724 unsigned __tile_idn1_receive (void)
16725 unsigned __tile_sn_receive (void)
16726 unsigned __tile_udn0_receive (void)
16727 unsigned __tile_udn1_receive (void)
16728 unsigned __tile_udn2_receive (void)
16729 unsigned __tile_udn3_receive (void)
16730 void __tile_idn_send (unsigned)
16731 void __tile_sn_send (unsigned)
16732 void __tile_udn_send (unsigned)
16733
16734 @end smallexample
16735
16736 The intrinsic @code{void __tile_network_barrier (void)} is used to
16737 guarantee that no network operations before it are reordered with
16738 those after it.
16739
16740 @node Target Format Checks
16741 @section Format Checks Specific to Particular Target Machines
16742
16743 For some target machines, GCC supports additional options to the
16744 format attribute
16745 (@pxref{Function Attributes,,Declaring Attributes of Functions}).
16746
16747 @menu
16748 * Solaris Format Checks::
16749 * Darwin Format Checks::
16750 @end menu
16751
16752 @node Solaris Format Checks
16753 @subsection Solaris Format Checks
16754
16755 Solaris targets support the @code{cmn_err} (or @code{__cmn_err__}) format
16756 check. @code{cmn_err} accepts a subset of the standard @code{printf}
16757 conversions, and the two-argument @code{%b} conversion for displaying
16758 bit-fields. See the Solaris man page for @code{cmn_err} for more information.
16759
16760 @node Darwin Format Checks
16761 @subsection Darwin Format Checks
16762
16763 Darwin targets support the @code{CFString} (or @code{__CFString__}) in the format
16764 attribute context. Declarations made with such attribution are parsed for correct syntax
16765 and format argument types. However, parsing of the format string itself is currently undefined
16766 and is not carried out by this version of the compiler.
16767
16768 Additionally, @code{CFStringRefs} (defined by the @code{CoreFoundation} headers) may
16769 also be used as format arguments. Note that the relevant headers are only likely to be
16770 available on Darwin (OSX) installations. On such installations, the XCode and system
16771 documentation provide descriptions of @code{CFString}, @code{CFStringRefs} and
16772 associated functions.
16773
16774 @node Pragmas
16775 @section Pragmas Accepted by GCC
16776 @cindex pragmas
16777 @cindex @code{#pragma}
16778
16779 GCC supports several types of pragmas, primarily in order to compile
16780 code originally written for other compilers. Note that in general
16781 we do not recommend the use of pragmas; @xref{Function Attributes},
16782 for further explanation.
16783
16784 @menu
16785 * ARM Pragmas::
16786 * M32C Pragmas::
16787 * MeP Pragmas::
16788 * RS/6000 and PowerPC Pragmas::
16789 * Darwin Pragmas::
16790 * Solaris Pragmas::
16791 * Symbol-Renaming Pragmas::
16792 * Structure-Packing Pragmas::
16793 * Weak Pragmas::
16794 * Diagnostic Pragmas::
16795 * Visibility Pragmas::
16796 * Push/Pop Macro Pragmas::
16797 * Function Specific Option Pragmas::
16798 * Loop-Specific Pragmas::
16799 @end menu
16800
16801 @node ARM Pragmas
16802 @subsection ARM Pragmas
16803
16804 The ARM target defines pragmas for controlling the default addition of
16805 @code{long_call} and @code{short_call} attributes to functions.
16806 @xref{Function Attributes}, for information about the effects of these
16807 attributes.
16808
16809 @table @code
16810 @item long_calls
16811 @cindex pragma, long_calls
16812 Set all subsequent functions to have the @code{long_call} attribute.
16813
16814 @item no_long_calls
16815 @cindex pragma, no_long_calls
16816 Set all subsequent functions to have the @code{short_call} attribute.
16817
16818 @item long_calls_off
16819 @cindex pragma, long_calls_off
16820 Do not affect the @code{long_call} or @code{short_call} attributes of
16821 subsequent functions.
16822 @end table
16823
16824 @node M32C Pragmas
16825 @subsection M32C Pragmas
16826
16827 @table @code
16828 @item GCC memregs @var{number}
16829 @cindex pragma, memregs
16830 Overrides the command-line option @code{-memregs=} for the current
16831 file. Use with care! This pragma must be before any function in the
16832 file, and mixing different memregs values in different objects may
16833 make them incompatible. This pragma is useful when a
16834 performance-critical function uses a memreg for temporary values,
16835 as it may allow you to reduce the number of memregs used.
16836
16837 @item ADDRESS @var{name} @var{address}
16838 @cindex pragma, address
16839 For any declared symbols matching @var{name}, this does three things
16840 to that symbol: it forces the symbol to be located at the given
16841 address (a number), it forces the symbol to be volatile, and it
16842 changes the symbol's scope to be static. This pragma exists for
16843 compatibility with other compilers, but note that the common
16844 @code{1234H} numeric syntax is not supported (use @code{0x1234}
16845 instead). Example:
16846
16847 @smallexample
16848 #pragma ADDRESS port3 0x103
16849 char port3;
16850 @end smallexample
16851
16852 @end table
16853
16854 @node MeP Pragmas
16855 @subsection MeP Pragmas
16856
16857 @table @code
16858
16859 @item custom io_volatile (on|off)
16860 @cindex pragma, custom io_volatile
16861 Overrides the command-line option @code{-mio-volatile} for the current
16862 file. Note that for compatibility with future GCC releases, this
16863 option should only be used once before any @code{io} variables in each
16864 file.
16865
16866 @item GCC coprocessor available @var{registers}
16867 @cindex pragma, coprocessor available
16868 Specifies which coprocessor registers are available to the register
16869 allocator. @var{registers} may be a single register, register range
16870 separated by ellipses, or comma-separated list of those. Example:
16871
16872 @smallexample
16873 #pragma GCC coprocessor available $c0...$c10, $c28
16874 @end smallexample
16875
16876 @item GCC coprocessor call_saved @var{registers}
16877 @cindex pragma, coprocessor call_saved
16878 Specifies which coprocessor registers are to be saved and restored by
16879 any function using them. @var{registers} may be a single register,
16880 register range separated by ellipses, or comma-separated list of
16881 those. Example:
16882
16883 @smallexample
16884 #pragma GCC coprocessor call_saved $c4...$c6, $c31
16885 @end smallexample
16886
16887 @item GCC coprocessor subclass '(A|B|C|D)' = @var{registers}
16888 @cindex pragma, coprocessor subclass
16889 Creates and defines a register class. These register classes can be
16890 used by inline @code{asm} constructs. @var{registers} may be a single
16891 register, register range separated by ellipses, or comma-separated
16892 list of those. Example:
16893
16894 @smallexample
16895 #pragma GCC coprocessor subclass 'B' = $c2, $c4, $c6
16896
16897 asm ("cpfoo %0" : "=B" (x));
16898 @end smallexample
16899
16900 @item GCC disinterrupt @var{name} , @var{name} @dots{}
16901 @cindex pragma, disinterrupt
16902 For the named functions, the compiler adds code to disable interrupts
16903 for the duration of those functions. If any functions so named
16904 are not encountered in the source, a warning is emitted that the pragma is
16905 not used. Examples:
16906
16907 @smallexample
16908 #pragma disinterrupt foo
16909 #pragma disinterrupt bar, grill
16910 int foo () @{ @dots{} @}
16911 @end smallexample
16912
16913 @item GCC call @var{name} , @var{name} @dots{}
16914 @cindex pragma, call
16915 For the named functions, the compiler always uses a register-indirect
16916 call model when calling the named functions. Examples:
16917
16918 @smallexample
16919 extern int foo ();
16920 #pragma call foo
16921 @end smallexample
16922
16923 @end table
16924
16925 @node RS/6000 and PowerPC Pragmas
16926 @subsection RS/6000 and PowerPC Pragmas
16927
16928 The RS/6000 and PowerPC targets define one pragma for controlling
16929 whether or not the @code{longcall} attribute is added to function
16930 declarations by default. This pragma overrides the @option{-mlongcall}
16931 option, but not the @code{longcall} and @code{shortcall} attributes.
16932 @xref{RS/6000 and PowerPC Options}, for more information about when long
16933 calls are and are not necessary.
16934
16935 @table @code
16936 @item longcall (1)
16937 @cindex pragma, longcall
16938 Apply the @code{longcall} attribute to all subsequent function
16939 declarations.
16940
16941 @item longcall (0)
16942 Do not apply the @code{longcall} attribute to subsequent function
16943 declarations.
16944 @end table
16945
16946 @c Describe h8300 pragmas here.
16947 @c Describe sh pragmas here.
16948 @c Describe v850 pragmas here.
16949
16950 @node Darwin Pragmas
16951 @subsection Darwin Pragmas
16952
16953 The following pragmas are available for all architectures running the
16954 Darwin operating system. These are useful for compatibility with other
16955 Mac OS compilers.
16956
16957 @table @code
16958 @item mark @var{tokens}@dots{}
16959 @cindex pragma, mark
16960 This pragma is accepted, but has no effect.
16961
16962 @item options align=@var{alignment}
16963 @cindex pragma, options align
16964 This pragma sets the alignment of fields in structures. The values of
16965 @var{alignment} may be @code{mac68k}, to emulate m68k alignment, or
16966 @code{power}, to emulate PowerPC alignment. Uses of this pragma nest
16967 properly; to restore the previous setting, use @code{reset} for the
16968 @var{alignment}.
16969
16970 @item segment @var{tokens}@dots{}
16971 @cindex pragma, segment
16972 This pragma is accepted, but has no effect.
16973
16974 @item unused (@var{var} [, @var{var}]@dots{})
16975 @cindex pragma, unused
16976 This pragma declares variables to be possibly unused. GCC does not
16977 produce warnings for the listed variables. The effect is similar to
16978 that of the @code{unused} attribute, except that this pragma may appear
16979 anywhere within the variables' scopes.
16980 @end table
16981
16982 @node Solaris Pragmas
16983 @subsection Solaris Pragmas
16984
16985 The Solaris target supports @code{#pragma redefine_extname}
16986 (@pxref{Symbol-Renaming Pragmas}). It also supports additional
16987 @code{#pragma} directives for compatibility with the system compiler.
16988
16989 @table @code
16990 @item align @var{alignment} (@var{variable} [, @var{variable}]...)
16991 @cindex pragma, align
16992
16993 Increase the minimum alignment of each @var{variable} to @var{alignment}.
16994 This is the same as GCC's @code{aligned} attribute @pxref{Variable
16995 Attributes}). Macro expansion occurs on the arguments to this pragma
16996 when compiling C and Objective-C@. It does not currently occur when
16997 compiling C++, but this is a bug which may be fixed in a future
16998 release.
16999
17000 @item fini (@var{function} [, @var{function}]...)
17001 @cindex pragma, fini
17002
17003 This pragma causes each listed @var{function} to be called after
17004 main, or during shared module unloading, by adding a call to the
17005 @code{.fini} section.
17006
17007 @item init (@var{function} [, @var{function}]...)
17008 @cindex pragma, init
17009
17010 This pragma causes each listed @var{function} to be called during
17011 initialization (before @code{main}) or during shared module loading, by
17012 adding a call to the @code{.init} section.
17013
17014 @end table
17015
17016 @node Symbol-Renaming Pragmas
17017 @subsection Symbol-Renaming Pragmas
17018
17019 GCC supports a @code{#pragma} directive that changes the name used in
17020 assembly for a given declaration. This effect can also be achieved
17021 using the asm labels extension (@pxref{Asm Labels}).
17022
17023 @table @code
17024 @item redefine_extname @var{oldname} @var{newname}
17025 @cindex pragma, redefine_extname
17026
17027 This pragma gives the C function @var{oldname} the assembly symbol
17028 @var{newname}. The preprocessor macro @code{__PRAGMA_REDEFINE_EXTNAME}
17029 is defined if this pragma is available (currently on all platforms).
17030 @end table
17031
17032 This pragma and the asm labels extension interact in a complicated
17033 manner. Here are some corner cases you may want to be aware of:
17034
17035 @enumerate
17036 @item This pragma silently applies only to declarations with external
17037 linkage. Asm labels do not have this restriction.
17038
17039 @item In C++, this pragma silently applies only to declarations with
17040 ``C'' linkage. Again, asm labels do not have this restriction.
17041
17042 @item If either of the ways of changing the assembly name of a
17043 declaration are applied to a declaration whose assembly name has
17044 already been determined (either by a previous use of one of these
17045 features, or because the compiler needed the assembly name in order to
17046 generate code), and the new name is different, a warning issues and
17047 the name does not change.
17048
17049 @item The @var{oldname} used by @code{#pragma redefine_extname} is
17050 always the C-language name.
17051 @end enumerate
17052
17053 @node Structure-Packing Pragmas
17054 @subsection Structure-Packing Pragmas
17055
17056 For compatibility with Microsoft Windows compilers, GCC supports a
17057 set of @code{#pragma} directives that change the maximum alignment of
17058 members of structures (other than zero-width bit-fields), unions, and
17059 classes subsequently defined. The @var{n} value below always is required
17060 to be a small power of two and specifies the new alignment in bytes.
17061
17062 @enumerate
17063 @item @code{#pragma pack(@var{n})} simply sets the new alignment.
17064 @item @code{#pragma pack()} sets the alignment to the one that was in
17065 effect when compilation started (see also command-line option
17066 @option{-fpack-struct[=@var{n}]} @pxref{Code Gen Options}).
17067 @item @code{#pragma pack(push[,@var{n}])} pushes the current alignment
17068 setting on an internal stack and then optionally sets the new alignment.
17069 @item @code{#pragma pack(pop)} restores the alignment setting to the one
17070 saved at the top of the internal stack (and removes that stack entry).
17071 Note that @code{#pragma pack([@var{n}])} does not influence this internal
17072 stack; thus it is possible to have @code{#pragma pack(push)} followed by
17073 multiple @code{#pragma pack(@var{n})} instances and finalized by a single
17074 @code{#pragma pack(pop)}.
17075 @end enumerate
17076
17077 Some targets, e.g.@: i386 and PowerPC, support the @code{ms_struct}
17078 @code{#pragma} which lays out a structure as the documented
17079 @code{__attribute__ ((ms_struct))}.
17080 @enumerate
17081 @item @code{#pragma ms_struct on} turns on the layout for structures
17082 declared.
17083 @item @code{#pragma ms_struct off} turns off the layout for structures
17084 declared.
17085 @item @code{#pragma ms_struct reset} goes back to the default layout.
17086 @end enumerate
17087
17088 @node Weak Pragmas
17089 @subsection Weak Pragmas
17090
17091 For compatibility with SVR4, GCC supports a set of @code{#pragma}
17092 directives for declaring symbols to be weak, and defining weak
17093 aliases.
17094
17095 @table @code
17096 @item #pragma weak @var{symbol}
17097 @cindex pragma, weak
17098 This pragma declares @var{symbol} to be weak, as if the declaration
17099 had the attribute of the same name. The pragma may appear before
17100 or after the declaration of @var{symbol}. It is not an error for
17101 @var{symbol} to never be defined at all.
17102
17103 @item #pragma weak @var{symbol1} = @var{symbol2}
17104 This pragma declares @var{symbol1} to be a weak alias of @var{symbol2}.
17105 It is an error if @var{symbol2} is not defined in the current
17106 translation unit.
17107 @end table
17108
17109 @node Diagnostic Pragmas
17110 @subsection Diagnostic Pragmas
17111
17112 GCC allows the user to selectively enable or disable certain types of
17113 diagnostics, and change the kind of the diagnostic. For example, a
17114 project's policy might require that all sources compile with
17115 @option{-Werror} but certain files might have exceptions allowing
17116 specific types of warnings. Or, a project might selectively enable
17117 diagnostics and treat them as errors depending on which preprocessor
17118 macros are defined.
17119
17120 @table @code
17121 @item #pragma GCC diagnostic @var{kind} @var{option}
17122 @cindex pragma, diagnostic
17123
17124 Modifies the disposition of a diagnostic. Note that not all
17125 diagnostics are modifiable; at the moment only warnings (normally
17126 controlled by @samp{-W@dots{}}) can be controlled, and not all of them.
17127 Use @option{-fdiagnostics-show-option} to determine which diagnostics
17128 are controllable and which option controls them.
17129
17130 @var{kind} is @samp{error} to treat this diagnostic as an error,
17131 @samp{warning} to treat it like a warning (even if @option{-Werror} is
17132 in effect), or @samp{ignored} if the diagnostic is to be ignored.
17133 @var{option} is a double quoted string that matches the command-line
17134 option.
17135
17136 @smallexample
17137 #pragma GCC diagnostic warning "-Wformat"
17138 #pragma GCC diagnostic error "-Wformat"
17139 #pragma GCC diagnostic ignored "-Wformat"
17140 @end smallexample
17141
17142 Note that these pragmas override any command-line options. GCC keeps
17143 track of the location of each pragma, and issues diagnostics according
17144 to the state as of that point in the source file. Thus, pragmas occurring
17145 after a line do not affect diagnostics caused by that line.
17146
17147 @item #pragma GCC diagnostic push
17148 @itemx #pragma GCC diagnostic pop
17149
17150 Causes GCC to remember the state of the diagnostics as of each
17151 @code{push}, and restore to that point at each @code{pop}. If a
17152 @code{pop} has no matching @code{push}, the command-line options are
17153 restored.
17154
17155 @smallexample
17156 #pragma GCC diagnostic error "-Wuninitialized"
17157 foo(a); /* error is given for this one */
17158 #pragma GCC diagnostic push
17159 #pragma GCC diagnostic ignored "-Wuninitialized"
17160 foo(b); /* no diagnostic for this one */
17161 #pragma GCC diagnostic pop
17162 foo(c); /* error is given for this one */
17163 #pragma GCC diagnostic pop
17164 foo(d); /* depends on command-line options */
17165 @end smallexample
17166
17167 @end table
17168
17169 GCC also offers a simple mechanism for printing messages during
17170 compilation.
17171
17172 @table @code
17173 @item #pragma message @var{string}
17174 @cindex pragma, diagnostic
17175
17176 Prints @var{string} as a compiler message on compilation. The message
17177 is informational only, and is neither a compilation warning nor an error.
17178
17179 @smallexample
17180 #pragma message "Compiling " __FILE__ "..."
17181 @end smallexample
17182
17183 @var{string} may be parenthesized, and is printed with location
17184 information. For example,
17185
17186 @smallexample
17187 #define DO_PRAGMA(x) _Pragma (#x)
17188 #define TODO(x) DO_PRAGMA(message ("TODO - " #x))
17189
17190 TODO(Remember to fix this)
17191 @end smallexample
17192
17193 @noindent
17194 prints @samp{/tmp/file.c:4: note: #pragma message:
17195 TODO - Remember to fix this}.
17196
17197 @end table
17198
17199 @node Visibility Pragmas
17200 @subsection Visibility Pragmas
17201
17202 @table @code
17203 @item #pragma GCC visibility push(@var{visibility})
17204 @itemx #pragma GCC visibility pop
17205 @cindex pragma, visibility
17206
17207 This pragma allows the user to set the visibility for multiple
17208 declarations without having to give each a visibility attribute
17209 (@pxref{Function Attributes}).
17210
17211 In C++, @samp{#pragma GCC visibility} affects only namespace-scope
17212 declarations. Class members and template specializations are not
17213 affected; if you want to override the visibility for a particular
17214 member or instantiation, you must use an attribute.
17215
17216 @end table
17217
17218
17219 @node Push/Pop Macro Pragmas
17220 @subsection Push/Pop Macro Pragmas
17221
17222 For compatibility with Microsoft Windows compilers, GCC supports
17223 @samp{#pragma push_macro(@var{"macro_name"})}
17224 and @samp{#pragma pop_macro(@var{"macro_name"})}.
17225
17226 @table @code
17227 @item #pragma push_macro(@var{"macro_name"})
17228 @cindex pragma, push_macro
17229 This pragma saves the value of the macro named as @var{macro_name} to
17230 the top of the stack for this macro.
17231
17232 @item #pragma pop_macro(@var{"macro_name"})
17233 @cindex pragma, pop_macro
17234 This pragma sets the value of the macro named as @var{macro_name} to
17235 the value on top of the stack for this macro. If the stack for
17236 @var{macro_name} is empty, the value of the macro remains unchanged.
17237 @end table
17238
17239 For example:
17240
17241 @smallexample
17242 #define X 1
17243 #pragma push_macro("X")
17244 #undef X
17245 #define X -1
17246 #pragma pop_macro("X")
17247 int x [X];
17248 @end smallexample
17249
17250 @noindent
17251 In this example, the definition of X as 1 is saved by @code{#pragma
17252 push_macro} and restored by @code{#pragma pop_macro}.
17253
17254 @node Function Specific Option Pragmas
17255 @subsection Function Specific Option Pragmas
17256
17257 @table @code
17258 @item #pragma GCC target (@var{"string"}...)
17259 @cindex pragma GCC target
17260
17261 This pragma allows you to set target specific options for functions
17262 defined later in the source file. One or more strings can be
17263 specified. Each function that is defined after this point is as
17264 if @code{attribute((target("STRING")))} was specified for that
17265 function. The parenthesis around the options is optional.
17266 @xref{Function Attributes}, for more information about the
17267 @code{target} attribute and the attribute syntax.
17268
17269 The @code{#pragma GCC target} pragma is presently implemented for
17270 i386/x86_64, PowerPC, and Nios II targets only.
17271 @end table
17272
17273 @table @code
17274 @item #pragma GCC optimize (@var{"string"}...)
17275 @cindex pragma GCC optimize
17276
17277 This pragma allows you to set global optimization options for functions
17278 defined later in the source file. One or more strings can be
17279 specified. Each function that is defined after this point is as
17280 if @code{attribute((optimize("STRING")))} was specified for that
17281 function. The parenthesis around the options is optional.
17282 @xref{Function Attributes}, for more information about the
17283 @code{optimize} attribute and the attribute syntax.
17284
17285 The @samp{#pragma GCC optimize} pragma is not implemented in GCC
17286 versions earlier than 4.4.
17287 @end table
17288
17289 @table @code
17290 @item #pragma GCC push_options
17291 @itemx #pragma GCC pop_options
17292 @cindex pragma GCC push_options
17293 @cindex pragma GCC pop_options
17294
17295 These pragmas maintain a stack of the current target and optimization
17296 options. It is intended for include files where you temporarily want
17297 to switch to using a different @samp{#pragma GCC target} or
17298 @samp{#pragma GCC optimize} and then to pop back to the previous
17299 options.
17300
17301 The @samp{#pragma GCC push_options} and @samp{#pragma GCC pop_options}
17302 pragmas are not implemented in GCC versions earlier than 4.4.
17303 @end table
17304
17305 @table @code
17306 @item #pragma GCC reset_options
17307 @cindex pragma GCC reset_options
17308
17309 This pragma clears the current @code{#pragma GCC target} and
17310 @code{#pragma GCC optimize} to use the default switches as specified
17311 on the command line.
17312
17313 The @samp{#pragma GCC reset_options} pragma is not implemented in GCC
17314 versions earlier than 4.4.
17315 @end table
17316
17317 @node Loop-Specific Pragmas
17318 @subsection Loop-Specific Pragmas
17319
17320 @table @code
17321 @item #pragma GCC ivdep
17322 @cindex pragma GCC ivdep
17323 @end table
17324
17325 With this pragma, the programmer asserts that there are no loop-carried
17326 dependencies which would prevent that consecutive iterations of
17327 the following loop can be executed concurrently with SIMD
17328 (single instruction multiple data) instructions.
17329
17330 For example, the compiler can only unconditionally vectorize the following
17331 loop with the pragma:
17332
17333 @smallexample
17334 void foo (int n, int *a, int *b, int *c)
17335 @{
17336 int i, j;
17337 #pragma GCC ivdep
17338 for (i = 0; i < n; ++i)
17339 a[i] = b[i] + c[i];
17340 @}
17341 @end smallexample
17342
17343 @noindent
17344 In this example, using the @code{restrict} qualifier had the same
17345 effect. In the following example, that would not be possible. Assume
17346 @math{k < -m} or @math{k >= m}. Only with the pragma, the compiler knows
17347 that it can unconditionally vectorize the following loop:
17348
17349 @smallexample
17350 void ignore_vec_dep (int *a, int k, int c, int m)
17351 @{
17352 #pragma GCC ivdep
17353 for (int i = 0; i < m; i++)
17354 a[i] = a[i + k] * c;
17355 @}
17356 @end smallexample
17357
17358
17359 @node Unnamed Fields
17360 @section Unnamed struct/union fields within structs/unions
17361 @cindex @code{struct}
17362 @cindex @code{union}
17363
17364 As permitted by ISO C11 and for compatibility with other compilers,
17365 GCC allows you to define
17366 a structure or union that contains, as fields, structures and unions
17367 without names. For example:
17368
17369 @smallexample
17370 struct @{
17371 int a;
17372 union @{
17373 int b;
17374 float c;
17375 @};
17376 int d;
17377 @} foo;
17378 @end smallexample
17379
17380 @noindent
17381 In this example, you are able to access members of the unnamed
17382 union with code like @samp{foo.b}. Note that only unnamed structs and
17383 unions are allowed, you may not have, for example, an unnamed
17384 @code{int}.
17385
17386 You must never create such structures that cause ambiguous field definitions.
17387 For example, in this structure:
17388
17389 @smallexample
17390 struct @{
17391 int a;
17392 struct @{
17393 int a;
17394 @};
17395 @} foo;
17396 @end smallexample
17397
17398 @noindent
17399 it is ambiguous which @code{a} is being referred to with @samp{foo.a}.
17400 The compiler gives errors for such constructs.
17401
17402 @opindex fms-extensions
17403 Unless @option{-fms-extensions} is used, the unnamed field must be a
17404 structure or union definition without a tag (for example, @samp{struct
17405 @{ int a; @};}). If @option{-fms-extensions} is used, the field may
17406 also be a definition with a tag such as @samp{struct foo @{ int a;
17407 @};}, a reference to a previously defined structure or union such as
17408 @samp{struct foo;}, or a reference to a @code{typedef} name for a
17409 previously defined structure or union type.
17410
17411 @opindex fplan9-extensions
17412 The option @option{-fplan9-extensions} enables
17413 @option{-fms-extensions} as well as two other extensions. First, a
17414 pointer to a structure is automatically converted to a pointer to an
17415 anonymous field for assignments and function calls. For example:
17416
17417 @smallexample
17418 struct s1 @{ int a; @};
17419 struct s2 @{ struct s1; @};
17420 extern void f1 (struct s1 *);
17421 void f2 (struct s2 *p) @{ f1 (p); @}
17422 @end smallexample
17423
17424 @noindent
17425 In the call to @code{f1} inside @code{f2}, the pointer @code{p} is
17426 converted into a pointer to the anonymous field.
17427
17428 Second, when the type of an anonymous field is a @code{typedef} for a
17429 @code{struct} or @code{union}, code may refer to the field using the
17430 name of the @code{typedef}.
17431
17432 @smallexample
17433 typedef struct @{ int a; @} s1;
17434 struct s2 @{ s1; @};
17435 s1 f1 (struct s2 *p) @{ return p->s1; @}
17436 @end smallexample
17437
17438 These usages are only permitted when they are not ambiguous.
17439
17440 @node Thread-Local
17441 @section Thread-Local Storage
17442 @cindex Thread-Local Storage
17443 @cindex @acronym{TLS}
17444 @cindex @code{__thread}
17445
17446 Thread-local storage (@acronym{TLS}) is a mechanism by which variables
17447 are allocated such that there is one instance of the variable per extant
17448 thread. The runtime model GCC uses to implement this originates
17449 in the IA-64 processor-specific ABI, but has since been migrated
17450 to other processors as well. It requires significant support from
17451 the linker (@command{ld}), dynamic linker (@command{ld.so}), and
17452 system libraries (@file{libc.so} and @file{libpthread.so}), so it
17453 is not available everywhere.
17454
17455 At the user level, the extension is visible with a new storage
17456 class keyword: @code{__thread}. For example:
17457
17458 @smallexample
17459 __thread int i;
17460 extern __thread struct state s;
17461 static __thread char *p;
17462 @end smallexample
17463
17464 The @code{__thread} specifier may be used alone, with the @code{extern}
17465 or @code{static} specifiers, but with no other storage class specifier.
17466 When used with @code{extern} or @code{static}, @code{__thread} must appear
17467 immediately after the other storage class specifier.
17468
17469 The @code{__thread} specifier may be applied to any global, file-scoped
17470 static, function-scoped static, or static data member of a class. It may
17471 not be applied to block-scoped automatic or non-static data member.
17472
17473 When the address-of operator is applied to a thread-local variable, it is
17474 evaluated at run time and returns the address of the current thread's
17475 instance of that variable. An address so obtained may be used by any
17476 thread. When a thread terminates, any pointers to thread-local variables
17477 in that thread become invalid.
17478
17479 No static initialization may refer to the address of a thread-local variable.
17480
17481 In C++, if an initializer is present for a thread-local variable, it must
17482 be a @var{constant-expression}, as defined in 5.19.2 of the ANSI/ISO C++
17483 standard.
17484
17485 See @uref{http://www.akkadia.org/drepper/tls.pdf,
17486 ELF Handling For Thread-Local Storage} for a detailed explanation of
17487 the four thread-local storage addressing models, and how the runtime
17488 is expected to function.
17489
17490 @menu
17491 * C99 Thread-Local Edits::
17492 * C++98 Thread-Local Edits::
17493 @end menu
17494
17495 @node C99 Thread-Local Edits
17496 @subsection ISO/IEC 9899:1999 Edits for Thread-Local Storage
17497
17498 The following are a set of changes to ISO/IEC 9899:1999 (aka C99)
17499 that document the exact semantics of the language extension.
17500
17501 @itemize @bullet
17502 @item
17503 @cite{5.1.2 Execution environments}
17504
17505 Add new text after paragraph 1
17506
17507 @quotation
17508 Within either execution environment, a @dfn{thread} is a flow of
17509 control within a program. It is implementation defined whether
17510 or not there may be more than one thread associated with a program.
17511 It is implementation defined how threads beyond the first are
17512 created, the name and type of the function called at thread
17513 startup, and how threads may be terminated. However, objects
17514 with thread storage duration shall be initialized before thread
17515 startup.
17516 @end quotation
17517
17518 @item
17519 @cite{6.2.4 Storage durations of objects}
17520
17521 Add new text before paragraph 3
17522
17523 @quotation
17524 An object whose identifier is declared with the storage-class
17525 specifier @w{@code{__thread}} has @dfn{thread storage duration}.
17526 Its lifetime is the entire execution of the thread, and its
17527 stored value is initialized only once, prior to thread startup.
17528 @end quotation
17529
17530 @item
17531 @cite{6.4.1 Keywords}
17532
17533 Add @code{__thread}.
17534
17535 @item
17536 @cite{6.7.1 Storage-class specifiers}
17537
17538 Add @code{__thread} to the list of storage class specifiers in
17539 paragraph 1.
17540
17541 Change paragraph 2 to
17542
17543 @quotation
17544 With the exception of @code{__thread}, at most one storage-class
17545 specifier may be given [@dots{}]. The @code{__thread} specifier may
17546 be used alone, or immediately following @code{extern} or
17547 @code{static}.
17548 @end quotation
17549
17550 Add new text after paragraph 6
17551
17552 @quotation
17553 The declaration of an identifier for a variable that has
17554 block scope that specifies @code{__thread} shall also
17555 specify either @code{extern} or @code{static}.
17556
17557 The @code{__thread} specifier shall be used only with
17558 variables.
17559 @end quotation
17560 @end itemize
17561
17562 @node C++98 Thread-Local Edits
17563 @subsection ISO/IEC 14882:1998 Edits for Thread-Local Storage
17564
17565 The following are a set of changes to ISO/IEC 14882:1998 (aka C++98)
17566 that document the exact semantics of the language extension.
17567
17568 @itemize @bullet
17569 @item
17570 @b{[intro.execution]}
17571
17572 New text after paragraph 4
17573
17574 @quotation
17575 A @dfn{thread} is a flow of control within the abstract machine.
17576 It is implementation defined whether or not there may be more than
17577 one thread.
17578 @end quotation
17579
17580 New text after paragraph 7
17581
17582 @quotation
17583 It is unspecified whether additional action must be taken to
17584 ensure when and whether side effects are visible to other threads.
17585 @end quotation
17586
17587 @item
17588 @b{[lex.key]}
17589
17590 Add @code{__thread}.
17591
17592 @item
17593 @b{[basic.start.main]}
17594
17595 Add after paragraph 5
17596
17597 @quotation
17598 The thread that begins execution at the @code{main} function is called
17599 the @dfn{main thread}. It is implementation defined how functions
17600 beginning threads other than the main thread are designated or typed.
17601 A function so designated, as well as the @code{main} function, is called
17602 a @dfn{thread startup function}. It is implementation defined what
17603 happens if a thread startup function returns. It is implementation
17604 defined what happens to other threads when any thread calls @code{exit}.
17605 @end quotation
17606
17607 @item
17608 @b{[basic.start.init]}
17609
17610 Add after paragraph 4
17611
17612 @quotation
17613 The storage for an object of thread storage duration shall be
17614 statically initialized before the first statement of the thread startup
17615 function. An object of thread storage duration shall not require
17616 dynamic initialization.
17617 @end quotation
17618
17619 @item
17620 @b{[basic.start.term]}
17621
17622 Add after paragraph 3
17623
17624 @quotation
17625 The type of an object with thread storage duration shall not have a
17626 non-trivial destructor, nor shall it be an array type whose elements
17627 (directly or indirectly) have non-trivial destructors.
17628 @end quotation
17629
17630 @item
17631 @b{[basic.stc]}
17632
17633 Add ``thread storage duration'' to the list in paragraph 1.
17634
17635 Change paragraph 2
17636
17637 @quotation
17638 Thread, static, and automatic storage durations are associated with
17639 objects introduced by declarations [@dots{}].
17640 @end quotation
17641
17642 Add @code{__thread} to the list of specifiers in paragraph 3.
17643
17644 @item
17645 @b{[basic.stc.thread]}
17646
17647 New section before @b{[basic.stc.static]}
17648
17649 @quotation
17650 The keyword @code{__thread} applied to a non-local object gives the
17651 object thread storage duration.
17652
17653 A local variable or class data member declared both @code{static}
17654 and @code{__thread} gives the variable or member thread storage
17655 duration.
17656 @end quotation
17657
17658 @item
17659 @b{[basic.stc.static]}
17660
17661 Change paragraph 1
17662
17663 @quotation
17664 All objects that have neither thread storage duration, dynamic
17665 storage duration nor are local [@dots{}].
17666 @end quotation
17667
17668 @item
17669 @b{[dcl.stc]}
17670
17671 Add @code{__thread} to the list in paragraph 1.
17672
17673 Change paragraph 1
17674
17675 @quotation
17676 With the exception of @code{__thread}, at most one
17677 @var{storage-class-specifier} shall appear in a given
17678 @var{decl-specifier-seq}. The @code{__thread} specifier may
17679 be used alone, or immediately following the @code{extern} or
17680 @code{static} specifiers. [@dots{}]
17681 @end quotation
17682
17683 Add after paragraph 5
17684
17685 @quotation
17686 The @code{__thread} specifier can be applied only to the names of objects
17687 and to anonymous unions.
17688 @end quotation
17689
17690 @item
17691 @b{[class.mem]}
17692
17693 Add after paragraph 6
17694
17695 @quotation
17696 Non-@code{static} members shall not be @code{__thread}.
17697 @end quotation
17698 @end itemize
17699
17700 @node Binary constants
17701 @section Binary constants using the @samp{0b} prefix
17702 @cindex Binary constants using the @samp{0b} prefix
17703
17704 Integer constants can be written as binary constants, consisting of a
17705 sequence of @samp{0} and @samp{1} digits, prefixed by @samp{0b} or
17706 @samp{0B}. This is particularly useful in environments that operate a
17707 lot on the bit level (like microcontrollers).
17708
17709 The following statements are identical:
17710
17711 @smallexample
17712 i = 42;
17713 i = 0x2a;
17714 i = 052;
17715 i = 0b101010;
17716 @end smallexample
17717
17718 The type of these constants follows the same rules as for octal or
17719 hexadecimal integer constants, so suffixes like @samp{L} or @samp{UL}
17720 can be applied.
17721
17722 @node C++ Extensions
17723 @chapter Extensions to the C++ Language
17724 @cindex extensions, C++ language
17725 @cindex C++ language extensions
17726
17727 The GNU compiler provides these extensions to the C++ language (and you
17728 can also use most of the C language extensions in your C++ programs). If you
17729 want to write code that checks whether these features are available, you can
17730 test for the GNU compiler the same way as for C programs: check for a
17731 predefined macro @code{__GNUC__}. You can also use @code{__GNUG__} to
17732 test specifically for GNU C++ (@pxref{Common Predefined Macros,,
17733 Predefined Macros,cpp,The GNU C Preprocessor}).
17734
17735 @menu
17736 * C++ Volatiles:: What constitutes an access to a volatile object.
17737 * Restricted Pointers:: C99 restricted pointers and references.
17738 * Vague Linkage:: Where G++ puts inlines, vtables and such.
17739 * C++ Interface:: You can use a single C++ header file for both
17740 declarations and definitions.
17741 * Template Instantiation:: Methods for ensuring that exactly one copy of
17742 each needed template instantiation is emitted.
17743 * Bound member functions:: You can extract a function pointer to the
17744 method denoted by a @samp{->*} or @samp{.*} expression.
17745 * C++ Attributes:: Variable, function, and type attributes for C++ only.
17746 * Function Multiversioning:: Declaring multiple function versions.
17747 * Namespace Association:: Strong using-directives for namespace association.
17748 * Type Traits:: Compiler support for type traits
17749 * Java Exceptions:: Tweaking exception handling to work with Java.
17750 * Deprecated Features:: Things will disappear from G++.
17751 * Backwards Compatibility:: Compatibilities with earlier definitions of C++.
17752 @end menu
17753
17754 @node C++ Volatiles
17755 @section When is a Volatile C++ Object Accessed?
17756 @cindex accessing volatiles
17757 @cindex volatile read
17758 @cindex volatile write
17759 @cindex volatile access
17760
17761 The C++ standard differs from the C standard in its treatment of
17762 volatile objects. It fails to specify what constitutes a volatile
17763 access, except to say that C++ should behave in a similar manner to C
17764 with respect to volatiles, where possible. However, the different
17765 lvalueness of expressions between C and C++ complicate the behavior.
17766 G++ behaves the same as GCC for volatile access, @xref{C
17767 Extensions,,Volatiles}, for a description of GCC's behavior.
17768
17769 The C and C++ language specifications differ when an object is
17770 accessed in a void context:
17771
17772 @smallexample
17773 volatile int *src = @var{somevalue};
17774 *src;
17775 @end smallexample
17776
17777 The C++ standard specifies that such expressions do not undergo lvalue
17778 to rvalue conversion, and that the type of the dereferenced object may
17779 be incomplete. The C++ standard does not specify explicitly that it
17780 is lvalue to rvalue conversion that is responsible for causing an
17781 access. There is reason to believe that it is, because otherwise
17782 certain simple expressions become undefined. However, because it
17783 would surprise most programmers, G++ treats dereferencing a pointer to
17784 volatile object of complete type as GCC would do for an equivalent
17785 type in C@. When the object has incomplete type, G++ issues a
17786 warning; if you wish to force an error, you must force a conversion to
17787 rvalue with, for instance, a static cast.
17788
17789 When using a reference to volatile, G++ does not treat equivalent
17790 expressions as accesses to volatiles, but instead issues a warning that
17791 no volatile is accessed. The rationale for this is that otherwise it
17792 becomes difficult to determine where volatile access occur, and not
17793 possible to ignore the return value from functions returning volatile
17794 references. Again, if you wish to force a read, cast the reference to
17795 an rvalue.
17796
17797 G++ implements the same behavior as GCC does when assigning to a
17798 volatile object---there is no reread of the assigned-to object, the
17799 assigned rvalue is reused. Note that in C++ assignment expressions
17800 are lvalues, and if used as an lvalue, the volatile object is
17801 referred to. For instance, @var{vref} refers to @var{vobj}, as
17802 expected, in the following example:
17803
17804 @smallexample
17805 volatile int vobj;
17806 volatile int &vref = vobj = @var{something};
17807 @end smallexample
17808
17809 @node Restricted Pointers
17810 @section Restricting Pointer Aliasing
17811 @cindex restricted pointers
17812 @cindex restricted references
17813 @cindex restricted this pointer
17814
17815 As with the C front end, G++ understands the C99 feature of restricted pointers,
17816 specified with the @code{__restrict__}, or @code{__restrict} type
17817 qualifier. Because you cannot compile C++ by specifying the @option{-std=c99}
17818 language flag, @code{restrict} is not a keyword in C++.
17819
17820 In addition to allowing restricted pointers, you can specify restricted
17821 references, which indicate that the reference is not aliased in the local
17822 context.
17823
17824 @smallexample
17825 void fn (int *__restrict__ rptr, int &__restrict__ rref)
17826 @{
17827 /* @r{@dots{}} */
17828 @}
17829 @end smallexample
17830
17831 @noindent
17832 In the body of @code{fn}, @var{rptr} points to an unaliased integer and
17833 @var{rref} refers to a (different) unaliased integer.
17834
17835 You may also specify whether a member function's @var{this} pointer is
17836 unaliased by using @code{__restrict__} as a member function qualifier.
17837
17838 @smallexample
17839 void T::fn () __restrict__
17840 @{
17841 /* @r{@dots{}} */
17842 @}
17843 @end smallexample
17844
17845 @noindent
17846 Within the body of @code{T::fn}, @var{this} has the effective
17847 definition @code{T *__restrict__ const this}. Notice that the
17848 interpretation of a @code{__restrict__} member function qualifier is
17849 different to that of @code{const} or @code{volatile} qualifier, in that it
17850 is applied to the pointer rather than the object. This is consistent with
17851 other compilers that implement restricted pointers.
17852
17853 As with all outermost parameter qualifiers, @code{__restrict__} is
17854 ignored in function definition matching. This means you only need to
17855 specify @code{__restrict__} in a function definition, rather than
17856 in a function prototype as well.
17857
17858 @node Vague Linkage
17859 @section Vague Linkage
17860 @cindex vague linkage
17861
17862 There are several constructs in C++ that require space in the object
17863 file but are not clearly tied to a single translation unit. We say that
17864 these constructs have ``vague linkage''. Typically such constructs are
17865 emitted wherever they are needed, though sometimes we can be more
17866 clever.
17867
17868 @table @asis
17869 @item Inline Functions
17870 Inline functions are typically defined in a header file which can be
17871 included in many different compilations. Hopefully they can usually be
17872 inlined, but sometimes an out-of-line copy is necessary, if the address
17873 of the function is taken or if inlining fails. In general, we emit an
17874 out-of-line copy in all translation units where one is needed. As an
17875 exception, we only emit inline virtual functions with the vtable, since
17876 it always requires a copy.
17877
17878 Local static variables and string constants used in an inline function
17879 are also considered to have vague linkage, since they must be shared
17880 between all inlined and out-of-line instances of the function.
17881
17882 @item VTables
17883 @cindex vtable
17884 C++ virtual functions are implemented in most compilers using a lookup
17885 table, known as a vtable. The vtable contains pointers to the virtual
17886 functions provided by a class, and each object of the class contains a
17887 pointer to its vtable (or vtables, in some multiple-inheritance
17888 situations). If the class declares any non-inline, non-pure virtual
17889 functions, the first one is chosen as the ``key method'' for the class,
17890 and the vtable is only emitted in the translation unit where the key
17891 method is defined.
17892
17893 @emph{Note:} If the chosen key method is later defined as inline, the
17894 vtable is still emitted in every translation unit that defines it.
17895 Make sure that any inline virtuals are declared inline in the class
17896 body, even if they are not defined there.
17897
17898 @item @code{type_info} objects
17899 @cindex @code{type_info}
17900 @cindex RTTI
17901 C++ requires information about types to be written out in order to
17902 implement @samp{dynamic_cast}, @samp{typeid} and exception handling.
17903 For polymorphic classes (classes with virtual functions), the @samp{type_info}
17904 object is written out along with the vtable so that @samp{dynamic_cast}
17905 can determine the dynamic type of a class object at run time. For all
17906 other types, we write out the @samp{type_info} object when it is used: when
17907 applying @samp{typeid} to an expression, throwing an object, or
17908 referring to a type in a catch clause or exception specification.
17909
17910 @item Template Instantiations
17911 Most everything in this section also applies to template instantiations,
17912 but there are other options as well.
17913 @xref{Template Instantiation,,Where's the Template?}.
17914
17915 @end table
17916
17917 When used with GNU ld version 2.8 or later on an ELF system such as
17918 GNU/Linux or Solaris 2, or on Microsoft Windows, duplicate copies of
17919 these constructs will be discarded at link time. This is known as
17920 COMDAT support.
17921
17922 On targets that don't support COMDAT, but do support weak symbols, GCC
17923 uses them. This way one copy overrides all the others, but
17924 the unused copies still take up space in the executable.
17925
17926 For targets that do not support either COMDAT or weak symbols,
17927 most entities with vague linkage are emitted as local symbols to
17928 avoid duplicate definition errors from the linker. This does not happen
17929 for local statics in inlines, however, as having multiple copies
17930 almost certainly breaks things.
17931
17932 @xref{C++ Interface,,Declarations and Definitions in One Header}, for
17933 another way to control placement of these constructs.
17934
17935 @node C++ Interface
17936 @section #pragma interface and implementation
17937
17938 @cindex interface and implementation headers, C++
17939 @cindex C++ interface and implementation headers
17940 @cindex pragmas, interface and implementation
17941
17942 @code{#pragma interface} and @code{#pragma implementation} provide the
17943 user with a way of explicitly directing the compiler to emit entities
17944 with vague linkage (and debugging information) in a particular
17945 translation unit.
17946
17947 @emph{Note:} As of GCC 2.7.2, these @code{#pragma}s are not useful in
17948 most cases, because of COMDAT support and the ``key method'' heuristic
17949 mentioned in @ref{Vague Linkage}. Using them can actually cause your
17950 program to grow due to unnecessary out-of-line copies of inline
17951 functions. Currently (3.4) the only benefit of these
17952 @code{#pragma}s is reduced duplication of debugging information, and
17953 that should be addressed soon on DWARF 2 targets with the use of
17954 COMDAT groups.
17955
17956 @table @code
17957 @item #pragma interface
17958 @itemx #pragma interface "@var{subdir}/@var{objects}.h"
17959 @kindex #pragma interface
17960 Use this directive in @emph{header files} that define object classes, to save
17961 space in most of the object files that use those classes. Normally,
17962 local copies of certain information (backup copies of inline member
17963 functions, debugging information, and the internal tables that implement
17964 virtual functions) must be kept in each object file that includes class
17965 definitions. You can use this pragma to avoid such duplication. When a
17966 header file containing @samp{#pragma interface} is included in a
17967 compilation, this auxiliary information is not generated (unless
17968 the main input source file itself uses @samp{#pragma implementation}).
17969 Instead, the object files contain references to be resolved at link
17970 time.
17971
17972 The second form of this directive is useful for the case where you have
17973 multiple headers with the same name in different directories. If you
17974 use this form, you must specify the same string to @samp{#pragma
17975 implementation}.
17976
17977 @item #pragma implementation
17978 @itemx #pragma implementation "@var{objects}.h"
17979 @kindex #pragma implementation
17980 Use this pragma in a @emph{main input file}, when you want full output from
17981 included header files to be generated (and made globally visible). The
17982 included header file, in turn, should use @samp{#pragma interface}.
17983 Backup copies of inline member functions, debugging information, and the
17984 internal tables used to implement virtual functions are all generated in
17985 implementation files.
17986
17987 @cindex implied @code{#pragma implementation}
17988 @cindex @code{#pragma implementation}, implied
17989 @cindex naming convention, implementation headers
17990 If you use @samp{#pragma implementation} with no argument, it applies to
17991 an include file with the same basename@footnote{A file's @dfn{basename}
17992 is the name stripped of all leading path information and of trailing
17993 suffixes, such as @samp{.h} or @samp{.C} or @samp{.cc}.} as your source
17994 file. For example, in @file{allclass.cc}, giving just
17995 @samp{#pragma implementation}
17996 by itself is equivalent to @samp{#pragma implementation "allclass.h"}.
17997
17998 In versions of GNU C++ prior to 2.6.0 @file{allclass.h} was treated as
17999 an implementation file whenever you would include it from
18000 @file{allclass.cc} even if you never specified @samp{#pragma
18001 implementation}. This was deemed to be more trouble than it was worth,
18002 however, and disabled.
18003
18004 Use the string argument if you want a single implementation file to
18005 include code from multiple header files. (You must also use
18006 @samp{#include} to include the header file; @samp{#pragma
18007 implementation} only specifies how to use the file---it doesn't actually
18008 include it.)
18009
18010 There is no way to split up the contents of a single header file into
18011 multiple implementation files.
18012 @end table
18013
18014 @cindex inlining and C++ pragmas
18015 @cindex C++ pragmas, effect on inlining
18016 @cindex pragmas in C++, effect on inlining
18017 @samp{#pragma implementation} and @samp{#pragma interface} also have an
18018 effect on function inlining.
18019
18020 If you define a class in a header file marked with @samp{#pragma
18021 interface}, the effect on an inline function defined in that class is
18022 similar to an explicit @code{extern} declaration---the compiler emits
18023 no code at all to define an independent version of the function. Its
18024 definition is used only for inlining with its callers.
18025
18026 @opindex fno-implement-inlines
18027 Conversely, when you include the same header file in a main source file
18028 that declares it as @samp{#pragma implementation}, the compiler emits
18029 code for the function itself; this defines a version of the function
18030 that can be found via pointers (or by callers compiled without
18031 inlining). If all calls to the function can be inlined, you can avoid
18032 emitting the function by compiling with @option{-fno-implement-inlines}.
18033 If any calls are not inlined, you will get linker errors.
18034
18035 @node Template Instantiation
18036 @section Where's the Template?
18037 @cindex template instantiation
18038
18039 C++ templates are the first language feature to require more
18040 intelligence from the environment than one usually finds on a UNIX
18041 system. Somehow the compiler and linker have to make sure that each
18042 template instance occurs exactly once in the executable if it is needed,
18043 and not at all otherwise. There are two basic approaches to this
18044 problem, which are referred to as the Borland model and the Cfront model.
18045
18046 @table @asis
18047 @item Borland model
18048 Borland C++ solved the template instantiation problem by adding the code
18049 equivalent of common blocks to their linker; the compiler emits template
18050 instances in each translation unit that uses them, and the linker
18051 collapses them together. The advantage of this model is that the linker
18052 only has to consider the object files themselves; there is no external
18053 complexity to worry about. This disadvantage is that compilation time
18054 is increased because the template code is being compiled repeatedly.
18055 Code written for this model tends to include definitions of all
18056 templates in the header file, since they must be seen to be
18057 instantiated.
18058
18059 @item Cfront model
18060 The AT&T C++ translator, Cfront, solved the template instantiation
18061 problem by creating the notion of a template repository, an
18062 automatically maintained place where template instances are stored. A
18063 more modern version of the repository works as follows: As individual
18064 object files are built, the compiler places any template definitions and
18065 instantiations encountered in the repository. At link time, the link
18066 wrapper adds in the objects in the repository and compiles any needed
18067 instances that were not previously emitted. The advantages of this
18068 model are more optimal compilation speed and the ability to use the
18069 system linker; to implement the Borland model a compiler vendor also
18070 needs to replace the linker. The disadvantages are vastly increased
18071 complexity, and thus potential for error; for some code this can be
18072 just as transparent, but in practice it can been very difficult to build
18073 multiple programs in one directory and one program in multiple
18074 directories. Code written for this model tends to separate definitions
18075 of non-inline member templates into a separate file, which should be
18076 compiled separately.
18077 @end table
18078
18079 When used with GNU ld version 2.8 or later on an ELF system such as
18080 GNU/Linux or Solaris 2, or on Microsoft Windows, G++ supports the
18081 Borland model. On other systems, G++ implements neither automatic
18082 model.
18083
18084 You have the following options for dealing with template instantiations:
18085
18086 @enumerate
18087 @item
18088 @opindex frepo
18089 Compile your template-using code with @option{-frepo}. The compiler
18090 generates files with the extension @samp{.rpo} listing all of the
18091 template instantiations used in the corresponding object files that
18092 could be instantiated there; the link wrapper, @samp{collect2},
18093 then updates the @samp{.rpo} files to tell the compiler where to place
18094 those instantiations and rebuild any affected object files. The
18095 link-time overhead is negligible after the first pass, as the compiler
18096 continues to place the instantiations in the same files.
18097
18098 This is your best option for application code written for the Borland
18099 model, as it just works. Code written for the Cfront model
18100 needs to be modified so that the template definitions are available at
18101 one or more points of instantiation; usually this is as simple as adding
18102 @code{#include <tmethods.cc>} to the end of each template header.
18103
18104 For library code, if you want the library to provide all of the template
18105 instantiations it needs, just try to link all of its object files
18106 together; the link will fail, but cause the instantiations to be
18107 generated as a side effect. Be warned, however, that this may cause
18108 conflicts if multiple libraries try to provide the same instantiations.
18109 For greater control, use explicit instantiation as described in the next
18110 option.
18111
18112 @item
18113 @opindex fno-implicit-templates
18114 Compile your code with @option{-fno-implicit-templates} to disable the
18115 implicit generation of template instances, and explicitly instantiate
18116 all the ones you use. This approach requires more knowledge of exactly
18117 which instances you need than do the others, but it's less
18118 mysterious and allows greater control. You can scatter the explicit
18119 instantiations throughout your program, perhaps putting them in the
18120 translation units where the instances are used or the translation units
18121 that define the templates themselves; you can put all of the explicit
18122 instantiations you need into one big file; or you can create small files
18123 like
18124
18125 @smallexample
18126 #include "Foo.h"
18127 #include "Foo.cc"
18128
18129 template class Foo<int>;
18130 template ostream& operator <<
18131 (ostream&, const Foo<int>&);
18132 @end smallexample
18133
18134 @noindent
18135 for each of the instances you need, and create a template instantiation
18136 library from those.
18137
18138 If you are using Cfront-model code, you can probably get away with not
18139 using @option{-fno-implicit-templates} when compiling files that don't
18140 @samp{#include} the member template definitions.
18141
18142 If you use one big file to do the instantiations, you may want to
18143 compile it without @option{-fno-implicit-templates} so you get all of the
18144 instances required by your explicit instantiations (but not by any
18145 other files) without having to specify them as well.
18146
18147 The ISO C++ 2011 standard allows forward declaration of explicit
18148 instantiations (with @code{extern}). G++ supports explicit instantiation
18149 declarations in C++98 mode and has extended the template instantiation
18150 syntax to support instantiation of the compiler support data for a
18151 template class (i.e.@: the vtable) without instantiating any of its
18152 members (with @code{inline}), and instantiation of only the static data
18153 members of a template class, without the support data or member
18154 functions (with (@code{static}):
18155
18156 @smallexample
18157 extern template int max (int, int);
18158 inline template class Foo<int>;
18159 static template class Foo<int>;
18160 @end smallexample
18161
18162 @item
18163 Do nothing. Pretend G++ does implement automatic instantiation
18164 management. Code written for the Borland model works fine, but
18165 each translation unit contains instances of each of the templates it
18166 uses. In a large program, this can lead to an unacceptable amount of code
18167 duplication.
18168 @end enumerate
18169
18170 @node Bound member functions
18171 @section Extracting the function pointer from a bound pointer to member function
18172 @cindex pmf
18173 @cindex pointer to member function
18174 @cindex bound pointer to member function
18175
18176 In C++, pointer to member functions (PMFs) are implemented using a wide
18177 pointer of sorts to handle all the possible call mechanisms; the PMF
18178 needs to store information about how to adjust the @samp{this} pointer,
18179 and if the function pointed to is virtual, where to find the vtable, and
18180 where in the vtable to look for the member function. If you are using
18181 PMFs in an inner loop, you should really reconsider that decision. If
18182 that is not an option, you can extract the pointer to the function that
18183 would be called for a given object/PMF pair and call it directly inside
18184 the inner loop, to save a bit of time.
18185
18186 Note that you still pay the penalty for the call through a
18187 function pointer; on most modern architectures, such a call defeats the
18188 branch prediction features of the CPU@. This is also true of normal
18189 virtual function calls.
18190
18191 The syntax for this extension is
18192
18193 @smallexample
18194 extern A a;
18195 extern int (A::*fp)();
18196 typedef int (*fptr)(A *);
18197
18198 fptr p = (fptr)(a.*fp);
18199 @end smallexample
18200
18201 For PMF constants (i.e.@: expressions of the form @samp{&Klasse::Member}),
18202 no object is needed to obtain the address of the function. They can be
18203 converted to function pointers directly:
18204
18205 @smallexample
18206 fptr p1 = (fptr)(&A::foo);
18207 @end smallexample
18208
18209 @opindex Wno-pmf-conversions
18210 You must specify @option{-Wno-pmf-conversions} to use this extension.
18211
18212 @node C++ Attributes
18213 @section C++-Specific Variable, Function, and Type Attributes
18214
18215 Some attributes only make sense for C++ programs.
18216
18217 @table @code
18218 @item abi_tag ("@var{tag}", ...)
18219 @cindex @code{abi_tag} attribute
18220 The @code{abi_tag} attribute can be applied to a function or class
18221 declaration. It modifies the mangled name of the function or class to
18222 incorporate the tag name, in order to distinguish the function or
18223 class from an earlier version with a different ABI; perhaps the class
18224 has changed size, or the function has a different return type that is
18225 not encoded in the mangled name.
18226
18227 The argument can be a list of strings of arbitrary length. The
18228 strings are sorted on output, so the order of the list is
18229 unimportant.
18230
18231 A redeclaration of a function or class must not add new ABI tags,
18232 since doing so would change the mangled name.
18233
18234 The ABI tags apply to a name, so all instantiations and
18235 specializations of a template have the same tags. The attribute will
18236 be ignored if applied to an explicit specialization or instantiation.
18237
18238 The @option{-Wabi-tag} flag enables a warning about a class which does
18239 not have all the ABI tags used by its subobjects and virtual functions; for users with code
18240 that needs to coexist with an earlier ABI, using this option can help
18241 to find all affected types that need to be tagged.
18242
18243 @item init_priority (@var{priority})
18244 @cindex @code{init_priority} attribute
18245
18246
18247 In Standard C++, objects defined at namespace scope are guaranteed to be
18248 initialized in an order in strict accordance with that of their definitions
18249 @emph{in a given translation unit}. No guarantee is made for initializations
18250 across translation units. However, GNU C++ allows users to control the
18251 order of initialization of objects defined at namespace scope with the
18252 @code{init_priority} attribute by specifying a relative @var{priority},
18253 a constant integral expression currently bounded between 101 and 65535
18254 inclusive. Lower numbers indicate a higher priority.
18255
18256 In the following example, @code{A} would normally be created before
18257 @code{B}, but the @code{init_priority} attribute reverses that order:
18258
18259 @smallexample
18260 Some_Class A __attribute__ ((init_priority (2000)));
18261 Some_Class B __attribute__ ((init_priority (543)));
18262 @end smallexample
18263
18264 @noindent
18265 Note that the particular values of @var{priority} do not matter; only their
18266 relative ordering.
18267
18268 @item java_interface
18269 @cindex @code{java_interface} attribute
18270
18271 This type attribute informs C++ that the class is a Java interface. It may
18272 only be applied to classes declared within an @code{extern "Java"} block.
18273 Calls to methods declared in this interface are dispatched using GCJ's
18274 interface table mechanism, instead of regular virtual table dispatch.
18275
18276 @item warn_unused
18277 @cindex @code{warn_unused} attribute
18278
18279 For C++ types with non-trivial constructors and/or destructors it is
18280 impossible for the compiler to determine whether a variable of this
18281 type is truly unused if it is not referenced. This type attribute
18282 informs the compiler that variables of this type should be warned
18283 about if they appear to be unused, just like variables of fundamental
18284 types.
18285
18286 This attribute is appropriate for types which just represent a value,
18287 such as @code{std::string}; it is not appropriate for types which
18288 control a resource, such as @code{std::mutex}.
18289
18290 This attribute is also accepted in C, but it is unnecessary because C
18291 does not have constructors or destructors.
18292
18293 @end table
18294
18295 See also @ref{Namespace Association}.
18296
18297 @node Function Multiversioning
18298 @section Function Multiversioning
18299 @cindex function versions
18300
18301 With the GNU C++ front end, for target i386, you may specify multiple
18302 versions of a function, where each function is specialized for a
18303 specific target feature. At runtime, the appropriate version of the
18304 function is automatically executed depending on the characteristics of
18305 the execution platform. Here is an example.
18306
18307 @smallexample
18308 __attribute__ ((target ("default")))
18309 int foo ()
18310 @{
18311 // The default version of foo.
18312 return 0;
18313 @}
18314
18315 __attribute__ ((target ("sse4.2")))
18316 int foo ()
18317 @{
18318 // foo version for SSE4.2
18319 return 1;
18320 @}
18321
18322 __attribute__ ((target ("arch=atom")))
18323 int foo ()
18324 @{
18325 // foo version for the Intel ATOM processor
18326 return 2;
18327 @}
18328
18329 __attribute__ ((target ("arch=amdfam10")))
18330 int foo ()
18331 @{
18332 // foo version for the AMD Family 0x10 processors.
18333 return 3;
18334 @}
18335
18336 int main ()
18337 @{
18338 int (*p)() = &foo;
18339 assert ((*p) () == foo ());
18340 return 0;
18341 @}
18342 @end smallexample
18343
18344 In the above example, four versions of function foo are created. The
18345 first version of foo with the target attribute "default" is the default
18346 version. This version gets executed when no other target specific
18347 version qualifies for execution on a particular platform. A new version
18348 of foo is created by using the same function signature but with a
18349 different target string. Function foo is called or a pointer to it is
18350 taken just like a regular function. GCC takes care of doing the
18351 dispatching to call the right version at runtime. Refer to the
18352 @uref{http://gcc.gnu.org/wiki/FunctionMultiVersioning, GCC wiki on
18353 Function Multiversioning} for more details.
18354
18355 @node Namespace Association
18356 @section Namespace Association
18357
18358 @strong{Caution:} The semantics of this extension are equivalent
18359 to C++ 2011 inline namespaces. Users should use inline namespaces
18360 instead as this extension will be removed in future versions of G++.
18361
18362 A using-directive with @code{__attribute ((strong))} is stronger
18363 than a normal using-directive in two ways:
18364
18365 @itemize @bullet
18366 @item
18367 Templates from the used namespace can be specialized and explicitly
18368 instantiated as though they were members of the using namespace.
18369
18370 @item
18371 The using namespace is considered an associated namespace of all
18372 templates in the used namespace for purposes of argument-dependent
18373 name lookup.
18374 @end itemize
18375
18376 The used namespace must be nested within the using namespace so that
18377 normal unqualified lookup works properly.
18378
18379 This is useful for composing a namespace transparently from
18380 implementation namespaces. For example:
18381
18382 @smallexample
18383 namespace std @{
18384 namespace debug @{
18385 template <class T> struct A @{ @};
18386 @}
18387 using namespace debug __attribute ((__strong__));
18388 template <> struct A<int> @{ @}; // @r{OK to specialize}
18389
18390 template <class T> void f (A<T>);
18391 @}
18392
18393 int main()
18394 @{
18395 f (std::A<float>()); // @r{lookup finds} std::f
18396 f (std::A<int>());
18397 @}
18398 @end smallexample
18399
18400 @node Type Traits
18401 @section Type Traits
18402
18403 The C++ front end implements syntactic extensions that allow
18404 compile-time determination of
18405 various characteristics of a type (or of a
18406 pair of types).
18407
18408 @table @code
18409 @item __has_nothrow_assign (type)
18410 If @code{type} is const qualified or is a reference type then the trait is
18411 false. Otherwise if @code{__has_trivial_assign (type)} is true then the trait
18412 is true, else if @code{type} is a cv class or union type with copy assignment
18413 operators that are known not to throw an exception then the trait is true,
18414 else it is false. Requires: @code{type} shall be a complete type,
18415 (possibly cv-qualified) @code{void}, or an array of unknown bound.
18416
18417 @item __has_nothrow_copy (type)
18418 If @code{__has_trivial_copy (type)} is true then the trait is true, else if
18419 @code{type} is a cv class or union type with copy constructors that
18420 are known not to throw an exception then the trait is true, else it is false.
18421 Requires: @code{type} shall be a complete type, (possibly cv-qualified)
18422 @code{void}, or an array of unknown bound.
18423
18424 @item __has_nothrow_constructor (type)
18425 If @code{__has_trivial_constructor (type)} is true then the trait is
18426 true, else if @code{type} is a cv class or union type (or array
18427 thereof) with a default constructor that is known not to throw an
18428 exception then the trait is true, else it is false. Requires:
18429 @code{type} shall be a complete type, (possibly cv-qualified)
18430 @code{void}, or an array of unknown bound.
18431
18432 @item __has_trivial_assign (type)
18433 If @code{type} is const qualified or is a reference type then the trait is
18434 false. Otherwise if @code{__is_pod (type)} is true then the trait is
18435 true, else if @code{type} is a cv class or union type with a trivial
18436 copy assignment ([class.copy]) then the trait is true, else it is
18437 false. Requires: @code{type} shall be a complete type, (possibly
18438 cv-qualified) @code{void}, or an array of unknown bound.
18439
18440 @item __has_trivial_copy (type)
18441 If @code{__is_pod (type)} is true or @code{type} is a reference type
18442 then the trait is true, else if @code{type} is a cv class or union type
18443 with a trivial copy constructor ([class.copy]) then the trait
18444 is true, else it is false. Requires: @code{type} shall be a complete
18445 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
18446
18447 @item __has_trivial_constructor (type)
18448 If @code{__is_pod (type)} is true then the trait is true, else if
18449 @code{type} is a cv class or union type (or array thereof) with a
18450 trivial default constructor ([class.ctor]) then the trait is true,
18451 else it is false. Requires: @code{type} shall be a complete
18452 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
18453
18454 @item __has_trivial_destructor (type)
18455 If @code{__is_pod (type)} is true or @code{type} is a reference type then
18456 the trait is true, else if @code{type} is a cv class or union type (or
18457 array thereof) with a trivial destructor ([class.dtor]) then the trait
18458 is true, else it is false. Requires: @code{type} shall be a complete
18459 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
18460
18461 @item __has_virtual_destructor (type)
18462 If @code{type} is a class type with a virtual destructor
18463 ([class.dtor]) then the trait is true, else it is false. Requires:
18464 @code{type} shall be a complete type, (possibly cv-qualified)
18465 @code{void}, or an array of unknown bound.
18466
18467 @item __is_abstract (type)
18468 If @code{type} is an abstract class ([class.abstract]) then the trait
18469 is true, else it is false. Requires: @code{type} shall be a complete
18470 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
18471
18472 @item __is_base_of (base_type, derived_type)
18473 If @code{base_type} is a base class of @code{derived_type}
18474 ([class.derived]) then the trait is true, otherwise it is false.
18475 Top-level cv qualifications of @code{base_type} and
18476 @code{derived_type} are ignored. For the purposes of this trait, a
18477 class type is considered is own base. Requires: if @code{__is_class
18478 (base_type)} and @code{__is_class (derived_type)} are true and
18479 @code{base_type} and @code{derived_type} are not the same type
18480 (disregarding cv-qualifiers), @code{derived_type} shall be a complete
18481 type. Diagnostic is produced if this requirement is not met.
18482
18483 @item __is_class (type)
18484 If @code{type} is a cv class type, and not a union type
18485 ([basic.compound]) the trait is true, else it is false.
18486
18487 @item __is_empty (type)
18488 If @code{__is_class (type)} is false then the trait is false.
18489 Otherwise @code{type} is considered empty if and only if: @code{type}
18490 has no non-static data members, or all non-static data members, if
18491 any, are bit-fields of length 0, and @code{type} has no virtual
18492 members, and @code{type} has no virtual base classes, and @code{type}
18493 has no base classes @code{base_type} for which
18494 @code{__is_empty (base_type)} is false. Requires: @code{type} shall
18495 be a complete type, (possibly cv-qualified) @code{void}, or an array
18496 of unknown bound.
18497
18498 @item __is_enum (type)
18499 If @code{type} is a cv enumeration type ([basic.compound]) the trait is
18500 true, else it is false.
18501
18502 @item __is_literal_type (type)
18503 If @code{type} is a literal type ([basic.types]) the trait is
18504 true, else it is false. Requires: @code{type} shall be a complete type,
18505 (possibly cv-qualified) @code{void}, or an array of unknown bound.
18506
18507 @item __is_pod (type)
18508 If @code{type} is a cv POD type ([basic.types]) then the trait is true,
18509 else it is false. Requires: @code{type} shall be a complete type,
18510 (possibly cv-qualified) @code{void}, or an array of unknown bound.
18511
18512 @item __is_polymorphic (type)
18513 If @code{type} is a polymorphic class ([class.virtual]) then the trait
18514 is true, else it is false. Requires: @code{type} shall be a complete
18515 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
18516
18517 @item __is_standard_layout (type)
18518 If @code{type} is a standard-layout type ([basic.types]) the trait is
18519 true, else it is false. Requires: @code{type} shall be a complete
18520 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
18521
18522 @item __is_trivial (type)
18523 If @code{type} is a trivial type ([basic.types]) the trait is
18524 true, else it is false. Requires: @code{type} shall be a complete
18525 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
18526
18527 @item __is_union (type)
18528 If @code{type} is a cv union type ([basic.compound]) the trait is
18529 true, else it is false.
18530
18531 @item __underlying_type (type)
18532 The underlying type of @code{type}. Requires: @code{type} shall be
18533 an enumeration type ([dcl.enum]).
18534
18535 @end table
18536
18537 @node Java Exceptions
18538 @section Java Exceptions
18539
18540 The Java language uses a slightly different exception handling model
18541 from C++. Normally, GNU C++ automatically detects when you are
18542 writing C++ code that uses Java exceptions, and handle them
18543 appropriately. However, if C++ code only needs to execute destructors
18544 when Java exceptions are thrown through it, GCC guesses incorrectly.
18545 Sample problematic code is:
18546
18547 @smallexample
18548 struct S @{ ~S(); @};
18549 extern void bar(); // @r{is written in Java, and may throw exceptions}
18550 void foo()
18551 @{
18552 S s;
18553 bar();
18554 @}
18555 @end smallexample
18556
18557 @noindent
18558 The usual effect of an incorrect guess is a link failure, complaining of
18559 a missing routine called @samp{__gxx_personality_v0}.
18560
18561 You can inform the compiler that Java exceptions are to be used in a
18562 translation unit, irrespective of what it might think, by writing
18563 @samp{@w{#pragma GCC java_exceptions}} at the head of the file. This
18564 @samp{#pragma} must appear before any functions that throw or catch
18565 exceptions, or run destructors when exceptions are thrown through them.
18566
18567 You cannot mix Java and C++ exceptions in the same translation unit. It
18568 is believed to be safe to throw a C++ exception from one file through
18569 another file compiled for the Java exception model, or vice versa, but
18570 there may be bugs in this area.
18571
18572 @node Deprecated Features
18573 @section Deprecated Features
18574
18575 In the past, the GNU C++ compiler was extended to experiment with new
18576 features, at a time when the C++ language was still evolving. Now that
18577 the C++ standard is complete, some of those features are superseded by
18578 superior alternatives. Using the old features might cause a warning in
18579 some cases that the feature will be dropped in the future. In other
18580 cases, the feature might be gone already.
18581
18582 While the list below is not exhaustive, it documents some of the options
18583 that are now deprecated:
18584
18585 @table @code
18586 @item -fexternal-templates
18587 @itemx -falt-external-templates
18588 These are two of the many ways for G++ to implement template
18589 instantiation. @xref{Template Instantiation}. The C++ standard clearly
18590 defines how template definitions have to be organized across
18591 implementation units. G++ has an implicit instantiation mechanism that
18592 should work just fine for standard-conforming code.
18593
18594 @item -fstrict-prototype
18595 @itemx -fno-strict-prototype
18596 Previously it was possible to use an empty prototype parameter list to
18597 indicate an unspecified number of parameters (like C), rather than no
18598 parameters, as C++ demands. This feature has been removed, except where
18599 it is required for backwards compatibility. @xref{Backwards Compatibility}.
18600 @end table
18601
18602 G++ allows a virtual function returning @samp{void *} to be overridden
18603 by one returning a different pointer type. This extension to the
18604 covariant return type rules is now deprecated and will be removed from a
18605 future version.
18606
18607 The G++ minimum and maximum operators (@samp{<?} and @samp{>?}) and
18608 their compound forms (@samp{<?=}) and @samp{>?=}) have been deprecated
18609 and are now removed from G++. Code using these operators should be
18610 modified to use @code{std::min} and @code{std::max} instead.
18611
18612 The named return value extension has been deprecated, and is now
18613 removed from G++.
18614
18615 The use of initializer lists with new expressions has been deprecated,
18616 and is now removed from G++.
18617
18618 Floating and complex non-type template parameters have been deprecated,
18619 and are now removed from G++.
18620
18621 The implicit typename extension has been deprecated and is now
18622 removed from G++.
18623
18624 The use of default arguments in function pointers, function typedefs
18625 and other places where they are not permitted by the standard is
18626 deprecated and will be removed from a future version of G++.
18627
18628 G++ allows floating-point literals to appear in integral constant expressions,
18629 e.g.@: @samp{ enum E @{ e = int(2.2 * 3.7) @} }
18630 This extension is deprecated and will be removed from a future version.
18631
18632 G++ allows static data members of const floating-point type to be declared
18633 with an initializer in a class definition. The standard only allows
18634 initializers for static members of const integral types and const
18635 enumeration types so this extension has been deprecated and will be removed
18636 from a future version.
18637
18638 @node Backwards Compatibility
18639 @section Backwards Compatibility
18640 @cindex Backwards Compatibility
18641 @cindex ARM [Annotated C++ Reference Manual]
18642
18643 Now that there is a definitive ISO standard C++, G++ has a specification
18644 to adhere to. The C++ language evolved over time, and features that
18645 used to be acceptable in previous drafts of the standard, such as the ARM
18646 [Annotated C++ Reference Manual], are no longer accepted. In order to allow
18647 compilation of C++ written to such drafts, G++ contains some backwards
18648 compatibilities. @emph{All such backwards compatibility features are
18649 liable to disappear in future versions of G++.} They should be considered
18650 deprecated. @xref{Deprecated Features}.
18651
18652 @table @code
18653 @item For scope
18654 If a variable is declared at for scope, it used to remain in scope until
18655 the end of the scope that contained the for statement (rather than just
18656 within the for scope). G++ retains this, but issues a warning, if such a
18657 variable is accessed outside the for scope.
18658
18659 @item Implicit C language
18660 Old C system header files did not contain an @code{extern "C" @{@dots{}@}}
18661 scope to set the language. On such systems, all header files are
18662 implicitly scoped inside a C language scope. Also, an empty prototype
18663 @code{()} is treated as an unspecified number of arguments, rather
18664 than no arguments, as C++ demands.
18665 @end table
18666
18667 @c LocalWords: emph deftypefn builtin ARCv2EM SIMD builtins msimd
18668 @c LocalWords: typedef v4si v8hi DMA dma vdiwr vdowr followign