]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/doc/gimple.texi
re PR tree-optimization/38964 (TBAA side-effects of C++ new still missing)
[thirdparty/gcc.git] / gcc / doc / gimple.texi
1 @c Copyright (c) 2008, 2009 Free Software Foundation, Inc.
2 @c Free Software Foundation, Inc.
3 @c This is part of the GCC manual.
4 @c For copying conditions, see the file gcc.texi.
5
6 @node GIMPLE
7 @chapter GIMPLE
8 @cindex GIMPLE
9
10 GIMPLE is a three-address representation derived from GENERIC by
11 breaking down GENERIC expressions into tuples of no more than 3
12 operands (with some exceptions like function calls). GIMPLE was
13 heavily influenced by the SIMPLE IL used by the McCAT compiler
14 project at McGill University, though we have made some different
15 choices. For one thing, SIMPLE doesn't support @code{goto}.
16
17 Temporaries are introduced to hold intermediate values needed to
18 compute complex expressions. Additionally, all the control
19 structures used in GENERIC are lowered into conditional jumps,
20 lexical scopes are removed and exception regions are converted
21 into an on the side exception region tree.
22
23 The compiler pass which converts GENERIC into GIMPLE is referred to as
24 the @samp{gimplifier}. The gimplifier works recursively, generating
25 GIMPLE tuples out of the original GENERIC expressions.
26
27 One of the early implementation strategies used for the GIMPLE
28 representation was to use the same internal data structures used
29 by front ends to represent parse trees. This simplified
30 implementation because we could leverage existing functionality
31 and interfaces. However, GIMPLE is a much more restrictive
32 representation than abstract syntax trees (AST), therefore it
33 does not require the full structural complexity provided by the
34 main tree data structure.
35
36 The GENERIC representation of a function is stored in the
37 @code{DECL_SAVED_TREE} field of the associated @code{FUNCTION_DECL}
38 tree node. It is converted to GIMPLE by a call to
39 @code{gimplify_function_tree}.
40
41 If a front end wants to include language-specific tree codes in the tree
42 representation which it provides to the back end, it must provide a
43 definition of @code{LANG_HOOKS_GIMPLIFY_EXPR} which knows how to
44 convert the front end trees to GIMPLE@. Usually such a hook will involve
45 much of the same code for expanding front end trees to RTL@. This function
46 can return fully lowered GIMPLE, or it can return GENERIC trees and let the
47 main gimplifier lower them the rest of the way; this is often simpler.
48 GIMPLE that is not fully lowered is known as ``High GIMPLE'' and
49 consists of the IL before the pass @code{pass_lower_cf}. High GIMPLE
50 contains some container statements like lexical scopes
51 (represented by @code{GIMPLE_BIND}) and nested expressions (e.g.,
52 @code{GIMPLE_TRY}), while ``Low GIMPLE'' exposes all of the
53 implicit jumps for control and exception expressions directly in
54 the IL and EH region trees.
55
56 The C and C++ front ends currently convert directly from front end
57 trees to GIMPLE, and hand that off to the back end rather than first
58 converting to GENERIC@. Their gimplifier hooks know about all the
59 @code{_STMT} nodes and how to convert them to GENERIC forms. There
60 was some work done on a genericization pass which would run first, but
61 the existence of @code{STMT_EXPR} meant that in order to convert all
62 of the C statements into GENERIC equivalents would involve walking the
63 entire tree anyway, so it was simpler to lower all the way. This
64 might change in the future if someone writes an optimization pass
65 which would work better with higher-level trees, but currently the
66 optimizers all expect GIMPLE@.
67
68 You can request to dump a C-like representation of the GIMPLE form
69 with the flag @option{-fdump-tree-gimple}.
70
71 @menu
72 * Tuple representation::
73 * GIMPLE instruction set::
74 * GIMPLE Exception Handling::
75 * Temporaries::
76 * Operands::
77 * Manipulating GIMPLE statements::
78 * Tuple specific accessors::
79 * GIMPLE sequences::
80 * Sequence iterators::
81 * Adding a new GIMPLE statement code::
82 * Statement and operand traversals::
83 @end menu
84
85 @node Tuple representation
86 @section Tuple representation
87 @cindex tuples
88
89 GIMPLE instructions are tuples of variable size divided in two
90 groups: a header describing the instruction and its locations,
91 and a variable length body with all the operands. Tuples are
92 organized into a hierarchy with 3 main classes of tuples.
93
94 @subsection @code{gimple_statement_base} (gsbase)
95 @cindex gimple_statement_base
96
97 This is the root of the hierarchy, it holds basic information
98 needed by most GIMPLE statements. There are some fields that
99 may not be relevant to every GIMPLE statement, but those were
100 moved into the base structure to take advantage of holes left by
101 other fields (thus making the structure more compact). The
102 structure takes 4 words (32 bytes) on 64 bit hosts:
103
104 @multitable {@code{references_memory_p}} {Size (bits)}
105 @item Field @tab Size (bits)
106 @item @code{code} @tab 8
107 @item @code{subcode} @tab 16
108 @item @code{no_warning} @tab 1
109 @item @code{visited} @tab 1
110 @item @code{nontemporal_move} @tab 1
111 @item @code{plf} @tab 2
112 @item @code{modified} @tab 1
113 @item @code{has_volatile_ops} @tab 1
114 @item @code{references_memory_p} @tab 1
115 @item @code{uid} @tab 32
116 @item @code{location} @tab 32
117 @item @code{num_ops} @tab 32
118 @item @code{bb} @tab 64
119 @item @code{block} @tab 63
120 @item Total size @tab 32 bytes
121 @end multitable
122
123 @itemize @bullet
124 @item @code{code}
125 Main identifier for a GIMPLE instruction.
126
127 @item @code{subcode}
128 Used to distinguish different variants of the same basic
129 instruction or provide flags applicable to a given code. The
130 @code{subcode} flags field has different uses depending on the code of
131 the instruction, but mostly it distinguishes instructions of the
132 same family. The most prominent use of this field is in
133 assignments, where subcode indicates the operation done on the
134 RHS of the assignment. For example, a = b + c is encoded as
135 @code{GIMPLE_ASSIGN <PLUS_EXPR, a, b, c>}.
136
137 @item @code{no_warning}
138 Bitflag to indicate whether a warning has already been issued on
139 this statement.
140
141 @item @code{visited}
142 General purpose ``visited'' marker. Set and cleared by each pass
143 when needed.
144
145 @item @code{nontemporal_move}
146 Bitflag used in assignments that represent non-temporal moves.
147 Although this bitflag is only used in assignments, it was moved
148 into the base to take advantage of the bit holes left by the
149 previous fields.
150
151 @item @code{plf}
152 Pass Local Flags. This 2-bit mask can be used as general purpose
153 markers by any pass. Passes are responsible for clearing and
154 setting these two flags accordingly.
155
156 @item @code{modified}
157 Bitflag to indicate whether the statement has been modified.
158 Used mainly by the operand scanner to determine when to re-scan a
159 statement for operands.
160
161 @item @code{has_volatile_ops}
162 Bitflag to indicate whether this statement contains operands that
163 have been marked volatile.
164
165 @item @code{references_memory_p}
166 Bitflag to indicate whether this statement contains memory
167 references (i.e., its operands are either global variables, or
168 pointer dereferences or anything that must reside in memory).
169
170 @item @code{uid}
171 This is an unsigned integer used by passes that want to assign
172 IDs to every statement. These IDs must be assigned and used by
173 each pass.
174
175 @item @code{location}
176 This is a @code{location_t} identifier to specify source code
177 location for this statement. It is inherited from the front
178 end.
179
180 @item @code{num_ops}
181 Number of operands that this statement has. This specifies the
182 size of the operand vector embedded in the tuple. Only used in
183 some tuples, but it is declared in the base tuple to take
184 advantage of the 32-bit hole left by the previous fields.
185
186 @item @code{bb}
187 Basic block holding the instruction.
188
189 @item @code{block}
190 Lexical block holding this statement. Also used for debug
191 information generation.
192 @end itemize
193
194 @subsection @code{gimple_statement_with_ops}
195 @cindex gimple_statement_with_ops
196
197 This tuple is actually split in two:
198 @code{gimple_statement_with_ops_base} and
199 @code{gimple_statement_with_ops}. This is needed to accommodate the
200 way the operand vector is allocated. The operand vector is
201 defined to be an array of 1 element. So, to allocate a dynamic
202 number of operands, the memory allocator (@code{gimple_alloc}) simply
203 allocates enough memory to hold the structure itself plus @code{N
204 - 1} operands which run ``off the end'' of the structure. For
205 example, to allocate space for a tuple with 3 operands,
206 @code{gimple_alloc} reserves @code{sizeof (struct
207 gimple_statement_with_ops) + 2 * sizeof (tree)} bytes.
208
209 On the other hand, several fields in this tuple need to be shared
210 with the @code{gimple_statement_with_memory_ops} tuple. So, these
211 common fields are placed in @code{gimple_statement_with_ops_base} which
212 is then inherited from the other two tuples.
213
214
215 @multitable {@code{addresses_taken}} {56 + 8 * @code{num_ops} bytes}
216 @item @code{gsbase} @tab 256
217 @item @code{addresses_taken} @tab 64
218 @item @code{def_ops} @tab 64
219 @item @code{use_ops} @tab 64
220 @item @code{op} @tab @code{num_ops} * 64
221 @item Total size @tab 56 + 8 * @code{num_ops} bytes
222 @end multitable
223
224 @itemize @bullet
225 @item @code{gsbase}
226 Inherited from @code{struct gimple_statement_base}.
227
228 @item @code{addresses_taken}
229 Bitmap holding the UIDs of all the @code{VAR_DECL}s whose addresses are
230 taken by this statement. For example, a statement of the form
231 @code{p = &b} will have the UID for symbol @code{b} in this set.
232
233 @item @code{def_ops}
234 Array of pointers into the operand array indicating all the slots that
235 contain a variable written-to by the statement. This array is
236 also used for immediate use chaining. Note that it would be
237 possible to not rely on this array, but the changes required to
238 implement this are pretty invasive.
239
240 @item @code{use_ops}
241 Similar to @code{def_ops} but for variables read by the statement.
242
243 @item @code{op}
244 Array of trees with @code{num_ops} slots.
245 @end itemize
246
247 @subsection @code{gimple_statement_with_memory_ops}
248
249 This tuple is essentially identical to @code{gimple_statement_with_ops},
250 except that it contains 4 additional fields to hold vectors
251 related memory stores and loads. Similar to the previous case,
252 the structure is split in two to accommodate for the operand
253 vector (@code{gimple_statement_with_memory_ops_base} and
254 @code{gimple_statement_with_memory_ops}).
255
256
257 @multitable {@code{addresses_taken}} {88 + 8 * @code{num_ops} bytes}
258 @item Field @tab Size (bits)
259 @item @code{gsbase} @tab 256
260 @item @code{addresses_taken} @tab 64
261 @item @code{def_ops} @tab 64
262 @item @code{use_ops} @tab 64
263 @item @code{vdef_ops} @tab 64
264 @item @code{vuse_ops} @tab 64
265 @item @code{stores} @tab 64
266 @item @code{loads} @tab 64
267 @item @code{op} @tab @code{num_ops} * 64
268 @item Total size @tab 88 + 8 * @code{num_ops} bytes
269 @end multitable
270
271 @itemize @bullet
272 @item @code{vdef_ops}
273 Similar to @code{def_ops} but for @code{VDEF} operators. There is
274 one entry per memory symbol written by this statement. This is
275 used to maintain the memory SSA use-def and def-def chains.
276
277 @item @code{vuse_ops}
278 Similar to @code{use_ops} but for @code{VUSE} operators. There is
279 one entry per memory symbol loaded by this statement. This is
280 used to maintain the memory SSA use-def chains.
281
282 @item @code{stores}
283 Bitset with all the UIDs for the symbols written-to by the
284 statement. This is different than @code{vdef_ops} in that all the
285 affected symbols are mentioned in this set. If memory
286 partitioning is enabled, the @code{vdef_ops} vector will refer to memory
287 partitions. Furthermore, no SSA information is stored in this
288 set.
289
290 @item @code{loads}
291 Similar to @code{stores}, but for memory loads. (Note that there
292 is some amount of redundancy here, it should be possible to
293 reduce memory utilization further by removing these sets).
294 @end itemize
295
296 All the other tuples are defined in terms of these three basic
297 ones. Each tuple will add some fields. The main gimple type
298 is defined to be the union of all these structures (@code{GTY} markers
299 elided for clarity):
300
301 @smallexample
302 union gimple_statement_d
303 @{
304 struct gimple_statement_base gsbase;
305 struct gimple_statement_with_ops gsops;
306 struct gimple_statement_with_memory_ops gsmem;
307 struct gimple_statement_omp omp;
308 struct gimple_statement_bind gimple_bind;
309 struct gimple_statement_catch gimple_catch;
310 struct gimple_statement_eh_filter gimple_eh_filter;
311 struct gimple_statement_phi gimple_phi;
312 struct gimple_statement_resx gimple_resx;
313 struct gimple_statement_try gimple_try;
314 struct gimple_statement_wce gimple_wce;
315 struct gimple_statement_asm gimple_asm;
316 struct gimple_statement_omp_critical gimple_omp_critical;
317 struct gimple_statement_omp_for gimple_omp_for;
318 struct gimple_statement_omp_parallel gimple_omp_parallel;
319 struct gimple_statement_omp_task gimple_omp_task;
320 struct gimple_statement_omp_sections gimple_omp_sections;
321 struct gimple_statement_omp_single gimple_omp_single;
322 struct gimple_statement_omp_continue gimple_omp_continue;
323 struct gimple_statement_omp_atomic_load gimple_omp_atomic_load;
324 struct gimple_statement_omp_atomic_store gimple_omp_atomic_store;
325 @};
326 @end smallexample
327
328
329 @node GIMPLE instruction set
330 @section GIMPLE instruction set
331 @cindex GIMPLE instruction set
332
333 The following table briefly describes the GIMPLE instruction set.
334
335 @multitable {@code{GIMPLE_OMP_SECTIONS_SWITCH}} {High GIMPLE} {Low GIMPLE}
336 @item Instruction @tab High GIMPLE @tab Low GIMPLE
337 @item @code{GIMPLE_ASM} @tab x @tab x
338 @item @code{GIMPLE_ASSIGN} @tab x @tab x
339 @item @code{GIMPLE_BIND} @tab x @tab
340 @item @code{GIMPLE_CALL} @tab x @tab x
341 @item @code{GIMPLE_CATCH} @tab x @tab
342 @item @code{GIMPLE_COND} @tab x @tab x
343 @item @code{GIMPLE_EH_FILTER} @tab x @tab
344 @item @code{GIMPLE_GOTO} @tab x @tab x
345 @item @code{GIMPLE_LABEL} @tab x @tab x
346 @item @code{GIMPLE_NOP} @tab x @tab x
347 @item @code{GIMPLE_OMP_ATOMIC_LOAD} @tab x @tab x
348 @item @code{GIMPLE_OMP_ATOMIC_STORE} @tab x @tab x
349 @item @code{GIMPLE_OMP_CONTINUE} @tab x @tab x
350 @item @code{GIMPLE_OMP_CRITICAL} @tab x @tab x
351 @item @code{GIMPLE_OMP_FOR} @tab x @tab x
352 @item @code{GIMPLE_OMP_MASTER} @tab x @tab x
353 @item @code{GIMPLE_OMP_ORDERED} @tab x @tab x
354 @item @code{GIMPLE_OMP_PARALLEL} @tab x @tab x
355 @item @code{GIMPLE_OMP_RETURN} @tab x @tab x
356 @item @code{GIMPLE_OMP_SECTION} @tab x @tab x
357 @item @code{GIMPLE_OMP_SECTIONS} @tab x @tab x
358 @item @code{GIMPLE_OMP_SECTIONS_SWITCH} @tab x @tab x
359 @item @code{GIMPLE_OMP_SINGLE} @tab x @tab x
360 @item @code{GIMPLE_PHI} @tab @tab x
361 @item @code{GIMPLE_RESX} @tab @tab x
362 @item @code{GIMPLE_RETURN} @tab x @tab x
363 @item @code{GIMPLE_SWITCH} @tab x @tab x
364 @item @code{GIMPLE_TRY} @tab x @tab
365 @end multitable
366
367 @node GIMPLE Exception Handling
368 @section Exception Handling
369 @cindex GIMPLE Exception Handling
370
371 Other exception handling constructs are represented using
372 @code{GIMPLE_TRY_CATCH}. @code{GIMPLE_TRY_CATCH} has two operands. The
373 first operand is a sequence of statements to execute. If executing
374 these statements does not throw an exception, then the second operand
375 is ignored. Otherwise, if an exception is thrown, then the second
376 operand of the @code{GIMPLE_TRY_CATCH} is checked. The second
377 operand may have the following forms:
378
379 @enumerate
380
381 @item A sequence of statements to execute. When an exception occurs,
382 these statements are executed, and then the exception is rethrown.
383
384 @item A sequence of @code{GIMPLE_CATCH} statements. Each
385 @code{GIMPLE_CATCH} has a list of applicable exception types and
386 handler code. If the thrown exception matches one of the caught
387 types, the associated handler code is executed. If the handler
388 code falls off the bottom, execution continues after the original
389 @code{GIMPLE_TRY_CATCH}.
390
391 @item A @code{GIMPLE_EH_FILTER} statement. This has a list of
392 permitted exception types, and code to handle a match failure. If the
393 thrown exception does not match one of the allowed types, the
394 associated match failure code is executed. If the thrown exception
395 does match, it continues unwinding the stack looking for the next
396 handler.
397
398 @end enumerate
399
400 Currently throwing an exception is not directly represented in
401 GIMPLE, since it is implemented by calling a function. At some
402 point in the future we will want to add some way to express that
403 the call will throw an exception of a known type.
404
405 Just before running the optimizers, the compiler lowers the
406 high-level EH constructs above into a set of @samp{goto}s, magic
407 labels, and EH regions. Continuing to unwind at the end of a
408 cleanup is represented with a @code{GIMPLE_RESX}.
409
410
411 @node Temporaries
412 @section Temporaries
413 @cindex Temporaries
414
415 When gimplification encounters a subexpression that is too
416 complex, it creates a new temporary variable to hold the value of
417 the subexpression, and adds a new statement to initialize it
418 before the current statement. These special temporaries are known
419 as @samp{expression temporaries}, and are allocated using
420 @code{get_formal_tmp_var}. The compiler tries to always evaluate
421 identical expressions into the same temporary, to simplify
422 elimination of redundant calculations.
423
424 We can only use expression temporaries when we know that it will
425 not be reevaluated before its value is used, and that it will not
426 be otherwise modified@footnote{These restrictions are derived
427 from those in Morgan 4.8.}. Other temporaries can be allocated
428 using @code{get_initialized_tmp_var} or @code{create_tmp_var}.
429
430 Currently, an expression like @code{a = b + 5} is not reduced any
431 further. We tried converting it to something like
432 @smallexample
433 T1 = b + 5;
434 a = T1;
435 @end smallexample
436 but this bloated the representation for minimal benefit. However, a
437 variable which must live in memory cannot appear in an expression; its
438 value is explicitly loaded into a temporary first. Similarly, storing
439 the value of an expression to a memory variable goes through a
440 temporary.
441
442 @node Operands
443 @section Operands
444 @cindex Operands
445
446 In general, expressions in GIMPLE consist of an operation and the
447 appropriate number of simple operands; these operands must either be a
448 GIMPLE rvalue (@code{is_gimple_val}), i.e.@: a constant or a register
449 variable. More complex operands are factored out into temporaries, so
450 that
451 @smallexample
452 a = b + c + d
453 @end smallexample
454 becomes
455 @smallexample
456 T1 = b + c;
457 a = T1 + d;
458 @end smallexample
459
460 The same rule holds for arguments to a @code{GIMPLE_CALL}.
461
462 The target of an assignment is usually a variable, but can also be an
463 @code{INDIRECT_REF} or a compound lvalue as described below.
464
465 @menu
466 * Compound Expressions::
467 * Compound Lvalues::
468 * Conditional Expressions::
469 * Logical Operators::
470 @end menu
471
472 @node Compound Expressions
473 @subsection Compound Expressions
474 @cindex Compound Expressions
475
476 The left-hand side of a C comma expression is simply moved into a separate
477 statement.
478
479 @node Compound Lvalues
480 @subsection Compound Lvalues
481 @cindex Compound Lvalues
482
483 Currently compound lvalues involving array and structure field references
484 are not broken down; an expression like @code{a.b[2] = 42} is not reduced
485 any further (though complex array subscripts are). This restriction is a
486 workaround for limitations in later optimizers; if we were to convert this
487 to
488
489 @smallexample
490 T1 = &a.b;
491 T1[2] = 42;
492 @end smallexample
493
494 alias analysis would not remember that the reference to @code{T1[2]} came
495 by way of @code{a.b}, so it would think that the assignment could alias
496 another member of @code{a}; this broke @code{struct-alias-1.c}. Future
497 optimizer improvements may make this limitation unnecessary.
498
499 @node Conditional Expressions
500 @subsection Conditional Expressions
501 @cindex Conditional Expressions
502
503 A C @code{?:} expression is converted into an @code{if} statement with
504 each branch assigning to the same temporary. So,
505
506 @smallexample
507 a = b ? c : d;
508 @end smallexample
509 becomes
510 @smallexample
511 if (b == 1)
512 T1 = c;
513 else
514 T1 = d;
515 a = T1;
516 @end smallexample
517
518 The GIMPLE level if-conversion pass re-introduces @code{?:}
519 expression, if appropriate. It is used to vectorize loops with
520 conditions using vector conditional operations.
521
522 Note that in GIMPLE, @code{if} statements are represented using
523 @code{GIMPLE_COND}, as described below.
524
525 @node Logical Operators
526 @subsection Logical Operators
527 @cindex Logical Operators
528
529 Except when they appear in the condition operand of a
530 @code{GIMPLE_COND}, logical `and' and `or' operators are simplified
531 as follows: @code{a = b && c} becomes
532
533 @smallexample
534 T1 = (bool)b;
535 if (T1 == true)
536 T1 = (bool)c;
537 a = T1;
538 @end smallexample
539
540 Note that @code{T1} in this example cannot be an expression temporary,
541 because it has two different assignments.
542
543 @subsection Manipulating operands
544
545 All gimple operands are of type @code{tree}. But only certain
546 types of trees are allowed to be used as operand tuples. Basic
547 validation is controlled by the function
548 @code{get_gimple_rhs_class}, which given a tree code, returns an
549 @code{enum} with the following values of type @code{enum
550 gimple_rhs_class}
551
552 @itemize @bullet
553 @item @code{GIMPLE_INVALID_RHS}
554 The tree cannot be used as a GIMPLE operand.
555
556 @item @code{GIMPLE_BINARY_RHS}
557 The tree is a valid GIMPLE binary operation.
558
559 @item @code{GIMPLE_UNARY_RHS}
560 The tree is a valid GIMPLE unary operation.
561
562 @item @code{GIMPLE_SINGLE_RHS}
563 The tree is a single object, that cannot be split into simpler
564 operands (for instance, @code{SSA_NAME}, @code{VAR_DECL}, @code{COMPONENT_REF}, etc).
565
566 This operand class also acts as an escape hatch for tree nodes
567 that may be flattened out into the operand vector, but would need
568 more than two slots on the RHS. For instance, a @code{COND_EXPR}
569 expression of the form @code{(a op b) ? x : y} could be flattened
570 out on the operand vector using 4 slots, but it would also
571 require additional processing to distinguish @code{c = a op b}
572 from @code{c = a op b ? x : y}. Something similar occurs with
573 @code{ASSERT_EXPR}. In time, these special case tree
574 expressions should be flattened into the operand vector.
575 @end itemize
576
577 For tree nodes in the categories @code{GIMPLE_BINARY_RHS} and
578 @code{GIMPLE_UNARY_RHS}, they cannot be stored inside tuples directly.
579 They first need to be flattened and separated into individual
580 components. For instance, given the GENERIC expression
581
582 @smallexample
583 a = b + c
584 @end smallexample
585
586 its tree representation is:
587
588 @smallexample
589 MODIFY_EXPR <VAR_DECL <a>, PLUS_EXPR <VAR_DECL <b>, VAR_DECL <c>>>
590 @end smallexample
591
592 In this case, the GIMPLE form for this statement is logically
593 identical to its GENERIC form but in GIMPLE, the @code{PLUS_EXPR}
594 on the RHS of the assignment is not represented as a tree,
595 instead the two operands are taken out of the @code{PLUS_EXPR} sub-tree
596 and flattened into the GIMPLE tuple as follows:
597
598 @smallexample
599 GIMPLE_ASSIGN <PLUS_EXPR, VAR_DECL <a>, VAR_DECL <b>, VAR_DECL <c>>
600 @end smallexample
601
602 @subsection Operand vector allocation
603
604 The operand vector is stored at the bottom of the three tuple
605 structures that accept operands. This means, that depending on
606 the code of a given statement, its operand vector will be at
607 different offsets from the base of the structure. To access
608 tuple operands use the following accessors
609
610 @deftypefn {GIMPLE function} unsigned gimple_num_ops (gimple g)
611 Returns the number of operands in statement G.
612 @end deftypefn
613
614 @deftypefn {GIMPLE function} tree gimple_op (gimple g, unsigned i)
615 Returns operand @code{I} from statement @code{G}.
616 @end deftypefn
617
618 @deftypefn {GIMPLE function} tree *gimple_ops (gimple g)
619 Returns a pointer into the operand vector for statement @code{G}. This
620 is computed using an internal table called @code{gimple_ops_offset_}[].
621 This table is indexed by the gimple code of @code{G}.
622
623 When the compiler is built, this table is filled-in using the
624 sizes of the structures used by each statement code defined in
625 gimple.def. Since the operand vector is at the bottom of the
626 structure, for a gimple code @code{C} the offset is computed as sizeof
627 (struct-of @code{C}) - sizeof (tree).
628
629 This mechanism adds one memory indirection to every access when
630 using @code{gimple_op}(), if this becomes a bottleneck, a pass can
631 choose to memoize the result from @code{gimple_ops}() and use that to
632 access the operands.
633 @end deftypefn
634
635 @subsection Operand validation
636
637 When adding a new operand to a gimple statement, the operand will
638 be validated according to what each tuple accepts in its operand
639 vector. These predicates are called by the
640 @code{gimple_<name>_set_...()}. Each tuple will use one of the
641 following predicates (Note, this list is not exhaustive):
642
643 @deftypefn {GIMPLE function} is_gimple_operand (tree t)
644 This is the most permissive of the predicates. It essentially
645 checks whether t has a @code{gimple_rhs_class} of @code{GIMPLE_SINGLE_RHS}.
646 @end deftypefn
647
648
649 @deftypefn {GIMPLE function} is_gimple_val (tree t)
650 Returns true if t is a "GIMPLE value", which are all the
651 non-addressable stack variables (variables for which
652 @code{is_gimple_reg} returns true) and constants (expressions for which
653 @code{is_gimple_min_invariant} returns true).
654 @end deftypefn
655
656 @deftypefn {GIMPLE function} is_gimple_addressable (tree t)
657 Returns true if t is a symbol or memory reference whose address
658 can be taken.
659 @end deftypefn
660
661 @deftypefn {GIMPLE function} is_gimple_asm_val (tree t)
662 Similar to @code{is_gimple_val} but it also accepts hard registers.
663 @end deftypefn
664
665 @deftypefn {GIMPLE function} is_gimple_call_addr (tree t)
666 Return true if t is a valid expression to use as the function
667 called by a @code{GIMPLE_CALL}.
668 @end deftypefn
669
670 @deftypefn {GIMPLE function} is_gimple_constant (tree t)
671 Return true if t is a valid gimple constant.
672 @end deftypefn
673
674 @deftypefn {GIMPLE function} is_gimple_min_invariant (tree t)
675 Return true if t is a valid minimal invariant. This is different
676 from constants, in that the specific value of t may not be known
677 at compile time, but it is known that it doesn't change (e.g.,
678 the address of a function local variable).
679 @end deftypefn
680
681 @deftypefn {GIMPLE function} is_gimple_min_invariant_address (tree t)
682 Return true if t is an @code{ADDR_EXPR} that does not change once the
683 program is running.
684 @end deftypefn
685
686
687 @subsection Statement validation
688
689 @deftypefn {GIMPLE function} is_gimple_assign (gimple g)
690 Return true if the code of g is @code{GIMPLE_ASSIGN}.
691 @end deftypefn
692
693 @deftypefn {GIMPLE function} is_gimple_call (gimple g)
694 Return true if the code of g is @code{GIMPLE_CALL}
695 @end deftypefn
696
697 @deftypefn {GIMPLE function} gimple_assign_cast_p (gimple g)
698 Return true if g is a @code{GIMPLE_ASSIGN} that performs a type cast
699 operation
700 @end deftypefn
701
702 @node Manipulating GIMPLE statements
703 @section Manipulating GIMPLE statements
704 @cindex Manipulating GIMPLE statements
705
706 This section documents all the functions available to handle each
707 of the GIMPLE instructions.
708
709 @subsection Common accessors
710 The following are common accessors for gimple statements.
711
712 @deftypefn {GIMPLE function} enum gimple_code gimple_code (gimple g)
713 Return the code for statement @code{G}.
714 @end deftypefn
715
716 @deftypefn {GIMPLE function} basic_block gimple_bb (gimple g)
717 Return the basic block to which statement @code{G} belongs to.
718 @end deftypefn
719
720 @deftypefn {GIMPLE function} tree gimple_block (gimple g)
721 Return the lexical scope block holding statement @code{G}.
722 @end deftypefn
723
724 @deftypefn {GIMPLE function} tree gimple_expr_type (gimple stmt)
725 Return the type of the main expression computed by @code{STMT}. Return
726 @code{void_type_node} if @code{STMT} computes nothing. This will only return
727 something meaningful for @code{GIMPLE_ASSIGN}, @code{GIMPLE_COND} and
728 @code{GIMPLE_CALL}. For all other tuple codes, it will return
729 @code{void_type_node}.
730 @end deftypefn
731
732 @deftypefn {GIMPLE function} enum tree_code gimple_expr_code (gimple stmt)
733 Return the tree code for the expression computed by @code{STMT}. This
734 is only meaningful for @code{GIMPLE_CALL}, @code{GIMPLE_ASSIGN} and
735 @code{GIMPLE_COND}. If @code{STMT} is @code{GIMPLE_CALL}, it will return @code{CALL_EXPR}.
736 For @code{GIMPLE_COND}, it returns the code of the comparison predicate.
737 For @code{GIMPLE_ASSIGN} it returns the code of the operation performed
738 by the @code{RHS} of the assignment.
739 @end deftypefn
740
741 @deftypefn {GIMPLE function} void gimple_set_block (gimple g, tree block)
742 Set the lexical scope block of @code{G} to @code{BLOCK}.
743 @end deftypefn
744
745 @deftypefn {GIMPLE function} location_t gimple_locus (gimple g)
746 Return locus information for statement @code{G}.
747 @end deftypefn
748
749 @deftypefn {GIMPLE function} void gimple_set_locus (gimple g, location_t locus)
750 Set locus information for statement @code{G}.
751 @end deftypefn
752
753 @deftypefn {GIMPLE function} bool gimple_locus_empty_p (gimple g)
754 Return true if @code{G} does not have locus information.
755 @end deftypefn
756
757 @deftypefn {GIMPLE function} bool gimple_no_warning_p (gimple stmt)
758 Return true if no warnings should be emitted for statement @code{STMT}.
759 @end deftypefn
760
761 @deftypefn {GIMPLE function} void gimple_set_visited (gimple stmt, bool visited_p)
762 Set the visited status on statement @code{STMT} to @code{VISITED_P}.
763 @end deftypefn
764
765 @deftypefn {GIMPLE function} bool gimple_visited_p (gimple stmt)
766 Return the visited status on statement @code{STMT}.
767 @end deftypefn
768
769 @deftypefn {GIMPLE function} void gimple_set_plf (gimple stmt, enum plf_mask plf, bool val_p)
770 Set pass local flag @code{PLF} on statement @code{STMT} to @code{VAL_P}.
771 @end deftypefn
772
773 @deftypefn {GIMPLE function} unsigned int gimple_plf (gimple stmt, enum plf_mask plf)
774 Return the value of pass local flag @code{PLF} on statement @code{STMT}.
775 @end deftypefn
776
777 @deftypefn {GIMPLE function} bool gimple_has_ops (gimple g)
778 Return true if statement @code{G} has register or memory operands.
779 @end deftypefn
780
781 @deftypefn {GIMPLE function} bool gimple_has_mem_ops (gimple g)
782 Return true if statement @code{G} has memory operands.
783 @end deftypefn
784
785 @deftypefn {GIMPLE function} unsigned gimple_num_ops (gimple g)
786 Return the number of operands for statement @code{G}.
787 @end deftypefn
788
789 @deftypefn {GIMPLE function} tree *gimple_ops (gimple g)
790 Return the array of operands for statement @code{G}.
791 @end deftypefn
792
793 @deftypefn {GIMPLE function} tree gimple_op (gimple g, unsigned i)
794 Return operand @code{I} for statement @code{G}.
795 @end deftypefn
796
797 @deftypefn {GIMPLE function} tree *gimple_op_ptr (gimple g, unsigned i)
798 Return a pointer to operand @code{I} for statement @code{G}.
799 @end deftypefn
800
801 @deftypefn {GIMPLE function} void gimple_set_op (gimple g, unsigned i, tree op)
802 Set operand @code{I} of statement @code{G} to @code{OP}.
803 @end deftypefn
804
805 @deftypefn {GIMPLE function} bitmap gimple_addresses_taken (gimple stmt)
806 Return the set of symbols that have had their address taken by
807 @code{STMT}.
808 @end deftypefn
809
810 @deftypefn {GIMPLE function} struct def_optype_d *gimple_def_ops (gimple g)
811 Return the set of @code{DEF} operands for statement @code{G}.
812 @end deftypefn
813
814 @deftypefn {GIMPLE function} void gimple_set_def_ops (gimple g, struct def_optype_d *def)
815 Set @code{DEF} to be the set of @code{DEF} operands for statement @code{G}.
816 @end deftypefn
817
818 @deftypefn {GIMPLE function} struct use_optype_d *gimple_use_ops (gimple g)
819 Return the set of @code{USE} operands for statement @code{G}.
820 @end deftypefn
821
822 @deftypefn {GIMPLE function} void gimple_set_use_ops (gimple g, struct use_optype_d *use)
823 Set @code{USE} to be the set of @code{USE} operands for statement @code{G}.
824 @end deftypefn
825
826 @deftypefn {GIMPLE function} struct voptype_d *gimple_vuse_ops (gimple g)
827 Return the set of @code{VUSE} operands for statement @code{G}.
828 @end deftypefn
829
830 @deftypefn {GIMPLE function} void gimple_set_vuse_ops (gimple g, struct voptype_d *ops)
831 Set @code{OPS} to be the set of @code{VUSE} operands for statement @code{G}.
832 @end deftypefn
833
834 @deftypefn {GIMPLE function} struct voptype_d *gimple_vdef_ops (gimple g)
835 Return the set of @code{VDEF} operands for statement @code{G}.
836 @end deftypefn
837
838 @deftypefn {GIMPLE function} void gimple_set_vdef_ops (gimple g, struct voptype_d *ops)
839 Set @code{OPS} to be the set of @code{VDEF} operands for statement @code{G}.
840 @end deftypefn
841
842 @deftypefn {GIMPLE function} bitmap gimple_loaded_syms (gimple g)
843 Return the set of symbols loaded by statement @code{G}. Each element of
844 the set is the @code{DECL_UID} of the corresponding symbol.
845 @end deftypefn
846
847 @deftypefn {GIMPLE function} bitmap gimple_stored_syms (gimple g)
848 Return the set of symbols stored by statement @code{G}. Each element of
849 the set is the @code{DECL_UID} of the corresponding symbol.
850 @end deftypefn
851
852 @deftypefn {GIMPLE function} bool gimple_modified_p (gimple g)
853 Return true if statement @code{G} has operands and the modified field
854 has been set.
855 @end deftypefn
856
857 @deftypefn {GIMPLE function} bool gimple_has_volatile_ops (gimple stmt)
858 Return true if statement @code{STMT} contains volatile operands.
859 @end deftypefn
860
861 @deftypefn {GIMPLE function} void gimple_set_has_volatile_ops (gimple stmt, bool volatilep)
862 Return true if statement @code{STMT} contains volatile operands.
863 @end deftypefn
864
865 @deftypefn {GIMPLE function} void update_stmt (gimple s)
866 Mark statement @code{S} as modified, and update it.
867 @end deftypefn
868
869 @deftypefn {GIMPLE function} void update_stmt_if_modified (gimple s)
870 Update statement @code{S} if it has been marked modified.
871 @end deftypefn
872
873 @deftypefn {GIMPLE function} gimple gimple_copy (gimple stmt)
874 Return a deep copy of statement @code{STMT}.
875 @end deftypefn
876
877 @node Tuple specific accessors
878 @section Tuple specific accessors
879 @cindex Tuple specific accessors
880
881 @menu
882 * @code{GIMPLE_ASM}::
883 * @code{GIMPLE_ASSIGN}::
884 * @code{GIMPLE_BIND}::
885 * @code{GIMPLE_CALL}::
886 * @code{GIMPLE_CATCH}::
887 * @code{GIMPLE_COND}::
888 * @code{GIMPLE_EH_FILTER}::
889 * @code{GIMPLE_LABEL}::
890 * @code{GIMPLE_NOP}::
891 * @code{GIMPLE_OMP_ATOMIC_LOAD}::
892 * @code{GIMPLE_OMP_ATOMIC_STORE}::
893 * @code{GIMPLE_OMP_CONTINUE}::
894 * @code{GIMPLE_OMP_CRITICAL}::
895 * @code{GIMPLE_OMP_FOR}::
896 * @code{GIMPLE_OMP_MASTER}::
897 * @code{GIMPLE_OMP_ORDERED}::
898 * @code{GIMPLE_OMP_PARALLEL}::
899 * @code{GIMPLE_OMP_RETURN}::
900 * @code{GIMPLE_OMP_SECTION}::
901 * @code{GIMPLE_OMP_SECTIONS}::
902 * @code{GIMPLE_OMP_SINGLE}::
903 * @code{GIMPLE_PHI}::
904 * @code{GIMPLE_RESX}::
905 * @code{GIMPLE_RETURN}::
906 * @code{GIMPLE_SWITCH}::
907 * @code{GIMPLE_TRY}::
908 * @code{GIMPLE_WITH_CLEANUP_EXPR}::
909 @end menu
910
911
912 @node @code{GIMPLE_ASM}
913 @subsection @code{GIMPLE_ASM}
914 @cindex @code{GIMPLE_ASM}
915
916 @deftypefn {GIMPLE function} gimple gimple_build_asm (const char *string, ninputs, noutputs, nclobbers, ...)
917 Build a @code{GIMPLE_ASM} statement. This statement is used for
918 building in-line assembly constructs. @code{STRING} is the assembly
919 code. @code{NINPUT} is the number of register inputs. @code{NOUTPUT} is the
920 number of register outputs. @code{NCLOBBERS} is the number of clobbered
921 registers. The rest of the arguments trees for each input,
922 output, and clobbered registers.
923 @end deftypefn
924
925 @deftypefn {GIMPLE function} gimple gimple_build_asm_vec (const char *, VEC(tree,gc) *, VEC(tree,gc) *, VEC(tree,gc) *)
926 Identical to gimple_build_asm, but the arguments are passed in
927 VECs.
928 @end deftypefn
929
930 @deftypefn {GIMPLE function} gimple_asm_ninputs (gimple g)
931 Return the number of input operands for @code{GIMPLE_ASM} @code{G}.
932 @end deftypefn
933
934 @deftypefn {GIMPLE function} gimple_asm_noutputs (gimple g)
935 Return the number of output operands for @code{GIMPLE_ASM} @code{G}.
936 @end deftypefn
937
938 @deftypefn {GIMPLE function} gimple_asm_nclobbers (gimple g)
939 Return the number of clobber operands for @code{GIMPLE_ASM} @code{G}.
940 @end deftypefn
941
942 @deftypefn {GIMPLE function} tree gimple_asm_input_op (gimple g, unsigned index)
943 Return input operand @code{INDEX} of @code{GIMPLE_ASM} @code{G}.
944 @end deftypefn
945
946 @deftypefn {GIMPLE function} void gimple_asm_set_input_op (gimple g, unsigned index, tree in_op)
947 Set @code{IN_OP} to be input operand @code{INDEX} in @code{GIMPLE_ASM} @code{G}.
948 @end deftypefn
949
950 @deftypefn {GIMPLE function} tree gimple_asm_output_op (gimple g, unsigned index)
951 Return output operand @code{INDEX} of @code{GIMPLE_ASM} @code{G}.
952 @end deftypefn
953
954 @deftypefn {GIMPLE function} void gimple_asm_set_output_op (gimple g, @
955 unsigned index, tree out_op)
956 Set @code{OUT_OP} to be output operand @code{INDEX} in @code{GIMPLE_ASM} @code{G}.
957 @end deftypefn
958
959 @deftypefn {GIMPLE function} tree gimple_asm_clobber_op (gimple g, unsigned index)
960 Return clobber operand @code{INDEX} of @code{GIMPLE_ASM} @code{G}.
961 @end deftypefn
962
963 @deftypefn {GIMPLE function} void gimple_asm_set_clobber_op (gimple g, unsigned index, tree clobber_op)
964 Set @code{CLOBBER_OP} to be clobber operand @code{INDEX} in @code{GIMPLE_ASM} @code{G}.
965 @end deftypefn
966
967 @deftypefn {GIMPLE function} const char *gimple_asm_string (gimple g)
968 Return the string representing the assembly instruction in
969 @code{GIMPLE_ASM} @code{G}.
970 @end deftypefn
971
972 @deftypefn {GIMPLE function} bool gimple_asm_volatile_p (gimple g)
973 Return true if @code{G} is an asm statement marked volatile.
974 @end deftypefn
975
976 @deftypefn {GIMPLE function} void gimple_asm_set_volatile (gimple g)
977 Mark asm statement @code{G} as volatile.
978 @end deftypefn
979
980 @deftypefn {GIMPLE function} void gimple_asm_clear_volatile (gimple g)
981 Remove volatile marker from asm statement @code{G}.
982 @end deftypefn
983
984 @node @code{GIMPLE_ASSIGN}
985 @subsection @code{GIMPLE_ASSIGN}
986 @cindex @code{GIMPLE_ASSIGN}
987
988 @deftypefn {GIMPLE function} gimple gimple_build_assign (tree lhs, tree rhs)
989 Build a @code{GIMPLE_ASSIGN} statement. The left-hand side is an lvalue
990 passed in lhs. The right-hand side can be either a unary or
991 binary tree expression. The expression tree rhs will be
992 flattened and its operands assigned to the corresponding operand
993 slots in the new statement. This function is useful when you
994 already have a tree expression that you want to convert into a
995 tuple. However, try to avoid building expression trees for the
996 sole purpose of calling this function. If you already have the
997 operands in separate trees, it is better to use
998 @code{gimple_build_assign_with_ops}.
999 @end deftypefn
1000
1001
1002 @deftypefn {GIMPLE function} gimple gimplify_assign (tree dst, tree src, gimple_seq *seq_p)
1003 Build a new @code{GIMPLE_ASSIGN} tuple and append it to the end of
1004 @code{*SEQ_P}.
1005 @end deftypefn
1006
1007 @code{DST}/@code{SRC} are the destination and source respectively. You can
1008 pass ungimplified trees in @code{DST} or @code{SRC}, in which
1009 case they will be converted to a gimple operand if necessary.
1010
1011 This function returns the newly created @code{GIMPLE_ASSIGN} tuple.
1012
1013 @deftypefn {GIMPLE function} gimple gimple_build_assign_with_ops @
1014 (enum tree_code subcode, tree lhs, tree op1, tree op2)
1015 This function is similar to @code{gimple_build_assign}, but is used to
1016 build a @code{GIMPLE_ASSIGN} statement when the operands of the
1017 right-hand side of the assignment are already split into
1018 different operands.
1019
1020 The left-hand side is an lvalue passed in lhs. Subcode is the
1021 @code{tree_code} for the right-hand side of the assignment. Op1 and op2
1022 are the operands. If op2 is null, subcode must be a @code{tree_code}
1023 for a unary expression.
1024 @end deftypefn
1025
1026 @deftypefn {GIMPLE function} enum tree_code gimple_assign_rhs_code (gimple g)
1027 Return the code of the expression computed on the @code{RHS} of
1028 assignment statement @code{G}.
1029 @end deftypefn
1030
1031
1032 @deftypefn {GIMPLE function} enum gimple_rhs_class gimple_assign_rhs_class (gimple g)
1033 Return the gimple rhs class of the code for the expression
1034 computed on the rhs of assignment statement @code{G}. This will never
1035 return @code{GIMPLE_INVALID_RHS}.
1036 @end deftypefn
1037
1038 @deftypefn {GIMPLE function} tree gimple_assign_lhs (gimple g)
1039 Return the @code{LHS} of assignment statement @code{G}.
1040 @end deftypefn
1041
1042 @deftypefn {GIMPLE function} tree *gimple_assign_lhs_ptr (gimple g)
1043 Return a pointer to the @code{LHS} of assignment statement @code{G}.
1044 @end deftypefn
1045
1046 @deftypefn {GIMPLE function} tree gimple_assign_rhs1 (gimple g)
1047 Return the first operand on the @code{RHS} of assignment statement @code{G}.
1048 @end deftypefn
1049
1050 @deftypefn {GIMPLE function} tree *gimple_assign_rhs1_ptr (gimple g)
1051 Return the address of the first operand on the @code{RHS} of assignment
1052 statement @code{G}.
1053 @end deftypefn
1054
1055 @deftypefn {GIMPLE function} tree gimple_assign_rhs2 (gimple g)
1056 Return the second operand on the @code{RHS} of assignment statement @code{G}.
1057 @end deftypefn
1058
1059 @deftypefn {GIMPLE function} tree *gimple_assign_rhs2_ptr (gimple g)
1060 Return the address of the second operand on the @code{RHS} of assignment
1061 statement @code{G}.
1062 @end deftypefn
1063
1064 @deftypefn {GIMPLE function} void gimple_assign_set_lhs (gimple g, tree lhs)
1065 Set @code{LHS} to be the @code{LHS} operand of assignment statement @code{G}.
1066 @end deftypefn
1067
1068 @deftypefn {GIMPLE function} void gimple_assign_set_rhs1 (gimple g, tree rhs)
1069 Set @code{RHS} to be the first operand on the @code{RHS} of assignment
1070 statement @code{G}.
1071 @end deftypefn
1072
1073 @deftypefn {GIMPLE function} tree gimple_assign_rhs2 (gimple g)
1074 Return the second operand on the @code{RHS} of assignment statement @code{G}.
1075 @end deftypefn
1076
1077 @deftypefn {GIMPLE function} tree *gimple_assign_rhs2_ptr (gimple g)
1078 Return a pointer to the second operand on the @code{RHS} of assignment
1079 statement @code{G}.
1080 @end deftypefn
1081
1082 @deftypefn {GIMPLE function} void gimple_assign_set_rhs2 (gimple g, tree rhs)
1083 Set @code{RHS} to be the second operand on the @code{RHS} of assignment
1084 statement @code{G}.
1085 @end deftypefn
1086
1087 @deftypefn {GIMPLE function} bool gimple_assign_cast_p (gimple s)
1088 Return true if @code{S} is a type-cast assignment.
1089 @end deftypefn
1090
1091
1092 @node @code{GIMPLE_BIND}
1093 @subsection @code{GIMPLE_BIND}
1094 @cindex @code{GIMPLE_BIND}
1095
1096 @deftypefn {GIMPLE function} gimple gimple_build_bind (tree vars, gimple_seq body)
1097 Build a @code{GIMPLE_BIND} statement with a list of variables in @code{VARS}
1098 and a body of statements in sequence @code{BODY}.
1099 @end deftypefn
1100
1101 @deftypefn {GIMPLE function} tree gimple_bind_vars (gimple g)
1102 Return the variables declared in the @code{GIMPLE_BIND} statement @code{G}.
1103 @end deftypefn
1104
1105 @deftypefn {GIMPLE function} void gimple_bind_set_vars (gimple g, tree vars)
1106 Set @code{VARS} to be the set of variables declared in the @code{GIMPLE_BIND}
1107 statement @code{G}.
1108 @end deftypefn
1109
1110 @deftypefn {GIMPLE function} void gimple_bind_append_vars (gimple g, tree vars)
1111 Append @code{VARS} to the set of variables declared in the @code{GIMPLE_BIND}
1112 statement @code{G}.
1113 @end deftypefn
1114
1115 @deftypefn {GIMPLE function} gimple_seq gimple_bind_body (gimple g)
1116 Return the GIMPLE sequence contained in the @code{GIMPLE_BIND} statement
1117 @code{G}.
1118 @end deftypefn
1119
1120 @deftypefn {GIMPLE function} void gimple_bind_set_body (gimple g, gimple_seq seq)
1121 Set @code{SEQ} to be sequence contained in the @code{GIMPLE_BIND} statement @code{G}.
1122 @end deftypefn
1123
1124 @deftypefn {GIMPLE function} void gimple_bind_add_stmt (gimple gs, gimple stmt)
1125 Append a statement to the end of a @code{GIMPLE_BIND}'s body.
1126 @end deftypefn
1127
1128 @deftypefn {GIMPLE function} void gimple_bind_add_seq (gimple gs, gimple_seq seq)
1129 Append a sequence of statements to the end of a @code{GIMPLE_BIND}'s
1130 body.
1131 @end deftypefn
1132
1133 @deftypefn {GIMPLE function} tree gimple_bind_block (gimple g)
1134 Return the @code{TREE_BLOCK} node associated with @code{GIMPLE_BIND} statement
1135 @code{G}. This is analogous to the @code{BIND_EXPR_BLOCK} field in trees.
1136 @end deftypefn
1137
1138 @deftypefn {GIMPLE function} void gimple_bind_set_block (gimple g, tree block)
1139 Set @code{BLOCK} to be the @code{TREE_BLOCK} node associated with @code{GIMPLE_BIND}
1140 statement @code{G}.
1141 @end deftypefn
1142
1143
1144 @node @code{GIMPLE_CALL}
1145 @subsection @code{GIMPLE_CALL}
1146 @cindex @code{GIMPLE_CALL}
1147
1148 @deftypefn {GIMPLE function} gimple gimple_build_call (tree fn, unsigned nargs, ...)
1149 Build a @code{GIMPLE_CALL} statement to function @code{FN}. The argument @code{FN}
1150 must be either a @code{FUNCTION_DECL} or a gimple call address as
1151 determined by @code{is_gimple_call_addr}. @code{NARGS} are the number of
1152 arguments. The rest of the arguments follow the argument @code{NARGS},
1153 and must be trees that are valid as rvalues in gimple (i.e., each
1154 operand is validated with @code{is_gimple_operand}).
1155 @end deftypefn
1156
1157
1158 @deftypefn {GIMPLE function} gimple gimple_build_call_from_tree (tree call_expr)
1159 Build a @code{GIMPLE_CALL} from a @code{CALL_EXPR} node. The arguments and the
1160 function are taken from the expression directly. This routine
1161 assumes that @code{call_expr} is already in GIMPLE form. That is, its
1162 operands are GIMPLE values and the function call needs no further
1163 simplification. All the call flags in @code{call_expr} are copied over
1164 to the new @code{GIMPLE_CALL}.
1165 @end deftypefn
1166
1167 @deftypefn {GIMPLE function} gimple gimple_build_call_vec (tree fn, @code{VEC}(tree, heap) *args)
1168 Identical to @code{gimple_build_call} but the arguments are stored in a
1169 @code{VEC}().
1170 @end deftypefn
1171
1172 @deftypefn {GIMPLE function} tree gimple_call_lhs (gimple g)
1173 Return the @code{LHS} of call statement @code{G}.
1174 @end deftypefn
1175
1176 @deftypefn {GIMPLE function} tree *gimple_call_lhs_ptr (gimple g)
1177 Return a pointer to the @code{LHS} of call statement @code{G}.
1178 @end deftypefn
1179
1180 @deftypefn {GIMPLE function} void gimple_call_set_lhs (gimple g, tree lhs)
1181 Set @code{LHS} to be the @code{LHS} operand of call statement @code{G}.
1182 @end deftypefn
1183
1184 @deftypefn {GIMPLE function} tree gimple_call_fn (gimple g)
1185 Return the tree node representing the function called by call
1186 statement @code{G}.
1187 @end deftypefn
1188
1189 @deftypefn {GIMPLE function} void gimple_call_set_fn (gimple g, tree fn)
1190 Set @code{FN} to be the function called by call statement @code{G}. This has
1191 to be a gimple value specifying the address of the called
1192 function.
1193 @end deftypefn
1194
1195 @deftypefn {GIMPLE function} tree gimple_call_fndecl (gimple g)
1196 If a given @code{GIMPLE_CALL}'s callee is a @code{FUNCTION_DECL}, return it.
1197 Otherwise return @code{NULL}. This function is analogous to
1198 @code{get_callee_fndecl} in @code{GENERIC}.
1199 @end deftypefn
1200
1201 @deftypefn {GIMPLE function} tree gimple_call_set_fndecl (gimple g, tree fndecl)
1202 Set the called function to @code{FNDECL}.
1203 @end deftypefn
1204
1205 @deftypefn {GIMPLE function} tree gimple_call_return_type (gimple g)
1206 Return the type returned by call statement @code{G}.
1207 @end deftypefn
1208
1209 @deftypefn {GIMPLE function} tree gimple_call_chain (gimple g)
1210 Return the static chain for call statement @code{G}.
1211 @end deftypefn
1212
1213 @deftypefn {GIMPLE function} void gimple_call_set_chain (gimple g, tree chain)
1214 Set @code{CHAIN} to be the static chain for call statement @code{G}.
1215 @end deftypefn
1216
1217 @deftypefn {GIMPLE function} gimple_call_num_args (gimple g)
1218 Return the number of arguments used by call statement @code{G}.
1219 @end deftypefn
1220
1221 @deftypefn {GIMPLE function} tree gimple_call_arg (gimple g, unsigned index)
1222 Return the argument at position @code{INDEX} for call statement @code{G}. The
1223 first argument is 0.
1224 @end deftypefn
1225
1226 @deftypefn {GIMPLE function} tree *gimple_call_arg_ptr (gimple g, unsigned index)
1227 Return a pointer to the argument at position @code{INDEX} for call
1228 statement @code{G}.
1229 @end deftypefn
1230
1231 @deftypefn {GIMPLE function} void gimple_call_set_arg (gimple g, unsigned index, tree arg)
1232 Set @code{ARG} to be the argument at position @code{INDEX} for call statement
1233 @code{G}.
1234 @end deftypefn
1235
1236 @deftypefn {GIMPLE function} void gimple_call_set_tail (gimple s)
1237 Mark call statement @code{S} as being a tail call (i.e., a call just
1238 before the exit of a function). These calls are candidate for
1239 tail call optimization.
1240 @end deftypefn
1241
1242 @deftypefn {GIMPLE function} bool gimple_call_tail_p (gimple s)
1243 Return true if @code{GIMPLE_CALL} @code{S} is marked as a tail call.
1244 @end deftypefn
1245
1246 @deftypefn {GIMPLE function} void gimple_call_mark_uninlinable (gimple s)
1247 Mark @code{GIMPLE_CALL} @code{S} as being uninlinable.
1248 @end deftypefn
1249
1250 @deftypefn {GIMPLE function} bool gimple_call_cannot_inline_p (gimple s)
1251 Return true if @code{GIMPLE_CALL} @code{S} cannot be inlined.
1252 @end deftypefn
1253
1254 @deftypefn {GIMPLE function} bool gimple_call_noreturn_p (gimple s)
1255 Return true if @code{S} is a noreturn call.
1256 @end deftypefn
1257
1258 @deftypefn {GIMPLE function} gimple gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
1259 Build a @code{GIMPLE_CALL} identical to @code{STMT} but skipping the arguments
1260 in the positions marked by the set @code{ARGS_TO_SKIP}.
1261 @end deftypefn
1262
1263
1264 @node @code{GIMPLE_CATCH}
1265 @subsection @code{GIMPLE_CATCH}
1266 @cindex @code{GIMPLE_CATCH}
1267
1268 @deftypefn {GIMPLE function} gimple gimple_build_catch (tree types, gimple_seq handler)
1269 Build a @code{GIMPLE_CATCH} statement. @code{TYPES} are the tree types this
1270 catch handles. @code{HANDLER} is a sequence of statements with the code
1271 for the handler.
1272 @end deftypefn
1273
1274 @deftypefn {GIMPLE function} tree gimple_catch_types (gimple g)
1275 Return the types handled by @code{GIMPLE_CATCH} statement @code{G}.
1276 @end deftypefn
1277
1278 @deftypefn {GIMPLE function} tree *gimple_catch_types_ptr (gimple g)
1279 Return a pointer to the types handled by @code{GIMPLE_CATCH} statement
1280 @code{G}.
1281 @end deftypefn
1282
1283 @deftypefn {GIMPLE function} gimple_seq gimple_catch_handler (gimple g)
1284 Return the GIMPLE sequence representing the body of the handler
1285 of @code{GIMPLE_CATCH} statement @code{G}.
1286 @end deftypefn
1287
1288 @deftypefn {GIMPLE function} void gimple_catch_set_types (gimple g, tree t)
1289 Set @code{T} to be the set of types handled by @code{GIMPLE_CATCH} @code{G}.
1290 @end deftypefn
1291
1292 @deftypefn {GIMPLE function} void gimple_catch_set_handler (gimple g, gimple_seq handler)
1293 Set @code{HANDLER} to be the body of @code{GIMPLE_CATCH} @code{G}.
1294 @end deftypefn
1295
1296
1297 @node @code{GIMPLE_COND}
1298 @subsection @code{GIMPLE_COND}
1299 @cindex @code{GIMPLE_COND}
1300
1301 @deftypefn {GIMPLE function} gimple gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs, tree t_label, tree f_label)
1302 Build a @code{GIMPLE_COND} statement. @code{A} @code{GIMPLE_COND} statement compares
1303 @code{LHS} and @code{RHS} and if the condition in @code{PRED_CODE} is true, jump to
1304 the label in @code{t_label}, otherwise jump to the label in @code{f_label}.
1305 @code{PRED_CODE} are relational operator tree codes like @code{EQ_EXPR},
1306 @code{LT_EXPR}, @code{LE_EXPR}, @code{NE_EXPR}, etc.
1307 @end deftypefn
1308
1309
1310 @deftypefn {GIMPLE function} gimple gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
1311 Build a @code{GIMPLE_COND} statement from the conditional expression
1312 tree @code{COND}. @code{T_LABEL} and @code{F_LABEL} are as in @code{gimple_build_cond}.
1313 @end deftypefn
1314
1315 @deftypefn {GIMPLE function} enum tree_code gimple_cond_code (gimple g)
1316 Return the code of the predicate computed by conditional
1317 statement @code{G}.
1318 @end deftypefn
1319
1320 @deftypefn {GIMPLE function} void gimple_cond_set_code (gimple g, enum tree_code code)
1321 Set @code{CODE} to be the predicate code for the conditional statement
1322 @code{G}.
1323 @end deftypefn
1324
1325 @deftypefn {GIMPLE function} tree gimple_cond_lhs (gimple g)
1326 Return the @code{LHS} of the predicate computed by conditional statement
1327 @code{G}.
1328 @end deftypefn
1329
1330 @deftypefn {GIMPLE function} void gimple_cond_set_lhs (gimple g, tree lhs)
1331 Set @code{LHS} to be the @code{LHS} operand of the predicate computed by
1332 conditional statement @code{G}.
1333 @end deftypefn
1334
1335 @deftypefn {GIMPLE function} tree gimple_cond_rhs (gimple g)
1336 Return the @code{RHS} operand of the predicate computed by conditional
1337 @code{G}.
1338 @end deftypefn
1339
1340 @deftypefn {GIMPLE function} void gimple_cond_set_rhs (gimple g, tree rhs)
1341 Set @code{RHS} to be the @code{RHS} operand of the predicate computed by
1342 conditional statement @code{G}.
1343 @end deftypefn
1344
1345 @deftypefn {GIMPLE function} tree gimple_cond_true_label (gimple g)
1346 Return the label used by conditional statement @code{G} when its
1347 predicate evaluates to true.
1348 @end deftypefn
1349
1350 @deftypefn {GIMPLE function} void gimple_cond_set_true_label (gimple g, tree label)
1351 Set @code{LABEL} to be the label used by conditional statement @code{G} when
1352 its predicate evaluates to true.
1353 @end deftypefn
1354
1355 @deftypefn {GIMPLE function} void gimple_cond_set_false_label (gimple g, tree label)
1356 Set @code{LABEL} to be the label used by conditional statement @code{G} when
1357 its predicate evaluates to false.
1358 @end deftypefn
1359
1360 @deftypefn {GIMPLE function} tree gimple_cond_false_label (gimple g)
1361 Return the label used by conditional statement @code{G} when its
1362 predicate evaluates to false.
1363 @end deftypefn
1364
1365 @deftypefn {GIMPLE function} void gimple_cond_make_false (gimple g)
1366 Set the conditional @code{COND_STMT} to be of the form 'if (1 == 0)'.
1367 @end deftypefn
1368
1369 @deftypefn {GIMPLE function} void gimple_cond_make_true (gimple g)
1370 Set the conditional @code{COND_STMT} to be of the form 'if (1 == 1)'.
1371 @end deftypefn
1372
1373 @node @code{GIMPLE_EH_FILTER}
1374 @subsection @code{GIMPLE_EH_FILTER}
1375 @cindex @code{GIMPLE_EH_FILTER}
1376
1377 @deftypefn {GIMPLE function} gimple gimple_build_eh_filter (tree types, gimple_seq failure)
1378 Build a @code{GIMPLE_EH_FILTER} statement. @code{TYPES} are the filter's
1379 types. @code{FAILURE} is a sequence with the filter's failure action.
1380 @end deftypefn
1381
1382 @deftypefn {GIMPLE function} tree gimple_eh_filter_types (gimple g)
1383 Return the types handled by @code{GIMPLE_EH_FILTER} statement @code{G}.
1384 @end deftypefn
1385
1386 @deftypefn {GIMPLE function} tree *gimple_eh_filter_types_ptr (gimple g)
1387 Return a pointer to the types handled by @code{GIMPLE_EH_FILTER}
1388 statement @code{G}.
1389 @end deftypefn
1390
1391 @deftypefn {GIMPLE function} gimple_seq gimple_eh_filter_failure (gimple g)
1392 Return the sequence of statement to execute when @code{GIMPLE_EH_FILTER}
1393 statement fails.
1394 @end deftypefn
1395
1396 @deftypefn {GIMPLE function} void gimple_eh_filter_set_types (gimple g, tree types)
1397 Set @code{TYPES} to be the set of types handled by @code{GIMPLE_EH_FILTER} @code{G}.
1398 @end deftypefn
1399
1400 @deftypefn {GIMPLE function} void gimple_eh_filter_set_failure (gimple g, gimple_seq failure)
1401 Set @code{FAILURE} to be the sequence of statements to execute on
1402 failure for @code{GIMPLE_EH_FILTER} @code{G}.
1403 @end deftypefn
1404
1405 @deftypefn {GIMPLE function} bool gimple_eh_filter_must_not_throw (gimple g)
1406 Return the @code{EH_FILTER_MUST_NOT_THROW} flag.
1407 @end deftypefn
1408
1409 @deftypefn {GIMPLE function} void gimple_eh_filter_set_must_not_throw (gimple g, bool mntp)
1410 Set the @code{EH_FILTER_MUST_NOT_THROW} flag.
1411 @end deftypefn
1412
1413
1414 @node @code{GIMPLE_LABEL}
1415 @subsection @code{GIMPLE_LABEL}
1416 @cindex @code{GIMPLE_LABEL}
1417
1418 @deftypefn {GIMPLE function} gimple gimple_build_label (tree label)
1419 Build a @code{GIMPLE_LABEL} statement with corresponding to the tree
1420 label, @code{LABEL}.
1421 @end deftypefn
1422
1423 @deftypefn {GIMPLE function} tree gimple_label_label (gimple g)
1424 Return the @code{LABEL_DECL} node used by @code{GIMPLE_LABEL} statement @code{G}.
1425 @end deftypefn
1426
1427 @deftypefn {GIMPLE function} void gimple_label_set_label (gimple g, tree label)
1428 Set @code{LABEL} to be the @code{LABEL_DECL} node used by @code{GIMPLE_LABEL}
1429 statement @code{G}.
1430 @end deftypefn
1431
1432
1433 @deftypefn {GIMPLE function} gimple gimple_build_goto (tree dest)
1434 Build a @code{GIMPLE_GOTO} statement to label @code{DEST}.
1435 @end deftypefn
1436
1437 @deftypefn {GIMPLE function} tree gimple_goto_dest (gimple g)
1438 Return the destination of the unconditional jump @code{G}.
1439 @end deftypefn
1440
1441 @deftypefn {GIMPLE function} void gimple_goto_set_dest (gimple g, tree dest)
1442 Set @code{DEST} to be the destination of the unconditional jump @code{G}.
1443 @end deftypefn
1444
1445
1446 @node @code{GIMPLE_NOP}
1447 @subsection @code{GIMPLE_NOP}
1448 @cindex @code{GIMPLE_NOP}
1449
1450 @deftypefn {GIMPLE function} gimple gimple_build_nop (void)
1451 Build a @code{GIMPLE_NOP} statement.
1452 @end deftypefn
1453
1454 @deftypefn {GIMPLE function} bool gimple_nop_p (gimple g)
1455 Returns @code{TRUE} if statement @code{G} is a @code{GIMPLE_NOP}.
1456 @end deftypefn
1457
1458 @node @code{GIMPLE_OMP_ATOMIC_LOAD}
1459 @subsection @code{GIMPLE_OMP_ATOMIC_LOAD}
1460 @cindex @code{GIMPLE_OMP_ATOMIC_LOAD}
1461
1462 @deftypefn {GIMPLE function} gimple gimple_build_omp_atomic_load (tree lhs, tree rhs)
1463 Build a @code{GIMPLE_OMP_ATOMIC_LOAD} statement. @code{LHS} is the left-hand
1464 side of the assignment. @code{RHS} is the right-hand side of the
1465 assignment.
1466 @end deftypefn
1467
1468 @deftypefn {GIMPLE function} void gimple_omp_atomic_load_set_lhs (gimple g, tree lhs)
1469 Set the @code{LHS} of an atomic load.
1470 @end deftypefn
1471
1472 @deftypefn {GIMPLE function} tree gimple_omp_atomic_load_lhs (gimple g)
1473 Get the @code{LHS} of an atomic load.
1474 @end deftypefn
1475
1476 @deftypefn {GIMPLE function} void gimple_omp_atomic_load_set_rhs (gimple g, tree rhs)
1477 Set the @code{RHS} of an atomic set.
1478 @end deftypefn
1479
1480 @deftypefn {GIMPLE function} tree gimple_omp_atomic_load_rhs (gimple g)
1481 Get the @code{RHS} of an atomic set.
1482 @end deftypefn
1483
1484
1485 @node @code{GIMPLE_OMP_ATOMIC_STORE}
1486 @subsection @code{GIMPLE_OMP_ATOMIC_STORE}
1487 @cindex @code{GIMPLE_OMP_ATOMIC_STORE}
1488
1489 @deftypefn {GIMPLE function} gimple gimple_build_omp_atomic_store (tree val)
1490 Build a @code{GIMPLE_OMP_ATOMIC_STORE} statement. @code{VAL} is the value to be
1491 stored.
1492 @end deftypefn
1493
1494 @deftypefn {GIMPLE function} void gimple_omp_atomic_store_set_val (gimple g, tree val)
1495 Set the value being stored in an atomic store.
1496 @end deftypefn
1497
1498 @deftypefn {GIMPLE function} tree gimple_omp_atomic_store_val (gimple g)
1499 Return the value being stored in an atomic store.
1500 @end deftypefn
1501
1502 @node @code{GIMPLE_OMP_CONTINUE}
1503 @subsection @code{GIMPLE_OMP_CONTINUE}
1504 @cindex @code{GIMPLE_OMP_CONTINUE}
1505
1506 @deftypefn {GIMPLE function} gimple gimple_build_omp_continue (tree control_def, tree control_use)
1507 Build a @code{GIMPLE_OMP_CONTINUE} statement. @code{CONTROL_DEF} is the
1508 definition of the control variable. @code{CONTROL_USE} is the use of
1509 the control variable.
1510 @end deftypefn
1511
1512 @deftypefn {GIMPLE function} tree gimple_omp_continue_control_def (gimple s)
1513 Return the definition of the control variable on a
1514 @code{GIMPLE_OMP_CONTINUE} in @code{S}.
1515 @end deftypefn
1516
1517 @deftypefn {GIMPLE function} tree gimple_omp_continue_control_def_ptr (gimple s)
1518 Same as above, but return the pointer.
1519 @end deftypefn
1520
1521 @deftypefn {GIMPLE function} tree gimple_omp_continue_set_control_def (gimple s)
1522 Set the control variable definition for a @code{GIMPLE_OMP_CONTINUE}
1523 statement in @code{S}.
1524 @end deftypefn
1525
1526 @deftypefn {GIMPLE function} tree gimple_omp_continue_control_use (gimple s)
1527 Return the use of the control variable on a @code{GIMPLE_OMP_CONTINUE}
1528 in @code{S}.
1529 @end deftypefn
1530
1531 @deftypefn {GIMPLE function} tree gimple_omp_continue_control_use_ptr (gimple s)
1532 Same as above, but return the pointer.
1533 @end deftypefn
1534
1535 @deftypefn {GIMPLE function} tree gimple_omp_continue_set_control_use (gimple s)
1536 Set the control variable use for a @code{GIMPLE_OMP_CONTINUE} statement
1537 in @code{S}.
1538 @end deftypefn
1539
1540
1541 @node @code{GIMPLE_OMP_CRITICAL}
1542 @subsection @code{GIMPLE_OMP_CRITICAL}
1543 @cindex @code{GIMPLE_OMP_CRITICAL}
1544
1545 @deftypefn {GIMPLE function} gimple gimple_build_omp_critical (gimple_seq body, tree name)
1546 Build a @code{GIMPLE_OMP_CRITICAL} statement. @code{BODY} is the sequence of
1547 statements for which only one thread can execute. @code{NAME} is an
1548 optional identifier for this critical block.
1549 @end deftypefn
1550
1551 @deftypefn {GIMPLE function} tree gimple_omp_critical_name (gimple g)
1552 Return the name associated with @code{OMP_CRITICAL} statement @code{G}.
1553 @end deftypefn
1554
1555 @deftypefn {GIMPLE function} tree *gimple_omp_critical_name_ptr (gimple g)
1556 Return a pointer to the name associated with @code{OMP} critical
1557 statement @code{G}.
1558 @end deftypefn
1559
1560 @deftypefn {GIMPLE function} void gimple_omp_critical_set_name (gimple g, tree name)
1561 Set @code{NAME} to be the name associated with @code{OMP} critical statement @code{G}.
1562 @end deftypefn
1563
1564 @node @code{GIMPLE_OMP_FOR}
1565 @subsection @code{GIMPLE_OMP_FOR}
1566 @cindex @code{GIMPLE_OMP_FOR}
1567
1568 @deftypefn {GIMPLE function} gimple gimple_build_omp_for (gimple_seq body, @
1569 tree clauses, tree index, tree initial, tree final, tree incr, @
1570 gimple_seq pre_body, enum tree_code omp_for_cond)
1571 Build a @code{GIMPLE_OMP_FOR} statement. @code{BODY} is sequence of statements
1572 inside the for loop. @code{CLAUSES}, are any of the @code{OMP} loop
1573 construct's clauses: private, firstprivate, lastprivate,
1574 reductions, ordered, schedule, and nowait. @code{PRE_BODY} is the
1575 sequence of statements that are loop invariant. @code{INDEX} is the
1576 index variable. @code{INITIAL} is the initial value of @code{INDEX}. @code{FINAL} is
1577 final value of @code{INDEX}. OMP_FOR_COND is the predicate used to
1578 compare @code{INDEX} and @code{FINAL}. @code{INCR} is the increment expression.
1579 @end deftypefn
1580
1581 @deftypefn {GIMPLE function} tree gimple_omp_for_clauses (gimple g)
1582 Return the clauses associated with @code{OMP_FOR} @code{G}.
1583 @end deftypefn
1584
1585 @deftypefn {GIMPLE function} tree *gimple_omp_for_clauses_ptr (gimple g)
1586 Return a pointer to the @code{OMP_FOR} @code{G}.
1587 @end deftypefn
1588
1589 @deftypefn {GIMPLE function} void gimple_omp_for_set_clauses (gimple g, tree clauses)
1590 Set @code{CLAUSES} to be the list of clauses associated with @code{OMP_FOR} @code{G}.
1591 @end deftypefn
1592
1593 @deftypefn {GIMPLE function} tree gimple_omp_for_index (gimple g)
1594 Return the index variable for @code{OMP_FOR} @code{G}.
1595 @end deftypefn
1596
1597 @deftypefn {GIMPLE function} tree *gimple_omp_for_index_ptr (gimple g)
1598 Return a pointer to the index variable for @code{OMP_FOR} @code{G}.
1599 @end deftypefn
1600
1601 @deftypefn {GIMPLE function} void gimple_omp_for_set_index (gimple g, tree index)
1602 Set @code{INDEX} to be the index variable for @code{OMP_FOR} @code{G}.
1603 @end deftypefn
1604
1605 @deftypefn {GIMPLE function} tree gimple_omp_for_initial (gimple g)
1606 Return the initial value for @code{OMP_FOR} @code{G}.
1607 @end deftypefn
1608
1609 @deftypefn {GIMPLE function} tree *gimple_omp_for_initial_ptr (gimple g)
1610 Return a pointer to the initial value for @code{OMP_FOR} @code{G}.
1611 @end deftypefn
1612
1613 @deftypefn {GIMPLE function} void gimple_omp_for_set_initial (gimple g, tree initial)
1614 Set @code{INITIAL} to be the initial value for @code{OMP_FOR} @code{G}.
1615 @end deftypefn
1616
1617 @deftypefn {GIMPLE function} tree gimple_omp_for_final (gimple g)
1618 Return the final value for @code{OMP_FOR} @code{G}.
1619 @end deftypefn
1620
1621 @deftypefn {GIMPLE function} tree *gimple_omp_for_final_ptr (gimple g)
1622 turn a pointer to the final value for @code{OMP_FOR} @code{G}.
1623 @end deftypefn
1624
1625 @deftypefn {GIMPLE function} void gimple_omp_for_set_final (gimple g, tree final)
1626 Set @code{FINAL} to be the final value for @code{OMP_FOR} @code{G}.
1627 @end deftypefn
1628
1629 @deftypefn {GIMPLE function} tree gimple_omp_for_incr (gimple g)
1630 Return the increment value for @code{OMP_FOR} @code{G}.
1631 @end deftypefn
1632
1633 @deftypefn {GIMPLE function} tree *gimple_omp_for_incr_ptr (gimple g)
1634 Return a pointer to the increment value for @code{OMP_FOR} @code{G}.
1635 @end deftypefn
1636
1637 @deftypefn {GIMPLE function} void gimple_omp_for_set_incr (gimple g, tree incr)
1638 Set @code{INCR} to be the increment value for @code{OMP_FOR} @code{G}.
1639 @end deftypefn
1640
1641 @deftypefn {GIMPLE function} gimple_seq gimple_omp_for_pre_body (gimple g)
1642 Return the sequence of statements to execute before the @code{OMP_FOR}
1643 statement @code{G} starts.
1644 @end deftypefn
1645
1646 @deftypefn {GIMPLE function} void gimple_omp_for_set_pre_body (gimple g, gimple_seq pre_body)
1647 Set @code{PRE_BODY} to be the sequence of statements to execute before
1648 the @code{OMP_FOR} statement @code{G} starts.
1649 @end deftypefn
1650
1651 @deftypefn {GIMPLE function} void gimple_omp_for_set_cond (gimple g, enum tree_code cond)
1652 Set @code{COND} to be the condition code for @code{OMP_FOR} @code{G}.
1653 @end deftypefn
1654
1655 @deftypefn {GIMPLE function} enum tree_code gimple_omp_for_cond (gimple g)
1656 Return the condition code associated with @code{OMP_FOR} @code{G}.
1657 @end deftypefn
1658
1659
1660 @node @code{GIMPLE_OMP_MASTER}
1661 @subsection @code{GIMPLE_OMP_MASTER}
1662 @cindex @code{GIMPLE_OMP_MASTER}
1663
1664 @deftypefn {GIMPLE function} gimple gimple_build_omp_master (gimple_seq body)
1665 Build a @code{GIMPLE_OMP_MASTER} statement. @code{BODY} is the sequence of
1666 statements to be executed by just the master.
1667 @end deftypefn
1668
1669
1670 @node @code{GIMPLE_OMP_ORDERED}
1671 @subsection @code{GIMPLE_OMP_ORDERED}
1672 @cindex @code{GIMPLE_OMP_ORDERED}
1673
1674 @deftypefn {GIMPLE function} gimple gimple_build_omp_ordered (gimple_seq body)
1675 Build a @code{GIMPLE_OMP_ORDERED} statement.
1676 @end deftypefn
1677
1678 @code{BODY} is the sequence of statements inside a loop that will
1679 executed in sequence.
1680
1681
1682 @node @code{GIMPLE_OMP_PARALLEL}
1683 @subsection @code{GIMPLE_OMP_PARALLEL}
1684 @cindex @code{GIMPLE_OMP_PARALLEL}
1685
1686 @deftypefn {GIMPLE function} gimple gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn, tree data_arg)
1687 Build a @code{GIMPLE_OMP_PARALLEL} statement.
1688 @end deftypefn
1689
1690 @code{BODY} is sequence of statements which are executed in parallel.
1691 @code{CLAUSES}, are the @code{OMP} parallel construct's clauses. @code{CHILD_FN} is
1692 the function created for the parallel threads to execute.
1693 @code{DATA_ARG} are the shared data argument(s).
1694
1695 @deftypefn {GIMPLE function} bool gimple_omp_parallel_combined_p (gimple g)
1696 Return true if @code{OMP} parallel statement @code{G} has the
1697 @code{GF_OMP_PARALLEL_COMBINED} flag set.
1698 @end deftypefn
1699
1700 @deftypefn {GIMPLE function} void gimple_omp_parallel_set_combined_p (gimple g)
1701 Set the @code{GF_OMP_PARALLEL_COMBINED} field in @code{OMP} parallel statement
1702 @code{G}.
1703 @end deftypefn
1704
1705 @deftypefn {GIMPLE function} gimple_seq gimple_omp_body (gimple g)
1706 Return the body for the @code{OMP} statement @code{G}.
1707 @end deftypefn
1708
1709 @deftypefn {GIMPLE function} void gimple_omp_set_body (gimple g, gimple_seq body)
1710 Set @code{BODY} to be the body for the @code{OMP} statement @code{G}.
1711 @end deftypefn
1712
1713 @deftypefn {GIMPLE function} tree gimple_omp_parallel_clauses (gimple g)
1714 Return the clauses associated with @code{OMP_PARALLEL} @code{G}.
1715 @end deftypefn
1716
1717 @deftypefn {GIMPLE function} tree *gimple_omp_parallel_clauses_ptr (gimple g)
1718 Return a pointer to the clauses associated with @code{OMP_PARALLEL} @code{G}.
1719 @end deftypefn
1720
1721 @deftypefn {GIMPLE function} void gimple_omp_parallel_set_clauses (gimple g, tree clauses)
1722 Set @code{CLAUSES} to be the list of clauses associated with
1723 @code{OMP_PARALLEL} @code{G}.
1724 @end deftypefn
1725
1726 @deftypefn {GIMPLE function} tree gimple_omp_parallel_child_fn (gimple g)
1727 Return the child function used to hold the body of @code{OMP_PARALLEL}
1728 @code{G}.
1729 @end deftypefn
1730
1731 @deftypefn {GIMPLE function} tree *gimple_omp_parallel_child_fn_ptr (gimple g)
1732 Return a pointer to the child function used to hold the body of
1733 @code{OMP_PARALLEL} @code{G}.
1734 @end deftypefn
1735
1736 @deftypefn {GIMPLE function} void gimple_omp_parallel_set_child_fn (gimple g, tree child_fn)
1737 Set @code{CHILD_FN} to be the child function for @code{OMP_PARALLEL} @code{G}.
1738 @end deftypefn
1739
1740 @deftypefn {GIMPLE function} tree gimple_omp_parallel_data_arg (gimple g)
1741 Return the artificial argument used to send variables and values
1742 from the parent to the children threads in @code{OMP_PARALLEL} @code{G}.
1743 @end deftypefn
1744
1745 @deftypefn {GIMPLE function} tree *gimple_omp_parallel_data_arg_ptr (gimple g)
1746 Return a pointer to the data argument for @code{OMP_PARALLEL} @code{G}.
1747 @end deftypefn
1748
1749 @deftypefn {GIMPLE function} void gimple_omp_parallel_set_data_arg (gimple g, tree data_arg)
1750 Set @code{DATA_ARG} to be the data argument for @code{OMP_PARALLEL} @code{G}.
1751 @end deftypefn
1752
1753 @deftypefn {GIMPLE function} bool is_gimple_omp (gimple stmt)
1754 Returns true when the gimple statement @code{STMT} is any of the OpenMP
1755 types.
1756 @end deftypefn
1757
1758
1759 @node @code{GIMPLE_OMP_RETURN}
1760 @subsection @code{GIMPLE_OMP_RETURN}
1761 @cindex @code{GIMPLE_OMP_RETURN}
1762
1763 @deftypefn {GIMPLE function} gimple gimple_build_omp_return (bool wait_p)
1764 Build a @code{GIMPLE_OMP_RETURN} statement. @code{WAIT_P} is true if this is a
1765 non-waiting return.
1766 @end deftypefn
1767
1768 @deftypefn {GIMPLE function} void gimple_omp_return_set_nowait (gimple s)
1769 Set the nowait flag on @code{GIMPLE_OMP_RETURN} statement @code{S}.
1770 @end deftypefn
1771
1772
1773 @deftypefn {GIMPLE function} bool gimple_omp_return_nowait_p (gimple g)
1774 Return true if @code{OMP} return statement @code{G} has the
1775 @code{GF_OMP_RETURN_NOWAIT} flag set.
1776 @end deftypefn
1777
1778 @node @code{GIMPLE_OMP_SECTION}
1779 @subsection @code{GIMPLE_OMP_SECTION}
1780 @cindex @code{GIMPLE_OMP_SECTION}
1781
1782 @deftypefn {GIMPLE function} gimple gimple_build_omp_section (gimple_seq body)
1783 Build a @code{GIMPLE_OMP_SECTION} statement for a sections statement.
1784 @end deftypefn
1785
1786 @code{BODY} is the sequence of statements in the section.
1787
1788 @deftypefn {GIMPLE function} bool gimple_omp_section_last_p (gimple g)
1789 Return true if @code{OMP} section statement @code{G} has the
1790 @code{GF_OMP_SECTION_LAST} flag set.
1791 @end deftypefn
1792
1793 @deftypefn {GIMPLE function} void gimple_omp_section_set_last (gimple g)
1794 Set the @code{GF_OMP_SECTION_LAST} flag on @code{G}.
1795 @end deftypefn
1796
1797 @node @code{GIMPLE_OMP_SECTIONS}
1798 @subsection @code{GIMPLE_OMP_SECTIONS}
1799 @cindex @code{GIMPLE_OMP_SECTIONS}
1800
1801 @deftypefn {GIMPLE function} gimple gimple_build_omp_sections (gimple_seq body, tree clauses)
1802 Build a @code{GIMPLE_OMP_SECTIONS} statement. @code{BODY} is a sequence of
1803 section statements. @code{CLAUSES} are any of the @code{OMP} sections
1804 construct's clauses: private, firstprivate, lastprivate,
1805 reduction, and nowait.
1806 @end deftypefn
1807
1808
1809 @deftypefn {GIMPLE function} gimple gimple_build_omp_sections_switch (void)
1810 Build a @code{GIMPLE_OMP_SECTIONS_SWITCH} statement.
1811 @end deftypefn
1812
1813 @deftypefn {GIMPLE function} tree gimple_omp_sections_control (gimple g)
1814 Return the control variable associated with the
1815 @code{GIMPLE_OMP_SECTIONS} in @code{G}.
1816 @end deftypefn
1817
1818 @deftypefn {GIMPLE function} tree *gimple_omp_sections_control_ptr (gimple g)
1819 Return a pointer to the clauses associated with the
1820 @code{GIMPLE_OMP_SECTIONS} in @code{G}.
1821 @end deftypefn
1822
1823 @deftypefn {GIMPLE function} void gimple_omp_sections_set_control (gimple g, tree control)
1824 Set @code{CONTROL} to be the set of clauses associated with the
1825 @code{GIMPLE_OMP_SECTIONS} in @code{G}.
1826 @end deftypefn
1827
1828 @deftypefn {GIMPLE function} tree gimple_omp_sections_clauses (gimple g)
1829 Return the clauses associated with @code{OMP_SECTIONS} @code{G}.
1830 @end deftypefn
1831
1832 @deftypefn {GIMPLE function} tree *gimple_omp_sections_clauses_ptr (gimple g)
1833 Return a pointer to the clauses associated with @code{OMP_SECTIONS} @code{G}.
1834 @end deftypefn
1835
1836 @deftypefn {GIMPLE function} void gimple_omp_sections_set_clauses (gimple g, tree clauses)
1837 Set @code{CLAUSES} to be the set of clauses associated with @code{OMP_SECTIONS}
1838 @code{G}.
1839 @end deftypefn
1840
1841
1842 @node @code{GIMPLE_OMP_SINGLE}
1843 @subsection @code{GIMPLE_OMP_SINGLE}
1844 @cindex @code{GIMPLE_OMP_SINGLE}
1845
1846 @deftypefn {GIMPLE function} gimple gimple_build_omp_single (gimple_seq body, tree clauses)
1847 Build a @code{GIMPLE_OMP_SINGLE} statement. @code{BODY} is the sequence of
1848 statements that will be executed once. @code{CLAUSES} are any of the
1849 @code{OMP} single construct's clauses: private, firstprivate,
1850 copyprivate, nowait.
1851 @end deftypefn
1852
1853 @deftypefn {GIMPLE function} tree gimple_omp_single_clauses (gimple g)
1854 Return the clauses associated with @code{OMP_SINGLE} @code{G}.
1855 @end deftypefn
1856
1857 @deftypefn {GIMPLE function} tree *gimple_omp_single_clauses_ptr (gimple g)
1858 Return a pointer to the clauses associated with @code{OMP_SINGLE} @code{G}.
1859 @end deftypefn
1860
1861 @deftypefn {GIMPLE function} void gimple_omp_single_set_clauses (gimple g, tree clauses)
1862 Set @code{CLAUSES} to be the clauses associated with @code{OMP_SINGLE} @code{G}.
1863 @end deftypefn
1864
1865
1866 @node @code{GIMPLE_PHI}
1867 @subsection @code{GIMPLE_PHI}
1868 @cindex @code{GIMPLE_PHI}
1869
1870 @deftypefn {GIMPLE function} gimple make_phi_node (tree var, int len)
1871 Build a @code{PHI} node with len argument slots for variable var.
1872 @end deftypefn
1873
1874 @deftypefn {GIMPLE function} unsigned gimple_phi_capacity (gimple g)
1875 Return the maximum number of arguments supported by @code{GIMPLE_PHI} @code{G}.
1876 @end deftypefn
1877
1878 @deftypefn {GIMPLE function} unsigned gimple_phi_num_args (gimple g)
1879 Return the number of arguments in @code{GIMPLE_PHI} @code{G}. This must always
1880 be exactly the number of incoming edges for the basic block
1881 holding @code{G}.
1882 @end deftypefn
1883
1884 @deftypefn {GIMPLE function} tree gimple_phi_result (gimple g)
1885 Return the @code{SSA} name created by @code{GIMPLE_PHI} @code{G}.
1886 @end deftypefn
1887
1888 @deftypefn {GIMPLE function} tree *gimple_phi_result_ptr (gimple g)
1889 Return a pointer to the @code{SSA} name created by @code{GIMPLE_PHI} @code{G}.
1890 @end deftypefn
1891
1892 @deftypefn {GIMPLE function} void gimple_phi_set_result (gimple g, tree result)
1893 Set @code{RESULT} to be the @code{SSA} name created by @code{GIMPLE_PHI} @code{G}.
1894 @end deftypefn
1895
1896 @deftypefn {GIMPLE function} struct phi_arg_d *gimple_phi_arg (gimple g, index)
1897 Return the @code{PHI} argument corresponding to incoming edge @code{INDEX} for
1898 @code{GIMPLE_PHI} @code{G}.
1899 @end deftypefn
1900
1901 @deftypefn {GIMPLE function} void gimple_phi_set_arg (gimple g, index, struct phi_arg_d * phiarg)
1902 Set @code{PHIARG} to be the argument corresponding to incoming edge
1903 @code{INDEX} for @code{GIMPLE_PHI} @code{G}.
1904 @end deftypefn
1905
1906 @node @code{GIMPLE_RESX}
1907 @subsection @code{GIMPLE_RESX}
1908 @cindex @code{GIMPLE_RESX}
1909
1910 @deftypefn {GIMPLE function} gimple gimple_build_resx (int region)
1911 Build a @code{GIMPLE_RESX} statement which is a statement. This
1912 statement is a placeholder for _Unwind_Resume before we know if a
1913 function call or a branch is needed. @code{REGION} is the exception
1914 region from which control is flowing.
1915 @end deftypefn
1916
1917 @deftypefn {GIMPLE function} int gimple_resx_region (gimple g)
1918 Return the region number for @code{GIMPLE_RESX} @code{G}.
1919 @end deftypefn
1920
1921 @deftypefn {GIMPLE function} void gimple_resx_set_region (gimple g, int region)
1922 Set @code{REGION} to be the region number for @code{GIMPLE_RESX} @code{G}.
1923 @end deftypefn
1924
1925 @node @code{GIMPLE_RETURN}
1926 @subsection @code{GIMPLE_RETURN}
1927 @cindex @code{GIMPLE_RETURN}
1928
1929 @deftypefn {GIMPLE function} gimple gimple_build_return (tree retval)
1930 Build a @code{GIMPLE_RETURN} statement whose return value is retval.
1931 @end deftypefn
1932
1933 @deftypefn {GIMPLE function} tree gimple_return_retval (gimple g)
1934 Return the return value for @code{GIMPLE_RETURN} @code{G}.
1935 @end deftypefn
1936
1937 @deftypefn {GIMPLE function} void gimple_return_set_retval (gimple g, tree retval)
1938 Set @code{RETVAL} to be the return value for @code{GIMPLE_RETURN} @code{G}.
1939 @end deftypefn
1940
1941 @node @code{GIMPLE_SWITCH}
1942 @subsection @code{GIMPLE_SWITCH}
1943 @cindex @code{GIMPLE_SWITCH}
1944
1945 @deftypefn {GIMPLE function} gimple gimple_build_switch ( nlabels, tree index, tree default_label, ...)
1946 Build a @code{GIMPLE_SWITCH} statement. @code{NLABELS} are the number of
1947 labels excluding the default label. The default label is passed
1948 in @code{DEFAULT_LABEL}. The rest of the arguments are trees
1949 representing the labels. Each label is a tree of code
1950 @code{CASE_LABEL_EXPR}.
1951 @end deftypefn
1952
1953 @deftypefn {GIMPLE function} gimple gimple_build_switch_vec (tree index, tree default_label, @code{VEC}(tree,heap) *args)
1954 This function is an alternate way of building @code{GIMPLE_SWITCH}
1955 statements. @code{INDEX} and @code{DEFAULT_LABEL} are as in
1956 gimple_build_switch. @code{ARGS} is a vector of @code{CASE_LABEL_EXPR} trees
1957 that contain the labels.
1958 @end deftypefn
1959
1960 @deftypefn {GIMPLE function} unsigned gimple_switch_num_labels (gimple g)
1961 Return the number of labels associated with the switch statement
1962 @code{G}.
1963 @end deftypefn
1964
1965 @deftypefn {GIMPLE function} void gimple_switch_set_num_labels (gimple g, unsigned nlabels)
1966 Set @code{NLABELS} to be the number of labels for the switch statement
1967 @code{G}.
1968 @end deftypefn
1969
1970 @deftypefn {GIMPLE function} tree gimple_switch_index (gimple g)
1971 Return the index variable used by the switch statement @code{G}.
1972 @end deftypefn
1973
1974 @deftypefn {GIMPLE function} void gimple_switch_set_index (gimple g, tree index)
1975 Set @code{INDEX} to be the index variable for switch statement @code{G}.
1976 @end deftypefn
1977
1978 @deftypefn {GIMPLE function} tree gimple_switch_label (gimple g, unsigned index)
1979 Return the label numbered @code{INDEX}. The default label is 0, followed
1980 by any labels in a switch statement.
1981 @end deftypefn
1982
1983 @deftypefn {GIMPLE function} void gimple_switch_set_label (gimple g, unsigned index, tree label)
1984 Set the label number @code{INDEX} to @code{LABEL}. 0 is always the default
1985 label.
1986 @end deftypefn
1987
1988 @deftypefn {GIMPLE function} tree gimple_switch_default_label (gimple g)
1989 Return the default label for a switch statement.
1990 @end deftypefn
1991
1992 @deftypefn {GIMPLE function} void gimple_switch_set_default_label (gimple g, tree label)
1993 Set the default label for a switch statement.
1994 @end deftypefn
1995
1996
1997 @node @code{GIMPLE_TRY}
1998 @subsection @code{GIMPLE_TRY}
1999 @cindex @code{GIMPLE_TRY}
2000
2001 @deftypefn {GIMPLE function} gimple gimple_build_try (gimple_seq eval, gimple_seq cleanup, unsigned int kind)
2002 Build a @code{GIMPLE_TRY} statement. @code{EVAL} is a sequence with the
2003 expression to evaluate. @code{CLEANUP} is a sequence of statements to
2004 run at clean-up time. @code{KIND} is the enumeration value
2005 @code{GIMPLE_TRY_CATCH} if this statement denotes a try/catch construct
2006 or @code{GIMPLE_TRY_FINALLY} if this statement denotes a try/finally
2007 construct.
2008 @end deftypefn
2009
2010 @deftypefn {GIMPLE function} enum gimple_try_flags gimple_try_kind (gimple g)
2011 Return the kind of try block represented by @code{GIMPLE_TRY} @code{G}. This is
2012 either @code{GIMPLE_TRY_CATCH} or @code{GIMPLE_TRY_FINALLY}.
2013 @end deftypefn
2014
2015 @deftypefn {GIMPLE function} bool gimple_try_catch_is_cleanup (gimple g)
2016 Return the @code{GIMPLE_TRY_CATCH_IS_CLEANUP} flag.
2017 @end deftypefn
2018
2019 @deftypefn {GIMPLE function} gimple_seq gimple_try_eval (gimple g)
2020 Return the sequence of statements used as the body for @code{GIMPLE_TRY}
2021 @code{G}.
2022 @end deftypefn
2023
2024 @deftypefn {GIMPLE function} gimple_seq gimple_try_cleanup (gimple g)
2025 Return the sequence of statements used as the cleanup body for
2026 @code{GIMPLE_TRY} @code{G}.
2027 @end deftypefn
2028
2029 @deftypefn {GIMPLE function} void gimple_try_set_catch_is_cleanup (gimple g, bool catch_is_cleanup)
2030 Set the @code{GIMPLE_TRY_CATCH_IS_CLEANUP} flag.
2031 @end deftypefn
2032
2033 @deftypefn {GIMPLE function} void gimple_try_set_eval (gimple g, gimple_seq eval)
2034 Set @code{EVAL} to be the sequence of statements to use as the body for
2035 @code{GIMPLE_TRY} @code{G}.
2036 @end deftypefn
2037
2038 @deftypefn {GIMPLE function} void gimple_try_set_cleanup (gimple g, gimple_seq cleanup)
2039 Set @code{CLEANUP} to be the sequence of statements to use as the
2040 cleanup body for @code{GIMPLE_TRY} @code{G}.
2041 @end deftypefn
2042
2043 @node @code{GIMPLE_WITH_CLEANUP_EXPR}
2044 @subsection @code{GIMPLE_WITH_CLEANUP_EXPR}
2045 @cindex @code{GIMPLE_WITH_CLEANUP_EXPR}
2046
2047 @deftypefn {GIMPLE function} gimple gimple_build_wce (gimple_seq cleanup)
2048 Build a @code{GIMPLE_WITH_CLEANUP_EXPR} statement. @code{CLEANUP} is the
2049 clean-up expression.
2050 @end deftypefn
2051
2052 @deftypefn {GIMPLE function} gimple_seq gimple_wce_cleanup (gimple g)
2053 Return the cleanup sequence for cleanup statement @code{G}.
2054 @end deftypefn
2055
2056 @deftypefn {GIMPLE function} void gimple_wce_set_cleanup (gimple g, gimple_seq cleanup)
2057 Set @code{CLEANUP} to be the cleanup sequence for @code{G}.
2058 @end deftypefn
2059
2060 @deftypefn {GIMPLE function} bool gimple_wce_cleanup_eh_only (gimple g)
2061 Return the @code{CLEANUP_EH_ONLY} flag for a @code{WCE} tuple.
2062 @end deftypefn
2063
2064 @deftypefn {GIMPLE function} void gimple_wce_set_cleanup_eh_only (gimple g, bool eh_only_p)
2065 Set the @code{CLEANUP_EH_ONLY} flag for a @code{WCE} tuple.
2066 @end deftypefn
2067
2068
2069 @node GIMPLE sequences
2070 @section GIMPLE sequences
2071 @cindex GIMPLE sequences
2072
2073 GIMPLE sequences are the tuple equivalent of @code{STATEMENT_LIST}'s
2074 used in @code{GENERIC}. They are used to chain statements together, and
2075 when used in conjunction with sequence iterators, provide a
2076 framework for iterating through statements.
2077
2078 GIMPLE sequences are of type struct @code{gimple_sequence}, but are more
2079 commonly passed by reference to functions dealing with sequences.
2080 The type for a sequence pointer is @code{gimple_seq} which is the same
2081 as struct @code{gimple_sequence} *. When declaring a local sequence,
2082 you can define a local variable of type struct @code{gimple_sequence}.
2083 When declaring a sequence allocated on the garbage collected
2084 heap, use the function @code{gimple_seq_alloc} documented below.
2085
2086 There are convenience functions for iterating through sequences
2087 in the section entitled Sequence Iterators.
2088
2089 Below is a list of functions to manipulate and query sequences.
2090
2091 @deftypefn {GIMPLE function} void gimple_seq_add_stmt (gimple_seq *seq, gimple g)
2092 Link a gimple statement to the end of the sequence *@code{SEQ} if @code{G} is
2093 not @code{NULL}. If *@code{SEQ} is @code{NULL}, allocate a sequence before linking.
2094 @end deftypefn
2095
2096 @deftypefn {GIMPLE function} void gimple_seq_add_seq (gimple_seq *dest, gimple_seq src)
2097 Append sequence @code{SRC} to the end of sequence *@code{DEST} if @code{SRC} is not
2098 @code{NULL}. If *@code{DEST} is @code{NULL}, allocate a new sequence before
2099 appending.
2100 @end deftypefn
2101
2102 @deftypefn {GIMPLE function} gimple_seq gimple_seq_deep_copy (gimple_seq src)
2103 Perform a deep copy of sequence @code{SRC} and return the result.
2104 @end deftypefn
2105
2106 @deftypefn {GIMPLE function} gimple_seq gimple_seq_reverse (gimple_seq seq)
2107 Reverse the order of the statements in the sequence @code{SEQ}. Return
2108 @code{SEQ}.
2109 @end deftypefn
2110
2111 @deftypefn {GIMPLE function} gimple gimple_seq_first (gimple_seq s)
2112 Return the first statement in sequence @code{S}.
2113 @end deftypefn
2114
2115 @deftypefn {GIMPLE function} gimple gimple_seq_last (gimple_seq s)
2116 Return the last statement in sequence @code{S}.
2117 @end deftypefn
2118
2119 @deftypefn {GIMPLE function} void gimple_seq_set_last (gimple_seq s, gimple last)
2120 Set the last statement in sequence @code{S} to the statement in @code{LAST}.
2121 @end deftypefn
2122
2123 @deftypefn {GIMPLE function} void gimple_seq_set_first (gimple_seq s, gimple first)
2124 Set the first statement in sequence @code{S} to the statement in @code{FIRST}.
2125 @end deftypefn
2126
2127 @deftypefn {GIMPLE function} void gimple_seq_init (gimple_seq s)
2128 Initialize sequence @code{S} to an empty sequence.
2129 @end deftypefn
2130
2131 @deftypefn {GIMPLE function} gimple_seq gimple_seq_alloc (void)
2132 Allocate a new sequence in the garbage collected store and return
2133 it.
2134 @end deftypefn
2135
2136 @deftypefn {GIMPLE function} void gimple_seq_copy (gimple_seq dest, gimple_seq src)
2137 Copy the sequence @code{SRC} into the sequence @code{DEST}.
2138 @end deftypefn
2139
2140 @deftypefn {GIMPLE function} bool gimple_seq_empty_p (gimple_seq s)
2141 Return true if the sequence @code{S} is empty.
2142 @end deftypefn
2143
2144 @deftypefn {GIMPLE function} gimple_seq bb_seq (basic_block bb)
2145 Returns the sequence of statements in @code{BB}.
2146 @end deftypefn
2147
2148 @deftypefn {GIMPLE function} void set_bb_seq (basic_block bb, gimple_seq seq)
2149 Sets the sequence of statements in @code{BB} to @code{SEQ}.
2150 @end deftypefn
2151
2152 @deftypefn {GIMPLE function} bool gimple_seq_singleton_p (gimple_seq seq)
2153 Determine whether @code{SEQ} contains exactly one statement.
2154 @end deftypefn
2155
2156 @node Sequence iterators
2157 @section Sequence iterators
2158 @cindex Sequence iterators
2159
2160 Sequence iterators are convenience constructs for iterating
2161 through statements in a sequence. Given a sequence @code{SEQ}, here is
2162 a typical use of gimple sequence iterators:
2163
2164 @smallexample
2165 gimple_stmt_iterator gsi;
2166
2167 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
2168 @{
2169 gimple g = gsi_stmt (gsi);
2170 /* Do something with gimple statement @code{G}. */
2171 @}
2172 @end smallexample
2173
2174 Backward iterations are possible:
2175
2176 @smallexample
2177 for (gsi = gsi_last (seq); !gsi_end_p (gsi); gsi_prev (&gsi))
2178 @end smallexample
2179
2180 Forward and backward iterations on basic blocks are possible with
2181 @code{gsi_start_bb} and @code{gsi_last_bb}.
2182
2183 In the documentation below we sometimes refer to enum
2184 @code{gsi_iterator_update}. The valid options for this enumeration are:
2185
2186 @itemize @bullet
2187 @item @code{GSI_NEW_STMT}
2188 Only valid when a single statement is added. Move the iterator to it.
2189
2190 @item @code{GSI_SAME_STMT}
2191 Leave the iterator at the same statement.
2192
2193 @item @code{GSI_CONTINUE_LINKING}
2194 Move iterator to whatever position is suitable for linking other
2195 statements in the same direction.
2196 @end itemize
2197
2198 Below is a list of the functions used to manipulate and use
2199 statement iterators.
2200
2201 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_start (gimple_seq seq)
2202 Return a new iterator pointing to the sequence @code{SEQ}'s first
2203 statement. If @code{SEQ} is empty, the iterator's basic block is @code{NULL}.
2204 Use @code{gsi_start_bb} instead when the iterator needs to always have
2205 the correct basic block set.
2206 @end deftypefn
2207
2208 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_start_bb (basic_block bb)
2209 Return a new iterator pointing to the first statement in basic
2210 block @code{BB}.
2211 @end deftypefn
2212
2213 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_last (gimple_seq seq)
2214 Return a new iterator initially pointing to the last statement of
2215 sequence @code{SEQ}. If @code{SEQ} is empty, the iterator's basic block is
2216 @code{NULL}. Use @code{gsi_last_bb} instead when the iterator needs to always
2217 have the correct basic block set.
2218 @end deftypefn
2219
2220 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_last_bb (basic_block bb)
2221 Return a new iterator pointing to the last statement in basic
2222 block @code{BB}.
2223 @end deftypefn
2224
2225 @deftypefn {GIMPLE function} bool gsi_end_p (gimple_stmt_iterator i)
2226 Return @code{TRUE} if at the end of @code{I}.
2227 @end deftypefn
2228
2229 @deftypefn {GIMPLE function} bool gsi_one_before_end_p (gimple_stmt_iterator i)
2230 Return @code{TRUE} if we're one statement before the end of @code{I}.
2231 @end deftypefn
2232
2233 @deftypefn {GIMPLE function} void gsi_next (gimple_stmt_iterator *i)
2234 Advance the iterator to the next gimple statement.
2235 @end deftypefn
2236
2237 @deftypefn {GIMPLE function} void gsi_prev (gimple_stmt_iterator *i)
2238 Advance the iterator to the previous gimple statement.
2239 @end deftypefn
2240
2241 @deftypefn {GIMPLE function} gimple gsi_stmt (gimple_stmt_iterator i)
2242 Return the current stmt.
2243 @end deftypefn
2244
2245 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_after_labels (basic_block bb)
2246 Return a block statement iterator that points to the first
2247 non-label statement in block @code{BB}.
2248 @end deftypefn
2249
2250 @deftypefn {GIMPLE function} gimple *gsi_stmt_ptr (gimple_stmt_iterator *i)
2251 Return a pointer to the current stmt.
2252 @end deftypefn
2253
2254 @deftypefn {GIMPLE function} basic_block gsi_bb (gimple_stmt_iterator i)
2255 Return the basic block associated with this iterator.
2256 @end deftypefn
2257
2258 @deftypefn {GIMPLE function} gimple_seq gsi_seq (gimple_stmt_iterator i)
2259 Return the sequence associated with this iterator.
2260 @end deftypefn
2261
2262 @deftypefn {GIMPLE function} void gsi_remove (gimple_stmt_iterator *i, bool remove_eh_info)
2263 Remove the current stmt from the sequence. The iterator is
2264 updated to point to the next statement. When @code{REMOVE_EH_INFO} is
2265 true we remove the statement pointed to by iterator @code{I} from the @code{EH}
2266 tables. Otherwise we do not modify the @code{EH} tables. Generally,
2267 @code{REMOVE_EH_INFO} should be true when the statement is going to be
2268 removed from the @code{IL} and not reinserted elsewhere.
2269 @end deftypefn
2270
2271 @deftypefn {GIMPLE function} void gsi_link_seq_before (gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode)
2272 Links the sequence of statements @code{SEQ} before the statement pointed
2273 by iterator @code{I}. @code{MODE} indicates what to do with the iterator
2274 after insertion (see @code{enum gsi_iterator_update} above).
2275 @end deftypefn
2276
2277 @deftypefn {GIMPLE function} void gsi_link_before (gimple_stmt_iterator *i, gimple g, enum gsi_iterator_update mode)
2278 Links statement @code{G} before the statement pointed-to by iterator @code{I}.
2279 Updates iterator @code{I} according to @code{MODE}.
2280 @end deftypefn
2281
2282 @deftypefn {GIMPLE function} void gsi_link_seq_after (gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode)
2283 Links sequence @code{SEQ} after the statement pointed-to by iterator @code{I}.
2284 @code{MODE} is as in @code{gsi_insert_after}.
2285 @end deftypefn
2286
2287 @deftypefn {GIMPLE function} void gsi_link_after (gimple_stmt_iterator *i, gimple g, enum gsi_iterator_update mode)
2288 Links statement @code{G} after the statement pointed-to by iterator @code{I}.
2289 @code{MODE} is as in @code{gsi_insert_after}.
2290 @end deftypefn
2291
2292 @deftypefn {GIMPLE function} gimple_seq gsi_split_seq_after (gimple_stmt_iterator i)
2293 Move all statements in the sequence after @code{I} to a new sequence.
2294 Return this new sequence.
2295 @end deftypefn
2296
2297 @deftypefn {GIMPLE function} gimple_seq gsi_split_seq_before (gimple_stmt_iterator *i)
2298 Move all statements in the sequence before @code{I} to a new sequence.
2299 Return this new sequence.
2300 @end deftypefn
2301
2302 @deftypefn {GIMPLE function} void gsi_replace (gimple_stmt_iterator *i, gimple stmt, bool update_eh_info)
2303 Replace the statement pointed-to by @code{I} to @code{STMT}. If @code{UPDATE_EH_INFO}
2304 is true, the exception handling information of the original
2305 statement is moved to the new statement.
2306 @end deftypefn
2307
2308 @deftypefn {GIMPLE function} void gsi_insert_before (gimple_stmt_iterator *i, gimple stmt, enum gsi_iterator_update mode)
2309 Insert statement @code{STMT} before the statement pointed-to by iterator
2310 @code{I}, update @code{STMT}'s basic block and scan it for new operands. @code{MODE}
2311 specifies how to update iterator @code{I} after insertion (see enum
2312 @code{gsi_iterator_update}).
2313 @end deftypefn
2314
2315 @deftypefn {GIMPLE function} void gsi_insert_seq_before (gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode)
2316 Like @code{gsi_insert_before}, but for all the statements in @code{SEQ}.
2317 @end deftypefn
2318
2319 @deftypefn {GIMPLE function} void gsi_insert_after (gimple_stmt_iterator *i, gimple stmt, enum gsi_iterator_update mode)
2320 Insert statement @code{STMT} after the statement pointed-to by iterator
2321 @code{I}, update @code{STMT}'s basic block and scan it for new operands. @code{MODE}
2322 specifies how to update iterator @code{I} after insertion (see enum
2323 @code{gsi_iterator_update}).
2324 @end deftypefn
2325
2326 @deftypefn {GIMPLE function} void gsi_insert_seq_after (gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode)
2327 Like @code{gsi_insert_after}, but for all the statements in @code{SEQ}.
2328 @end deftypefn
2329
2330 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_for_stmt (gimple stmt)
2331 Finds iterator for @code{STMT}.
2332 @end deftypefn
2333
2334 @deftypefn {GIMPLE function} void gsi_move_after (gimple_stmt_iterator *from, gimple_stmt_iterator *to)
2335 Move the statement at @code{FROM} so it comes right after the statement
2336 at @code{TO}.
2337 @end deftypefn
2338
2339 @deftypefn {GIMPLE function} void gsi_move_before (gimple_stmt_iterator *from, gimple_stmt_iterator *to)
2340 Move the statement at @code{FROM} so it comes right before the statement
2341 at @code{TO}.
2342 @end deftypefn
2343
2344 @deftypefn {GIMPLE function} void gsi_move_to_bb_end (gimple_stmt_iterator *from, basic_block bb)
2345 Move the statement at @code{FROM} to the end of basic block @code{BB}.
2346 @end deftypefn
2347
2348 @deftypefn {GIMPLE function} void gsi_insert_on_edge (edge e, gimple stmt)
2349 Add @code{STMT} to the pending list of edge @code{E}. No actual insertion is
2350 made until a call to @code{gsi_commit_edge_inserts}() is made.
2351 @end deftypefn
2352
2353 @deftypefn {GIMPLE function} void gsi_insert_seq_on_edge (edge e, gimple_seq seq)
2354 Add the sequence of statements in @code{SEQ} to the pending list of edge
2355 @code{E}. No actual insertion is made until a call to
2356 @code{gsi_commit_edge_inserts}() is made.
2357 @end deftypefn
2358
2359 @deftypefn {GIMPLE function} basic_block gsi_insert_on_edge_immediate (edge e, gimple stmt)
2360 Similar to @code{gsi_insert_on_edge}+@code{gsi_commit_edge_inserts}. If a new
2361 block has to be created, it is returned.
2362 @end deftypefn
2363
2364 @deftypefn {GIMPLE function} void gsi_commit_one_edge_insert (edge e, basic_block *new_bb)
2365 Commit insertions pending at edge @code{E}. If a new block is created,
2366 set @code{NEW_BB} to this block, otherwise set it to @code{NULL}.
2367 @end deftypefn
2368
2369 @deftypefn {GIMPLE function} void gsi_commit_edge_inserts (void)
2370 This routine will commit all pending edge insertions, creating
2371 any new basic blocks which are necessary.
2372 @end deftypefn
2373
2374
2375 @node Adding a new GIMPLE statement code
2376 @section Adding a new GIMPLE statement code
2377 @cindex Adding a new GIMPLE statement code
2378
2379 The first step in adding a new GIMPLE statement code, is
2380 modifying the file @code{gimple.def}, which contains all the GIMPLE
2381 codes. Then you must add a corresponding structure, and an entry
2382 in @code{union gimple_statement_d}, both of which are located in
2383 @code{gimple.h}. This in turn, will require you to add a corresponding
2384 @code{GTY} tag in @code{gsstruct.def}, and code to handle this tag in
2385 @code{gss_for_code} which is located in @code{gimple.c}.
2386
2387 In order for the garbage collector to know the size of the
2388 structure you created in @code{gimple.h}, you need to add a case to
2389 handle your new GIMPLE statement in @code{gimple_size} which is located
2390 in @code{gimple.c}.
2391
2392 You will probably want to create a function to build the new
2393 gimple statement in @code{gimple.c}. The function should be called
2394 @code{gimple_build_<@code{NEW_TUPLE_NAME}>}, and should return the new tuple
2395 of type gimple.
2396
2397 If your new statement requires accessors for any members or
2398 operands it may have, put simple inline accessors in
2399 @code{gimple.h} and any non-trivial accessors in @code{gimple.c} with a
2400 corresponding prototype in @code{gimple.h}.
2401
2402
2403 @node Statement and operand traversals
2404 @section Statement and operand traversals
2405 @cindex Statement and operand traversals
2406
2407 There are two functions available for walking statements and
2408 sequences: @code{walk_gimple_stmt} and @code{walk_gimple_seq},
2409 accordingly, and a third function for walking the operands in a
2410 statement: @code{walk_gimple_op}.
2411
2412 @deftypefn {GIMPLE function} tree walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt, walk_tree_fn callback_op, struct walk_stmt_info *wi)
2413 This function is used to walk the current statement in @code{GSI},
2414 optionally using traversal state stored in @code{WI}. If @code{WI} is @code{NULL}, no
2415 state is kept during the traversal.
2416
2417 The callback @code{CALLBACK_STMT} is called. If @code{CALLBACK_STMT} returns
2418 true, it means that the callback function has handled all the
2419 operands of the statement and it is not necessary to walk its
2420 operands.
2421
2422 If @code{CALLBACK_STMT} is @code{NULL} or it returns false, @code{CALLBACK_OP} is
2423 called on each operand of the statement via @code{walk_gimple_op}. If
2424 @code{walk_gimple_op} returns non-@code{NULL} for any operand, the remaining
2425 operands are not scanned.
2426
2427 The return value is that returned by the last call to
2428 @code{walk_gimple_op}, or @code{NULL_TREE} if no @code{CALLBACK_OP} is specified.
2429 @end deftypefn
2430
2431
2432 @deftypefn {GIMPLE function} tree walk_gimple_op (gimple stmt, walk_tree_fn callback_op, struct walk_stmt_info *wi)
2433 Use this function to walk the operands of statement @code{STMT}. Every
2434 operand is walked via @code{walk_tree} with optional state information
2435 in @code{WI}.
2436
2437 @code{CALLBACK_OP} is called on each operand of @code{STMT} via @code{walk_tree}.
2438 Additional parameters to @code{walk_tree} must be stored in @code{WI}. For
2439 each operand @code{OP}, @code{walk_tree} is called as:
2440
2441 @smallexample
2442 walk_tree (&@code{OP}, @code{CALLBACK_OP}, @code{WI}, @code{WI}- @code{PSET})
2443 @end smallexample
2444
2445 If @code{CALLBACK_OP} returns non-@code{NULL} for an operand, the remaining
2446 operands are not scanned. The return value is that returned by
2447 the last call to @code{walk_tree}, or @code{NULL_TREE} if no @code{CALLBACK_OP} is
2448 specified.
2449 @end deftypefn
2450
2451
2452 @deftypefn {GIMPLE function} tree walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt, walk_tree_fn callback_op, struct walk_stmt_info *wi)
2453 This function walks all the statements in the sequence @code{SEQ}
2454 calling @code{walk_gimple_stmt} on each one. @code{WI} is as in
2455 @code{walk_gimple_stmt}. If @code{walk_gimple_stmt} returns non-@code{NULL}, the walk
2456 is stopped and the value returned. Otherwise, all the statements
2457 are walked and @code{NULL_TREE} returned.
2458 @end deftypefn