]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/doc/gimple.texi
invoke.texi (-fvar-tracking-assignments): New.
[thirdparty/gcc.git] / gcc / doc / gimple.texi
1 @c Copyright (c) 2008, 2009 Free Software Foundation, Inc.
2 @c Free Software Foundation, Inc.
3 @c This is part of the GCC manual.
4 @c For copying conditions, see the file gcc.texi.
5
6 @node GIMPLE
7 @chapter GIMPLE
8 @cindex GIMPLE
9
10 GIMPLE is a three-address representation derived from GENERIC by
11 breaking down GENERIC expressions into tuples of no more than 3
12 operands (with some exceptions like function calls). GIMPLE was
13 heavily influenced by the SIMPLE IL used by the McCAT compiler
14 project at McGill University, though we have made some different
15 choices. For one thing, SIMPLE doesn't support @code{goto}.
16
17 Temporaries are introduced to hold intermediate values needed to
18 compute complex expressions. Additionally, all the control
19 structures used in GENERIC are lowered into conditional jumps,
20 lexical scopes are removed and exception regions are converted
21 into an on the side exception region tree.
22
23 The compiler pass which converts GENERIC into GIMPLE is referred to as
24 the @samp{gimplifier}. The gimplifier works recursively, generating
25 GIMPLE tuples out of the original GENERIC expressions.
26
27 One of the early implementation strategies used for the GIMPLE
28 representation was to use the same internal data structures used
29 by front ends to represent parse trees. This simplified
30 implementation because we could leverage existing functionality
31 and interfaces. However, GIMPLE is a much more restrictive
32 representation than abstract syntax trees (AST), therefore it
33 does not require the full structural complexity provided by the
34 main tree data structure.
35
36 The GENERIC representation of a function is stored in the
37 @code{DECL_SAVED_TREE} field of the associated @code{FUNCTION_DECL}
38 tree node. It is converted to GIMPLE by a call to
39 @code{gimplify_function_tree}.
40
41 If a front end wants to include language-specific tree codes in the tree
42 representation which it provides to the back end, it must provide a
43 definition of @code{LANG_HOOKS_GIMPLIFY_EXPR} which knows how to
44 convert the front end trees to GIMPLE@. Usually such a hook will involve
45 much of the same code for expanding front end trees to RTL@. This function
46 can return fully lowered GIMPLE, or it can return GENERIC trees and let the
47 main gimplifier lower them the rest of the way; this is often simpler.
48 GIMPLE that is not fully lowered is known as ``High GIMPLE'' and
49 consists of the IL before the pass @code{pass_lower_cf}. High GIMPLE
50 contains some container statements like lexical scopes
51 (represented by @code{GIMPLE_BIND}) and nested expressions (e.g.,
52 @code{GIMPLE_TRY}), while ``Low GIMPLE'' exposes all of the
53 implicit jumps for control and exception expressions directly in
54 the IL and EH region trees.
55
56 The C and C++ front ends currently convert directly from front end
57 trees to GIMPLE, and hand that off to the back end rather than first
58 converting to GENERIC@. Their gimplifier hooks know about all the
59 @code{_STMT} nodes and how to convert them to GENERIC forms. There
60 was some work done on a genericization pass which would run first, but
61 the existence of @code{STMT_EXPR} meant that in order to convert all
62 of the C statements into GENERIC equivalents would involve walking the
63 entire tree anyway, so it was simpler to lower all the way. This
64 might change in the future if someone writes an optimization pass
65 which would work better with higher-level trees, but currently the
66 optimizers all expect GIMPLE@.
67
68 You can request to dump a C-like representation of the GIMPLE form
69 with the flag @option{-fdump-tree-gimple}.
70
71 @menu
72 * Tuple representation::
73 * GIMPLE instruction set::
74 * GIMPLE Exception Handling::
75 * Temporaries::
76 * Operands::
77 * Manipulating GIMPLE statements::
78 * Tuple specific accessors::
79 * GIMPLE sequences::
80 * Sequence iterators::
81 * Adding a new GIMPLE statement code::
82 * Statement and operand traversals::
83 @end menu
84
85 @node Tuple representation
86 @section Tuple representation
87 @cindex tuples
88
89 GIMPLE instructions are tuples of variable size divided in two
90 groups: a header describing the instruction and its locations,
91 and a variable length body with all the operands. Tuples are
92 organized into a hierarchy with 3 main classes of tuples.
93
94 @subsection @code{gimple_statement_base} (gsbase)
95 @cindex gimple_statement_base
96
97 This is the root of the hierarchy, it holds basic information
98 needed by most GIMPLE statements. There are some fields that
99 may not be relevant to every GIMPLE statement, but those were
100 moved into the base structure to take advantage of holes left by
101 other fields (thus making the structure more compact). The
102 structure takes 4 words (32 bytes) on 64 bit hosts:
103
104 @multitable {@code{references_memory_p}} {Size (bits)}
105 @item Field @tab Size (bits)
106 @item @code{code} @tab 8
107 @item @code{subcode} @tab 16
108 @item @code{no_warning} @tab 1
109 @item @code{visited} @tab 1
110 @item @code{nontemporal_move} @tab 1
111 @item @code{plf} @tab 2
112 @item @code{modified} @tab 1
113 @item @code{has_volatile_ops} @tab 1
114 @item @code{references_memory_p} @tab 1
115 @item @code{uid} @tab 32
116 @item @code{location} @tab 32
117 @item @code{num_ops} @tab 32
118 @item @code{bb} @tab 64
119 @item @code{block} @tab 63
120 @item Total size @tab 32 bytes
121 @end multitable
122
123 @itemize @bullet
124 @item @code{code}
125 Main identifier for a GIMPLE instruction.
126
127 @item @code{subcode}
128 Used to distinguish different variants of the same basic
129 instruction or provide flags applicable to a given code. The
130 @code{subcode} flags field has different uses depending on the code of
131 the instruction, but mostly it distinguishes instructions of the
132 same family. The most prominent use of this field is in
133 assignments, where subcode indicates the operation done on the
134 RHS of the assignment. For example, a = b + c is encoded as
135 @code{GIMPLE_ASSIGN <PLUS_EXPR, a, b, c>}.
136
137 @item @code{no_warning}
138 Bitflag to indicate whether a warning has already been issued on
139 this statement.
140
141 @item @code{visited}
142 General purpose ``visited'' marker. Set and cleared by each pass
143 when needed.
144
145 @item @code{nontemporal_move}
146 Bitflag used in assignments that represent non-temporal moves.
147 Although this bitflag is only used in assignments, it was moved
148 into the base to take advantage of the bit holes left by the
149 previous fields.
150
151 @item @code{plf}
152 Pass Local Flags. This 2-bit mask can be used as general purpose
153 markers by any pass. Passes are responsible for clearing and
154 setting these two flags accordingly.
155
156 @item @code{modified}
157 Bitflag to indicate whether the statement has been modified.
158 Used mainly by the operand scanner to determine when to re-scan a
159 statement for operands.
160
161 @item @code{has_volatile_ops}
162 Bitflag to indicate whether this statement contains operands that
163 have been marked volatile.
164
165 @item @code{references_memory_p}
166 Bitflag to indicate whether this statement contains memory
167 references (i.e., its operands are either global variables, or
168 pointer dereferences or anything that must reside in memory).
169
170 @item @code{uid}
171 This is an unsigned integer used by passes that want to assign
172 IDs to every statement. These IDs must be assigned and used by
173 each pass.
174
175 @item @code{location}
176 This is a @code{location_t} identifier to specify source code
177 location for this statement. It is inherited from the front
178 end.
179
180 @item @code{num_ops}
181 Number of operands that this statement has. This specifies the
182 size of the operand vector embedded in the tuple. Only used in
183 some tuples, but it is declared in the base tuple to take
184 advantage of the 32-bit hole left by the previous fields.
185
186 @item @code{bb}
187 Basic block holding the instruction.
188
189 @item @code{block}
190 Lexical block holding this statement. Also used for debug
191 information generation.
192 @end itemize
193
194 @subsection @code{gimple_statement_with_ops}
195 @cindex gimple_statement_with_ops
196
197 This tuple is actually split in two:
198 @code{gimple_statement_with_ops_base} and
199 @code{gimple_statement_with_ops}. This is needed to accommodate the
200 way the operand vector is allocated. The operand vector is
201 defined to be an array of 1 element. So, to allocate a dynamic
202 number of operands, the memory allocator (@code{gimple_alloc}) simply
203 allocates enough memory to hold the structure itself plus @code{N
204 - 1} operands which run ``off the end'' of the structure. For
205 example, to allocate space for a tuple with 3 operands,
206 @code{gimple_alloc} reserves @code{sizeof (struct
207 gimple_statement_with_ops) + 2 * sizeof (tree)} bytes.
208
209 On the other hand, several fields in this tuple need to be shared
210 with the @code{gimple_statement_with_memory_ops} tuple. So, these
211 common fields are placed in @code{gimple_statement_with_ops_base} which
212 is then inherited from the other two tuples.
213
214
215 @multitable {@code{addresses_taken}} {56 + 8 * @code{num_ops} bytes}
216 @item @code{gsbase} @tab 256
217 @item @code{addresses_taken} @tab 64
218 @item @code{def_ops} @tab 64
219 @item @code{use_ops} @tab 64
220 @item @code{op} @tab @code{num_ops} * 64
221 @item Total size @tab 56 + 8 * @code{num_ops} bytes
222 @end multitable
223
224 @itemize @bullet
225 @item @code{gsbase}
226 Inherited from @code{struct gimple_statement_base}.
227
228 @item @code{addresses_taken}
229 Bitmap holding the UIDs of all the @code{VAR_DECL}s whose addresses are
230 taken by this statement. For example, a statement of the form
231 @code{p = &b} will have the UID for symbol @code{b} in this set.
232
233 @item @code{def_ops}
234 Array of pointers into the operand array indicating all the slots that
235 contain a variable written-to by the statement. This array is
236 also used for immediate use chaining. Note that it would be
237 possible to not rely on this array, but the changes required to
238 implement this are pretty invasive.
239
240 @item @code{use_ops}
241 Similar to @code{def_ops} but for variables read by the statement.
242
243 @item @code{op}
244 Array of trees with @code{num_ops} slots.
245 @end itemize
246
247 @subsection @code{gimple_statement_with_memory_ops}
248
249 This tuple is essentially identical to @code{gimple_statement_with_ops},
250 except that it contains 4 additional fields to hold vectors
251 related memory stores and loads. Similar to the previous case,
252 the structure is split in two to accommodate for the operand
253 vector (@code{gimple_statement_with_memory_ops_base} and
254 @code{gimple_statement_with_memory_ops}).
255
256
257 @multitable {@code{addresses_taken}} {88 + 8 * @code{num_ops} bytes}
258 @item Field @tab Size (bits)
259 @item @code{gsbase} @tab 256
260 @item @code{addresses_taken} @tab 64
261 @item @code{def_ops} @tab 64
262 @item @code{use_ops} @tab 64
263 @item @code{vdef_ops} @tab 64
264 @item @code{vuse_ops} @tab 64
265 @item @code{stores} @tab 64
266 @item @code{loads} @tab 64
267 @item @code{op} @tab @code{num_ops} * 64
268 @item Total size @tab 88 + 8 * @code{num_ops} bytes
269 @end multitable
270
271 @itemize @bullet
272 @item @code{vdef_ops}
273 Similar to @code{def_ops} but for @code{VDEF} operators. There is
274 one entry per memory symbol written by this statement. This is
275 used to maintain the memory SSA use-def and def-def chains.
276
277 @item @code{vuse_ops}
278 Similar to @code{use_ops} but for @code{VUSE} operators. There is
279 one entry per memory symbol loaded by this statement. This is
280 used to maintain the memory SSA use-def chains.
281
282 @item @code{stores}
283 Bitset with all the UIDs for the symbols written-to by the
284 statement. This is different than @code{vdef_ops} in that all the
285 affected symbols are mentioned in this set. If memory
286 partitioning is enabled, the @code{vdef_ops} vector will refer to memory
287 partitions. Furthermore, no SSA information is stored in this
288 set.
289
290 @item @code{loads}
291 Similar to @code{stores}, but for memory loads. (Note that there
292 is some amount of redundancy here, it should be possible to
293 reduce memory utilization further by removing these sets).
294 @end itemize
295
296 All the other tuples are defined in terms of these three basic
297 ones. Each tuple will add some fields. The main gimple type
298 is defined to be the union of all these structures (@code{GTY} markers
299 elided for clarity):
300
301 @smallexample
302 union gimple_statement_d
303 @{
304 struct gimple_statement_base gsbase;
305 struct gimple_statement_with_ops gsops;
306 struct gimple_statement_with_memory_ops gsmem;
307 struct gimple_statement_omp omp;
308 struct gimple_statement_bind gimple_bind;
309 struct gimple_statement_catch gimple_catch;
310 struct gimple_statement_eh_filter gimple_eh_filter;
311 struct gimple_statement_phi gimple_phi;
312 struct gimple_statement_resx gimple_resx;
313 struct gimple_statement_try gimple_try;
314 struct gimple_statement_wce gimple_wce;
315 struct gimple_statement_asm gimple_asm;
316 struct gimple_statement_omp_critical gimple_omp_critical;
317 struct gimple_statement_omp_for gimple_omp_for;
318 struct gimple_statement_omp_parallel gimple_omp_parallel;
319 struct gimple_statement_omp_task gimple_omp_task;
320 struct gimple_statement_omp_sections gimple_omp_sections;
321 struct gimple_statement_omp_single gimple_omp_single;
322 struct gimple_statement_omp_continue gimple_omp_continue;
323 struct gimple_statement_omp_atomic_load gimple_omp_atomic_load;
324 struct gimple_statement_omp_atomic_store gimple_omp_atomic_store;
325 @};
326 @end smallexample
327
328
329 @node GIMPLE instruction set
330 @section GIMPLE instruction set
331 @cindex GIMPLE instruction set
332
333 The following table briefly describes the GIMPLE instruction set.
334
335 @multitable {@code{GIMPLE_OMP_SECTIONS_SWITCH}} {High GIMPLE} {Low GIMPLE}
336 @item Instruction @tab High GIMPLE @tab Low GIMPLE
337 @item @code{GIMPLE_ASM} @tab x @tab x
338 @item @code{GIMPLE_ASSIGN} @tab x @tab x
339 @item @code{GIMPLE_BIND} @tab x @tab
340 @item @code{GIMPLE_CALL} @tab x @tab x
341 @item @code{GIMPLE_CATCH} @tab x @tab
342 @item @code{GIMPLE_COND} @tab x @tab x
343 @item @code{GIMPLE_EH_FILTER} @tab x @tab
344 @item @code{GIMPLE_GOTO} @tab x @tab x
345 @item @code{GIMPLE_LABEL} @tab x @tab x
346 @item @code{GIMPLE_NOP} @tab x @tab x
347 @item @code{GIMPLE_OMP_ATOMIC_LOAD} @tab x @tab x
348 @item @code{GIMPLE_OMP_ATOMIC_STORE} @tab x @tab x
349 @item @code{GIMPLE_OMP_CONTINUE} @tab x @tab x
350 @item @code{GIMPLE_OMP_CRITICAL} @tab x @tab x
351 @item @code{GIMPLE_OMP_FOR} @tab x @tab x
352 @item @code{GIMPLE_OMP_MASTER} @tab x @tab x
353 @item @code{GIMPLE_OMP_ORDERED} @tab x @tab x
354 @item @code{GIMPLE_OMP_PARALLEL} @tab x @tab x
355 @item @code{GIMPLE_OMP_RETURN} @tab x @tab x
356 @item @code{GIMPLE_OMP_SECTION} @tab x @tab x
357 @item @code{GIMPLE_OMP_SECTIONS} @tab x @tab x
358 @item @code{GIMPLE_OMP_SECTIONS_SWITCH} @tab x @tab x
359 @item @code{GIMPLE_OMP_SINGLE} @tab x @tab x
360 @item @code{GIMPLE_PHI} @tab @tab x
361 @item @code{GIMPLE_RESX} @tab @tab x
362 @item @code{GIMPLE_RETURN} @tab x @tab x
363 @item @code{GIMPLE_SWITCH} @tab x @tab x
364 @item @code{GIMPLE_TRY} @tab x @tab
365 @end multitable
366
367 @node GIMPLE Exception Handling
368 @section Exception Handling
369 @cindex GIMPLE Exception Handling
370
371 Other exception handling constructs are represented using
372 @code{GIMPLE_TRY_CATCH}. @code{GIMPLE_TRY_CATCH} has two operands. The
373 first operand is a sequence of statements to execute. If executing
374 these statements does not throw an exception, then the second operand
375 is ignored. Otherwise, if an exception is thrown, then the second
376 operand of the @code{GIMPLE_TRY_CATCH} is checked. The second
377 operand may have the following forms:
378
379 @enumerate
380
381 @item A sequence of statements to execute. When an exception occurs,
382 these statements are executed, and then the exception is rethrown.
383
384 @item A sequence of @code{GIMPLE_CATCH} statements. Each
385 @code{GIMPLE_CATCH} has a list of applicable exception types and
386 handler code. If the thrown exception matches one of the caught
387 types, the associated handler code is executed. If the handler
388 code falls off the bottom, execution continues after the original
389 @code{GIMPLE_TRY_CATCH}.
390
391 @item A @code{GIMPLE_EH_FILTER} statement. This has a list of
392 permitted exception types, and code to handle a match failure. If the
393 thrown exception does not match one of the allowed types, the
394 associated match failure code is executed. If the thrown exception
395 does match, it continues unwinding the stack looking for the next
396 handler.
397
398 @end enumerate
399
400 Currently throwing an exception is not directly represented in
401 GIMPLE, since it is implemented by calling a function. At some
402 point in the future we will want to add some way to express that
403 the call will throw an exception of a known type.
404
405 Just before running the optimizers, the compiler lowers the
406 high-level EH constructs above into a set of @samp{goto}s, magic
407 labels, and EH regions. Continuing to unwind at the end of a
408 cleanup is represented with a @code{GIMPLE_RESX}.
409
410
411 @node Temporaries
412 @section Temporaries
413 @cindex Temporaries
414
415 When gimplification encounters a subexpression that is too
416 complex, it creates a new temporary variable to hold the value of
417 the subexpression, and adds a new statement to initialize it
418 before the current statement. These special temporaries are known
419 as @samp{expression temporaries}, and are allocated using
420 @code{get_formal_tmp_var}. The compiler tries to always evaluate
421 identical expressions into the same temporary, to simplify
422 elimination of redundant calculations.
423
424 We can only use expression temporaries when we know that it will
425 not be reevaluated before its value is used, and that it will not
426 be otherwise modified@footnote{These restrictions are derived
427 from those in Morgan 4.8.}. Other temporaries can be allocated
428 using @code{get_initialized_tmp_var} or @code{create_tmp_var}.
429
430 Currently, an expression like @code{a = b + 5} is not reduced any
431 further. We tried converting it to something like
432 @smallexample
433 T1 = b + 5;
434 a = T1;
435 @end smallexample
436 but this bloated the representation for minimal benefit. However, a
437 variable which must live in memory cannot appear in an expression; its
438 value is explicitly loaded into a temporary first. Similarly, storing
439 the value of an expression to a memory variable goes through a
440 temporary.
441
442 @node Operands
443 @section Operands
444 @cindex Operands
445
446 In general, expressions in GIMPLE consist of an operation and the
447 appropriate number of simple operands; these operands must either be a
448 GIMPLE rvalue (@code{is_gimple_val}), i.e.@: a constant or a register
449 variable. More complex operands are factored out into temporaries, so
450 that
451 @smallexample
452 a = b + c + d
453 @end smallexample
454 becomes
455 @smallexample
456 T1 = b + c;
457 a = T1 + d;
458 @end smallexample
459
460 The same rule holds for arguments to a @code{GIMPLE_CALL}.
461
462 The target of an assignment is usually a variable, but can also be an
463 @code{INDIRECT_REF} or a compound lvalue as described below.
464
465 @menu
466 * Compound Expressions::
467 * Compound Lvalues::
468 * Conditional Expressions::
469 * Logical Operators::
470 @end menu
471
472 @node Compound Expressions
473 @subsection Compound Expressions
474 @cindex Compound Expressions
475
476 The left-hand side of a C comma expression is simply moved into a separate
477 statement.
478
479 @node Compound Lvalues
480 @subsection Compound Lvalues
481 @cindex Compound Lvalues
482
483 Currently compound lvalues involving array and structure field references
484 are not broken down; an expression like @code{a.b[2] = 42} is not reduced
485 any further (though complex array subscripts are). This restriction is a
486 workaround for limitations in later optimizers; if we were to convert this
487 to
488
489 @smallexample
490 T1 = &a.b;
491 T1[2] = 42;
492 @end smallexample
493
494 alias analysis would not remember that the reference to @code{T1[2]} came
495 by way of @code{a.b}, so it would think that the assignment could alias
496 another member of @code{a}; this broke @code{struct-alias-1.c}. Future
497 optimizer improvements may make this limitation unnecessary.
498
499 @node Conditional Expressions
500 @subsection Conditional Expressions
501 @cindex Conditional Expressions
502
503 A C @code{?:} expression is converted into an @code{if} statement with
504 each branch assigning to the same temporary. So,
505
506 @smallexample
507 a = b ? c : d;
508 @end smallexample
509 becomes
510 @smallexample
511 if (b == 1)
512 T1 = c;
513 else
514 T1 = d;
515 a = T1;
516 @end smallexample
517
518 The GIMPLE level if-conversion pass re-introduces @code{?:}
519 expression, if appropriate. It is used to vectorize loops with
520 conditions using vector conditional operations.
521
522 Note that in GIMPLE, @code{if} statements are represented using
523 @code{GIMPLE_COND}, as described below.
524
525 @node Logical Operators
526 @subsection Logical Operators
527 @cindex Logical Operators
528
529 Except when they appear in the condition operand of a
530 @code{GIMPLE_COND}, logical `and' and `or' operators are simplified
531 as follows: @code{a = b && c} becomes
532
533 @smallexample
534 T1 = (bool)b;
535 if (T1 == true)
536 T1 = (bool)c;
537 a = T1;
538 @end smallexample
539
540 Note that @code{T1} in this example cannot be an expression temporary,
541 because it has two different assignments.
542
543 @subsection Manipulating operands
544
545 All gimple operands are of type @code{tree}. But only certain
546 types of trees are allowed to be used as operand tuples. Basic
547 validation is controlled by the function
548 @code{get_gimple_rhs_class}, which given a tree code, returns an
549 @code{enum} with the following values of type @code{enum
550 gimple_rhs_class}
551
552 @itemize @bullet
553 @item @code{GIMPLE_INVALID_RHS}
554 The tree cannot be used as a GIMPLE operand.
555
556 @item @code{GIMPLE_BINARY_RHS}
557 The tree is a valid GIMPLE binary operation.
558
559 @item @code{GIMPLE_UNARY_RHS}
560 The tree is a valid GIMPLE unary operation.
561
562 @item @code{GIMPLE_SINGLE_RHS}
563 The tree is a single object, that cannot be split into simpler
564 operands (for instance, @code{SSA_NAME}, @code{VAR_DECL}, @code{COMPONENT_REF}, etc).
565
566 This operand class also acts as an escape hatch for tree nodes
567 that may be flattened out into the operand vector, but would need
568 more than two slots on the RHS. For instance, a @code{COND_EXPR}
569 expression of the form @code{(a op b) ? x : y} could be flattened
570 out on the operand vector using 4 slots, but it would also
571 require additional processing to distinguish @code{c = a op b}
572 from @code{c = a op b ? x : y}. Something similar occurs with
573 @code{ASSERT_EXPR}. In time, these special case tree
574 expressions should be flattened into the operand vector.
575 @end itemize
576
577 For tree nodes in the categories @code{GIMPLE_BINARY_RHS} and
578 @code{GIMPLE_UNARY_RHS}, they cannot be stored inside tuples directly.
579 They first need to be flattened and separated into individual
580 components. For instance, given the GENERIC expression
581
582 @smallexample
583 a = b + c
584 @end smallexample
585
586 its tree representation is:
587
588 @smallexample
589 MODIFY_EXPR <VAR_DECL <a>, PLUS_EXPR <VAR_DECL <b>, VAR_DECL <c>>>
590 @end smallexample
591
592 In this case, the GIMPLE form for this statement is logically
593 identical to its GENERIC form but in GIMPLE, the @code{PLUS_EXPR}
594 on the RHS of the assignment is not represented as a tree,
595 instead the two operands are taken out of the @code{PLUS_EXPR} sub-tree
596 and flattened into the GIMPLE tuple as follows:
597
598 @smallexample
599 GIMPLE_ASSIGN <PLUS_EXPR, VAR_DECL <a>, VAR_DECL <b>, VAR_DECL <c>>
600 @end smallexample
601
602 @subsection Operand vector allocation
603
604 The operand vector is stored at the bottom of the three tuple
605 structures that accept operands. This means, that depending on
606 the code of a given statement, its operand vector will be at
607 different offsets from the base of the structure. To access
608 tuple operands use the following accessors
609
610 @deftypefn {GIMPLE function} unsigned gimple_num_ops (gimple g)
611 Returns the number of operands in statement G.
612 @end deftypefn
613
614 @deftypefn {GIMPLE function} tree gimple_op (gimple g, unsigned i)
615 Returns operand @code{I} from statement @code{G}.
616 @end deftypefn
617
618 @deftypefn {GIMPLE function} tree *gimple_ops (gimple g)
619 Returns a pointer into the operand vector for statement @code{G}. This
620 is computed using an internal table called @code{gimple_ops_offset_}[].
621 This table is indexed by the gimple code of @code{G}.
622
623 When the compiler is built, this table is filled-in using the
624 sizes of the structures used by each statement code defined in
625 gimple.def. Since the operand vector is at the bottom of the
626 structure, for a gimple code @code{C} the offset is computed as sizeof
627 (struct-of @code{C}) - sizeof (tree).
628
629 This mechanism adds one memory indirection to every access when
630 using @code{gimple_op}(), if this becomes a bottleneck, a pass can
631 choose to memoize the result from @code{gimple_ops}() and use that to
632 access the operands.
633 @end deftypefn
634
635 @subsection Operand validation
636
637 When adding a new operand to a gimple statement, the operand will
638 be validated according to what each tuple accepts in its operand
639 vector. These predicates are called by the
640 @code{gimple_<name>_set_...()}. Each tuple will use one of the
641 following predicates (Note, this list is not exhaustive):
642
643 @deftypefn {GIMPLE function} is_gimple_operand (tree t)
644 This is the most permissive of the predicates. It essentially
645 checks whether t has a @code{gimple_rhs_class} of @code{GIMPLE_SINGLE_RHS}.
646 @end deftypefn
647
648
649 @deftypefn {GIMPLE function} is_gimple_val (tree t)
650 Returns true if t is a "GIMPLE value", which are all the
651 non-addressable stack variables (variables for which
652 @code{is_gimple_reg} returns true) and constants (expressions for which
653 @code{is_gimple_min_invariant} returns true).
654 @end deftypefn
655
656 @deftypefn {GIMPLE function} is_gimple_addressable (tree t)
657 Returns true if t is a symbol or memory reference whose address
658 can be taken.
659 @end deftypefn
660
661 @deftypefn {GIMPLE function} is_gimple_asm_val (tree t)
662 Similar to @code{is_gimple_val} but it also accepts hard registers.
663 @end deftypefn
664
665 @deftypefn {GIMPLE function} is_gimple_call_addr (tree t)
666 Return true if t is a valid expression to use as the function
667 called by a @code{GIMPLE_CALL}.
668 @end deftypefn
669
670 @deftypefn {GIMPLE function} is_gimple_constant (tree t)
671 Return true if t is a valid gimple constant.
672 @end deftypefn
673
674 @deftypefn {GIMPLE function} is_gimple_min_invariant (tree t)
675 Return true if t is a valid minimal invariant. This is different
676 from constants, in that the specific value of t may not be known
677 at compile time, but it is known that it doesn't change (e.g.,
678 the address of a function local variable).
679 @end deftypefn
680
681 @deftypefn {GIMPLE function} is_gimple_min_invariant_address (tree t)
682 Return true if t is an @code{ADDR_EXPR} that does not change once the
683 program is running.
684 @end deftypefn
685
686
687 @subsection Statement validation
688
689 @deftypefn {GIMPLE function} is_gimple_assign (gimple g)
690 Return true if the code of g is @code{GIMPLE_ASSIGN}.
691 @end deftypefn
692
693 @deftypefn {GIMPLE function} is_gimple_call (gimple g)
694 Return true if the code of g is @code{GIMPLE_CALL}.
695 @end deftypefn
696
697 @deftypefn {GIMPLE function} is_gimple_debug (gimple g)
698 Return true if the code of g is @code{GIMPLE_DEBUG}.
699 @end deftypefn
700
701 @deftypefn {GIMPLE function} gimple_assign_cast_p (gimple g)
702 Return true if g is a @code{GIMPLE_ASSIGN} that performs a type cast
703 operation.
704 @end deftypefn
705
706 @deftypefn {GIMPLE function} gimple_debug_bind_p (gimple g)
707 Return true if g is a @code{GIMPLE_DEBUG} that binds the value of an
708 expression to a variable.
709 @end deftypefn
710
711 @node Manipulating GIMPLE statements
712 @section Manipulating GIMPLE statements
713 @cindex Manipulating GIMPLE statements
714
715 This section documents all the functions available to handle each
716 of the GIMPLE instructions.
717
718 @subsection Common accessors
719 The following are common accessors for gimple statements.
720
721 @deftypefn {GIMPLE function} enum gimple_code gimple_code (gimple g)
722 Return the code for statement @code{G}.
723 @end deftypefn
724
725 @deftypefn {GIMPLE function} basic_block gimple_bb (gimple g)
726 Return the basic block to which statement @code{G} belongs to.
727 @end deftypefn
728
729 @deftypefn {GIMPLE function} tree gimple_block (gimple g)
730 Return the lexical scope block holding statement @code{G}.
731 @end deftypefn
732
733 @deftypefn {GIMPLE function} tree gimple_expr_type (gimple stmt)
734 Return the type of the main expression computed by @code{STMT}. Return
735 @code{void_type_node} if @code{STMT} computes nothing. This will only return
736 something meaningful for @code{GIMPLE_ASSIGN}, @code{GIMPLE_COND} and
737 @code{GIMPLE_CALL}. For all other tuple codes, it will return
738 @code{void_type_node}.
739 @end deftypefn
740
741 @deftypefn {GIMPLE function} enum tree_code gimple_expr_code (gimple stmt)
742 Return the tree code for the expression computed by @code{STMT}. This
743 is only meaningful for @code{GIMPLE_CALL}, @code{GIMPLE_ASSIGN} and
744 @code{GIMPLE_COND}. If @code{STMT} is @code{GIMPLE_CALL}, it will return @code{CALL_EXPR}.
745 For @code{GIMPLE_COND}, it returns the code of the comparison predicate.
746 For @code{GIMPLE_ASSIGN} it returns the code of the operation performed
747 by the @code{RHS} of the assignment.
748 @end deftypefn
749
750 @deftypefn {GIMPLE function} void gimple_set_block (gimple g, tree block)
751 Set the lexical scope block of @code{G} to @code{BLOCK}.
752 @end deftypefn
753
754 @deftypefn {GIMPLE function} location_t gimple_locus (gimple g)
755 Return locus information for statement @code{G}.
756 @end deftypefn
757
758 @deftypefn {GIMPLE function} void gimple_set_locus (gimple g, location_t locus)
759 Set locus information for statement @code{G}.
760 @end deftypefn
761
762 @deftypefn {GIMPLE function} bool gimple_locus_empty_p (gimple g)
763 Return true if @code{G} does not have locus information.
764 @end deftypefn
765
766 @deftypefn {GIMPLE function} bool gimple_no_warning_p (gimple stmt)
767 Return true if no warnings should be emitted for statement @code{STMT}.
768 @end deftypefn
769
770 @deftypefn {GIMPLE function} void gimple_set_visited (gimple stmt, bool visited_p)
771 Set the visited status on statement @code{STMT} to @code{VISITED_P}.
772 @end deftypefn
773
774 @deftypefn {GIMPLE function} bool gimple_visited_p (gimple stmt)
775 Return the visited status on statement @code{STMT}.
776 @end deftypefn
777
778 @deftypefn {GIMPLE function} void gimple_set_plf (gimple stmt, enum plf_mask plf, bool val_p)
779 Set pass local flag @code{PLF} on statement @code{STMT} to @code{VAL_P}.
780 @end deftypefn
781
782 @deftypefn {GIMPLE function} unsigned int gimple_plf (gimple stmt, enum plf_mask plf)
783 Return the value of pass local flag @code{PLF} on statement @code{STMT}.
784 @end deftypefn
785
786 @deftypefn {GIMPLE function} bool gimple_has_ops (gimple g)
787 Return true if statement @code{G} has register or memory operands.
788 @end deftypefn
789
790 @deftypefn {GIMPLE function} bool gimple_has_mem_ops (gimple g)
791 Return true if statement @code{G} has memory operands.
792 @end deftypefn
793
794 @deftypefn {GIMPLE function} unsigned gimple_num_ops (gimple g)
795 Return the number of operands for statement @code{G}.
796 @end deftypefn
797
798 @deftypefn {GIMPLE function} tree *gimple_ops (gimple g)
799 Return the array of operands for statement @code{G}.
800 @end deftypefn
801
802 @deftypefn {GIMPLE function} tree gimple_op (gimple g, unsigned i)
803 Return operand @code{I} for statement @code{G}.
804 @end deftypefn
805
806 @deftypefn {GIMPLE function} tree *gimple_op_ptr (gimple g, unsigned i)
807 Return a pointer to operand @code{I} for statement @code{G}.
808 @end deftypefn
809
810 @deftypefn {GIMPLE function} void gimple_set_op (gimple g, unsigned i, tree op)
811 Set operand @code{I} of statement @code{G} to @code{OP}.
812 @end deftypefn
813
814 @deftypefn {GIMPLE function} bitmap gimple_addresses_taken (gimple stmt)
815 Return the set of symbols that have had their address taken by
816 @code{STMT}.
817 @end deftypefn
818
819 @deftypefn {GIMPLE function} struct def_optype_d *gimple_def_ops (gimple g)
820 Return the set of @code{DEF} operands for statement @code{G}.
821 @end deftypefn
822
823 @deftypefn {GIMPLE function} void gimple_set_def_ops (gimple g, struct def_optype_d *def)
824 Set @code{DEF} to be the set of @code{DEF} operands for statement @code{G}.
825 @end deftypefn
826
827 @deftypefn {GIMPLE function} struct use_optype_d *gimple_use_ops (gimple g)
828 Return the set of @code{USE} operands for statement @code{G}.
829 @end deftypefn
830
831 @deftypefn {GIMPLE function} void gimple_set_use_ops (gimple g, struct use_optype_d *use)
832 Set @code{USE} to be the set of @code{USE} operands for statement @code{G}.
833 @end deftypefn
834
835 @deftypefn {GIMPLE function} struct voptype_d *gimple_vuse_ops (gimple g)
836 Return the set of @code{VUSE} operands for statement @code{G}.
837 @end deftypefn
838
839 @deftypefn {GIMPLE function} void gimple_set_vuse_ops (gimple g, struct voptype_d *ops)
840 Set @code{OPS} to be the set of @code{VUSE} operands for statement @code{G}.
841 @end deftypefn
842
843 @deftypefn {GIMPLE function} struct voptype_d *gimple_vdef_ops (gimple g)
844 Return the set of @code{VDEF} operands for statement @code{G}.
845 @end deftypefn
846
847 @deftypefn {GIMPLE function} void gimple_set_vdef_ops (gimple g, struct voptype_d *ops)
848 Set @code{OPS} to be the set of @code{VDEF} operands for statement @code{G}.
849 @end deftypefn
850
851 @deftypefn {GIMPLE function} bitmap gimple_loaded_syms (gimple g)
852 Return the set of symbols loaded by statement @code{G}. Each element of
853 the set is the @code{DECL_UID} of the corresponding symbol.
854 @end deftypefn
855
856 @deftypefn {GIMPLE function} bitmap gimple_stored_syms (gimple g)
857 Return the set of symbols stored by statement @code{G}. Each element of
858 the set is the @code{DECL_UID} of the corresponding symbol.
859 @end deftypefn
860
861 @deftypefn {GIMPLE function} bool gimple_modified_p (gimple g)
862 Return true if statement @code{G} has operands and the modified field
863 has been set.
864 @end deftypefn
865
866 @deftypefn {GIMPLE function} bool gimple_has_volatile_ops (gimple stmt)
867 Return true if statement @code{STMT} contains volatile operands.
868 @end deftypefn
869
870 @deftypefn {GIMPLE function} void gimple_set_has_volatile_ops (gimple stmt, bool volatilep)
871 Return true if statement @code{STMT} contains volatile operands.
872 @end deftypefn
873
874 @deftypefn {GIMPLE function} void update_stmt (gimple s)
875 Mark statement @code{S} as modified, and update it.
876 @end deftypefn
877
878 @deftypefn {GIMPLE function} void update_stmt_if_modified (gimple s)
879 Update statement @code{S} if it has been marked modified.
880 @end deftypefn
881
882 @deftypefn {GIMPLE function} gimple gimple_copy (gimple stmt)
883 Return a deep copy of statement @code{STMT}.
884 @end deftypefn
885
886 @node Tuple specific accessors
887 @section Tuple specific accessors
888 @cindex Tuple specific accessors
889
890 @menu
891 * @code{GIMPLE_ASM}::
892 * @code{GIMPLE_ASSIGN}::
893 * @code{GIMPLE_BIND}::
894 * @code{GIMPLE_CALL}::
895 * @code{GIMPLE_CATCH}::
896 * @code{GIMPLE_COND}::
897 * @code{GIMPLE_EH_FILTER}::
898 * @code{GIMPLE_LABEL}::
899 * @code{GIMPLE_NOP}::
900 * @code{GIMPLE_OMP_ATOMIC_LOAD}::
901 * @code{GIMPLE_OMP_ATOMIC_STORE}::
902 * @code{GIMPLE_OMP_CONTINUE}::
903 * @code{GIMPLE_OMP_CRITICAL}::
904 * @code{GIMPLE_OMP_FOR}::
905 * @code{GIMPLE_OMP_MASTER}::
906 * @code{GIMPLE_OMP_ORDERED}::
907 * @code{GIMPLE_OMP_PARALLEL}::
908 * @code{GIMPLE_OMP_RETURN}::
909 * @code{GIMPLE_OMP_SECTION}::
910 * @code{GIMPLE_OMP_SECTIONS}::
911 * @code{GIMPLE_OMP_SINGLE}::
912 * @code{GIMPLE_PHI}::
913 * @code{GIMPLE_RESX}::
914 * @code{GIMPLE_RETURN}::
915 * @code{GIMPLE_SWITCH}::
916 * @code{GIMPLE_TRY}::
917 * @code{GIMPLE_WITH_CLEANUP_EXPR}::
918 @end menu
919
920
921 @node @code{GIMPLE_ASM}
922 @subsection @code{GIMPLE_ASM}
923 @cindex @code{GIMPLE_ASM}
924
925 @deftypefn {GIMPLE function} gimple gimple_build_asm (const char *string, ninputs, noutputs, nclobbers, ...)
926 Build a @code{GIMPLE_ASM} statement. This statement is used for
927 building in-line assembly constructs. @code{STRING} is the assembly
928 code. @code{NINPUT} is the number of register inputs. @code{NOUTPUT} is the
929 number of register outputs. @code{NCLOBBERS} is the number of clobbered
930 registers. The rest of the arguments trees for each input,
931 output, and clobbered registers.
932 @end deftypefn
933
934 @deftypefn {GIMPLE function} gimple gimple_build_asm_vec (const char *, VEC(tree,gc) *, VEC(tree,gc) *, VEC(tree,gc) *)
935 Identical to gimple_build_asm, but the arguments are passed in
936 VECs.
937 @end deftypefn
938
939 @deftypefn {GIMPLE function} gimple_asm_ninputs (gimple g)
940 Return the number of input operands for @code{GIMPLE_ASM} @code{G}.
941 @end deftypefn
942
943 @deftypefn {GIMPLE function} gimple_asm_noutputs (gimple g)
944 Return the number of output operands for @code{GIMPLE_ASM} @code{G}.
945 @end deftypefn
946
947 @deftypefn {GIMPLE function} gimple_asm_nclobbers (gimple g)
948 Return the number of clobber operands for @code{GIMPLE_ASM} @code{G}.
949 @end deftypefn
950
951 @deftypefn {GIMPLE function} tree gimple_asm_input_op (gimple g, unsigned index)
952 Return input operand @code{INDEX} of @code{GIMPLE_ASM} @code{G}.
953 @end deftypefn
954
955 @deftypefn {GIMPLE function} void gimple_asm_set_input_op (gimple g, unsigned index, tree in_op)
956 Set @code{IN_OP} to be input operand @code{INDEX} in @code{GIMPLE_ASM} @code{G}.
957 @end deftypefn
958
959 @deftypefn {GIMPLE function} tree gimple_asm_output_op (gimple g, unsigned index)
960 Return output operand @code{INDEX} of @code{GIMPLE_ASM} @code{G}.
961 @end deftypefn
962
963 @deftypefn {GIMPLE function} void gimple_asm_set_output_op (gimple g, @
964 unsigned index, tree out_op)
965 Set @code{OUT_OP} to be output operand @code{INDEX} in @code{GIMPLE_ASM} @code{G}.
966 @end deftypefn
967
968 @deftypefn {GIMPLE function} tree gimple_asm_clobber_op (gimple g, unsigned index)
969 Return clobber operand @code{INDEX} of @code{GIMPLE_ASM} @code{G}.
970 @end deftypefn
971
972 @deftypefn {GIMPLE function} void gimple_asm_set_clobber_op (gimple g, unsigned index, tree clobber_op)
973 Set @code{CLOBBER_OP} to be clobber operand @code{INDEX} in @code{GIMPLE_ASM} @code{G}.
974 @end deftypefn
975
976 @deftypefn {GIMPLE function} const char *gimple_asm_string (gimple g)
977 Return the string representing the assembly instruction in
978 @code{GIMPLE_ASM} @code{G}.
979 @end deftypefn
980
981 @deftypefn {GIMPLE function} bool gimple_asm_volatile_p (gimple g)
982 Return true if @code{G} is an asm statement marked volatile.
983 @end deftypefn
984
985 @deftypefn {GIMPLE function} void gimple_asm_set_volatile (gimple g)
986 Mark asm statement @code{G} as volatile.
987 @end deftypefn
988
989 @deftypefn {GIMPLE function} void gimple_asm_clear_volatile (gimple g)
990 Remove volatile marker from asm statement @code{G}.
991 @end deftypefn
992
993 @node @code{GIMPLE_ASSIGN}
994 @subsection @code{GIMPLE_ASSIGN}
995 @cindex @code{GIMPLE_ASSIGN}
996
997 @deftypefn {GIMPLE function} gimple gimple_build_assign (tree lhs, tree rhs)
998 Build a @code{GIMPLE_ASSIGN} statement. The left-hand side is an lvalue
999 passed in lhs. The right-hand side can be either a unary or
1000 binary tree expression. The expression tree rhs will be
1001 flattened and its operands assigned to the corresponding operand
1002 slots in the new statement. This function is useful when you
1003 already have a tree expression that you want to convert into a
1004 tuple. However, try to avoid building expression trees for the
1005 sole purpose of calling this function. If you already have the
1006 operands in separate trees, it is better to use
1007 @code{gimple_build_assign_with_ops}.
1008 @end deftypefn
1009
1010
1011 @deftypefn {GIMPLE function} gimple gimplify_assign (tree dst, tree src, gimple_seq *seq_p)
1012 Build a new @code{GIMPLE_ASSIGN} tuple and append it to the end of
1013 @code{*SEQ_P}.
1014 @end deftypefn
1015
1016 @code{DST}/@code{SRC} are the destination and source respectively. You can
1017 pass ungimplified trees in @code{DST} or @code{SRC}, in which
1018 case they will be converted to a gimple operand if necessary.
1019
1020 This function returns the newly created @code{GIMPLE_ASSIGN} tuple.
1021
1022 @deftypefn {GIMPLE function} gimple gimple_build_assign_with_ops @
1023 (enum tree_code subcode, tree lhs, tree op1, tree op2)
1024 This function is similar to @code{gimple_build_assign}, but is used to
1025 build a @code{GIMPLE_ASSIGN} statement when the operands of the
1026 right-hand side of the assignment are already split into
1027 different operands.
1028
1029 The left-hand side is an lvalue passed in lhs. Subcode is the
1030 @code{tree_code} for the right-hand side of the assignment. Op1 and op2
1031 are the operands. If op2 is null, subcode must be a @code{tree_code}
1032 for a unary expression.
1033 @end deftypefn
1034
1035 @deftypefn {GIMPLE function} enum tree_code gimple_assign_rhs_code (gimple g)
1036 Return the code of the expression computed on the @code{RHS} of
1037 assignment statement @code{G}.
1038 @end deftypefn
1039
1040
1041 @deftypefn {GIMPLE function} enum gimple_rhs_class gimple_assign_rhs_class (gimple g)
1042 Return the gimple rhs class of the code for the expression
1043 computed on the rhs of assignment statement @code{G}. This will never
1044 return @code{GIMPLE_INVALID_RHS}.
1045 @end deftypefn
1046
1047 @deftypefn {GIMPLE function} tree gimple_assign_lhs (gimple g)
1048 Return the @code{LHS} of assignment statement @code{G}.
1049 @end deftypefn
1050
1051 @deftypefn {GIMPLE function} tree *gimple_assign_lhs_ptr (gimple g)
1052 Return a pointer to the @code{LHS} of assignment statement @code{G}.
1053 @end deftypefn
1054
1055 @deftypefn {GIMPLE function} tree gimple_assign_rhs1 (gimple g)
1056 Return the first operand on the @code{RHS} of assignment statement @code{G}.
1057 @end deftypefn
1058
1059 @deftypefn {GIMPLE function} tree *gimple_assign_rhs1_ptr (gimple g)
1060 Return the address of the first operand on the @code{RHS} of assignment
1061 statement @code{G}.
1062 @end deftypefn
1063
1064 @deftypefn {GIMPLE function} tree gimple_assign_rhs2 (gimple g)
1065 Return the second operand on the @code{RHS} of assignment statement @code{G}.
1066 @end deftypefn
1067
1068 @deftypefn {GIMPLE function} tree *gimple_assign_rhs2_ptr (gimple g)
1069 Return the address of the second operand on the @code{RHS} of assignment
1070 statement @code{G}.
1071 @end deftypefn
1072
1073 @deftypefn {GIMPLE function} void gimple_assign_set_lhs (gimple g, tree lhs)
1074 Set @code{LHS} to be the @code{LHS} operand of assignment statement @code{G}.
1075 @end deftypefn
1076
1077 @deftypefn {GIMPLE function} void gimple_assign_set_rhs1 (gimple g, tree rhs)
1078 Set @code{RHS} to be the first operand on the @code{RHS} of assignment
1079 statement @code{G}.
1080 @end deftypefn
1081
1082 @deftypefn {GIMPLE function} tree gimple_assign_rhs2 (gimple g)
1083 Return the second operand on the @code{RHS} of assignment statement @code{G}.
1084 @end deftypefn
1085
1086 @deftypefn {GIMPLE function} tree *gimple_assign_rhs2_ptr (gimple g)
1087 Return a pointer to the second operand on the @code{RHS} of assignment
1088 statement @code{G}.
1089 @end deftypefn
1090
1091 @deftypefn {GIMPLE function} void gimple_assign_set_rhs2 (gimple g, tree rhs)
1092 Set @code{RHS} to be the second operand on the @code{RHS} of assignment
1093 statement @code{G}.
1094 @end deftypefn
1095
1096 @deftypefn {GIMPLE function} bool gimple_assign_cast_p (gimple s)
1097 Return true if @code{S} is a type-cast assignment.
1098 @end deftypefn
1099
1100
1101 @node @code{GIMPLE_BIND}
1102 @subsection @code{GIMPLE_BIND}
1103 @cindex @code{GIMPLE_BIND}
1104
1105 @deftypefn {GIMPLE function} gimple gimple_build_bind (tree vars, gimple_seq body)
1106 Build a @code{GIMPLE_BIND} statement with a list of variables in @code{VARS}
1107 and a body of statements in sequence @code{BODY}.
1108 @end deftypefn
1109
1110 @deftypefn {GIMPLE function} tree gimple_bind_vars (gimple g)
1111 Return the variables declared in the @code{GIMPLE_BIND} statement @code{G}.
1112 @end deftypefn
1113
1114 @deftypefn {GIMPLE function} void gimple_bind_set_vars (gimple g, tree vars)
1115 Set @code{VARS} to be the set of variables declared in the @code{GIMPLE_BIND}
1116 statement @code{G}.
1117 @end deftypefn
1118
1119 @deftypefn {GIMPLE function} void gimple_bind_append_vars (gimple g, tree vars)
1120 Append @code{VARS} to the set of variables declared in the @code{GIMPLE_BIND}
1121 statement @code{G}.
1122 @end deftypefn
1123
1124 @deftypefn {GIMPLE function} gimple_seq gimple_bind_body (gimple g)
1125 Return the GIMPLE sequence contained in the @code{GIMPLE_BIND} statement
1126 @code{G}.
1127 @end deftypefn
1128
1129 @deftypefn {GIMPLE function} void gimple_bind_set_body (gimple g, gimple_seq seq)
1130 Set @code{SEQ} to be sequence contained in the @code{GIMPLE_BIND} statement @code{G}.
1131 @end deftypefn
1132
1133 @deftypefn {GIMPLE function} void gimple_bind_add_stmt (gimple gs, gimple stmt)
1134 Append a statement to the end of a @code{GIMPLE_BIND}'s body.
1135 @end deftypefn
1136
1137 @deftypefn {GIMPLE function} void gimple_bind_add_seq (gimple gs, gimple_seq seq)
1138 Append a sequence of statements to the end of a @code{GIMPLE_BIND}'s
1139 body.
1140 @end deftypefn
1141
1142 @deftypefn {GIMPLE function} tree gimple_bind_block (gimple g)
1143 Return the @code{TREE_BLOCK} node associated with @code{GIMPLE_BIND} statement
1144 @code{G}. This is analogous to the @code{BIND_EXPR_BLOCK} field in trees.
1145 @end deftypefn
1146
1147 @deftypefn {GIMPLE function} void gimple_bind_set_block (gimple g, tree block)
1148 Set @code{BLOCK} to be the @code{TREE_BLOCK} node associated with @code{GIMPLE_BIND}
1149 statement @code{G}.
1150 @end deftypefn
1151
1152
1153 @node @code{GIMPLE_CALL}
1154 @subsection @code{GIMPLE_CALL}
1155 @cindex @code{GIMPLE_CALL}
1156
1157 @deftypefn {GIMPLE function} gimple gimple_build_call (tree fn, unsigned nargs, ...)
1158 Build a @code{GIMPLE_CALL} statement to function @code{FN}. The argument @code{FN}
1159 must be either a @code{FUNCTION_DECL} or a gimple call address as
1160 determined by @code{is_gimple_call_addr}. @code{NARGS} are the number of
1161 arguments. The rest of the arguments follow the argument @code{NARGS},
1162 and must be trees that are valid as rvalues in gimple (i.e., each
1163 operand is validated with @code{is_gimple_operand}).
1164 @end deftypefn
1165
1166
1167 @deftypefn {GIMPLE function} gimple gimple_build_call_from_tree (tree call_expr)
1168 Build a @code{GIMPLE_CALL} from a @code{CALL_EXPR} node. The arguments and the
1169 function are taken from the expression directly. This routine
1170 assumes that @code{call_expr} is already in GIMPLE form. That is, its
1171 operands are GIMPLE values and the function call needs no further
1172 simplification. All the call flags in @code{call_expr} are copied over
1173 to the new @code{GIMPLE_CALL}.
1174 @end deftypefn
1175
1176 @deftypefn {GIMPLE function} gimple gimple_build_call_vec (tree fn, @code{VEC}(tree, heap) *args)
1177 Identical to @code{gimple_build_call} but the arguments are stored in a
1178 @code{VEC}().
1179 @end deftypefn
1180
1181 @deftypefn {GIMPLE function} tree gimple_call_lhs (gimple g)
1182 Return the @code{LHS} of call statement @code{G}.
1183 @end deftypefn
1184
1185 @deftypefn {GIMPLE function} tree *gimple_call_lhs_ptr (gimple g)
1186 Return a pointer to the @code{LHS} of call statement @code{G}.
1187 @end deftypefn
1188
1189 @deftypefn {GIMPLE function} void gimple_call_set_lhs (gimple g, tree lhs)
1190 Set @code{LHS} to be the @code{LHS} operand of call statement @code{G}.
1191 @end deftypefn
1192
1193 @deftypefn {GIMPLE function} tree gimple_call_fn (gimple g)
1194 Return the tree node representing the function called by call
1195 statement @code{G}.
1196 @end deftypefn
1197
1198 @deftypefn {GIMPLE function} void gimple_call_set_fn (gimple g, tree fn)
1199 Set @code{FN} to be the function called by call statement @code{G}. This has
1200 to be a gimple value specifying the address of the called
1201 function.
1202 @end deftypefn
1203
1204 @deftypefn {GIMPLE function} tree gimple_call_fndecl (gimple g)
1205 If a given @code{GIMPLE_CALL}'s callee is a @code{FUNCTION_DECL}, return it.
1206 Otherwise return @code{NULL}. This function is analogous to
1207 @code{get_callee_fndecl} in @code{GENERIC}.
1208 @end deftypefn
1209
1210 @deftypefn {GIMPLE function} tree gimple_call_set_fndecl (gimple g, tree fndecl)
1211 Set the called function to @code{FNDECL}.
1212 @end deftypefn
1213
1214 @deftypefn {GIMPLE function} tree gimple_call_return_type (gimple g)
1215 Return the type returned by call statement @code{G}.
1216 @end deftypefn
1217
1218 @deftypefn {GIMPLE function} tree gimple_call_chain (gimple g)
1219 Return the static chain for call statement @code{G}.
1220 @end deftypefn
1221
1222 @deftypefn {GIMPLE function} void gimple_call_set_chain (gimple g, tree chain)
1223 Set @code{CHAIN} to be the static chain for call statement @code{G}.
1224 @end deftypefn
1225
1226 @deftypefn {GIMPLE function} gimple_call_num_args (gimple g)
1227 Return the number of arguments used by call statement @code{G}.
1228 @end deftypefn
1229
1230 @deftypefn {GIMPLE function} tree gimple_call_arg (gimple g, unsigned index)
1231 Return the argument at position @code{INDEX} for call statement @code{G}. The
1232 first argument is 0.
1233 @end deftypefn
1234
1235 @deftypefn {GIMPLE function} tree *gimple_call_arg_ptr (gimple g, unsigned index)
1236 Return a pointer to the argument at position @code{INDEX} for call
1237 statement @code{G}.
1238 @end deftypefn
1239
1240 @deftypefn {GIMPLE function} void gimple_call_set_arg (gimple g, unsigned index, tree arg)
1241 Set @code{ARG} to be the argument at position @code{INDEX} for call statement
1242 @code{G}.
1243 @end deftypefn
1244
1245 @deftypefn {GIMPLE function} void gimple_call_set_tail (gimple s)
1246 Mark call statement @code{S} as being a tail call (i.e., a call just
1247 before the exit of a function). These calls are candidate for
1248 tail call optimization.
1249 @end deftypefn
1250
1251 @deftypefn {GIMPLE function} bool gimple_call_tail_p (gimple s)
1252 Return true if @code{GIMPLE_CALL} @code{S} is marked as a tail call.
1253 @end deftypefn
1254
1255 @deftypefn {GIMPLE function} void gimple_call_mark_uninlinable (gimple s)
1256 Mark @code{GIMPLE_CALL} @code{S} as being uninlinable.
1257 @end deftypefn
1258
1259 @deftypefn {GIMPLE function} bool gimple_call_cannot_inline_p (gimple s)
1260 Return true if @code{GIMPLE_CALL} @code{S} cannot be inlined.
1261 @end deftypefn
1262
1263 @deftypefn {GIMPLE function} bool gimple_call_noreturn_p (gimple s)
1264 Return true if @code{S} is a noreturn call.
1265 @end deftypefn
1266
1267 @deftypefn {GIMPLE function} gimple gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
1268 Build a @code{GIMPLE_CALL} identical to @code{STMT} but skipping the arguments
1269 in the positions marked by the set @code{ARGS_TO_SKIP}.
1270 @end deftypefn
1271
1272
1273 @node @code{GIMPLE_CATCH}
1274 @subsection @code{GIMPLE_CATCH}
1275 @cindex @code{GIMPLE_CATCH}
1276
1277 @deftypefn {GIMPLE function} gimple gimple_build_catch (tree types, gimple_seq handler)
1278 Build a @code{GIMPLE_CATCH} statement. @code{TYPES} are the tree types this
1279 catch handles. @code{HANDLER} is a sequence of statements with the code
1280 for the handler.
1281 @end deftypefn
1282
1283 @deftypefn {GIMPLE function} tree gimple_catch_types (gimple g)
1284 Return the types handled by @code{GIMPLE_CATCH} statement @code{G}.
1285 @end deftypefn
1286
1287 @deftypefn {GIMPLE function} tree *gimple_catch_types_ptr (gimple g)
1288 Return a pointer to the types handled by @code{GIMPLE_CATCH} statement
1289 @code{G}.
1290 @end deftypefn
1291
1292 @deftypefn {GIMPLE function} gimple_seq gimple_catch_handler (gimple g)
1293 Return the GIMPLE sequence representing the body of the handler
1294 of @code{GIMPLE_CATCH} statement @code{G}.
1295 @end deftypefn
1296
1297 @deftypefn {GIMPLE function} void gimple_catch_set_types (gimple g, tree t)
1298 Set @code{T} to be the set of types handled by @code{GIMPLE_CATCH} @code{G}.
1299 @end deftypefn
1300
1301 @deftypefn {GIMPLE function} void gimple_catch_set_handler (gimple g, gimple_seq handler)
1302 Set @code{HANDLER} to be the body of @code{GIMPLE_CATCH} @code{G}.
1303 @end deftypefn
1304
1305
1306 @node @code{GIMPLE_COND}
1307 @subsection @code{GIMPLE_COND}
1308 @cindex @code{GIMPLE_COND}
1309
1310 @deftypefn {GIMPLE function} gimple gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs, tree t_label, tree f_label)
1311 Build a @code{GIMPLE_COND} statement. @code{A} @code{GIMPLE_COND} statement compares
1312 @code{LHS} and @code{RHS} and if the condition in @code{PRED_CODE} is true, jump to
1313 the label in @code{t_label}, otherwise jump to the label in @code{f_label}.
1314 @code{PRED_CODE} are relational operator tree codes like @code{EQ_EXPR},
1315 @code{LT_EXPR}, @code{LE_EXPR}, @code{NE_EXPR}, etc.
1316 @end deftypefn
1317
1318
1319 @deftypefn {GIMPLE function} gimple gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
1320 Build a @code{GIMPLE_COND} statement from the conditional expression
1321 tree @code{COND}. @code{T_LABEL} and @code{F_LABEL} are as in @code{gimple_build_cond}.
1322 @end deftypefn
1323
1324 @deftypefn {GIMPLE function} enum tree_code gimple_cond_code (gimple g)
1325 Return the code of the predicate computed by conditional
1326 statement @code{G}.
1327 @end deftypefn
1328
1329 @deftypefn {GIMPLE function} void gimple_cond_set_code (gimple g, enum tree_code code)
1330 Set @code{CODE} to be the predicate code for the conditional statement
1331 @code{G}.
1332 @end deftypefn
1333
1334 @deftypefn {GIMPLE function} tree gimple_cond_lhs (gimple g)
1335 Return the @code{LHS} of the predicate computed by conditional statement
1336 @code{G}.
1337 @end deftypefn
1338
1339 @deftypefn {GIMPLE function} void gimple_cond_set_lhs (gimple g, tree lhs)
1340 Set @code{LHS} to be the @code{LHS} operand of the predicate computed by
1341 conditional statement @code{G}.
1342 @end deftypefn
1343
1344 @deftypefn {GIMPLE function} tree gimple_cond_rhs (gimple g)
1345 Return the @code{RHS} operand of the predicate computed by conditional
1346 @code{G}.
1347 @end deftypefn
1348
1349 @deftypefn {GIMPLE function} void gimple_cond_set_rhs (gimple g, tree rhs)
1350 Set @code{RHS} to be the @code{RHS} operand of the predicate computed by
1351 conditional statement @code{G}.
1352 @end deftypefn
1353
1354 @deftypefn {GIMPLE function} tree gimple_cond_true_label (gimple g)
1355 Return the label used by conditional statement @code{G} when its
1356 predicate evaluates to true.
1357 @end deftypefn
1358
1359 @deftypefn {GIMPLE function} void gimple_cond_set_true_label (gimple g, tree label)
1360 Set @code{LABEL} to be the label used by conditional statement @code{G} when
1361 its predicate evaluates to true.
1362 @end deftypefn
1363
1364 @deftypefn {GIMPLE function} void gimple_cond_set_false_label (gimple g, tree label)
1365 Set @code{LABEL} to be the label used by conditional statement @code{G} when
1366 its predicate evaluates to false.
1367 @end deftypefn
1368
1369 @deftypefn {GIMPLE function} tree gimple_cond_false_label (gimple g)
1370 Return the label used by conditional statement @code{G} when its
1371 predicate evaluates to false.
1372 @end deftypefn
1373
1374 @deftypefn {GIMPLE function} void gimple_cond_make_false (gimple g)
1375 Set the conditional @code{COND_STMT} to be of the form 'if (1 == 0)'.
1376 @end deftypefn
1377
1378 @deftypefn {GIMPLE function} void gimple_cond_make_true (gimple g)
1379 Set the conditional @code{COND_STMT} to be of the form 'if (1 == 1)'.
1380 @end deftypefn
1381
1382 @node @code{GIMPLE_EH_FILTER}
1383 @subsection @code{GIMPLE_EH_FILTER}
1384 @cindex @code{GIMPLE_EH_FILTER}
1385
1386 @deftypefn {GIMPLE function} gimple gimple_build_eh_filter (tree types, gimple_seq failure)
1387 Build a @code{GIMPLE_EH_FILTER} statement. @code{TYPES} are the filter's
1388 types. @code{FAILURE} is a sequence with the filter's failure action.
1389 @end deftypefn
1390
1391 @deftypefn {GIMPLE function} tree gimple_eh_filter_types (gimple g)
1392 Return the types handled by @code{GIMPLE_EH_FILTER} statement @code{G}.
1393 @end deftypefn
1394
1395 @deftypefn {GIMPLE function} tree *gimple_eh_filter_types_ptr (gimple g)
1396 Return a pointer to the types handled by @code{GIMPLE_EH_FILTER}
1397 statement @code{G}.
1398 @end deftypefn
1399
1400 @deftypefn {GIMPLE function} gimple_seq gimple_eh_filter_failure (gimple g)
1401 Return the sequence of statement to execute when @code{GIMPLE_EH_FILTER}
1402 statement fails.
1403 @end deftypefn
1404
1405 @deftypefn {GIMPLE function} void gimple_eh_filter_set_types (gimple g, tree types)
1406 Set @code{TYPES} to be the set of types handled by @code{GIMPLE_EH_FILTER} @code{G}.
1407 @end deftypefn
1408
1409 @deftypefn {GIMPLE function} void gimple_eh_filter_set_failure (gimple g, gimple_seq failure)
1410 Set @code{FAILURE} to be the sequence of statements to execute on
1411 failure for @code{GIMPLE_EH_FILTER} @code{G}.
1412 @end deftypefn
1413
1414 @deftypefn {GIMPLE function} bool gimple_eh_filter_must_not_throw (gimple g)
1415 Return the @code{EH_FILTER_MUST_NOT_THROW} flag.
1416 @end deftypefn
1417
1418 @deftypefn {GIMPLE function} void gimple_eh_filter_set_must_not_throw (gimple g, bool mntp)
1419 Set the @code{EH_FILTER_MUST_NOT_THROW} flag.
1420 @end deftypefn
1421
1422
1423 @node @code{GIMPLE_LABEL}
1424 @subsection @code{GIMPLE_LABEL}
1425 @cindex @code{GIMPLE_LABEL}
1426
1427 @deftypefn {GIMPLE function} gimple gimple_build_label (tree label)
1428 Build a @code{GIMPLE_LABEL} statement with corresponding to the tree
1429 label, @code{LABEL}.
1430 @end deftypefn
1431
1432 @deftypefn {GIMPLE function} tree gimple_label_label (gimple g)
1433 Return the @code{LABEL_DECL} node used by @code{GIMPLE_LABEL} statement @code{G}.
1434 @end deftypefn
1435
1436 @deftypefn {GIMPLE function} void gimple_label_set_label (gimple g, tree label)
1437 Set @code{LABEL} to be the @code{LABEL_DECL} node used by @code{GIMPLE_LABEL}
1438 statement @code{G}.
1439 @end deftypefn
1440
1441
1442 @deftypefn {GIMPLE function} gimple gimple_build_goto (tree dest)
1443 Build a @code{GIMPLE_GOTO} statement to label @code{DEST}.
1444 @end deftypefn
1445
1446 @deftypefn {GIMPLE function} tree gimple_goto_dest (gimple g)
1447 Return the destination of the unconditional jump @code{G}.
1448 @end deftypefn
1449
1450 @deftypefn {GIMPLE function} void gimple_goto_set_dest (gimple g, tree dest)
1451 Set @code{DEST} to be the destination of the unconditional jump @code{G}.
1452 @end deftypefn
1453
1454
1455 @node @code{GIMPLE_NOP}
1456 @subsection @code{GIMPLE_NOP}
1457 @cindex @code{GIMPLE_NOP}
1458
1459 @deftypefn {GIMPLE function} gimple gimple_build_nop (void)
1460 Build a @code{GIMPLE_NOP} statement.
1461 @end deftypefn
1462
1463 @deftypefn {GIMPLE function} bool gimple_nop_p (gimple g)
1464 Returns @code{TRUE} if statement @code{G} is a @code{GIMPLE_NOP}.
1465 @end deftypefn
1466
1467 @node @code{GIMPLE_OMP_ATOMIC_LOAD}
1468 @subsection @code{GIMPLE_OMP_ATOMIC_LOAD}
1469 @cindex @code{GIMPLE_OMP_ATOMIC_LOAD}
1470
1471 @deftypefn {GIMPLE function} gimple gimple_build_omp_atomic_load (tree lhs, tree rhs)
1472 Build a @code{GIMPLE_OMP_ATOMIC_LOAD} statement. @code{LHS} is the left-hand
1473 side of the assignment. @code{RHS} is the right-hand side of the
1474 assignment.
1475 @end deftypefn
1476
1477 @deftypefn {GIMPLE function} void gimple_omp_atomic_load_set_lhs (gimple g, tree lhs)
1478 Set the @code{LHS} of an atomic load.
1479 @end deftypefn
1480
1481 @deftypefn {GIMPLE function} tree gimple_omp_atomic_load_lhs (gimple g)
1482 Get the @code{LHS} of an atomic load.
1483 @end deftypefn
1484
1485 @deftypefn {GIMPLE function} void gimple_omp_atomic_load_set_rhs (gimple g, tree rhs)
1486 Set the @code{RHS} of an atomic set.
1487 @end deftypefn
1488
1489 @deftypefn {GIMPLE function} tree gimple_omp_atomic_load_rhs (gimple g)
1490 Get the @code{RHS} of an atomic set.
1491 @end deftypefn
1492
1493
1494 @node @code{GIMPLE_OMP_ATOMIC_STORE}
1495 @subsection @code{GIMPLE_OMP_ATOMIC_STORE}
1496 @cindex @code{GIMPLE_OMP_ATOMIC_STORE}
1497
1498 @deftypefn {GIMPLE function} gimple gimple_build_omp_atomic_store (tree val)
1499 Build a @code{GIMPLE_OMP_ATOMIC_STORE} statement. @code{VAL} is the value to be
1500 stored.
1501 @end deftypefn
1502
1503 @deftypefn {GIMPLE function} void gimple_omp_atomic_store_set_val (gimple g, tree val)
1504 Set the value being stored in an atomic store.
1505 @end deftypefn
1506
1507 @deftypefn {GIMPLE function} tree gimple_omp_atomic_store_val (gimple g)
1508 Return the value being stored in an atomic store.
1509 @end deftypefn
1510
1511 @node @code{GIMPLE_OMP_CONTINUE}
1512 @subsection @code{GIMPLE_OMP_CONTINUE}
1513 @cindex @code{GIMPLE_OMP_CONTINUE}
1514
1515 @deftypefn {GIMPLE function} gimple gimple_build_omp_continue (tree control_def, tree control_use)
1516 Build a @code{GIMPLE_OMP_CONTINUE} statement. @code{CONTROL_DEF} is the
1517 definition of the control variable. @code{CONTROL_USE} is the use of
1518 the control variable.
1519 @end deftypefn
1520
1521 @deftypefn {GIMPLE function} tree gimple_omp_continue_control_def (gimple s)
1522 Return the definition of the control variable on a
1523 @code{GIMPLE_OMP_CONTINUE} in @code{S}.
1524 @end deftypefn
1525
1526 @deftypefn {GIMPLE function} tree gimple_omp_continue_control_def_ptr (gimple s)
1527 Same as above, but return the pointer.
1528 @end deftypefn
1529
1530 @deftypefn {GIMPLE function} tree gimple_omp_continue_set_control_def (gimple s)
1531 Set the control variable definition for a @code{GIMPLE_OMP_CONTINUE}
1532 statement in @code{S}.
1533 @end deftypefn
1534
1535 @deftypefn {GIMPLE function} tree gimple_omp_continue_control_use (gimple s)
1536 Return the use of the control variable on a @code{GIMPLE_OMP_CONTINUE}
1537 in @code{S}.
1538 @end deftypefn
1539
1540 @deftypefn {GIMPLE function} tree gimple_omp_continue_control_use_ptr (gimple s)
1541 Same as above, but return the pointer.
1542 @end deftypefn
1543
1544 @deftypefn {GIMPLE function} tree gimple_omp_continue_set_control_use (gimple s)
1545 Set the control variable use for a @code{GIMPLE_OMP_CONTINUE} statement
1546 in @code{S}.
1547 @end deftypefn
1548
1549
1550 @node @code{GIMPLE_OMP_CRITICAL}
1551 @subsection @code{GIMPLE_OMP_CRITICAL}
1552 @cindex @code{GIMPLE_OMP_CRITICAL}
1553
1554 @deftypefn {GIMPLE function} gimple gimple_build_omp_critical (gimple_seq body, tree name)
1555 Build a @code{GIMPLE_OMP_CRITICAL} statement. @code{BODY} is the sequence of
1556 statements for which only one thread can execute. @code{NAME} is an
1557 optional identifier for this critical block.
1558 @end deftypefn
1559
1560 @deftypefn {GIMPLE function} tree gimple_omp_critical_name (gimple g)
1561 Return the name associated with @code{OMP_CRITICAL} statement @code{G}.
1562 @end deftypefn
1563
1564 @deftypefn {GIMPLE function} tree *gimple_omp_critical_name_ptr (gimple g)
1565 Return a pointer to the name associated with @code{OMP} critical
1566 statement @code{G}.
1567 @end deftypefn
1568
1569 @deftypefn {GIMPLE function} void gimple_omp_critical_set_name (gimple g, tree name)
1570 Set @code{NAME} to be the name associated with @code{OMP} critical statement @code{G}.
1571 @end deftypefn
1572
1573 @node @code{GIMPLE_OMP_FOR}
1574 @subsection @code{GIMPLE_OMP_FOR}
1575 @cindex @code{GIMPLE_OMP_FOR}
1576
1577 @deftypefn {GIMPLE function} gimple gimple_build_omp_for (gimple_seq body, @
1578 tree clauses, tree index, tree initial, tree final, tree incr, @
1579 gimple_seq pre_body, enum tree_code omp_for_cond)
1580 Build a @code{GIMPLE_OMP_FOR} statement. @code{BODY} is sequence of statements
1581 inside the for loop. @code{CLAUSES}, are any of the @code{OMP} loop
1582 construct's clauses: private, firstprivate, lastprivate,
1583 reductions, ordered, schedule, and nowait. @code{PRE_BODY} is the
1584 sequence of statements that are loop invariant. @code{INDEX} is the
1585 index variable. @code{INITIAL} is the initial value of @code{INDEX}. @code{FINAL} is
1586 final value of @code{INDEX}. OMP_FOR_COND is the predicate used to
1587 compare @code{INDEX} and @code{FINAL}. @code{INCR} is the increment expression.
1588 @end deftypefn
1589
1590 @deftypefn {GIMPLE function} tree gimple_omp_for_clauses (gimple g)
1591 Return the clauses associated with @code{OMP_FOR} @code{G}.
1592 @end deftypefn
1593
1594 @deftypefn {GIMPLE function} tree *gimple_omp_for_clauses_ptr (gimple g)
1595 Return a pointer to the @code{OMP_FOR} @code{G}.
1596 @end deftypefn
1597
1598 @deftypefn {GIMPLE function} void gimple_omp_for_set_clauses (gimple g, tree clauses)
1599 Set @code{CLAUSES} to be the list of clauses associated with @code{OMP_FOR} @code{G}.
1600 @end deftypefn
1601
1602 @deftypefn {GIMPLE function} tree gimple_omp_for_index (gimple g)
1603 Return the index variable for @code{OMP_FOR} @code{G}.
1604 @end deftypefn
1605
1606 @deftypefn {GIMPLE function} tree *gimple_omp_for_index_ptr (gimple g)
1607 Return a pointer to the index variable for @code{OMP_FOR} @code{G}.
1608 @end deftypefn
1609
1610 @deftypefn {GIMPLE function} void gimple_omp_for_set_index (gimple g, tree index)
1611 Set @code{INDEX} to be the index variable for @code{OMP_FOR} @code{G}.
1612 @end deftypefn
1613
1614 @deftypefn {GIMPLE function} tree gimple_omp_for_initial (gimple g)
1615 Return the initial value for @code{OMP_FOR} @code{G}.
1616 @end deftypefn
1617
1618 @deftypefn {GIMPLE function} tree *gimple_omp_for_initial_ptr (gimple g)
1619 Return a pointer to the initial value for @code{OMP_FOR} @code{G}.
1620 @end deftypefn
1621
1622 @deftypefn {GIMPLE function} void gimple_omp_for_set_initial (gimple g, tree initial)
1623 Set @code{INITIAL} to be the initial value for @code{OMP_FOR} @code{G}.
1624 @end deftypefn
1625
1626 @deftypefn {GIMPLE function} tree gimple_omp_for_final (gimple g)
1627 Return the final value for @code{OMP_FOR} @code{G}.
1628 @end deftypefn
1629
1630 @deftypefn {GIMPLE function} tree *gimple_omp_for_final_ptr (gimple g)
1631 turn a pointer to the final value for @code{OMP_FOR} @code{G}.
1632 @end deftypefn
1633
1634 @deftypefn {GIMPLE function} void gimple_omp_for_set_final (gimple g, tree final)
1635 Set @code{FINAL} to be the final value for @code{OMP_FOR} @code{G}.
1636 @end deftypefn
1637
1638 @deftypefn {GIMPLE function} tree gimple_omp_for_incr (gimple g)
1639 Return the increment value for @code{OMP_FOR} @code{G}.
1640 @end deftypefn
1641
1642 @deftypefn {GIMPLE function} tree *gimple_omp_for_incr_ptr (gimple g)
1643 Return a pointer to the increment value for @code{OMP_FOR} @code{G}.
1644 @end deftypefn
1645
1646 @deftypefn {GIMPLE function} void gimple_omp_for_set_incr (gimple g, tree incr)
1647 Set @code{INCR} to be the increment value for @code{OMP_FOR} @code{G}.
1648 @end deftypefn
1649
1650 @deftypefn {GIMPLE function} gimple_seq gimple_omp_for_pre_body (gimple g)
1651 Return the sequence of statements to execute before the @code{OMP_FOR}
1652 statement @code{G} starts.
1653 @end deftypefn
1654
1655 @deftypefn {GIMPLE function} void gimple_omp_for_set_pre_body (gimple g, gimple_seq pre_body)
1656 Set @code{PRE_BODY} to be the sequence of statements to execute before
1657 the @code{OMP_FOR} statement @code{G} starts.
1658 @end deftypefn
1659
1660 @deftypefn {GIMPLE function} void gimple_omp_for_set_cond (gimple g, enum tree_code cond)
1661 Set @code{COND} to be the condition code for @code{OMP_FOR} @code{G}.
1662 @end deftypefn
1663
1664 @deftypefn {GIMPLE function} enum tree_code gimple_omp_for_cond (gimple g)
1665 Return the condition code associated with @code{OMP_FOR} @code{G}.
1666 @end deftypefn
1667
1668
1669 @node @code{GIMPLE_OMP_MASTER}
1670 @subsection @code{GIMPLE_OMP_MASTER}
1671 @cindex @code{GIMPLE_OMP_MASTER}
1672
1673 @deftypefn {GIMPLE function} gimple gimple_build_omp_master (gimple_seq body)
1674 Build a @code{GIMPLE_OMP_MASTER} statement. @code{BODY} is the sequence of
1675 statements to be executed by just the master.
1676 @end deftypefn
1677
1678
1679 @node @code{GIMPLE_OMP_ORDERED}
1680 @subsection @code{GIMPLE_OMP_ORDERED}
1681 @cindex @code{GIMPLE_OMP_ORDERED}
1682
1683 @deftypefn {GIMPLE function} gimple gimple_build_omp_ordered (gimple_seq body)
1684 Build a @code{GIMPLE_OMP_ORDERED} statement.
1685 @end deftypefn
1686
1687 @code{BODY} is the sequence of statements inside a loop that will
1688 executed in sequence.
1689
1690
1691 @node @code{GIMPLE_OMP_PARALLEL}
1692 @subsection @code{GIMPLE_OMP_PARALLEL}
1693 @cindex @code{GIMPLE_OMP_PARALLEL}
1694
1695 @deftypefn {GIMPLE function} gimple gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn, tree data_arg)
1696 Build a @code{GIMPLE_OMP_PARALLEL} statement.
1697 @end deftypefn
1698
1699 @code{BODY} is sequence of statements which are executed in parallel.
1700 @code{CLAUSES}, are the @code{OMP} parallel construct's clauses. @code{CHILD_FN} is
1701 the function created for the parallel threads to execute.
1702 @code{DATA_ARG} are the shared data argument(s).
1703
1704 @deftypefn {GIMPLE function} bool gimple_omp_parallel_combined_p (gimple g)
1705 Return true if @code{OMP} parallel statement @code{G} has the
1706 @code{GF_OMP_PARALLEL_COMBINED} flag set.
1707 @end deftypefn
1708
1709 @deftypefn {GIMPLE function} void gimple_omp_parallel_set_combined_p (gimple g)
1710 Set the @code{GF_OMP_PARALLEL_COMBINED} field in @code{OMP} parallel statement
1711 @code{G}.
1712 @end deftypefn
1713
1714 @deftypefn {GIMPLE function} gimple_seq gimple_omp_body (gimple g)
1715 Return the body for the @code{OMP} statement @code{G}.
1716 @end deftypefn
1717
1718 @deftypefn {GIMPLE function} void gimple_omp_set_body (gimple g, gimple_seq body)
1719 Set @code{BODY} to be the body for the @code{OMP} statement @code{G}.
1720 @end deftypefn
1721
1722 @deftypefn {GIMPLE function} tree gimple_omp_parallel_clauses (gimple g)
1723 Return the clauses associated with @code{OMP_PARALLEL} @code{G}.
1724 @end deftypefn
1725
1726 @deftypefn {GIMPLE function} tree *gimple_omp_parallel_clauses_ptr (gimple g)
1727 Return a pointer to the clauses associated with @code{OMP_PARALLEL} @code{G}.
1728 @end deftypefn
1729
1730 @deftypefn {GIMPLE function} void gimple_omp_parallel_set_clauses (gimple g, tree clauses)
1731 Set @code{CLAUSES} to be the list of clauses associated with
1732 @code{OMP_PARALLEL} @code{G}.
1733 @end deftypefn
1734
1735 @deftypefn {GIMPLE function} tree gimple_omp_parallel_child_fn (gimple g)
1736 Return the child function used to hold the body of @code{OMP_PARALLEL}
1737 @code{G}.
1738 @end deftypefn
1739
1740 @deftypefn {GIMPLE function} tree *gimple_omp_parallel_child_fn_ptr (gimple g)
1741 Return a pointer to the child function used to hold the body of
1742 @code{OMP_PARALLEL} @code{G}.
1743 @end deftypefn
1744
1745 @deftypefn {GIMPLE function} void gimple_omp_parallel_set_child_fn (gimple g, tree child_fn)
1746 Set @code{CHILD_FN} to be the child function for @code{OMP_PARALLEL} @code{G}.
1747 @end deftypefn
1748
1749 @deftypefn {GIMPLE function} tree gimple_omp_parallel_data_arg (gimple g)
1750 Return the artificial argument used to send variables and values
1751 from the parent to the children threads in @code{OMP_PARALLEL} @code{G}.
1752 @end deftypefn
1753
1754 @deftypefn {GIMPLE function} tree *gimple_omp_parallel_data_arg_ptr (gimple g)
1755 Return a pointer to the data argument for @code{OMP_PARALLEL} @code{G}.
1756 @end deftypefn
1757
1758 @deftypefn {GIMPLE function} void gimple_omp_parallel_set_data_arg (gimple g, tree data_arg)
1759 Set @code{DATA_ARG} to be the data argument for @code{OMP_PARALLEL} @code{G}.
1760 @end deftypefn
1761
1762 @deftypefn {GIMPLE function} bool is_gimple_omp (gimple stmt)
1763 Returns true when the gimple statement @code{STMT} is any of the OpenMP
1764 types.
1765 @end deftypefn
1766
1767
1768 @node @code{GIMPLE_OMP_RETURN}
1769 @subsection @code{GIMPLE_OMP_RETURN}
1770 @cindex @code{GIMPLE_OMP_RETURN}
1771
1772 @deftypefn {GIMPLE function} gimple gimple_build_omp_return (bool wait_p)
1773 Build a @code{GIMPLE_OMP_RETURN} statement. @code{WAIT_P} is true if this is a
1774 non-waiting return.
1775 @end deftypefn
1776
1777 @deftypefn {GIMPLE function} void gimple_omp_return_set_nowait (gimple s)
1778 Set the nowait flag on @code{GIMPLE_OMP_RETURN} statement @code{S}.
1779 @end deftypefn
1780
1781
1782 @deftypefn {GIMPLE function} bool gimple_omp_return_nowait_p (gimple g)
1783 Return true if @code{OMP} return statement @code{G} has the
1784 @code{GF_OMP_RETURN_NOWAIT} flag set.
1785 @end deftypefn
1786
1787 @node @code{GIMPLE_OMP_SECTION}
1788 @subsection @code{GIMPLE_OMP_SECTION}
1789 @cindex @code{GIMPLE_OMP_SECTION}
1790
1791 @deftypefn {GIMPLE function} gimple gimple_build_omp_section (gimple_seq body)
1792 Build a @code{GIMPLE_OMP_SECTION} statement for a sections statement.
1793 @end deftypefn
1794
1795 @code{BODY} is the sequence of statements in the section.
1796
1797 @deftypefn {GIMPLE function} bool gimple_omp_section_last_p (gimple g)
1798 Return true if @code{OMP} section statement @code{G} has the
1799 @code{GF_OMP_SECTION_LAST} flag set.
1800 @end deftypefn
1801
1802 @deftypefn {GIMPLE function} void gimple_omp_section_set_last (gimple g)
1803 Set the @code{GF_OMP_SECTION_LAST} flag on @code{G}.
1804 @end deftypefn
1805
1806 @node @code{GIMPLE_OMP_SECTIONS}
1807 @subsection @code{GIMPLE_OMP_SECTIONS}
1808 @cindex @code{GIMPLE_OMP_SECTIONS}
1809
1810 @deftypefn {GIMPLE function} gimple gimple_build_omp_sections (gimple_seq body, tree clauses)
1811 Build a @code{GIMPLE_OMP_SECTIONS} statement. @code{BODY} is a sequence of
1812 section statements. @code{CLAUSES} are any of the @code{OMP} sections
1813 construct's clauses: private, firstprivate, lastprivate,
1814 reduction, and nowait.
1815 @end deftypefn
1816
1817
1818 @deftypefn {GIMPLE function} gimple gimple_build_omp_sections_switch (void)
1819 Build a @code{GIMPLE_OMP_SECTIONS_SWITCH} statement.
1820 @end deftypefn
1821
1822 @deftypefn {GIMPLE function} tree gimple_omp_sections_control (gimple g)
1823 Return the control variable associated with the
1824 @code{GIMPLE_OMP_SECTIONS} in @code{G}.
1825 @end deftypefn
1826
1827 @deftypefn {GIMPLE function} tree *gimple_omp_sections_control_ptr (gimple g)
1828 Return a pointer to the clauses associated with the
1829 @code{GIMPLE_OMP_SECTIONS} in @code{G}.
1830 @end deftypefn
1831
1832 @deftypefn {GIMPLE function} void gimple_omp_sections_set_control (gimple g, tree control)
1833 Set @code{CONTROL} to be the set of clauses associated with the
1834 @code{GIMPLE_OMP_SECTIONS} in @code{G}.
1835 @end deftypefn
1836
1837 @deftypefn {GIMPLE function} tree gimple_omp_sections_clauses (gimple g)
1838 Return the clauses associated with @code{OMP_SECTIONS} @code{G}.
1839 @end deftypefn
1840
1841 @deftypefn {GIMPLE function} tree *gimple_omp_sections_clauses_ptr (gimple g)
1842 Return a pointer to the clauses associated with @code{OMP_SECTIONS} @code{G}.
1843 @end deftypefn
1844
1845 @deftypefn {GIMPLE function} void gimple_omp_sections_set_clauses (gimple g, tree clauses)
1846 Set @code{CLAUSES} to be the set of clauses associated with @code{OMP_SECTIONS}
1847 @code{G}.
1848 @end deftypefn
1849
1850
1851 @node @code{GIMPLE_OMP_SINGLE}
1852 @subsection @code{GIMPLE_OMP_SINGLE}
1853 @cindex @code{GIMPLE_OMP_SINGLE}
1854
1855 @deftypefn {GIMPLE function} gimple gimple_build_omp_single (gimple_seq body, tree clauses)
1856 Build a @code{GIMPLE_OMP_SINGLE} statement. @code{BODY} is the sequence of
1857 statements that will be executed once. @code{CLAUSES} are any of the
1858 @code{OMP} single construct's clauses: private, firstprivate,
1859 copyprivate, nowait.
1860 @end deftypefn
1861
1862 @deftypefn {GIMPLE function} tree gimple_omp_single_clauses (gimple g)
1863 Return the clauses associated with @code{OMP_SINGLE} @code{G}.
1864 @end deftypefn
1865
1866 @deftypefn {GIMPLE function} tree *gimple_omp_single_clauses_ptr (gimple g)
1867 Return a pointer to the clauses associated with @code{OMP_SINGLE} @code{G}.
1868 @end deftypefn
1869
1870 @deftypefn {GIMPLE function} void gimple_omp_single_set_clauses (gimple g, tree clauses)
1871 Set @code{CLAUSES} to be the clauses associated with @code{OMP_SINGLE} @code{G}.
1872 @end deftypefn
1873
1874
1875 @node @code{GIMPLE_PHI}
1876 @subsection @code{GIMPLE_PHI}
1877 @cindex @code{GIMPLE_PHI}
1878
1879 @deftypefn {GIMPLE function} gimple make_phi_node (tree var, int len)
1880 Build a @code{PHI} node with len argument slots for variable var.
1881 @end deftypefn
1882
1883 @deftypefn {GIMPLE function} unsigned gimple_phi_capacity (gimple g)
1884 Return the maximum number of arguments supported by @code{GIMPLE_PHI} @code{G}.
1885 @end deftypefn
1886
1887 @deftypefn {GIMPLE function} unsigned gimple_phi_num_args (gimple g)
1888 Return the number of arguments in @code{GIMPLE_PHI} @code{G}. This must always
1889 be exactly the number of incoming edges for the basic block
1890 holding @code{G}.
1891 @end deftypefn
1892
1893 @deftypefn {GIMPLE function} tree gimple_phi_result (gimple g)
1894 Return the @code{SSA} name created by @code{GIMPLE_PHI} @code{G}.
1895 @end deftypefn
1896
1897 @deftypefn {GIMPLE function} tree *gimple_phi_result_ptr (gimple g)
1898 Return a pointer to the @code{SSA} name created by @code{GIMPLE_PHI} @code{G}.
1899 @end deftypefn
1900
1901 @deftypefn {GIMPLE function} void gimple_phi_set_result (gimple g, tree result)
1902 Set @code{RESULT} to be the @code{SSA} name created by @code{GIMPLE_PHI} @code{G}.
1903 @end deftypefn
1904
1905 @deftypefn {GIMPLE function} struct phi_arg_d *gimple_phi_arg (gimple g, index)
1906 Return the @code{PHI} argument corresponding to incoming edge @code{INDEX} for
1907 @code{GIMPLE_PHI} @code{G}.
1908 @end deftypefn
1909
1910 @deftypefn {GIMPLE function} void gimple_phi_set_arg (gimple g, index, struct phi_arg_d * phiarg)
1911 Set @code{PHIARG} to be the argument corresponding to incoming edge
1912 @code{INDEX} for @code{GIMPLE_PHI} @code{G}.
1913 @end deftypefn
1914
1915 @node @code{GIMPLE_RESX}
1916 @subsection @code{GIMPLE_RESX}
1917 @cindex @code{GIMPLE_RESX}
1918
1919 @deftypefn {GIMPLE function} gimple gimple_build_resx (int region)
1920 Build a @code{GIMPLE_RESX} statement which is a statement. This
1921 statement is a placeholder for _Unwind_Resume before we know if a
1922 function call or a branch is needed. @code{REGION} is the exception
1923 region from which control is flowing.
1924 @end deftypefn
1925
1926 @deftypefn {GIMPLE function} int gimple_resx_region (gimple g)
1927 Return the region number for @code{GIMPLE_RESX} @code{G}.
1928 @end deftypefn
1929
1930 @deftypefn {GIMPLE function} void gimple_resx_set_region (gimple g, int region)
1931 Set @code{REGION} to be the region number for @code{GIMPLE_RESX} @code{G}.
1932 @end deftypefn
1933
1934 @node @code{GIMPLE_RETURN}
1935 @subsection @code{GIMPLE_RETURN}
1936 @cindex @code{GIMPLE_RETURN}
1937
1938 @deftypefn {GIMPLE function} gimple gimple_build_return (tree retval)
1939 Build a @code{GIMPLE_RETURN} statement whose return value is retval.
1940 @end deftypefn
1941
1942 @deftypefn {GIMPLE function} tree gimple_return_retval (gimple g)
1943 Return the return value for @code{GIMPLE_RETURN} @code{G}.
1944 @end deftypefn
1945
1946 @deftypefn {GIMPLE function} void gimple_return_set_retval (gimple g, tree retval)
1947 Set @code{RETVAL} to be the return value for @code{GIMPLE_RETURN} @code{G}.
1948 @end deftypefn
1949
1950 @node @code{GIMPLE_SWITCH}
1951 @subsection @code{GIMPLE_SWITCH}
1952 @cindex @code{GIMPLE_SWITCH}
1953
1954 @deftypefn {GIMPLE function} gimple gimple_build_switch ( nlabels, tree index, tree default_label, ...)
1955 Build a @code{GIMPLE_SWITCH} statement. @code{NLABELS} are the number of
1956 labels excluding the default label. The default label is passed
1957 in @code{DEFAULT_LABEL}. The rest of the arguments are trees
1958 representing the labels. Each label is a tree of code
1959 @code{CASE_LABEL_EXPR}.
1960 @end deftypefn
1961
1962 @deftypefn {GIMPLE function} gimple gimple_build_switch_vec (tree index, tree default_label, @code{VEC}(tree,heap) *args)
1963 This function is an alternate way of building @code{GIMPLE_SWITCH}
1964 statements. @code{INDEX} and @code{DEFAULT_LABEL} are as in
1965 gimple_build_switch. @code{ARGS} is a vector of @code{CASE_LABEL_EXPR} trees
1966 that contain the labels.
1967 @end deftypefn
1968
1969 @deftypefn {GIMPLE function} unsigned gimple_switch_num_labels (gimple g)
1970 Return the number of labels associated with the switch statement
1971 @code{G}.
1972 @end deftypefn
1973
1974 @deftypefn {GIMPLE function} void gimple_switch_set_num_labels (gimple g, unsigned nlabels)
1975 Set @code{NLABELS} to be the number of labels for the switch statement
1976 @code{G}.
1977 @end deftypefn
1978
1979 @deftypefn {GIMPLE function} tree gimple_switch_index (gimple g)
1980 Return the index variable used by the switch statement @code{G}.
1981 @end deftypefn
1982
1983 @deftypefn {GIMPLE function} void gimple_switch_set_index (gimple g, tree index)
1984 Set @code{INDEX} to be the index variable for switch statement @code{G}.
1985 @end deftypefn
1986
1987 @deftypefn {GIMPLE function} tree gimple_switch_label (gimple g, unsigned index)
1988 Return the label numbered @code{INDEX}. The default label is 0, followed
1989 by any labels in a switch statement.
1990 @end deftypefn
1991
1992 @deftypefn {GIMPLE function} void gimple_switch_set_label (gimple g, unsigned index, tree label)
1993 Set the label number @code{INDEX} to @code{LABEL}. 0 is always the default
1994 label.
1995 @end deftypefn
1996
1997 @deftypefn {GIMPLE function} tree gimple_switch_default_label (gimple g)
1998 Return the default label for a switch statement.
1999 @end deftypefn
2000
2001 @deftypefn {GIMPLE function} void gimple_switch_set_default_label (gimple g, tree label)
2002 Set the default label for a switch statement.
2003 @end deftypefn
2004
2005
2006 @node @code{GIMPLE_TRY}
2007 @subsection @code{GIMPLE_TRY}
2008 @cindex @code{GIMPLE_TRY}
2009
2010 @deftypefn {GIMPLE function} gimple gimple_build_try (gimple_seq eval, gimple_seq cleanup, unsigned int kind)
2011 Build a @code{GIMPLE_TRY} statement. @code{EVAL} is a sequence with the
2012 expression to evaluate. @code{CLEANUP} is a sequence of statements to
2013 run at clean-up time. @code{KIND} is the enumeration value
2014 @code{GIMPLE_TRY_CATCH} if this statement denotes a try/catch construct
2015 or @code{GIMPLE_TRY_FINALLY} if this statement denotes a try/finally
2016 construct.
2017 @end deftypefn
2018
2019 @deftypefn {GIMPLE function} enum gimple_try_flags gimple_try_kind (gimple g)
2020 Return the kind of try block represented by @code{GIMPLE_TRY} @code{G}. This is
2021 either @code{GIMPLE_TRY_CATCH} or @code{GIMPLE_TRY_FINALLY}.
2022 @end deftypefn
2023
2024 @deftypefn {GIMPLE function} bool gimple_try_catch_is_cleanup (gimple g)
2025 Return the @code{GIMPLE_TRY_CATCH_IS_CLEANUP} flag.
2026 @end deftypefn
2027
2028 @deftypefn {GIMPLE function} gimple_seq gimple_try_eval (gimple g)
2029 Return the sequence of statements used as the body for @code{GIMPLE_TRY}
2030 @code{G}.
2031 @end deftypefn
2032
2033 @deftypefn {GIMPLE function} gimple_seq gimple_try_cleanup (gimple g)
2034 Return the sequence of statements used as the cleanup body for
2035 @code{GIMPLE_TRY} @code{G}.
2036 @end deftypefn
2037
2038 @deftypefn {GIMPLE function} void gimple_try_set_catch_is_cleanup (gimple g, bool catch_is_cleanup)
2039 Set the @code{GIMPLE_TRY_CATCH_IS_CLEANUP} flag.
2040 @end deftypefn
2041
2042 @deftypefn {GIMPLE function} void gimple_try_set_eval (gimple g, gimple_seq eval)
2043 Set @code{EVAL} to be the sequence of statements to use as the body for
2044 @code{GIMPLE_TRY} @code{G}.
2045 @end deftypefn
2046
2047 @deftypefn {GIMPLE function} void gimple_try_set_cleanup (gimple g, gimple_seq cleanup)
2048 Set @code{CLEANUP} to be the sequence of statements to use as the
2049 cleanup body for @code{GIMPLE_TRY} @code{G}.
2050 @end deftypefn
2051
2052 @node @code{GIMPLE_WITH_CLEANUP_EXPR}
2053 @subsection @code{GIMPLE_WITH_CLEANUP_EXPR}
2054 @cindex @code{GIMPLE_WITH_CLEANUP_EXPR}
2055
2056 @deftypefn {GIMPLE function} gimple gimple_build_wce (gimple_seq cleanup)
2057 Build a @code{GIMPLE_WITH_CLEANUP_EXPR} statement. @code{CLEANUP} is the
2058 clean-up expression.
2059 @end deftypefn
2060
2061 @deftypefn {GIMPLE function} gimple_seq gimple_wce_cleanup (gimple g)
2062 Return the cleanup sequence for cleanup statement @code{G}.
2063 @end deftypefn
2064
2065 @deftypefn {GIMPLE function} void gimple_wce_set_cleanup (gimple g, gimple_seq cleanup)
2066 Set @code{CLEANUP} to be the cleanup sequence for @code{G}.
2067 @end deftypefn
2068
2069 @deftypefn {GIMPLE function} bool gimple_wce_cleanup_eh_only (gimple g)
2070 Return the @code{CLEANUP_EH_ONLY} flag for a @code{WCE} tuple.
2071 @end deftypefn
2072
2073 @deftypefn {GIMPLE function} void gimple_wce_set_cleanup_eh_only (gimple g, bool eh_only_p)
2074 Set the @code{CLEANUP_EH_ONLY} flag for a @code{WCE} tuple.
2075 @end deftypefn
2076
2077
2078 @node GIMPLE sequences
2079 @section GIMPLE sequences
2080 @cindex GIMPLE sequences
2081
2082 GIMPLE sequences are the tuple equivalent of @code{STATEMENT_LIST}'s
2083 used in @code{GENERIC}. They are used to chain statements together, and
2084 when used in conjunction with sequence iterators, provide a
2085 framework for iterating through statements.
2086
2087 GIMPLE sequences are of type struct @code{gimple_sequence}, but are more
2088 commonly passed by reference to functions dealing with sequences.
2089 The type for a sequence pointer is @code{gimple_seq} which is the same
2090 as struct @code{gimple_sequence} *. When declaring a local sequence,
2091 you can define a local variable of type struct @code{gimple_sequence}.
2092 When declaring a sequence allocated on the garbage collected
2093 heap, use the function @code{gimple_seq_alloc} documented below.
2094
2095 There are convenience functions for iterating through sequences
2096 in the section entitled Sequence Iterators.
2097
2098 Below is a list of functions to manipulate and query sequences.
2099
2100 @deftypefn {GIMPLE function} void gimple_seq_add_stmt (gimple_seq *seq, gimple g)
2101 Link a gimple statement to the end of the sequence *@code{SEQ} if @code{G} is
2102 not @code{NULL}. If *@code{SEQ} is @code{NULL}, allocate a sequence before linking.
2103 @end deftypefn
2104
2105 @deftypefn {GIMPLE function} void gimple_seq_add_seq (gimple_seq *dest, gimple_seq src)
2106 Append sequence @code{SRC} to the end of sequence *@code{DEST} if @code{SRC} is not
2107 @code{NULL}. If *@code{DEST} is @code{NULL}, allocate a new sequence before
2108 appending.
2109 @end deftypefn
2110
2111 @deftypefn {GIMPLE function} gimple_seq gimple_seq_deep_copy (gimple_seq src)
2112 Perform a deep copy of sequence @code{SRC} and return the result.
2113 @end deftypefn
2114
2115 @deftypefn {GIMPLE function} gimple_seq gimple_seq_reverse (gimple_seq seq)
2116 Reverse the order of the statements in the sequence @code{SEQ}. Return
2117 @code{SEQ}.
2118 @end deftypefn
2119
2120 @deftypefn {GIMPLE function} gimple gimple_seq_first (gimple_seq s)
2121 Return the first statement in sequence @code{S}.
2122 @end deftypefn
2123
2124 @deftypefn {GIMPLE function} gimple gimple_seq_last (gimple_seq s)
2125 Return the last statement in sequence @code{S}.
2126 @end deftypefn
2127
2128 @deftypefn {GIMPLE function} void gimple_seq_set_last (gimple_seq s, gimple last)
2129 Set the last statement in sequence @code{S} to the statement in @code{LAST}.
2130 @end deftypefn
2131
2132 @deftypefn {GIMPLE function} void gimple_seq_set_first (gimple_seq s, gimple first)
2133 Set the first statement in sequence @code{S} to the statement in @code{FIRST}.
2134 @end deftypefn
2135
2136 @deftypefn {GIMPLE function} void gimple_seq_init (gimple_seq s)
2137 Initialize sequence @code{S} to an empty sequence.
2138 @end deftypefn
2139
2140 @deftypefn {GIMPLE function} gimple_seq gimple_seq_alloc (void)
2141 Allocate a new sequence in the garbage collected store and return
2142 it.
2143 @end deftypefn
2144
2145 @deftypefn {GIMPLE function} void gimple_seq_copy (gimple_seq dest, gimple_seq src)
2146 Copy the sequence @code{SRC} into the sequence @code{DEST}.
2147 @end deftypefn
2148
2149 @deftypefn {GIMPLE function} bool gimple_seq_empty_p (gimple_seq s)
2150 Return true if the sequence @code{S} is empty.
2151 @end deftypefn
2152
2153 @deftypefn {GIMPLE function} gimple_seq bb_seq (basic_block bb)
2154 Returns the sequence of statements in @code{BB}.
2155 @end deftypefn
2156
2157 @deftypefn {GIMPLE function} void set_bb_seq (basic_block bb, gimple_seq seq)
2158 Sets the sequence of statements in @code{BB} to @code{SEQ}.
2159 @end deftypefn
2160
2161 @deftypefn {GIMPLE function} bool gimple_seq_singleton_p (gimple_seq seq)
2162 Determine whether @code{SEQ} contains exactly one statement.
2163 @end deftypefn
2164
2165 @node Sequence iterators
2166 @section Sequence iterators
2167 @cindex Sequence iterators
2168
2169 Sequence iterators are convenience constructs for iterating
2170 through statements in a sequence. Given a sequence @code{SEQ}, here is
2171 a typical use of gimple sequence iterators:
2172
2173 @smallexample
2174 gimple_stmt_iterator gsi;
2175
2176 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
2177 @{
2178 gimple g = gsi_stmt (gsi);
2179 /* Do something with gimple statement @code{G}. */
2180 @}
2181 @end smallexample
2182
2183 Backward iterations are possible:
2184
2185 @smallexample
2186 for (gsi = gsi_last (seq); !gsi_end_p (gsi); gsi_prev (&gsi))
2187 @end smallexample
2188
2189 Forward and backward iterations on basic blocks are possible with
2190 @code{gsi_start_bb} and @code{gsi_last_bb}.
2191
2192 In the documentation below we sometimes refer to enum
2193 @code{gsi_iterator_update}. The valid options for this enumeration are:
2194
2195 @itemize @bullet
2196 @item @code{GSI_NEW_STMT}
2197 Only valid when a single statement is added. Move the iterator to it.
2198
2199 @item @code{GSI_SAME_STMT}
2200 Leave the iterator at the same statement.
2201
2202 @item @code{GSI_CONTINUE_LINKING}
2203 Move iterator to whatever position is suitable for linking other
2204 statements in the same direction.
2205 @end itemize
2206
2207 Below is a list of the functions used to manipulate and use
2208 statement iterators.
2209
2210 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_start (gimple_seq seq)
2211 Return a new iterator pointing to the sequence @code{SEQ}'s first
2212 statement. If @code{SEQ} is empty, the iterator's basic block is @code{NULL}.
2213 Use @code{gsi_start_bb} instead when the iterator needs to always have
2214 the correct basic block set.
2215 @end deftypefn
2216
2217 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_start_bb (basic_block bb)
2218 Return a new iterator pointing to the first statement in basic
2219 block @code{BB}.
2220 @end deftypefn
2221
2222 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_last (gimple_seq seq)
2223 Return a new iterator initially pointing to the last statement of
2224 sequence @code{SEQ}. If @code{SEQ} is empty, the iterator's basic block is
2225 @code{NULL}. Use @code{gsi_last_bb} instead when the iterator needs to always
2226 have the correct basic block set.
2227 @end deftypefn
2228
2229 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_last_bb (basic_block bb)
2230 Return a new iterator pointing to the last statement in basic
2231 block @code{BB}.
2232 @end deftypefn
2233
2234 @deftypefn {GIMPLE function} bool gsi_end_p (gimple_stmt_iterator i)
2235 Return @code{TRUE} if at the end of @code{I}.
2236 @end deftypefn
2237
2238 @deftypefn {GIMPLE function} bool gsi_one_before_end_p (gimple_stmt_iterator i)
2239 Return @code{TRUE} if we're one statement before the end of @code{I}.
2240 @end deftypefn
2241
2242 @deftypefn {GIMPLE function} void gsi_next (gimple_stmt_iterator *i)
2243 Advance the iterator to the next gimple statement.
2244 @end deftypefn
2245
2246 @deftypefn {GIMPLE function} void gsi_prev (gimple_stmt_iterator *i)
2247 Advance the iterator to the previous gimple statement.
2248 @end deftypefn
2249
2250 @deftypefn {GIMPLE function} gimple gsi_stmt (gimple_stmt_iterator i)
2251 Return the current stmt.
2252 @end deftypefn
2253
2254 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_after_labels (basic_block bb)
2255 Return a block statement iterator that points to the first
2256 non-label statement in block @code{BB}.
2257 @end deftypefn
2258
2259 @deftypefn {GIMPLE function} gimple *gsi_stmt_ptr (gimple_stmt_iterator *i)
2260 Return a pointer to the current stmt.
2261 @end deftypefn
2262
2263 @deftypefn {GIMPLE function} basic_block gsi_bb (gimple_stmt_iterator i)
2264 Return the basic block associated with this iterator.
2265 @end deftypefn
2266
2267 @deftypefn {GIMPLE function} gimple_seq gsi_seq (gimple_stmt_iterator i)
2268 Return the sequence associated with this iterator.
2269 @end deftypefn
2270
2271 @deftypefn {GIMPLE function} void gsi_remove (gimple_stmt_iterator *i, bool remove_eh_info)
2272 Remove the current stmt from the sequence. The iterator is
2273 updated to point to the next statement. When @code{REMOVE_EH_INFO} is
2274 true we remove the statement pointed to by iterator @code{I} from the @code{EH}
2275 tables. Otherwise we do not modify the @code{EH} tables. Generally,
2276 @code{REMOVE_EH_INFO} should be true when the statement is going to be
2277 removed from the @code{IL} and not reinserted elsewhere.
2278 @end deftypefn
2279
2280 @deftypefn {GIMPLE function} void gsi_link_seq_before (gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode)
2281 Links the sequence of statements @code{SEQ} before the statement pointed
2282 by iterator @code{I}. @code{MODE} indicates what to do with the iterator
2283 after insertion (see @code{enum gsi_iterator_update} above).
2284 @end deftypefn
2285
2286 @deftypefn {GIMPLE function} void gsi_link_before (gimple_stmt_iterator *i, gimple g, enum gsi_iterator_update mode)
2287 Links statement @code{G} before the statement pointed-to by iterator @code{I}.
2288 Updates iterator @code{I} according to @code{MODE}.
2289 @end deftypefn
2290
2291 @deftypefn {GIMPLE function} void gsi_link_seq_after (gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode)
2292 Links sequence @code{SEQ} after the statement pointed-to by iterator @code{I}.
2293 @code{MODE} is as in @code{gsi_insert_after}.
2294 @end deftypefn
2295
2296 @deftypefn {GIMPLE function} void gsi_link_after (gimple_stmt_iterator *i, gimple g, enum gsi_iterator_update mode)
2297 Links statement @code{G} after the statement pointed-to by iterator @code{I}.
2298 @code{MODE} is as in @code{gsi_insert_after}.
2299 @end deftypefn
2300
2301 @deftypefn {GIMPLE function} gimple_seq gsi_split_seq_after (gimple_stmt_iterator i)
2302 Move all statements in the sequence after @code{I} to a new sequence.
2303 Return this new sequence.
2304 @end deftypefn
2305
2306 @deftypefn {GIMPLE function} gimple_seq gsi_split_seq_before (gimple_stmt_iterator *i)
2307 Move all statements in the sequence before @code{I} to a new sequence.
2308 Return this new sequence.
2309 @end deftypefn
2310
2311 @deftypefn {GIMPLE function} void gsi_replace (gimple_stmt_iterator *i, gimple stmt, bool update_eh_info)
2312 Replace the statement pointed-to by @code{I} to @code{STMT}. If @code{UPDATE_EH_INFO}
2313 is true, the exception handling information of the original
2314 statement is moved to the new statement.
2315 @end deftypefn
2316
2317 @deftypefn {GIMPLE function} void gsi_insert_before (gimple_stmt_iterator *i, gimple stmt, enum gsi_iterator_update mode)
2318 Insert statement @code{STMT} before the statement pointed-to by iterator
2319 @code{I}, update @code{STMT}'s basic block and scan it for new operands. @code{MODE}
2320 specifies how to update iterator @code{I} after insertion (see enum
2321 @code{gsi_iterator_update}).
2322 @end deftypefn
2323
2324 @deftypefn {GIMPLE function} void gsi_insert_seq_before (gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode)
2325 Like @code{gsi_insert_before}, but for all the statements in @code{SEQ}.
2326 @end deftypefn
2327
2328 @deftypefn {GIMPLE function} void gsi_insert_after (gimple_stmt_iterator *i, gimple stmt, enum gsi_iterator_update mode)
2329 Insert statement @code{STMT} after the statement pointed-to by iterator
2330 @code{I}, update @code{STMT}'s basic block and scan it for new operands. @code{MODE}
2331 specifies how to update iterator @code{I} after insertion (see enum
2332 @code{gsi_iterator_update}).
2333 @end deftypefn
2334
2335 @deftypefn {GIMPLE function} void gsi_insert_seq_after (gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode)
2336 Like @code{gsi_insert_after}, but for all the statements in @code{SEQ}.
2337 @end deftypefn
2338
2339 @deftypefn {GIMPLE function} gimple_stmt_iterator gsi_for_stmt (gimple stmt)
2340 Finds iterator for @code{STMT}.
2341 @end deftypefn
2342
2343 @deftypefn {GIMPLE function} void gsi_move_after (gimple_stmt_iterator *from, gimple_stmt_iterator *to)
2344 Move the statement at @code{FROM} so it comes right after the statement
2345 at @code{TO}.
2346 @end deftypefn
2347
2348 @deftypefn {GIMPLE function} void gsi_move_before (gimple_stmt_iterator *from, gimple_stmt_iterator *to)
2349 Move the statement at @code{FROM} so it comes right before the statement
2350 at @code{TO}.
2351 @end deftypefn
2352
2353 @deftypefn {GIMPLE function} void gsi_move_to_bb_end (gimple_stmt_iterator *from, basic_block bb)
2354 Move the statement at @code{FROM} to the end of basic block @code{BB}.
2355 @end deftypefn
2356
2357 @deftypefn {GIMPLE function} void gsi_insert_on_edge (edge e, gimple stmt)
2358 Add @code{STMT} to the pending list of edge @code{E}. No actual insertion is
2359 made until a call to @code{gsi_commit_edge_inserts}() is made.
2360 @end deftypefn
2361
2362 @deftypefn {GIMPLE function} void gsi_insert_seq_on_edge (edge e, gimple_seq seq)
2363 Add the sequence of statements in @code{SEQ} to the pending list of edge
2364 @code{E}. No actual insertion is made until a call to
2365 @code{gsi_commit_edge_inserts}() is made.
2366 @end deftypefn
2367
2368 @deftypefn {GIMPLE function} basic_block gsi_insert_on_edge_immediate (edge e, gimple stmt)
2369 Similar to @code{gsi_insert_on_edge}+@code{gsi_commit_edge_inserts}. If a new
2370 block has to be created, it is returned.
2371 @end deftypefn
2372
2373 @deftypefn {GIMPLE function} void gsi_commit_one_edge_insert (edge e, basic_block *new_bb)
2374 Commit insertions pending at edge @code{E}. If a new block is created,
2375 set @code{NEW_BB} to this block, otherwise set it to @code{NULL}.
2376 @end deftypefn
2377
2378 @deftypefn {GIMPLE function} void gsi_commit_edge_inserts (void)
2379 This routine will commit all pending edge insertions, creating
2380 any new basic blocks which are necessary.
2381 @end deftypefn
2382
2383
2384 @node Adding a new GIMPLE statement code
2385 @section Adding a new GIMPLE statement code
2386 @cindex Adding a new GIMPLE statement code
2387
2388 The first step in adding a new GIMPLE statement code, is
2389 modifying the file @code{gimple.def}, which contains all the GIMPLE
2390 codes. Then you must add a corresponding structure, and an entry
2391 in @code{union gimple_statement_d}, both of which are located in
2392 @code{gimple.h}. This in turn, will require you to add a corresponding
2393 @code{GTY} tag in @code{gsstruct.def}, and code to handle this tag in
2394 @code{gss_for_code} which is located in @code{gimple.c}.
2395
2396 In order for the garbage collector to know the size of the
2397 structure you created in @code{gimple.h}, you need to add a case to
2398 handle your new GIMPLE statement in @code{gimple_size} which is located
2399 in @code{gimple.c}.
2400
2401 You will probably want to create a function to build the new
2402 gimple statement in @code{gimple.c}. The function should be called
2403 @code{gimple_build_<@code{NEW_TUPLE_NAME}>}, and should return the new tuple
2404 of type gimple.
2405
2406 If your new statement requires accessors for any members or
2407 operands it may have, put simple inline accessors in
2408 @code{gimple.h} and any non-trivial accessors in @code{gimple.c} with a
2409 corresponding prototype in @code{gimple.h}.
2410
2411
2412 @node Statement and operand traversals
2413 @section Statement and operand traversals
2414 @cindex Statement and operand traversals
2415
2416 There are two functions available for walking statements and
2417 sequences: @code{walk_gimple_stmt} and @code{walk_gimple_seq},
2418 accordingly, and a third function for walking the operands in a
2419 statement: @code{walk_gimple_op}.
2420
2421 @deftypefn {GIMPLE function} tree walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt, walk_tree_fn callback_op, struct walk_stmt_info *wi)
2422 This function is used to walk the current statement in @code{GSI},
2423 optionally using traversal state stored in @code{WI}. If @code{WI} is @code{NULL}, no
2424 state is kept during the traversal.
2425
2426 The callback @code{CALLBACK_STMT} is called. If @code{CALLBACK_STMT} returns
2427 true, it means that the callback function has handled all the
2428 operands of the statement and it is not necessary to walk its
2429 operands.
2430
2431 If @code{CALLBACK_STMT} is @code{NULL} or it returns false, @code{CALLBACK_OP} is
2432 called on each operand of the statement via @code{walk_gimple_op}. If
2433 @code{walk_gimple_op} returns non-@code{NULL} for any operand, the remaining
2434 operands are not scanned.
2435
2436 The return value is that returned by the last call to
2437 @code{walk_gimple_op}, or @code{NULL_TREE} if no @code{CALLBACK_OP} is specified.
2438 @end deftypefn
2439
2440
2441 @deftypefn {GIMPLE function} tree walk_gimple_op (gimple stmt, walk_tree_fn callback_op, struct walk_stmt_info *wi)
2442 Use this function to walk the operands of statement @code{STMT}. Every
2443 operand is walked via @code{walk_tree} with optional state information
2444 in @code{WI}.
2445
2446 @code{CALLBACK_OP} is called on each operand of @code{STMT} via @code{walk_tree}.
2447 Additional parameters to @code{walk_tree} must be stored in @code{WI}. For
2448 each operand @code{OP}, @code{walk_tree} is called as:
2449
2450 @smallexample
2451 walk_tree (&@code{OP}, @code{CALLBACK_OP}, @code{WI}, @code{WI}- @code{PSET})
2452 @end smallexample
2453
2454 If @code{CALLBACK_OP} returns non-@code{NULL} for an operand, the remaining
2455 operands are not scanned. The return value is that returned by
2456 the last call to @code{walk_tree}, or @code{NULL_TREE} if no @code{CALLBACK_OP} is
2457 specified.
2458 @end deftypefn
2459
2460
2461 @deftypefn {GIMPLE function} tree walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt, walk_tree_fn callback_op, struct walk_stmt_info *wi)
2462 This function walks all the statements in the sequence @code{SEQ}
2463 calling @code{walk_gimple_stmt} on each one. @code{WI} is as in
2464 @code{walk_gimple_stmt}. If @code{walk_gimple_stmt} returns non-@code{NULL}, the walk
2465 is stopped and the value returned. Otherwise, all the statements
2466 are walked and @code{NULL_TREE} returned.
2467 @end deftypefn