]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/doc/gimple.texi
Update copyright years.
[thirdparty/gcc.git] / gcc / doc / gimple.texi
1 @c Copyright (C) 2008-2023 Free Software Foundation, Inc.
2 @c Free Software Foundation, Inc.
3 @c This is part of the GCC manual.
4 @c For copying conditions, see the file gcc.texi.
5
6 @node GIMPLE
7 @chapter GIMPLE
8 @cindex GIMPLE
9
10 GIMPLE is a three-address representation derived from GENERIC by
11 breaking down GENERIC expressions into tuples of no more than 3
12 operands (with some exceptions like function calls). GIMPLE was
13 heavily influenced by the SIMPLE IL used by the McCAT compiler
14 project at McGill University, though we have made some different
15 choices. For one thing, SIMPLE doesn't support @code{goto}.
16
17 Temporaries are introduced to hold intermediate values needed to
18 compute complex expressions. Additionally, all the control
19 structures used in GENERIC are lowered into conditional jumps,
20 lexical scopes are removed and exception regions are converted
21 into an on the side exception region tree.
22
23 The compiler pass which converts GENERIC into GIMPLE is referred to as
24 the @samp{gimplifier}. The gimplifier works recursively, generating
25 GIMPLE tuples out of the original GENERIC expressions.
26
27 One of the early implementation strategies used for the GIMPLE
28 representation was to use the same internal data structures used
29 by front ends to represent parse trees. This simplified
30 implementation because we could leverage existing functionality
31 and interfaces. However, GIMPLE is a much more restrictive
32 representation than abstract syntax trees (AST), therefore it
33 does not require the full structural complexity provided by the
34 main tree data structure.
35
36 The GENERIC representation of a function is stored in the
37 @code{DECL_SAVED_TREE} field of the associated @code{FUNCTION_DECL}
38 tree node. It is converted to GIMPLE by a call to
39 @code{gimplify_function_tree}.
40
41 If a front end wants to include language-specific tree codes in the tree
42 representation which it provides to the back end, it must provide a
43 definition of @code{LANG_HOOKS_GIMPLIFY_EXPR} which knows how to
44 convert the front end trees to GIMPLE@. Usually such a hook will involve
45 much of the same code for expanding front end trees to RTL@. This function
46 can return fully lowered GIMPLE, or it can return GENERIC trees and let the
47 main gimplifier lower them the rest of the way; this is often simpler.
48 GIMPLE that is not fully lowered is known as ``High GIMPLE'' and
49 consists of the IL before the pass @code{pass_lower_cf}. High GIMPLE
50 contains some container statements like lexical scopes
51 (represented by @code{GIMPLE_BIND}) and nested expressions (e.g.,
52 @code{GIMPLE_TRY}), while ``Low GIMPLE'' exposes all of the
53 implicit jumps for control and exception expressions directly in
54 the IL and EH region trees.
55
56 The C and C++ front ends currently convert directly from front end
57 trees to GIMPLE, and hand that off to the back end rather than first
58 converting to GENERIC@. Their gimplifier hooks know about all the
59 @code{_STMT} nodes and how to convert them to GENERIC forms. There
60 was some work done on a genericization pass which would run first, but
61 the existence of @code{STMT_EXPR} meant that in order to convert all
62 of the C statements into GENERIC equivalents would involve walking the
63 entire tree anyway, so it was simpler to lower all the way. This
64 might change in the future if someone writes an optimization pass
65 which would work better with higher-level trees, but currently the
66 optimizers all expect GIMPLE@.
67
68 You can request to dump a C-like representation of the GIMPLE form
69 with the flag @option{-fdump-tree-gimple}.
70
71 @menu
72 * Tuple representation::
73 * Class hierarchy of GIMPLE statements::
74 * GIMPLE instruction set::
75 * GIMPLE Exception Handling::
76 * Temporaries::
77 * Operands::
78 * Manipulating GIMPLE statements::
79 * Tuple specific accessors::
80 * GIMPLE sequences::
81 * Sequence iterators::
82 * Adding a new GIMPLE statement code::
83 * Statement and operand traversals::
84 @end menu
85
86 @node Tuple representation
87 @section Tuple representation
88 @cindex tuples
89
90 GIMPLE instructions are tuples of variable size divided in two
91 groups: a header describing the instruction and its locations,
92 and a variable length body with all the operands. Tuples are
93 organized into a hierarchy with 3 main classes of tuples.
94
95 @subsection @code{gimple} (gsbase)
96 @cindex gimple
97
98 This is the root of the hierarchy, it holds basic information
99 needed by most GIMPLE statements. There are some fields that
100 may not be relevant to every GIMPLE statement, but those were
101 moved into the base structure to take advantage of holes left by
102 other fields (thus making the structure more compact). The
103 structure takes 4 words (32 bytes) on 64 bit hosts:
104
105 @multitable {@code{references_memory_p}} {Size (bits)}
106 @item Field @tab Size (bits)
107 @item @code{code} @tab 8
108 @item @code{subcode} @tab 16
109 @item @code{no_warning} @tab 1
110 @item @code{visited} @tab 1
111 @item @code{nontemporal_move} @tab 1
112 @item @code{plf} @tab 2
113 @item @code{modified} @tab 1
114 @item @code{has_volatile_ops} @tab 1
115 @item @code{references_memory_p} @tab 1
116 @item @code{uid} @tab 32
117 @item @code{location} @tab 32
118 @item @code{num_ops} @tab 32
119 @item @code{bb} @tab 64
120 @item @code{block} @tab 63
121 @item Total size @tab 32 bytes
122 @end multitable
123
124 @itemize @bullet
125 @item @code{code}
126 Main identifier for a GIMPLE instruction.
127
128 @item @code{subcode}
129 Used to distinguish different variants of the same basic
130 instruction or provide flags applicable to a given code. The
131 @code{subcode} flags field has different uses depending on the code of
132 the instruction, but mostly it distinguishes instructions of the
133 same family. The most prominent use of this field is in
134 assignments, where subcode indicates the operation done on the
135 RHS of the assignment. For example, a = b + c is encoded as
136 @code{GIMPLE_ASSIGN <PLUS_EXPR, a, b, c>}.
137
138 @item @code{no_warning}
139 Bitflag to indicate whether a warning has already been issued on
140 this statement.
141
142 @item @code{visited}
143 General purpose ``visited'' marker. Set and cleared by each pass
144 when needed.
145
146 @item @code{nontemporal_move}
147 Bitflag used in assignments that represent non-temporal moves.
148 Although this bitflag is only used in assignments, it was moved
149 into the base to take advantage of the bit holes left by the
150 previous fields.
151
152 @item @code{plf}
153 Pass Local Flags. This 2-bit mask can be used as general purpose
154 markers by any pass. Passes are responsible for clearing and
155 setting these two flags accordingly.
156
157 @item @code{modified}
158 Bitflag to indicate whether the statement has been modified.
159 Used mainly by the operand scanner to determine when to re-scan a
160 statement for operands.
161
162 @item @code{has_volatile_ops}
163 Bitflag to indicate whether this statement contains operands that
164 have been marked volatile.
165
166 @item @code{references_memory_p}
167 Bitflag to indicate whether this statement contains memory
168 references (i.e., its operands are either global variables, or
169 pointer dereferences or anything that must reside in memory).
170
171 @item @code{uid}
172 This is an unsigned integer used by passes that want to assign
173 IDs to every statement. These IDs must be assigned and used by
174 each pass.
175
176 @item @code{location}
177 This is a @code{location_t} identifier to specify source code
178 location for this statement. It is inherited from the front
179 end.
180
181 @item @code{num_ops}
182 Number of operands that this statement has. This specifies the
183 size of the operand vector embedded in the tuple. Only used in
184 some tuples, but it is declared in the base tuple to take
185 advantage of the 32-bit hole left by the previous fields.
186
187 @item @code{bb}
188 Basic block holding the instruction.
189
190 @item @code{block}
191 Lexical block holding this statement. Also used for debug
192 information generation.
193 @end itemize
194
195 @subsection @code{gimple_statement_with_ops}
196 @cindex gimple_statement_with_ops
197
198 This tuple is actually split in two:
199 @code{gimple_statement_with_ops_base} and
200 @code{gimple_statement_with_ops}. This is needed to accommodate the
201 way the operand vector is allocated. The operand vector is
202 defined to be an array of 1 element. So, to allocate a dynamic
203 number of operands, the memory allocator (@code{gimple_alloc}) simply
204 allocates enough memory to hold the structure itself plus @code{N
205 - 1} operands which run ``off the end'' of the structure. For
206 example, to allocate space for a tuple with 3 operands,
207 @code{gimple_alloc} reserves @code{sizeof (struct
208 gimple_statement_with_ops) + 2 * sizeof (tree)} bytes.
209
210 On the other hand, several fields in this tuple need to be shared
211 with the @code{gimple_statement_with_memory_ops} tuple. So, these
212 common fields are placed in @code{gimple_statement_with_ops_base} which
213 is then inherited from the other two tuples.
214
215
216 @multitable {@code{def_ops}} {48 + 8 * @code{num_ops} bytes}
217 @item @code{gsbase} @tab 256
218 @item @code{def_ops} @tab 64
219 @item @code{use_ops} @tab 64
220 @item @code{op} @tab @code{num_ops} * 64
221 @item Total size @tab 48 + 8 * @code{num_ops} bytes
222 @end multitable
223
224 @itemize @bullet
225 @item @code{gsbase}
226 Inherited from @code{struct gimple}.
227
228 @item @code{def_ops}
229 Array of pointers into the operand array indicating all the slots that
230 contain a variable written-to by the statement. This array is
231 also used for immediate use chaining. Note that it would be
232 possible to not rely on this array, but the changes required to
233 implement this are pretty invasive.
234
235 @item @code{use_ops}
236 Similar to @code{def_ops} but for variables read by the statement.
237
238 @item @code{op}
239 Array of trees with @code{num_ops} slots.
240 @end itemize
241
242 @subsection @code{gimple_statement_with_memory_ops}
243
244 This tuple is essentially identical to @code{gimple_statement_with_ops},
245 except that it contains 4 additional fields to hold vectors
246 related memory stores and loads. Similar to the previous case,
247 the structure is split in two to accommodate for the operand
248 vector (@code{gimple_statement_with_memory_ops_base} and
249 @code{gimple_statement_with_memory_ops}).
250
251
252 @multitable {@code{vdef_ops}} {80 + 8 * @code{num_ops} bytes}
253 @item Field @tab Size (bits)
254 @item @code{gsbase} @tab 256
255 @item @code{def_ops} @tab 64
256 @item @code{use_ops} @tab 64
257 @item @code{vdef_ops} @tab 64
258 @item @code{vuse_ops} @tab 64
259 @item @code{stores} @tab 64
260 @item @code{loads} @tab 64
261 @item @code{op} @tab @code{num_ops} * 64
262 @item Total size @tab 80 + 8 * @code{num_ops} bytes
263 @end multitable
264
265 @itemize @bullet
266 @item @code{vdef_ops}
267 Similar to @code{def_ops} but for @code{VDEF} operators. There is
268 one entry per memory symbol written by this statement. This is
269 used to maintain the memory SSA use-def and def-def chains.
270
271 @item @code{vuse_ops}
272 Similar to @code{use_ops} but for @code{VUSE} operators. There is
273 one entry per memory symbol loaded by this statement. This is
274 used to maintain the memory SSA use-def chains.
275
276 @item @code{stores}
277 Bitset with all the UIDs for the symbols written-to by the
278 statement. This is different than @code{vdef_ops} in that all the
279 affected symbols are mentioned in this set. If memory
280 partitioning is enabled, the @code{vdef_ops} vector will refer to memory
281 partitions. Furthermore, no SSA information is stored in this
282 set.
283
284 @item @code{loads}
285 Similar to @code{stores}, but for memory loads. (Note that there
286 is some amount of redundancy here, it should be possible to
287 reduce memory utilization further by removing these sets).
288 @end itemize
289
290 All the other tuples are defined in terms of these three basic
291 ones. Each tuple will add some fields.
292
293
294 @node Class hierarchy of GIMPLE statements
295 @section Class hierarchy of GIMPLE statements
296 @cindex GIMPLE class hierarchy
297
298 The following diagram shows the C++ inheritance hierarchy of statement
299 kinds, along with their relationships to @code{GSS_} values (layouts) and
300 @code{GIMPLE_} values (codes):
301
302 @smallexample
303 gimple
304 | layout: GSS_BASE
305 | used for 4 codes: GIMPLE_ERROR_MARK
306 | GIMPLE_NOP
307 | GIMPLE_OMP_SECTIONS_SWITCH
308 | GIMPLE_PREDICT
309 |
310 + gimple_statement_with_ops_base
311 | | (no GSS layout)
312 | |
313 | + gimple_statement_with_ops
314 | | | layout: GSS_WITH_OPS
315 | | |
316 | | + gcond
317 | | | code: GIMPLE_COND
318 | | |
319 | | + gdebug
320 | | | code: GIMPLE_DEBUG
321 | | |
322 | | + ggoto
323 | | | code: GIMPLE_GOTO
324 | | |
325 | | + glabel
326 | | | code: GIMPLE_LABEL
327 | | |
328 | | + gswitch
329 | | code: GIMPLE_SWITCH
330 | |
331 | + gimple_statement_with_memory_ops_base
332 | | layout: GSS_WITH_MEM_OPS_BASE
333 | |
334 | + gimple_statement_with_memory_ops
335 | | | layout: GSS_WITH_MEM_OPS
336 | | |
337 | | + gassign
338 | | | code GIMPLE_ASSIGN
339 | | |
340 | | + greturn
341 | | code GIMPLE_RETURN
342 | |
343 | + gcall
344 | | layout: GSS_CALL, code: GIMPLE_CALL
345 | |
346 | + gasm
347 | | layout: GSS_ASM, code: GIMPLE_ASM
348 | |
349 | + gtransaction
350 | layout: GSS_TRANSACTION, code: GIMPLE_TRANSACTION
351 |
352 + gimple_statement_omp
353 | | layout: GSS_OMP. Used for code GIMPLE_OMP_SECTION
354 | |
355 | + gomp_critical
356 | | layout: GSS_OMP_CRITICAL, code: GIMPLE_OMP_CRITICAL
357 | |
358 | + gomp_for
359 | | layout: GSS_OMP_FOR, code: GIMPLE_OMP_FOR
360 | |
361 | + gomp_parallel_layout
362 | | | layout: GSS_OMP_PARALLEL_LAYOUT
363 | | |
364 | | + gimple_statement_omp_taskreg
365 | | | |
366 | | | + gomp_parallel
367 | | | | code: GIMPLE_OMP_PARALLEL
368 | | | |
369 | | | + gomp_task
370 | | | code: GIMPLE_OMP_TASK
371 | | |
372 | | + gimple_statement_omp_target
373 | | code: GIMPLE_OMP_TARGET
374 | |
375 | + gomp_sections
376 | | layout: GSS_OMP_SECTIONS, code: GIMPLE_OMP_SECTIONS
377 | |
378 | + gimple_statement_omp_single_layout
379 | | layout: GSS_OMP_SINGLE_LAYOUT
380 | |
381 | + gomp_single
382 | | code: GIMPLE_OMP_SINGLE
383 | |
384 | + gomp_teams
385 | code: GIMPLE_OMP_TEAMS
386 |
387 + gbind
388 | layout: GSS_BIND, code: GIMPLE_BIND
389 |
390 + gcatch
391 | layout: GSS_CATCH, code: GIMPLE_CATCH
392 |
393 + geh_filter
394 | layout: GSS_EH_FILTER, code: GIMPLE_EH_FILTER
395 |
396 + geh_else
397 | layout: GSS_EH_ELSE, code: GIMPLE_EH_ELSE
398 |
399 + geh_mnt
400 | layout: GSS_EH_MNT, code: GIMPLE_EH_MUST_NOT_THROW
401 |
402 + gphi
403 | layout: GSS_PHI, code: GIMPLE_PHI
404 |
405 + gimple_statement_eh_ctrl
406 | | layout: GSS_EH_CTRL
407 | |
408 | + gresx
409 | | code: GIMPLE_RESX
410 | |
411 | + geh_dispatch
412 | code: GIMPLE_EH_DISPATCH
413 |
414 + gtry
415 | layout: GSS_TRY, code: GIMPLE_TRY
416 |
417 + gimple_statement_wce
418 | layout: GSS_WCE, code: GIMPLE_WITH_CLEANUP_EXPR
419 |
420 + gomp_continue
421 | layout: GSS_OMP_CONTINUE, code: GIMPLE_OMP_CONTINUE
422 |
423 + gomp_atomic_load
424 | layout: GSS_OMP_ATOMIC_LOAD, code: GIMPLE_OMP_ATOMIC_LOAD
425 |
426 + gimple_statement_omp_atomic_store_layout
427 | layout: GSS_OMP_ATOMIC_STORE_LAYOUT,
428 | code: GIMPLE_OMP_ATOMIC_STORE
429 |
430 + gomp_atomic_store
431 | code: GIMPLE_OMP_ATOMIC_STORE
432 |
433 + gomp_return
434 code: GIMPLE_OMP_RETURN
435 @end smallexample
436
437
438 @node GIMPLE instruction set
439 @section GIMPLE instruction set
440 @cindex GIMPLE instruction set
441
442 The following table briefly describes the GIMPLE instruction set.
443
444 @multitable {@code{GIMPLE_OMP_SECTIONS_SWITCH}} {High GIMPLE} {Low GIMPLE}
445 @item Instruction @tab High GIMPLE @tab Low GIMPLE
446 @item @code{GIMPLE_ASM} @tab x @tab x
447 @item @code{GIMPLE_ASSIGN} @tab x @tab x
448 @item @code{GIMPLE_BIND} @tab x @tab
449 @item @code{GIMPLE_CALL} @tab x @tab x
450 @item @code{GIMPLE_CATCH} @tab x @tab
451 @item @code{GIMPLE_COND} @tab x @tab x
452 @item @code{GIMPLE_DEBUG} @tab x @tab x
453 @item @code{GIMPLE_EH_FILTER} @tab x @tab
454 @item @code{GIMPLE_GOTO} @tab x @tab x
455 @item @code{GIMPLE_LABEL} @tab x @tab x
456 @item @code{GIMPLE_NOP} @tab x @tab x
457 @item @code{GIMPLE_OMP_ATOMIC_LOAD} @tab x @tab x
458 @item @code{GIMPLE_OMP_ATOMIC_STORE} @tab x @tab x
459 @item @code{GIMPLE_OMP_CONTINUE} @tab x @tab x
460 @item @code{GIMPLE_OMP_CRITICAL} @tab x @tab x
461 @item @code{GIMPLE_OMP_FOR} @tab x @tab x
462 @item @code{GIMPLE_OMP_MASTER} @tab x @tab x
463 @item @code{GIMPLE_OMP_ORDERED} @tab x @tab x
464 @item @code{GIMPLE_OMP_PARALLEL} @tab x @tab x
465 @item @code{GIMPLE_OMP_RETURN} @tab x @tab x
466 @item @code{GIMPLE_OMP_SECTION} @tab x @tab x
467 @item @code{GIMPLE_OMP_SECTIONS} @tab x @tab x
468 @item @code{GIMPLE_OMP_SECTIONS_SWITCH} @tab x @tab x
469 @item @code{GIMPLE_OMP_SINGLE} @tab x @tab x
470 @item @code{GIMPLE_PHI} @tab @tab x
471 @item @code{GIMPLE_RESX} @tab @tab x
472 @item @code{GIMPLE_RETURN} @tab x @tab x
473 @item @code{GIMPLE_SWITCH} @tab x @tab x
474 @item @code{GIMPLE_TRY} @tab x @tab
475 @end multitable
476
477 @node GIMPLE Exception Handling
478 @section Exception Handling
479 @cindex GIMPLE Exception Handling
480
481 Other exception handling constructs are represented using
482 @code{GIMPLE_TRY_CATCH}. @code{GIMPLE_TRY_CATCH} has two operands. The
483 first operand is a sequence of statements to execute. If executing
484 these statements does not throw an exception, then the second operand
485 is ignored. Otherwise, if an exception is thrown, then the second
486 operand of the @code{GIMPLE_TRY_CATCH} is checked. The second
487 operand may have the following forms:
488
489 @enumerate
490
491 @item A sequence of statements to execute. When an exception occurs,
492 these statements are executed, and then the exception is rethrown.
493
494 @item A sequence of @code{GIMPLE_CATCH} statements. Each
495 @code{GIMPLE_CATCH} has a list of applicable exception types and
496 handler code. If the thrown exception matches one of the caught
497 types, the associated handler code is executed. If the handler
498 code falls off the bottom, execution continues after the original
499 @code{GIMPLE_TRY_CATCH}.
500
501 @item A @code{GIMPLE_EH_FILTER} statement. This has a list of
502 permitted exception types, and code to handle a match failure. If the
503 thrown exception does not match one of the allowed types, the
504 associated match failure code is executed. If the thrown exception
505 does match, it continues unwinding the stack looking for the next
506 handler.
507
508 @end enumerate
509
510 Currently throwing an exception is not directly represented in
511 GIMPLE, since it is implemented by calling a function. At some
512 point in the future we will want to add some way to express that
513 the call will throw an exception of a known type.
514
515 Just before running the optimizers, the compiler lowers the
516 high-level EH constructs above into a set of @samp{goto}s, magic
517 labels, and EH regions. Continuing to unwind at the end of a
518 cleanup is represented with a @code{GIMPLE_RESX}.
519
520
521 @node Temporaries
522 @section Temporaries
523 @cindex Temporaries
524
525 When gimplification encounters a subexpression that is too
526 complex, it creates a new temporary variable to hold the value of
527 the subexpression, and adds a new statement to initialize it
528 before the current statement. These special temporaries are known
529 as @samp{expression temporaries}, and are allocated using
530 @code{get_formal_tmp_var}. The compiler tries to always evaluate
531 identical expressions into the same temporary, to simplify
532 elimination of redundant calculations.
533
534 We can only use expression temporaries when we know that it will
535 not be reevaluated before its value is used, and that it will not
536 be otherwise modified@footnote{These restrictions are derived
537 from those in Morgan 4.8.}. Other temporaries can be allocated
538 using @code{get_initialized_tmp_var} or @code{create_tmp_var}.
539
540 Currently, an expression like @code{a = b + 5} is not reduced any
541 further. We tried converting it to something like
542 @smallexample
543 T1 = b + 5;
544 a = T1;
545 @end smallexample
546 but this bloated the representation for minimal benefit. However, a
547 variable which must live in memory cannot appear in an expression; its
548 value is explicitly loaded into a temporary first. Similarly, storing
549 the value of an expression to a memory variable goes through a
550 temporary.
551
552 @node Operands
553 @section Operands
554 @cindex Operands
555
556 In general, expressions in GIMPLE consist of an operation and the
557 appropriate number of simple operands; these operands must either be a
558 GIMPLE rvalue (@code{is_gimple_val}), i.e.@: a constant or a register
559 variable. More complex operands are factored out into temporaries, so
560 that
561 @smallexample
562 a = b + c + d
563 @end smallexample
564 becomes
565 @smallexample
566 T1 = b + c;
567 a = T1 + d;
568 @end smallexample
569
570 The same rule holds for arguments to a @code{GIMPLE_CALL}.
571
572 The target of an assignment is usually a variable, but can also be a
573 @code{MEM_REF} or a compound lvalue as described below.
574
575 @menu
576 * Compound Expressions::
577 * Compound Lvalues::
578 * Conditional Expressions::
579 * Logical Operators::
580 @end menu
581
582 @node Compound Expressions
583 @subsection Compound Expressions
584 @cindex Compound Expressions
585
586 The left-hand side of a C comma expression is simply moved into a separate
587 statement.
588
589 @node Compound Lvalues
590 @subsection Compound Lvalues
591 @cindex Compound Lvalues
592
593 Currently compound lvalues involving array and structure field references
594 are not broken down; an expression like @code{a.b[2] = 42} is not reduced
595 any further (though complex array subscripts are). This restriction is a
596 workaround for limitations in later optimizers; if we were to convert this
597 to
598
599 @smallexample
600 T1 = &a.b;
601 T1[2] = 42;
602 @end smallexample
603
604 alias analysis would not remember that the reference to @code{T1[2]} came
605 by way of @code{a.b}, so it would think that the assignment could alias
606 another member of @code{a}; this broke @code{struct-alias-1.c}. Future
607 optimizer improvements may make this limitation unnecessary.
608
609 @node Conditional Expressions
610 @subsection Conditional Expressions
611 @cindex Conditional Expressions
612
613 A C @code{?:} expression is converted into an @code{if} statement with
614 each branch assigning to the same temporary. So,
615
616 @smallexample
617 a = b ? c : d;
618 @end smallexample
619 becomes
620 @smallexample
621 if (b == 1)
622 T1 = c;
623 else
624 T1 = d;
625 a = T1;
626 @end smallexample
627
628 The GIMPLE level if-conversion pass re-introduces @code{?:}
629 expression, if appropriate. It is used to vectorize loops with
630 conditions using vector conditional operations.
631
632 Note that in GIMPLE, @code{if} statements are represented using
633 @code{GIMPLE_COND}, as described below.
634
635 @node Logical Operators
636 @subsection Logical Operators
637 @cindex Logical Operators
638
639 Except when they appear in the condition operand of a
640 @code{GIMPLE_COND}, logical `and' and `or' operators are simplified
641 as follows: @code{a = b && c} becomes
642
643 @smallexample
644 T1 = (bool)b;
645 if (T1 == true)
646 T1 = (bool)c;
647 a = T1;
648 @end smallexample
649
650 Note that @code{T1} in this example cannot be an expression temporary,
651 because it has two different assignments.
652
653 @subsection Manipulating operands
654
655 All gimple operands are of type @code{tree}. But only certain
656 types of trees are allowed to be used as operand tuples. Basic
657 validation is controlled by the function
658 @code{get_gimple_rhs_class}, which given a tree code, returns an
659 @code{enum} with the following values of type @code{enum
660 gimple_rhs_class}
661
662 @itemize @bullet
663 @item @code{GIMPLE_INVALID_RHS}
664 The tree cannot be used as a GIMPLE operand.
665
666 @item @code{GIMPLE_TERNARY_RHS}
667 The tree is a valid GIMPLE ternary operation.
668
669 @item @code{GIMPLE_BINARY_RHS}
670 The tree is a valid GIMPLE binary operation.
671
672 @item @code{GIMPLE_UNARY_RHS}
673 The tree is a valid GIMPLE unary operation.
674
675 @item @code{GIMPLE_SINGLE_RHS}
676 The tree is a single object, that cannot be split into simpler
677 operands (for instance, @code{SSA_NAME}, @code{VAR_DECL}, @code{COMPONENT_REF}, etc).
678
679 This operand class also acts as an escape hatch for tree nodes
680 that may be flattened out into the operand vector, but would need
681 more than two slots on the RHS. For instance, a @code{COND_EXPR}
682 expression of the form @code{(a op b) ? x : y} could be flattened
683 out on the operand vector using 4 slots, but it would also
684 require additional processing to distinguish @code{c = a op b}
685 from @code{c = a op b ? x : y}. In time, these special case tree
686 expressions should be flattened into the operand vector.
687 @end itemize
688
689 For tree nodes in the categories @code{GIMPLE_TERNARY_RHS},
690 @code{GIMPLE_BINARY_RHS} and @code{GIMPLE_UNARY_RHS}, they cannot be
691 stored inside tuples directly. They first need to be flattened and
692 separated into individual components. For instance, given the GENERIC
693 expression
694
695 @smallexample
696 a = b + c
697 @end smallexample
698
699 its tree representation is:
700
701 @smallexample
702 MODIFY_EXPR <VAR_DECL <a>, PLUS_EXPR <VAR_DECL <b>, VAR_DECL <c>>>
703 @end smallexample
704
705 In this case, the GIMPLE form for this statement is logically
706 identical to its GENERIC form but in GIMPLE, the @code{PLUS_EXPR}
707 on the RHS of the assignment is not represented as a tree,
708 instead the two operands are taken out of the @code{PLUS_EXPR} sub-tree
709 and flattened into the GIMPLE tuple as follows:
710
711 @smallexample
712 GIMPLE_ASSIGN <PLUS_EXPR, VAR_DECL <a>, VAR_DECL <b>, VAR_DECL <c>>
713 @end smallexample
714
715 @subsection Operand vector allocation
716
717 The operand vector is stored at the bottom of the three tuple
718 structures that accept operands. This means, that depending on
719 the code of a given statement, its operand vector will be at
720 different offsets from the base of the structure. To access
721 tuple operands use the following accessors
722
723 @deftypefn {GIMPLE function} unsigned gimple_num_ops (gimple g)
724 Returns the number of operands in statement G.
725 @end deftypefn
726
727 @deftypefn {GIMPLE function} tree gimple_op (gimple g, unsigned i)
728 Returns operand @code{I} from statement @code{G}.
729 @end deftypefn
730
731 @deftypefn {GIMPLE function} {tree *} gimple_ops (gimple g)
732 Returns a pointer into the operand vector for statement @code{G}. This
733 is computed using an internal table called @code{gimple_ops_offset_}[].
734 This table is indexed by the gimple code of @code{G}.
735
736 When the compiler is built, this table is filled-in using the
737 sizes of the structures used by each statement code defined in
738 gimple.def. Since the operand vector is at the bottom of the
739 structure, for a gimple code @code{C} the offset is computed as sizeof
740 (struct-of @code{C}) - sizeof (tree).
741
742 This mechanism adds one memory indirection to every access when
743 using @code{gimple_op}(), if this becomes a bottleneck, a pass can
744 choose to memoize the result from @code{gimple_ops}() and use that to
745 access the operands.
746 @end deftypefn
747
748 @subsection Operand validation
749
750 When adding a new operand to a gimple statement, the operand will
751 be validated according to what each tuple accepts in its operand
752 vector. These predicates are called by the
753 @code{gimple_@var{name}_set_...()}. Each tuple will use one of the
754 following predicates (Note, this list is not exhaustive):
755
756 @deftypefn {GIMPLE function} bool is_gimple_val (tree t)
757 Returns true if t is a "GIMPLE value", which are all the
758 non-addressable stack variables (variables for which
759 @code{is_gimple_reg} returns true) and constants (expressions for which
760 @code{is_gimple_min_invariant} returns true).
761 @end deftypefn
762
763 @deftypefn {GIMPLE function} bool is_gimple_addressable (tree t)
764 Returns true if t is a symbol or memory reference whose address
765 can be taken.
766 @end deftypefn
767
768 @deftypefn {GIMPLE function} bool is_gimple_asm_val (tree t)
769 Similar to @code{is_gimple_val} but it also accepts hard registers.
770 @end deftypefn
771
772 @deftypefn {GIMPLE function} bool is_gimple_call_addr (tree t)
773 Return true if t is a valid expression to use as the function
774 called by a @code{GIMPLE_CALL}.
775 @end deftypefn
776
777 @deftypefn {GIMPLE function} bool is_gimple_mem_ref_addr (tree t)
778 Return true if t is a valid expression to use as first operand
779 of a @code{MEM_REF} expression.
780 @end deftypefn
781
782 @deftypefn {GIMPLE function} bool is_gimple_constant (tree t)
783 Return true if t is a valid gimple constant.
784 @end deftypefn
785
786 @deftypefn {GIMPLE function} bool is_gimple_min_invariant (tree t)
787 Return true if t is a valid minimal invariant. This is different
788 from constants, in that the specific value of t may not be known
789 at compile time, but it is known that it doesn't change (e.g.,
790 the address of a function local variable).
791 @end deftypefn
792
793 @deftypefn {GIMPLE function} bool is_gimple_ip_invariant (tree t)
794 Return true if t is an interprocedural invariant. This means that t
795 is a valid invariant in all functions (e.g.@: it can be an address of a
796 global variable but not of a local one).
797 @end deftypefn
798
799 @deftypefn {GIMPLE function} bool is_gimple_ip_invariant_address (tree t)
800 Return true if t is an @code{ADDR_EXPR} that does not change once the
801 program is running (and which is valid in all functions).
802 @end deftypefn
803
804
805 @subsection Statement validation
806
807 @deftypefn {GIMPLE function} bool is_gimple_assign (gimple g)
808 Return true if the code of g is @code{GIMPLE_ASSIGN}.
809 @end deftypefn
810
811 @deftypefn {GIMPLE function} bool is_gimple_call (gimple g)
812 Return true if the code of g is @code{GIMPLE_CALL}.
813 @end deftypefn
814
815 @deftypefn {GIMPLE function} bool is_gimple_debug (gimple g)
816 Return true if the code of g is @code{GIMPLE_DEBUG}.
817 @end deftypefn
818
819 @deftypefn {GIMPLE function} bool gimple_assign_cast_p (const_gimple g)
820 Return true if g is a @code{GIMPLE_ASSIGN} that performs a type cast
821 operation.
822 @end deftypefn
823
824 @deftypefn {GIMPLE function} bool gimple_debug_bind_p (gimple g)
825 Return true if g is a @code{GIMPLE_DEBUG} that binds the value of an
826 expression to a variable.
827 @end deftypefn
828
829 @deftypefn {GIMPLE function} bool is_gimple_omp (gimple g)
830 Return true if g is any of the OpenMP codes.
831 @end deftypefn
832
833 @deftypefn {GIMPLE function} bool gimple_debug_begin_stmt_p (gimple g)
834 Return true if g is a @code{GIMPLE_DEBUG} that marks the beginning of
835 a source statement.
836 @end deftypefn
837
838 @deftypefn {GIMPLE function} bool gimple_debug_inline_entry_p (gimple g)
839 Return true if g is a @code{GIMPLE_DEBUG} that marks the entry
840 point of an inlined function.
841 @end deftypefn
842
843 @deftypefn {GIMPLE function} bool gimple_debug_nonbind_marker_p (gimple g)
844 Return true if g is a @code{GIMPLE_DEBUG} that marks a program location,
845 without any variable binding.
846 @end deftypefn
847
848 @node Manipulating GIMPLE statements
849 @section Manipulating GIMPLE statements
850 @cindex Manipulating GIMPLE statements
851
852 This section documents all the functions available to handle each
853 of the GIMPLE instructions.
854
855 @subsection Common accessors
856 The following are common accessors for gimple statements.
857
858 @deftypefn {GIMPLE function} {enum gimple_code} gimple_code (gimple g)
859 Return the code for statement @code{G}.
860 @end deftypefn
861
862 @deftypefn {GIMPLE function} basic_block gimple_bb (gimple g)
863 Return the basic block to which statement @code{G} belongs to.
864 @end deftypefn
865
866 @deftypefn {GIMPLE function} tree gimple_block (gimple g)
867 Return the lexical scope block holding statement @code{G}.
868 @end deftypefn
869
870 @deftypefn {GIMPLE function} {enum tree_code} gimple_expr_code (gimple stmt)
871 Return the tree code for the expression computed by @code{STMT}. This
872 is only meaningful for @code{GIMPLE_CALL}, @code{GIMPLE_ASSIGN} and
873 @code{GIMPLE_COND}. If @code{STMT} is @code{GIMPLE_CALL}, it will return @code{CALL_EXPR}.
874 For @code{GIMPLE_COND}, it returns the code of the comparison predicate.
875 For @code{GIMPLE_ASSIGN} it returns the code of the operation performed
876 by the @code{RHS} of the assignment.
877 @end deftypefn
878
879 @deftypefn {GIMPLE function} void gimple_set_block (gimple g, tree block)
880 Set the lexical scope block of @code{G} to @code{BLOCK}.
881 @end deftypefn
882
883 @deftypefn {GIMPLE function} location_t gimple_locus (gimple g)
884 Return locus information for statement @code{G}.
885 @end deftypefn
886
887 @deftypefn {GIMPLE function} void gimple_set_locus (gimple g, location_t locus)
888 Set locus information for statement @code{G}.
889 @end deftypefn
890
891 @deftypefn {GIMPLE function} bool gimple_locus_empty_p (gimple g)
892 Return true if @code{G} does not have locus information.
893 @end deftypefn
894
895 @deftypefn {GIMPLE function} bool gimple_no_warning_p (gimple stmt)
896 Return true if no warnings should be emitted for statement @code{STMT}.
897 @end deftypefn
898
899 @deftypefn {GIMPLE function} void gimple_set_visited (gimple stmt, bool visited_p)
900 Set the visited status on statement @code{STMT} to @code{VISITED_P}.
901 @end deftypefn
902
903 @deftypefn {GIMPLE function} bool gimple_visited_p (gimple stmt)
904 Return the visited status on statement @code{STMT}.
905 @end deftypefn
906
907 @deftypefn {GIMPLE function} void gimple_set_plf (gimple stmt, enum plf_mask plf, bool val_p)
908 Set pass local flag @code{PLF} on statement @code{STMT} to @code{VAL_P}.
909 @end deftypefn
910
911 @deftypefn {GIMPLE function} {unsigned int} gimple_plf (gimple stmt, enum plf_mask plf)
912 Return the value of pass local flag @code{PLF} on statement @code{STMT}.
913 @end deftypefn
914
915 @deftypefn {GIMPLE function} bool gimple_has_ops (gimple g)
916 Return true if statement @code{G} has register or memory operands.
917 @end deftypefn
918
919 @deftypefn {GIMPLE function} bool gimple_has_mem_ops (gimple g)
920 Return true if statement @code{G} has memory operands.
921 @end deftypefn
922
923 @deftypefn {GIMPLE function} unsigned gimple_num_ops (gimple g)
924 Return the number of operands for statement @code{G}.
925 @end deftypefn
926
927 @deftypefn {GIMPLE function} {tree *} gimple_ops (gimple g)
928 Return the array of operands for statement @code{G}.
929 @end deftypefn
930
931 @deftypefn {GIMPLE function} tree gimple_op (gimple g, unsigned i)
932 Return operand @code{I} for statement @code{G}.
933 @end deftypefn
934
935 @deftypefn {GIMPLE function} {tree *} gimple_op_ptr (gimple g, unsigned i)
936 Return a pointer to operand @code{I} for statement @code{G}.
937 @end deftypefn
938
939 @deftypefn {GIMPLE function} void gimple_set_op (gimple g, unsigned i, tree op)
940 Set operand @code{I} of statement @code{G} to @code{OP}.
941 @end deftypefn
942
943 @deftypefn {GIMPLE function} bitmap gimple_addresses_taken (gimple stmt)
944 Return the set of symbols that have had their address taken by
945 @code{STMT}.
946 @end deftypefn
947
948 @deftypefn {GIMPLE function} {struct def_optype_d *} gimple_def_ops (gimple g)
949 Return the set of @code{DEF} operands for statement @code{G}.
950 @end deftypefn
951
952 @deftypefn {GIMPLE function} void gimple_set_def_ops (gimple g, struct def_optype_d *def)
953 Set @code{DEF} to be the set of @code{DEF} operands for statement @code{G}.
954 @end deftypefn
955
956 @deftypefn {GIMPLE function} {struct use_optype_d *} gimple_use_ops (gimple g)
957 Return the set of @code{USE} operands for statement @code{G}.
958 @end deftypefn
959
960 @deftypefn {GIMPLE function} void gimple_set_use_ops (gimple g, struct use_optype_d *use)
961 Set @code{USE} to be the set of @code{USE} operands for statement @code{G}.
962 @end deftypefn
963
964 @deftypefn {GIMPLE function} {struct voptype_d *} gimple_vuse_ops (gimple g)
965 Return the set of @code{VUSE} operands for statement @code{G}.
966 @end deftypefn
967
968 @deftypefn {GIMPLE function} void gimple_set_vuse_ops (gimple g, struct voptype_d *ops)
969 Set @code{OPS} to be the set of @code{VUSE} operands for statement @code{G}.
970 @end deftypefn
971
972 @deftypefn {GIMPLE function} {struct voptype_d *} gimple_vdef_ops (gimple g)
973 Return the set of @code{VDEF} operands for statement @code{G}.
974 @end deftypefn
975
976 @deftypefn {GIMPLE function} void gimple_set_vdef_ops (gimple g, struct voptype_d *ops)
977 Set @code{OPS} to be the set of @code{VDEF} operands for statement @code{G}.
978 @end deftypefn
979
980 @deftypefn {GIMPLE function} bitmap gimple_loaded_syms (gimple g)
981 Return the set of symbols loaded by statement @code{G}. Each element of
982 the set is the @code{DECL_UID} of the corresponding symbol.
983 @end deftypefn
984
985 @deftypefn {GIMPLE function} bitmap gimple_stored_syms (gimple g)
986 Return the set of symbols stored by statement @code{G}. Each element of
987 the set is the @code{DECL_UID} of the corresponding symbol.
988 @end deftypefn
989
990 @deftypefn {GIMPLE function} bool gimple_modified_p (gimple g)
991 Return true if statement @code{G} has operands and the modified field
992 has been set.
993 @end deftypefn
994
995 @deftypefn {GIMPLE function} bool gimple_has_volatile_ops (gimple stmt)
996 Return true if statement @code{STMT} contains volatile operands.
997 @end deftypefn
998
999 @deftypefn {GIMPLE function} void gimple_set_has_volatile_ops (gimple stmt, bool volatilep)
1000 Return true if statement @code{STMT} contains volatile operands.
1001 @end deftypefn
1002
1003 @deftypefn {GIMPLE function} void update_stmt (gimple s)
1004 Mark statement @code{S} as modified, and update it.
1005 @end deftypefn
1006
1007 @deftypefn {GIMPLE function} void update_stmt_if_modified (gimple s)
1008 Update statement @code{S} if it has been marked modified.
1009 @end deftypefn
1010
1011 @deftypefn {GIMPLE function} gimple gimple_copy (gimple stmt)
1012 Return a deep copy of statement @code{STMT}.
1013 @end deftypefn
1014
1015 @node Tuple specific accessors
1016 @section Tuple specific accessors
1017 @cindex Tuple specific accessors
1018
1019 @menu
1020 * @code{GIMPLE_ASM}::
1021 * @code{GIMPLE_ASSIGN}::
1022 * @code{GIMPLE_BIND}::
1023 * @code{GIMPLE_CALL}::
1024 * @code{GIMPLE_CATCH}::
1025 * @code{GIMPLE_COND}::
1026 * @code{GIMPLE_DEBUG}::
1027 * @code{GIMPLE_EH_FILTER}::
1028 * @code{GIMPLE_LABEL}::
1029 * @code{GIMPLE_GOTO}::
1030 * @code{GIMPLE_NOP}::
1031 * @code{GIMPLE_OMP_ATOMIC_LOAD}::
1032 * @code{GIMPLE_OMP_ATOMIC_STORE}::
1033 * @code{GIMPLE_OMP_CONTINUE}::
1034 * @code{GIMPLE_OMP_CRITICAL}::
1035 * @code{GIMPLE_OMP_FOR}::
1036 * @code{GIMPLE_OMP_MASTER}::
1037 * @code{GIMPLE_OMP_ORDERED}::
1038 * @code{GIMPLE_OMP_PARALLEL}::
1039 * @code{GIMPLE_OMP_RETURN}::
1040 * @code{GIMPLE_OMP_SECTION}::
1041 * @code{GIMPLE_OMP_SECTIONS}::
1042 * @code{GIMPLE_OMP_SINGLE}::
1043 * @code{GIMPLE_PHI}::
1044 * @code{GIMPLE_RESX}::
1045 * @code{GIMPLE_RETURN}::
1046 * @code{GIMPLE_SWITCH}::
1047 * @code{GIMPLE_TRY}::
1048 * @code{GIMPLE_WITH_CLEANUP_EXPR}::
1049 @end menu
1050
1051
1052 @node @code{GIMPLE_ASM}
1053 @subsection @code{GIMPLE_ASM}
1054 @cindex @code{GIMPLE_ASM}
1055
1056 @deftypefn {GIMPLE function} gasm *gimple_build_asm_vec ( @
1057 const char *string, vec<tree, va_gc> *inputs, @
1058 vec<tree, va_gc> *outputs, vec<tree, va_gc> *clobbers, @
1059 vec<tree, va_gc> *labels)
1060 Build a @code{GIMPLE_ASM} statement. This statement is used for
1061 building in-line assembly constructs. @code{STRING} is the assembly
1062 code. @code{INPUTS}, @code{OUTPUTS}, @code{CLOBBERS} and @code{LABELS}
1063 are the inputs, outputs, clobbered registers and labels.
1064 @end deftypefn
1065
1066 @deftypefn {GIMPLE function} unsigned gimple_asm_ninputs (const gasm *g)
1067 Return the number of input operands for @code{GIMPLE_ASM} @code{G}.
1068 @end deftypefn
1069
1070 @deftypefn {GIMPLE function} unsigned gimple_asm_noutputs (const gasm *g)
1071 Return the number of output operands for @code{GIMPLE_ASM} @code{G}.
1072 @end deftypefn
1073
1074 @deftypefn {GIMPLE function} unsigned gimple_asm_nclobbers (const gasm *g)
1075 Return the number of clobber operands for @code{GIMPLE_ASM} @code{G}.
1076 @end deftypefn
1077
1078 @deftypefn {GIMPLE function} tree gimple_asm_input_op (const gasm *g, @
1079 unsigned index)
1080 Return input operand @code{INDEX} of @code{GIMPLE_ASM} @code{G}.
1081 @end deftypefn
1082
1083 @deftypefn {GIMPLE function} void gimple_asm_set_input_op (gasm *g, @
1084 unsigned index, tree in_op)
1085 Set @code{IN_OP} to be input operand @code{INDEX} in @code{GIMPLE_ASM} @code{G}.
1086 @end deftypefn
1087
1088 @deftypefn {GIMPLE function} tree gimple_asm_output_op (const gasm *g, @
1089 unsigned index)
1090 Return output operand @code{INDEX} of @code{GIMPLE_ASM} @code{G}.
1091 @end deftypefn
1092
1093 @deftypefn {GIMPLE function} void gimple_asm_set_output_op (gasm *g, @
1094 unsigned index, tree out_op)
1095 Set @code{OUT_OP} to be output operand @code{INDEX} in @code{GIMPLE_ASM} @code{G}.
1096 @end deftypefn
1097
1098 @deftypefn {GIMPLE function} tree gimple_asm_clobber_op (const gasm *g, @
1099 unsigned index)
1100 Return clobber operand @code{INDEX} of @code{GIMPLE_ASM} @code{G}.
1101 @end deftypefn
1102
1103 @deftypefn {GIMPLE function} void gimple_asm_set_clobber_op (gasm *g, @
1104 unsigned index, tree clobber_op)
1105 Set @code{CLOBBER_OP} to be clobber operand @code{INDEX} in @code{GIMPLE_ASM} @code{G}.
1106 @end deftypefn
1107
1108 @deftypefn {GIMPLE function} {const char *} gimple_asm_string (const gasm *g)
1109 Return the string representing the assembly instruction in
1110 @code{GIMPLE_ASM} @code{G}.
1111 @end deftypefn
1112
1113 @deftypefn {GIMPLE function} bool gimple_asm_volatile_p (const gasm *g)
1114 Return true if @code{G} is an asm statement marked volatile.
1115 @end deftypefn
1116
1117 @deftypefn {GIMPLE function} void gimple_asm_set_volatile (gasm *g, @
1118 bool volatile_p)
1119 Mark asm statement @code{G} as volatile or non-volatile based on
1120 @code{VOLATILE_P}.
1121 @end deftypefn
1122
1123 @node @code{GIMPLE_ASSIGN}
1124 @subsection @code{GIMPLE_ASSIGN}
1125 @cindex @code{GIMPLE_ASSIGN}
1126
1127 @deftypefn {GIMPLE function} gassign *gimple_build_assign (tree lhs, tree rhs)
1128 Build a @code{GIMPLE_ASSIGN} statement. The left-hand side is an lvalue
1129 passed in lhs. The right-hand side can be either a unary or
1130 binary tree expression. The expression tree rhs will be
1131 flattened and its operands assigned to the corresponding operand
1132 slots in the new statement. This function is useful when you
1133 already have a tree expression that you want to convert into a
1134 tuple. However, try to avoid building expression trees for the
1135 sole purpose of calling this function. If you already have the
1136 operands in separate trees, it is better to use
1137 @code{gimple_build_assign} with @code{enum tree_code} argument and separate
1138 arguments for each operand.
1139 @end deftypefn
1140
1141 @deftypefn {GIMPLE function} gassign *gimple_build_assign @
1142 (tree lhs, enum tree_code subcode, tree op1, tree op2, tree op3)
1143 This function is similar to two operand @code{gimple_build_assign},
1144 but is used to build a @code{GIMPLE_ASSIGN} statement when the operands of the
1145 right-hand side of the assignment are already split into
1146 different operands.
1147
1148 The left-hand side is an lvalue passed in lhs. Subcode is the
1149 @code{tree_code} for the right-hand side of the assignment. Op1, op2 and op3
1150 are the operands.
1151 @end deftypefn
1152
1153 @deftypefn {GIMPLE function} gassign *gimple_build_assign @
1154 (tree lhs, enum tree_code subcode, tree op1, tree op2)
1155 Like the above 5 operand @code{gimple_build_assign}, but with the last
1156 argument @code{NULL} - this overload should not be used for
1157 @code{GIMPLE_TERNARY_RHS} assignments.
1158 @end deftypefn
1159
1160 @deftypefn {GIMPLE function} gassign *gimple_build_assign @
1161 (tree lhs, enum tree_code subcode, tree op1)
1162 Like the above 4 operand @code{gimple_build_assign}, but with the last
1163 argument @code{NULL} - this overload should be used only for
1164 @code{GIMPLE_UNARY_RHS} and @code{GIMPLE_SINGLE_RHS} assignments.
1165 @end deftypefn
1166
1167 @deftypefn {GIMPLE function} gimple gimplify_assign (tree dst, tree src, gimple_seq *seq_p)
1168 Build a new @code{GIMPLE_ASSIGN} tuple and append it to the end of
1169 @code{*SEQ_P}.
1170 @end deftypefn
1171
1172 @code{DST}/@code{SRC} are the destination and source respectively. You can
1173 pass ungimplified trees in @code{DST} or @code{SRC}, in which
1174 case they will be converted to a gimple operand if necessary.
1175
1176 This function returns the newly created @code{GIMPLE_ASSIGN} tuple.
1177
1178 @deftypefn {GIMPLE function} {enum tree_code} gimple_assign_rhs_code (gimple g)
1179 Return the code of the expression computed on the @code{RHS} of
1180 assignment statement @code{G}.
1181 @end deftypefn
1182
1183
1184 @deftypefn {GIMPLE function} {enum gimple_rhs_class} gimple_assign_rhs_class (gimple g)
1185 Return the gimple rhs class of the code for the expression
1186 computed on the rhs of assignment statement @code{G}. This will never
1187 return @code{GIMPLE_INVALID_RHS}.
1188 @end deftypefn
1189
1190 @deftypefn {GIMPLE function} tree gimple_assign_lhs (gimple g)
1191 Return the @code{LHS} of assignment statement @code{G}.
1192 @end deftypefn
1193
1194 @deftypefn {GIMPLE function} {tree *} gimple_assign_lhs_ptr (gimple g)
1195 Return a pointer to the @code{LHS} of assignment statement @code{G}.
1196 @end deftypefn
1197
1198 @deftypefn {GIMPLE function} tree gimple_assign_rhs1 (gimple g)
1199 Return the first operand on the @code{RHS} of assignment statement @code{G}.
1200 @end deftypefn
1201
1202 @deftypefn {GIMPLE function} {tree *} gimple_assign_rhs1_ptr (gimple g)
1203 Return the address of the first operand on the @code{RHS} of assignment
1204 statement @code{G}.
1205 @end deftypefn
1206
1207 @deftypefn {GIMPLE function} tree gimple_assign_rhs2 (gimple g)
1208 Return the second operand on the @code{RHS} of assignment statement @code{G}.
1209 @end deftypefn
1210
1211 @deftypefn {GIMPLE function} {tree *} gimple_assign_rhs2_ptr (gimple g)
1212 Return the address of the second operand on the @code{RHS} of assignment
1213 statement @code{G}.
1214 @end deftypefn
1215
1216 @deftypefn {GIMPLE function} tree gimple_assign_rhs3 (gimple g)
1217 Return the third operand on the @code{RHS} of assignment statement @code{G}.
1218 @end deftypefn
1219
1220 @deftypefn {GIMPLE function} {tree *} gimple_assign_rhs3_ptr (gimple g)
1221 Return the address of the third operand on the @code{RHS} of assignment
1222 statement @code{G}.
1223 @end deftypefn
1224
1225 @deftypefn {GIMPLE function} void gimple_assign_set_lhs (gimple g, tree lhs)
1226 Set @code{LHS} to be the @code{LHS} operand of assignment statement @code{G}.
1227 @end deftypefn
1228
1229 @deftypefn {GIMPLE function} void gimple_assign_set_rhs1 (gimple g, tree rhs)
1230 Set @code{RHS} to be the first operand on the @code{RHS} of assignment
1231 statement @code{G}.
1232 @end deftypefn
1233
1234 @deftypefn {GIMPLE function} void gimple_assign_set_rhs2 (gimple g, tree rhs)
1235 Set @code{RHS} to be the second operand on the @code{RHS} of assignment
1236 statement @code{G}.
1237 @end deftypefn
1238
1239 @deftypefn {GIMPLE function} void gimple_assign_set_rhs3 (gimple g, tree rhs)
1240 Set @code{RHS} to be the third operand on the @code{RHS} of assignment
1241 statement @code{G}.
1242 @end deftypefn
1243
1244 @deftypefn {GIMPLE function} bool gimple_assign_cast_p (const_gimple s)
1245 Return true if @code{S} is a type-cast assignment.
1246 @end deftypefn
1247
1248
1249 @node @code{GIMPLE_BIND}
1250 @subsection @code{GIMPLE_BIND}
1251 @cindex @code{GIMPLE_BIND}
1252
1253 @deftypefn {GIMPLE function} gbind *gimple_build_bind (tree vars, @
1254 gimple_seq body)
1255 Build a @code{GIMPLE_BIND} statement with a list of variables in @code{VARS}
1256 and a body of statements in sequence @code{BODY}.
1257 @end deftypefn
1258
1259 @deftypefn {GIMPLE function} tree gimple_bind_vars (const gbind *g)
1260 Return the variables declared in the @code{GIMPLE_BIND} statement @code{G}.
1261 @end deftypefn
1262
1263 @deftypefn {GIMPLE function} void gimple_bind_set_vars (gbind *g, tree vars)
1264 Set @code{VARS} to be the set of variables declared in the @code{GIMPLE_BIND}
1265 statement @code{G}.
1266 @end deftypefn
1267
1268 @deftypefn {GIMPLE function} void gimple_bind_append_vars (gbind *g, tree vars)
1269 Append @code{VARS} to the set of variables declared in the @code{GIMPLE_BIND}
1270 statement @code{G}.
1271 @end deftypefn
1272
1273 @deftypefn {GIMPLE function} gimple_seq gimple_bind_body (gbind *g)
1274 Return the GIMPLE sequence contained in the @code{GIMPLE_BIND} statement
1275 @code{G}.
1276 @end deftypefn
1277
1278 @deftypefn {GIMPLE function} void gimple_bind_set_body (gbind *g, @
1279 gimple_seq seq)
1280 Set @code{SEQ} to be sequence contained in the @code{GIMPLE_BIND} statement @code{G}.
1281 @end deftypefn
1282
1283 @deftypefn {GIMPLE function} void gimple_bind_add_stmt (gbind *gs, gimple stmt)
1284 Append a statement to the end of a @code{GIMPLE_BIND}'s body.
1285 @end deftypefn
1286
1287 @deftypefn {GIMPLE function} void gimple_bind_add_seq (gbind *gs, @
1288 gimple_seq seq)
1289 Append a sequence of statements to the end of a @code{GIMPLE_BIND}'s
1290 body.
1291 @end deftypefn
1292
1293 @deftypefn {GIMPLE function} tree gimple_bind_block (const gbind *g)
1294 Return the @code{TREE_BLOCK} node associated with @code{GIMPLE_BIND} statement
1295 @code{G}. This is analogous to the @code{BIND_EXPR_BLOCK} field in trees.
1296 @end deftypefn
1297
1298 @deftypefn {GIMPLE function} void gimple_bind_set_block (gbind *g, tree block)
1299 Set @code{BLOCK} to be the @code{TREE_BLOCK} node associated with @code{GIMPLE_BIND}
1300 statement @code{G}.
1301 @end deftypefn
1302
1303
1304 @node @code{GIMPLE_CALL}
1305 @subsection @code{GIMPLE_CALL}
1306 @cindex @code{GIMPLE_CALL}
1307
1308 @deftypefn {GIMPLE function} gcall *gimple_build_call (tree fn, @
1309 unsigned nargs, ...)
1310 Build a @code{GIMPLE_CALL} statement to function @code{FN}. The argument @code{FN}
1311 must be either a @code{FUNCTION_DECL} or a gimple call address as
1312 determined by @code{is_gimple_call_addr}. @code{NARGS} are the number of
1313 arguments. The rest of the arguments follow the argument @code{NARGS},
1314 and must be trees that are valid as rvalues in gimple (i.e., each
1315 operand is validated with @code{is_gimple_operand}).
1316 @end deftypefn
1317
1318
1319 @deftypefn {GIMPLE function} gcall *gimple_build_call_from_tree (tree call_expr, @
1320 tree fnptrtype)
1321 Build a @code{GIMPLE_CALL} from a @code{CALL_EXPR} node. The arguments
1322 and the function are taken from the expression directly. The type of the
1323 @code{GIMPLE_CALL} is set from the second parameter passed by a caller.
1324 This routine assumes that @code{call_expr} is already in GIMPLE form.
1325 That is, its operands are GIMPLE values and the function call needs no further
1326 simplification. All the call flags in @code{call_expr} are copied over
1327 to the new @code{GIMPLE_CALL}.
1328 @end deftypefn
1329
1330 @deftypefn {GIMPLE function} gcall *gimple_build_call_vec (tree fn, @
1331 @code{vec<tree>} args)
1332 Identical to @code{gimple_build_call} but the arguments are stored in a
1333 @code{vec<tree>}.
1334 @end deftypefn
1335
1336 @deftypefn {GIMPLE function} tree gimple_call_lhs (gimple g)
1337 Return the @code{LHS} of call statement @code{G}.
1338 @end deftypefn
1339
1340 @deftypefn {GIMPLE function} {tree *} gimple_call_lhs_ptr (gimple g)
1341 Return a pointer to the @code{LHS} of call statement @code{G}.
1342 @end deftypefn
1343
1344 @deftypefn {GIMPLE function} void gimple_call_set_lhs (gimple g, tree lhs)
1345 Set @code{LHS} to be the @code{LHS} operand of call statement @code{G}.
1346 @end deftypefn
1347
1348 @deftypefn {GIMPLE function} tree gimple_call_fn (gimple g)
1349 Return the tree node representing the function called by call
1350 statement @code{G}.
1351 @end deftypefn
1352
1353 @deftypefn {GIMPLE function} void gimple_call_set_fn (gcall *g, tree fn)
1354 Set @code{FN} to be the function called by call statement @code{G}. This has
1355 to be a gimple value specifying the address of the called
1356 function.
1357 @end deftypefn
1358
1359 @deftypefn {GIMPLE function} tree gimple_call_fndecl (gimple g)
1360 If a given @code{GIMPLE_CALL}'s callee is a @code{FUNCTION_DECL}, return it.
1361 Otherwise return @code{NULL}. This function is analogous to
1362 @code{get_callee_fndecl} in @code{GENERIC}.
1363 @end deftypefn
1364
1365 @deftypefn {GIMPLE function} tree gimple_call_set_fndecl (gimple g, tree fndecl)
1366 Set the called function to @code{FNDECL}.
1367 @end deftypefn
1368
1369 @deftypefn {GIMPLE function} tree gimple_call_return_type (const gcall *g)
1370 Return the type returned by call statement @code{G}.
1371 @end deftypefn
1372
1373 @deftypefn {GIMPLE function} tree gimple_call_chain (gimple g)
1374 Return the static chain for call statement @code{G}.
1375 @end deftypefn
1376
1377 @deftypefn {GIMPLE function} void gimple_call_set_chain (gcall *g, tree chain)
1378 Set @code{CHAIN} to be the static chain for call statement @code{G}.
1379 @end deftypefn
1380
1381 @deftypefn {GIMPLE function} unsigned gimple_call_num_args (gimple g)
1382 Return the number of arguments used by call statement @code{G}.
1383 @end deftypefn
1384
1385 @deftypefn {GIMPLE function} tree gimple_call_arg (gimple g, unsigned index)
1386 Return the argument at position @code{INDEX} for call statement @code{G}. The
1387 first argument is 0.
1388 @end deftypefn
1389
1390 @deftypefn {GIMPLE function} {tree *} gimple_call_arg_ptr (gimple g, unsigned index)
1391 Return a pointer to the argument at position @code{INDEX} for call
1392 statement @code{G}.
1393 @end deftypefn
1394
1395 @deftypefn {GIMPLE function} void gimple_call_set_arg (gimple g, unsigned index, tree arg)
1396 Set @code{ARG} to be the argument at position @code{INDEX} for call statement
1397 @code{G}.
1398 @end deftypefn
1399
1400 @deftypefn {GIMPLE function} void gimple_call_set_tail (gcall *s)
1401 Mark call statement @code{S} as being a tail call (i.e., a call just
1402 before the exit of a function). These calls are candidate for
1403 tail call optimization.
1404 @end deftypefn
1405
1406 @deftypefn {GIMPLE function} bool gimple_call_tail_p (gcall *s)
1407 Return true if @code{GIMPLE_CALL} @code{S} is marked as a tail call.
1408 @end deftypefn
1409
1410 @deftypefn {GIMPLE function} bool gimple_call_noreturn_p (gimple s)
1411 Return true if @code{S} is a noreturn call.
1412 @end deftypefn
1413
1414 @deftypefn {GIMPLE function} gimple gimple_call_copy_skip_args (gcall *stmt, @
1415 bitmap args_to_skip)
1416 Build a @code{GIMPLE_CALL} identical to @code{STMT} but skipping the arguments
1417 in the positions marked by the set @code{ARGS_TO_SKIP}.
1418 @end deftypefn
1419
1420
1421 @node @code{GIMPLE_CATCH}
1422 @subsection @code{GIMPLE_CATCH}
1423 @cindex @code{GIMPLE_CATCH}
1424
1425 @deftypefn {GIMPLE function} gcatch *gimple_build_catch (tree types, @
1426 gimple_seq handler)
1427 Build a @code{GIMPLE_CATCH} statement. @code{TYPES} are the tree types this
1428 catch handles. @code{HANDLER} is a sequence of statements with the code
1429 for the handler.
1430 @end deftypefn
1431
1432 @deftypefn {GIMPLE function} tree gimple_catch_types (const gcatch *g)
1433 Return the types handled by @code{GIMPLE_CATCH} statement @code{G}.
1434 @end deftypefn
1435
1436 @deftypefn {GIMPLE function} {tree *} gimple_catch_types_ptr (gcatch *g)
1437 Return a pointer to the types handled by @code{GIMPLE_CATCH} statement
1438 @code{G}.
1439 @end deftypefn
1440
1441 @deftypefn {GIMPLE function} gimple_seq gimple_catch_handler (gcatch *g)
1442 Return the GIMPLE sequence representing the body of the handler
1443 of @code{GIMPLE_CATCH} statement @code{G}.
1444 @end deftypefn
1445
1446 @deftypefn {GIMPLE function} void gimple_catch_set_types (gcatch *g, tree t)
1447 Set @code{T} to be the set of types handled by @code{GIMPLE_CATCH} @code{G}.
1448 @end deftypefn
1449
1450 @deftypefn {GIMPLE function} void gimple_catch_set_handler (gcatch *g, @
1451 gimple_seq handler)
1452 Set @code{HANDLER} to be the body of @code{GIMPLE_CATCH} @code{G}.
1453 @end deftypefn
1454
1455
1456 @node @code{GIMPLE_COND}
1457 @subsection @code{GIMPLE_COND}
1458 @cindex @code{GIMPLE_COND}
1459
1460 @deftypefn {GIMPLE function} gcond *gimple_build_cond ( @
1461 enum tree_code pred_code, tree lhs, tree rhs, tree t_label, tree f_label)
1462 Build a @code{GIMPLE_COND} statement. @code{A} @code{GIMPLE_COND} statement compares
1463 @code{LHS} and @code{RHS} and if the condition in @code{PRED_CODE} is true, jump to
1464 the label in @code{t_label}, otherwise jump to the label in @code{f_label}.
1465 @code{PRED_CODE} are relational operator tree codes like @code{EQ_EXPR},
1466 @code{LT_EXPR}, @code{LE_EXPR}, @code{NE_EXPR}, etc.
1467 @end deftypefn
1468
1469
1470 @deftypefn {GIMPLE function} gcond *gimple_build_cond_from_tree (tree cond, @
1471 tree t_label, tree f_label)
1472 Build a @code{GIMPLE_COND} statement from the conditional expression
1473 tree @code{COND}. @code{T_LABEL} and @code{F_LABEL} are as in @code{gimple_build_cond}.
1474 @end deftypefn
1475
1476 @deftypefn {GIMPLE function} {enum tree_code} gimple_cond_code (gimple g)
1477 Return the code of the predicate computed by conditional
1478 statement @code{G}.
1479 @end deftypefn
1480
1481 @deftypefn {GIMPLE function} void gimple_cond_set_code (gcond *g, @
1482 enum tree_code code)
1483 Set @code{CODE} to be the predicate code for the conditional statement
1484 @code{G}.
1485 @end deftypefn
1486
1487 @deftypefn {GIMPLE function} tree gimple_cond_lhs (gimple g)
1488 Return the @code{LHS} of the predicate computed by conditional statement
1489 @code{G}.
1490 @end deftypefn
1491
1492 @deftypefn {GIMPLE function} void gimple_cond_set_lhs (gcond *g, tree lhs)
1493 Set @code{LHS} to be the @code{LHS} operand of the predicate computed by
1494 conditional statement @code{G}.
1495 @end deftypefn
1496
1497 @deftypefn {GIMPLE function} tree gimple_cond_rhs (gimple g)
1498 Return the @code{RHS} operand of the predicate computed by conditional
1499 @code{G}.
1500 @end deftypefn
1501
1502 @deftypefn {GIMPLE function} void gimple_cond_set_rhs (gcond *g, tree rhs)
1503 Set @code{RHS} to be the @code{RHS} operand of the predicate computed by
1504 conditional statement @code{G}.
1505 @end deftypefn
1506
1507 @deftypefn {GIMPLE function} tree gimple_cond_true_label (const gcond *g)
1508 Return the label used by conditional statement @code{G} when its
1509 predicate evaluates to true.
1510 @end deftypefn
1511
1512 @deftypefn {GIMPLE function} void gimple_cond_set_true_label (gcond *g, tree label)
1513 Set @code{LABEL} to be the label used by conditional statement @code{G} when
1514 its predicate evaluates to true.
1515 @end deftypefn
1516
1517 @deftypefn {GIMPLE function} void gimple_cond_set_false_label (gcond *g, tree label)
1518 Set @code{LABEL} to be the label used by conditional statement @code{G} when
1519 its predicate evaluates to false.
1520 @end deftypefn
1521
1522 @deftypefn {GIMPLE function} tree gimple_cond_false_label (const gcond *g)
1523 Return the label used by conditional statement @code{G} when its
1524 predicate evaluates to false.
1525 @end deftypefn
1526
1527 @deftypefn {GIMPLE function} void gimple_cond_make_false (gcond *g)
1528 Set the conditional @code{COND_STMT} to be of the form 'if (1 == 0)'.
1529 @end deftypefn
1530
1531 @deftypefn {GIMPLE function} void gimple_cond_make_true (gcond *g)
1532 Set the conditional @code{COND_STMT} to be of the form 'if (1 == 1)'.
1533 @end deftypefn
1534
1535 @node @code{GIMPLE_DEBUG}
1536 @subsection @code{GIMPLE_DEBUG}
1537 @cindex @code{GIMPLE_DEBUG}
1538 @cindex @code{GIMPLE_DEBUG_BIND}
1539 @cindex @code{GIMPLE_DEBUG_BEGIN_STMT}
1540 @cindex @code{GIMPLE_DEBUG_INLINE_ENTRY}
1541
1542 @deftypefn {GIMPLE function} gdebug *gimple_build_debug_bind (tree var, @
1543 tree value, gimple stmt)
1544 Build a @code{GIMPLE_DEBUG} statement with @code{GIMPLE_DEBUG_BIND}
1545 @code{subcode}. The effect of this statement is to tell debug
1546 information generation machinery that the value of user variable
1547 @code{var} is given by @code{value} at that point, and to remain with
1548 that value until @code{var} runs out of scope, a
1549 dynamically-subsequent debug bind statement overrides the binding, or
1550 conflicting values reach a control flow merge point. Even if
1551 components of the @code{value} expression change afterwards, the
1552 variable is supposed to retain the same value, though not necessarily
1553 the same location.
1554
1555 It is expected that @code{var} be most often a tree for automatic user
1556 variables (@code{VAR_DECL} or @code{PARM_DECL}) that satisfy the
1557 requirements for gimple registers, but it may also be a tree for a
1558 scalarized component of a user variable (@code{ARRAY_REF},
1559 @code{COMPONENT_REF}), or a debug temporary (@code{DEBUG_EXPR_DECL}).
1560
1561 As for @code{value}, it can be an arbitrary tree expression, but it is
1562 recommended that it be in a suitable form for a gimple assignment
1563 @code{RHS}. It is not expected that user variables that could appear
1564 as @code{var} ever appear in @code{value}, because in the latter we'd
1565 have their @code{SSA_NAME}s instead, but even if they were not in SSA
1566 form, user variables appearing in @code{value} are to be regarded as
1567 part of the executable code space, whereas those in @code{var} are to
1568 be regarded as part of the source code space. There is no way to
1569 refer to the value bound to a user variable within a @code{value}
1570 expression.
1571
1572 If @code{value} is @code{GIMPLE_DEBUG_BIND_NOVALUE}, debug information
1573 generation machinery is informed that the variable @code{var} is
1574 unbound, i.e., that its value is indeterminate, which sometimes means
1575 it is really unavailable, and other times that the compiler could not
1576 keep track of it.
1577
1578 Block and location information for the newly-created stmt are
1579 taken from @code{stmt}, if given.
1580 @end deftypefn
1581
1582 @deftypefn {GIMPLE function} tree gimple_debug_bind_get_var (gimple stmt)
1583 Return the user variable @var{var} that is bound at @code{stmt}.
1584 @end deftypefn
1585
1586 @deftypefn {GIMPLE function} tree gimple_debug_bind_get_value (gimple stmt)
1587 Return the value expression that is bound to a user variable at
1588 @code{stmt}.
1589 @end deftypefn
1590
1591 @deftypefn {GIMPLE function} {tree *} gimple_debug_bind_get_value_ptr (gimple stmt)
1592 Return a pointer to the value expression that is bound to a user
1593 variable at @code{stmt}.
1594 @end deftypefn
1595
1596 @deftypefn {GIMPLE function} void gimple_debug_bind_set_var (gimple stmt, tree var)
1597 Modify the user variable bound at @code{stmt} to @var{var}.
1598 @end deftypefn
1599
1600 @deftypefn {GIMPLE function} void gimple_debug_bind_set_value (gimple stmt, tree var)
1601 Modify the value bound to the user variable bound at @code{stmt} to
1602 @var{value}.
1603 @end deftypefn
1604
1605 @deftypefn {GIMPLE function} void gimple_debug_bind_reset_value (gimple stmt)
1606 Modify the value bound to the user variable bound at @code{stmt} so
1607 that the variable becomes unbound.
1608 @end deftypefn
1609
1610 @deftypefn {GIMPLE function} bool gimple_debug_bind_has_value_p (gimple stmt)
1611 Return @code{TRUE} if @code{stmt} binds a user variable to a value,
1612 and @code{FALSE} if it unbinds the variable.
1613 @end deftypefn
1614
1615 @deftypefn {GIMPLE function} gimple gimple_build_debug_begin_stmt (tree block, location_t location)
1616 Build a @code{GIMPLE_DEBUG} statement with
1617 @code{GIMPLE_DEBUG_BEGIN_STMT} @code{subcode}. The effect of this
1618 statement is to tell debug information generation machinery that the
1619 user statement at the given @code{location} and @code{block} starts at
1620 the point at which the statement is inserted. The intent is that side
1621 effects (e.g.@: variable bindings) of all prior user statements are
1622 observable, and that none of the side effects of subsequent user
1623 statements are.
1624 @end deftypefn
1625
1626 @deftypefn {GIMPLE function} gimple gimple_build_debug_inline_entry (tree block, location_t location)
1627 Build a @code{GIMPLE_DEBUG} statement with
1628 @code{GIMPLE_DEBUG_INLINE_ENTRY} @code{subcode}. The effect of this
1629 statement is to tell debug information generation machinery that a
1630 function call at @code{location} underwent inline substitution, that
1631 @code{block} is the enclosing lexical block created for the
1632 substitution, and that at the point of the program in which the stmt is
1633 inserted, all parameters for the inlined function are bound to the
1634 respective arguments, and none of the side effects of its stmts are
1635 observable.
1636 @end deftypefn
1637
1638 @node @code{GIMPLE_EH_FILTER}
1639 @subsection @code{GIMPLE_EH_FILTER}
1640 @cindex @code{GIMPLE_EH_FILTER}
1641
1642 @deftypefn {GIMPLE function} geh_filter *gimple_build_eh_filter (tree types, @
1643 gimple_seq failure)
1644 Build a @code{GIMPLE_EH_FILTER} statement. @code{TYPES} are the filter's
1645 types. @code{FAILURE} is a sequence with the filter's failure action.
1646 @end deftypefn
1647
1648 @deftypefn {GIMPLE function} tree gimple_eh_filter_types (gimple g)
1649 Return the types handled by @code{GIMPLE_EH_FILTER} statement @code{G}.
1650 @end deftypefn
1651
1652 @deftypefn {GIMPLE function} {tree *} gimple_eh_filter_types_ptr (gimple g)
1653 Return a pointer to the types handled by @code{GIMPLE_EH_FILTER}
1654 statement @code{G}.
1655 @end deftypefn
1656
1657 @deftypefn {GIMPLE function} gimple_seq gimple_eh_filter_failure (gimple g)
1658 Return the sequence of statement to execute when @code{GIMPLE_EH_FILTER}
1659 statement fails.
1660 @end deftypefn
1661
1662 @deftypefn {GIMPLE function} void gimple_eh_filter_set_types (geh_filter *g, @
1663 tree types)
1664 Set @code{TYPES} to be the set of types handled by @code{GIMPLE_EH_FILTER} @code{G}.
1665 @end deftypefn
1666
1667 @deftypefn {GIMPLE function} void gimple_eh_filter_set_failure (geh_filter *g, @
1668 gimple_seq failure)
1669 Set @code{FAILURE} to be the sequence of statements to execute on
1670 failure for @code{GIMPLE_EH_FILTER} @code{G}.
1671 @end deftypefn
1672
1673 @deftypefn {GIMPLE function} tree gimple_eh_must_not_throw_fndecl ( @
1674 geh_mnt *eh_mnt_stmt)
1675 Get the function decl to be called by the MUST_NOT_THROW region.
1676 @end deftypefn
1677
1678 @deftypefn {GIMPLE function} void gimple_eh_must_not_throw_set_fndecl ( @
1679 geh_mnt *eh_mnt_stmt, tree decl)
1680 Set the function decl to be called by GS to DECL.
1681 @end deftypefn
1682
1683
1684 @node @code{GIMPLE_LABEL}
1685 @subsection @code{GIMPLE_LABEL}
1686 @cindex @code{GIMPLE_LABEL}
1687
1688 @deftypefn {GIMPLE function} glabel *gimple_build_label (tree label)
1689 Build a @code{GIMPLE_LABEL} statement with corresponding to the tree
1690 label, @code{LABEL}.
1691 @end deftypefn
1692
1693 @deftypefn {GIMPLE function} tree gimple_label_label (const glabel *g)
1694 Return the @code{LABEL_DECL} node used by @code{GIMPLE_LABEL} statement @code{G}.
1695 @end deftypefn
1696
1697 @deftypefn {GIMPLE function} void gimple_label_set_label (glabel *g, tree label)
1698 Set @code{LABEL} to be the @code{LABEL_DECL} node used by @code{GIMPLE_LABEL}
1699 statement @code{G}.
1700 @end deftypefn
1701
1702 @node @code{GIMPLE_GOTO}
1703 @subsection @code{GIMPLE_GOTO}
1704 @cindex @code{GIMPLE_GOTO}
1705
1706 @deftypefn {GIMPLE function} ggoto *gimple_build_goto (tree dest)
1707 Build a @code{GIMPLE_GOTO} statement to label @code{DEST}.
1708 @end deftypefn
1709
1710 @deftypefn {GIMPLE function} tree gimple_goto_dest (gimple g)
1711 Return the destination of the unconditional jump @code{G}.
1712 @end deftypefn
1713
1714 @deftypefn {GIMPLE function} void gimple_goto_set_dest (ggoto *g, tree dest)
1715 Set @code{DEST} to be the destination of the unconditional jump @code{G}.
1716 @end deftypefn
1717
1718
1719 @node @code{GIMPLE_NOP}
1720 @subsection @code{GIMPLE_NOP}
1721 @cindex @code{GIMPLE_NOP}
1722
1723 @deftypefn {GIMPLE function} gimple gimple_build_nop (void)
1724 Build a @code{GIMPLE_NOP} statement.
1725 @end deftypefn
1726
1727 @deftypefn {GIMPLE function} bool gimple_nop_p (gimple g)
1728 Returns @code{TRUE} if statement @code{G} is a @code{GIMPLE_NOP}.
1729 @end deftypefn
1730
1731 @node @code{GIMPLE_OMP_ATOMIC_LOAD}
1732 @subsection @code{GIMPLE_OMP_ATOMIC_LOAD}
1733 @cindex @code{GIMPLE_OMP_ATOMIC_LOAD}
1734
1735 @deftypefn {GIMPLE function} gomp_atomic_load *gimple_build_omp_atomic_load ( @
1736 tree lhs, tree rhs)
1737 Build a @code{GIMPLE_OMP_ATOMIC_LOAD} statement. @code{LHS} is the left-hand
1738 side of the assignment. @code{RHS} is the right-hand side of the
1739 assignment.
1740 @end deftypefn
1741
1742 @deftypefn {GIMPLE function} void gimple_omp_atomic_load_set_lhs ( @
1743 gomp_atomic_load *g, tree lhs)
1744 Set the @code{LHS} of an atomic load.
1745 @end deftypefn
1746
1747 @deftypefn {GIMPLE function} tree gimple_omp_atomic_load_lhs ( @
1748 const gomp_atomic_load *g)
1749 Get the @code{LHS} of an atomic load.
1750 @end deftypefn
1751
1752 @deftypefn {GIMPLE function} void gimple_omp_atomic_load_set_rhs ( @
1753 gomp_atomic_load *g, tree rhs)
1754 Set the @code{RHS} of an atomic set.
1755 @end deftypefn
1756
1757 @deftypefn {GIMPLE function} tree gimple_omp_atomic_load_rhs ( @
1758 const gomp_atomic_load *g)
1759 Get the @code{RHS} of an atomic set.
1760 @end deftypefn
1761
1762
1763 @node @code{GIMPLE_OMP_ATOMIC_STORE}
1764 @subsection @code{GIMPLE_OMP_ATOMIC_STORE}
1765 @cindex @code{GIMPLE_OMP_ATOMIC_STORE}
1766
1767 @deftypefn {GIMPLE function} gomp_atomic_store *gimple_build_omp_atomic_store ( @
1768 tree val)
1769 Build a @code{GIMPLE_OMP_ATOMIC_STORE} statement. @code{VAL} is the value to be
1770 stored.
1771 @end deftypefn
1772
1773 @deftypefn {GIMPLE function} void gimple_omp_atomic_store_set_val ( @
1774 gomp_atomic_store *g, tree val)
1775 Set the value being stored in an atomic store.
1776 @end deftypefn
1777
1778 @deftypefn {GIMPLE function} tree gimple_omp_atomic_store_val ( @
1779 const gomp_atomic_store *g)
1780 Return the value being stored in an atomic store.
1781 @end deftypefn
1782
1783 @node @code{GIMPLE_OMP_CONTINUE}
1784 @subsection @code{GIMPLE_OMP_CONTINUE}
1785 @cindex @code{GIMPLE_OMP_CONTINUE}
1786
1787 @deftypefn {GIMPLE function} gomp_continue *gimple_build_omp_continue ( @
1788 tree control_def, tree control_use)
1789 Build a @code{GIMPLE_OMP_CONTINUE} statement. @code{CONTROL_DEF} is the
1790 definition of the control variable. @code{CONTROL_USE} is the use of
1791 the control variable.
1792 @end deftypefn
1793
1794 @deftypefn {GIMPLE function} tree gimple_omp_continue_control_def ( @
1795 const gomp_continue *s)
1796 Return the definition of the control variable on a
1797 @code{GIMPLE_OMP_CONTINUE} in @code{S}.
1798 @end deftypefn
1799
1800 @deftypefn {GIMPLE function} tree gimple_omp_continue_control_def_ptr ( @
1801 gomp_continue *s)
1802 Same as above, but return the pointer.
1803 @end deftypefn
1804
1805 @deftypefn {GIMPLE function} tree gimple_omp_continue_set_control_def ( @
1806 gomp_continue *s)
1807 Set the control variable definition for a @code{GIMPLE_OMP_CONTINUE}
1808 statement in @code{S}.
1809 @end deftypefn
1810
1811 @deftypefn {GIMPLE function} tree gimple_omp_continue_control_use ( @
1812 const gomp_continue *s)
1813 Return the use of the control variable on a @code{GIMPLE_OMP_CONTINUE}
1814 in @code{S}.
1815 @end deftypefn
1816
1817 @deftypefn {GIMPLE function} tree gimple_omp_continue_control_use_ptr ( @
1818 gomp_continue *s)
1819 Same as above, but return the pointer.
1820 @end deftypefn
1821
1822 @deftypefn {GIMPLE function} tree gimple_omp_continue_set_control_use ( @
1823 gomp_continue *s)
1824 Set the control variable use for a @code{GIMPLE_OMP_CONTINUE} statement
1825 in @code{S}.
1826 @end deftypefn
1827
1828
1829 @node @code{GIMPLE_OMP_CRITICAL}
1830 @subsection @code{GIMPLE_OMP_CRITICAL}
1831 @cindex @code{GIMPLE_OMP_CRITICAL}
1832
1833 @deftypefn {GIMPLE function} gomp_critical *gimple_build_omp_critical ( @
1834 gimple_seq body, tree name)
1835 Build a @code{GIMPLE_OMP_CRITICAL} statement. @code{BODY} is the sequence of
1836 statements for which only one thread can execute. @code{NAME} is an
1837 optional identifier for this critical block.
1838 @end deftypefn
1839
1840 @deftypefn {GIMPLE function} tree gimple_omp_critical_name ( @
1841 const gomp_critical *g)
1842 Return the name associated with @code{OMP_CRITICAL} statement @code{G}.
1843 @end deftypefn
1844
1845 @deftypefn {GIMPLE function} {tree *} gimple_omp_critical_name_ptr ( @
1846 gomp_critical *g)
1847 Return a pointer to the name associated with @code{OMP} critical
1848 statement @code{G}.
1849 @end deftypefn
1850
1851 @deftypefn {GIMPLE function} void gimple_omp_critical_set_name ( @
1852 gomp_critical *g, tree name)
1853 Set @code{NAME} to be the name associated with @code{OMP} critical statement @code{G}.
1854 @end deftypefn
1855
1856 @node @code{GIMPLE_OMP_FOR}
1857 @subsection @code{GIMPLE_OMP_FOR}
1858 @cindex @code{GIMPLE_OMP_FOR}
1859
1860 @deftypefn {GIMPLE function} gomp_for *gimple_build_omp_for (gimple_seq body, @
1861 tree clauses, tree index, tree initial, tree final, tree incr, @
1862 gimple_seq pre_body, enum tree_code omp_for_cond)
1863 Build a @code{GIMPLE_OMP_FOR} statement. @code{BODY} is sequence of statements
1864 inside the for loop. @code{CLAUSES}, are any of the loop
1865 construct's clauses. @code{PRE_BODY} is the
1866 sequence of statements that are loop invariant. @code{INDEX} is the
1867 index variable. @code{INITIAL} is the initial value of @code{INDEX}. @code{FINAL} is
1868 final value of @code{INDEX}. OMP_FOR_COND is the predicate used to
1869 compare @code{INDEX} and @code{FINAL}. @code{INCR} is the increment expression.
1870 @end deftypefn
1871
1872 @deftypefn {GIMPLE function} tree gimple_omp_for_clauses (gimple g)
1873 Return the clauses associated with @code{OMP_FOR} @code{G}.
1874 @end deftypefn
1875
1876 @deftypefn {GIMPLE function} {tree *} gimple_omp_for_clauses_ptr (gimple g)
1877 Return a pointer to the @code{OMP_FOR} @code{G}.
1878 @end deftypefn
1879
1880 @deftypefn {GIMPLE function} void gimple_omp_for_set_clauses (gimple g, tree clauses)
1881 Set @code{CLAUSES} to be the list of clauses associated with @code{OMP_FOR} @code{G}.
1882 @end deftypefn
1883
1884 @deftypefn {GIMPLE function} tree gimple_omp_for_index (gimple g)
1885 Return the index variable for @code{OMP_FOR} @code{G}.
1886 @end deftypefn
1887
1888 @deftypefn {GIMPLE function} {tree *} gimple_omp_for_index_ptr (gimple g)
1889 Return a pointer to the index variable for @code{OMP_FOR} @code{G}.
1890 @end deftypefn
1891
1892 @deftypefn {GIMPLE function} void gimple_omp_for_set_index (gimple g, tree index)
1893 Set @code{INDEX} to be the index variable for @code{OMP_FOR} @code{G}.
1894 @end deftypefn
1895
1896 @deftypefn {GIMPLE function} tree gimple_omp_for_initial (gimple g)
1897 Return the initial value for @code{OMP_FOR} @code{G}.
1898 @end deftypefn
1899
1900 @deftypefn {GIMPLE function} {tree *} gimple_omp_for_initial_ptr (gimple g)
1901 Return a pointer to the initial value for @code{OMP_FOR} @code{G}.
1902 @end deftypefn
1903
1904 @deftypefn {GIMPLE function} void gimple_omp_for_set_initial (gimple g, tree initial)
1905 Set @code{INITIAL} to be the initial value for @code{OMP_FOR} @code{G}.
1906 @end deftypefn
1907
1908 @deftypefn {GIMPLE function} tree gimple_omp_for_final (gimple g)
1909 Return the final value for @code{OMP_FOR} @code{G}.
1910 @end deftypefn
1911
1912 @deftypefn {GIMPLE function} {tree *} gimple_omp_for_final_ptr (gimple g)
1913 turn a pointer to the final value for @code{OMP_FOR} @code{G}.
1914 @end deftypefn
1915
1916 @deftypefn {GIMPLE function} void gimple_omp_for_set_final (gimple g, tree final)
1917 Set @code{FINAL} to be the final value for @code{OMP_FOR} @code{G}.
1918 @end deftypefn
1919
1920 @deftypefn {GIMPLE function} tree gimple_omp_for_incr (gimple g)
1921 Return the increment value for @code{OMP_FOR} @code{G}.
1922 @end deftypefn
1923
1924 @deftypefn {GIMPLE function} {tree *} gimple_omp_for_incr_ptr (gimple g)
1925 Return a pointer to the increment value for @code{OMP_FOR} @code{G}.
1926 @end deftypefn
1927
1928 @deftypefn {GIMPLE function} void gimple_omp_for_set_incr (gimple g, tree incr)
1929 Set @code{INCR} to be the increment value for @code{OMP_FOR} @code{G}.
1930 @end deftypefn
1931
1932 @deftypefn {GIMPLE function} gimple_seq gimple_omp_for_pre_body (gimple g)
1933 Return the sequence of statements to execute before the @code{OMP_FOR}
1934 statement @code{G} starts.
1935 @end deftypefn
1936
1937 @deftypefn {GIMPLE function} void gimple_omp_for_set_pre_body (gimple g, gimple_seq pre_body)
1938 Set @code{PRE_BODY} to be the sequence of statements to execute before
1939 the @code{OMP_FOR} statement @code{G} starts.
1940 @end deftypefn
1941
1942 @deftypefn {GIMPLE function} void gimple_omp_for_set_cond (gimple g, enum tree_code cond)
1943 Set @code{COND} to be the condition code for @code{OMP_FOR} @code{G}.
1944 @end deftypefn
1945
1946 @deftypefn {GIMPLE function} {enum tree_code} gimple_omp_for_cond (gimple g)
1947 Return the condition code associated with @code{OMP_FOR} @code{G}.
1948 @end deftypefn
1949
1950
1951 @node @code{GIMPLE_OMP_MASTER}
1952 @subsection @code{GIMPLE_OMP_MASTER}
1953 @cindex @code{GIMPLE_OMP_MASTER}
1954
1955 @deftypefn {GIMPLE function} gimple gimple_build_omp_master (gimple_seq body)
1956 Build a @code{GIMPLE_OMP_MASTER} statement. @code{BODY} is the sequence of
1957 statements to be executed by just the master.
1958 @end deftypefn
1959
1960
1961 @node @code{GIMPLE_OMP_ORDERED}
1962 @subsection @code{GIMPLE_OMP_ORDERED}
1963 @cindex @code{GIMPLE_OMP_ORDERED}
1964
1965 @deftypefn {GIMPLE function} gimple gimple_build_omp_ordered (gimple_seq body)
1966 Build a @code{GIMPLE_OMP_ORDERED} statement.
1967
1968 @code{BODY} is the sequence of statements inside a loop that will
1969 executed in sequence.
1970 @end deftypefn
1971
1972 @node @code{GIMPLE_OMP_PARALLEL}
1973 @subsection @code{GIMPLE_OMP_PARALLEL}
1974 @cindex @code{GIMPLE_OMP_PARALLEL}
1975
1976 @deftypefn {GIMPLE function} gomp_parallel *gimple_build_omp_parallel (@
1977 gimple_seq body, tree clauses, tree child_fn, tree data_arg)
1978 Build a @code{GIMPLE_OMP_PARALLEL} statement.
1979
1980 @code{BODY} is sequence of statements which are executed in parallel.
1981 @code{CLAUSES}, are the @code{OMP} parallel construct's clauses. @code{CHILD_FN} is
1982 the function created for the parallel threads to execute.
1983 @code{DATA_ARG} are the shared data argument(s).
1984 @end deftypefn
1985
1986 @deftypefn {GIMPLE function} bool gimple_omp_parallel_combined_p (gimple g)
1987 Return true if @code{OMP} parallel statement @code{G} has the
1988 @code{GF_OMP_PARALLEL_COMBINED} flag set.
1989 @end deftypefn
1990
1991 @deftypefn {GIMPLE function} void gimple_omp_parallel_set_combined_p (gimple g)
1992 Set the @code{GF_OMP_PARALLEL_COMBINED} field in @code{OMP} parallel statement
1993 @code{G}.
1994 @end deftypefn
1995
1996 @deftypefn {GIMPLE function} gimple_seq gimple_omp_body (gimple g)
1997 Return the body for the @code{OMP} statement @code{G}.
1998 @end deftypefn
1999
2000 @deftypefn {GIMPLE function} void gimple_omp_set_body (gimple g, gimple_seq body)
2001 Set @code{BODY} to be the body for the @code{OMP} statement @code{G}.
2002 @end deftypefn
2003
2004 @deftypefn {GIMPLE function} tree gimple_omp_parallel_clauses (gimple g)
2005 Return the clauses associated with @code{OMP_PARALLEL} @code{G}.
2006 @end deftypefn
2007
2008 @deftypefn {GIMPLE function} {tree *} gimple_omp_parallel_clauses_ptr ( @
2009 gomp_parallel *g)
2010 Return a pointer to the clauses associated with @code{OMP_PARALLEL} @code{G}.
2011 @end deftypefn
2012
2013 @deftypefn {GIMPLE function} void gimple_omp_parallel_set_clauses ( @
2014 gomp_parallel *g, tree clauses)
2015 Set @code{CLAUSES} to be the list of clauses associated with
2016 @code{OMP_PARALLEL} @code{G}.
2017 @end deftypefn
2018
2019 @deftypefn {GIMPLE function} tree gimple_omp_parallel_child_fn ( @
2020 const gomp_parallel *g)
2021 Return the child function used to hold the body of @code{OMP_PARALLEL}
2022 @code{G}.
2023 @end deftypefn
2024
2025 @deftypefn {GIMPLE function} {tree *} gimple_omp_parallel_child_fn_ptr ( @
2026 gomp_parallel *g)
2027 Return a pointer to the child function used to hold the body of
2028 @code{OMP_PARALLEL} @code{G}.
2029 @end deftypefn
2030
2031 @deftypefn {GIMPLE function} void gimple_omp_parallel_set_child_fn ( @
2032 gomp_parallel *g, tree child_fn)
2033 Set @code{CHILD_FN} to be the child function for @code{OMP_PARALLEL} @code{G}.
2034 @end deftypefn
2035
2036 @deftypefn {GIMPLE function} tree gimple_omp_parallel_data_arg ( @
2037 const gomp_parallel *g)
2038 Return the artificial argument used to send variables and values
2039 from the parent to the children threads in @code{OMP_PARALLEL} @code{G}.
2040 @end deftypefn
2041
2042 @deftypefn {GIMPLE function} {tree *} gimple_omp_parallel_data_arg_ptr ( @
2043 gomp_parallel *g)
2044 Return a pointer to the data argument for @code{OMP_PARALLEL} @code{G}.
2045 @end deftypefn
2046
2047 @deftypefn {GIMPLE function} void gimple_omp_parallel_set_data_arg ( @
2048 gomp_parallel *g, tree data_arg)
2049 Set @code{DATA_ARG} to be the data argument for @code{OMP_PARALLEL} @code{G}.
2050 @end deftypefn
2051
2052
2053 @node @code{GIMPLE_OMP_RETURN}
2054 @subsection @code{GIMPLE_OMP_RETURN}
2055 @cindex @code{GIMPLE_OMP_RETURN}
2056
2057 @deftypefn {GIMPLE function} gimple gimple_build_omp_return (bool wait_p)
2058 Build a @code{GIMPLE_OMP_RETURN} statement. @code{WAIT_P} is true if this is a
2059 non-waiting return.
2060 @end deftypefn
2061
2062 @deftypefn {GIMPLE function} void gimple_omp_return_set_nowait (gimple s)
2063 Set the nowait flag on @code{GIMPLE_OMP_RETURN} statement @code{S}.
2064 @end deftypefn
2065
2066
2067 @deftypefn {GIMPLE function} bool gimple_omp_return_nowait_p (gimple g)
2068 Return true if @code{OMP} return statement @code{G} has the
2069 @code{GF_OMP_RETURN_NOWAIT} flag set.
2070 @end deftypefn
2071
2072 @node @code{GIMPLE_OMP_SECTION}
2073 @subsection @code{GIMPLE_OMP_SECTION}
2074 @cindex @code{GIMPLE_OMP_SECTION}
2075
2076 @deftypefn {GIMPLE function} gimple gimple_build_omp_section (gimple_seq body)
2077 Build a @code{GIMPLE_OMP_SECTION} statement for a sections statement.
2078
2079 @code{BODY} is the sequence of statements in the section.
2080 @end deftypefn
2081
2082 @deftypefn {GIMPLE function} bool gimple_omp_section_last_p (gimple g)
2083 Return true if @code{OMP} section statement @code{G} has the
2084 @code{GF_OMP_SECTION_LAST} flag set.
2085 @end deftypefn
2086
2087 @deftypefn {GIMPLE function} void gimple_omp_section_set_last (gimple g)
2088 Set the @code{GF_OMP_SECTION_LAST} flag on @code{G}.
2089 @end deftypefn
2090
2091 @node @code{GIMPLE_OMP_SECTIONS}
2092 @subsection @code{GIMPLE_OMP_SECTIONS}
2093 @cindex @code{GIMPLE_OMP_SECTIONS}
2094
2095 @deftypefn {GIMPLE function} gomp_sections *gimple_build_omp_sections ( @
2096 gimple_seq body, tree clauses)
2097 Build a @code{GIMPLE_OMP_SECTIONS} statement. @code{BODY} is a sequence of
2098 section statements. @code{CLAUSES} are any of the @code{OMP} sections
2099 construct's clauses: private, firstprivate, lastprivate,
2100 reduction, and nowait.
2101 @end deftypefn
2102
2103
2104 @deftypefn {GIMPLE function} gimple gimple_build_omp_sections_switch (void)
2105 Build a @code{GIMPLE_OMP_SECTIONS_SWITCH} statement.
2106 @end deftypefn
2107
2108 @deftypefn {GIMPLE function} tree gimple_omp_sections_control (gimple g)
2109 Return the control variable associated with the
2110 @code{GIMPLE_OMP_SECTIONS} in @code{G}.
2111 @end deftypefn
2112
2113 @deftypefn {GIMPLE function} {tree *} gimple_omp_sections_control_ptr (gimple g)
2114 Return a pointer to the clauses associated with the
2115 @code{GIMPLE_OMP_SECTIONS} in @code{G}.
2116 @end deftypefn
2117
2118 @deftypefn {GIMPLE function} void gimple_omp_sections_set_control (gimple g, tree control)
2119 Set @code{CONTROL} to be the set of clauses associated with the
2120 @code{GIMPLE_OMP_SECTIONS} in @code{G}.
2121 @end deftypefn
2122
2123 @deftypefn {GIMPLE function} tree gimple_omp_sections_clauses (gimple g)
2124 Return the clauses associated with @code{OMP_SECTIONS} @code{G}.
2125 @end deftypefn
2126
2127 @deftypefn {GIMPLE function} {tree *} gimple_omp_sections_clauses_ptr (gimple g)
2128 Return a pointer to the clauses associated with @code{OMP_SECTIONS} @code{G}.
2129 @end deftypefn
2130
2131 @deftypefn {GIMPLE function} void gimple_omp_sections_set_clauses (gimple g, tree clauses)
2132 Set @code{CLAUSES} to be the set of clauses associated with @code{OMP_SECTIONS}
2133 @code{G}.
2134 @end deftypefn
2135
2136
2137 @node @code{GIMPLE_OMP_SINGLE}
2138 @subsection @code{GIMPLE_OMP_SINGLE}
2139 @cindex @code{GIMPLE_OMP_SINGLE}
2140
2141 @deftypefn {GIMPLE function} gomp_single *gimple_build_omp_single ( @
2142 gimple_seq body, tree clauses)
2143 Build a @code{GIMPLE_OMP_SINGLE} statement. @code{BODY} is the sequence of
2144 statements that will be executed once. @code{CLAUSES} are any of the
2145 @code{OMP} single construct's clauses: private, firstprivate,
2146 copyprivate, nowait.
2147 @end deftypefn
2148
2149 @deftypefn {GIMPLE function} tree gimple_omp_single_clauses (gimple g)
2150 Return the clauses associated with @code{OMP_SINGLE} @code{G}.
2151 @end deftypefn
2152
2153 @deftypefn {GIMPLE function} {tree *} gimple_omp_single_clauses_ptr (gimple g)
2154 Return a pointer to the clauses associated with @code{OMP_SINGLE} @code{G}.
2155 @end deftypefn
2156
2157 @deftypefn {GIMPLE function} void gimple_omp_single_set_clauses ( @
2158 gomp_single *g, tree clauses)
2159 Set @code{CLAUSES} to be the clauses associated with @code{OMP_SINGLE} @code{G}.
2160 @end deftypefn
2161
2162
2163 @node @code{GIMPLE_PHI}
2164 @subsection @code{GIMPLE_PHI}
2165 @cindex @code{GIMPLE_PHI}
2166
2167 @deftypefn {GIMPLE function} unsigned gimple_phi_capacity (gimple g)
2168 Return the maximum number of arguments supported by @code{GIMPLE_PHI} @code{G}.
2169 @end deftypefn
2170
2171 @deftypefn {GIMPLE function} unsigned gimple_phi_num_args (gimple g)
2172 Return the number of arguments in @code{GIMPLE_PHI} @code{G}. This must always
2173 be exactly the number of incoming edges for the basic block
2174 holding @code{G}.
2175 @end deftypefn
2176
2177 @deftypefn {GIMPLE function} tree gimple_phi_result (gimple g)
2178 Return the @code{SSA} name created by @code{GIMPLE_PHI} @code{G}.
2179 @end deftypefn
2180
2181 @deftypefn {GIMPLE function} {tree *} gimple_phi_result_ptr (gimple g)
2182 Return a pointer to the @code{SSA} name created by @code{GIMPLE_PHI} @code{G}.
2183 @end deftypefn
2184
2185 @deftypefn {GIMPLE function} void gimple_phi_set_result (gphi *g, tree result)
2186 Set @code{RESULT} to be the @code{SSA} name created by @code{GIMPLE_PHI} @code{G}.
2187 @end deftypefn
2188
2189 @deftypefn {GIMPLE function} {struct phi_arg_d *} gimple_phi_arg (gimple g, index)
2190 Return the @code{PHI} argument corresponding to incoming edge @code{INDEX} for
2191 @code{GIMPLE_PHI} @code{G}.
2192 @end deftypefn
2193
2194 @deftypefn {GIMPLE function} void gimple_phi_set_arg (gphi *g, index, @
2195 struct phi_arg_d * phiarg)
2196 Set @code{PHIARG} to be the argument corresponding to incoming edge
2197 @code{INDEX} for @code{GIMPLE_PHI} @code{G}.
2198 @end deftypefn
2199
2200 @node @code{GIMPLE_RESX}
2201 @subsection @code{GIMPLE_RESX}
2202 @cindex @code{GIMPLE_RESX}
2203
2204 @deftypefn {GIMPLE function} gresx *gimple_build_resx (int region)
2205 Build a @code{GIMPLE_RESX} statement which is a statement. This
2206 statement is a placeholder for _Unwind_Resume before we know if a
2207 function call or a branch is needed. @code{REGION} is the exception
2208 region from which control is flowing.
2209 @end deftypefn
2210
2211 @deftypefn {GIMPLE function} int gimple_resx_region (const gresx *g)
2212 Return the region number for @code{GIMPLE_RESX} @code{G}.
2213 @end deftypefn
2214
2215 @deftypefn {GIMPLE function} void gimple_resx_set_region (gresx *g, int region)
2216 Set @code{REGION} to be the region number for @code{GIMPLE_RESX} @code{G}.
2217 @end deftypefn
2218
2219 @node @code{GIMPLE_RETURN}
2220 @subsection @code{GIMPLE_RETURN}
2221 @cindex @code{GIMPLE_RETURN}
2222
2223 @deftypefn {GIMPLE function} greturn *gimple_build_return (tree retval)
2224 Build a @code{GIMPLE_RETURN} statement whose return value is retval.
2225 @end deftypefn
2226
2227 @deftypefn {GIMPLE function} tree gimple_return_retval (const greturn *g)
2228 Return the return value for @code{GIMPLE_RETURN} @code{G}.
2229 @end deftypefn
2230
2231 @deftypefn {GIMPLE function} void gimple_return_set_retval (greturn *g, @
2232 tree retval)
2233 Set @code{RETVAL} to be the return value for @code{GIMPLE_RETURN} @code{G}.
2234 @end deftypefn
2235
2236 @node @code{GIMPLE_SWITCH}
2237 @subsection @code{GIMPLE_SWITCH}
2238 @cindex @code{GIMPLE_SWITCH}
2239
2240 @deftypefn {GIMPLE function} gswitch *gimple_build_switch (tree index, @
2241 tree default_label, @code{vec}<tree> *args)
2242 Build a @code{GIMPLE_SWITCH} statement. @code{INDEX} is the index variable
2243 to switch on, and @code{DEFAULT_LABEL} represents the default label.
2244 @code{ARGS} is a vector of @code{CASE_LABEL_EXPR} trees that contain the
2245 non-default case labels. Each label is a tree of code @code{CASE_LABEL_EXPR}.
2246 @end deftypefn
2247
2248 @deftypefn {GIMPLE function} unsigned gimple_switch_num_labels ( @
2249 const gswitch *g)
2250 Return the number of labels associated with the switch statement
2251 @code{G}.
2252 @end deftypefn
2253
2254 @deftypefn {GIMPLE function} void gimple_switch_set_num_labels (gswitch *g, @
2255 unsigned nlabels)
2256 Set @code{NLABELS} to be the number of labels for the switch statement
2257 @code{G}.
2258 @end deftypefn
2259
2260 @deftypefn {GIMPLE function} tree gimple_switch_index (const gswitch *g)
2261 Return the index variable used by the switch statement @code{G}.
2262 @end deftypefn
2263
2264 @deftypefn {GIMPLE function} void gimple_switch_set_index (gswitch *g, @
2265 tree index)
2266 Set @code{INDEX} to be the index variable for switch statement @code{G}.
2267 @end deftypefn
2268
2269 @deftypefn {GIMPLE function} tree gimple_switch_label (const gswitch *g, @
2270 unsigned index)
2271 Return the label numbered @code{INDEX}. The default label is 0, followed
2272 by any labels in a switch statement.
2273 @end deftypefn
2274
2275 @deftypefn {GIMPLE function} void gimple_switch_set_label (gswitch *g, @
2276 unsigned index, tree label)
2277 Set the label number @code{INDEX} to @code{LABEL}. 0 is always the default
2278 label.
2279 @end deftypefn
2280
2281 @deftypefn {GIMPLE function} tree gimple_switch_default_label ( @
2282 const gswitch *g)
2283 Return the default label for a switch statement.
2284 @end deftypefn
2285
2286 @deftypefn {GIMPLE function} void gimple_switch_set_default_label (gswitch *g, @
2287 tree label)
2288 Set the default label for a switch statement.
2289 @end deftypefn
2290
2291
2292 @node @code{GIMPLE_TRY}
2293 @subsection @code{GIMPLE_TRY}
2294 @cindex @code{GIMPLE_TRY}
2295
2296 @deftypefn {GIMPLE function} gtry *gimple_build_try (gimple_seq eval, @
2297 gimple_seq cleanup, unsigned int kind)
2298 Build a @code{GIMPLE_TRY} statement. @code{EVAL} is a sequence with the
2299 expression to evaluate. @code{CLEANUP} is a sequence of statements to
2300 run at clean-up time. @code{KIND} is the enumeration value
2301 @code{GIMPLE_TRY_CATCH} if this statement denotes a try/catch construct
2302 or @code{GIMPLE_TRY_FINALLY} if this statement denotes a try/finally
2303 construct.
2304 @end deftypefn
2305
2306 @deftypefn {GIMPLE function} {enum gimple_try_flags} gimple_try_kind (gimple g)
2307 Return the kind of try block represented by @code{GIMPLE_TRY} @code{G}. This is
2308 either @code{GIMPLE_TRY_CATCH} or @code{GIMPLE_TRY_FINALLY}.
2309 @end deftypefn
2310
2311 @deftypefn {GIMPLE function} bool gimple_try_catch_is_cleanup (gimple g)
2312 Return the @code{GIMPLE_TRY_CATCH_IS_CLEANUP} flag.
2313 @end deftypefn
2314
2315 @deftypefn {GIMPLE function} gimple_seq gimple_try_eval (gimple g)
2316 Return the sequence of statements used as the body for @code{GIMPLE_TRY}
2317 @code{G}.
2318 @end deftypefn
2319
2320 @deftypefn {GIMPLE function} gimple_seq gimple_try_cleanup (gimple g)
2321 Return the sequence of statements used as the cleanup body for
2322 @code{GIMPLE_TRY} @code{G}.
2323 @end deftypefn
2324
2325 @deftypefn {GIMPLE function} void gimple_try_set_catch_is_cleanup (gimple g, @
2326 bool catch_is_cleanup)
2327 Set the @code{GIMPLE_TRY_CATCH_IS_CLEANUP} flag.
2328 @end deftypefn
2329
2330 @deftypefn {GIMPLE function} void gimple_try_set_eval (gtry *g, gimple_seq eval)
2331 Set @code{EVAL} to be the sequence of statements to use as the body for
2332 @code{GIMPLE_TRY} @code{G}.
2333 @end deftypefn
2334
2335 @deftypefn {GIMPLE function} void gimple_try_set_cleanup (gtry *g, @
2336 gimple_seq cleanup)
2337 Set @code{CLEANUP} to be the sequence of statements to use as the
2338 cleanup body for @code{GIMPLE_TRY} @code{G}.
2339 @end deftypefn
2340
2341 @node @code{GIMPLE_WITH_CLEANUP_EXPR}
2342 @subsection @code{GIMPLE_WITH_CLEANUP_EXPR}
2343 @cindex @code{GIMPLE_WITH_CLEANUP_EXPR}
2344
2345 @deftypefn {GIMPLE function} gimple gimple_build_wce (gimple_seq cleanup)
2346 Build a @code{GIMPLE_WITH_CLEANUP_EXPR} statement. @code{CLEANUP} is the
2347 clean-up expression.
2348 @end deftypefn
2349
2350 @deftypefn {GIMPLE function} gimple_seq gimple_wce_cleanup (gimple g)
2351 Return the cleanup sequence for cleanup statement @code{G}.
2352 @end deftypefn
2353
2354 @deftypefn {GIMPLE function} void gimple_wce_set_cleanup (gimple g, gimple_seq cleanup)
2355 Set @code{CLEANUP} to be the cleanup sequence for @code{G}.
2356 @end deftypefn
2357
2358 @deftypefn {GIMPLE function} bool gimple_wce_cleanup_eh_only (gimple g)
2359 Return the @code{CLEANUP_EH_ONLY} flag for a @code{WCE} tuple.
2360 @end deftypefn
2361
2362 @deftypefn {GIMPLE function} void gimple_wce_set_cleanup_eh_only (gimple g, bool eh_only_p)
2363 Set the @code{CLEANUP_EH_ONLY} flag for a @code{WCE} tuple.
2364 @end deftypefn
2365
2366
2367 @node GIMPLE sequences
2368 @section GIMPLE sequences
2369 @cindex GIMPLE sequences
2370
2371 GIMPLE sequences are the tuple equivalent of @code{STATEMENT_LIST}'s
2372 used in @code{GENERIC}. They are used to chain statements together, and
2373 when used in conjunction with sequence iterators, provide a
2374 framework for iterating through statements.
2375
2376 GIMPLE sequences are of type struct @code{gimple_sequence}, but are more
2377 commonly passed by reference to functions dealing with sequences.
2378 The type for a sequence pointer is @code{gimple_seq} which is the same
2379 as struct @code{gimple_sequence} *. When declaring a local sequence,
2380 you can define a local variable of type struct @code{gimple_sequence}.
2381 When declaring a sequence allocated on the garbage collected
2382 heap, use the function @code{gimple_seq_alloc} documented below.
2383
2384 There are convenience functions for iterating through sequences
2385 in the section entitled Sequence Iterators.
2386
2387 Below is a list of functions to manipulate and query sequences.
2388
2389 @deftypefn {GIMPLE function} void gimple_seq_add_stmt (gimple_seq *seq, gimple g)
2390 Link a gimple statement to the end of the sequence *@code{SEQ} if @code{G} is
2391 not @code{NULL}. If *@code{SEQ} is @code{NULL}, allocate a sequence before linking.
2392 @end deftypefn
2393
2394 @deftypefn {GIMPLE function} void gimple_seq_add_seq (gimple_seq *dest, gimple_seq src)
2395 Append sequence @code{SRC} to the end of sequence *@code{DEST} if @code{SRC} is not
2396 @code{NULL}. If *@code{DEST} is @code{NULL}, allocate a new sequence before
2397 appending.
2398 @end deftypefn
2399
2400 @deftypefn {GIMPLE function} gimple_seq gimple_seq_deep_copy (gimple_seq src)
2401 Perform a deep copy of sequence @code{SRC} and return the result.
2402 @end deftypefn
2403
2404 @deftypefn {GIMPLE function} gimple_seq gimple_seq_reverse (gimple_seq seq)
2405 Reverse the order of the statements in the sequence @code{SEQ}. Return
2406 @code{SEQ}.
2407 @end deftypefn
2408
2409 @deftypefn {GIMPLE function} gimple gimple_seq_first (gimple_seq s)
2410 Return the first statement in sequence @code{S}.
2411 @end deftypefn
2412
2413 @deftypefn {GIMPLE function} gimple gimple_seq_last (gimple_seq s)
2414 Return the last statement in sequence @code{S}.
2415 @end deftypefn
2416
2417 @deftypefn {GIMPLE function} void gimple_seq_set_last (gimple_seq s, gimple last)
2418 Set the last statement in sequence @code{S} to the statement in @code{LAST}.
2419 @end deftypefn
2420
2421 @deftypefn {GIMPLE function} void gimple_seq_set_first (gimple_seq s, gimple first)
2422 Set the first statement in sequence @code{S} to the statement in @code{FIRST}.
2423 @end deftypefn
2424
2425 @deftypefn {GIMPLE function} void gimple_seq_init (gimple_seq s)
2426 Initialize sequence @code{S} to an empty sequence.
2427 @end deftypefn
2428
2429 @deftypefn {GIMPLE function} gimple_seq gimple_seq_alloc (void)
2430 Allocate a new sequence in the garbage collected store and return
2431 it.
2432 @end deftypefn
2433
2434 @deftypefn {GIMPLE function} void gimple_seq_copy (gimple_seq dest, gimple_seq src)
2435 Copy the sequence @code{SRC} into the sequence @code{DEST}.
2436 @end deftypefn
2437
2438 @deftypefn {GIMPLE function} bool gimple_seq_empty_p (gimple_seq s)
2439 Return true if the sequence @code{S} is empty.
2440 @end deftypefn
2441
2442 @deftypefn {GIMPLE function} gimple_seq bb_seq (basic_block bb)
2443 Returns the sequence of statements in @code{BB}.
2444 @end deftypefn
2445
2446 @deftypefn {GIMPLE function} void set_bb_seq (basic_block bb, gimple_seq seq)
2447 Sets the sequence of statements in @code{BB} to @code{SEQ}.
2448 @end deftypefn
2449
2450 @deftypefn {GIMPLE function} bool gimple_seq_singleton_p (gimple_seq seq)
2451 Determine whether @code{SEQ} contains exactly one statement.
2452 @end deftypefn
2453
2454 @node Sequence iterators
2455 @section Sequence iterators
2456 @cindex Sequence iterators
2457
2458 Sequence iterators are convenience constructs for iterating
2459 through statements in a sequence. Given a sequence @code{SEQ}, here is
2460 a typical use of gimple sequence iterators:
2461
2462 @smallexample
2463 gimple_stmt_iterator gsi;
2464
2465 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
2466 @{
2467 gimple g = gsi_stmt (gsi);
2468 /* Do something with gimple statement @code{G}. */
2469 @}
2470 @end smallexample
2471
2472 Backward iterations are possible:
2473
2474 @smallexample
2475 for (gsi = gsi_last (seq); !gsi_end_p (gsi); gsi_prev (&gsi))
2476 @end smallexample
2477
2478 Forward and backward iterations on basic blocks are possible with
2479 @code{gsi_start_bb} and @code{gsi_last_bb}.
2480
2481 In the documentation below we sometimes refer to enum
2482 @code{gsi_iterator_update}. The valid options for this enumeration are:
2483
2484 @itemize @bullet
2485 @item @code{GSI_NEW_STMT}
2486 Only valid when a single statement is added. Move the iterator to it.
2487
2488 @item @code{GSI_SAME_STMT}
2489 Leave the iterator at the same statement.
2490
2491 @item @code{GSI_CONTINUE_LINKING}
2492 Move iterator to whatever position is suitable for linking other
2493 statements in the same direction.
2494 @end itemize
2495
2496 Below is a list of the functions used to manipulate and use
2497 statement iterators.
2498
2499 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_start (gimple_seq seq)
2500 Return a new iterator pointing to the sequence @code{SEQ}'s first
2501 statement. If @code{SEQ} is empty, the iterator's basic block is @code{NULL}.
2502 Use @code{gsi_start_bb} instead when the iterator needs to always have
2503 the correct basic block set.
2504 @end deftypefn
2505
2506 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_start_bb (basic_block bb)
2507 Return a new iterator pointing to the first statement in basic
2508 block @code{BB}.
2509 @end deftypefn
2510
2511 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_last (gimple_seq seq)
2512 Return a new iterator initially pointing to the last statement of
2513 sequence @code{SEQ}. If @code{SEQ} is empty, the iterator's basic block is
2514 @code{NULL}. Use @code{gsi_last_bb} instead when the iterator needs to always
2515 have the correct basic block set.
2516 @end deftypefn
2517
2518 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_last_bb (basic_block bb)
2519 Return a new iterator pointing to the last statement in basic
2520 block @code{BB}.
2521 @end deftypefn
2522
2523 @deftypefn {GIMPLE function} bool gsi_end_p (gimple_stmt_iterator i)
2524 Return @code{TRUE} if at the end of @code{I}.
2525 @end deftypefn
2526
2527 @deftypefn {GIMPLE function} bool gsi_one_before_end_p (gimple_stmt_iterator i)
2528 Return @code{TRUE} if we're one statement before the end of @code{I}.
2529 @end deftypefn
2530
2531 @deftypefn {GIMPLE function} void gsi_next (gimple_stmt_iterator *i)
2532 Advance the iterator to the next gimple statement.
2533 @end deftypefn
2534
2535 @deftypefn {GIMPLE function} void gsi_prev (gimple_stmt_iterator *i)
2536 Advance the iterator to the previous gimple statement.
2537 @end deftypefn
2538
2539 @deftypefn {GIMPLE function} gimple gsi_stmt (gimple_stmt_iterator i)
2540 Return the current stmt.
2541 @end deftypefn
2542
2543 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_after_labels (basic_block bb)
2544 Return a block statement iterator that points to the first
2545 non-label statement in block @code{BB}.
2546 @end deftypefn
2547
2548 @deftypefn {GIMPLE function} {gimple *} gsi_stmt_ptr (gimple_stmt_iterator *i)
2549 Return a pointer to the current stmt.
2550 @end deftypefn
2551
2552 @deftypefn {GIMPLE function} basic_block gsi_bb (gimple_stmt_iterator i)
2553 Return the basic block associated with this iterator.
2554 @end deftypefn
2555
2556 @deftypefn {GIMPLE function} gimple_seq gsi_seq (gimple_stmt_iterator i)
2557 Return the sequence associated with this iterator.
2558 @end deftypefn
2559
2560 @deftypefn {GIMPLE function} void gsi_remove (gimple_stmt_iterator *i, bool remove_eh_info)
2561 Remove the current stmt from the sequence. The iterator is
2562 updated to point to the next statement. When @code{REMOVE_EH_INFO} is
2563 true we remove the statement pointed to by iterator @code{I} from the @code{EH}
2564 tables. Otherwise we do not modify the @code{EH} tables. Generally,
2565 @code{REMOVE_EH_INFO} should be true when the statement is going to be
2566 removed from the @code{IL} and not reinserted elsewhere.
2567 @end deftypefn
2568
2569 @deftypefn {GIMPLE function} void gsi_link_seq_before (gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode)
2570 Links the sequence of statements @code{SEQ} before the statement pointed
2571 by iterator @code{I}. @code{MODE} indicates what to do with the iterator
2572 after insertion (see @code{enum gsi_iterator_update} above).
2573 @end deftypefn
2574
2575 @deftypefn {GIMPLE function} void gsi_link_before (gimple_stmt_iterator *i, gimple g, enum gsi_iterator_update mode)
2576 Links statement @code{G} before the statement pointed-to by iterator @code{I}.
2577 Updates iterator @code{I} according to @code{MODE}.
2578 @end deftypefn
2579
2580 @deftypefn {GIMPLE function} void gsi_link_seq_after (gimple_stmt_iterator *i, @
2581 gimple_seq seq, enum gsi_iterator_update mode)
2582 Links sequence @code{SEQ} after the statement pointed-to by iterator @code{I}.
2583 @code{MODE} is as in @code{gsi_insert_after}.
2584 @end deftypefn
2585
2586 @deftypefn {GIMPLE function} void gsi_link_after (gimple_stmt_iterator *i, @
2587 gimple g, enum gsi_iterator_update mode)
2588 Links statement @code{G} after the statement pointed-to by iterator @code{I}.
2589 @code{MODE} is as in @code{gsi_insert_after}.
2590 @end deftypefn
2591
2592 @deftypefn {GIMPLE function} gimple_seq gsi_split_seq_after (gimple_stmt_iterator i)
2593 Move all statements in the sequence after @code{I} to a new sequence.
2594 Return this new sequence.
2595 @end deftypefn
2596
2597 @deftypefn {GIMPLE function} gimple_seq gsi_split_seq_before (gimple_stmt_iterator *i)
2598 Move all statements in the sequence before @code{I} to a new sequence.
2599 Return this new sequence.
2600 @end deftypefn
2601
2602 @deftypefn {GIMPLE function} void gsi_replace (gimple_stmt_iterator *i, @
2603 gimple stmt, bool update_eh_info)
2604 Replace the statement pointed-to by @code{I} to @code{STMT}. If @code{UPDATE_EH_INFO}
2605 is true, the exception handling information of the original
2606 statement is moved to the new statement.
2607 @end deftypefn
2608
2609 @deftypefn {GIMPLE function} void gsi_insert_before (gimple_stmt_iterator *i, @
2610 gimple stmt, enum gsi_iterator_update mode)
2611 Insert statement @code{STMT} before the statement pointed-to by iterator
2612 @code{I}, update @code{STMT}'s basic block and scan it for new operands. @code{MODE}
2613 specifies how to update iterator @code{I} after insertion (see enum
2614 @code{gsi_iterator_update}).
2615 @end deftypefn
2616
2617 @deftypefn {GIMPLE function} void gsi_insert_seq_before (gimple_stmt_iterator *i, @
2618 gimple_seq seq, enum gsi_iterator_update mode)
2619 Like @code{gsi_insert_before}, but for all the statements in @code{SEQ}.
2620 @end deftypefn
2621
2622 @deftypefn {GIMPLE function} void gsi_insert_after (gimple_stmt_iterator *i, @
2623 gimple stmt, enum gsi_iterator_update mode)
2624 Insert statement @code{STMT} after the statement pointed-to by iterator
2625 @code{I}, update @code{STMT}'s basic block and scan it for new operands. @code{MODE}
2626 specifies how to update iterator @code{I} after insertion (see enum
2627 @code{gsi_iterator_update}).
2628 @end deftypefn
2629
2630 @deftypefn {GIMPLE function} void gsi_insert_seq_after (gimple_stmt_iterator *i, @
2631 gimple_seq seq, enum gsi_iterator_update mode)
2632 Like @code{gsi_insert_after}, but for all the statements in @code{SEQ}.
2633 @end deftypefn
2634
2635 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_for_stmt (gimple stmt)
2636 Finds iterator for @code{STMT}.
2637 @end deftypefn
2638
2639 @deftypefn {GIMPLE function} void gsi_move_after (gimple_stmt_iterator *from, @
2640 gimple_stmt_iterator *to)
2641 Move the statement at @code{FROM} so it comes right after the statement
2642 at @code{TO}.
2643 @end deftypefn
2644
2645 @deftypefn {GIMPLE function} void gsi_move_before (gimple_stmt_iterator *from, @
2646 gimple_stmt_iterator *to)
2647 Move the statement at @code{FROM} so it comes right before the statement
2648 at @code{TO}.
2649 @end deftypefn
2650
2651 @deftypefn {GIMPLE function} void gsi_move_to_bb_end (gimple_stmt_iterator *from, @
2652 basic_block bb)
2653 Move the statement at @code{FROM} to the end of basic block @code{BB}.
2654 @end deftypefn
2655
2656 @deftypefn {GIMPLE function} void gsi_insert_on_edge (edge e, gimple stmt)
2657 Add @code{STMT} to the pending list of edge @code{E}. No actual insertion is
2658 made until a call to @code{gsi_commit_edge_inserts}() is made.
2659 @end deftypefn
2660
2661 @deftypefn {GIMPLE function} void gsi_insert_seq_on_edge (edge e, gimple_seq seq)
2662 Add the sequence of statements in @code{SEQ} to the pending list of edge
2663 @code{E}. No actual insertion is made until a call to
2664 @code{gsi_commit_edge_inserts}() is made.
2665 @end deftypefn
2666
2667 @deftypefn {GIMPLE function} basic_block gsi_insert_on_edge_immediate (edge e, gimple stmt)
2668 Similar to @code{gsi_insert_on_edge}+@code{gsi_commit_edge_inserts}. If a new
2669 block has to be created, it is returned.
2670 @end deftypefn
2671
2672 @deftypefn {GIMPLE function} void gsi_commit_one_edge_insert (edge e, basic_block *new_bb)
2673 Commit insertions pending at edge @code{E}. If a new block is created,
2674 set @code{NEW_BB} to this block, otherwise set it to @code{NULL}.
2675 @end deftypefn
2676
2677 @deftypefn {GIMPLE function} void gsi_commit_edge_inserts (void)
2678 This routine will commit all pending edge insertions, creating
2679 any new basic blocks which are necessary.
2680 @end deftypefn
2681
2682
2683 @node Adding a new GIMPLE statement code
2684 @section Adding a new GIMPLE statement code
2685 @cindex Adding a new GIMPLE statement code
2686
2687 The first step in adding a new GIMPLE statement code, is
2688 modifying the file @code{gimple.def}, which contains all the GIMPLE
2689 codes. Then you must add a corresponding gimple subclass
2690 located in @code{gimple.h}. This in turn, will require you to add a
2691 corresponding @code{GTY} tag in @code{gsstruct.def}, and code to handle
2692 this tag in @code{gss_for_code} which is located in @code{gimple.cc}.
2693
2694 In order for the garbage collector to know the size of the
2695 structure you created in @code{gimple.h}, you need to add a case to
2696 handle your new GIMPLE statement in @code{gimple_size} which is located
2697 in @code{gimple.cc}.
2698
2699 You will probably want to create a function to build the new
2700 gimple statement in @code{gimple.cc}. The function should be called
2701 @code{gimple_build_@var{new-tuple-name}}, and should return the new tuple
2702 as a pointer to the appropriate gimple subclass.
2703
2704 If your new statement requires accessors for any members or
2705 operands it may have, put simple inline accessors in
2706 @code{gimple.h} and any non-trivial accessors in @code{gimple.cc} with a
2707 corresponding prototype in @code{gimple.h}.
2708
2709 You should add the new statement subclass to the class hierarchy diagram
2710 in @code{gimple.texi}.
2711
2712
2713 @node Statement and operand traversals
2714 @section Statement and operand traversals
2715 @cindex Statement and operand traversals
2716
2717 There are two functions available for walking statements and
2718 sequences: @code{walk_gimple_stmt} and @code{walk_gimple_seq},
2719 accordingly, and a third function for walking the operands in a
2720 statement: @code{walk_gimple_op}.
2721
2722 @deftypefn {GIMPLE function} tree walk_gimple_stmt (gimple_stmt_iterator *gsi, @
2723 walk_stmt_fn callback_stmt, walk_tree_fn callback_op, struct walk_stmt_info *wi)
2724 This function is used to walk the current statement in @code{GSI},
2725 optionally using traversal state stored in @code{WI}. If @code{WI} is @code{NULL}, no
2726 state is kept during the traversal.
2727
2728 The callback @code{CALLBACK_STMT} is called. If @code{CALLBACK_STMT} returns
2729 true, it means that the callback function has handled all the
2730 operands of the statement and it is not necessary to walk its
2731 operands.
2732
2733 If @code{CALLBACK_STMT} is @code{NULL} or it returns false, @code{CALLBACK_OP} is
2734 called on each operand of the statement via @code{walk_gimple_op}. If
2735 @code{walk_gimple_op} returns non-@code{NULL} for any operand, the remaining
2736 operands are not scanned.
2737
2738 The return value is that returned by the last call to
2739 @code{walk_gimple_op}, or @code{NULL_TREE} if no @code{CALLBACK_OP} is specified.
2740 @end deftypefn
2741
2742
2743 @deftypefn {GIMPLE function} tree walk_gimple_op (gimple stmt, @
2744 walk_tree_fn callback_op, struct walk_stmt_info *wi)
2745 Use this function to walk the operands of statement @code{STMT}. Every
2746 operand is walked via @code{walk_tree} with optional state information
2747 in @code{WI}.
2748
2749 @code{CALLBACK_OP} is called on each operand of @code{STMT} via @code{walk_tree}.
2750 Additional parameters to @code{walk_tree} must be stored in @code{WI}. For
2751 each operand @code{OP}, @code{walk_tree} is called as:
2752
2753 @smallexample
2754 walk_tree (&@code{OP}, @code{CALLBACK_OP}, @code{WI}, @code{PSET})
2755 @end smallexample
2756
2757 If @code{CALLBACK_OP} returns non-@code{NULL} for an operand, the remaining
2758 operands are not scanned. The return value is that returned by
2759 the last call to @code{walk_tree}, or @code{NULL_TREE} if no @code{CALLBACK_OP} is
2760 specified.
2761 @end deftypefn
2762
2763
2764 @deftypefn {GIMPLE function} tree walk_gimple_seq (gimple_seq seq, @
2765 walk_stmt_fn callback_stmt, walk_tree_fn callback_op, struct walk_stmt_info *wi)
2766 This function walks all the statements in the sequence @code{SEQ}
2767 calling @code{walk_gimple_stmt} on each one. @code{WI} is as in
2768 @code{walk_gimple_stmt}. If @code{walk_gimple_stmt} returns non-@code{NULL}, the walk
2769 is stopped and the value returned. Otherwise, all the statements
2770 are walked and @code{NULL_TREE} returned.
2771 @end deftypefn