]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/doc/invoke.texi
[GCC, AArch64] Enable Transactional Memory Extension
[thirdparty/gcc.git] / gcc / doc / invoke.texi
1 @c Copyright (C) 1988-2019 Free Software Foundation, Inc.
2 @c This is part of the GCC manual.
3 @c For copying conditions, see the file gcc.texi.
4
5 @ignore
6 @c man begin INCLUDE
7 @include gcc-vers.texi
8 @c man end
9
10 @c man begin COPYRIGHT
11 Copyright @copyright{} 1988-2019 Free Software Foundation, Inc.
12
13 Permission is granted to copy, distribute and/or modify this document
14 under the terms of the GNU Free Documentation License, Version 1.3 or
15 any later version published by the Free Software Foundation; with the
16 Invariant Sections being ``GNU General Public License'' and ``Funding
17 Free Software'', the Front-Cover texts being (a) (see below), and with
18 the Back-Cover Texts being (b) (see below). A copy of the license is
19 included in the gfdl(7) man page.
20
21 (a) The FSF's Front-Cover Text is:
22
23 A GNU Manual
24
25 (b) The FSF's Back-Cover Text is:
26
27 You have freedom to copy and modify this GNU Manual, like GNU
28 software. Copies published by the Free Software Foundation raise
29 funds for GNU development.
30 @c man end
31 @c Set file name and title for the man page.
32 @setfilename gcc
33 @settitle GNU project C and C++ compiler
34 @c man begin SYNOPSIS
35 gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}]
36 [@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
37 [@option{-W}@var{warn}@dots{}] [@option{-Wpedantic}]
38 [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
39 [@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
40 [@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
41 [@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{}
42
43 Only the most useful options are listed here; see below for the
44 remainder. @command{g++} accepts mostly the same options as @command{gcc}.
45 @c man end
46 @c man begin SEEALSO
47 gpl(7), gfdl(7), fsf-funding(7),
48 cpp(1), gcov(1), as(1), ld(1), gdb(1), dbx(1)
49 and the Info entries for @file{gcc}, @file{cpp}, @file{as},
50 @file{ld}, @file{binutils} and @file{gdb}.
51 @c man end
52 @c man begin BUGS
53 For instructions on reporting bugs, see
54 @w{@value{BUGURL}}.
55 @c man end
56 @c man begin AUTHOR
57 See the Info entry for @command{gcc}, or
58 @w{@uref{http://gcc.gnu.org/onlinedocs/gcc/Contributors.html}},
59 for contributors to GCC@.
60 @c man end
61 @end ignore
62
63 @node Invoking GCC
64 @chapter GCC Command Options
65 @cindex GCC command options
66 @cindex command options
67 @cindex options, GCC command
68
69 @c man begin DESCRIPTION
70 When you invoke GCC, it normally does preprocessing, compilation,
71 assembly and linking. The ``overall options'' allow you to stop this
72 process at an intermediate stage. For example, the @option{-c} option
73 says not to run the linker. Then the output consists of object files
74 output by the assembler.
75 @xref{Overall Options,,Options Controlling the Kind of Output}.
76
77 Other options are passed on to one or more stages of processing. Some options
78 control the preprocessor and others the compiler itself. Yet other
79 options control the assembler and linker; most of these are not
80 documented here, since you rarely need to use any of them.
81
82 @cindex C compilation options
83 Most of the command-line options that you can use with GCC are useful
84 for C programs; when an option is only useful with another language
85 (usually C++), the explanation says so explicitly. If the description
86 for a particular option does not mention a source language, you can use
87 that option with all supported languages.
88
89 @cindex cross compiling
90 @cindex specifying machine version
91 @cindex specifying compiler version and target machine
92 @cindex compiler version, specifying
93 @cindex target machine, specifying
94 The usual way to run GCC is to run the executable called @command{gcc}, or
95 @command{@var{machine}-gcc} when cross-compiling, or
96 @command{@var{machine}-gcc-@var{version}} to run a specific version of GCC.
97 When you compile C++ programs, you should invoke GCC as @command{g++}
98 instead. @xref{Invoking G++,,Compiling C++ Programs},
99 for information about the differences in behavior between @command{gcc}
100 and @code{g++} when compiling C++ programs.
101
102 @cindex grouping options
103 @cindex options, grouping
104 The @command{gcc} program accepts options and file names as operands. Many
105 options have multi-letter names; therefore multiple single-letter options
106 may @emph{not} be grouped: @option{-dv} is very different from @w{@samp{-d
107 -v}}.
108
109 @cindex order of options
110 @cindex options, order
111 You can mix options and other arguments. For the most part, the order
112 you use doesn't matter. Order does matter when you use several
113 options of the same kind; for example, if you specify @option{-L} more
114 than once, the directories are searched in the order specified. Also,
115 the placement of the @option{-l} option is significant.
116
117 Many options have long names starting with @samp{-f} or with
118 @samp{-W}---for example,
119 @option{-fmove-loop-invariants}, @option{-Wformat} and so on. Most of
120 these have both positive and negative forms; the negative form of
121 @option{-ffoo} is @option{-fno-foo}. This manual documents
122 only one of these two forms, whichever one is not the default.
123
124 Some options take one or more arguments typically separated either
125 by a space or by the equals sign (@samp{=}) from the option name.
126 Unless documented otherwise, an argument can be either numeric or
127 a string. Numeric arguments must typically be small unsigned decimal
128 or hexadecimal integers. Hexadecimal arguments must begin with
129 the @samp{0x} prefix. Arguments to options that specify a size
130 threshold of some sort may be arbitrarily large decimal or hexadecimal
131 integers followed by a byte size suffix designating a multiple of bytes
132 such as @code{kB} and @code{KiB} for kilobyte and kibibyte, respectively,
133 @code{MB} and @code{MiB} for megabyte and mebibyte, @code{GB} and
134 @code{GiB} for gigabyte and gigibyte, and so on. Such arguments are
135 designated by @var{byte-size} in the following text. Refer to the NIST,
136 IEC, and other relevant national and international standards for the full
137 listing and explanation of the binary and decimal byte size prefixes.
138
139 @c man end
140
141 @xref{Option Index}, for an index to GCC's options.
142
143 @menu
144 * Option Summary:: Brief list of all options, without explanations.
145 * Overall Options:: Controlling the kind of output:
146 an executable, object files, assembler files,
147 or preprocessed source.
148 * Invoking G++:: Compiling C++ programs.
149 * C Dialect Options:: Controlling the variant of C language compiled.
150 * C++ Dialect Options:: Variations on C++.
151 * Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
152 and Objective-C++.
153 * Diagnostic Message Formatting Options:: Controlling how diagnostics should
154 be formatted.
155 * Warning Options:: How picky should the compiler be?
156 * Debugging Options:: Producing debuggable code.
157 * Optimize Options:: How much optimization?
158 * Instrumentation Options:: Enabling profiling and extra run-time error checking.
159 * Preprocessor Options:: Controlling header files and macro definitions.
160 Also, getting dependency information for Make.
161 * Assembler Options:: Passing options to the assembler.
162 * Link Options:: Specifying libraries and so on.
163 * Directory Options:: Where to find header files and libraries.
164 Where to find the compiler executable files.
165 * Code Gen Options:: Specifying conventions for function calls, data layout
166 and register usage.
167 * Developer Options:: Printing GCC configuration info, statistics, and
168 debugging dumps.
169 * Submodel Options:: Target-specific options, such as compiling for a
170 specific processor variant.
171 * Spec Files:: How to pass switches to sub-processes.
172 * Environment Variables:: Env vars that affect GCC.
173 * Precompiled Headers:: Compiling a header once, and using it many times.
174 @end menu
175
176 @c man begin OPTIONS
177
178 @node Option Summary
179 @section Option Summary
180
181 Here is a summary of all the options, grouped by type. Explanations are
182 in the following sections.
183
184 @table @emph
185 @item Overall Options
186 @xref{Overall Options,,Options Controlling the Kind of Output}.
187 @gccoptlist{-c -S -E -o @var{file} -x @var{language} @gol
188 -v -### --help@r{[}=@var{class}@r{[},@dots{}@r{]]} --target-help --version @gol
189 -pass-exit-codes -pipe -specs=@var{file} -wrapper @gol
190 @@@var{file} -ffile-prefix-map=@var{old}=@var{new} @gol
191 -fplugin=@var{file} -fplugin-arg-@var{name}=@var{arg} @gol
192 -fdump-ada-spec@r{[}-slim@r{]} -fada-spec-parent=@var{unit} -fdump-go-spec=@var{file}}
193
194 @item C Language Options
195 @xref{C Dialect Options,,Options Controlling C Dialect}.
196 @gccoptlist{-ansi -std=@var{standard} -fgnu89-inline @gol
197 -fpermitted-flt-eval-methods=@var{standard} @gol
198 -aux-info @var{filename} -fallow-parameterless-variadic-functions @gol
199 -fno-asm -fno-builtin -fno-builtin-@var{function} -fgimple@gol
200 -fhosted -ffreestanding @gol
201 -fopenacc -fopenacc-dim=@var{geom} @gol
202 -fopenmp -fopenmp-simd @gol
203 -fms-extensions -fplan9-extensions -fsso-struct=@var{endianness} @gol
204 -fallow-single-precision -fcond-mismatch -flax-vector-conversions @gol
205 -fsigned-bitfields -fsigned-char @gol
206 -funsigned-bitfields -funsigned-char}
207
208 @item C++ Language Options
209 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
210 @gccoptlist{-fabi-version=@var{n} -fno-access-control @gol
211 -faligned-new=@var{n} -fargs-in-order=@var{n} -fchar8_t -fcheck-new @gol
212 -fconstexpr-depth=@var{n} -fconstexpr-cache-depth=@var{n} @gol
213 -fconstexpr-loop-limit=@var{n} -fconstexpr-ops-limit=@var{n} @gol
214 -fno-elide-constructors @gol
215 -fno-enforce-eh-specs @gol
216 -fno-gnu-keywords @gol
217 -fno-implicit-templates @gol
218 -fno-implicit-inline-templates @gol
219 -fno-implement-inlines -fms-extensions @gol
220 -fnew-inheriting-ctors @gol
221 -fnew-ttp-matching @gol
222 -fno-nonansi-builtins -fnothrow-opt -fno-operator-names @gol
223 -fno-optional-diags -fpermissive @gol
224 -fno-pretty-templates @gol
225 -frepo -fno-rtti -fsized-deallocation @gol
226 -ftemplate-backtrace-limit=@var{n} @gol
227 -ftemplate-depth=@var{n} @gol
228 -fno-threadsafe-statics -fuse-cxa-atexit @gol
229 -fno-weak -nostdinc++ @gol
230 -fvisibility-inlines-hidden @gol
231 -fvisibility-ms-compat @gol
232 -fext-numeric-literals @gol
233 -Wabi=@var{n} -Wabi-tag -Wconversion-null -Wctor-dtor-privacy @gol
234 -Wdelete-non-virtual-dtor -Wdeprecated-copy -Wdeprecated-copy-dtor @gol
235 -Wliteral-suffix @gol
236 -Wmultiple-inheritance -Wno-init-list-lifetime @gol
237 -Wnamespaces -Wnarrowing @gol
238 -Wpessimizing-move -Wredundant-move @gol
239 -Wnoexcept -Wnoexcept-type -Wclass-memaccess @gol
240 -Wnon-virtual-dtor -Wreorder -Wregister @gol
241 -Weffc++ -Wstrict-null-sentinel -Wtemplates @gol
242 -Wno-non-template-friend -Wold-style-cast @gol
243 -Woverloaded-virtual -Wno-pmf-conversions @gol
244 -Wno-class-conversion -Wno-terminate @gol
245 -Wsign-promo -Wvirtual-inheritance}
246
247 @item Objective-C and Objective-C++ Language Options
248 @xref{Objective-C and Objective-C++ Dialect Options,,Options Controlling
249 Objective-C and Objective-C++ Dialects}.
250 @gccoptlist{-fconstant-string-class=@var{class-name} @gol
251 -fgnu-runtime -fnext-runtime @gol
252 -fno-nil-receivers @gol
253 -fobjc-abi-version=@var{n} @gol
254 -fobjc-call-cxx-cdtors @gol
255 -fobjc-direct-dispatch @gol
256 -fobjc-exceptions @gol
257 -fobjc-gc @gol
258 -fobjc-nilcheck @gol
259 -fobjc-std=objc1 @gol
260 -fno-local-ivars @gol
261 -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]} @gol
262 -freplace-objc-classes @gol
263 -fzero-link @gol
264 -gen-decls @gol
265 -Wassign-intercept @gol
266 -Wno-protocol -Wselector @gol
267 -Wstrict-selector-match @gol
268 -Wundeclared-selector}
269
270 @item Diagnostic Message Formatting Options
271 @xref{Diagnostic Message Formatting Options,,Options to Control Diagnostic Messages Formatting}.
272 @gccoptlist{-fmessage-length=@var{n} @gol
273 -fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]} @gol
274 -fdiagnostics-color=@r{[}auto@r{|}never@r{|}always@r{]} @gol
275 -fdiagnostics-format=@r{[}text@r{|}json@r{]} @gol
276 -fno-diagnostics-show-option -fno-diagnostics-show-caret @gol
277 -fno-diagnostics-show-labels -fno-diagnostics-show-line-numbers @gol
278 -fdiagnostics-minimum-margin-width=@var{width} @gol
279 -fdiagnostics-parseable-fixits -fdiagnostics-generate-patch @gol
280 -fdiagnostics-show-template-tree -fno-elide-type @gol
281 -fno-show-column}
282
283 @item Warning Options
284 @xref{Warning Options,,Options to Request or Suppress Warnings}.
285 @gccoptlist{-fsyntax-only -fmax-errors=@var{n} -Wpedantic @gol
286 -pedantic-errors @gol
287 -w -Wextra -Wall -Waddress -Waddress-of-packed-member @gol
288 -Waggregate-return -Waligned-new @gol
289 -Walloc-zero -Walloc-size-larger-than=@var{byte-size} @gol
290 -Walloca -Walloca-larger-than=@var{byte-size} @gol
291 -Wno-aggressive-loop-optimizations -Warray-bounds -Warray-bounds=@var{n} @gol
292 -Wno-attributes -Wattribute-alias=@var{n} @gol
293 -Wbool-compare -Wbool-operation @gol
294 -Wno-builtin-declaration-mismatch @gol
295 -Wno-builtin-macro-redefined -Wc90-c99-compat -Wc99-c11-compat @gol
296 -Wc++-compat -Wc++11-compat -Wc++14-compat -Wc++17-compat @gol
297 -Wcast-align -Wcast-align=strict -Wcast-function-type -Wcast-qual @gol
298 -Wchar-subscripts -Wcatch-value -Wcatch-value=@var{n} @gol
299 -Wclobbered -Wcomment -Wconditionally-supported @gol
300 -Wconversion -Wcoverage-mismatch -Wno-cpp -Wdangling-else -Wdate-time @gol
301 -Wdelete-incomplete @gol
302 -Wno-attribute-warning @gol
303 -Wno-deprecated -Wno-deprecated-declarations -Wno-designated-init @gol
304 -Wdisabled-optimization @gol
305 -Wno-discarded-qualifiers -Wno-discarded-array-qualifiers @gol
306 -Wno-div-by-zero -Wdouble-promotion @gol
307 -Wduplicated-branches -Wduplicated-cond @gol
308 -Wempty-body -Wenum-compare -Wno-endif-labels -Wexpansion-to-defined @gol
309 -Werror -Werror=* -Wextra-semi -Wfatal-errors @gol
310 -Wfloat-equal -Wformat -Wformat=2 @gol
311 -Wno-format-contains-nul -Wno-format-extra-args @gol
312 -Wformat-nonliteral -Wformat-overflow=@var{n} @gol
313 -Wformat-security -Wformat-signedness -Wformat-truncation=@var{n} @gol
314 -Wformat-y2k -Wframe-address @gol
315 -Wframe-larger-than=@var{byte-size} -Wno-free-nonheap-object @gol
316 -Wjump-misses-init @gol
317 -Whsa -Wif-not-aligned @gol
318 -Wignored-qualifiers -Wignored-attributes -Wincompatible-pointer-types @gol
319 -Wimplicit -Wimplicit-fallthrough -Wimplicit-fallthrough=@var{n} @gol
320 -Wimplicit-function-declaration -Wimplicit-int @gol
321 -Winaccessible-base @gol
322 -Winit-self -Winline -Wno-int-conversion -Wint-in-bool-context @gol
323 -Wno-int-to-pointer-cast -Winvalid-memory-model -Wno-invalid-offsetof @gol
324 -Winvalid-pch -Wlarger-than=@var{byte-size} @gol
325 -Wlogical-op -Wlogical-not-parentheses -Wlong-long @gol
326 -Wmain -Wmaybe-uninitialized -Wmemset-elt-size -Wmemset-transposed-args @gol
327 -Wmisleading-indentation -Wmissing-attributes -Wmissing-braces @gol
328 -Wmissing-field-initializers -Wmissing-format-attribute @gol
329 -Wmissing-include-dirs -Wmissing-noreturn -Wmissing-profile @gol
330 -Wno-multichar -Wmultistatement-macros -Wnonnull -Wnonnull-compare @gol
331 -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]} @gol
332 -Wnull-dereference -Wodr -Wno-overflow -Wopenmp-simd @gol
333 -Woverride-init-side-effects -Woverlength-strings @gol
334 -Wpacked -Wpacked-bitfield-compat -Wpacked-not-aligned -Wpadded @gol
335 -Wparentheses -Wno-pedantic-ms-format @gol
336 -Wplacement-new -Wplacement-new=@var{n} @gol
337 -Wpointer-arith -Wpointer-compare -Wno-pointer-to-int-cast @gol
338 -Wno-pragmas -Wno-prio-ctor-dtor -Wredundant-decls @gol
339 -Wrestrict -Wno-return-local-addr @gol
340 -Wreturn-type -Wsequence-point -Wshadow -Wno-shadow-ivar @gol
341 -Wshadow=global, -Wshadow=local, -Wshadow=compatible-local @gol
342 -Wshift-overflow -Wshift-overflow=@var{n} @gol
343 -Wshift-count-negative -Wshift-count-overflow -Wshift-negative-value @gol
344 -Wsign-compare -Wsign-conversion -Wfloat-conversion @gol
345 -Wno-scalar-storage-order -Wsizeof-pointer-div @gol
346 -Wsizeof-pointer-memaccess -Wsizeof-array-argument @gol
347 -Wstack-protector -Wstack-usage=@var{byte-size} -Wstrict-aliasing @gol
348 -Wstrict-aliasing=n -Wstrict-overflow -Wstrict-overflow=@var{n} @gol
349 -Wstringop-overflow=@var{n} -Wstringop-truncation -Wsubobject-linkage @gol
350 -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{|}malloc@r{]} @gol
351 -Wsuggest-final-types @gol -Wsuggest-final-methods -Wsuggest-override @gol
352 -Wswitch -Wswitch-bool -Wswitch-default -Wswitch-enum @gol
353 -Wswitch-unreachable -Wsync-nand @gol
354 -Wsystem-headers -Wtautological-compare -Wtrampolines -Wtrigraphs @gol
355 -Wtype-limits -Wundef @gol
356 -Wuninitialized -Wunknown-pragmas @gol
357 -Wunsuffixed-float-constants -Wunused -Wunused-function @gol
358 -Wunused-label -Wunused-local-typedefs -Wunused-macros @gol
359 -Wunused-parameter -Wno-unused-result @gol
360 -Wunused-value -Wunused-variable @gol
361 -Wunused-const-variable -Wunused-const-variable=@var{n} @gol
362 -Wunused-but-set-parameter -Wunused-but-set-variable @gol
363 -Wuseless-cast -Wvariadic-macros -Wvector-operation-performance @gol
364 -Wvla -Wvla-larger-than=@var{byte-size} -Wvolatile-register-var @gol
365 -Wwrite-strings @gol
366 -Wzero-as-null-pointer-constant}
367
368 @item C and Objective-C-only Warning Options
369 @gccoptlist{-Wbad-function-cast -Wmissing-declarations @gol
370 -Wmissing-parameter-type -Wmissing-prototypes -Wnested-externs @gol
371 -Wold-style-declaration -Wold-style-definition @gol
372 -Wstrict-prototypes -Wtraditional -Wtraditional-conversion @gol
373 -Wdeclaration-after-statement -Wpointer-sign}
374
375 @item Debugging Options
376 @xref{Debugging Options,,Options for Debugging Your Program}.
377 @gccoptlist{-g -g@var{level} -gdwarf -gdwarf-@var{version} @gol
378 -ggdb -grecord-gcc-switches -gno-record-gcc-switches @gol
379 -gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf @gol
380 -gas-loc-support -gno-as-loc-support @gol
381 -gas-locview-support -gno-as-locview-support @gol
382 -gcolumn-info -gno-column-info @gol
383 -gstatement-frontiers -gno-statement-frontiers @gol
384 -gvariable-location-views -gno-variable-location-views @gol
385 -ginternal-reset-location-views -gno-internal-reset-location-views @gol
386 -ginline-points -gno-inline-points @gol
387 -gvms -gxcoff -gxcoff+ -gz@r{[}=@var{type}@r{]} @gol
388 -gsplit-dwarf -gdescribe-dies -gno-describe-dies @gol
389 -fdebug-prefix-map=@var{old}=@var{new} -fdebug-types-section @gol
390 -fno-eliminate-unused-debug-types @gol
391 -femit-struct-debug-baseonly -femit-struct-debug-reduced @gol
392 -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]} @gol
393 -fno-eliminate-unused-debug-symbols -femit-class-debug-always @gol
394 -fno-merge-debug-strings -fno-dwarf2-cfi-asm @gol
395 -fvar-tracking -fvar-tracking-assignments}
396
397 @item Optimization Options
398 @xref{Optimize Options,,Options that Control Optimization}.
399 @gccoptlist{-faggressive-loop-optimizations @gol
400 -falign-functions[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]] @gol
401 -falign-jumps[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]] @gol
402 -falign-labels[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]] @gol
403 -falign-loops[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]] @gol
404 -fassociative-math -fauto-profile -fauto-profile[=@var{path}] @gol
405 -fauto-inc-dec -fbranch-probabilities @gol
406 -fbranch-target-load-optimize -fbranch-target-load-optimize2 @gol
407 -fbtr-bb-exclusive -fcaller-saves @gol
408 -fcombine-stack-adjustments -fconserve-stack @gol
409 -fcompare-elim -fcprop-registers -fcrossjumping @gol
410 -fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules @gol
411 -fcx-limited-range @gol
412 -fdata-sections -fdce -fdelayed-branch @gol
413 -fdelete-null-pointer-checks -fdevirtualize -fdevirtualize-speculatively @gol
414 -fdevirtualize-at-ltrans -fdse @gol
415 -fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects @gol
416 -ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=@var{style} @gol
417 -ffinite-loops @gol
418 -fforward-propagate -ffp-contract=@var{style} -ffunction-sections @gol
419 -fgcse -fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity @gol
420 -fgcse-sm -fhoist-adjacent-loads -fif-conversion @gol
421 -fif-conversion2 -findirect-inlining @gol
422 -finline-functions -finline-functions-called-once -finline-limit=@var{n} @gol
423 -finline-small-functions -fipa-cp -fipa-cp-clone @gol
424 -fipa-bit-cp -fipa-vrp -fipa-pta -fipa-profile -fipa-pure-const @gol
425 -fipa-reference -fipa-reference-addressable @gol
426 -fipa-stack-alignment -fipa-icf -fira-algorithm=@var{algorithm} @gol
427 -flive-patching=@var{level} @gol
428 -fira-region=@var{region} -fira-hoist-pressure @gol
429 -fira-loop-pressure -fno-ira-share-save-slots @gol
430 -fno-ira-share-spill-slots @gol
431 -fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute @gol
432 -fivopts -fkeep-inline-functions -fkeep-static-functions @gol
433 -fkeep-static-consts -flimit-function-alignment -flive-range-shrinkage @gol
434 -floop-block -floop-interchange -floop-strip-mine @gol
435 -floop-unroll-and-jam -floop-nest-optimize @gol
436 -floop-parallelize-all -flra-remat -flto -flto-compression-level @gol
437 -flto-partition=@var{alg} -fmerge-all-constants @gol
438 -fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves @gol
439 -fmove-loop-invariants -fno-branch-count-reg @gol
440 -fno-defer-pop -fno-fp-int-builtin-inexact -fno-function-cse @gol
441 -fno-guess-branch-probability -fno-inline -fno-math-errno -fno-peephole @gol
442 -fno-peephole2 -fno-printf-return-value -fno-sched-interblock @gol
443 -fno-sched-spec -fno-signed-zeros @gol
444 -fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss @gol
445 -fomit-frame-pointer -foptimize-sibling-calls @gol
446 -fpartial-inlining -fpeel-loops -fpredictive-commoning @gol
447 -fprefetch-loop-arrays @gol
448 -fprofile-correction @gol
449 -fprofile-use -fprofile-use=@var{path} -fprofile-values @gol
450 -fprofile-reorder-functions @gol
451 -freciprocal-math -free -frename-registers -freorder-blocks @gol
452 -freorder-blocks-algorithm=@var{algorithm} @gol
453 -freorder-blocks-and-partition -freorder-functions @gol
454 -frerun-cse-after-loop -freschedule-modulo-scheduled-loops @gol
455 -frounding-math -fsave-optimization-record @gol
456 -fsched2-use-superblocks -fsched-pressure @gol
457 -fsched-spec-load -fsched-spec-load-dangerous @gol
458 -fsched-stalled-insns-dep[=@var{n}] -fsched-stalled-insns[=@var{n}] @gol
459 -fsched-group-heuristic -fsched-critical-path-heuristic @gol
460 -fsched-spec-insn-heuristic -fsched-rank-heuristic @gol
461 -fsched-last-insn-heuristic -fsched-dep-count-heuristic @gol
462 -fschedule-fusion @gol
463 -fschedule-insns -fschedule-insns2 -fsection-anchors @gol
464 -fselective-scheduling -fselective-scheduling2 @gol
465 -fsel-sched-pipelining -fsel-sched-pipelining-outer-loops @gol
466 -fsemantic-interposition -fshrink-wrap -fshrink-wrap-separate @gol
467 -fsignaling-nans @gol
468 -fsingle-precision-constant -fsplit-ivs-in-unroller -fsplit-loops@gol
469 -fsplit-paths @gol
470 -fsplit-wide-types -fsplit-wide-types-early -fssa-backprop -fssa-phiopt @gol
471 -fstdarg-opt -fstore-merging -fstrict-aliasing @gol
472 -fthread-jumps -ftracer -ftree-bit-ccp @gol
473 -ftree-builtin-call-dce -ftree-ccp -ftree-ch @gol
474 -ftree-coalesce-vars -ftree-copy-prop -ftree-dce -ftree-dominator-opts @gol
475 -ftree-dse -ftree-forwprop -ftree-fre -fcode-hoisting @gol
476 -ftree-loop-if-convert -ftree-loop-im @gol
477 -ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns @gol
478 -ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize @gol
479 -ftree-loop-vectorize @gol
480 -ftree-parallelize-loops=@var{n} -ftree-pre -ftree-partial-pre -ftree-pta @gol
481 -ftree-reassoc -ftree-scev-cprop -ftree-sink -ftree-slsr -ftree-sra @gol
482 -ftree-switch-conversion -ftree-tail-merge @gol
483 -ftree-ter -ftree-vectorize -ftree-vrp -funconstrained-commons @gol
484 -funit-at-a-time -funroll-all-loops -funroll-loops @gol
485 -funsafe-math-optimizations -funswitch-loops @gol
486 -fipa-ra -fvariable-expansion-in-unroller -fvect-cost-model -fvpt @gol
487 -fweb -fwhole-program -fwpa -fuse-linker-plugin @gol
488 --param @var{name}=@var{value}
489 -O -O0 -O1 -O2 -O3 -Os -Ofast -Og}
490
491 @item Program Instrumentation Options
492 @xref{Instrumentation Options,,Program Instrumentation Options}.
493 @gccoptlist{-p -pg -fprofile-arcs --coverage -ftest-coverage @gol
494 -fprofile-abs-path @gol
495 -fprofile-dir=@var{path} -fprofile-generate -fprofile-generate=@var{path} @gol
496 -fprofile-note=@var{path} -fprofile-update=@var{method} @gol
497 -fprofile-filter-files=@var{regex} -fprofile-exclude-files=@var{regex} @gol
498 -fsanitize=@var{style} -fsanitize-recover -fsanitize-recover=@var{style} @gol
499 -fasan-shadow-offset=@var{number} -fsanitize-sections=@var{s1},@var{s2},... @gol
500 -fsanitize-undefined-trap-on-error -fbounds-check @gol
501 -fcf-protection=@r{[}full@r{|}branch@r{|}return@r{|}none@r{]} @gol
502 -fstack-protector -fstack-protector-all -fstack-protector-strong @gol
503 -fstack-protector-explicit -fstack-check @gol
504 -fstack-limit-register=@var{reg} -fstack-limit-symbol=@var{sym} @gol
505 -fno-stack-limit -fsplit-stack @gol
506 -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]} @gol
507 -fvtv-counts -fvtv-debug @gol
508 -finstrument-functions @gol
509 -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{} @gol
510 -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}}
511
512 @item Preprocessor Options
513 @xref{Preprocessor Options,,Options Controlling the Preprocessor}.
514 @gccoptlist{-A@var{question}=@var{answer} @gol
515 -A-@var{question}@r{[}=@var{answer}@r{]} @gol
516 -C -CC -D@var{macro}@r{[}=@var{defn}@r{]} @gol
517 -dD -dI -dM -dN -dU @gol
518 -fdebug-cpp -fdirectives-only -fdollars-in-identifiers @gol
519 -fexec-charset=@var{charset} -fextended-identifiers @gol
520 -finput-charset=@var{charset} -fmacro-prefix-map=@var{old}=@var{new} @gol
521 -fmax-include-depth=@var{depth} @gol
522 -fno-canonical-system-headers -fpch-deps -fpch-preprocess @gol
523 -fpreprocessed -ftabstop=@var{width} -ftrack-macro-expansion @gol
524 -fwide-exec-charset=@var{charset} -fworking-directory @gol
525 -H -imacros @var{file} -include @var{file} @gol
526 -M -MD -MF -MG -MM -MMD -MP -MQ -MT @gol
527 -no-integrated-cpp -P -pthread -remap @gol
528 -traditional -traditional-cpp -trigraphs @gol
529 -U@var{macro} -undef @gol
530 -Wp,@var{option} -Xpreprocessor @var{option}}
531
532 @item Assembler Options
533 @xref{Assembler Options,,Passing Options to the Assembler}.
534 @gccoptlist{-Wa,@var{option} -Xassembler @var{option}}
535
536 @item Linker Options
537 @xref{Link Options,,Options for Linking}.
538 @gccoptlist{@var{object-file-name} -fuse-ld=@var{linker} -l@var{library} @gol
539 -nostartfiles -nodefaultlibs -nolibc -nostdlib @gol
540 -e @var{entry} --entry=@var{entry} @gol
541 -pie -pthread -r -rdynamic @gol
542 -s -static -static-pie -static-libgcc -static-libstdc++ @gol
543 -static-libasan -static-libtsan -static-liblsan -static-libubsan @gol
544 -shared -shared-libgcc -symbolic @gol
545 -T @var{script} -Wl,@var{option} -Xlinker @var{option} @gol
546 -u @var{symbol} -z @var{keyword}}
547
548 @item Directory Options
549 @xref{Directory Options,,Options for Directory Search}.
550 @gccoptlist{-B@var{prefix} -I@var{dir} -I- @gol
551 -idirafter @var{dir} @gol
552 -imacros @var{file} -imultilib @var{dir} @gol
553 -iplugindir=@var{dir} -iprefix @var{file} @gol
554 -iquote @var{dir} -isysroot @var{dir} -isystem @var{dir} @gol
555 -iwithprefix @var{dir} -iwithprefixbefore @var{dir} @gol
556 -L@var{dir} -no-canonical-prefixes --no-sysroot-suffix @gol
557 -nostdinc -nostdinc++ --sysroot=@var{dir}}
558
559 @item Code Generation Options
560 @xref{Code Gen Options,,Options for Code Generation Conventions}.
561 @gccoptlist{-fcall-saved-@var{reg} -fcall-used-@var{reg} @gol
562 -ffixed-@var{reg} -fexceptions @gol
563 -fnon-call-exceptions -fdelete-dead-exceptions -funwind-tables @gol
564 -fasynchronous-unwind-tables @gol
565 -fno-gnu-unique @gol
566 -finhibit-size-directive -fno-common -fno-ident @gol
567 -fpcc-struct-return -fpic -fPIC -fpie -fPIE -fno-plt @gol
568 -fno-jump-tables @gol
569 -frecord-gcc-switches @gol
570 -freg-struct-return -fshort-enums -fshort-wchar @gol
571 -fverbose-asm -fpack-struct[=@var{n}] @gol
572 -fleading-underscore -ftls-model=@var{model} @gol
573 -fstack-reuse=@var{reuse_level} @gol
574 -ftrampolines -ftrapv -fwrapv @gol
575 -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]} @gol
576 -fstrict-volatile-bitfields -fsync-libcalls}
577
578 @item Developer Options
579 @xref{Developer Options,,GCC Developer Options}.
580 @gccoptlist{-d@var{letters} -dumpspecs -dumpmachine -dumpversion @gol
581 -dumpfullversion -fchecking -fchecking=@var{n} -fdbg-cnt-list @gol
582 -fdbg-cnt=@var{counter-value-list} @gol
583 -fdisable-ipa-@var{pass_name} @gol
584 -fdisable-rtl-@var{pass_name} @gol
585 -fdisable-rtl-@var{pass-name}=@var{range-list} @gol
586 -fdisable-tree-@var{pass_name} @gol
587 -fdisable-tree-@var{pass-name}=@var{range-list} @gol
588 -fdump-debug -fdump-earlydebug @gol
589 -fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links @gol
590 -fdump-final-insns@r{[}=@var{file}@r{]} @gol
591 -fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline @gol
592 -fdump-lang-all @gol
593 -fdump-lang-@var{switch} @gol
594 -fdump-lang-@var{switch}-@var{options} @gol
595 -fdump-lang-@var{switch}-@var{options}=@var{filename} @gol
596 -fdump-passes @gol
597 -fdump-rtl-@var{pass} -fdump-rtl-@var{pass}=@var{filename} @gol
598 -fdump-statistics @gol
599 -fdump-tree-all @gol
600 -fdump-tree-@var{switch} @gol
601 -fdump-tree-@var{switch}-@var{options} @gol
602 -fdump-tree-@var{switch}-@var{options}=@var{filename} @gol
603 -fcompare-debug@r{[}=@var{opts}@r{]} -fcompare-debug-second @gol
604 -fenable-@var{kind}-@var{pass} @gol
605 -fenable-@var{kind}-@var{pass}=@var{range-list} @gol
606 -fira-verbose=@var{n} @gol
607 -flto-report -flto-report-wpa -fmem-report-wpa @gol
608 -fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report @gol
609 -fopt-info -fopt-info-@var{options}@r{[}=@var{file}@r{]} @gol
610 -fprofile-report @gol
611 -frandom-seed=@var{string} -fsched-verbose=@var{n} @gol
612 -fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose @gol
613 -fstats -fstack-usage -ftime-report -ftime-report-details @gol
614 -fvar-tracking-assignments-toggle -gtoggle @gol
615 -print-file-name=@var{library} -print-libgcc-file-name @gol
616 -print-multi-directory -print-multi-lib -print-multi-os-directory @gol
617 -print-prog-name=@var{program} -print-search-dirs -Q @gol
618 -print-sysroot -print-sysroot-headers-suffix @gol
619 -save-temps -save-temps=cwd -save-temps=obj -time@r{[}=@var{file}@r{]}}
620
621 @item Machine-Dependent Options
622 @xref{Submodel Options,,Machine-Dependent Options}.
623 @c This list is ordered alphanumerically by subsection name.
624 @c Try and put the significant identifier (CPU or system) first,
625 @c so users have a clue at guessing where the ones they want will be.
626
627 @emph{AArch64 Options}
628 @gccoptlist{-mabi=@var{name} -mbig-endian -mlittle-endian @gol
629 -mgeneral-regs-only @gol
630 -mcmodel=tiny -mcmodel=small -mcmodel=large @gol
631 -mstrict-align -mno-strict-align @gol
632 -momit-leaf-frame-pointer @gol
633 -mtls-dialect=desc -mtls-dialect=traditional @gol
634 -mtls-size=@var{size} @gol
635 -mfix-cortex-a53-835769 -mfix-cortex-a53-843419 @gol
636 -mlow-precision-recip-sqrt -mlow-precision-sqrt -mlow-precision-div @gol
637 -mpc-relative-literal-loads @gol
638 -msign-return-address=@var{scope} @gol
639 -mbranch-protection=@var{none}|@var{standard}|@var{pac-ret}[+@var{leaf}
640 +@var{b-key}]|@var{bti} @gol
641 -march=@var{name} -mcpu=@var{name} -mtune=@var{name} @gol
642 -moverride=@var{string} -mverbose-cost-dump @gol
643 -mstack-protector-guard=@var{guard} -mstack-protector-guard-reg=@var{sysreg} @gol
644 -mstack-protector-guard-offset=@var{offset} -mtrack-speculation }
645
646 @emph{Adapteva Epiphany Options}
647 @gccoptlist{-mhalf-reg-file -mprefer-short-insn-regs @gol
648 -mbranch-cost=@var{num} -mcmove -mnops=@var{num} -msoft-cmpsf @gol
649 -msplit-lohi -mpost-inc -mpost-modify -mstack-offset=@var{num} @gol
650 -mround-nearest -mlong-calls -mshort-calls -msmall16 @gol
651 -mfp-mode=@var{mode} -mvect-double -max-vect-align=@var{num} @gol
652 -msplit-vecmove-early -m1reg-@var{reg}}
653
654 @emph{AMD GCN Options}
655 @gccoptlist{-march=@var{gpu} -mtune=@var{gpu} -mstack-size=@var{bytes}}
656
657 @emph{ARC Options}
658 @gccoptlist{-mbarrel-shifter -mjli-always @gol
659 -mcpu=@var{cpu} -mA6 -mARC600 -mA7 -mARC700 @gol
660 -mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr @gol
661 -mea -mno-mpy -mmul32x16 -mmul64 -matomic @gol
662 -mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float -mswap @gol
663 -mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape @gol
664 -mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof @gol
665 -mlong-calls -mmedium-calls -msdata -mirq-ctrl-saved @gol
666 -mrgf-banked-regs -mlpc-width=@var{width} -G @var{num} @gol
667 -mvolatile-cache -mtp-regno=@var{regno} @gol
668 -malign-call -mauto-modify-reg -mbbit-peephole -mno-brcc @gol
669 -mcase-vector-pcrel -mcompact-casesi -mno-cond-exec -mearly-cbranchsi @gol
670 -mexpand-adddi -mindexed-loads -mlra -mlra-priority-none @gol
671 -mlra-priority-compact mlra-priority-noncompact -mmillicode @gol
672 -mmixed-code -mq-class -mRcq -mRcw -msize-level=@var{level} @gol
673 -mtune=@var{cpu} -mmultcost=@var{num} -mcode-density-frame @gol
674 -munalign-prob-threshold=@var{probability} -mmpy-option=@var{multo} @gol
675 -mdiv-rem -mcode-density -mll64 -mfpu=@var{fpu} -mrf16 -mbranch-index}
676
677 @emph{ARM Options}
678 @gccoptlist{-mapcs-frame -mno-apcs-frame @gol
679 -mabi=@var{name} @gol
680 -mapcs-stack-check -mno-apcs-stack-check @gol
681 -mapcs-reentrant -mno-apcs-reentrant @gol
682 -mgeneral-regs-only @gol
683 -msched-prolog -mno-sched-prolog @gol
684 -mlittle-endian -mbig-endian @gol
685 -mbe8 -mbe32 @gol
686 -mfloat-abi=@var{name} @gol
687 -mfp16-format=@var{name}
688 -mthumb-interwork -mno-thumb-interwork @gol
689 -mcpu=@var{name} -march=@var{name} -mfpu=@var{name} @gol
690 -mtune=@var{name} -mprint-tune-info @gol
691 -mstructure-size-boundary=@var{n} @gol
692 -mabort-on-noreturn @gol
693 -mlong-calls -mno-long-calls @gol
694 -msingle-pic-base -mno-single-pic-base @gol
695 -mpic-register=@var{reg} @gol
696 -mnop-fun-dllimport @gol
697 -mpoke-function-name @gol
698 -mthumb -marm -mflip-thumb @gol
699 -mtpcs-frame -mtpcs-leaf-frame @gol
700 -mcaller-super-interworking -mcallee-super-interworking @gol
701 -mtp=@var{name} -mtls-dialect=@var{dialect} @gol
702 -mword-relocations @gol
703 -mfix-cortex-m3-ldrd @gol
704 -munaligned-access @gol
705 -mneon-for-64bits @gol
706 -mslow-flash-data @gol
707 -masm-syntax-unified @gol
708 -mrestrict-it @gol
709 -mverbose-cost-dump @gol
710 -mpure-code @gol
711 -mcmse}
712
713 @emph{AVR Options}
714 @gccoptlist{-mmcu=@var{mcu} -mabsdata -maccumulate-args @gol
715 -mbranch-cost=@var{cost} @gol
716 -mcall-prologues -mgas-isr-prologues -mint8 @gol
717 -mn_flash=@var{size} -mno-interrupts @gol
718 -mmain-is-OS_task -mrelax -mrmw -mstrict-X -mtiny-stack @gol
719 -mfract-convert-truncate @gol
720 -mshort-calls -nodevicelib @gol
721 -Waddr-space-convert -Wmisspelled-isr}
722
723 @emph{Blackfin Options}
724 @gccoptlist{-mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]} @gol
725 -msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer @gol
726 -mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly @gol
727 -mlow-64k -mno-low64k -mstack-check-l1 -mid-shared-library @gol
728 -mno-id-shared-library -mshared-library-id=@var{n} @gol
729 -mleaf-id-shared-library -mno-leaf-id-shared-library @gol
730 -msep-data -mno-sep-data -mlong-calls -mno-long-calls @gol
731 -mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram @gol
732 -micplb}
733
734 @emph{C6X Options}
735 @gccoptlist{-mbig-endian -mlittle-endian -march=@var{cpu} @gol
736 -msim -msdata=@var{sdata-type}}
737
738 @emph{CRIS Options}
739 @gccoptlist{-mcpu=@var{cpu} -march=@var{cpu} -mtune=@var{cpu} @gol
740 -mmax-stack-frame=@var{n} -melinux-stacksize=@var{n} @gol
741 -metrax4 -metrax100 -mpdebug -mcc-init -mno-side-effects @gol
742 -mstack-align -mdata-align -mconst-align @gol
743 -m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt @gol
744 -melf -maout -melinux -mlinux -sim -sim2 @gol
745 -mmul-bug-workaround -mno-mul-bug-workaround}
746
747 @emph{CR16 Options}
748 @gccoptlist{-mmac @gol
749 -mcr16cplus -mcr16c @gol
750 -msim -mint32 -mbit-ops
751 -mdata-model=@var{model}}
752
753 @emph{C-SKY Options}
754 @gccoptlist{-march=@var{arch} -mcpu=@var{cpu} @gol
755 -mbig-endian -EB -mlittle-endian -EL @gol
756 -mhard-float -msoft-float -mfpu=@var{fpu} -mdouble-float -mfdivdu @gol
757 -melrw -mistack -mmp -mcp -mcache -msecurity -mtrust @gol
758 -mdsp -medsp -mvdsp @gol
759 -mdiv -msmart -mhigh-registers -manchor @gol
760 -mpushpop -mmultiple-stld -mconstpool -mstack-size -mccrt @gol
761 -mbranch-cost=@var{n} -mcse-cc -msched-prolog}
762
763 @emph{Darwin Options}
764 @gccoptlist{-all_load -allowable_client -arch -arch_errors_fatal @gol
765 -arch_only -bind_at_load -bundle -bundle_loader @gol
766 -client_name -compatibility_version -current_version @gol
767 -dead_strip @gol
768 -dependency-file -dylib_file -dylinker_install_name @gol
769 -dynamic -dynamiclib -exported_symbols_list @gol
770 -filelist -flat_namespace -force_cpusubtype_ALL @gol
771 -force_flat_namespace -headerpad_max_install_names @gol
772 -iframework @gol
773 -image_base -init -install_name -keep_private_externs @gol
774 -multi_module -multiply_defined -multiply_defined_unused @gol
775 -noall_load -no_dead_strip_inits_and_terms @gol
776 -nofixprebinding -nomultidefs -noprebind -noseglinkedit @gol
777 -pagezero_size -prebind -prebind_all_twolevel_modules @gol
778 -private_bundle -read_only_relocs -sectalign @gol
779 -sectobjectsymbols -whyload -seg1addr @gol
780 -sectcreate -sectobjectsymbols -sectorder @gol
781 -segaddr -segs_read_only_addr -segs_read_write_addr @gol
782 -seg_addr_table -seg_addr_table_filename -seglinkedit @gol
783 -segprot -segs_read_only_addr -segs_read_write_addr @gol
784 -single_module -static -sub_library -sub_umbrella @gol
785 -twolevel_namespace -umbrella -undefined @gol
786 -unexported_symbols_list -weak_reference_mismatches @gol
787 -whatsloaded -F -gused -gfull -mmacosx-version-min=@var{version} @gol
788 -mkernel -mone-byte-bool}
789
790 @emph{DEC Alpha Options}
791 @gccoptlist{-mno-fp-regs -msoft-float @gol
792 -mieee -mieee-with-inexact -mieee-conformant @gol
793 -mfp-trap-mode=@var{mode} -mfp-rounding-mode=@var{mode} @gol
794 -mtrap-precision=@var{mode} -mbuild-constants @gol
795 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} @gol
796 -mbwx -mmax -mfix -mcix @gol
797 -mfloat-vax -mfloat-ieee @gol
798 -mexplicit-relocs -msmall-data -mlarge-data @gol
799 -msmall-text -mlarge-text @gol
800 -mmemory-latency=@var{time}}
801
802 @emph{FR30 Options}
803 @gccoptlist{-msmall-model -mno-lsim}
804
805 @emph{FT32 Options}
806 @gccoptlist{-msim -mlra -mnodiv -mft32b -mcompress -mnopm}
807
808 @emph{FRV Options}
809 @gccoptlist{-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64 @gol
810 -mhard-float -msoft-float @gol
811 -malloc-cc -mfixed-cc -mdword -mno-dword @gol
812 -mdouble -mno-double @gol
813 -mmedia -mno-media -mmuladd -mno-muladd @gol
814 -mfdpic -minline-plt -mgprel-ro -multilib-library-pic @gol
815 -mlinked-fp -mlong-calls -malign-labels @gol
816 -mlibrary-pic -macc-4 -macc-8 @gol
817 -mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move @gol
818 -moptimize-membar -mno-optimize-membar @gol
819 -mscc -mno-scc -mcond-exec -mno-cond-exec @gol
820 -mvliw-branch -mno-vliw-branch @gol
821 -mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec @gol
822 -mno-nested-cond-exec -mtomcat-stats @gol
823 -mTLS -mtls @gol
824 -mcpu=@var{cpu}}
825
826 @emph{GNU/Linux Options}
827 @gccoptlist{-mglibc -muclibc -mmusl -mbionic -mandroid @gol
828 -tno-android-cc -tno-android-ld}
829
830 @emph{H8/300 Options}
831 @gccoptlist{-mrelax -mh -ms -mn -mexr -mno-exr -mint32 -malign-300}
832
833 @emph{HPPA Options}
834 @gccoptlist{-march=@var{architecture-type} @gol
835 -mcaller-copies -mdisable-fpregs -mdisable-indexing @gol
836 -mfast-indirect-calls -mgas -mgnu-ld -mhp-ld @gol
837 -mfixed-range=@var{register-range} @gol
838 -mjump-in-delay -mlinker-opt -mlong-calls @gol
839 -mlong-load-store -mno-disable-fpregs @gol
840 -mno-disable-indexing -mno-fast-indirect-calls -mno-gas @gol
841 -mno-jump-in-delay -mno-long-load-store @gol
842 -mno-portable-runtime -mno-soft-float @gol
843 -mno-space-regs -msoft-float -mpa-risc-1-0 @gol
844 -mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime @gol
845 -mschedule=@var{cpu-type} -mspace-regs -msio -mwsio @gol
846 -munix=@var{unix-std} -nolibdld -static -threads}
847
848 @emph{IA-64 Options}
849 @gccoptlist{-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic @gol
850 -mvolatile-asm-stop -mregister-names -msdata -mno-sdata @gol
851 -mconstant-gp -mauto-pic -mfused-madd @gol
852 -minline-float-divide-min-latency @gol
853 -minline-float-divide-max-throughput @gol
854 -mno-inline-float-divide @gol
855 -minline-int-divide-min-latency @gol
856 -minline-int-divide-max-throughput @gol
857 -mno-inline-int-divide @gol
858 -minline-sqrt-min-latency -minline-sqrt-max-throughput @gol
859 -mno-inline-sqrt @gol
860 -mdwarf2-asm -mearly-stop-bits @gol
861 -mfixed-range=@var{register-range} -mtls-size=@var{tls-size} @gol
862 -mtune=@var{cpu-type} -milp32 -mlp64 @gol
863 -msched-br-data-spec -msched-ar-data-spec -msched-control-spec @gol
864 -msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec @gol
865 -msched-spec-ldc -msched-spec-control-ldc @gol
866 -msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns @gol
867 -msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path @gol
868 -msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost @gol
869 -msched-max-memory-insns-hard-limit -msched-max-memory-insns=@var{max-insns}}
870
871 @emph{LM32 Options}
872 @gccoptlist{-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled @gol
873 -msign-extend-enabled -muser-enabled}
874
875 @emph{M32R/D Options}
876 @gccoptlist{-m32r2 -m32rx -m32r @gol
877 -mdebug @gol
878 -malign-loops -mno-align-loops @gol
879 -missue-rate=@var{number} @gol
880 -mbranch-cost=@var{number} @gol
881 -mmodel=@var{code-size-model-type} @gol
882 -msdata=@var{sdata-type} @gol
883 -mno-flush-func -mflush-func=@var{name} @gol
884 -mno-flush-trap -mflush-trap=@var{number} @gol
885 -G @var{num}}
886
887 @emph{M32C Options}
888 @gccoptlist{-mcpu=@var{cpu} -msim -memregs=@var{number}}
889
890 @emph{M680x0 Options}
891 @gccoptlist{-march=@var{arch} -mcpu=@var{cpu} -mtune=@var{tune} @gol
892 -m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040 @gol
893 -m68060 -mcpu32 -m5200 -m5206e -m528x -m5307 -m5407 @gol
894 -mcfv4e -mbitfield -mno-bitfield -mc68000 -mc68020 @gol
895 -mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort @gol
896 -mno-short -mhard-float -m68881 -msoft-float -mpcrel @gol
897 -malign-int -mstrict-align -msep-data -mno-sep-data @gol
898 -mshared-library-id=n -mid-shared-library -mno-id-shared-library @gol
899 -mxgot -mno-xgot -mlong-jump-table-offsets}
900
901 @emph{MCore Options}
902 @gccoptlist{-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates @gol
903 -mno-relax-immediates -mwide-bitfields -mno-wide-bitfields @gol
904 -m4byte-functions -mno-4byte-functions -mcallgraph-data @gol
905 -mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim @gol
906 -mlittle-endian -mbig-endian -m210 -m340 -mstack-increment}
907
908 @emph{MeP Options}
909 @gccoptlist{-mabsdiff -mall-opts -maverage -mbased=@var{n} -mbitops @gol
910 -mc=@var{n} -mclip -mconfig=@var{name} -mcop -mcop32 -mcop64 -mivc2 @gol
911 -mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax @gol
912 -mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf @gol
913 -mtiny=@var{n}}
914
915 @emph{MicroBlaze Options}
916 @gccoptlist{-msoft-float -mhard-float -msmall-divides -mcpu=@var{cpu} @gol
917 -mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift @gol
918 -mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss @gol
919 -mxl-multiply-high -mxl-float-convert -mxl-float-sqrt @gol
920 -mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-@var{app-model} @gol
921 -mpic-data-is-text-relative}
922
923 @emph{MIPS Options}
924 @gccoptlist{-EL -EB -march=@var{arch} -mtune=@var{arch} @gol
925 -mips1 -mips2 -mips3 -mips4 -mips32 -mips32r2 -mips32r3 -mips32r5 @gol
926 -mips32r6 -mips64 -mips64r2 -mips64r3 -mips64r5 -mips64r6 @gol
927 -mips16 -mno-mips16 -mflip-mips16 @gol
928 -minterlink-compressed -mno-interlink-compressed @gol
929 -minterlink-mips16 -mno-interlink-mips16 @gol
930 -mabi=@var{abi} -mabicalls -mno-abicalls @gol
931 -mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot @gol
932 -mgp32 -mgp64 -mfp32 -mfpxx -mfp64 -mhard-float -msoft-float @gol
933 -mno-float -msingle-float -mdouble-float @gol
934 -modd-spreg -mno-odd-spreg @gol
935 -mabs=@var{mode} -mnan=@var{encoding} @gol
936 -mdsp -mno-dsp -mdspr2 -mno-dspr2 @gol
937 -mmcu -mmno-mcu @gol
938 -meva -mno-eva @gol
939 -mvirt -mno-virt @gol
940 -mxpa -mno-xpa @gol
941 -mcrc -mno-crc @gol
942 -mginv -mno-ginv @gol
943 -mmicromips -mno-micromips @gol
944 -mmsa -mno-msa @gol
945 -mloongson-mmi -mno-loongson-mmi @gol
946 -mloongson-ext -mno-loongson-ext @gol
947 -mloongson-ext2 -mno-loongson-ext2 @gol
948 -mfpu=@var{fpu-type} @gol
949 -msmartmips -mno-smartmips @gol
950 -mpaired-single -mno-paired-single -mdmx -mno-mdmx @gol
951 -mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc @gol
952 -mlong64 -mlong32 -msym32 -mno-sym32 @gol
953 -G@var{num} -mlocal-sdata -mno-local-sdata @gol
954 -mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt @gol
955 -membedded-data -mno-embedded-data @gol
956 -muninit-const-in-rodata -mno-uninit-const-in-rodata @gol
957 -mcode-readable=@var{setting} @gol
958 -msplit-addresses -mno-split-addresses @gol
959 -mexplicit-relocs -mno-explicit-relocs @gol
960 -mcheck-zero-division -mno-check-zero-division @gol
961 -mdivide-traps -mdivide-breaks @gol
962 -mload-store-pairs -mno-load-store-pairs @gol
963 -mmemcpy -mno-memcpy -mlong-calls -mno-long-calls @gol
964 -mmad -mno-mad -mimadd -mno-imadd -mfused-madd -mno-fused-madd -nocpp @gol
965 -mfix-24k -mno-fix-24k @gol
966 -mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400 @gol
967 -mfix-r5900 -mno-fix-r5900 @gol
968 -mfix-r10000 -mno-fix-r10000 -mfix-rm7000 -mno-fix-rm7000 @gol
969 -mfix-vr4120 -mno-fix-vr4120 @gol
970 -mfix-vr4130 -mno-fix-vr4130 -mfix-sb1 -mno-fix-sb1 @gol
971 -mflush-func=@var{func} -mno-flush-func @gol
972 -mbranch-cost=@var{num} -mbranch-likely -mno-branch-likely @gol
973 -mcompact-branches=@var{policy} @gol
974 -mfp-exceptions -mno-fp-exceptions @gol
975 -mvr4130-align -mno-vr4130-align -msynci -mno-synci @gol
976 -mlxc1-sxc1 -mno-lxc1-sxc1 -mmadd4 -mno-madd4 @gol
977 -mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address @gol
978 -mframe-header-opt -mno-frame-header-opt}
979
980 @emph{MMIX Options}
981 @gccoptlist{-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu @gol
982 -mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols @gol
983 -melf -mbranch-predict -mno-branch-predict -mbase-addresses @gol
984 -mno-base-addresses -msingle-exit -mno-single-exit}
985
986 @emph{MN10300 Options}
987 @gccoptlist{-mmult-bug -mno-mult-bug @gol
988 -mno-am33 -mam33 -mam33-2 -mam34 @gol
989 -mtune=@var{cpu-type} @gol
990 -mreturn-pointer-on-d0 @gol
991 -mno-crt0 -mrelax -mliw -msetlb}
992
993 @emph{Moxie Options}
994 @gccoptlist{-meb -mel -mmul.x -mno-crt0}
995
996 @emph{MSP430 Options}
997 @gccoptlist{-msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax @gol
998 -mwarn-mcu @gol
999 -mcode-region= -mdata-region= @gol
1000 -msilicon-errata= -msilicon-errata-warn= @gol
1001 -mhwmult= -minrt}
1002
1003 @emph{NDS32 Options}
1004 @gccoptlist{-mbig-endian -mlittle-endian @gol
1005 -mreduced-regs -mfull-regs @gol
1006 -mcmov -mno-cmov @gol
1007 -mext-perf -mno-ext-perf @gol
1008 -mext-perf2 -mno-ext-perf2 @gol
1009 -mext-string -mno-ext-string @gol
1010 -mv3push -mno-v3push @gol
1011 -m16bit -mno-16bit @gol
1012 -misr-vector-size=@var{num} @gol
1013 -mcache-block-size=@var{num} @gol
1014 -march=@var{arch} @gol
1015 -mcmodel=@var{code-model} @gol
1016 -mctor-dtor -mrelax}
1017
1018 @emph{Nios II Options}
1019 @gccoptlist{-G @var{num} -mgpopt=@var{option} -mgpopt -mno-gpopt @gol
1020 -mgprel-sec=@var{regexp} -mr0rel-sec=@var{regexp} @gol
1021 -mel -meb @gol
1022 -mno-bypass-cache -mbypass-cache @gol
1023 -mno-cache-volatile -mcache-volatile @gol
1024 -mno-fast-sw-div -mfast-sw-div @gol
1025 -mhw-mul -mno-hw-mul -mhw-mulx -mno-hw-mulx -mno-hw-div -mhw-div @gol
1026 -mcustom-@var{insn}=@var{N} -mno-custom-@var{insn} @gol
1027 -mcustom-fpu-cfg=@var{name} @gol
1028 -mhal -msmallc -msys-crt0=@var{name} -msys-lib=@var{name} @gol
1029 -march=@var{arch} -mbmx -mno-bmx -mcdx -mno-cdx}
1030
1031 @emph{Nvidia PTX Options}
1032 @gccoptlist{-m32 -m64 -mmainkernel -moptimize}
1033
1034 @emph{OpenRISC Options}
1035 @gccoptlist{-mboard=@var{name} -mnewlib -mhard-mul -mhard-div @gol
1036 -msoft-mul -msoft-div @gol
1037 -msoft-float -mhard-float -mdouble-float -munordered-float @gol
1038 -mcmov -mror -mrori -msext -msfimm -mshftimm}
1039
1040 @emph{PDP-11 Options}
1041 @gccoptlist{-mfpu -msoft-float -mac0 -mno-ac0 -m40 -m45 -m10 @gol
1042 -mint32 -mno-int16 -mint16 -mno-int32 @gol
1043 -msplit -munix-asm -mdec-asm -mgnu-asm -mlra}
1044
1045 @emph{picoChip Options}
1046 @gccoptlist{-mae=@var{ae_type} -mvliw-lookahead=@var{N} @gol
1047 -msymbol-as-address -mno-inefficient-warnings}
1048
1049 @emph{PowerPC Options}
1050 See RS/6000 and PowerPC Options.
1051
1052 @emph{PRU Options}
1053 @gccoptlist{-mmcu=@var{mcu} -minrt -mno-relax -mloop @gol
1054 -mabi=@var{variant} @gol}
1055
1056 @emph{RISC-V Options}
1057 @gccoptlist{-mbranch-cost=@var{N-instruction} @gol
1058 -mplt -mno-plt @gol
1059 -mabi=@var{ABI-string} @gol
1060 -mfdiv -mno-fdiv @gol
1061 -mdiv -mno-div @gol
1062 -march=@var{ISA-string} @gol
1063 -mtune=@var{processor-string} @gol
1064 -mpreferred-stack-boundary=@var{num} @gol
1065 -msmall-data-limit=@var{N-bytes} @gol
1066 -msave-restore -mno-save-restore @gol
1067 -mstrict-align -mno-strict-align @gol
1068 -mcmodel=medlow -mcmodel=medany @gol
1069 -mexplicit-relocs -mno-explicit-relocs @gol
1070 -mrelax -mno-relax @gol
1071 -mriscv-attribute -mmo-riscv-attribute @gol
1072 -malign-data=@var{type}}
1073
1074 @emph{RL78 Options}
1075 @gccoptlist{-msim -mmul=none -mmul=g13 -mmul=g14 -mallregs @gol
1076 -mcpu=g10 -mcpu=g13 -mcpu=g14 -mg10 -mg13 -mg14 @gol
1077 -m64bit-doubles -m32bit-doubles -msave-mduc-in-interrupts}
1078
1079 @emph{RS/6000 and PowerPC Options}
1080 @gccoptlist{-mcpu=@var{cpu-type} @gol
1081 -mtune=@var{cpu-type} @gol
1082 -mcmodel=@var{code-model} @gol
1083 -mpowerpc64 @gol
1084 -maltivec -mno-altivec @gol
1085 -mpowerpc-gpopt -mno-powerpc-gpopt @gol
1086 -mpowerpc-gfxopt -mno-powerpc-gfxopt @gol
1087 -mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mpopcntd -mno-popcntd @gol
1088 -mfprnd -mno-fprnd @gol
1089 -mcmpb -mno-cmpb -mhard-dfp -mno-hard-dfp @gol
1090 -mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc @gol
1091 -m64 -m32 -mxl-compat -mno-xl-compat -mpe @gol
1092 -malign-power -malign-natural @gol
1093 -msoft-float -mhard-float -mmultiple -mno-multiple @gol
1094 -mupdate -mno-update @gol
1095 -mavoid-indexed-addresses -mno-avoid-indexed-addresses @gol
1096 -mfused-madd -mno-fused-madd -mbit-align -mno-bit-align @gol
1097 -mstrict-align -mno-strict-align -mrelocatable @gol
1098 -mno-relocatable -mrelocatable-lib -mno-relocatable-lib @gol
1099 -mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian @gol
1100 -mdynamic-no-pic -mswdiv -msingle-pic-base @gol
1101 -mprioritize-restricted-insns=@var{priority} @gol
1102 -msched-costly-dep=@var{dependence_type} @gol
1103 -minsert-sched-nops=@var{scheme} @gol
1104 -mcall-aixdesc -mcall-eabi -mcall-freebsd @gol
1105 -mcall-linux -mcall-netbsd -mcall-openbsd @gol
1106 -mcall-sysv -mcall-sysv-eabi -mcall-sysv-noeabi @gol
1107 -mtraceback=@var{traceback_type} @gol
1108 -maix-struct-return -msvr4-struct-return @gol
1109 -mabi=@var{abi-type} -msecure-plt -mbss-plt @gol
1110 -mlongcall -mno-longcall -mpltseq -mno-pltseq @gol
1111 -mblock-move-inline-limit=@var{num} @gol
1112 -mblock-compare-inline-limit=@var{num} @gol
1113 -mblock-compare-inline-loop-limit=@var{num} @gol
1114 -mstring-compare-inline-limit=@var{num} @gol
1115 -misel -mno-isel @gol
1116 -mvrsave -mno-vrsave @gol
1117 -mmulhw -mno-mulhw @gol
1118 -mdlmzb -mno-dlmzb @gol
1119 -mprototype -mno-prototype @gol
1120 -msim -mmvme -mads -myellowknife -memb -msdata @gol
1121 -msdata=@var{opt} -mreadonly-in-sdata -mvxworks -G @var{num} @gol
1122 -mrecip -mrecip=@var{opt} -mno-recip -mrecip-precision @gol
1123 -mno-recip-precision @gol
1124 -mveclibabi=@var{type} -mfriz -mno-friz @gol
1125 -mpointers-to-nested-functions -mno-pointers-to-nested-functions @gol
1126 -msave-toc-indirect -mno-save-toc-indirect @gol
1127 -mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector @gol
1128 -mcrypto -mno-crypto -mhtm -mno-htm @gol
1129 -mquad-memory -mno-quad-memory @gol
1130 -mquad-memory-atomic -mno-quad-memory-atomic @gol
1131 -mcompat-align-parm -mno-compat-align-parm @gol
1132 -mfloat128 -mno-float128 -mfloat128-hardware -mno-float128-hardware @gol
1133 -mgnu-attribute -mno-gnu-attribute @gol
1134 -mstack-protector-guard=@var{guard} -mstack-protector-guard-reg=@var{reg} @gol
1135 -mstack-protector-guard-offset=@var{offset} -mpcrel -mno-pcrel}
1136
1137 @emph{RX Options}
1138 @gccoptlist{-m64bit-doubles -m32bit-doubles -fpu -nofpu@gol
1139 -mcpu=@gol
1140 -mbig-endian-data -mlittle-endian-data @gol
1141 -msmall-data @gol
1142 -msim -mno-sim@gol
1143 -mas100-syntax -mno-as100-syntax@gol
1144 -mrelax@gol
1145 -mmax-constant-size=@gol
1146 -mint-register=@gol
1147 -mpid@gol
1148 -mallow-string-insns -mno-allow-string-insns@gol
1149 -mjsr@gol
1150 -mno-warn-multiple-fast-interrupts@gol
1151 -msave-acc-in-interrupts}
1152
1153 @emph{S/390 and zSeries Options}
1154 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
1155 -mhard-float -msoft-float -mhard-dfp -mno-hard-dfp @gol
1156 -mlong-double-64 -mlong-double-128 @gol
1157 -mbackchain -mno-backchain -mpacked-stack -mno-packed-stack @gol
1158 -msmall-exec -mno-small-exec -mmvcle -mno-mvcle @gol
1159 -m64 -m31 -mdebug -mno-debug -mesa -mzarch @gol
1160 -mhtm -mvx -mzvector @gol
1161 -mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd @gol
1162 -mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard @gol
1163 -mhotpatch=@var{halfwords},@var{halfwords}}
1164
1165 @emph{Score Options}
1166 @gccoptlist{-meb -mel @gol
1167 -mnhwloop @gol
1168 -muls @gol
1169 -mmac @gol
1170 -mscore5 -mscore5u -mscore7 -mscore7d}
1171
1172 @emph{SH Options}
1173 @gccoptlist{-m1 -m2 -m2e @gol
1174 -m2a-nofpu -m2a-single-only -m2a-single -m2a @gol
1175 -m3 -m3e @gol
1176 -m4-nofpu -m4-single-only -m4-single -m4 @gol
1177 -m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al @gol
1178 -mb -ml -mdalign -mrelax @gol
1179 -mbigtable -mfmovd -mrenesas -mno-renesas -mnomacsave @gol
1180 -mieee -mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct @gol
1181 -mprefergot -musermode -multcost=@var{number} -mdiv=@var{strategy} @gol
1182 -mdivsi3_libfunc=@var{name} -mfixed-range=@var{register-range} @gol
1183 -maccumulate-outgoing-args @gol
1184 -matomic-model=@var{atomic-model} @gol
1185 -mbranch-cost=@var{num} -mzdcbranch -mno-zdcbranch @gol
1186 -mcbranch-force-delay-slot @gol
1187 -mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra @gol
1188 -mpretend-cmove -mtas}
1189
1190 @emph{Solaris 2 Options}
1191 @gccoptlist{-mclear-hwcap -mno-clear-hwcap -mimpure-text -mno-impure-text @gol
1192 -pthreads}
1193
1194 @emph{SPARC Options}
1195 @gccoptlist{-mcpu=@var{cpu-type} @gol
1196 -mtune=@var{cpu-type} @gol
1197 -mcmodel=@var{code-model} @gol
1198 -mmemory-model=@var{mem-model} @gol
1199 -m32 -m64 -mapp-regs -mno-app-regs @gol
1200 -mfaster-structs -mno-faster-structs -mflat -mno-flat @gol
1201 -mfpu -mno-fpu -mhard-float -msoft-float @gol
1202 -mhard-quad-float -msoft-quad-float @gol
1203 -mstack-bias -mno-stack-bias @gol
1204 -mstd-struct-return -mno-std-struct-return @gol
1205 -munaligned-doubles -mno-unaligned-doubles @gol
1206 -muser-mode -mno-user-mode @gol
1207 -mv8plus -mno-v8plus -mvis -mno-vis @gol
1208 -mvis2 -mno-vis2 -mvis3 -mno-vis3 @gol
1209 -mvis4 -mno-vis4 -mvis4b -mno-vis4b @gol
1210 -mcbcond -mno-cbcond -mfmaf -mno-fmaf -mfsmuld -mno-fsmuld @gol
1211 -mpopc -mno-popc -msubxc -mno-subxc @gol
1212 -mfix-at697f -mfix-ut699 -mfix-ut700 -mfix-gr712rc @gol
1213 -mlra -mno-lra}
1214
1215 @emph{SPU Options}
1216 @gccoptlist{-mwarn-reloc -merror-reloc @gol
1217 -msafe-dma -munsafe-dma @gol
1218 -mbranch-hints @gol
1219 -msmall-mem -mlarge-mem -mstdmain @gol
1220 -mfixed-range=@var{register-range} @gol
1221 -mea32 -mea64 @gol
1222 -maddress-space-conversion -mno-address-space-conversion @gol
1223 -mcache-size=@var{cache-size} @gol
1224 -matomic-updates -mno-atomic-updates}
1225
1226 @emph{System V Options}
1227 @gccoptlist{-Qy -Qn -YP,@var{paths} -Ym,@var{dir}}
1228
1229 @emph{TILE-Gx Options}
1230 @gccoptlist{-mcpu=CPU -m32 -m64 -mbig-endian -mlittle-endian @gol
1231 -mcmodel=@var{code-model}}
1232
1233 @emph{TILEPro Options}
1234 @gccoptlist{-mcpu=@var{cpu} -m32}
1235
1236 @emph{V850 Options}
1237 @gccoptlist{-mlong-calls -mno-long-calls -mep -mno-ep @gol
1238 -mprolog-function -mno-prolog-function -mspace @gol
1239 -mtda=@var{n} -msda=@var{n} -mzda=@var{n} @gol
1240 -mapp-regs -mno-app-regs @gol
1241 -mdisable-callt -mno-disable-callt @gol
1242 -mv850e2v3 -mv850e2 -mv850e1 -mv850es @gol
1243 -mv850e -mv850 -mv850e3v5 @gol
1244 -mloop @gol
1245 -mrelax @gol
1246 -mlong-jumps @gol
1247 -msoft-float @gol
1248 -mhard-float @gol
1249 -mgcc-abi @gol
1250 -mrh850-abi @gol
1251 -mbig-switch}
1252
1253 @emph{VAX Options}
1254 @gccoptlist{-mg -mgnu -munix}
1255
1256 @emph{Visium Options}
1257 @gccoptlist{-mdebug -msim -mfpu -mno-fpu -mhard-float -msoft-float @gol
1258 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} -msv-mode -muser-mode}
1259
1260 @emph{VMS Options}
1261 @gccoptlist{-mvms-return-codes -mdebug-main=@var{prefix} -mmalloc64 @gol
1262 -mpointer-size=@var{size}}
1263
1264 @emph{VxWorks Options}
1265 @gccoptlist{-mrtp -non-static -Bstatic -Bdynamic @gol
1266 -Xbind-lazy -Xbind-now}
1267
1268 @emph{x86 Options}
1269 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
1270 -mtune-ctrl=@var{feature-list} -mdump-tune-features -mno-default @gol
1271 -mfpmath=@var{unit} @gol
1272 -masm=@var{dialect} -mno-fancy-math-387 @gol
1273 -mno-fp-ret-in-387 -m80387 -mhard-float -msoft-float @gol
1274 -mno-wide-multiply -mrtd -malign-double @gol
1275 -mpreferred-stack-boundary=@var{num} @gol
1276 -mincoming-stack-boundary=@var{num} @gol
1277 -mcld -mcx16 -msahf -mmovbe -mcrc32 @gol
1278 -mrecip -mrecip=@var{opt} @gol
1279 -mvzeroupper -mprefer-avx128 -mprefer-vector-width=@var{opt} @gol
1280 -mmmx -msse -msse2 -msse3 -mssse3 -msse4.1 -msse4.2 -msse4 -mavx @gol
1281 -mavx2 -mavx512f -mavx512pf -mavx512er -mavx512cd -mavx512vl @gol
1282 -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi -msha -maes @gol
1283 -mpclmul -mfsgsbase -mrdrnd -mf16c -mfma -mpconfig -mwbnoinvd @gol
1284 -mptwrite -mprefetchwt1 -mclflushopt -mclwb -mxsavec -mxsaves @gol
1285 -msse4a -m3dnow -m3dnowa -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop @gol
1286 -madx -mlzcnt -mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm -mhle -mlwp @gol
1287 -mmwaitx -mclzero -mpku -mthreads -mgfni -mvaes -mwaitpkg @gol
1288 -mshstk -mmanual-endbr -mforce-indirect-call -mavx512vbmi2 -mavx512bf16 -menqcmd @gol
1289 -mvpclmulqdq -mavx512bitalg -mmovdiri -mmovdir64b -mavx512vpopcntdq @gol
1290 -mavx5124fmaps -mavx512vnni -mavx5124vnniw -mprfchw -mrdpid @gol
1291 -mrdseed -msgx -mavx512vp2intersect@gol
1292 -mcldemote -mms-bitfields -mno-align-stringops -minline-all-stringops @gol
1293 -minline-stringops-dynamically -mstringop-strategy=@var{alg} @gol
1294 -mmemcpy-strategy=@var{strategy} -mmemset-strategy=@var{strategy} @gol
1295 -mpush-args -maccumulate-outgoing-args -m128bit-long-double @gol
1296 -m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128 @gol
1297 -mregparm=@var{num} -msseregparm @gol
1298 -mveclibabi=@var{type} -mvect8-ret-in-mem @gol
1299 -mpc32 -mpc64 -mpc80 -mstackrealign @gol
1300 -momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs @gol
1301 -mcmodel=@var{code-model} -mabi=@var{name} -maddress-mode=@var{mode} @gol
1302 -m32 -m64 -mx32 -m16 -miamcu -mlarge-data-threshold=@var{num} @gol
1303 -msse2avx -mfentry -mrecord-mcount -mnop-mcount -m8bit-idiv @gol
1304 -minstrument-return=@var{type} -mfentry-name=@var{name} -mfentry-section=@var{name} @gol
1305 -mavx256-split-unaligned-load -mavx256-split-unaligned-store @gol
1306 -malign-data=@var{type} -mstack-protector-guard=@var{guard} @gol
1307 -mstack-protector-guard-reg=@var{reg} @gol
1308 -mstack-protector-guard-offset=@var{offset} @gol
1309 -mstack-protector-guard-symbol=@var{symbol} @gol
1310 -mgeneral-regs-only -mcall-ms2sysv-xlogues @gol
1311 -mindirect-branch=@var{choice} -mfunction-return=@var{choice} @gol
1312 -mindirect-branch-register}
1313
1314 @emph{x86 Windows Options}
1315 @gccoptlist{-mconsole -mcygwin -mno-cygwin -mdll @gol
1316 -mnop-fun-dllimport -mthread @gol
1317 -municode -mwin32 -mwindows -fno-set-stack-executable}
1318
1319 @emph{Xstormy16 Options}
1320 @gccoptlist{-msim}
1321
1322 @emph{Xtensa Options}
1323 @gccoptlist{-mconst16 -mno-const16 @gol
1324 -mfused-madd -mno-fused-madd @gol
1325 -mforce-no-pic @gol
1326 -mserialize-volatile -mno-serialize-volatile @gol
1327 -mtext-section-literals -mno-text-section-literals @gol
1328 -mauto-litpools -mno-auto-litpools @gol
1329 -mtarget-align -mno-target-align @gol
1330 -mlongcalls -mno-longcalls}
1331
1332 @emph{zSeries Options}
1333 See S/390 and zSeries Options.
1334 @end table
1335
1336
1337 @node Overall Options
1338 @section Options Controlling the Kind of Output
1339
1340 Compilation can involve up to four stages: preprocessing, compilation
1341 proper, assembly and linking, always in that order. GCC is capable of
1342 preprocessing and compiling several files either into several
1343 assembler input files, or into one assembler input file; then each
1344 assembler input file produces an object file, and linking combines all
1345 the object files (those newly compiled, and those specified as input)
1346 into an executable file.
1347
1348 @cindex file name suffix
1349 For any given input file, the file name suffix determines what kind of
1350 compilation is done:
1351
1352 @table @gcctabopt
1353 @item @var{file}.c
1354 C source code that must be preprocessed.
1355
1356 @item @var{file}.i
1357 C source code that should not be preprocessed.
1358
1359 @item @var{file}.ii
1360 C++ source code that should not be preprocessed.
1361
1362 @item @var{file}.m
1363 Objective-C source code. Note that you must link with the @file{libobjc}
1364 library to make an Objective-C program work.
1365
1366 @item @var{file}.mi
1367 Objective-C source code that should not be preprocessed.
1368
1369 @item @var{file}.mm
1370 @itemx @var{file}.M
1371 Objective-C++ source code. Note that you must link with the @file{libobjc}
1372 library to make an Objective-C++ program work. Note that @samp{.M} refers
1373 to a literal capital M@.
1374
1375 @item @var{file}.mii
1376 Objective-C++ source code that should not be preprocessed.
1377
1378 @item @var{file}.h
1379 C, C++, Objective-C or Objective-C++ header file to be turned into a
1380 precompiled header (default), or C, C++ header file to be turned into an
1381 Ada spec (via the @option{-fdump-ada-spec} switch).
1382
1383 @item @var{file}.cc
1384 @itemx @var{file}.cp
1385 @itemx @var{file}.cxx
1386 @itemx @var{file}.cpp
1387 @itemx @var{file}.CPP
1388 @itemx @var{file}.c++
1389 @itemx @var{file}.C
1390 C++ source code that must be preprocessed. Note that in @samp{.cxx},
1391 the last two letters must both be literally @samp{x}. Likewise,
1392 @samp{.C} refers to a literal capital C@.
1393
1394 @item @var{file}.mm
1395 @itemx @var{file}.M
1396 Objective-C++ source code that must be preprocessed.
1397
1398 @item @var{file}.mii
1399 Objective-C++ source code that should not be preprocessed.
1400
1401 @item @var{file}.hh
1402 @itemx @var{file}.H
1403 @itemx @var{file}.hp
1404 @itemx @var{file}.hxx
1405 @itemx @var{file}.hpp
1406 @itemx @var{file}.HPP
1407 @itemx @var{file}.h++
1408 @itemx @var{file}.tcc
1409 C++ header file to be turned into a precompiled header or Ada spec.
1410
1411 @item @var{file}.f
1412 @itemx @var{file}.for
1413 @itemx @var{file}.ftn
1414 Fixed form Fortran source code that should not be preprocessed.
1415
1416 @item @var{file}.F
1417 @itemx @var{file}.FOR
1418 @itemx @var{file}.fpp
1419 @itemx @var{file}.FPP
1420 @itemx @var{file}.FTN
1421 Fixed form Fortran source code that must be preprocessed (with the traditional
1422 preprocessor).
1423
1424 @item @var{file}.f90
1425 @itemx @var{file}.f95
1426 @itemx @var{file}.f03
1427 @itemx @var{file}.f08
1428 Free form Fortran source code that should not be preprocessed.
1429
1430 @item @var{file}.F90
1431 @itemx @var{file}.F95
1432 @itemx @var{file}.F03
1433 @itemx @var{file}.F08
1434 Free form Fortran source code that must be preprocessed (with the
1435 traditional preprocessor).
1436
1437 @item @var{file}.go
1438 Go source code.
1439
1440 @item @var{file}.brig
1441 BRIG files (binary representation of HSAIL).
1442
1443 @item @var{file}.d
1444 D source code.
1445
1446 @item @var{file}.di
1447 D interface file.
1448
1449 @item @var{file}.dd
1450 D documentation code (Ddoc).
1451
1452 @item @var{file}.ads
1453 Ada source code file that contains a library unit declaration (a
1454 declaration of a package, subprogram, or generic, or a generic
1455 instantiation), or a library unit renaming declaration (a package,
1456 generic, or subprogram renaming declaration). Such files are also
1457 called @dfn{specs}.
1458
1459 @item @var{file}.adb
1460 Ada source code file containing a library unit body (a subprogram or
1461 package body). Such files are also called @dfn{bodies}.
1462
1463 @c GCC also knows about some suffixes for languages not yet included:
1464 @c Ratfor:
1465 @c @var{file}.r
1466
1467 @item @var{file}.s
1468 Assembler code.
1469
1470 @item @var{file}.S
1471 @itemx @var{file}.sx
1472 Assembler code that must be preprocessed.
1473
1474 @item @var{other}
1475 An object file to be fed straight into linking.
1476 Any file name with no recognized suffix is treated this way.
1477 @end table
1478
1479 @opindex x
1480 You can specify the input language explicitly with the @option{-x} option:
1481
1482 @table @gcctabopt
1483 @item -x @var{language}
1484 Specify explicitly the @var{language} for the following input files
1485 (rather than letting the compiler choose a default based on the file
1486 name suffix). This option applies to all following input files until
1487 the next @option{-x} option. Possible values for @var{language} are:
1488 @smallexample
1489 c c-header cpp-output
1490 c++ c++-header c++-cpp-output
1491 objective-c objective-c-header objective-c-cpp-output
1492 objective-c++ objective-c++-header objective-c++-cpp-output
1493 assembler assembler-with-cpp
1494 ada
1495 d
1496 f77 f77-cpp-input f95 f95-cpp-input
1497 go
1498 brig
1499 @end smallexample
1500
1501 @item -x none
1502 Turn off any specification of a language, so that subsequent files are
1503 handled according to their file name suffixes (as they are if @option{-x}
1504 has not been used at all).
1505 @end table
1506
1507 If you only want some of the stages of compilation, you can use
1508 @option{-x} (or filename suffixes) to tell @command{gcc} where to start, and
1509 one of the options @option{-c}, @option{-S}, or @option{-E} to say where
1510 @command{gcc} is to stop. Note that some combinations (for example,
1511 @samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all.
1512
1513 @table @gcctabopt
1514 @item -c
1515 @opindex c
1516 Compile or assemble the source files, but do not link. The linking
1517 stage simply is not done. The ultimate output is in the form of an
1518 object file for each source file.
1519
1520 By default, the object file name for a source file is made by replacing
1521 the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
1522
1523 Unrecognized input files, not requiring compilation or assembly, are
1524 ignored.
1525
1526 @item -S
1527 @opindex S
1528 Stop after the stage of compilation proper; do not assemble. The output
1529 is in the form of an assembler code file for each non-assembler input
1530 file specified.
1531
1532 By default, the assembler file name for a source file is made by
1533 replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
1534
1535 Input files that don't require compilation are ignored.
1536
1537 @item -E
1538 @opindex E
1539 Stop after the preprocessing stage; do not run the compiler proper. The
1540 output is in the form of preprocessed source code, which is sent to the
1541 standard output.
1542
1543 Input files that don't require preprocessing are ignored.
1544
1545 @cindex output file option
1546 @item -o @var{file}
1547 @opindex o
1548 Place output in file @var{file}. This applies to whatever
1549 sort of output is being produced, whether it be an executable file,
1550 an object file, an assembler file or preprocessed C code.
1551
1552 If @option{-o} is not specified, the default is to put an executable
1553 file in @file{a.out}, the object file for
1554 @file{@var{source}.@var{suffix}} in @file{@var{source}.o}, its
1555 assembler file in @file{@var{source}.s}, a precompiled header file in
1556 @file{@var{source}.@var{suffix}.gch}, and all preprocessed C source on
1557 standard output.
1558
1559 @item -v
1560 @opindex v
1561 Print (on standard error output) the commands executed to run the stages
1562 of compilation. Also print the version number of the compiler driver
1563 program and of the preprocessor and the compiler proper.
1564
1565 @item -###
1566 @opindex ###
1567 Like @option{-v} except the commands are not executed and arguments
1568 are quoted unless they contain only alphanumeric characters or @code{./-_}.
1569 This is useful for shell scripts to capture the driver-generated command lines.
1570
1571 @item --help
1572 @opindex help
1573 Print (on the standard output) a description of the command-line options
1574 understood by @command{gcc}. If the @option{-v} option is also specified
1575 then @option{--help} is also passed on to the various processes
1576 invoked by @command{gcc}, so that they can display the command-line options
1577 they accept. If the @option{-Wextra} option has also been specified
1578 (prior to the @option{--help} option), then command-line options that
1579 have no documentation associated with them are also displayed.
1580
1581 @item --target-help
1582 @opindex target-help
1583 Print (on the standard output) a description of target-specific command-line
1584 options for each tool. For some targets extra target-specific
1585 information may also be printed.
1586
1587 @item --help=@{@var{class}@r{|[}^@r{]}@var{qualifier}@}@r{[},@dots{}@r{]}
1588 Print (on the standard output) a description of the command-line
1589 options understood by the compiler that fit into all specified classes
1590 and qualifiers. These are the supported classes:
1591
1592 @table @asis
1593 @item @samp{optimizers}
1594 Display all of the optimization options supported by the
1595 compiler.
1596
1597 @item @samp{warnings}
1598 Display all of the options controlling warning messages
1599 produced by the compiler.
1600
1601 @item @samp{target}
1602 Display target-specific options. Unlike the
1603 @option{--target-help} option however, target-specific options of the
1604 linker and assembler are not displayed. This is because those
1605 tools do not currently support the extended @option{--help=} syntax.
1606
1607 @item @samp{params}
1608 Display the values recognized by the @option{--param}
1609 option.
1610
1611 @item @var{language}
1612 Display the options supported for @var{language}, where
1613 @var{language} is the name of one of the languages supported in this
1614 version of GCC@.
1615
1616 @item @samp{common}
1617 Display the options that are common to all languages.
1618 @end table
1619
1620 These are the supported qualifiers:
1621
1622 @table @asis
1623 @item @samp{undocumented}
1624 Display only those options that are undocumented.
1625
1626 @item @samp{joined}
1627 Display options taking an argument that appears after an equal
1628 sign in the same continuous piece of text, such as:
1629 @samp{--help=target}.
1630
1631 @item @samp{separate}
1632 Display options taking an argument that appears as a separate word
1633 following the original option, such as: @samp{-o output-file}.
1634 @end table
1635
1636 Thus for example to display all the undocumented target-specific
1637 switches supported by the compiler, use:
1638
1639 @smallexample
1640 --help=target,undocumented
1641 @end smallexample
1642
1643 The sense of a qualifier can be inverted by prefixing it with the
1644 @samp{^} character, so for example to display all binary warning
1645 options (i.e., ones that are either on or off and that do not take an
1646 argument) that have a description, use:
1647
1648 @smallexample
1649 --help=warnings,^joined,^undocumented
1650 @end smallexample
1651
1652 The argument to @option{--help=} should not consist solely of inverted
1653 qualifiers.
1654
1655 Combining several classes is possible, although this usually
1656 restricts the output so much that there is nothing to display. One
1657 case where it does work, however, is when one of the classes is
1658 @var{target}. For example, to display all the target-specific
1659 optimization options, use:
1660
1661 @smallexample
1662 --help=target,optimizers
1663 @end smallexample
1664
1665 The @option{--help=} option can be repeated on the command line. Each
1666 successive use displays its requested class of options, skipping
1667 those that have already been displayed. If @option{--help} is also
1668 specified anywhere on the command line then this takes precedence
1669 over any @option{--help=} option.
1670
1671 If the @option{-Q} option appears on the command line before the
1672 @option{--help=} option, then the descriptive text displayed by
1673 @option{--help=} is changed. Instead of describing the displayed
1674 options, an indication is given as to whether the option is enabled,
1675 disabled or set to a specific value (assuming that the compiler
1676 knows this at the point where the @option{--help=} option is used).
1677
1678 Here is a truncated example from the ARM port of @command{gcc}:
1679
1680 @smallexample
1681 % gcc -Q -mabi=2 --help=target -c
1682 The following options are target specific:
1683 -mabi= 2
1684 -mabort-on-noreturn [disabled]
1685 -mapcs [disabled]
1686 @end smallexample
1687
1688 The output is sensitive to the effects of previous command-line
1689 options, so for example it is possible to find out which optimizations
1690 are enabled at @option{-O2} by using:
1691
1692 @smallexample
1693 -Q -O2 --help=optimizers
1694 @end smallexample
1695
1696 Alternatively you can discover which binary optimizations are enabled
1697 by @option{-O3} by using:
1698
1699 @smallexample
1700 gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
1701 gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
1702 diff /tmp/O2-opts /tmp/O3-opts | grep enabled
1703 @end smallexample
1704
1705 @item --version
1706 @opindex version
1707 Display the version number and copyrights of the invoked GCC@.
1708
1709 @item -pass-exit-codes
1710 @opindex pass-exit-codes
1711 Normally the @command{gcc} program exits with the code of 1 if any
1712 phase of the compiler returns a non-success return code. If you specify
1713 @option{-pass-exit-codes}, the @command{gcc} program instead returns with
1714 the numerically highest error produced by any phase returning an error
1715 indication. The C, C++, and Fortran front ends return 4 if an internal
1716 compiler error is encountered.
1717
1718 @item -pipe
1719 @opindex pipe
1720 Use pipes rather than temporary files for communication between the
1721 various stages of compilation. This fails to work on some systems where
1722 the assembler is unable to read from a pipe; but the GNU assembler has
1723 no trouble.
1724
1725 @item -specs=@var{file}
1726 @opindex specs
1727 Process @var{file} after the compiler reads in the standard @file{specs}
1728 file, in order to override the defaults which the @command{gcc} driver
1729 program uses when determining what switches to pass to @command{cc1},
1730 @command{cc1plus}, @command{as}, @command{ld}, etc. More than one
1731 @option{-specs=@var{file}} can be specified on the command line, and they
1732 are processed in order, from left to right. @xref{Spec Files}, for
1733 information about the format of the @var{file}.
1734
1735 @item -wrapper
1736 @opindex wrapper
1737 Invoke all subcommands under a wrapper program. The name of the
1738 wrapper program and its parameters are passed as a comma separated
1739 list.
1740
1741 @smallexample
1742 gcc -c t.c -wrapper gdb,--args
1743 @end smallexample
1744
1745 @noindent
1746 This invokes all subprograms of @command{gcc} under
1747 @samp{gdb --args}, thus the invocation of @command{cc1} is
1748 @samp{gdb --args cc1 @dots{}}.
1749
1750 @item -ffile-prefix-map=@var{old}=@var{new}
1751 @opindex ffile-prefix-map
1752 When compiling files residing in directory @file{@var{old}}, record
1753 any references to them in the result of the compilation as if the
1754 files resided in directory @file{@var{new}} instead. Specifying this
1755 option is equivalent to specifying all the individual
1756 @option{-f*-prefix-map} options. This can be used to make reproducible
1757 builds that are location independent. See also
1758 @option{-fmacro-prefix-map} and @option{-fdebug-prefix-map}.
1759
1760 @item -fplugin=@var{name}.so
1761 @opindex fplugin
1762 Load the plugin code in file @var{name}.so, assumed to be a
1763 shared object to be dlopen'd by the compiler. The base name of
1764 the shared object file is used to identify the plugin for the
1765 purposes of argument parsing (See
1766 @option{-fplugin-arg-@var{name}-@var{key}=@var{value}} below).
1767 Each plugin should define the callback functions specified in the
1768 Plugins API.
1769
1770 @item -fplugin-arg-@var{name}-@var{key}=@var{value}
1771 @opindex fplugin-arg
1772 Define an argument called @var{key} with a value of @var{value}
1773 for the plugin called @var{name}.
1774
1775 @item -fdump-ada-spec@r{[}-slim@r{]}
1776 @opindex fdump-ada-spec
1777 For C and C++ source and include files, generate corresponding Ada specs.
1778 @xref{Generating Ada Bindings for C and C++ headers,,, gnat_ugn,
1779 GNAT User's Guide}, which provides detailed documentation on this feature.
1780
1781 @item -fada-spec-parent=@var{unit}
1782 @opindex fada-spec-parent
1783 In conjunction with @option{-fdump-ada-spec@r{[}-slim@r{]}} above, generate
1784 Ada specs as child units of parent @var{unit}.
1785
1786 @item -fdump-go-spec=@var{file}
1787 @opindex fdump-go-spec
1788 For input files in any language, generate corresponding Go
1789 declarations in @var{file}. This generates Go @code{const},
1790 @code{type}, @code{var}, and @code{func} declarations which may be a
1791 useful way to start writing a Go interface to code written in some
1792 other language.
1793
1794 @include @value{srcdir}/../libiberty/at-file.texi
1795 @end table
1796
1797 @node Invoking G++
1798 @section Compiling C++ Programs
1799
1800 @cindex suffixes for C++ source
1801 @cindex C++ source file suffixes
1802 C++ source files conventionally use one of the suffixes @samp{.C},
1803 @samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or
1804 @samp{.cxx}; C++ header files often use @samp{.hh}, @samp{.hpp},
1805 @samp{.H}, or (for shared template code) @samp{.tcc}; and
1806 preprocessed C++ files use the suffix @samp{.ii}. GCC recognizes
1807 files with these names and compiles them as C++ programs even if you
1808 call the compiler the same way as for compiling C programs (usually
1809 with the name @command{gcc}).
1810
1811 @findex g++
1812 @findex c++
1813 However, the use of @command{gcc} does not add the C++ library.
1814 @command{g++} is a program that calls GCC and automatically specifies linking
1815 against the C++ library. It treats @samp{.c},
1816 @samp{.h} and @samp{.i} files as C++ source files instead of C source
1817 files unless @option{-x} is used. This program is also useful when
1818 precompiling a C header file with a @samp{.h} extension for use in C++
1819 compilations. On many systems, @command{g++} is also installed with
1820 the name @command{c++}.
1821
1822 @cindex invoking @command{g++}
1823 When you compile C++ programs, you may specify many of the same
1824 command-line options that you use for compiling programs in any
1825 language; or command-line options meaningful for C and related
1826 languages; or options that are meaningful only for C++ programs.
1827 @xref{C Dialect Options,,Options Controlling C Dialect}, for
1828 explanations of options for languages related to C@.
1829 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
1830 explanations of options that are meaningful only for C++ programs.
1831
1832 @node C Dialect Options
1833 @section Options Controlling C Dialect
1834 @cindex dialect options
1835 @cindex language dialect options
1836 @cindex options, dialect
1837
1838 The following options control the dialect of C (or languages derived
1839 from C, such as C++, Objective-C and Objective-C++) that the compiler
1840 accepts:
1841
1842 @table @gcctabopt
1843 @cindex ANSI support
1844 @cindex ISO support
1845 @item -ansi
1846 @opindex ansi
1847 In C mode, this is equivalent to @option{-std=c90}. In C++ mode, it is
1848 equivalent to @option{-std=c++98}.
1849
1850 This turns off certain features of GCC that are incompatible with ISO
1851 C90 (when compiling C code), or of standard C++ (when compiling C++ code),
1852 such as the @code{asm} and @code{typeof} keywords, and
1853 predefined macros such as @code{unix} and @code{vax} that identify the
1854 type of system you are using. It also enables the undesirable and
1855 rarely used ISO trigraph feature. For the C compiler,
1856 it disables recognition of C++ style @samp{//} comments as well as
1857 the @code{inline} keyword.
1858
1859 The alternate keywords @code{__asm__}, @code{__extension__},
1860 @code{__inline__} and @code{__typeof__} continue to work despite
1861 @option{-ansi}. You would not want to use them in an ISO C program, of
1862 course, but it is useful to put them in header files that might be included
1863 in compilations done with @option{-ansi}. Alternate predefined macros
1864 such as @code{__unix__} and @code{__vax__} are also available, with or
1865 without @option{-ansi}.
1866
1867 The @option{-ansi} option does not cause non-ISO programs to be
1868 rejected gratuitously. For that, @option{-Wpedantic} is required in
1869 addition to @option{-ansi}. @xref{Warning Options}.
1870
1871 The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi}
1872 option is used. Some header files may notice this macro and refrain
1873 from declaring certain functions or defining certain macros that the
1874 ISO standard doesn't call for; this is to avoid interfering with any
1875 programs that might use these names for other things.
1876
1877 Functions that are normally built in but do not have semantics
1878 defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in
1879 functions when @option{-ansi} is used. @xref{Other Builtins,,Other
1880 built-in functions provided by GCC}, for details of the functions
1881 affected.
1882
1883 @item -std=
1884 @opindex std
1885 Determine the language standard. @xref{Standards,,Language Standards
1886 Supported by GCC}, for details of these standard versions. This option
1887 is currently only supported when compiling C or C++.
1888
1889 The compiler can accept several base standards, such as @samp{c90} or
1890 @samp{c++98}, and GNU dialects of those standards, such as
1891 @samp{gnu90} or @samp{gnu++98}. When a base standard is specified, the
1892 compiler accepts all programs following that standard plus those
1893 using GNU extensions that do not contradict it. For example,
1894 @option{-std=c90} turns off certain features of GCC that are
1895 incompatible with ISO C90, such as the @code{asm} and @code{typeof}
1896 keywords, but not other GNU extensions that do not have a meaning in
1897 ISO C90, such as omitting the middle term of a @code{?:}
1898 expression. On the other hand, when a GNU dialect of a standard is
1899 specified, all features supported by the compiler are enabled, even when
1900 those features change the meaning of the base standard. As a result, some
1901 strict-conforming programs may be rejected. The particular standard
1902 is used by @option{-Wpedantic} to identify which features are GNU
1903 extensions given that version of the standard. For example
1904 @option{-std=gnu90 -Wpedantic} warns about C++ style @samp{//}
1905 comments, while @option{-std=gnu99 -Wpedantic} does not.
1906
1907 A value for this option must be provided; possible values are
1908
1909 @table @samp
1910 @item c90
1911 @itemx c89
1912 @itemx iso9899:1990
1913 Support all ISO C90 programs (certain GNU extensions that conflict
1914 with ISO C90 are disabled). Same as @option{-ansi} for C code.
1915
1916 @item iso9899:199409
1917 ISO C90 as modified in amendment 1.
1918
1919 @item c99
1920 @itemx c9x
1921 @itemx iso9899:1999
1922 @itemx iso9899:199x
1923 ISO C99. This standard is substantially completely supported, modulo
1924 bugs and floating-point issues
1925 (mainly but not entirely relating to optional C99 features from
1926 Annexes F and G). See
1927 @w{@uref{http://gcc.gnu.org/c99status.html}} for more information. The
1928 names @samp{c9x} and @samp{iso9899:199x} are deprecated.
1929
1930 @item c11
1931 @itemx c1x
1932 @itemx iso9899:2011
1933 ISO C11, the 2011 revision of the ISO C standard. This standard is
1934 substantially completely supported, modulo bugs, floating-point issues
1935 (mainly but not entirely relating to optional C11 features from
1936 Annexes F and G) and the optional Annexes K (Bounds-checking
1937 interfaces) and L (Analyzability). The name @samp{c1x} is deprecated.
1938
1939 @item c17
1940 @itemx c18
1941 @itemx iso9899:2017
1942 @itemx iso9899:2018
1943 ISO C17, the 2017 revision of the ISO C standard
1944 (published in 2018). This standard is
1945 same as C11 except for corrections of defects (all of which are also
1946 applied with @option{-std=c11}) and a new value of
1947 @code{__STDC_VERSION__}, and so is supported to the same extent as C11.
1948
1949 @item c2x
1950 The next version of the ISO C standard, still under development. The
1951 support for this version is experimental and incomplete.
1952
1953 @item gnu90
1954 @itemx gnu89
1955 GNU dialect of ISO C90 (including some C99 features).
1956
1957 @item gnu99
1958 @itemx gnu9x
1959 GNU dialect of ISO C99. The name @samp{gnu9x} is deprecated.
1960
1961 @item gnu11
1962 @itemx gnu1x
1963 GNU dialect of ISO C11.
1964 The name @samp{gnu1x} is deprecated.
1965
1966 @item gnu17
1967 @itemx gnu18
1968 GNU dialect of ISO C17. This is the default for C code.
1969
1970 @item gnu2x
1971 The next version of the ISO C standard, still under development, plus
1972 GNU extensions. The support for this version is experimental and
1973 incomplete.
1974
1975 @item c++98
1976 @itemx c++03
1977 The 1998 ISO C++ standard plus the 2003 technical corrigendum and some
1978 additional defect reports. Same as @option{-ansi} for C++ code.
1979
1980 @item gnu++98
1981 @itemx gnu++03
1982 GNU dialect of @option{-std=c++98}.
1983
1984 @item c++11
1985 @itemx c++0x
1986 The 2011 ISO C++ standard plus amendments.
1987 The name @samp{c++0x} is deprecated.
1988
1989 @item gnu++11
1990 @itemx gnu++0x
1991 GNU dialect of @option{-std=c++11}.
1992 The name @samp{gnu++0x} is deprecated.
1993
1994 @item c++14
1995 @itemx c++1y
1996 The 2014 ISO C++ standard plus amendments.
1997 The name @samp{c++1y} is deprecated.
1998
1999 @item gnu++14
2000 @itemx gnu++1y
2001 GNU dialect of @option{-std=c++14}.
2002 This is the default for C++ code.
2003 The name @samp{gnu++1y} is deprecated.
2004
2005 @item c++17
2006 @itemx c++1z
2007 The 2017 ISO C++ standard plus amendments.
2008 The name @samp{c++1z} is deprecated.
2009
2010 @item gnu++17
2011 @itemx gnu++1z
2012 GNU dialect of @option{-std=c++17}.
2013 The name @samp{gnu++1z} is deprecated.
2014
2015 @item c++2a
2016 The next revision of the ISO C++ standard, tentatively planned for
2017 2020. Support is highly experimental, and will almost certainly
2018 change in incompatible ways in future releases.
2019
2020 @item gnu++2a
2021 GNU dialect of @option{-std=c++2a}. Support is highly experimental,
2022 and will almost certainly change in incompatible ways in future
2023 releases.
2024 @end table
2025
2026 @item -fgnu89-inline
2027 @opindex fgnu89-inline
2028 The option @option{-fgnu89-inline} tells GCC to use the traditional
2029 GNU semantics for @code{inline} functions when in C99 mode.
2030 @xref{Inline,,An Inline Function is As Fast As a Macro}.
2031 Using this option is roughly equivalent to adding the
2032 @code{gnu_inline} function attribute to all inline functions
2033 (@pxref{Function Attributes}).
2034
2035 The option @option{-fno-gnu89-inline} explicitly tells GCC to use the
2036 C99 semantics for @code{inline} when in C99 or gnu99 mode (i.e., it
2037 specifies the default behavior).
2038 This option is not supported in @option{-std=c90} or
2039 @option{-std=gnu90} mode.
2040
2041 The preprocessor macros @code{__GNUC_GNU_INLINE__} and
2042 @code{__GNUC_STDC_INLINE__} may be used to check which semantics are
2043 in effect for @code{inline} functions. @xref{Common Predefined
2044 Macros,,,cpp,The C Preprocessor}.
2045
2046 @item -fpermitted-flt-eval-methods=@var{style}
2047 @opindex fpermitted-flt-eval-methods
2048 @opindex fpermitted-flt-eval-methods=c11
2049 @opindex fpermitted-flt-eval-methods=ts-18661-3
2050 ISO/IEC TS 18661-3 defines new permissible values for
2051 @code{FLT_EVAL_METHOD} that indicate that operations and constants with
2052 a semantic type that is an interchange or extended format should be
2053 evaluated to the precision and range of that type. These new values are
2054 a superset of those permitted under C99/C11, which does not specify the
2055 meaning of other positive values of @code{FLT_EVAL_METHOD}. As such, code
2056 conforming to C11 may not have been written expecting the possibility of
2057 the new values.
2058
2059 @option{-fpermitted-flt-eval-methods} specifies whether the compiler
2060 should allow only the values of @code{FLT_EVAL_METHOD} specified in C99/C11,
2061 or the extended set of values specified in ISO/IEC TS 18661-3.
2062
2063 @var{style} is either @code{c11} or @code{ts-18661-3} as appropriate.
2064
2065 The default when in a standards compliant mode (@option{-std=c11} or similar)
2066 is @option{-fpermitted-flt-eval-methods=c11}. The default when in a GNU
2067 dialect (@option{-std=gnu11} or similar) is
2068 @option{-fpermitted-flt-eval-methods=ts-18661-3}.
2069
2070 @item -aux-info @var{filename}
2071 @opindex aux-info
2072 Output to the given filename prototyped declarations for all functions
2073 declared and/or defined in a translation unit, including those in header
2074 files. This option is silently ignored in any language other than C@.
2075
2076 Besides declarations, the file indicates, in comments, the origin of
2077 each declaration (source file and line), whether the declaration was
2078 implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or
2079 @samp{O} for old, respectively, in the first character after the line
2080 number and the colon), and whether it came from a declaration or a
2081 definition (@samp{C} or @samp{F}, respectively, in the following
2082 character). In the case of function definitions, a K&R-style list of
2083 arguments followed by their declarations is also provided, inside
2084 comments, after the declaration.
2085
2086 @item -fallow-parameterless-variadic-functions
2087 @opindex fallow-parameterless-variadic-functions
2088 Accept variadic functions without named parameters.
2089
2090 Although it is possible to define such a function, this is not very
2091 useful as it is not possible to read the arguments. This is only
2092 supported for C as this construct is allowed by C++.
2093
2094 @item -fno-asm
2095 @opindex fno-asm
2096 @opindex fasm
2097 Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
2098 keyword, so that code can use these words as identifiers. You can use
2099 the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
2100 instead. @option{-ansi} implies @option{-fno-asm}.
2101
2102 In C++, this switch only affects the @code{typeof} keyword, since
2103 @code{asm} and @code{inline} are standard keywords. You may want to
2104 use the @option{-fno-gnu-keywords} flag instead, which has the same
2105 effect. In C99 mode (@option{-std=c99} or @option{-std=gnu99}), this
2106 switch only affects the @code{asm} and @code{typeof} keywords, since
2107 @code{inline} is a standard keyword in ISO C99.
2108
2109 @item -fno-builtin
2110 @itemx -fno-builtin-@var{function}
2111 @opindex fno-builtin
2112 @opindex fbuiltin
2113 @cindex built-in functions
2114 Don't recognize built-in functions that do not begin with
2115 @samp{__builtin_} as prefix. @xref{Other Builtins,,Other built-in
2116 functions provided by GCC}, for details of the functions affected,
2117 including those which are not built-in functions when @option{-ansi} or
2118 @option{-std} options for strict ISO C conformance are used because they
2119 do not have an ISO standard meaning.
2120
2121 GCC normally generates special code to handle certain built-in functions
2122 more efficiently; for instance, calls to @code{alloca} may become single
2123 instructions which adjust the stack directly, and calls to @code{memcpy}
2124 may become inline copy loops. The resulting code is often both smaller
2125 and faster, but since the function calls no longer appear as such, you
2126 cannot set a breakpoint on those calls, nor can you change the behavior
2127 of the functions by linking with a different library. In addition,
2128 when a function is recognized as a built-in function, GCC may use
2129 information about that function to warn about problems with calls to
2130 that function, or to generate more efficient code, even if the
2131 resulting code still contains calls to that function. For example,
2132 warnings are given with @option{-Wformat} for bad calls to
2133 @code{printf} when @code{printf} is built in and @code{strlen} is
2134 known not to modify global memory.
2135
2136 With the @option{-fno-builtin-@var{function}} option
2137 only the built-in function @var{function} is
2138 disabled. @var{function} must not begin with @samp{__builtin_}. If a
2139 function is named that is not built-in in this version of GCC, this
2140 option is ignored. There is no corresponding
2141 @option{-fbuiltin-@var{function}} option; if you wish to enable
2142 built-in functions selectively when using @option{-fno-builtin} or
2143 @option{-ffreestanding}, you may define macros such as:
2144
2145 @smallexample
2146 #define abs(n) __builtin_abs ((n))
2147 #define strcpy(d, s) __builtin_strcpy ((d), (s))
2148 @end smallexample
2149
2150 @item -fgimple
2151 @opindex fgimple
2152
2153 Enable parsing of function definitions marked with @code{__GIMPLE}.
2154 This is an experimental feature that allows unit testing of GIMPLE
2155 passes.
2156
2157 @item -fhosted
2158 @opindex fhosted
2159 @cindex hosted environment
2160
2161 Assert that compilation targets a hosted environment. This implies
2162 @option{-fbuiltin}. A hosted environment is one in which the
2163 entire standard library is available, and in which @code{main} has a return
2164 type of @code{int}. Examples are nearly everything except a kernel.
2165 This is equivalent to @option{-fno-freestanding}.
2166
2167 @item -ffreestanding
2168 @opindex ffreestanding
2169 @cindex hosted environment
2170
2171 Assert that compilation targets a freestanding environment. This
2172 implies @option{-fno-builtin}. A freestanding environment
2173 is one in which the standard library may not exist, and program startup may
2174 not necessarily be at @code{main}. The most obvious example is an OS kernel.
2175 This is equivalent to @option{-fno-hosted}.
2176
2177 @xref{Standards,,Language Standards Supported by GCC}, for details of
2178 freestanding and hosted environments.
2179
2180 @item -fopenacc
2181 @opindex fopenacc
2182 @cindex OpenACC accelerator programming
2183 Enable handling of OpenACC directives @code{#pragma acc} in C/C++ and
2184 @code{!$acc} in Fortran. When @option{-fopenacc} is specified, the
2185 compiler generates accelerated code according to the OpenACC Application
2186 Programming Interface v2.0 @w{@uref{https://www.openacc.org}}. This option
2187 implies @option{-pthread}, and thus is only supported on targets that
2188 have support for @option{-pthread}.
2189
2190 @item -fopenacc-dim=@var{geom}
2191 @opindex fopenacc-dim
2192 @cindex OpenACC accelerator programming
2193 Specify default compute dimensions for parallel offload regions that do
2194 not explicitly specify. The @var{geom} value is a triple of
2195 ':'-separated sizes, in order 'gang', 'worker' and, 'vector'. A size
2196 can be omitted, to use a target-specific default value.
2197
2198 @item -fopenmp
2199 @opindex fopenmp
2200 @cindex OpenMP parallel
2201 Enable handling of OpenMP directives @code{#pragma omp} in C/C++ and
2202 @code{!$omp} in Fortran. When @option{-fopenmp} is specified, the
2203 compiler generates parallel code according to the OpenMP Application
2204 Program Interface v4.5 @w{@uref{https://www.openmp.org}}. This option
2205 implies @option{-pthread}, and thus is only supported on targets that
2206 have support for @option{-pthread}. @option{-fopenmp} implies
2207 @option{-fopenmp-simd}.
2208
2209 @item -fopenmp-simd
2210 @opindex fopenmp-simd
2211 @cindex OpenMP SIMD
2212 @cindex SIMD
2213 Enable handling of OpenMP's SIMD directives with @code{#pragma omp}
2214 in C/C++ and @code{!$omp} in Fortran. Other OpenMP directives
2215 are ignored.
2216
2217 @item -fgnu-tm
2218 @opindex fgnu-tm
2219 When the option @option{-fgnu-tm} is specified, the compiler
2220 generates code for the Linux variant of Intel's current Transactional
2221 Memory ABI specification document (Revision 1.1, May 6 2009). This is
2222 an experimental feature whose interface may change in future versions
2223 of GCC, as the official specification changes. Please note that not
2224 all architectures are supported for this feature.
2225
2226 For more information on GCC's support for transactional memory,
2227 @xref{Enabling libitm,,The GNU Transactional Memory Library,libitm,GNU
2228 Transactional Memory Library}.
2229
2230 Note that the transactional memory feature is not supported with
2231 non-call exceptions (@option{-fnon-call-exceptions}).
2232
2233 @item -fms-extensions
2234 @opindex fms-extensions
2235 Accept some non-standard constructs used in Microsoft header files.
2236
2237 In C++ code, this allows member names in structures to be similar
2238 to previous types declarations.
2239
2240 @smallexample
2241 typedef int UOW;
2242 struct ABC @{
2243 UOW UOW;
2244 @};
2245 @end smallexample
2246
2247 Some cases of unnamed fields in structures and unions are only
2248 accepted with this option. @xref{Unnamed Fields,,Unnamed struct/union
2249 fields within structs/unions}, for details.
2250
2251 Note that this option is off for all targets except for x86
2252 targets using ms-abi.
2253
2254 @item -fplan9-extensions
2255 @opindex fplan9-extensions
2256 Accept some non-standard constructs used in Plan 9 code.
2257
2258 This enables @option{-fms-extensions}, permits passing pointers to
2259 structures with anonymous fields to functions that expect pointers to
2260 elements of the type of the field, and permits referring to anonymous
2261 fields declared using a typedef. @xref{Unnamed Fields,,Unnamed
2262 struct/union fields within structs/unions}, for details. This is only
2263 supported for C, not C++.
2264
2265 @item -fcond-mismatch
2266 @opindex fcond-mismatch
2267 Allow conditional expressions with mismatched types in the second and
2268 third arguments. The value of such an expression is void. This option
2269 is not supported for C++.
2270
2271 @item -flax-vector-conversions
2272 @opindex flax-vector-conversions
2273 Allow implicit conversions between vectors with differing numbers of
2274 elements and/or incompatible element types. This option should not be
2275 used for new code.
2276
2277 @item -funsigned-char
2278 @opindex funsigned-char
2279 Let the type @code{char} be unsigned, like @code{unsigned char}.
2280
2281 Each kind of machine has a default for what @code{char} should
2282 be. It is either like @code{unsigned char} by default or like
2283 @code{signed char} by default.
2284
2285 Ideally, a portable program should always use @code{signed char} or
2286 @code{unsigned char} when it depends on the signedness of an object.
2287 But many programs have been written to use plain @code{char} and
2288 expect it to be signed, or expect it to be unsigned, depending on the
2289 machines they were written for. This option, and its inverse, let you
2290 make such a program work with the opposite default.
2291
2292 The type @code{char} is always a distinct type from each of
2293 @code{signed char} or @code{unsigned char}, even though its behavior
2294 is always just like one of those two.
2295
2296 @item -fsigned-char
2297 @opindex fsigned-char
2298 Let the type @code{char} be signed, like @code{signed char}.
2299
2300 Note that this is equivalent to @option{-fno-unsigned-char}, which is
2301 the negative form of @option{-funsigned-char}. Likewise, the option
2302 @option{-fno-signed-char} is equivalent to @option{-funsigned-char}.
2303
2304 @item -fsigned-bitfields
2305 @itemx -funsigned-bitfields
2306 @itemx -fno-signed-bitfields
2307 @itemx -fno-unsigned-bitfields
2308 @opindex fsigned-bitfields
2309 @opindex funsigned-bitfields
2310 @opindex fno-signed-bitfields
2311 @opindex fno-unsigned-bitfields
2312 These options control whether a bit-field is signed or unsigned, when the
2313 declaration does not use either @code{signed} or @code{unsigned}. By
2314 default, such a bit-field is signed, because this is consistent: the
2315 basic integer types such as @code{int} are signed types.
2316
2317 @item -fsso-struct=@var{endianness}
2318 @opindex fsso-struct
2319 Set the default scalar storage order of structures and unions to the
2320 specified endianness. The accepted values are @samp{big-endian},
2321 @samp{little-endian} and @samp{native} for the native endianness of
2322 the target (the default). This option is not supported for C++.
2323
2324 @strong{Warning:} the @option{-fsso-struct} switch causes GCC to generate
2325 code that is not binary compatible with code generated without it if the
2326 specified endianness is not the native endianness of the target.
2327 @end table
2328
2329 @node C++ Dialect Options
2330 @section Options Controlling C++ Dialect
2331
2332 @cindex compiler options, C++
2333 @cindex C++ options, command-line
2334 @cindex options, C++
2335 This section describes the command-line options that are only meaningful
2336 for C++ programs. You can also use most of the GNU compiler options
2337 regardless of what language your program is in. For example, you
2338 might compile a file @file{firstClass.C} like this:
2339
2340 @smallexample
2341 g++ -g -fstrict-enums -O -c firstClass.C
2342 @end smallexample
2343
2344 @noindent
2345 In this example, only @option{-fstrict-enums} is an option meant
2346 only for C++ programs; you can use the other options with any
2347 language supported by GCC@.
2348
2349 Some options for compiling C programs, such as @option{-std}, are also
2350 relevant for C++ programs.
2351 @xref{C Dialect Options,,Options Controlling C Dialect}.
2352
2353 Here is a list of options that are @emph{only} for compiling C++ programs:
2354
2355 @table @gcctabopt
2356
2357 @item -fabi-version=@var{n}
2358 @opindex fabi-version
2359 Use version @var{n} of the C++ ABI@. The default is version 0.
2360
2361 Version 0 refers to the version conforming most closely to
2362 the C++ ABI specification. Therefore, the ABI obtained using version 0
2363 will change in different versions of G++ as ABI bugs are fixed.
2364
2365 Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.
2366
2367 Version 2 is the version of the C++ ABI that first appeared in G++
2368 3.4, and was the default through G++ 4.9.
2369
2370 Version 3 corrects an error in mangling a constant address as a
2371 template argument.
2372
2373 Version 4, which first appeared in G++ 4.5, implements a standard
2374 mangling for vector types.
2375
2376 Version 5, which first appeared in G++ 4.6, corrects the mangling of
2377 attribute const/volatile on function pointer types, decltype of a
2378 plain decl, and use of a function parameter in the declaration of
2379 another parameter.
2380
2381 Version 6, which first appeared in G++ 4.7, corrects the promotion
2382 behavior of C++11 scoped enums and the mangling of template argument
2383 packs, const/static_cast, prefix ++ and --, and a class scope function
2384 used as a template argument.
2385
2386 Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a
2387 builtin type and corrects the mangling of lambdas in default argument
2388 scope.
2389
2390 Version 8, which first appeared in G++ 4.9, corrects the substitution
2391 behavior of function types with function-cv-qualifiers.
2392
2393 Version 9, which first appeared in G++ 5.2, corrects the alignment of
2394 @code{nullptr_t}.
2395
2396 Version 10, which first appeared in G++ 6.1, adds mangling of
2397 attributes that affect type identity, such as ia32 calling convention
2398 attributes (e.g.@: @samp{stdcall}).
2399
2400 Version 11, which first appeared in G++ 7, corrects the mangling of
2401 sizeof... expressions and operator names. For multiple entities with
2402 the same name within a function, that are declared in different scopes,
2403 the mangling now changes starting with the twelfth occurrence. It also
2404 implies @option{-fnew-inheriting-ctors}.
2405
2406 Version 12, which first appeared in G++ 8, corrects the calling
2407 conventions for empty classes on the x86_64 target and for classes
2408 with only deleted copy/move constructors. It accidentally changes the
2409 calling convention for classes with a deleted copy constructor and a
2410 trivial move constructor.
2411
2412 Version 13, which first appeared in G++ 8.2, fixes the accidental
2413 change in version 12.
2414
2415 See also @option{-Wabi}.
2416
2417 @item -fabi-compat-version=@var{n}
2418 @opindex fabi-compat-version
2419 On targets that support strong aliases, G++
2420 works around mangling changes by creating an alias with the correct
2421 mangled name when defining a symbol with an incorrect mangled name.
2422 This switch specifies which ABI version to use for the alias.
2423
2424 With @option{-fabi-version=0} (the default), this defaults to 11 (GCC 7
2425 compatibility). If another ABI version is explicitly selected, this
2426 defaults to 0. For compatibility with GCC versions 3.2 through 4.9,
2427 use @option{-fabi-compat-version=2}.
2428
2429 If this option is not provided but @option{-Wabi=@var{n}} is, that
2430 version is used for compatibility aliases. If this option is provided
2431 along with @option{-Wabi} (without the version), the version from this
2432 option is used for the warning.
2433
2434 @item -fno-access-control
2435 @opindex fno-access-control
2436 @opindex faccess-control
2437 Turn off all access checking. This switch is mainly useful for working
2438 around bugs in the access control code.
2439
2440 @item -faligned-new
2441 @opindex faligned-new
2442 Enable support for C++17 @code{new} of types that require more
2443 alignment than @code{void* ::operator new(std::size_t)} provides. A
2444 numeric argument such as @code{-faligned-new=32} can be used to
2445 specify how much alignment (in bytes) is provided by that function,
2446 but few users will need to override the default of
2447 @code{alignof(std::max_align_t)}.
2448
2449 This flag is enabled by default for @option{-std=c++17}.
2450
2451 @item -fchar8_t
2452 @itemx -fno-char8_t
2453 @opindex fchar8_t
2454 @opindex fno-char8_t
2455 Enable support for @code{char8_t} as adopted for C++2a. This includes
2456 the addition of a new @code{char8_t} fundamental type, changes to the
2457 types of UTF-8 string and character literals, new signatures for
2458 user-defined literals, associated standard library updates, and new
2459 @code{__cpp_char8_t} and @code{__cpp_lib_char8_t} feature test macros.
2460
2461 This option enables functions to be overloaded for ordinary and UTF-8
2462 strings:
2463
2464 @smallexample
2465 int f(const char *); // #1
2466 int f(const char8_t *); // #2
2467 int v1 = f("text"); // Calls #1
2468 int v2 = f(u8"text"); // Calls #2
2469 @end smallexample
2470
2471 @noindent
2472 and introduces new signatures for user-defined literals:
2473
2474 @smallexample
2475 int operator""_udl1(char8_t);
2476 int v3 = u8'x'_udl1;
2477 int operator""_udl2(const char8_t*, std::size_t);
2478 int v4 = u8"text"_udl2;
2479 template<typename T, T...> int operator""_udl3();
2480 int v5 = u8"text"_udl3;
2481 @end smallexample
2482
2483 @noindent
2484 The change to the types of UTF-8 string and character literals introduces
2485 incompatibilities with ISO C++11 and later standards. For example, the
2486 following code is well-formed under ISO C++11, but is ill-formed when
2487 @option{-fchar8_t} is specified.
2488
2489 @smallexample
2490 char ca[] = u8"xx"; // error: char-array initialized from wide
2491 // string
2492 const char *cp = u8"xx";// error: invalid conversion from
2493 // `const char8_t*' to `const char*'
2494 int f(const char*);
2495 auto v = f(u8"xx"); // error: invalid conversion from
2496 // `const char8_t*' to `const char*'
2497 std::string s@{u8"xx"@}; // error: no matching function for call to
2498 // `std::basic_string<char>::basic_string()'
2499 using namespace std::literals;
2500 s = u8"xx"s; // error: conversion from
2501 // `basic_string<char8_t>' to non-scalar
2502 // type `basic_string<char>' requested
2503 @end smallexample
2504
2505 @item -fcheck-new
2506 @opindex fcheck-new
2507 Check that the pointer returned by @code{operator new} is non-null
2508 before attempting to modify the storage allocated. This check is
2509 normally unnecessary because the C++ standard specifies that
2510 @code{operator new} only returns @code{0} if it is declared
2511 @code{throw()}, in which case the compiler always checks the
2512 return value even without this option. In all other cases, when
2513 @code{operator new} has a non-empty exception specification, memory
2514 exhaustion is signalled by throwing @code{std::bad_alloc}. See also
2515 @samp{new (nothrow)}.
2516
2517 @item -fconcepts
2518 @opindex fconcepts
2519 Enable support for the C++ Extensions for Concepts Technical
2520 Specification, ISO 19217 (2015), which allows code like
2521
2522 @smallexample
2523 template <class T> concept bool Addable = requires (T t) @{ t + t; @};
2524 template <Addable T> T add (T a, T b) @{ return a + b; @}
2525 @end smallexample
2526
2527 @item -fconstexpr-depth=@var{n}
2528 @opindex fconstexpr-depth
2529 Set the maximum nested evaluation depth for C++11 constexpr functions
2530 to @var{n}. A limit is needed to detect endless recursion during
2531 constant expression evaluation. The minimum specified by the standard
2532 is 512.
2533
2534 @item -fconstexpr-cache-depth=@var{n}
2535 @opindex fconstexpr-cache-depth
2536 Set the maximum level of nested evaluation depth for C++11 constexpr
2537 functions that will be cached to @var{n}. This is a heuristic that
2538 trades off compilation speed (when the cache avoids repeated
2539 calculations) against memory consumption (when the cache grows very
2540 large from highly recursive evaluations). The default is 8. Very few
2541 users are likely to want to adjust it, but if your code does heavy
2542 constexpr calculations you might want to experiment to find which
2543 value works best for you.
2544
2545 @item -fconstexpr-loop-limit=@var{n}
2546 @opindex fconstexpr-loop-limit
2547 Set the maximum number of iterations for a loop in C++14 constexpr functions
2548 to @var{n}. A limit is needed to detect infinite loops during
2549 constant expression evaluation. The default is 262144 (1<<18).
2550
2551 @item -fconstexpr-ops-limit=@var{n}
2552 @opindex fconstexpr-ops-limit
2553 Set the maximum number of operations during a single constexpr evaluation.
2554 Even when number of iterations of a single loop is limited with the above limit,
2555 if there are several nested loops and each of them has many iterations but still
2556 smaller than the above limit, or if in a body of some loop or even outside
2557 of a loop too many expressions need to be evaluated, the resulting constexpr
2558 evaluation might take too long.
2559 The default is 33554432 (1<<25).
2560
2561 @item -fdeduce-init-list
2562 @opindex fdeduce-init-list
2563 Enable deduction of a template type parameter as
2564 @code{std::initializer_list} from a brace-enclosed initializer list, i.e.@:
2565
2566 @smallexample
2567 template <class T> auto forward(T t) -> decltype (realfn (t))
2568 @{
2569 return realfn (t);
2570 @}
2571
2572 void f()
2573 @{
2574 forward(@{1,2@}); // call forward<std::initializer_list<int>>
2575 @}
2576 @end smallexample
2577
2578 This deduction was implemented as a possible extension to the
2579 originally proposed semantics for the C++11 standard, but was not part
2580 of the final standard, so it is disabled by default. This option is
2581 deprecated, and may be removed in a future version of G++.
2582
2583 @item -fno-elide-constructors
2584 @opindex fno-elide-constructors
2585 @opindex felide-constructors
2586 The C++ standard allows an implementation to omit creating a temporary
2587 that is only used to initialize another object of the same type.
2588 Specifying this option disables that optimization, and forces G++ to
2589 call the copy constructor in all cases. This option also causes G++
2590 to call trivial member functions which otherwise would be expanded inline.
2591
2592 In C++17, the compiler is required to omit these temporaries, but this
2593 option still affects trivial member functions.
2594
2595 @item -fno-enforce-eh-specs
2596 @opindex fno-enforce-eh-specs
2597 @opindex fenforce-eh-specs
2598 Don't generate code to check for violation of exception specifications
2599 at run time. This option violates the C++ standard, but may be useful
2600 for reducing code size in production builds, much like defining
2601 @code{NDEBUG}. This does not give user code permission to throw
2602 exceptions in violation of the exception specifications; the compiler
2603 still optimizes based on the specifications, so throwing an
2604 unexpected exception results in undefined behavior at run time.
2605
2606 @item -fextern-tls-init
2607 @itemx -fno-extern-tls-init
2608 @opindex fextern-tls-init
2609 @opindex fno-extern-tls-init
2610 The C++11 and OpenMP standards allow @code{thread_local} and
2611 @code{threadprivate} variables to have dynamic (runtime)
2612 initialization. To support this, any use of such a variable goes
2613 through a wrapper function that performs any necessary initialization.
2614 When the use and definition of the variable are in the same
2615 translation unit, this overhead can be optimized away, but when the
2616 use is in a different translation unit there is significant overhead
2617 even if the variable doesn't actually need dynamic initialization. If
2618 the programmer can be sure that no use of the variable in a
2619 non-defining TU needs to trigger dynamic initialization (either
2620 because the variable is statically initialized, or a use of the
2621 variable in the defining TU will be executed before any uses in
2622 another TU), they can avoid this overhead with the
2623 @option{-fno-extern-tls-init} option.
2624
2625 On targets that support symbol aliases, the default is
2626 @option{-fextern-tls-init}. On targets that do not support symbol
2627 aliases, the default is @option{-fno-extern-tls-init}.
2628
2629 @item -fno-gnu-keywords
2630 @opindex fno-gnu-keywords
2631 @opindex fgnu-keywords
2632 Do not recognize @code{typeof} as a keyword, so that code can use this
2633 word as an identifier. You can use the keyword @code{__typeof__} instead.
2634 This option is implied by the strict ISO C++ dialects: @option{-ansi},
2635 @option{-std=c++98}, @option{-std=c++11}, etc.
2636
2637 @item -fno-implicit-templates
2638 @opindex fno-implicit-templates
2639 @opindex fimplicit-templates
2640 Never emit code for non-inline templates that are instantiated
2641 implicitly (i.e.@: by use); only emit code for explicit instantiations.
2642 If you use this option, you must take care to structure your code to
2643 include all the necessary explicit instantiations to avoid getting
2644 undefined symbols at link time.
2645 @xref{Template Instantiation}, for more information.
2646
2647 @item -fno-implicit-inline-templates
2648 @opindex fno-implicit-inline-templates
2649 @opindex fimplicit-inline-templates
2650 Don't emit code for implicit instantiations of inline templates, either.
2651 The default is to handle inlines differently so that compiles with and
2652 without optimization need the same set of explicit instantiations.
2653
2654 @item -fno-implement-inlines
2655 @opindex fno-implement-inlines
2656 @opindex fimplement-inlines
2657 To save space, do not emit out-of-line copies of inline functions
2658 controlled by @code{#pragma implementation}. This causes linker
2659 errors if these functions are not inlined everywhere they are called.
2660
2661 @item -fms-extensions
2662 @opindex fms-extensions
2663 Disable Wpedantic warnings about constructs used in MFC, such as implicit
2664 int and getting a pointer to member function via non-standard syntax.
2665
2666 @item -fnew-inheriting-ctors
2667 @opindex fnew-inheriting-ctors
2668 Enable the P0136 adjustment to the semantics of C++11 constructor
2669 inheritance. This is part of C++17 but also considered to be a Defect
2670 Report against C++11 and C++14. This flag is enabled by default
2671 unless @option{-fabi-version=10} or lower is specified.
2672
2673 @item -fnew-ttp-matching
2674 @opindex fnew-ttp-matching
2675 Enable the P0522 resolution to Core issue 150, template template
2676 parameters and default arguments: this allows a template with default
2677 template arguments as an argument for a template template parameter
2678 with fewer template parameters. This flag is enabled by default for
2679 @option{-std=c++17}.
2680
2681 @item -fno-nonansi-builtins
2682 @opindex fno-nonansi-builtins
2683 @opindex fnonansi-builtins
2684 Disable built-in declarations of functions that are not mandated by
2685 ANSI/ISO C@. These include @code{ffs}, @code{alloca}, @code{_exit},
2686 @code{index}, @code{bzero}, @code{conjf}, and other related functions.
2687
2688 @item -fnothrow-opt
2689 @opindex fnothrow-opt
2690 Treat a @code{throw()} exception specification as if it were a
2691 @code{noexcept} specification to reduce or eliminate the text size
2692 overhead relative to a function with no exception specification. If
2693 the function has local variables of types with non-trivial
2694 destructors, the exception specification actually makes the
2695 function smaller because the EH cleanups for those variables can be
2696 optimized away. The semantic effect is that an exception thrown out of
2697 a function with such an exception specification results in a call
2698 to @code{terminate} rather than @code{unexpected}.
2699
2700 @item -fno-operator-names
2701 @opindex fno-operator-names
2702 @opindex foperator-names
2703 Do not treat the operator name keywords @code{and}, @code{bitand},
2704 @code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
2705 synonyms as keywords.
2706
2707 @item -fno-optional-diags
2708 @opindex fno-optional-diags
2709 @opindex foptional-diags
2710 Disable diagnostics that the standard says a compiler does not need to
2711 issue. Currently, the only such diagnostic issued by G++ is the one for
2712 a name having multiple meanings within a class.
2713
2714 @item -fpermissive
2715 @opindex fpermissive
2716 Downgrade some diagnostics about nonconformant code from errors to
2717 warnings. Thus, using @option{-fpermissive} allows some
2718 nonconforming code to compile.
2719
2720 @item -fno-pretty-templates
2721 @opindex fno-pretty-templates
2722 @opindex fpretty-templates
2723 When an error message refers to a specialization of a function
2724 template, the compiler normally prints the signature of the
2725 template followed by the template arguments and any typedefs or
2726 typenames in the signature (e.g.@: @code{void f(T) [with T = int]}
2727 rather than @code{void f(int)}) so that it's clear which template is
2728 involved. When an error message refers to a specialization of a class
2729 template, the compiler omits any template arguments that match
2730 the default template arguments for that template. If either of these
2731 behaviors make it harder to understand the error message rather than
2732 easier, you can use @option{-fno-pretty-templates} to disable them.
2733
2734 @item -frepo
2735 @opindex frepo
2736 Enable automatic template instantiation at link time. This option also
2737 implies @option{-fno-implicit-templates}. @xref{Template
2738 Instantiation}, for more information.
2739
2740 @item -fno-rtti
2741 @opindex fno-rtti
2742 @opindex frtti
2743 Disable generation of information about every class with virtual
2744 functions for use by the C++ run-time type identification features
2745 (@code{dynamic_cast} and @code{typeid}). If you don't use those parts
2746 of the language, you can save some space by using this flag. Note that
2747 exception handling uses the same information, but G++ generates it as
2748 needed. The @code{dynamic_cast} operator can still be used for casts that
2749 do not require run-time type information, i.e.@: casts to @code{void *} or to
2750 unambiguous base classes.
2751
2752 Mixing code compiled with @option{-frtti} with that compiled with
2753 @option{-fno-rtti} may not work. For example, programs may
2754 fail to link if a class compiled with @option{-fno-rtti} is used as a base
2755 for a class compiled with @option{-frtti}.
2756
2757 @item -fsized-deallocation
2758 @opindex fsized-deallocation
2759 Enable the built-in global declarations
2760 @smallexample
2761 void operator delete (void *, std::size_t) noexcept;
2762 void operator delete[] (void *, std::size_t) noexcept;
2763 @end smallexample
2764 as introduced in C++14. This is useful for user-defined replacement
2765 deallocation functions that, for example, use the size of the object
2766 to make deallocation faster. Enabled by default under
2767 @option{-std=c++14} and above. The flag @option{-Wsized-deallocation}
2768 warns about places that might want to add a definition.
2769
2770 @item -fstrict-enums
2771 @opindex fstrict-enums
2772 Allow the compiler to optimize using the assumption that a value of
2773 enumerated type can only be one of the values of the enumeration (as
2774 defined in the C++ standard; basically, a value that can be
2775 represented in the minimum number of bits needed to represent all the
2776 enumerators). This assumption may not be valid if the program uses a
2777 cast to convert an arbitrary integer value to the enumerated type.
2778
2779 @item -fstrong-eval-order
2780 @opindex fstrong-eval-order
2781 Evaluate member access, array subscripting, and shift expressions in
2782 left-to-right order, and evaluate assignment in right-to-left order,
2783 as adopted for C++17. Enabled by default with @option{-std=c++17}.
2784 @option{-fstrong-eval-order=some} enables just the ordering of member
2785 access and shift expressions, and is the default without
2786 @option{-std=c++17}.
2787
2788 @item -ftemplate-backtrace-limit=@var{n}
2789 @opindex ftemplate-backtrace-limit
2790 Set the maximum number of template instantiation notes for a single
2791 warning or error to @var{n}. The default value is 10.
2792
2793 @item -ftemplate-depth=@var{n}
2794 @opindex ftemplate-depth
2795 Set the maximum instantiation depth for template classes to @var{n}.
2796 A limit on the template instantiation depth is needed to detect
2797 endless recursions during template class instantiation. ANSI/ISO C++
2798 conforming programs must not rely on a maximum depth greater than 17
2799 (changed to 1024 in C++11). The default value is 900, as the compiler
2800 can run out of stack space before hitting 1024 in some situations.
2801
2802 @item -fno-threadsafe-statics
2803 @opindex fno-threadsafe-statics
2804 @opindex fthreadsafe-statics
2805 Do not emit the extra code to use the routines specified in the C++
2806 ABI for thread-safe initialization of local statics. You can use this
2807 option to reduce code size slightly in code that doesn't need to be
2808 thread-safe.
2809
2810 @item -fuse-cxa-atexit
2811 @opindex fuse-cxa-atexit
2812 Register destructors for objects with static storage duration with the
2813 @code{__cxa_atexit} function rather than the @code{atexit} function.
2814 This option is required for fully standards-compliant handling of static
2815 destructors, but only works if your C library supports
2816 @code{__cxa_atexit}.
2817
2818 @item -fno-use-cxa-get-exception-ptr
2819 @opindex fno-use-cxa-get-exception-ptr
2820 @opindex fuse-cxa-get-exception-ptr
2821 Don't use the @code{__cxa_get_exception_ptr} runtime routine. This
2822 causes @code{std::uncaught_exception} to be incorrect, but is necessary
2823 if the runtime routine is not available.
2824
2825 @item -fvisibility-inlines-hidden
2826 @opindex fvisibility-inlines-hidden
2827 This switch declares that the user does not attempt to compare
2828 pointers to inline functions or methods where the addresses of the two functions
2829 are taken in different shared objects.
2830
2831 The effect of this is that GCC may, effectively, mark inline methods with
2832 @code{__attribute__ ((visibility ("hidden")))} so that they do not
2833 appear in the export table of a DSO and do not require a PLT indirection
2834 when used within the DSO@. Enabling this option can have a dramatic effect
2835 on load and link times of a DSO as it massively reduces the size of the
2836 dynamic export table when the library makes heavy use of templates.
2837
2838 The behavior of this switch is not quite the same as marking the
2839 methods as hidden directly, because it does not affect static variables
2840 local to the function or cause the compiler to deduce that
2841 the function is defined in only one shared object.
2842
2843 You may mark a method as having a visibility explicitly to negate the
2844 effect of the switch for that method. For example, if you do want to
2845 compare pointers to a particular inline method, you might mark it as
2846 having default visibility. Marking the enclosing class with explicit
2847 visibility has no effect.
2848
2849 Explicitly instantiated inline methods are unaffected by this option
2850 as their linkage might otherwise cross a shared library boundary.
2851 @xref{Template Instantiation}.
2852
2853 @item -fvisibility-ms-compat
2854 @opindex fvisibility-ms-compat
2855 This flag attempts to use visibility settings to make GCC's C++
2856 linkage model compatible with that of Microsoft Visual Studio.
2857
2858 The flag makes these changes to GCC's linkage model:
2859
2860 @enumerate
2861 @item
2862 It sets the default visibility to @code{hidden}, like
2863 @option{-fvisibility=hidden}.
2864
2865 @item
2866 Types, but not their members, are not hidden by default.
2867
2868 @item
2869 The One Definition Rule is relaxed for types without explicit
2870 visibility specifications that are defined in more than one
2871 shared object: those declarations are permitted if they are
2872 permitted when this option is not used.
2873 @end enumerate
2874
2875 In new code it is better to use @option{-fvisibility=hidden} and
2876 export those classes that are intended to be externally visible.
2877 Unfortunately it is possible for code to rely, perhaps accidentally,
2878 on the Visual Studio behavior.
2879
2880 Among the consequences of these changes are that static data members
2881 of the same type with the same name but defined in different shared
2882 objects are different, so changing one does not change the other;
2883 and that pointers to function members defined in different shared
2884 objects may not compare equal. When this flag is given, it is a
2885 violation of the ODR to define types with the same name differently.
2886
2887 @item -fno-weak
2888 @opindex fno-weak
2889 @opindex fweak
2890 Do not use weak symbol support, even if it is provided by the linker.
2891 By default, G++ uses weak symbols if they are available. This
2892 option exists only for testing, and should not be used by end-users;
2893 it results in inferior code and has no benefits. This option may
2894 be removed in a future release of G++.
2895
2896 @item -nostdinc++
2897 @opindex nostdinc++
2898 Do not search for header files in the standard directories specific to
2899 C++, but do still search the other standard directories. (This option
2900 is used when building the C++ library.)
2901 @end table
2902
2903 In addition, these optimization, warning, and code generation options
2904 have meanings only for C++ programs:
2905
2906 @table @gcctabopt
2907 @item -Wabi @r{(C, Objective-C, C++ and Objective-C++ only)}
2908 @opindex Wabi
2909 @opindex Wno-abi
2910 Warn when G++ it generates code that is probably not compatible with
2911 the vendor-neutral C++ ABI@. Since G++ now defaults to updating the
2912 ABI with each major release, normally @option{-Wabi} will warn only if
2913 there is a check added later in a release series for an ABI issue
2914 discovered since the initial release. @option{-Wabi} will warn about
2915 more things if an older ABI version is selected (with
2916 @option{-fabi-version=@var{n}}).
2917
2918 @option{-Wabi} can also be used with an explicit version number to
2919 warn about compatibility with a particular @option{-fabi-version}
2920 level, e.g.@: @option{-Wabi=2} to warn about changes relative to
2921 @option{-fabi-version=2}.
2922
2923 If an explicit version number is provided and
2924 @option{-fabi-compat-version} is not specified, the version number
2925 from this option is used for compatibility aliases. If no explicit
2926 version number is provided with this option, but
2927 @option{-fabi-compat-version} is specified, that version number is
2928 used for ABI warnings.
2929
2930 Although an effort has been made to warn about
2931 all such cases, there are probably some cases that are not warned about,
2932 even though G++ is generating incompatible code. There may also be
2933 cases where warnings are emitted even though the code that is generated
2934 is compatible.
2935
2936 You should rewrite your code to avoid these warnings if you are
2937 concerned about the fact that code generated by G++ may not be binary
2938 compatible with code generated by other compilers.
2939
2940 Known incompatibilities in @option{-fabi-version=2} (which was the
2941 default from GCC 3.4 to 4.9) include:
2942
2943 @itemize @bullet
2944
2945 @item
2946 A template with a non-type template parameter of reference type was
2947 mangled incorrectly:
2948 @smallexample
2949 extern int N;
2950 template <int &> struct S @{@};
2951 void n (S<N>) @{2@}
2952 @end smallexample
2953
2954 This was fixed in @option{-fabi-version=3}.
2955
2956 @item
2957 SIMD vector types declared using @code{__attribute ((vector_size))} were
2958 mangled in a non-standard way that does not allow for overloading of
2959 functions taking vectors of different sizes.
2960
2961 The mangling was changed in @option{-fabi-version=4}.
2962
2963 @item
2964 @code{__attribute ((const))} and @code{noreturn} were mangled as type
2965 qualifiers, and @code{decltype} of a plain declaration was folded away.
2966
2967 These mangling issues were fixed in @option{-fabi-version=5}.
2968
2969 @item
2970 Scoped enumerators passed as arguments to a variadic function are
2971 promoted like unscoped enumerators, causing @code{va_arg} to complain.
2972 On most targets this does not actually affect the parameter passing
2973 ABI, as there is no way to pass an argument smaller than @code{int}.
2974
2975 Also, the ABI changed the mangling of template argument packs,
2976 @code{const_cast}, @code{static_cast}, prefix increment/decrement, and
2977 a class scope function used as a template argument.
2978
2979 These issues were corrected in @option{-fabi-version=6}.
2980
2981 @item
2982 Lambdas in default argument scope were mangled incorrectly, and the
2983 ABI changed the mangling of @code{nullptr_t}.
2984
2985 These issues were corrected in @option{-fabi-version=7}.
2986
2987 @item
2988 When mangling a function type with function-cv-qualifiers, the
2989 un-qualified function type was incorrectly treated as a substitution
2990 candidate.
2991
2992 This was fixed in @option{-fabi-version=8}, the default for GCC 5.1.
2993
2994 @item
2995 @code{decltype(nullptr)} incorrectly had an alignment of 1, leading to
2996 unaligned accesses. Note that this did not affect the ABI of a
2997 function with a @code{nullptr_t} parameter, as parameters have a
2998 minimum alignment.
2999
3000 This was fixed in @option{-fabi-version=9}, the default for GCC 5.2.
3001
3002 @item
3003 Target-specific attributes that affect the identity of a type, such as
3004 ia32 calling conventions on a function type (stdcall, regparm, etc.),
3005 did not affect the mangled name, leading to name collisions when
3006 function pointers were used as template arguments.
3007
3008 This was fixed in @option{-fabi-version=10}, the default for GCC 6.1.
3009
3010 @end itemize
3011
3012 It also warns about psABI-related changes. The known psABI changes at this
3013 point include:
3014
3015 @itemize @bullet
3016
3017 @item
3018 For SysV/x86-64, unions with @code{long double} members are
3019 passed in memory as specified in psABI. For example:
3020
3021 @smallexample
3022 union U @{
3023 long double ld;
3024 int i;
3025 @};
3026 @end smallexample
3027
3028 @noindent
3029 @code{union U} is always passed in memory.
3030
3031 @end itemize
3032
3033 @item -Wabi-tag @r{(C++ and Objective-C++ only)}
3034 @opindex Wabi-tag
3035 @opindex Wabi-tag
3036 Warn when a type with an ABI tag is used in a context that does not
3037 have that ABI tag. See @ref{C++ Attributes} for more information
3038 about ABI tags.
3039
3040 @item -Wctor-dtor-privacy @r{(C++ and Objective-C++ only)}
3041 @opindex Wctor-dtor-privacy
3042 @opindex Wno-ctor-dtor-privacy
3043 Warn when a class seems unusable because all the constructors or
3044 destructors in that class are private, and it has neither friends nor
3045 public static member functions. Also warn if there are no non-private
3046 methods, and there's at least one private member function that isn't
3047 a constructor or destructor.
3048
3049 @item -Wdelete-non-virtual-dtor @r{(C++ and Objective-C++ only)}
3050 @opindex Wdelete-non-virtual-dtor
3051 @opindex Wno-delete-non-virtual-dtor
3052 Warn when @code{delete} is used to destroy an instance of a class that
3053 has virtual functions and non-virtual destructor. It is unsafe to delete
3054 an instance of a derived class through a pointer to a base class if the
3055 base class does not have a virtual destructor. This warning is enabled
3056 by @option{-Wall}.
3057
3058 @item -Wdeprecated-copy @r{(C++ and Objective-C++ only)}
3059 @opindex Wdeprecated-copy
3060 @opindex Wno-deprecated-copy
3061 Warn that the implicit declaration of a copy constructor or copy
3062 assignment operator is deprecated if the class has a user-provided
3063 copy constructor or copy assignment operator, in C++11 and up. This
3064 warning is enabled by @option{-Wextra}. With
3065 @option{-Wdeprecated-copy-dtor}, also deprecate if the class has a
3066 user-provided destructor.
3067
3068 @item -Wno-init-list-lifetime @r{(C++ and Objective-C++ only)}
3069 @opindex Winit-list-lifetime
3070 @opindex Wno-init-list-lifetime
3071 Do not warn about uses of @code{std::initializer_list} that are likely
3072 to result in dangling pointers. Since the underlying array for an
3073 @code{initializer_list} is handled like a normal C++ temporary object,
3074 it is easy to inadvertently keep a pointer to the array past the end
3075 of the array's lifetime. For example:
3076
3077 @itemize @bullet
3078 @item
3079 If a function returns a temporary @code{initializer_list}, or a local
3080 @code{initializer_list} variable, the array's lifetime ends at the end
3081 of the return statement, so the value returned has a dangling pointer.
3082
3083 @item
3084 If a new-expression creates an @code{initializer_list}, the array only
3085 lives until the end of the enclosing full-expression, so the
3086 @code{initializer_list} in the heap has a dangling pointer.
3087
3088 @item
3089 When an @code{initializer_list} variable is assigned from a
3090 brace-enclosed initializer list, the temporary array created for the
3091 right side of the assignment only lives until the end of the
3092 full-expression, so at the next statement the @code{initializer_list}
3093 variable has a dangling pointer.
3094
3095 @smallexample
3096 // li's initial underlying array lives as long as li
3097 std::initializer_list<int> li = @{ 1,2,3 @};
3098 // assignment changes li to point to a temporary array
3099 li = @{ 4, 5 @};
3100 // now the temporary is gone and li has a dangling pointer
3101 int i = li.begin()[0] // undefined behavior
3102 @end smallexample
3103
3104 @item
3105 When a list constructor stores the @code{begin} pointer from the
3106 @code{initializer_list} argument, this doesn't extend the lifetime of
3107 the array, so if a class variable is constructed from a temporary
3108 @code{initializer_list}, the pointer is left dangling by the end of
3109 the variable declaration statement.
3110
3111 @end itemize
3112
3113 @item -Wliteral-suffix @r{(C++ and Objective-C++ only)}
3114 @opindex Wliteral-suffix
3115 @opindex Wno-literal-suffix
3116 Warn when a string or character literal is followed by a ud-suffix which does
3117 not begin with an underscore. As a conforming extension, GCC treats such
3118 suffixes as separate preprocessing tokens in order to maintain backwards
3119 compatibility with code that uses formatting macros from @code{<inttypes.h>}.
3120 For example:
3121
3122 @smallexample
3123 #define __STDC_FORMAT_MACROS
3124 #include <inttypes.h>
3125 #include <stdio.h>
3126
3127 int main() @{
3128 int64_t i64 = 123;
3129 printf("My int64: %" PRId64"\n", i64);
3130 @}
3131 @end smallexample
3132
3133 In this case, @code{PRId64} is treated as a separate preprocessing token.
3134
3135 Additionally, warn when a user-defined literal operator is declared with
3136 a literal suffix identifier that doesn't begin with an underscore. Literal
3137 suffix identifiers that don't begin with an underscore are reserved for
3138 future standardization.
3139
3140 This warning is enabled by default.
3141
3142 @item -Wlto-type-mismatch
3143 @opindex Wlto-type-mismatch
3144 @opindex Wno-lto-type-mismatch
3145
3146 During the link-time optimization warn about type mismatches in
3147 global declarations from different compilation units.
3148 Requires @option{-flto} to be enabled. Enabled by default.
3149
3150 @item -Wno-narrowing @r{(C++ and Objective-C++ only)}
3151 @opindex Wnarrowing
3152 @opindex Wno-narrowing
3153 For C++11 and later standards, narrowing conversions are diagnosed by default,
3154 as required by the standard. A narrowing conversion from a constant produces
3155 an error, and a narrowing conversion from a non-constant produces a warning,
3156 but @option{-Wno-narrowing} suppresses the diagnostic.
3157 Note that this does not affect the meaning of well-formed code;
3158 narrowing conversions are still considered ill-formed in SFINAE contexts.
3159
3160 With @option{-Wnarrowing} in C++98, warn when a narrowing
3161 conversion prohibited by C++11 occurs within
3162 @samp{@{ @}}, e.g.
3163
3164 @smallexample
3165 int i = @{ 2.2 @}; // error: narrowing from double to int
3166 @end smallexample
3167
3168 This flag is included in @option{-Wall} and @option{-Wc++11-compat}.
3169
3170 @item -Wnoexcept @r{(C++ and Objective-C++ only)}
3171 @opindex Wnoexcept
3172 @opindex Wno-noexcept
3173 Warn when a noexcept-expression evaluates to false because of a call
3174 to a function that does not have a non-throwing exception
3175 specification (i.e. @code{throw()} or @code{noexcept}) but is known by
3176 the compiler to never throw an exception.
3177
3178 @item -Wnoexcept-type @r{(C++ and Objective-C++ only)}
3179 @opindex Wnoexcept-type
3180 @opindex Wno-noexcept-type
3181 Warn if the C++17 feature making @code{noexcept} part of a function
3182 type changes the mangled name of a symbol relative to C++14. Enabled
3183 by @option{-Wabi} and @option{-Wc++17-compat}.
3184
3185 As an example:
3186
3187 @smallexample
3188 template <class T> void f(T t) @{ t(); @};
3189 void g() noexcept;
3190 void h() @{ f(g); @}
3191 @end smallexample
3192
3193 @noindent
3194 In C++14, @code{f} calls @code{f<void(*)()>}, but in
3195 C++17 it calls @code{f<void(*)()noexcept>}.
3196
3197 @item -Wclass-memaccess @r{(C++ and Objective-C++ only)}
3198 @opindex Wclass-memaccess
3199 @opindex Wno-class-memaccess
3200 Warn when the destination of a call to a raw memory function such as
3201 @code{memset} or @code{memcpy} is an object of class type, and when writing
3202 into such an object might bypass the class non-trivial or deleted constructor
3203 or copy assignment, violate const-correctness or encapsulation, or corrupt
3204 virtual table pointers. Modifying the representation of such objects may
3205 violate invariants maintained by member functions of the class. For example,
3206 the call to @code{memset} below is undefined because it modifies a non-trivial
3207 class object and is, therefore, diagnosed. The safe way to either initialize
3208 or clear the storage of objects of such types is by using the appropriate
3209 constructor or assignment operator, if one is available.
3210 @smallexample
3211 std::string str = "abc";
3212 memset (&str, 0, sizeof str);
3213 @end smallexample
3214 The @option{-Wclass-memaccess} option is enabled by @option{-Wall}.
3215 Explicitly casting the pointer to the class object to @code{void *} or
3216 to a type that can be safely accessed by the raw memory function suppresses
3217 the warning.
3218
3219 @item -Wnon-virtual-dtor @r{(C++ and Objective-C++ only)}
3220 @opindex Wnon-virtual-dtor
3221 @opindex Wno-non-virtual-dtor
3222 Warn when a class has virtual functions and an accessible non-virtual
3223 destructor itself or in an accessible polymorphic base class, in which
3224 case it is possible but unsafe to delete an instance of a derived
3225 class through a pointer to the class itself or base class. This
3226 warning is automatically enabled if @option{-Weffc++} is specified.
3227
3228 @item -Wregister @r{(C++ and Objective-C++ only)}
3229 @opindex Wregister
3230 @opindex Wno-register
3231 Warn on uses of the @code{register} storage class specifier, except
3232 when it is part of the GNU @ref{Explicit Register Variables} extension.
3233 The use of the @code{register} keyword as storage class specifier has
3234 been deprecated in C++11 and removed in C++17.
3235 Enabled by default with @option{-std=c++17}.
3236
3237 @item -Wreorder @r{(C++ and Objective-C++ only)}
3238 @opindex Wreorder
3239 @opindex Wno-reorder
3240 @cindex reordering, warning
3241 @cindex warning for reordering of member initializers
3242 Warn when the order of member initializers given in the code does not
3243 match the order in which they must be executed. For instance:
3244
3245 @smallexample
3246 struct A @{
3247 int i;
3248 int j;
3249 A(): j (0), i (1) @{ @}
3250 @};
3251 @end smallexample
3252
3253 @noindent
3254 The compiler rearranges the member initializers for @code{i}
3255 and @code{j} to match the declaration order of the members, emitting
3256 a warning to that effect. This warning is enabled by @option{-Wall}.
3257
3258 @item -Wno-pessimizing-move @r{(C++ and Objective-C++ only)}
3259 @opindex Wpessimizing-move
3260 @opindex Wno-pessimizing-move
3261 This warning warns when a call to @code{std::move} prevents copy
3262 elision. A typical scenario when copy elision can occur is when returning in
3263 a function with a class return type, when the expression being returned is the
3264 name of a non-volatile automatic object, and is not a function parameter, and
3265 has the same type as the function return type.
3266
3267 @smallexample
3268 struct T @{
3269 @dots{}
3270 @};
3271 T fn()
3272 @{
3273 T t;
3274 @dots{}
3275 return std::move (t);
3276 @}
3277 @end smallexample
3278
3279 But in this example, the @code{std::move} call prevents copy elision.
3280
3281 This warning is enabled by @option{-Wall}.
3282
3283 @item -Wno-redundant-move @r{(C++ and Objective-C++ only)}
3284 @opindex Wredundant-move
3285 @opindex Wno-redundant-move
3286 This warning warns about redundant calls to @code{std::move}; that is, when
3287 a move operation would have been performed even without the @code{std::move}
3288 call. This happens because the compiler is forced to treat the object as if
3289 it were an rvalue in certain situations such as returning a local variable,
3290 where copy elision isn't applicable. Consider:
3291
3292 @smallexample
3293 struct T @{
3294 @dots{}
3295 @};
3296 T fn(T t)
3297 @{
3298 @dots{}
3299 return std::move (t);
3300 @}
3301 @end smallexample
3302
3303 Here, the @code{std::move} call is redundant. Because G++ implements Core
3304 Issue 1579, another example is:
3305
3306 @smallexample
3307 struct T @{ // convertible to U
3308 @dots{}
3309 @};
3310 struct U @{
3311 @dots{}
3312 @};
3313 U fn()
3314 @{
3315 T t;
3316 @dots{}
3317 return std::move (t);
3318 @}
3319 @end smallexample
3320 In this example, copy elision isn't applicable because the type of the
3321 expression being returned and the function return type differ, yet G++
3322 treats the return value as if it were designated by an rvalue.
3323
3324 This warning is enabled by @option{-Wextra}.
3325
3326 @item -fext-numeric-literals @r{(C++ and Objective-C++ only)}
3327 @opindex fext-numeric-literals
3328 @opindex fno-ext-numeric-literals
3329 Accept imaginary, fixed-point, or machine-defined
3330 literal number suffixes as GNU extensions.
3331 When this option is turned off these suffixes are treated
3332 as C++11 user-defined literal numeric suffixes.
3333 This is on by default for all pre-C++11 dialects and all GNU dialects:
3334 @option{-std=c++98}, @option{-std=gnu++98}, @option{-std=gnu++11},
3335 @option{-std=gnu++14}.
3336 This option is off by default
3337 for ISO C++11 onwards (@option{-std=c++11}, ...).
3338 @end table
3339
3340 The following @option{-W@dots{}} options are not affected by @option{-Wall}.
3341
3342 @table @gcctabopt
3343 @item -Weffc++ @r{(C++ and Objective-C++ only)}
3344 @opindex Weffc++
3345 @opindex Wno-effc++
3346 Warn about violations of the following style guidelines from Scott Meyers'
3347 @cite{Effective C++} series of books:
3348
3349 @itemize @bullet
3350 @item
3351 Define a copy constructor and an assignment operator for classes
3352 with dynamically-allocated memory.
3353
3354 @item
3355 Prefer initialization to assignment in constructors.
3356
3357 @item
3358 Have @code{operator=} return a reference to @code{*this}.
3359
3360 @item
3361 Don't try to return a reference when you must return an object.
3362
3363 @item
3364 Distinguish between prefix and postfix forms of increment and
3365 decrement operators.
3366
3367 @item
3368 Never overload @code{&&}, @code{||}, or @code{,}.
3369
3370 @end itemize
3371
3372 This option also enables @option{-Wnon-virtual-dtor}, which is also
3373 one of the effective C++ recommendations. However, the check is
3374 extended to warn about the lack of virtual destructor in accessible
3375 non-polymorphic bases classes too.
3376
3377 When selecting this option, be aware that the standard library
3378 headers do not obey all of these guidelines; use @samp{grep -v}
3379 to filter out those warnings.
3380
3381 @item -Wstrict-null-sentinel @r{(C++ and Objective-C++ only)}
3382 @opindex Wstrict-null-sentinel
3383 @opindex Wno-strict-null-sentinel
3384 Warn about the use of an uncasted @code{NULL} as sentinel. When
3385 compiling only with GCC this is a valid sentinel, as @code{NULL} is defined
3386 to @code{__null}. Although it is a null pointer constant rather than a
3387 null pointer, it is guaranteed to be of the same size as a pointer.
3388 But this use is not portable across different compilers.
3389
3390 @item -Wno-non-template-friend @r{(C++ and Objective-C++ only)}
3391 @opindex Wno-non-template-friend
3392 @opindex Wnon-template-friend
3393 Disable warnings when non-template friend functions are declared
3394 within a template. In very old versions of GCC that predate implementation
3395 of the ISO standard, declarations such as
3396 @samp{friend int foo(int)}, where the name of the friend is an unqualified-id,
3397 could be interpreted as a particular specialization of a template
3398 function; the warning exists to diagnose compatibility problems,
3399 and is enabled by default.
3400
3401 @item -Wold-style-cast @r{(C++ and Objective-C++ only)}
3402 @opindex Wold-style-cast
3403 @opindex Wno-old-style-cast
3404 Warn if an old-style (C-style) cast to a non-void type is used within
3405 a C++ program. The new-style casts (@code{dynamic_cast},
3406 @code{static_cast}, @code{reinterpret_cast}, and @code{const_cast}) are
3407 less vulnerable to unintended effects and much easier to search for.
3408
3409 @item -Woverloaded-virtual @r{(C++ and Objective-C++ only)}
3410 @opindex Woverloaded-virtual
3411 @opindex Wno-overloaded-virtual
3412 @cindex overloaded virtual function, warning
3413 @cindex warning for overloaded virtual function
3414 Warn when a function declaration hides virtual functions from a
3415 base class. For example, in:
3416
3417 @smallexample
3418 struct A @{
3419 virtual void f();
3420 @};
3421
3422 struct B: public A @{
3423 void f(int);
3424 @};
3425 @end smallexample
3426
3427 the @code{A} class version of @code{f} is hidden in @code{B}, and code
3428 like:
3429
3430 @smallexample
3431 B* b;
3432 b->f();
3433 @end smallexample
3434
3435 @noindent
3436 fails to compile.
3437
3438 @item -Wno-pmf-conversions @r{(C++ and Objective-C++ only)}
3439 @opindex Wno-pmf-conversions
3440 @opindex Wpmf-conversions
3441 Disable the diagnostic for converting a bound pointer to member function
3442 to a plain pointer.
3443
3444 @item -Wsign-promo @r{(C++ and Objective-C++ only)}
3445 @opindex Wsign-promo
3446 @opindex Wno-sign-promo
3447 Warn when overload resolution chooses a promotion from unsigned or
3448 enumerated type to a signed type, over a conversion to an unsigned type of
3449 the same size. Previous versions of G++ tried to preserve
3450 unsignedness, but the standard mandates the current behavior.
3451
3452 @item -Wtemplates @r{(C++ and Objective-C++ only)}
3453 @opindex Wtemplates
3454 @opindex Wno-templates
3455 Warn when a primary template declaration is encountered. Some coding
3456 rules disallow templates, and this may be used to enforce that rule.
3457 The warning is inactive inside a system header file, such as the STL, so
3458 one can still use the STL. One may also instantiate or specialize
3459 templates.
3460
3461 @item -Wmultiple-inheritance @r{(C++ and Objective-C++ only)}
3462 @opindex Wmultiple-inheritance
3463 @opindex Wno-multiple-inheritance
3464 Warn when a class is defined with multiple direct base classes. Some
3465 coding rules disallow multiple inheritance, and this may be used to
3466 enforce that rule. The warning is inactive inside a system header file,
3467 such as the STL, so one can still use the STL. One may also define
3468 classes that indirectly use multiple inheritance.
3469
3470 @item -Wvirtual-inheritance
3471 @opindex Wvirtual-inheritance
3472 @opindex Wno-virtual-inheritance
3473 Warn when a class is defined with a virtual direct base class. Some
3474 coding rules disallow multiple inheritance, and this may be used to
3475 enforce that rule. The warning is inactive inside a system header file,
3476 such as the STL, so one can still use the STL. One may also define
3477 classes that indirectly use virtual inheritance.
3478
3479 @item -Wnamespaces
3480 @opindex Wnamespaces
3481 @opindex Wno-namespaces
3482 Warn when a namespace definition is opened. Some coding rules disallow
3483 namespaces, and this may be used to enforce that rule. The warning is
3484 inactive inside a system header file, such as the STL, so one can still
3485 use the STL. One may also use using directives and qualified names.
3486
3487 @item -Wno-terminate @r{(C++ and Objective-C++ only)}
3488 @opindex Wterminate
3489 @opindex Wno-terminate
3490 Disable the warning about a throw-expression that will immediately
3491 result in a call to @code{terminate}.
3492
3493 @item -Wno-class-conversion @r{(C++ and Objective-C++ only)}
3494 @opindex Wno-class-conversion
3495 @opindex Wclass-conversion
3496 Disable the warning about the case when a conversion function converts an
3497 object to the same type, to a base class of that type, or to void; such
3498 a conversion function will never be called.
3499 @end table
3500
3501 @node Objective-C and Objective-C++ Dialect Options
3502 @section Options Controlling Objective-C and Objective-C++ Dialects
3503
3504 @cindex compiler options, Objective-C and Objective-C++
3505 @cindex Objective-C and Objective-C++ options, command-line
3506 @cindex options, Objective-C and Objective-C++
3507 (NOTE: This manual does not describe the Objective-C and Objective-C++
3508 languages themselves. @xref{Standards,,Language Standards
3509 Supported by GCC}, for references.)
3510
3511 This section describes the command-line options that are only meaningful
3512 for Objective-C and Objective-C++ programs. You can also use most of
3513 the language-independent GNU compiler options.
3514 For example, you might compile a file @file{some_class.m} like this:
3515
3516 @smallexample
3517 gcc -g -fgnu-runtime -O -c some_class.m
3518 @end smallexample
3519
3520 @noindent
3521 In this example, @option{-fgnu-runtime} is an option meant only for
3522 Objective-C and Objective-C++ programs; you can use the other options with
3523 any language supported by GCC@.
3524
3525 Note that since Objective-C is an extension of the C language, Objective-C
3526 compilations may also use options specific to the C front-end (e.g.,
3527 @option{-Wtraditional}). Similarly, Objective-C++ compilations may use
3528 C++-specific options (e.g., @option{-Wabi}).
3529
3530 Here is a list of options that are @emph{only} for compiling Objective-C
3531 and Objective-C++ programs:
3532
3533 @table @gcctabopt
3534 @item -fconstant-string-class=@var{class-name}
3535 @opindex fconstant-string-class
3536 Use @var{class-name} as the name of the class to instantiate for each
3537 literal string specified with the syntax @code{@@"@dots{}"}. The default
3538 class name is @code{NXConstantString} if the GNU runtime is being used, and
3539 @code{NSConstantString} if the NeXT runtime is being used (see below). The
3540 @option{-fconstant-cfstrings} option, if also present, overrides the
3541 @option{-fconstant-string-class} setting and cause @code{@@"@dots{}"} literals
3542 to be laid out as constant CoreFoundation strings.
3543
3544 @item -fgnu-runtime
3545 @opindex fgnu-runtime
3546 Generate object code compatible with the standard GNU Objective-C
3547 runtime. This is the default for most types of systems.
3548
3549 @item -fnext-runtime
3550 @opindex fnext-runtime
3551 Generate output compatible with the NeXT runtime. This is the default
3552 for NeXT-based systems, including Darwin and Mac OS X@. The macro
3553 @code{__NEXT_RUNTIME__} is predefined if (and only if) this option is
3554 used.
3555
3556 @item -fno-nil-receivers
3557 @opindex fno-nil-receivers
3558 @opindex fnil-receivers
3559 Assume that all Objective-C message dispatches (@code{[receiver
3560 message:arg]}) in this translation unit ensure that the receiver is
3561 not @code{nil}. This allows for more efficient entry points in the
3562 runtime to be used. This option is only available in conjunction with
3563 the NeXT runtime and ABI version 0 or 1.
3564
3565 @item -fobjc-abi-version=@var{n}
3566 @opindex fobjc-abi-version
3567 Use version @var{n} of the Objective-C ABI for the selected runtime.
3568 This option is currently supported only for the NeXT runtime. In that
3569 case, Version 0 is the traditional (32-bit) ABI without support for
3570 properties and other Objective-C 2.0 additions. Version 1 is the
3571 traditional (32-bit) ABI with support for properties and other
3572 Objective-C 2.0 additions. Version 2 is the modern (64-bit) ABI. If
3573 nothing is specified, the default is Version 0 on 32-bit target
3574 machines, and Version 2 on 64-bit target machines.
3575
3576 @item -fobjc-call-cxx-cdtors
3577 @opindex fobjc-call-cxx-cdtors
3578 For each Objective-C class, check if any of its instance variables is a
3579 C++ object with a non-trivial default constructor. If so, synthesize a
3580 special @code{- (id) .cxx_construct} instance method which runs
3581 non-trivial default constructors on any such instance variables, in order,
3582 and then return @code{self}. Similarly, check if any instance variable
3583 is a C++ object with a non-trivial destructor, and if so, synthesize a
3584 special @code{- (void) .cxx_destruct} method which runs
3585 all such default destructors, in reverse order.
3586
3587 The @code{- (id) .cxx_construct} and @code{- (void) .cxx_destruct}
3588 methods thusly generated only operate on instance variables
3589 declared in the current Objective-C class, and not those inherited
3590 from superclasses. It is the responsibility of the Objective-C
3591 runtime to invoke all such methods in an object's inheritance
3592 hierarchy. The @code{- (id) .cxx_construct} methods are invoked
3593 by the runtime immediately after a new object instance is allocated;
3594 the @code{- (void) .cxx_destruct} methods are invoked immediately
3595 before the runtime deallocates an object instance.
3596
3597 As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
3598 support for invoking the @code{- (id) .cxx_construct} and
3599 @code{- (void) .cxx_destruct} methods.
3600
3601 @item -fobjc-direct-dispatch
3602 @opindex fobjc-direct-dispatch
3603 Allow fast jumps to the message dispatcher. On Darwin this is
3604 accomplished via the comm page.
3605
3606 @item -fobjc-exceptions
3607 @opindex fobjc-exceptions
3608 Enable syntactic support for structured exception handling in
3609 Objective-C, similar to what is offered by C++. This option
3610 is required to use the Objective-C keywords @code{@@try},
3611 @code{@@throw}, @code{@@catch}, @code{@@finally} and
3612 @code{@@synchronized}. This option is available with both the GNU
3613 runtime and the NeXT runtime (but not available in conjunction with
3614 the NeXT runtime on Mac OS X 10.2 and earlier).
3615
3616 @item -fobjc-gc
3617 @opindex fobjc-gc
3618 Enable garbage collection (GC) in Objective-C and Objective-C++
3619 programs. This option is only available with the NeXT runtime; the
3620 GNU runtime has a different garbage collection implementation that
3621 does not require special compiler flags.
3622
3623 @item -fobjc-nilcheck
3624 @opindex fobjc-nilcheck
3625 For the NeXT runtime with version 2 of the ABI, check for a nil
3626 receiver in method invocations before doing the actual method call.
3627 This is the default and can be disabled using
3628 @option{-fno-objc-nilcheck}. Class methods and super calls are never
3629 checked for nil in this way no matter what this flag is set to.
3630 Currently this flag does nothing when the GNU runtime, or an older
3631 version of the NeXT runtime ABI, is used.
3632
3633 @item -fobjc-std=objc1
3634 @opindex fobjc-std
3635 Conform to the language syntax of Objective-C 1.0, the language
3636 recognized by GCC 4.0. This only affects the Objective-C additions to
3637 the C/C++ language; it does not affect conformance to C/C++ standards,
3638 which is controlled by the separate C/C++ dialect option flags. When
3639 this option is used with the Objective-C or Objective-C++ compiler,
3640 any Objective-C syntax that is not recognized by GCC 4.0 is rejected.
3641 This is useful if you need to make sure that your Objective-C code can
3642 be compiled with older versions of GCC@.
3643
3644 @item -freplace-objc-classes
3645 @opindex freplace-objc-classes
3646 Emit a special marker instructing @command{ld(1)} not to statically link in
3647 the resulting object file, and allow @command{dyld(1)} to load it in at
3648 run time instead. This is used in conjunction with the Fix-and-Continue
3649 debugging mode, where the object file in question may be recompiled and
3650 dynamically reloaded in the course of program execution, without the need
3651 to restart the program itself. Currently, Fix-and-Continue functionality
3652 is only available in conjunction with the NeXT runtime on Mac OS X 10.3
3653 and later.
3654
3655 @item -fzero-link
3656 @opindex fzero-link
3657 When compiling for the NeXT runtime, the compiler ordinarily replaces calls
3658 to @code{objc_getClass("@dots{}")} (when the name of the class is known at
3659 compile time) with static class references that get initialized at load time,
3660 which improves run-time performance. Specifying the @option{-fzero-link} flag
3661 suppresses this behavior and causes calls to @code{objc_getClass("@dots{}")}
3662 to be retained. This is useful in Zero-Link debugging mode, since it allows
3663 for individual class implementations to be modified during program execution.
3664 The GNU runtime currently always retains calls to @code{objc_get_class("@dots{}")}
3665 regardless of command-line options.
3666
3667 @item -fno-local-ivars
3668 @opindex fno-local-ivars
3669 @opindex flocal-ivars
3670 By default instance variables in Objective-C can be accessed as if
3671 they were local variables from within the methods of the class they're
3672 declared in. This can lead to shadowing between instance variables
3673 and other variables declared either locally inside a class method or
3674 globally with the same name. Specifying the @option{-fno-local-ivars}
3675 flag disables this behavior thus avoiding variable shadowing issues.
3676
3677 @item -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]}
3678 @opindex fivar-visibility
3679 Set the default instance variable visibility to the specified option
3680 so that instance variables declared outside the scope of any access
3681 modifier directives default to the specified visibility.
3682
3683 @item -gen-decls
3684 @opindex gen-decls
3685 Dump interface declarations for all classes seen in the source file to a
3686 file named @file{@var{sourcename}.decl}.
3687
3688 @item -Wassign-intercept @r{(Objective-C and Objective-C++ only)}
3689 @opindex Wassign-intercept
3690 @opindex Wno-assign-intercept
3691 Warn whenever an Objective-C assignment is being intercepted by the
3692 garbage collector.
3693
3694 @item -Wno-protocol @r{(Objective-C and Objective-C++ only)}
3695 @opindex Wno-protocol
3696 @opindex Wprotocol
3697 If a class is declared to implement a protocol, a warning is issued for
3698 every method in the protocol that is not implemented by the class. The
3699 default behavior is to issue a warning for every method not explicitly
3700 implemented in the class, even if a method implementation is inherited
3701 from the superclass. If you use the @option{-Wno-protocol} option, then
3702 methods inherited from the superclass are considered to be implemented,
3703 and no warning is issued for them.
3704
3705 @item -Wselector @r{(Objective-C and Objective-C++ only)}
3706 @opindex Wselector
3707 @opindex Wno-selector
3708 Warn if multiple methods of different types for the same selector are
3709 found during compilation. The check is performed on the list of methods
3710 in the final stage of compilation. Additionally, a check is performed
3711 for each selector appearing in a @code{@@selector(@dots{})}
3712 expression, and a corresponding method for that selector has been found
3713 during compilation. Because these checks scan the method table only at
3714 the end of compilation, these warnings are not produced if the final
3715 stage of compilation is not reached, for example because an error is
3716 found during compilation, or because the @option{-fsyntax-only} option is
3717 being used.
3718
3719 @item -Wstrict-selector-match @r{(Objective-C and Objective-C++ only)}
3720 @opindex Wstrict-selector-match
3721 @opindex Wno-strict-selector-match
3722 Warn if multiple methods with differing argument and/or return types are
3723 found for a given selector when attempting to send a message using this
3724 selector to a receiver of type @code{id} or @code{Class}. When this flag
3725 is off (which is the default behavior), the compiler omits such warnings
3726 if any differences found are confined to types that share the same size
3727 and alignment.
3728
3729 @item -Wundeclared-selector @r{(Objective-C and Objective-C++ only)}
3730 @opindex Wundeclared-selector
3731 @opindex Wno-undeclared-selector
3732 Warn if a @code{@@selector(@dots{})} expression referring to an
3733 undeclared selector is found. A selector is considered undeclared if no
3734 method with that name has been declared before the
3735 @code{@@selector(@dots{})} expression, either explicitly in an
3736 @code{@@interface} or @code{@@protocol} declaration, or implicitly in
3737 an @code{@@implementation} section. This option always performs its
3738 checks as soon as a @code{@@selector(@dots{})} expression is found,
3739 while @option{-Wselector} only performs its checks in the final stage of
3740 compilation. This also enforces the coding style convention
3741 that methods and selectors must be declared before being used.
3742
3743 @item -print-objc-runtime-info
3744 @opindex print-objc-runtime-info
3745 Generate C header describing the largest structure that is passed by
3746 value, if any.
3747
3748 @end table
3749
3750 @node Diagnostic Message Formatting Options
3751 @section Options to Control Diagnostic Messages Formatting
3752 @cindex options to control diagnostics formatting
3753 @cindex diagnostic messages
3754 @cindex message formatting
3755
3756 Traditionally, diagnostic messages have been formatted irrespective of
3757 the output device's aspect (e.g.@: its width, @dots{}). You can use the
3758 options described below
3759 to control the formatting algorithm for diagnostic messages,
3760 e.g.@: how many characters per line, how often source location
3761 information should be reported. Note that some language front ends may not
3762 honor these options.
3763
3764 @table @gcctabopt
3765 @item -fmessage-length=@var{n}
3766 @opindex fmessage-length
3767 Try to format error messages so that they fit on lines of about
3768 @var{n} characters. If @var{n} is zero, then no line-wrapping is
3769 done; each error message appears on a single line. This is the
3770 default for all front ends.
3771
3772 Note - this option also affects the display of the @samp{#error} and
3773 @samp{#warning} pre-processor directives, and the @samp{deprecated}
3774 function/type/variable attribute. It does not however affect the
3775 @samp{pragma GCC warning} and @samp{pragma GCC error} pragmas.
3776
3777 @item -fdiagnostics-show-location=once
3778 @opindex fdiagnostics-show-location
3779 Only meaningful in line-wrapping mode. Instructs the diagnostic messages
3780 reporter to emit source location information @emph{once}; that is, in
3781 case the message is too long to fit on a single physical line and has to
3782 be wrapped, the source location won't be emitted (as prefix) again,
3783 over and over, in subsequent continuation lines. This is the default
3784 behavior.
3785
3786 @item -fdiagnostics-show-location=every-line
3787 Only meaningful in line-wrapping mode. Instructs the diagnostic
3788 messages reporter to emit the same source location information (as
3789 prefix) for physical lines that result from the process of breaking
3790 a message which is too long to fit on a single line.
3791
3792 @item -fdiagnostics-color[=@var{WHEN}]
3793 @itemx -fno-diagnostics-color
3794 @opindex fdiagnostics-color
3795 @cindex highlight, color
3796 @vindex GCC_COLORS @r{environment variable}
3797 Use color in diagnostics. @var{WHEN} is @samp{never}, @samp{always},
3798 or @samp{auto}. The default depends on how the compiler has been configured,
3799 it can be any of the above @var{WHEN} options or also @samp{never}
3800 if @env{GCC_COLORS} environment variable isn't present in the environment,
3801 and @samp{auto} otherwise.
3802 @samp{auto} means to use color only when the standard error is a terminal.
3803 The forms @option{-fdiagnostics-color} and @option{-fno-diagnostics-color} are
3804 aliases for @option{-fdiagnostics-color=always} and
3805 @option{-fdiagnostics-color=never}, respectively.
3806
3807 The colors are defined by the environment variable @env{GCC_COLORS}.
3808 Its value is a colon-separated list of capabilities and Select Graphic
3809 Rendition (SGR) substrings. SGR commands are interpreted by the
3810 terminal or terminal emulator. (See the section in the documentation
3811 of your text terminal for permitted values and their meanings as
3812 character attributes.) These substring values are integers in decimal
3813 representation and can be concatenated with semicolons.
3814 Common values to concatenate include
3815 @samp{1} for bold,
3816 @samp{4} for underline,
3817 @samp{5} for blink,
3818 @samp{7} for inverse,
3819 @samp{39} for default foreground color,
3820 @samp{30} to @samp{37} for foreground colors,
3821 @samp{90} to @samp{97} for 16-color mode foreground colors,
3822 @samp{38;5;0} to @samp{38;5;255}
3823 for 88-color and 256-color modes foreground colors,
3824 @samp{49} for default background color,
3825 @samp{40} to @samp{47} for background colors,
3826 @samp{100} to @samp{107} for 16-color mode background colors,
3827 and @samp{48;5;0} to @samp{48;5;255}
3828 for 88-color and 256-color modes background colors.
3829
3830 The default @env{GCC_COLORS} is
3831 @smallexample
3832 error=01;31:warning=01;35:note=01;36:range1=32:range2=34:locus=01:\
3833 quote=01:fixit-insert=32:fixit-delete=31:\
3834 diff-filename=01:diff-hunk=32:diff-delete=31:diff-insert=32:\
3835 type-diff=01;32
3836 @end smallexample
3837 @noindent
3838 where @samp{01;31} is bold red, @samp{01;35} is bold magenta,
3839 @samp{01;36} is bold cyan, @samp{32} is green, @samp{34} is blue,
3840 @samp{01} is bold, and @samp{31} is red.
3841 Setting @env{GCC_COLORS} to the empty string disables colors.
3842 Supported capabilities are as follows.
3843
3844 @table @code
3845 @item error=
3846 @vindex error GCC_COLORS @r{capability}
3847 SGR substring for error: markers.
3848
3849 @item warning=
3850 @vindex warning GCC_COLORS @r{capability}
3851 SGR substring for warning: markers.
3852
3853 @item note=
3854 @vindex note GCC_COLORS @r{capability}
3855 SGR substring for note: markers.
3856
3857 @item range1=
3858 @vindex range1 GCC_COLORS @r{capability}
3859 SGR substring for first additional range.
3860
3861 @item range2=
3862 @vindex range2 GCC_COLORS @r{capability}
3863 SGR substring for second additional range.
3864
3865 @item locus=
3866 @vindex locus GCC_COLORS @r{capability}
3867 SGR substring for location information, @samp{file:line} or
3868 @samp{file:line:column} etc.
3869
3870 @item quote=
3871 @vindex quote GCC_COLORS @r{capability}
3872 SGR substring for information printed within quotes.
3873
3874 @item fixit-insert=
3875 @vindex fixit-insert GCC_COLORS @r{capability}
3876 SGR substring for fix-it hints suggesting text to
3877 be inserted or replaced.
3878
3879 @item fixit-delete=
3880 @vindex fixit-delete GCC_COLORS @r{capability}
3881 SGR substring for fix-it hints suggesting text to
3882 be deleted.
3883
3884 @item diff-filename=
3885 @vindex diff-filename GCC_COLORS @r{capability}
3886 SGR substring for filename headers within generated patches.
3887
3888 @item diff-hunk=
3889 @vindex diff-hunk GCC_COLORS @r{capability}
3890 SGR substring for the starts of hunks within generated patches.
3891
3892 @item diff-delete=
3893 @vindex diff-delete GCC_COLORS @r{capability}
3894 SGR substring for deleted lines within generated patches.
3895
3896 @item diff-insert=
3897 @vindex diff-insert GCC_COLORS @r{capability}
3898 SGR substring for inserted lines within generated patches.
3899
3900 @item type-diff=
3901 @vindex type-diff GCC_COLORS @r{capability}
3902 SGR substring for highlighting mismatching types within template
3903 arguments in the C++ frontend.
3904 @end table
3905
3906 @item -fno-diagnostics-show-option
3907 @opindex fno-diagnostics-show-option
3908 @opindex fdiagnostics-show-option
3909 By default, each diagnostic emitted includes text indicating the
3910 command-line option that directly controls the diagnostic (if such an
3911 option is known to the diagnostic machinery). Specifying the
3912 @option{-fno-diagnostics-show-option} flag suppresses that behavior.
3913
3914 @item -fno-diagnostics-show-caret
3915 @opindex fno-diagnostics-show-caret
3916 @opindex fdiagnostics-show-caret
3917 By default, each diagnostic emitted includes the original source line
3918 and a caret @samp{^} indicating the column. This option suppresses this
3919 information. The source line is truncated to @var{n} characters, if
3920 the @option{-fmessage-length=n} option is given. When the output is done
3921 to the terminal, the width is limited to the width given by the
3922 @env{COLUMNS} environment variable or, if not set, to the terminal width.
3923
3924 @item -fno-diagnostics-show-labels
3925 @opindex fno-diagnostics-show-labels
3926 @opindex fdiagnostics-show-labels
3927 By default, when printing source code (via @option{-fdiagnostics-show-caret}),
3928 diagnostics can label ranges of source code with pertinent information, such
3929 as the types of expressions:
3930
3931 @smallexample
3932 printf ("foo %s bar", long_i + long_j);
3933 ~^ ~~~~~~~~~~~~~~~
3934 | |
3935 char * long int
3936 @end smallexample
3937
3938 This option suppresses the printing of these labels (in the example above,
3939 the vertical bars and the ``char *'' and ``long int'' text).
3940
3941 @item -fno-diagnostics-show-line-numbers
3942 @opindex fno-diagnostics-show-line-numbers
3943 @opindex fdiagnostics-show-line-numbers
3944 By default, when printing source code (via @option{-fdiagnostics-show-caret}),
3945 a left margin is printed, showing line numbers. This option suppresses this
3946 left margin.
3947
3948 @item -fdiagnostics-minimum-margin-width=@var{width}
3949 @opindex fdiagnostics-minimum-margin-width
3950 This option controls the minimum width of the left margin printed by
3951 @option{-fdiagnostics-show-line-numbers}. It defaults to 6.
3952
3953 @item -fdiagnostics-parseable-fixits
3954 @opindex fdiagnostics-parseable-fixits
3955 Emit fix-it hints in a machine-parseable format, suitable for consumption
3956 by IDEs. For each fix-it, a line will be printed after the relevant
3957 diagnostic, starting with the string ``fix-it:''. For example:
3958
3959 @smallexample
3960 fix-it:"test.c":@{45:3-45:21@}:"gtk_widget_show_all"
3961 @end smallexample
3962
3963 The location is expressed as a half-open range, expressed as a count of
3964 bytes, starting at byte 1 for the initial column. In the above example,
3965 bytes 3 through 20 of line 45 of ``test.c'' are to be replaced with the
3966 given string:
3967
3968 @smallexample
3969 00000000011111111112222222222
3970 12345678901234567890123456789
3971 gtk_widget_showall (dlg);
3972 ^^^^^^^^^^^^^^^^^^
3973 gtk_widget_show_all
3974 @end smallexample
3975
3976 The filename and replacement string escape backslash as ``\\", tab as ``\t'',
3977 newline as ``\n'', double quotes as ``\"'', non-printable characters as octal
3978 (e.g. vertical tab as ``\013'').
3979
3980 An empty replacement string indicates that the given range is to be removed.
3981 An empty range (e.g. ``45:3-45:3'') indicates that the string is to
3982 be inserted at the given position.
3983
3984 @item -fdiagnostics-generate-patch
3985 @opindex fdiagnostics-generate-patch
3986 Print fix-it hints to stderr in unified diff format, after any diagnostics
3987 are printed. For example:
3988
3989 @smallexample
3990 --- test.c
3991 +++ test.c
3992 @@ -42,5 +42,5 @@
3993
3994 void show_cb(GtkDialog *dlg)
3995 @{
3996 - gtk_widget_showall(dlg);
3997 + gtk_widget_show_all(dlg);
3998 @}
3999
4000 @end smallexample
4001
4002 The diff may or may not be colorized, following the same rules
4003 as for diagnostics (see @option{-fdiagnostics-color}).
4004
4005 @item -fdiagnostics-show-template-tree
4006 @opindex fdiagnostics-show-template-tree
4007
4008 In the C++ frontend, when printing diagnostics showing mismatching
4009 template types, such as:
4010
4011 @smallexample
4012 could not convert 'std::map<int, std::vector<double> >()'
4013 from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
4014 @end smallexample
4015
4016 the @option{-fdiagnostics-show-template-tree} flag enables printing a
4017 tree-like structure showing the common and differing parts of the types,
4018 such as:
4019
4020 @smallexample
4021 map<
4022 [...],
4023 vector<
4024 [double != float]>>
4025 @end smallexample
4026
4027 The parts that differ are highlighted with color (``double'' and
4028 ``float'' in this case).
4029
4030 @item -fno-elide-type
4031 @opindex fno-elide-type
4032 @opindex felide-type
4033 By default when the C++ frontend prints diagnostics showing mismatching
4034 template types, common parts of the types are printed as ``[...]'' to
4035 simplify the error message. For example:
4036
4037 @smallexample
4038 could not convert 'std::map<int, std::vector<double> >()'
4039 from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
4040 @end smallexample
4041
4042 Specifying the @option{-fno-elide-type} flag suppresses that behavior.
4043 This flag also affects the output of the
4044 @option{-fdiagnostics-show-template-tree} flag.
4045
4046 @item -fno-show-column
4047 @opindex fno-show-column
4048 @opindex fshow-column
4049 Do not print column numbers in diagnostics. This may be necessary if
4050 diagnostics are being scanned by a program that does not understand the
4051 column numbers, such as @command{dejagnu}.
4052
4053 @item -fdiagnostics-format=@var{FORMAT}
4054 @opindex fdiagnostics-format
4055 Select a different format for printing diagnostics.
4056 @var{FORMAT} is @samp{text} or @samp{json}.
4057 The default is @samp{text}.
4058
4059 The @samp{json} format consists of a top-level JSON array containing JSON
4060 objects representing the diagnostics.
4061
4062 The JSON is emitted as one line, without formatting; the examples below
4063 have been formatted for clarity.
4064
4065 Diagnostics can have child diagnostics. For example, this error and note:
4066
4067 @smallexample
4068 misleading-indentation.c:15:3: warning: this 'if' clause does not
4069 guard... [-Wmisleading-indentation]
4070 15 | if (flag)
4071 | ^~
4072 misleading-indentation.c:17:5: note: ...this statement, but the latter
4073 is misleadingly indented as if it were guarded by the 'if'
4074 17 | y = 2;
4075 | ^
4076 @end smallexample
4077
4078 @noindent
4079 might be printed in JSON form (after formatting) like this:
4080
4081 @smallexample
4082 [
4083 @{
4084 "kind": "warning",
4085 "locations": [
4086 @{
4087 "caret": @{
4088 "column": 3,
4089 "file": "misleading-indentation.c",
4090 "line": 15
4091 @},
4092 "finish": @{
4093 "column": 4,
4094 "file": "misleading-indentation.c",
4095 "line": 15
4096 @}
4097 @}
4098 ],
4099 "message": "this \u2018if\u2019 clause does not guard...",
4100 "option": "-Wmisleading-indentation",
4101 "children": [
4102 @{
4103 "kind": "note",
4104 "locations": [
4105 @{
4106 "caret": @{
4107 "column": 5,
4108 "file": "misleading-indentation.c",
4109 "line": 17
4110 @}
4111 @}
4112 ],
4113 "message": "...this statement, but the latter is @dots{}"
4114 @}
4115 ]
4116 @},
4117 @dots{}
4118 ]
4119 @end smallexample
4120
4121 @noindent
4122 where the @code{note} is a child of the @code{warning}.
4123
4124 A diagnostic has a @code{kind}. If this is @code{warning}, then there is
4125 an @code{option} key describing the command-line option controlling the
4126 warning.
4127
4128 A diagnostic can contain zero or more locations. Each location has up
4129 to three positions within it: a @code{caret} position and optional
4130 @code{start} and @code{finish} positions. A location can also have
4131 an optional @code{label} string. For example, this error:
4132
4133 @smallexample
4134 bad-binary-ops.c:64:23: error: invalid operands to binary + (have 'S' @{aka
4135 'struct s'@} and 'T' @{aka 'struct t'@})
4136 64 | return callee_4a () + callee_4b ();
4137 | ~~~~~~~~~~~~ ^ ~~~~~~~~~~~~
4138 | | |
4139 | | T @{aka struct t@}
4140 | S @{aka struct s@}
4141 @end smallexample
4142
4143 @noindent
4144 has three locations. Its primary location is at the ``+'' token at column
4145 23. It has two secondary locations, describing the left and right-hand sides
4146 of the expression, which have labels. It might be printed in JSON form as:
4147
4148 @smallexample
4149 @{
4150 "children": [],
4151 "kind": "error",
4152 "locations": [
4153 @{
4154 "caret": @{
4155 "column": 23, "file": "bad-binary-ops.c", "line": 64
4156 @}
4157 @},
4158 @{
4159 "caret": @{
4160 "column": 10, "file": "bad-binary-ops.c", "line": 64
4161 @},
4162 "finish": @{
4163 "column": 21, "file": "bad-binary-ops.c", "line": 64
4164 @},
4165 "label": "S @{aka struct s@}"
4166 @},
4167 @{
4168 "caret": @{
4169 "column": 25, "file": "bad-binary-ops.c", "line": 64
4170 @},
4171 "finish": @{
4172 "column": 36, "file": "bad-binary-ops.c", "line": 64
4173 @},
4174 "label": "T @{aka struct t@}"
4175 @}
4176 ],
4177 "message": "invalid operands to binary + @dots{}"
4178 @}
4179 @end smallexample
4180
4181 If a diagnostic contains fix-it hints, it has a @code{fixits} array,
4182 consisting of half-open intervals, similar to the output of
4183 @option{-fdiagnostics-parseable-fixits}. For example, this diagnostic
4184 with a replacement fix-it hint:
4185
4186 @smallexample
4187 demo.c:8:15: error: 'struct s' has no member named 'colour'; did you
4188 mean 'color'?
4189 8 | return ptr->colour;
4190 | ^~~~~~
4191 | color
4192 @end smallexample
4193
4194 @noindent
4195 might be printed in JSON form as:
4196
4197 @smallexample
4198 @{
4199 "children": [],
4200 "fixits": [
4201 @{
4202 "next": @{
4203 "column": 21,
4204 "file": "demo.c",
4205 "line": 8
4206 @},
4207 "start": @{
4208 "column": 15,
4209 "file": "demo.c",
4210 "line": 8
4211 @},
4212 "string": "color"
4213 @}
4214 ],
4215 "kind": "error",
4216 "locations": [
4217 @{
4218 "caret": @{
4219 "column": 15,
4220 "file": "demo.c",
4221 "line": 8
4222 @},
4223 "finish": @{
4224 "column": 20,
4225 "file": "demo.c",
4226 "line": 8
4227 @}
4228 @}
4229 ],
4230 "message": "\u2018struct s\u2019 has no member named @dots{}"
4231 @}
4232 @end smallexample
4233
4234 @noindent
4235 where the fix-it hint suggests replacing the text from @code{start} up
4236 to but not including @code{next} with @code{string}'s value. Deletions
4237 are expressed via an empty value for @code{string}, insertions by
4238 having @code{start} equal @code{next}.
4239
4240 @end table
4241
4242 @node Warning Options
4243 @section Options to Request or Suppress Warnings
4244 @cindex options to control warnings
4245 @cindex warning messages
4246 @cindex messages, warning
4247 @cindex suppressing warnings
4248
4249 Warnings are diagnostic messages that report constructions that
4250 are not inherently erroneous but that are risky or suggest there
4251 may have been an error.
4252
4253 The following language-independent options do not enable specific
4254 warnings but control the kinds of diagnostics produced by GCC@.
4255
4256 @table @gcctabopt
4257 @cindex syntax checking
4258 @item -fsyntax-only
4259 @opindex fsyntax-only
4260 Check the code for syntax errors, but don't do anything beyond that.
4261
4262 @item -fmax-errors=@var{n}
4263 @opindex fmax-errors
4264 Limits the maximum number of error messages to @var{n}, at which point
4265 GCC bails out rather than attempting to continue processing the source
4266 code. If @var{n} is 0 (the default), there is no limit on the number
4267 of error messages produced. If @option{-Wfatal-errors} is also
4268 specified, then @option{-Wfatal-errors} takes precedence over this
4269 option.
4270
4271 @item -w
4272 @opindex w
4273 Inhibit all warning messages.
4274
4275 @item -Werror
4276 @opindex Werror
4277 @opindex Wno-error
4278 Make all warnings into errors.
4279
4280 @item -Werror=
4281 @opindex Werror=
4282 @opindex Wno-error=
4283 Make the specified warning into an error. The specifier for a warning
4284 is appended; for example @option{-Werror=switch} turns the warnings
4285 controlled by @option{-Wswitch} into errors. This switch takes a
4286 negative form, to be used to negate @option{-Werror} for specific
4287 warnings; for example @option{-Wno-error=switch} makes
4288 @option{-Wswitch} warnings not be errors, even when @option{-Werror}
4289 is in effect.
4290
4291 The warning message for each controllable warning includes the
4292 option that controls the warning. That option can then be used with
4293 @option{-Werror=} and @option{-Wno-error=} as described above.
4294 (Printing of the option in the warning message can be disabled using the
4295 @option{-fno-diagnostics-show-option} flag.)
4296
4297 Note that specifying @option{-Werror=}@var{foo} automatically implies
4298 @option{-W}@var{foo}. However, @option{-Wno-error=}@var{foo} does not
4299 imply anything.
4300
4301 @item -Wfatal-errors
4302 @opindex Wfatal-errors
4303 @opindex Wno-fatal-errors
4304 This option causes the compiler to abort compilation on the first error
4305 occurred rather than trying to keep going and printing further error
4306 messages.
4307
4308 @end table
4309
4310 You can request many specific warnings with options beginning with
4311 @samp{-W}, for example @option{-Wimplicit} to request warnings on
4312 implicit declarations. Each of these specific warning options also
4313 has a negative form beginning @samp{-Wno-} to turn off warnings; for
4314 example, @option{-Wno-implicit}. This manual lists only one of the
4315 two forms, whichever is not the default. For further
4316 language-specific options also refer to @ref{C++ Dialect Options} and
4317 @ref{Objective-C and Objective-C++ Dialect Options}.
4318
4319 Some options, such as @option{-Wall} and @option{-Wextra}, turn on other
4320 options, such as @option{-Wunused}, which may turn on further options,
4321 such as @option{-Wunused-value}. The combined effect of positive and
4322 negative forms is that more specific options have priority over less
4323 specific ones, independently of their position in the command-line. For
4324 options of the same specificity, the last one takes effect. Options
4325 enabled or disabled via pragmas (@pxref{Diagnostic Pragmas}) take effect
4326 as if they appeared at the end of the command-line.
4327
4328 When an unrecognized warning option is requested (e.g.,
4329 @option{-Wunknown-warning}), GCC emits a diagnostic stating
4330 that the option is not recognized. However, if the @option{-Wno-} form
4331 is used, the behavior is slightly different: no diagnostic is
4332 produced for @option{-Wno-unknown-warning} unless other diagnostics
4333 are being produced. This allows the use of new @option{-Wno-} options
4334 with old compilers, but if something goes wrong, the compiler
4335 warns that an unrecognized option is present.
4336
4337 @table @gcctabopt
4338 @item -Wpedantic
4339 @itemx -pedantic
4340 @opindex pedantic
4341 @opindex Wpedantic
4342 @opindex Wno-pedantic
4343 Issue all the warnings demanded by strict ISO C and ISO C++;
4344 reject all programs that use forbidden extensions, and some other
4345 programs that do not follow ISO C and ISO C++. For ISO C, follows the
4346 version of the ISO C standard specified by any @option{-std} option used.
4347
4348 Valid ISO C and ISO C++ programs should compile properly with or without
4349 this option (though a rare few require @option{-ansi} or a
4350 @option{-std} option specifying the required version of ISO C)@. However,
4351 without this option, certain GNU extensions and traditional C and C++
4352 features are supported as well. With this option, they are rejected.
4353
4354 @option{-Wpedantic} does not cause warning messages for use of the
4355 alternate keywords whose names begin and end with @samp{__}. This alternate
4356 format can also be used to disable warnings for non-ISO @samp{__intN} types,
4357 i.e. @samp{__intN__}.
4358 Pedantic warnings are also disabled in the expression that follows
4359 @code{__extension__}. However, only system header files should use
4360 these escape routes; application programs should avoid them.
4361 @xref{Alternate Keywords}.
4362
4363 Some users try to use @option{-Wpedantic} to check programs for strict ISO
4364 C conformance. They soon find that it does not do quite what they want:
4365 it finds some non-ISO practices, but not all---only those for which
4366 ISO C @emph{requires} a diagnostic, and some others for which
4367 diagnostics have been added.
4368
4369 A feature to report any failure to conform to ISO C might be useful in
4370 some instances, but would require considerable additional work and would
4371 be quite different from @option{-Wpedantic}. We don't have plans to
4372 support such a feature in the near future.
4373
4374 Where the standard specified with @option{-std} represents a GNU
4375 extended dialect of C, such as @samp{gnu90} or @samp{gnu99}, there is a
4376 corresponding @dfn{base standard}, the version of ISO C on which the GNU
4377 extended dialect is based. Warnings from @option{-Wpedantic} are given
4378 where they are required by the base standard. (It does not make sense
4379 for such warnings to be given only for features not in the specified GNU
4380 C dialect, since by definition the GNU dialects of C include all
4381 features the compiler supports with the given option, and there would be
4382 nothing to warn about.)
4383
4384 @item -pedantic-errors
4385 @opindex pedantic-errors
4386 Give an error whenever the @dfn{base standard} (see @option{-Wpedantic})
4387 requires a diagnostic, in some cases where there is undefined behavior
4388 at compile-time and in some other cases that do not prevent compilation
4389 of programs that are valid according to the standard. This is not
4390 equivalent to @option{-Werror=pedantic}, since there are errors enabled
4391 by this option and not enabled by the latter and vice versa.
4392
4393 @item -Wall
4394 @opindex Wall
4395 @opindex Wno-all
4396 This enables all the warnings about constructions that some users
4397 consider questionable, and that are easy to avoid (or modify to
4398 prevent the warning), even in conjunction with macros. This also
4399 enables some language-specific warnings described in @ref{C++ Dialect
4400 Options} and @ref{Objective-C and Objective-C++ Dialect Options}.
4401
4402 @option{-Wall} turns on the following warning flags:
4403
4404 @gccoptlist{-Waddress @gol
4405 -Warray-bounds=1 @r{(only with} @option{-O2}@r{)} @gol
4406 -Wbool-compare @gol
4407 -Wbool-operation @gol
4408 -Wc++11-compat -Wc++14-compat @gol
4409 -Wcatch-value @r{(C++ and Objective-C++ only)} @gol
4410 -Wchar-subscripts @gol
4411 -Wcomment @gol
4412 -Wduplicate-decl-specifier @r{(C and Objective-C only)} @gol
4413 -Wenum-compare @r{(in C/ObjC; this is on by default in C++)} @gol
4414 -Wformat @gol
4415 -Wint-in-bool-context @gol
4416 -Wimplicit @r{(C and Objective-C only)} @gol
4417 -Wimplicit-int @r{(C and Objective-C only)} @gol
4418 -Wimplicit-function-declaration @r{(C and Objective-C only)} @gol
4419 -Winit-self @r{(only for C++)} @gol
4420 -Wlogical-not-parentheses @gol
4421 -Wmain @r{(only for C/ObjC and unless} @option{-ffreestanding}@r{)} @gol
4422 -Wmaybe-uninitialized @gol
4423 -Wmemset-elt-size @gol
4424 -Wmemset-transposed-args @gol
4425 -Wmisleading-indentation @r{(only for C/C++)} @gol
4426 -Wmissing-attributes @gol
4427 -Wmissing-braces @r{(only for C/ObjC)} @gol
4428 -Wmultistatement-macros @gol
4429 -Wnarrowing @r{(only for C++)} @gol
4430 -Wnonnull @gol
4431 -Wnonnull-compare @gol
4432 -Wopenmp-simd @gol
4433 -Wparentheses @gol
4434 -Wpessimizing-move @r{(only for C++)} @gol
4435 -Wpointer-sign @gol
4436 -Wreorder @gol
4437 -Wrestrict @gol
4438 -Wreturn-type @gol
4439 -Wsequence-point @gol
4440 -Wsign-compare @r{(only in C++)} @gol
4441 -Wsizeof-pointer-div @gol
4442 -Wsizeof-pointer-memaccess @gol
4443 -Wstrict-aliasing @gol
4444 -Wstrict-overflow=1 @gol
4445 -Wswitch @gol
4446 -Wtautological-compare @gol
4447 -Wtrigraphs @gol
4448 -Wuninitialized @gol
4449 -Wunknown-pragmas @gol
4450 -Wunused-function @gol
4451 -Wunused-label @gol
4452 -Wunused-value @gol
4453 -Wunused-variable @gol
4454 -Wvolatile-register-var}
4455
4456 Note that some warning flags are not implied by @option{-Wall}. Some of
4457 them warn about constructions that users generally do not consider
4458 questionable, but which occasionally you might wish to check for;
4459 others warn about constructions that are necessary or hard to avoid in
4460 some cases, and there is no simple way to modify the code to suppress
4461 the warning. Some of them are enabled by @option{-Wextra} but many of
4462 them must be enabled individually.
4463
4464 @item -Wextra
4465 @opindex W
4466 @opindex Wextra
4467 @opindex Wno-extra
4468 This enables some extra warning flags that are not enabled by
4469 @option{-Wall}. (This option used to be called @option{-W}. The older
4470 name is still supported, but the newer name is more descriptive.)
4471
4472 @gccoptlist{-Wclobbered @gol
4473 -Wcast-function-type @gol
4474 -Wdeprecated-copy @r{(C++ only)} @gol
4475 -Wempty-body @gol
4476 -Wignored-qualifiers @gol
4477 -Wimplicit-fallthrough=3 @gol
4478 -Wmissing-field-initializers @gol
4479 -Wmissing-parameter-type @r{(C only)} @gol
4480 -Wold-style-declaration @r{(C only)} @gol
4481 -Woverride-init @gol
4482 -Wsign-compare @r{(C only)} @gol
4483 -Wredundant-move @r{(only for C++)} @gol
4484 -Wtype-limits @gol
4485 -Wuninitialized @gol
4486 -Wshift-negative-value @r{(in C++03 and in C99 and newer)} @gol
4487 -Wunused-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
4488 -Wunused-but-set-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)}}
4489
4490
4491 The option @option{-Wextra} also prints warning messages for the
4492 following cases:
4493
4494 @itemize @bullet
4495
4496 @item
4497 A pointer is compared against integer zero with @code{<}, @code{<=},
4498 @code{>}, or @code{>=}.
4499
4500 @item
4501 (C++ only) An enumerator and a non-enumerator both appear in a
4502 conditional expression.
4503
4504 @item
4505 (C++ only) Ambiguous virtual bases.
4506
4507 @item
4508 (C++ only) Subscripting an array that has been declared @code{register}.
4509
4510 @item
4511 (C++ only) Taking the address of a variable that has been declared
4512 @code{register}.
4513
4514 @item
4515 (C++ only) A base class is not initialized in the copy constructor
4516 of a derived class.
4517
4518 @end itemize
4519
4520 @item -Wchar-subscripts
4521 @opindex Wchar-subscripts
4522 @opindex Wno-char-subscripts
4523 Warn if an array subscript has type @code{char}. This is a common cause
4524 of error, as programmers often forget that this type is signed on some
4525 machines.
4526 This warning is enabled by @option{-Wall}.
4527
4528 @item -Wno-coverage-mismatch
4529 @opindex Wno-coverage-mismatch
4530 @opindex Wcoverage-mismatch
4531 Warn if feedback profiles do not match when using the
4532 @option{-fprofile-use} option.
4533 If a source file is changed between compiling with @option{-fprofile-generate}
4534 and with @option{-fprofile-use}, the files with the profile feedback can fail
4535 to match the source file and GCC cannot use the profile feedback
4536 information. By default, this warning is enabled and is treated as an
4537 error. @option{-Wno-coverage-mismatch} can be used to disable the
4538 warning or @option{-Wno-error=coverage-mismatch} can be used to
4539 disable the error. Disabling the error for this warning can result in
4540 poorly optimized code and is useful only in the
4541 case of very minor changes such as bug fixes to an existing code-base.
4542 Completely disabling the warning is not recommended.
4543
4544 @item -Wno-cpp
4545 @r{(C, Objective-C, C++, Objective-C++ and Fortran only)}
4546
4547 Suppress warning messages emitted by @code{#warning} directives.
4548
4549 @item -Wdouble-promotion @r{(C, C++, Objective-C and Objective-C++ only)}
4550 @opindex Wdouble-promotion
4551 @opindex Wno-double-promotion
4552 Give a warning when a value of type @code{float} is implicitly
4553 promoted to @code{double}. CPUs with a 32-bit ``single-precision''
4554 floating-point unit implement @code{float} in hardware, but emulate
4555 @code{double} in software. On such a machine, doing computations
4556 using @code{double} values is much more expensive because of the
4557 overhead required for software emulation.
4558
4559 It is easy to accidentally do computations with @code{double} because
4560 floating-point literals are implicitly of type @code{double}. For
4561 example, in:
4562 @smallexample
4563 @group
4564 float area(float radius)
4565 @{
4566 return 3.14159 * radius * radius;
4567 @}
4568 @end group
4569 @end smallexample
4570 the compiler performs the entire computation with @code{double}
4571 because the floating-point literal is a @code{double}.
4572
4573 @item -Wduplicate-decl-specifier @r{(C and Objective-C only)}
4574 @opindex Wduplicate-decl-specifier
4575 @opindex Wno-duplicate-decl-specifier
4576 Warn if a declaration has duplicate @code{const}, @code{volatile},
4577 @code{restrict} or @code{_Atomic} specifier. This warning is enabled by
4578 @option{-Wall}.
4579
4580 @item -Wformat
4581 @itemx -Wformat=@var{n}
4582 @opindex Wformat
4583 @opindex Wno-format
4584 @opindex ffreestanding
4585 @opindex fno-builtin
4586 @opindex Wformat=
4587 Check calls to @code{printf} and @code{scanf}, etc., to make sure that
4588 the arguments supplied have types appropriate to the format string
4589 specified, and that the conversions specified in the format string make
4590 sense. This includes standard functions, and others specified by format
4591 attributes (@pxref{Function Attributes}), in the @code{printf},
4592 @code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
4593 not in the C standard) families (or other target-specific families).
4594 Which functions are checked without format attributes having been
4595 specified depends on the standard version selected, and such checks of
4596 functions without the attribute specified are disabled by
4597 @option{-ffreestanding} or @option{-fno-builtin}.
4598
4599 The formats are checked against the format features supported by GNU
4600 libc version 2.2. These include all ISO C90 and C99 features, as well
4601 as features from the Single Unix Specification and some BSD and GNU
4602 extensions. Other library implementations may not support all these
4603 features; GCC does not support warning about features that go beyond a
4604 particular library's limitations. However, if @option{-Wpedantic} is used
4605 with @option{-Wformat}, warnings are given about format features not
4606 in the selected standard version (but not for @code{strfmon} formats,
4607 since those are not in any version of the C standard). @xref{C Dialect
4608 Options,,Options Controlling C Dialect}.
4609
4610 @table @gcctabopt
4611 @item -Wformat=1
4612 @itemx -Wformat
4613 @opindex Wformat
4614 @opindex Wformat=1
4615 Option @option{-Wformat} is equivalent to @option{-Wformat=1}, and
4616 @option{-Wno-format} is equivalent to @option{-Wformat=0}. Since
4617 @option{-Wformat} also checks for null format arguments for several
4618 functions, @option{-Wformat} also implies @option{-Wnonnull}. Some
4619 aspects of this level of format checking can be disabled by the
4620 options: @option{-Wno-format-contains-nul},
4621 @option{-Wno-format-extra-args}, and @option{-Wno-format-zero-length}.
4622 @option{-Wformat} is enabled by @option{-Wall}.
4623
4624 @item -Wno-format-contains-nul
4625 @opindex Wno-format-contains-nul
4626 @opindex Wformat-contains-nul
4627 If @option{-Wformat} is specified, do not warn about format strings that
4628 contain NUL bytes.
4629
4630 @item -Wno-format-extra-args
4631 @opindex Wno-format-extra-args
4632 @opindex Wformat-extra-args
4633 If @option{-Wformat} is specified, do not warn about excess arguments to a
4634 @code{printf} or @code{scanf} format function. The C standard specifies
4635 that such arguments are ignored.
4636
4637 Where the unused arguments lie between used arguments that are
4638 specified with @samp{$} operand number specifications, normally
4639 warnings are still given, since the implementation could not know what
4640 type to pass to @code{va_arg} to skip the unused arguments. However,
4641 in the case of @code{scanf} formats, this option suppresses the
4642 warning if the unused arguments are all pointers, since the Single
4643 Unix Specification says that such unused arguments are allowed.
4644
4645 @item -Wformat-overflow
4646 @itemx -Wformat-overflow=@var{level}
4647 @opindex Wformat-overflow
4648 @opindex Wno-format-overflow
4649 Warn about calls to formatted input/output functions such as @code{sprintf}
4650 and @code{vsprintf} that might overflow the destination buffer. When the
4651 exact number of bytes written by a format directive cannot be determined
4652 at compile-time it is estimated based on heuristics that depend on the
4653 @var{level} argument and on optimization. While enabling optimization
4654 will in most cases improve the accuracy of the warning, it may also
4655 result in false positives.
4656
4657 @table @gcctabopt
4658 @item -Wformat-overflow
4659 @itemx -Wformat-overflow=1
4660 @opindex Wformat-overflow
4661 @opindex Wno-format-overflow
4662 Level @var{1} of @option{-Wformat-overflow} enabled by @option{-Wformat}
4663 employs a conservative approach that warns only about calls that most
4664 likely overflow the buffer. At this level, numeric arguments to format
4665 directives with unknown values are assumed to have the value of one, and
4666 strings of unknown length to be empty. Numeric arguments that are known
4667 to be bounded to a subrange of their type, or string arguments whose output
4668 is bounded either by their directive's precision or by a finite set of
4669 string literals, are assumed to take on the value within the range that
4670 results in the most bytes on output. For example, the call to @code{sprintf}
4671 below is diagnosed because even with both @var{a} and @var{b} equal to zero,
4672 the terminating NUL character (@code{'\0'}) appended by the function
4673 to the destination buffer will be written past its end. Increasing
4674 the size of the buffer by a single byte is sufficient to avoid the
4675 warning, though it may not be sufficient to avoid the overflow.
4676
4677 @smallexample
4678 void f (int a, int b)
4679 @{
4680 char buf [13];
4681 sprintf (buf, "a = %i, b = %i\n", a, b);
4682 @}
4683 @end smallexample
4684
4685 @item -Wformat-overflow=2
4686 Level @var{2} warns also about calls that might overflow the destination
4687 buffer given an argument of sufficient length or magnitude. At level
4688 @var{2}, unknown numeric arguments are assumed to have the minimum
4689 representable value for signed types with a precision greater than 1, and
4690 the maximum representable value otherwise. Unknown string arguments whose
4691 length cannot be assumed to be bounded either by the directive's precision,
4692 or by a finite set of string literals they may evaluate to, or the character
4693 array they may point to, are assumed to be 1 character long.
4694
4695 At level @var{2}, the call in the example above is again diagnosed, but
4696 this time because with @var{a} equal to a 32-bit @code{INT_MIN} the first
4697 @code{%i} directive will write some of its digits beyond the end of
4698 the destination buffer. To make the call safe regardless of the values
4699 of the two variables, the size of the destination buffer must be increased
4700 to at least 34 bytes. GCC includes the minimum size of the buffer in
4701 an informational note following the warning.
4702
4703 An alternative to increasing the size of the destination buffer is to
4704 constrain the range of formatted values. The maximum length of string
4705 arguments can be bounded by specifying the precision in the format
4706 directive. When numeric arguments of format directives can be assumed
4707 to be bounded by less than the precision of their type, choosing
4708 an appropriate length modifier to the format specifier will reduce
4709 the required buffer size. For example, if @var{a} and @var{b} in the
4710 example above can be assumed to be within the precision of
4711 the @code{short int} type then using either the @code{%hi} format
4712 directive or casting the argument to @code{short} reduces the maximum
4713 required size of the buffer to 24 bytes.
4714
4715 @smallexample
4716 void f (int a, int b)
4717 @{
4718 char buf [23];
4719 sprintf (buf, "a = %hi, b = %i\n", a, (short)b);
4720 @}
4721 @end smallexample
4722 @end table
4723
4724 @item -Wno-format-zero-length
4725 @opindex Wno-format-zero-length
4726 @opindex Wformat-zero-length
4727 If @option{-Wformat} is specified, do not warn about zero-length formats.
4728 The C standard specifies that zero-length formats are allowed.
4729
4730
4731 @item -Wformat=2
4732 @opindex Wformat=2
4733 Enable @option{-Wformat} plus additional format checks. Currently
4734 equivalent to @option{-Wformat -Wformat-nonliteral -Wformat-security
4735 -Wformat-y2k}.
4736
4737 @item -Wformat-nonliteral
4738 @opindex Wformat-nonliteral
4739 @opindex Wno-format-nonliteral
4740 If @option{-Wformat} is specified, also warn if the format string is not a
4741 string literal and so cannot be checked, unless the format function
4742 takes its format arguments as a @code{va_list}.
4743
4744 @item -Wformat-security
4745 @opindex Wformat-security
4746 @opindex Wno-format-security
4747 If @option{-Wformat} is specified, also warn about uses of format
4748 functions that represent possible security problems. At present, this
4749 warns about calls to @code{printf} and @code{scanf} functions where the
4750 format string is not a string literal and there are no format arguments,
4751 as in @code{printf (foo);}. This may be a security hole if the format
4752 string came from untrusted input and contains @samp{%n}. (This is
4753 currently a subset of what @option{-Wformat-nonliteral} warns about, but
4754 in future warnings may be added to @option{-Wformat-security} that are not
4755 included in @option{-Wformat-nonliteral}.)
4756
4757 @item -Wformat-signedness
4758 @opindex Wformat-signedness
4759 @opindex Wno-format-signedness
4760 If @option{-Wformat} is specified, also warn if the format string
4761 requires an unsigned argument and the argument is signed and vice versa.
4762
4763 @item -Wformat-truncation
4764 @itemx -Wformat-truncation=@var{level}
4765 @opindex Wformat-truncation
4766 @opindex Wno-format-truncation
4767 Warn about calls to formatted input/output functions such as @code{snprintf}
4768 and @code{vsnprintf} that might result in output truncation. When the exact
4769 number of bytes written by a format directive cannot be determined at
4770 compile-time it is estimated based on heuristics that depend on
4771 the @var{level} argument and on optimization. While enabling optimization
4772 will in most cases improve the accuracy of the warning, it may also result
4773 in false positives. Except as noted otherwise, the option uses the same
4774 logic @option{-Wformat-overflow}.
4775
4776 @table @gcctabopt
4777 @item -Wformat-truncation
4778 @itemx -Wformat-truncation=1
4779 @opindex Wformat-truncation
4780 @opindex Wno-format-truncation
4781 Level @var{1} of @option{-Wformat-truncation} enabled by @option{-Wformat}
4782 employs a conservative approach that warns only about calls to bounded
4783 functions whose return value is unused and that will most likely result
4784 in output truncation.
4785
4786 @item -Wformat-truncation=2
4787 Level @var{2} warns also about calls to bounded functions whose return
4788 value is used and that might result in truncation given an argument of
4789 sufficient length or magnitude.
4790 @end table
4791
4792 @item -Wformat-y2k
4793 @opindex Wformat-y2k
4794 @opindex Wno-format-y2k
4795 If @option{-Wformat} is specified, also warn about @code{strftime}
4796 formats that may yield only a two-digit year.
4797 @end table
4798
4799 @item -Wnonnull
4800 @opindex Wnonnull
4801 @opindex Wno-nonnull
4802 Warn about passing a null pointer for arguments marked as
4803 requiring a non-null value by the @code{nonnull} function attribute.
4804
4805 @option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}. It
4806 can be disabled with the @option{-Wno-nonnull} option.
4807
4808 @item -Wnonnull-compare
4809 @opindex Wnonnull-compare
4810 @opindex Wno-nonnull-compare
4811 Warn when comparing an argument marked with the @code{nonnull}
4812 function attribute against null inside the function.
4813
4814 @option{-Wnonnull-compare} is included in @option{-Wall}. It
4815 can be disabled with the @option{-Wno-nonnull-compare} option.
4816
4817 @item -Wnull-dereference
4818 @opindex Wnull-dereference
4819 @opindex Wno-null-dereference
4820 Warn if the compiler detects paths that trigger erroneous or
4821 undefined behavior due to dereferencing a null pointer. This option
4822 is only active when @option{-fdelete-null-pointer-checks} is active,
4823 which is enabled by optimizations in most targets. The precision of
4824 the warnings depends on the optimization options used.
4825
4826 @item -Winaccessible-base @r{(C++, Objective-C++ only)}
4827 @opindex Winaccessible-base
4828 @opindex Wno-inaccessible-base
4829 Warn when a base class is inaccessible in a class derived from it due to
4830 ambiguity. The warning is enabled by default. Note the warning for virtual
4831 bases is enabled by the @option{-Wextra} option.
4832 @smallexample
4833 @group
4834 struct A @{ int a; @};
4835
4836 struct B : A @{ @};
4837
4838 struct C : B, A @{ @};
4839 @end group
4840 @end smallexample
4841
4842 @item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)}
4843 @opindex Winit-self
4844 @opindex Wno-init-self
4845 Warn about uninitialized variables that are initialized with themselves.
4846 Note this option can only be used with the @option{-Wuninitialized} option.
4847
4848 For example, GCC warns about @code{i} being uninitialized in the
4849 following snippet only when @option{-Winit-self} has been specified:
4850 @smallexample
4851 @group
4852 int f()
4853 @{
4854 int i = i;
4855 return i;
4856 @}
4857 @end group
4858 @end smallexample
4859
4860 This warning is enabled by @option{-Wall} in C++.
4861
4862 @item -Wimplicit-int @r{(C and Objective-C only)}
4863 @opindex Wimplicit-int
4864 @opindex Wno-implicit-int
4865 Warn when a declaration does not specify a type.
4866 This warning is enabled by @option{-Wall}.
4867
4868 @item -Wimplicit-function-declaration @r{(C and Objective-C only)}
4869 @opindex Wimplicit-function-declaration
4870 @opindex Wno-implicit-function-declaration
4871 Give a warning whenever a function is used before being declared. In
4872 C99 mode (@option{-std=c99} or @option{-std=gnu99}), this warning is
4873 enabled by default and it is made into an error by
4874 @option{-pedantic-errors}. This warning is also enabled by
4875 @option{-Wall}.
4876
4877 @item -Wimplicit @r{(C and Objective-C only)}
4878 @opindex Wimplicit
4879 @opindex Wno-implicit
4880 Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
4881 This warning is enabled by @option{-Wall}.
4882
4883 @item -Wimplicit-fallthrough
4884 @opindex Wimplicit-fallthrough
4885 @opindex Wno-implicit-fallthrough
4886 @option{-Wimplicit-fallthrough} is the same as @option{-Wimplicit-fallthrough=3}
4887 and @option{-Wno-implicit-fallthrough} is the same as
4888 @option{-Wimplicit-fallthrough=0}.
4889
4890 @item -Wimplicit-fallthrough=@var{n}
4891 @opindex Wimplicit-fallthrough=
4892 Warn when a switch case falls through. For example:
4893
4894 @smallexample
4895 @group
4896 switch (cond)
4897 @{
4898 case 1:
4899 a = 1;
4900 break;
4901 case 2:
4902 a = 2;
4903 case 3:
4904 a = 3;
4905 break;
4906 @}
4907 @end group
4908 @end smallexample
4909
4910 This warning does not warn when the last statement of a case cannot
4911 fall through, e.g. when there is a return statement or a call to function
4912 declared with the noreturn attribute. @option{-Wimplicit-fallthrough=}
4913 also takes into account control flow statements, such as ifs, and only
4914 warns when appropriate. E.g.@:
4915
4916 @smallexample
4917 @group
4918 switch (cond)
4919 @{
4920 case 1:
4921 if (i > 3) @{
4922 bar (5);
4923 break;
4924 @} else if (i < 1) @{
4925 bar (0);
4926 @} else
4927 return;
4928 default:
4929 @dots{}
4930 @}
4931 @end group
4932 @end smallexample
4933
4934 Since there are occasions where a switch case fall through is desirable,
4935 GCC provides an attribute, @code{__attribute__ ((fallthrough))}, that is
4936 to be used along with a null statement to suppress this warning that
4937 would normally occur:
4938
4939 @smallexample
4940 @group
4941 switch (cond)
4942 @{
4943 case 1:
4944 bar (0);
4945 __attribute__ ((fallthrough));
4946 default:
4947 @dots{}
4948 @}
4949 @end group
4950 @end smallexample
4951
4952 C++17 provides a standard way to suppress the @option{-Wimplicit-fallthrough}
4953 warning using @code{[[fallthrough]];} instead of the GNU attribute. In C++11
4954 or C++14 users can use @code{[[gnu::fallthrough]];}, which is a GNU extension.
4955 Instead of these attributes, it is also possible to add a fallthrough comment
4956 to silence the warning. The whole body of the C or C++ style comment should
4957 match the given regular expressions listed below. The option argument @var{n}
4958 specifies what kind of comments are accepted:
4959
4960 @itemize @bullet
4961
4962 @item @option{-Wimplicit-fallthrough=0} disables the warning altogether.
4963
4964 @item @option{-Wimplicit-fallthrough=1} matches @code{.*} regular
4965 expression, any comment is used as fallthrough comment.
4966
4967 @item @option{-Wimplicit-fallthrough=2} case insensitively matches
4968 @code{.*falls?[ \t-]*thr(ough|u).*} regular expression.
4969
4970 @item @option{-Wimplicit-fallthrough=3} case sensitively matches one of the
4971 following regular expressions:
4972
4973 @itemize @bullet
4974
4975 @item @code{-fallthrough}
4976
4977 @item @code{@@fallthrough@@}
4978
4979 @item @code{lint -fallthrough[ \t]*}
4980
4981 @item @code{[ \t.!]*(ELSE,? |INTENTIONAL(LY)? )?@*FALL(S | |-)?THR(OUGH|U)[ \t.!]*(-[^\n\r]*)?}
4982
4983 @item @code{[ \t.!]*(Else,? |Intentional(ly)? )?@*Fall((s | |-)[Tt]|t)hr(ough|u)[ \t.!]*(-[^\n\r]*)?}
4984
4985 @item @code{[ \t.!]*([Ee]lse,? |[Ii]ntentional(ly)? )?@*fall(s | |-)?thr(ough|u)[ \t.!]*(-[^\n\r]*)?}
4986
4987 @end itemize
4988
4989 @item @option{-Wimplicit-fallthrough=4} case sensitively matches one of the
4990 following regular expressions:
4991
4992 @itemize @bullet
4993
4994 @item @code{-fallthrough}
4995
4996 @item @code{@@fallthrough@@}
4997
4998 @item @code{lint -fallthrough[ \t]*}
4999
5000 @item @code{[ \t]*FALLTHR(OUGH|U)[ \t]*}
5001
5002 @end itemize
5003
5004 @item @option{-Wimplicit-fallthrough=5} doesn't recognize any comments as
5005 fallthrough comments, only attributes disable the warning.
5006
5007 @end itemize
5008
5009 The comment needs to be followed after optional whitespace and other comments
5010 by @code{case} or @code{default} keywords or by a user label that precedes some
5011 @code{case} or @code{default} label.
5012
5013 @smallexample
5014 @group
5015 switch (cond)
5016 @{
5017 case 1:
5018 bar (0);
5019 /* FALLTHRU */
5020 default:
5021 @dots{}
5022 @}
5023 @end group
5024 @end smallexample
5025
5026 The @option{-Wimplicit-fallthrough=3} warning is enabled by @option{-Wextra}.
5027
5028 @item -Wif-not-aligned @r{(C, C++, Objective-C and Objective-C++ only)}
5029 @opindex Wif-not-aligned
5030 @opindex Wno-if-not-aligned
5031 Control if warning triggered by the @code{warn_if_not_aligned} attribute
5032 should be issued. This is enabled by default.
5033 Use @option{-Wno-if-not-aligned} to disable it.
5034
5035 @item -Wignored-qualifiers @r{(C and C++ only)}
5036 @opindex Wignored-qualifiers
5037 @opindex Wno-ignored-qualifiers
5038 Warn if the return type of a function has a type qualifier
5039 such as @code{const}. For ISO C such a type qualifier has no effect,
5040 since the value returned by a function is not an lvalue.
5041 For C++, the warning is only emitted for scalar types or @code{void}.
5042 ISO C prohibits qualified @code{void} return types on function
5043 definitions, so such return types always receive a warning
5044 even without this option.
5045
5046 This warning is also enabled by @option{-Wextra}.
5047
5048 @item -Wignored-attributes @r{(C and C++ only)}
5049 @opindex Wignored-attributes
5050 @opindex Wno-ignored-attributes
5051 Warn when an attribute is ignored. This is different from the
5052 @option{-Wattributes} option in that it warns whenever the compiler decides
5053 to drop an attribute, not that the attribute is either unknown, used in a
5054 wrong place, etc. This warning is enabled by default.
5055
5056 @item -Wmain
5057 @opindex Wmain
5058 @opindex Wno-main
5059 Warn if the type of @code{main} is suspicious. @code{main} should be
5060 a function with external linkage, returning int, taking either zero
5061 arguments, two, or three arguments of appropriate types. This warning
5062 is enabled by default in C++ and is enabled by either @option{-Wall}
5063 or @option{-Wpedantic}.
5064
5065 @item -Wmisleading-indentation @r{(C and C++ only)}
5066 @opindex Wmisleading-indentation
5067 @opindex Wno-misleading-indentation
5068 Warn when the indentation of the code does not reflect the block structure.
5069 Specifically, a warning is issued for @code{if}, @code{else}, @code{while}, and
5070 @code{for} clauses with a guarded statement that does not use braces,
5071 followed by an unguarded statement with the same indentation.
5072
5073 In the following example, the call to ``bar'' is misleadingly indented as
5074 if it were guarded by the ``if'' conditional.
5075
5076 @smallexample
5077 if (some_condition ())
5078 foo ();
5079 bar (); /* Gotcha: this is not guarded by the "if". */
5080 @end smallexample
5081
5082 In the case of mixed tabs and spaces, the warning uses the
5083 @option{-ftabstop=} option to determine if the statements line up
5084 (defaulting to 8).
5085
5086 The warning is not issued for code involving multiline preprocessor logic
5087 such as the following example.
5088
5089 @smallexample
5090 if (flagA)
5091 foo (0);
5092 #if SOME_CONDITION_THAT_DOES_NOT_HOLD
5093 if (flagB)
5094 #endif
5095 foo (1);
5096 @end smallexample
5097
5098 The warning is not issued after a @code{#line} directive, since this
5099 typically indicates autogenerated code, and no assumptions can be made
5100 about the layout of the file that the directive references.
5101
5102 This warning is enabled by @option{-Wall} in C and C++.
5103
5104 @item -Wmissing-attributes
5105 @opindex Wmissing-attributes
5106 @opindex Wno-missing-attributes
5107 Warn when a declaration of a function is missing one or more attributes
5108 that a related function is declared with and whose absence may adversely
5109 affect the correctness or efficiency of generated code. For example,
5110 the warning is issued for declarations of aliases that use attributes
5111 to specify less restrictive requirements than those of their targets.
5112 This typically represents a potential optimization opportunity.
5113 By contrast, the @option{-Wattribute-alias=2} option controls warnings
5114 issued when the alias is more restrictive than the target, which could
5115 lead to incorrect code generation.
5116 Attributes considered include @code{alloc_align}, @code{alloc_size},
5117 @code{cold}, @code{const}, @code{hot}, @code{leaf}, @code{malloc},
5118 @code{nonnull}, @code{noreturn}, @code{nothrow}, @code{pure},
5119 @code{returns_nonnull}, and @code{returns_twice}.
5120
5121 In C++, the warning is issued when an explicit specialization of a primary
5122 template declared with attribute @code{alloc_align}, @code{alloc_size},
5123 @code{assume_aligned}, @code{format}, @code{format_arg}, @code{malloc},
5124 or @code{nonnull} is declared without it. Attributes @code{deprecated},
5125 @code{error}, and @code{warning} suppress the warning.
5126 (@pxref{Function Attributes}).
5127
5128 You can use the @code{copy} attribute to apply the same
5129 set of attributes to a declaration as that on another declaration without
5130 explicitly enumerating the attributes. This attribute can be applied
5131 to declarations of functions (@pxref{Common Function Attributes}),
5132 variables (@pxref{Common Variable Attributes}), or types
5133 (@pxref{Common Type Attributes}).
5134
5135 @option{-Wmissing-attributes} is enabled by @option{-Wall}.
5136
5137 For example, since the declaration of the primary function template
5138 below makes use of both attribute @code{malloc} and @code{alloc_size}
5139 the declaration of the explicit specialization of the template is
5140 diagnosed because it is missing one of the attributes.
5141
5142 @smallexample
5143 template <class T>
5144 T* __attribute__ ((malloc, alloc_size (1)))
5145 allocate (size_t);
5146
5147 template <>
5148 void* __attribute__ ((malloc)) // missing alloc_size
5149 allocate<void> (size_t);
5150 @end smallexample
5151
5152 @item -Wmissing-braces
5153 @opindex Wmissing-braces
5154 @opindex Wno-missing-braces
5155 Warn if an aggregate or union initializer is not fully bracketed. In
5156 the following example, the initializer for @code{a} is not fully
5157 bracketed, but that for @code{b} is fully bracketed. This warning is
5158 enabled by @option{-Wall} in C.
5159
5160 @smallexample
5161 int a[2][2] = @{ 0, 1, 2, 3 @};
5162 int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
5163 @end smallexample
5164
5165 This warning is enabled by @option{-Wall}.
5166
5167 @item -Wmissing-include-dirs @r{(C, C++, Objective-C and Objective-C++ only)}
5168 @opindex Wmissing-include-dirs
5169 @opindex Wno-missing-include-dirs
5170 Warn if a user-supplied include directory does not exist.
5171
5172 @item -Wmissing-profile
5173 @opindex Wmissing-profile
5174 @opindex Wno-missing-profile
5175 Warn if feedback profiles are missing when using the
5176 @option{-fprofile-use} option.
5177 This option diagnoses those cases where a new function or a new file is added
5178 to the user code between compiling with @option{-fprofile-generate} and with
5179 @option{-fprofile-use}, without regenerating the profiles. In these cases, the
5180 profile feedback data files do not contain any profile feedback information for
5181 the newly added function or file respectively. Also, in the case when profile
5182 count data (.gcda) files are removed, GCC cannot use any profile feedback
5183 information. In all these cases, warnings are issued to inform the user that a
5184 profile generation step is due. @option{-Wno-missing-profile} can be used to
5185 disable the warning. Ignoring the warning can result in poorly optimized code.
5186 Completely disabling the warning is not recommended and should be done only
5187 when non-existent profile data is justified.
5188
5189 @item -Wmultistatement-macros
5190 @opindex Wmultistatement-macros
5191 @opindex Wno-multistatement-macros
5192 Warn about unsafe multiple statement macros that appear to be guarded
5193 by a clause such as @code{if}, @code{else}, @code{for}, @code{switch}, or
5194 @code{while}, in which only the first statement is actually guarded after
5195 the macro is expanded.
5196
5197 For example:
5198
5199 @smallexample
5200 #define DOIT x++; y++
5201 if (c)
5202 DOIT;
5203 @end smallexample
5204
5205 will increment @code{y} unconditionally, not just when @code{c} holds.
5206 The can usually be fixed by wrapping the macro in a do-while loop:
5207 @smallexample
5208 #define DOIT do @{ x++; y++; @} while (0)
5209 if (c)
5210 DOIT;
5211 @end smallexample
5212
5213 This warning is enabled by @option{-Wall} in C and C++.
5214
5215 @item -Wparentheses
5216 @opindex Wparentheses
5217 @opindex Wno-parentheses
5218 Warn if parentheses are omitted in certain contexts, such
5219 as when there is an assignment in a context where a truth value
5220 is expected, or when operators are nested whose precedence people
5221 often get confused about.
5222
5223 Also warn if a comparison like @code{x<=y<=z} appears; this is
5224 equivalent to @code{(x<=y ? 1 : 0) <= z}, which is a different
5225 interpretation from that of ordinary mathematical notation.
5226
5227 Also warn for dangerous uses of the GNU extension to
5228 @code{?:} with omitted middle operand. When the condition
5229 in the @code{?}: operator is a boolean expression, the omitted value is
5230 always 1. Often programmers expect it to be a value computed
5231 inside the conditional expression instead.
5232
5233 For C++ this also warns for some cases of unnecessary parentheses in
5234 declarations, which can indicate an attempt at a function call instead
5235 of a declaration:
5236 @smallexample
5237 @{
5238 // Declares a local variable called mymutex.
5239 std::unique_lock<std::mutex> (mymutex);
5240 // User meant std::unique_lock<std::mutex> lock (mymutex);
5241 @}
5242 @end smallexample
5243
5244 This warning is enabled by @option{-Wall}.
5245
5246 @item -Wsequence-point
5247 @opindex Wsequence-point
5248 @opindex Wno-sequence-point
5249 Warn about code that may have undefined semantics because of violations
5250 of sequence point rules in the C and C++ standards.
5251
5252 The C and C++ standards define the order in which expressions in a C/C++
5253 program are evaluated in terms of @dfn{sequence points}, which represent
5254 a partial ordering between the execution of parts of the program: those
5255 executed before the sequence point, and those executed after it. These
5256 occur after the evaluation of a full expression (one which is not part
5257 of a larger expression), after the evaluation of the first operand of a
5258 @code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
5259 function is called (but after the evaluation of its arguments and the
5260 expression denoting the called function), and in certain other places.
5261 Other than as expressed by the sequence point rules, the order of
5262 evaluation of subexpressions of an expression is not specified. All
5263 these rules describe only a partial order rather than a total order,
5264 since, for example, if two functions are called within one expression
5265 with no sequence point between them, the order in which the functions
5266 are called is not specified. However, the standards committee have
5267 ruled that function calls do not overlap.
5268
5269 It is not specified when between sequence points modifications to the
5270 values of objects take effect. Programs whose behavior depends on this
5271 have undefined behavior; the C and C++ standards specify that ``Between
5272 the previous and next sequence point an object shall have its stored
5273 value modified at most once by the evaluation of an expression.
5274 Furthermore, the prior value shall be read only to determine the value
5275 to be stored.''. If a program breaks these rules, the results on any
5276 particular implementation are entirely unpredictable.
5277
5278 Examples of code with undefined behavior are @code{a = a++;}, @code{a[n]
5279 = b[n++]} and @code{a[i++] = i;}. Some more complicated cases are not
5280 diagnosed by this option, and it may give an occasional false positive
5281 result, but in general it has been found fairly effective at detecting
5282 this sort of problem in programs.
5283
5284 The C++17 standard will define the order of evaluation of operands in
5285 more cases: in particular it requires that the right-hand side of an
5286 assignment be evaluated before the left-hand side, so the above
5287 examples are no longer undefined. But this warning will still warn
5288 about them, to help people avoid writing code that is undefined in C
5289 and earlier revisions of C++.
5290
5291 The standard is worded confusingly, therefore there is some debate
5292 over the precise meaning of the sequence point rules in subtle cases.
5293 Links to discussions of the problem, including proposed formal
5294 definitions, may be found on the GCC readings page, at
5295 @uref{http://gcc.gnu.org/@/readings.html}.
5296
5297 This warning is enabled by @option{-Wall} for C and C++.
5298
5299 @item -Wno-return-local-addr
5300 @opindex Wno-return-local-addr
5301 @opindex Wreturn-local-addr
5302 Do not warn about returning a pointer (or in C++, a reference) to a
5303 variable that goes out of scope after the function returns.
5304
5305 @item -Wreturn-type
5306 @opindex Wreturn-type
5307 @opindex Wno-return-type
5308 Warn whenever a function is defined with a return type that defaults
5309 to @code{int}. Also warn about any @code{return} statement with no
5310 return value in a function whose return type is not @code{void}
5311 (falling off the end of the function body is considered returning
5312 without a value).
5313
5314 For C only, warn about a @code{return} statement with an expression in a
5315 function whose return type is @code{void}, unless the expression type is
5316 also @code{void}. As a GNU extension, the latter case is accepted
5317 without a warning unless @option{-Wpedantic} is used. Attempting
5318 to use the return value of a non-@code{void} function other than @code{main}
5319 that flows off the end by reaching the closing curly brace that terminates
5320 the function is undefined.
5321
5322 Unlike in C, in C++, flowing off the end of a non-@code{void} function other
5323 than @code{main} results in undefined behavior even when the value of
5324 the function is not used.
5325
5326 This warning is enabled by default in C++ and by @option{-Wall} otherwise.
5327
5328 @item -Wshift-count-negative
5329 @opindex Wshift-count-negative
5330 @opindex Wno-shift-count-negative
5331 Warn if shift count is negative. This warning is enabled by default.
5332
5333 @item -Wshift-count-overflow
5334 @opindex Wshift-count-overflow
5335 @opindex Wno-shift-count-overflow
5336 Warn if shift count >= width of type. This warning is enabled by default.
5337
5338 @item -Wshift-negative-value
5339 @opindex Wshift-negative-value
5340 @opindex Wno-shift-negative-value
5341 Warn if left shifting a negative value. This warning is enabled by
5342 @option{-Wextra} in C99 and C++11 modes (and newer).
5343
5344 @item -Wshift-overflow
5345 @itemx -Wshift-overflow=@var{n}
5346 @opindex Wshift-overflow
5347 @opindex Wno-shift-overflow
5348 Warn about left shift overflows. This warning is enabled by
5349 default in C99 and C++11 modes (and newer).
5350
5351 @table @gcctabopt
5352 @item -Wshift-overflow=1
5353 This is the warning level of @option{-Wshift-overflow} and is enabled
5354 by default in C99 and C++11 modes (and newer). This warning level does
5355 not warn about left-shifting 1 into the sign bit. (However, in C, such
5356 an overflow is still rejected in contexts where an integer constant expression
5357 is required.) No warning is emitted in C++2A mode (and newer), as signed left
5358 shifts always wrap.
5359
5360 @item -Wshift-overflow=2
5361 This warning level also warns about left-shifting 1 into the sign bit,
5362 unless C++14 mode (or newer) is active.
5363 @end table
5364
5365 @item -Wswitch
5366 @opindex Wswitch
5367 @opindex Wno-switch
5368 Warn whenever a @code{switch} statement has an index of enumerated type
5369 and lacks a @code{case} for one or more of the named codes of that
5370 enumeration. (The presence of a @code{default} label prevents this
5371 warning.) @code{case} labels outside the enumeration range also
5372 provoke warnings when this option is used (even if there is a
5373 @code{default} label).
5374 This warning is enabled by @option{-Wall}.
5375
5376 @item -Wswitch-default
5377 @opindex Wswitch-default
5378 @opindex Wno-switch-default
5379 Warn whenever a @code{switch} statement does not have a @code{default}
5380 case.
5381
5382 @item -Wswitch-enum
5383 @opindex Wswitch-enum
5384 @opindex Wno-switch-enum
5385 Warn whenever a @code{switch} statement has an index of enumerated type
5386 and lacks a @code{case} for one or more of the named codes of that
5387 enumeration. @code{case} labels outside the enumeration range also
5388 provoke warnings when this option is used. The only difference
5389 between @option{-Wswitch} and this option is that this option gives a
5390 warning about an omitted enumeration code even if there is a
5391 @code{default} label.
5392
5393 @item -Wswitch-bool
5394 @opindex Wswitch-bool
5395 @opindex Wno-switch-bool
5396 Warn whenever a @code{switch} statement has an index of boolean type
5397 and the case values are outside the range of a boolean type.
5398 It is possible to suppress this warning by casting the controlling
5399 expression to a type other than @code{bool}. For example:
5400 @smallexample
5401 @group
5402 switch ((int) (a == 4))
5403 @{
5404 @dots{}
5405 @}
5406 @end group
5407 @end smallexample
5408 This warning is enabled by default for C and C++ programs.
5409
5410 @item -Wswitch-outside-range
5411 @opindex Wswitch-outside-range
5412 @opindex Wno-switch-outside-range
5413 Warn whenever a @code{switch} case has a value that is outside of its
5414 respective type range. This warning is enabled by default for
5415 C and C++ programs.
5416
5417 @item -Wswitch-unreachable
5418 @opindex Wswitch-unreachable
5419 @opindex Wno-switch-unreachable
5420 Warn whenever a @code{switch} statement contains statements between the
5421 controlling expression and the first case label, which will never be
5422 executed. For example:
5423 @smallexample
5424 @group
5425 switch (cond)
5426 @{
5427 i = 15;
5428 @dots{}
5429 case 5:
5430 @dots{}
5431 @}
5432 @end group
5433 @end smallexample
5434 @option{-Wswitch-unreachable} does not warn if the statement between the
5435 controlling expression and the first case label is just a declaration:
5436 @smallexample
5437 @group
5438 switch (cond)
5439 @{
5440 int i;
5441 @dots{}
5442 case 5:
5443 i = 5;
5444 @dots{}
5445 @}
5446 @end group
5447 @end smallexample
5448 This warning is enabled by default for C and C++ programs.
5449
5450 @item -Wsync-nand @r{(C and C++ only)}
5451 @opindex Wsync-nand
5452 @opindex Wno-sync-nand
5453 Warn when @code{__sync_fetch_and_nand} and @code{__sync_nand_and_fetch}
5454 built-in functions are used. These functions changed semantics in GCC 4.4.
5455
5456 @item -Wunused-but-set-parameter
5457 @opindex Wunused-but-set-parameter
5458 @opindex Wno-unused-but-set-parameter
5459 Warn whenever a function parameter is assigned to, but otherwise unused
5460 (aside from its declaration).
5461
5462 To suppress this warning use the @code{unused} attribute
5463 (@pxref{Variable Attributes}).
5464
5465 This warning is also enabled by @option{-Wunused} together with
5466 @option{-Wextra}.
5467
5468 @item -Wunused-but-set-variable
5469 @opindex Wunused-but-set-variable
5470 @opindex Wno-unused-but-set-variable
5471 Warn whenever a local variable is assigned to, but otherwise unused
5472 (aside from its declaration).
5473 This warning is enabled by @option{-Wall}.
5474
5475 To suppress this warning use the @code{unused} attribute
5476 (@pxref{Variable Attributes}).
5477
5478 This warning is also enabled by @option{-Wunused}, which is enabled
5479 by @option{-Wall}.
5480
5481 @item -Wunused-function
5482 @opindex Wunused-function
5483 @opindex Wno-unused-function
5484 Warn whenever a static function is declared but not defined or a
5485 non-inline static function is unused.
5486 This warning is enabled by @option{-Wall}.
5487
5488 @item -Wunused-label
5489 @opindex Wunused-label
5490 @opindex Wno-unused-label
5491 Warn whenever a label is declared but not used.
5492 This warning is enabled by @option{-Wall}.
5493
5494 To suppress this warning use the @code{unused} attribute
5495 (@pxref{Variable Attributes}).
5496
5497 @item -Wunused-local-typedefs @r{(C, Objective-C, C++ and Objective-C++ only)}
5498 @opindex Wunused-local-typedefs
5499 @opindex Wno-unused-local-typedefs
5500 Warn when a typedef locally defined in a function is not used.
5501 This warning is enabled by @option{-Wall}.
5502
5503 @item -Wunused-parameter
5504 @opindex Wunused-parameter
5505 @opindex Wno-unused-parameter
5506 Warn whenever a function parameter is unused aside from its declaration.
5507
5508 To suppress this warning use the @code{unused} attribute
5509 (@pxref{Variable Attributes}).
5510
5511 @item -Wno-unused-result
5512 @opindex Wunused-result
5513 @opindex Wno-unused-result
5514 Do not warn if a caller of a function marked with attribute
5515 @code{warn_unused_result} (@pxref{Function Attributes}) does not use
5516 its return value. The default is @option{-Wunused-result}.
5517
5518 @item -Wunused-variable
5519 @opindex Wunused-variable
5520 @opindex Wno-unused-variable
5521 Warn whenever a local or static variable is unused aside from its
5522 declaration. This option implies @option{-Wunused-const-variable=1} for C,
5523 but not for C++. This warning is enabled by @option{-Wall}.
5524
5525 To suppress this warning use the @code{unused} attribute
5526 (@pxref{Variable Attributes}).
5527
5528 @item -Wunused-const-variable
5529 @itemx -Wunused-const-variable=@var{n}
5530 @opindex Wunused-const-variable
5531 @opindex Wno-unused-const-variable
5532 Warn whenever a constant static variable is unused aside from its declaration.
5533 @option{-Wunused-const-variable=1} is enabled by @option{-Wunused-variable}
5534 for C, but not for C++. In C this declares variable storage, but in C++ this
5535 is not an error since const variables take the place of @code{#define}s.
5536
5537 To suppress this warning use the @code{unused} attribute
5538 (@pxref{Variable Attributes}).
5539
5540 @table @gcctabopt
5541 @item -Wunused-const-variable=1
5542 This is the warning level that is enabled by @option{-Wunused-variable} for
5543 C. It warns only about unused static const variables defined in the main
5544 compilation unit, but not about static const variables declared in any
5545 header included.
5546
5547 @item -Wunused-const-variable=2
5548 This warning level also warns for unused constant static variables in
5549 headers (excluding system headers). This is the warning level of
5550 @option{-Wunused-const-variable} and must be explicitly requested since
5551 in C++ this isn't an error and in C it might be harder to clean up all
5552 headers included.
5553 @end table
5554
5555 @item -Wunused-value
5556 @opindex Wunused-value
5557 @opindex Wno-unused-value
5558 Warn whenever a statement computes a result that is explicitly not
5559 used. To suppress this warning cast the unused expression to
5560 @code{void}. This includes an expression-statement or the left-hand
5561 side of a comma expression that contains no side effects. For example,
5562 an expression such as @code{x[i,j]} causes a warning, while
5563 @code{x[(void)i,j]} does not.
5564
5565 This warning is enabled by @option{-Wall}.
5566
5567 @item -Wunused
5568 @opindex Wunused
5569 @opindex Wno-unused
5570 All the above @option{-Wunused} options combined.
5571
5572 In order to get a warning about an unused function parameter, you must
5573 either specify @option{-Wextra -Wunused} (note that @option{-Wall} implies
5574 @option{-Wunused}), or separately specify @option{-Wunused-parameter}.
5575
5576 @item -Wuninitialized
5577 @opindex Wuninitialized
5578 @opindex Wno-uninitialized
5579 Warn if an automatic variable is used without first being initialized
5580 or if a variable may be clobbered by a @code{setjmp} call. In C++,
5581 warn if a non-static reference or non-static @code{const} member
5582 appears in a class without constructors.
5583
5584 If you want to warn about code that uses the uninitialized value of the
5585 variable in its own initializer, use the @option{-Winit-self} option.
5586
5587 These warnings occur for individual uninitialized or clobbered
5588 elements of structure, union or array variables as well as for
5589 variables that are uninitialized or clobbered as a whole. They do
5590 not occur for variables or elements declared @code{volatile}. Because
5591 these warnings depend on optimization, the exact variables or elements
5592 for which there are warnings depends on the precise optimization
5593 options and version of GCC used.
5594
5595 Note that there may be no warning about a variable that is used only
5596 to compute a value that itself is never used, because such
5597 computations may be deleted by data flow analysis before the warnings
5598 are printed.
5599
5600 @item -Winvalid-memory-model
5601 @opindex Winvalid-memory-model
5602 @opindex Wno-invalid-memory-model
5603 Warn for invocations of @ref{__atomic Builtins}, @ref{__sync Builtins},
5604 and the C11 atomic generic functions with a memory consistency argument
5605 that is either invalid for the operation or outside the range of values
5606 of the @code{memory_order} enumeration. For example, since the
5607 @code{__atomic_store} and @code{__atomic_store_n} built-ins are only
5608 defined for the relaxed, release, and sequentially consistent memory
5609 orders the following code is diagnosed:
5610
5611 @smallexample
5612 void store (int *i)
5613 @{
5614 __atomic_store_n (i, 0, memory_order_consume);
5615 @}
5616 @end smallexample
5617
5618 @option{-Winvalid-memory-model} is enabled by default.
5619
5620 @item -Wmaybe-uninitialized
5621 @opindex Wmaybe-uninitialized
5622 @opindex Wno-maybe-uninitialized
5623 For an automatic (i.e.@: local) variable, if there exists a path from the
5624 function entry to a use of the variable that is initialized, but there exist
5625 some other paths for which the variable is not initialized, the compiler
5626 emits a warning if it cannot prove the uninitialized paths are not
5627 executed at run time.
5628
5629 These warnings are only possible in optimizing compilation, because otherwise
5630 GCC does not keep track of the state of variables.
5631
5632 These warnings are made optional because GCC may not be able to determine when
5633 the code is correct in spite of appearing to have an error. Here is one
5634 example of how this can happen:
5635
5636 @smallexample
5637 @group
5638 @{
5639 int x;
5640 switch (y)
5641 @{
5642 case 1: x = 1;
5643 break;
5644 case 2: x = 4;
5645 break;
5646 case 3: x = 5;
5647 @}
5648 foo (x);
5649 @}
5650 @end group
5651 @end smallexample
5652
5653 @noindent
5654 If the value of @code{y} is always 1, 2 or 3, then @code{x} is
5655 always initialized, but GCC doesn't know this. To suppress the
5656 warning, you need to provide a default case with assert(0) or
5657 similar code.
5658
5659 @cindex @code{longjmp} warnings
5660 This option also warns when a non-volatile automatic variable might be
5661 changed by a call to @code{longjmp}.
5662 The compiler sees only the calls to @code{setjmp}. It cannot know
5663 where @code{longjmp} will be called; in fact, a signal handler could
5664 call it at any point in the code. As a result, you may get a warning
5665 even when there is in fact no problem because @code{longjmp} cannot
5666 in fact be called at the place that would cause a problem.
5667
5668 Some spurious warnings can be avoided if you declare all the functions
5669 you use that never return as @code{noreturn}. @xref{Function
5670 Attributes}.
5671
5672 This warning is enabled by @option{-Wall} or @option{-Wextra}.
5673
5674 @item -Wunknown-pragmas
5675 @opindex Wunknown-pragmas
5676 @opindex Wno-unknown-pragmas
5677 @cindex warning for unknown pragmas
5678 @cindex unknown pragmas, warning
5679 @cindex pragmas, warning of unknown
5680 Warn when a @code{#pragma} directive is encountered that is not understood by
5681 GCC@. If this command-line option is used, warnings are even issued
5682 for unknown pragmas in system header files. This is not the case if
5683 the warnings are only enabled by the @option{-Wall} command-line option.
5684
5685 @item -Wno-pragmas
5686 @opindex Wno-pragmas
5687 @opindex Wpragmas
5688 Do not warn about misuses of pragmas, such as incorrect parameters,
5689 invalid syntax, or conflicts between pragmas. See also
5690 @option{-Wunknown-pragmas}.
5691
5692 @item -Wno-prio-ctor-dtor
5693 @opindex Wno-prio-ctor-dtor
5694 @opindex Wprio-ctor-dtor
5695 Do not warn if a priority from 0 to 100 is used for constructor or destructor.
5696 The use of constructor and destructor attributes allow you to assign a
5697 priority to the constructor/destructor to control its order of execution
5698 before @code{main} is called or after it returns. The priority values must be
5699 greater than 100 as the compiler reserves priority values between 0--100 for
5700 the implementation.
5701
5702 @item -Wstrict-aliasing
5703 @opindex Wstrict-aliasing
5704 @opindex Wno-strict-aliasing
5705 This option is only active when @option{-fstrict-aliasing} is active.
5706 It warns about code that might break the strict aliasing rules that the
5707 compiler is using for optimization. The warning does not catch all
5708 cases, but does attempt to catch the more common pitfalls. It is
5709 included in @option{-Wall}.
5710 It is equivalent to @option{-Wstrict-aliasing=3}
5711
5712 @item -Wstrict-aliasing=n
5713 @opindex Wstrict-aliasing=n
5714 This option is only active when @option{-fstrict-aliasing} is active.
5715 It warns about code that might break the strict aliasing rules that the
5716 compiler is using for optimization.
5717 Higher levels correspond to higher accuracy (fewer false positives).
5718 Higher levels also correspond to more effort, similar to the way @option{-O}
5719 works.
5720 @option{-Wstrict-aliasing} is equivalent to @option{-Wstrict-aliasing=3}.
5721
5722 Level 1: Most aggressive, quick, least accurate.
5723 Possibly useful when higher levels
5724 do not warn but @option{-fstrict-aliasing} still breaks the code, as it has very few
5725 false negatives. However, it has many false positives.
5726 Warns for all pointer conversions between possibly incompatible types,
5727 even if never dereferenced. Runs in the front end only.
5728
5729 Level 2: Aggressive, quick, not too precise.
5730 May still have many false positives (not as many as level 1 though),
5731 and few false negatives (but possibly more than level 1).
5732 Unlike level 1, it only warns when an address is taken. Warns about
5733 incomplete types. Runs in the front end only.
5734
5735 Level 3 (default for @option{-Wstrict-aliasing}):
5736 Should have very few false positives and few false
5737 negatives. Slightly slower than levels 1 or 2 when optimization is enabled.
5738 Takes care of the common pun+dereference pattern in the front end:
5739 @code{*(int*)&some_float}.
5740 If optimization is enabled, it also runs in the back end, where it deals
5741 with multiple statement cases using flow-sensitive points-to information.
5742 Only warns when the converted pointer is dereferenced.
5743 Does not warn about incomplete types.
5744
5745 @item -Wstrict-overflow
5746 @itemx -Wstrict-overflow=@var{n}
5747 @opindex Wstrict-overflow
5748 @opindex Wno-strict-overflow
5749 This option is only active when signed overflow is undefined.
5750 It warns about cases where the compiler optimizes based on the
5751 assumption that signed overflow does not occur. Note that it does not
5752 warn about all cases where the code might overflow: it only warns
5753 about cases where the compiler implements some optimization. Thus
5754 this warning depends on the optimization level.
5755
5756 An optimization that assumes that signed overflow does not occur is
5757 perfectly safe if the values of the variables involved are such that
5758 overflow never does, in fact, occur. Therefore this warning can
5759 easily give a false positive: a warning about code that is not
5760 actually a problem. To help focus on important issues, several
5761 warning levels are defined. No warnings are issued for the use of
5762 undefined signed overflow when estimating how many iterations a loop
5763 requires, in particular when determining whether a loop will be
5764 executed at all.
5765
5766 @table @gcctabopt
5767 @item -Wstrict-overflow=1
5768 Warn about cases that are both questionable and easy to avoid. For
5769 example the compiler simplifies
5770 @code{x + 1 > x} to @code{1}. This level of
5771 @option{-Wstrict-overflow} is enabled by @option{-Wall}; higher levels
5772 are not, and must be explicitly requested.
5773
5774 @item -Wstrict-overflow=2
5775 Also warn about other cases where a comparison is simplified to a
5776 constant. For example: @code{abs (x) >= 0}. This can only be
5777 simplified when signed integer overflow is undefined, because
5778 @code{abs (INT_MIN)} overflows to @code{INT_MIN}, which is less than
5779 zero. @option{-Wstrict-overflow} (with no level) is the same as
5780 @option{-Wstrict-overflow=2}.
5781
5782 @item -Wstrict-overflow=3
5783 Also warn about other cases where a comparison is simplified. For
5784 example: @code{x + 1 > 1} is simplified to @code{x > 0}.
5785
5786 @item -Wstrict-overflow=4
5787 Also warn about other simplifications not covered by the above cases.
5788 For example: @code{(x * 10) / 5} is simplified to @code{x * 2}.
5789
5790 @item -Wstrict-overflow=5
5791 Also warn about cases where the compiler reduces the magnitude of a
5792 constant involved in a comparison. For example: @code{x + 2 > y} is
5793 simplified to @code{x + 1 >= y}. This is reported only at the
5794 highest warning level because this simplification applies to many
5795 comparisons, so this warning level gives a very large number of
5796 false positives.
5797 @end table
5798
5799 @item -Wstringop-overflow
5800 @itemx -Wstringop-overflow=@var{type}
5801 @opindex Wstringop-overflow
5802 @opindex Wno-stringop-overflow
5803 Warn for calls to string manipulation functions such as @code{memcpy} and
5804 @code{strcpy} that are determined to overflow the destination buffer. The
5805 optional argument is one greater than the type of Object Size Checking to
5806 perform to determine the size of the destination. @xref{Object Size Checking}.
5807 The argument is meaningful only for functions that operate on character arrays
5808 but not for raw memory functions like @code{memcpy} which always make use
5809 of Object Size type-0. The option also warns for calls that specify a size
5810 in excess of the largest possible object or at most @code{SIZE_MAX / 2} bytes.
5811 The option produces the best results with optimization enabled but can detect
5812 a small subset of simple buffer overflows even without optimization in
5813 calls to the GCC built-in functions like @code{__builtin_memcpy} that
5814 correspond to the standard functions. In any case, the option warns about
5815 just a subset of buffer overflows detected by the corresponding overflow
5816 checking built-ins. For example, the option will issue a warning for
5817 the @code{strcpy} call below because it copies at least 5 characters
5818 (the string @code{"blue"} including the terminating NUL) into the buffer
5819 of size 4.
5820
5821 @smallexample
5822 enum Color @{ blue, purple, yellow @};
5823 const char* f (enum Color clr)
5824 @{
5825 static char buf [4];
5826 const char *str;
5827 switch (clr)
5828 @{
5829 case blue: str = "blue"; break;
5830 case purple: str = "purple"; break;
5831 case yellow: str = "yellow"; break;
5832 @}
5833
5834 return strcpy (buf, str); // warning here
5835 @}
5836 @end smallexample
5837
5838 Option @option{-Wstringop-overflow=2} is enabled by default.
5839
5840 @table @gcctabopt
5841 @item -Wstringop-overflow
5842 @itemx -Wstringop-overflow=1
5843 @opindex Wstringop-overflow
5844 @opindex Wno-stringop-overflow
5845 The @option{-Wstringop-overflow=1} option uses type-zero Object Size Checking
5846 to determine the sizes of destination objects. This is the default setting
5847 of the option. At this setting the option will not warn for writes past
5848 the end of subobjects of larger objects accessed by pointers unless the
5849 size of the largest surrounding object is known. When the destination may
5850 be one of several objects it is assumed to be the largest one of them. On
5851 Linux systems, when optimization is enabled at this setting the option warns
5852 for the same code as when the @code{_FORTIFY_SOURCE} macro is defined to
5853 a non-zero value.
5854
5855 @item -Wstringop-overflow=2
5856 The @option{-Wstringop-overflow=2} option uses type-one Object Size Checking
5857 to determine the sizes of destination objects. At this setting the option
5858 will warn about overflows when writing to members of the largest complete
5859 objects whose exact size is known. It will, however, not warn for excessive
5860 writes to the same members of unknown objects referenced by pointers since
5861 they may point to arrays containing unknown numbers of elements.
5862
5863 @item -Wstringop-overflow=3
5864 The @option{-Wstringop-overflow=3} option uses type-two Object Size Checking
5865 to determine the sizes of destination objects. At this setting the option
5866 warns about overflowing the smallest object or data member. This is the
5867 most restrictive setting of the option that may result in warnings for safe
5868 code.
5869
5870 @item -Wstringop-overflow=4
5871 The @option{-Wstringop-overflow=4} option uses type-three Object Size Checking
5872 to determine the sizes of destination objects. At this setting the option
5873 will warn about overflowing any data members, and when the destination is
5874 one of several objects it uses the size of the largest of them to decide
5875 whether to issue a warning. Similarly to @option{-Wstringop-overflow=3} this
5876 setting of the option may result in warnings for benign code.
5877 @end table
5878
5879 @item -Wstringop-truncation
5880 @opindex Wstringop-truncation
5881 @opindex Wno-stringop-truncation
5882 Warn for calls to bounded string manipulation functions such as @code{strncat},
5883 @code{strncpy}, and @code{stpncpy} that may either truncate the copied string
5884 or leave the destination unchanged.
5885
5886 In the following example, the call to @code{strncat} specifies a bound that
5887 is less than the length of the source string. As a result, the copy of
5888 the source will be truncated and so the call is diagnosed. To avoid the
5889 warning use @code{bufsize - strlen (buf) - 1)} as the bound.
5890
5891 @smallexample
5892 void append (char *buf, size_t bufsize)
5893 @{
5894 strncat (buf, ".txt", 3);
5895 @}
5896 @end smallexample
5897
5898 As another example, the following call to @code{strncpy} results in copying
5899 to @code{d} just the characters preceding the terminating NUL, without
5900 appending the NUL to the end. Assuming the result of @code{strncpy} is
5901 necessarily a NUL-terminated string is a common mistake, and so the call
5902 is diagnosed. To avoid the warning when the result is not expected to be
5903 NUL-terminated, call @code{memcpy} instead.
5904
5905 @smallexample
5906 void copy (char *d, const char *s)
5907 @{
5908 strncpy (d, s, strlen (s));
5909 @}
5910 @end smallexample
5911
5912 In the following example, the call to @code{strncpy} specifies the size
5913 of the destination buffer as the bound. If the length of the source
5914 string is equal to or greater than this size the result of the copy will
5915 not be NUL-terminated. Therefore, the call is also diagnosed. To avoid
5916 the warning, specify @code{sizeof buf - 1} as the bound and set the last
5917 element of the buffer to @code{NUL}.
5918
5919 @smallexample
5920 void copy (const char *s)
5921 @{
5922 char buf[80];
5923 strncpy (buf, s, sizeof buf);
5924 @dots{}
5925 @}
5926 @end smallexample
5927
5928 In situations where a character array is intended to store a sequence
5929 of bytes with no terminating @code{NUL} such an array may be annotated
5930 with attribute @code{nonstring} to avoid this warning. Such arrays,
5931 however, are not suitable arguments to functions that expect
5932 @code{NUL}-terminated strings. To help detect accidental misuses of
5933 such arrays GCC issues warnings unless it can prove that the use is
5934 safe. @xref{Common Variable Attributes}.
5935
5936 @item -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{|}cold@r{|}malloc@r{]}
5937 @opindex Wsuggest-attribute=
5938 @opindex Wno-suggest-attribute=
5939 Warn for cases where adding an attribute may be beneficial. The
5940 attributes currently supported are listed below.
5941
5942 @table @gcctabopt
5943 @item -Wsuggest-attribute=pure
5944 @itemx -Wsuggest-attribute=const
5945 @itemx -Wsuggest-attribute=noreturn
5946 @itemx -Wmissing-noreturn
5947 @itemx -Wsuggest-attribute=malloc
5948 @opindex Wsuggest-attribute=pure
5949 @opindex Wno-suggest-attribute=pure
5950 @opindex Wsuggest-attribute=const
5951 @opindex Wno-suggest-attribute=const
5952 @opindex Wsuggest-attribute=noreturn
5953 @opindex Wno-suggest-attribute=noreturn
5954 @opindex Wmissing-noreturn
5955 @opindex Wno-missing-noreturn
5956 @opindex Wsuggest-attribute=malloc
5957 @opindex Wno-suggest-attribute=malloc
5958
5959 Warn about functions that might be candidates for attributes
5960 @code{pure}, @code{const} or @code{noreturn} or @code{malloc}. The compiler
5961 only warns for functions visible in other compilation units or (in the case of
5962 @code{pure} and @code{const}) if it cannot prove that the function returns
5963 normally. A function returns normally if it doesn't contain an infinite loop or
5964 return abnormally by throwing, calling @code{abort} or trapping. This analysis
5965 requires option @option{-fipa-pure-const}, which is enabled by default at
5966 @option{-O} and higher. Higher optimization levels improve the accuracy
5967 of the analysis.
5968
5969 @item -Wsuggest-attribute=format
5970 @itemx -Wmissing-format-attribute
5971 @opindex Wsuggest-attribute=format
5972 @opindex Wmissing-format-attribute
5973 @opindex Wno-suggest-attribute=format
5974 @opindex Wno-missing-format-attribute
5975 @opindex Wformat
5976 @opindex Wno-format
5977
5978 Warn about function pointers that might be candidates for @code{format}
5979 attributes. Note these are only possible candidates, not absolute ones.
5980 GCC guesses that function pointers with @code{format} attributes that
5981 are used in assignment, initialization, parameter passing or return
5982 statements should have a corresponding @code{format} attribute in the
5983 resulting type. I.e.@: the left-hand side of the assignment or
5984 initialization, the type of the parameter variable, or the return type
5985 of the containing function respectively should also have a @code{format}
5986 attribute to avoid the warning.
5987
5988 GCC also warns about function definitions that might be
5989 candidates for @code{format} attributes. Again, these are only
5990 possible candidates. GCC guesses that @code{format} attributes
5991 might be appropriate for any function that calls a function like
5992 @code{vprintf} or @code{vscanf}, but this might not always be the
5993 case, and some functions for which @code{format} attributes are
5994 appropriate may not be detected.
5995
5996 @item -Wsuggest-attribute=cold
5997 @opindex Wsuggest-attribute=cold
5998 @opindex Wno-suggest-attribute=cold
5999
6000 Warn about functions that might be candidates for @code{cold} attribute. This
6001 is based on static detection and generally will only warn about functions which
6002 always leads to a call to another @code{cold} function such as wrappers of
6003 C++ @code{throw} or fatal error reporting functions leading to @code{abort}.
6004 @end table
6005
6006 @item -Wsuggest-final-types
6007 @opindex Wno-suggest-final-types
6008 @opindex Wsuggest-final-types
6009 Warn about types with virtual methods where code quality would be improved
6010 if the type were declared with the C++11 @code{final} specifier,
6011 or, if possible,
6012 declared in an anonymous namespace. This allows GCC to more aggressively
6013 devirtualize the polymorphic calls. This warning is more effective with
6014 link-time optimization,
6015 where the information about the class hierarchy graph is
6016 more complete.
6017
6018 @item -Wsuggest-final-methods
6019 @opindex Wno-suggest-final-methods
6020 @opindex Wsuggest-final-methods
6021 Warn about virtual methods where code quality would be improved if the method
6022 were declared with the C++11 @code{final} specifier,
6023 or, if possible, its type were
6024 declared in an anonymous namespace or with the @code{final} specifier.
6025 This warning is
6026 more effective with link-time optimization, where the information about the
6027 class hierarchy graph is more complete. It is recommended to first consider
6028 suggestions of @option{-Wsuggest-final-types} and then rebuild with new
6029 annotations.
6030
6031 @item -Wsuggest-override
6032 Warn about overriding virtual functions that are not marked with the override
6033 keyword.
6034
6035 @item -Walloc-zero
6036 @opindex Wno-alloc-zero
6037 @opindex Walloc-zero
6038 Warn about calls to allocation functions decorated with attribute
6039 @code{alloc_size} that specify zero bytes, including those to the built-in
6040 forms of the functions @code{aligned_alloc}, @code{alloca}, @code{calloc},
6041 @code{malloc}, and @code{realloc}. Because the behavior of these functions
6042 when called with a zero size differs among implementations (and in the case
6043 of @code{realloc} has been deprecated) relying on it may result in subtle
6044 portability bugs and should be avoided.
6045
6046 @item -Walloc-size-larger-than=@var{byte-size}
6047 @opindex Walloc-size-larger-than=
6048 @opindex Wno-alloc-size-larger-than
6049 Warn about calls to functions decorated with attribute @code{alloc_size}
6050 that attempt to allocate objects larger than the specified number of bytes,
6051 or where the result of the size computation in an integer type with infinite
6052 precision would exceed the value of @samp{PTRDIFF_MAX} on the target.
6053 @option{-Walloc-size-larger-than=}@samp{PTRDIFF_MAX} is enabled by default.
6054 Warnings controlled by the option can be disabled either by specifying
6055 @var{byte-size} of @samp{SIZE_MAX} or more or by
6056 @option{-Wno-alloc-size-larger-than}.
6057 @xref{Function Attributes}.
6058
6059 @item -Wno-alloc-size-larger-than
6060 @opindex Wno-alloc-size-larger-than
6061 Disable @option{-Walloc-size-larger-than=} warnings. The option is
6062 equivalent to @option{-Walloc-size-larger-than=}@samp{SIZE_MAX} or
6063 larger.
6064
6065 @item -Walloca
6066 @opindex Wno-alloca
6067 @opindex Walloca
6068 This option warns on all uses of @code{alloca} in the source.
6069
6070 @item -Walloca-larger-than=@var{byte-size}
6071 @opindex Walloca-larger-than=
6072 @opindex Wno-alloca-larger-than
6073 This option warns on calls to @code{alloca} with an integer argument whose
6074 value is either zero, or that is not bounded by a controlling predicate
6075 that limits its value to at most @var{byte-size}. It also warns for calls
6076 to @code{alloca} where the bound value is unknown. Arguments of non-integer
6077 types are considered unbounded even if they appear to be constrained to
6078 the expected range.
6079
6080 For example, a bounded case of @code{alloca} could be:
6081
6082 @smallexample
6083 void func (size_t n)
6084 @{
6085 void *p;
6086 if (n <= 1000)
6087 p = alloca (n);
6088 else
6089 p = malloc (n);
6090 f (p);
6091 @}
6092 @end smallexample
6093
6094 In the above example, passing @code{-Walloca-larger-than=1000} would not
6095 issue a warning because the call to @code{alloca} is known to be at most
6096 1000 bytes. However, if @code{-Walloca-larger-than=500} were passed,
6097 the compiler would emit a warning.
6098
6099 Unbounded uses, on the other hand, are uses of @code{alloca} with no
6100 controlling predicate constraining its integer argument. For example:
6101
6102 @smallexample
6103 void func ()
6104 @{
6105 void *p = alloca (n);
6106 f (p);
6107 @}
6108 @end smallexample
6109
6110 If @code{-Walloca-larger-than=500} were passed, the above would trigger
6111 a warning, but this time because of the lack of bounds checking.
6112
6113 Note, that even seemingly correct code involving signed integers could
6114 cause a warning:
6115
6116 @smallexample
6117 void func (signed int n)
6118 @{
6119 if (n < 500)
6120 @{
6121 p = alloca (n);
6122 f (p);
6123 @}
6124 @}
6125 @end smallexample
6126
6127 In the above example, @var{n} could be negative, causing a larger than
6128 expected argument to be implicitly cast into the @code{alloca} call.
6129
6130 This option also warns when @code{alloca} is used in a loop.
6131
6132 @option{-Walloca-larger-than=}@samp{PTRDIFF_MAX} is enabled by default
6133 but is usually only effective when @option{-ftree-vrp} is active (default
6134 for @option{-O2} and above).
6135
6136 See also @option{-Wvla-larger-than=}@samp{byte-size}.
6137
6138 @item -Wno-alloca-larger-than
6139 @opindex Wno-alloca-larger-than
6140 Disable @option{-Walloca-larger-than=} warnings. The option is
6141 equivalent to @option{-Walloca-larger-than=}@samp{SIZE_MAX} or larger.
6142
6143 @item -Warray-bounds
6144 @itemx -Warray-bounds=@var{n}
6145 @opindex Wno-array-bounds
6146 @opindex Warray-bounds
6147 This option is only active when @option{-ftree-vrp} is active
6148 (default for @option{-O2} and above). It warns about subscripts to arrays
6149 that are always out of bounds. This warning is enabled by @option{-Wall}.
6150
6151 @table @gcctabopt
6152 @item -Warray-bounds=1
6153 This is the warning level of @option{-Warray-bounds} and is enabled
6154 by @option{-Wall}; higher levels are not, and must be explicitly requested.
6155
6156 @item -Warray-bounds=2
6157 This warning level also warns about out of bounds access for
6158 arrays at the end of a struct and for arrays accessed through
6159 pointers. This warning level may give a larger number of
6160 false positives and is deactivated by default.
6161 @end table
6162
6163 @item -Wattribute-alias=@var{n}
6164 @itemx -Wno-attribute-alias
6165 @opindex Wattribute-alias
6166 @opindex Wno-attribute-alias
6167 Warn about declarations using the @code{alias} and similar attributes whose
6168 target is incompatible with the type of the alias.
6169 @xref{Function Attributes,,Declaring Attributes of Functions}.
6170
6171 @table @gcctabopt
6172 @item -Wattribute-alias=1
6173 The default warning level of the @option{-Wattribute-alias} option diagnoses
6174 incompatibilities between the type of the alias declaration and that of its
6175 target. Such incompatibilities are typically indicative of bugs.
6176
6177 @item -Wattribute-alias=2
6178
6179 At this level @option{-Wattribute-alias} also diagnoses cases where
6180 the attributes of the alias declaration are more restrictive than the
6181 attributes applied to its target. These mismatches can potentially
6182 result in incorrect code generation. In other cases they may be
6183 benign and could be resolved simply by adding the missing attribute to
6184 the target. For comparison, see the @option{-Wmissing-attributes}
6185 option, which controls diagnostics when the alias declaration is less
6186 restrictive than the target, rather than more restrictive.
6187
6188 Attributes considered include @code{alloc_align}, @code{alloc_size},
6189 @code{cold}, @code{const}, @code{hot}, @code{leaf}, @code{malloc},
6190 @code{nonnull}, @code{noreturn}, @code{nothrow}, @code{pure},
6191 @code{returns_nonnull}, and @code{returns_twice}.
6192 @end table
6193
6194 @option{-Wattribute-alias} is equivalent to @option{-Wattribute-alias=1}.
6195 This is the default. You can disable these warnings with either
6196 @option{-Wno-attribute-alias} or @option{-Wattribute-alias=0}.
6197
6198 @item -Wbool-compare
6199 @opindex Wno-bool-compare
6200 @opindex Wbool-compare
6201 Warn about boolean expression compared with an integer value different from
6202 @code{true}/@code{false}. For instance, the following comparison is
6203 always false:
6204 @smallexample
6205 int n = 5;
6206 @dots{}
6207 if ((n > 1) == 2) @{ @dots{} @}
6208 @end smallexample
6209 This warning is enabled by @option{-Wall}.
6210
6211 @item -Wbool-operation
6212 @opindex Wno-bool-operation
6213 @opindex Wbool-operation
6214 Warn about suspicious operations on expressions of a boolean type. For
6215 instance, bitwise negation of a boolean is very likely a bug in the program.
6216 For C, this warning also warns about incrementing or decrementing a boolean,
6217 which rarely makes sense. (In C++, decrementing a boolean is always invalid.
6218 Incrementing a boolean is invalid in C++17, and deprecated otherwise.)
6219
6220 This warning is enabled by @option{-Wall}.
6221
6222 @item -Wduplicated-branches
6223 @opindex Wno-duplicated-branches
6224 @opindex Wduplicated-branches
6225 Warn when an if-else has identical branches. This warning detects cases like
6226 @smallexample
6227 if (p != NULL)
6228 return 0;
6229 else
6230 return 0;
6231 @end smallexample
6232 It doesn't warn when both branches contain just a null statement. This warning
6233 also warn for conditional operators:
6234 @smallexample
6235 int i = x ? *p : *p;
6236 @end smallexample
6237
6238 @item -Wduplicated-cond
6239 @opindex Wno-duplicated-cond
6240 @opindex Wduplicated-cond
6241 Warn about duplicated conditions in an if-else-if chain. For instance,
6242 warn for the following code:
6243 @smallexample
6244 if (p->q != NULL) @{ @dots{} @}
6245 else if (p->q != NULL) @{ @dots{} @}
6246 @end smallexample
6247
6248 @item -Wframe-address
6249 @opindex Wno-frame-address
6250 @opindex Wframe-address
6251 Warn when the @samp{__builtin_frame_address} or @samp{__builtin_return_address}
6252 is called with an argument greater than 0. Such calls may return indeterminate
6253 values or crash the program. The warning is included in @option{-Wall}.
6254
6255 @item -Wno-discarded-qualifiers @r{(C and Objective-C only)}
6256 @opindex Wno-discarded-qualifiers
6257 @opindex Wdiscarded-qualifiers
6258 Do not warn if type qualifiers on pointers are being discarded.
6259 Typically, the compiler warns if a @code{const char *} variable is
6260 passed to a function that takes a @code{char *} parameter. This option
6261 can be used to suppress such a warning.
6262
6263 @item -Wno-discarded-array-qualifiers @r{(C and Objective-C only)}
6264 @opindex Wno-discarded-array-qualifiers
6265 @opindex Wdiscarded-array-qualifiers
6266 Do not warn if type qualifiers on arrays which are pointer targets
6267 are being discarded. Typically, the compiler warns if a
6268 @code{const int (*)[]} variable is passed to a function that
6269 takes a @code{int (*)[]} parameter. This option can be used to
6270 suppress such a warning.
6271
6272 @item -Wno-incompatible-pointer-types @r{(C and Objective-C only)}
6273 @opindex Wno-incompatible-pointer-types
6274 @opindex Wincompatible-pointer-types
6275 Do not warn when there is a conversion between pointers that have incompatible
6276 types. This warning is for cases not covered by @option{-Wno-pointer-sign},
6277 which warns for pointer argument passing or assignment with different
6278 signedness.
6279
6280 @item -Wno-int-conversion @r{(C and Objective-C only)}
6281 @opindex Wno-int-conversion
6282 @opindex Wint-conversion
6283 Do not warn about incompatible integer to pointer and pointer to integer
6284 conversions. This warning is about implicit conversions; for explicit
6285 conversions the warnings @option{-Wno-int-to-pointer-cast} and
6286 @option{-Wno-pointer-to-int-cast} may be used.
6287
6288 @item -Wno-div-by-zero
6289 @opindex Wno-div-by-zero
6290 @opindex Wdiv-by-zero
6291 Do not warn about compile-time integer division by zero. Floating-point
6292 division by zero is not warned about, as it can be a legitimate way of
6293 obtaining infinities and NaNs.
6294
6295 @item -Wsystem-headers
6296 @opindex Wsystem-headers
6297 @opindex Wno-system-headers
6298 @cindex warnings from system headers
6299 @cindex system headers, warnings from
6300 Print warning messages for constructs found in system header files.
6301 Warnings from system headers are normally suppressed, on the assumption
6302 that they usually do not indicate real problems and would only make the
6303 compiler output harder to read. Using this command-line option tells
6304 GCC to emit warnings from system headers as if they occurred in user
6305 code. However, note that using @option{-Wall} in conjunction with this
6306 option does @emph{not} warn about unknown pragmas in system
6307 headers---for that, @option{-Wunknown-pragmas} must also be used.
6308
6309 @item -Wtautological-compare
6310 @opindex Wtautological-compare
6311 @opindex Wno-tautological-compare
6312 Warn if a self-comparison always evaluates to true or false. This
6313 warning detects various mistakes such as:
6314 @smallexample
6315 int i = 1;
6316 @dots{}
6317 if (i > i) @{ @dots{} @}
6318 @end smallexample
6319
6320 This warning also warns about bitwise comparisons that always evaluate
6321 to true or false, for instance:
6322 @smallexample
6323 if ((a & 16) == 10) @{ @dots{} @}
6324 @end smallexample
6325 will always be false.
6326
6327 This warning is enabled by @option{-Wall}.
6328
6329 @item -Wtrampolines
6330 @opindex Wtrampolines
6331 @opindex Wno-trampolines
6332 Warn about trampolines generated for pointers to nested functions.
6333 A trampoline is a small piece of data or code that is created at run
6334 time on the stack when the address of a nested function is taken, and is
6335 used to call the nested function indirectly. For some targets, it is
6336 made up of data only and thus requires no special treatment. But, for
6337 most targets, it is made up of code and thus requires the stack to be
6338 made executable in order for the program to work properly.
6339
6340 @item -Wfloat-equal
6341 @opindex Wfloat-equal
6342 @opindex Wno-float-equal
6343 Warn if floating-point values are used in equality comparisons.
6344
6345 The idea behind this is that sometimes it is convenient (for the
6346 programmer) to consider floating-point values as approximations to
6347 infinitely precise real numbers. If you are doing this, then you need
6348 to compute (by analyzing the code, or in some other way) the maximum or
6349 likely maximum error that the computation introduces, and allow for it
6350 when performing comparisons (and when producing output, but that's a
6351 different problem). In particular, instead of testing for equality, you
6352 should check to see whether the two values have ranges that overlap; and
6353 this is done with the relational operators, so equality comparisons are
6354 probably mistaken.
6355
6356 @item -Wtraditional @r{(C and Objective-C only)}
6357 @opindex Wtraditional
6358 @opindex Wno-traditional
6359 Warn about certain constructs that behave differently in traditional and
6360 ISO C@. Also warn about ISO C constructs that have no traditional C
6361 equivalent, and/or problematic constructs that should be avoided.
6362
6363 @itemize @bullet
6364 @item
6365 Macro parameters that appear within string literals in the macro body.
6366 In traditional C macro replacement takes place within string literals,
6367 but in ISO C it does not.
6368
6369 @item
6370 In traditional C, some preprocessor directives did not exist.
6371 Traditional preprocessors only considered a line to be a directive
6372 if the @samp{#} appeared in column 1 on the line. Therefore
6373 @option{-Wtraditional} warns about directives that traditional C
6374 understands but ignores because the @samp{#} does not appear as the
6375 first character on the line. It also suggests you hide directives like
6376 @code{#pragma} not understood by traditional C by indenting them. Some
6377 traditional implementations do not recognize @code{#elif}, so this option
6378 suggests avoiding it altogether.
6379
6380 @item
6381 A function-like macro that appears without arguments.
6382
6383 @item
6384 The unary plus operator.
6385
6386 @item
6387 The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating-point
6388 constant suffixes. (Traditional C does support the @samp{L} suffix on integer
6389 constants.) Note, these suffixes appear in macros defined in the system
6390 headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}.
6391 Use of these macros in user code might normally lead to spurious
6392 warnings, however GCC's integrated preprocessor has enough context to
6393 avoid warning in these cases.
6394
6395 @item
6396 A function declared external in one block and then used after the end of
6397 the block.
6398
6399 @item
6400 A @code{switch} statement has an operand of type @code{long}.
6401
6402 @item
6403 A non-@code{static} function declaration follows a @code{static} one.
6404 This construct is not accepted by some traditional C compilers.
6405
6406 @item
6407 The ISO type of an integer constant has a different width or
6408 signedness from its traditional type. This warning is only issued if
6409 the base of the constant is ten. I.e.@: hexadecimal or octal values, which
6410 typically represent bit patterns, are not warned about.
6411
6412 @item
6413 Usage of ISO string concatenation is detected.
6414
6415 @item
6416 Initialization of automatic aggregates.
6417
6418 @item
6419 Identifier conflicts with labels. Traditional C lacks a separate
6420 namespace for labels.
6421
6422 @item
6423 Initialization of unions. If the initializer is zero, the warning is
6424 omitted. This is done under the assumption that the zero initializer in
6425 user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
6426 initializer warnings and relies on default initialization to zero in the
6427 traditional C case.
6428
6429 @item
6430 Conversions by prototypes between fixed/floating-point values and vice
6431 versa. The absence of these prototypes when compiling with traditional
6432 C causes serious problems. This is a subset of the possible
6433 conversion warnings; for the full set use @option{-Wtraditional-conversion}.
6434
6435 @item
6436 Use of ISO C style function definitions. This warning intentionally is
6437 @emph{not} issued for prototype declarations or variadic functions
6438 because these ISO C features appear in your code when using
6439 libiberty's traditional C compatibility macros, @code{PARAMS} and
6440 @code{VPARAMS}. This warning is also bypassed for nested functions
6441 because that feature is already a GCC extension and thus not relevant to
6442 traditional C compatibility.
6443 @end itemize
6444
6445 @item -Wtraditional-conversion @r{(C and Objective-C only)}
6446 @opindex Wtraditional-conversion
6447 @opindex Wno-traditional-conversion
6448 Warn if a prototype causes a type conversion that is different from what
6449 would happen to the same argument in the absence of a prototype. This
6450 includes conversions of fixed point to floating and vice versa, and
6451 conversions changing the width or signedness of a fixed-point argument
6452 except when the same as the default promotion.
6453
6454 @item -Wdeclaration-after-statement @r{(C and Objective-C only)}
6455 @opindex Wdeclaration-after-statement
6456 @opindex Wno-declaration-after-statement
6457 Warn when a declaration is found after a statement in a block. This
6458 construct, known from C++, was introduced with ISO C99 and is by default
6459 allowed in GCC@. It is not supported by ISO C90. @xref{Mixed Declarations}.
6460
6461 @item -Wshadow
6462 @opindex Wshadow
6463 @opindex Wno-shadow
6464 Warn whenever a local variable or type declaration shadows another
6465 variable, parameter, type, class member (in C++), or instance variable
6466 (in Objective-C) or whenever a built-in function is shadowed. Note
6467 that in C++, the compiler warns if a local variable shadows an
6468 explicit typedef, but not if it shadows a struct/class/enum.
6469 Same as @option{-Wshadow=global}.
6470
6471 @item -Wno-shadow-ivar @r{(Objective-C only)}
6472 @opindex Wno-shadow-ivar
6473 @opindex Wshadow-ivar
6474 Do not warn whenever a local variable shadows an instance variable in an
6475 Objective-C method.
6476
6477 @item -Wshadow=global
6478 @opindex Wshadow=local
6479 The default for @option{-Wshadow}. Warns for any (global) shadowing.
6480
6481 @item -Wshadow=local
6482 @opindex Wshadow=local
6483 Warn when a local variable shadows another local variable or parameter.
6484 This warning is enabled by @option{-Wshadow=global}.
6485
6486 @item -Wshadow=compatible-local
6487 @opindex Wshadow=compatible-local
6488 Warn when a local variable shadows another local variable or parameter
6489 whose type is compatible with that of the shadowing variable. In C++,
6490 type compatibility here means the type of the shadowing variable can be
6491 converted to that of the shadowed variable. The creation of this flag
6492 (in addition to @option{-Wshadow=local}) is based on the idea that when
6493 a local variable shadows another one of incompatible type, it is most
6494 likely intentional, not a bug or typo, as shown in the following example:
6495
6496 @smallexample
6497 @group
6498 for (SomeIterator i = SomeObj.begin(); i != SomeObj.end(); ++i)
6499 @{
6500 for (int i = 0; i < N; ++i)
6501 @{
6502 ...
6503 @}
6504 ...
6505 @}
6506 @end group
6507 @end smallexample
6508
6509 Since the two variable @code{i} in the example above have incompatible types,
6510 enabling only @option{-Wshadow=compatible-local} will not emit a warning.
6511 Because their types are incompatible, if a programmer accidentally uses one
6512 in place of the other, type checking will catch that and emit an error or
6513 warning. So not warning (about shadowing) in this case will not lead to
6514 undetected bugs. Use of this flag instead of @option{-Wshadow=local} can
6515 possibly reduce the number of warnings triggered by intentional shadowing.
6516
6517 This warning is enabled by @option{-Wshadow=local}.
6518
6519 @item -Wlarger-than=@var{byte-size}
6520 @opindex Wlarger-than=
6521 @opindex Wlarger-than-@var{byte-size}
6522 Warn whenever an object is defined whose size exceeds @var{byte-size}.
6523 @option{-Wlarger-than=}@samp{PTRDIFF_MAX} is enabled by default.
6524 Warnings controlled by the option can be disabled either by specifying
6525 @var{byte-size} of @samp{SIZE_MAX} or more or by
6526 @option{-Wno-larger-than}.
6527
6528 @item -Wno-larger-than
6529 @opindex Wno-larger-than
6530 Disable @option{-Wlarger-than=} warnings. The option is equivalent
6531 to @option{-Wlarger-than=}@samp{SIZE_MAX} or larger.
6532
6533 @item -Wframe-larger-than=@var{byte-size}
6534 @opindex Wframe-larger-than=
6535 @opindex Wno-frame-larger-than
6536 Warn if the size of a function frame exceeds @var{byte-size}.
6537 The computation done to determine the stack frame size is approximate
6538 and not conservative.
6539 The actual requirements may be somewhat greater than @var{byte-size}
6540 even if you do not get a warning. In addition, any space allocated
6541 via @code{alloca}, variable-length arrays, or related constructs
6542 is not included by the compiler when determining
6543 whether or not to issue a warning.
6544 @option{-Wframe-larger-than=}@samp{PTRDIFF_MAX} is enabled by default.
6545 Warnings controlled by the option can be disabled either by specifying
6546 @var{byte-size} of @samp{SIZE_MAX} or more or by
6547 @option{-Wno-frame-larger-than}.
6548
6549 @item -Wno-frame-larger-than
6550 @opindex Wno-frame-larger-than
6551 Disable @option{-Wframe-larger-than=} warnings. The option is equivalent
6552 to @option{-Wframe-larger-than=}@samp{SIZE_MAX} or larger.
6553
6554 @item -Wno-free-nonheap-object
6555 @opindex Wno-free-nonheap-object
6556 @opindex Wfree-nonheap-object
6557 Do not warn when attempting to free an object that was not allocated
6558 on the heap.
6559
6560 @item -Wstack-usage=@var{byte-size}
6561 @opindex Wstack-usage
6562 @opindex Wno-stack-usage
6563 Warn if the stack usage of a function might exceed @var{byte-size}.
6564 The computation done to determine the stack usage is conservative.
6565 Any space allocated via @code{alloca}, variable-length arrays, or related
6566 constructs is included by the compiler when determining whether or not to
6567 issue a warning.
6568
6569 The message is in keeping with the output of @option{-fstack-usage}.
6570
6571 @itemize
6572 @item
6573 If the stack usage is fully static but exceeds the specified amount, it's:
6574
6575 @smallexample
6576 warning: stack usage is 1120 bytes
6577 @end smallexample
6578 @item
6579 If the stack usage is (partly) dynamic but bounded, it's:
6580
6581 @smallexample
6582 warning: stack usage might be 1648 bytes
6583 @end smallexample
6584 @item
6585 If the stack usage is (partly) dynamic and not bounded, it's:
6586
6587 @smallexample
6588 warning: stack usage might be unbounded
6589 @end smallexample
6590 @end itemize
6591
6592 @option{-Wstack-usage=}@samp{PTRDIFF_MAX} is enabled by default.
6593 Warnings controlled by the option can be disabled either by specifying
6594 @var{byte-size} of @samp{SIZE_MAX} or more or by
6595 @option{-Wno-stack-usage}.
6596
6597 @item -Wno-stack-usage
6598 @opindex Wno-stack-usage
6599 Disable @option{-Wstack-usage=} warnings. The option is equivalent
6600 to @option{-Wstack-usage=}@samp{SIZE_MAX} or larger.
6601
6602 @item -Wunsafe-loop-optimizations
6603 @opindex Wunsafe-loop-optimizations
6604 @opindex Wno-unsafe-loop-optimizations
6605 Warn if the loop cannot be optimized because the compiler cannot
6606 assume anything on the bounds of the loop indices. With
6607 @option{-funsafe-loop-optimizations} warn if the compiler makes
6608 such assumptions.
6609
6610 @item -Wno-pedantic-ms-format @r{(MinGW targets only)}
6611 @opindex Wno-pedantic-ms-format
6612 @opindex Wpedantic-ms-format
6613 When used in combination with @option{-Wformat}
6614 and @option{-pedantic} without GNU extensions, this option
6615 disables the warnings about non-ISO @code{printf} / @code{scanf} format
6616 width specifiers @code{I32}, @code{I64}, and @code{I} used on Windows targets,
6617 which depend on the MS runtime.
6618
6619 @item -Waligned-new
6620 @opindex Waligned-new
6621 @opindex Wno-aligned-new
6622 Warn about a new-expression of a type that requires greater alignment
6623 than the @code{alignof(std::max_align_t)} but uses an allocation
6624 function without an explicit alignment parameter. This option is
6625 enabled by @option{-Wall}.
6626
6627 Normally this only warns about global allocation functions, but
6628 @option{-Waligned-new=all} also warns about class member allocation
6629 functions.
6630
6631 @item -Wplacement-new
6632 @itemx -Wplacement-new=@var{n}
6633 @opindex Wplacement-new
6634 @opindex Wno-placement-new
6635 Warn about placement new expressions with undefined behavior, such as
6636 constructing an object in a buffer that is smaller than the type of
6637 the object. For example, the placement new expression below is diagnosed
6638 because it attempts to construct an array of 64 integers in a buffer only
6639 64 bytes large.
6640 @smallexample
6641 char buf [64];
6642 new (buf) int[64];
6643 @end smallexample
6644 This warning is enabled by default.
6645
6646 @table @gcctabopt
6647 @item -Wplacement-new=1
6648 This is the default warning level of @option{-Wplacement-new}. At this
6649 level the warning is not issued for some strictly undefined constructs that
6650 GCC allows as extensions for compatibility with legacy code. For example,
6651 the following @code{new} expression is not diagnosed at this level even
6652 though it has undefined behavior according to the C++ standard because
6653 it writes past the end of the one-element array.
6654 @smallexample
6655 struct S @{ int n, a[1]; @};
6656 S *s = (S *)malloc (sizeof *s + 31 * sizeof s->a[0]);
6657 new (s->a)int [32]();
6658 @end smallexample
6659
6660 @item -Wplacement-new=2
6661 At this level, in addition to diagnosing all the same constructs as at level
6662 1, a diagnostic is also issued for placement new expressions that construct
6663 an object in the last member of structure whose type is an array of a single
6664 element and whose size is less than the size of the object being constructed.
6665 While the previous example would be diagnosed, the following construct makes
6666 use of the flexible member array extension to avoid the warning at level 2.
6667 @smallexample
6668 struct S @{ int n, a[]; @};
6669 S *s = (S *)malloc (sizeof *s + 32 * sizeof s->a[0]);
6670 new (s->a)int [32]();
6671 @end smallexample
6672
6673 @end table
6674
6675 @item -Wpointer-arith
6676 @opindex Wpointer-arith
6677 @opindex Wno-pointer-arith
6678 Warn about anything that depends on the ``size of'' a function type or
6679 of @code{void}. GNU C assigns these types a size of 1, for
6680 convenience in calculations with @code{void *} pointers and pointers
6681 to functions. In C++, warn also when an arithmetic operation involves
6682 @code{NULL}. This warning is also enabled by @option{-Wpedantic}.
6683
6684 @item -Wpointer-compare
6685 @opindex Wpointer-compare
6686 @opindex Wno-pointer-compare
6687 Warn if a pointer is compared with a zero character constant. This usually
6688 means that the pointer was meant to be dereferenced. For example:
6689
6690 @smallexample
6691 const char *p = foo ();
6692 if (p == '\0')
6693 return 42;
6694 @end smallexample
6695
6696 Note that the code above is invalid in C++11.
6697
6698 This warning is enabled by default.
6699
6700 @item -Wtype-limits
6701 @opindex Wtype-limits
6702 @opindex Wno-type-limits
6703 Warn if a comparison is always true or always false due to the limited
6704 range of the data type, but do not warn for constant expressions. For
6705 example, warn if an unsigned variable is compared against zero with
6706 @code{<} or @code{>=}. This warning is also enabled by
6707 @option{-Wextra}.
6708
6709 @item -Wabsolute-value @r{(C and Objective-C only)}
6710 @opindex Wabsolute-value
6711 @opindex Wno-absolute-value
6712 Warn for calls to standard functions that compute the absolute value
6713 of an argument when a more appropriate standard function is available.
6714 For example, calling @code{abs(3.14)} triggers the warning because the
6715 appropriate function to call to compute the absolute value of a double
6716 argument is @code{fabs}. The option also triggers warnings when the
6717 argument in a call to such a function has an unsigned type. This
6718 warning can be suppressed with an explicit type cast and it is also
6719 enabled by @option{-Wextra}.
6720
6721 @include cppwarnopts.texi
6722
6723 @item -Wbad-function-cast @r{(C and Objective-C only)}
6724 @opindex Wbad-function-cast
6725 @opindex Wno-bad-function-cast
6726 Warn when a function call is cast to a non-matching type.
6727 For example, warn if a call to a function returning an integer type
6728 is cast to a pointer type.
6729
6730 @item -Wc90-c99-compat @r{(C and Objective-C only)}
6731 @opindex Wc90-c99-compat
6732 @opindex Wno-c90-c99-compat
6733 Warn about features not present in ISO C90, but present in ISO C99.
6734 For instance, warn about use of variable length arrays, @code{long long}
6735 type, @code{bool} type, compound literals, designated initializers, and so
6736 on. This option is independent of the standards mode. Warnings are disabled
6737 in the expression that follows @code{__extension__}.
6738
6739 @item -Wc99-c11-compat @r{(C and Objective-C only)}
6740 @opindex Wc99-c11-compat
6741 @opindex Wno-c99-c11-compat
6742 Warn about features not present in ISO C99, but present in ISO C11.
6743 For instance, warn about use of anonymous structures and unions,
6744 @code{_Atomic} type qualifier, @code{_Thread_local} storage-class specifier,
6745 @code{_Alignas} specifier, @code{Alignof} operator, @code{_Generic} keyword,
6746 and so on. This option is independent of the standards mode. Warnings are
6747 disabled in the expression that follows @code{__extension__}.
6748
6749 @item -Wc++-compat @r{(C and Objective-C only)}
6750 @opindex Wc++-compat
6751 @opindex Wno-c++-compat
6752 Warn about ISO C constructs that are outside of the common subset of
6753 ISO C and ISO C++, e.g.@: request for implicit conversion from
6754 @code{void *} to a pointer to non-@code{void} type.
6755
6756 @item -Wc++11-compat @r{(C++ and Objective-C++ only)}
6757 @opindex Wc++11-compat
6758 @opindex Wno-c++11-compat
6759 Warn about C++ constructs whose meaning differs between ISO C++ 1998
6760 and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords
6761 in ISO C++ 2011. This warning turns on @option{-Wnarrowing} and is
6762 enabled by @option{-Wall}.
6763
6764 @item -Wc++14-compat @r{(C++ and Objective-C++ only)}
6765 @opindex Wc++14-compat
6766 @opindex Wno-c++14-compat
6767 Warn about C++ constructs whose meaning differs between ISO C++ 2011
6768 and ISO C++ 2014. This warning is enabled by @option{-Wall}.
6769
6770 @item -Wc++17-compat @r{(C++ and Objective-C++ only)}
6771 @opindex Wc++17-compat
6772 @opindex Wno-c++17-compat
6773 Warn about C++ constructs whose meaning differs between ISO C++ 2014
6774 and ISO C++ 2017. This warning is enabled by @option{-Wall}.
6775
6776 @item -Wcast-qual
6777 @opindex Wcast-qual
6778 @opindex Wno-cast-qual
6779 Warn whenever a pointer is cast so as to remove a type qualifier from
6780 the target type. For example, warn if a @code{const char *} is cast
6781 to an ordinary @code{char *}.
6782
6783 Also warn when making a cast that introduces a type qualifier in an
6784 unsafe way. For example, casting @code{char **} to @code{const char **}
6785 is unsafe, as in this example:
6786
6787 @smallexample
6788 /* p is char ** value. */
6789 const char **q = (const char **) p;
6790 /* Assignment of readonly string to const char * is OK. */
6791 *q = "string";
6792 /* Now char** pointer points to read-only memory. */
6793 **p = 'b';
6794 @end smallexample
6795
6796 @item -Wcast-align
6797 @opindex Wcast-align
6798 @opindex Wno-cast-align
6799 Warn whenever a pointer is cast such that the required alignment of the
6800 target is increased. For example, warn if a @code{char *} is cast to
6801 an @code{int *} on machines where integers can only be accessed at
6802 two- or four-byte boundaries.
6803
6804 @item -Wcast-align=strict
6805 @opindex Wcast-align=strict
6806 Warn whenever a pointer is cast such that the required alignment of the
6807 target is increased. For example, warn if a @code{char *} is cast to
6808 an @code{int *} regardless of the target machine.
6809
6810 @item -Wcast-function-type
6811 @opindex Wcast-function-type
6812 @opindex Wno-cast-function-type
6813 Warn when a function pointer is cast to an incompatible function pointer.
6814 In a cast involving function types with a variable argument list only
6815 the types of initial arguments that are provided are considered.
6816 Any parameter of pointer-type matches any other pointer-type. Any benign
6817 differences in integral types are ignored, like @code{int} vs.@: @code{long}
6818 on ILP32 targets. Likewise type qualifiers are ignored. The function
6819 type @code{void (*) (void)} is special and matches everything, which can
6820 be used to suppress this warning.
6821 In a cast involving pointer to member types this warning warns whenever
6822 the type cast is changing the pointer to member type.
6823 This warning is enabled by @option{-Wextra}.
6824
6825 @item -Wwrite-strings
6826 @opindex Wwrite-strings
6827 @opindex Wno-write-strings
6828 When compiling C, give string constants the type @code{const
6829 char[@var{length}]} so that copying the address of one into a
6830 non-@code{const} @code{char *} pointer produces a warning. These
6831 warnings help you find at compile time code that can try to write
6832 into a string constant, but only if you have been very careful about
6833 using @code{const} in declarations and prototypes. Otherwise, it is
6834 just a nuisance. This is why we did not make @option{-Wall} request
6835 these warnings.
6836
6837 When compiling C++, warn about the deprecated conversion from string
6838 literals to @code{char *}. This warning is enabled by default for C++
6839 programs.
6840
6841 @item -Wcatch-value
6842 @itemx -Wcatch-value=@var{n} @r{(C++ and Objective-C++ only)}
6843 @opindex Wcatch-value
6844 @opindex Wno-catch-value
6845 Warn about catch handlers that do not catch via reference.
6846 With @option{-Wcatch-value=1} (or @option{-Wcatch-value} for short)
6847 warn about polymorphic class types that are caught by value.
6848 With @option{-Wcatch-value=2} warn about all class types that are caught
6849 by value. With @option{-Wcatch-value=3} warn about all types that are
6850 not caught by reference. @option{-Wcatch-value} is enabled by @option{-Wall}.
6851
6852 @item -Wclobbered
6853 @opindex Wclobbered
6854 @opindex Wno-clobbered
6855 Warn for variables that might be changed by @code{longjmp} or
6856 @code{vfork}. This warning is also enabled by @option{-Wextra}.
6857
6858 @item -Wconditionally-supported @r{(C++ and Objective-C++ only)}
6859 @opindex Wconditionally-supported
6860 @opindex Wno-conditionally-supported
6861 Warn for conditionally-supported (C++11 [intro.defs]) constructs.
6862
6863 @item -Wconversion
6864 @opindex Wconversion
6865 @opindex Wno-conversion
6866 Warn for implicit conversions that may alter a value. This includes
6867 conversions between real and integer, like @code{abs (x)} when
6868 @code{x} is @code{double}; conversions between signed and unsigned,
6869 like @code{unsigned ui = -1}; and conversions to smaller types, like
6870 @code{sqrtf (M_PI)}. Do not warn for explicit casts like @code{abs
6871 ((int) x)} and @code{ui = (unsigned) -1}, or if the value is not
6872 changed by the conversion like in @code{abs (2.0)}. Warnings about
6873 conversions between signed and unsigned integers can be disabled by
6874 using @option{-Wno-sign-conversion}.
6875
6876 For C++, also warn for confusing overload resolution for user-defined
6877 conversions; and conversions that never use a type conversion
6878 operator: conversions to @code{void}, the same type, a base class or a
6879 reference to them. Warnings about conversions between signed and
6880 unsigned integers are disabled by default in C++ unless
6881 @option{-Wsign-conversion} is explicitly enabled.
6882
6883 @item -Wno-conversion-null @r{(C++ and Objective-C++ only)}
6884 @opindex Wconversion-null
6885 @opindex Wno-conversion-null
6886 Do not warn for conversions between @code{NULL} and non-pointer
6887 types. @option{-Wconversion-null} is enabled by default.
6888
6889 @item -Wzero-as-null-pointer-constant @r{(C++ and Objective-C++ only)}
6890 @opindex Wzero-as-null-pointer-constant
6891 @opindex Wno-zero-as-null-pointer-constant
6892 Warn when a literal @samp{0} is used as null pointer constant. This can
6893 be useful to facilitate the conversion to @code{nullptr} in C++11.
6894
6895 @item -Wsubobject-linkage @r{(C++ and Objective-C++ only)}
6896 @opindex Wsubobject-linkage
6897 @opindex Wno-subobject-linkage
6898 Warn if a class type has a base or a field whose type uses the anonymous
6899 namespace or depends on a type with no linkage. If a type A depends on
6900 a type B with no or internal linkage, defining it in multiple
6901 translation units would be an ODR violation because the meaning of B
6902 is different in each translation unit. If A only appears in a single
6903 translation unit, the best way to silence the warning is to give it
6904 internal linkage by putting it in an anonymous namespace as well. The
6905 compiler doesn't give this warning for types defined in the main .C
6906 file, as those are unlikely to have multiple definitions.
6907 @option{-Wsubobject-linkage} is enabled by default.
6908
6909 @item -Wdangling-else
6910 @opindex Wdangling-else
6911 @opindex Wno-dangling-else
6912 Warn about constructions where there may be confusion to which
6913 @code{if} statement an @code{else} branch belongs. Here is an example of
6914 such a case:
6915
6916 @smallexample
6917 @group
6918 @{
6919 if (a)
6920 if (b)
6921 foo ();
6922 else
6923 bar ();
6924 @}
6925 @end group
6926 @end smallexample
6927
6928 In C/C++, every @code{else} branch belongs to the innermost possible
6929 @code{if} statement, which in this example is @code{if (b)}. This is
6930 often not what the programmer expected, as illustrated in the above
6931 example by indentation the programmer chose. When there is the
6932 potential for this confusion, GCC issues a warning when this flag
6933 is specified. To eliminate the warning, add explicit braces around
6934 the innermost @code{if} statement so there is no way the @code{else}
6935 can belong to the enclosing @code{if}. The resulting code
6936 looks like this:
6937
6938 @smallexample
6939 @group
6940 @{
6941 if (a)
6942 @{
6943 if (b)
6944 foo ();
6945 else
6946 bar ();
6947 @}
6948 @}
6949 @end group
6950 @end smallexample
6951
6952 This warning is enabled by @option{-Wparentheses}.
6953
6954 @item -Wdate-time
6955 @opindex Wdate-time
6956 @opindex Wno-date-time
6957 Warn when macros @code{__TIME__}, @code{__DATE__} or @code{__TIMESTAMP__}
6958 are encountered as they might prevent bit-wise-identical reproducible
6959 compilations.
6960
6961 @item -Wdelete-incomplete @r{(C++ and Objective-C++ only)}
6962 @opindex Wdelete-incomplete
6963 @opindex Wno-delete-incomplete
6964 Warn when deleting a pointer to incomplete type, which may cause
6965 undefined behavior at runtime. This warning is enabled by default.
6966
6967 @item -Wuseless-cast @r{(C++ and Objective-C++ only)}
6968 @opindex Wuseless-cast
6969 @opindex Wno-useless-cast
6970 Warn when an expression is casted to its own type.
6971
6972 @item -Wempty-body
6973 @opindex Wempty-body
6974 @opindex Wno-empty-body
6975 Warn if an empty body occurs in an @code{if}, @code{else} or @code{do
6976 while} statement. This warning is also enabled by @option{-Wextra}.
6977
6978 @item -Wenum-compare
6979 @opindex Wenum-compare
6980 @opindex Wno-enum-compare
6981 Warn about a comparison between values of different enumerated types.
6982 In C++ enumerated type mismatches in conditional expressions are also
6983 diagnosed and the warning is enabled by default. In C this warning is
6984 enabled by @option{-Wall}.
6985
6986 @item -Wextra-semi @r{(C++, Objective-C++ only)}
6987 @opindex Wextra-semi
6988 @opindex Wno-extra-semi
6989 Warn about redundant semicolon after in-class function definition.
6990
6991 @item -Wjump-misses-init @r{(C, Objective-C only)}
6992 @opindex Wjump-misses-init
6993 @opindex Wno-jump-misses-init
6994 Warn if a @code{goto} statement or a @code{switch} statement jumps
6995 forward across the initialization of a variable, or jumps backward to a
6996 label after the variable has been initialized. This only warns about
6997 variables that are initialized when they are declared. This warning is
6998 only supported for C and Objective-C; in C++ this sort of branch is an
6999 error in any case.
7000
7001 @option{-Wjump-misses-init} is included in @option{-Wc++-compat}. It
7002 can be disabled with the @option{-Wno-jump-misses-init} option.
7003
7004 @item -Wsign-compare
7005 @opindex Wsign-compare
7006 @opindex Wno-sign-compare
7007 @cindex warning for comparison of signed and unsigned values
7008 @cindex comparison of signed and unsigned values, warning
7009 @cindex signed and unsigned values, comparison warning
7010 Warn when a comparison between signed and unsigned values could produce
7011 an incorrect result when the signed value is converted to unsigned.
7012 In C++, this warning is also enabled by @option{-Wall}. In C, it is
7013 also enabled by @option{-Wextra}.
7014
7015 @item -Wsign-conversion
7016 @opindex Wsign-conversion
7017 @opindex Wno-sign-conversion
7018 Warn for implicit conversions that may change the sign of an integer
7019 value, like assigning a signed integer expression to an unsigned
7020 integer variable. An explicit cast silences the warning. In C, this
7021 option is enabled also by @option{-Wconversion}.
7022
7023 @item -Wfloat-conversion
7024 @opindex Wfloat-conversion
7025 @opindex Wno-float-conversion
7026 Warn for implicit conversions that reduce the precision of a real value.
7027 This includes conversions from real to integer, and from higher precision
7028 real to lower precision real values. This option is also enabled by
7029 @option{-Wconversion}.
7030
7031 @item -Wno-scalar-storage-order
7032 @opindex Wno-scalar-storage-order
7033 @opindex Wscalar-storage-order
7034 Do not warn on suspicious constructs involving reverse scalar storage order.
7035
7036 @item -Wsized-deallocation @r{(C++ and Objective-C++ only)}
7037 @opindex Wsized-deallocation
7038 @opindex Wno-sized-deallocation
7039 Warn about a definition of an unsized deallocation function
7040 @smallexample
7041 void operator delete (void *) noexcept;
7042 void operator delete[] (void *) noexcept;
7043 @end smallexample
7044 without a definition of the corresponding sized deallocation function
7045 @smallexample
7046 void operator delete (void *, std::size_t) noexcept;
7047 void operator delete[] (void *, std::size_t) noexcept;
7048 @end smallexample
7049 or vice versa. Enabled by @option{-Wextra} along with
7050 @option{-fsized-deallocation}.
7051
7052 @item -Wsizeof-pointer-div
7053 @opindex Wsizeof-pointer-div
7054 @opindex Wno-sizeof-pointer-div
7055 Warn for suspicious divisions of two sizeof expressions that divide
7056 the pointer size by the element size, which is the usual way to compute
7057 the array size but won't work out correctly with pointers. This warning
7058 warns e.g.@: about @code{sizeof (ptr) / sizeof (ptr[0])} if @code{ptr} is
7059 not an array, but a pointer. This warning is enabled by @option{-Wall}.
7060
7061 @item -Wsizeof-pointer-memaccess
7062 @opindex Wsizeof-pointer-memaccess
7063 @opindex Wno-sizeof-pointer-memaccess
7064 Warn for suspicious length parameters to certain string and memory built-in
7065 functions if the argument uses @code{sizeof}. This warning triggers for
7066 example for @code{memset (ptr, 0, sizeof (ptr));} if @code{ptr} is not
7067 an array, but a pointer, and suggests a possible fix, or about
7068 @code{memcpy (&foo, ptr, sizeof (&foo));}. @option{-Wsizeof-pointer-memaccess}
7069 also warns about calls to bounded string copy functions like @code{strncat}
7070 or @code{strncpy} that specify as the bound a @code{sizeof} expression of
7071 the source array. For example, in the following function the call to
7072 @code{strncat} specifies the size of the source string as the bound. That
7073 is almost certainly a mistake and so the call is diagnosed.
7074 @smallexample
7075 void make_file (const char *name)
7076 @{
7077 char path[PATH_MAX];
7078 strncpy (path, name, sizeof path - 1);
7079 strncat (path, ".text", sizeof ".text");
7080 @dots{}
7081 @}
7082 @end smallexample
7083
7084 The @option{-Wsizeof-pointer-memaccess} option is enabled by @option{-Wall}.
7085
7086 @item -Wsizeof-array-argument
7087 @opindex Wsizeof-array-argument
7088 @opindex Wno-sizeof-array-argument
7089 Warn when the @code{sizeof} operator is applied to a parameter that is
7090 declared as an array in a function definition. This warning is enabled by
7091 default for C and C++ programs.
7092
7093 @item -Wmemset-elt-size
7094 @opindex Wmemset-elt-size
7095 @opindex Wno-memset-elt-size
7096 Warn for suspicious calls to the @code{memset} built-in function, if the
7097 first argument references an array, and the third argument is a number
7098 equal to the number of elements, but not equal to the size of the array
7099 in memory. This indicates that the user has omitted a multiplication by
7100 the element size. This warning is enabled by @option{-Wall}.
7101
7102 @item -Wmemset-transposed-args
7103 @opindex Wmemset-transposed-args
7104 @opindex Wno-memset-transposed-args
7105 Warn for suspicious calls to the @code{memset} built-in function where
7106 the second argument is not zero and the third argument is zero. For
7107 example, the call @code{memset (buf, sizeof buf, 0)} is diagnosed because
7108 @code{memset (buf, 0, sizeof buf)} was meant instead. The diagnostic
7109 is only emitted if the third argument is a literal zero. Otherwise, if
7110 it is an expression that is folded to zero, or a cast of zero to some
7111 type, it is far less likely that the arguments have been mistakenly
7112 transposed and no warning is emitted. This warning is enabled
7113 by @option{-Wall}.
7114
7115 @item -Waddress
7116 @opindex Waddress
7117 @opindex Wno-address
7118 Warn about suspicious uses of memory addresses. These include using
7119 the address of a function in a conditional expression, such as
7120 @code{void func(void); if (func)}, and comparisons against the memory
7121 address of a string literal, such as @code{if (x == "abc")}. Such
7122 uses typically indicate a programmer error: the address of a function
7123 always evaluates to true, so their use in a conditional usually
7124 indicate that the programmer forgot the parentheses in a function
7125 call; and comparisons against string literals result in unspecified
7126 behavior and are not portable in C, so they usually indicate that the
7127 programmer intended to use @code{strcmp}. This warning is enabled by
7128 @option{-Wall}.
7129
7130 @item -Waddress-of-packed-member
7131 @opindex Waddress-of-packed-member
7132 @opindex Wno-address-of-packed-member
7133 Warn when the address of packed member of struct or union is taken,
7134 which usually results in an unaligned pointer value. This is
7135 enabled by default.
7136
7137 @item -Wlogical-op
7138 @opindex Wlogical-op
7139 @opindex Wno-logical-op
7140 Warn about suspicious uses of logical operators in expressions.
7141 This includes using logical operators in contexts where a
7142 bit-wise operator is likely to be expected. Also warns when
7143 the operands of a logical operator are the same:
7144 @smallexample
7145 extern int a;
7146 if (a < 0 && a < 0) @{ @dots{} @}
7147 @end smallexample
7148
7149 @item -Wlogical-not-parentheses
7150 @opindex Wlogical-not-parentheses
7151 @opindex Wno-logical-not-parentheses
7152 Warn about logical not used on the left hand side operand of a comparison.
7153 This option does not warn if the right operand is considered to be a boolean
7154 expression. Its purpose is to detect suspicious code like the following:
7155 @smallexample
7156 int a;
7157 @dots{}
7158 if (!a > 1) @{ @dots{} @}
7159 @end smallexample
7160
7161 It is possible to suppress the warning by wrapping the LHS into
7162 parentheses:
7163 @smallexample
7164 if ((!a) > 1) @{ @dots{} @}
7165 @end smallexample
7166
7167 This warning is enabled by @option{-Wall}.
7168
7169 @item -Waggregate-return
7170 @opindex Waggregate-return
7171 @opindex Wno-aggregate-return
7172 Warn if any functions that return structures or unions are defined or
7173 called. (In languages where you can return an array, this also elicits
7174 a warning.)
7175
7176 @item -Wno-aggressive-loop-optimizations
7177 @opindex Wno-aggressive-loop-optimizations
7178 @opindex Waggressive-loop-optimizations
7179 Warn if in a loop with constant number of iterations the compiler detects
7180 undefined behavior in some statement during one or more of the iterations.
7181
7182 @item -Wno-attributes
7183 @opindex Wno-attributes
7184 @opindex Wattributes
7185 Do not warn if an unexpected @code{__attribute__} is used, such as
7186 unrecognized attributes, function attributes applied to variables,
7187 etc. This does not stop errors for incorrect use of supported
7188 attributes.
7189
7190 @item -Wno-builtin-declaration-mismatch
7191 @opindex Wno-builtin-declaration-mismatch
7192 @opindex Wbuiltin-declaration-mismatch
7193 Warn if a built-in function is declared with an incompatible signature
7194 or as a non-function, or when a built-in function declared with a type
7195 that does not include a prototype is called with arguments whose promoted
7196 types do not match those expected by the function. When @option{-Wextra}
7197 is specified, also warn when a built-in function that takes arguments is
7198 declared without a prototype. The @option{-Wno-builtin-declaration-mismatch}
7199 warning is enabled by default. To avoid the warning include the appropriate
7200 header to bring the prototypes of built-in functions into scope.
7201
7202 For example, the call to @code{memset} below is diagnosed by the warning
7203 because the function expects a value of type @code{size_t} as its argument
7204 but the type of @code{32} is @code{int}. With @option{-Wextra},
7205 the declaration of the function is diagnosed as well.
7206 @smallexample
7207 extern void* memset ();
7208 void f (void *d)
7209 @{
7210 memset (d, '\0', 32);
7211 @}
7212 @end smallexample
7213
7214 @item -Wno-builtin-macro-redefined
7215 @opindex Wno-builtin-macro-redefined
7216 @opindex Wbuiltin-macro-redefined
7217 Do not warn if certain built-in macros are redefined. This suppresses
7218 warnings for redefinition of @code{__TIMESTAMP__}, @code{__TIME__},
7219 @code{__DATE__}, @code{__FILE__}, and @code{__BASE_FILE__}.
7220
7221 @item -Wstrict-prototypes @r{(C and Objective-C only)}
7222 @opindex Wstrict-prototypes
7223 @opindex Wno-strict-prototypes
7224 Warn if a function is declared or defined without specifying the
7225 argument types. (An old-style function definition is permitted without
7226 a warning if preceded by a declaration that specifies the argument
7227 types.)
7228
7229 @item -Wold-style-declaration @r{(C and Objective-C only)}
7230 @opindex Wold-style-declaration
7231 @opindex Wno-old-style-declaration
7232 Warn for obsolescent usages, according to the C Standard, in a
7233 declaration. For example, warn if storage-class specifiers like
7234 @code{static} are not the first things in a declaration. This warning
7235 is also enabled by @option{-Wextra}.
7236
7237 @item -Wold-style-definition @r{(C and Objective-C only)}
7238 @opindex Wold-style-definition
7239 @opindex Wno-old-style-definition
7240 Warn if an old-style function definition is used. A warning is given
7241 even if there is a previous prototype.
7242
7243 @item -Wmissing-parameter-type @r{(C and Objective-C only)}
7244 @opindex Wmissing-parameter-type
7245 @opindex Wno-missing-parameter-type
7246 A function parameter is declared without a type specifier in K&R-style
7247 functions:
7248
7249 @smallexample
7250 void foo(bar) @{ @}
7251 @end smallexample
7252
7253 This warning is also enabled by @option{-Wextra}.
7254
7255 @item -Wmissing-prototypes @r{(C and Objective-C only)}
7256 @opindex Wmissing-prototypes
7257 @opindex Wno-missing-prototypes
7258 Warn if a global function is defined without a previous prototype
7259 declaration. This warning is issued even if the definition itself
7260 provides a prototype. Use this option to detect global functions
7261 that do not have a matching prototype declaration in a header file.
7262 This option is not valid for C++ because all function declarations
7263 provide prototypes and a non-matching declaration declares an
7264 overload rather than conflict with an earlier declaration.
7265 Use @option{-Wmissing-declarations} to detect missing declarations in C++.
7266
7267 @item -Wmissing-declarations
7268 @opindex Wmissing-declarations
7269 @opindex Wno-missing-declarations
7270 Warn if a global function is defined without a previous declaration.
7271 Do so even if the definition itself provides a prototype.
7272 Use this option to detect global functions that are not declared in
7273 header files. In C, no warnings are issued for functions with previous
7274 non-prototype declarations; use @option{-Wmissing-prototypes} to detect
7275 missing prototypes. In C++, no warnings are issued for function templates,
7276 or for inline functions, or for functions in anonymous namespaces.
7277
7278 @item -Wmissing-field-initializers
7279 @opindex Wmissing-field-initializers
7280 @opindex Wno-missing-field-initializers
7281 @opindex W
7282 @opindex Wextra
7283 @opindex Wno-extra
7284 Warn if a structure's initializer has some fields missing. For
7285 example, the following code causes such a warning, because
7286 @code{x.h} is implicitly zero:
7287
7288 @smallexample
7289 struct s @{ int f, g, h; @};
7290 struct s x = @{ 3, 4 @};
7291 @end smallexample
7292
7293 This option does not warn about designated initializers, so the following
7294 modification does not trigger a warning:
7295
7296 @smallexample
7297 struct s @{ int f, g, h; @};
7298 struct s x = @{ .f = 3, .g = 4 @};
7299 @end smallexample
7300
7301 In C this option does not warn about the universal zero initializer
7302 @samp{@{ 0 @}}:
7303
7304 @smallexample
7305 struct s @{ int f, g, h; @};
7306 struct s x = @{ 0 @};
7307 @end smallexample
7308
7309 Likewise, in C++ this option does not warn about the empty @{ @}
7310 initializer, for example:
7311
7312 @smallexample
7313 struct s @{ int f, g, h; @};
7314 s x = @{ @};
7315 @end smallexample
7316
7317 This warning is included in @option{-Wextra}. To get other @option{-Wextra}
7318 warnings without this one, use @option{-Wextra -Wno-missing-field-initializers}.
7319
7320 @item -Wno-multichar
7321 @opindex Wno-multichar
7322 @opindex Wmultichar
7323 Do not warn if a multicharacter constant (@samp{'FOOF'}) is used.
7324 Usually they indicate a typo in the user's code, as they have
7325 implementation-defined values, and should not be used in portable code.
7326
7327 @item -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]}
7328 @opindex Wnormalized=
7329 @opindex Wnormalized
7330 @opindex Wno-normalized
7331 @cindex NFC
7332 @cindex NFKC
7333 @cindex character set, input normalization
7334 In ISO C and ISO C++, two identifiers are different if they are
7335 different sequences of characters. However, sometimes when characters
7336 outside the basic ASCII character set are used, you can have two
7337 different character sequences that look the same. To avoid confusion,
7338 the ISO 10646 standard sets out some @dfn{normalization rules} which
7339 when applied ensure that two sequences that look the same are turned into
7340 the same sequence. GCC can warn you if you are using identifiers that
7341 have not been normalized; this option controls that warning.
7342
7343 There are four levels of warning supported by GCC@. The default is
7344 @option{-Wnormalized=nfc}, which warns about any identifier that is
7345 not in the ISO 10646 ``C'' normalized form, @dfn{NFC}. NFC is the
7346 recommended form for most uses. It is equivalent to
7347 @option{-Wnormalized}.
7348
7349 Unfortunately, there are some characters allowed in identifiers by
7350 ISO C and ISO C++ that, when turned into NFC, are not allowed in
7351 identifiers. That is, there's no way to use these symbols in portable
7352 ISO C or C++ and have all your identifiers in NFC@.
7353 @option{-Wnormalized=id} suppresses the warning for these characters.
7354 It is hoped that future versions of the standards involved will correct
7355 this, which is why this option is not the default.
7356
7357 You can switch the warning off for all characters by writing
7358 @option{-Wnormalized=none} or @option{-Wno-normalized}. You should
7359 only do this if you are using some other normalization scheme (like
7360 ``D''), because otherwise you can easily create bugs that are
7361 literally impossible to see.
7362
7363 Some characters in ISO 10646 have distinct meanings but look identical
7364 in some fonts or display methodologies, especially once formatting has
7365 been applied. For instance @code{\u207F}, ``SUPERSCRIPT LATIN SMALL
7366 LETTER N'', displays just like a regular @code{n} that has been
7367 placed in a superscript. ISO 10646 defines the @dfn{NFKC}
7368 normalization scheme to convert all these into a standard form as
7369 well, and GCC warns if your code is not in NFKC if you use
7370 @option{-Wnormalized=nfkc}. This warning is comparable to warning
7371 about every identifier that contains the letter O because it might be
7372 confused with the digit 0, and so is not the default, but may be
7373 useful as a local coding convention if the programming environment
7374 cannot be fixed to display these characters distinctly.
7375
7376 @item -Wno-attribute-warning
7377 @opindex Wno-attribute-warning
7378 @opindex Wattribute-warning
7379 Do not warn about usage of functions (@pxref{Function Attributes})
7380 declared with @code{warning} attribute. By default, this warning is
7381 enabled. @option{-Wno-attribute-warning} can be used to disable the
7382 warning or @option{-Wno-error=attribute-warning} can be used to
7383 disable the error when compiled with @option{-Werror} flag.
7384
7385 @item -Wno-deprecated
7386 @opindex Wno-deprecated
7387 @opindex Wdeprecated
7388 Do not warn about usage of deprecated features. @xref{Deprecated Features}.
7389
7390 @item -Wno-deprecated-declarations
7391 @opindex Wno-deprecated-declarations
7392 @opindex Wdeprecated-declarations
7393 Do not warn about uses of functions (@pxref{Function Attributes}),
7394 variables (@pxref{Variable Attributes}), and types (@pxref{Type
7395 Attributes}) marked as deprecated by using the @code{deprecated}
7396 attribute.
7397
7398 @item -Wno-overflow
7399 @opindex Wno-overflow
7400 @opindex Woverflow
7401 Do not warn about compile-time overflow in constant expressions.
7402
7403 @item -Wno-odr
7404 @opindex Wno-odr
7405 @opindex Wodr
7406 Warn about One Definition Rule violations during link-time optimization.
7407 Enabled by default.
7408
7409 @item -Wopenmp-simd
7410 @opindex Wopenmp-simd
7411 @opindex Wno-openmp-simd
7412 Warn if the vectorizer cost model overrides the OpenMP
7413 simd directive set by user. The @option{-fsimd-cost-model=unlimited}
7414 option can be used to relax the cost model.
7415
7416 @item -Woverride-init @r{(C and Objective-C only)}
7417 @opindex Woverride-init
7418 @opindex Wno-override-init
7419 @opindex W
7420 @opindex Wextra
7421 @opindex Wno-extra
7422 Warn if an initialized field without side effects is overridden when
7423 using designated initializers (@pxref{Designated Inits, , Designated
7424 Initializers}).
7425
7426 This warning is included in @option{-Wextra}. To get other
7427 @option{-Wextra} warnings without this one, use @option{-Wextra
7428 -Wno-override-init}.
7429
7430 @item -Woverride-init-side-effects @r{(C and Objective-C only)}
7431 @opindex Woverride-init-side-effects
7432 @opindex Wno-override-init-side-effects
7433 Warn if an initialized field with side effects is overridden when
7434 using designated initializers (@pxref{Designated Inits, , Designated
7435 Initializers}). This warning is enabled by default.
7436
7437 @item -Wpacked
7438 @opindex Wpacked
7439 @opindex Wno-packed
7440 Warn if a structure is given the packed attribute, but the packed
7441 attribute has no effect on the layout or size of the structure.
7442 Such structures may be mis-aligned for little benefit. For
7443 instance, in this code, the variable @code{f.x} in @code{struct bar}
7444 is misaligned even though @code{struct bar} does not itself
7445 have the packed attribute:
7446
7447 @smallexample
7448 @group
7449 struct foo @{
7450 int x;
7451 char a, b, c, d;
7452 @} __attribute__((packed));
7453 struct bar @{
7454 char z;
7455 struct foo f;
7456 @};
7457 @end group
7458 @end smallexample
7459
7460 @item -Wpacked-bitfield-compat
7461 @opindex Wpacked-bitfield-compat
7462 @opindex Wno-packed-bitfield-compat
7463 The 4.1, 4.2 and 4.3 series of GCC ignore the @code{packed} attribute
7464 on bit-fields of type @code{char}. This has been fixed in GCC 4.4 but
7465 the change can lead to differences in the structure layout. GCC
7466 informs you when the offset of such a field has changed in GCC 4.4.
7467 For example there is no longer a 4-bit padding between field @code{a}
7468 and @code{b} in this structure:
7469
7470 @smallexample
7471 struct foo
7472 @{
7473 char a:4;
7474 char b:8;
7475 @} __attribute__ ((packed));
7476 @end smallexample
7477
7478 This warning is enabled by default. Use
7479 @option{-Wno-packed-bitfield-compat} to disable this warning.
7480
7481 @item -Wpacked-not-aligned @r{(C, C++, Objective-C and Objective-C++ only)}
7482 @opindex Wpacked-not-aligned
7483 @opindex Wno-packed-not-aligned
7484 Warn if a structure field with explicitly specified alignment in a
7485 packed struct or union is misaligned. For example, a warning will
7486 be issued on @code{struct S}, like, @code{warning: alignment 1 of
7487 'struct S' is less than 8}, in this code:
7488
7489 @smallexample
7490 @group
7491 struct __attribute__ ((aligned (8))) S8 @{ char a[8]; @};
7492 struct __attribute__ ((packed)) S @{
7493 struct S8 s8;
7494 @};
7495 @end group
7496 @end smallexample
7497
7498 This warning is enabled by @option{-Wall}.
7499
7500 @item -Wpadded
7501 @opindex Wpadded
7502 @opindex Wno-padded
7503 Warn if padding is included in a structure, either to align an element
7504 of the structure or to align the whole structure. Sometimes when this
7505 happens it is possible to rearrange the fields of the structure to
7506 reduce the padding and so make the structure smaller.
7507
7508 @item -Wredundant-decls
7509 @opindex Wredundant-decls
7510 @opindex Wno-redundant-decls
7511 Warn if anything is declared more than once in the same scope, even in
7512 cases where multiple declaration is valid and changes nothing.
7513
7514 @item -Wno-restrict
7515 @opindex Wrestrict
7516 @opindex Wno-restrict
7517 Warn when an object referenced by a @code{restrict}-qualified parameter
7518 (or, in C++, a @code{__restrict}-qualified parameter) is aliased by another
7519 argument, or when copies between such objects overlap. For example,
7520 the call to the @code{strcpy} function below attempts to truncate the string
7521 by replacing its initial characters with the last four. However, because
7522 the call writes the terminating NUL into @code{a[4]}, the copies overlap and
7523 the call is diagnosed.
7524
7525 @smallexample
7526 void foo (void)
7527 @{
7528 char a[] = "abcd1234";
7529 strcpy (a, a + 4);
7530 @dots{}
7531 @}
7532 @end smallexample
7533 The @option{-Wrestrict} option detects some instances of simple overlap
7534 even without optimization but works best at @option{-O2} and above. It
7535 is included in @option{-Wall}.
7536
7537 @item -Wnested-externs @r{(C and Objective-C only)}
7538 @opindex Wnested-externs
7539 @opindex Wno-nested-externs
7540 Warn if an @code{extern} declaration is encountered within a function.
7541
7542 @item -Wno-inherited-variadic-ctor
7543 @opindex Winherited-variadic-ctor
7544 @opindex Wno-inherited-variadic-ctor
7545 Suppress warnings about use of C++11 inheriting constructors when the
7546 base class inherited from has a C variadic constructor; the warning is
7547 on by default because the ellipsis is not inherited.
7548
7549 @item -Winline
7550 @opindex Winline
7551 @opindex Wno-inline
7552 Warn if a function that is declared as inline cannot be inlined.
7553 Even with this option, the compiler does not warn about failures to
7554 inline functions declared in system headers.
7555
7556 The compiler uses a variety of heuristics to determine whether or not
7557 to inline a function. For example, the compiler takes into account
7558 the size of the function being inlined and the amount of inlining
7559 that has already been done in the current function. Therefore,
7560 seemingly insignificant changes in the source program can cause the
7561 warnings produced by @option{-Winline} to appear or disappear.
7562
7563 @item -Wno-invalid-offsetof @r{(C++ and Objective-C++ only)}
7564 @opindex Wno-invalid-offsetof
7565 @opindex Winvalid-offsetof
7566 Suppress warnings from applying the @code{offsetof} macro to a non-POD
7567 type. According to the 2014 ISO C++ standard, applying @code{offsetof}
7568 to a non-standard-layout type is undefined. In existing C++ implementations,
7569 however, @code{offsetof} typically gives meaningful results.
7570 This flag is for users who are aware that they are
7571 writing nonportable code and who have deliberately chosen to ignore the
7572 warning about it.
7573
7574 The restrictions on @code{offsetof} may be relaxed in a future version
7575 of the C++ standard.
7576
7577 @item -Wint-in-bool-context
7578 @opindex Wint-in-bool-context
7579 @opindex Wno-int-in-bool-context
7580 Warn for suspicious use of integer values where boolean values are expected,
7581 such as conditional expressions (?:) using non-boolean integer constants in
7582 boolean context, like @code{if (a <= b ? 2 : 3)}. Or left shifting of signed
7583 integers in boolean context, like @code{for (a = 0; 1 << a; a++);}. Likewise
7584 for all kinds of multiplications regardless of the data type.
7585 This warning is enabled by @option{-Wall}.
7586
7587 @item -Wno-int-to-pointer-cast
7588 @opindex Wno-int-to-pointer-cast
7589 @opindex Wint-to-pointer-cast
7590 Suppress warnings from casts to pointer type of an integer of a
7591 different size. In C++, casting to a pointer type of smaller size is
7592 an error. @option{Wint-to-pointer-cast} is enabled by default.
7593
7594
7595 @item -Wno-pointer-to-int-cast @r{(C and Objective-C only)}
7596 @opindex Wno-pointer-to-int-cast
7597 @opindex Wpointer-to-int-cast
7598 Suppress warnings from casts from a pointer to an integer type of a
7599 different size.
7600
7601 @item -Winvalid-pch
7602 @opindex Winvalid-pch
7603 @opindex Wno-invalid-pch
7604 Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
7605 the search path but cannot be used.
7606
7607 @item -Wlong-long
7608 @opindex Wlong-long
7609 @opindex Wno-long-long
7610 Warn if @code{long long} type is used. This is enabled by either
7611 @option{-Wpedantic} or @option{-Wtraditional} in ISO C90 and C++98
7612 modes. To inhibit the warning messages, use @option{-Wno-long-long}.
7613
7614 @item -Wvariadic-macros
7615 @opindex Wvariadic-macros
7616 @opindex Wno-variadic-macros
7617 Warn if variadic macros are used in ISO C90 mode, or if the GNU
7618 alternate syntax is used in ISO C99 mode. This is enabled by either
7619 @option{-Wpedantic} or @option{-Wtraditional}. To inhibit the warning
7620 messages, use @option{-Wno-variadic-macros}.
7621
7622 @item -Wvarargs
7623 @opindex Wvarargs
7624 @opindex Wno-varargs
7625 Warn upon questionable usage of the macros used to handle variable
7626 arguments like @code{va_start}. This is default. To inhibit the
7627 warning messages, use @option{-Wno-varargs}.
7628
7629 @item -Wvector-operation-performance
7630 @opindex Wvector-operation-performance
7631 @opindex Wno-vector-operation-performance
7632 Warn if vector operation is not implemented via SIMD capabilities of the
7633 architecture. Mainly useful for the performance tuning.
7634 Vector operation can be implemented @code{piecewise}, which means that the
7635 scalar operation is performed on every vector element;
7636 @code{in parallel}, which means that the vector operation is implemented
7637 using scalars of wider type, which normally is more performance efficient;
7638 and @code{as a single scalar}, which means that vector fits into a
7639 scalar type.
7640
7641 @item -Wno-virtual-move-assign
7642 @opindex Wvirtual-move-assign
7643 @opindex Wno-virtual-move-assign
7644 Suppress warnings about inheriting from a virtual base with a
7645 non-trivial C++11 move assignment operator. This is dangerous because
7646 if the virtual base is reachable along more than one path, it is
7647 moved multiple times, which can mean both objects end up in the
7648 moved-from state. If the move assignment operator is written to avoid
7649 moving from a moved-from object, this warning can be disabled.
7650
7651 @item -Wvla
7652 @opindex Wvla
7653 @opindex Wno-vla
7654 Warn if a variable-length array is used in the code.
7655 @option{-Wno-vla} prevents the @option{-Wpedantic} warning of
7656 the variable-length array.
7657
7658 @item -Wvla-larger-than=@var{byte-size}
7659 @opindex Wvla-larger-than=
7660 @opindex Wno-vla-larger-than
7661 If this option is used, the compiler will warn for declarations of
7662 variable-length arrays whose size is either unbounded, or bounded
7663 by an argument that allows the array size to exceed @var{byte-size}
7664 bytes. This is similar to how @option{-Walloca-larger-than=}@var{byte-size}
7665 works, but with variable-length arrays.
7666
7667 Note that GCC may optimize small variable-length arrays of a known
7668 value into plain arrays, so this warning may not get triggered for
7669 such arrays.
7670
7671 @option{-Wvla-larger-than=}@samp{PTRDIFF_MAX} is enabled by default but
7672 is typically only effective when @option{-ftree-vrp} is active (default
7673 for @option{-O2} and above).
7674
7675 See also @option{-Walloca-larger-than=@var{byte-size}}.
7676
7677 @item -Wno-vla-larger-than
7678 @opindex Wno-vla-larger-than
7679 Disable @option{-Wvla-larger-than=} warnings. The option is equivalent
7680 to @option{-Wvla-larger-than=}@samp{SIZE_MAX} or larger.
7681
7682 @item -Wvolatile-register-var
7683 @opindex Wvolatile-register-var
7684 @opindex Wno-volatile-register-var
7685 Warn if a register variable is declared volatile. The volatile
7686 modifier does not inhibit all optimizations that may eliminate reads
7687 and/or writes to register variables. This warning is enabled by
7688 @option{-Wall}.
7689
7690 @item -Wdisabled-optimization
7691 @opindex Wdisabled-optimization
7692 @opindex Wno-disabled-optimization
7693 Warn if a requested optimization pass is disabled. This warning does
7694 not generally indicate that there is anything wrong with your code; it
7695 merely indicates that GCC's optimizers are unable to handle the code
7696 effectively. Often, the problem is that your code is too big or too
7697 complex; GCC refuses to optimize programs when the optimization
7698 itself is likely to take inordinate amounts of time.
7699
7700 @item -Wpointer-sign @r{(C and Objective-C only)}
7701 @opindex Wpointer-sign
7702 @opindex Wno-pointer-sign
7703 Warn for pointer argument passing or assignment with different signedness.
7704 This option is only supported for C and Objective-C@. It is implied by
7705 @option{-Wall} and by @option{-Wpedantic}, which can be disabled with
7706 @option{-Wno-pointer-sign}.
7707
7708 @item -Wstack-protector
7709 @opindex Wstack-protector
7710 @opindex Wno-stack-protector
7711 This option is only active when @option{-fstack-protector} is active. It
7712 warns about functions that are not protected against stack smashing.
7713
7714 @item -Woverlength-strings
7715 @opindex Woverlength-strings
7716 @opindex Wno-overlength-strings
7717 Warn about string constants that are longer than the ``minimum
7718 maximum'' length specified in the C standard. Modern compilers
7719 generally allow string constants that are much longer than the
7720 standard's minimum limit, but very portable programs should avoid
7721 using longer strings.
7722
7723 The limit applies @emph{after} string constant concatenation, and does
7724 not count the trailing NUL@. In C90, the limit was 509 characters; in
7725 C99, it was raised to 4095. C++98 does not specify a normative
7726 minimum maximum, so we do not diagnose overlength strings in C++@.
7727
7728 This option is implied by @option{-Wpedantic}, and can be disabled with
7729 @option{-Wno-overlength-strings}.
7730
7731 @item -Wunsuffixed-float-constants @r{(C and Objective-C only)}
7732 @opindex Wunsuffixed-float-constants
7733 @opindex Wno-unsuffixed-float-constants
7734
7735 Issue a warning for any floating constant that does not have
7736 a suffix. When used together with @option{-Wsystem-headers} it
7737 warns about such constants in system header files. This can be useful
7738 when preparing code to use with the @code{FLOAT_CONST_DECIMAL64} pragma
7739 from the decimal floating-point extension to C99.
7740
7741 @item -Wno-designated-init @r{(C and Objective-C only)}
7742 Suppress warnings when a positional initializer is used to initialize
7743 a structure that has been marked with the @code{designated_init}
7744 attribute.
7745
7746 @item -Whsa
7747 Issue a warning when HSAIL cannot be emitted for the compiled function or
7748 OpenMP construct.
7749
7750 @end table
7751
7752 @node Debugging Options
7753 @section Options for Debugging Your Program
7754 @cindex options, debugging
7755 @cindex debugging information options
7756
7757 To tell GCC to emit extra information for use by a debugger, in almost
7758 all cases you need only to add @option{-g} to your other options.
7759
7760 GCC allows you to use @option{-g} with
7761 @option{-O}. The shortcuts taken by optimized code may occasionally
7762 be surprising: some variables you declared may not exist
7763 at all; flow of control may briefly move where you did not expect it;
7764 some statements may not be executed because they compute constant
7765 results or their values are already at hand; some statements may
7766 execute in different places because they have been moved out of loops.
7767 Nevertheless it is possible to debug optimized output. This makes
7768 it reasonable to use the optimizer for programs that might have bugs.
7769
7770 If you are not using some other optimization option, consider
7771 using @option{-Og} (@pxref{Optimize Options}) with @option{-g}.
7772 With no @option{-O} option at all, some compiler passes that collect
7773 information useful for debugging do not run at all, so that
7774 @option{-Og} may result in a better debugging experience.
7775
7776 @table @gcctabopt
7777 @item -g
7778 @opindex g
7779 Produce debugging information in the operating system's native format
7780 (stabs, COFF, XCOFF, or DWARF)@. GDB can work with this debugging
7781 information.
7782
7783 On most systems that use stabs format, @option{-g} enables use of extra
7784 debugging information that only GDB can use; this extra information
7785 makes debugging work better in GDB but probably makes other debuggers
7786 crash or
7787 refuse to read the program. If you want to control for certain whether
7788 to generate the extra information, use @option{-gstabs+}, @option{-gstabs},
7789 @option{-gxcoff+}, @option{-gxcoff}, or @option{-gvms} (see below).
7790
7791 @item -ggdb
7792 @opindex ggdb
7793 Produce debugging information for use by GDB@. This means to use the
7794 most expressive format available (DWARF, stabs, or the native format
7795 if neither of those are supported), including GDB extensions if at all
7796 possible.
7797
7798 @item -gdwarf
7799 @itemx -gdwarf-@var{version}
7800 @opindex gdwarf
7801 Produce debugging information in DWARF format (if that is supported).
7802 The value of @var{version} may be either 2, 3, 4 or 5; the default version
7803 for most targets is 4. DWARF Version 5 is only experimental.
7804
7805 Note that with DWARF Version 2, some ports require and always
7806 use some non-conflicting DWARF 3 extensions in the unwind tables.
7807
7808 Version 4 may require GDB 7.0 and @option{-fvar-tracking-assignments}
7809 for maximum benefit.
7810
7811 GCC no longer supports DWARF Version 1, which is substantially
7812 different than Version 2 and later. For historical reasons, some
7813 other DWARF-related options such as
7814 @option{-fno-dwarf2-cfi-asm}) retain a reference to DWARF Version 2
7815 in their names, but apply to all currently-supported versions of DWARF.
7816
7817 @item -gstabs
7818 @opindex gstabs
7819 Produce debugging information in stabs format (if that is supported),
7820 without GDB extensions. This is the format used by DBX on most BSD
7821 systems. On MIPS, Alpha and System V Release 4 systems this option
7822 produces stabs debugging output that is not understood by DBX@.
7823 On System V Release 4 systems this option requires the GNU assembler.
7824
7825 @item -gstabs+
7826 @opindex gstabs+
7827 Produce debugging information in stabs format (if that is supported),
7828 using GNU extensions understood only by the GNU debugger (GDB)@. The
7829 use of these extensions is likely to make other debuggers crash or
7830 refuse to read the program.
7831
7832 @item -gxcoff
7833 @opindex gxcoff
7834 Produce debugging information in XCOFF format (if that is supported).
7835 This is the format used by the DBX debugger on IBM RS/6000 systems.
7836
7837 @item -gxcoff+
7838 @opindex gxcoff+
7839 Produce debugging information in XCOFF format (if that is supported),
7840 using GNU extensions understood only by the GNU debugger (GDB)@. The
7841 use of these extensions is likely to make other debuggers crash or
7842 refuse to read the program, and may cause assemblers other than the GNU
7843 assembler (GAS) to fail with an error.
7844
7845 @item -gvms
7846 @opindex gvms
7847 Produce debugging information in Alpha/VMS debug format (if that is
7848 supported). This is the format used by DEBUG on Alpha/VMS systems.
7849
7850 @item -g@var{level}
7851 @itemx -ggdb@var{level}
7852 @itemx -gstabs@var{level}
7853 @itemx -gxcoff@var{level}
7854 @itemx -gvms@var{level}
7855 Request debugging information and also use @var{level} to specify how
7856 much information. The default level is 2.
7857
7858 Level 0 produces no debug information at all. Thus, @option{-g0} negates
7859 @option{-g}.
7860
7861 Level 1 produces minimal information, enough for making backtraces in
7862 parts of the program that you don't plan to debug. This includes
7863 descriptions of functions and external variables, and line number
7864 tables, but no information about local variables.
7865
7866 Level 3 includes extra information, such as all the macro definitions
7867 present in the program. Some debuggers support macro expansion when
7868 you use @option{-g3}.
7869
7870 If you use multiple @option{-g} options, with or without level numbers,
7871 the last such option is the one that is effective.
7872
7873 @option{-gdwarf} does not accept a concatenated debug level, to avoid
7874 confusion with @option{-gdwarf-@var{level}}.
7875 Instead use an additional @option{-g@var{level}} option to change the
7876 debug level for DWARF.
7877
7878 @item -fno-eliminate-unused-debug-symbols
7879 @opindex feliminate-unused-debug-symbols
7880 @opindex fno-eliminate-unused-debug-symbols
7881 By default, no debug information is produced for symbols that are not actually
7882 used. Use this option if you want debug information for all symbols.
7883
7884 @item -femit-class-debug-always
7885 @opindex femit-class-debug-always
7886 Instead of emitting debugging information for a C++ class in only one
7887 object file, emit it in all object files using the class. This option
7888 should be used only with debuggers that are unable to handle the way GCC
7889 normally emits debugging information for classes because using this
7890 option increases the size of debugging information by as much as a
7891 factor of two.
7892
7893 @item -fno-merge-debug-strings
7894 @opindex fmerge-debug-strings
7895 @opindex fno-merge-debug-strings
7896 Direct the linker to not merge together strings in the debugging
7897 information that are identical in different object files. Merging is
7898 not supported by all assemblers or linkers. Merging decreases the size
7899 of the debug information in the output file at the cost of increasing
7900 link processing time. Merging is enabled by default.
7901
7902 @item -fdebug-prefix-map=@var{old}=@var{new}
7903 @opindex fdebug-prefix-map
7904 When compiling files residing in directory @file{@var{old}}, record
7905 debugging information describing them as if the files resided in
7906 directory @file{@var{new}} instead. This can be used to replace a
7907 build-time path with an install-time path in the debug info. It can
7908 also be used to change an absolute path to a relative path by using
7909 @file{.} for @var{new}. This can give more reproducible builds, which
7910 are location independent, but may require an extra command to tell GDB
7911 where to find the source files. See also @option{-ffile-prefix-map}.
7912
7913 @item -fvar-tracking
7914 @opindex fvar-tracking
7915 Run variable tracking pass. It computes where variables are stored at each
7916 position in code. Better debugging information is then generated
7917 (if the debugging information format supports this information).
7918
7919 It is enabled by default when compiling with optimization (@option{-Os},
7920 @option{-O}, @option{-O2}, @dots{}), debugging information (@option{-g}) and
7921 the debug info format supports it.
7922
7923 @item -fvar-tracking-assignments
7924 @opindex fvar-tracking-assignments
7925 @opindex fno-var-tracking-assignments
7926 Annotate assignments to user variables early in the compilation and
7927 attempt to carry the annotations over throughout the compilation all the
7928 way to the end, in an attempt to improve debug information while
7929 optimizing. Use of @option{-gdwarf-4} is recommended along with it.
7930
7931 It can be enabled even if var-tracking is disabled, in which case
7932 annotations are created and maintained, but discarded at the end.
7933 By default, this flag is enabled together with @option{-fvar-tracking},
7934 except when selective scheduling is enabled.
7935
7936 @item -gsplit-dwarf
7937 @opindex gsplit-dwarf
7938 Separate as much DWARF debugging information as possible into a
7939 separate output file with the extension @file{.dwo}. This option allows
7940 the build system to avoid linking files with debug information. To
7941 be useful, this option requires a debugger capable of reading @file{.dwo}
7942 files.
7943
7944 @item -gdescribe-dies
7945 @opindex gdescribe-dies
7946 Add description attributes to some DWARF DIEs that have no name attribute,
7947 such as artificial variables, external references and call site
7948 parameter DIEs.
7949
7950 @item -gpubnames
7951 @opindex gpubnames
7952 Generate DWARF @code{.debug_pubnames} and @code{.debug_pubtypes} sections.
7953
7954 @item -ggnu-pubnames
7955 @opindex ggnu-pubnames
7956 Generate @code{.debug_pubnames} and @code{.debug_pubtypes} sections in a format
7957 suitable for conversion into a GDB@ index. This option is only useful
7958 with a linker that can produce GDB@ index version 7.
7959
7960 @item -fdebug-types-section
7961 @opindex fdebug-types-section
7962 @opindex fno-debug-types-section
7963 When using DWARF Version 4 or higher, type DIEs can be put into
7964 their own @code{.debug_types} section instead of making them part of the
7965 @code{.debug_info} section. It is more efficient to put them in a separate
7966 comdat section since the linker can then remove duplicates.
7967 But not all DWARF consumers support @code{.debug_types} sections yet
7968 and on some objects @code{.debug_types} produces larger instead of smaller
7969 debugging information.
7970
7971 @item -grecord-gcc-switches
7972 @itemx -gno-record-gcc-switches
7973 @opindex grecord-gcc-switches
7974 @opindex gno-record-gcc-switches
7975 This switch causes the command-line options used to invoke the
7976 compiler that may affect code generation to be appended to the
7977 DW_AT_producer attribute in DWARF debugging information. The options
7978 are concatenated with spaces separating them from each other and from
7979 the compiler version.
7980 It is enabled by default.
7981 See also @option{-frecord-gcc-switches} for another
7982 way of storing compiler options into the object file.
7983
7984 @item -gstrict-dwarf
7985 @opindex gstrict-dwarf
7986 Disallow using extensions of later DWARF standard version than selected
7987 with @option{-gdwarf-@var{version}}. On most targets using non-conflicting
7988 DWARF extensions from later standard versions is allowed.
7989
7990 @item -gno-strict-dwarf
7991 @opindex gno-strict-dwarf
7992 Allow using extensions of later DWARF standard version than selected with
7993 @option{-gdwarf-@var{version}}.
7994
7995 @item -gas-loc-support
7996 @opindex gas-loc-support
7997 Inform the compiler that the assembler supports @code{.loc} directives.
7998 It may then use them for the assembler to generate DWARF2+ line number
7999 tables.
8000
8001 This is generally desirable, because assembler-generated line-number
8002 tables are a lot more compact than those the compiler can generate
8003 itself.
8004
8005 This option will be enabled by default if, at GCC configure time, the
8006 assembler was found to support such directives.
8007
8008 @item -gno-as-loc-support
8009 @opindex gno-as-loc-support
8010 Force GCC to generate DWARF2+ line number tables internally, if DWARF2+
8011 line number tables are to be generated.
8012
8013 @item -gas-locview-support
8014 @opindex gas-locview-support
8015 Inform the compiler that the assembler supports @code{view} assignment
8016 and reset assertion checking in @code{.loc} directives.
8017
8018 This option will be enabled by default if, at GCC configure time, the
8019 assembler was found to support them.
8020
8021 @item -gno-as-locview-support
8022 Force GCC to assign view numbers internally, if
8023 @option{-gvariable-location-views} are explicitly requested.
8024
8025 @item -gcolumn-info
8026 @itemx -gno-column-info
8027 @opindex gcolumn-info
8028 @opindex gno-column-info
8029 Emit location column information into DWARF debugging information, rather
8030 than just file and line.
8031 This option is enabled by default.
8032
8033 @item -gstatement-frontiers
8034 @itemx -gno-statement-frontiers
8035 @opindex gstatement-frontiers
8036 @opindex gno-statement-frontiers
8037 This option causes GCC to create markers in the internal representation
8038 at the beginning of statements, and to keep them roughly in place
8039 throughout compilation, using them to guide the output of @code{is_stmt}
8040 markers in the line number table. This is enabled by default when
8041 compiling with optimization (@option{-Os}, @option{-O}, @option{-O2},
8042 @dots{}), and outputting DWARF 2 debug information at the normal level.
8043
8044 @item -gvariable-location-views
8045 @itemx -gvariable-location-views=incompat5
8046 @itemx -gno-variable-location-views
8047 @opindex gvariable-location-views
8048 @opindex gvariable-location-views=incompat5
8049 @opindex gno-variable-location-views
8050 Augment variable location lists with progressive view numbers implied
8051 from the line number table. This enables debug information consumers to
8052 inspect state at certain points of the program, even if no instructions
8053 associated with the corresponding source locations are present at that
8054 point. If the assembler lacks support for view numbers in line number
8055 tables, this will cause the compiler to emit the line number table,
8056 which generally makes them somewhat less compact. The augmented line
8057 number tables and location lists are fully backward-compatible, so they
8058 can be consumed by debug information consumers that are not aware of
8059 these augmentations, but they won't derive any benefit from them either.
8060
8061 This is enabled by default when outputting DWARF 2 debug information at
8062 the normal level, as long as there is assembler support,
8063 @option{-fvar-tracking-assignments} is enabled and
8064 @option{-gstrict-dwarf} is not. When assembler support is not
8065 available, this may still be enabled, but it will force GCC to output
8066 internal line number tables, and if
8067 @option{-ginternal-reset-location-views} is not enabled, that will most
8068 certainly lead to silently mismatching location views.
8069
8070 There is a proposed representation for view numbers that is not backward
8071 compatible with the location list format introduced in DWARF 5, that can
8072 be enabled with @option{-gvariable-location-views=incompat5}. This
8073 option may be removed in the future, is only provided as a reference
8074 implementation of the proposed representation. Debug information
8075 consumers are not expected to support this extended format, and they
8076 would be rendered unable to decode location lists using it.
8077
8078 @item -ginternal-reset-location-views
8079 @itemx -gnointernal-reset-location-views
8080 @opindex ginternal-reset-location-views
8081 @opindex gno-internal-reset-location-views
8082 Attempt to determine location views that can be omitted from location
8083 view lists. This requires the compiler to have very accurate insn
8084 length estimates, which isn't always the case, and it may cause
8085 incorrect view lists to be generated silently when using an assembler
8086 that does not support location view lists. The GNU assembler will flag
8087 any such error as a @code{view number mismatch}. This is only enabled
8088 on ports that define a reliable estimation function.
8089
8090 @item -ginline-points
8091 @itemx -gno-inline-points
8092 @opindex ginline-points
8093 @opindex gno-inline-points
8094 Generate extended debug information for inlined functions. Location
8095 view tracking markers are inserted at inlined entry points, so that
8096 address and view numbers can be computed and output in debug
8097 information. This can be enabled independently of location views, in
8098 which case the view numbers won't be output, but it can only be enabled
8099 along with statement frontiers, and it is only enabled by default if
8100 location views are enabled.
8101
8102 @item -gz@r{[}=@var{type}@r{]}
8103 @opindex gz
8104 Produce compressed debug sections in DWARF format, if that is supported.
8105 If @var{type} is not given, the default type depends on the capabilities
8106 of the assembler and linker used. @var{type} may be one of
8107 @samp{none} (don't compress debug sections), @samp{zlib} (use zlib
8108 compression in ELF gABI format), or @samp{zlib-gnu} (use zlib
8109 compression in traditional GNU format). If the linker doesn't support
8110 writing compressed debug sections, the option is rejected. Otherwise,
8111 if the assembler does not support them, @option{-gz} is silently ignored
8112 when producing object files.
8113
8114 @item -femit-struct-debug-baseonly
8115 @opindex femit-struct-debug-baseonly
8116 Emit debug information for struct-like types
8117 only when the base name of the compilation source file
8118 matches the base name of file in which the struct is defined.
8119
8120 This option substantially reduces the size of debugging information,
8121 but at significant potential loss in type information to the debugger.
8122 See @option{-femit-struct-debug-reduced} for a less aggressive option.
8123 See @option{-femit-struct-debug-detailed} for more detailed control.
8124
8125 This option works only with DWARF debug output.
8126
8127 @item -femit-struct-debug-reduced
8128 @opindex femit-struct-debug-reduced
8129 Emit debug information for struct-like types
8130 only when the base name of the compilation source file
8131 matches the base name of file in which the type is defined,
8132 unless the struct is a template or defined in a system header.
8133
8134 This option significantly reduces the size of debugging information,
8135 with some potential loss in type information to the debugger.
8136 See @option{-femit-struct-debug-baseonly} for a more aggressive option.
8137 See @option{-femit-struct-debug-detailed} for more detailed control.
8138
8139 This option works only with DWARF debug output.
8140
8141 @item -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]}
8142 @opindex femit-struct-debug-detailed
8143 Specify the struct-like types
8144 for which the compiler generates debug information.
8145 The intent is to reduce duplicate struct debug information
8146 between different object files within the same program.
8147
8148 This option is a detailed version of
8149 @option{-femit-struct-debug-reduced} and @option{-femit-struct-debug-baseonly},
8150 which serves for most needs.
8151
8152 A specification has the syntax@*
8153 [@samp{dir:}|@samp{ind:}][@samp{ord:}|@samp{gen:}](@samp{any}|@samp{sys}|@samp{base}|@samp{none})
8154
8155 The optional first word limits the specification to
8156 structs that are used directly (@samp{dir:}) or used indirectly (@samp{ind:}).
8157 A struct type is used directly when it is the type of a variable, member.
8158 Indirect uses arise through pointers to structs.
8159 That is, when use of an incomplete struct is valid, the use is indirect.
8160 An example is
8161 @samp{struct one direct; struct two * indirect;}.
8162
8163 The optional second word limits the specification to
8164 ordinary structs (@samp{ord:}) or generic structs (@samp{gen:}).
8165 Generic structs are a bit complicated to explain.
8166 For C++, these are non-explicit specializations of template classes,
8167 or non-template classes within the above.
8168 Other programming languages have generics,
8169 but @option{-femit-struct-debug-detailed} does not yet implement them.
8170
8171 The third word specifies the source files for those
8172 structs for which the compiler should emit debug information.
8173 The values @samp{none} and @samp{any} have the normal meaning.
8174 The value @samp{base} means that
8175 the base of name of the file in which the type declaration appears
8176 must match the base of the name of the main compilation file.
8177 In practice, this means that when compiling @file{foo.c}, debug information
8178 is generated for types declared in that file and @file{foo.h},
8179 but not other header files.
8180 The value @samp{sys} means those types satisfying @samp{base}
8181 or declared in system or compiler headers.
8182
8183 You may need to experiment to determine the best settings for your application.
8184
8185 The default is @option{-femit-struct-debug-detailed=all}.
8186
8187 This option works only with DWARF debug output.
8188
8189 @item -fno-dwarf2-cfi-asm
8190 @opindex fdwarf2-cfi-asm
8191 @opindex fno-dwarf2-cfi-asm
8192 Emit DWARF unwind info as compiler generated @code{.eh_frame} section
8193 instead of using GAS @code{.cfi_*} directives.
8194
8195 @item -fno-eliminate-unused-debug-types
8196 @opindex feliminate-unused-debug-types
8197 @opindex fno-eliminate-unused-debug-types
8198 Normally, when producing DWARF output, GCC avoids producing debug symbol
8199 output for types that are nowhere used in the source file being compiled.
8200 Sometimes it is useful to have GCC emit debugging
8201 information for all types declared in a compilation
8202 unit, regardless of whether or not they are actually used
8203 in that compilation unit, for example
8204 if, in the debugger, you want to cast a value to a type that is
8205 not actually used in your program (but is declared). More often,
8206 however, this results in a significant amount of wasted space.
8207 @end table
8208
8209 @node Optimize Options
8210 @section Options That Control Optimization
8211 @cindex optimize options
8212 @cindex options, optimization
8213
8214 These options control various sorts of optimizations.
8215
8216 Without any optimization option, the compiler's goal is to reduce the
8217 cost of compilation and to make debugging produce the expected
8218 results. Statements are independent: if you stop the program with a
8219 breakpoint between statements, you can then assign a new value to any
8220 variable or change the program counter to any other statement in the
8221 function and get exactly the results you expect from the source
8222 code.
8223
8224 Turning on optimization flags makes the compiler attempt to improve
8225 the performance and/or code size at the expense of compilation time
8226 and possibly the ability to debug the program.
8227
8228 The compiler performs optimization based on the knowledge it has of the
8229 program. Compiling multiple files at once to a single output file mode allows
8230 the compiler to use information gained from all of the files when compiling
8231 each of them.
8232
8233 Not all optimizations are controlled directly by a flag. Only
8234 optimizations that have a flag are listed in this section.
8235
8236 Most optimizations are completely disabled at @option{-O0} or if an
8237 @option{-O} level is not set on the command line, even if individual
8238 optimization flags are specified. Similarly, @option{-Og} suppresses
8239 many optimization passes.
8240
8241 Depending on the target and how GCC was configured, a slightly different
8242 set of optimizations may be enabled at each @option{-O} level than
8243 those listed here. You can invoke GCC with @option{-Q --help=optimizers}
8244 to find out the exact set of optimizations that are enabled at each level.
8245 @xref{Overall Options}, for examples.
8246
8247 @table @gcctabopt
8248 @item -O
8249 @itemx -O1
8250 @opindex O
8251 @opindex O1
8252 Optimize. Optimizing compilation takes somewhat more time, and a lot
8253 more memory for a large function.
8254
8255 With @option{-O}, the compiler tries to reduce code size and execution
8256 time, without performing any optimizations that take a great deal of
8257 compilation time.
8258
8259 @c Note that in addition to the default_options_table list in opts.c,
8260 @c several optimization flags default to true but control optimization
8261 @c passes that are explicitly disabled at -O0.
8262
8263 @option{-O} turns on the following optimization flags:
8264
8265 @c Please keep the following list alphabetized.
8266 @gccoptlist{-fauto-inc-dec @gol
8267 -fbranch-count-reg @gol
8268 -fcombine-stack-adjustments @gol
8269 -fcompare-elim @gol
8270 -fcprop-registers @gol
8271 -fdce @gol
8272 -fdefer-pop @gol
8273 -fdelayed-branch @gol
8274 -fdse @gol
8275 -fforward-propagate @gol
8276 -fguess-branch-probability @gol
8277 -fif-conversion @gol
8278 -fif-conversion2 @gol
8279 -finline-functions-called-once @gol
8280 -fipa-profile @gol
8281 -fipa-pure-const @gol
8282 -fipa-reference @gol
8283 -fipa-reference-addressable @gol
8284 -fmerge-constants @gol
8285 -fmove-loop-invariants @gol
8286 -fomit-frame-pointer @gol
8287 -freorder-blocks @gol
8288 -fshrink-wrap @gol
8289 -fshrink-wrap-separate @gol
8290 -fsplit-wide-types @gol
8291 -fssa-backprop @gol
8292 -fssa-phiopt @gol
8293 -ftree-bit-ccp @gol
8294 -ftree-ccp @gol
8295 -ftree-ch @gol
8296 -ftree-coalesce-vars @gol
8297 -ftree-copy-prop @gol
8298 -ftree-dce @gol
8299 -ftree-dominator-opts @gol
8300 -ftree-dse @gol
8301 -ftree-forwprop @gol
8302 -ftree-fre @gol
8303 -ftree-phiprop @gol
8304 -ftree-pta @gol
8305 -ftree-scev-cprop @gol
8306 -ftree-sink @gol
8307 -ftree-slsr @gol
8308 -ftree-sra @gol
8309 -ftree-ter @gol
8310 -funit-at-a-time}
8311
8312 @item -O2
8313 @opindex O2
8314 Optimize even more. GCC performs nearly all supported optimizations
8315 that do not involve a space-speed tradeoff.
8316 As compared to @option{-O}, this option increases both compilation time
8317 and the performance of the generated code.
8318
8319 @option{-O2} turns on all optimization flags specified by @option{-O}. It
8320 also turns on the following optimization flags:
8321
8322 @c Please keep the following list alphabetized!
8323 @gccoptlist{-falign-functions -falign-jumps @gol
8324 -falign-labels -falign-loops @gol
8325 -fcaller-saves @gol
8326 -fcode-hoisting @gol
8327 -fcrossjumping @gol
8328 -fcse-follow-jumps -fcse-skip-blocks @gol
8329 -fdelete-null-pointer-checks @gol
8330 -fdevirtualize -fdevirtualize-speculatively @gol
8331 -fexpensive-optimizations @gol
8332 -ffinite-loops @gol
8333 -fgcse -fgcse-lm @gol
8334 -fhoist-adjacent-loads @gol
8335 -finline-small-functions @gol
8336 -findirect-inlining @gol
8337 -fipa-bit-cp -fipa-cp -fipa-icf @gol
8338 -fipa-ra -fipa-sra -fipa-vrp @gol
8339 -fisolate-erroneous-paths-dereference @gol
8340 -flra-remat @gol
8341 -foptimize-sibling-calls @gol
8342 -foptimize-strlen @gol
8343 -fpartial-inlining @gol
8344 -fpeephole2 @gol
8345 -freorder-blocks-algorithm=stc @gol
8346 -freorder-blocks-and-partition -freorder-functions @gol
8347 -frerun-cse-after-loop @gol
8348 -fschedule-insns -fschedule-insns2 @gol
8349 -fsched-interblock -fsched-spec @gol
8350 -fstore-merging @gol
8351 -fstrict-aliasing @gol
8352 -fthread-jumps @gol
8353 -ftree-builtin-call-dce @gol
8354 -ftree-pre @gol
8355 -ftree-switch-conversion -ftree-tail-merge @gol
8356 -ftree-vrp}
8357
8358 Please note the warning under @option{-fgcse} about
8359 invoking @option{-O2} on programs that use computed gotos.
8360
8361 @item -O3
8362 @opindex O3
8363 Optimize yet more. @option{-O3} turns on all optimizations specified
8364 by @option{-O2} and also turns on the following optimization flags:
8365
8366 @c Please keep the following list alphabetized!
8367 @gccoptlist{-fgcse-after-reload @gol
8368 -finline-functions @gol
8369 -fipa-cp-clone
8370 -floop-interchange @gol
8371 -floop-unroll-and-jam @gol
8372 -fpeel-loops @gol
8373 -fpredictive-commoning @gol
8374 -fsplit-paths @gol
8375 -ftree-loop-distribute-patterns @gol
8376 -ftree-loop-distribution @gol
8377 -ftree-loop-vectorize @gol
8378 -ftree-partial-pre @gol
8379 -ftree-slp-vectorize @gol
8380 -funswitch-loops @gol
8381 -fvect-cost-model @gol
8382 -fversion-loops-for-strides}
8383
8384 @item -O0
8385 @opindex O0
8386 Reduce compilation time and make debugging produce the expected
8387 results. This is the default.
8388
8389 @item -Os
8390 @opindex Os
8391 Optimize for size. @option{-Os} enables all @option{-O2} optimizations
8392 except those that often increase code size:
8393
8394 @gccoptlist{-falign-functions -falign-jumps @gol
8395 -falign-labels -falign-loops @gol
8396 -fprefetch-loop-arrays -freorder-blocks-algorithm=stc}
8397
8398 It also enables @option{-finline-functions}, causes the compiler to tune for
8399 code size rather than execution speed, and performs further optimizations
8400 designed to reduce code size.
8401
8402 @item -Ofast
8403 @opindex Ofast
8404 Disregard strict standards compliance. @option{-Ofast} enables all
8405 @option{-O3} optimizations. It also enables optimizations that are not
8406 valid for all standard-compliant programs.
8407 It turns on @option{-ffast-math} and the Fortran-specific
8408 @option{-fstack-arrays}, unless @option{-fmax-stack-var-size} is
8409 specified, and @option{-fno-protect-parens}.
8410
8411 @item -Og
8412 @opindex Og
8413 Optimize debugging experience. @option{-Og} should be the optimization
8414 level of choice for the standard edit-compile-debug cycle, offering
8415 a reasonable level of optimization while maintaining fast compilation
8416 and a good debugging experience. It is a better choice than @option{-O0}
8417 for producing debuggable code because some compiler passes
8418 that collect debug information are disabled at @option{-O0}.
8419
8420 Like @option{-O0}, @option{-Og} completely disables a number of
8421 optimization passes so that individual options controlling them have
8422 no effect. Otherwise @option{-Og} enables all @option{-O1}
8423 optimization flags except for those that may interfere with debugging:
8424
8425 @gccoptlist{-fbranch-count-reg -fdelayed-branch @gol
8426 -fdse -fif-conversion -fif-conversion2 @gol
8427 -finline-functions-called-once @gol
8428 -fmove-loop-invariants -fssa-phiopt @gol
8429 -ftree-bit-ccp -ftree-dse -ftree-pta -ftree-sra}
8430
8431 @end table
8432
8433 If you use multiple @option{-O} options, with or without level numbers,
8434 the last such option is the one that is effective.
8435
8436 Options of the form @option{-f@var{flag}} specify machine-independent
8437 flags. Most flags have both positive and negative forms; the negative
8438 form of @option{-ffoo} is @option{-fno-foo}. In the table
8439 below, only one of the forms is listed---the one you typically
8440 use. You can figure out the other form by either removing @samp{no-}
8441 or adding it.
8442
8443 The following options control specific optimizations. They are either
8444 activated by @option{-O} options or are related to ones that are. You
8445 can use the following flags in the rare cases when ``fine-tuning'' of
8446 optimizations to be performed is desired.
8447
8448 @table @gcctabopt
8449 @item -fno-defer-pop
8450 @opindex fno-defer-pop
8451 @opindex fdefer-pop
8452 For machines that must pop arguments after a function call, always pop
8453 the arguments as soon as each function returns.
8454 At levels @option{-O1} and higher, @option{-fdefer-pop} is the default;
8455 this allows the compiler to let arguments accumulate on the stack for several
8456 function calls and pop them all at once.
8457
8458 @item -fforward-propagate
8459 @opindex fforward-propagate
8460 Perform a forward propagation pass on RTL@. The pass tries to combine two
8461 instructions and checks if the result can be simplified. If loop unrolling
8462 is active, two passes are performed and the second is scheduled after
8463 loop unrolling.
8464
8465 This option is enabled by default at optimization levels @option{-O},
8466 @option{-O2}, @option{-O3}, @option{-Os}.
8467
8468 @item -ffp-contract=@var{style}
8469 @opindex ffp-contract
8470 @option{-ffp-contract=off} disables floating-point expression contraction.
8471 @option{-ffp-contract=fast} enables floating-point expression contraction
8472 such as forming of fused multiply-add operations if the target has
8473 native support for them.
8474 @option{-ffp-contract=on} enables floating-point expression contraction
8475 if allowed by the language standard. This is currently not implemented
8476 and treated equal to @option{-ffp-contract=off}.
8477
8478 The default is @option{-ffp-contract=fast}.
8479
8480 @item -fomit-frame-pointer
8481 @opindex fomit-frame-pointer
8482 Omit the frame pointer in functions that don't need one. This avoids the
8483 instructions to save, set up and restore the frame pointer; on many targets
8484 it also makes an extra register available.
8485
8486 On some targets this flag has no effect because the standard calling sequence
8487 always uses a frame pointer, so it cannot be omitted.
8488
8489 Note that @option{-fno-omit-frame-pointer} doesn't guarantee the frame pointer
8490 is used in all functions. Several targets always omit the frame pointer in
8491 leaf functions.
8492
8493 Enabled by default at @option{-O} and higher.
8494
8495 @item -foptimize-sibling-calls
8496 @opindex foptimize-sibling-calls
8497 Optimize sibling and tail recursive calls.
8498
8499 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8500
8501 @item -foptimize-strlen
8502 @opindex foptimize-strlen
8503 Optimize various standard C string functions (e.g.@: @code{strlen},
8504 @code{strchr} or @code{strcpy}) and
8505 their @code{_FORTIFY_SOURCE} counterparts into faster alternatives.
8506
8507 Enabled at levels @option{-O2}, @option{-O3}.
8508
8509 @item -fno-inline
8510 @opindex fno-inline
8511 @opindex finline
8512 Do not expand any functions inline apart from those marked with
8513 the @code{always_inline} attribute. This is the default when not
8514 optimizing.
8515
8516 Single functions can be exempted from inlining by marking them
8517 with the @code{noinline} attribute.
8518
8519 @item -finline-small-functions
8520 @opindex finline-small-functions
8521 Integrate functions into their callers when their body is smaller than expected
8522 function call code (so overall size of program gets smaller). The compiler
8523 heuristically decides which functions are simple enough to be worth integrating
8524 in this way. This inlining applies to all functions, even those not declared
8525 inline.
8526
8527 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8528
8529 @item -findirect-inlining
8530 @opindex findirect-inlining
8531 Inline also indirect calls that are discovered to be known at compile
8532 time thanks to previous inlining. This option has any effect only
8533 when inlining itself is turned on by the @option{-finline-functions}
8534 or @option{-finline-small-functions} options.
8535
8536 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8537
8538 @item -finline-functions
8539 @opindex finline-functions
8540 Consider all functions for inlining, even if they are not declared inline.
8541 The compiler heuristically decides which functions are worth integrating
8542 in this way.
8543
8544 If all calls to a given function are integrated, and the function is
8545 declared @code{static}, then the function is normally not output as
8546 assembler code in its own right.
8547
8548 Enabled at levels @option{-O3}, @option{-Os}. Also enabled
8549 by @option{-fprofile-use} and @option{-fauto-profile}.
8550
8551 @item -finline-functions-called-once
8552 @opindex finline-functions-called-once
8553 Consider all @code{static} functions called once for inlining into their
8554 caller even if they are not marked @code{inline}. If a call to a given
8555 function is integrated, then the function is not output as assembler code
8556 in its own right.
8557
8558 Enabled at levels @option{-O1}, @option{-O2}, @option{-O3} and @option{-Os},
8559 but not @option{-Og}.
8560
8561 @item -fearly-inlining
8562 @opindex fearly-inlining
8563 Inline functions marked by @code{always_inline} and functions whose body seems
8564 smaller than the function call overhead early before doing
8565 @option{-fprofile-generate} instrumentation and real inlining pass. Doing so
8566 makes profiling significantly cheaper and usually inlining faster on programs
8567 having large chains of nested wrapper functions.
8568
8569 Enabled by default.
8570
8571 @item -fipa-sra
8572 @opindex fipa-sra
8573 Perform interprocedural scalar replacement of aggregates, removal of
8574 unused parameters and replacement of parameters passed by reference
8575 by parameters passed by value.
8576
8577 Enabled at levels @option{-O2}, @option{-O3} and @option{-Os}.
8578
8579 @item -finline-limit=@var{n}
8580 @opindex finline-limit
8581 By default, GCC limits the size of functions that can be inlined. This flag
8582 allows coarse control of this limit. @var{n} is the size of functions that
8583 can be inlined in number of pseudo instructions.
8584
8585 Inlining is actually controlled by a number of parameters, which may be
8586 specified individually by using @option{--param @var{name}=@var{value}}.
8587 The @option{-finline-limit=@var{n}} option sets some of these parameters
8588 as follows:
8589
8590 @table @gcctabopt
8591 @item max-inline-insns-single
8592 is set to @var{n}/2.
8593 @item max-inline-insns-auto
8594 is set to @var{n}/2.
8595 @end table
8596
8597 See below for a documentation of the individual
8598 parameters controlling inlining and for the defaults of these parameters.
8599
8600 @emph{Note:} there may be no value to @option{-finline-limit} that results
8601 in default behavior.
8602
8603 @emph{Note:} pseudo instruction represents, in this particular context, an
8604 abstract measurement of function's size. In no way does it represent a count
8605 of assembly instructions and as such its exact meaning might change from one
8606 release to an another.
8607
8608 @item -fno-keep-inline-dllexport
8609 @opindex fno-keep-inline-dllexport
8610 @opindex fkeep-inline-dllexport
8611 This is a more fine-grained version of @option{-fkeep-inline-functions},
8612 which applies only to functions that are declared using the @code{dllexport}
8613 attribute or declspec. @xref{Function Attributes,,Declaring Attributes of
8614 Functions}.
8615
8616 @item -fkeep-inline-functions
8617 @opindex fkeep-inline-functions
8618 In C, emit @code{static} functions that are declared @code{inline}
8619 into the object file, even if the function has been inlined into all
8620 of its callers. This switch does not affect functions using the
8621 @code{extern inline} extension in GNU C90@. In C++, emit any and all
8622 inline functions into the object file.
8623
8624 @item -fkeep-static-functions
8625 @opindex fkeep-static-functions
8626 Emit @code{static} functions into the object file, even if the function
8627 is never used.
8628
8629 @item -fkeep-static-consts
8630 @opindex fkeep-static-consts
8631 Emit variables declared @code{static const} when optimization isn't turned
8632 on, even if the variables aren't referenced.
8633
8634 GCC enables this option by default. If you want to force the compiler to
8635 check if a variable is referenced, regardless of whether or not
8636 optimization is turned on, use the @option{-fno-keep-static-consts} option.
8637
8638 @item -fmerge-constants
8639 @opindex fmerge-constants
8640 Attempt to merge identical constants (string constants and floating-point
8641 constants) across compilation units.
8642
8643 This option is the default for optimized compilation if the assembler and
8644 linker support it. Use @option{-fno-merge-constants} to inhibit this
8645 behavior.
8646
8647 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8648
8649 @item -fmerge-all-constants
8650 @opindex fmerge-all-constants
8651 Attempt to merge identical constants and identical variables.
8652
8653 This option implies @option{-fmerge-constants}. In addition to
8654 @option{-fmerge-constants} this considers e.g.@: even constant initialized
8655 arrays or initialized constant variables with integral or floating-point
8656 types. Languages like C or C++ require each variable, including multiple
8657 instances of the same variable in recursive calls, to have distinct locations,
8658 so using this option results in non-conforming
8659 behavior.
8660
8661 @item -fmodulo-sched
8662 @opindex fmodulo-sched
8663 Perform swing modulo scheduling immediately before the first scheduling
8664 pass. This pass looks at innermost loops and reorders their
8665 instructions by overlapping different iterations.
8666
8667 @item -fmodulo-sched-allow-regmoves
8668 @opindex fmodulo-sched-allow-regmoves
8669 Perform more aggressive SMS-based modulo scheduling with register moves
8670 allowed. By setting this flag certain anti-dependences edges are
8671 deleted, which triggers the generation of reg-moves based on the
8672 life-range analysis. This option is effective only with
8673 @option{-fmodulo-sched} enabled.
8674
8675 @item -fno-branch-count-reg
8676 @opindex fno-branch-count-reg
8677 @opindex fbranch-count-reg
8678 Disable the optimization pass that scans for opportunities to use
8679 ``decrement and branch'' instructions on a count register instead of
8680 instruction sequences that decrement a register, compare it against zero, and
8681 then branch based upon the result. This option is only meaningful on
8682 architectures that support such instructions, which include x86, PowerPC,
8683 IA-64 and S/390. Note that the @option{-fno-branch-count-reg} option
8684 doesn't remove the decrement and branch instructions from the generated
8685 instruction stream introduced by other optimization passes.
8686
8687 The default is @option{-fbranch-count-reg} at @option{-O1} and higher,
8688 except for @option{-Og}.
8689
8690 @item -fno-function-cse
8691 @opindex fno-function-cse
8692 @opindex ffunction-cse
8693 Do not put function addresses in registers; make each instruction that
8694 calls a constant function contain the function's address explicitly.
8695
8696 This option results in less efficient code, but some strange hacks
8697 that alter the assembler output may be confused by the optimizations
8698 performed when this option is not used.
8699
8700 The default is @option{-ffunction-cse}
8701
8702 @item -fno-zero-initialized-in-bss
8703 @opindex fno-zero-initialized-in-bss
8704 @opindex fzero-initialized-in-bss
8705 If the target supports a BSS section, GCC by default puts variables that
8706 are initialized to zero into BSS@. This can save space in the resulting
8707 code.
8708
8709 This option turns off this behavior because some programs explicitly
8710 rely on variables going to the data section---e.g., so that the
8711 resulting executable can find the beginning of that section and/or make
8712 assumptions based on that.
8713
8714 The default is @option{-fzero-initialized-in-bss}.
8715
8716 @item -fthread-jumps
8717 @opindex fthread-jumps
8718 Perform optimizations that check to see if a jump branches to a
8719 location where another comparison subsumed by the first is found. If
8720 so, the first branch is redirected to either the destination of the
8721 second branch or a point immediately following it, depending on whether
8722 the condition is known to be true or false.
8723
8724 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8725
8726 @item -fsplit-wide-types
8727 @opindex fsplit-wide-types
8728 When using a type that occupies multiple registers, such as @code{long
8729 long} on a 32-bit system, split the registers apart and allocate them
8730 independently. This normally generates better code for those types,
8731 but may make debugging more difficult.
8732
8733 Enabled at levels @option{-O}, @option{-O2}, @option{-O3},
8734 @option{-Os}.
8735
8736 @item -fsplit-wide-types-early
8737 @opindex fsplit-wide-types-early
8738 Fully split wide types early, instead of very late.
8739 This option has no effect unless @option{-fsplit-wide-types} is turned on.
8740
8741 This is the default on some targets.
8742
8743 @item -fcse-follow-jumps
8744 @opindex fcse-follow-jumps
8745 In common subexpression elimination (CSE), scan through jump instructions
8746 when the target of the jump is not reached by any other path. For
8747 example, when CSE encounters an @code{if} statement with an
8748 @code{else} clause, CSE follows the jump when the condition
8749 tested is false.
8750
8751 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8752
8753 @item -fcse-skip-blocks
8754 @opindex fcse-skip-blocks
8755 This is similar to @option{-fcse-follow-jumps}, but causes CSE to
8756 follow jumps that conditionally skip over blocks. When CSE
8757 encounters a simple @code{if} statement with no else clause,
8758 @option{-fcse-skip-blocks} causes CSE to follow the jump around the
8759 body of the @code{if}.
8760
8761 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8762
8763 @item -frerun-cse-after-loop
8764 @opindex frerun-cse-after-loop
8765 Re-run common subexpression elimination after loop optimizations are
8766 performed.
8767
8768 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8769
8770 @item -fgcse
8771 @opindex fgcse
8772 Perform a global common subexpression elimination pass.
8773 This pass also performs global constant and copy propagation.
8774
8775 @emph{Note:} When compiling a program using computed gotos, a GCC
8776 extension, you may get better run-time performance if you disable
8777 the global common subexpression elimination pass by adding
8778 @option{-fno-gcse} to the command line.
8779
8780 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8781
8782 @item -fgcse-lm
8783 @opindex fgcse-lm
8784 When @option{-fgcse-lm} is enabled, global common subexpression elimination
8785 attempts to move loads that are only killed by stores into themselves. This
8786 allows a loop containing a load/store sequence to be changed to a load outside
8787 the loop, and a copy/store within the loop.
8788
8789 Enabled by default when @option{-fgcse} is enabled.
8790
8791 @item -fgcse-sm
8792 @opindex fgcse-sm
8793 When @option{-fgcse-sm} is enabled, a store motion pass is run after
8794 global common subexpression elimination. This pass attempts to move
8795 stores out of loops. When used in conjunction with @option{-fgcse-lm},
8796 loops containing a load/store sequence can be changed to a load before
8797 the loop and a store after the loop.
8798
8799 Not enabled at any optimization level.
8800
8801 @item -fgcse-las
8802 @opindex fgcse-las
8803 When @option{-fgcse-las} is enabled, the global common subexpression
8804 elimination pass eliminates redundant loads that come after stores to the
8805 same memory location (both partial and full redundancies).
8806
8807 Not enabled at any optimization level.
8808
8809 @item -fgcse-after-reload
8810 @opindex fgcse-after-reload
8811 When @option{-fgcse-after-reload} is enabled, a redundant load elimination
8812 pass is performed after reload. The purpose of this pass is to clean up
8813 redundant spilling.
8814
8815 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
8816
8817 @item -faggressive-loop-optimizations
8818 @opindex faggressive-loop-optimizations
8819 This option tells the loop optimizer to use language constraints to
8820 derive bounds for the number of iterations of a loop. This assumes that
8821 loop code does not invoke undefined behavior by for example causing signed
8822 integer overflows or out-of-bound array accesses. The bounds for the
8823 number of iterations of a loop are used to guide loop unrolling and peeling
8824 and loop exit test optimizations.
8825 This option is enabled by default.
8826
8827 @item -funconstrained-commons
8828 @opindex funconstrained-commons
8829 This option tells the compiler that variables declared in common blocks
8830 (e.g.@: Fortran) may later be overridden with longer trailing arrays. This
8831 prevents certain optimizations that depend on knowing the array bounds.
8832
8833 @item -fcrossjumping
8834 @opindex fcrossjumping
8835 Perform cross-jumping transformation.
8836 This transformation unifies equivalent code and saves code size. The
8837 resulting code may or may not perform better than without cross-jumping.
8838
8839 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8840
8841 @item -fauto-inc-dec
8842 @opindex fauto-inc-dec
8843 Combine increments or decrements of addresses with memory accesses.
8844 This pass is always skipped on architectures that do not have
8845 instructions to support this. Enabled by default at @option{-O} and
8846 higher on architectures that support this.
8847
8848 @item -fdce
8849 @opindex fdce
8850 Perform dead code elimination (DCE) on RTL@.
8851 Enabled by default at @option{-O} and higher.
8852
8853 @item -fdse
8854 @opindex fdse
8855 Perform dead store elimination (DSE) on RTL@.
8856 Enabled by default at @option{-O} and higher.
8857
8858 @item -fif-conversion
8859 @opindex fif-conversion
8860 Attempt to transform conditional jumps into branch-less equivalents. This
8861 includes use of conditional moves, min, max, set flags and abs instructions, and
8862 some tricks doable by standard arithmetics. The use of conditional execution
8863 on chips where it is available is controlled by @option{-fif-conversion2}.
8864
8865 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}, but
8866 not with @option{-Og}.
8867
8868 @item -fif-conversion2
8869 @opindex fif-conversion2
8870 Use conditional execution (where available) to transform conditional jumps into
8871 branch-less equivalents.
8872
8873 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}, but
8874 not with @option{-Og}.
8875
8876 @item -fdeclone-ctor-dtor
8877 @opindex fdeclone-ctor-dtor
8878 The C++ ABI requires multiple entry points for constructors and
8879 destructors: one for a base subobject, one for a complete object, and
8880 one for a virtual destructor that calls operator delete afterwards.
8881 For a hierarchy with virtual bases, the base and complete variants are
8882 clones, which means two copies of the function. With this option, the
8883 base and complete variants are changed to be thunks that call a common
8884 implementation.
8885
8886 Enabled by @option{-Os}.
8887
8888 @item -fdelete-null-pointer-checks
8889 @opindex fdelete-null-pointer-checks
8890 Assume that programs cannot safely dereference null pointers, and that
8891 no code or data element resides at address zero.
8892 This option enables simple constant
8893 folding optimizations at all optimization levels. In addition, other
8894 optimization passes in GCC use this flag to control global dataflow
8895 analyses that eliminate useless checks for null pointers; these assume
8896 that a memory access to address zero always results in a trap, so
8897 that if a pointer is checked after it has already been dereferenced,
8898 it cannot be null.
8899
8900 Note however that in some environments this assumption is not true.
8901 Use @option{-fno-delete-null-pointer-checks} to disable this optimization
8902 for programs that depend on that behavior.
8903
8904 This option is enabled by default on most targets. On Nios II ELF, it
8905 defaults to off. On AVR, CR16, and MSP430, this option is completely disabled.
8906
8907 Passes that use the dataflow information
8908 are enabled independently at different optimization levels.
8909
8910 @item -fdevirtualize
8911 @opindex fdevirtualize
8912 Attempt to convert calls to virtual functions to direct calls. This
8913 is done both within a procedure and interprocedurally as part of
8914 indirect inlining (@option{-findirect-inlining}) and interprocedural constant
8915 propagation (@option{-fipa-cp}).
8916 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8917
8918 @item -fdevirtualize-speculatively
8919 @opindex fdevirtualize-speculatively
8920 Attempt to convert calls to virtual functions to speculative direct calls.
8921 Based on the analysis of the type inheritance graph, determine for a given call
8922 the set of likely targets. If the set is small, preferably of size 1, change
8923 the call into a conditional deciding between direct and indirect calls. The
8924 speculative calls enable more optimizations, such as inlining. When they seem
8925 useless after further optimization, they are converted back into original form.
8926
8927 @item -fdevirtualize-at-ltrans
8928 @opindex fdevirtualize-at-ltrans
8929 Stream extra information needed for aggressive devirtualization when running
8930 the link-time optimizer in local transformation mode.
8931 This option enables more devirtualization but
8932 significantly increases the size of streamed data. For this reason it is
8933 disabled by default.
8934
8935 @item -fexpensive-optimizations
8936 @opindex fexpensive-optimizations
8937 Perform a number of minor optimizations that are relatively expensive.
8938
8939 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8940
8941 @item -free
8942 @opindex free
8943 Attempt to remove redundant extension instructions. This is especially
8944 helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit
8945 registers after writing to their lower 32-bit half.
8946
8947 Enabled for Alpha, AArch64 and x86 at levels @option{-O2},
8948 @option{-O3}, @option{-Os}.
8949
8950 @item -fno-lifetime-dse
8951 @opindex fno-lifetime-dse
8952 @opindex flifetime-dse
8953 In C++ the value of an object is only affected by changes within its
8954 lifetime: when the constructor begins, the object has an indeterminate
8955 value, and any changes during the lifetime of the object are dead when
8956 the object is destroyed. Normally dead store elimination will take
8957 advantage of this; if your code relies on the value of the object
8958 storage persisting beyond the lifetime of the object, you can use this
8959 flag to disable this optimization. To preserve stores before the
8960 constructor starts (e.g.@: because your operator new clears the object
8961 storage) but still treat the object as dead after the destructor you,
8962 can use @option{-flifetime-dse=1}. The default behavior can be
8963 explicitly selected with @option{-flifetime-dse=2}.
8964 @option{-flifetime-dse=0} is equivalent to @option{-fno-lifetime-dse}.
8965
8966 @item -flive-range-shrinkage
8967 @opindex flive-range-shrinkage
8968 Attempt to decrease register pressure through register live range
8969 shrinkage. This is helpful for fast processors with small or moderate
8970 size register sets.
8971
8972 @item -fira-algorithm=@var{algorithm}
8973 @opindex fira-algorithm
8974 Use the specified coloring algorithm for the integrated register
8975 allocator. The @var{algorithm} argument can be @samp{priority}, which
8976 specifies Chow's priority coloring, or @samp{CB}, which specifies
8977 Chaitin-Briggs coloring. Chaitin-Briggs coloring is not implemented
8978 for all architectures, but for those targets that do support it, it is
8979 the default because it generates better code.
8980
8981 @item -fira-region=@var{region}
8982 @opindex fira-region
8983 Use specified regions for the integrated register allocator. The
8984 @var{region} argument should be one of the following:
8985
8986 @table @samp
8987
8988 @item all
8989 Use all loops as register allocation regions.
8990 This can give the best results for machines with a small and/or
8991 irregular register set.
8992
8993 @item mixed
8994 Use all loops except for loops with small register pressure
8995 as the regions. This value usually gives
8996 the best results in most cases and for most architectures,
8997 and is enabled by default when compiling with optimization for speed
8998 (@option{-O}, @option{-O2}, @dots{}).
8999
9000 @item one
9001 Use all functions as a single region.
9002 This typically results in the smallest code size, and is enabled by default for
9003 @option{-Os} or @option{-O0}.
9004
9005 @end table
9006
9007 @item -fira-hoist-pressure
9008 @opindex fira-hoist-pressure
9009 Use IRA to evaluate register pressure in the code hoisting pass for
9010 decisions to hoist expressions. This option usually results in smaller
9011 code, but it can slow the compiler down.
9012
9013 This option is enabled at level @option{-Os} for all targets.
9014
9015 @item -fira-loop-pressure
9016 @opindex fira-loop-pressure
9017 Use IRA to evaluate register pressure in loops for decisions to move
9018 loop invariants. This option usually results in generation
9019 of faster and smaller code on machines with large register files (>= 32
9020 registers), but it can slow the compiler down.
9021
9022 This option is enabled at level @option{-O3} for some targets.
9023
9024 @item -fno-ira-share-save-slots
9025 @opindex fno-ira-share-save-slots
9026 @opindex fira-share-save-slots
9027 Disable sharing of stack slots used for saving call-used hard
9028 registers living through a call. Each hard register gets a
9029 separate stack slot, and as a result function stack frames are
9030 larger.
9031
9032 @item -fno-ira-share-spill-slots
9033 @opindex fno-ira-share-spill-slots
9034 @opindex fira-share-spill-slots
9035 Disable sharing of stack slots allocated for pseudo-registers. Each
9036 pseudo-register that does not get a hard register gets a separate
9037 stack slot, and as a result function stack frames are larger.
9038
9039 @item -flra-remat
9040 @opindex flra-remat
9041 Enable CFG-sensitive rematerialization in LRA. Instead of loading
9042 values of spilled pseudos, LRA tries to rematerialize (recalculate)
9043 values if it is profitable.
9044
9045 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9046
9047 @item -fdelayed-branch
9048 @opindex fdelayed-branch
9049 If supported for the target machine, attempt to reorder instructions
9050 to exploit instruction slots available after delayed branch
9051 instructions.
9052
9053 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os},
9054 but not at @option{-Og}.
9055
9056 @item -fschedule-insns
9057 @opindex fschedule-insns
9058 If supported for the target machine, attempt to reorder instructions to
9059 eliminate execution stalls due to required data being unavailable. This
9060 helps machines that have slow floating point or memory load instructions
9061 by allowing other instructions to be issued until the result of the load
9062 or floating-point instruction is required.
9063
9064 Enabled at levels @option{-O2}, @option{-O3}.
9065
9066 @item -fschedule-insns2
9067 @opindex fschedule-insns2
9068 Similar to @option{-fschedule-insns}, but requests an additional pass of
9069 instruction scheduling after register allocation has been done. This is
9070 especially useful on machines with a relatively small number of
9071 registers and where memory load instructions take more than one cycle.
9072
9073 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9074
9075 @item -fno-sched-interblock
9076 @opindex fno-sched-interblock
9077 @opindex fsched-interblock
9078 Disable instruction scheduling across basic blocks, which
9079 is normally enabled when scheduling before register allocation, i.e.@:
9080 with @option{-fschedule-insns} or at @option{-O2} or higher.
9081
9082 @item -fno-sched-spec
9083 @opindex fno-sched-spec
9084 @opindex fsched-spec
9085 Disable speculative motion of non-load instructions, which
9086 is normally enabled when scheduling before register allocation, i.e.@:
9087 with @option{-fschedule-insns} or at @option{-O2} or higher.
9088
9089 @item -fsched-pressure
9090 @opindex fsched-pressure
9091 Enable register pressure sensitive insn scheduling before register
9092 allocation. This only makes sense when scheduling before register
9093 allocation is enabled, i.e.@: with @option{-fschedule-insns} or at
9094 @option{-O2} or higher. Usage of this option can improve the
9095 generated code and decrease its size by preventing register pressure
9096 increase above the number of available hard registers and subsequent
9097 spills in register allocation.
9098
9099 @item -fsched-spec-load
9100 @opindex fsched-spec-load
9101 Allow speculative motion of some load instructions. This only makes
9102 sense when scheduling before register allocation, i.e.@: with
9103 @option{-fschedule-insns} or at @option{-O2} or higher.
9104
9105 @item -fsched-spec-load-dangerous
9106 @opindex fsched-spec-load-dangerous
9107 Allow speculative motion of more load instructions. This only makes
9108 sense when scheduling before register allocation, i.e.@: with
9109 @option{-fschedule-insns} or at @option{-O2} or higher.
9110
9111 @item -fsched-stalled-insns
9112 @itemx -fsched-stalled-insns=@var{n}
9113 @opindex fsched-stalled-insns
9114 Define how many insns (if any) can be moved prematurely from the queue
9115 of stalled insns into the ready list during the second scheduling pass.
9116 @option{-fno-sched-stalled-insns} means that no insns are moved
9117 prematurely, @option{-fsched-stalled-insns=0} means there is no limit
9118 on how many queued insns can be moved prematurely.
9119 @option{-fsched-stalled-insns} without a value is equivalent to
9120 @option{-fsched-stalled-insns=1}.
9121
9122 @item -fsched-stalled-insns-dep
9123 @itemx -fsched-stalled-insns-dep=@var{n}
9124 @opindex fsched-stalled-insns-dep
9125 Define how many insn groups (cycles) are examined for a dependency
9126 on a stalled insn that is a candidate for premature removal from the queue
9127 of stalled insns. This has an effect only during the second scheduling pass,
9128 and only if @option{-fsched-stalled-insns} is used.
9129 @option{-fno-sched-stalled-insns-dep} is equivalent to
9130 @option{-fsched-stalled-insns-dep=0}.
9131 @option{-fsched-stalled-insns-dep} without a value is equivalent to
9132 @option{-fsched-stalled-insns-dep=1}.
9133
9134 @item -fsched2-use-superblocks
9135 @opindex fsched2-use-superblocks
9136 When scheduling after register allocation, use superblock scheduling.
9137 This allows motion across basic block boundaries,
9138 resulting in faster schedules. This option is experimental, as not all machine
9139 descriptions used by GCC model the CPU closely enough to avoid unreliable
9140 results from the algorithm.
9141
9142 This only makes sense when scheduling after register allocation, i.e.@: with
9143 @option{-fschedule-insns2} or at @option{-O2} or higher.
9144
9145 @item -fsched-group-heuristic
9146 @opindex fsched-group-heuristic
9147 Enable the group heuristic in the scheduler. This heuristic favors
9148 the instruction that belongs to a schedule group. This is enabled
9149 by default when scheduling is enabled, i.e.@: with @option{-fschedule-insns}
9150 or @option{-fschedule-insns2} or at @option{-O2} or higher.
9151
9152 @item -fsched-critical-path-heuristic
9153 @opindex fsched-critical-path-heuristic
9154 Enable the critical-path heuristic in the scheduler. This heuristic favors
9155 instructions on the critical path. This is enabled by default when
9156 scheduling is enabled, i.e.@: with @option{-fschedule-insns}
9157 or @option{-fschedule-insns2} or at @option{-O2} or higher.
9158
9159 @item -fsched-spec-insn-heuristic
9160 @opindex fsched-spec-insn-heuristic
9161 Enable the speculative instruction heuristic in the scheduler. This
9162 heuristic favors speculative instructions with greater dependency weakness.
9163 This is enabled by default when scheduling is enabled, i.e.@:
9164 with @option{-fschedule-insns} or @option{-fschedule-insns2}
9165 or at @option{-O2} or higher.
9166
9167 @item -fsched-rank-heuristic
9168 @opindex fsched-rank-heuristic
9169 Enable the rank heuristic in the scheduler. This heuristic favors
9170 the instruction belonging to a basic block with greater size or frequency.
9171 This is enabled by default when scheduling is enabled, i.e.@:
9172 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
9173 at @option{-O2} or higher.
9174
9175 @item -fsched-last-insn-heuristic
9176 @opindex fsched-last-insn-heuristic
9177 Enable the last-instruction heuristic in the scheduler. This heuristic
9178 favors the instruction that is less dependent on the last instruction
9179 scheduled. This is enabled by default when scheduling is enabled,
9180 i.e.@: with @option{-fschedule-insns} or @option{-fschedule-insns2} or
9181 at @option{-O2} or higher.
9182
9183 @item -fsched-dep-count-heuristic
9184 @opindex fsched-dep-count-heuristic
9185 Enable the dependent-count heuristic in the scheduler. This heuristic
9186 favors the instruction that has more instructions depending on it.
9187 This is enabled by default when scheduling is enabled, i.e.@:
9188 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
9189 at @option{-O2} or higher.
9190
9191 @item -freschedule-modulo-scheduled-loops
9192 @opindex freschedule-modulo-scheduled-loops
9193 Modulo scheduling is performed before traditional scheduling. If a loop
9194 is modulo scheduled, later scheduling passes may change its schedule.
9195 Use this option to control that behavior.
9196
9197 @item -fselective-scheduling
9198 @opindex fselective-scheduling
9199 Schedule instructions using selective scheduling algorithm. Selective
9200 scheduling runs instead of the first scheduler pass.
9201
9202 @item -fselective-scheduling2
9203 @opindex fselective-scheduling2
9204 Schedule instructions using selective scheduling algorithm. Selective
9205 scheduling runs instead of the second scheduler pass.
9206
9207 @item -fsel-sched-pipelining
9208 @opindex fsel-sched-pipelining
9209 Enable software pipelining of innermost loops during selective scheduling.
9210 This option has no effect unless one of @option{-fselective-scheduling} or
9211 @option{-fselective-scheduling2} is turned on.
9212
9213 @item -fsel-sched-pipelining-outer-loops
9214 @opindex fsel-sched-pipelining-outer-loops
9215 When pipelining loops during selective scheduling, also pipeline outer loops.
9216 This option has no effect unless @option{-fsel-sched-pipelining} is turned on.
9217
9218 @item -fsemantic-interposition
9219 @opindex fsemantic-interposition
9220 Some object formats, like ELF, allow interposing of symbols by the
9221 dynamic linker.
9222 This means that for symbols exported from the DSO, the compiler cannot perform
9223 interprocedural propagation, inlining and other optimizations in anticipation
9224 that the function or variable in question may change. While this feature is
9225 useful, for example, to rewrite memory allocation functions by a debugging
9226 implementation, it is expensive in the terms of code quality.
9227 With @option{-fno-semantic-interposition} the compiler assumes that
9228 if interposition happens for functions the overwriting function will have
9229 precisely the same semantics (and side effects).
9230 Similarly if interposition happens
9231 for variables, the constructor of the variable will be the same. The flag
9232 has no effect for functions explicitly declared inline
9233 (where it is never allowed for interposition to change semantics)
9234 and for symbols explicitly declared weak.
9235
9236 @item -fshrink-wrap
9237 @opindex fshrink-wrap
9238 Emit function prologues only before parts of the function that need it,
9239 rather than at the top of the function. This flag is enabled by default at
9240 @option{-O} and higher.
9241
9242 @item -fshrink-wrap-separate
9243 @opindex fshrink-wrap-separate
9244 Shrink-wrap separate parts of the prologue and epilogue separately, so that
9245 those parts are only executed when needed.
9246 This option is on by default, but has no effect unless @option{-fshrink-wrap}
9247 is also turned on and the target supports this.
9248
9249 @item -fcaller-saves
9250 @opindex fcaller-saves
9251 Enable allocation of values to registers that are clobbered by
9252 function calls, by emitting extra instructions to save and restore the
9253 registers around such calls. Such allocation is done only when it
9254 seems to result in better code.
9255
9256 This option is always enabled by default on certain machines, usually
9257 those which have no call-preserved registers to use instead.
9258
9259 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9260
9261 @item -fcombine-stack-adjustments
9262 @opindex fcombine-stack-adjustments
9263 Tracks stack adjustments (pushes and pops) and stack memory references
9264 and then tries to find ways to combine them.
9265
9266 Enabled by default at @option{-O1} and higher.
9267
9268 @item -fipa-ra
9269 @opindex fipa-ra
9270 Use caller save registers for allocation if those registers are not used by
9271 any called function. In that case it is not necessary to save and restore
9272 them around calls. This is only possible if called functions are part of
9273 same compilation unit as current function and they are compiled before it.
9274
9275 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}, however the option
9276 is disabled if generated code will be instrumented for profiling
9277 (@option{-p}, or @option{-pg}) or if callee's register usage cannot be known
9278 exactly (this happens on targets that do not expose prologues
9279 and epilogues in RTL).
9280
9281 @item -fconserve-stack
9282 @opindex fconserve-stack
9283 Attempt to minimize stack usage. The compiler attempts to use less
9284 stack space, even if that makes the program slower. This option
9285 implies setting the @option{large-stack-frame} parameter to 100
9286 and the @option{large-stack-frame-growth} parameter to 400.
9287
9288 @item -ftree-reassoc
9289 @opindex ftree-reassoc
9290 Perform reassociation on trees. This flag is enabled by default
9291 at @option{-O} and higher.
9292
9293 @item -fcode-hoisting
9294 @opindex fcode-hoisting
9295 Perform code hoisting. Code hoisting tries to move the
9296 evaluation of expressions executed on all paths to the function exit
9297 as early as possible. This is especially useful as a code size
9298 optimization, but it often helps for code speed as well.
9299 This flag is enabled by default at @option{-O2} and higher.
9300
9301 @item -ftree-pre
9302 @opindex ftree-pre
9303 Perform partial redundancy elimination (PRE) on trees. This flag is
9304 enabled by default at @option{-O2} and @option{-O3}.
9305
9306 @item -ftree-partial-pre
9307 @opindex ftree-partial-pre
9308 Make partial redundancy elimination (PRE) more aggressive. This flag is
9309 enabled by default at @option{-O3}.
9310
9311 @item -ftree-forwprop
9312 @opindex ftree-forwprop
9313 Perform forward propagation on trees. This flag is enabled by default
9314 at @option{-O} and higher.
9315
9316 @item -ftree-fre
9317 @opindex ftree-fre
9318 Perform full redundancy elimination (FRE) on trees. The difference
9319 between FRE and PRE is that FRE only considers expressions
9320 that are computed on all paths leading to the redundant computation.
9321 This analysis is faster than PRE, though it exposes fewer redundancies.
9322 This flag is enabled by default at @option{-O} and higher.
9323
9324 @item -ftree-phiprop
9325 @opindex ftree-phiprop
9326 Perform hoisting of loads from conditional pointers on trees. This
9327 pass is enabled by default at @option{-O} and higher.
9328
9329 @item -fhoist-adjacent-loads
9330 @opindex fhoist-adjacent-loads
9331 Speculatively hoist loads from both branches of an if-then-else if the
9332 loads are from adjacent locations in the same structure and the target
9333 architecture has a conditional move instruction. This flag is enabled
9334 by default at @option{-O2} and higher.
9335
9336 @item -ftree-copy-prop
9337 @opindex ftree-copy-prop
9338 Perform copy propagation on trees. This pass eliminates unnecessary
9339 copy operations. This flag is enabled by default at @option{-O} and
9340 higher.
9341
9342 @item -fipa-pure-const
9343 @opindex fipa-pure-const
9344 Discover which functions are pure or constant.
9345 Enabled by default at @option{-O} and higher.
9346
9347 @item -fipa-reference
9348 @opindex fipa-reference
9349 Discover which static variables do not escape the
9350 compilation unit.
9351 Enabled by default at @option{-O} and higher.
9352
9353 @item -fipa-reference-addressable
9354 @opindex fipa-reference-addressable
9355 Discover read-only, write-only and non-addressable static variables.
9356 Enabled by default at @option{-O} and higher.
9357
9358 @item -fipa-stack-alignment
9359 @opindex fipa-stack-alignment
9360 Reduce stack alignment on call sites if possible.
9361 Enabled by default.
9362
9363 @item -fipa-pta
9364 @opindex fipa-pta
9365 Perform interprocedural pointer analysis and interprocedural modification
9366 and reference analysis. This option can cause excessive memory and
9367 compile-time usage on large compilation units. It is not enabled by
9368 default at any optimization level.
9369
9370 @item -fipa-profile
9371 @opindex fipa-profile
9372 Perform interprocedural profile propagation. The functions called only from
9373 cold functions are marked as cold. Also functions executed once (such as
9374 @code{cold}, @code{noreturn}, static constructors or destructors) are identified. Cold
9375 functions and loop less parts of functions executed once are then optimized for
9376 size.
9377 Enabled by default at @option{-O} and higher.
9378
9379 @item -fipa-cp
9380 @opindex fipa-cp
9381 Perform interprocedural constant propagation.
9382 This optimization analyzes the program to determine when values passed
9383 to functions are constants and then optimizes accordingly.
9384 This optimization can substantially increase performance
9385 if the application has constants passed to functions.
9386 This flag is enabled by default at @option{-O2}, @option{-Os} and @option{-O3}.
9387 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9388
9389 @item -fipa-cp-clone
9390 @opindex fipa-cp-clone
9391 Perform function cloning to make interprocedural constant propagation stronger.
9392 When enabled, interprocedural constant propagation performs function cloning
9393 when externally visible function can be called with constant arguments.
9394 Because this optimization can create multiple copies of functions,
9395 it may significantly increase code size
9396 (see @option{--param ipcp-unit-growth=@var{value}}).
9397 This flag is enabled by default at @option{-O3}.
9398 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9399
9400 @item -fipa-bit-cp
9401 @opindex fipa-bit-cp
9402 When enabled, perform interprocedural bitwise constant
9403 propagation. This flag is enabled by default at @option{-O2} and
9404 by @option{-fprofile-use} and @option{-fauto-profile}.
9405 It requires that @option{-fipa-cp} is enabled.
9406
9407 @item -fipa-vrp
9408 @opindex fipa-vrp
9409 When enabled, perform interprocedural propagation of value
9410 ranges. This flag is enabled by default at @option{-O2}. It requires
9411 that @option{-fipa-cp} is enabled.
9412
9413 @item -fipa-icf
9414 @opindex fipa-icf
9415 Perform Identical Code Folding for functions and read-only variables.
9416 The optimization reduces code size and may disturb unwind stacks by replacing
9417 a function by equivalent one with a different name. The optimization works
9418 more effectively with link-time optimization enabled.
9419
9420 Although the behavior is similar to the Gold Linker's ICF optimization, GCC ICF
9421 works on different levels and thus the optimizations are not same - there are
9422 equivalences that are found only by GCC and equivalences found only by Gold.
9423
9424 This flag is enabled by default at @option{-O2} and @option{-Os}.
9425
9426 @item -flive-patching=@var{level}
9427 @opindex flive-patching
9428 Control GCC's optimizations to produce output suitable for live-patching.
9429
9430 If the compiler's optimization uses a function's body or information extracted
9431 from its body to optimize/change another function, the latter is called an
9432 impacted function of the former. If a function is patched, its impacted
9433 functions should be patched too.
9434
9435 The impacted functions are determined by the compiler's interprocedural
9436 optimizations. For example, a caller is impacted when inlining a function
9437 into its caller,
9438 cloning a function and changing its caller to call this new clone,
9439 or extracting a function's pureness/constness information to optimize
9440 its direct or indirect callers, etc.
9441
9442 Usually, the more IPA optimizations enabled, the larger the number of
9443 impacted functions for each function. In order to control the number of
9444 impacted functions and more easily compute the list of impacted function,
9445 IPA optimizations can be partially enabled at two different levels.
9446
9447 The @var{level} argument should be one of the following:
9448
9449 @table @samp
9450
9451 @item inline-clone
9452
9453 Only enable inlining and cloning optimizations, which includes inlining,
9454 cloning, interprocedural scalar replacement of aggregates and partial inlining.
9455 As a result, when patching a function, all its callers and its clones'
9456 callers are impacted, therefore need to be patched as well.
9457
9458 @option{-flive-patching=inline-clone} disables the following optimization flags:
9459 @gccoptlist{-fwhole-program -fipa-pta -fipa-reference -fipa-ra @gol
9460 -fipa-icf -fipa-icf-functions -fipa-icf-variables @gol
9461 -fipa-bit-cp -fipa-vrp -fipa-pure-const -fipa-reference-addressable @gol
9462 -fipa-stack-alignment}
9463
9464 @item inline-only-static
9465
9466 Only enable inlining of static functions.
9467 As a result, when patching a static function, all its callers are impacted
9468 and so need to be patched as well.
9469
9470 In addition to all the flags that @option{-flive-patching=inline-clone}
9471 disables,
9472 @option{-flive-patching=inline-only-static} disables the following additional
9473 optimization flags:
9474 @gccoptlist{-fipa-cp-clone -fipa-sra -fpartial-inlining -fipa-cp}
9475
9476 @end table
9477
9478 When @option{-flive-patching} is specified without any value, the default value
9479 is @var{inline-clone}.
9480
9481 This flag is disabled by default.
9482
9483 Note that @option{-flive-patching} is not supported with link-time optimization
9484 (@option{-flto}).
9485
9486 @item -fisolate-erroneous-paths-dereference
9487 @opindex fisolate-erroneous-paths-dereference
9488 Detect paths that trigger erroneous or undefined behavior due to
9489 dereferencing a null pointer. Isolate those paths from the main control
9490 flow and turn the statement with erroneous or undefined behavior into a trap.
9491 This flag is enabled by default at @option{-O2} and higher and depends on
9492 @option{-fdelete-null-pointer-checks} also being enabled.
9493
9494 @item -fisolate-erroneous-paths-attribute
9495 @opindex fisolate-erroneous-paths-attribute
9496 Detect paths that trigger erroneous or undefined behavior due to a null value
9497 being used in a way forbidden by a @code{returns_nonnull} or @code{nonnull}
9498 attribute. Isolate those paths from the main control flow and turn the
9499 statement with erroneous or undefined behavior into a trap. This is not
9500 currently enabled, but may be enabled by @option{-O2} in the future.
9501
9502 @item -ftree-sink
9503 @opindex ftree-sink
9504 Perform forward store motion on trees. This flag is
9505 enabled by default at @option{-O} and higher.
9506
9507 @item -ftree-bit-ccp
9508 @opindex ftree-bit-ccp
9509 Perform sparse conditional bit constant propagation on trees and propagate
9510 pointer alignment information.
9511 This pass only operates on local scalar variables and is enabled by default
9512 at @option{-O1} and higher, except for @option{-Og}.
9513 It requires that @option{-ftree-ccp} is enabled.
9514
9515 @item -ftree-ccp
9516 @opindex ftree-ccp
9517 Perform sparse conditional constant propagation (CCP) on trees. This
9518 pass only operates on local scalar variables and is enabled by default
9519 at @option{-O} and higher.
9520
9521 @item -fssa-backprop
9522 @opindex fssa-backprop
9523 Propagate information about uses of a value up the definition chain
9524 in order to simplify the definitions. For example, this pass strips
9525 sign operations if the sign of a value never matters. The flag is
9526 enabled by default at @option{-O} and higher.
9527
9528 @item -fssa-phiopt
9529 @opindex fssa-phiopt
9530 Perform pattern matching on SSA PHI nodes to optimize conditional
9531 code. This pass is enabled by default at @option{-O1} and higher,
9532 except for @option{-Og}.
9533
9534 @item -ftree-switch-conversion
9535 @opindex ftree-switch-conversion
9536 Perform conversion of simple initializations in a switch to
9537 initializations from a scalar array. This flag is enabled by default
9538 at @option{-O2} and higher.
9539
9540 @item -ftree-tail-merge
9541 @opindex ftree-tail-merge
9542 Look for identical code sequences. When found, replace one with a jump to the
9543 other. This optimization is known as tail merging or cross jumping. This flag
9544 is enabled by default at @option{-O2} and higher. The compilation time
9545 in this pass can
9546 be limited using @option{max-tail-merge-comparisons} parameter and
9547 @option{max-tail-merge-iterations} parameter.
9548
9549 @item -ftree-dce
9550 @opindex ftree-dce
9551 Perform dead code elimination (DCE) on trees. This flag is enabled by
9552 default at @option{-O} and higher.
9553
9554 @item -ftree-builtin-call-dce
9555 @opindex ftree-builtin-call-dce
9556 Perform conditional dead code elimination (DCE) for calls to built-in functions
9557 that may set @code{errno} but are otherwise free of side effects. This flag is
9558 enabled by default at @option{-O2} and higher if @option{-Os} is not also
9559 specified.
9560
9561 @item -ffinite-loops
9562 @opindex ffinite-loops
9563 @opindex fno-finite-loops
9564 Assume that a loop with an exit will eventually take the exit and not loop
9565 indefinitely. This allows the compiler to remove loops that otherwise have
9566 no side-effects, not considering eventual endless looping as such.
9567
9568 This option is enabled by default at @option{-O2}.
9569
9570 @item -ftree-dominator-opts
9571 @opindex ftree-dominator-opts
9572 Perform a variety of simple scalar cleanups (constant/copy
9573 propagation, redundancy elimination, range propagation and expression
9574 simplification) based on a dominator tree traversal. This also
9575 performs jump threading (to reduce jumps to jumps). This flag is
9576 enabled by default at @option{-O} and higher.
9577
9578 @item -ftree-dse
9579 @opindex ftree-dse
9580 Perform dead store elimination (DSE) on trees. A dead store is a store into
9581 a memory location that is later overwritten by another store without
9582 any intervening loads. In this case the earlier store can be deleted. This
9583 flag is enabled by default at @option{-O} and higher.
9584
9585 @item -ftree-ch
9586 @opindex ftree-ch
9587 Perform loop header copying on trees. This is beneficial since it increases
9588 effectiveness of code motion optimizations. It also saves one jump. This flag
9589 is enabled by default at @option{-O} and higher. It is not enabled
9590 for @option{-Os}, since it usually increases code size.
9591
9592 @item -ftree-loop-optimize
9593 @opindex ftree-loop-optimize
9594 Perform loop optimizations on trees. This flag is enabled by default
9595 at @option{-O} and higher.
9596
9597 @item -ftree-loop-linear
9598 @itemx -floop-strip-mine
9599 @itemx -floop-block
9600 @opindex ftree-loop-linear
9601 @opindex floop-strip-mine
9602 @opindex floop-block
9603 Perform loop nest optimizations. Same as
9604 @option{-floop-nest-optimize}. To use this code transformation, GCC has
9605 to be configured with @option{--with-isl} to enable the Graphite loop
9606 transformation infrastructure.
9607
9608 @item -fgraphite-identity
9609 @opindex fgraphite-identity
9610 Enable the identity transformation for graphite. For every SCoP we generate
9611 the polyhedral representation and transform it back to gimple. Using
9612 @option{-fgraphite-identity} we can check the costs or benefits of the
9613 GIMPLE -> GRAPHITE -> GIMPLE transformation. Some minimal optimizations
9614 are also performed by the code generator isl, like index splitting and
9615 dead code elimination in loops.
9616
9617 @item -floop-nest-optimize
9618 @opindex floop-nest-optimize
9619 Enable the isl based loop nest optimizer. This is a generic loop nest
9620 optimizer based on the Pluto optimization algorithms. It calculates a loop
9621 structure optimized for data-locality and parallelism. This option
9622 is experimental.
9623
9624 @item -floop-parallelize-all
9625 @opindex floop-parallelize-all
9626 Use the Graphite data dependence analysis to identify loops that can
9627 be parallelized. Parallelize all the loops that can be analyzed to
9628 not contain loop carried dependences without checking that it is
9629 profitable to parallelize the loops.
9630
9631 @item -ftree-coalesce-vars
9632 @opindex ftree-coalesce-vars
9633 While transforming the program out of the SSA representation, attempt to
9634 reduce copying by coalescing versions of different user-defined
9635 variables, instead of just compiler temporaries. This may severely
9636 limit the ability to debug an optimized program compiled with
9637 @option{-fno-var-tracking-assignments}. In the negated form, this flag
9638 prevents SSA coalescing of user variables. This option is enabled by
9639 default if optimization is enabled, and it does very little otherwise.
9640
9641 @item -ftree-loop-if-convert
9642 @opindex ftree-loop-if-convert
9643 Attempt to transform conditional jumps in the innermost loops to
9644 branch-less equivalents. The intent is to remove control-flow from
9645 the innermost loops in order to improve the ability of the
9646 vectorization pass to handle these loops. This is enabled by default
9647 if vectorization is enabled.
9648
9649 @item -ftree-loop-distribution
9650 @opindex ftree-loop-distribution
9651 Perform loop distribution. This flag can improve cache performance on
9652 big loop bodies and allow further loop optimizations, like
9653 parallelization or vectorization, to take place. For example, the loop
9654 @smallexample
9655 DO I = 1, N
9656 A(I) = B(I) + C
9657 D(I) = E(I) * F
9658 ENDDO
9659 @end smallexample
9660 is transformed to
9661 @smallexample
9662 DO I = 1, N
9663 A(I) = B(I) + C
9664 ENDDO
9665 DO I = 1, N
9666 D(I) = E(I) * F
9667 ENDDO
9668 @end smallexample
9669 This flag is enabled by default at @option{-O3}.
9670 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9671
9672 @item -ftree-loop-distribute-patterns
9673 @opindex ftree-loop-distribute-patterns
9674 Perform loop distribution of patterns that can be code generated with
9675 calls to a library. This flag is enabled by default at @option{-O3}, and
9676 by @option{-fprofile-use} and @option{-fauto-profile}.
9677
9678 This pass distributes the initialization loops and generates a call to
9679 memset zero. For example, the loop
9680 @smallexample
9681 DO I = 1, N
9682 A(I) = 0
9683 B(I) = A(I) + I
9684 ENDDO
9685 @end smallexample
9686 is transformed to
9687 @smallexample
9688 DO I = 1, N
9689 A(I) = 0
9690 ENDDO
9691 DO I = 1, N
9692 B(I) = A(I) + I
9693 ENDDO
9694 @end smallexample
9695 and the initialization loop is transformed into a call to memset zero.
9696 This flag is enabled by default at @option{-O3}.
9697 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9698
9699 @item -floop-interchange
9700 @opindex floop-interchange
9701 Perform loop interchange outside of graphite. This flag can improve cache
9702 performance on loop nest and allow further loop optimizations, like
9703 vectorization, to take place. For example, the loop
9704 @smallexample
9705 for (int i = 0; i < N; i++)
9706 for (int j = 0; j < N; j++)
9707 for (int k = 0; k < N; k++)
9708 c[i][j] = c[i][j] + a[i][k]*b[k][j];
9709 @end smallexample
9710 is transformed to
9711 @smallexample
9712 for (int i = 0; i < N; i++)
9713 for (int k = 0; k < N; k++)
9714 for (int j = 0; j < N; j++)
9715 c[i][j] = c[i][j] + a[i][k]*b[k][j];
9716 @end smallexample
9717 This flag is enabled by default at @option{-O3}.
9718 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9719
9720 @item -floop-unroll-and-jam
9721 @opindex floop-unroll-and-jam
9722 Apply unroll and jam transformations on feasible loops. In a loop
9723 nest this unrolls the outer loop by some factor and fuses the resulting
9724 multiple inner loops. This flag is enabled by default at @option{-O3}.
9725 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9726
9727 @item -ftree-loop-im
9728 @opindex ftree-loop-im
9729 Perform loop invariant motion on trees. This pass moves only invariants that
9730 are hard to handle at RTL level (function calls, operations that expand to
9731 nontrivial sequences of insns). With @option{-funswitch-loops} it also moves
9732 operands of conditions that are invariant out of the loop, so that we can use
9733 just trivial invariantness analysis in loop unswitching. The pass also includes
9734 store motion.
9735
9736 @item -ftree-loop-ivcanon
9737 @opindex ftree-loop-ivcanon
9738 Create a canonical counter for number of iterations in loops for which
9739 determining number of iterations requires complicated analysis. Later
9740 optimizations then may determine the number easily. Useful especially
9741 in connection with unrolling.
9742
9743 @item -ftree-scev-cprop
9744 @opindex ftree-scev-cprop
9745 Perform final value replacement. If a variable is modified in a loop
9746 in such a way that its value when exiting the loop can be determined using
9747 only its initial value and the number of loop iterations, replace uses of
9748 the final value by such a computation, provided it is sufficiently cheap.
9749 This reduces data dependencies and may allow further simplifications.
9750 Enabled by default at @option{-O} and higher.
9751
9752 @item -fivopts
9753 @opindex fivopts
9754 Perform induction variable optimizations (strength reduction, induction
9755 variable merging and induction variable elimination) on trees.
9756
9757 @item -ftree-parallelize-loops=n
9758 @opindex ftree-parallelize-loops
9759 Parallelize loops, i.e., split their iteration space to run in n threads.
9760 This is only possible for loops whose iterations are independent
9761 and can be arbitrarily reordered. The optimization is only
9762 profitable on multiprocessor machines, for loops that are CPU-intensive,
9763 rather than constrained e.g.@: by memory bandwidth. This option
9764 implies @option{-pthread}, and thus is only supported on targets
9765 that have support for @option{-pthread}.
9766
9767 @item -ftree-pta
9768 @opindex ftree-pta
9769 Perform function-local points-to analysis on trees. This flag is
9770 enabled by default at @option{-O1} and higher, except for @option{-Og}.
9771
9772 @item -ftree-sra
9773 @opindex ftree-sra
9774 Perform scalar replacement of aggregates. This pass replaces structure
9775 references with scalars to prevent committing structures to memory too
9776 early. This flag is enabled by default at @option{-O1} and higher,
9777 except for @option{-Og}.
9778
9779 @item -fstore-merging
9780 @opindex fstore-merging
9781 Perform merging of narrow stores to consecutive memory addresses. This pass
9782 merges contiguous stores of immediate values narrower than a word into fewer
9783 wider stores to reduce the number of instructions. This is enabled by default
9784 at @option{-O2} and higher as well as @option{-Os}.
9785
9786 @item -ftree-ter
9787 @opindex ftree-ter
9788 Perform temporary expression replacement during the SSA->normal phase. Single
9789 use/single def temporaries are replaced at their use location with their
9790 defining expression. This results in non-GIMPLE code, but gives the expanders
9791 much more complex trees to work on resulting in better RTL generation. This is
9792 enabled by default at @option{-O} and higher.
9793
9794 @item -ftree-slsr
9795 @opindex ftree-slsr
9796 Perform straight-line strength reduction on trees. This recognizes related
9797 expressions involving multiplications and replaces them by less expensive
9798 calculations when possible. This is enabled by default at @option{-O} and
9799 higher.
9800
9801 @item -ftree-vectorize
9802 @opindex ftree-vectorize
9803 Perform vectorization on trees. This flag enables @option{-ftree-loop-vectorize}
9804 and @option{-ftree-slp-vectorize} if not explicitly specified.
9805
9806 @item -ftree-loop-vectorize
9807 @opindex ftree-loop-vectorize
9808 Perform loop vectorization on trees. This flag is enabled by default at
9809 @option{-O3} and by @option{-ftree-vectorize}, @option{-fprofile-use},
9810 and @option{-fauto-profile}.
9811
9812 @item -ftree-slp-vectorize
9813 @opindex ftree-slp-vectorize
9814 Perform basic block vectorization on trees. This flag is enabled by default at
9815 @option{-O3} and by @option{-ftree-vectorize}, @option{-fprofile-use},
9816 and @option{-fauto-profile}.
9817
9818 @item -fvect-cost-model=@var{model}
9819 @opindex fvect-cost-model
9820 Alter the cost model used for vectorization. The @var{model} argument
9821 should be one of @samp{unlimited}, @samp{dynamic} or @samp{cheap}.
9822 With the @samp{unlimited} model the vectorized code-path is assumed
9823 to be profitable while with the @samp{dynamic} model a runtime check
9824 guards the vectorized code-path to enable it only for iteration
9825 counts that will likely execute faster than when executing the original
9826 scalar loop. The @samp{cheap} model disables vectorization of
9827 loops where doing so would be cost prohibitive for example due to
9828 required runtime checks for data dependence or alignment but otherwise
9829 is equal to the @samp{dynamic} model.
9830 The default cost model depends on other optimization flags and is
9831 either @samp{dynamic} or @samp{cheap}.
9832
9833 @item -fsimd-cost-model=@var{model}
9834 @opindex fsimd-cost-model
9835 Alter the cost model used for vectorization of loops marked with the OpenMP
9836 simd directive. The @var{model} argument should be one of
9837 @samp{unlimited}, @samp{dynamic}, @samp{cheap}. All values of @var{model}
9838 have the same meaning as described in @option{-fvect-cost-model} and by
9839 default a cost model defined with @option{-fvect-cost-model} is used.
9840
9841 @item -ftree-vrp
9842 @opindex ftree-vrp
9843 Perform Value Range Propagation on trees. This is similar to the
9844 constant propagation pass, but instead of values, ranges of values are
9845 propagated. This allows the optimizers to remove unnecessary range
9846 checks like array bound checks and null pointer checks. This is
9847 enabled by default at @option{-O2} and higher. Null pointer check
9848 elimination is only done if @option{-fdelete-null-pointer-checks} is
9849 enabled.
9850
9851 @item -fsplit-paths
9852 @opindex fsplit-paths
9853 Split paths leading to loop backedges. This can improve dead code
9854 elimination and common subexpression elimination. This is enabled by
9855 default at @option{-O3} and above.
9856
9857 @item -fsplit-ivs-in-unroller
9858 @opindex fsplit-ivs-in-unroller
9859 Enables expression of values of induction variables in later iterations
9860 of the unrolled loop using the value in the first iteration. This breaks
9861 long dependency chains, thus improving efficiency of the scheduling passes.
9862
9863 A combination of @option{-fweb} and CSE is often sufficient to obtain the
9864 same effect. However, that is not reliable in cases where the loop body
9865 is more complicated than a single basic block. It also does not work at all
9866 on some architectures due to restrictions in the CSE pass.
9867
9868 This optimization is enabled by default.
9869
9870 @item -fvariable-expansion-in-unroller
9871 @opindex fvariable-expansion-in-unroller
9872 With this option, the compiler creates multiple copies of some
9873 local variables when unrolling a loop, which can result in superior code.
9874
9875 This optimization is enabled by default for PowerPC targets, but disabled
9876 by default otherwise.
9877
9878 @item -fpartial-inlining
9879 @opindex fpartial-inlining
9880 Inline parts of functions. This option has any effect only
9881 when inlining itself is turned on by the @option{-finline-functions}
9882 or @option{-finline-small-functions} options.
9883
9884 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9885
9886 @item -fpredictive-commoning
9887 @opindex fpredictive-commoning
9888 Perform predictive commoning optimization, i.e., reusing computations
9889 (especially memory loads and stores) performed in previous
9890 iterations of loops.
9891
9892 This option is enabled at level @option{-O3}.
9893 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9894
9895 @item -fprefetch-loop-arrays
9896 @opindex fprefetch-loop-arrays
9897 If supported by the target machine, generate instructions to prefetch
9898 memory to improve the performance of loops that access large arrays.
9899
9900 This option may generate better or worse code; results are highly
9901 dependent on the structure of loops within the source code.
9902
9903 Disabled at level @option{-Os}.
9904
9905 @item -fno-printf-return-value
9906 @opindex fno-printf-return-value
9907 @opindex fprintf-return-value
9908 Do not substitute constants for known return value of formatted output
9909 functions such as @code{sprintf}, @code{snprintf}, @code{vsprintf}, and
9910 @code{vsnprintf} (but not @code{printf} of @code{fprintf}). This
9911 transformation allows GCC to optimize or even eliminate branches based
9912 on the known return value of these functions called with arguments that
9913 are either constant, or whose values are known to be in a range that
9914 makes determining the exact return value possible. For example, when
9915 @option{-fprintf-return-value} is in effect, both the branch and the
9916 body of the @code{if} statement (but not the call to @code{snprint})
9917 can be optimized away when @code{i} is a 32-bit or smaller integer
9918 because the return value is guaranteed to be at most 8.
9919
9920 @smallexample
9921 char buf[9];
9922 if (snprintf (buf, "%08x", i) >= sizeof buf)
9923 @dots{}
9924 @end smallexample
9925
9926 The @option{-fprintf-return-value} option relies on other optimizations
9927 and yields best results with @option{-O2} and above. It works in tandem
9928 with the @option{-Wformat-overflow} and @option{-Wformat-truncation}
9929 options. The @option{-fprintf-return-value} option is enabled by default.
9930
9931 @item -fno-peephole
9932 @itemx -fno-peephole2
9933 @opindex fno-peephole
9934 @opindex fpeephole
9935 @opindex fno-peephole2
9936 @opindex fpeephole2
9937 Disable any machine-specific peephole optimizations. The difference
9938 between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
9939 are implemented in the compiler; some targets use one, some use the
9940 other, a few use both.
9941
9942 @option{-fpeephole} is enabled by default.
9943 @option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9944
9945 @item -fno-guess-branch-probability
9946 @opindex fno-guess-branch-probability
9947 @opindex fguess-branch-probability
9948 Do not guess branch probabilities using heuristics.
9949
9950 GCC uses heuristics to guess branch probabilities if they are
9951 not provided by profiling feedback (@option{-fprofile-arcs}). These
9952 heuristics are based on the control flow graph. If some branch probabilities
9953 are specified by @code{__builtin_expect}, then the heuristics are
9954 used to guess branch probabilities for the rest of the control flow graph,
9955 taking the @code{__builtin_expect} info into account. The interactions
9956 between the heuristics and @code{__builtin_expect} can be complex, and in
9957 some cases, it may be useful to disable the heuristics so that the effects
9958 of @code{__builtin_expect} are easier to understand.
9959
9960 It is also possible to specify expected probability of the expression
9961 with @code{__builtin_expect_with_probability} built-in function.
9962
9963 The default is @option{-fguess-branch-probability} at levels
9964 @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9965
9966 @item -freorder-blocks
9967 @opindex freorder-blocks
9968 Reorder basic blocks in the compiled function in order to reduce number of
9969 taken branches and improve code locality.
9970
9971 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9972
9973 @item -freorder-blocks-algorithm=@var{algorithm}
9974 @opindex freorder-blocks-algorithm
9975 Use the specified algorithm for basic block reordering. The
9976 @var{algorithm} argument can be @samp{simple}, which does not increase
9977 code size (except sometimes due to secondary effects like alignment),
9978 or @samp{stc}, the ``software trace cache'' algorithm, which tries to
9979 put all often executed code together, minimizing the number of branches
9980 executed by making extra copies of code.
9981
9982 The default is @samp{simple} at levels @option{-O}, @option{-Os}, and
9983 @samp{stc} at levels @option{-O2}, @option{-O3}.
9984
9985 @item -freorder-blocks-and-partition
9986 @opindex freorder-blocks-and-partition
9987 In addition to reordering basic blocks in the compiled function, in order
9988 to reduce number of taken branches, partitions hot and cold basic blocks
9989 into separate sections of the assembly and @file{.o} files, to improve
9990 paging and cache locality performance.
9991
9992 This optimization is automatically turned off in the presence of
9993 exception handling or unwind tables (on targets using setjump/longjump or target specific scheme), for linkonce sections, for functions with a user-defined
9994 section attribute and on any architecture that does not support named
9995 sections. When @option{-fsplit-stack} is used this option is not
9996 enabled by default (to avoid linker errors), but may be enabled
9997 explicitly (if using a working linker).
9998
9999 Enabled for x86 at levels @option{-O2}, @option{-O3}, @option{-Os}.
10000
10001 @item -freorder-functions
10002 @opindex freorder-functions
10003 Reorder functions in the object file in order to
10004 improve code locality. This is implemented by using special
10005 subsections @code{.text.hot} for most frequently executed functions and
10006 @code{.text.unlikely} for unlikely executed functions. Reordering is done by
10007 the linker so object file format must support named sections and linker must
10008 place them in a reasonable way.
10009
10010 This option isn't effective unless you either provide profile feedback
10011 (see @option{-fprofile-arcs} for details) or manually annotate functions with
10012 @code{hot} or @code{cold} attributes (@pxref{Common Function Attributes}).
10013
10014 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
10015
10016 @item -fstrict-aliasing
10017 @opindex fstrict-aliasing
10018 Allow the compiler to assume the strictest aliasing rules applicable to
10019 the language being compiled. For C (and C++), this activates
10020 optimizations based on the type of expressions. In particular, an
10021 object of one type is assumed never to reside at the same address as an
10022 object of a different type, unless the types are almost the same. For
10023 example, an @code{unsigned int} can alias an @code{int}, but not a
10024 @code{void*} or a @code{double}. A character type may alias any other
10025 type.
10026
10027 @anchor{Type-punning}Pay special attention to code like this:
10028 @smallexample
10029 union a_union @{
10030 int i;
10031 double d;
10032 @};
10033
10034 int f() @{
10035 union a_union t;
10036 t.d = 3.0;
10037 return t.i;
10038 @}
10039 @end smallexample
10040 The practice of reading from a different union member than the one most
10041 recently written to (called ``type-punning'') is common. Even with
10042 @option{-fstrict-aliasing}, type-punning is allowed, provided the memory
10043 is accessed through the union type. So, the code above works as
10044 expected. @xref{Structures unions enumerations and bit-fields
10045 implementation}. However, this code might not:
10046 @smallexample
10047 int f() @{
10048 union a_union t;
10049 int* ip;
10050 t.d = 3.0;
10051 ip = &t.i;
10052 return *ip;
10053 @}
10054 @end smallexample
10055
10056 Similarly, access by taking the address, casting the resulting pointer
10057 and dereferencing the result has undefined behavior, even if the cast
10058 uses a union type, e.g.:
10059 @smallexample
10060 int f() @{
10061 double d = 3.0;
10062 return ((union a_union *) &d)->i;
10063 @}
10064 @end smallexample
10065
10066 The @option{-fstrict-aliasing} option is enabled at levels
10067 @option{-O2}, @option{-O3}, @option{-Os}.
10068
10069 @item -falign-functions
10070 @itemx -falign-functions=@var{n}
10071 @itemx -falign-functions=@var{n}:@var{m}
10072 @itemx -falign-functions=@var{n}:@var{m}:@var{n2}
10073 @itemx -falign-functions=@var{n}:@var{m}:@var{n2}:@var{m2}
10074 @opindex falign-functions
10075 Align the start of functions to the next power-of-two greater than
10076 @var{n}, skipping up to @var{m}-1 bytes. This ensures that at least
10077 the first @var{m} bytes of the function can be fetched by the CPU
10078 without crossing an @var{n}-byte alignment boundary.
10079
10080 If @var{m} is not specified, it defaults to @var{n}.
10081
10082 Examples: @option{-falign-functions=32} aligns functions to the next
10083 32-byte boundary, @option{-falign-functions=24} aligns to the next
10084 32-byte boundary only if this can be done by skipping 23 bytes or less,
10085 @option{-falign-functions=32:7} aligns to the next
10086 32-byte boundary only if this can be done by skipping 6 bytes or less.
10087
10088 The second pair of @var{n2}:@var{m2} values allows you to specify
10089 a secondary alignment: @option{-falign-functions=64:7:32:3} aligns to
10090 the next 64-byte boundary if this can be done by skipping 6 bytes or less,
10091 otherwise aligns to the next 32-byte boundary if this can be done
10092 by skipping 2 bytes or less.
10093 If @var{m2} is not specified, it defaults to @var{n2}.
10094
10095 Some assemblers only support this flag when @var{n} is a power of two;
10096 in that case, it is rounded up.
10097
10098 @option{-fno-align-functions} and @option{-falign-functions=1} are
10099 equivalent and mean that functions are not aligned.
10100
10101 If @var{n} is not specified or is zero, use a machine-dependent default.
10102 The maximum allowed @var{n} option value is 65536.
10103
10104 Enabled at levels @option{-O2}, @option{-O3}.
10105
10106 @item -flimit-function-alignment
10107 If this option is enabled, the compiler tries to avoid unnecessarily
10108 overaligning functions. It attempts to instruct the assembler to align
10109 by the amount specified by @option{-falign-functions}, but not to
10110 skip more bytes than the size of the function.
10111
10112 @item -falign-labels
10113 @itemx -falign-labels=@var{n}
10114 @itemx -falign-labels=@var{n}:@var{m}
10115 @itemx -falign-labels=@var{n}:@var{m}:@var{n2}
10116 @itemx -falign-labels=@var{n}:@var{m}:@var{n2}:@var{m2}
10117 @opindex falign-labels
10118 Align all branch targets to a power-of-two boundary.
10119
10120 Parameters of this option are analogous to the @option{-falign-functions} option.
10121 @option{-fno-align-labels} and @option{-falign-labels=1} are
10122 equivalent and mean that labels are not aligned.
10123
10124 If @option{-falign-loops} or @option{-falign-jumps} are applicable and
10125 are greater than this value, then their values are used instead.
10126
10127 If @var{n} is not specified or is zero, use a machine-dependent default
10128 which is very likely to be @samp{1}, meaning no alignment.
10129 The maximum allowed @var{n} option value is 65536.
10130
10131 Enabled at levels @option{-O2}, @option{-O3}.
10132
10133 @item -falign-loops
10134 @itemx -falign-loops=@var{n}
10135 @itemx -falign-loops=@var{n}:@var{m}
10136 @itemx -falign-loops=@var{n}:@var{m}:@var{n2}
10137 @itemx -falign-loops=@var{n}:@var{m}:@var{n2}:@var{m2}
10138 @opindex falign-loops
10139 Align loops to a power-of-two boundary. If the loops are executed
10140 many times, this makes up for any execution of the dummy padding
10141 instructions.
10142
10143 Parameters of this option are analogous to the @option{-falign-functions} option.
10144 @option{-fno-align-loops} and @option{-falign-loops=1} are
10145 equivalent and mean that loops are not aligned.
10146 The maximum allowed @var{n} option value is 65536.
10147
10148 If @var{n} is not specified or is zero, use a machine-dependent default.
10149
10150 Enabled at levels @option{-O2}, @option{-O3}.
10151
10152 @item -falign-jumps
10153 @itemx -falign-jumps=@var{n}
10154 @itemx -falign-jumps=@var{n}:@var{m}
10155 @itemx -falign-jumps=@var{n}:@var{m}:@var{n2}
10156 @itemx -falign-jumps=@var{n}:@var{m}:@var{n2}:@var{m2}
10157 @opindex falign-jumps
10158 Align branch targets to a power-of-two boundary, for branch targets
10159 where the targets can only be reached by jumping. In this case,
10160 no dummy operations need be executed.
10161
10162 Parameters of this option are analogous to the @option{-falign-functions} option.
10163 @option{-fno-align-jumps} and @option{-falign-jumps=1} are
10164 equivalent and mean that loops are not aligned.
10165
10166 If @var{n} is not specified or is zero, use a machine-dependent default.
10167 The maximum allowed @var{n} option value is 65536.
10168
10169 Enabled at levels @option{-O2}, @option{-O3}.
10170
10171 @item -funit-at-a-time
10172 @opindex funit-at-a-time
10173 This option is left for compatibility reasons. @option{-funit-at-a-time}
10174 has no effect, while @option{-fno-unit-at-a-time} implies
10175 @option{-fno-toplevel-reorder} and @option{-fno-section-anchors}.
10176
10177 Enabled by default.
10178
10179 @item -fno-toplevel-reorder
10180 @opindex fno-toplevel-reorder
10181 @opindex ftoplevel-reorder
10182 Do not reorder top-level functions, variables, and @code{asm}
10183 statements. Output them in the same order that they appear in the
10184 input file. When this option is used, unreferenced static variables
10185 are not removed. This option is intended to support existing code
10186 that relies on a particular ordering. For new code, it is better to
10187 use attributes when possible.
10188
10189 @option{-ftoplevel-reorder} is the default at @option{-O1} and higher, and
10190 also at @option{-O0} if @option{-fsection-anchors} is explicitly requested.
10191 Additionally @option{-fno-toplevel-reorder} implies
10192 @option{-fno-section-anchors}.
10193
10194 @item -fweb
10195 @opindex fweb
10196 Constructs webs as commonly used for register allocation purposes and assign
10197 each web individual pseudo register. This allows the register allocation pass
10198 to operate on pseudos directly, but also strengthens several other optimization
10199 passes, such as CSE, loop optimizer and trivial dead code remover. It can,
10200 however, make debugging impossible, since variables no longer stay in a
10201 ``home register''.
10202
10203 Enabled by default with @option{-funroll-loops}.
10204
10205 @item -fwhole-program
10206 @opindex fwhole-program
10207 Assume that the current compilation unit represents the whole program being
10208 compiled. All public functions and variables with the exception of @code{main}
10209 and those merged by attribute @code{externally_visible} become static functions
10210 and in effect are optimized more aggressively by interprocedural optimizers.
10211
10212 This option should not be used in combination with @option{-flto}.
10213 Instead relying on a linker plugin should provide safer and more precise
10214 information.
10215
10216 @item -flto[=@var{n}]
10217 @opindex flto
10218 This option runs the standard link-time optimizer. When invoked
10219 with source code, it generates GIMPLE (one of GCC's internal
10220 representations) and writes it to special ELF sections in the object
10221 file. When the object files are linked together, all the function
10222 bodies are read from these ELF sections and instantiated as if they
10223 had been part of the same translation unit.
10224
10225 To use the link-time optimizer, @option{-flto} and optimization
10226 options should be specified at compile time and during the final link.
10227 It is recommended that you compile all the files participating in the
10228 same link with the same options and also specify those options at
10229 link time.
10230 For example:
10231
10232 @smallexample
10233 gcc -c -O2 -flto foo.c
10234 gcc -c -O2 -flto bar.c
10235 gcc -o myprog -flto -O2 foo.o bar.o
10236 @end smallexample
10237
10238 The first two invocations to GCC save a bytecode representation
10239 of GIMPLE into special ELF sections inside @file{foo.o} and
10240 @file{bar.o}. The final invocation reads the GIMPLE bytecode from
10241 @file{foo.o} and @file{bar.o}, merges the two files into a single
10242 internal image, and compiles the result as usual. Since both
10243 @file{foo.o} and @file{bar.o} are merged into a single image, this
10244 causes all the interprocedural analyses and optimizations in GCC to
10245 work across the two files as if they were a single one. This means,
10246 for example, that the inliner is able to inline functions in
10247 @file{bar.o} into functions in @file{foo.o} and vice-versa.
10248
10249 Another (simpler) way to enable link-time optimization is:
10250
10251 @smallexample
10252 gcc -o myprog -flto -O2 foo.c bar.c
10253 @end smallexample
10254
10255 The above generates bytecode for @file{foo.c} and @file{bar.c},
10256 merges them together into a single GIMPLE representation and optimizes
10257 them as usual to produce @file{myprog}.
10258
10259 The important thing to keep in mind is that to enable link-time
10260 optimizations you need to use the GCC driver to perform the link step.
10261 GCC automatically performs link-time optimization if any of the
10262 objects involved were compiled with the @option{-flto} command-line option.
10263 You can always override
10264 the automatic decision to do link-time optimization
10265 by passing @option{-fno-lto} to the link command.
10266
10267 To make whole program optimization effective, it is necessary to make
10268 certain whole program assumptions. The compiler needs to know
10269 what functions and variables can be accessed by libraries and runtime
10270 outside of the link-time optimized unit. When supported by the linker,
10271 the linker plugin (see @option{-fuse-linker-plugin}) passes information
10272 to the compiler about used and externally visible symbols. When
10273 the linker plugin is not available, @option{-fwhole-program} should be
10274 used to allow the compiler to make these assumptions, which leads
10275 to more aggressive optimization decisions.
10276
10277 When a file is compiled with @option{-flto} without
10278 @option{-fuse-linker-plugin}, the generated object file is larger than
10279 a regular object file because it contains GIMPLE bytecodes and the usual
10280 final code (see @option{-ffat-lto-objects}. This means that
10281 object files with LTO information can be linked as normal object
10282 files; if @option{-fno-lto} is passed to the linker, no
10283 interprocedural optimizations are applied. Note that when
10284 @option{-fno-fat-lto-objects} is enabled the compile stage is faster
10285 but you cannot perform a regular, non-LTO link on them.
10286
10287 When producing the final binary, GCC only
10288 applies link-time optimizations to those files that contain bytecode.
10289 Therefore, you can mix and match object files and libraries with
10290 GIMPLE bytecodes and final object code. GCC automatically selects
10291 which files to optimize in LTO mode and which files to link without
10292 further processing.
10293
10294 Generally, options specified at link time override those
10295 specified at compile time, although in some cases GCC attempts to infer
10296 link-time options from the settings used to compile the input files.
10297
10298 If you do not specify an optimization level option @option{-O} at
10299 link time, then GCC uses the highest optimization level
10300 used when compiling the object files. Note that it is generally
10301 ineffective to specify an optimization level option only at link time and
10302 not at compile time, for two reasons. First, compiling without
10303 optimization suppresses compiler passes that gather information
10304 needed for effective optimization at link time. Second, some early
10305 optimization passes can be performed only at compile time and
10306 not at link time.
10307
10308 There are some code generation flags preserved by GCC when
10309 generating bytecodes, as they need to be used during the final link.
10310 Currently, the following options and their settings are taken from
10311 the first object file that explicitly specifies them:
10312 @option{-fPIC}, @option{-fpic}, @option{-fpie}, @option{-fcommon},
10313 @option{-fexceptions}, @option{-fnon-call-exceptions}, @option{-fgnu-tm}
10314 and all the @option{-m} target flags.
10315
10316 Certain ABI-changing flags are required to match in all compilation units,
10317 and trying to override this at link time with a conflicting value
10318 is ignored. This includes options such as @option{-freg-struct-return}
10319 and @option{-fpcc-struct-return}.
10320
10321 Other options such as @option{-ffp-contract}, @option{-fno-strict-overflow},
10322 @option{-fwrapv}, @option{-fno-trapv} or @option{-fno-strict-aliasing}
10323 are passed through to the link stage and merged conservatively for
10324 conflicting translation units. Specifically
10325 @option{-fno-strict-overflow}, @option{-fwrapv} and @option{-fno-trapv} take
10326 precedence; and for example @option{-ffp-contract=off} takes precedence
10327 over @option{-ffp-contract=fast}. You can override them at link time.
10328
10329 If LTO encounters objects with C linkage declared with incompatible
10330 types in separate translation units to be linked together (undefined
10331 behavior according to ISO C99 6.2.7), a non-fatal diagnostic may be
10332 issued. The behavior is still undefined at run time. Similar
10333 diagnostics may be raised for other languages.
10334
10335 Another feature of LTO is that it is possible to apply interprocedural
10336 optimizations on files written in different languages:
10337
10338 @smallexample
10339 gcc -c -flto foo.c
10340 g++ -c -flto bar.cc
10341 gfortran -c -flto baz.f90
10342 g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
10343 @end smallexample
10344
10345 Notice that the final link is done with @command{g++} to get the C++
10346 runtime libraries and @option{-lgfortran} is added to get the Fortran
10347 runtime libraries. In general, when mixing languages in LTO mode, you
10348 should use the same link command options as when mixing languages in a
10349 regular (non-LTO) compilation.
10350
10351 If object files containing GIMPLE bytecode are stored in a library archive, say
10352 @file{libfoo.a}, it is possible to extract and use them in an LTO link if you
10353 are using a linker with plugin support. To create static libraries suitable
10354 for LTO, use @command{gcc-ar} and @command{gcc-ranlib} instead of @command{ar}
10355 and @command{ranlib};
10356 to show the symbols of object files with GIMPLE bytecode, use
10357 @command{gcc-nm}. Those commands require that @command{ar}, @command{ranlib}
10358 and @command{nm} have been compiled with plugin support. At link time, use the
10359 flag @option{-fuse-linker-plugin} to ensure that the library participates in
10360 the LTO optimization process:
10361
10362 @smallexample
10363 gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
10364 @end smallexample
10365
10366 With the linker plugin enabled, the linker extracts the needed
10367 GIMPLE files from @file{libfoo.a} and passes them on to the running GCC
10368 to make them part of the aggregated GIMPLE image to be optimized.
10369
10370 If you are not using a linker with plugin support and/or do not
10371 enable the linker plugin, then the objects inside @file{libfoo.a}
10372 are extracted and linked as usual, but they do not participate
10373 in the LTO optimization process. In order to make a static library suitable
10374 for both LTO optimization and usual linkage, compile its object files with
10375 @option{-flto} @option{-ffat-lto-objects}.
10376
10377 Link-time optimizations do not require the presence of the whole program to
10378 operate. If the program does not require any symbols to be exported, it is
10379 possible to combine @option{-flto} and @option{-fwhole-program} to allow
10380 the interprocedural optimizers to use more aggressive assumptions which may
10381 lead to improved optimization opportunities.
10382 Use of @option{-fwhole-program} is not needed when linker plugin is
10383 active (see @option{-fuse-linker-plugin}).
10384
10385 The current implementation of LTO makes no
10386 attempt to generate bytecode that is portable between different
10387 types of hosts. The bytecode files are versioned and there is a
10388 strict version check, so bytecode files generated in one version of
10389 GCC do not work with an older or newer version of GCC.
10390
10391 Link-time optimization does not work well with generation of debugging
10392 information on systems other than those using a combination of ELF and
10393 DWARF.
10394
10395 If you specify the optional @var{n}, the optimization and code
10396 generation done at link time is executed in parallel using @var{n}
10397 parallel jobs by utilizing an installed @command{make} program. The
10398 environment variable @env{MAKE} may be used to override the program
10399 used. The default value for @var{n} is automatically detected based
10400 on number of cores.
10401
10402 You can also specify @option{-flto=jobserver} to use GNU make's
10403 job server mode to determine the number of parallel jobs. This
10404 is useful when the Makefile calling GCC is already executing in parallel.
10405 You must prepend a @samp{+} to the command recipe in the parent Makefile
10406 for this to work. This option likely only works if @env{MAKE} is
10407 GNU make.
10408
10409 @item -flto-partition=@var{alg}
10410 @opindex flto-partition
10411 Specify the partitioning algorithm used by the link-time optimizer.
10412 The value is either @samp{1to1} to specify a partitioning mirroring
10413 the original source files or @samp{balanced} to specify partitioning
10414 into equally sized chunks (whenever possible) or @samp{max} to create
10415 new partition for every symbol where possible. Specifying @samp{none}
10416 as an algorithm disables partitioning and streaming completely.
10417 The default value is @samp{balanced}. While @samp{1to1} can be used
10418 as an workaround for various code ordering issues, the @samp{max}
10419 partitioning is intended for internal testing only.
10420 The value @samp{one} specifies that exactly one partition should be
10421 used while the value @samp{none} bypasses partitioning and executes
10422 the link-time optimization step directly from the WPA phase.
10423
10424 @item -flto-compression-level=@var{n}
10425 @opindex flto-compression-level
10426 This option specifies the level of compression used for intermediate
10427 language written to LTO object files, and is only meaningful in
10428 conjunction with LTO mode (@option{-flto}). Valid
10429 values are 0 (no compression) to 9 (maximum compression). Values
10430 outside this range are clamped to either 0 or 9. If the option is not
10431 given, a default balanced compression setting is used.
10432
10433 @item -fuse-linker-plugin
10434 @opindex fuse-linker-plugin
10435 Enables the use of a linker plugin during link-time optimization. This
10436 option relies on plugin support in the linker, which is available in gold
10437 or in GNU ld 2.21 or newer.
10438
10439 This option enables the extraction of object files with GIMPLE bytecode out
10440 of library archives. This improves the quality of optimization by exposing
10441 more code to the link-time optimizer. This information specifies what
10442 symbols can be accessed externally (by non-LTO object or during dynamic
10443 linking). Resulting code quality improvements on binaries (and shared
10444 libraries that use hidden visibility) are similar to @option{-fwhole-program}.
10445 See @option{-flto} for a description of the effect of this flag and how to
10446 use it.
10447
10448 This option is enabled by default when LTO support in GCC is enabled
10449 and GCC was configured for use with
10450 a linker supporting plugins (GNU ld 2.21 or newer or gold).
10451
10452 @item -ffat-lto-objects
10453 @opindex ffat-lto-objects
10454 Fat LTO objects are object files that contain both the intermediate language
10455 and the object code. This makes them usable for both LTO linking and normal
10456 linking. This option is effective only when compiling with @option{-flto}
10457 and is ignored at link time.
10458
10459 @option{-fno-fat-lto-objects} improves compilation time over plain LTO, but
10460 requires the complete toolchain to be aware of LTO. It requires a linker with
10461 linker plugin support for basic functionality. Additionally,
10462 @command{nm}, @command{ar} and @command{ranlib}
10463 need to support linker plugins to allow a full-featured build environment
10464 (capable of building static libraries etc). GCC provides the @command{gcc-ar},
10465 @command{gcc-nm}, @command{gcc-ranlib} wrappers to pass the right options
10466 to these tools. With non fat LTO makefiles need to be modified to use them.
10467
10468 Note that modern binutils provide plugin auto-load mechanism.
10469 Installing the linker plugin into @file{$libdir/bfd-plugins} has the same
10470 effect as usage of the command wrappers (@command{gcc-ar}, @command{gcc-nm} and
10471 @command{gcc-ranlib}).
10472
10473 The default is @option{-fno-fat-lto-objects} on targets with linker plugin
10474 support.
10475
10476 @item -fcompare-elim
10477 @opindex fcompare-elim
10478 After register allocation and post-register allocation instruction splitting,
10479 identify arithmetic instructions that compute processor flags similar to a
10480 comparison operation based on that arithmetic. If possible, eliminate the
10481 explicit comparison operation.
10482
10483 This pass only applies to certain targets that cannot explicitly represent
10484 the comparison operation before register allocation is complete.
10485
10486 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
10487
10488 @item -fcprop-registers
10489 @opindex fcprop-registers
10490 After register allocation and post-register allocation instruction splitting,
10491 perform a copy-propagation pass to try to reduce scheduling dependencies
10492 and occasionally eliminate the copy.
10493
10494 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
10495
10496 @item -fprofile-correction
10497 @opindex fprofile-correction
10498 Profiles collected using an instrumented binary for multi-threaded programs may
10499 be inconsistent due to missed counter updates. When this option is specified,
10500 GCC uses heuristics to correct or smooth out such inconsistencies. By
10501 default, GCC emits an error message when an inconsistent profile is detected.
10502
10503 This option is enabled by @option{-fauto-profile}.
10504
10505 @item -fprofile-use
10506 @itemx -fprofile-use=@var{path}
10507 @opindex fprofile-use
10508 Enable profile feedback-directed optimizations,
10509 and the following optimizations, many of which
10510 are generally profitable only with profile feedback available:
10511
10512 @gccoptlist{-fbranch-probabilities -fprofile-values @gol
10513 -funroll-loops -fpeel-loops -ftracer -fvpt @gol
10514 -finline-functions -fipa-cp -fipa-cp-clone -fipa-bit-cp @gol
10515 -fpredictive-commoning -fsplit-loops -funswitch-loops @gol
10516 -fgcse-after-reload -ftree-loop-vectorize -ftree-slp-vectorize @gol
10517 -fvect-cost-model=dynamic -ftree-loop-distribute-patterns @gol
10518 -fprofile-reorder-functions}
10519
10520 Before you can use this option, you must first generate profiling information.
10521 @xref{Instrumentation Options}, for information about the
10522 @option{-fprofile-generate} option.
10523
10524 By default, GCC emits an error message if the feedback profiles do not
10525 match the source code. This error can be turned into a warning by using
10526 @option{-Wno-error=coverage-mismatch}. Note this may result in poorly
10527 optimized code. Additionally, by default, GCC also emits a warning message if
10528 the feedback profiles do not exist (see @option{-Wmissing-profile}).
10529
10530 If @var{path} is specified, GCC looks at the @var{path} to find
10531 the profile feedback data files. See @option{-fprofile-dir}.
10532
10533 @item -fauto-profile
10534 @itemx -fauto-profile=@var{path}
10535 @opindex fauto-profile
10536 Enable sampling-based feedback-directed optimizations,
10537 and the following optimizations,
10538 many of which are generally profitable only with profile feedback available:
10539
10540 @gccoptlist{-fbranch-probabilities -fprofile-values @gol
10541 -funroll-loops -fpeel-loops -ftracer -fvpt @gol
10542 -finline-functions -fipa-cp -fipa-cp-clone -fipa-bit-cp @gol
10543 -fpredictive-commoning -fsplit-loops -funswitch-loops @gol
10544 -fgcse-after-reload -ftree-loop-vectorize -ftree-slp-vectorize @gol
10545 -fvect-cost-model=dynamic -ftree-loop-distribute-patterns @gol
10546 -fprofile-correction}
10547
10548 @var{path} is the name of a file containing AutoFDO profile information.
10549 If omitted, it defaults to @file{fbdata.afdo} in the current directory.
10550
10551 Producing an AutoFDO profile data file requires running your program
10552 with the @command{perf} utility on a supported GNU/Linux target system.
10553 For more information, see @uref{https://perf.wiki.kernel.org/}.
10554
10555 E.g.
10556 @smallexample
10557 perf record -e br_inst_retired:near_taken -b -o perf.data \
10558 -- your_program
10559 @end smallexample
10560
10561 Then use the @command{create_gcov} tool to convert the raw profile data
10562 to a format that can be used by GCC.@ You must also supply the
10563 unstripped binary for your program to this tool.
10564 See @uref{https://github.com/google/autofdo}.
10565
10566 E.g.
10567 @smallexample
10568 create_gcov --binary=your_program.unstripped --profile=perf.data \
10569 --gcov=profile.afdo
10570 @end smallexample
10571 @end table
10572
10573 The following options control compiler behavior regarding floating-point
10574 arithmetic. These options trade off between speed and
10575 correctness. All must be specifically enabled.
10576
10577 @table @gcctabopt
10578 @item -ffloat-store
10579 @opindex ffloat-store
10580 Do not store floating-point variables in registers, and inhibit other
10581 options that might change whether a floating-point value is taken from a
10582 register or memory.
10583
10584 @cindex floating-point precision
10585 This option prevents undesirable excess precision on machines such as
10586 the 68000 where the floating registers (of the 68881) keep more
10587 precision than a @code{double} is supposed to have. Similarly for the
10588 x86 architecture. For most programs, the excess precision does only
10589 good, but a few programs rely on the precise definition of IEEE floating
10590 point. Use @option{-ffloat-store} for such programs, after modifying
10591 them to store all pertinent intermediate computations into variables.
10592
10593 @item -fexcess-precision=@var{style}
10594 @opindex fexcess-precision
10595 This option allows further control over excess precision on machines
10596 where floating-point operations occur in a format with more precision or
10597 range than the IEEE standard and interchange floating-point types. By
10598 default, @option{-fexcess-precision=fast} is in effect; this means that
10599 operations may be carried out in a wider precision than the types specified
10600 in the source if that would result in faster code, and it is unpredictable
10601 when rounding to the types specified in the source code takes place.
10602 When compiling C, if @option{-fexcess-precision=standard} is specified then
10603 excess precision follows the rules specified in ISO C99; in particular,
10604 both casts and assignments cause values to be rounded to their
10605 semantic types (whereas @option{-ffloat-store} only affects
10606 assignments). This option is enabled by default for C if a strict
10607 conformance option such as @option{-std=c99} is used.
10608 @option{-ffast-math} enables @option{-fexcess-precision=fast} by default
10609 regardless of whether a strict conformance option is used.
10610
10611 @opindex mfpmath
10612 @option{-fexcess-precision=standard} is not implemented for languages
10613 other than C. On the x86, it has no effect if @option{-mfpmath=sse}
10614 or @option{-mfpmath=sse+387} is specified; in the former case, IEEE
10615 semantics apply without excess precision, and in the latter, rounding
10616 is unpredictable.
10617
10618 @item -ffast-math
10619 @opindex ffast-math
10620 Sets the options @option{-fno-math-errno}, @option{-funsafe-math-optimizations},
10621 @option{-ffinite-math-only}, @option{-fno-rounding-math},
10622 @option{-fno-signaling-nans}, @option{-fcx-limited-range} and
10623 @option{-fexcess-precision=fast}.
10624
10625 This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.
10626
10627 This option is not turned on by any @option{-O} option besides
10628 @option{-Ofast} since it can result in incorrect output for programs
10629 that depend on an exact implementation of IEEE or ISO rules/specifications
10630 for math functions. It may, however, yield faster code for programs
10631 that do not require the guarantees of these specifications.
10632
10633 @item -fno-math-errno
10634 @opindex fno-math-errno
10635 @opindex fmath-errno
10636 Do not set @code{errno} after calling math functions that are executed
10637 with a single instruction, e.g., @code{sqrt}. A program that relies on
10638 IEEE exceptions for math error handling may want to use this flag
10639 for speed while maintaining IEEE arithmetic compatibility.
10640
10641 This option is not turned on by any @option{-O} option since
10642 it can result in incorrect output for programs that depend on
10643 an exact implementation of IEEE or ISO rules/specifications for
10644 math functions. It may, however, yield faster code for programs
10645 that do not require the guarantees of these specifications.
10646
10647 The default is @option{-fmath-errno}.
10648
10649 On Darwin systems, the math library never sets @code{errno}. There is
10650 therefore no reason for the compiler to consider the possibility that
10651 it might, and @option{-fno-math-errno} is the default.
10652
10653 @item -funsafe-math-optimizations
10654 @opindex funsafe-math-optimizations
10655
10656 Allow optimizations for floating-point arithmetic that (a) assume
10657 that arguments and results are valid and (b) may violate IEEE or
10658 ANSI standards. When used at link time, it may include libraries
10659 or startup files that change the default FPU control word or other
10660 similar optimizations.
10661
10662 This option is not turned on by any @option{-O} option since
10663 it can result in incorrect output for programs that depend on
10664 an exact implementation of IEEE or ISO rules/specifications for
10665 math functions. It may, however, yield faster code for programs
10666 that do not require the guarantees of these specifications.
10667 Enables @option{-fno-signed-zeros}, @option{-fno-trapping-math},
10668 @option{-fassociative-math} and @option{-freciprocal-math}.
10669
10670 The default is @option{-fno-unsafe-math-optimizations}.
10671
10672 @item -fassociative-math
10673 @opindex fassociative-math
10674
10675 Allow re-association of operands in series of floating-point operations.
10676 This violates the ISO C and C++ language standard by possibly changing
10677 computation result. NOTE: re-ordering may change the sign of zero as
10678 well as ignore NaNs and inhibit or create underflow or overflow (and
10679 thus cannot be used on code that relies on rounding behavior like
10680 @code{(x + 2**52) - 2**52}. May also reorder floating-point comparisons
10681 and thus may not be used when ordered comparisons are required.
10682 This option requires that both @option{-fno-signed-zeros} and
10683 @option{-fno-trapping-math} be in effect. Moreover, it doesn't make
10684 much sense with @option{-frounding-math}. For Fortran the option
10685 is automatically enabled when both @option{-fno-signed-zeros} and
10686 @option{-fno-trapping-math} are in effect.
10687
10688 The default is @option{-fno-associative-math}.
10689
10690 @item -freciprocal-math
10691 @opindex freciprocal-math
10692
10693 Allow the reciprocal of a value to be used instead of dividing by
10694 the value if this enables optimizations. For example @code{x / y}
10695 can be replaced with @code{x * (1/y)}, which is useful if @code{(1/y)}
10696 is subject to common subexpression elimination. Note that this loses
10697 precision and increases the number of flops operating on the value.
10698
10699 The default is @option{-fno-reciprocal-math}.
10700
10701 @item -ffinite-math-only
10702 @opindex ffinite-math-only
10703 Allow optimizations for floating-point arithmetic that assume
10704 that arguments and results are not NaNs or +-Infs.
10705
10706 This option is not turned on by any @option{-O} option since
10707 it can result in incorrect output for programs that depend on
10708 an exact implementation of IEEE or ISO rules/specifications for
10709 math functions. It may, however, yield faster code for programs
10710 that do not require the guarantees of these specifications.
10711
10712 The default is @option{-fno-finite-math-only}.
10713
10714 @item -fno-signed-zeros
10715 @opindex fno-signed-zeros
10716 @opindex fsigned-zeros
10717 Allow optimizations for floating-point arithmetic that ignore the
10718 signedness of zero. IEEE arithmetic specifies the behavior of
10719 distinct +0.0 and @minus{}0.0 values, which then prohibits simplification
10720 of expressions such as x+0.0 or 0.0*x (even with @option{-ffinite-math-only}).
10721 This option implies that the sign of a zero result isn't significant.
10722
10723 The default is @option{-fsigned-zeros}.
10724
10725 @item -fno-trapping-math
10726 @opindex fno-trapping-math
10727 @opindex ftrapping-math
10728 Compile code assuming that floating-point operations cannot generate
10729 user-visible traps. These traps include division by zero, overflow,
10730 underflow, inexact result and invalid operation. This option requires
10731 that @option{-fno-signaling-nans} be in effect. Setting this option may
10732 allow faster code if one relies on ``non-stop'' IEEE arithmetic, for example.
10733
10734 This option should never be turned on by any @option{-O} option since
10735 it can result in incorrect output for programs that depend on
10736 an exact implementation of IEEE or ISO rules/specifications for
10737 math functions.
10738
10739 The default is @option{-ftrapping-math}.
10740
10741 @item -frounding-math
10742 @opindex frounding-math
10743 Disable transformations and optimizations that assume default floating-point
10744 rounding behavior. This is round-to-zero for all floating point
10745 to integer conversions, and round-to-nearest for all other arithmetic
10746 truncations. This option should be specified for programs that change
10747 the FP rounding mode dynamically, or that may be executed with a
10748 non-default rounding mode. This option disables constant folding of
10749 floating-point expressions at compile time (which may be affected by
10750 rounding mode) and arithmetic transformations that are unsafe in the
10751 presence of sign-dependent rounding modes.
10752
10753 The default is @option{-fno-rounding-math}.
10754
10755 This option is experimental and does not currently guarantee to
10756 disable all GCC optimizations that are affected by rounding mode.
10757 Future versions of GCC may provide finer control of this setting
10758 using C99's @code{FENV_ACCESS} pragma. This command-line option
10759 will be used to specify the default state for @code{FENV_ACCESS}.
10760
10761 @item -fsignaling-nans
10762 @opindex fsignaling-nans
10763 Compile code assuming that IEEE signaling NaNs may generate user-visible
10764 traps during floating-point operations. Setting this option disables
10765 optimizations that may change the number of exceptions visible with
10766 signaling NaNs. This option implies @option{-ftrapping-math}.
10767
10768 This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
10769 be defined.
10770
10771 The default is @option{-fno-signaling-nans}.
10772
10773 This option is experimental and does not currently guarantee to
10774 disable all GCC optimizations that affect signaling NaN behavior.
10775
10776 @item -fno-fp-int-builtin-inexact
10777 @opindex fno-fp-int-builtin-inexact
10778 @opindex ffp-int-builtin-inexact
10779 Do not allow the built-in functions @code{ceil}, @code{floor},
10780 @code{round} and @code{trunc}, and their @code{float} and @code{long
10781 double} variants, to generate code that raises the ``inexact''
10782 floating-point exception for noninteger arguments. ISO C99 and C11
10783 allow these functions to raise the ``inexact'' exception, but ISO/IEC
10784 TS 18661-1:2014, the C bindings to IEEE 754-2008, does not allow these
10785 functions to do so.
10786
10787 The default is @option{-ffp-int-builtin-inexact}, allowing the
10788 exception to be raised. This option does nothing unless
10789 @option{-ftrapping-math} is in effect.
10790
10791 Even if @option{-fno-fp-int-builtin-inexact} is used, if the functions
10792 generate a call to a library function then the ``inexact'' exception
10793 may be raised if the library implementation does not follow TS 18661.
10794
10795 @item -fsingle-precision-constant
10796 @opindex fsingle-precision-constant
10797 Treat floating-point constants as single precision instead of
10798 implicitly converting them to double-precision constants.
10799
10800 @item -fcx-limited-range
10801 @opindex fcx-limited-range
10802 When enabled, this option states that a range reduction step is not
10803 needed when performing complex division. Also, there is no checking
10804 whether the result of a complex multiplication or division is @code{NaN
10805 + I*NaN}, with an attempt to rescue the situation in that case. The
10806 default is @option{-fno-cx-limited-range}, but is enabled by
10807 @option{-ffast-math}.
10808
10809 This option controls the default setting of the ISO C99
10810 @code{CX_LIMITED_RANGE} pragma. Nevertheless, the option applies to
10811 all languages.
10812
10813 @item -fcx-fortran-rules
10814 @opindex fcx-fortran-rules
10815 Complex multiplication and division follow Fortran rules. Range
10816 reduction is done as part of complex division, but there is no checking
10817 whether the result of a complex multiplication or division is @code{NaN
10818 + I*NaN}, with an attempt to rescue the situation in that case.
10819
10820 The default is @option{-fno-cx-fortran-rules}.
10821
10822 @end table
10823
10824 The following options control optimizations that may improve
10825 performance, but are not enabled by any @option{-O} options. This
10826 section includes experimental options that may produce broken code.
10827
10828 @table @gcctabopt
10829 @item -fbranch-probabilities
10830 @opindex fbranch-probabilities
10831 After running a program compiled with @option{-fprofile-arcs}
10832 (@pxref{Instrumentation Options}),
10833 you can compile it a second time using
10834 @option{-fbranch-probabilities}, to improve optimizations based on
10835 the number of times each branch was taken. When a program
10836 compiled with @option{-fprofile-arcs} exits, it saves arc execution
10837 counts to a file called @file{@var{sourcename}.gcda} for each source
10838 file. The information in this data file is very dependent on the
10839 structure of the generated code, so you must use the same source code
10840 and the same optimization options for both compilations.
10841
10842 With @option{-fbranch-probabilities}, GCC puts a
10843 @samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
10844 These can be used to improve optimization. Currently, they are only
10845 used in one place: in @file{reorg.c}, instead of guessing which path a
10846 branch is most likely to take, the @samp{REG_BR_PROB} values are used to
10847 exactly determine which path is taken more often.
10848
10849 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10850
10851 @item -fprofile-values
10852 @opindex fprofile-values
10853 If combined with @option{-fprofile-arcs}, it adds code so that some
10854 data about values of expressions in the program is gathered.
10855
10856 With @option{-fbranch-probabilities}, it reads back the data gathered
10857 from profiling values of expressions for usage in optimizations.
10858
10859 Enabled by @option{-fprofile-generate}, @option{-fprofile-use}, and
10860 @option{-fauto-profile}.
10861
10862 @item -fprofile-reorder-functions
10863 @opindex fprofile-reorder-functions
10864 Function reordering based on profile instrumentation collects
10865 first time of execution of a function and orders these functions
10866 in ascending order.
10867
10868 Enabled with @option{-fprofile-use}.
10869
10870 @item -fvpt
10871 @opindex fvpt
10872 If combined with @option{-fprofile-arcs}, this option instructs the compiler
10873 to add code to gather information about values of expressions.
10874
10875 With @option{-fbranch-probabilities}, it reads back the data gathered
10876 and actually performs the optimizations based on them.
10877 Currently the optimizations include specialization of division operations
10878 using the knowledge about the value of the denominator.
10879
10880 Enabled with @option{-fprofile-use} and @option{-fauto-profile}.
10881
10882 @item -frename-registers
10883 @opindex frename-registers
10884 Attempt to avoid false dependencies in scheduled code by making use
10885 of registers left over after register allocation. This optimization
10886 most benefits processors with lots of registers. Depending on the
10887 debug information format adopted by the target, however, it can
10888 make debugging impossible, since variables no longer stay in
10889 a ``home register''.
10890
10891 Enabled by default with @option{-funroll-loops}.
10892
10893 @item -fschedule-fusion
10894 @opindex fschedule-fusion
10895 Performs a target dependent pass over the instruction stream to schedule
10896 instructions of same type together because target machine can execute them
10897 more efficiently if they are adjacent to each other in the instruction flow.
10898
10899 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
10900
10901 @item -ftracer
10902 @opindex ftracer
10903 Perform tail duplication to enlarge superblock size. This transformation
10904 simplifies the control flow of the function allowing other optimizations to do
10905 a better job.
10906
10907 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10908
10909 @item -funroll-loops
10910 @opindex funroll-loops
10911 Unroll loops whose number of iterations can be determined at compile time or
10912 upon entry to the loop. @option{-funroll-loops} implies
10913 @option{-frerun-cse-after-loop}, @option{-fweb} and @option{-frename-registers}.
10914 It also turns on complete loop peeling (i.e.@: complete removal of loops with
10915 a small constant number of iterations). This option makes code larger, and may
10916 or may not make it run faster.
10917
10918 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10919
10920 @item -funroll-all-loops
10921 @opindex funroll-all-loops
10922 Unroll all loops, even if their number of iterations is uncertain when
10923 the loop is entered. This usually makes programs run more slowly.
10924 @option{-funroll-all-loops} implies the same options as
10925 @option{-funroll-loops}.
10926
10927 @item -fpeel-loops
10928 @opindex fpeel-loops
10929 Peels loops for which there is enough information that they do not
10930 roll much (from profile feedback or static analysis). It also turns on
10931 complete loop peeling (i.e.@: complete removal of loops with small constant
10932 number of iterations).
10933
10934 Enabled by @option{-O3}, @option{-fprofile-use}, and @option{-fauto-profile}.
10935
10936 @item -fmove-loop-invariants
10937 @opindex fmove-loop-invariants
10938 Enables the loop invariant motion pass in the RTL loop optimizer. Enabled
10939 at level @option{-O1} and higher, except for @option{-Og}.
10940
10941 @item -fsplit-loops
10942 @opindex fsplit-loops
10943 Split a loop into two if it contains a condition that's always true
10944 for one side of the iteration space and false for the other.
10945
10946 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10947
10948 @item -funswitch-loops
10949 @opindex funswitch-loops
10950 Move branches with loop invariant conditions out of the loop, with duplicates
10951 of the loop on both branches (modified according to result of the condition).
10952
10953 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10954
10955 @item -fversion-loops-for-strides
10956 @opindex fversion-loops-for-strides
10957 If a loop iterates over an array with a variable stride, create another
10958 version of the loop that assumes the stride is always one. For example:
10959
10960 @smallexample
10961 for (int i = 0; i < n; ++i)
10962 x[i * stride] = @dots{};
10963 @end smallexample
10964
10965 becomes:
10966
10967 @smallexample
10968 if (stride == 1)
10969 for (int i = 0; i < n; ++i)
10970 x[i] = @dots{};
10971 else
10972 for (int i = 0; i < n; ++i)
10973 x[i * stride] = @dots{};
10974 @end smallexample
10975
10976 This is particularly useful for assumed-shape arrays in Fortran where
10977 (for example) it allows better vectorization assuming contiguous accesses.
10978 This flag is enabled by default at @option{-O3}.
10979 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10980
10981 @item -ffunction-sections
10982 @itemx -fdata-sections
10983 @opindex ffunction-sections
10984 @opindex fdata-sections
10985 Place each function or data item into its own section in the output
10986 file if the target supports arbitrary sections. The name of the
10987 function or the name of the data item determines the section's name
10988 in the output file.
10989
10990 Use these options on systems where the linker can perform optimizations to
10991 improve locality of reference in the instruction space. Most systems using the
10992 ELF object format have linkers with such optimizations. On AIX, the linker
10993 rearranges sections (CSECTs) based on the call graph. The performance impact
10994 varies.
10995
10996 Together with a linker garbage collection (linker @option{--gc-sections}
10997 option) these options may lead to smaller statically-linked executables (after
10998 stripping).
10999
11000 On ELF/DWARF systems these options do not degenerate the quality of the debug
11001 information. There could be issues with other object files/debug info formats.
11002
11003 Only use these options when there are significant benefits from doing so. When
11004 you specify these options, the assembler and linker create larger object and
11005 executable files and are also slower. These options affect code generation.
11006 They prevent optimizations by the compiler and assembler using relative
11007 locations inside a translation unit since the locations are unknown until
11008 link time. An example of such an optimization is relaxing calls to short call
11009 instructions.
11010
11011 @item -fbranch-target-load-optimize
11012 @opindex fbranch-target-load-optimize
11013 Perform branch target register load optimization before prologue / epilogue
11014 threading.
11015 The use of target registers can typically be exposed only during reload,
11016 thus hoisting loads out of loops and doing inter-block scheduling needs
11017 a separate optimization pass.
11018
11019 @item -fbranch-target-load-optimize2
11020 @opindex fbranch-target-load-optimize2
11021 Perform branch target register load optimization after prologue / epilogue
11022 threading.
11023
11024 @item -fbtr-bb-exclusive
11025 @opindex fbtr-bb-exclusive
11026 When performing branch target register load optimization, don't reuse
11027 branch target registers within any basic block.
11028
11029 @item -fstdarg-opt
11030 @opindex fstdarg-opt
11031 Optimize the prologue of variadic argument functions with respect to usage of
11032 those arguments.
11033
11034 @item -fsection-anchors
11035 @opindex fsection-anchors
11036 Try to reduce the number of symbolic address calculations by using
11037 shared ``anchor'' symbols to address nearby objects. This transformation
11038 can help to reduce the number of GOT entries and GOT accesses on some
11039 targets.
11040
11041 For example, the implementation of the following function @code{foo}:
11042
11043 @smallexample
11044 static int a, b, c;
11045 int foo (void) @{ return a + b + c; @}
11046 @end smallexample
11047
11048 @noindent
11049 usually calculates the addresses of all three variables, but if you
11050 compile it with @option{-fsection-anchors}, it accesses the variables
11051 from a common anchor point instead. The effect is similar to the
11052 following pseudocode (which isn't valid C):
11053
11054 @smallexample
11055 int foo (void)
11056 @{
11057 register int *xr = &x;
11058 return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
11059 @}
11060 @end smallexample
11061
11062 Not all targets support this option.
11063
11064 @item --param @var{name}=@var{value}
11065 @opindex param
11066 In some places, GCC uses various constants to control the amount of
11067 optimization that is done. For example, GCC does not inline functions
11068 that contain more than a certain number of instructions. You can
11069 control some of these constants on the command line using the
11070 @option{--param} option.
11071
11072 The names of specific parameters, and the meaning of the values, are
11073 tied to the internals of the compiler, and are subject to change
11074 without notice in future releases.
11075
11076 In order to get minimal, maximal and default value of a parameter,
11077 one can use @option{--help=param -Q} options.
11078
11079 In each case, the @var{value} is an integer. The allowable choices for
11080 @var{name} are:
11081
11082 @table @gcctabopt
11083 @item predictable-branch-outcome
11084 When branch is predicted to be taken with probability lower than this threshold
11085 (in percent), then it is considered well predictable.
11086
11087 @item max-rtl-if-conversion-insns
11088 RTL if-conversion tries to remove conditional branches around a block and
11089 replace them with conditionally executed instructions. This parameter
11090 gives the maximum number of instructions in a block which should be
11091 considered for if-conversion. The compiler will
11092 also use other heuristics to decide whether if-conversion is likely to be
11093 profitable.
11094
11095 @item max-rtl-if-conversion-predictable-cost
11096 @itemx max-rtl-if-conversion-unpredictable-cost
11097 RTL if-conversion will try to remove conditional branches around a block
11098 and replace them with conditionally executed instructions. These parameters
11099 give the maximum permissible cost for the sequence that would be generated
11100 by if-conversion depending on whether the branch is statically determined
11101 to be predictable or not. The units for this parameter are the same as
11102 those for the GCC internal seq_cost metric. The compiler will try to
11103 provide a reasonable default for this parameter using the BRANCH_COST
11104 target macro.
11105
11106 @item max-crossjump-edges
11107 The maximum number of incoming edges to consider for cross-jumping.
11108 The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
11109 the number of edges incoming to each block. Increasing values mean
11110 more aggressive optimization, making the compilation time increase with
11111 probably small improvement in executable size.
11112
11113 @item min-crossjump-insns
11114 The minimum number of instructions that must be matched at the end
11115 of two blocks before cross-jumping is performed on them. This
11116 value is ignored in the case where all instructions in the block being
11117 cross-jumped from are matched.
11118
11119 @item max-grow-copy-bb-insns
11120 The maximum code size expansion factor when copying basic blocks
11121 instead of jumping. The expansion is relative to a jump instruction.
11122
11123 @item max-goto-duplication-insns
11124 The maximum number of instructions to duplicate to a block that jumps
11125 to a computed goto. To avoid @math{O(N^2)} behavior in a number of
11126 passes, GCC factors computed gotos early in the compilation process,
11127 and unfactors them as late as possible. Only computed jumps at the
11128 end of a basic blocks with no more than max-goto-duplication-insns are
11129 unfactored.
11130
11131 @item max-delay-slot-insn-search
11132 The maximum number of instructions to consider when looking for an
11133 instruction to fill a delay slot. If more than this arbitrary number of
11134 instructions are searched, the time savings from filling the delay slot
11135 are minimal, so stop searching. Increasing values mean more
11136 aggressive optimization, making the compilation time increase with probably
11137 small improvement in execution time.
11138
11139 @item max-delay-slot-live-search
11140 When trying to fill delay slots, the maximum number of instructions to
11141 consider when searching for a block with valid live register
11142 information. Increasing this arbitrarily chosen value means more
11143 aggressive optimization, increasing the compilation time. This parameter
11144 should be removed when the delay slot code is rewritten to maintain the
11145 control-flow graph.
11146
11147 @item max-gcse-memory
11148 The approximate maximum amount of memory that can be allocated in
11149 order to perform the global common subexpression elimination
11150 optimization. If more memory than specified is required, the
11151 optimization is not done.
11152
11153 @item max-gcse-insertion-ratio
11154 If the ratio of expression insertions to deletions is larger than this value
11155 for any expression, then RTL PRE inserts or removes the expression and thus
11156 leaves partially redundant computations in the instruction stream.
11157
11158 @item max-pending-list-length
11159 The maximum number of pending dependencies scheduling allows
11160 before flushing the current state and starting over. Large functions
11161 with few branches or calls can create excessively large lists which
11162 needlessly consume memory and resources.
11163
11164 @item max-modulo-backtrack-attempts
11165 The maximum number of backtrack attempts the scheduler should make
11166 when modulo scheduling a loop. Larger values can exponentially increase
11167 compilation time.
11168
11169 @item max-inline-insns-single
11170 Several parameters control the tree inliner used in GCC@.
11171 This number sets the maximum number of instructions (counted in GCC's
11172 internal representation) in a single function that the tree inliner
11173 considers for inlining. This only affects functions declared
11174 inline and methods implemented in a class declaration (C++).
11175
11176 @item max-inline-insns-auto
11177 When you use @option{-finline-functions} (included in @option{-O3}),
11178 a lot of functions that would otherwise not be considered for inlining
11179 by the compiler are investigated. To those functions, a different
11180 (more restrictive) limit compared to functions declared inline can
11181 be applied.
11182
11183 @item max-inline-insns-small
11184 This is bound applied to calls which are considered relevant with
11185 @option{-finline-small-functions}.
11186
11187 @item max-inline-insns-size
11188 This is bound applied to calls which are optimized for size. Small growth
11189 may be desirable to anticipate optimization oppurtunities exposed by inlining.
11190
11191 @item uninlined-function-insns
11192 Number of instructions accounted by inliner for function overhead such as
11193 function prologue and epilogue.
11194
11195 @item uninlined-function-time
11196 Extra time accounted by inliner for function overhead such as time needed to
11197 execute function prologue and epilogue
11198
11199 @item uninlined-thunk-insns
11200 @item uninlined-thunk-time
11201 Same as @option{--param uninlined-function-insns} and
11202 @option{--param uninlined-function-time} but applied to function thunks
11203
11204 @item inline-min-speedup
11205 When estimated performance improvement of caller + callee runtime exceeds this
11206 threshold (in percent), the function can be inlined regardless of the limit on
11207 @option{--param max-inline-insns-single} and @option{--param
11208 max-inline-insns-auto}.
11209
11210 @item large-function-insns
11211 The limit specifying really large functions. For functions larger than this
11212 limit after inlining, inlining is constrained by
11213 @option{--param large-function-growth}. This parameter is useful primarily
11214 to avoid extreme compilation time caused by non-linear algorithms used by the
11215 back end.
11216
11217 @item large-function-growth
11218 Specifies maximal growth of large function caused by inlining in percents.
11219 For example, parameter value 100 limits large function growth to 2.0 times
11220 the original size.
11221
11222 @item large-unit-insns
11223 The limit specifying large translation unit. Growth caused by inlining of
11224 units larger than this limit is limited by @option{--param inline-unit-growth}.
11225 For small units this might be too tight.
11226 For example, consider a unit consisting of function A
11227 that is inline and B that just calls A three times. If B is small relative to
11228 A, the growth of unit is 300\% and yet such inlining is very sane. For very
11229 large units consisting of small inlineable functions, however, the overall unit
11230 growth limit is needed to avoid exponential explosion of code size. Thus for
11231 smaller units, the size is increased to @option{--param large-unit-insns}
11232 before applying @option{--param inline-unit-growth}.
11233
11234 @item inline-unit-growth
11235 Specifies maximal overall growth of the compilation unit caused by inlining.
11236 For example, parameter value 20 limits unit growth to 1.2 times the original
11237 size. Cold functions (either marked cold via an attribute or by profile
11238 feedback) are not accounted into the unit size.
11239
11240 @item ipcp-unit-growth
11241 Specifies maximal overall growth of the compilation unit caused by
11242 interprocedural constant propagation. For example, parameter value 10 limits
11243 unit growth to 1.1 times the original size.
11244
11245 @item large-stack-frame
11246 The limit specifying large stack frames. While inlining the algorithm is trying
11247 to not grow past this limit too much.
11248
11249 @item large-stack-frame-growth
11250 Specifies maximal growth of large stack frames caused by inlining in percents.
11251 For example, parameter value 1000 limits large stack frame growth to 11 times
11252 the original size.
11253
11254 @item max-inline-insns-recursive
11255 @itemx max-inline-insns-recursive-auto
11256 Specifies the maximum number of instructions an out-of-line copy of a
11257 self-recursive inline
11258 function can grow into by performing recursive inlining.
11259
11260 @option{--param max-inline-insns-recursive} applies to functions
11261 declared inline.
11262 For functions not declared inline, recursive inlining
11263 happens only when @option{-finline-functions} (included in @option{-O3}) is
11264 enabled; @option{--param max-inline-insns-recursive-auto} applies instead.
11265
11266 @item max-inline-recursive-depth
11267 @itemx max-inline-recursive-depth-auto
11268 Specifies the maximum recursion depth used for recursive inlining.
11269
11270 @option{--param max-inline-recursive-depth} applies to functions
11271 declared inline. For functions not declared inline, recursive inlining
11272 happens only when @option{-finline-functions} (included in @option{-O3}) is
11273 enabled; @option{--param max-inline-recursive-depth-auto} applies instead.
11274
11275 @item min-inline-recursive-probability
11276 Recursive inlining is profitable only for function having deep recursion
11277 in average and can hurt for function having little recursion depth by
11278 increasing the prologue size or complexity of function body to other
11279 optimizers.
11280
11281 When profile feedback is available (see @option{-fprofile-generate}) the actual
11282 recursion depth can be guessed from the probability that function recurses
11283 via a given call expression. This parameter limits inlining only to call
11284 expressions whose probability exceeds the given threshold (in percents).
11285
11286 @item early-inlining-insns
11287 Specify growth that the early inliner can make. In effect it increases
11288 the amount of inlining for code having a large abstraction penalty.
11289
11290 @item max-early-inliner-iterations
11291 Limit of iterations of the early inliner. This basically bounds
11292 the number of nested indirect calls the early inliner can resolve.
11293 Deeper chains are still handled by late inlining.
11294
11295 @item comdat-sharing-probability
11296 Probability (in percent) that C++ inline function with comdat visibility
11297 are shared across multiple compilation units.
11298
11299 @item profile-func-internal-id
11300 A parameter to control whether to use function internal id in profile
11301 database lookup. If the value is 0, the compiler uses an id that
11302 is based on function assembler name and filename, which makes old profile
11303 data more tolerant to source changes such as function reordering etc.
11304
11305 @item min-vect-loop-bound
11306 The minimum number of iterations under which loops are not vectorized
11307 when @option{-ftree-vectorize} is used. The number of iterations after
11308 vectorization needs to be greater than the value specified by this option
11309 to allow vectorization.
11310
11311 @item gcse-cost-distance-ratio
11312 Scaling factor in calculation of maximum distance an expression
11313 can be moved by GCSE optimizations. This is currently supported only in the
11314 code hoisting pass. The bigger the ratio, the more aggressive code hoisting
11315 is with simple expressions, i.e., the expressions that have cost
11316 less than @option{gcse-unrestricted-cost}. Specifying 0 disables
11317 hoisting of simple expressions.
11318
11319 @item gcse-unrestricted-cost
11320 Cost, roughly measured as the cost of a single typical machine
11321 instruction, at which GCSE optimizations do not constrain
11322 the distance an expression can travel. This is currently
11323 supported only in the code hoisting pass. The lesser the cost,
11324 the more aggressive code hoisting is. Specifying 0
11325 allows all expressions to travel unrestricted distances.
11326
11327 @item max-hoist-depth
11328 The depth of search in the dominator tree for expressions to hoist.
11329 This is used to avoid quadratic behavior in hoisting algorithm.
11330 The value of 0 does not limit on the search, but may slow down compilation
11331 of huge functions.
11332
11333 @item max-tail-merge-comparisons
11334 The maximum amount of similar bbs to compare a bb with. This is used to
11335 avoid quadratic behavior in tree tail merging.
11336
11337 @item max-tail-merge-iterations
11338 The maximum amount of iterations of the pass over the function. This is used to
11339 limit compilation time in tree tail merging.
11340
11341 @item store-merging-allow-unaligned
11342 Allow the store merging pass to introduce unaligned stores if it is legal to
11343 do so.
11344
11345 @item max-stores-to-merge
11346 The maximum number of stores to attempt to merge into wider stores in the store
11347 merging pass.
11348
11349 @item max-unrolled-insns
11350 The maximum number of instructions that a loop may have to be unrolled.
11351 If a loop is unrolled, this parameter also determines how many times
11352 the loop code is unrolled.
11353
11354 @item max-average-unrolled-insns
11355 The maximum number of instructions biased by probabilities of their execution
11356 that a loop may have to be unrolled. If a loop is unrolled,
11357 this parameter also determines how many times the loop code is unrolled.
11358
11359 @item max-unroll-times
11360 The maximum number of unrollings of a single loop.
11361
11362 @item max-peeled-insns
11363 The maximum number of instructions that a loop may have to be peeled.
11364 If a loop is peeled, this parameter also determines how many times
11365 the loop code is peeled.
11366
11367 @item max-peel-times
11368 The maximum number of peelings of a single loop.
11369
11370 @item max-peel-branches
11371 The maximum number of branches on the hot path through the peeled sequence.
11372
11373 @item max-completely-peeled-insns
11374 The maximum number of insns of a completely peeled loop.
11375
11376 @item max-completely-peel-times
11377 The maximum number of iterations of a loop to be suitable for complete peeling.
11378
11379 @item max-completely-peel-loop-nest-depth
11380 The maximum depth of a loop nest suitable for complete peeling.
11381
11382 @item max-unswitch-insns
11383 The maximum number of insns of an unswitched loop.
11384
11385 @item max-unswitch-level
11386 The maximum number of branches unswitched in a single loop.
11387
11388 @item lim-expensive
11389 The minimum cost of an expensive expression in the loop invariant motion.
11390
11391 @item iv-consider-all-candidates-bound
11392 Bound on number of candidates for induction variables, below which
11393 all candidates are considered for each use in induction variable
11394 optimizations. If there are more candidates than this,
11395 only the most relevant ones are considered to avoid quadratic time complexity.
11396
11397 @item iv-max-considered-uses
11398 The induction variable optimizations give up on loops that contain more
11399 induction variable uses.
11400
11401 @item iv-always-prune-cand-set-bound
11402 If the number of candidates in the set is smaller than this value,
11403 always try to remove unnecessary ivs from the set
11404 when adding a new one.
11405
11406 @item avg-loop-niter
11407 Average number of iterations of a loop.
11408
11409 @item dse-max-object-size
11410 Maximum size (in bytes) of objects tracked bytewise by dead store elimination.
11411 Larger values may result in larger compilation times.
11412
11413 @item dse-max-alias-queries-per-store
11414 Maximum number of queries into the alias oracle per store.
11415 Larger values result in larger compilation times and may result in more
11416 removed dead stores.
11417
11418 @item scev-max-expr-size
11419 Bound on size of expressions used in the scalar evolutions analyzer.
11420 Large expressions slow the analyzer.
11421
11422 @item scev-max-expr-complexity
11423 Bound on the complexity of the expressions in the scalar evolutions analyzer.
11424 Complex expressions slow the analyzer.
11425
11426 @item max-tree-if-conversion-phi-args
11427 Maximum number of arguments in a PHI supported by TREE if conversion
11428 unless the loop is marked with simd pragma.
11429
11430 @item vect-max-version-for-alignment-checks
11431 The maximum number of run-time checks that can be performed when
11432 doing loop versioning for alignment in the vectorizer.
11433
11434 @item vect-max-version-for-alias-checks
11435 The maximum number of run-time checks that can be performed when
11436 doing loop versioning for alias in the vectorizer.
11437
11438 @item vect-max-peeling-for-alignment
11439 The maximum number of loop peels to enhance access alignment
11440 for vectorizer. Value -1 means no limit.
11441
11442 @item max-iterations-to-track
11443 The maximum number of iterations of a loop the brute-force algorithm
11444 for analysis of the number of iterations of the loop tries to evaluate.
11445
11446 @item hot-bb-count-ws-permille
11447 A basic block profile count is considered hot if it contributes to
11448 the given permillage (i.e.@: 0...1000) of the entire profiled execution.
11449
11450 @item hot-bb-frequency-fraction
11451 Select fraction of the entry block frequency of executions of basic block in
11452 function given basic block needs to have to be considered hot.
11453
11454 @item max-predicted-iterations
11455 The maximum number of loop iterations we predict statically. This is useful
11456 in cases where a function contains a single loop with known bound and
11457 another loop with unknown bound.
11458 The known number of iterations is predicted correctly, while
11459 the unknown number of iterations average to roughly 10. This means that the
11460 loop without bounds appears artificially cold relative to the other one.
11461
11462 @item builtin-expect-probability
11463 Control the probability of the expression having the specified value. This
11464 parameter takes a percentage (i.e.@: 0 ... 100) as input.
11465
11466 @item builtin-string-cmp-inline-length
11467 The maximum length of a constant string for a builtin string cmp call
11468 eligible for inlining.
11469
11470 @item align-threshold
11471
11472 Select fraction of the maximal frequency of executions of a basic block in
11473 a function to align the basic block.
11474
11475 @item align-loop-iterations
11476
11477 A loop expected to iterate at least the selected number of iterations is
11478 aligned.
11479
11480 @item tracer-dynamic-coverage
11481 @itemx tracer-dynamic-coverage-feedback
11482
11483 This value is used to limit superblock formation once the given percentage of
11484 executed instructions is covered. This limits unnecessary code size
11485 expansion.
11486
11487 The @option{tracer-dynamic-coverage-feedback} parameter
11488 is used only when profile
11489 feedback is available. The real profiles (as opposed to statically estimated
11490 ones) are much less balanced allowing the threshold to be larger value.
11491
11492 @item tracer-max-code-growth
11493 Stop tail duplication once code growth has reached given percentage. This is
11494 a rather artificial limit, as most of the duplicates are eliminated later in
11495 cross jumping, so it may be set to much higher values than is the desired code
11496 growth.
11497
11498 @item tracer-min-branch-ratio
11499
11500 Stop reverse growth when the reverse probability of best edge is less than this
11501 threshold (in percent).
11502
11503 @item tracer-min-branch-probability
11504 @itemx tracer-min-branch-probability-feedback
11505
11506 Stop forward growth if the best edge has probability lower than this
11507 threshold.
11508
11509 Similarly to @option{tracer-dynamic-coverage} two parameters are
11510 provided. @option{tracer-min-branch-probability-feedback} is used for
11511 compilation with profile feedback and @option{tracer-min-branch-probability}
11512 compilation without. The value for compilation with profile feedback
11513 needs to be more conservative (higher) in order to make tracer
11514 effective.
11515
11516 @item stack-clash-protection-guard-size
11517 Specify the size of the operating system provided stack guard as
11518 2 raised to @var{num} bytes. Higher values may reduce the
11519 number of explicit probes, but a value larger than the operating system
11520 provided guard will leave code vulnerable to stack clash style attacks.
11521
11522 @item stack-clash-protection-probe-interval
11523 Stack clash protection involves probing stack space as it is allocated. This
11524 param controls the maximum distance between probes into the stack as 2 raised
11525 to @var{num} bytes. Higher values may reduce the number of explicit probes, but a value
11526 larger than the operating system provided guard will leave code vulnerable to
11527 stack clash style attacks.
11528
11529 @item max-cse-path-length
11530
11531 The maximum number of basic blocks on path that CSE considers.
11532
11533 @item max-cse-insns
11534 The maximum number of instructions CSE processes before flushing.
11535
11536 @item ggc-min-expand
11537
11538 GCC uses a garbage collector to manage its own memory allocation. This
11539 parameter specifies the minimum percentage by which the garbage
11540 collector's heap should be allowed to expand between collections.
11541 Tuning this may improve compilation speed; it has no effect on code
11542 generation.
11543
11544 The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
11545 RAM >= 1GB@. If @code{getrlimit} is available, the notion of ``RAM'' is
11546 the smallest of actual RAM and @code{RLIMIT_DATA} or @code{RLIMIT_AS}. If
11547 GCC is not able to calculate RAM on a particular platform, the lower
11548 bound of 30% is used. Setting this parameter and
11549 @option{ggc-min-heapsize} to zero causes a full collection to occur at
11550 every opportunity. This is extremely slow, but can be useful for
11551 debugging.
11552
11553 @item ggc-min-heapsize
11554
11555 Minimum size of the garbage collector's heap before it begins bothering
11556 to collect garbage. The first collection occurs after the heap expands
11557 by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}. Again,
11558 tuning this may improve compilation speed, and has no effect on code
11559 generation.
11560
11561 The default is the smaller of RAM/8, RLIMIT_RSS, or a limit that
11562 tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
11563 with a lower bound of 4096 (four megabytes) and an upper bound of
11564 131072 (128 megabytes). If GCC is not able to calculate RAM on a
11565 particular platform, the lower bound is used. Setting this parameter
11566 very large effectively disables garbage collection. Setting this
11567 parameter and @option{ggc-min-expand} to zero causes a full collection
11568 to occur at every opportunity.
11569
11570 @item max-reload-search-insns
11571 The maximum number of instruction reload should look backward for equivalent
11572 register. Increasing values mean more aggressive optimization, making the
11573 compilation time increase with probably slightly better performance.
11574
11575 @item max-cselib-memory-locations
11576 The maximum number of memory locations cselib should take into account.
11577 Increasing values mean more aggressive optimization, making the compilation time
11578 increase with probably slightly better performance.
11579
11580 @item max-sched-ready-insns
11581 The maximum number of instructions ready to be issued the scheduler should
11582 consider at any given time during the first scheduling pass. Increasing
11583 values mean more thorough searches, making the compilation time increase
11584 with probably little benefit.
11585
11586 @item max-sched-region-blocks
11587 The maximum number of blocks in a region to be considered for
11588 interblock scheduling.
11589
11590 @item max-pipeline-region-blocks
11591 The maximum number of blocks in a region to be considered for
11592 pipelining in the selective scheduler.
11593
11594 @item max-sched-region-insns
11595 The maximum number of insns in a region to be considered for
11596 interblock scheduling.
11597
11598 @item max-pipeline-region-insns
11599 The maximum number of insns in a region to be considered for
11600 pipelining in the selective scheduler.
11601
11602 @item min-spec-prob
11603 The minimum probability (in percents) of reaching a source block
11604 for interblock speculative scheduling.
11605
11606 @item max-sched-extend-regions-iters
11607 The maximum number of iterations through CFG to extend regions.
11608 A value of 0 disables region extensions.
11609
11610 @item max-sched-insn-conflict-delay
11611 The maximum conflict delay for an insn to be considered for speculative motion.
11612
11613 @item sched-spec-prob-cutoff
11614 The minimal probability of speculation success (in percents), so that
11615 speculative insns are scheduled.
11616
11617 @item sched-state-edge-prob-cutoff
11618 The minimum probability an edge must have for the scheduler to save its
11619 state across it.
11620
11621 @item sched-mem-true-dep-cost
11622 Minimal distance (in CPU cycles) between store and load targeting same
11623 memory locations.
11624
11625 @item selsched-max-lookahead
11626 The maximum size of the lookahead window of selective scheduling. It is a
11627 depth of search for available instructions.
11628
11629 @item selsched-max-sched-times
11630 The maximum number of times that an instruction is scheduled during
11631 selective scheduling. This is the limit on the number of iterations
11632 through which the instruction may be pipelined.
11633
11634 @item selsched-insns-to-rename
11635 The maximum number of best instructions in the ready list that are considered
11636 for renaming in the selective scheduler.
11637
11638 @item sms-min-sc
11639 The minimum value of stage count that swing modulo scheduler
11640 generates.
11641
11642 @item max-last-value-rtl
11643 The maximum size measured as number of RTLs that can be recorded in an expression
11644 in combiner for a pseudo register as last known value of that register.
11645
11646 @item max-combine-insns
11647 The maximum number of instructions the RTL combiner tries to combine.
11648
11649 @item integer-share-limit
11650 Small integer constants can use a shared data structure, reducing the
11651 compiler's memory usage and increasing its speed. This sets the maximum
11652 value of a shared integer constant.
11653
11654 @item ssp-buffer-size
11655 The minimum size of buffers (i.e.@: arrays) that receive stack smashing
11656 protection when @option{-fstack-protection} is used.
11657
11658 @item min-size-for-stack-sharing
11659 The minimum size of variables taking part in stack slot sharing when not
11660 optimizing.
11661
11662 @item max-jump-thread-duplication-stmts
11663 Maximum number of statements allowed in a block that needs to be
11664 duplicated when threading jumps.
11665
11666 @item max-fields-for-field-sensitive
11667 Maximum number of fields in a structure treated in
11668 a field sensitive manner during pointer analysis.
11669
11670 @item prefetch-latency
11671 Estimate on average number of instructions that are executed before
11672 prefetch finishes. The distance prefetched ahead is proportional
11673 to this constant. Increasing this number may also lead to less
11674 streams being prefetched (see @option{simultaneous-prefetches}).
11675
11676 @item simultaneous-prefetches
11677 Maximum number of prefetches that can run at the same time.
11678
11679 @item l1-cache-line-size
11680 The size of cache line in L1 data cache, in bytes.
11681
11682 @item l1-cache-size
11683 The size of L1 data cache, in kilobytes.
11684
11685 @item l2-cache-size
11686 The size of L2 data cache, in kilobytes.
11687
11688 @item prefetch-dynamic-strides
11689 Whether the loop array prefetch pass should issue software prefetch hints
11690 for strides that are non-constant. In some cases this may be
11691 beneficial, though the fact the stride is non-constant may make it
11692 hard to predict when there is clear benefit to issuing these hints.
11693
11694 Set to 1 if the prefetch hints should be issued for non-constant
11695 strides. Set to 0 if prefetch hints should be issued only for strides that
11696 are known to be constant and below @option{prefetch-minimum-stride}.
11697
11698 @item prefetch-minimum-stride
11699 Minimum constant stride, in bytes, to start using prefetch hints for. If
11700 the stride is less than this threshold, prefetch hints will not be issued.
11701
11702 This setting is useful for processors that have hardware prefetchers, in
11703 which case there may be conflicts between the hardware prefetchers and
11704 the software prefetchers. If the hardware prefetchers have a maximum
11705 stride they can handle, it should be used here to improve the use of
11706 software prefetchers.
11707
11708 A value of -1 means we don't have a threshold and therefore
11709 prefetch hints can be issued for any constant stride.
11710
11711 This setting is only useful for strides that are known and constant.
11712
11713 @item loop-interchange-max-num-stmts
11714 The maximum number of stmts in a loop to be interchanged.
11715
11716 @item loop-interchange-stride-ratio
11717 The minimum ratio between stride of two loops for interchange to be profitable.
11718
11719 @item min-insn-to-prefetch-ratio
11720 The minimum ratio between the number of instructions and the
11721 number of prefetches to enable prefetching in a loop.
11722
11723 @item prefetch-min-insn-to-mem-ratio
11724 The minimum ratio between the number of instructions and the
11725 number of memory references to enable prefetching in a loop.
11726
11727 @item use-canonical-types
11728 Whether the compiler should use the ``canonical'' type system.
11729 Should always be 1, which uses a more efficient internal
11730 mechanism for comparing types in C++ and Objective-C++. However, if
11731 bugs in the canonical type system are causing compilation failures,
11732 set this value to 0 to disable canonical types.
11733
11734 @item switch-conversion-max-branch-ratio
11735 Switch initialization conversion refuses to create arrays that are
11736 bigger than @option{switch-conversion-max-branch-ratio} times the number of
11737 branches in the switch.
11738
11739 @item max-partial-antic-length
11740 Maximum length of the partial antic set computed during the tree
11741 partial redundancy elimination optimization (@option{-ftree-pre}) when
11742 optimizing at @option{-O3} and above. For some sorts of source code
11743 the enhanced partial redundancy elimination optimization can run away,
11744 consuming all of the memory available on the host machine. This
11745 parameter sets a limit on the length of the sets that are computed,
11746 which prevents the runaway behavior. Setting a value of 0 for
11747 this parameter allows an unlimited set length.
11748
11749 @item rpo-vn-max-loop-depth
11750 Maximum loop depth that is value-numbered optimistically.
11751 When the limit hits the innermost
11752 @var{rpo-vn-max-loop-depth} loops and the outermost loop in the
11753 loop nest are value-numbered optimistically and the remaining ones not.
11754
11755 @item sccvn-max-alias-queries-per-access
11756 Maximum number of alias-oracle queries we perform when looking for
11757 redundancies for loads and stores. If this limit is hit the search
11758 is aborted and the load or store is not considered redundant. The
11759 number of queries is algorithmically limited to the number of
11760 stores on all paths from the load to the function entry.
11761
11762 @item ira-max-loops-num
11763 IRA uses regional register allocation by default. If a function
11764 contains more loops than the number given by this parameter, only at most
11765 the given number of the most frequently-executed loops form regions
11766 for regional register allocation.
11767
11768 @item ira-max-conflict-table-size
11769 Although IRA uses a sophisticated algorithm to compress the conflict
11770 table, the table can still require excessive amounts of memory for
11771 huge functions. If the conflict table for a function could be more
11772 than the size in MB given by this parameter, the register allocator
11773 instead uses a faster, simpler, and lower-quality
11774 algorithm that does not require building a pseudo-register conflict table.
11775
11776 @item ira-loop-reserved-regs
11777 IRA can be used to evaluate more accurate register pressure in loops
11778 for decisions to move loop invariants (see @option{-O3}). The number
11779 of available registers reserved for some other purposes is given
11780 by this parameter. Default of the parameter
11781 is the best found from numerous experiments.
11782
11783 @item lra-inheritance-ebb-probability-cutoff
11784 LRA tries to reuse values reloaded in registers in subsequent insns.
11785 This optimization is called inheritance. EBB is used as a region to
11786 do this optimization. The parameter defines a minimal fall-through
11787 edge probability in percentage used to add BB to inheritance EBB in
11788 LRA. The default value was chosen
11789 from numerous runs of SPEC2000 on x86-64.
11790
11791 @item loop-invariant-max-bbs-in-loop
11792 Loop invariant motion can be very expensive, both in compilation time and
11793 in amount of needed compile-time memory, with very large loops. Loops
11794 with more basic blocks than this parameter won't have loop invariant
11795 motion optimization performed on them.
11796
11797 @item loop-max-datarefs-for-datadeps
11798 Building data dependencies is expensive for very large loops. This
11799 parameter limits the number of data references in loops that are
11800 considered for data dependence analysis. These large loops are no
11801 handled by the optimizations using loop data dependencies.
11802
11803 @item max-vartrack-size
11804 Sets a maximum number of hash table slots to use during variable
11805 tracking dataflow analysis of any function. If this limit is exceeded
11806 with variable tracking at assignments enabled, analysis for that
11807 function is retried without it, after removing all debug insns from
11808 the function. If the limit is exceeded even without debug insns, var
11809 tracking analysis is completely disabled for the function. Setting
11810 the parameter to zero makes it unlimited.
11811
11812 @item max-vartrack-expr-depth
11813 Sets a maximum number of recursion levels when attempting to map
11814 variable names or debug temporaries to value expressions. This trades
11815 compilation time for more complete debug information. If this is set too
11816 low, value expressions that are available and could be represented in
11817 debug information may end up not being used; setting this higher may
11818 enable the compiler to find more complex debug expressions, but compile
11819 time and memory use may grow.
11820
11821 @item max-debug-marker-count
11822 Sets a threshold on the number of debug markers (e.g.@: begin stmt
11823 markers) to avoid complexity explosion at inlining or expanding to RTL.
11824 If a function has more such gimple stmts than the set limit, such stmts
11825 will be dropped from the inlined copy of a function, and from its RTL
11826 expansion.
11827
11828 @item min-nondebug-insn-uid
11829 Use uids starting at this parameter for nondebug insns. The range below
11830 the parameter is reserved exclusively for debug insns created by
11831 @option{-fvar-tracking-assignments}, but debug insns may get
11832 (non-overlapping) uids above it if the reserved range is exhausted.
11833
11834 @item ipa-sra-ptr-growth-factor
11835 IPA-SRA replaces a pointer to an aggregate with one or more new
11836 parameters only when their cumulative size is less or equal to
11837 @option{ipa-sra-ptr-growth-factor} times the size of the original
11838 pointer parameter.
11839
11840 @item sra-max-scalarization-size-Ospeed
11841 @itemx sra-max-scalarization-size-Osize
11842 The two Scalar Reduction of Aggregates passes (SRA and IPA-SRA) aim to
11843 replace scalar parts of aggregates with uses of independent scalar
11844 variables. These parameters control the maximum size, in storage units,
11845 of aggregate which is considered for replacement when compiling for
11846 speed
11847 (@option{sra-max-scalarization-size-Ospeed}) or size
11848 (@option{sra-max-scalarization-size-Osize}) respectively.
11849
11850 @item tm-max-aggregate-size
11851 When making copies of thread-local variables in a transaction, this
11852 parameter specifies the size in bytes after which variables are
11853 saved with the logging functions as opposed to save/restore code
11854 sequence pairs. This option only applies when using
11855 @option{-fgnu-tm}.
11856
11857 @item graphite-max-nb-scop-params
11858 To avoid exponential effects in the Graphite loop transforms, the
11859 number of parameters in a Static Control Part (SCoP) is bounded.
11860 A value of zero can be used to lift
11861 the bound. A variable whose value is unknown at compilation time and
11862 defined outside a SCoP is a parameter of the SCoP.
11863
11864 @item loop-block-tile-size
11865 Loop blocking or strip mining transforms, enabled with
11866 @option{-floop-block} or @option{-floop-strip-mine}, strip mine each
11867 loop in the loop nest by a given number of iterations. The strip
11868 length can be changed using the @option{loop-block-tile-size}
11869 parameter.
11870
11871 @item ipa-cp-value-list-size
11872 IPA-CP attempts to track all possible values and types passed to a function's
11873 parameter in order to propagate them and perform devirtualization.
11874 @option{ipa-cp-value-list-size} is the maximum number of values and types it
11875 stores per one formal parameter of a function.
11876
11877 @item ipa-cp-eval-threshold
11878 IPA-CP calculates its own score of cloning profitability heuristics
11879 and performs those cloning opportunities with scores that exceed
11880 @option{ipa-cp-eval-threshold}.
11881
11882 @item ipa-cp-recursion-penalty
11883 Percentage penalty the recursive functions will receive when they
11884 are evaluated for cloning.
11885
11886 @item ipa-cp-single-call-penalty
11887 Percentage penalty functions containing a single call to another
11888 function will receive when they are evaluated for cloning.
11889
11890 @item ipa-max-agg-items
11891 IPA-CP is also capable to propagate a number of scalar values passed
11892 in an aggregate. @option{ipa-max-agg-items} controls the maximum
11893 number of such values per one parameter.
11894
11895 @item ipa-cp-loop-hint-bonus
11896 When IPA-CP determines that a cloning candidate would make the number
11897 of iterations of a loop known, it adds a bonus of
11898 @option{ipa-cp-loop-hint-bonus} to the profitability score of
11899 the candidate.
11900
11901 @item ipa-max-aa-steps
11902 During its analysis of function bodies, IPA-CP employs alias analysis
11903 in order to track values pointed to by function parameters. In order
11904 not spend too much time analyzing huge functions, it gives up and
11905 consider all memory clobbered after examining
11906 @option{ipa-max-aa-steps} statements modifying memory.
11907
11908 @item lto-partitions
11909 Specify desired number of partitions produced during WHOPR compilation.
11910 The number of partitions should exceed the number of CPUs used for compilation.
11911
11912 @item lto-min-partition
11913 Size of minimal partition for WHOPR (in estimated instructions).
11914 This prevents expenses of splitting very small programs into too many
11915 partitions.
11916
11917 @item lto-max-partition
11918 Size of max partition for WHOPR (in estimated instructions).
11919 to provide an upper bound for individual size of partition.
11920 Meant to be used only with balanced partitioning.
11921
11922 @item lto-max-streaming-parallelism
11923 Maximal number of parallel processes used for LTO streaming.
11924
11925 @item cxx-max-namespaces-for-diagnostic-help
11926 The maximum number of namespaces to consult for suggestions when C++
11927 name lookup fails for an identifier.
11928
11929 @item sink-frequency-threshold
11930 The maximum relative execution frequency (in percents) of the target block
11931 relative to a statement's original block to allow statement sinking of a
11932 statement. Larger numbers result in more aggressive statement sinking.
11933 A small positive adjustment is applied for
11934 statements with memory operands as those are even more profitable so sink.
11935
11936 @item max-stores-to-sink
11937 The maximum number of conditional store pairs that can be sunk. Set to 0
11938 if either vectorization (@option{-ftree-vectorize}) or if-conversion
11939 (@option{-ftree-loop-if-convert}) is disabled.
11940
11941 @item allow-store-data-races
11942 Allow optimizers to introduce new data races on stores.
11943 Set to 1 to allow, otherwise to 0.
11944
11945 @item case-values-threshold
11946 The smallest number of different values for which it is best to use a
11947 jump-table instead of a tree of conditional branches. If the value is
11948 0, use the default for the machine.
11949
11950 @item jump-table-max-growth-ratio-for-size
11951 The maximum code size growth ratio when expanding
11952 into a jump table (in percent). The parameter is used when
11953 optimizing for size.
11954
11955 @item jump-table-max-growth-ratio-for-speed
11956 The maximum code size growth ratio when expanding
11957 into a jump table (in percent). The parameter is used when
11958 optimizing for speed.
11959
11960 @item tree-reassoc-width
11961 Set the maximum number of instructions executed in parallel in
11962 reassociated tree. This parameter overrides target dependent
11963 heuristics used by default if has non zero value.
11964
11965 @item sched-pressure-algorithm
11966 Choose between the two available implementations of
11967 @option{-fsched-pressure}. Algorithm 1 is the original implementation
11968 and is the more likely to prevent instructions from being reordered.
11969 Algorithm 2 was designed to be a compromise between the relatively
11970 conservative approach taken by algorithm 1 and the rather aggressive
11971 approach taken by the default scheduler. It relies more heavily on
11972 having a regular register file and accurate register pressure classes.
11973 See @file{haifa-sched.c} in the GCC sources for more details.
11974
11975 The default choice depends on the target.
11976
11977 @item max-slsr-cand-scan
11978 Set the maximum number of existing candidates that are considered when
11979 seeking a basis for a new straight-line strength reduction candidate.
11980
11981 @item asan-globals
11982 Enable buffer overflow detection for global objects. This kind
11983 of protection is enabled by default if you are using
11984 @option{-fsanitize=address} option.
11985 To disable global objects protection use @option{--param asan-globals=0}.
11986
11987 @item asan-stack
11988 Enable buffer overflow detection for stack objects. This kind of
11989 protection is enabled by default when using @option{-fsanitize=address}.
11990 To disable stack protection use @option{--param asan-stack=0} option.
11991
11992 @item asan-instrument-reads
11993 Enable buffer overflow detection for memory reads. This kind of
11994 protection is enabled by default when using @option{-fsanitize=address}.
11995 To disable memory reads protection use
11996 @option{--param asan-instrument-reads=0}.
11997
11998 @item asan-instrument-writes
11999 Enable buffer overflow detection for memory writes. This kind of
12000 protection is enabled by default when using @option{-fsanitize=address}.
12001 To disable memory writes protection use
12002 @option{--param asan-instrument-writes=0} option.
12003
12004 @item asan-memintrin
12005 Enable detection for built-in functions. This kind of protection
12006 is enabled by default when using @option{-fsanitize=address}.
12007 To disable built-in functions protection use
12008 @option{--param asan-memintrin=0}.
12009
12010 @item asan-use-after-return
12011 Enable detection of use-after-return. This kind of protection
12012 is enabled by default when using the @option{-fsanitize=address} option.
12013 To disable it use @option{--param asan-use-after-return=0}.
12014
12015 Note: By default the check is disabled at run time. To enable it,
12016 add @code{detect_stack_use_after_return=1} to the environment variable
12017 @env{ASAN_OPTIONS}.
12018
12019 @item asan-instrumentation-with-call-threshold
12020 If number of memory accesses in function being instrumented
12021 is greater or equal to this number, use callbacks instead of inline checks.
12022 E.g. to disable inline code use
12023 @option{--param asan-instrumentation-with-call-threshold=0}.
12024
12025 @item use-after-scope-direct-emission-threshold
12026 If the size of a local variable in bytes is smaller or equal to this
12027 number, directly poison (or unpoison) shadow memory instead of using
12028 run-time callbacks.
12029
12030 @item max-fsm-thread-path-insns
12031 Maximum number of instructions to copy when duplicating blocks on a
12032 finite state automaton jump thread path.
12033
12034 @item max-fsm-thread-length
12035 Maximum number of basic blocks on a finite state automaton jump thread
12036 path.
12037
12038 @item max-fsm-thread-paths
12039 Maximum number of new jump thread paths to create for a finite state
12040 automaton.
12041
12042 @item parloops-chunk-size
12043 Chunk size of omp schedule for loops parallelized by parloops.
12044
12045 @item parloops-schedule
12046 Schedule type of omp schedule for loops parallelized by parloops (static,
12047 dynamic, guided, auto, runtime).
12048
12049 @item parloops-min-per-thread
12050 The minimum number of iterations per thread of an innermost parallelized
12051 loop for which the parallelized variant is preferred over the single threaded
12052 one. Note that for a parallelized loop nest the
12053 minimum number of iterations of the outermost loop per thread is two.
12054
12055 @item max-ssa-name-query-depth
12056 Maximum depth of recursion when querying properties of SSA names in things
12057 like fold routines. One level of recursion corresponds to following a
12058 use-def chain.
12059
12060 @item hsa-gen-debug-stores
12061 Enable emission of special debug stores within HSA kernels which are
12062 then read and reported by libgomp plugin. Generation of these stores
12063 is disabled by default, use @option{--param hsa-gen-debug-stores=1} to
12064 enable it.
12065
12066 @item max-speculative-devirt-maydefs
12067 The maximum number of may-defs we analyze when looking for a must-def
12068 specifying the dynamic type of an object that invokes a virtual call
12069 we may be able to devirtualize speculatively.
12070
12071 @item max-vrp-switch-assertions
12072 The maximum number of assertions to add along the default edge of a switch
12073 statement during VRP.
12074
12075 @item unroll-jam-min-percent
12076 The minimum percentage of memory references that must be optimized
12077 away for the unroll-and-jam transformation to be considered profitable.
12078
12079 @item unroll-jam-max-unroll
12080 The maximum number of times the outer loop should be unrolled by
12081 the unroll-and-jam transformation.
12082
12083 @item max-rtl-if-conversion-unpredictable-cost
12084 Maximum permissible cost for the sequence that would be generated
12085 by the RTL if-conversion pass for a branch that is considered unpredictable.
12086
12087 @item max-variable-expansions-in-unroller
12088 If @option{-fvariable-expansion-in-unroller} is used, the maximum number
12089 of times that an individual variable will be expanded during loop unrolling.
12090
12091 @item tracer-min-branch-probability-feedback
12092 Stop forward growth if the probability of best edge is less than
12093 this threshold (in percent). Used when profile feedback is available.
12094
12095 @item partial-inlining-entry-probability
12096 Maximum probability of the entry BB of split region
12097 (in percent relative to entry BB of the function)
12098 to make partial inlining happen.
12099
12100 @item max-tracked-strlens
12101 Maximum number of strings for which strlen optimization pass will
12102 track string lengths.
12103
12104 @item gcse-after-reload-partial-fraction
12105 The threshold ratio for performing partial redundancy
12106 elimination after reload.
12107
12108 @item gcse-after-reload-critical-fraction
12109 The threshold ratio of critical edges execution count that
12110 permit performing redundancy elimination after reload.
12111
12112 @item max-loop-header-insns
12113 The maximum number of insns in loop header duplicated
12114 by the copy loop headers pass.
12115
12116 @item vect-epilogues-nomask
12117 Enable loop epilogue vectorization using smaller vector size.
12118
12119 @item slp-max-insns-in-bb
12120 Maximum number of instructions in basic block to be
12121 considered for SLP vectorization.
12122
12123 @item avoid-fma-max-bits
12124 Maximum number of bits for which we avoid creating FMAs.
12125
12126 @item sms-loop-average-count-threshold
12127 A threshold on the average loop count considered by the swing modulo scheduler.
12128
12129 @item sms-dfa-history
12130 The number of cycles the swing modulo scheduler considers when checking
12131 conflicts using DFA.
12132
12133 @item hot-bb-count-fraction
12134 Select fraction of the maximal count of repetitions of basic block
12135 in program given basic block needs
12136 to have to be considered hot (used in non-LTO mode)
12137
12138 @item max-inline-insns-recursive-auto
12139 The maximum number of instructions non-inline function
12140 can grow to via recursive inlining.
12141
12142 @item graphite-allow-codegen-errors
12143 Whether codegen errors should be ICEs when @option{-fchecking}.
12144
12145 @item sms-max-ii-factor
12146 A factor for tuning the upper bound that swing modulo scheduler
12147 uses for scheduling a loop.
12148
12149 @item lra-max-considered-reload-pseudos
12150 The max number of reload pseudos which are considered during
12151 spilling a non-reload pseudo.
12152
12153 @item max-pow-sqrt-depth
12154 Maximum depth of sqrt chains to use when synthesizing exponentiation
12155 by a real constant.
12156
12157 @item max-dse-active-local-stores
12158 Maximum number of active local stores in RTL dead store elimination.
12159
12160 @item asan-instrument-allocas
12161 Enable asan allocas/VLAs protection.
12162
12163 @item max-iterations-computation-cost
12164 Bound on the cost of an expression to compute the number of iterations.
12165
12166 @item max-isl-operations
12167 Maximum number of isl operations, 0 means unlimited.
12168
12169 @item graphite-max-arrays-per-scop
12170 Maximum number of arrays per scop.
12171
12172 @item max-vartrack-reverse-op-size
12173 Max. size of loc list for which reverse ops should be added.
12174
12175 @item unlikely-bb-count-fraction
12176 The minimum fraction of profile runs a given basic block execution count
12177 must be not to be considered unlikely.
12178
12179 @item tracer-dynamic-coverage-feedback
12180 The percentage of function, weighted by execution frequency,
12181 that must be covered by trace formation.
12182 Used when profile feedback is available.
12183
12184 @item max-inline-recursive-depth-auto
12185 The maximum depth of recursive inlining for non-inline functions.
12186
12187 @item fsm-scale-path-stmts
12188 Scale factor to apply to the number of statements in a threading path
12189 when comparing to the number of (scaled) blocks.
12190
12191 @item fsm-maximum-phi-arguments
12192 Maximum number of arguments a PHI may have before the FSM threader
12193 will not try to thread through its block.
12194
12195 @item uninit-control-dep-attempts
12196 Maximum number of nested calls to search for control dependencies
12197 during uninitialized variable analysis.
12198
12199 @item max-once-peeled-insns
12200 The maximum number of insns of a peeled loop that rolls only once.
12201
12202 @item sra-max-scalarization-size-Osize
12203 Maximum size, in storage units, of an aggregate
12204 which should be considered for scalarization when compiling for size.
12205
12206 @item fsm-scale-path-blocks
12207 Scale factor to apply to the number of blocks in a threading path
12208 when comparing to the number of (scaled) statements.
12209
12210 @item sched-autopref-queue-depth
12211 Hardware autoprefetcher scheduler model control flag.
12212 Number of lookahead cycles the model looks into; at '
12213 ' only enable instruction sorting heuristic.
12214
12215 @item loop-versioning-max-inner-insns
12216 The maximum number of instructions that an inner loop can have
12217 before the loop versioning pass considers it too big to copy.
12218
12219 @item loop-versioning-max-outer-insns
12220 The maximum number of instructions that an outer loop can have
12221 before the loop versioning pass considers it too big to copy,
12222 discounting any instructions in inner loops that directly benefit
12223 from versioning.
12224
12225 @item ssa-name-def-chain-limit
12226 The maximum number of SSA_NAME assignments to follow in determining
12227 a property of a variable such as its value. This limits the number
12228 of iterations or recursive calls GCC performs when optimizing certain
12229 statements or when determining their validity prior to issuing
12230 diagnostics.
12231
12232 @end table
12233 @end table
12234
12235 @node Instrumentation Options
12236 @section Program Instrumentation Options
12237 @cindex instrumentation options
12238 @cindex program instrumentation options
12239 @cindex run-time error checking options
12240 @cindex profiling options
12241 @cindex options, program instrumentation
12242 @cindex options, run-time error checking
12243 @cindex options, profiling
12244
12245 GCC supports a number of command-line options that control adding
12246 run-time instrumentation to the code it normally generates.
12247 For example, one purpose of instrumentation is collect profiling
12248 statistics for use in finding program hot spots, code coverage
12249 analysis, or profile-guided optimizations.
12250 Another class of program instrumentation is adding run-time checking
12251 to detect programming errors like invalid pointer
12252 dereferences or out-of-bounds array accesses, as well as deliberately
12253 hostile attacks such as stack smashing or C++ vtable hijacking.
12254 There is also a general hook which can be used to implement other
12255 forms of tracing or function-level instrumentation for debug or
12256 program analysis purposes.
12257
12258 @table @gcctabopt
12259 @cindex @command{prof}
12260 @cindex @command{gprof}
12261 @item -p
12262 @itemx -pg
12263 @opindex p
12264 @opindex pg
12265 Generate extra code to write profile information suitable for the
12266 analysis program @command{prof} (for @option{-p}) or @command{gprof}
12267 (for @option{-pg}). You must use this option when compiling
12268 the source files you want data about, and you must also use it when
12269 linking.
12270
12271 You can use the function attribute @code{no_instrument_function} to
12272 suppress profiling of individual functions when compiling with these options.
12273 @xref{Common Function Attributes}.
12274
12275 @item -fprofile-arcs
12276 @opindex fprofile-arcs
12277 Add code so that program flow @dfn{arcs} are instrumented. During
12278 execution the program records how many times each branch and call is
12279 executed and how many times it is taken or returns. On targets that support
12280 constructors with priority support, profiling properly handles constructors,
12281 destructors and C++ constructors (and destructors) of classes which are used
12282 as a type of a global variable.
12283
12284 When the compiled
12285 program exits it saves this data to a file called
12286 @file{@var{auxname}.gcda} for each source file. The data may be used for
12287 profile-directed optimizations (@option{-fbranch-probabilities}), or for
12288 test coverage analysis (@option{-ftest-coverage}). Each object file's
12289 @var{auxname} is generated from the name of the output file, if
12290 explicitly specified and it is not the final executable, otherwise it is
12291 the basename of the source file. In both cases any suffix is removed
12292 (e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or
12293 @file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}).
12294 @xref{Cross-profiling}.
12295
12296 @cindex @command{gcov}
12297 @item --coverage
12298 @opindex coverage
12299
12300 This option is used to compile and link code instrumented for coverage
12301 analysis. The option is a synonym for @option{-fprofile-arcs}
12302 @option{-ftest-coverage} (when compiling) and @option{-lgcov} (when
12303 linking). See the documentation for those options for more details.
12304
12305 @itemize
12306
12307 @item
12308 Compile the source files with @option{-fprofile-arcs} plus optimization
12309 and code generation options. For test coverage analysis, use the
12310 additional @option{-ftest-coverage} option. You do not need to profile
12311 every source file in a program.
12312
12313 @item
12314 Compile the source files additionally with @option{-fprofile-abs-path}
12315 to create absolute path names in the @file{.gcno} files. This allows
12316 @command{gcov} to find the correct sources in projects where compilations
12317 occur with different working directories.
12318
12319 @item
12320 Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
12321 (the latter implies the former).
12322
12323 @item
12324 Run the program on a representative workload to generate the arc profile
12325 information. This may be repeated any number of times. You can run
12326 concurrent instances of your program, and provided that the file system
12327 supports locking, the data files will be correctly updated. Unless
12328 a strict ISO C dialect option is in effect, @code{fork} calls are
12329 detected and correctly handled without double counting.
12330
12331 @item
12332 For profile-directed optimizations, compile the source files again with
12333 the same optimization and code generation options plus
12334 @option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
12335 Control Optimization}).
12336
12337 @item
12338 For test coverage analysis, use @command{gcov} to produce human readable
12339 information from the @file{.gcno} and @file{.gcda} files. Refer to the
12340 @command{gcov} documentation for further information.
12341
12342 @end itemize
12343
12344 With @option{-fprofile-arcs}, for each function of your program GCC
12345 creates a program flow graph, then finds a spanning tree for the graph.
12346 Only arcs that are not on the spanning tree have to be instrumented: the
12347 compiler adds code to count the number of times that these arcs are
12348 executed. When an arc is the only exit or only entrance to a block, the
12349 instrumentation code can be added to the block; otherwise, a new basic
12350 block must be created to hold the instrumentation code.
12351
12352 @need 2000
12353 @item -ftest-coverage
12354 @opindex ftest-coverage
12355 Produce a notes file that the @command{gcov} code-coverage utility
12356 (@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
12357 show program coverage. Each source file's note file is called
12358 @file{@var{auxname}.gcno}. Refer to the @option{-fprofile-arcs} option
12359 above for a description of @var{auxname} and instructions on how to
12360 generate test coverage data. Coverage data matches the source files
12361 more closely if you do not optimize.
12362
12363 @item -fprofile-abs-path
12364 @opindex fprofile-abs-path
12365 Automatically convert relative source file names to absolute path names
12366 in the @file{.gcno} files. This allows @command{gcov} to find the correct
12367 sources in projects where compilations occur with different working
12368 directories.
12369
12370 @item -fprofile-dir=@var{path}
12371 @opindex fprofile-dir
12372
12373 Set the directory to search for the profile data files in to @var{path}.
12374 This option affects only the profile data generated by
12375 @option{-fprofile-generate}, @option{-ftest-coverage}, @option{-fprofile-arcs}
12376 and used by @option{-fprofile-use} and @option{-fbranch-probabilities}
12377 and its related options. Both absolute and relative paths can be used.
12378 By default, GCC uses the current directory as @var{path}, thus the
12379 profile data file appears in the same directory as the object file.
12380 In order to prevent the file name clashing, if the object file name is
12381 not an absolute path, we mangle the absolute path of the
12382 @file{@var{sourcename}.gcda} file and use it as the file name of a
12383 @file{.gcda} file. See similar option @option{-fprofile-note}.
12384
12385 When an executable is run in a massive parallel environment, it is recommended
12386 to save profile to different folders. That can be done with variables
12387 in @var{path} that are exported during run-time:
12388
12389 @table @gcctabopt
12390
12391 @item %p
12392 process ID.
12393
12394 @item %q@{VAR@}
12395 value of environment variable @var{VAR}
12396
12397 @end table
12398
12399 @item -fprofile-generate
12400 @itemx -fprofile-generate=@var{path}
12401 @opindex fprofile-generate
12402
12403 Enable options usually used for instrumenting application to produce
12404 profile useful for later recompilation with profile feedback based
12405 optimization. You must use @option{-fprofile-generate} both when
12406 compiling and when linking your program.
12407
12408 The following options are enabled:
12409 @option{-fprofile-arcs}, @option{-fprofile-values},
12410 @option{-finline-functions}, and @option{-fipa-bit-cp}.
12411
12412 If @var{path} is specified, GCC looks at the @var{path} to find
12413 the profile feedback data files. See @option{-fprofile-dir}.
12414
12415 To optimize the program based on the collected profile information, use
12416 @option{-fprofile-use}. @xref{Optimize Options}, for more information.
12417
12418 @item -fprofile-note=@var{path}
12419 @opindex fprofile-note
12420
12421 If @var{path} is specified, GCC saves @file{.gcno} file into @var{path}
12422 location. If you combine the option with multiple source files,
12423 the @file{.gcno} file will be overwritten.
12424
12425 @item -fprofile-update=@var{method}
12426 @opindex fprofile-update
12427
12428 Alter the update method for an application instrumented for profile
12429 feedback based optimization. The @var{method} argument should be one of
12430 @samp{single}, @samp{atomic} or @samp{prefer-atomic}.
12431 The first one is useful for single-threaded applications,
12432 while the second one prevents profile corruption by emitting thread-safe code.
12433
12434 @strong{Warning:} When an application does not properly join all threads
12435 (or creates an detached thread), a profile file can be still corrupted.
12436
12437 Using @samp{prefer-atomic} would be transformed either to @samp{atomic},
12438 when supported by a target, or to @samp{single} otherwise. The GCC driver
12439 automatically selects @samp{prefer-atomic} when @option{-pthread}
12440 is present in the command line.
12441
12442 @item -fprofile-filter-files=@var{regex}
12443 @opindex fprofile-filter-files
12444
12445 Instrument only functions from files where names match
12446 any regular expression (separated by a semi-colon).
12447
12448 For example, @option{-fprofile-filter-files=main.c;module.*.c} will instrument
12449 only @file{main.c} and all C files starting with 'module'.
12450
12451 @item -fprofile-exclude-files=@var{regex}
12452 @opindex fprofile-exclude-files
12453
12454 Instrument only functions from files where names do not match
12455 all the regular expressions (separated by a semi-colon).
12456
12457 For example, @option{-fprofile-exclude-files=/usr/*} will prevent instrumentation
12458 of all files that are located in @file{/usr/} folder.
12459
12460 @item -fsanitize=address
12461 @opindex fsanitize=address
12462 Enable AddressSanitizer, a fast memory error detector.
12463 Memory access instructions are instrumented to detect
12464 out-of-bounds and use-after-free bugs.
12465 The option enables @option{-fsanitize-address-use-after-scope}.
12466 See @uref{https://github.com/google/sanitizers/wiki/AddressSanitizer} for
12467 more details. The run-time behavior can be influenced using the
12468 @env{ASAN_OPTIONS} environment variable. When set to @code{help=1},
12469 the available options are shown at startup of the instrumented program. See
12470 @url{https://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run-time-flags}
12471 for a list of supported options.
12472 The option cannot be combined with @option{-fsanitize=thread}.
12473
12474 @item -fsanitize=kernel-address
12475 @opindex fsanitize=kernel-address
12476 Enable AddressSanitizer for Linux kernel.
12477 See @uref{https://github.com/google/kasan/wiki} for more details.
12478
12479 @item -fsanitize=pointer-compare
12480 @opindex fsanitize=pointer-compare
12481 Instrument comparison operation (<, <=, >, >=) with pointer operands.
12482 The option must be combined with either @option{-fsanitize=kernel-address} or
12483 @option{-fsanitize=address}
12484 The option cannot be combined with @option{-fsanitize=thread}.
12485 Note: By default the check is disabled at run time. To enable it,
12486 add @code{detect_invalid_pointer_pairs=2} to the environment variable
12487 @env{ASAN_OPTIONS}. Using @code{detect_invalid_pointer_pairs=1} detects
12488 invalid operation only when both pointers are non-null.
12489
12490 @item -fsanitize=pointer-subtract
12491 @opindex fsanitize=pointer-subtract
12492 Instrument subtraction with pointer operands.
12493 The option must be combined with either @option{-fsanitize=kernel-address} or
12494 @option{-fsanitize=address}
12495 The option cannot be combined with @option{-fsanitize=thread}.
12496 Note: By default the check is disabled at run time. To enable it,
12497 add @code{detect_invalid_pointer_pairs=2} to the environment variable
12498 @env{ASAN_OPTIONS}. Using @code{detect_invalid_pointer_pairs=1} detects
12499 invalid operation only when both pointers are non-null.
12500
12501 @item -fsanitize=thread
12502 @opindex fsanitize=thread
12503 Enable ThreadSanitizer, a fast data race detector.
12504 Memory access instructions are instrumented to detect
12505 data race bugs. See @uref{https://github.com/google/sanitizers/wiki#threadsanitizer} for more
12506 details. The run-time behavior can be influenced using the @env{TSAN_OPTIONS}
12507 environment variable; see
12508 @url{https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags} for a list of
12509 supported options.
12510 The option cannot be combined with @option{-fsanitize=address},
12511 @option{-fsanitize=leak}.
12512
12513 Note that sanitized atomic builtins cannot throw exceptions when
12514 operating on invalid memory addresses with non-call exceptions
12515 (@option{-fnon-call-exceptions}).
12516
12517 @item -fsanitize=leak
12518 @opindex fsanitize=leak
12519 Enable LeakSanitizer, a memory leak detector.
12520 This option only matters for linking of executables and
12521 the executable is linked against a library that overrides @code{malloc}
12522 and other allocator functions. See
12523 @uref{https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer} for more
12524 details. The run-time behavior can be influenced using the
12525 @env{LSAN_OPTIONS} environment variable.
12526 The option cannot be combined with @option{-fsanitize=thread}.
12527
12528 @item -fsanitize=undefined
12529 @opindex fsanitize=undefined
12530 Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector.
12531 Various computations are instrumented to detect undefined behavior
12532 at runtime. Current suboptions are:
12533
12534 @table @gcctabopt
12535
12536 @item -fsanitize=shift
12537 @opindex fsanitize=shift
12538 This option enables checking that the result of a shift operation is
12539 not undefined. Note that what exactly is considered undefined differs
12540 slightly between C and C++, as well as between ISO C90 and C99, etc.
12541 This option has two suboptions, @option{-fsanitize=shift-base} and
12542 @option{-fsanitize=shift-exponent}.
12543
12544 @item -fsanitize=shift-exponent
12545 @opindex fsanitize=shift-exponent
12546 This option enables checking that the second argument of a shift operation
12547 is not negative and is smaller than the precision of the promoted first
12548 argument.
12549
12550 @item -fsanitize=shift-base
12551 @opindex fsanitize=shift-base
12552 If the second argument of a shift operation is within range, check that the
12553 result of a shift operation is not undefined. Note that what exactly is
12554 considered undefined differs slightly between C and C++, as well as between
12555 ISO C90 and C99, etc.
12556
12557 @item -fsanitize=integer-divide-by-zero
12558 @opindex fsanitize=integer-divide-by-zero
12559 Detect integer division by zero as well as @code{INT_MIN / -1} division.
12560
12561 @item -fsanitize=unreachable
12562 @opindex fsanitize=unreachable
12563 With this option, the compiler turns the @code{__builtin_unreachable}
12564 call into a diagnostics message call instead. When reaching the
12565 @code{__builtin_unreachable} call, the behavior is undefined.
12566
12567 @item -fsanitize=vla-bound
12568 @opindex fsanitize=vla-bound
12569 This option instructs the compiler to check that the size of a variable
12570 length array is positive.
12571
12572 @item -fsanitize=null
12573 @opindex fsanitize=null
12574 This option enables pointer checking. Particularly, the application
12575 built with this option turned on will issue an error message when it
12576 tries to dereference a NULL pointer, or if a reference (possibly an
12577 rvalue reference) is bound to a NULL pointer, or if a method is invoked
12578 on an object pointed by a NULL pointer.
12579
12580 @item -fsanitize=return
12581 @opindex fsanitize=return
12582 This option enables return statement checking. Programs
12583 built with this option turned on will issue an error message
12584 when the end of a non-void function is reached without actually
12585 returning a value. This option works in C++ only.
12586
12587 @item -fsanitize=signed-integer-overflow
12588 @opindex fsanitize=signed-integer-overflow
12589 This option enables signed integer overflow checking. We check that
12590 the result of @code{+}, @code{*}, and both unary and binary @code{-}
12591 does not overflow in the signed arithmetics. Note, integer promotion
12592 rules must be taken into account. That is, the following is not an
12593 overflow:
12594 @smallexample
12595 signed char a = SCHAR_MAX;
12596 a++;
12597 @end smallexample
12598
12599 @item -fsanitize=bounds
12600 @opindex fsanitize=bounds
12601 This option enables instrumentation of array bounds. Various out of bounds
12602 accesses are detected. Flexible array members, flexible array member-like
12603 arrays, and initializers of variables with static storage are not instrumented.
12604
12605 @item -fsanitize=bounds-strict
12606 @opindex fsanitize=bounds-strict
12607 This option enables strict instrumentation of array bounds. Most out of bounds
12608 accesses are detected, including flexible array members and flexible array
12609 member-like arrays. Initializers of variables with static storage are not
12610 instrumented.
12611
12612 @item -fsanitize=alignment
12613 @opindex fsanitize=alignment
12614
12615 This option enables checking of alignment of pointers when they are
12616 dereferenced, or when a reference is bound to insufficiently aligned target,
12617 or when a method or constructor is invoked on insufficiently aligned object.
12618
12619 @item -fsanitize=object-size
12620 @opindex fsanitize=object-size
12621 This option enables instrumentation of memory references using the
12622 @code{__builtin_object_size} function. Various out of bounds pointer
12623 accesses are detected.
12624
12625 @item -fsanitize=float-divide-by-zero
12626 @opindex fsanitize=float-divide-by-zero
12627 Detect floating-point division by zero. Unlike other similar options,
12628 @option{-fsanitize=float-divide-by-zero} is not enabled by
12629 @option{-fsanitize=undefined}, since floating-point division by zero can
12630 be a legitimate way of obtaining infinities and NaNs.
12631
12632 @item -fsanitize=float-cast-overflow
12633 @opindex fsanitize=float-cast-overflow
12634 This option enables floating-point type to integer conversion checking.
12635 We check that the result of the conversion does not overflow.
12636 Unlike other similar options, @option{-fsanitize=float-cast-overflow} is
12637 not enabled by @option{-fsanitize=undefined}.
12638 This option does not work well with @code{FE_INVALID} exceptions enabled.
12639
12640 @item -fsanitize=nonnull-attribute
12641 @opindex fsanitize=nonnull-attribute
12642
12643 This option enables instrumentation of calls, checking whether null values
12644 are not passed to arguments marked as requiring a non-null value by the
12645 @code{nonnull} function attribute.
12646
12647 @item -fsanitize=returns-nonnull-attribute
12648 @opindex fsanitize=returns-nonnull-attribute
12649
12650 This option enables instrumentation of return statements in functions
12651 marked with @code{returns_nonnull} function attribute, to detect returning
12652 of null values from such functions.
12653
12654 @item -fsanitize=bool
12655 @opindex fsanitize=bool
12656
12657 This option enables instrumentation of loads from bool. If a value other
12658 than 0/1 is loaded, a run-time error is issued.
12659
12660 @item -fsanitize=enum
12661 @opindex fsanitize=enum
12662
12663 This option enables instrumentation of loads from an enum type. If
12664 a value outside the range of values for the enum type is loaded,
12665 a run-time error is issued.
12666
12667 @item -fsanitize=vptr
12668 @opindex fsanitize=vptr
12669
12670 This option enables instrumentation of C++ member function calls, member
12671 accesses and some conversions between pointers to base and derived classes,
12672 to verify the referenced object has the correct dynamic type.
12673
12674 @item -fsanitize=pointer-overflow
12675 @opindex fsanitize=pointer-overflow
12676
12677 This option enables instrumentation of pointer arithmetics. If the pointer
12678 arithmetics overflows, a run-time error is issued.
12679
12680 @item -fsanitize=builtin
12681 @opindex fsanitize=builtin
12682
12683 This option enables instrumentation of arguments to selected builtin
12684 functions. If an invalid value is passed to such arguments, a run-time
12685 error is issued. E.g.@ passing 0 as the argument to @code{__builtin_ctz}
12686 or @code{__builtin_clz} invokes undefined behavior and is diagnosed
12687 by this option.
12688
12689 @end table
12690
12691 While @option{-ftrapv} causes traps for signed overflows to be emitted,
12692 @option{-fsanitize=undefined} gives a diagnostic message.
12693 This currently works only for the C family of languages.
12694
12695 @item -fno-sanitize=all
12696 @opindex fno-sanitize=all
12697
12698 This option disables all previously enabled sanitizers.
12699 @option{-fsanitize=all} is not allowed, as some sanitizers cannot be used
12700 together.
12701
12702 @item -fasan-shadow-offset=@var{number}
12703 @opindex fasan-shadow-offset
12704 This option forces GCC to use custom shadow offset in AddressSanitizer checks.
12705 It is useful for experimenting with different shadow memory layouts in
12706 Kernel AddressSanitizer.
12707
12708 @item -fsanitize-sections=@var{s1},@var{s2},...
12709 @opindex fsanitize-sections
12710 Sanitize global variables in selected user-defined sections. @var{si} may
12711 contain wildcards.
12712
12713 @item -fsanitize-recover@r{[}=@var{opts}@r{]}
12714 @opindex fsanitize-recover
12715 @opindex fno-sanitize-recover
12716 @option{-fsanitize-recover=} controls error recovery mode for sanitizers
12717 mentioned in comma-separated list of @var{opts}. Enabling this option
12718 for a sanitizer component causes it to attempt to continue
12719 running the program as if no error happened. This means multiple
12720 runtime errors can be reported in a single program run, and the exit
12721 code of the program may indicate success even when errors
12722 have been reported. The @option{-fno-sanitize-recover=} option
12723 can be used to alter
12724 this behavior: only the first detected error is reported
12725 and program then exits with a non-zero exit code.
12726
12727 Currently this feature only works for @option{-fsanitize=undefined} (and its suboptions
12728 except for @option{-fsanitize=unreachable} and @option{-fsanitize=return}),
12729 @option{-fsanitize=float-cast-overflow}, @option{-fsanitize=float-divide-by-zero},
12730 @option{-fsanitize=bounds-strict},
12731 @option{-fsanitize=kernel-address} and @option{-fsanitize=address}.
12732 For these sanitizers error recovery is turned on by default,
12733 except @option{-fsanitize=address}, for which this feature is experimental.
12734 @option{-fsanitize-recover=all} and @option{-fno-sanitize-recover=all} is also
12735 accepted, the former enables recovery for all sanitizers that support it,
12736 the latter disables recovery for all sanitizers that support it.
12737
12738 Even if a recovery mode is turned on the compiler side, it needs to be also
12739 enabled on the runtime library side, otherwise the failures are still fatal.
12740 The runtime library defaults to @code{halt_on_error=0} for
12741 ThreadSanitizer and UndefinedBehaviorSanitizer, while default value for
12742 AddressSanitizer is @code{halt_on_error=1}. This can be overridden through
12743 setting the @code{halt_on_error} flag in the corresponding environment variable.
12744
12745 Syntax without an explicit @var{opts} parameter is deprecated. It is
12746 equivalent to specifying an @var{opts} list of:
12747
12748 @smallexample
12749 undefined,float-cast-overflow,float-divide-by-zero,bounds-strict
12750 @end smallexample
12751
12752 @item -fsanitize-address-use-after-scope
12753 @opindex fsanitize-address-use-after-scope
12754 Enable sanitization of local variables to detect use-after-scope bugs.
12755 The option sets @option{-fstack-reuse} to @samp{none}.
12756
12757 @item -fsanitize-undefined-trap-on-error
12758 @opindex fsanitize-undefined-trap-on-error
12759 The @option{-fsanitize-undefined-trap-on-error} option instructs the compiler to
12760 report undefined behavior using @code{__builtin_trap} rather than
12761 a @code{libubsan} library routine. The advantage of this is that the
12762 @code{libubsan} library is not needed and is not linked in, so this
12763 is usable even in freestanding environments.
12764
12765 @item -fsanitize-coverage=trace-pc
12766 @opindex fsanitize-coverage=trace-pc
12767 Enable coverage-guided fuzzing code instrumentation.
12768 Inserts a call to @code{__sanitizer_cov_trace_pc} into every basic block.
12769
12770 @item -fsanitize-coverage=trace-cmp
12771 @opindex fsanitize-coverage=trace-cmp
12772 Enable dataflow guided fuzzing code instrumentation.
12773 Inserts a call to @code{__sanitizer_cov_trace_cmp1},
12774 @code{__sanitizer_cov_trace_cmp2}, @code{__sanitizer_cov_trace_cmp4} or
12775 @code{__sanitizer_cov_trace_cmp8} for integral comparison with both operands
12776 variable or @code{__sanitizer_cov_trace_const_cmp1},
12777 @code{__sanitizer_cov_trace_const_cmp2},
12778 @code{__sanitizer_cov_trace_const_cmp4} or
12779 @code{__sanitizer_cov_trace_const_cmp8} for integral comparison with one
12780 operand constant, @code{__sanitizer_cov_trace_cmpf} or
12781 @code{__sanitizer_cov_trace_cmpd} for float or double comparisons and
12782 @code{__sanitizer_cov_trace_switch} for switch statements.
12783
12784 @item -fcf-protection=@r{[}full@r{|}branch@r{|}return@r{|}none@r{]}
12785 @opindex fcf-protection
12786 Enable code instrumentation of control-flow transfers to increase
12787 program security by checking that target addresses of control-flow
12788 transfer instructions (such as indirect function call, function return,
12789 indirect jump) are valid. This prevents diverting the flow of control
12790 to an unexpected target. This is intended to protect against such
12791 threats as Return-oriented Programming (ROP), and similarly
12792 call/jmp-oriented programming (COP/JOP).
12793
12794 The value @code{branch} tells the compiler to implement checking of
12795 validity of control-flow transfer at the point of indirect branch
12796 instructions, i.e.@: call/jmp instructions. The value @code{return}
12797 implements checking of validity at the point of returning from a
12798 function. The value @code{full} is an alias for specifying both
12799 @code{branch} and @code{return}. The value @code{none} turns off
12800 instrumentation.
12801
12802 The macro @code{__CET__} is defined when @option{-fcf-protection} is
12803 used. The first bit of @code{__CET__} is set to 1 for the value
12804 @code{branch} and the second bit of @code{__CET__} is set to 1 for
12805 the @code{return}.
12806
12807 You can also use the @code{nocf_check} attribute to identify
12808 which functions and calls should be skipped from instrumentation
12809 (@pxref{Function Attributes}).
12810
12811 Currently the x86 GNU/Linux target provides an implementation based
12812 on Intel Control-flow Enforcement Technology (CET).
12813
12814 @item -fstack-protector
12815 @opindex fstack-protector
12816 Emit extra code to check for buffer overflows, such as stack smashing
12817 attacks. This is done by adding a guard variable to functions with
12818 vulnerable objects. This includes functions that call @code{alloca}, and
12819 functions with buffers larger than 8 bytes. The guards are initialized
12820 when a function is entered and then checked when the function exits.
12821 If a guard check fails, an error message is printed and the program exits.
12822
12823 @item -fstack-protector-all
12824 @opindex fstack-protector-all
12825 Like @option{-fstack-protector} except that all functions are protected.
12826
12827 @item -fstack-protector-strong
12828 @opindex fstack-protector-strong
12829 Like @option{-fstack-protector} but includes additional functions to
12830 be protected --- those that have local array definitions, or have
12831 references to local frame addresses.
12832
12833 @item -fstack-protector-explicit
12834 @opindex fstack-protector-explicit
12835 Like @option{-fstack-protector} but only protects those functions which
12836 have the @code{stack_protect} attribute.
12837
12838 @item -fstack-check
12839 @opindex fstack-check
12840 Generate code to verify that you do not go beyond the boundary of the
12841 stack. You should specify this flag if you are running in an
12842 environment with multiple threads, but you only rarely need to specify it in
12843 a single-threaded environment since stack overflow is automatically
12844 detected on nearly all systems if there is only one stack.
12845
12846 Note that this switch does not actually cause checking to be done; the
12847 operating system or the language runtime must do that. The switch causes
12848 generation of code to ensure that they see the stack being extended.
12849
12850 You can additionally specify a string parameter: @samp{no} means no
12851 checking, @samp{generic} means force the use of old-style checking,
12852 @samp{specific} means use the best checking method and is equivalent
12853 to bare @option{-fstack-check}.
12854
12855 Old-style checking is a generic mechanism that requires no specific
12856 target support in the compiler but comes with the following drawbacks:
12857
12858 @enumerate
12859 @item
12860 Modified allocation strategy for large objects: they are always
12861 allocated dynamically if their size exceeds a fixed threshold. Note this
12862 may change the semantics of some code.
12863
12864 @item
12865 Fixed limit on the size of the static frame of functions: when it is
12866 topped by a particular function, stack checking is not reliable and
12867 a warning is issued by the compiler.
12868
12869 @item
12870 Inefficiency: because of both the modified allocation strategy and the
12871 generic implementation, code performance is hampered.
12872 @end enumerate
12873
12874 Note that old-style stack checking is also the fallback method for
12875 @samp{specific} if no target support has been added in the compiler.
12876
12877 @samp{-fstack-check=} is designed for Ada's needs to detect infinite recursion
12878 and stack overflows. @samp{specific} is an excellent choice when compiling
12879 Ada code. It is not generally sufficient to protect against stack-clash
12880 attacks. To protect against those you want @samp{-fstack-clash-protection}.
12881
12882 @item -fstack-clash-protection
12883 @opindex fstack-clash-protection
12884 Generate code to prevent stack clash style attacks. When this option is
12885 enabled, the compiler will only allocate one page of stack space at a time
12886 and each page is accessed immediately after allocation. Thus, it prevents
12887 allocations from jumping over any stack guard page provided by the
12888 operating system.
12889
12890 Most targets do not fully support stack clash protection. However, on
12891 those targets @option{-fstack-clash-protection} will protect dynamic stack
12892 allocations. @option{-fstack-clash-protection} may also provide limited
12893 protection for static stack allocations if the target supports
12894 @option{-fstack-check=specific}.
12895
12896 @item -fstack-limit-register=@var{reg}
12897 @itemx -fstack-limit-symbol=@var{sym}
12898 @itemx -fno-stack-limit
12899 @opindex fstack-limit-register
12900 @opindex fstack-limit-symbol
12901 @opindex fno-stack-limit
12902 Generate code to ensure that the stack does not grow beyond a certain value,
12903 either the value of a register or the address of a symbol. If a larger
12904 stack is required, a signal is raised at run time. For most targets,
12905 the signal is raised before the stack overruns the boundary, so
12906 it is possible to catch the signal without taking special precautions.
12907
12908 For instance, if the stack starts at absolute address @samp{0x80000000}
12909 and grows downwards, you can use the flags
12910 @option{-fstack-limit-symbol=__stack_limit} and
12911 @option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit
12912 of 128KB@. Note that this may only work with the GNU linker.
12913
12914 You can locally override stack limit checking by using the
12915 @code{no_stack_limit} function attribute (@pxref{Function Attributes}).
12916
12917 @item -fsplit-stack
12918 @opindex fsplit-stack
12919 Generate code to automatically split the stack before it overflows.
12920 The resulting program has a discontiguous stack which can only
12921 overflow if the program is unable to allocate any more memory. This
12922 is most useful when running threaded programs, as it is no longer
12923 necessary to calculate a good stack size to use for each thread. This
12924 is currently only implemented for the x86 targets running
12925 GNU/Linux.
12926
12927 When code compiled with @option{-fsplit-stack} calls code compiled
12928 without @option{-fsplit-stack}, there may not be much stack space
12929 available for the latter code to run. If compiling all code,
12930 including library code, with @option{-fsplit-stack} is not an option,
12931 then the linker can fix up these calls so that the code compiled
12932 without @option{-fsplit-stack} always has a large stack. Support for
12933 this is implemented in the gold linker in GNU binutils release 2.21
12934 and later.
12935
12936 @item -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]}
12937 @opindex fvtable-verify
12938 This option is only available when compiling C++ code.
12939 It turns on (or off, if using @option{-fvtable-verify=none}) the security
12940 feature that verifies at run time, for every virtual call, that
12941 the vtable pointer through which the call is made is valid for the type of
12942 the object, and has not been corrupted or overwritten. If an invalid vtable
12943 pointer is detected at run time, an error is reported and execution of the
12944 program is immediately halted.
12945
12946 This option causes run-time data structures to be built at program startup,
12947 which are used for verifying the vtable pointers.
12948 The options @samp{std} and @samp{preinit}
12949 control the timing of when these data structures are built. In both cases the
12950 data structures are built before execution reaches @code{main}. Using
12951 @option{-fvtable-verify=std} causes the data structures to be built after
12952 shared libraries have been loaded and initialized.
12953 @option{-fvtable-verify=preinit} causes them to be built before shared
12954 libraries have been loaded and initialized.
12955
12956 If this option appears multiple times in the command line with different
12957 values specified, @samp{none} takes highest priority over both @samp{std} and
12958 @samp{preinit}; @samp{preinit} takes priority over @samp{std}.
12959
12960 @item -fvtv-debug
12961 @opindex fvtv-debug
12962 When used in conjunction with @option{-fvtable-verify=std} or
12963 @option{-fvtable-verify=preinit}, causes debug versions of the
12964 runtime functions for the vtable verification feature to be called.
12965 This flag also causes the compiler to log information about which
12966 vtable pointers it finds for each class.
12967 This information is written to a file named @file{vtv_set_ptr_data.log}
12968 in the directory named by the environment variable @env{VTV_LOGS_DIR}
12969 if that is defined or the current working directory otherwise.
12970
12971 Note: This feature @emph{appends} data to the log file. If you want a fresh log
12972 file, be sure to delete any existing one.
12973
12974 @item -fvtv-counts
12975 @opindex fvtv-counts
12976 This is a debugging flag. When used in conjunction with
12977 @option{-fvtable-verify=std} or @option{-fvtable-verify=preinit}, this
12978 causes the compiler to keep track of the total number of virtual calls
12979 it encounters and the number of verifications it inserts. It also
12980 counts the number of calls to certain run-time library functions
12981 that it inserts and logs this information for each compilation unit.
12982 The compiler writes this information to a file named
12983 @file{vtv_count_data.log} in the directory named by the environment
12984 variable @env{VTV_LOGS_DIR} if that is defined or the current working
12985 directory otherwise. It also counts the size of the vtable pointer sets
12986 for each class, and writes this information to @file{vtv_class_set_sizes.log}
12987 in the same directory.
12988
12989 Note: This feature @emph{appends} data to the log files. To get fresh log
12990 files, be sure to delete any existing ones.
12991
12992 @item -finstrument-functions
12993 @opindex finstrument-functions
12994 Generate instrumentation calls for entry and exit to functions. Just
12995 after function entry and just before function exit, the following
12996 profiling functions are called with the address of the current
12997 function and its call site. (On some platforms,
12998 @code{__builtin_return_address} does not work beyond the current
12999 function, so the call site information may not be available to the
13000 profiling functions otherwise.)
13001
13002 @smallexample
13003 void __cyg_profile_func_enter (void *this_fn,
13004 void *call_site);
13005 void __cyg_profile_func_exit (void *this_fn,
13006 void *call_site);
13007 @end smallexample
13008
13009 The first argument is the address of the start of the current function,
13010 which may be looked up exactly in the symbol table.
13011
13012 This instrumentation is also done for functions expanded inline in other
13013 functions. The profiling calls indicate where, conceptually, the
13014 inline function is entered and exited. This means that addressable
13015 versions of such functions must be available. If all your uses of a
13016 function are expanded inline, this may mean an additional expansion of
13017 code size. If you use @code{extern inline} in your C code, an
13018 addressable version of such functions must be provided. (This is
13019 normally the case anyway, but if you get lucky and the optimizer always
13020 expands the functions inline, you might have gotten away without
13021 providing static copies.)
13022
13023 A function may be given the attribute @code{no_instrument_function}, in
13024 which case this instrumentation is not done. This can be used, for
13025 example, for the profiling functions listed above, high-priority
13026 interrupt routines, and any functions from which the profiling functions
13027 cannot safely be called (perhaps signal handlers, if the profiling
13028 routines generate output or allocate memory).
13029 @xref{Common Function Attributes}.
13030
13031 @item -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}
13032 @opindex finstrument-functions-exclude-file-list
13033
13034 Set the list of functions that are excluded from instrumentation (see
13035 the description of @option{-finstrument-functions}). If the file that
13036 contains a function definition matches with one of @var{file}, then
13037 that function is not instrumented. The match is done on substrings:
13038 if the @var{file} parameter is a substring of the file name, it is
13039 considered to be a match.
13040
13041 For example:
13042
13043 @smallexample
13044 -finstrument-functions-exclude-file-list=/bits/stl,include/sys
13045 @end smallexample
13046
13047 @noindent
13048 excludes any inline function defined in files whose pathnames
13049 contain @file{/bits/stl} or @file{include/sys}.
13050
13051 If, for some reason, you want to include letter @samp{,} in one of
13052 @var{sym}, write @samp{\,}. For example,
13053 @option{-finstrument-functions-exclude-file-list='\,\,tmp'}
13054 (note the single quote surrounding the option).
13055
13056 @item -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{}
13057 @opindex finstrument-functions-exclude-function-list
13058
13059 This is similar to @option{-finstrument-functions-exclude-file-list},
13060 but this option sets the list of function names to be excluded from
13061 instrumentation. The function name to be matched is its user-visible
13062 name, such as @code{vector<int> blah(const vector<int> &)}, not the
13063 internal mangled name (e.g., @code{_Z4blahRSt6vectorIiSaIiEE}). The
13064 match is done on substrings: if the @var{sym} parameter is a substring
13065 of the function name, it is considered to be a match. For C99 and C++
13066 extended identifiers, the function name must be given in UTF-8, not
13067 using universal character names.
13068
13069 @item -fpatchable-function-entry=@var{N}[,@var{M}]
13070 @opindex fpatchable-function-entry
13071 Generate @var{N} NOPs right at the beginning
13072 of each function, with the function entry point before the @var{M}th NOP.
13073 If @var{M} is omitted, it defaults to @code{0} so the
13074 function entry points to the address just at the first NOP.
13075 The NOP instructions reserve extra space which can be used to patch in
13076 any desired instrumentation at run time, provided that the code segment
13077 is writable. The amount of space is controllable indirectly via
13078 the number of NOPs; the NOP instruction used corresponds to the instruction
13079 emitted by the internal GCC back-end interface @code{gen_nop}. This behavior
13080 is target-specific and may also depend on the architecture variant and/or
13081 other compilation options.
13082
13083 For run-time identification, the starting addresses of these areas,
13084 which correspond to their respective function entries minus @var{M},
13085 are additionally collected in the @code{__patchable_function_entries}
13086 section of the resulting binary.
13087
13088 Note that the value of @code{__attribute__ ((patchable_function_entry
13089 (N,M)))} takes precedence over command-line option
13090 @option{-fpatchable-function-entry=N,M}. This can be used to increase
13091 the area size or to remove it completely on a single function.
13092 If @code{N=0}, no pad location is recorded.
13093
13094 The NOP instructions are inserted at---and maybe before, depending on
13095 @var{M}---the function entry address, even before the prologue.
13096
13097 @end table
13098
13099
13100 @node Preprocessor Options
13101 @section Options Controlling the Preprocessor
13102 @cindex preprocessor options
13103 @cindex options, preprocessor
13104
13105 These options control the C preprocessor, which is run on each C source
13106 file before actual compilation.
13107
13108 If you use the @option{-E} option, nothing is done except preprocessing.
13109 Some of these options make sense only together with @option{-E} because
13110 they cause the preprocessor output to be unsuitable for actual
13111 compilation.
13112
13113 In addition to the options listed here, there are a number of options
13114 to control search paths for include files documented in
13115 @ref{Directory Options}.
13116 Options to control preprocessor diagnostics are listed in
13117 @ref{Warning Options}.
13118
13119 @table @gcctabopt
13120 @include cppopts.texi
13121
13122 @item -Wp,@var{option}
13123 @opindex Wp
13124 You can use @option{-Wp,@var{option}} to bypass the compiler driver
13125 and pass @var{option} directly through to the preprocessor. If
13126 @var{option} contains commas, it is split into multiple options at the
13127 commas. However, many options are modified, translated or interpreted
13128 by the compiler driver before being passed to the preprocessor, and
13129 @option{-Wp} forcibly bypasses this phase. The preprocessor's direct
13130 interface is undocumented and subject to change, so whenever possible
13131 you should avoid using @option{-Wp} and let the driver handle the
13132 options instead.
13133
13134 @item -Xpreprocessor @var{option}
13135 @opindex Xpreprocessor
13136 Pass @var{option} as an option to the preprocessor. You can use this to
13137 supply system-specific preprocessor options that GCC does not
13138 recognize.
13139
13140 If you want to pass an option that takes an argument, you must use
13141 @option{-Xpreprocessor} twice, once for the option and once for the argument.
13142
13143 @item -no-integrated-cpp
13144 @opindex no-integrated-cpp
13145 Perform preprocessing as a separate pass before compilation.
13146 By default, GCC performs preprocessing as an integrated part of
13147 input tokenization and parsing.
13148 If this option is provided, the appropriate language front end
13149 (@command{cc1}, @command{cc1plus}, or @command{cc1obj} for C, C++,
13150 and Objective-C, respectively) is instead invoked twice,
13151 once for preprocessing only and once for actual compilation
13152 of the preprocessed input.
13153 This option may be useful in conjunction with the @option{-B} or
13154 @option{-wrapper} options to specify an alternate preprocessor or
13155 perform additional processing of the program source between
13156 normal preprocessing and compilation.
13157
13158 @end table
13159
13160 @node Assembler Options
13161 @section Passing Options to the Assembler
13162
13163 @c prevent bad page break with this line
13164 You can pass options to the assembler.
13165
13166 @table @gcctabopt
13167 @item -Wa,@var{option}
13168 @opindex Wa
13169 Pass @var{option} as an option to the assembler. If @var{option}
13170 contains commas, it is split into multiple options at the commas.
13171
13172 @item -Xassembler @var{option}
13173 @opindex Xassembler
13174 Pass @var{option} as an option to the assembler. You can use this to
13175 supply system-specific assembler options that GCC does not
13176 recognize.
13177
13178 If you want to pass an option that takes an argument, you must use
13179 @option{-Xassembler} twice, once for the option and once for the argument.
13180
13181 @end table
13182
13183 @node Link Options
13184 @section Options for Linking
13185 @cindex link options
13186 @cindex options, linking
13187
13188 These options come into play when the compiler links object files into
13189 an executable output file. They are meaningless if the compiler is
13190 not doing a link step.
13191
13192 @table @gcctabopt
13193 @cindex file names
13194 @item @var{object-file-name}
13195 A file name that does not end in a special recognized suffix is
13196 considered to name an object file or library. (Object files are
13197 distinguished from libraries by the linker according to the file
13198 contents.) If linking is done, these object files are used as input
13199 to the linker.
13200
13201 @item -c
13202 @itemx -S
13203 @itemx -E
13204 @opindex c
13205 @opindex S
13206 @opindex E
13207 If any of these options is used, then the linker is not run, and
13208 object file names should not be used as arguments. @xref{Overall
13209 Options}.
13210
13211 @item -flinker-output=@var{type}
13212 @opindex flinker-output
13213 This option controls code generation of the link-time optimizer. By
13214 default the linker output is automatically determined by the linker
13215 plugin. For debugging the compiler and if incremental linking with a
13216 non-LTO object file is desired, it may be useful to control the type
13217 manually.
13218
13219 If @var{type} is @samp{exec}, code generation produces a static
13220 binary. In this case @option{-fpic} and @option{-fpie} are both
13221 disabled.
13222
13223 If @var{type} is @samp{dyn}, code generation produces a shared
13224 library. In this case @option{-fpic} or @option{-fPIC} is preserved,
13225 but not enabled automatically. This allows to build shared libraries
13226 without position-independent code on architectures where this is
13227 possible, i.e.@: on x86.
13228
13229 If @var{type} is @samp{pie}, code generation produces an @option{-fpie}
13230 executable. This results in similar optimizations as @samp{exec}
13231 except that @option{-fpie} is not disabled if specified at compilation
13232 time.
13233
13234 If @var{type} is @samp{rel}, the compiler assumes that incremental linking is
13235 done. The sections containing intermediate code for link-time optimization are
13236 merged, pre-optimized, and output to the resulting object file. In addition, if
13237 @option{-ffat-lto-objects} is specified, binary code is produced for future
13238 non-LTO linking. The object file produced by incremental linking is smaller
13239 than a static library produced from the same object files. At link time the
13240 result of incremental linking also loads faster than a static
13241 library assuming that the majority of objects in the library are used.
13242
13243 Finally @samp{nolto-rel} configures the compiler for incremental linking where
13244 code generation is forced, a final binary is produced, and the intermediate
13245 code for later link-time optimization is stripped. When multiple object files
13246 are linked together the resulting code is better optimized than with
13247 link-time optimizations disabled (for example, cross-module inlining
13248 happens), but most of benefits of whole program optimizations are lost.
13249
13250 During the incremental link (by @option{-r}) the linker plugin defaults to
13251 @option{rel}. With current interfaces to GNU Binutils it is however not
13252 possible to incrementally link LTO objects and non-LTO objects into a single
13253 mixed object file. If any of object files in incremental link cannot
13254 be used for link-time optimization, the linker plugin issues a warning and
13255 uses @samp{nolto-rel}. To maintain whole program optimization, it is
13256 recommended to link such objects into static library instead. Alternatively it
13257 is possible to use H.J. Lu's binutils with support for mixed objects.
13258
13259 @item -fuse-ld=bfd
13260 @opindex fuse-ld=bfd
13261 Use the @command{bfd} linker instead of the default linker.
13262
13263 @item -fuse-ld=gold
13264 @opindex fuse-ld=gold
13265 Use the @command{gold} linker instead of the default linker.
13266
13267 @item -fuse-ld=lld
13268 @opindex fuse-ld=lld
13269 Use the LLVM @command{lld} linker instead of the default linker.
13270
13271 @cindex Libraries
13272 @item -l@var{library}
13273 @itemx -l @var{library}
13274 @opindex l
13275 Search the library named @var{library} when linking. (The second
13276 alternative with the library as a separate argument is only for
13277 POSIX compliance and is not recommended.)
13278
13279 The @option{-l} option is passed directly to the linker by GCC. Refer
13280 to your linker documentation for exact details. The general
13281 description below applies to the GNU linker.
13282
13283 The linker searches a standard list of directories for the library.
13284 The directories searched include several standard system directories
13285 plus any that you specify with @option{-L}.
13286
13287 Static libraries are archives of object files, and have file names
13288 like @file{lib@var{library}.a}. Some targets also support shared
13289 libraries, which typically have names like @file{lib@var{library}.so}.
13290 If both static and shared libraries are found, the linker gives
13291 preference to linking with the shared library unless the
13292 @option{-static} option is used.
13293
13294 It makes a difference where in the command you write this option; the
13295 linker searches and processes libraries and object files in the order they
13296 are specified. Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
13297 after file @file{foo.o} but before @file{bar.o}. If @file{bar.o} refers
13298 to functions in @samp{z}, those functions may not be loaded.
13299
13300 @item -lobjc
13301 @opindex lobjc
13302 You need this special case of the @option{-l} option in order to
13303 link an Objective-C or Objective-C++ program.
13304
13305 @item -nostartfiles
13306 @opindex nostartfiles
13307 Do not use the standard system startup files when linking.
13308 The standard system libraries are used normally, unless @option{-nostdlib},
13309 @option{-nolibc}, or @option{-nodefaultlibs} is used.
13310
13311 @item -nodefaultlibs
13312 @opindex nodefaultlibs
13313 Do not use the standard system libraries when linking.
13314 Only the libraries you specify are passed to the linker, and options
13315 specifying linkage of the system libraries, such as @option{-static-libgcc}
13316 or @option{-shared-libgcc}, are ignored.
13317 The standard startup files are used normally, unless @option{-nostartfiles}
13318 is used.
13319
13320 The compiler may generate calls to @code{memcmp},
13321 @code{memset}, @code{memcpy} and @code{memmove}.
13322 These entries are usually resolved by entries in
13323 libc. These entry points should be supplied through some other
13324 mechanism when this option is specified.
13325
13326 @item -nolibc
13327 @opindex nolibc
13328 Do not use the C library or system libraries tightly coupled with it when
13329 linking. Still link with the startup files, @file{libgcc} or toolchain
13330 provided language support libraries such as @file{libgnat}, @file{libgfortran}
13331 or @file{libstdc++} unless options preventing their inclusion are used as
13332 well. This typically removes @option{-lc} from the link command line, as well
13333 as system libraries that normally go with it and become meaningless when
13334 absence of a C library is assumed, for example @option{-lpthread} or
13335 @option{-lm} in some configurations. This is intended for bare-board
13336 targets when there is indeed no C library available.
13337
13338 @item -nostdlib
13339 @opindex nostdlib
13340 Do not use the standard system startup files or libraries when linking.
13341 No startup files and only the libraries you specify are passed to
13342 the linker, and options specifying linkage of the system libraries, such as
13343 @option{-static-libgcc} or @option{-shared-libgcc}, are ignored.
13344
13345 The compiler may generate calls to @code{memcmp}, @code{memset},
13346 @code{memcpy} and @code{memmove}.
13347 These entries are usually resolved by entries in
13348 libc. These entry points should be supplied through some other
13349 mechanism when this option is specified.
13350
13351 @cindex @option{-lgcc}, use with @option{-nostdlib}
13352 @cindex @option{-nostdlib} and unresolved references
13353 @cindex unresolved references and @option{-nostdlib}
13354 @cindex @option{-lgcc}, use with @option{-nodefaultlibs}
13355 @cindex @option{-nodefaultlibs} and unresolved references
13356 @cindex unresolved references and @option{-nodefaultlibs}
13357 One of the standard libraries bypassed by @option{-nostdlib} and
13358 @option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
13359 which GCC uses to overcome shortcomings of particular machines, or special
13360 needs for some languages.
13361 (@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
13362 Collection (GCC) Internals},
13363 for more discussion of @file{libgcc.a}.)
13364 In most cases, you need @file{libgcc.a} even when you want to avoid
13365 other standard libraries. In other words, when you specify @option{-nostdlib}
13366 or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
13367 This ensures that you have no unresolved references to internal GCC
13368 library subroutines.
13369 (An example of such an internal subroutine is @code{__main}, used to ensure C++
13370 constructors are called; @pxref{Collect2,,@code{collect2}, gccint,
13371 GNU Compiler Collection (GCC) Internals}.)
13372
13373 @item -e @var{entry}
13374 @itemx --entry=@var{entry}
13375 @opindex e
13376 @opindex entry
13377
13378 Specify that the program entry point is @var{entry}. The argument is
13379 interpreted by the linker; the GNU linker accepts either a symbol name
13380 or an address.
13381
13382 @item -pie
13383 @opindex pie
13384 Produce a dynamically linked position independent executable on targets
13385 that support it. For predictable results, you must also specify the same
13386 set of options used for compilation (@option{-fpie}, @option{-fPIE},
13387 or model suboptions) when you specify this linker option.
13388
13389 @item -no-pie
13390 @opindex no-pie
13391 Don't produce a dynamically linked position independent executable.
13392
13393 @item -static-pie
13394 @opindex static-pie
13395 Produce a static position independent executable on targets that support
13396 it. A static position independent executable is similar to a static
13397 executable, but can be loaded at any address without a dynamic linker.
13398 For predictable results, you must also specify the same set of options
13399 used for compilation (@option{-fpie}, @option{-fPIE}, or model
13400 suboptions) when you specify this linker option.
13401
13402 @item -pthread
13403 @opindex pthread
13404 Link with the POSIX threads library. This option is supported on
13405 GNU/Linux targets, most other Unix derivatives, and also on
13406 x86 Cygwin and MinGW targets. On some targets this option also sets
13407 flags for the preprocessor, so it should be used consistently for both
13408 compilation and linking.
13409
13410 @item -r
13411 @opindex r
13412 Produce a relocatable object as output. This is also known as partial
13413 linking.
13414
13415 @item -rdynamic
13416 @opindex rdynamic
13417 Pass the flag @option{-export-dynamic} to the ELF linker, on targets
13418 that support it. This instructs the linker to add all symbols, not
13419 only used ones, to the dynamic symbol table. This option is needed
13420 for some uses of @code{dlopen} or to allow obtaining backtraces
13421 from within a program.
13422
13423 @item -s
13424 @opindex s
13425 Remove all symbol table and relocation information from the executable.
13426
13427 @item -static
13428 @opindex static
13429 On systems that support dynamic linking, this overrides @option{-pie}
13430 and prevents linking with the shared libraries. On other systems, this
13431 option has no effect.
13432
13433 @item -shared
13434 @opindex shared
13435 Produce a shared object which can then be linked with other objects to
13436 form an executable. Not all systems support this option. For predictable
13437 results, you must also specify the same set of options used for compilation
13438 (@option{-fpic}, @option{-fPIC}, or model suboptions) when
13439 you specify this linker option.@footnote{On some systems, @samp{gcc -shared}
13440 needs to build supplementary stub code for constructors to work. On
13441 multi-libbed systems, @samp{gcc -shared} must select the correct support
13442 libraries to link against. Failing to supply the correct flags may lead
13443 to subtle defects. Supplying them in cases where they are not necessary
13444 is innocuous.}
13445
13446 @item -shared-libgcc
13447 @itemx -static-libgcc
13448 @opindex shared-libgcc
13449 @opindex static-libgcc
13450 On systems that provide @file{libgcc} as a shared library, these options
13451 force the use of either the shared or static version, respectively.
13452 If no shared version of @file{libgcc} was built when the compiler was
13453 configured, these options have no effect.
13454
13455 There are several situations in which an application should use the
13456 shared @file{libgcc} instead of the static version. The most common
13457 of these is when the application wishes to throw and catch exceptions
13458 across different shared libraries. In that case, each of the libraries
13459 as well as the application itself should use the shared @file{libgcc}.
13460
13461 Therefore, the G++ driver automatically adds @option{-shared-libgcc}
13462 whenever you build a shared library or a main executable, because C++
13463 programs typically use exceptions, so this is the right thing to do.
13464
13465 If, instead, you use the GCC driver to create shared libraries, you may
13466 find that they are not always linked with the shared @file{libgcc}.
13467 If GCC finds, at its configuration time, that you have a non-GNU linker
13468 or a GNU linker that does not support option @option{--eh-frame-hdr},
13469 it links the shared version of @file{libgcc} into shared libraries
13470 by default. Otherwise, it takes advantage of the linker and optimizes
13471 away the linking with the shared version of @file{libgcc}, linking with
13472 the static version of libgcc by default. This allows exceptions to
13473 propagate through such shared libraries, without incurring relocation
13474 costs at library load time.
13475
13476 However, if a library or main executable is supposed to throw or catch
13477 exceptions, you must link it using the G++ driver, or using the option
13478 @option{-shared-libgcc}, such that it is linked with the shared
13479 @file{libgcc}.
13480
13481 @item -static-libasan
13482 @opindex static-libasan
13483 When the @option{-fsanitize=address} option is used to link a program,
13484 the GCC driver automatically links against @option{libasan}. If
13485 @file{libasan} is available as a shared library, and the @option{-static}
13486 option is not used, then this links against the shared version of
13487 @file{libasan}. The @option{-static-libasan} option directs the GCC
13488 driver to link @file{libasan} statically, without necessarily linking
13489 other libraries statically.
13490
13491 @item -static-libtsan
13492 @opindex static-libtsan
13493 When the @option{-fsanitize=thread} option is used to link a program,
13494 the GCC driver automatically links against @option{libtsan}. If
13495 @file{libtsan} is available as a shared library, and the @option{-static}
13496 option is not used, then this links against the shared version of
13497 @file{libtsan}. The @option{-static-libtsan} option directs the GCC
13498 driver to link @file{libtsan} statically, without necessarily linking
13499 other libraries statically.
13500
13501 @item -static-liblsan
13502 @opindex static-liblsan
13503 When the @option{-fsanitize=leak} option is used to link a program,
13504 the GCC driver automatically links against @option{liblsan}. If
13505 @file{liblsan} is available as a shared library, and the @option{-static}
13506 option is not used, then this links against the shared version of
13507 @file{liblsan}. The @option{-static-liblsan} option directs the GCC
13508 driver to link @file{liblsan} statically, without necessarily linking
13509 other libraries statically.
13510
13511 @item -static-libubsan
13512 @opindex static-libubsan
13513 When the @option{-fsanitize=undefined} option is used to link a program,
13514 the GCC driver automatically links against @option{libubsan}. If
13515 @file{libubsan} is available as a shared library, and the @option{-static}
13516 option is not used, then this links against the shared version of
13517 @file{libubsan}. The @option{-static-libubsan} option directs the GCC
13518 driver to link @file{libubsan} statically, without necessarily linking
13519 other libraries statically.
13520
13521 @item -static-libstdc++
13522 @opindex static-libstdc++
13523 When the @command{g++} program is used to link a C++ program, it
13524 normally automatically links against @option{libstdc++}. If
13525 @file{libstdc++} is available as a shared library, and the
13526 @option{-static} option is not used, then this links against the
13527 shared version of @file{libstdc++}. That is normally fine. However, it
13528 is sometimes useful to freeze the version of @file{libstdc++} used by
13529 the program without going all the way to a fully static link. The
13530 @option{-static-libstdc++} option directs the @command{g++} driver to
13531 link @file{libstdc++} statically, without necessarily linking other
13532 libraries statically.
13533
13534 @item -symbolic
13535 @opindex symbolic
13536 Bind references to global symbols when building a shared object. Warn
13537 about any unresolved references (unless overridden by the link editor
13538 option @option{-Xlinker -z -Xlinker defs}). Only a few systems support
13539 this option.
13540
13541 @item -T @var{script}
13542 @opindex T
13543 @cindex linker script
13544 Use @var{script} as the linker script. This option is supported by most
13545 systems using the GNU linker. On some targets, such as bare-board
13546 targets without an operating system, the @option{-T} option may be required
13547 when linking to avoid references to undefined symbols.
13548
13549 @item -Xlinker @var{option}
13550 @opindex Xlinker
13551 Pass @var{option} as an option to the linker. You can use this to
13552 supply system-specific linker options that GCC does not recognize.
13553
13554 If you want to pass an option that takes a separate argument, you must use
13555 @option{-Xlinker} twice, once for the option and once for the argument.
13556 For example, to pass @option{-assert definitions}, you must write
13557 @option{-Xlinker -assert -Xlinker definitions}. It does not work to write
13558 @option{-Xlinker "-assert definitions"}, because this passes the entire
13559 string as a single argument, which is not what the linker expects.
13560
13561 When using the GNU linker, it is usually more convenient to pass
13562 arguments to linker options using the @option{@var{option}=@var{value}}
13563 syntax than as separate arguments. For example, you can specify
13564 @option{-Xlinker -Map=output.map} rather than
13565 @option{-Xlinker -Map -Xlinker output.map}. Other linkers may not support
13566 this syntax for command-line options.
13567
13568 @item -Wl,@var{option}
13569 @opindex Wl
13570 Pass @var{option} as an option to the linker. If @var{option} contains
13571 commas, it is split into multiple options at the commas. You can use this
13572 syntax to pass an argument to the option.
13573 For example, @option{-Wl,-Map,output.map} passes @option{-Map output.map} to the
13574 linker. When using the GNU linker, you can also get the same effect with
13575 @option{-Wl,-Map=output.map}.
13576
13577 @item -u @var{symbol}
13578 @opindex u
13579 Pretend the symbol @var{symbol} is undefined, to force linking of
13580 library modules to define it. You can use @option{-u} multiple times with
13581 different symbols to force loading of additional library modules.
13582
13583 @item -z @var{keyword}
13584 @opindex z
13585 @option{-z} is passed directly on to the linker along with the keyword
13586 @var{keyword}. See the section in the documentation of your linker for
13587 permitted values and their meanings.
13588 @end table
13589
13590 @node Directory Options
13591 @section Options for Directory Search
13592 @cindex directory options
13593 @cindex options, directory search
13594 @cindex search path
13595
13596 These options specify directories to search for header files, for
13597 libraries and for parts of the compiler:
13598
13599 @table @gcctabopt
13600 @include cppdiropts.texi
13601
13602 @item -iplugindir=@var{dir}
13603 @opindex iplugindir=
13604 Set the directory to search for plugins that are passed
13605 by @option{-fplugin=@var{name}} instead of
13606 @option{-fplugin=@var{path}/@var{name}.so}. This option is not meant
13607 to be used by the user, but only passed by the driver.
13608
13609 @item -L@var{dir}
13610 @opindex L
13611 Add directory @var{dir} to the list of directories to be searched
13612 for @option{-l}.
13613
13614 @item -B@var{prefix}
13615 @opindex B
13616 This option specifies where to find the executables, libraries,
13617 include files, and data files of the compiler itself.
13618
13619 The compiler driver program runs one or more of the subprograms
13620 @command{cpp}, @command{cc1}, @command{as} and @command{ld}. It tries
13621 @var{prefix} as a prefix for each program it tries to run, both with and
13622 without @samp{@var{machine}/@var{version}/} for the corresponding target
13623 machine and compiler version.
13624
13625 For each subprogram to be run, the compiler driver first tries the
13626 @option{-B} prefix, if any. If that name is not found, or if @option{-B}
13627 is not specified, the driver tries two standard prefixes,
13628 @file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}. If neither of
13629 those results in a file name that is found, the unmodified program
13630 name is searched for using the directories specified in your
13631 @env{PATH} environment variable.
13632
13633 The compiler checks to see if the path provided by @option{-B}
13634 refers to a directory, and if necessary it adds a directory
13635 separator character at the end of the path.
13636
13637 @option{-B} prefixes that effectively specify directory names also apply
13638 to libraries in the linker, because the compiler translates these
13639 options into @option{-L} options for the linker. They also apply to
13640 include files in the preprocessor, because the compiler translates these
13641 options into @option{-isystem} options for the preprocessor. In this case,
13642 the compiler appends @samp{include} to the prefix.
13643
13644 The runtime support file @file{libgcc.a} can also be searched for using
13645 the @option{-B} prefix, if needed. If it is not found there, the two
13646 standard prefixes above are tried, and that is all. The file is left
13647 out of the link if it is not found by those means.
13648
13649 Another way to specify a prefix much like the @option{-B} prefix is to use
13650 the environment variable @env{GCC_EXEC_PREFIX}. @xref{Environment
13651 Variables}.
13652
13653 As a special kludge, if the path provided by @option{-B} is
13654 @file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
13655 9, then it is replaced by @file{[dir/]include}. This is to help
13656 with boot-strapping the compiler.
13657
13658 @item -no-canonical-prefixes
13659 @opindex no-canonical-prefixes
13660 Do not expand any symbolic links, resolve references to @samp{/../}
13661 or @samp{/./}, or make the path absolute when generating a relative
13662 prefix.
13663
13664 @item --sysroot=@var{dir}
13665 @opindex sysroot
13666 Use @var{dir} as the logical root directory for headers and libraries.
13667 For example, if the compiler normally searches for headers in
13668 @file{/usr/include} and libraries in @file{/usr/lib}, it instead
13669 searches @file{@var{dir}/usr/include} and @file{@var{dir}/usr/lib}.
13670
13671 If you use both this option and the @option{-isysroot} option, then
13672 the @option{--sysroot} option applies to libraries, but the
13673 @option{-isysroot} option applies to header files.
13674
13675 The GNU linker (beginning with version 2.16) has the necessary support
13676 for this option. If your linker does not support this option, the
13677 header file aspect of @option{--sysroot} still works, but the
13678 library aspect does not.
13679
13680 @item --no-sysroot-suffix
13681 @opindex no-sysroot-suffix
13682 For some targets, a suffix is added to the root directory specified
13683 with @option{--sysroot}, depending on the other options used, so that
13684 headers may for example be found in
13685 @file{@var{dir}/@var{suffix}/usr/include} instead of
13686 @file{@var{dir}/usr/include}. This option disables the addition of
13687 such a suffix.
13688
13689 @end table
13690
13691 @node Code Gen Options
13692 @section Options for Code Generation Conventions
13693 @cindex code generation conventions
13694 @cindex options, code generation
13695 @cindex run-time options
13696
13697 These machine-independent options control the interface conventions
13698 used in code generation.
13699
13700 Most of them have both positive and negative forms; the negative form
13701 of @option{-ffoo} is @option{-fno-foo}. In the table below, only
13702 one of the forms is listed---the one that is not the default. You
13703 can figure out the other form by either removing @samp{no-} or adding
13704 it.
13705
13706 @table @gcctabopt
13707 @item -fstack-reuse=@var{reuse-level}
13708 @opindex fstack_reuse
13709 This option controls stack space reuse for user declared local/auto variables
13710 and compiler generated temporaries. @var{reuse_level} can be @samp{all},
13711 @samp{named_vars}, or @samp{none}. @samp{all} enables stack reuse for all
13712 local variables and temporaries, @samp{named_vars} enables the reuse only for
13713 user defined local variables with names, and @samp{none} disables stack reuse
13714 completely. The default value is @samp{all}. The option is needed when the
13715 program extends the lifetime of a scoped local variable or a compiler generated
13716 temporary beyond the end point defined by the language. When a lifetime of
13717 a variable ends, and if the variable lives in memory, the optimizing compiler
13718 has the freedom to reuse its stack space with other temporaries or scoped
13719 local variables whose live range does not overlap with it. Legacy code extending
13720 local lifetime is likely to break with the stack reuse optimization.
13721
13722 For example,
13723
13724 @smallexample
13725 int *p;
13726 @{
13727 int local1;
13728
13729 p = &local1;
13730 local1 = 10;
13731 ....
13732 @}
13733 @{
13734 int local2;
13735 local2 = 20;
13736 ...
13737 @}
13738
13739 if (*p == 10) // out of scope use of local1
13740 @{
13741
13742 @}
13743 @end smallexample
13744
13745 Another example:
13746 @smallexample
13747
13748 struct A
13749 @{
13750 A(int k) : i(k), j(k) @{ @}
13751 int i;
13752 int j;
13753 @};
13754
13755 A *ap;
13756
13757 void foo(const A& ar)
13758 @{
13759 ap = &ar;
13760 @}
13761
13762 void bar()
13763 @{
13764 foo(A(10)); // temp object's lifetime ends when foo returns
13765
13766 @{
13767 A a(20);
13768 ....
13769 @}
13770 ap->i+= 10; // ap references out of scope temp whose space
13771 // is reused with a. What is the value of ap->i?
13772 @}
13773
13774 @end smallexample
13775
13776 The lifetime of a compiler generated temporary is well defined by the C++
13777 standard. When a lifetime of a temporary ends, and if the temporary lives
13778 in memory, the optimizing compiler has the freedom to reuse its stack
13779 space with other temporaries or scoped local variables whose live range
13780 does not overlap with it. However some of the legacy code relies on
13781 the behavior of older compilers in which temporaries' stack space is
13782 not reused, the aggressive stack reuse can lead to runtime errors. This
13783 option is used to control the temporary stack reuse optimization.
13784
13785 @item -ftrapv
13786 @opindex ftrapv
13787 This option generates traps for signed overflow on addition, subtraction,
13788 multiplication operations.
13789 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
13790 @option{-ftrapv} @option{-fwrapv} on the command-line results in
13791 @option{-fwrapv} being effective. Note that only active options override, so
13792 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
13793 results in @option{-ftrapv} being effective.
13794
13795 @item -fwrapv
13796 @opindex fwrapv
13797 This option instructs the compiler to assume that signed arithmetic
13798 overflow of addition, subtraction and multiplication wraps around
13799 using twos-complement representation. This flag enables some optimizations
13800 and disables others.
13801 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
13802 @option{-ftrapv} @option{-fwrapv} on the command-line results in
13803 @option{-fwrapv} being effective. Note that only active options override, so
13804 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
13805 results in @option{-ftrapv} being effective.
13806
13807 @item -fwrapv-pointer
13808 @opindex fwrapv-pointer
13809 This option instructs the compiler to assume that pointer arithmetic
13810 overflow on addition and subtraction wraps around using twos-complement
13811 representation. This flag disables some optimizations which assume
13812 pointer overflow is invalid.
13813
13814 @item -fstrict-overflow
13815 @opindex fstrict-overflow
13816 This option implies @option{-fno-wrapv} @option{-fno-wrapv-pointer} and when
13817 negated implies @option{-fwrapv} @option{-fwrapv-pointer}.
13818
13819 @item -fexceptions
13820 @opindex fexceptions
13821 Enable exception handling. Generates extra code needed to propagate
13822 exceptions. For some targets, this implies GCC generates frame
13823 unwind information for all functions, which can produce significant data
13824 size overhead, although it does not affect execution. If you do not
13825 specify this option, GCC enables it by default for languages like
13826 C++ that normally require exception handling, and disables it for
13827 languages like C that do not normally require it. However, you may need
13828 to enable this option when compiling C code that needs to interoperate
13829 properly with exception handlers written in C++. You may also wish to
13830 disable this option if you are compiling older C++ programs that don't
13831 use exception handling.
13832
13833 @item -fnon-call-exceptions
13834 @opindex fnon-call-exceptions
13835 Generate code that allows trapping instructions to throw exceptions.
13836 Note that this requires platform-specific runtime support that does
13837 not exist everywhere. Moreover, it only allows @emph{trapping}
13838 instructions to throw exceptions, i.e.@: memory references or floating-point
13839 instructions. It does not allow exceptions to be thrown from
13840 arbitrary signal handlers such as @code{SIGALRM}.
13841
13842 @item -fdelete-dead-exceptions
13843 @opindex fdelete-dead-exceptions
13844 Consider that instructions that may throw exceptions but don't otherwise
13845 contribute to the execution of the program can be optimized away.
13846 This option is enabled by default for the Ada front end, as permitted by
13847 the Ada language specification.
13848 Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels.
13849
13850 @item -funwind-tables
13851 @opindex funwind-tables
13852 Similar to @option{-fexceptions}, except that it just generates any needed
13853 static data, but does not affect the generated code in any other way.
13854 You normally do not need to enable this option; instead, a language processor
13855 that needs this handling enables it on your behalf.
13856
13857 @item -fasynchronous-unwind-tables
13858 @opindex fasynchronous-unwind-tables
13859 Generate unwind table in DWARF format, if supported by target machine. The
13860 table is exact at each instruction boundary, so it can be used for stack
13861 unwinding from asynchronous events (such as debugger or garbage collector).
13862
13863 @item -fno-gnu-unique
13864 @opindex fno-gnu-unique
13865 @opindex fgnu-unique
13866 On systems with recent GNU assembler and C library, the C++ compiler
13867 uses the @code{STB_GNU_UNIQUE} binding to make sure that definitions
13868 of template static data members and static local variables in inline
13869 functions are unique even in the presence of @code{RTLD_LOCAL}; this
13870 is necessary to avoid problems with a library used by two different
13871 @code{RTLD_LOCAL} plugins depending on a definition in one of them and
13872 therefore disagreeing with the other one about the binding of the
13873 symbol. But this causes @code{dlclose} to be ignored for affected
13874 DSOs; if your program relies on reinitialization of a DSO via
13875 @code{dlclose} and @code{dlopen}, you can use
13876 @option{-fno-gnu-unique}.
13877
13878 @item -fpcc-struct-return
13879 @opindex fpcc-struct-return
13880 Return ``short'' @code{struct} and @code{union} values in memory like
13881 longer ones, rather than in registers. This convention is less
13882 efficient, but it has the advantage of allowing intercallability between
13883 GCC-compiled files and files compiled with other compilers, particularly
13884 the Portable C Compiler (pcc).
13885
13886 The precise convention for returning structures in memory depends
13887 on the target configuration macros.
13888
13889 Short structures and unions are those whose size and alignment match
13890 that of some integer type.
13891
13892 @strong{Warning:} code compiled with the @option{-fpcc-struct-return}
13893 switch is not binary compatible with code compiled with the
13894 @option{-freg-struct-return} switch.
13895 Use it to conform to a non-default application binary interface.
13896
13897 @item -freg-struct-return
13898 @opindex freg-struct-return
13899 Return @code{struct} and @code{union} values in registers when possible.
13900 This is more efficient for small structures than
13901 @option{-fpcc-struct-return}.
13902
13903 If you specify neither @option{-fpcc-struct-return} nor
13904 @option{-freg-struct-return}, GCC defaults to whichever convention is
13905 standard for the target. If there is no standard convention, GCC
13906 defaults to @option{-fpcc-struct-return}, except on targets where GCC is
13907 the principal compiler. In those cases, we can choose the standard, and
13908 we chose the more efficient register return alternative.
13909
13910 @strong{Warning:} code compiled with the @option{-freg-struct-return}
13911 switch is not binary compatible with code compiled with the
13912 @option{-fpcc-struct-return} switch.
13913 Use it to conform to a non-default application binary interface.
13914
13915 @item -fshort-enums
13916 @opindex fshort-enums
13917 Allocate to an @code{enum} type only as many bytes as it needs for the
13918 declared range of possible values. Specifically, the @code{enum} type
13919 is equivalent to the smallest integer type that has enough room.
13920
13921 @strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate
13922 code that is not binary compatible with code generated without that switch.
13923 Use it to conform to a non-default application binary interface.
13924
13925 @item -fshort-wchar
13926 @opindex fshort-wchar
13927 Override the underlying type for @code{wchar_t} to be @code{short
13928 unsigned int} instead of the default for the target. This option is
13929 useful for building programs to run under WINE@.
13930
13931 @strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate
13932 code that is not binary compatible with code generated without that switch.
13933 Use it to conform to a non-default application binary interface.
13934
13935 @item -fno-common
13936 @opindex fno-common
13937 @opindex fcommon
13938 @cindex tentative definitions
13939 In C code, this option controls the placement of global variables
13940 defined without an initializer, known as @dfn{tentative definitions}
13941 in the C standard. Tentative definitions are distinct from declarations
13942 of a variable with the @code{extern} keyword, which do not allocate storage.
13943
13944 Unix C compilers have traditionally allocated storage for
13945 uninitialized global variables in a common block. This allows the
13946 linker to resolve all tentative definitions of the same variable
13947 in different compilation units to the same object, or to a non-tentative
13948 definition.
13949 This is the behavior specified by @option{-fcommon}, and is the default for
13950 GCC on most targets.
13951 On the other hand, this behavior is not required by ISO
13952 C, and on some targets may carry a speed or code size penalty on
13953 variable references.
13954
13955 The @option{-fno-common} option specifies that the compiler should instead
13956 place uninitialized global variables in the BSS section of the object file.
13957 This inhibits the merging of tentative definitions by the linker so
13958 you get a multiple-definition error if the same
13959 variable is defined in more than one compilation unit.
13960 Compiling with @option{-fno-common} is useful on targets for which
13961 it provides better performance, or if you wish to verify that the
13962 program will work on other systems that always treat uninitialized
13963 variable definitions this way.
13964
13965 @item -fno-ident
13966 @opindex fno-ident
13967 @opindex fident
13968 Ignore the @code{#ident} directive.
13969
13970 @item -finhibit-size-directive
13971 @opindex finhibit-size-directive
13972 Don't output a @code{.size} assembler directive, or anything else that
13973 would cause trouble if the function is split in the middle, and the
13974 two halves are placed at locations far apart in memory. This option is
13975 used when compiling @file{crtstuff.c}; you should not need to use it
13976 for anything else.
13977
13978 @item -fverbose-asm
13979 @opindex fverbose-asm
13980 Put extra commentary information in the generated assembly code to
13981 make it more readable. This option is generally only of use to those
13982 who actually need to read the generated assembly code (perhaps while
13983 debugging the compiler itself).
13984
13985 @option{-fno-verbose-asm}, the default, causes the
13986 extra information to be omitted and is useful when comparing two assembler
13987 files.
13988
13989 The added comments include:
13990
13991 @itemize @bullet
13992
13993 @item
13994 information on the compiler version and command-line options,
13995
13996 @item
13997 the source code lines associated with the assembly instructions,
13998 in the form FILENAME:LINENUMBER:CONTENT OF LINE,
13999
14000 @item
14001 hints on which high-level expressions correspond to
14002 the various assembly instruction operands.
14003
14004 @end itemize
14005
14006 For example, given this C source file:
14007
14008 @smallexample
14009 int test (int n)
14010 @{
14011 int i;
14012 int total = 0;
14013
14014 for (i = 0; i < n; i++)
14015 total += i * i;
14016
14017 return total;
14018 @}
14019 @end smallexample
14020
14021 compiling to (x86_64) assembly via @option{-S} and emitting the result
14022 direct to stdout via @option{-o} @option{-}
14023
14024 @smallexample
14025 gcc -S test.c -fverbose-asm -Os -o -
14026 @end smallexample
14027
14028 gives output similar to this:
14029
14030 @smallexample
14031 .file "test.c"
14032 # GNU C11 (GCC) version 7.0.0 20160809 (experimental) (x86_64-pc-linux-gnu)
14033 [...snip...]
14034 # options passed:
14035 [...snip...]
14036
14037 .text
14038 .globl test
14039 .type test, @@function
14040 test:
14041 .LFB0:
14042 .cfi_startproc
14043 # test.c:4: int total = 0;
14044 xorl %eax, %eax # <retval>
14045 # test.c:6: for (i = 0; i < n; i++)
14046 xorl %edx, %edx # i
14047 .L2:
14048 # test.c:6: for (i = 0; i < n; i++)
14049 cmpl %edi, %edx # n, i
14050 jge .L5 #,
14051 # test.c:7: total += i * i;
14052 movl %edx, %ecx # i, tmp92
14053 imull %edx, %ecx # i, tmp92
14054 # test.c:6: for (i = 0; i < n; i++)
14055 incl %edx # i
14056 # test.c:7: total += i * i;
14057 addl %ecx, %eax # tmp92, <retval>
14058 jmp .L2 #
14059 .L5:
14060 # test.c:10: @}
14061 ret
14062 .cfi_endproc
14063 .LFE0:
14064 .size test, .-test
14065 .ident "GCC: (GNU) 7.0.0 20160809 (experimental)"
14066 .section .note.GNU-stack,"",@@progbits
14067 @end smallexample
14068
14069 The comments are intended for humans rather than machines and hence the
14070 precise format of the comments is subject to change.
14071
14072 @item -frecord-gcc-switches
14073 @opindex frecord-gcc-switches
14074 This switch causes the command line used to invoke the
14075 compiler to be recorded into the object file that is being created.
14076 This switch is only implemented on some targets and the exact format
14077 of the recording is target and binary file format dependent, but it
14078 usually takes the form of a section containing ASCII text. This
14079 switch is related to the @option{-fverbose-asm} switch, but that
14080 switch only records information in the assembler output file as
14081 comments, so it never reaches the object file.
14082 See also @option{-grecord-gcc-switches} for another
14083 way of storing compiler options into the object file.
14084
14085 @item -fpic
14086 @opindex fpic
14087 @cindex global offset table
14088 @cindex PIC
14089 Generate position-independent code (PIC) suitable for use in a shared
14090 library, if supported for the target machine. Such code accesses all
14091 constant addresses through a global offset table (GOT)@. The dynamic
14092 loader resolves the GOT entries when the program starts (the dynamic
14093 loader is not part of GCC; it is part of the operating system). If
14094 the GOT size for the linked executable exceeds a machine-specific
14095 maximum size, you get an error message from the linker indicating that
14096 @option{-fpic} does not work; in that case, recompile with @option{-fPIC}
14097 instead. (These maximums are 8k on the SPARC, 28k on AArch64 and 32k
14098 on the m68k and RS/6000. The x86 has no such limit.)
14099
14100 Position-independent code requires special support, and therefore works
14101 only on certain machines. For the x86, GCC supports PIC for System V
14102 but not for the Sun 386i. Code generated for the IBM RS/6000 is always
14103 position-independent.
14104
14105 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
14106 are defined to 1.
14107
14108 @item -fPIC
14109 @opindex fPIC
14110 If supported for the target machine, emit position-independent code,
14111 suitable for dynamic linking and avoiding any limit on the size of the
14112 global offset table. This option makes a difference on AArch64, m68k,
14113 PowerPC and SPARC@.
14114
14115 Position-independent code requires special support, and therefore works
14116 only on certain machines.
14117
14118 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
14119 are defined to 2.
14120
14121 @item -fpie
14122 @itemx -fPIE
14123 @opindex fpie
14124 @opindex fPIE
14125 These options are similar to @option{-fpic} and @option{-fPIC}, but the
14126 generated position-independent code can be only linked into executables.
14127 Usually these options are used to compile code that will be linked using
14128 the @option{-pie} GCC option.
14129
14130 @option{-fpie} and @option{-fPIE} both define the macros
14131 @code{__pie__} and @code{__PIE__}. The macros have the value 1
14132 for @option{-fpie} and 2 for @option{-fPIE}.
14133
14134 @item -fno-plt
14135 @opindex fno-plt
14136 @opindex fplt
14137 Do not use the PLT for external function calls in position-independent code.
14138 Instead, load the callee address at call sites from the GOT and branch to it.
14139 This leads to more efficient code by eliminating PLT stubs and exposing
14140 GOT loads to optimizations. On architectures such as 32-bit x86 where
14141 PLT stubs expect the GOT pointer in a specific register, this gives more
14142 register allocation freedom to the compiler.
14143 Lazy binding requires use of the PLT;
14144 with @option{-fno-plt} all external symbols are resolved at load time.
14145
14146 Alternatively, the function attribute @code{noplt} can be used to avoid calls
14147 through the PLT for specific external functions.
14148
14149 In position-dependent code, a few targets also convert calls to
14150 functions that are marked to not use the PLT to use the GOT instead.
14151
14152 @item -fno-jump-tables
14153 @opindex fno-jump-tables
14154 @opindex fjump-tables
14155 Do not use jump tables for switch statements even where it would be
14156 more efficient than other code generation strategies. This option is
14157 of use in conjunction with @option{-fpic} or @option{-fPIC} for
14158 building code that forms part of a dynamic linker and cannot
14159 reference the address of a jump table. On some targets, jump tables
14160 do not require a GOT and this option is not needed.
14161
14162 @item -ffixed-@var{reg}
14163 @opindex ffixed
14164 Treat the register named @var{reg} as a fixed register; generated code
14165 should never refer to it (except perhaps as a stack pointer, frame
14166 pointer or in some other fixed role).
14167
14168 @var{reg} must be the name of a register. The register names accepted
14169 are machine-specific and are defined in the @code{REGISTER_NAMES}
14170 macro in the machine description macro file.
14171
14172 This flag does not have a negative form, because it specifies a
14173 three-way choice.
14174
14175 @item -fcall-used-@var{reg}
14176 @opindex fcall-used
14177 Treat the register named @var{reg} as an allocable register that is
14178 clobbered by function calls. It may be allocated for temporaries or
14179 variables that do not live across a call. Functions compiled this way
14180 do not save and restore the register @var{reg}.
14181
14182 It is an error to use this flag with the frame pointer or stack pointer.
14183 Use of this flag for other registers that have fixed pervasive roles in
14184 the machine's execution model produces disastrous results.
14185
14186 This flag does not have a negative form, because it specifies a
14187 three-way choice.
14188
14189 @item -fcall-saved-@var{reg}
14190 @opindex fcall-saved
14191 Treat the register named @var{reg} as an allocable register saved by
14192 functions. It may be allocated even for temporaries or variables that
14193 live across a call. Functions compiled this way save and restore
14194 the register @var{reg} if they use it.
14195
14196 It is an error to use this flag with the frame pointer or stack pointer.
14197 Use of this flag for other registers that have fixed pervasive roles in
14198 the machine's execution model produces disastrous results.
14199
14200 A different sort of disaster results from the use of this flag for
14201 a register in which function values may be returned.
14202
14203 This flag does not have a negative form, because it specifies a
14204 three-way choice.
14205
14206 @item -fpack-struct[=@var{n}]
14207 @opindex fpack-struct
14208 Without a value specified, pack all structure members together without
14209 holes. When a value is specified (which must be a small power of two), pack
14210 structure members according to this value, representing the maximum
14211 alignment (that is, objects with default alignment requirements larger than
14212 this are output potentially unaligned at the next fitting location.
14213
14214 @strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate
14215 code that is not binary compatible with code generated without that switch.
14216 Additionally, it makes the code suboptimal.
14217 Use it to conform to a non-default application binary interface.
14218
14219 @item -fleading-underscore
14220 @opindex fleading-underscore
14221 This option and its counterpart, @option{-fno-leading-underscore}, forcibly
14222 change the way C symbols are represented in the object file. One use
14223 is to help link with legacy assembly code.
14224
14225 @strong{Warning:} the @option{-fleading-underscore} switch causes GCC to
14226 generate code that is not binary compatible with code generated without that
14227 switch. Use it to conform to a non-default application binary interface.
14228 Not all targets provide complete support for this switch.
14229
14230 @item -ftls-model=@var{model}
14231 @opindex ftls-model
14232 Alter the thread-local storage model to be used (@pxref{Thread-Local}).
14233 The @var{model} argument should be one of @samp{global-dynamic},
14234 @samp{local-dynamic}, @samp{initial-exec} or @samp{local-exec}.
14235 Note that the choice is subject to optimization: the compiler may use
14236 a more efficient model for symbols not visible outside of the translation
14237 unit, or if @option{-fpic} is not given on the command line.
14238
14239 The default without @option{-fpic} is @samp{initial-exec}; with
14240 @option{-fpic} the default is @samp{global-dynamic}.
14241
14242 @item -ftrampolines
14243 @opindex ftrampolines
14244 For targets that normally need trampolines for nested functions, always
14245 generate them instead of using descriptors. Otherwise, for targets that
14246 do not need them, like for example HP-PA or IA-64, do nothing.
14247
14248 A trampoline is a small piece of code that is created at run time on the
14249 stack when the address of a nested function is taken, and is used to call
14250 the nested function indirectly. Therefore, it requires the stack to be
14251 made executable in order for the program to work properly.
14252
14253 @option{-fno-trampolines} is enabled by default on a language by language
14254 basis to let the compiler avoid generating them, if it computes that this
14255 is safe, and replace them with descriptors. Descriptors are made up of data
14256 only, but the generated code must be prepared to deal with them. As of this
14257 writing, @option{-fno-trampolines} is enabled by default only for Ada.
14258
14259 Moreover, code compiled with @option{-ftrampolines} and code compiled with
14260 @option{-fno-trampolines} are not binary compatible if nested functions are
14261 present. This option must therefore be used on a program-wide basis and be
14262 manipulated with extreme care.
14263
14264 @item -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]}
14265 @opindex fvisibility
14266 Set the default ELF image symbol visibility to the specified option---all
14267 symbols are marked with this unless overridden within the code.
14268 Using this feature can very substantially improve linking and
14269 load times of shared object libraries, produce more optimized
14270 code, provide near-perfect API export and prevent symbol clashes.
14271 It is @strong{strongly} recommended that you use this in any shared objects
14272 you distribute.
14273
14274 Despite the nomenclature, @samp{default} always means public; i.e.,
14275 available to be linked against from outside the shared object.
14276 @samp{protected} and @samp{internal} are pretty useless in real-world
14277 usage so the only other commonly used option is @samp{hidden}.
14278 The default if @option{-fvisibility} isn't specified is
14279 @samp{default}, i.e., make every symbol public.
14280
14281 A good explanation of the benefits offered by ensuring ELF
14282 symbols have the correct visibility is given by ``How To Write
14283 Shared Libraries'' by Ulrich Drepper (which can be found at
14284 @w{@uref{https://www.akkadia.org/drepper/}})---however a superior
14285 solution made possible by this option to marking things hidden when
14286 the default is public is to make the default hidden and mark things
14287 public. This is the norm with DLLs on Windows and with @option{-fvisibility=hidden}
14288 and @code{__attribute__ ((visibility("default")))} instead of
14289 @code{__declspec(dllexport)} you get almost identical semantics with
14290 identical syntax. This is a great boon to those working with
14291 cross-platform projects.
14292
14293 For those adding visibility support to existing code, you may find
14294 @code{#pragma GCC visibility} of use. This works by you enclosing
14295 the declarations you wish to set visibility for with (for example)
14296 @code{#pragma GCC visibility push(hidden)} and
14297 @code{#pragma GCC visibility pop}.
14298 Bear in mind that symbol visibility should be viewed @strong{as
14299 part of the API interface contract} and thus all new code should
14300 always specify visibility when it is not the default; i.e., declarations
14301 only for use within the local DSO should @strong{always} be marked explicitly
14302 as hidden as so to avoid PLT indirection overheads---making this
14303 abundantly clear also aids readability and self-documentation of the code.
14304 Note that due to ISO C++ specification requirements, @code{operator new} and
14305 @code{operator delete} must always be of default visibility.
14306
14307 Be aware that headers from outside your project, in particular system
14308 headers and headers from any other library you use, may not be
14309 expecting to be compiled with visibility other than the default. You
14310 may need to explicitly say @code{#pragma GCC visibility push(default)}
14311 before including any such headers.
14312
14313 @code{extern} declarations are not affected by @option{-fvisibility}, so
14314 a lot of code can be recompiled with @option{-fvisibility=hidden} with
14315 no modifications. However, this means that calls to @code{extern}
14316 functions with no explicit visibility use the PLT, so it is more
14317 effective to use @code{__attribute ((visibility))} and/or
14318 @code{#pragma GCC visibility} to tell the compiler which @code{extern}
14319 declarations should be treated as hidden.
14320
14321 Note that @option{-fvisibility} does affect C++ vague linkage
14322 entities. This means that, for instance, an exception class that is
14323 be thrown between DSOs must be explicitly marked with default
14324 visibility so that the @samp{type_info} nodes are unified between
14325 the DSOs.
14326
14327 An overview of these techniques, their benefits and how to use them
14328 is at @uref{http://gcc.gnu.org/@/wiki/@/Visibility}.
14329
14330 @item -fstrict-volatile-bitfields
14331 @opindex fstrict-volatile-bitfields
14332 This option should be used if accesses to volatile bit-fields (or other
14333 structure fields, although the compiler usually honors those types
14334 anyway) should use a single access of the width of the
14335 field's type, aligned to a natural alignment if possible. For
14336 example, targets with memory-mapped peripheral registers might require
14337 all such accesses to be 16 bits wide; with this flag you can
14338 declare all peripheral bit-fields as @code{unsigned short} (assuming short
14339 is 16 bits on these targets) to force GCC to use 16-bit accesses
14340 instead of, perhaps, a more efficient 32-bit access.
14341
14342 If this option is disabled, the compiler uses the most efficient
14343 instruction. In the previous example, that might be a 32-bit load
14344 instruction, even though that accesses bytes that do not contain
14345 any portion of the bit-field, or memory-mapped registers unrelated to
14346 the one being updated.
14347
14348 In some cases, such as when the @code{packed} attribute is applied to a
14349 structure field, it may not be possible to access the field with a single
14350 read or write that is correctly aligned for the target machine. In this
14351 case GCC falls back to generating multiple accesses rather than code that
14352 will fault or truncate the result at run time.
14353
14354 Note: Due to restrictions of the C/C++11 memory model, write accesses are
14355 not allowed to touch non bit-field members. It is therefore recommended
14356 to define all bits of the field's type as bit-field members.
14357
14358 The default value of this option is determined by the application binary
14359 interface for the target processor.
14360
14361 @item -fsync-libcalls
14362 @opindex fsync-libcalls
14363 This option controls whether any out-of-line instance of the @code{__sync}
14364 family of functions may be used to implement the C++11 @code{__atomic}
14365 family of functions.
14366
14367 The default value of this option is enabled, thus the only useful form
14368 of the option is @option{-fno-sync-libcalls}. This option is used in
14369 the implementation of the @file{libatomic} runtime library.
14370
14371 @end table
14372
14373 @node Developer Options
14374 @section GCC Developer Options
14375 @cindex developer options
14376 @cindex debugging GCC
14377 @cindex debug dump options
14378 @cindex dump options
14379 @cindex compilation statistics
14380
14381 This section describes command-line options that are primarily of
14382 interest to GCC developers, including options to support compiler
14383 testing and investigation of compiler bugs and compile-time
14384 performance problems. This includes options that produce debug dumps
14385 at various points in the compilation; that print statistics such as
14386 memory use and execution time; and that print information about GCC's
14387 configuration, such as where it searches for libraries. You should
14388 rarely need to use any of these options for ordinary compilation and
14389 linking tasks.
14390
14391 Many developer options that cause GCC to dump output to a file take an
14392 optional @samp{=@var{filename}} suffix. You can specify @samp{stdout}
14393 or @samp{-} to dump to standard output, and @samp{stderr} for standard
14394 error.
14395
14396 If @samp{=@var{filename}} is omitted, a default dump file name is
14397 constructed by concatenating the base dump file name, a pass number,
14398 phase letter, and pass name. The base dump file name is the name of
14399 output file produced by the compiler if explicitly specified and not
14400 an executable; otherwise it is the source file name.
14401 The pass number is determined by the order passes are registered with
14402 the compiler's pass manager.
14403 This is generally the same as the order of execution, but passes
14404 registered by plugins, target-specific passes, or passes that are
14405 otherwise registered late are numbered higher than the pass named
14406 @samp{final}, even if they are executed earlier. The phase letter is
14407 one of @samp{i} (inter-procedural analysis), @samp{l}
14408 (language-specific), @samp{r} (RTL), or @samp{t} (tree).
14409 The files are created in the directory of the output file.
14410
14411 @table @gcctabopt
14412
14413 @item -d@var{letters}
14414 @itemx -fdump-rtl-@var{pass}
14415 @itemx -fdump-rtl-@var{pass}=@var{filename}
14416 @opindex d
14417 @opindex fdump-rtl-@var{pass}
14418 Says to make debugging dumps during compilation at times specified by
14419 @var{letters}. This is used for debugging the RTL-based passes of the
14420 compiler.
14421
14422 Some @option{-d@var{letters}} switches have different meaning when
14423 @option{-E} is used for preprocessing. @xref{Preprocessor Options},
14424 for information about preprocessor-specific dump options.
14425
14426 Debug dumps can be enabled with a @option{-fdump-rtl} switch or some
14427 @option{-d} option @var{letters}. Here are the possible
14428 letters for use in @var{pass} and @var{letters}, and their meanings:
14429
14430 @table @gcctabopt
14431
14432 @item -fdump-rtl-alignments
14433 @opindex fdump-rtl-alignments
14434 Dump after branch alignments have been computed.
14435
14436 @item -fdump-rtl-asmcons
14437 @opindex fdump-rtl-asmcons
14438 Dump after fixing rtl statements that have unsatisfied in/out constraints.
14439
14440 @item -fdump-rtl-auto_inc_dec
14441 @opindex fdump-rtl-auto_inc_dec
14442 Dump after auto-inc-dec discovery. This pass is only run on
14443 architectures that have auto inc or auto dec instructions.
14444
14445 @item -fdump-rtl-barriers
14446 @opindex fdump-rtl-barriers
14447 Dump after cleaning up the barrier instructions.
14448
14449 @item -fdump-rtl-bbpart
14450 @opindex fdump-rtl-bbpart
14451 Dump after partitioning hot and cold basic blocks.
14452
14453 @item -fdump-rtl-bbro
14454 @opindex fdump-rtl-bbro
14455 Dump after block reordering.
14456
14457 @item -fdump-rtl-btl1
14458 @itemx -fdump-rtl-btl2
14459 @opindex fdump-rtl-btl2
14460 @opindex fdump-rtl-btl2
14461 @option{-fdump-rtl-btl1} and @option{-fdump-rtl-btl2} enable dumping
14462 after the two branch
14463 target load optimization passes.
14464
14465 @item -fdump-rtl-bypass
14466 @opindex fdump-rtl-bypass
14467 Dump after jump bypassing and control flow optimizations.
14468
14469 @item -fdump-rtl-combine
14470 @opindex fdump-rtl-combine
14471 Dump after the RTL instruction combination pass.
14472
14473 @item -fdump-rtl-compgotos
14474 @opindex fdump-rtl-compgotos
14475 Dump after duplicating the computed gotos.
14476
14477 @item -fdump-rtl-ce1
14478 @itemx -fdump-rtl-ce2
14479 @itemx -fdump-rtl-ce3
14480 @opindex fdump-rtl-ce1
14481 @opindex fdump-rtl-ce2
14482 @opindex fdump-rtl-ce3
14483 @option{-fdump-rtl-ce1}, @option{-fdump-rtl-ce2}, and
14484 @option{-fdump-rtl-ce3} enable dumping after the three
14485 if conversion passes.
14486
14487 @item -fdump-rtl-cprop_hardreg
14488 @opindex fdump-rtl-cprop_hardreg
14489 Dump after hard register copy propagation.
14490
14491 @item -fdump-rtl-csa
14492 @opindex fdump-rtl-csa
14493 Dump after combining stack adjustments.
14494
14495 @item -fdump-rtl-cse1
14496 @itemx -fdump-rtl-cse2
14497 @opindex fdump-rtl-cse1
14498 @opindex fdump-rtl-cse2
14499 @option{-fdump-rtl-cse1} and @option{-fdump-rtl-cse2} enable dumping after
14500 the two common subexpression elimination passes.
14501
14502 @item -fdump-rtl-dce
14503 @opindex fdump-rtl-dce
14504 Dump after the standalone dead code elimination passes.
14505
14506 @item -fdump-rtl-dbr
14507 @opindex fdump-rtl-dbr
14508 Dump after delayed branch scheduling.
14509
14510 @item -fdump-rtl-dce1
14511 @itemx -fdump-rtl-dce2
14512 @opindex fdump-rtl-dce1
14513 @opindex fdump-rtl-dce2
14514 @option{-fdump-rtl-dce1} and @option{-fdump-rtl-dce2} enable dumping after
14515 the two dead store elimination passes.
14516
14517 @item -fdump-rtl-eh
14518 @opindex fdump-rtl-eh
14519 Dump after finalization of EH handling code.
14520
14521 @item -fdump-rtl-eh_ranges
14522 @opindex fdump-rtl-eh_ranges
14523 Dump after conversion of EH handling range regions.
14524
14525 @item -fdump-rtl-expand
14526 @opindex fdump-rtl-expand
14527 Dump after RTL generation.
14528
14529 @item -fdump-rtl-fwprop1
14530 @itemx -fdump-rtl-fwprop2
14531 @opindex fdump-rtl-fwprop1
14532 @opindex fdump-rtl-fwprop2
14533 @option{-fdump-rtl-fwprop1} and @option{-fdump-rtl-fwprop2} enable
14534 dumping after the two forward propagation passes.
14535
14536 @item -fdump-rtl-gcse1
14537 @itemx -fdump-rtl-gcse2
14538 @opindex fdump-rtl-gcse1
14539 @opindex fdump-rtl-gcse2
14540 @option{-fdump-rtl-gcse1} and @option{-fdump-rtl-gcse2} enable dumping
14541 after global common subexpression elimination.
14542
14543 @item -fdump-rtl-init-regs
14544 @opindex fdump-rtl-init-regs
14545 Dump after the initialization of the registers.
14546
14547 @item -fdump-rtl-initvals
14548 @opindex fdump-rtl-initvals
14549 Dump after the computation of the initial value sets.
14550
14551 @item -fdump-rtl-into_cfglayout
14552 @opindex fdump-rtl-into_cfglayout
14553 Dump after converting to cfglayout mode.
14554
14555 @item -fdump-rtl-ira
14556 @opindex fdump-rtl-ira
14557 Dump after iterated register allocation.
14558
14559 @item -fdump-rtl-jump
14560 @opindex fdump-rtl-jump
14561 Dump after the second jump optimization.
14562
14563 @item -fdump-rtl-loop2
14564 @opindex fdump-rtl-loop2
14565 @option{-fdump-rtl-loop2} enables dumping after the rtl
14566 loop optimization passes.
14567
14568 @item -fdump-rtl-mach
14569 @opindex fdump-rtl-mach
14570 Dump after performing the machine dependent reorganization pass, if that
14571 pass exists.
14572
14573 @item -fdump-rtl-mode_sw
14574 @opindex fdump-rtl-mode_sw
14575 Dump after removing redundant mode switches.
14576
14577 @item -fdump-rtl-rnreg
14578 @opindex fdump-rtl-rnreg
14579 Dump after register renumbering.
14580
14581 @item -fdump-rtl-outof_cfglayout
14582 @opindex fdump-rtl-outof_cfglayout
14583 Dump after converting from cfglayout mode.
14584
14585 @item -fdump-rtl-peephole2
14586 @opindex fdump-rtl-peephole2
14587 Dump after the peephole pass.
14588
14589 @item -fdump-rtl-postreload
14590 @opindex fdump-rtl-postreload
14591 Dump after post-reload optimizations.
14592
14593 @item -fdump-rtl-pro_and_epilogue
14594 @opindex fdump-rtl-pro_and_epilogue
14595 Dump after generating the function prologues and epilogues.
14596
14597 @item -fdump-rtl-sched1
14598 @itemx -fdump-rtl-sched2
14599 @opindex fdump-rtl-sched1
14600 @opindex fdump-rtl-sched2
14601 @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2} enable dumping
14602 after the basic block scheduling passes.
14603
14604 @item -fdump-rtl-ree
14605 @opindex fdump-rtl-ree
14606 Dump after sign/zero extension elimination.
14607
14608 @item -fdump-rtl-seqabstr
14609 @opindex fdump-rtl-seqabstr
14610 Dump after common sequence discovery.
14611
14612 @item -fdump-rtl-shorten
14613 @opindex fdump-rtl-shorten
14614 Dump after shortening branches.
14615
14616 @item -fdump-rtl-sibling
14617 @opindex fdump-rtl-sibling
14618 Dump after sibling call optimizations.
14619
14620 @item -fdump-rtl-split1
14621 @itemx -fdump-rtl-split2
14622 @itemx -fdump-rtl-split3
14623 @itemx -fdump-rtl-split4
14624 @itemx -fdump-rtl-split5
14625 @opindex fdump-rtl-split1
14626 @opindex fdump-rtl-split2
14627 @opindex fdump-rtl-split3
14628 @opindex fdump-rtl-split4
14629 @opindex fdump-rtl-split5
14630 These options enable dumping after five rounds of
14631 instruction splitting.
14632
14633 @item -fdump-rtl-sms
14634 @opindex fdump-rtl-sms
14635 Dump after modulo scheduling. This pass is only run on some
14636 architectures.
14637
14638 @item -fdump-rtl-stack
14639 @opindex fdump-rtl-stack
14640 Dump after conversion from GCC's ``flat register file'' registers to the
14641 x87's stack-like registers. This pass is only run on x86 variants.
14642
14643 @item -fdump-rtl-subreg1
14644 @itemx -fdump-rtl-subreg2
14645 @opindex fdump-rtl-subreg1
14646 @opindex fdump-rtl-subreg2
14647 @option{-fdump-rtl-subreg1} and @option{-fdump-rtl-subreg2} enable dumping after
14648 the two subreg expansion passes.
14649
14650 @item -fdump-rtl-unshare
14651 @opindex fdump-rtl-unshare
14652 Dump after all rtl has been unshared.
14653
14654 @item -fdump-rtl-vartrack
14655 @opindex fdump-rtl-vartrack
14656 Dump after variable tracking.
14657
14658 @item -fdump-rtl-vregs
14659 @opindex fdump-rtl-vregs
14660 Dump after converting virtual registers to hard registers.
14661
14662 @item -fdump-rtl-web
14663 @opindex fdump-rtl-web
14664 Dump after live range splitting.
14665
14666 @item -fdump-rtl-regclass
14667 @itemx -fdump-rtl-subregs_of_mode_init
14668 @itemx -fdump-rtl-subregs_of_mode_finish
14669 @itemx -fdump-rtl-dfinit
14670 @itemx -fdump-rtl-dfinish
14671 @opindex fdump-rtl-regclass
14672 @opindex fdump-rtl-subregs_of_mode_init
14673 @opindex fdump-rtl-subregs_of_mode_finish
14674 @opindex fdump-rtl-dfinit
14675 @opindex fdump-rtl-dfinish
14676 These dumps are defined but always produce empty files.
14677
14678 @item -da
14679 @itemx -fdump-rtl-all
14680 @opindex da
14681 @opindex fdump-rtl-all
14682 Produce all the dumps listed above.
14683
14684 @item -dA
14685 @opindex dA
14686 Annotate the assembler output with miscellaneous debugging information.
14687
14688 @item -dD
14689 @opindex dD
14690 Dump all macro definitions, at the end of preprocessing, in addition to
14691 normal output.
14692
14693 @item -dH
14694 @opindex dH
14695 Produce a core dump whenever an error occurs.
14696
14697 @item -dp
14698 @opindex dp
14699 Annotate the assembler output with a comment indicating which
14700 pattern and alternative is used. The length and cost of each instruction are
14701 also printed.
14702
14703 @item -dP
14704 @opindex dP
14705 Dump the RTL in the assembler output as a comment before each instruction.
14706 Also turns on @option{-dp} annotation.
14707
14708 @item -dx
14709 @opindex dx
14710 Just generate RTL for a function instead of compiling it. Usually used
14711 with @option{-fdump-rtl-expand}.
14712 @end table
14713
14714 @item -fdump-debug
14715 @opindex fdump-debug
14716 Dump debugging information generated during the debug
14717 generation phase.
14718
14719 @item -fdump-earlydebug
14720 @opindex fdump-earlydebug
14721 Dump debugging information generated during the early debug
14722 generation phase.
14723
14724 @item -fdump-noaddr
14725 @opindex fdump-noaddr
14726 When doing debugging dumps, suppress address output. This makes it more
14727 feasible to use diff on debugging dumps for compiler invocations with
14728 different compiler binaries and/or different
14729 text / bss / data / heap / stack / dso start locations.
14730
14731 @item -freport-bug
14732 @opindex freport-bug
14733 Collect and dump debug information into a temporary file if an
14734 internal compiler error (ICE) occurs.
14735
14736 @item -fdump-unnumbered
14737 @opindex fdump-unnumbered
14738 When doing debugging dumps, suppress instruction numbers and address output.
14739 This makes it more feasible to use diff on debugging dumps for compiler
14740 invocations with different options, in particular with and without
14741 @option{-g}.
14742
14743 @item -fdump-unnumbered-links
14744 @opindex fdump-unnumbered-links
14745 When doing debugging dumps (see @option{-d} option above), suppress
14746 instruction numbers for the links to the previous and next instructions
14747 in a sequence.
14748
14749 @item -fdump-ipa-@var{switch}
14750 @itemx -fdump-ipa-@var{switch}-@var{options}
14751 @opindex fdump-ipa
14752 Control the dumping at various stages of inter-procedural analysis
14753 language tree to a file. The file name is generated by appending a
14754 switch specific suffix to the source file name, and the file is created
14755 in the same directory as the output file. The following dumps are
14756 possible:
14757
14758 @table @samp
14759 @item all
14760 Enables all inter-procedural analysis dumps.
14761
14762 @item cgraph
14763 Dumps information about call-graph optimization, unused function removal,
14764 and inlining decisions.
14765
14766 @item inline
14767 Dump after function inlining.
14768
14769 @end table
14770
14771 Additionally, the options @option{-optimized}, @option{-missed},
14772 @option{-note}, and @option{-all} can be provided, with the same meaning
14773 as for @option{-fopt-info}, defaulting to @option{-optimized}.
14774
14775 For example, @option{-fdump-ipa-inline-optimized-missed} will emit
14776 information on callsites that were inlined, along with callsites
14777 that were not inlined.
14778
14779 By default, the dump will contain messages about successful
14780 optimizations (equivalent to @option{-optimized}) together with
14781 low-level details about the analysis.
14782
14783 @item -fdump-lang-all
14784 @itemx -fdump-lang-@var{switch}
14785 @itemx -fdump-lang-@var{switch}-@var{options}
14786 @itemx -fdump-lang-@var{switch}-@var{options}=@var{filename}
14787 @opindex fdump-lang-all
14788 @opindex fdump-lang
14789 Control the dumping of language-specific information. The @var{options}
14790 and @var{filename} portions behave as described in the
14791 @option{-fdump-tree} option. The following @var{switch} values are
14792 accepted:
14793
14794 @table @samp
14795 @item all
14796
14797 Enable all language-specific dumps.
14798
14799 @item class
14800 Dump class hierarchy information. Virtual table information is emitted
14801 unless '@option{slim}' is specified. This option is applicable to C++ only.
14802
14803 @item raw
14804 Dump the raw internal tree data. This option is applicable to C++ only.
14805
14806 @end table
14807
14808 @item -fdump-passes
14809 @opindex fdump-passes
14810 Print on @file{stderr} the list of optimization passes that are turned
14811 on and off by the current command-line options.
14812
14813 @item -fdump-statistics-@var{option}
14814 @opindex fdump-statistics
14815 Enable and control dumping of pass statistics in a separate file. The
14816 file name is generated by appending a suffix ending in
14817 @samp{.statistics} to the source file name, and the file is created in
14818 the same directory as the output file. If the @samp{-@var{option}}
14819 form is used, @samp{-stats} causes counters to be summed over the
14820 whole compilation unit while @samp{-details} dumps every event as
14821 the passes generate them. The default with no option is to sum
14822 counters for each function compiled.
14823
14824 @item -fdump-tree-all
14825 @itemx -fdump-tree-@var{switch}
14826 @itemx -fdump-tree-@var{switch}-@var{options}
14827 @itemx -fdump-tree-@var{switch}-@var{options}=@var{filename}
14828 @opindex fdump-tree-all
14829 @opindex fdump-tree
14830 Control the dumping at various stages of processing the intermediate
14831 language tree to a file. If the @samp{-@var{options}}
14832 form is used, @var{options} is a list of @samp{-} separated options
14833 which control the details of the dump. Not all options are applicable
14834 to all dumps; those that are not meaningful are ignored. The
14835 following options are available
14836
14837 @table @samp
14838 @item address
14839 Print the address of each node. Usually this is not meaningful as it
14840 changes according to the environment and source file. Its primary use
14841 is for tying up a dump file with a debug environment.
14842 @item asmname
14843 If @code{DECL_ASSEMBLER_NAME} has been set for a given decl, use that
14844 in the dump instead of @code{DECL_NAME}. Its primary use is ease of
14845 use working backward from mangled names in the assembly file.
14846 @item slim
14847 When dumping front-end intermediate representations, inhibit dumping
14848 of members of a scope or body of a function merely because that scope
14849 has been reached. Only dump such items when they are directly reachable
14850 by some other path.
14851
14852 When dumping pretty-printed trees, this option inhibits dumping the
14853 bodies of control structures.
14854
14855 When dumping RTL, print the RTL in slim (condensed) form instead of
14856 the default LISP-like representation.
14857 @item raw
14858 Print a raw representation of the tree. By default, trees are
14859 pretty-printed into a C-like representation.
14860 @item details
14861 Enable more detailed dumps (not honored by every dump option). Also
14862 include information from the optimization passes.
14863 @item stats
14864 Enable dumping various statistics about the pass (not honored by every dump
14865 option).
14866 @item blocks
14867 Enable showing basic block boundaries (disabled in raw dumps).
14868 @item graph
14869 For each of the other indicated dump files (@option{-fdump-rtl-@var{pass}}),
14870 dump a representation of the control flow graph suitable for viewing with
14871 GraphViz to @file{@var{file}.@var{passid}.@var{pass}.dot}. Each function in
14872 the file is pretty-printed as a subgraph, so that GraphViz can render them
14873 all in a single plot.
14874
14875 This option currently only works for RTL dumps, and the RTL is always
14876 dumped in slim form.
14877 @item vops
14878 Enable showing virtual operands for every statement.
14879 @item lineno
14880 Enable showing line numbers for statements.
14881 @item uid
14882 Enable showing the unique ID (@code{DECL_UID}) for each variable.
14883 @item verbose
14884 Enable showing the tree dump for each statement.
14885 @item eh
14886 Enable showing the EH region number holding each statement.
14887 @item scev
14888 Enable showing scalar evolution analysis details.
14889 @item optimized
14890 Enable showing optimization information (only available in certain
14891 passes).
14892 @item missed
14893 Enable showing missed optimization information (only available in certain
14894 passes).
14895 @item note
14896 Enable other detailed optimization information (only available in
14897 certain passes).
14898 @item all
14899 Turn on all options, except @option{raw}, @option{slim}, @option{verbose}
14900 and @option{lineno}.
14901 @item optall
14902 Turn on all optimization options, i.e., @option{optimized},
14903 @option{missed}, and @option{note}.
14904 @end table
14905
14906 To determine what tree dumps are available or find the dump for a pass
14907 of interest follow the steps below.
14908
14909 @enumerate
14910 @item
14911 Invoke GCC with @option{-fdump-passes} and in the @file{stderr} output
14912 look for a code that corresponds to the pass you are interested in.
14913 For example, the codes @code{tree-evrp}, @code{tree-vrp1}, and
14914 @code{tree-vrp2} correspond to the three Value Range Propagation passes.
14915 The number at the end distinguishes distinct invocations of the same pass.
14916 @item
14917 To enable the creation of the dump file, append the pass code to
14918 the @option{-fdump-} option prefix and invoke GCC with it. For example,
14919 to enable the dump from the Early Value Range Propagation pass, invoke
14920 GCC with the @option{-fdump-tree-evrp} option. Optionally, you may
14921 specify the name of the dump file. If you don't specify one, GCC
14922 creates as described below.
14923 @item
14924 Find the pass dump in a file whose name is composed of three components
14925 separated by a period: the name of the source file GCC was invoked to
14926 compile, a numeric suffix indicating the pass number followed by the
14927 letter @samp{t} for tree passes (and the letter @samp{r} for RTL passes),
14928 and finally the pass code. For example, the Early VRP pass dump might
14929 be in a file named @file{myfile.c.038t.evrp} in the current working
14930 directory. Note that the numeric codes are not stable and may change
14931 from one version of GCC to another.
14932 @end enumerate
14933
14934 @item -fopt-info
14935 @itemx -fopt-info-@var{options}
14936 @itemx -fopt-info-@var{options}=@var{filename}
14937 @opindex fopt-info
14938 Controls optimization dumps from various optimization passes. If the
14939 @samp{-@var{options}} form is used, @var{options} is a list of
14940 @samp{-} separated option keywords to select the dump details and
14941 optimizations.
14942
14943 The @var{options} can be divided into three groups:
14944 @enumerate
14945 @item
14946 options describing what kinds of messages should be emitted,
14947 @item
14948 options describing the verbosity of the dump, and
14949 @item
14950 options describing which optimizations should be included.
14951 @end enumerate
14952 The options from each group can be freely mixed as they are
14953 non-overlapping. However, in case of any conflicts,
14954 the later options override the earlier options on the command
14955 line.
14956
14957 The following options control which kinds of messages should be emitted:
14958
14959 @table @samp
14960 @item optimized
14961 Print information when an optimization is successfully applied. It is
14962 up to a pass to decide which information is relevant. For example, the
14963 vectorizer passes print the source location of loops which are
14964 successfully vectorized.
14965 @item missed
14966 Print information about missed optimizations. Individual passes
14967 control which information to include in the output.
14968 @item note
14969 Print verbose information about optimizations, such as certain
14970 transformations, more detailed messages about decisions etc.
14971 @item all
14972 Print detailed optimization information. This includes
14973 @samp{optimized}, @samp{missed}, and @samp{note}.
14974 @end table
14975
14976 The following option controls the dump verbosity:
14977
14978 @table @samp
14979 @item internals
14980 By default, only ``high-level'' messages are emitted. This option enables
14981 additional, more detailed, messages, which are likely to only be of interest
14982 to GCC developers.
14983 @end table
14984
14985 One or more of the following option keywords can be used to describe a
14986 group of optimizations:
14987
14988 @table @samp
14989 @item ipa
14990 Enable dumps from all interprocedural optimizations.
14991 @item loop
14992 Enable dumps from all loop optimizations.
14993 @item inline
14994 Enable dumps from all inlining optimizations.
14995 @item omp
14996 Enable dumps from all OMP (Offloading and Multi Processing) optimizations.
14997 @item vec
14998 Enable dumps from all vectorization optimizations.
14999 @item optall
15000 Enable dumps from all optimizations. This is a superset of
15001 the optimization groups listed above.
15002 @end table
15003
15004 If @var{options} is
15005 omitted, it defaults to @samp{optimized-optall}, which means to dump messages
15006 about successful optimizations from all the passes, omitting messages
15007 that are treated as ``internals''.
15008
15009 If the @var{filename} is provided, then the dumps from all the
15010 applicable optimizations are concatenated into the @var{filename}.
15011 Otherwise the dump is output onto @file{stderr}. Though multiple
15012 @option{-fopt-info} options are accepted, only one of them can include
15013 a @var{filename}. If other filenames are provided then all but the
15014 first such option are ignored.
15015
15016 Note that the output @var{filename} is overwritten
15017 in case of multiple translation units. If a combined output from
15018 multiple translation units is desired, @file{stderr} should be used
15019 instead.
15020
15021 In the following example, the optimization info is output to
15022 @file{stderr}:
15023
15024 @smallexample
15025 gcc -O3 -fopt-info
15026 @end smallexample
15027
15028 This example:
15029 @smallexample
15030 gcc -O3 -fopt-info-missed=missed.all
15031 @end smallexample
15032
15033 @noindent
15034 outputs missed optimization report from all the passes into
15035 @file{missed.all}, and this one:
15036
15037 @smallexample
15038 gcc -O2 -ftree-vectorize -fopt-info-vec-missed
15039 @end smallexample
15040
15041 @noindent
15042 prints information about missed optimization opportunities from
15043 vectorization passes on @file{stderr}.
15044 Note that @option{-fopt-info-vec-missed} is equivalent to
15045 @option{-fopt-info-missed-vec}. The order of the optimization group
15046 names and message types listed after @option{-fopt-info} does not matter.
15047
15048 As another example,
15049 @smallexample
15050 gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
15051 @end smallexample
15052
15053 @noindent
15054 outputs information about missed optimizations as well as
15055 optimized locations from all the inlining passes into
15056 @file{inline.txt}.
15057
15058 Finally, consider:
15059
15060 @smallexample
15061 gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
15062 @end smallexample
15063
15064 @noindent
15065 Here the two output filenames @file{vec.miss} and @file{loop.opt} are
15066 in conflict since only one output file is allowed. In this case, only
15067 the first option takes effect and the subsequent options are
15068 ignored. Thus only @file{vec.miss} is produced which contains
15069 dumps from the vectorizer about missed opportunities.
15070
15071 @item -fsave-optimization-record
15072 @opindex fsave-optimization-record
15073 Write a SRCFILE.opt-record.json.gz file detailing what optimizations
15074 were performed, for those optimizations that support @option{-fopt-info}.
15075
15076 This option is experimental and the format of the data within the
15077 compressed JSON file is subject to change.
15078
15079 It is roughly equivalent to a machine-readable version of
15080 @option{-fopt-info-all}, as a collection of messages with source file,
15081 line number and column number, with the following additional data for
15082 each message:
15083
15084 @itemize @bullet
15085
15086 @item
15087 the execution count of the code being optimized, along with metadata about
15088 whether this was from actual profile data, or just an estimate, allowing
15089 consumers to prioritize messages by code hotness,
15090
15091 @item
15092 the function name of the code being optimized, where applicable,
15093
15094 @item
15095 the ``inlining chain'' for the code being optimized, so that when
15096 a function is inlined into several different places (which might
15097 themselves be inlined), the reader can distinguish between the copies,
15098
15099 @item
15100 objects identifying those parts of the message that refer to expressions,
15101 statements or symbol-table nodes, which of these categories they are, and,
15102 when available, their source code location,
15103
15104 @item
15105 the GCC pass that emitted the message, and
15106
15107 @item
15108 the location in GCC's own code from which the message was emitted
15109
15110 @end itemize
15111
15112 Additionally, some messages are logically nested within other
15113 messages, reflecting implementation details of the optimization
15114 passes.
15115
15116 @item -fsched-verbose=@var{n}
15117 @opindex fsched-verbose
15118 On targets that use instruction scheduling, this option controls the
15119 amount of debugging output the scheduler prints to the dump files.
15120
15121 For @var{n} greater than zero, @option{-fsched-verbose} outputs the
15122 same information as @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2}.
15123 For @var{n} greater than one, it also output basic block probabilities,
15124 detailed ready list information and unit/insn info. For @var{n} greater
15125 than two, it includes RTL at abort point, control-flow and regions info.
15126 And for @var{n} over four, @option{-fsched-verbose} also includes
15127 dependence info.
15128
15129
15130
15131 @item -fenable-@var{kind}-@var{pass}
15132 @itemx -fdisable-@var{kind}-@var{pass}=@var{range-list}
15133 @opindex fdisable-
15134 @opindex fenable-
15135
15136 This is a set of options that are used to explicitly disable/enable
15137 optimization passes. These options are intended for use for debugging GCC.
15138 Compiler users should use regular options for enabling/disabling
15139 passes instead.
15140
15141 @table @gcctabopt
15142
15143 @item -fdisable-ipa-@var{pass}
15144 Disable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
15145 statically invoked in the compiler multiple times, the pass name should be
15146 appended with a sequential number starting from 1.
15147
15148 @item -fdisable-rtl-@var{pass}
15149 @itemx -fdisable-rtl-@var{pass}=@var{range-list}
15150 Disable RTL pass @var{pass}. @var{pass} is the pass name. If the same pass is
15151 statically invoked in the compiler multiple times, the pass name should be
15152 appended with a sequential number starting from 1. @var{range-list} is a
15153 comma-separated list of function ranges or assembler names. Each range is a number
15154 pair separated by a colon. The range is inclusive in both ends. If the range
15155 is trivial, the number pair can be simplified as a single number. If the
15156 function's call graph node's @var{uid} falls within one of the specified ranges,
15157 the @var{pass} is disabled for that function. The @var{uid} is shown in the
15158 function header of a dump file, and the pass names can be dumped by using
15159 option @option{-fdump-passes}.
15160
15161 @item -fdisable-tree-@var{pass}
15162 @itemx -fdisable-tree-@var{pass}=@var{range-list}
15163 Disable tree pass @var{pass}. See @option{-fdisable-rtl} for the description of
15164 option arguments.
15165
15166 @item -fenable-ipa-@var{pass}
15167 Enable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
15168 statically invoked in the compiler multiple times, the pass name should be
15169 appended with a sequential number starting from 1.
15170
15171 @item -fenable-rtl-@var{pass}
15172 @itemx -fenable-rtl-@var{pass}=@var{range-list}
15173 Enable RTL pass @var{pass}. See @option{-fdisable-rtl} for option argument
15174 description and examples.
15175
15176 @item -fenable-tree-@var{pass}
15177 @itemx -fenable-tree-@var{pass}=@var{range-list}
15178 Enable tree pass @var{pass}. See @option{-fdisable-rtl} for the description
15179 of option arguments.
15180
15181 @end table
15182
15183 Here are some examples showing uses of these options.
15184
15185 @smallexample
15186
15187 # disable ccp1 for all functions
15188 -fdisable-tree-ccp1
15189 # disable complete unroll for function whose cgraph node uid is 1
15190 -fenable-tree-cunroll=1
15191 # disable gcse2 for functions at the following ranges [1,1],
15192 # [300,400], and [400,1000]
15193 # disable gcse2 for functions foo and foo2
15194 -fdisable-rtl-gcse2=foo,foo2
15195 # disable early inlining
15196 -fdisable-tree-einline
15197 # disable ipa inlining
15198 -fdisable-ipa-inline
15199 # enable tree full unroll
15200 -fenable-tree-unroll
15201
15202 @end smallexample
15203
15204 @item -fchecking
15205 @itemx -fchecking=@var{n}
15206 @opindex fchecking
15207 @opindex fno-checking
15208 Enable internal consistency checking. The default depends on
15209 the compiler configuration. @option{-fchecking=2} enables further
15210 internal consistency checking that might affect code generation.
15211
15212 @item -frandom-seed=@var{string}
15213 @opindex frandom-seed
15214 This option provides a seed that GCC uses in place of
15215 random numbers in generating certain symbol names
15216 that have to be different in every compiled file. It is also used to
15217 place unique stamps in coverage data files and the object files that
15218 produce them. You can use the @option{-frandom-seed} option to produce
15219 reproducibly identical object files.
15220
15221 The @var{string} can either be a number (decimal, octal or hex) or an
15222 arbitrary string (in which case it's converted to a number by
15223 computing CRC32).
15224
15225 The @var{string} should be different for every file you compile.
15226
15227 @item -save-temps
15228 @itemx -save-temps=cwd
15229 @opindex save-temps
15230 Store the usual ``temporary'' intermediate files permanently; place them
15231 in the current directory and name them based on the source file. Thus,
15232 compiling @file{foo.c} with @option{-c -save-temps} produces files
15233 @file{foo.i} and @file{foo.s}, as well as @file{foo.o}. This creates a
15234 preprocessed @file{foo.i} output file even though the compiler now
15235 normally uses an integrated preprocessor.
15236
15237 When used in combination with the @option{-x} command-line option,
15238 @option{-save-temps} is sensible enough to avoid over writing an
15239 input source file with the same extension as an intermediate file.
15240 The corresponding intermediate file may be obtained by renaming the
15241 source file before using @option{-save-temps}.
15242
15243 If you invoke GCC in parallel, compiling several different source
15244 files that share a common base name in different subdirectories or the
15245 same source file compiled for multiple output destinations, it is
15246 likely that the different parallel compilers will interfere with each
15247 other, and overwrite the temporary files. For instance:
15248
15249 @smallexample
15250 gcc -save-temps -o outdir1/foo.o indir1/foo.c&
15251 gcc -save-temps -o outdir2/foo.o indir2/foo.c&
15252 @end smallexample
15253
15254 may result in @file{foo.i} and @file{foo.o} being written to
15255 simultaneously by both compilers.
15256
15257 @item -save-temps=obj
15258 @opindex save-temps=obj
15259 Store the usual ``temporary'' intermediate files permanently. If the
15260 @option{-o} option is used, the temporary files are based on the
15261 object file. If the @option{-o} option is not used, the
15262 @option{-save-temps=obj} switch behaves like @option{-save-temps}.
15263
15264 For example:
15265
15266 @smallexample
15267 gcc -save-temps=obj -c foo.c
15268 gcc -save-temps=obj -c bar.c -o dir/xbar.o
15269 gcc -save-temps=obj foobar.c -o dir2/yfoobar
15270 @end smallexample
15271
15272 @noindent
15273 creates @file{foo.i}, @file{foo.s}, @file{dir/xbar.i},
15274 @file{dir/xbar.s}, @file{dir2/yfoobar.i}, @file{dir2/yfoobar.s}, and
15275 @file{dir2/yfoobar.o}.
15276
15277 @item -time@r{[}=@var{file}@r{]}
15278 @opindex time
15279 Report the CPU time taken by each subprocess in the compilation
15280 sequence. For C source files, this is the compiler proper and assembler
15281 (plus the linker if linking is done).
15282
15283 Without the specification of an output file, the output looks like this:
15284
15285 @smallexample
15286 # cc1 0.12 0.01
15287 # as 0.00 0.01
15288 @end smallexample
15289
15290 The first number on each line is the ``user time'', that is time spent
15291 executing the program itself. The second number is ``system time'',
15292 time spent executing operating system routines on behalf of the program.
15293 Both numbers are in seconds.
15294
15295 With the specification of an output file, the output is appended to the
15296 named file, and it looks like this:
15297
15298 @smallexample
15299 0.12 0.01 cc1 @var{options}
15300 0.00 0.01 as @var{options}
15301 @end smallexample
15302
15303 The ``user time'' and the ``system time'' are moved before the program
15304 name, and the options passed to the program are displayed, so that one
15305 can later tell what file was being compiled, and with which options.
15306
15307 @item -fdump-final-insns@r{[}=@var{file}@r{]}
15308 @opindex fdump-final-insns
15309 Dump the final internal representation (RTL) to @var{file}. If the
15310 optional argument is omitted (or if @var{file} is @code{.}), the name
15311 of the dump file is determined by appending @code{.gkd} to the
15312 compilation output file name.
15313
15314 @item -fcompare-debug@r{[}=@var{opts}@r{]}
15315 @opindex fcompare-debug
15316 @opindex fno-compare-debug
15317 If no error occurs during compilation, run the compiler a second time,
15318 adding @var{opts} and @option{-fcompare-debug-second} to the arguments
15319 passed to the second compilation. Dump the final internal
15320 representation in both compilations, and print an error if they differ.
15321
15322 If the equal sign is omitted, the default @option{-gtoggle} is used.
15323
15324 The environment variable @env{GCC_COMPARE_DEBUG}, if defined, non-empty
15325 and nonzero, implicitly enables @option{-fcompare-debug}. If
15326 @env{GCC_COMPARE_DEBUG} is defined to a string starting with a dash,
15327 then it is used for @var{opts}, otherwise the default @option{-gtoggle}
15328 is used.
15329
15330 @option{-fcompare-debug=}, with the equal sign but without @var{opts},
15331 is equivalent to @option{-fno-compare-debug}, which disables the dumping
15332 of the final representation and the second compilation, preventing even
15333 @env{GCC_COMPARE_DEBUG} from taking effect.
15334
15335 To verify full coverage during @option{-fcompare-debug} testing, set
15336 @env{GCC_COMPARE_DEBUG} to say @option{-fcompare-debug-not-overridden},
15337 which GCC rejects as an invalid option in any actual compilation
15338 (rather than preprocessing, assembly or linking). To get just a
15339 warning, setting @env{GCC_COMPARE_DEBUG} to @samp{-w%n-fcompare-debug
15340 not overridden} will do.
15341
15342 @item -fcompare-debug-second
15343 @opindex fcompare-debug-second
15344 This option is implicitly passed to the compiler for the second
15345 compilation requested by @option{-fcompare-debug}, along with options to
15346 silence warnings, and omitting other options that would cause the compiler
15347 to produce output to files or to standard output as a side effect. Dump
15348 files and preserved temporary files are renamed so as to contain the
15349 @code{.gk} additional extension during the second compilation, to avoid
15350 overwriting those generated by the first.
15351
15352 When this option is passed to the compiler driver, it causes the
15353 @emph{first} compilation to be skipped, which makes it useful for little
15354 other than debugging the compiler proper.
15355
15356 @item -gtoggle
15357 @opindex gtoggle
15358 Turn off generation of debug info, if leaving out this option
15359 generates it, or turn it on at level 2 otherwise. The position of this
15360 argument in the command line does not matter; it takes effect after all
15361 other options are processed, and it does so only once, no matter how
15362 many times it is given. This is mainly intended to be used with
15363 @option{-fcompare-debug}.
15364
15365 @item -fvar-tracking-assignments-toggle
15366 @opindex fvar-tracking-assignments-toggle
15367 @opindex fno-var-tracking-assignments-toggle
15368 Toggle @option{-fvar-tracking-assignments}, in the same way that
15369 @option{-gtoggle} toggles @option{-g}.
15370
15371 @item -Q
15372 @opindex Q
15373 Makes the compiler print out each function name as it is compiled, and
15374 print some statistics about each pass when it finishes.
15375
15376 @item -ftime-report
15377 @opindex ftime-report
15378 Makes the compiler print some statistics about the time consumed by each
15379 pass when it finishes.
15380
15381 @item -ftime-report-details
15382 @opindex ftime-report-details
15383 Record the time consumed by infrastructure parts separately for each pass.
15384
15385 @item -fira-verbose=@var{n}
15386 @opindex fira-verbose
15387 Control the verbosity of the dump file for the integrated register allocator.
15388 The default value is 5. If the value @var{n} is greater or equal to 10,
15389 the dump output is sent to stderr using the same format as @var{n} minus 10.
15390
15391 @item -flto-report
15392 @opindex flto-report
15393 Prints a report with internal details on the workings of the link-time
15394 optimizer. The contents of this report vary from version to version.
15395 It is meant to be useful to GCC developers when processing object
15396 files in LTO mode (via @option{-flto}).
15397
15398 Disabled by default.
15399
15400 @item -flto-report-wpa
15401 @opindex flto-report-wpa
15402 Like @option{-flto-report}, but only print for the WPA phase of link-time
15403 optimization.
15404
15405 @item -fmem-report
15406 @opindex fmem-report
15407 Makes the compiler print some statistics about permanent memory
15408 allocation when it finishes.
15409
15410 @item -fmem-report-wpa
15411 @opindex fmem-report-wpa
15412 Makes the compiler print some statistics about permanent memory
15413 allocation for the WPA phase only.
15414
15415 @item -fpre-ipa-mem-report
15416 @opindex fpre-ipa-mem-report
15417 @item -fpost-ipa-mem-report
15418 @opindex fpost-ipa-mem-report
15419 Makes the compiler print some statistics about permanent memory
15420 allocation before or after interprocedural optimization.
15421
15422 @item -fprofile-report
15423 @opindex fprofile-report
15424 Makes the compiler print some statistics about consistency of the
15425 (estimated) profile and effect of individual passes.
15426
15427 @item -fstack-usage
15428 @opindex fstack-usage
15429 Makes the compiler output stack usage information for the program, on a
15430 per-function basis. The filename for the dump is made by appending
15431 @file{.su} to the @var{auxname}. @var{auxname} is generated from the name of
15432 the output file, if explicitly specified and it is not an executable,
15433 otherwise it is the basename of the source file. An entry is made up
15434 of three fields:
15435
15436 @itemize
15437 @item
15438 The name of the function.
15439 @item
15440 A number of bytes.
15441 @item
15442 One or more qualifiers: @code{static}, @code{dynamic}, @code{bounded}.
15443 @end itemize
15444
15445 The qualifier @code{static} means that the function manipulates the stack
15446 statically: a fixed number of bytes are allocated for the frame on function
15447 entry and released on function exit; no stack adjustments are otherwise made
15448 in the function. The second field is this fixed number of bytes.
15449
15450 The qualifier @code{dynamic} means that the function manipulates the stack
15451 dynamically: in addition to the static allocation described above, stack
15452 adjustments are made in the body of the function, for example to push/pop
15453 arguments around function calls. If the qualifier @code{bounded} is also
15454 present, the amount of these adjustments is bounded at compile time and
15455 the second field is an upper bound of the total amount of stack used by
15456 the function. If it is not present, the amount of these adjustments is
15457 not bounded at compile time and the second field only represents the
15458 bounded part.
15459
15460 @item -fstats
15461 @opindex fstats
15462 Emit statistics about front-end processing at the end of the compilation.
15463 This option is supported only by the C++ front end, and
15464 the information is generally only useful to the G++ development team.
15465
15466 @item -fdbg-cnt-list
15467 @opindex fdbg-cnt-list
15468 Print the name and the counter upper bound for all debug counters.
15469
15470
15471 @item -fdbg-cnt=@var{counter-value-list}
15472 @opindex fdbg-cnt
15473 Set the internal debug counter lower and upper bound. @var{counter-value-list}
15474 is a comma-separated list of @var{name}:@var{lower_bound}:@var{upper_bound}
15475 tuples which sets the lower and the upper bound of each debug
15476 counter @var{name}. The @var{lower_bound} is optional and is zero
15477 initialized if not set.
15478 All debug counters have the initial upper bound of @code{UINT_MAX};
15479 thus @code{dbg_cnt} returns true always unless the upper bound
15480 is set by this option.
15481 For example, with @option{-fdbg-cnt=dce:2:4,tail_call:10},
15482 @code{dbg_cnt(dce)} returns true only for third and fourth invocation.
15483 For @code{dbg_cnt(tail_call)} true is returned for first 10 invocations.
15484
15485 @item -print-file-name=@var{library}
15486 @opindex print-file-name
15487 Print the full absolute name of the library file @var{library} that
15488 would be used when linking---and don't do anything else. With this
15489 option, GCC does not compile or link anything; it just prints the
15490 file name.
15491
15492 @item -print-multi-directory
15493 @opindex print-multi-directory
15494 Print the directory name corresponding to the multilib selected by any
15495 other switches present in the command line. This directory is supposed
15496 to exist in @env{GCC_EXEC_PREFIX}.
15497
15498 @item -print-multi-lib
15499 @opindex print-multi-lib
15500 Print the mapping from multilib directory names to compiler switches
15501 that enable them. The directory name is separated from the switches by
15502 @samp{;}, and each switch starts with an @samp{@@} instead of the
15503 @samp{-}, without spaces between multiple switches. This is supposed to
15504 ease shell processing.
15505
15506 @item -print-multi-os-directory
15507 @opindex print-multi-os-directory
15508 Print the path to OS libraries for the selected
15509 multilib, relative to some @file{lib} subdirectory. If OS libraries are
15510 present in the @file{lib} subdirectory and no multilibs are used, this is
15511 usually just @file{.}, if OS libraries are present in @file{lib@var{suffix}}
15512 sibling directories this prints e.g.@: @file{../lib64}, @file{../lib} or
15513 @file{../lib32}, or if OS libraries are present in @file{lib/@var{subdir}}
15514 subdirectories it prints e.g.@: @file{amd64}, @file{sparcv9} or @file{ev6}.
15515
15516 @item -print-multiarch
15517 @opindex print-multiarch
15518 Print the path to OS libraries for the selected multiarch,
15519 relative to some @file{lib} subdirectory.
15520
15521 @item -print-prog-name=@var{program}
15522 @opindex print-prog-name
15523 Like @option{-print-file-name}, but searches for a program such as @command{cpp}.
15524
15525 @item -print-libgcc-file-name
15526 @opindex print-libgcc-file-name
15527 Same as @option{-print-file-name=libgcc.a}.
15528
15529 This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
15530 but you do want to link with @file{libgcc.a}. You can do:
15531
15532 @smallexample
15533 gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
15534 @end smallexample
15535
15536 @item -print-search-dirs
15537 @opindex print-search-dirs
15538 Print the name of the configured installation directory and a list of
15539 program and library directories @command{gcc} searches---and don't do anything else.
15540
15541 This is useful when @command{gcc} prints the error message
15542 @samp{installation problem, cannot exec cpp0: No such file or directory}.
15543 To resolve this you either need to put @file{cpp0} and the other compiler
15544 components where @command{gcc} expects to find them, or you can set the environment
15545 variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
15546 Don't forget the trailing @samp{/}.
15547 @xref{Environment Variables}.
15548
15549 @item -print-sysroot
15550 @opindex print-sysroot
15551 Print the target sysroot directory that is used during
15552 compilation. This is the target sysroot specified either at configure
15553 time or using the @option{--sysroot} option, possibly with an extra
15554 suffix that depends on compilation options. If no target sysroot is
15555 specified, the option prints nothing.
15556
15557 @item -print-sysroot-headers-suffix
15558 @opindex print-sysroot-headers-suffix
15559 Print the suffix added to the target sysroot when searching for
15560 headers, or give an error if the compiler is not configured with such
15561 a suffix---and don't do anything else.
15562
15563 @item -dumpmachine
15564 @opindex dumpmachine
15565 Print the compiler's target machine (for example,
15566 @samp{i686-pc-linux-gnu})---and don't do anything else.
15567
15568 @item -dumpversion
15569 @opindex dumpversion
15570 Print the compiler version (for example, @code{3.0}, @code{6.3.0} or @code{7})---and don't do
15571 anything else. This is the compiler version used in filesystem paths and
15572 specs. Depending on how the compiler has been configured it can be just
15573 a single number (major version), two numbers separated by a dot (major and
15574 minor version) or three numbers separated by dots (major, minor and patchlevel
15575 version).
15576
15577 @item -dumpfullversion
15578 @opindex dumpfullversion
15579 Print the full compiler version---and don't do anything else. The output is
15580 always three numbers separated by dots, major, minor and patchlevel version.
15581
15582 @item -dumpspecs
15583 @opindex dumpspecs
15584 Print the compiler's built-in specs---and don't do anything else. (This
15585 is used when GCC itself is being built.) @xref{Spec Files}.
15586 @end table
15587
15588 @node Submodel Options
15589 @section Machine-Dependent Options
15590 @cindex submodel options
15591 @cindex specifying hardware config
15592 @cindex hardware models and configurations, specifying
15593 @cindex target-dependent options
15594 @cindex machine-dependent options
15595
15596 Each target machine supported by GCC can have its own options---for
15597 example, to allow you to compile for a particular processor variant or
15598 ABI, or to control optimizations specific to that machine. By
15599 convention, the names of machine-specific options start with
15600 @samp{-m}.
15601
15602 Some configurations of the compiler also support additional target-specific
15603 options, usually for compatibility with other compilers on the same
15604 platform.
15605
15606 @c This list is ordered alphanumerically by subsection name.
15607 @c It should be the same order and spelling as these options are listed
15608 @c in Machine Dependent Options
15609
15610 @menu
15611 * AArch64 Options::
15612 * Adapteva Epiphany Options::
15613 * AMD GCN Options::
15614 * ARC Options::
15615 * ARM Options::
15616 * AVR Options::
15617 * Blackfin Options::
15618 * C6X Options::
15619 * CRIS Options::
15620 * CR16 Options::
15621 * C-SKY Options::
15622 * Darwin Options::
15623 * DEC Alpha Options::
15624 * FR30 Options::
15625 * FT32 Options::
15626 * FRV Options::
15627 * GNU/Linux Options::
15628 * H8/300 Options::
15629 * HPPA Options::
15630 * IA-64 Options::
15631 * LM32 Options::
15632 * M32C Options::
15633 * M32R/D Options::
15634 * M680x0 Options::
15635 * MCore Options::
15636 * MeP Options::
15637 * MicroBlaze Options::
15638 * MIPS Options::
15639 * MMIX Options::
15640 * MN10300 Options::
15641 * Moxie Options::
15642 * MSP430 Options::
15643 * NDS32 Options::
15644 * Nios II Options::
15645 * Nvidia PTX Options::
15646 * OpenRISC Options::
15647 * PDP-11 Options::
15648 * picoChip Options::
15649 * PowerPC Options::
15650 * PRU Options::
15651 * RISC-V Options::
15652 * RL78 Options::
15653 * RS/6000 and PowerPC Options::
15654 * RX Options::
15655 * S/390 and zSeries Options::
15656 * Score Options::
15657 * SH Options::
15658 * Solaris 2 Options::
15659 * SPARC Options::
15660 * SPU Options::
15661 * System V Options::
15662 * TILE-Gx Options::
15663 * TILEPro Options::
15664 * V850 Options::
15665 * VAX Options::
15666 * Visium Options::
15667 * VMS Options::
15668 * VxWorks Options::
15669 * x86 Options::
15670 * x86 Windows Options::
15671 * Xstormy16 Options::
15672 * Xtensa Options::
15673 * zSeries Options::
15674 @end menu
15675
15676 @node AArch64 Options
15677 @subsection AArch64 Options
15678 @cindex AArch64 Options
15679
15680 These options are defined for AArch64 implementations:
15681
15682 @table @gcctabopt
15683
15684 @item -mabi=@var{name}
15685 @opindex mabi
15686 Generate code for the specified data model. Permissible values
15687 are @samp{ilp32} for SysV-like data model where int, long int and pointers
15688 are 32 bits, and @samp{lp64} for SysV-like data model where int is 32 bits,
15689 but long int and pointers are 64 bits.
15690
15691 The default depends on the specific target configuration. Note that
15692 the LP64 and ILP32 ABIs are not link-compatible; you must compile your
15693 entire program with the same ABI, and link with a compatible set of libraries.
15694
15695 @item -mbig-endian
15696 @opindex mbig-endian
15697 Generate big-endian code. This is the default when GCC is configured for an
15698 @samp{aarch64_be-*-*} target.
15699
15700 @item -mgeneral-regs-only
15701 @opindex mgeneral-regs-only
15702 Generate code which uses only the general-purpose registers. This will prevent
15703 the compiler from using floating-point and Advanced SIMD registers but will not
15704 impose any restrictions on the assembler.
15705
15706 @item -mlittle-endian
15707 @opindex mlittle-endian
15708 Generate little-endian code. This is the default when GCC is configured for an
15709 @samp{aarch64-*-*} but not an @samp{aarch64_be-*-*} target.
15710
15711 @item -mcmodel=tiny
15712 @opindex mcmodel=tiny
15713 Generate code for the tiny code model. The program and its statically defined
15714 symbols must be within 1MB of each other. Programs can be statically or
15715 dynamically linked.
15716
15717 @item -mcmodel=small
15718 @opindex mcmodel=small
15719 Generate code for the small code model. The program and its statically defined
15720 symbols must be within 4GB of each other. Programs can be statically or
15721 dynamically linked. This is the default code model.
15722
15723 @item -mcmodel=large
15724 @opindex mcmodel=large
15725 Generate code for the large code model. This makes no assumptions about
15726 addresses and sizes of sections. Programs can be statically linked only.
15727
15728 @item -mstrict-align
15729 @itemx -mno-strict-align
15730 @opindex mstrict-align
15731 @opindex mno-strict-align
15732 Avoid or allow generating memory accesses that may not be aligned on a natural
15733 object boundary as described in the architecture specification.
15734
15735 @item -momit-leaf-frame-pointer
15736 @itemx -mno-omit-leaf-frame-pointer
15737 @opindex momit-leaf-frame-pointer
15738 @opindex mno-omit-leaf-frame-pointer
15739 Omit or keep the frame pointer in leaf functions. The former behavior is the
15740 default.
15741
15742 @item -mstack-protector-guard=@var{guard}
15743 @itemx -mstack-protector-guard-reg=@var{reg}
15744 @itemx -mstack-protector-guard-offset=@var{offset}
15745 @opindex mstack-protector-guard
15746 @opindex mstack-protector-guard-reg
15747 @opindex mstack-protector-guard-offset
15748 Generate stack protection code using canary at @var{guard}. Supported
15749 locations are @samp{global} for a global canary or @samp{sysreg} for a
15750 canary in an appropriate system register.
15751
15752 With the latter choice the options
15753 @option{-mstack-protector-guard-reg=@var{reg}} and
15754 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
15755 which system register to use as base register for reading the canary,
15756 and from what offset from that base register. There is no default
15757 register or offset as this is entirely for use within the Linux
15758 kernel.
15759
15760 @item -mstack-protector-guard=@var{guard}
15761 @itemx -mstack-protector-guard-reg=@var{reg}
15762 @itemx -mstack-protector-guard-offset=@var{offset}
15763 @opindex mstack-protector-guard
15764 @opindex mstack-protector-guard-reg
15765 @opindex mstack-protector-guard-offset
15766 Generate stack protection code using canary at @var{guard}. Supported
15767 locations are @samp{global} for a global canary or @samp{sysreg} for a
15768 canary in an appropriate system register.
15769
15770 With the latter choice the options
15771 @option{-mstack-protector-guard-reg=@var{reg}} and
15772 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
15773 which system register to use as base register for reading the canary,
15774 and from what offset from that base register. There is no default
15775 register or offset as this is entirely for use within the Linux
15776 kernel.
15777
15778 @item -mtls-dialect=desc
15779 @opindex mtls-dialect=desc
15780 Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
15781 of TLS variables. This is the default.
15782
15783 @item -mtls-dialect=traditional
15784 @opindex mtls-dialect=traditional
15785 Use traditional TLS as the thread-local storage mechanism for dynamic accesses
15786 of TLS variables.
15787
15788 @item -mtls-size=@var{size}
15789 @opindex mtls-size
15790 Specify bit size of immediate TLS offsets. Valid values are 12, 24, 32, 48.
15791 This option requires binutils 2.26 or newer.
15792
15793 @item -mfix-cortex-a53-835769
15794 @itemx -mno-fix-cortex-a53-835769
15795 @opindex mfix-cortex-a53-835769
15796 @opindex mno-fix-cortex-a53-835769
15797 Enable or disable the workaround for the ARM Cortex-A53 erratum number 835769.
15798 This involves inserting a NOP instruction between memory instructions and
15799 64-bit integer multiply-accumulate instructions.
15800
15801 @item -mfix-cortex-a53-843419
15802 @itemx -mno-fix-cortex-a53-843419
15803 @opindex mfix-cortex-a53-843419
15804 @opindex mno-fix-cortex-a53-843419
15805 Enable or disable the workaround for the ARM Cortex-A53 erratum number 843419.
15806 This erratum workaround is made at link time and this will only pass the
15807 corresponding flag to the linker.
15808
15809 @item -mlow-precision-recip-sqrt
15810 @itemx -mno-low-precision-recip-sqrt
15811 @opindex mlow-precision-recip-sqrt
15812 @opindex mno-low-precision-recip-sqrt
15813 Enable or disable the reciprocal square root approximation.
15814 This option only has an effect if @option{-ffast-math} or
15815 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
15816 precision of reciprocal square root results to about 16 bits for
15817 single precision and to 32 bits for double precision.
15818
15819 @item -mlow-precision-sqrt
15820 @itemx -mno-low-precision-sqrt
15821 @opindex mlow-precision-sqrt
15822 @opindex mno-low-precision-sqrt
15823 Enable or disable the square root approximation.
15824 This option only has an effect if @option{-ffast-math} or
15825 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
15826 precision of square root results to about 16 bits for
15827 single precision and to 32 bits for double precision.
15828 If enabled, it implies @option{-mlow-precision-recip-sqrt}.
15829
15830 @item -mlow-precision-div
15831 @itemx -mno-low-precision-div
15832 @opindex mlow-precision-div
15833 @opindex mno-low-precision-div
15834 Enable or disable the division approximation.
15835 This option only has an effect if @option{-ffast-math} or
15836 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
15837 precision of division results to about 16 bits for
15838 single precision and to 32 bits for double precision.
15839
15840 @item -mtrack-speculation
15841 @itemx -mno-track-speculation
15842 Enable or disable generation of additional code to track speculative
15843 execution through conditional branches. The tracking state can then
15844 be used by the compiler when expanding calls to
15845 @code{__builtin_speculation_safe_copy} to permit a more efficient code
15846 sequence to be generated.
15847
15848 @item -march=@var{name}
15849 @opindex march
15850 Specify the name of the target architecture and, optionally, one or
15851 more feature modifiers. This option has the form
15852 @option{-march=@var{arch}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}.
15853
15854 The permissible values for @var{arch} are @samp{armv8-a},
15855 @samp{armv8.1-a}, @samp{armv8.2-a}, @samp{armv8.3-a}, @samp{armv8.4-a},
15856 @samp{armv8.5-a} or @var{native}.
15857
15858 The value @samp{armv8.5-a} implies @samp{armv8.4-a} and enables compiler
15859 support for the ARMv8.5-A architecture extensions.
15860
15861 The value @samp{armv8.4-a} implies @samp{armv8.3-a} and enables compiler
15862 support for the ARMv8.4-A architecture extensions.
15863
15864 The value @samp{armv8.3-a} implies @samp{armv8.2-a} and enables compiler
15865 support for the ARMv8.3-A architecture extensions.
15866
15867 The value @samp{armv8.2-a} implies @samp{armv8.1-a} and enables compiler
15868 support for the ARMv8.2-A architecture extensions.
15869
15870 The value @samp{armv8.1-a} implies @samp{armv8-a} and enables compiler
15871 support for the ARMv8.1-A architecture extension. In particular, it
15872 enables the @samp{+crc}, @samp{+lse}, and @samp{+rdma} features.
15873
15874 The value @samp{native} is available on native AArch64 GNU/Linux and
15875 causes the compiler to pick the architecture of the host system. This
15876 option has no effect if the compiler is unable to recognize the
15877 architecture of the host system,
15878
15879 The permissible values for @var{feature} are listed in the sub-section
15880 on @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
15881 Feature Modifiers}. Where conflicting feature modifiers are
15882 specified, the right-most feature is used.
15883
15884 GCC uses @var{name} to determine what kind of instructions it can emit
15885 when generating assembly code. If @option{-march} is specified
15886 without either of @option{-mtune} or @option{-mcpu} also being
15887 specified, the code is tuned to perform well across a range of target
15888 processors implementing the target architecture.
15889
15890 @item -mtune=@var{name}
15891 @opindex mtune
15892 Specify the name of the target processor for which GCC should tune the
15893 performance of the code. Permissible values for this option are:
15894 @samp{generic}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55},
15895 @samp{cortex-a57}, @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75},
15896 @samp{cortex-a76}, @samp{ares}, @samp{exynos-m1}, @samp{emag}, @samp{falkor},
15897 @samp{neoverse-e1},@samp{neoverse-n1},@samp{qdf24xx}, @samp{saphira},
15898 @samp{phecda}, @samp{xgene1}, @samp{vulcan}, @samp{octeontx},
15899 @samp{octeontx81}, @samp{octeontx83}, @samp{thunderx}, @samp{thunderxt88},
15900 @samp{thunderxt88p1}, @samp{thunderxt81}, @samp{tsv110},
15901 @samp{thunderxt83}, @samp{thunderx2t99},
15902 @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
15903 @samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53},
15904 @samp{cortex-a75.cortex-a55}, @samp{cortex-a76.cortex-a55}
15905 @samp{native}.
15906
15907 The values @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
15908 @samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53},
15909 @samp{cortex-a75.cortex-a55}, @samp{cortex-a76.cortex-a55} specify that GCC
15910 should tune for a big.LITTLE system.
15911
15912 Additionally on native AArch64 GNU/Linux systems the value
15913 @samp{native} tunes performance to the host system. This option has no effect
15914 if the compiler is unable to recognize the processor of the host system.
15915
15916 Where none of @option{-mtune=}, @option{-mcpu=} or @option{-march=}
15917 are specified, the code is tuned to perform well across a range
15918 of target processors.
15919
15920 This option cannot be suffixed by feature modifiers.
15921
15922 @item -mcpu=@var{name}
15923 @opindex mcpu
15924 Specify the name of the target processor, optionally suffixed by one
15925 or more feature modifiers. This option has the form
15926 @option{-mcpu=@var{cpu}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where
15927 the permissible values for @var{cpu} are the same as those available
15928 for @option{-mtune}. The permissible values for @var{feature} are
15929 documented in the sub-section on
15930 @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
15931 Feature Modifiers}. Where conflicting feature modifiers are
15932 specified, the right-most feature is used.
15933
15934 GCC uses @var{name} to determine what kind of instructions it can emit when
15935 generating assembly code (as if by @option{-march}) and to determine
15936 the target processor for which to tune for performance (as if
15937 by @option{-mtune}). Where this option is used in conjunction
15938 with @option{-march} or @option{-mtune}, those options take precedence
15939 over the appropriate part of this option.
15940
15941 @item -moverride=@var{string}
15942 @opindex moverride
15943 Override tuning decisions made by the back-end in response to a
15944 @option{-mtune=} switch. The syntax, semantics, and accepted values
15945 for @var{string} in this option are not guaranteed to be consistent
15946 across releases.
15947
15948 This option is only intended to be useful when developing GCC.
15949
15950 @item -mverbose-cost-dump
15951 @opindex mverbose-cost-dump
15952 Enable verbose cost model dumping in the debug dump files. This option is
15953 provided for use in debugging the compiler.
15954
15955 @item -mpc-relative-literal-loads
15956 @itemx -mno-pc-relative-literal-loads
15957 @opindex mpc-relative-literal-loads
15958 @opindex mno-pc-relative-literal-loads
15959 Enable or disable PC-relative literal loads. With this option literal pools are
15960 accessed using a single instruction and emitted after each function. This
15961 limits the maximum size of functions to 1MB. This is enabled by default for
15962 @option{-mcmodel=tiny}.
15963
15964 @item -msign-return-address=@var{scope}
15965 @opindex msign-return-address
15966 Select the function scope on which return address signing will be applied.
15967 Permissible values are @samp{none}, which disables return address signing,
15968 @samp{non-leaf}, which enables pointer signing for functions which are not leaf
15969 functions, and @samp{all}, which enables pointer signing for all functions. The
15970 default value is @samp{none}. This option has been deprecated by
15971 -mbranch-protection.
15972
15973 @item -mbranch-protection=@var{none}|@var{standard}|@var{pac-ret}[+@var{leaf}+@var{b-key}]|@var{bti}
15974 @opindex mbranch-protection
15975 Select the branch protection features to use.
15976 @samp{none} is the default and turns off all types of branch protection.
15977 @samp{standard} turns on all types of branch protection features. If a feature
15978 has additional tuning options, then @samp{standard} sets it to its standard
15979 level.
15980 @samp{pac-ret[+@var{leaf}]} turns on return address signing to its standard
15981 level: signing functions that save the return address to memory (non-leaf
15982 functions will practically always do this) using the a-key. The optional
15983 argument @samp{leaf} can be used to extend the signing to include leaf
15984 functions. The optional argument @samp{b-key} can be used to sign the functions
15985 with the B-key instead of the A-key.
15986 @samp{bti} turns on branch target identification mechanism.
15987
15988 @item -msve-vector-bits=@var{bits}
15989 @opindex msve-vector-bits
15990 Specify the number of bits in an SVE vector register. This option only has
15991 an effect when SVE is enabled.
15992
15993 GCC supports two forms of SVE code generation: ``vector-length
15994 agnostic'' output that works with any size of vector register and
15995 ``vector-length specific'' output that allows GCC to make assumptions
15996 about the vector length when it is useful for optimization reasons.
15997 The possible values of @samp{bits} are: @samp{scalable}, @samp{128},
15998 @samp{256}, @samp{512}, @samp{1024} and @samp{2048}.
15999 Specifying @samp{scalable} selects vector-length agnostic
16000 output. At present @samp{-msve-vector-bits=128} also generates vector-length
16001 agnostic output. All other values generate vector-length specific code.
16002 The behavior of these values may change in future releases and no value except
16003 @samp{scalable} should be relied on for producing code that is portable across
16004 different hardware SVE vector lengths.
16005
16006 The default is @samp{-msve-vector-bits=scalable}, which produces
16007 vector-length agnostic code.
16008 @end table
16009
16010 @subsubsection @option{-march} and @option{-mcpu} Feature Modifiers
16011 @anchor{aarch64-feature-modifiers}
16012 @cindex @option{-march} feature modifiers
16013 @cindex @option{-mcpu} feature modifiers
16014 Feature modifiers used with @option{-march} and @option{-mcpu} can be any of
16015 the following and their inverses @option{no@var{feature}}:
16016
16017 @table @samp
16018 @item crc
16019 Enable CRC extension. This is on by default for
16020 @option{-march=armv8.1-a}.
16021 @item crypto
16022 Enable Crypto extension. This also enables Advanced SIMD and floating-point
16023 instructions.
16024 @item fp
16025 Enable floating-point instructions. This is on by default for all possible
16026 values for options @option{-march} and @option{-mcpu}.
16027 @item simd
16028 Enable Advanced SIMD instructions. This also enables floating-point
16029 instructions. This is on by default for all possible values for options
16030 @option{-march} and @option{-mcpu}.
16031 @item sve
16032 Enable Scalable Vector Extension instructions. This also enables Advanced
16033 SIMD and floating-point instructions.
16034 @item lse
16035 Enable Large System Extension instructions. This is on by default for
16036 @option{-march=armv8.1-a}.
16037 @item rdma
16038 Enable Round Double Multiply Accumulate instructions. This is on by default
16039 for @option{-march=armv8.1-a}.
16040 @item fp16
16041 Enable FP16 extension. This also enables floating-point instructions.
16042 @item fp16fml
16043 Enable FP16 fmla extension. This also enables FP16 extensions and
16044 floating-point instructions. This option is enabled by default for @option{-march=armv8.4-a}. Use of this option with architectures prior to Armv8.2-A is not supported.
16045
16046 @item rcpc
16047 Enable the RcPc extension. This does not change code generation from GCC,
16048 but is passed on to the assembler, enabling inline asm statements to use
16049 instructions from the RcPc extension.
16050 @item dotprod
16051 Enable the Dot Product extension. This also enables Advanced SIMD instructions.
16052 @item aes
16053 Enable the Armv8-a aes and pmull crypto extension. This also enables Advanced
16054 SIMD instructions.
16055 @item sha2
16056 Enable the Armv8-a sha2 crypto extension. This also enables Advanced SIMD instructions.
16057 @item sha3
16058 Enable the sha512 and sha3 crypto extension. This also enables Advanced SIMD
16059 instructions. Use of this option with architectures prior to Armv8.2-A is not supported.
16060 @item sm4
16061 Enable the sm3 and sm4 crypto extension. This also enables Advanced SIMD instructions.
16062 Use of this option with architectures prior to Armv8.2-A is not supported.
16063 @item profile
16064 Enable the Statistical Profiling extension. This option is only to enable the
16065 extension at the assembler level and does not affect code generation.
16066 @item rng
16067 Enable the Armv8.5-a Random Number instructions. This option is only to
16068 enable the extension at the assembler level and does not affect code
16069 generation.
16070 @item memtag
16071 Enable the Armv8.5-a Memory Tagging Extensions. This option is only to
16072 enable the extension at the assembler level and does not affect code
16073 generation.
16074 @item sb
16075 Enable the Armv8-a Speculation Barrier instruction. This option is only to
16076 enable the extension at the assembler level and does not affect code
16077 generation. This option is enabled by default for @option{-march=armv8.5-a}.
16078 @item ssbs
16079 Enable the Armv8-a Speculative Store Bypass Safe instruction. This option
16080 is only to enable the extension at the assembler level and does not affect code
16081 generation. This option is enabled by default for @option{-march=armv8.5-a}.
16082 @item predres
16083 Enable the Armv8-a Execution and Data Prediction Restriction instructions.
16084 This option is only to enable the extension at the assembler level and does
16085 not affect code generation. This option is enabled by default for
16086 @item sve2
16087 Enable the Armv8-a Scalable Vector Extension 2. This also enables SVE
16088 instructions.
16089 @item sve2-bitperm
16090 Enable SVE2 bitperm instructions. This also enables SVE2 instructions.
16091 @item sve2-sm4
16092 Enable SVE2 sm4 instructions. This also enables SVE2 instructions.
16093 @item sve2-aes
16094 Enable SVE2 aes instructions. This also enables SVE2 instructions.
16095 @item sve2-sha3
16096 Enable SVE2 sha3 instructions. This also enables SVE2 instructions.
16097 @option{-march=armv8.5-a}.
16098 @item tme
16099 Enable the Transactional Memory Extension.
16100
16101 @end table
16102
16103 Feature @option{crypto} implies @option{aes}, @option{sha2}, and @option{simd},
16104 which implies @option{fp}.
16105 Conversely, @option{nofp} implies @option{nosimd}, which implies
16106 @option{nocrypto}, @option{noaes} and @option{nosha2}.
16107
16108 @node Adapteva Epiphany Options
16109 @subsection Adapteva Epiphany Options
16110
16111 These @samp{-m} options are defined for Adapteva Epiphany:
16112
16113 @table @gcctabopt
16114 @item -mhalf-reg-file
16115 @opindex mhalf-reg-file
16116 Don't allocate any register in the range @code{r32}@dots{}@code{r63}.
16117 That allows code to run on hardware variants that lack these registers.
16118
16119 @item -mprefer-short-insn-regs
16120 @opindex mprefer-short-insn-regs
16121 Preferentially allocate registers that allow short instruction generation.
16122 This can result in increased instruction count, so this may either reduce or
16123 increase overall code size.
16124
16125 @item -mbranch-cost=@var{num}
16126 @opindex mbranch-cost
16127 Set the cost of branches to roughly @var{num} ``simple'' instructions.
16128 This cost is only a heuristic and is not guaranteed to produce
16129 consistent results across releases.
16130
16131 @item -mcmove
16132 @opindex mcmove
16133 Enable the generation of conditional moves.
16134
16135 @item -mnops=@var{num}
16136 @opindex mnops
16137 Emit @var{num} NOPs before every other generated instruction.
16138
16139 @item -mno-soft-cmpsf
16140 @opindex mno-soft-cmpsf
16141 @opindex msoft-cmpsf
16142 For single-precision floating-point comparisons, emit an @code{fsub} instruction
16143 and test the flags. This is faster than a software comparison, but can
16144 get incorrect results in the presence of NaNs, or when two different small
16145 numbers are compared such that their difference is calculated as zero.
16146 The default is @option{-msoft-cmpsf}, which uses slower, but IEEE-compliant,
16147 software comparisons.
16148
16149 @item -mstack-offset=@var{num}
16150 @opindex mstack-offset
16151 Set the offset between the top of the stack and the stack pointer.
16152 E.g., a value of 8 means that the eight bytes in the range @code{sp+0@dots{}sp+7}
16153 can be used by leaf functions without stack allocation.
16154 Values other than @samp{8} or @samp{16} are untested and unlikely to work.
16155 Note also that this option changes the ABI; compiling a program with a
16156 different stack offset than the libraries have been compiled with
16157 generally does not work.
16158 This option can be useful if you want to evaluate if a different stack
16159 offset would give you better code, but to actually use a different stack
16160 offset to build working programs, it is recommended to configure the
16161 toolchain with the appropriate @option{--with-stack-offset=@var{num}} option.
16162
16163 @item -mno-round-nearest
16164 @opindex mno-round-nearest
16165 @opindex mround-nearest
16166 Make the scheduler assume that the rounding mode has been set to
16167 truncating. The default is @option{-mround-nearest}.
16168
16169 @item -mlong-calls
16170 @opindex mlong-calls
16171 If not otherwise specified by an attribute, assume all calls might be beyond
16172 the offset range of the @code{b} / @code{bl} instructions, and therefore load the
16173 function address into a register before performing a (otherwise direct) call.
16174 This is the default.
16175
16176 @item -mshort-calls
16177 @opindex short-calls
16178 If not otherwise specified by an attribute, assume all direct calls are
16179 in the range of the @code{b} / @code{bl} instructions, so use these instructions
16180 for direct calls. The default is @option{-mlong-calls}.
16181
16182 @item -msmall16
16183 @opindex msmall16
16184 Assume addresses can be loaded as 16-bit unsigned values. This does not
16185 apply to function addresses for which @option{-mlong-calls} semantics
16186 are in effect.
16187
16188 @item -mfp-mode=@var{mode}
16189 @opindex mfp-mode
16190 Set the prevailing mode of the floating-point unit.
16191 This determines the floating-point mode that is provided and expected
16192 at function call and return time. Making this mode match the mode you
16193 predominantly need at function start can make your programs smaller and
16194 faster by avoiding unnecessary mode switches.
16195
16196 @var{mode} can be set to one the following values:
16197
16198 @table @samp
16199 @item caller
16200 Any mode at function entry is valid, and retained or restored when
16201 the function returns, and when it calls other functions.
16202 This mode is useful for compiling libraries or other compilation units
16203 you might want to incorporate into different programs with different
16204 prevailing FPU modes, and the convenience of being able to use a single
16205 object file outweighs the size and speed overhead for any extra
16206 mode switching that might be needed, compared with what would be needed
16207 with a more specific choice of prevailing FPU mode.
16208
16209 @item truncate
16210 This is the mode used for floating-point calculations with
16211 truncating (i.e.@: round towards zero) rounding mode. That includes
16212 conversion from floating point to integer.
16213
16214 @item round-nearest
16215 This is the mode used for floating-point calculations with
16216 round-to-nearest-or-even rounding mode.
16217
16218 @item int
16219 This is the mode used to perform integer calculations in the FPU, e.g.@:
16220 integer multiply, or integer multiply-and-accumulate.
16221 @end table
16222
16223 The default is @option{-mfp-mode=caller}
16224
16225 @item -mno-split-lohi
16226 @itemx -mno-postinc
16227 @itemx -mno-postmodify
16228 @opindex mno-split-lohi
16229 @opindex msplit-lohi
16230 @opindex mno-postinc
16231 @opindex mpostinc
16232 @opindex mno-postmodify
16233 @opindex mpostmodify
16234 Code generation tweaks that disable, respectively, splitting of 32-bit
16235 loads, generation of post-increment addresses, and generation of
16236 post-modify addresses. The defaults are @option{msplit-lohi},
16237 @option{-mpost-inc}, and @option{-mpost-modify}.
16238
16239 @item -mnovect-double
16240 @opindex mno-vect-double
16241 @opindex mvect-double
16242 Change the preferred SIMD mode to SImode. The default is
16243 @option{-mvect-double}, which uses DImode as preferred SIMD mode.
16244
16245 @item -max-vect-align=@var{num}
16246 @opindex max-vect-align
16247 The maximum alignment for SIMD vector mode types.
16248 @var{num} may be 4 or 8. The default is 8.
16249 Note that this is an ABI change, even though many library function
16250 interfaces are unaffected if they don't use SIMD vector modes
16251 in places that affect size and/or alignment of relevant types.
16252
16253 @item -msplit-vecmove-early
16254 @opindex msplit-vecmove-early
16255 Split vector moves into single word moves before reload. In theory this
16256 can give better register allocation, but so far the reverse seems to be
16257 generally the case.
16258
16259 @item -m1reg-@var{reg}
16260 @opindex m1reg-
16261 Specify a register to hold the constant @minus{}1, which makes loading small negative
16262 constants and certain bitmasks faster.
16263 Allowable values for @var{reg} are @samp{r43} and @samp{r63},
16264 which specify use of that register as a fixed register,
16265 and @samp{none}, which means that no register is used for this
16266 purpose. The default is @option{-m1reg-none}.
16267
16268 @end table
16269
16270 @node AMD GCN Options
16271 @subsection AMD GCN Options
16272 @cindex AMD GCN Options
16273
16274 These options are defined specifically for the AMD GCN port.
16275
16276 @table @gcctabopt
16277
16278 @item -march=@var{gpu}
16279 @opindex march
16280 @itemx -mtune=@var{gpu}
16281 @opindex mtune
16282 Set architecture type or tuning for @var{gpu}. Supported values for @var{gpu}
16283 are
16284
16285 @table @samp
16286 @opindex fiji
16287 @item fiji
16288 Compile for GCN3 Fiji devices (gfx803).
16289
16290 @item gfx900
16291 Compile for GCN5 Vega 10 devices (gfx900).
16292
16293 @item gfx906
16294 Compile for GCN5 Vega 20 devices (gfx906).
16295
16296 @end table
16297
16298 @item -mstack-size=@var{bytes}
16299 @opindex mstack-size
16300 Specify how many @var{bytes} of stack space will be requested for each GPU
16301 thread (wave-front). Beware that there may be many threads and limited memory
16302 available. The size of the stack allocation may also have an impact on
16303 run-time performance. The default is 32KB when using OpenACC or OpenMP, and
16304 1MB otherwise.
16305
16306 @end table
16307
16308 @node ARC Options
16309 @subsection ARC Options
16310 @cindex ARC options
16311
16312 The following options control the architecture variant for which code
16313 is being compiled:
16314
16315 @c architecture variants
16316 @table @gcctabopt
16317
16318 @item -mbarrel-shifter
16319 @opindex mbarrel-shifter
16320 Generate instructions supported by barrel shifter. This is the default
16321 unless @option{-mcpu=ARC601} or @samp{-mcpu=ARCEM} is in effect.
16322
16323 @item -mjli-always
16324 @opindex mjli-alawys
16325 Force to call a function using jli_s instruction. This option is
16326 valid only for ARCv2 architecture.
16327
16328 @item -mcpu=@var{cpu}
16329 @opindex mcpu
16330 Set architecture type, register usage, and instruction scheduling
16331 parameters for @var{cpu}. There are also shortcut alias options
16332 available for backward compatibility and convenience. Supported
16333 values for @var{cpu} are
16334
16335 @table @samp
16336 @opindex mA6
16337 @opindex mARC600
16338 @item arc600
16339 Compile for ARC600. Aliases: @option{-mA6}, @option{-mARC600}.
16340
16341 @item arc601
16342 @opindex mARC601
16343 Compile for ARC601. Alias: @option{-mARC601}.
16344
16345 @item arc700
16346 @opindex mA7
16347 @opindex mARC700
16348 Compile for ARC700. Aliases: @option{-mA7}, @option{-mARC700}.
16349 This is the default when configured with @option{--with-cpu=arc700}@.
16350
16351 @item arcem
16352 Compile for ARC EM.
16353
16354 @item archs
16355 Compile for ARC HS.
16356
16357 @item em
16358 Compile for ARC EM CPU with no hardware extensions.
16359
16360 @item em4
16361 Compile for ARC EM4 CPU.
16362
16363 @item em4_dmips
16364 Compile for ARC EM4 DMIPS CPU.
16365
16366 @item em4_fpus
16367 Compile for ARC EM4 DMIPS CPU with the single-precision floating-point
16368 extension.
16369
16370 @item em4_fpuda
16371 Compile for ARC EM4 DMIPS CPU with single-precision floating-point and
16372 double assist instructions.
16373
16374 @item hs
16375 Compile for ARC HS CPU with no hardware extensions except the atomic
16376 instructions.
16377
16378 @item hs34
16379 Compile for ARC HS34 CPU.
16380
16381 @item hs38
16382 Compile for ARC HS38 CPU.
16383
16384 @item hs38_linux
16385 Compile for ARC HS38 CPU with all hardware extensions on.
16386
16387 @item arc600_norm
16388 Compile for ARC 600 CPU with @code{norm} instructions enabled.
16389
16390 @item arc600_mul32x16
16391 Compile for ARC 600 CPU with @code{norm} and 32x16-bit multiply
16392 instructions enabled.
16393
16394 @item arc600_mul64
16395 Compile for ARC 600 CPU with @code{norm} and @code{mul64}-family
16396 instructions enabled.
16397
16398 @item arc601_norm
16399 Compile for ARC 601 CPU with @code{norm} instructions enabled.
16400
16401 @item arc601_mul32x16
16402 Compile for ARC 601 CPU with @code{norm} and 32x16-bit multiply
16403 instructions enabled.
16404
16405 @item arc601_mul64
16406 Compile for ARC 601 CPU with @code{norm} and @code{mul64}-family
16407 instructions enabled.
16408
16409 @item nps400
16410 Compile for ARC 700 on NPS400 chip.
16411
16412 @item em_mini
16413 Compile for ARC EM minimalist configuration featuring reduced register
16414 set.
16415
16416 @end table
16417
16418 @item -mdpfp
16419 @opindex mdpfp
16420 @itemx -mdpfp-compact
16421 @opindex mdpfp-compact
16422 Generate double-precision FPX instructions, tuned for the compact
16423 implementation.
16424
16425 @item -mdpfp-fast
16426 @opindex mdpfp-fast
16427 Generate double-precision FPX instructions, tuned for the fast
16428 implementation.
16429
16430 @item -mno-dpfp-lrsr
16431 @opindex mno-dpfp-lrsr
16432 Disable @code{lr} and @code{sr} instructions from using FPX extension
16433 aux registers.
16434
16435 @item -mea
16436 @opindex mea
16437 Generate extended arithmetic instructions. Currently only
16438 @code{divaw}, @code{adds}, @code{subs}, and @code{sat16} are
16439 supported. This is always enabled for @option{-mcpu=ARC700}.
16440
16441 @item -mno-mpy
16442 @opindex mno-mpy
16443 @opindex mmpy
16444 Do not generate @code{mpy}-family instructions for ARC700. This option is
16445 deprecated.
16446
16447 @item -mmul32x16
16448 @opindex mmul32x16
16449 Generate 32x16-bit multiply and multiply-accumulate instructions.
16450
16451 @item -mmul64
16452 @opindex mmul64
16453 Generate @code{mul64} and @code{mulu64} instructions.
16454 Only valid for @option{-mcpu=ARC600}.
16455
16456 @item -mnorm
16457 @opindex mnorm
16458 Generate @code{norm} instructions. This is the default if @option{-mcpu=ARC700}
16459 is in effect.
16460
16461 @item -mspfp
16462 @opindex mspfp
16463 @itemx -mspfp-compact
16464 @opindex mspfp-compact
16465 Generate single-precision FPX instructions, tuned for the compact
16466 implementation.
16467
16468 @item -mspfp-fast
16469 @opindex mspfp-fast
16470 Generate single-precision FPX instructions, tuned for the fast
16471 implementation.
16472
16473 @item -msimd
16474 @opindex msimd
16475 Enable generation of ARC SIMD instructions via target-specific
16476 builtins. Only valid for @option{-mcpu=ARC700}.
16477
16478 @item -msoft-float
16479 @opindex msoft-float
16480 This option ignored; it is provided for compatibility purposes only.
16481 Software floating-point code is emitted by default, and this default
16482 can overridden by FPX options; @option{-mspfp}, @option{-mspfp-compact}, or
16483 @option{-mspfp-fast} for single precision, and @option{-mdpfp},
16484 @option{-mdpfp-compact}, or @option{-mdpfp-fast} for double precision.
16485
16486 @item -mswap
16487 @opindex mswap
16488 Generate @code{swap} instructions.
16489
16490 @item -matomic
16491 @opindex matomic
16492 This enables use of the locked load/store conditional extension to implement
16493 atomic memory built-in functions. Not available for ARC 6xx or ARC
16494 EM cores.
16495
16496 @item -mdiv-rem
16497 @opindex mdiv-rem
16498 Enable @code{div} and @code{rem} instructions for ARCv2 cores.
16499
16500 @item -mcode-density
16501 @opindex mcode-density
16502 Enable code density instructions for ARC EM.
16503 This option is on by default for ARC HS.
16504
16505 @item -mll64
16506 @opindex mll64
16507 Enable double load/store operations for ARC HS cores.
16508
16509 @item -mtp-regno=@var{regno}
16510 @opindex mtp-regno
16511 Specify thread pointer register number.
16512
16513 @item -mmpy-option=@var{multo}
16514 @opindex mmpy-option
16515 Compile ARCv2 code with a multiplier design option. You can specify
16516 the option using either a string or numeric value for @var{multo}.
16517 @samp{wlh1} is the default value. The recognized values are:
16518
16519 @table @samp
16520 @item 0
16521 @itemx none
16522 No multiplier available.
16523
16524 @item 1
16525 @itemx w
16526 16x16 multiplier, fully pipelined.
16527 The following instructions are enabled: @code{mpyw} and @code{mpyuw}.
16528
16529 @item 2
16530 @itemx wlh1
16531 32x32 multiplier, fully
16532 pipelined (1 stage). The following instructions are additionally
16533 enabled: @code{mpy}, @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
16534
16535 @item 3
16536 @itemx wlh2
16537 32x32 multiplier, fully pipelined
16538 (2 stages). The following instructions are additionally enabled: @code{mpy},
16539 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
16540
16541 @item 4
16542 @itemx wlh3
16543 Two 16x16 multipliers, blocking,
16544 sequential. The following instructions are additionally enabled: @code{mpy},
16545 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
16546
16547 @item 5
16548 @itemx wlh4
16549 One 16x16 multiplier, blocking,
16550 sequential. The following instructions are additionally enabled: @code{mpy},
16551 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
16552
16553 @item 6
16554 @itemx wlh5
16555 One 32x4 multiplier, blocking,
16556 sequential. The following instructions are additionally enabled: @code{mpy},
16557 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
16558
16559 @item 7
16560 @itemx plus_dmpy
16561 ARC HS SIMD support.
16562
16563 @item 8
16564 @itemx plus_macd
16565 ARC HS SIMD support.
16566
16567 @item 9
16568 @itemx plus_qmacw
16569 ARC HS SIMD support.
16570
16571 @end table
16572
16573 This option is only available for ARCv2 cores@.
16574
16575 @item -mfpu=@var{fpu}
16576 @opindex mfpu
16577 Enables support for specific floating-point hardware extensions for ARCv2
16578 cores. Supported values for @var{fpu} are:
16579
16580 @table @samp
16581
16582 @item fpus
16583 Enables support for single-precision floating-point hardware
16584 extensions@.
16585
16586 @item fpud
16587 Enables support for double-precision floating-point hardware
16588 extensions. The single-precision floating-point extension is also
16589 enabled. Not available for ARC EM@.
16590
16591 @item fpuda
16592 Enables support for double-precision floating-point hardware
16593 extensions using double-precision assist instructions. The single-precision
16594 floating-point extension is also enabled. This option is
16595 only available for ARC EM@.
16596
16597 @item fpuda_div
16598 Enables support for double-precision floating-point hardware
16599 extensions using double-precision assist instructions.
16600 The single-precision floating-point, square-root, and divide
16601 extensions are also enabled. This option is
16602 only available for ARC EM@.
16603
16604 @item fpuda_fma
16605 Enables support for double-precision floating-point hardware
16606 extensions using double-precision assist instructions.
16607 The single-precision floating-point and fused multiply and add
16608 hardware extensions are also enabled. This option is
16609 only available for ARC EM@.
16610
16611 @item fpuda_all
16612 Enables support for double-precision floating-point hardware
16613 extensions using double-precision assist instructions.
16614 All single-precision floating-point hardware extensions are also
16615 enabled. This option is only available for ARC EM@.
16616
16617 @item fpus_div
16618 Enables support for single-precision floating-point, square-root and divide
16619 hardware extensions@.
16620
16621 @item fpud_div
16622 Enables support for double-precision floating-point, square-root and divide
16623 hardware extensions. This option
16624 includes option @samp{fpus_div}. Not available for ARC EM@.
16625
16626 @item fpus_fma
16627 Enables support for single-precision floating-point and
16628 fused multiply and add hardware extensions@.
16629
16630 @item fpud_fma
16631 Enables support for double-precision floating-point and
16632 fused multiply and add hardware extensions. This option
16633 includes option @samp{fpus_fma}. Not available for ARC EM@.
16634
16635 @item fpus_all
16636 Enables support for all single-precision floating-point hardware
16637 extensions@.
16638
16639 @item fpud_all
16640 Enables support for all single- and double-precision floating-point
16641 hardware extensions. Not available for ARC EM@.
16642
16643 @end table
16644
16645 @item -mirq-ctrl-saved=@var{register-range}, @var{blink}, @var{lp_count}
16646 @opindex mirq-ctrl-saved
16647 Specifies general-purposes registers that the processor automatically
16648 saves/restores on interrupt entry and exit. @var{register-range} is
16649 specified as two registers separated by a dash. The register range
16650 always starts with @code{r0}, the upper limit is @code{fp} register.
16651 @var{blink} and @var{lp_count} are optional. This option is only
16652 valid for ARC EM and ARC HS cores.
16653
16654 @item -mrgf-banked-regs=@var{number}
16655 @opindex mrgf-banked-regs
16656 Specifies the number of registers replicated in second register bank
16657 on entry to fast interrupt. Fast interrupts are interrupts with the
16658 highest priority level P0. These interrupts save only PC and STATUS32
16659 registers to avoid memory transactions during interrupt entry and exit
16660 sequences. Use this option when you are using fast interrupts in an
16661 ARC V2 family processor. Permitted values are 4, 8, 16, and 32.
16662
16663 @item -mlpc-width=@var{width}
16664 @opindex mlpc-width
16665 Specify the width of the @code{lp_count} register. Valid values for
16666 @var{width} are 8, 16, 20, 24, 28 and 32 bits. The default width is
16667 fixed to 32 bits. If the width is less than 32, the compiler does not
16668 attempt to transform loops in your program to use the zero-delay loop
16669 mechanism unless it is known that the @code{lp_count} register can
16670 hold the required loop-counter value. Depending on the width
16671 specified, the compiler and run-time library might continue to use the
16672 loop mechanism for various needs. This option defines macro
16673 @code{__ARC_LPC_WIDTH__} with the value of @var{width}.
16674
16675 @item -mrf16
16676 @opindex mrf16
16677 This option instructs the compiler to generate code for a 16-entry
16678 register file. This option defines the @code{__ARC_RF16__}
16679 preprocessor macro.
16680
16681 @item -mbranch-index
16682 @opindex mbranch-index
16683 Enable use of @code{bi} or @code{bih} instructions to implement jump
16684 tables.
16685
16686 @end table
16687
16688 The following options are passed through to the assembler, and also
16689 define preprocessor macro symbols.
16690
16691 @c Flags used by the assembler, but for which we define preprocessor
16692 @c macro symbols as well.
16693 @table @gcctabopt
16694 @item -mdsp-packa
16695 @opindex mdsp-packa
16696 Passed down to the assembler to enable the DSP Pack A extensions.
16697 Also sets the preprocessor symbol @code{__Xdsp_packa}. This option is
16698 deprecated.
16699
16700 @item -mdvbf
16701 @opindex mdvbf
16702 Passed down to the assembler to enable the dual Viterbi butterfly
16703 extension. Also sets the preprocessor symbol @code{__Xdvbf}. This
16704 option is deprecated.
16705
16706 @c ARC700 4.10 extension instruction
16707 @item -mlock
16708 @opindex mlock
16709 Passed down to the assembler to enable the locked load/store
16710 conditional extension. Also sets the preprocessor symbol
16711 @code{__Xlock}.
16712
16713 @item -mmac-d16
16714 @opindex mmac-d16
16715 Passed down to the assembler. Also sets the preprocessor symbol
16716 @code{__Xxmac_d16}. This option is deprecated.
16717
16718 @item -mmac-24
16719 @opindex mmac-24
16720 Passed down to the assembler. Also sets the preprocessor symbol
16721 @code{__Xxmac_24}. This option is deprecated.
16722
16723 @c ARC700 4.10 extension instruction
16724 @item -mrtsc
16725 @opindex mrtsc
16726 Passed down to the assembler to enable the 64-bit time-stamp counter
16727 extension instruction. Also sets the preprocessor symbol
16728 @code{__Xrtsc}. This option is deprecated.
16729
16730 @c ARC700 4.10 extension instruction
16731 @item -mswape
16732 @opindex mswape
16733 Passed down to the assembler to enable the swap byte ordering
16734 extension instruction. Also sets the preprocessor symbol
16735 @code{__Xswape}.
16736
16737 @item -mtelephony
16738 @opindex mtelephony
16739 Passed down to the assembler to enable dual- and single-operand
16740 instructions for telephony. Also sets the preprocessor symbol
16741 @code{__Xtelephony}. This option is deprecated.
16742
16743 @item -mxy
16744 @opindex mxy
16745 Passed down to the assembler to enable the XY memory extension. Also
16746 sets the preprocessor symbol @code{__Xxy}.
16747
16748 @end table
16749
16750 The following options control how the assembly code is annotated:
16751
16752 @c Assembly annotation options
16753 @table @gcctabopt
16754 @item -misize
16755 @opindex misize
16756 Annotate assembler instructions with estimated addresses.
16757
16758 @item -mannotate-align
16759 @opindex mannotate-align
16760 Explain what alignment considerations lead to the decision to make an
16761 instruction short or long.
16762
16763 @end table
16764
16765 The following options are passed through to the linker:
16766
16767 @c options passed through to the linker
16768 @table @gcctabopt
16769 @item -marclinux
16770 @opindex marclinux
16771 Passed through to the linker, to specify use of the @code{arclinux} emulation.
16772 This option is enabled by default in tool chains built for
16773 @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets
16774 when profiling is not requested.
16775
16776 @item -marclinux_prof
16777 @opindex marclinux_prof
16778 Passed through to the linker, to specify use of the
16779 @code{arclinux_prof} emulation. This option is enabled by default in
16780 tool chains built for @w{@code{arc-linux-uclibc}} and
16781 @w{@code{arceb-linux-uclibc}} targets when profiling is requested.
16782
16783 @end table
16784
16785 The following options control the semantics of generated code:
16786
16787 @c semantically relevant code generation options
16788 @table @gcctabopt
16789 @item -mlong-calls
16790 @opindex mlong-calls
16791 Generate calls as register indirect calls, thus providing access
16792 to the full 32-bit address range.
16793
16794 @item -mmedium-calls
16795 @opindex mmedium-calls
16796 Don't use less than 25-bit addressing range for calls, which is the
16797 offset available for an unconditional branch-and-link
16798 instruction. Conditional execution of function calls is suppressed, to
16799 allow use of the 25-bit range, rather than the 21-bit range with
16800 conditional branch-and-link. This is the default for tool chains built
16801 for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets.
16802
16803 @item -G @var{num}
16804 @opindex G
16805 Put definitions of externally-visible data in a small data section if
16806 that data is no bigger than @var{num} bytes. The default value of
16807 @var{num} is 4 for any ARC configuration, or 8 when we have double
16808 load/store operations.
16809
16810 @item -mno-sdata
16811 @opindex mno-sdata
16812 @opindex msdata
16813 Do not generate sdata references. This is the default for tool chains
16814 built for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}}
16815 targets.
16816
16817 @item -mvolatile-cache
16818 @opindex mvolatile-cache
16819 Use ordinarily cached memory accesses for volatile references. This is the
16820 default.
16821
16822 @item -mno-volatile-cache
16823 @opindex mno-volatile-cache
16824 @opindex mvolatile-cache
16825 Enable cache bypass for volatile references.
16826
16827 @end table
16828
16829 The following options fine tune code generation:
16830 @c code generation tuning options
16831 @table @gcctabopt
16832 @item -malign-call
16833 @opindex malign-call
16834 Do alignment optimizations for call instructions.
16835
16836 @item -mauto-modify-reg
16837 @opindex mauto-modify-reg
16838 Enable the use of pre/post modify with register displacement.
16839
16840 @item -mbbit-peephole
16841 @opindex mbbit-peephole
16842 Enable bbit peephole2.
16843
16844 @item -mno-brcc
16845 @opindex mno-brcc
16846 This option disables a target-specific pass in @file{arc_reorg} to
16847 generate compare-and-branch (@code{br@var{cc}}) instructions.
16848 It has no effect on
16849 generation of these instructions driven by the combiner pass.
16850
16851 @item -mcase-vector-pcrel
16852 @opindex mcase-vector-pcrel
16853 Use PC-relative switch case tables to enable case table shortening.
16854 This is the default for @option{-Os}.
16855
16856 @item -mcompact-casesi
16857 @opindex mcompact-casesi
16858 Enable compact @code{casesi} pattern. This is the default for @option{-Os},
16859 and only available for ARCv1 cores. This option is deprecated.
16860
16861 @item -mno-cond-exec
16862 @opindex mno-cond-exec
16863 Disable the ARCompact-specific pass to generate conditional
16864 execution instructions.
16865
16866 Due to delay slot scheduling and interactions between operand numbers,
16867 literal sizes, instruction lengths, and the support for conditional execution,
16868 the target-independent pass to generate conditional execution is often lacking,
16869 so the ARC port has kept a special pass around that tries to find more
16870 conditional execution generation opportunities after register allocation,
16871 branch shortening, and delay slot scheduling have been done. This pass
16872 generally, but not always, improves performance and code size, at the cost of
16873 extra compilation time, which is why there is an option to switch it off.
16874 If you have a problem with call instructions exceeding their allowable
16875 offset range because they are conditionalized, you should consider using
16876 @option{-mmedium-calls} instead.
16877
16878 @item -mearly-cbranchsi
16879 @opindex mearly-cbranchsi
16880 Enable pre-reload use of the @code{cbranchsi} pattern.
16881
16882 @item -mexpand-adddi
16883 @opindex mexpand-adddi
16884 Expand @code{adddi3} and @code{subdi3} at RTL generation time into
16885 @code{add.f}, @code{adc} etc. This option is deprecated.
16886
16887 @item -mindexed-loads
16888 @opindex mindexed-loads
16889 Enable the use of indexed loads. This can be problematic because some
16890 optimizers then assume that indexed stores exist, which is not
16891 the case.
16892
16893 @item -mlra
16894 @opindex mlra
16895 Enable Local Register Allocation. This is still experimental for ARC,
16896 so by default the compiler uses standard reload
16897 (i.e.@: @option{-mno-lra}).
16898
16899 @item -mlra-priority-none
16900 @opindex mlra-priority-none
16901 Don't indicate any priority for target registers.
16902
16903 @item -mlra-priority-compact
16904 @opindex mlra-priority-compact
16905 Indicate target register priority for r0..r3 / r12..r15.
16906
16907 @item -mlra-priority-noncompact
16908 @opindex mlra-priority-noncompact
16909 Reduce target register priority for r0..r3 / r12..r15.
16910
16911 @item -mmillicode
16912 @opindex mmillicode
16913 When optimizing for size (using @option{-Os}), prologues and epilogues
16914 that have to save or restore a large number of registers are often
16915 shortened by using call to a special function in libgcc; this is
16916 referred to as a @emph{millicode} call. As these calls can pose
16917 performance issues, and/or cause linking issues when linking in a
16918 nonstandard way, this option is provided to turn on or off millicode
16919 call generation.
16920
16921 @item -mcode-density-frame
16922 @opindex mcode-density-frame
16923 This option enable the compiler to emit @code{enter} and @code{leave}
16924 instructions. These instructions are only valid for CPUs with
16925 code-density feature.
16926
16927 @item -mmixed-code
16928 @opindex mmixed-code
16929 Tweak register allocation to help 16-bit instruction generation.
16930 This generally has the effect of decreasing the average instruction size
16931 while increasing the instruction count.
16932
16933 @item -mq-class
16934 @opindex mq-class
16935 Enable @samp{q} instruction alternatives.
16936 This is the default for @option{-Os}.
16937
16938 @item -mRcq
16939 @opindex mRcq
16940 Enable @samp{Rcq} constraint handling.
16941 Most short code generation depends on this.
16942 This is the default.
16943
16944 @item -mRcw
16945 @opindex mRcw
16946 Enable @samp{Rcw} constraint handling.
16947 Most ccfsm condexec mostly depends on this.
16948 This is the default.
16949
16950 @item -msize-level=@var{level}
16951 @opindex msize-level
16952 Fine-tune size optimization with regards to instruction lengths and alignment.
16953 The recognized values for @var{level} are:
16954 @table @samp
16955 @item 0
16956 No size optimization. This level is deprecated and treated like @samp{1}.
16957
16958 @item 1
16959 Short instructions are used opportunistically.
16960
16961 @item 2
16962 In addition, alignment of loops and of code after barriers are dropped.
16963
16964 @item 3
16965 In addition, optional data alignment is dropped, and the option @option{Os} is enabled.
16966
16967 @end table
16968
16969 This defaults to @samp{3} when @option{-Os} is in effect. Otherwise,
16970 the behavior when this is not set is equivalent to level @samp{1}.
16971
16972 @item -mtune=@var{cpu}
16973 @opindex mtune
16974 Set instruction scheduling parameters for @var{cpu}, overriding any implied
16975 by @option{-mcpu=}.
16976
16977 Supported values for @var{cpu} are
16978
16979 @table @samp
16980 @item ARC600
16981 Tune for ARC600 CPU.
16982
16983 @item ARC601
16984 Tune for ARC601 CPU.
16985
16986 @item ARC700
16987 Tune for ARC700 CPU with standard multiplier block.
16988
16989 @item ARC700-xmac
16990 Tune for ARC700 CPU with XMAC block.
16991
16992 @item ARC725D
16993 Tune for ARC725D CPU.
16994
16995 @item ARC750D
16996 Tune for ARC750D CPU.
16997
16998 @end table
16999
17000 @item -mmultcost=@var{num}
17001 @opindex mmultcost
17002 Cost to assume for a multiply instruction, with @samp{4} being equal to a
17003 normal instruction.
17004
17005 @item -munalign-prob-threshold=@var{probability}
17006 @opindex munalign-prob-threshold
17007 Set probability threshold for unaligning branches.
17008 When tuning for @samp{ARC700} and optimizing for speed, branches without
17009 filled delay slot are preferably emitted unaligned and long, unless
17010 profiling indicates that the probability for the branch to be taken
17011 is below @var{probability}. @xref{Cross-profiling}.
17012 The default is (REG_BR_PROB_BASE/2), i.e.@: 5000.
17013
17014 @end table
17015
17016 The following options are maintained for backward compatibility, but
17017 are now deprecated and will be removed in a future release:
17018
17019 @c Deprecated options
17020 @table @gcctabopt
17021
17022 @item -margonaut
17023 @opindex margonaut
17024 Obsolete FPX.
17025
17026 @item -mbig-endian
17027 @opindex mbig-endian
17028 @itemx -EB
17029 @opindex EB
17030 Compile code for big-endian targets. Use of these options is now
17031 deprecated. Big-endian code is supported by configuring GCC to build
17032 @w{@code{arceb-elf32}} and @w{@code{arceb-linux-uclibc}} targets,
17033 for which big endian is the default.
17034
17035 @item -mlittle-endian
17036 @opindex mlittle-endian
17037 @itemx -EL
17038 @opindex EL
17039 Compile code for little-endian targets. Use of these options is now
17040 deprecated. Little-endian code is supported by configuring GCC to build
17041 @w{@code{arc-elf32}} and @w{@code{arc-linux-uclibc}} targets,
17042 for which little endian is the default.
17043
17044 @item -mbarrel_shifter
17045 @opindex mbarrel_shifter
17046 Replaced by @option{-mbarrel-shifter}.
17047
17048 @item -mdpfp_compact
17049 @opindex mdpfp_compact
17050 Replaced by @option{-mdpfp-compact}.
17051
17052 @item -mdpfp_fast
17053 @opindex mdpfp_fast
17054 Replaced by @option{-mdpfp-fast}.
17055
17056 @item -mdsp_packa
17057 @opindex mdsp_packa
17058 Replaced by @option{-mdsp-packa}.
17059
17060 @item -mEA
17061 @opindex mEA
17062 Replaced by @option{-mea}.
17063
17064 @item -mmac_24
17065 @opindex mmac_24
17066 Replaced by @option{-mmac-24}.
17067
17068 @item -mmac_d16
17069 @opindex mmac_d16
17070 Replaced by @option{-mmac-d16}.
17071
17072 @item -mspfp_compact
17073 @opindex mspfp_compact
17074 Replaced by @option{-mspfp-compact}.
17075
17076 @item -mspfp_fast
17077 @opindex mspfp_fast
17078 Replaced by @option{-mspfp-fast}.
17079
17080 @item -mtune=@var{cpu}
17081 @opindex mtune
17082 Values @samp{arc600}, @samp{arc601}, @samp{arc700} and
17083 @samp{arc700-xmac} for @var{cpu} are replaced by @samp{ARC600},
17084 @samp{ARC601}, @samp{ARC700} and @samp{ARC700-xmac} respectively.
17085
17086 @item -multcost=@var{num}
17087 @opindex multcost
17088 Replaced by @option{-mmultcost}.
17089
17090 @end table
17091
17092 @node ARM Options
17093 @subsection ARM Options
17094 @cindex ARM options
17095
17096 These @samp{-m} options are defined for the ARM port:
17097
17098 @table @gcctabopt
17099 @item -mabi=@var{name}
17100 @opindex mabi
17101 Generate code for the specified ABI@. Permissible values are: @samp{apcs-gnu},
17102 @samp{atpcs}, @samp{aapcs}, @samp{aapcs-linux} and @samp{iwmmxt}.
17103
17104 @item -mapcs-frame
17105 @opindex mapcs-frame
17106 Generate a stack frame that is compliant with the ARM Procedure Call
17107 Standard for all functions, even if this is not strictly necessary for
17108 correct execution of the code. Specifying @option{-fomit-frame-pointer}
17109 with this option causes the stack frames not to be generated for
17110 leaf functions. The default is @option{-mno-apcs-frame}.
17111 This option is deprecated.
17112
17113 @item -mapcs
17114 @opindex mapcs
17115 This is a synonym for @option{-mapcs-frame} and is deprecated.
17116
17117 @ignore
17118 @c not currently implemented
17119 @item -mapcs-stack-check
17120 @opindex mapcs-stack-check
17121 Generate code to check the amount of stack space available upon entry to
17122 every function (that actually uses some stack space). If there is
17123 insufficient space available then either the function
17124 @code{__rt_stkovf_split_small} or @code{__rt_stkovf_split_big} is
17125 called, depending upon the amount of stack space required. The runtime
17126 system is required to provide these functions. The default is
17127 @option{-mno-apcs-stack-check}, since this produces smaller code.
17128
17129 @c not currently implemented
17130 @item -mapcs-reentrant
17131 @opindex mapcs-reentrant
17132 Generate reentrant, position-independent code. The default is
17133 @option{-mno-apcs-reentrant}.
17134 @end ignore
17135
17136 @item -mthumb-interwork
17137 @opindex mthumb-interwork
17138 Generate code that supports calling between the ARM and Thumb
17139 instruction sets. Without this option, on pre-v5 architectures, the
17140 two instruction sets cannot be reliably used inside one program. The
17141 default is @option{-mno-thumb-interwork}, since slightly larger code
17142 is generated when @option{-mthumb-interwork} is specified. In AAPCS
17143 configurations this option is meaningless.
17144
17145 @item -mno-sched-prolog
17146 @opindex mno-sched-prolog
17147 @opindex msched-prolog
17148 Prevent the reordering of instructions in the function prologue, or the
17149 merging of those instruction with the instructions in the function's
17150 body. This means that all functions start with a recognizable set
17151 of instructions (or in fact one of a choice from a small set of
17152 different function prologues), and this information can be used to
17153 locate the start of functions inside an executable piece of code. The
17154 default is @option{-msched-prolog}.
17155
17156 @item -mfloat-abi=@var{name}
17157 @opindex mfloat-abi
17158 Specifies which floating-point ABI to use. Permissible values
17159 are: @samp{soft}, @samp{softfp} and @samp{hard}.
17160
17161 Specifying @samp{soft} causes GCC to generate output containing
17162 library calls for floating-point operations.
17163 @samp{softfp} allows the generation of code using hardware floating-point
17164 instructions, but still uses the soft-float calling conventions.
17165 @samp{hard} allows generation of floating-point instructions
17166 and uses FPU-specific calling conventions.
17167
17168 The default depends on the specific target configuration. Note that
17169 the hard-float and soft-float ABIs are not link-compatible; you must
17170 compile your entire program with the same ABI, and link with a
17171 compatible set of libraries.
17172
17173 @item -mgeneral-regs-only
17174 @opindex mgeneral-regs-only
17175 Generate code which uses only the general-purpose registers. This will prevent
17176 the compiler from using floating-point and Advanced SIMD registers but will not
17177 impose any restrictions on the assembler.
17178
17179 @item -mlittle-endian
17180 @opindex mlittle-endian
17181 Generate code for a processor running in little-endian mode. This is
17182 the default for all standard configurations.
17183
17184 @item -mbig-endian
17185 @opindex mbig-endian
17186 Generate code for a processor running in big-endian mode; the default is
17187 to compile code for a little-endian processor.
17188
17189 @item -mbe8
17190 @itemx -mbe32
17191 @opindex mbe8
17192 When linking a big-endian image select between BE8 and BE32 formats.
17193 The option has no effect for little-endian images and is ignored. The
17194 default is dependent on the selected target architecture. For ARMv6
17195 and later architectures the default is BE8, for older architectures
17196 the default is BE32. BE32 format has been deprecated by ARM.
17197
17198 @item -march=@var{name}@r{[}+extension@dots{}@r{]}
17199 @opindex march
17200 This specifies the name of the target ARM architecture. GCC uses this
17201 name to determine what kind of instructions it can emit when generating
17202 assembly code. This option can be used in conjunction with or instead
17203 of the @option{-mcpu=} option.
17204
17205 Permissible names are:
17206 @samp{armv4t},
17207 @samp{armv5t}, @samp{armv5te},
17208 @samp{armv6}, @samp{armv6j}, @samp{armv6k}, @samp{armv6kz}, @samp{armv6t2},
17209 @samp{armv6z}, @samp{armv6zk},
17210 @samp{armv7}, @samp{armv7-a}, @samp{armv7ve},
17211 @samp{armv8-a}, @samp{armv8.1-a}, @samp{armv8.2-a}, @samp{armv8.3-a},
17212 @samp{armv8.4-a},
17213 @samp{armv8.5-a},
17214 @samp{armv7-r},
17215 @samp{armv8-r},
17216 @samp{armv6-m}, @samp{armv6s-m},
17217 @samp{armv7-m}, @samp{armv7e-m},
17218 @samp{armv8-m.base}, @samp{armv8-m.main},
17219 @samp{iwmmxt} and @samp{iwmmxt2}.
17220
17221 Additionally, the following architectures, which lack support for the
17222 Thumb execution state, are recognized but support is deprecated: @samp{armv4}.
17223
17224 Many of the architectures support extensions. These can be added by
17225 appending @samp{+@var{extension}} to the architecture name. Extension
17226 options are processed in order and capabilities accumulate. An extension
17227 will also enable any necessary base extensions
17228 upon which it depends. For example, the @samp{+crypto} extension
17229 will always enable the @samp{+simd} extension. The exception to the
17230 additive construction is for extensions that are prefixed with
17231 @samp{+no@dots{}}: these extensions disable the specified option and
17232 any other extensions that may depend on the presence of that
17233 extension.
17234
17235 For example, @samp{-march=armv7-a+simd+nofp+vfpv4} is equivalent to
17236 writing @samp{-march=armv7-a+vfpv4} since the @samp{+simd} option is
17237 entirely disabled by the @samp{+nofp} option that follows it.
17238
17239 Most extension names are generically named, but have an effect that is
17240 dependent upon the architecture to which it is applied. For example,
17241 the @samp{+simd} option can be applied to both @samp{armv7-a} and
17242 @samp{armv8-a} architectures, but will enable the original ARMv7-A
17243 Advanced SIMD (Neon) extensions for @samp{armv7-a} and the ARMv8-A
17244 variant for @samp{armv8-a}.
17245
17246 The table below lists the supported extensions for each architecture.
17247 Architectures not mentioned do not support any extensions.
17248
17249 @table @samp
17250 @item armv5te
17251 @itemx armv6
17252 @itemx armv6j
17253 @itemx armv6k
17254 @itemx armv6kz
17255 @itemx armv6t2
17256 @itemx armv6z
17257 @itemx armv6zk
17258 @table @samp
17259 @item +fp
17260 The VFPv2 floating-point instructions. The extension @samp{+vfpv2} can be
17261 used as an alias for this extension.
17262
17263 @item +nofp
17264 Disable the floating-point instructions.
17265 @end table
17266
17267 @item armv7
17268 The common subset of the ARMv7-A, ARMv7-R and ARMv7-M architectures.
17269 @table @samp
17270 @item +fp
17271 The VFPv3 floating-point instructions, with 16 double-precision
17272 registers. The extension @samp{+vfpv3-d16} can be used as an alias
17273 for this extension. Note that floating-point is not supported by the
17274 base ARMv7-M architecture, but is compatible with both the ARMv7-A and
17275 ARMv7-R architectures.
17276
17277 @item +nofp
17278 Disable the floating-point instructions.
17279 @end table
17280
17281 @item armv7-a
17282 @table @samp
17283 @item +mp
17284 The multiprocessing extension.
17285
17286 @item +sec
17287 The security extension.
17288
17289 @item +fp
17290 The VFPv3 floating-point instructions, with 16 double-precision
17291 registers. The extension @samp{+vfpv3-d16} can be used as an alias
17292 for this extension.
17293
17294 @item +simd
17295 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
17296 The extensions @samp{+neon} and @samp{+neon-vfpv3} can be used as aliases
17297 for this extension.
17298
17299 @item +vfpv3
17300 The VFPv3 floating-point instructions, with 32 double-precision
17301 registers.
17302
17303 @item +vfpv3-d16-fp16
17304 The VFPv3 floating-point instructions, with 16 double-precision
17305 registers and the half-precision floating-point conversion operations.
17306
17307 @item +vfpv3-fp16
17308 The VFPv3 floating-point instructions, with 32 double-precision
17309 registers and the half-precision floating-point conversion operations.
17310
17311 @item +vfpv4-d16
17312 The VFPv4 floating-point instructions, with 16 double-precision
17313 registers.
17314
17315 @item +vfpv4
17316 The VFPv4 floating-point instructions, with 32 double-precision
17317 registers.
17318
17319 @item +neon-fp16
17320 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
17321 the half-precision floating-point conversion operations.
17322
17323 @item +neon-vfpv4
17324 The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions.
17325
17326 @item +nosimd
17327 Disable the Advanced SIMD instructions (does not disable floating point).
17328
17329 @item +nofp
17330 Disable the floating-point and Advanced SIMD instructions.
17331 @end table
17332
17333 @item armv7ve
17334 The extended version of the ARMv7-A architecture with support for
17335 virtualization.
17336 @table @samp
17337 @item +fp
17338 The VFPv4 floating-point instructions, with 16 double-precision registers.
17339 The extension @samp{+vfpv4-d16} can be used as an alias for this extension.
17340
17341 @item +simd
17342 The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions. The
17343 extension @samp{+neon-vfpv4} can be used as an alias for this extension.
17344
17345 @item +vfpv3-d16
17346 The VFPv3 floating-point instructions, with 16 double-precision
17347 registers.
17348
17349 @item +vfpv3
17350 The VFPv3 floating-point instructions, with 32 double-precision
17351 registers.
17352
17353 @item +vfpv3-d16-fp16
17354 The VFPv3 floating-point instructions, with 16 double-precision
17355 registers and the half-precision floating-point conversion operations.
17356
17357 @item +vfpv3-fp16
17358 The VFPv3 floating-point instructions, with 32 double-precision
17359 registers and the half-precision floating-point conversion operations.
17360
17361 @item +vfpv4-d16
17362 The VFPv4 floating-point instructions, with 16 double-precision
17363 registers.
17364
17365 @item +vfpv4
17366 The VFPv4 floating-point instructions, with 32 double-precision
17367 registers.
17368
17369 @item +neon
17370 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
17371 The extension @samp{+neon-vfpv3} can be used as an alias for this extension.
17372
17373 @item +neon-fp16
17374 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
17375 the half-precision floating-point conversion operations.
17376
17377 @item +nosimd
17378 Disable the Advanced SIMD instructions (does not disable floating point).
17379
17380 @item +nofp
17381 Disable the floating-point and Advanced SIMD instructions.
17382 @end table
17383
17384 @item armv8-a
17385 @table @samp
17386 @item +crc
17387 The Cyclic Redundancy Check (CRC) instructions.
17388 @item +simd
17389 The ARMv8-A Advanced SIMD and floating-point instructions.
17390 @item +crypto
17391 The cryptographic instructions.
17392 @item +nocrypto
17393 Disable the cryptographic instructions.
17394 @item +nofp
17395 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17396 @item +sb
17397 Speculation Barrier Instruction.
17398 @item +predres
17399 Execution and Data Prediction Restriction Instructions.
17400 @end table
17401
17402 @item armv8.1-a
17403 @table @samp
17404 @item +simd
17405 The ARMv8.1-A Advanced SIMD and floating-point instructions.
17406
17407 @item +crypto
17408 The cryptographic instructions. This also enables the Advanced SIMD and
17409 floating-point instructions.
17410
17411 @item +nocrypto
17412 Disable the cryptographic instructions.
17413
17414 @item +nofp
17415 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17416
17417 @item +sb
17418 Speculation Barrier Instruction.
17419
17420 @item +predres
17421 Execution and Data Prediction Restriction Instructions.
17422 @end table
17423
17424 @item armv8.2-a
17425 @itemx armv8.3-a
17426 @table @samp
17427 @item +fp16
17428 The half-precision floating-point data processing instructions.
17429 This also enables the Advanced SIMD and floating-point instructions.
17430
17431 @item +fp16fml
17432 The half-precision floating-point fmla extension. This also enables
17433 the half-precision floating-point extension and Advanced SIMD and
17434 floating-point instructions.
17435
17436 @item +simd
17437 The ARMv8.1-A Advanced SIMD and floating-point instructions.
17438
17439 @item +crypto
17440 The cryptographic instructions. This also enables the Advanced SIMD and
17441 floating-point instructions.
17442
17443 @item +dotprod
17444 Enable the Dot Product extension. This also enables Advanced SIMD instructions.
17445
17446 @item +nocrypto
17447 Disable the cryptographic extension.
17448
17449 @item +nofp
17450 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17451
17452 @item +sb
17453 Speculation Barrier Instruction.
17454
17455 @item +predres
17456 Execution and Data Prediction Restriction Instructions.
17457 @end table
17458
17459 @item armv8.4-a
17460 @table @samp
17461 @item +fp16
17462 The half-precision floating-point data processing instructions.
17463 This also enables the Advanced SIMD and floating-point instructions as well
17464 as the Dot Product extension and the half-precision floating-point fmla
17465 extension.
17466
17467 @item +simd
17468 The ARMv8.3-A Advanced SIMD and floating-point instructions as well as the
17469 Dot Product extension.
17470
17471 @item +crypto
17472 The cryptographic instructions. This also enables the Advanced SIMD and
17473 floating-point instructions as well as the Dot Product extension.
17474
17475 @item +nocrypto
17476 Disable the cryptographic extension.
17477
17478 @item +nofp
17479 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17480
17481 @item +sb
17482 Speculation Barrier Instruction.
17483
17484 @item +predres
17485 Execution and Data Prediction Restriction Instructions.
17486 @end table
17487
17488 @item armv8.5-a
17489 @table @samp
17490 @item +fp16
17491 The half-precision floating-point data processing instructions.
17492 This also enables the Advanced SIMD and floating-point instructions as well
17493 as the Dot Product extension and the half-precision floating-point fmla
17494 extension.
17495
17496 @item +simd
17497 The ARMv8.3-A Advanced SIMD and floating-point instructions as well as the
17498 Dot Product extension.
17499
17500 @item +crypto
17501 The cryptographic instructions. This also enables the Advanced SIMD and
17502 floating-point instructions as well as the Dot Product extension.
17503
17504 @item +nocrypto
17505 Disable the cryptographic extension.
17506
17507 @item +nofp
17508 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17509 @end table
17510
17511 @item armv7-r
17512 @table @samp
17513 @item +fp.sp
17514 The single-precision VFPv3 floating-point instructions. The extension
17515 @samp{+vfpv3xd} can be used as an alias for this extension.
17516
17517 @item +fp
17518 The VFPv3 floating-point instructions with 16 double-precision registers.
17519 The extension +vfpv3-d16 can be used as an alias for this extension.
17520
17521 @item +vfpv3xd-d16-fp16
17522 The single-precision VFPv3 floating-point instructions with 16 double-precision
17523 registers and the half-precision floating-point conversion operations.
17524
17525 @item +vfpv3-d16-fp16
17526 The VFPv3 floating-point instructions with 16 double-precision
17527 registers and the half-precision floating-point conversion operations.
17528
17529 @item +nofp
17530 Disable the floating-point extension.
17531
17532 @item +idiv
17533 The ARM-state integer division instructions.
17534
17535 @item +noidiv
17536 Disable the ARM-state integer division extension.
17537 @end table
17538
17539 @item armv7e-m
17540 @table @samp
17541 @item +fp
17542 The single-precision VFPv4 floating-point instructions.
17543
17544 @item +fpv5
17545 The single-precision FPv5 floating-point instructions.
17546
17547 @item +fp.dp
17548 The single- and double-precision FPv5 floating-point instructions.
17549
17550 @item +nofp
17551 Disable the floating-point extensions.
17552 @end table
17553
17554 @item armv8-m.main
17555 @table @samp
17556 @item +dsp
17557 The DSP instructions.
17558
17559 @item +nodsp
17560 Disable the DSP extension.
17561
17562 @item +fp
17563 The single-precision floating-point instructions.
17564
17565 @item +fp.dp
17566 The single- and double-precision floating-point instructions.
17567
17568 @item +nofp
17569 Disable the floating-point extension.
17570 @end table
17571
17572 @item armv8-r
17573 @table @samp
17574 @item +crc
17575 The Cyclic Redundancy Check (CRC) instructions.
17576 @item +fp.sp
17577 The single-precision FPv5 floating-point instructions.
17578 @item +simd
17579 The ARMv8-A Advanced SIMD and floating-point instructions.
17580 @item +crypto
17581 The cryptographic instructions.
17582 @item +nocrypto
17583 Disable the cryptographic instructions.
17584 @item +nofp
17585 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17586 @end table
17587
17588 @end table
17589
17590 @option{-march=native} causes the compiler to auto-detect the architecture
17591 of the build computer. At present, this feature is only supported on
17592 GNU/Linux, and not all architectures are recognized. If the auto-detect
17593 is unsuccessful the option has no effect.
17594
17595 @item -mtune=@var{name}
17596 @opindex mtune
17597 This option specifies the name of the target ARM processor for
17598 which GCC should tune the performance of the code.
17599 For some ARM implementations better performance can be obtained by using
17600 this option.
17601 Permissible names are: @samp{arm7tdmi}, @samp{arm7tdmi-s}, @samp{arm710t},
17602 @samp{arm720t}, @samp{arm740t}, @samp{strongarm}, @samp{strongarm110},
17603 @samp{strongarm1100}, 0@samp{strongarm1110}, @samp{arm8}, @samp{arm810},
17604 @samp{arm9}, @samp{arm9e}, @samp{arm920}, @samp{arm920t}, @samp{arm922t},
17605 @samp{arm946e-s}, @samp{arm966e-s}, @samp{arm968e-s}, @samp{arm926ej-s},
17606 @samp{arm940t}, @samp{arm9tdmi}, @samp{arm10tdmi}, @samp{arm1020t},
17607 @samp{arm1026ej-s}, @samp{arm10e}, @samp{arm1020e}, @samp{arm1022e},
17608 @samp{arm1136j-s}, @samp{arm1136jf-s}, @samp{mpcore}, @samp{mpcorenovfp},
17609 @samp{arm1156t2-s}, @samp{arm1156t2f-s}, @samp{arm1176jz-s}, @samp{arm1176jzf-s},
17610 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}, @samp{cortex-a8},
17611 @samp{cortex-a9}, @samp{cortex-a12}, @samp{cortex-a15}, @samp{cortex-a17},
17612 @samp{cortex-a32}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55},
17613 @samp{cortex-a57}, @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75},
17614 @samp{cortex-a76}, @samp{ares}, @samp{cortex-r4}, @samp{cortex-r4f},
17615 @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8}, @samp{cortex-r52},
17616 @samp{cortex-m0}, @samp{cortex-m0plus}, @samp{cortex-m1}, @samp{cortex-m3},
17617 @samp{cortex-m4}, @samp{cortex-m7}, @samp{cortex-m23}, @samp{cortex-m33},
17618 @samp{cortex-m1.small-multiply}, @samp{cortex-m0.small-multiply},
17619 @samp{cortex-m0plus.small-multiply}, @samp{exynos-m1}, @samp{marvell-pj4},
17620 @samp{neoverse-n1}, @samp{xscale}, @samp{iwmmxt}, @samp{iwmmxt2},
17621 @samp{ep9312}, @samp{fa526}, @samp{fa626}, @samp{fa606te}, @samp{fa626te},
17622 @samp{fmp626}, @samp{fa726te}, @samp{xgene1}.
17623
17624 Additionally, this option can specify that GCC should tune the performance
17625 of the code for a big.LITTLE system. Permissible names are:
17626 @samp{cortex-a15.cortex-a7}, @samp{cortex-a17.cortex-a7},
17627 @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
17628 @samp{cortex-a72.cortex-a35}, @samp{cortex-a73.cortex-a53},
17629 @samp{cortex-a75.cortex-a55}, @samp{cortex-a76.cortex-a55}.
17630
17631 @option{-mtune=generic-@var{arch}} specifies that GCC should tune the
17632 performance for a blend of processors within architecture @var{arch}.
17633 The aim is to generate code that run well on the current most popular
17634 processors, balancing between optimizations that benefit some CPUs in the
17635 range, and avoiding performance pitfalls of other CPUs. The effects of
17636 this option may change in future GCC versions as CPU models come and go.
17637
17638 @option{-mtune} permits the same extension options as @option{-mcpu}, but
17639 the extension options do not affect the tuning of the generated code.
17640
17641 @option{-mtune=native} causes the compiler to auto-detect the CPU
17642 of the build computer. At present, this feature is only supported on
17643 GNU/Linux, and not all architectures are recognized. If the auto-detect is
17644 unsuccessful the option has no effect.
17645
17646 @item -mcpu=@var{name}@r{[}+extension@dots{}@r{]}
17647 @opindex mcpu
17648 This specifies the name of the target ARM processor. GCC uses this name
17649 to derive the name of the target ARM architecture (as if specified
17650 by @option{-march}) and the ARM processor type for which to tune for
17651 performance (as if specified by @option{-mtune}). Where this option
17652 is used in conjunction with @option{-march} or @option{-mtune},
17653 those options take precedence over the appropriate part of this option.
17654
17655 Many of the supported CPUs implement optional architectural
17656 extensions. Where this is so the architectural extensions are
17657 normally enabled by default. If implementations that lack the
17658 extension exist, then the extension syntax can be used to disable
17659 those extensions that have been omitted. For floating-point and
17660 Advanced SIMD (Neon) instructions, the settings of the options
17661 @option{-mfloat-abi} and @option{-mfpu} must also be considered:
17662 floating-point and Advanced SIMD instructions will only be used if
17663 @option{-mfloat-abi} is not set to @samp{soft}; and any setting of
17664 @option{-mfpu} other than @samp{auto} will override the available
17665 floating-point and SIMD extension instructions.
17666
17667 For example, @samp{cortex-a9} can be found in three major
17668 configurations: integer only, with just a floating-point unit or with
17669 floating-point and Advanced SIMD. The default is to enable all the
17670 instructions, but the extensions @samp{+nosimd} and @samp{+nofp} can
17671 be used to disable just the SIMD or both the SIMD and floating-point
17672 instructions respectively.
17673
17674 Permissible names for this option are the same as those for
17675 @option{-mtune}.
17676
17677 The following extension options are common to the listed CPUs:
17678
17679 @table @samp
17680 @item +nodsp
17681 Disable the DSP instructions on @samp{cortex-m33}.
17682
17683 @item +nofp
17684 Disables the floating-point instructions on @samp{arm9e},
17685 @samp{arm946e-s}, @samp{arm966e-s}, @samp{arm968e-s}, @samp{arm10e},
17686 @samp{arm1020e}, @samp{arm1022e}, @samp{arm926ej-s},
17687 @samp{arm1026ej-s}, @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8},
17688 @samp{cortex-m4}, @samp{cortex-m7} and @samp{cortex-m33}.
17689 Disables the floating-point and SIMD instructions on
17690 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7},
17691 @samp{cortex-a8}, @samp{cortex-a9}, @samp{cortex-a12},
17692 @samp{cortex-a15}, @samp{cortex-a17}, @samp{cortex-a15.cortex-a7},
17693 @samp{cortex-a17.cortex-a7}, @samp{cortex-a32}, @samp{cortex-a35},
17694 @samp{cortex-a53} and @samp{cortex-a55}.
17695
17696 @item +nofp.dp
17697 Disables the double-precision component of the floating-point instructions
17698 on @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8}, @samp{cortex-r52} and
17699 @samp{cortex-m7}.
17700
17701 @item +nosimd
17702 Disables the SIMD (but not floating-point) instructions on
17703 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}
17704 and @samp{cortex-a9}.
17705
17706 @item +crypto
17707 Enables the cryptographic instructions on @samp{cortex-a32},
17708 @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55}, @samp{cortex-a57},
17709 @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75}, @samp{exynos-m1},
17710 @samp{xgene1}, @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
17711 @samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53} and
17712 @samp{cortex-a75.cortex-a55}.
17713 @end table
17714
17715 Additionally the @samp{generic-armv7-a} pseudo target defaults to
17716 VFPv3 with 16 double-precision registers. It supports the following
17717 extension options: @samp{mp}, @samp{sec}, @samp{vfpv3-d16},
17718 @samp{vfpv3}, @samp{vfpv3-d16-fp16}, @samp{vfpv3-fp16},
17719 @samp{vfpv4-d16}, @samp{vfpv4}, @samp{neon}, @samp{neon-vfpv3},
17720 @samp{neon-fp16}, @samp{neon-vfpv4}. The meanings are the same as for
17721 the extensions to @option{-march=armv7-a}.
17722
17723 @option{-mcpu=generic-@var{arch}} is also permissible, and is
17724 equivalent to @option{-march=@var{arch} -mtune=generic-@var{arch}}.
17725 See @option{-mtune} for more information.
17726
17727 @option{-mcpu=native} causes the compiler to auto-detect the CPU
17728 of the build computer. At present, this feature is only supported on
17729 GNU/Linux, and not all architectures are recognized. If the auto-detect
17730 is unsuccessful the option has no effect.
17731
17732 @item -mfpu=@var{name}
17733 @opindex mfpu
17734 This specifies what floating-point hardware (or hardware emulation) is
17735 available on the target. Permissible names are: @samp{auto}, @samp{vfpv2},
17736 @samp{vfpv3},
17737 @samp{vfpv3-fp16}, @samp{vfpv3-d16}, @samp{vfpv3-d16-fp16}, @samp{vfpv3xd},
17738 @samp{vfpv3xd-fp16}, @samp{neon-vfpv3}, @samp{neon-fp16}, @samp{vfpv4},
17739 @samp{vfpv4-d16}, @samp{fpv4-sp-d16}, @samp{neon-vfpv4},
17740 @samp{fpv5-d16}, @samp{fpv5-sp-d16},
17741 @samp{fp-armv8}, @samp{neon-fp-armv8} and @samp{crypto-neon-fp-armv8}.
17742 Note that @samp{neon} is an alias for @samp{neon-vfpv3} and @samp{vfp}
17743 is an alias for @samp{vfpv2}.
17744
17745 The setting @samp{auto} is the default and is special. It causes the
17746 compiler to select the floating-point and Advanced SIMD instructions
17747 based on the settings of @option{-mcpu} and @option{-march}.
17748
17749 If the selected floating-point hardware includes the NEON extension
17750 (e.g.@: @option{-mfpu=neon}), note that floating-point
17751 operations are not generated by GCC's auto-vectorization pass unless
17752 @option{-funsafe-math-optimizations} is also specified. This is
17753 because NEON hardware does not fully implement the IEEE 754 standard for
17754 floating-point arithmetic (in particular denormal values are treated as
17755 zero), so the use of NEON instructions may lead to a loss of precision.
17756
17757 You can also set the fpu name at function level by using the @code{target("fpu=")} function attributes (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
17758
17759 @item -mfp16-format=@var{name}
17760 @opindex mfp16-format
17761 Specify the format of the @code{__fp16} half-precision floating-point type.
17762 Permissible names are @samp{none}, @samp{ieee}, and @samp{alternative};
17763 the default is @samp{none}, in which case the @code{__fp16} type is not
17764 defined. @xref{Half-Precision}, for more information.
17765
17766 @item -mstructure-size-boundary=@var{n}
17767 @opindex mstructure-size-boundary
17768 The sizes of all structures and unions are rounded up to a multiple
17769 of the number of bits set by this option. Permissible values are 8, 32
17770 and 64. The default value varies for different toolchains. For the COFF
17771 targeted toolchain the default value is 8. A value of 64 is only allowed
17772 if the underlying ABI supports it.
17773
17774 Specifying a larger number can produce faster, more efficient code, but
17775 can also increase the size of the program. Different values are potentially
17776 incompatible. Code compiled with one value cannot necessarily expect to
17777 work with code or libraries compiled with another value, if they exchange
17778 information using structures or unions.
17779
17780 This option is deprecated.
17781
17782 @item -mabort-on-noreturn
17783 @opindex mabort-on-noreturn
17784 Generate a call to the function @code{abort} at the end of a
17785 @code{noreturn} function. It is executed if the function tries to
17786 return.
17787
17788 @item -mlong-calls
17789 @itemx -mno-long-calls
17790 @opindex mlong-calls
17791 @opindex mno-long-calls
17792 Tells the compiler to perform function calls by first loading the
17793 address of the function into a register and then performing a subroutine
17794 call on this register. This switch is needed if the target function
17795 lies outside of the 64-megabyte addressing range of the offset-based
17796 version of subroutine call instruction.
17797
17798 Even if this switch is enabled, not all function calls are turned
17799 into long calls. The heuristic is that static functions, functions
17800 that have the @code{short_call} attribute, functions that are inside
17801 the scope of a @code{#pragma no_long_calls} directive, and functions whose
17802 definitions have already been compiled within the current compilation
17803 unit are not turned into long calls. The exceptions to this rule are
17804 that weak function definitions, functions with the @code{long_call}
17805 attribute or the @code{section} attribute, and functions that are within
17806 the scope of a @code{#pragma long_calls} directive are always
17807 turned into long calls.
17808
17809 This feature is not enabled by default. Specifying
17810 @option{-mno-long-calls} restores the default behavior, as does
17811 placing the function calls within the scope of a @code{#pragma
17812 long_calls_off} directive. Note these switches have no effect on how
17813 the compiler generates code to handle function calls via function
17814 pointers.
17815
17816 @item -msingle-pic-base
17817 @opindex msingle-pic-base
17818 Treat the register used for PIC addressing as read-only, rather than
17819 loading it in the prologue for each function. The runtime system is
17820 responsible for initializing this register with an appropriate value
17821 before execution begins.
17822
17823 @item -mpic-register=@var{reg}
17824 @opindex mpic-register
17825 Specify the register to be used for PIC addressing.
17826 For standard PIC base case, the default is any suitable register
17827 determined by compiler. For single PIC base case, the default is
17828 @samp{R9} if target is EABI based or stack-checking is enabled,
17829 otherwise the default is @samp{R10}.
17830
17831 @item -mpic-data-is-text-relative
17832 @opindex mpic-data-is-text-relative
17833 Assume that the displacement between the text and data segments is fixed
17834 at static link time. This permits using PC-relative addressing
17835 operations to access data known to be in the data segment. For
17836 non-VxWorks RTP targets, this option is enabled by default. When
17837 disabled on such targets, it will enable @option{-msingle-pic-base} by
17838 default.
17839
17840 @item -mpoke-function-name
17841 @opindex mpoke-function-name
17842 Write the name of each function into the text section, directly
17843 preceding the function prologue. The generated code is similar to this:
17844
17845 @smallexample
17846 t0
17847 .ascii "arm_poke_function_name", 0
17848 .align
17849 t1
17850 .word 0xff000000 + (t1 - t0)
17851 arm_poke_function_name
17852 mov ip, sp
17853 stmfd sp!, @{fp, ip, lr, pc@}
17854 sub fp, ip, #4
17855 @end smallexample
17856
17857 When performing a stack backtrace, code can inspect the value of
17858 @code{pc} stored at @code{fp + 0}. If the trace function then looks at
17859 location @code{pc - 12} and the top 8 bits are set, then we know that
17860 there is a function name embedded immediately preceding this location
17861 and has length @code{((pc[-3]) & 0xff000000)}.
17862
17863 @item -mthumb
17864 @itemx -marm
17865 @opindex marm
17866 @opindex mthumb
17867
17868 Select between generating code that executes in ARM and Thumb
17869 states. The default for most configurations is to generate code
17870 that executes in ARM state, but the default can be changed by
17871 configuring GCC with the @option{--with-mode=}@var{state}
17872 configure option.
17873
17874 You can also override the ARM and Thumb mode for each function
17875 by using the @code{target("thumb")} and @code{target("arm")} function attributes
17876 (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
17877
17878 @item -mflip-thumb
17879 @opindex mflip-thumb
17880 Switch ARM/Thumb modes on alternating functions.
17881 This option is provided for regression testing of mixed Thumb/ARM code
17882 generation, and is not intended for ordinary use in compiling code.
17883
17884 @item -mtpcs-frame
17885 @opindex mtpcs-frame
17886 Generate a stack frame that is compliant with the Thumb Procedure Call
17887 Standard for all non-leaf functions. (A leaf function is one that does
17888 not call any other functions.) The default is @option{-mno-tpcs-frame}.
17889
17890 @item -mtpcs-leaf-frame
17891 @opindex mtpcs-leaf-frame
17892 Generate a stack frame that is compliant with the Thumb Procedure Call
17893 Standard for all leaf functions. (A leaf function is one that does
17894 not call any other functions.) The default is @option{-mno-apcs-leaf-frame}.
17895
17896 @item -mcallee-super-interworking
17897 @opindex mcallee-super-interworking
17898 Gives all externally visible functions in the file being compiled an ARM
17899 instruction set header which switches to Thumb mode before executing the
17900 rest of the function. This allows these functions to be called from
17901 non-interworking code. This option is not valid in AAPCS configurations
17902 because interworking is enabled by default.
17903
17904 @item -mcaller-super-interworking
17905 @opindex mcaller-super-interworking
17906 Allows calls via function pointers (including virtual functions) to
17907 execute correctly regardless of whether the target code has been
17908 compiled for interworking or not. There is a small overhead in the cost
17909 of executing a function pointer if this option is enabled. This option
17910 is not valid in AAPCS configurations because interworking is enabled
17911 by default.
17912
17913 @item -mtp=@var{name}
17914 @opindex mtp
17915 Specify the access model for the thread local storage pointer. The valid
17916 models are @samp{soft}, which generates calls to @code{__aeabi_read_tp},
17917 @samp{cp15}, which fetches the thread pointer from @code{cp15} directly
17918 (supported in the arm6k architecture), and @samp{auto}, which uses the
17919 best available method for the selected processor. The default setting is
17920 @samp{auto}.
17921
17922 @item -mtls-dialect=@var{dialect}
17923 @opindex mtls-dialect
17924 Specify the dialect to use for accessing thread local storage. Two
17925 @var{dialect}s are supported---@samp{gnu} and @samp{gnu2}. The
17926 @samp{gnu} dialect selects the original GNU scheme for supporting
17927 local and global dynamic TLS models. The @samp{gnu2} dialect
17928 selects the GNU descriptor scheme, which provides better performance
17929 for shared libraries. The GNU descriptor scheme is compatible with
17930 the original scheme, but does require new assembler, linker and
17931 library support. Initial and local exec TLS models are unaffected by
17932 this option and always use the original scheme.
17933
17934 @item -mword-relocations
17935 @opindex mword-relocations
17936 Only generate absolute relocations on word-sized values (i.e.@: R_ARM_ABS32).
17937 This is enabled by default on targets (uClinux, SymbianOS) where the runtime
17938 loader imposes this restriction, and when @option{-fpic} or @option{-fPIC}
17939 is specified. This option conflicts with @option{-mslow-flash-data}.
17940
17941 @item -mfix-cortex-m3-ldrd
17942 @opindex mfix-cortex-m3-ldrd
17943 Some Cortex-M3 cores can cause data corruption when @code{ldrd} instructions
17944 with overlapping destination and base registers are used. This option avoids
17945 generating these instructions. This option is enabled by default when
17946 @option{-mcpu=cortex-m3} is specified.
17947
17948 @item -munaligned-access
17949 @itemx -mno-unaligned-access
17950 @opindex munaligned-access
17951 @opindex mno-unaligned-access
17952 Enables (or disables) reading and writing of 16- and 32- bit values
17953 from addresses that are not 16- or 32- bit aligned. By default
17954 unaligned access is disabled for all pre-ARMv6, all ARMv6-M and for
17955 ARMv8-M Baseline architectures, and enabled for all other
17956 architectures. If unaligned access is not enabled then words in packed
17957 data structures are accessed a byte at a time.
17958
17959 The ARM attribute @code{Tag_CPU_unaligned_access} is set in the
17960 generated object file to either true or false, depending upon the
17961 setting of this option. If unaligned access is enabled then the
17962 preprocessor symbol @code{__ARM_FEATURE_UNALIGNED} is also
17963 defined.
17964
17965 @item -mneon-for-64bits
17966 @opindex mneon-for-64bits
17967 Enables using Neon to handle scalar 64-bits operations. This is
17968 disabled by default since the cost of moving data from core registers
17969 to Neon is high.
17970
17971 @item -mslow-flash-data
17972 @opindex mslow-flash-data
17973 Assume loading data from flash is slower than fetching instruction.
17974 Therefore literal load is minimized for better performance.
17975 This option is only supported when compiling for ARMv7 M-profile and
17976 off by default. It conflicts with @option{-mword-relocations}.
17977
17978 @item -masm-syntax-unified
17979 @opindex masm-syntax-unified
17980 Assume inline assembler is using unified asm syntax. The default is
17981 currently off which implies divided syntax. This option has no impact
17982 on Thumb2. However, this may change in future releases of GCC.
17983 Divided syntax should be considered deprecated.
17984
17985 @item -mrestrict-it
17986 @opindex mrestrict-it
17987 Restricts generation of IT blocks to conform to the rules of ARMv8-A.
17988 IT blocks can only contain a single 16-bit instruction from a select
17989 set of instructions. This option is on by default for ARMv8-A Thumb mode.
17990
17991 @item -mprint-tune-info
17992 @opindex mprint-tune-info
17993 Print CPU tuning information as comment in assembler file. This is
17994 an option used only for regression testing of the compiler and not
17995 intended for ordinary use in compiling code. This option is disabled
17996 by default.
17997
17998 @item -mverbose-cost-dump
17999 @opindex mverbose-cost-dump
18000 Enable verbose cost model dumping in the debug dump files. This option is
18001 provided for use in debugging the compiler.
18002
18003 @item -mpure-code
18004 @opindex mpure-code
18005 Do not allow constant data to be placed in code sections.
18006 Additionally, when compiling for ELF object format give all text sections the
18007 ELF processor-specific section attribute @code{SHF_ARM_PURECODE}. This option
18008 is only available when generating non-pic code for M-profile targets with the
18009 MOVT instruction.
18010
18011 @item -mcmse
18012 @opindex mcmse
18013 Generate secure code as per the "ARMv8-M Security Extensions: Requirements on
18014 Development Tools Engineering Specification", which can be found on
18015 @url{http://infocenter.arm.com/help/topic/com.arm.doc.ecm0359818/ECM0359818_armv8m_security_extensions_reqs_on_dev_tools_1_0.pdf}.
18016 @end table
18017
18018 @node AVR Options
18019 @subsection AVR Options
18020 @cindex AVR Options
18021
18022 These options are defined for AVR implementations:
18023
18024 @table @gcctabopt
18025 @item -mmcu=@var{mcu}
18026 @opindex mmcu
18027 Specify Atmel AVR instruction set architectures (ISA) or MCU type.
18028
18029 The default for this option is@tie{}@samp{avr2}.
18030
18031 GCC supports the following AVR devices and ISAs:
18032
18033 @include avr-mmcu.texi
18034
18035 @item -mabsdata
18036 @opindex mabsdata
18037
18038 Assume that all data in static storage can be accessed by LDS / STS
18039 instructions. This option has only an effect on reduced Tiny devices like
18040 ATtiny40. See also the @code{absdata}
18041 @ref{AVR Variable Attributes,variable attribute}.
18042
18043 @item -maccumulate-args
18044 @opindex maccumulate-args
18045 Accumulate outgoing function arguments and acquire/release the needed
18046 stack space for outgoing function arguments once in function
18047 prologue/epilogue. Without this option, outgoing arguments are pushed
18048 before calling a function and popped afterwards.
18049
18050 Popping the arguments after the function call can be expensive on
18051 AVR so that accumulating the stack space might lead to smaller
18052 executables because arguments need not be removed from the
18053 stack after such a function call.
18054
18055 This option can lead to reduced code size for functions that perform
18056 several calls to functions that get their arguments on the stack like
18057 calls to printf-like functions.
18058
18059 @item -mbranch-cost=@var{cost}
18060 @opindex mbranch-cost
18061 Set the branch costs for conditional branch instructions to
18062 @var{cost}. Reasonable values for @var{cost} are small, non-negative
18063 integers. The default branch cost is 0.
18064
18065 @item -mcall-prologues
18066 @opindex mcall-prologues
18067 Functions prologues/epilogues are expanded as calls to appropriate
18068 subroutines. Code size is smaller.
18069
18070 @item -mgas-isr-prologues
18071 @opindex mgas-isr-prologues
18072 Interrupt service routines (ISRs) may use the @code{__gcc_isr} pseudo
18073 instruction supported by GNU Binutils.
18074 If this option is on, the feature can still be disabled for individual
18075 ISRs by means of the @ref{AVR Function Attributes,,@code{no_gccisr}}
18076 function attribute. This feature is activated per default
18077 if optimization is on (but not with @option{-Og}, @pxref{Optimize Options}),
18078 and if GNU Binutils support @w{@uref{https://sourceware.org/PR21683,PR21683}}.
18079
18080 @item -mint8
18081 @opindex mint8
18082 Assume @code{int} to be 8-bit integer. This affects the sizes of all types: a
18083 @code{char} is 1 byte, an @code{int} is 1 byte, a @code{long} is 2 bytes,
18084 and @code{long long} is 4 bytes. Please note that this option does not
18085 conform to the C standards, but it results in smaller code
18086 size.
18087
18088 @item -mmain-is-OS_task
18089 @opindex mmain-is-OS_task
18090 Do not save registers in @code{main}. The effect is the same like
18091 attaching attribute @ref{AVR Function Attributes,,@code{OS_task}}
18092 to @code{main}. It is activated per default if optimization is on.
18093
18094 @item -mn-flash=@var{num}
18095 @opindex mn-flash
18096 Assume that the flash memory has a size of
18097 @var{num} times 64@tie{}KiB.
18098
18099 @item -mno-interrupts
18100 @opindex mno-interrupts
18101 Generated code is not compatible with hardware interrupts.
18102 Code size is smaller.
18103
18104 @item -mrelax
18105 @opindex mrelax
18106 Try to replace @code{CALL} resp.@: @code{JMP} instruction by the shorter
18107 @code{RCALL} resp.@: @code{RJMP} instruction if applicable.
18108 Setting @option{-mrelax} just adds the @option{--mlink-relax} option to
18109 the assembler's command line and the @option{--relax} option to the
18110 linker's command line.
18111
18112 Jump relaxing is performed by the linker because jump offsets are not
18113 known before code is located. Therefore, the assembler code generated by the
18114 compiler is the same, but the instructions in the executable may
18115 differ from instructions in the assembler code.
18116
18117 Relaxing must be turned on if linker stubs are needed, see the
18118 section on @code{EIND} and linker stubs below.
18119
18120 @item -mrmw
18121 @opindex mrmw
18122 Assume that the device supports the Read-Modify-Write
18123 instructions @code{XCH}, @code{LAC}, @code{LAS} and @code{LAT}.
18124
18125 @item -mshort-calls
18126 @opindex mshort-calls
18127
18128 Assume that @code{RJMP} and @code{RCALL} can target the whole
18129 program memory.
18130
18131 This option is used internally for multilib selection. It is
18132 not an optimization option, and you don't need to set it by hand.
18133
18134 @item -msp8
18135 @opindex msp8
18136 Treat the stack pointer register as an 8-bit register,
18137 i.e.@: assume the high byte of the stack pointer is zero.
18138 In general, you don't need to set this option by hand.
18139
18140 This option is used internally by the compiler to select and
18141 build multilibs for architectures @code{avr2} and @code{avr25}.
18142 These architectures mix devices with and without @code{SPH}.
18143 For any setting other than @option{-mmcu=avr2} or @option{-mmcu=avr25}
18144 the compiler driver adds or removes this option from the compiler
18145 proper's command line, because the compiler then knows if the device
18146 or architecture has an 8-bit stack pointer and thus no @code{SPH}
18147 register or not.
18148
18149 @item -mstrict-X
18150 @opindex mstrict-X
18151 Use address register @code{X} in a way proposed by the hardware. This means
18152 that @code{X} is only used in indirect, post-increment or
18153 pre-decrement addressing.
18154
18155 Without this option, the @code{X} register may be used in the same way
18156 as @code{Y} or @code{Z} which then is emulated by additional
18157 instructions.
18158 For example, loading a value with @code{X+const} addressing with a
18159 small non-negative @code{const < 64} to a register @var{Rn} is
18160 performed as
18161
18162 @example
18163 adiw r26, const ; X += const
18164 ld @var{Rn}, X ; @var{Rn} = *X
18165 sbiw r26, const ; X -= const
18166 @end example
18167
18168 @item -mtiny-stack
18169 @opindex mtiny-stack
18170 Only change the lower 8@tie{}bits of the stack pointer.
18171
18172 @item -mfract-convert-truncate
18173 @opindex mfract-convert-truncate
18174 Allow to use truncation instead of rounding towards zero for fractional fixed-point types.
18175
18176 @item -nodevicelib
18177 @opindex nodevicelib
18178 Don't link against AVR-LibC's device specific library @code{lib<mcu>.a}.
18179
18180 @item -Waddr-space-convert
18181 @opindex Waddr-space-convert
18182 @opindex Wno-addr-space-convert
18183 Warn about conversions between address spaces in the case where the
18184 resulting address space is not contained in the incoming address space.
18185
18186 @item -Wmisspelled-isr
18187 @opindex Wmisspelled-isr
18188 @opindex Wno-misspelled-isr
18189 Warn if the ISR is misspelled, i.e.@: without __vector prefix.
18190 Enabled by default.
18191 @end table
18192
18193 @subsubsection @code{EIND} and Devices with More Than 128 Ki Bytes of Flash
18194 @cindex @code{EIND}
18195 Pointers in the implementation are 16@tie{}bits wide.
18196 The address of a function or label is represented as word address so
18197 that indirect jumps and calls can target any code address in the
18198 range of 64@tie{}Ki words.
18199
18200 In order to facilitate indirect jump on devices with more than 128@tie{}Ki
18201 bytes of program memory space, there is a special function register called
18202 @code{EIND} that serves as most significant part of the target address
18203 when @code{EICALL} or @code{EIJMP} instructions are used.
18204
18205 Indirect jumps and calls on these devices are handled as follows by
18206 the compiler and are subject to some limitations:
18207
18208 @itemize @bullet
18209
18210 @item
18211 The compiler never sets @code{EIND}.
18212
18213 @item
18214 The compiler uses @code{EIND} implicitly in @code{EICALL}/@code{EIJMP}
18215 instructions or might read @code{EIND} directly in order to emulate an
18216 indirect call/jump by means of a @code{RET} instruction.
18217
18218 @item
18219 The compiler assumes that @code{EIND} never changes during the startup
18220 code or during the application. In particular, @code{EIND} is not
18221 saved/restored in function or interrupt service routine
18222 prologue/epilogue.
18223
18224 @item
18225 For indirect calls to functions and computed goto, the linker
18226 generates @emph{stubs}. Stubs are jump pads sometimes also called
18227 @emph{trampolines}. Thus, the indirect call/jump jumps to such a stub.
18228 The stub contains a direct jump to the desired address.
18229
18230 @item
18231 Linker relaxation must be turned on so that the linker generates
18232 the stubs correctly in all situations. See the compiler option
18233 @option{-mrelax} and the linker option @option{--relax}.
18234 There are corner cases where the linker is supposed to generate stubs
18235 but aborts without relaxation and without a helpful error message.
18236
18237 @item
18238 The default linker script is arranged for code with @code{EIND = 0}.
18239 If code is supposed to work for a setup with @code{EIND != 0}, a custom
18240 linker script has to be used in order to place the sections whose
18241 name start with @code{.trampolines} into the segment where @code{EIND}
18242 points to.
18243
18244 @item
18245 The startup code from libgcc never sets @code{EIND}.
18246 Notice that startup code is a blend of code from libgcc and AVR-LibC.
18247 For the impact of AVR-LibC on @code{EIND}, see the
18248 @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC user manual}}.
18249
18250 @item
18251 It is legitimate for user-specific startup code to set up @code{EIND}
18252 early, for example by means of initialization code located in
18253 section @code{.init3}. Such code runs prior to general startup code
18254 that initializes RAM and calls constructors, but after the bit
18255 of startup code from AVR-LibC that sets @code{EIND} to the segment
18256 where the vector table is located.
18257 @example
18258 #include <avr/io.h>
18259
18260 static void
18261 __attribute__((section(".init3"),naked,used,no_instrument_function))
18262 init3_set_eind (void)
18263 @{
18264 __asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
18265 "out %i0,r24" :: "n" (&EIND) : "r24","memory");
18266 @}
18267 @end example
18268
18269 @noindent
18270 The @code{__trampolines_start} symbol is defined in the linker script.
18271
18272 @item
18273 Stubs are generated automatically by the linker if
18274 the following two conditions are met:
18275 @itemize @minus
18276
18277 @item The address of a label is taken by means of the @code{gs} modifier
18278 (short for @emph{generate stubs}) like so:
18279 @example
18280 LDI r24, lo8(gs(@var{func}))
18281 LDI r25, hi8(gs(@var{func}))
18282 @end example
18283 @item The final location of that label is in a code segment
18284 @emph{outside} the segment where the stubs are located.
18285 @end itemize
18286
18287 @item
18288 The compiler emits such @code{gs} modifiers for code labels in the
18289 following situations:
18290 @itemize @minus
18291 @item Taking address of a function or code label.
18292 @item Computed goto.
18293 @item If prologue-save function is used, see @option{-mcall-prologues}
18294 command-line option.
18295 @item Switch/case dispatch tables. If you do not want such dispatch
18296 tables you can specify the @option{-fno-jump-tables} command-line option.
18297 @item C and C++ constructors/destructors called during startup/shutdown.
18298 @item If the tools hit a @code{gs()} modifier explained above.
18299 @end itemize
18300
18301 @item
18302 Jumping to non-symbolic addresses like so is @emph{not} supported:
18303
18304 @example
18305 int main (void)
18306 @{
18307 /* Call function at word address 0x2 */
18308 return ((int(*)(void)) 0x2)();
18309 @}
18310 @end example
18311
18312 Instead, a stub has to be set up, i.e.@: the function has to be called
18313 through a symbol (@code{func_4} in the example):
18314
18315 @example
18316 int main (void)
18317 @{
18318 extern int func_4 (void);
18319
18320 /* Call function at byte address 0x4 */
18321 return func_4();
18322 @}
18323 @end example
18324
18325 and the application be linked with @option{-Wl,--defsym,func_4=0x4}.
18326 Alternatively, @code{func_4} can be defined in the linker script.
18327 @end itemize
18328
18329 @subsubsection Handling of the @code{RAMPD}, @code{RAMPX}, @code{RAMPY} and @code{RAMPZ} Special Function Registers
18330 @cindex @code{RAMPD}
18331 @cindex @code{RAMPX}
18332 @cindex @code{RAMPY}
18333 @cindex @code{RAMPZ}
18334 Some AVR devices support memories larger than the 64@tie{}KiB range
18335 that can be accessed with 16-bit pointers. To access memory locations
18336 outside this 64@tie{}KiB range, the content of a @code{RAMP}
18337 register is used as high part of the address:
18338 The @code{X}, @code{Y}, @code{Z} address register is concatenated
18339 with the @code{RAMPX}, @code{RAMPY}, @code{RAMPZ} special function
18340 register, respectively, to get a wide address. Similarly,
18341 @code{RAMPD} is used together with direct addressing.
18342
18343 @itemize
18344 @item
18345 The startup code initializes the @code{RAMP} special function
18346 registers with zero.
18347
18348 @item
18349 If a @ref{AVR Named Address Spaces,named address space} other than
18350 generic or @code{__flash} is used, then @code{RAMPZ} is set
18351 as needed before the operation.
18352
18353 @item
18354 If the device supports RAM larger than 64@tie{}KiB and the compiler
18355 needs to change @code{RAMPZ} to accomplish an operation, @code{RAMPZ}
18356 is reset to zero after the operation.
18357
18358 @item
18359 If the device comes with a specific @code{RAMP} register, the ISR
18360 prologue/epilogue saves/restores that SFR and initializes it with
18361 zero in case the ISR code might (implicitly) use it.
18362
18363 @item
18364 RAM larger than 64@tie{}KiB is not supported by GCC for AVR targets.
18365 If you use inline assembler to read from locations outside the
18366 16-bit address range and change one of the @code{RAMP} registers,
18367 you must reset it to zero after the access.
18368
18369 @end itemize
18370
18371 @subsubsection AVR Built-in Macros
18372
18373 GCC defines several built-in macros so that the user code can test
18374 for the presence or absence of features. Almost any of the following
18375 built-in macros are deduced from device capabilities and thus
18376 triggered by the @option{-mmcu=} command-line option.
18377
18378 For even more AVR-specific built-in macros see
18379 @ref{AVR Named Address Spaces} and @ref{AVR Built-in Functions}.
18380
18381 @table @code
18382
18383 @item __AVR_ARCH__
18384 Build-in macro that resolves to a decimal number that identifies the
18385 architecture and depends on the @option{-mmcu=@var{mcu}} option.
18386 Possible values are:
18387
18388 @code{2}, @code{25}, @code{3}, @code{31}, @code{35},
18389 @code{4}, @code{5}, @code{51}, @code{6}
18390
18391 for @var{mcu}=@code{avr2}, @code{avr25}, @code{avr3}, @code{avr31},
18392 @code{avr35}, @code{avr4}, @code{avr5}, @code{avr51}, @code{avr6},
18393
18394 respectively and
18395
18396 @code{100},
18397 @code{102}, @code{103}, @code{104},
18398 @code{105}, @code{106}, @code{107}
18399
18400 for @var{mcu}=@code{avrtiny},
18401 @code{avrxmega2}, @code{avrxmega3}, @code{avrxmega4},
18402 @code{avrxmega5}, @code{avrxmega6}, @code{avrxmega7}, respectively.
18403 If @var{mcu} specifies a device, this built-in macro is set
18404 accordingly. For example, with @option{-mmcu=atmega8} the macro is
18405 defined to @code{4}.
18406
18407 @item __AVR_@var{Device}__
18408 Setting @option{-mmcu=@var{device}} defines this built-in macro which reflects
18409 the device's name. For example, @option{-mmcu=atmega8} defines the
18410 built-in macro @code{__AVR_ATmega8__}, @option{-mmcu=attiny261a} defines
18411 @code{__AVR_ATtiny261A__}, etc.
18412
18413 The built-in macros' names follow
18414 the scheme @code{__AVR_@var{Device}__} where @var{Device} is
18415 the device name as from the AVR user manual. The difference between
18416 @var{Device} in the built-in macro and @var{device} in
18417 @option{-mmcu=@var{device}} is that the latter is always lowercase.
18418
18419 If @var{device} is not a device but only a core architecture like
18420 @samp{avr51}, this macro is not defined.
18421
18422 @item __AVR_DEVICE_NAME__
18423 Setting @option{-mmcu=@var{device}} defines this built-in macro to
18424 the device's name. For example, with @option{-mmcu=atmega8} the macro
18425 is defined to @code{atmega8}.
18426
18427 If @var{device} is not a device but only a core architecture like
18428 @samp{avr51}, this macro is not defined.
18429
18430 @item __AVR_XMEGA__
18431 The device / architecture belongs to the XMEGA family of devices.
18432
18433 @item __AVR_HAVE_ELPM__
18434 The device has the @code{ELPM} instruction.
18435
18436 @item __AVR_HAVE_ELPMX__
18437 The device has the @code{ELPM R@var{n},Z} and @code{ELPM
18438 R@var{n},Z+} instructions.
18439
18440 @item __AVR_HAVE_MOVW__
18441 The device has the @code{MOVW} instruction to perform 16-bit
18442 register-register moves.
18443
18444 @item __AVR_HAVE_LPMX__
18445 The device has the @code{LPM R@var{n},Z} and
18446 @code{LPM R@var{n},Z+} instructions.
18447
18448 @item __AVR_HAVE_MUL__
18449 The device has a hardware multiplier.
18450
18451 @item __AVR_HAVE_JMP_CALL__
18452 The device has the @code{JMP} and @code{CALL} instructions.
18453 This is the case for devices with more than 8@tie{}KiB of program
18454 memory.
18455
18456 @item __AVR_HAVE_EIJMP_EICALL__
18457 @itemx __AVR_3_BYTE_PC__
18458 The device has the @code{EIJMP} and @code{EICALL} instructions.
18459 This is the case for devices with more than 128@tie{}KiB of program memory.
18460 This also means that the program counter
18461 (PC) is 3@tie{}bytes wide.
18462
18463 @item __AVR_2_BYTE_PC__
18464 The program counter (PC) is 2@tie{}bytes wide. This is the case for devices
18465 with up to 128@tie{}KiB of program memory.
18466
18467 @item __AVR_HAVE_8BIT_SP__
18468 @itemx __AVR_HAVE_16BIT_SP__
18469 The stack pointer (SP) register is treated as 8-bit respectively
18470 16-bit register by the compiler.
18471 The definition of these macros is affected by @option{-mtiny-stack}.
18472
18473 @item __AVR_HAVE_SPH__
18474 @itemx __AVR_SP8__
18475 The device has the SPH (high part of stack pointer) special function
18476 register or has an 8-bit stack pointer, respectively.
18477 The definition of these macros is affected by @option{-mmcu=} and
18478 in the cases of @option{-mmcu=avr2} and @option{-mmcu=avr25} also
18479 by @option{-msp8}.
18480
18481 @item __AVR_HAVE_RAMPD__
18482 @itemx __AVR_HAVE_RAMPX__
18483 @itemx __AVR_HAVE_RAMPY__
18484 @itemx __AVR_HAVE_RAMPZ__
18485 The device has the @code{RAMPD}, @code{RAMPX}, @code{RAMPY},
18486 @code{RAMPZ} special function register, respectively.
18487
18488 @item __NO_INTERRUPTS__
18489 This macro reflects the @option{-mno-interrupts} command-line option.
18490
18491 @item __AVR_ERRATA_SKIP__
18492 @itemx __AVR_ERRATA_SKIP_JMP_CALL__
18493 Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit
18494 instructions because of a hardware erratum. Skip instructions are
18495 @code{SBRS}, @code{SBRC}, @code{SBIS}, @code{SBIC} and @code{CPSE}.
18496 The second macro is only defined if @code{__AVR_HAVE_JMP_CALL__} is also
18497 set.
18498
18499 @item __AVR_ISA_RMW__
18500 The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT).
18501
18502 @item __AVR_SFR_OFFSET__=@var{offset}
18503 Instructions that can address I/O special function registers directly
18504 like @code{IN}, @code{OUT}, @code{SBI}, etc.@: may use a different
18505 address as if addressed by an instruction to access RAM like @code{LD}
18506 or @code{STS}. This offset depends on the device architecture and has
18507 to be subtracted from the RAM address in order to get the
18508 respective I/O@tie{}address.
18509
18510 @item __AVR_SHORT_CALLS__
18511 The @option{-mshort-calls} command line option is set.
18512
18513 @item __AVR_PM_BASE_ADDRESS__=@var{addr}
18514 Some devices support reading from flash memory by means of @code{LD*}
18515 instructions. The flash memory is seen in the data address space
18516 at an offset of @code{__AVR_PM_BASE_ADDRESS__}. If this macro
18517 is not defined, this feature is not available. If defined,
18518 the address space is linear and there is no need to put
18519 @code{.rodata} into RAM. This is handled by the default linker
18520 description file, and is currently available for
18521 @code{avrtiny} and @code{avrxmega3}. Even more convenient,
18522 there is no need to use address spaces like @code{__flash} or
18523 features like attribute @code{progmem} and @code{pgm_read_*}.
18524
18525 @item __WITH_AVRLIBC__
18526 The compiler is configured to be used together with AVR-Libc.
18527 See the @option{--with-avrlibc} configure option.
18528
18529 @end table
18530
18531 @node Blackfin Options
18532 @subsection Blackfin Options
18533 @cindex Blackfin Options
18534
18535 @table @gcctabopt
18536 @item -mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]}
18537 @opindex mcpu=
18538 Specifies the name of the target Blackfin processor. Currently, @var{cpu}
18539 can be one of @samp{bf512}, @samp{bf514}, @samp{bf516}, @samp{bf518},
18540 @samp{bf522}, @samp{bf523}, @samp{bf524}, @samp{bf525}, @samp{bf526},
18541 @samp{bf527}, @samp{bf531}, @samp{bf532}, @samp{bf533},
18542 @samp{bf534}, @samp{bf536}, @samp{bf537}, @samp{bf538}, @samp{bf539},
18543 @samp{bf542}, @samp{bf544}, @samp{bf547}, @samp{bf548}, @samp{bf549},
18544 @samp{bf542m}, @samp{bf544m}, @samp{bf547m}, @samp{bf548m}, @samp{bf549m},
18545 @samp{bf561}, @samp{bf592}.
18546
18547 The optional @var{sirevision} specifies the silicon revision of the target
18548 Blackfin processor. Any workarounds available for the targeted silicon revision
18549 are enabled. If @var{sirevision} is @samp{none}, no workarounds are enabled.
18550 If @var{sirevision} is @samp{any}, all workarounds for the targeted processor
18551 are enabled. The @code{__SILICON_REVISION__} macro is defined to two
18552 hexadecimal digits representing the major and minor numbers in the silicon
18553 revision. If @var{sirevision} is @samp{none}, the @code{__SILICON_REVISION__}
18554 is not defined. If @var{sirevision} is @samp{any}, the
18555 @code{__SILICON_REVISION__} is defined to be @code{0xffff}.
18556 If this optional @var{sirevision} is not used, GCC assumes the latest known
18557 silicon revision of the targeted Blackfin processor.
18558
18559 GCC defines a preprocessor macro for the specified @var{cpu}.
18560 For the @samp{bfin-elf} toolchain, this option causes the hardware BSP
18561 provided by libgloss to be linked in if @option{-msim} is not given.
18562
18563 Without this option, @samp{bf532} is used as the processor by default.
18564
18565 Note that support for @samp{bf561} is incomplete. For @samp{bf561},
18566 only the preprocessor macro is defined.
18567
18568 @item -msim
18569 @opindex msim
18570 Specifies that the program will be run on the simulator. This causes
18571 the simulator BSP provided by libgloss to be linked in. This option
18572 has effect only for @samp{bfin-elf} toolchain.
18573 Certain other options, such as @option{-mid-shared-library} and
18574 @option{-mfdpic}, imply @option{-msim}.
18575
18576 @item -momit-leaf-frame-pointer
18577 @opindex momit-leaf-frame-pointer
18578 Don't keep the frame pointer in a register for leaf functions. This
18579 avoids the instructions to save, set up and restore frame pointers and
18580 makes an extra register available in leaf functions.
18581
18582 @item -mspecld-anomaly
18583 @opindex mspecld-anomaly
18584 When enabled, the compiler ensures that the generated code does not
18585 contain speculative loads after jump instructions. If this option is used,
18586 @code{__WORKAROUND_SPECULATIVE_LOADS} is defined.
18587
18588 @item -mno-specld-anomaly
18589 @opindex mno-specld-anomaly
18590 @opindex mspecld-anomaly
18591 Don't generate extra code to prevent speculative loads from occurring.
18592
18593 @item -mcsync-anomaly
18594 @opindex mcsync-anomaly
18595 When enabled, the compiler ensures that the generated code does not
18596 contain CSYNC or SSYNC instructions too soon after conditional branches.
18597 If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined.
18598
18599 @item -mno-csync-anomaly
18600 @opindex mno-csync-anomaly
18601 @opindex mcsync-anomaly
18602 Don't generate extra code to prevent CSYNC or SSYNC instructions from
18603 occurring too soon after a conditional branch.
18604
18605 @item -mlow64k
18606 @opindex mlow64k
18607 When enabled, the compiler is free to take advantage of the knowledge that
18608 the entire program fits into the low 64k of memory.
18609
18610 @item -mno-low64k
18611 @opindex mno-low64k
18612 Assume that the program is arbitrarily large. This is the default.
18613
18614 @item -mstack-check-l1
18615 @opindex mstack-check-l1
18616 Do stack checking using information placed into L1 scratchpad memory by the
18617 uClinux kernel.
18618
18619 @item -mid-shared-library
18620 @opindex mid-shared-library
18621 Generate code that supports shared libraries via the library ID method.
18622 This allows for execute in place and shared libraries in an environment
18623 without virtual memory management. This option implies @option{-fPIC}.
18624 With a @samp{bfin-elf} target, this option implies @option{-msim}.
18625
18626 @item -mno-id-shared-library
18627 @opindex mno-id-shared-library
18628 @opindex mid-shared-library
18629 Generate code that doesn't assume ID-based shared libraries are being used.
18630 This is the default.
18631
18632 @item -mleaf-id-shared-library
18633 @opindex mleaf-id-shared-library
18634 Generate code that supports shared libraries via the library ID method,
18635 but assumes that this library or executable won't link against any other
18636 ID shared libraries. That allows the compiler to use faster code for jumps
18637 and calls.
18638
18639 @item -mno-leaf-id-shared-library
18640 @opindex mno-leaf-id-shared-library
18641 @opindex mleaf-id-shared-library
18642 Do not assume that the code being compiled won't link against any ID shared
18643 libraries. Slower code is generated for jump and call insns.
18644
18645 @item -mshared-library-id=n
18646 @opindex mshared-library-id
18647 Specifies the identification number of the ID-based shared library being
18648 compiled. Specifying a value of 0 generates more compact code; specifying
18649 other values forces the allocation of that number to the current
18650 library but is no more space- or time-efficient than omitting this option.
18651
18652 @item -msep-data
18653 @opindex msep-data
18654 Generate code that allows the data segment to be located in a different
18655 area of memory from the text segment. This allows for execute in place in
18656 an environment without virtual memory management by eliminating relocations
18657 against the text section.
18658
18659 @item -mno-sep-data
18660 @opindex mno-sep-data
18661 @opindex msep-data
18662 Generate code that assumes that the data segment follows the text segment.
18663 This is the default.
18664
18665 @item -mlong-calls
18666 @itemx -mno-long-calls
18667 @opindex mlong-calls
18668 @opindex mno-long-calls
18669 Tells the compiler to perform function calls by first loading the
18670 address of the function into a register and then performing a subroutine
18671 call on this register. This switch is needed if the target function
18672 lies outside of the 24-bit addressing range of the offset-based
18673 version of subroutine call instruction.
18674
18675 This feature is not enabled by default. Specifying
18676 @option{-mno-long-calls} restores the default behavior. Note these
18677 switches have no effect on how the compiler generates code to handle
18678 function calls via function pointers.
18679
18680 @item -mfast-fp
18681 @opindex mfast-fp
18682 Link with the fast floating-point library. This library relaxes some of
18683 the IEEE floating-point standard's rules for checking inputs against
18684 Not-a-Number (NAN), in the interest of performance.
18685
18686 @item -minline-plt
18687 @opindex minline-plt
18688 Enable inlining of PLT entries in function calls to functions that are
18689 not known to bind locally. It has no effect without @option{-mfdpic}.
18690
18691 @item -mmulticore
18692 @opindex mmulticore
18693 Build a standalone application for multicore Blackfin processors.
18694 This option causes proper start files and link scripts supporting
18695 multicore to be used, and defines the macro @code{__BFIN_MULTICORE}.
18696 It can only be used with @option{-mcpu=bf561@r{[}-@var{sirevision}@r{]}}.
18697
18698 This option can be used with @option{-mcorea} or @option{-mcoreb}, which
18699 selects the one-application-per-core programming model. Without
18700 @option{-mcorea} or @option{-mcoreb}, the single-application/dual-core
18701 programming model is used. In this model, the main function of Core B
18702 should be named as @code{coreb_main}.
18703
18704 If this option is not used, the single-core application programming
18705 model is used.
18706
18707 @item -mcorea
18708 @opindex mcorea
18709 Build a standalone application for Core A of BF561 when using
18710 the one-application-per-core programming model. Proper start files
18711 and link scripts are used to support Core A, and the macro
18712 @code{__BFIN_COREA} is defined.
18713 This option can only be used in conjunction with @option{-mmulticore}.
18714
18715 @item -mcoreb
18716 @opindex mcoreb
18717 Build a standalone application for Core B of BF561 when using
18718 the one-application-per-core programming model. Proper start files
18719 and link scripts are used to support Core B, and the macro
18720 @code{__BFIN_COREB} is defined. When this option is used, @code{coreb_main}
18721 should be used instead of @code{main}.
18722 This option can only be used in conjunction with @option{-mmulticore}.
18723
18724 @item -msdram
18725 @opindex msdram
18726 Build a standalone application for SDRAM. Proper start files and
18727 link scripts are used to put the application into SDRAM, and the macro
18728 @code{__BFIN_SDRAM} is defined.
18729 The loader should initialize SDRAM before loading the application.
18730
18731 @item -micplb
18732 @opindex micplb
18733 Assume that ICPLBs are enabled at run time. This has an effect on certain
18734 anomaly workarounds. For Linux targets, the default is to assume ICPLBs
18735 are enabled; for standalone applications the default is off.
18736 @end table
18737
18738 @node C6X Options
18739 @subsection C6X Options
18740 @cindex C6X Options
18741
18742 @table @gcctabopt
18743 @item -march=@var{name}
18744 @opindex march
18745 This specifies the name of the target architecture. GCC uses this
18746 name to determine what kind of instructions it can emit when generating
18747 assembly code. Permissible names are: @samp{c62x},
18748 @samp{c64x}, @samp{c64x+}, @samp{c67x}, @samp{c67x+}, @samp{c674x}.
18749
18750 @item -mbig-endian
18751 @opindex mbig-endian
18752 Generate code for a big-endian target.
18753
18754 @item -mlittle-endian
18755 @opindex mlittle-endian
18756 Generate code for a little-endian target. This is the default.
18757
18758 @item -msim
18759 @opindex msim
18760 Choose startup files and linker script suitable for the simulator.
18761
18762 @item -msdata=default
18763 @opindex msdata=default
18764 Put small global and static data in the @code{.neardata} section,
18765 which is pointed to by register @code{B14}. Put small uninitialized
18766 global and static data in the @code{.bss} section, which is adjacent
18767 to the @code{.neardata} section. Put small read-only data into the
18768 @code{.rodata} section. The corresponding sections used for large
18769 pieces of data are @code{.fardata}, @code{.far} and @code{.const}.
18770
18771 @item -msdata=all
18772 @opindex msdata=all
18773 Put all data, not just small objects, into the sections reserved for
18774 small data, and use addressing relative to the @code{B14} register to
18775 access them.
18776
18777 @item -msdata=none
18778 @opindex msdata=none
18779 Make no use of the sections reserved for small data, and use absolute
18780 addresses to access all data. Put all initialized global and static
18781 data in the @code{.fardata} section, and all uninitialized data in the
18782 @code{.far} section. Put all constant data into the @code{.const}
18783 section.
18784 @end table
18785
18786 @node CRIS Options
18787 @subsection CRIS Options
18788 @cindex CRIS Options
18789
18790 These options are defined specifically for the CRIS ports.
18791
18792 @table @gcctabopt
18793 @item -march=@var{architecture-type}
18794 @itemx -mcpu=@var{architecture-type}
18795 @opindex march
18796 @opindex mcpu
18797 Generate code for the specified architecture. The choices for
18798 @var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
18799 respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX@.
18800 Default is @samp{v0} except for cris-axis-linux-gnu, where the default is
18801 @samp{v10}.
18802
18803 @item -mtune=@var{architecture-type}
18804 @opindex mtune
18805 Tune to @var{architecture-type} everything applicable about the generated
18806 code, except for the ABI and the set of available instructions. The
18807 choices for @var{architecture-type} are the same as for
18808 @option{-march=@var{architecture-type}}.
18809
18810 @item -mmax-stack-frame=@var{n}
18811 @opindex mmax-stack-frame
18812 Warn when the stack frame of a function exceeds @var{n} bytes.
18813
18814 @item -metrax4
18815 @itemx -metrax100
18816 @opindex metrax4
18817 @opindex metrax100
18818 The options @option{-metrax4} and @option{-metrax100} are synonyms for
18819 @option{-march=v3} and @option{-march=v8} respectively.
18820
18821 @item -mmul-bug-workaround
18822 @itemx -mno-mul-bug-workaround
18823 @opindex mmul-bug-workaround
18824 @opindex mno-mul-bug-workaround
18825 Work around a bug in the @code{muls} and @code{mulu} instructions for CPU
18826 models where it applies. This option is active by default.
18827
18828 @item -mpdebug
18829 @opindex mpdebug
18830 Enable CRIS-specific verbose debug-related information in the assembly
18831 code. This option also has the effect of turning off the @samp{#NO_APP}
18832 formatted-code indicator to the assembler at the beginning of the
18833 assembly file.
18834
18835 @item -mcc-init
18836 @opindex mcc-init
18837 Do not use condition-code results from previous instruction; always emit
18838 compare and test instructions before use of condition codes.
18839
18840 @item -mno-side-effects
18841 @opindex mno-side-effects
18842 @opindex mside-effects
18843 Do not emit instructions with side effects in addressing modes other than
18844 post-increment.
18845
18846 @item -mstack-align
18847 @itemx -mno-stack-align
18848 @itemx -mdata-align
18849 @itemx -mno-data-align
18850 @itemx -mconst-align
18851 @itemx -mno-const-align
18852 @opindex mstack-align
18853 @opindex mno-stack-align
18854 @opindex mdata-align
18855 @opindex mno-data-align
18856 @opindex mconst-align
18857 @opindex mno-const-align
18858 These options (@samp{no-} options) arrange (eliminate arrangements) for the
18859 stack frame, individual data and constants to be aligned for the maximum
18860 single data access size for the chosen CPU model. The default is to
18861 arrange for 32-bit alignment. ABI details such as structure layout are
18862 not affected by these options.
18863
18864 @item -m32-bit
18865 @itemx -m16-bit
18866 @itemx -m8-bit
18867 @opindex m32-bit
18868 @opindex m16-bit
18869 @opindex m8-bit
18870 Similar to the stack- data- and const-align options above, these options
18871 arrange for stack frame, writable data and constants to all be 32-bit,
18872 16-bit or 8-bit aligned. The default is 32-bit alignment.
18873
18874 @item -mno-prologue-epilogue
18875 @itemx -mprologue-epilogue
18876 @opindex mno-prologue-epilogue
18877 @opindex mprologue-epilogue
18878 With @option{-mno-prologue-epilogue}, the normal function prologue and
18879 epilogue which set up the stack frame are omitted and no return
18880 instructions or return sequences are generated in the code. Use this
18881 option only together with visual inspection of the compiled code: no
18882 warnings or errors are generated when call-saved registers must be saved,
18883 or storage for local variables needs to be allocated.
18884
18885 @item -mno-gotplt
18886 @itemx -mgotplt
18887 @opindex mno-gotplt
18888 @opindex mgotplt
18889 With @option{-fpic} and @option{-fPIC}, don't generate (do generate)
18890 instruction sequences that load addresses for functions from the PLT part
18891 of the GOT rather than (traditional on other architectures) calls to the
18892 PLT@. The default is @option{-mgotplt}.
18893
18894 @item -melf
18895 @opindex melf
18896 Legacy no-op option only recognized with the cris-axis-elf and
18897 cris-axis-linux-gnu targets.
18898
18899 @item -mlinux
18900 @opindex mlinux
18901 Legacy no-op option only recognized with the cris-axis-linux-gnu target.
18902
18903 @item -sim
18904 @opindex sim
18905 This option, recognized for the cris-axis-elf, arranges
18906 to link with input-output functions from a simulator library. Code,
18907 initialized data and zero-initialized data are allocated consecutively.
18908
18909 @item -sim2
18910 @opindex sim2
18911 Like @option{-sim}, but pass linker options to locate initialized data at
18912 0x40000000 and zero-initialized data at 0x80000000.
18913 @end table
18914
18915 @node CR16 Options
18916 @subsection CR16 Options
18917 @cindex CR16 Options
18918
18919 These options are defined specifically for the CR16 ports.
18920
18921 @table @gcctabopt
18922
18923 @item -mmac
18924 @opindex mmac
18925 Enable the use of multiply-accumulate instructions. Disabled by default.
18926
18927 @item -mcr16cplus
18928 @itemx -mcr16c
18929 @opindex mcr16cplus
18930 @opindex mcr16c
18931 Generate code for CR16C or CR16C+ architecture. CR16C+ architecture
18932 is default.
18933
18934 @item -msim
18935 @opindex msim
18936 Links the library libsim.a which is in compatible with simulator. Applicable
18937 to ELF compiler only.
18938
18939 @item -mint32
18940 @opindex mint32
18941 Choose integer type as 32-bit wide.
18942
18943 @item -mbit-ops
18944 @opindex mbit-ops
18945 Generates @code{sbit}/@code{cbit} instructions for bit manipulations.
18946
18947 @item -mdata-model=@var{model}
18948 @opindex mdata-model
18949 Choose a data model. The choices for @var{model} are @samp{near},
18950 @samp{far} or @samp{medium}. @samp{medium} is default.
18951 However, @samp{far} is not valid with @option{-mcr16c}, as the
18952 CR16C architecture does not support the far data model.
18953 @end table
18954
18955 @node C-SKY Options
18956 @subsection C-SKY Options
18957 @cindex C-SKY Options
18958
18959 GCC supports these options when compiling for C-SKY V2 processors.
18960
18961 @table @gcctabopt
18962
18963 @item -march=@var{arch}
18964 @opindex march=
18965 Specify the C-SKY target architecture. Valid values for @var{arch} are:
18966 @samp{ck801}, @samp{ck802}, @samp{ck803}, @samp{ck807}, and @samp{ck810}.
18967 The default is @samp{ck810}.
18968
18969 @item -mcpu=@var{cpu}
18970 @opindex mcpu=
18971 Specify the C-SKY target processor. Valid values for @var{cpu} are:
18972 @samp{ck801}, @samp{ck801t},
18973 @samp{ck802}, @samp{ck802t}, @samp{ck802j},
18974 @samp{ck803}, @samp{ck803h}, @samp{ck803t}, @samp{ck803ht},
18975 @samp{ck803f}, @samp{ck803fh}, @samp{ck803e}, @samp{ck803eh},
18976 @samp{ck803et}, @samp{ck803eht}, @samp{ck803ef}, @samp{ck803efh},
18977 @samp{ck803ft}, @samp{ck803eft}, @samp{ck803efht}, @samp{ck803r1},
18978 @samp{ck803hr1}, @samp{ck803tr1}, @samp{ck803htr1}, @samp{ck803fr1},
18979 @samp{ck803fhr1}, @samp{ck803er1}, @samp{ck803ehr1}, @samp{ck803etr1},
18980 @samp{ck803ehtr1}, @samp{ck803efr1}, @samp{ck803efhr1}, @samp{ck803ftr1},
18981 @samp{ck803eftr1}, @samp{ck803efhtr1},
18982 @samp{ck803s}, @samp{ck803st}, @samp{ck803se}, @samp{ck803sf},
18983 @samp{ck803sef}, @samp{ck803seft},
18984 @samp{ck807e}, @samp{ck807ef}, @samp{ck807}, @samp{ck807f},
18985 @samp{ck810e}, @samp{ck810et}, @samp{ck810ef}, @samp{ck810eft},
18986 @samp{ck810}, @samp{ck810v}, @samp{ck810f}, @samp{ck810t}, @samp{ck810fv},
18987 @samp{ck810tv}, @samp{ck810ft}, and @samp{ck810ftv}.
18988
18989 @item -mbig-endian
18990 @opindex mbig-endian
18991 @itemx -EB
18992 @opindex EB
18993 @itemx -mlittle-endian
18994 @opindex mlittle-endian
18995 @itemx -EL
18996 @opindex EL
18997
18998 Select big- or little-endian code. The default is little-endian.
18999
19000 @item -mhard-float
19001 @opindex mhard-float
19002 @itemx -msoft-float
19003 @opindex msoft-float
19004
19005 Select hardware or software floating-point implementations.
19006 The default is soft float.
19007
19008 @item -mdouble-float
19009 @itemx -mno-double-float
19010 @opindex mdouble-float
19011 When @option{-mhard-float} is in effect, enable generation of
19012 double-precision float instructions. This is the default except
19013 when compiling for CK803.
19014
19015 @item -mfdivdu
19016 @itemx -mno-fdivdu
19017 @opindex mfdivdu
19018 When @option{-mhard-float} is in effect, enable generation of
19019 @code{frecipd}, @code{fsqrtd}, and @code{fdivd} instructions.
19020 This is the default except when compiling for CK803.
19021
19022 @item -mfpu=@var{fpu}
19023 @opindex mfpu=
19024 Select the floating-point processor. This option can only be used with
19025 @option{-mhard-float}.
19026 Values for @var{fpu} are
19027 @samp{fpv2_sf} (equivalent to @samp{-mno-double-float -mno-fdivdu}),
19028 @samp{fpv2} (@samp{-mdouble-float -mno-divdu}), and
19029 @samp{fpv2_divd} (@samp{-mdouble-float -mdivdu}).
19030
19031 @item -melrw
19032 @itemx -mno-elrw
19033 @opindex melrw
19034 Enable the extended @code{lrw} instruction. This option defaults to on
19035 for CK801 and off otherwise.
19036
19037 @item -mistack
19038 @itemx -mno-istack
19039 @opindex mistack
19040 Enable interrupt stack instructions; the default is off.
19041
19042 The @option{-mistack} option is required to handle the
19043 @code{interrupt} and @code{isr} function attributes
19044 (@pxref{C-SKY Function Attributes}).
19045
19046 @item -mmp
19047 @opindex mmp
19048 Enable multiprocessor instructions; the default is off.
19049
19050 @item -mcp
19051 @opindex mcp
19052 Enable coprocessor instructions; the default is off.
19053
19054 @item -mcache
19055 @opindex mcache
19056 Enable coprocessor instructions; the default is off.
19057
19058 @item -msecurity
19059 @opindex msecurity
19060 Enable C-SKY security instructions; the default is off.
19061
19062 @item -mtrust
19063 @opindex mtrust
19064 Enable C-SKY trust instructions; the default is off.
19065
19066 @item -mdsp
19067 @opindex mdsp
19068 @itemx -medsp
19069 @opindex medsp
19070 @itemx -mvdsp
19071 @opindex mvdsp
19072 Enable C-SKY DSP, Enhanced DSP, or Vector DSP instructions, respectively.
19073 All of these options default to off.
19074
19075 @item -mdiv
19076 @itemx -mno-div
19077 @opindex mdiv
19078 Generate divide instructions. Default is off.
19079
19080 @item -msmart
19081 @itemx -mno-smart
19082 @opindex msmart
19083 Generate code for Smart Mode, using only registers numbered 0-7 to allow
19084 use of 16-bit instructions. This option is ignored for CK801 where this
19085 is the required behavior, and it defaults to on for CK802.
19086 For other targets, the default is off.
19087
19088 @item -mhigh-registers
19089 @itemx -mno-high-registers
19090 @opindex mhigh-registers
19091 Generate code using the high registers numbered 16-31. This option
19092 is not supported on CK801, CK802, or CK803, and is enabled by default
19093 for other processors.
19094
19095 @item -manchor
19096 @itemx -mno-anchor
19097 @opindex manchor
19098 Generate code using global anchor symbol addresses.
19099
19100 @item -mpushpop
19101 @itemx -mno-pushpop
19102 @opindex mpushpop
19103 Generate code using @code{push} and @code{pop} instructions. This option
19104 defaults to on.
19105
19106 @item -mmultiple-stld
19107 @itemx -mstm
19108 @itemx -mno-multiple-stld
19109 @itemx -mno-stm
19110 @opindex mmultiple-stld
19111 Generate code using @code{stm} and @code{ldm} instructions. This option
19112 isn't supported on CK801 but is enabled by default on other processors.
19113
19114 @item -mconstpool
19115 @itemx -mno-constpool
19116 @opindex mconstpool
19117 Create constant pools in the compiler instead of deferring it to the
19118 assembler. This option is the default and required for correct code
19119 generation on CK801 and CK802, and is optional on other processors.
19120
19121 @item -mstack-size
19122 @item -mno-stack-size
19123 @opindex mstack-size
19124 Emit @code{.stack_size} directives for each function in the assembly
19125 output. This option defaults to off.
19126
19127 @item -mccrt
19128 @itemx -mno-ccrt
19129 @opindex mccrt
19130 Generate code for the C-SKY compiler runtime instead of libgcc. This
19131 option defaults to off.
19132
19133 @item -mbranch-cost=@var{n}
19134 @opindex mbranch-cost=
19135 Set the branch costs to roughly @code{n} instructions. The default is 1.
19136
19137 @item -msched-prolog
19138 @itemx -mno-sched-prolog
19139 @opindex msched-prolog
19140 Permit scheduling of function prologue and epilogue sequences. Using
19141 this option can result in code that is not compliant with the C-SKY V2 ABI
19142 prologue requirements and that cannot be debugged or backtraced.
19143 It is disabled by default.
19144
19145 @end table
19146
19147 @node Darwin Options
19148 @subsection Darwin Options
19149 @cindex Darwin options
19150
19151 These options are defined for all architectures running the Darwin operating
19152 system.
19153
19154 FSF GCC on Darwin does not create ``fat'' object files; it creates
19155 an object file for the single architecture that GCC was built to
19156 target. Apple's GCC on Darwin does create ``fat'' files if multiple
19157 @option{-arch} options are used; it does so by running the compiler or
19158 linker multiple times and joining the results together with
19159 @file{lipo}.
19160
19161 The subtype of the file created (like @samp{ppc7400} or @samp{ppc970} or
19162 @samp{i686}) is determined by the flags that specify the ISA
19163 that GCC is targeting, like @option{-mcpu} or @option{-march}. The
19164 @option{-force_cpusubtype_ALL} option can be used to override this.
19165
19166 The Darwin tools vary in their behavior when presented with an ISA
19167 mismatch. The assembler, @file{as}, only permits instructions to
19168 be used that are valid for the subtype of the file it is generating,
19169 so you cannot put 64-bit instructions in a @samp{ppc750} object file.
19170 The linker for shared libraries, @file{/usr/bin/libtool}, fails
19171 and prints an error if asked to create a shared library with a less
19172 restrictive subtype than its input files (for instance, trying to put
19173 a @samp{ppc970} object file in a @samp{ppc7400} library). The linker
19174 for executables, @command{ld}, quietly gives the executable the most
19175 restrictive subtype of any of its input files.
19176
19177 @table @gcctabopt
19178 @item -F@var{dir}
19179 @opindex F
19180 Add the framework directory @var{dir} to the head of the list of
19181 directories to be searched for header files. These directories are
19182 interleaved with those specified by @option{-I} options and are
19183 scanned in a left-to-right order.
19184
19185 A framework directory is a directory with frameworks in it. A
19186 framework is a directory with a @file{Headers} and/or
19187 @file{PrivateHeaders} directory contained directly in it that ends
19188 in @file{.framework}. The name of a framework is the name of this
19189 directory excluding the @file{.framework}. Headers associated with
19190 the framework are found in one of those two directories, with
19191 @file{Headers} being searched first. A subframework is a framework
19192 directory that is in a framework's @file{Frameworks} directory.
19193 Includes of subframework headers can only appear in a header of a
19194 framework that contains the subframework, or in a sibling subframework
19195 header. Two subframeworks are siblings if they occur in the same
19196 framework. A subframework should not have the same name as a
19197 framework; a warning is issued if this is violated. Currently a
19198 subframework cannot have subframeworks; in the future, the mechanism
19199 may be extended to support this. The standard frameworks can be found
19200 in @file{/System/Library/Frameworks} and
19201 @file{/Library/Frameworks}. An example include looks like
19202 @code{#include <Framework/header.h>}, where @file{Framework} denotes
19203 the name of the framework and @file{header.h} is found in the
19204 @file{PrivateHeaders} or @file{Headers} directory.
19205
19206 @item -iframework@var{dir}
19207 @opindex iframework
19208 Like @option{-F} except the directory is a treated as a system
19209 directory. The main difference between this @option{-iframework} and
19210 @option{-F} is that with @option{-iframework} the compiler does not
19211 warn about constructs contained within header files found via
19212 @var{dir}. This option is valid only for the C family of languages.
19213
19214 @item -gused
19215 @opindex gused
19216 Emit debugging information for symbols that are used. For stabs
19217 debugging format, this enables @option{-feliminate-unused-debug-symbols}.
19218 This is by default ON@.
19219
19220 @item -gfull
19221 @opindex gfull
19222 Emit debugging information for all symbols and types.
19223
19224 @item -mmacosx-version-min=@var{version}
19225 The earliest version of MacOS X that this executable will run on
19226 is @var{version}. Typical values of @var{version} include @code{10.1},
19227 @code{10.2}, and @code{10.3.9}.
19228
19229 If the compiler was built to use the system's headers by default,
19230 then the default for this option is the system version on which the
19231 compiler is running, otherwise the default is to make choices that
19232 are compatible with as many systems and code bases as possible.
19233
19234 @item -mkernel
19235 @opindex mkernel
19236 Enable kernel development mode. The @option{-mkernel} option sets
19237 @option{-static}, @option{-fno-common}, @option{-fno-use-cxa-atexit},
19238 @option{-fno-exceptions}, @option{-fno-non-call-exceptions},
19239 @option{-fapple-kext}, @option{-fno-weak} and @option{-fno-rtti} where
19240 applicable. This mode also sets @option{-mno-altivec},
19241 @option{-msoft-float}, @option{-fno-builtin} and
19242 @option{-mlong-branch} for PowerPC targets.
19243
19244 @item -mone-byte-bool
19245 @opindex mone-byte-bool
19246 Override the defaults for @code{bool} so that @code{sizeof(bool)==1}.
19247 By default @code{sizeof(bool)} is @code{4} when compiling for
19248 Darwin/PowerPC and @code{1} when compiling for Darwin/x86, so this
19249 option has no effect on x86.
19250
19251 @strong{Warning:} The @option{-mone-byte-bool} switch causes GCC
19252 to generate code that is not binary compatible with code generated
19253 without that switch. Using this switch may require recompiling all
19254 other modules in a program, including system libraries. Use this
19255 switch to conform to a non-default data model.
19256
19257 @item -mfix-and-continue
19258 @itemx -ffix-and-continue
19259 @itemx -findirect-data
19260 @opindex mfix-and-continue
19261 @opindex ffix-and-continue
19262 @opindex findirect-data
19263 Generate code suitable for fast turnaround development, such as to
19264 allow GDB to dynamically load @file{.o} files into already-running
19265 programs. @option{-findirect-data} and @option{-ffix-and-continue}
19266 are provided for backwards compatibility.
19267
19268 @item -all_load
19269 @opindex all_load
19270 Loads all members of static archive libraries.
19271 See man ld(1) for more information.
19272
19273 @item -arch_errors_fatal
19274 @opindex arch_errors_fatal
19275 Cause the errors having to do with files that have the wrong architecture
19276 to be fatal.
19277
19278 @item -bind_at_load
19279 @opindex bind_at_load
19280 Causes the output file to be marked such that the dynamic linker will
19281 bind all undefined references when the file is loaded or launched.
19282
19283 @item -bundle
19284 @opindex bundle
19285 Produce a Mach-o bundle format file.
19286 See man ld(1) for more information.
19287
19288 @item -bundle_loader @var{executable}
19289 @opindex bundle_loader
19290 This option specifies the @var{executable} that will load the build
19291 output file being linked. See man ld(1) for more information.
19292
19293 @item -dynamiclib
19294 @opindex dynamiclib
19295 When passed this option, GCC produces a dynamic library instead of
19296 an executable when linking, using the Darwin @file{libtool} command.
19297
19298 @item -force_cpusubtype_ALL
19299 @opindex force_cpusubtype_ALL
19300 This causes GCC's output file to have the @samp{ALL} subtype, instead of
19301 one controlled by the @option{-mcpu} or @option{-march} option.
19302
19303 @item -allowable_client @var{client_name}
19304 @itemx -client_name
19305 @itemx -compatibility_version
19306 @itemx -current_version
19307 @itemx -dead_strip
19308 @itemx -dependency-file
19309 @itemx -dylib_file
19310 @itemx -dylinker_install_name
19311 @itemx -dynamic
19312 @itemx -exported_symbols_list
19313 @itemx -filelist
19314 @need 800
19315 @itemx -flat_namespace
19316 @itemx -force_flat_namespace
19317 @itemx -headerpad_max_install_names
19318 @itemx -image_base
19319 @itemx -init
19320 @itemx -install_name
19321 @itemx -keep_private_externs
19322 @itemx -multi_module
19323 @itemx -multiply_defined
19324 @itemx -multiply_defined_unused
19325 @need 800
19326 @itemx -noall_load
19327 @itemx -no_dead_strip_inits_and_terms
19328 @itemx -nofixprebinding
19329 @itemx -nomultidefs
19330 @itemx -noprebind
19331 @itemx -noseglinkedit
19332 @itemx -pagezero_size
19333 @itemx -prebind
19334 @itemx -prebind_all_twolevel_modules
19335 @itemx -private_bundle
19336 @need 800
19337 @itemx -read_only_relocs
19338 @itemx -sectalign
19339 @itemx -sectobjectsymbols
19340 @itemx -whyload
19341 @itemx -seg1addr
19342 @itemx -sectcreate
19343 @itemx -sectobjectsymbols
19344 @itemx -sectorder
19345 @itemx -segaddr
19346 @itemx -segs_read_only_addr
19347 @need 800
19348 @itemx -segs_read_write_addr
19349 @itemx -seg_addr_table
19350 @itemx -seg_addr_table_filename
19351 @itemx -seglinkedit
19352 @itemx -segprot
19353 @itemx -segs_read_only_addr
19354 @itemx -segs_read_write_addr
19355 @itemx -single_module
19356 @itemx -static
19357 @itemx -sub_library
19358 @need 800
19359 @itemx -sub_umbrella
19360 @itemx -twolevel_namespace
19361 @itemx -umbrella
19362 @itemx -undefined
19363 @itemx -unexported_symbols_list
19364 @itemx -weak_reference_mismatches
19365 @itemx -whatsloaded
19366 @opindex allowable_client
19367 @opindex client_name
19368 @opindex compatibility_version
19369 @opindex current_version
19370 @opindex dead_strip
19371 @opindex dependency-file
19372 @opindex dylib_file
19373 @opindex dylinker_install_name
19374 @opindex dynamic
19375 @opindex exported_symbols_list
19376 @opindex filelist
19377 @opindex flat_namespace
19378 @opindex force_flat_namespace
19379 @opindex headerpad_max_install_names
19380 @opindex image_base
19381 @opindex init
19382 @opindex install_name
19383 @opindex keep_private_externs
19384 @opindex multi_module
19385 @opindex multiply_defined
19386 @opindex multiply_defined_unused
19387 @opindex noall_load
19388 @opindex no_dead_strip_inits_and_terms
19389 @opindex nofixprebinding
19390 @opindex nomultidefs
19391 @opindex noprebind
19392 @opindex noseglinkedit
19393 @opindex pagezero_size
19394 @opindex prebind
19395 @opindex prebind_all_twolevel_modules
19396 @opindex private_bundle
19397 @opindex read_only_relocs
19398 @opindex sectalign
19399 @opindex sectobjectsymbols
19400 @opindex whyload
19401 @opindex seg1addr
19402 @opindex sectcreate
19403 @opindex sectobjectsymbols
19404 @opindex sectorder
19405 @opindex segaddr
19406 @opindex segs_read_only_addr
19407 @opindex segs_read_write_addr
19408 @opindex seg_addr_table
19409 @opindex seg_addr_table_filename
19410 @opindex seglinkedit
19411 @opindex segprot
19412 @opindex segs_read_only_addr
19413 @opindex segs_read_write_addr
19414 @opindex single_module
19415 @opindex static
19416 @opindex sub_library
19417 @opindex sub_umbrella
19418 @opindex twolevel_namespace
19419 @opindex umbrella
19420 @opindex undefined
19421 @opindex unexported_symbols_list
19422 @opindex weak_reference_mismatches
19423 @opindex whatsloaded
19424 These options are passed to the Darwin linker. The Darwin linker man page
19425 describes them in detail.
19426 @end table
19427
19428 @node DEC Alpha Options
19429 @subsection DEC Alpha Options
19430
19431 These @samp{-m} options are defined for the DEC Alpha implementations:
19432
19433 @table @gcctabopt
19434 @item -mno-soft-float
19435 @itemx -msoft-float
19436 @opindex mno-soft-float
19437 @opindex msoft-float
19438 Use (do not use) the hardware floating-point instructions for
19439 floating-point operations. When @option{-msoft-float} is specified,
19440 functions in @file{libgcc.a} are used to perform floating-point
19441 operations. Unless they are replaced by routines that emulate the
19442 floating-point operations, or compiled in such a way as to call such
19443 emulations routines, these routines issue floating-point
19444 operations. If you are compiling for an Alpha without floating-point
19445 operations, you must ensure that the library is built so as not to call
19446 them.
19447
19448 Note that Alpha implementations without floating-point operations are
19449 required to have floating-point registers.
19450
19451 @item -mfp-reg
19452 @itemx -mno-fp-regs
19453 @opindex mfp-reg
19454 @opindex mno-fp-regs
19455 Generate code that uses (does not use) the floating-point register set.
19456 @option{-mno-fp-regs} implies @option{-msoft-float}. If the floating-point
19457 register set is not used, floating-point operands are passed in integer
19458 registers as if they were integers and floating-point results are passed
19459 in @code{$0} instead of @code{$f0}. This is a non-standard calling sequence,
19460 so any function with a floating-point argument or return value called by code
19461 compiled with @option{-mno-fp-regs} must also be compiled with that
19462 option.
19463
19464 A typical use of this option is building a kernel that does not use,
19465 and hence need not save and restore, any floating-point registers.
19466
19467 @item -mieee
19468 @opindex mieee
19469 The Alpha architecture implements floating-point hardware optimized for
19470 maximum performance. It is mostly compliant with the IEEE floating-point
19471 standard. However, for full compliance, software assistance is
19472 required. This option generates code fully IEEE-compliant code
19473 @emph{except} that the @var{inexact-flag} is not maintained (see below).
19474 If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
19475 defined during compilation. The resulting code is less efficient but is
19476 able to correctly support denormalized numbers and exceptional IEEE
19477 values such as not-a-number and plus/minus infinity. Other Alpha
19478 compilers call this option @option{-ieee_with_no_inexact}.
19479
19480 @item -mieee-with-inexact
19481 @opindex mieee-with-inexact
19482 This is like @option{-mieee} except the generated code also maintains
19483 the IEEE @var{inexact-flag}. Turning on this option causes the
19484 generated code to implement fully-compliant IEEE math. In addition to
19485 @code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
19486 macro. On some Alpha implementations the resulting code may execute
19487 significantly slower than the code generated by default. Since there is
19488 very little code that depends on the @var{inexact-flag}, you should
19489 normally not specify this option. Other Alpha compilers call this
19490 option @option{-ieee_with_inexact}.
19491
19492 @item -mfp-trap-mode=@var{trap-mode}
19493 @opindex mfp-trap-mode
19494 This option controls what floating-point related traps are enabled.
19495 Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
19496 The trap mode can be set to one of four values:
19497
19498 @table @samp
19499 @item n
19500 This is the default (normal) setting. The only traps that are enabled
19501 are the ones that cannot be disabled in software (e.g., division by zero
19502 trap).
19503
19504 @item u
19505 In addition to the traps enabled by @samp{n}, underflow traps are enabled
19506 as well.
19507
19508 @item su
19509 Like @samp{u}, but the instructions are marked to be safe for software
19510 completion (see Alpha architecture manual for details).
19511
19512 @item sui
19513 Like @samp{su}, but inexact traps are enabled as well.
19514 @end table
19515
19516 @item -mfp-rounding-mode=@var{rounding-mode}
19517 @opindex mfp-rounding-mode
19518 Selects the IEEE rounding mode. Other Alpha compilers call this option
19519 @option{-fprm @var{rounding-mode}}. The @var{rounding-mode} can be one
19520 of:
19521
19522 @table @samp
19523 @item n
19524 Normal IEEE rounding mode. Floating-point numbers are rounded towards
19525 the nearest machine number or towards the even machine number in case
19526 of a tie.
19527
19528 @item m
19529 Round towards minus infinity.
19530
19531 @item c
19532 Chopped rounding mode. Floating-point numbers are rounded towards zero.
19533
19534 @item d
19535 Dynamic rounding mode. A field in the floating-point control register
19536 (@var{fpcr}, see Alpha architecture reference manual) controls the
19537 rounding mode in effect. The C library initializes this register for
19538 rounding towards plus infinity. Thus, unless your program modifies the
19539 @var{fpcr}, @samp{d} corresponds to round towards plus infinity.
19540 @end table
19541
19542 @item -mtrap-precision=@var{trap-precision}
19543 @opindex mtrap-precision
19544 In the Alpha architecture, floating-point traps are imprecise. This
19545 means without software assistance it is impossible to recover from a
19546 floating trap and program execution normally needs to be terminated.
19547 GCC can generate code that can assist operating system trap handlers
19548 in determining the exact location that caused a floating-point trap.
19549 Depending on the requirements of an application, different levels of
19550 precisions can be selected:
19551
19552 @table @samp
19553 @item p
19554 Program precision. This option is the default and means a trap handler
19555 can only identify which program caused a floating-point exception.
19556
19557 @item f
19558 Function precision. The trap handler can determine the function that
19559 caused a floating-point exception.
19560
19561 @item i
19562 Instruction precision. The trap handler can determine the exact
19563 instruction that caused a floating-point exception.
19564 @end table
19565
19566 Other Alpha compilers provide the equivalent options called
19567 @option{-scope_safe} and @option{-resumption_safe}.
19568
19569 @item -mieee-conformant
19570 @opindex mieee-conformant
19571 This option marks the generated code as IEEE conformant. You must not
19572 use this option unless you also specify @option{-mtrap-precision=i} and either
19573 @option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}. Its only effect
19574 is to emit the line @samp{.eflag 48} in the function prologue of the
19575 generated assembly file.
19576
19577 @item -mbuild-constants
19578 @opindex mbuild-constants
19579 Normally GCC examines a 32- or 64-bit integer constant to
19580 see if it can construct it from smaller constants in two or three
19581 instructions. If it cannot, it outputs the constant as a literal and
19582 generates code to load it from the data segment at run time.
19583
19584 Use this option to require GCC to construct @emph{all} integer constants
19585 using code, even if it takes more instructions (the maximum is six).
19586
19587 You typically use this option to build a shared library dynamic
19588 loader. Itself a shared library, it must relocate itself in memory
19589 before it can find the variables and constants in its own data segment.
19590
19591 @item -mbwx
19592 @itemx -mno-bwx
19593 @itemx -mcix
19594 @itemx -mno-cix
19595 @itemx -mfix
19596 @itemx -mno-fix
19597 @itemx -mmax
19598 @itemx -mno-max
19599 @opindex mbwx
19600 @opindex mno-bwx
19601 @opindex mcix
19602 @opindex mno-cix
19603 @opindex mfix
19604 @opindex mno-fix
19605 @opindex mmax
19606 @opindex mno-max
19607 Indicate whether GCC should generate code to use the optional BWX,
19608 CIX, FIX and MAX instruction sets. The default is to use the instruction
19609 sets supported by the CPU type specified via @option{-mcpu=} option or that
19610 of the CPU on which GCC was built if none is specified.
19611
19612 @item -mfloat-vax
19613 @itemx -mfloat-ieee
19614 @opindex mfloat-vax
19615 @opindex mfloat-ieee
19616 Generate code that uses (does not use) VAX F and G floating-point
19617 arithmetic instead of IEEE single and double precision.
19618
19619 @item -mexplicit-relocs
19620 @itemx -mno-explicit-relocs
19621 @opindex mexplicit-relocs
19622 @opindex mno-explicit-relocs
19623 Older Alpha assemblers provided no way to generate symbol relocations
19624 except via assembler macros. Use of these macros does not allow
19625 optimal instruction scheduling. GNU binutils as of version 2.12
19626 supports a new syntax that allows the compiler to explicitly mark
19627 which relocations should apply to which instructions. This option
19628 is mostly useful for debugging, as GCC detects the capabilities of
19629 the assembler when it is built and sets the default accordingly.
19630
19631 @item -msmall-data
19632 @itemx -mlarge-data
19633 @opindex msmall-data
19634 @opindex mlarge-data
19635 When @option{-mexplicit-relocs} is in effect, static data is
19636 accessed via @dfn{gp-relative} relocations. When @option{-msmall-data}
19637 is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
19638 (the @code{.sdata} and @code{.sbss} sections) and are accessed via
19639 16-bit relocations off of the @code{$gp} register. This limits the
19640 size of the small data area to 64KB, but allows the variables to be
19641 directly accessed via a single instruction.
19642
19643 The default is @option{-mlarge-data}. With this option the data area
19644 is limited to just below 2GB@. Programs that require more than 2GB of
19645 data must use @code{malloc} or @code{mmap} to allocate the data in the
19646 heap instead of in the program's data segment.
19647
19648 When generating code for shared libraries, @option{-fpic} implies
19649 @option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.
19650
19651 @item -msmall-text
19652 @itemx -mlarge-text
19653 @opindex msmall-text
19654 @opindex mlarge-text
19655 When @option{-msmall-text} is used, the compiler assumes that the
19656 code of the entire program (or shared library) fits in 4MB, and is
19657 thus reachable with a branch instruction. When @option{-msmall-data}
19658 is used, the compiler can assume that all local symbols share the
19659 same @code{$gp} value, and thus reduce the number of instructions
19660 required for a function call from 4 to 1.
19661
19662 The default is @option{-mlarge-text}.
19663
19664 @item -mcpu=@var{cpu_type}
19665 @opindex mcpu
19666 Set the instruction set and instruction scheduling parameters for
19667 machine type @var{cpu_type}. You can specify either the @samp{EV}
19668 style name or the corresponding chip number. GCC supports scheduling
19669 parameters for the EV4, EV5 and EV6 family of processors and
19670 chooses the default values for the instruction set from the processor
19671 you specify. If you do not specify a processor type, GCC defaults
19672 to the processor on which the compiler was built.
19673
19674 Supported values for @var{cpu_type} are
19675
19676 @table @samp
19677 @item ev4
19678 @itemx ev45
19679 @itemx 21064
19680 Schedules as an EV4 and has no instruction set extensions.
19681
19682 @item ev5
19683 @itemx 21164
19684 Schedules as an EV5 and has no instruction set extensions.
19685
19686 @item ev56
19687 @itemx 21164a
19688 Schedules as an EV5 and supports the BWX extension.
19689
19690 @item pca56
19691 @itemx 21164pc
19692 @itemx 21164PC
19693 Schedules as an EV5 and supports the BWX and MAX extensions.
19694
19695 @item ev6
19696 @itemx 21264
19697 Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
19698
19699 @item ev67
19700 @itemx 21264a
19701 Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
19702 @end table
19703
19704 Native toolchains also support the value @samp{native},
19705 which selects the best architecture option for the host processor.
19706 @option{-mcpu=native} has no effect if GCC does not recognize
19707 the processor.
19708
19709 @item -mtune=@var{cpu_type}
19710 @opindex mtune
19711 Set only the instruction scheduling parameters for machine type
19712 @var{cpu_type}. The instruction set is not changed.
19713
19714 Native toolchains also support the value @samp{native},
19715 which selects the best architecture option for the host processor.
19716 @option{-mtune=native} has no effect if GCC does not recognize
19717 the processor.
19718
19719 @item -mmemory-latency=@var{time}
19720 @opindex mmemory-latency
19721 Sets the latency the scheduler should assume for typical memory
19722 references as seen by the application. This number is highly
19723 dependent on the memory access patterns used by the application
19724 and the size of the external cache on the machine.
19725
19726 Valid options for @var{time} are
19727
19728 @table @samp
19729 @item @var{number}
19730 A decimal number representing clock cycles.
19731
19732 @item L1
19733 @itemx L2
19734 @itemx L3
19735 @itemx main
19736 The compiler contains estimates of the number of clock cycles for
19737 ``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
19738 (also called Dcache, Scache, and Bcache), as well as to main memory.
19739 Note that L3 is only valid for EV5.
19740
19741 @end table
19742 @end table
19743
19744 @node FR30 Options
19745 @subsection FR30 Options
19746 @cindex FR30 Options
19747
19748 These options are defined specifically for the FR30 port.
19749
19750 @table @gcctabopt
19751
19752 @item -msmall-model
19753 @opindex msmall-model
19754 Use the small address space model. This can produce smaller code, but
19755 it does assume that all symbolic values and addresses fit into a
19756 20-bit range.
19757
19758 @item -mno-lsim
19759 @opindex mno-lsim
19760 Assume that runtime support has been provided and so there is no need
19761 to include the simulator library (@file{libsim.a}) on the linker
19762 command line.
19763
19764 @end table
19765
19766 @node FT32 Options
19767 @subsection FT32 Options
19768 @cindex FT32 Options
19769
19770 These options are defined specifically for the FT32 port.
19771
19772 @table @gcctabopt
19773
19774 @item -msim
19775 @opindex msim
19776 Specifies that the program will be run on the simulator. This causes
19777 an alternate runtime startup and library to be linked.
19778 You must not use this option when generating programs that will run on
19779 real hardware; you must provide your own runtime library for whatever
19780 I/O functions are needed.
19781
19782 @item -mlra
19783 @opindex mlra
19784 Enable Local Register Allocation. This is still experimental for FT32,
19785 so by default the compiler uses standard reload.
19786
19787 @item -mnodiv
19788 @opindex mnodiv
19789 Do not use div and mod instructions.
19790
19791 @item -mft32b
19792 @opindex mft32b
19793 Enable use of the extended instructions of the FT32B processor.
19794
19795 @item -mcompress
19796 @opindex mcompress
19797 Compress all code using the Ft32B code compression scheme.
19798
19799 @item -mnopm
19800 @opindex mnopm
19801 Do not generate code that reads program memory.
19802
19803 @end table
19804
19805 @node FRV Options
19806 @subsection FRV Options
19807 @cindex FRV Options
19808
19809 @table @gcctabopt
19810 @item -mgpr-32
19811 @opindex mgpr-32
19812
19813 Only use the first 32 general-purpose registers.
19814
19815 @item -mgpr-64
19816 @opindex mgpr-64
19817
19818 Use all 64 general-purpose registers.
19819
19820 @item -mfpr-32
19821 @opindex mfpr-32
19822
19823 Use only the first 32 floating-point registers.
19824
19825 @item -mfpr-64
19826 @opindex mfpr-64
19827
19828 Use all 64 floating-point registers.
19829
19830 @item -mhard-float
19831 @opindex mhard-float
19832
19833 Use hardware instructions for floating-point operations.
19834
19835 @item -msoft-float
19836 @opindex msoft-float
19837
19838 Use library routines for floating-point operations.
19839
19840 @item -malloc-cc
19841 @opindex malloc-cc
19842
19843 Dynamically allocate condition code registers.
19844
19845 @item -mfixed-cc
19846 @opindex mfixed-cc
19847
19848 Do not try to dynamically allocate condition code registers, only
19849 use @code{icc0} and @code{fcc0}.
19850
19851 @item -mdword
19852 @opindex mdword
19853
19854 Change ABI to use double word insns.
19855
19856 @item -mno-dword
19857 @opindex mno-dword
19858 @opindex mdword
19859
19860 Do not use double word instructions.
19861
19862 @item -mdouble
19863 @opindex mdouble
19864
19865 Use floating-point double instructions.
19866
19867 @item -mno-double
19868 @opindex mno-double
19869
19870 Do not use floating-point double instructions.
19871
19872 @item -mmedia
19873 @opindex mmedia
19874
19875 Use media instructions.
19876
19877 @item -mno-media
19878 @opindex mno-media
19879
19880 Do not use media instructions.
19881
19882 @item -mmuladd
19883 @opindex mmuladd
19884
19885 Use multiply and add/subtract instructions.
19886
19887 @item -mno-muladd
19888 @opindex mno-muladd
19889
19890 Do not use multiply and add/subtract instructions.
19891
19892 @item -mfdpic
19893 @opindex mfdpic
19894
19895 Select the FDPIC ABI, which uses function descriptors to represent
19896 pointers to functions. Without any PIC/PIE-related options, it
19897 implies @option{-fPIE}. With @option{-fpic} or @option{-fpie}, it
19898 assumes GOT entries and small data are within a 12-bit range from the
19899 GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets
19900 are computed with 32 bits.
19901 With a @samp{bfin-elf} target, this option implies @option{-msim}.
19902
19903 @item -minline-plt
19904 @opindex minline-plt
19905
19906 Enable inlining of PLT entries in function calls to functions that are
19907 not known to bind locally. It has no effect without @option{-mfdpic}.
19908 It's enabled by default if optimizing for speed and compiling for
19909 shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an
19910 optimization option such as @option{-O3} or above is present in the
19911 command line.
19912
19913 @item -mTLS
19914 @opindex mTLS
19915
19916 Assume a large TLS segment when generating thread-local code.
19917
19918 @item -mtls
19919 @opindex mtls
19920
19921 Do not assume a large TLS segment when generating thread-local code.
19922
19923 @item -mgprel-ro
19924 @opindex mgprel-ro
19925
19926 Enable the use of @code{GPREL} relocations in the FDPIC ABI for data
19927 that is known to be in read-only sections. It's enabled by default,
19928 except for @option{-fpic} or @option{-fpie}: even though it may help
19929 make the global offset table smaller, it trades 1 instruction for 4.
19930 With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4,
19931 one of which may be shared by multiple symbols, and it avoids the need
19932 for a GOT entry for the referenced symbol, so it's more likely to be a
19933 win. If it is not, @option{-mno-gprel-ro} can be used to disable it.
19934
19935 @item -multilib-library-pic
19936 @opindex multilib-library-pic
19937
19938 Link with the (library, not FD) pic libraries. It's implied by
19939 @option{-mlibrary-pic}, as well as by @option{-fPIC} and
19940 @option{-fpic} without @option{-mfdpic}. You should never have to use
19941 it explicitly.
19942
19943 @item -mlinked-fp
19944 @opindex mlinked-fp
19945
19946 Follow the EABI requirement of always creating a frame pointer whenever
19947 a stack frame is allocated. This option is enabled by default and can
19948 be disabled with @option{-mno-linked-fp}.
19949
19950 @item -mlong-calls
19951 @opindex mlong-calls
19952
19953 Use indirect addressing to call functions outside the current
19954 compilation unit. This allows the functions to be placed anywhere
19955 within the 32-bit address space.
19956
19957 @item -malign-labels
19958 @opindex malign-labels
19959
19960 Try to align labels to an 8-byte boundary by inserting NOPs into the
19961 previous packet. This option only has an effect when VLIW packing
19962 is enabled. It doesn't create new packets; it merely adds NOPs to
19963 existing ones.
19964
19965 @item -mlibrary-pic
19966 @opindex mlibrary-pic
19967
19968 Generate position-independent EABI code.
19969
19970 @item -macc-4
19971 @opindex macc-4
19972
19973 Use only the first four media accumulator registers.
19974
19975 @item -macc-8
19976 @opindex macc-8
19977
19978 Use all eight media accumulator registers.
19979
19980 @item -mpack
19981 @opindex mpack
19982
19983 Pack VLIW instructions.
19984
19985 @item -mno-pack
19986 @opindex mno-pack
19987
19988 Do not pack VLIW instructions.
19989
19990 @item -mno-eflags
19991 @opindex mno-eflags
19992
19993 Do not mark ABI switches in e_flags.
19994
19995 @item -mcond-move
19996 @opindex mcond-move
19997
19998 Enable the use of conditional-move instructions (default).
19999
20000 This switch is mainly for debugging the compiler and will likely be removed
20001 in a future version.
20002
20003 @item -mno-cond-move
20004 @opindex mno-cond-move
20005
20006 Disable the use of conditional-move instructions.
20007
20008 This switch is mainly for debugging the compiler and will likely be removed
20009 in a future version.
20010
20011 @item -mscc
20012 @opindex mscc
20013
20014 Enable the use of conditional set instructions (default).
20015
20016 This switch is mainly for debugging the compiler and will likely be removed
20017 in a future version.
20018
20019 @item -mno-scc
20020 @opindex mno-scc
20021
20022 Disable the use of conditional set instructions.
20023
20024 This switch is mainly for debugging the compiler and will likely be removed
20025 in a future version.
20026
20027 @item -mcond-exec
20028 @opindex mcond-exec
20029
20030 Enable the use of conditional execution (default).
20031
20032 This switch is mainly for debugging the compiler and will likely be removed
20033 in a future version.
20034
20035 @item -mno-cond-exec
20036 @opindex mno-cond-exec
20037
20038 Disable the use of conditional execution.
20039
20040 This switch is mainly for debugging the compiler and will likely be removed
20041 in a future version.
20042
20043 @item -mvliw-branch
20044 @opindex mvliw-branch
20045
20046 Run a pass to pack branches into VLIW instructions (default).
20047
20048 This switch is mainly for debugging the compiler and will likely be removed
20049 in a future version.
20050
20051 @item -mno-vliw-branch
20052 @opindex mno-vliw-branch
20053
20054 Do not run a pass to pack branches into VLIW instructions.
20055
20056 This switch is mainly for debugging the compiler and will likely be removed
20057 in a future version.
20058
20059 @item -mmulti-cond-exec
20060 @opindex mmulti-cond-exec
20061
20062 Enable optimization of @code{&&} and @code{||} in conditional execution
20063 (default).
20064
20065 This switch is mainly for debugging the compiler and will likely be removed
20066 in a future version.
20067
20068 @item -mno-multi-cond-exec
20069 @opindex mno-multi-cond-exec
20070
20071 Disable optimization of @code{&&} and @code{||} in conditional execution.
20072
20073 This switch is mainly for debugging the compiler and will likely be removed
20074 in a future version.
20075
20076 @item -mnested-cond-exec
20077 @opindex mnested-cond-exec
20078
20079 Enable nested conditional execution optimizations (default).
20080
20081 This switch is mainly for debugging the compiler and will likely be removed
20082 in a future version.
20083
20084 @item -mno-nested-cond-exec
20085 @opindex mno-nested-cond-exec
20086
20087 Disable nested conditional execution optimizations.
20088
20089 This switch is mainly for debugging the compiler and will likely be removed
20090 in a future version.
20091
20092 @item -moptimize-membar
20093 @opindex moptimize-membar
20094
20095 This switch removes redundant @code{membar} instructions from the
20096 compiler-generated code. It is enabled by default.
20097
20098 @item -mno-optimize-membar
20099 @opindex mno-optimize-membar
20100 @opindex moptimize-membar
20101
20102 This switch disables the automatic removal of redundant @code{membar}
20103 instructions from the generated code.
20104
20105 @item -mtomcat-stats
20106 @opindex mtomcat-stats
20107
20108 Cause gas to print out tomcat statistics.
20109
20110 @item -mcpu=@var{cpu}
20111 @opindex mcpu
20112
20113 Select the processor type for which to generate code. Possible values are
20114 @samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450},
20115 @samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}.
20116
20117 @end table
20118
20119 @node GNU/Linux Options
20120 @subsection GNU/Linux Options
20121
20122 These @samp{-m} options are defined for GNU/Linux targets:
20123
20124 @table @gcctabopt
20125 @item -mglibc
20126 @opindex mglibc
20127 Use the GNU C library. This is the default except
20128 on @samp{*-*-linux-*uclibc*}, @samp{*-*-linux-*musl*} and
20129 @samp{*-*-linux-*android*} targets.
20130
20131 @item -muclibc
20132 @opindex muclibc
20133 Use uClibc C library. This is the default on
20134 @samp{*-*-linux-*uclibc*} targets.
20135
20136 @item -mmusl
20137 @opindex mmusl
20138 Use the musl C library. This is the default on
20139 @samp{*-*-linux-*musl*} targets.
20140
20141 @item -mbionic
20142 @opindex mbionic
20143 Use Bionic C library. This is the default on
20144 @samp{*-*-linux-*android*} targets.
20145
20146 @item -mandroid
20147 @opindex mandroid
20148 Compile code compatible with Android platform. This is the default on
20149 @samp{*-*-linux-*android*} targets.
20150
20151 When compiling, this option enables @option{-mbionic}, @option{-fPIC},
20152 @option{-fno-exceptions} and @option{-fno-rtti} by default. When linking,
20153 this option makes the GCC driver pass Android-specific options to the linker.
20154 Finally, this option causes the preprocessor macro @code{__ANDROID__}
20155 to be defined.
20156
20157 @item -tno-android-cc
20158 @opindex tno-android-cc
20159 Disable compilation effects of @option{-mandroid}, i.e., do not enable
20160 @option{-mbionic}, @option{-fPIC}, @option{-fno-exceptions} and
20161 @option{-fno-rtti} by default.
20162
20163 @item -tno-android-ld
20164 @opindex tno-android-ld
20165 Disable linking effects of @option{-mandroid}, i.e., pass standard Linux
20166 linking options to the linker.
20167
20168 @end table
20169
20170 @node H8/300 Options
20171 @subsection H8/300 Options
20172
20173 These @samp{-m} options are defined for the H8/300 implementations:
20174
20175 @table @gcctabopt
20176 @item -mrelax
20177 @opindex mrelax
20178 Shorten some address references at link time, when possible; uses the
20179 linker option @option{-relax}. @xref{H8/300,, @code{ld} and the H8/300,
20180 ld, Using ld}, for a fuller description.
20181
20182 @item -mh
20183 @opindex mh
20184 Generate code for the H8/300H@.
20185
20186 @item -ms
20187 @opindex ms
20188 Generate code for the H8S@.
20189
20190 @item -mn
20191 @opindex mn
20192 Generate code for the H8S and H8/300H in the normal mode. This switch
20193 must be used either with @option{-mh} or @option{-ms}.
20194
20195 @item -ms2600
20196 @opindex ms2600
20197 Generate code for the H8S/2600. This switch must be used with @option{-ms}.
20198
20199 @item -mexr
20200 @opindex mexr
20201 Extended registers are stored on stack before execution of function
20202 with monitor attribute. Default option is @option{-mexr}.
20203 This option is valid only for H8S targets.
20204
20205 @item -mno-exr
20206 @opindex mno-exr
20207 @opindex mexr
20208 Extended registers are not stored on stack before execution of function
20209 with monitor attribute. Default option is @option{-mno-exr}.
20210 This option is valid only for H8S targets.
20211
20212 @item -mint32
20213 @opindex mint32
20214 Make @code{int} data 32 bits by default.
20215
20216 @item -malign-300
20217 @opindex malign-300
20218 On the H8/300H and H8S, use the same alignment rules as for the H8/300.
20219 The default for the H8/300H and H8S is to align longs and floats on
20220 4-byte boundaries.
20221 @option{-malign-300} causes them to be aligned on 2-byte boundaries.
20222 This option has no effect on the H8/300.
20223 @end table
20224
20225 @node HPPA Options
20226 @subsection HPPA Options
20227 @cindex HPPA Options
20228
20229 These @samp{-m} options are defined for the HPPA family of computers:
20230
20231 @table @gcctabopt
20232 @item -march=@var{architecture-type}
20233 @opindex march
20234 Generate code for the specified architecture. The choices for
20235 @var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
20236 1.1, and @samp{2.0} for PA 2.0 processors. Refer to
20237 @file{/usr/lib/sched.models} on an HP-UX system to determine the proper
20238 architecture option for your machine. Code compiled for lower numbered
20239 architectures runs on higher numbered architectures, but not the
20240 other way around.
20241
20242 @item -mpa-risc-1-0
20243 @itemx -mpa-risc-1-1
20244 @itemx -mpa-risc-2-0
20245 @opindex mpa-risc-1-0
20246 @opindex mpa-risc-1-1
20247 @opindex mpa-risc-2-0
20248 Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively.
20249
20250 @item -mcaller-copies
20251 @opindex mcaller-copies
20252 The caller copies function arguments passed by hidden reference. This
20253 option should be used with care as it is not compatible with the default
20254 32-bit runtime. However, only aggregates larger than eight bytes are
20255 passed by hidden reference and the option provides better compatibility
20256 with OpenMP.
20257
20258 @item -mjump-in-delay
20259 @opindex mjump-in-delay
20260 This option is ignored and provided for compatibility purposes only.
20261
20262 @item -mdisable-fpregs
20263 @opindex mdisable-fpregs
20264 Prevent floating-point registers from being used in any manner. This is
20265 necessary for compiling kernels that perform lazy context switching of
20266 floating-point registers. If you use this option and attempt to perform
20267 floating-point operations, the compiler aborts.
20268
20269 @item -mdisable-indexing
20270 @opindex mdisable-indexing
20271 Prevent the compiler from using indexing address modes. This avoids some
20272 rather obscure problems when compiling MIG generated code under MACH@.
20273
20274 @item -mno-space-regs
20275 @opindex mno-space-regs
20276 @opindex mspace-regs
20277 Generate code that assumes the target has no space registers. This allows
20278 GCC to generate faster indirect calls and use unscaled index address modes.
20279
20280 Such code is suitable for level 0 PA systems and kernels.
20281
20282 @item -mfast-indirect-calls
20283 @opindex mfast-indirect-calls
20284 Generate code that assumes calls never cross space boundaries. This
20285 allows GCC to emit code that performs faster indirect calls.
20286
20287 This option does not work in the presence of shared libraries or nested
20288 functions.
20289
20290 @item -mfixed-range=@var{register-range}
20291 @opindex mfixed-range
20292 Generate code treating the given register range as fixed registers.
20293 A fixed register is one that the register allocator cannot use. This is
20294 useful when compiling kernel code. A register range is specified as
20295 two registers separated by a dash. Multiple register ranges can be
20296 specified separated by a comma.
20297
20298 @item -mlong-load-store
20299 @opindex mlong-load-store
20300 Generate 3-instruction load and store sequences as sometimes required by
20301 the HP-UX 10 linker. This is equivalent to the @samp{+k} option to
20302 the HP compilers.
20303
20304 @item -mportable-runtime
20305 @opindex mportable-runtime
20306 Use the portable calling conventions proposed by HP for ELF systems.
20307
20308 @item -mgas
20309 @opindex mgas
20310 Enable the use of assembler directives only GAS understands.
20311
20312 @item -mschedule=@var{cpu-type}
20313 @opindex mschedule
20314 Schedule code according to the constraints for the machine type
20315 @var{cpu-type}. The choices for @var{cpu-type} are @samp{700}
20316 @samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}. Refer
20317 to @file{/usr/lib/sched.models} on an HP-UX system to determine the
20318 proper scheduling option for your machine. The default scheduling is
20319 @samp{8000}.
20320
20321 @item -mlinker-opt
20322 @opindex mlinker-opt
20323 Enable the optimization pass in the HP-UX linker. Note this makes symbolic
20324 debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9
20325 linkers in which they give bogus error messages when linking some programs.
20326
20327 @item -msoft-float
20328 @opindex msoft-float
20329 Generate output containing library calls for floating point.
20330 @strong{Warning:} the requisite libraries are not available for all HPPA
20331 targets. Normally the facilities of the machine's usual C compiler are
20332 used, but this cannot be done directly in cross-compilation. You must make
20333 your own arrangements to provide suitable library functions for
20334 cross-compilation.
20335
20336 @option{-msoft-float} changes the calling convention in the output file;
20337 therefore, it is only useful if you compile @emph{all} of a program with
20338 this option. In particular, you need to compile @file{libgcc.a}, the
20339 library that comes with GCC, with @option{-msoft-float} in order for
20340 this to work.
20341
20342 @item -msio
20343 @opindex msio
20344 Generate the predefine, @code{_SIO}, for server IO@. The default is
20345 @option{-mwsio}. This generates the predefines, @code{__hp9000s700},
20346 @code{__hp9000s700__} and @code{_WSIO}, for workstation IO@. These
20347 options are available under HP-UX and HI-UX@.
20348
20349 @item -mgnu-ld
20350 @opindex mgnu-ld
20351 Use options specific to GNU @command{ld}.
20352 This passes @option{-shared} to @command{ld} when
20353 building a shared library. It is the default when GCC is configured,
20354 explicitly or implicitly, with the GNU linker. This option does not
20355 affect which @command{ld} is called; it only changes what parameters
20356 are passed to that @command{ld}.
20357 The @command{ld} that is called is determined by the
20358 @option{--with-ld} configure option, GCC's program search path, and
20359 finally by the user's @env{PATH}. The linker used by GCC can be printed
20360 using @samp{which `gcc -print-prog-name=ld`}. This option is only available
20361 on the 64-bit HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
20362
20363 @item -mhp-ld
20364 @opindex mhp-ld
20365 Use options specific to HP @command{ld}.
20366 This passes @option{-b} to @command{ld} when building
20367 a shared library and passes @option{+Accept TypeMismatch} to @command{ld} on all
20368 links. It is the default when GCC is configured, explicitly or
20369 implicitly, with the HP linker. This option does not affect
20370 which @command{ld} is called; it only changes what parameters are passed to that
20371 @command{ld}.
20372 The @command{ld} that is called is determined by the @option{--with-ld}
20373 configure option, GCC's program search path, and finally by the user's
20374 @env{PATH}. The linker used by GCC can be printed using @samp{which
20375 `gcc -print-prog-name=ld`}. This option is only available on the 64-bit
20376 HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
20377
20378 @item -mlong-calls
20379 @opindex mno-long-calls
20380 @opindex mlong-calls
20381 Generate code that uses long call sequences. This ensures that a call
20382 is always able to reach linker generated stubs. The default is to generate
20383 long calls only when the distance from the call site to the beginning
20384 of the function or translation unit, as the case may be, exceeds a
20385 predefined limit set by the branch type being used. The limits for
20386 normal calls are 7,600,000 and 240,000 bytes, respectively for the
20387 PA 2.0 and PA 1.X architectures. Sibcalls are always limited at
20388 240,000 bytes.
20389
20390 Distances are measured from the beginning of functions when using the
20391 @option{-ffunction-sections} option, or when using the @option{-mgas}
20392 and @option{-mno-portable-runtime} options together under HP-UX with
20393 the SOM linker.
20394
20395 It is normally not desirable to use this option as it degrades
20396 performance. However, it may be useful in large applications,
20397 particularly when partial linking is used to build the application.
20398
20399 The types of long calls used depends on the capabilities of the
20400 assembler and linker, and the type of code being generated. The
20401 impact on systems that support long absolute calls, and long pic
20402 symbol-difference or pc-relative calls should be relatively small.
20403 However, an indirect call is used on 32-bit ELF systems in pic code
20404 and it is quite long.
20405
20406 @item -munix=@var{unix-std}
20407 @opindex march
20408 Generate compiler predefines and select a startfile for the specified
20409 UNIX standard. The choices for @var{unix-std} are @samp{93}, @samp{95}
20410 and @samp{98}. @samp{93} is supported on all HP-UX versions. @samp{95}
20411 is available on HP-UX 10.10 and later. @samp{98} is available on HP-UX
20412 11.11 and later. The default values are @samp{93} for HP-UX 10.00,
20413 @samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11
20414 and later.
20415
20416 @option{-munix=93} provides the same predefines as GCC 3.3 and 3.4.
20417 @option{-munix=95} provides additional predefines for @code{XOPEN_UNIX}
20418 and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}.
20419 @option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX},
20420 @code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and
20421 @code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}.
20422
20423 It is @emph{important} to note that this option changes the interfaces
20424 for various library routines. It also affects the operational behavior
20425 of the C library. Thus, @emph{extreme} care is needed in using this
20426 option.
20427
20428 Library code that is intended to operate with more than one UNIX
20429 standard must test, set and restore the variable @code{__xpg4_extended_mask}
20430 as appropriate. Most GNU software doesn't provide this capability.
20431
20432 @item -nolibdld
20433 @opindex nolibdld
20434 Suppress the generation of link options to search libdld.sl when the
20435 @option{-static} option is specified on HP-UX 10 and later.
20436
20437 @item -static
20438 @opindex static
20439 The HP-UX implementation of setlocale in libc has a dependency on
20440 libdld.sl. There isn't an archive version of libdld.sl. Thus,
20441 when the @option{-static} option is specified, special link options
20442 are needed to resolve this dependency.
20443
20444 On HP-UX 10 and later, the GCC driver adds the necessary options to
20445 link with libdld.sl when the @option{-static} option is specified.
20446 This causes the resulting binary to be dynamic. On the 64-bit port,
20447 the linkers generate dynamic binaries by default in any case. The
20448 @option{-nolibdld} option can be used to prevent the GCC driver from
20449 adding these link options.
20450
20451 @item -threads
20452 @opindex threads
20453 Add support for multithreading with the @dfn{dce thread} library
20454 under HP-UX@. This option sets flags for both the preprocessor and
20455 linker.
20456 @end table
20457
20458 @node IA-64 Options
20459 @subsection IA-64 Options
20460 @cindex IA-64 Options
20461
20462 These are the @samp{-m} options defined for the Intel IA-64 architecture.
20463
20464 @table @gcctabopt
20465 @item -mbig-endian
20466 @opindex mbig-endian
20467 Generate code for a big-endian target. This is the default for HP-UX@.
20468
20469 @item -mlittle-endian
20470 @opindex mlittle-endian
20471 Generate code for a little-endian target. This is the default for AIX5
20472 and GNU/Linux.
20473
20474 @item -mgnu-as
20475 @itemx -mno-gnu-as
20476 @opindex mgnu-as
20477 @opindex mno-gnu-as
20478 Generate (or don't) code for the GNU assembler. This is the default.
20479 @c Also, this is the default if the configure option @option{--with-gnu-as}
20480 @c is used.
20481
20482 @item -mgnu-ld
20483 @itemx -mno-gnu-ld
20484 @opindex mgnu-ld
20485 @opindex mno-gnu-ld
20486 Generate (or don't) code for the GNU linker. This is the default.
20487 @c Also, this is the default if the configure option @option{--with-gnu-ld}
20488 @c is used.
20489
20490 @item -mno-pic
20491 @opindex mno-pic
20492 Generate code that does not use a global pointer register. The result
20493 is not position independent code, and violates the IA-64 ABI@.
20494
20495 @item -mvolatile-asm-stop
20496 @itemx -mno-volatile-asm-stop
20497 @opindex mvolatile-asm-stop
20498 @opindex mno-volatile-asm-stop
20499 Generate (or don't) a stop bit immediately before and after volatile asm
20500 statements.
20501
20502 @item -mregister-names
20503 @itemx -mno-register-names
20504 @opindex mregister-names
20505 @opindex mno-register-names
20506 Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for
20507 the stacked registers. This may make assembler output more readable.
20508
20509 @item -mno-sdata
20510 @itemx -msdata
20511 @opindex mno-sdata
20512 @opindex msdata
20513 Disable (or enable) optimizations that use the small data section. This may
20514 be useful for working around optimizer bugs.
20515
20516 @item -mconstant-gp
20517 @opindex mconstant-gp
20518 Generate code that uses a single constant global pointer value. This is
20519 useful when compiling kernel code.
20520
20521 @item -mauto-pic
20522 @opindex mauto-pic
20523 Generate code that is self-relocatable. This implies @option{-mconstant-gp}.
20524 This is useful when compiling firmware code.
20525
20526 @item -minline-float-divide-min-latency
20527 @opindex minline-float-divide-min-latency
20528 Generate code for inline divides of floating-point values
20529 using the minimum latency algorithm.
20530
20531 @item -minline-float-divide-max-throughput
20532 @opindex minline-float-divide-max-throughput
20533 Generate code for inline divides of floating-point values
20534 using the maximum throughput algorithm.
20535
20536 @item -mno-inline-float-divide
20537 @opindex mno-inline-float-divide
20538 Do not generate inline code for divides of floating-point values.
20539
20540 @item -minline-int-divide-min-latency
20541 @opindex minline-int-divide-min-latency
20542 Generate code for inline divides of integer values
20543 using the minimum latency algorithm.
20544
20545 @item -minline-int-divide-max-throughput
20546 @opindex minline-int-divide-max-throughput
20547 Generate code for inline divides of integer values
20548 using the maximum throughput algorithm.
20549
20550 @item -mno-inline-int-divide
20551 @opindex mno-inline-int-divide
20552 @opindex minline-int-divide
20553 Do not generate inline code for divides of integer values.
20554
20555 @item -minline-sqrt-min-latency
20556 @opindex minline-sqrt-min-latency
20557 Generate code for inline square roots
20558 using the minimum latency algorithm.
20559
20560 @item -minline-sqrt-max-throughput
20561 @opindex minline-sqrt-max-throughput
20562 Generate code for inline square roots
20563 using the maximum throughput algorithm.
20564
20565 @item -mno-inline-sqrt
20566 @opindex mno-inline-sqrt
20567 Do not generate inline code for @code{sqrt}.
20568
20569 @item -mfused-madd
20570 @itemx -mno-fused-madd
20571 @opindex mfused-madd
20572 @opindex mno-fused-madd
20573 Do (don't) generate code that uses the fused multiply/add or multiply/subtract
20574 instructions. The default is to use these instructions.
20575
20576 @item -mno-dwarf2-asm
20577 @itemx -mdwarf2-asm
20578 @opindex mno-dwarf2-asm
20579 @opindex mdwarf2-asm
20580 Don't (or do) generate assembler code for the DWARF line number debugging
20581 info. This may be useful when not using the GNU assembler.
20582
20583 @item -mearly-stop-bits
20584 @itemx -mno-early-stop-bits
20585 @opindex mearly-stop-bits
20586 @opindex mno-early-stop-bits
20587 Allow stop bits to be placed earlier than immediately preceding the
20588 instruction that triggered the stop bit. This can improve instruction
20589 scheduling, but does not always do so.
20590
20591 @item -mfixed-range=@var{register-range}
20592 @opindex mfixed-range
20593 Generate code treating the given register range as fixed registers.
20594 A fixed register is one that the register allocator cannot use. This is
20595 useful when compiling kernel code. A register range is specified as
20596 two registers separated by a dash. Multiple register ranges can be
20597 specified separated by a comma.
20598
20599 @item -mtls-size=@var{tls-size}
20600 @opindex mtls-size
20601 Specify bit size of immediate TLS offsets. Valid values are 14, 22, and
20602 64.
20603
20604 @item -mtune=@var{cpu-type}
20605 @opindex mtune
20606 Tune the instruction scheduling for a particular CPU, Valid values are
20607 @samp{itanium}, @samp{itanium1}, @samp{merced}, @samp{itanium2},
20608 and @samp{mckinley}.
20609
20610 @item -milp32
20611 @itemx -mlp64
20612 @opindex milp32
20613 @opindex mlp64
20614 Generate code for a 32-bit or 64-bit environment.
20615 The 32-bit environment sets int, long and pointer to 32 bits.
20616 The 64-bit environment sets int to 32 bits and long and pointer
20617 to 64 bits. These are HP-UX specific flags.
20618
20619 @item -mno-sched-br-data-spec
20620 @itemx -msched-br-data-spec
20621 @opindex mno-sched-br-data-spec
20622 @opindex msched-br-data-spec
20623 (Dis/En)able data speculative scheduling before reload.
20624 This results in generation of @code{ld.a} instructions and
20625 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
20626 The default setting is disabled.
20627
20628 @item -msched-ar-data-spec
20629 @itemx -mno-sched-ar-data-spec
20630 @opindex msched-ar-data-spec
20631 @opindex mno-sched-ar-data-spec
20632 (En/Dis)able data speculative scheduling after reload.
20633 This results in generation of @code{ld.a} instructions and
20634 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
20635 The default setting is enabled.
20636
20637 @item -mno-sched-control-spec
20638 @itemx -msched-control-spec
20639 @opindex mno-sched-control-spec
20640 @opindex msched-control-spec
20641 (Dis/En)able control speculative scheduling. This feature is
20642 available only during region scheduling (i.e.@: before reload).
20643 This results in generation of the @code{ld.s} instructions and
20644 the corresponding check instructions @code{chk.s}.
20645 The default setting is disabled.
20646
20647 @item -msched-br-in-data-spec
20648 @itemx -mno-sched-br-in-data-spec
20649 @opindex msched-br-in-data-spec
20650 @opindex mno-sched-br-in-data-spec
20651 (En/Dis)able speculative scheduling of the instructions that
20652 are dependent on the data speculative loads before reload.
20653 This is effective only with @option{-msched-br-data-spec} enabled.
20654 The default setting is enabled.
20655
20656 @item -msched-ar-in-data-spec
20657 @itemx -mno-sched-ar-in-data-spec
20658 @opindex msched-ar-in-data-spec
20659 @opindex mno-sched-ar-in-data-spec
20660 (En/Dis)able speculative scheduling of the instructions that
20661 are dependent on the data speculative loads after reload.
20662 This is effective only with @option{-msched-ar-data-spec} enabled.
20663 The default setting is enabled.
20664
20665 @item -msched-in-control-spec
20666 @itemx -mno-sched-in-control-spec
20667 @opindex msched-in-control-spec
20668 @opindex mno-sched-in-control-spec
20669 (En/Dis)able speculative scheduling of the instructions that
20670 are dependent on the control speculative loads.
20671 This is effective only with @option{-msched-control-spec} enabled.
20672 The default setting is enabled.
20673
20674 @item -mno-sched-prefer-non-data-spec-insns
20675 @itemx -msched-prefer-non-data-spec-insns
20676 @opindex mno-sched-prefer-non-data-spec-insns
20677 @opindex msched-prefer-non-data-spec-insns
20678 If enabled, data-speculative instructions are chosen for schedule
20679 only if there are no other choices at the moment. This makes
20680 the use of the data speculation much more conservative.
20681 The default setting is disabled.
20682
20683 @item -mno-sched-prefer-non-control-spec-insns
20684 @itemx -msched-prefer-non-control-spec-insns
20685 @opindex mno-sched-prefer-non-control-spec-insns
20686 @opindex msched-prefer-non-control-spec-insns
20687 If enabled, control-speculative instructions are chosen for schedule
20688 only if there are no other choices at the moment. This makes
20689 the use of the control speculation much more conservative.
20690 The default setting is disabled.
20691
20692 @item -mno-sched-count-spec-in-critical-path
20693 @itemx -msched-count-spec-in-critical-path
20694 @opindex mno-sched-count-spec-in-critical-path
20695 @opindex msched-count-spec-in-critical-path
20696 If enabled, speculative dependencies are considered during
20697 computation of the instructions priorities. This makes the use of the
20698 speculation a bit more conservative.
20699 The default setting is disabled.
20700
20701 @item -msched-spec-ldc
20702 @opindex msched-spec-ldc
20703 Use a simple data speculation check. This option is on by default.
20704
20705 @item -msched-control-spec-ldc
20706 @opindex msched-spec-ldc
20707 Use a simple check for control speculation. This option is on by default.
20708
20709 @item -msched-stop-bits-after-every-cycle
20710 @opindex msched-stop-bits-after-every-cycle
20711 Place a stop bit after every cycle when scheduling. This option is on
20712 by default.
20713
20714 @item -msched-fp-mem-deps-zero-cost
20715 @opindex msched-fp-mem-deps-zero-cost
20716 Assume that floating-point stores and loads are not likely to cause a conflict
20717 when placed into the same instruction group. This option is disabled by
20718 default.
20719
20720 @item -msel-sched-dont-check-control-spec
20721 @opindex msel-sched-dont-check-control-spec
20722 Generate checks for control speculation in selective scheduling.
20723 This flag is disabled by default.
20724
20725 @item -msched-max-memory-insns=@var{max-insns}
20726 @opindex msched-max-memory-insns
20727 Limit on the number of memory insns per instruction group, giving lower
20728 priority to subsequent memory insns attempting to schedule in the same
20729 instruction group. Frequently useful to prevent cache bank conflicts.
20730 The default value is 1.
20731
20732 @item -msched-max-memory-insns-hard-limit
20733 @opindex msched-max-memory-insns-hard-limit
20734 Makes the limit specified by @option{msched-max-memory-insns} a hard limit,
20735 disallowing more than that number in an instruction group.
20736 Otherwise, the limit is ``soft'', meaning that non-memory operations
20737 are preferred when the limit is reached, but memory operations may still
20738 be scheduled.
20739
20740 @end table
20741
20742 @node LM32 Options
20743 @subsection LM32 Options
20744 @cindex LM32 options
20745
20746 These @option{-m} options are defined for the LatticeMico32 architecture:
20747
20748 @table @gcctabopt
20749 @item -mbarrel-shift-enabled
20750 @opindex mbarrel-shift-enabled
20751 Enable barrel-shift instructions.
20752
20753 @item -mdivide-enabled
20754 @opindex mdivide-enabled
20755 Enable divide and modulus instructions.
20756
20757 @item -mmultiply-enabled
20758 @opindex multiply-enabled
20759 Enable multiply instructions.
20760
20761 @item -msign-extend-enabled
20762 @opindex msign-extend-enabled
20763 Enable sign extend instructions.
20764
20765 @item -muser-enabled
20766 @opindex muser-enabled
20767 Enable user-defined instructions.
20768
20769 @end table
20770
20771 @node M32C Options
20772 @subsection M32C Options
20773 @cindex M32C options
20774
20775 @table @gcctabopt
20776 @item -mcpu=@var{name}
20777 @opindex mcpu=
20778 Select the CPU for which code is generated. @var{name} may be one of
20779 @samp{r8c} for the R8C/Tiny series, @samp{m16c} for the M16C (up to
20780 /60) series, @samp{m32cm} for the M16C/80 series, or @samp{m32c} for
20781 the M32C/80 series.
20782
20783 @item -msim
20784 @opindex msim
20785 Specifies that the program will be run on the simulator. This causes
20786 an alternate runtime library to be linked in which supports, for
20787 example, file I/O@. You must not use this option when generating
20788 programs that will run on real hardware; you must provide your own
20789 runtime library for whatever I/O functions are needed.
20790
20791 @item -memregs=@var{number}
20792 @opindex memregs=
20793 Specifies the number of memory-based pseudo-registers GCC uses
20794 during code generation. These pseudo-registers are used like real
20795 registers, so there is a tradeoff between GCC's ability to fit the
20796 code into available registers, and the performance penalty of using
20797 memory instead of registers. Note that all modules in a program must
20798 be compiled with the same value for this option. Because of that, you
20799 must not use this option with GCC's default runtime libraries.
20800
20801 @end table
20802
20803 @node M32R/D Options
20804 @subsection M32R/D Options
20805 @cindex M32R/D options
20806
20807 These @option{-m} options are defined for Renesas M32R/D architectures:
20808
20809 @table @gcctabopt
20810 @item -m32r2
20811 @opindex m32r2
20812 Generate code for the M32R/2@.
20813
20814 @item -m32rx
20815 @opindex m32rx
20816 Generate code for the M32R/X@.
20817
20818 @item -m32r
20819 @opindex m32r
20820 Generate code for the M32R@. This is the default.
20821
20822 @item -mmodel=small
20823 @opindex mmodel=small
20824 Assume all objects live in the lower 16MB of memory (so that their addresses
20825 can be loaded with the @code{ld24} instruction), and assume all subroutines
20826 are reachable with the @code{bl} instruction.
20827 This is the default.
20828
20829 The addressability of a particular object can be set with the
20830 @code{model} attribute.
20831
20832 @item -mmodel=medium
20833 @opindex mmodel=medium
20834 Assume objects may be anywhere in the 32-bit address space (the compiler
20835 generates @code{seth/add3} instructions to load their addresses), and
20836 assume all subroutines are reachable with the @code{bl} instruction.
20837
20838 @item -mmodel=large
20839 @opindex mmodel=large
20840 Assume objects may be anywhere in the 32-bit address space (the compiler
20841 generates @code{seth/add3} instructions to load their addresses), and
20842 assume subroutines may not be reachable with the @code{bl} instruction
20843 (the compiler generates the much slower @code{seth/add3/jl}
20844 instruction sequence).
20845
20846 @item -msdata=none
20847 @opindex msdata=none
20848 Disable use of the small data area. Variables are put into
20849 one of @code{.data}, @code{.bss}, or @code{.rodata} (unless the
20850 @code{section} attribute has been specified).
20851 This is the default.
20852
20853 The small data area consists of sections @code{.sdata} and @code{.sbss}.
20854 Objects may be explicitly put in the small data area with the
20855 @code{section} attribute using one of these sections.
20856
20857 @item -msdata=sdata
20858 @opindex msdata=sdata
20859 Put small global and static data in the small data area, but do not
20860 generate special code to reference them.
20861
20862 @item -msdata=use
20863 @opindex msdata=use
20864 Put small global and static data in the small data area, and generate
20865 special instructions to reference them.
20866
20867 @item -G @var{num}
20868 @opindex G
20869 @cindex smaller data references
20870 Put global and static objects less than or equal to @var{num} bytes
20871 into the small data or BSS sections instead of the normal data or BSS
20872 sections. The default value of @var{num} is 8.
20873 The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
20874 for this option to have any effect.
20875
20876 All modules should be compiled with the same @option{-G @var{num}} value.
20877 Compiling with different values of @var{num} may or may not work; if it
20878 doesn't the linker gives an error message---incorrect code is not
20879 generated.
20880
20881 @item -mdebug
20882 @opindex mdebug
20883 Makes the M32R-specific code in the compiler display some statistics
20884 that might help in debugging programs.
20885
20886 @item -malign-loops
20887 @opindex malign-loops
20888 Align all loops to a 32-byte boundary.
20889
20890 @item -mno-align-loops
20891 @opindex mno-align-loops
20892 Do not enforce a 32-byte alignment for loops. This is the default.
20893
20894 @item -missue-rate=@var{number}
20895 @opindex missue-rate=@var{number}
20896 Issue @var{number} instructions per cycle. @var{number} can only be 1
20897 or 2.
20898
20899 @item -mbranch-cost=@var{number}
20900 @opindex mbranch-cost=@var{number}
20901 @var{number} can only be 1 or 2. If it is 1 then branches are
20902 preferred over conditional code, if it is 2, then the opposite applies.
20903
20904 @item -mflush-trap=@var{number}
20905 @opindex mflush-trap=@var{number}
20906 Specifies the trap number to use to flush the cache. The default is
20907 12. Valid numbers are between 0 and 15 inclusive.
20908
20909 @item -mno-flush-trap
20910 @opindex mno-flush-trap
20911 Specifies that the cache cannot be flushed by using a trap.
20912
20913 @item -mflush-func=@var{name}
20914 @opindex mflush-func=@var{name}
20915 Specifies the name of the operating system function to call to flush
20916 the cache. The default is @samp{_flush_cache}, but a function call
20917 is only used if a trap is not available.
20918
20919 @item -mno-flush-func
20920 @opindex mno-flush-func
20921 Indicates that there is no OS function for flushing the cache.
20922
20923 @end table
20924
20925 @node M680x0 Options
20926 @subsection M680x0 Options
20927 @cindex M680x0 options
20928
20929 These are the @samp{-m} options defined for M680x0 and ColdFire processors.
20930 The default settings depend on which architecture was selected when
20931 the compiler was configured; the defaults for the most common choices
20932 are given below.
20933
20934 @table @gcctabopt
20935 @item -march=@var{arch}
20936 @opindex march
20937 Generate code for a specific M680x0 or ColdFire instruction set
20938 architecture. Permissible values of @var{arch} for M680x0
20939 architectures are: @samp{68000}, @samp{68010}, @samp{68020},
20940 @samp{68030}, @samp{68040}, @samp{68060} and @samp{cpu32}. ColdFire
20941 architectures are selected according to Freescale's ISA classification
20942 and the permissible values are: @samp{isaa}, @samp{isaaplus},
20943 @samp{isab} and @samp{isac}.
20944
20945 GCC defines a macro @code{__mcf@var{arch}__} whenever it is generating
20946 code for a ColdFire target. The @var{arch} in this macro is one of the
20947 @option{-march} arguments given above.
20948
20949 When used together, @option{-march} and @option{-mtune} select code
20950 that runs on a family of similar processors but that is optimized
20951 for a particular microarchitecture.
20952
20953 @item -mcpu=@var{cpu}
20954 @opindex mcpu
20955 Generate code for a specific M680x0 or ColdFire processor.
20956 The M680x0 @var{cpu}s are: @samp{68000}, @samp{68010}, @samp{68020},
20957 @samp{68030}, @samp{68040}, @samp{68060}, @samp{68302}, @samp{68332}
20958 and @samp{cpu32}. The ColdFire @var{cpu}s are given by the table
20959 below, which also classifies the CPUs into families:
20960
20961 @multitable @columnfractions 0.20 0.80
20962 @item @strong{Family} @tab @strong{@samp{-mcpu} arguments}
20963 @item @samp{51} @tab @samp{51} @samp{51ac} @samp{51ag} @samp{51cn} @samp{51em} @samp{51je} @samp{51jf} @samp{51jg} @samp{51jm} @samp{51mm} @samp{51qe} @samp{51qm}
20964 @item @samp{5206} @tab @samp{5202} @samp{5204} @samp{5206}
20965 @item @samp{5206e} @tab @samp{5206e}
20966 @item @samp{5208} @tab @samp{5207} @samp{5208}
20967 @item @samp{5211a} @tab @samp{5210a} @samp{5211a}
20968 @item @samp{5213} @tab @samp{5211} @samp{5212} @samp{5213}
20969 @item @samp{5216} @tab @samp{5214} @samp{5216}
20970 @item @samp{52235} @tab @samp{52230} @samp{52231} @samp{52232} @samp{52233} @samp{52234} @samp{52235}
20971 @item @samp{5225} @tab @samp{5224} @samp{5225}
20972 @item @samp{52259} @tab @samp{52252} @samp{52254} @samp{52255} @samp{52256} @samp{52258} @samp{52259}
20973 @item @samp{5235} @tab @samp{5232} @samp{5233} @samp{5234} @samp{5235} @samp{523x}
20974 @item @samp{5249} @tab @samp{5249}
20975 @item @samp{5250} @tab @samp{5250}
20976 @item @samp{5271} @tab @samp{5270} @samp{5271}
20977 @item @samp{5272} @tab @samp{5272}
20978 @item @samp{5275} @tab @samp{5274} @samp{5275}
20979 @item @samp{5282} @tab @samp{5280} @samp{5281} @samp{5282} @samp{528x}
20980 @item @samp{53017} @tab @samp{53011} @samp{53012} @samp{53013} @samp{53014} @samp{53015} @samp{53016} @samp{53017}
20981 @item @samp{5307} @tab @samp{5307}
20982 @item @samp{5329} @tab @samp{5327} @samp{5328} @samp{5329} @samp{532x}
20983 @item @samp{5373} @tab @samp{5372} @samp{5373} @samp{537x}
20984 @item @samp{5407} @tab @samp{5407}
20985 @item @samp{5475} @tab @samp{5470} @samp{5471} @samp{5472} @samp{5473} @samp{5474} @samp{5475} @samp{547x} @samp{5480} @samp{5481} @samp{5482} @samp{5483} @samp{5484} @samp{5485}
20986 @end multitable
20987
20988 @option{-mcpu=@var{cpu}} overrides @option{-march=@var{arch}} if
20989 @var{arch} is compatible with @var{cpu}. Other combinations of
20990 @option{-mcpu} and @option{-march} are rejected.
20991
20992 GCC defines the macro @code{__mcf_cpu_@var{cpu}} when ColdFire target
20993 @var{cpu} is selected. It also defines @code{__mcf_family_@var{family}},
20994 where the value of @var{family} is given by the table above.
20995
20996 @item -mtune=@var{tune}
20997 @opindex mtune
20998 Tune the code for a particular microarchitecture within the
20999 constraints set by @option{-march} and @option{-mcpu}.
21000 The M680x0 microarchitectures are: @samp{68000}, @samp{68010},
21001 @samp{68020}, @samp{68030}, @samp{68040}, @samp{68060}
21002 and @samp{cpu32}. The ColdFire microarchitectures
21003 are: @samp{cfv1}, @samp{cfv2}, @samp{cfv3}, @samp{cfv4} and @samp{cfv4e}.
21004
21005 You can also use @option{-mtune=68020-40} for code that needs
21006 to run relatively well on 68020, 68030 and 68040 targets.
21007 @option{-mtune=68020-60} is similar but includes 68060 targets
21008 as well. These two options select the same tuning decisions as
21009 @option{-m68020-40} and @option{-m68020-60} respectively.
21010
21011 GCC defines the macros @code{__mc@var{arch}} and @code{__mc@var{arch}__}
21012 when tuning for 680x0 architecture @var{arch}. It also defines
21013 @code{mc@var{arch}} unless either @option{-ansi} or a non-GNU @option{-std}
21014 option is used. If GCC is tuning for a range of architectures,
21015 as selected by @option{-mtune=68020-40} or @option{-mtune=68020-60},
21016 it defines the macros for every architecture in the range.
21017
21018 GCC also defines the macro @code{__m@var{uarch}__} when tuning for
21019 ColdFire microarchitecture @var{uarch}, where @var{uarch} is one
21020 of the arguments given above.
21021
21022 @item -m68000
21023 @itemx -mc68000
21024 @opindex m68000
21025 @opindex mc68000
21026 Generate output for a 68000. This is the default
21027 when the compiler is configured for 68000-based systems.
21028 It is equivalent to @option{-march=68000}.
21029
21030 Use this option for microcontrollers with a 68000 or EC000 core,
21031 including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
21032
21033 @item -m68010
21034 @opindex m68010
21035 Generate output for a 68010. This is the default
21036 when the compiler is configured for 68010-based systems.
21037 It is equivalent to @option{-march=68010}.
21038
21039 @item -m68020
21040 @itemx -mc68020
21041 @opindex m68020
21042 @opindex mc68020
21043 Generate output for a 68020. This is the default
21044 when the compiler is configured for 68020-based systems.
21045 It is equivalent to @option{-march=68020}.
21046
21047 @item -m68030
21048 @opindex m68030
21049 Generate output for a 68030. This is the default when the compiler is
21050 configured for 68030-based systems. It is equivalent to
21051 @option{-march=68030}.
21052
21053 @item -m68040
21054 @opindex m68040
21055 Generate output for a 68040. This is the default when the compiler is
21056 configured for 68040-based systems. It is equivalent to
21057 @option{-march=68040}.
21058
21059 This option inhibits the use of 68881/68882 instructions that have to be
21060 emulated by software on the 68040. Use this option if your 68040 does not
21061 have code to emulate those instructions.
21062
21063 @item -m68060
21064 @opindex m68060
21065 Generate output for a 68060. This is the default when the compiler is
21066 configured for 68060-based systems. It is equivalent to
21067 @option{-march=68060}.
21068
21069 This option inhibits the use of 68020 and 68881/68882 instructions that
21070 have to be emulated by software on the 68060. Use this option if your 68060
21071 does not have code to emulate those instructions.
21072
21073 @item -mcpu32
21074 @opindex mcpu32
21075 Generate output for a CPU32. This is the default
21076 when the compiler is configured for CPU32-based systems.
21077 It is equivalent to @option{-march=cpu32}.
21078
21079 Use this option for microcontrollers with a
21080 CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
21081 68336, 68340, 68341, 68349 and 68360.
21082
21083 @item -m5200
21084 @opindex m5200
21085 Generate output for a 520X ColdFire CPU@. This is the default
21086 when the compiler is configured for 520X-based systems.
21087 It is equivalent to @option{-mcpu=5206}, and is now deprecated
21088 in favor of that option.
21089
21090 Use this option for microcontroller with a 5200 core, including
21091 the MCF5202, MCF5203, MCF5204 and MCF5206.
21092
21093 @item -m5206e
21094 @opindex m5206e
21095 Generate output for a 5206e ColdFire CPU@. The option is now
21096 deprecated in favor of the equivalent @option{-mcpu=5206e}.
21097
21098 @item -m528x
21099 @opindex m528x
21100 Generate output for a member of the ColdFire 528X family.
21101 The option is now deprecated in favor of the equivalent
21102 @option{-mcpu=528x}.
21103
21104 @item -m5307
21105 @opindex m5307
21106 Generate output for a ColdFire 5307 CPU@. The option is now deprecated
21107 in favor of the equivalent @option{-mcpu=5307}.
21108
21109 @item -m5407
21110 @opindex m5407
21111 Generate output for a ColdFire 5407 CPU@. The option is now deprecated
21112 in favor of the equivalent @option{-mcpu=5407}.
21113
21114 @item -mcfv4e
21115 @opindex mcfv4e
21116 Generate output for a ColdFire V4e family CPU (e.g.@: 547x/548x).
21117 This includes use of hardware floating-point instructions.
21118 The option is equivalent to @option{-mcpu=547x}, and is now
21119 deprecated in favor of that option.
21120
21121 @item -m68020-40
21122 @opindex m68020-40
21123 Generate output for a 68040, without using any of the new instructions.
21124 This results in code that can run relatively efficiently on either a
21125 68020/68881 or a 68030 or a 68040. The generated code does use the
21126 68881 instructions that are emulated on the 68040.
21127
21128 The option is equivalent to @option{-march=68020} @option{-mtune=68020-40}.
21129
21130 @item -m68020-60
21131 @opindex m68020-60
21132 Generate output for a 68060, without using any of the new instructions.
21133 This results in code that can run relatively efficiently on either a
21134 68020/68881 or a 68030 or a 68040. The generated code does use the
21135 68881 instructions that are emulated on the 68060.
21136
21137 The option is equivalent to @option{-march=68020} @option{-mtune=68020-60}.
21138
21139 @item -mhard-float
21140 @itemx -m68881
21141 @opindex mhard-float
21142 @opindex m68881
21143 Generate floating-point instructions. This is the default for 68020
21144 and above, and for ColdFire devices that have an FPU@. It defines the
21145 macro @code{__HAVE_68881__} on M680x0 targets and @code{__mcffpu__}
21146 on ColdFire targets.
21147
21148 @item -msoft-float
21149 @opindex msoft-float
21150 Do not generate floating-point instructions; use library calls instead.
21151 This is the default for 68000, 68010, and 68832 targets. It is also
21152 the default for ColdFire devices that have no FPU.
21153
21154 @item -mdiv
21155 @itemx -mno-div
21156 @opindex mdiv
21157 @opindex mno-div
21158 Generate (do not generate) ColdFire hardware divide and remainder
21159 instructions. If @option{-march} is used without @option{-mcpu},
21160 the default is ``on'' for ColdFire architectures and ``off'' for M680x0
21161 architectures. Otherwise, the default is taken from the target CPU
21162 (either the default CPU, or the one specified by @option{-mcpu}). For
21163 example, the default is ``off'' for @option{-mcpu=5206} and ``on'' for
21164 @option{-mcpu=5206e}.
21165
21166 GCC defines the macro @code{__mcfhwdiv__} when this option is enabled.
21167
21168 @item -mshort
21169 @opindex mshort
21170 Consider type @code{int} to be 16 bits wide, like @code{short int}.
21171 Additionally, parameters passed on the stack are also aligned to a
21172 16-bit boundary even on targets whose API mandates promotion to 32-bit.
21173
21174 @item -mno-short
21175 @opindex mno-short
21176 Do not consider type @code{int} to be 16 bits wide. This is the default.
21177
21178 @item -mnobitfield
21179 @itemx -mno-bitfield
21180 @opindex mnobitfield
21181 @opindex mno-bitfield
21182 Do not use the bit-field instructions. The @option{-m68000}, @option{-mcpu32}
21183 and @option{-m5200} options imply @w{@option{-mnobitfield}}.
21184
21185 @item -mbitfield
21186 @opindex mbitfield
21187 Do use the bit-field instructions. The @option{-m68020} option implies
21188 @option{-mbitfield}. This is the default if you use a configuration
21189 designed for a 68020.
21190
21191 @item -mrtd
21192 @opindex mrtd
21193 Use a different function-calling convention, in which functions
21194 that take a fixed number of arguments return with the @code{rtd}
21195 instruction, which pops their arguments while returning. This
21196 saves one instruction in the caller since there is no need to pop
21197 the arguments there.
21198
21199 This calling convention is incompatible with the one normally
21200 used on Unix, so you cannot use it if you need to call libraries
21201 compiled with the Unix compiler.
21202
21203 Also, you must provide function prototypes for all functions that
21204 take variable numbers of arguments (including @code{printf});
21205 otherwise incorrect code is generated for calls to those
21206 functions.
21207
21208 In addition, seriously incorrect code results if you call a
21209 function with too many arguments. (Normally, extra arguments are
21210 harmlessly ignored.)
21211
21212 The @code{rtd} instruction is supported by the 68010, 68020, 68030,
21213 68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
21214
21215 The default is @option{-mno-rtd}.
21216
21217 @item -malign-int
21218 @itemx -mno-align-int
21219 @opindex malign-int
21220 @opindex mno-align-int
21221 Control whether GCC aligns @code{int}, @code{long}, @code{long long},
21222 @code{float}, @code{double}, and @code{long double} variables on a 32-bit
21223 boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
21224 Aligning variables on 32-bit boundaries produces code that runs somewhat
21225 faster on processors with 32-bit busses at the expense of more memory.
21226
21227 @strong{Warning:} if you use the @option{-malign-int} switch, GCC
21228 aligns structures containing the above types differently than
21229 most published application binary interface specifications for the m68k.
21230
21231 @item -mpcrel
21232 @opindex mpcrel
21233 Use the pc-relative addressing mode of the 68000 directly, instead of
21234 using a global offset table. At present, this option implies @option{-fpic},
21235 allowing at most a 16-bit offset for pc-relative addressing. @option{-fPIC} is
21236 not presently supported with @option{-mpcrel}, though this could be supported for
21237 68020 and higher processors.
21238
21239 @item -mno-strict-align
21240 @itemx -mstrict-align
21241 @opindex mno-strict-align
21242 @opindex mstrict-align
21243 Do not (do) assume that unaligned memory references are handled by
21244 the system.
21245
21246 @item -msep-data
21247 Generate code that allows the data segment to be located in a different
21248 area of memory from the text segment. This allows for execute-in-place in
21249 an environment without virtual memory management. This option implies
21250 @option{-fPIC}.
21251
21252 @item -mno-sep-data
21253 Generate code that assumes that the data segment follows the text segment.
21254 This is the default.
21255
21256 @item -mid-shared-library
21257 Generate code that supports shared libraries via the library ID method.
21258 This allows for execute-in-place and shared libraries in an environment
21259 without virtual memory management. This option implies @option{-fPIC}.
21260
21261 @item -mno-id-shared-library
21262 Generate code that doesn't assume ID-based shared libraries are being used.
21263 This is the default.
21264
21265 @item -mshared-library-id=n
21266 Specifies the identification number of the ID-based shared library being
21267 compiled. Specifying a value of 0 generates more compact code; specifying
21268 other values forces the allocation of that number to the current
21269 library, but is no more space- or time-efficient than omitting this option.
21270
21271 @item -mxgot
21272 @itemx -mno-xgot
21273 @opindex mxgot
21274 @opindex mno-xgot
21275 When generating position-independent code for ColdFire, generate code
21276 that works if the GOT has more than 8192 entries. This code is
21277 larger and slower than code generated without this option. On M680x0
21278 processors, this option is not needed; @option{-fPIC} suffices.
21279
21280 GCC normally uses a single instruction to load values from the GOT@.
21281 While this is relatively efficient, it only works if the GOT
21282 is smaller than about 64k. Anything larger causes the linker
21283 to report an error such as:
21284
21285 @cindex relocation truncated to fit (ColdFire)
21286 @smallexample
21287 relocation truncated to fit: R_68K_GOT16O foobar
21288 @end smallexample
21289
21290 If this happens, you should recompile your code with @option{-mxgot}.
21291 It should then work with very large GOTs. However, code generated with
21292 @option{-mxgot} is less efficient, since it takes 4 instructions to fetch
21293 the value of a global symbol.
21294
21295 Note that some linkers, including newer versions of the GNU linker,
21296 can create multiple GOTs and sort GOT entries. If you have such a linker,
21297 you should only need to use @option{-mxgot} when compiling a single
21298 object file that accesses more than 8192 GOT entries. Very few do.
21299
21300 These options have no effect unless GCC is generating
21301 position-independent code.
21302
21303 @item -mlong-jump-table-offsets
21304 @opindex mlong-jump-table-offsets
21305 Use 32-bit offsets in @code{switch} tables. The default is to use
21306 16-bit offsets.
21307
21308 @end table
21309
21310 @node MCore Options
21311 @subsection MCore Options
21312 @cindex MCore options
21313
21314 These are the @samp{-m} options defined for the Motorola M*Core
21315 processors.
21316
21317 @table @gcctabopt
21318
21319 @item -mhardlit
21320 @itemx -mno-hardlit
21321 @opindex mhardlit
21322 @opindex mno-hardlit
21323 Inline constants into the code stream if it can be done in two
21324 instructions or less.
21325
21326 @item -mdiv
21327 @itemx -mno-div
21328 @opindex mdiv
21329 @opindex mno-div
21330 Use the divide instruction. (Enabled by default).
21331
21332 @item -mrelax-immediate
21333 @itemx -mno-relax-immediate
21334 @opindex mrelax-immediate
21335 @opindex mno-relax-immediate
21336 Allow arbitrary-sized immediates in bit operations.
21337
21338 @item -mwide-bitfields
21339 @itemx -mno-wide-bitfields
21340 @opindex mwide-bitfields
21341 @opindex mno-wide-bitfields
21342 Always treat bit-fields as @code{int}-sized.
21343
21344 @item -m4byte-functions
21345 @itemx -mno-4byte-functions
21346 @opindex m4byte-functions
21347 @opindex mno-4byte-functions
21348 Force all functions to be aligned to a 4-byte boundary.
21349
21350 @item -mcallgraph-data
21351 @itemx -mno-callgraph-data
21352 @opindex mcallgraph-data
21353 @opindex mno-callgraph-data
21354 Emit callgraph information.
21355
21356 @item -mslow-bytes
21357 @itemx -mno-slow-bytes
21358 @opindex mslow-bytes
21359 @opindex mno-slow-bytes
21360 Prefer word access when reading byte quantities.
21361
21362 @item -mlittle-endian
21363 @itemx -mbig-endian
21364 @opindex mlittle-endian
21365 @opindex mbig-endian
21366 Generate code for a little-endian target.
21367
21368 @item -m210
21369 @itemx -m340
21370 @opindex m210
21371 @opindex m340
21372 Generate code for the 210 processor.
21373
21374 @item -mno-lsim
21375 @opindex mno-lsim
21376 Assume that runtime support has been provided and so omit the
21377 simulator library (@file{libsim.a)} from the linker command line.
21378
21379 @item -mstack-increment=@var{size}
21380 @opindex mstack-increment
21381 Set the maximum amount for a single stack increment operation. Large
21382 values can increase the speed of programs that contain functions
21383 that need a large amount of stack space, but they can also trigger a
21384 segmentation fault if the stack is extended too much. The default
21385 value is 0x1000.
21386
21387 @end table
21388
21389 @node MeP Options
21390 @subsection MeP Options
21391 @cindex MeP options
21392
21393 @table @gcctabopt
21394
21395 @item -mabsdiff
21396 @opindex mabsdiff
21397 Enables the @code{abs} instruction, which is the absolute difference
21398 between two registers.
21399
21400 @item -mall-opts
21401 @opindex mall-opts
21402 Enables all the optional instructions---average, multiply, divide, bit
21403 operations, leading zero, absolute difference, min/max, clip, and
21404 saturation.
21405
21406
21407 @item -maverage
21408 @opindex maverage
21409 Enables the @code{ave} instruction, which computes the average of two
21410 registers.
21411
21412 @item -mbased=@var{n}
21413 @opindex mbased=
21414 Variables of size @var{n} bytes or smaller are placed in the
21415 @code{.based} section by default. Based variables use the @code{$tp}
21416 register as a base register, and there is a 128-byte limit to the
21417 @code{.based} section.
21418
21419 @item -mbitops
21420 @opindex mbitops
21421 Enables the bit operation instructions---bit test (@code{btstm}), set
21422 (@code{bsetm}), clear (@code{bclrm}), invert (@code{bnotm}), and
21423 test-and-set (@code{tas}).
21424
21425 @item -mc=@var{name}
21426 @opindex mc=
21427 Selects which section constant data is placed in. @var{name} may
21428 be @samp{tiny}, @samp{near}, or @samp{far}.
21429
21430 @item -mclip
21431 @opindex mclip
21432 Enables the @code{clip} instruction. Note that @option{-mclip} is not
21433 useful unless you also provide @option{-mminmax}.
21434
21435 @item -mconfig=@var{name}
21436 @opindex mconfig=
21437 Selects one of the built-in core configurations. Each MeP chip has
21438 one or more modules in it; each module has a core CPU and a variety of
21439 coprocessors, optional instructions, and peripherals. The
21440 @code{MeP-Integrator} tool, not part of GCC, provides these
21441 configurations through this option; using this option is the same as
21442 using all the corresponding command-line options. The default
21443 configuration is @samp{default}.
21444
21445 @item -mcop
21446 @opindex mcop
21447 Enables the coprocessor instructions. By default, this is a 32-bit
21448 coprocessor. Note that the coprocessor is normally enabled via the
21449 @option{-mconfig=} option.
21450
21451 @item -mcop32
21452 @opindex mcop32
21453 Enables the 32-bit coprocessor's instructions.
21454
21455 @item -mcop64
21456 @opindex mcop64
21457 Enables the 64-bit coprocessor's instructions.
21458
21459 @item -mivc2
21460 @opindex mivc2
21461 Enables IVC2 scheduling. IVC2 is a 64-bit VLIW coprocessor.
21462
21463 @item -mdc
21464 @opindex mdc
21465 Causes constant variables to be placed in the @code{.near} section.
21466
21467 @item -mdiv
21468 @opindex mdiv
21469 Enables the @code{div} and @code{divu} instructions.
21470
21471 @item -meb
21472 @opindex meb
21473 Generate big-endian code.
21474
21475 @item -mel
21476 @opindex mel
21477 Generate little-endian code.
21478
21479 @item -mio-volatile
21480 @opindex mio-volatile
21481 Tells the compiler that any variable marked with the @code{io}
21482 attribute is to be considered volatile.
21483
21484 @item -ml
21485 @opindex ml
21486 Causes variables to be assigned to the @code{.far} section by default.
21487
21488 @item -mleadz
21489 @opindex mleadz
21490 Enables the @code{leadz} (leading zero) instruction.
21491
21492 @item -mm
21493 @opindex mm
21494 Causes variables to be assigned to the @code{.near} section by default.
21495
21496 @item -mminmax
21497 @opindex mminmax
21498 Enables the @code{min} and @code{max} instructions.
21499
21500 @item -mmult
21501 @opindex mmult
21502 Enables the multiplication and multiply-accumulate instructions.
21503
21504 @item -mno-opts
21505 @opindex mno-opts
21506 Disables all the optional instructions enabled by @option{-mall-opts}.
21507
21508 @item -mrepeat
21509 @opindex mrepeat
21510 Enables the @code{repeat} and @code{erepeat} instructions, used for
21511 low-overhead looping.
21512
21513 @item -ms
21514 @opindex ms
21515 Causes all variables to default to the @code{.tiny} section. Note
21516 that there is a 65536-byte limit to this section. Accesses to these
21517 variables use the @code{%gp} base register.
21518
21519 @item -msatur
21520 @opindex msatur
21521 Enables the saturation instructions. Note that the compiler does not
21522 currently generate these itself, but this option is included for
21523 compatibility with other tools, like @code{as}.
21524
21525 @item -msdram
21526 @opindex msdram
21527 Link the SDRAM-based runtime instead of the default ROM-based runtime.
21528
21529 @item -msim
21530 @opindex msim
21531 Link the simulator run-time libraries.
21532
21533 @item -msimnovec
21534 @opindex msimnovec
21535 Link the simulator runtime libraries, excluding built-in support
21536 for reset and exception vectors and tables.
21537
21538 @item -mtf
21539 @opindex mtf
21540 Causes all functions to default to the @code{.far} section. Without
21541 this option, functions default to the @code{.near} section.
21542
21543 @item -mtiny=@var{n}
21544 @opindex mtiny=
21545 Variables that are @var{n} bytes or smaller are allocated to the
21546 @code{.tiny} section. These variables use the @code{$gp} base
21547 register. The default for this option is 4, but note that there's a
21548 65536-byte limit to the @code{.tiny} section.
21549
21550 @end table
21551
21552 @node MicroBlaze Options
21553 @subsection MicroBlaze Options
21554 @cindex MicroBlaze Options
21555
21556 @table @gcctabopt
21557
21558 @item -msoft-float
21559 @opindex msoft-float
21560 Use software emulation for floating point (default).
21561
21562 @item -mhard-float
21563 @opindex mhard-float
21564 Use hardware floating-point instructions.
21565
21566 @item -mmemcpy
21567 @opindex mmemcpy
21568 Do not optimize block moves, use @code{memcpy}.
21569
21570 @item -mno-clearbss
21571 @opindex mno-clearbss
21572 This option is deprecated. Use @option{-fno-zero-initialized-in-bss} instead.
21573
21574 @item -mcpu=@var{cpu-type}
21575 @opindex mcpu=
21576 Use features of, and schedule code for, the given CPU.
21577 Supported values are in the format @samp{v@var{X}.@var{YY}.@var{Z}},
21578 where @var{X} is a major version, @var{YY} is the minor version, and
21579 @var{Z} is compatibility code. Example values are @samp{v3.00.a},
21580 @samp{v4.00.b}, @samp{v5.00.a}, @samp{v5.00.b}, @samp{v6.00.a}.
21581
21582 @item -mxl-soft-mul
21583 @opindex mxl-soft-mul
21584 Use software multiply emulation (default).
21585
21586 @item -mxl-soft-div
21587 @opindex mxl-soft-div
21588 Use software emulation for divides (default).
21589
21590 @item -mxl-barrel-shift
21591 @opindex mxl-barrel-shift
21592 Use the hardware barrel shifter.
21593
21594 @item -mxl-pattern-compare
21595 @opindex mxl-pattern-compare
21596 Use pattern compare instructions.
21597
21598 @item -msmall-divides
21599 @opindex msmall-divides
21600 Use table lookup optimization for small signed integer divisions.
21601
21602 @item -mxl-stack-check
21603 @opindex mxl-stack-check
21604 This option is deprecated. Use @option{-fstack-check} instead.
21605
21606 @item -mxl-gp-opt
21607 @opindex mxl-gp-opt
21608 Use GP-relative @code{.sdata}/@code{.sbss} sections.
21609
21610 @item -mxl-multiply-high
21611 @opindex mxl-multiply-high
21612 Use multiply high instructions for high part of 32x32 multiply.
21613
21614 @item -mxl-float-convert
21615 @opindex mxl-float-convert
21616 Use hardware floating-point conversion instructions.
21617
21618 @item -mxl-float-sqrt
21619 @opindex mxl-float-sqrt
21620 Use hardware floating-point square root instruction.
21621
21622 @item -mbig-endian
21623 @opindex mbig-endian
21624 Generate code for a big-endian target.
21625
21626 @item -mlittle-endian
21627 @opindex mlittle-endian
21628 Generate code for a little-endian target.
21629
21630 @item -mxl-reorder
21631 @opindex mxl-reorder
21632 Use reorder instructions (swap and byte reversed load/store).
21633
21634 @item -mxl-mode-@var{app-model}
21635 Select application model @var{app-model}. Valid models are
21636 @table @samp
21637 @item executable
21638 normal executable (default), uses startup code @file{crt0.o}.
21639
21640 @item -mpic-data-is-text-relative
21641 @opindex mpic-data-is-text-relative
21642 Assume that the displacement between the text and data segments is fixed
21643 at static link time. This allows data to be referenced by offset from start of
21644 text address instead of GOT since PC-relative addressing is not supported.
21645
21646 @item xmdstub
21647 for use with Xilinx Microprocessor Debugger (XMD) based
21648 software intrusive debug agent called xmdstub. This uses startup file
21649 @file{crt1.o} and sets the start address of the program to 0x800.
21650
21651 @item bootstrap
21652 for applications that are loaded using a bootloader.
21653 This model uses startup file @file{crt2.o} which does not contain a processor
21654 reset vector handler. This is suitable for transferring control on a
21655 processor reset to the bootloader rather than the application.
21656
21657 @item novectors
21658 for applications that do not require any of the
21659 MicroBlaze vectors. This option may be useful for applications running
21660 within a monitoring application. This model uses @file{crt3.o} as a startup file.
21661 @end table
21662
21663 Option @option{-xl-mode-@var{app-model}} is a deprecated alias for
21664 @option{-mxl-mode-@var{app-model}}.
21665
21666 @end table
21667
21668 @node MIPS Options
21669 @subsection MIPS Options
21670 @cindex MIPS options
21671
21672 @table @gcctabopt
21673
21674 @item -EB
21675 @opindex EB
21676 Generate big-endian code.
21677
21678 @item -EL
21679 @opindex EL
21680 Generate little-endian code. This is the default for @samp{mips*el-*-*}
21681 configurations.
21682
21683 @item -march=@var{arch}
21684 @opindex march
21685 Generate code that runs on @var{arch}, which can be the name of a
21686 generic MIPS ISA, or the name of a particular processor.
21687 The ISA names are:
21688 @samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4},
21689 @samp{mips32}, @samp{mips32r2}, @samp{mips32r3}, @samp{mips32r5},
21690 @samp{mips32r6}, @samp{mips64}, @samp{mips64r2}, @samp{mips64r3},
21691 @samp{mips64r5} and @samp{mips64r6}.
21692 The processor names are:
21693 @samp{4kc}, @samp{4km}, @samp{4kp}, @samp{4ksc},
21694 @samp{4kec}, @samp{4kem}, @samp{4kep}, @samp{4ksd},
21695 @samp{5kc}, @samp{5kf},
21696 @samp{20kc},
21697 @samp{24kc}, @samp{24kf2_1}, @samp{24kf1_1},
21698 @samp{24kec}, @samp{24kef2_1}, @samp{24kef1_1},
21699 @samp{34kc}, @samp{34kf2_1}, @samp{34kf1_1}, @samp{34kn},
21700 @samp{74kc}, @samp{74kf2_1}, @samp{74kf1_1}, @samp{74kf3_2},
21701 @samp{1004kc}, @samp{1004kf2_1}, @samp{1004kf1_1},
21702 @samp{i6400}, @samp{i6500},
21703 @samp{interaptiv},
21704 @samp{loongson2e}, @samp{loongson2f}, @samp{loongson3a}, @samp{gs464},
21705 @samp{gs464e}, @samp{gs264e},
21706 @samp{m4k},
21707 @samp{m14k}, @samp{m14kc}, @samp{m14ke}, @samp{m14kec},
21708 @samp{m5100}, @samp{m5101},
21709 @samp{octeon}, @samp{octeon+}, @samp{octeon2}, @samp{octeon3},
21710 @samp{orion},
21711 @samp{p5600}, @samp{p6600},
21712 @samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400},
21713 @samp{r4600}, @samp{r4650}, @samp{r4700}, @samp{r5900},
21714 @samp{r6000}, @samp{r8000},
21715 @samp{rm7000}, @samp{rm9000},
21716 @samp{r10000}, @samp{r12000}, @samp{r14000}, @samp{r16000},
21717 @samp{sb1},
21718 @samp{sr71000},
21719 @samp{vr4100}, @samp{vr4111}, @samp{vr4120}, @samp{vr4130}, @samp{vr4300},
21720 @samp{vr5000}, @samp{vr5400}, @samp{vr5500},
21721 @samp{xlr} and @samp{xlp}.
21722 The special value @samp{from-abi} selects the
21723 most compatible architecture for the selected ABI (that is,
21724 @samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@.
21725
21726 The native Linux/GNU toolchain also supports the value @samp{native},
21727 which selects the best architecture option for the host processor.
21728 @option{-march=native} has no effect if GCC does not recognize
21729 the processor.
21730
21731 In processor names, a final @samp{000} can be abbreviated as @samp{k}
21732 (for example, @option{-march=r2k}). Prefixes are optional, and
21733 @samp{vr} may be written @samp{r}.
21734
21735 Names of the form @samp{@var{n}f2_1} refer to processors with
21736 FPUs clocked at half the rate of the core, names of the form
21737 @samp{@var{n}f1_1} refer to processors with FPUs clocked at the same
21738 rate as the core, and names of the form @samp{@var{n}f3_2} refer to
21739 processors with FPUs clocked a ratio of 3:2 with respect to the core.
21740 For compatibility reasons, @samp{@var{n}f} is accepted as a synonym
21741 for @samp{@var{n}f2_1} while @samp{@var{n}x} and @samp{@var{b}fx} are
21742 accepted as synonyms for @samp{@var{n}f1_1}.
21743
21744 GCC defines two macros based on the value of this option. The first
21745 is @code{_MIPS_ARCH}, which gives the name of target architecture, as
21746 a string. The second has the form @code{_MIPS_ARCH_@var{foo}},
21747 where @var{foo} is the capitalized value of @code{_MIPS_ARCH}@.
21748 For example, @option{-march=r2000} sets @code{_MIPS_ARCH}
21749 to @code{"r2000"} and defines the macro @code{_MIPS_ARCH_R2000}.
21750
21751 Note that the @code{_MIPS_ARCH} macro uses the processor names given
21752 above. In other words, it has the full prefix and does not
21753 abbreviate @samp{000} as @samp{k}. In the case of @samp{from-abi},
21754 the macro names the resolved architecture (either @code{"mips1"} or
21755 @code{"mips3"}). It names the default architecture when no
21756 @option{-march} option is given.
21757
21758 @item -mtune=@var{arch}
21759 @opindex mtune
21760 Optimize for @var{arch}. Among other things, this option controls
21761 the way instructions are scheduled, and the perceived cost of arithmetic
21762 operations. The list of @var{arch} values is the same as for
21763 @option{-march}.
21764
21765 When this option is not used, GCC optimizes for the processor
21766 specified by @option{-march}. By using @option{-march} and
21767 @option{-mtune} together, it is possible to generate code that
21768 runs on a family of processors, but optimize the code for one
21769 particular member of that family.
21770
21771 @option{-mtune} defines the macros @code{_MIPS_TUNE} and
21772 @code{_MIPS_TUNE_@var{foo}}, which work in the same way as the
21773 @option{-march} ones described above.
21774
21775 @item -mips1
21776 @opindex mips1
21777 Equivalent to @option{-march=mips1}.
21778
21779 @item -mips2
21780 @opindex mips2
21781 Equivalent to @option{-march=mips2}.
21782
21783 @item -mips3
21784 @opindex mips3
21785 Equivalent to @option{-march=mips3}.
21786
21787 @item -mips4
21788 @opindex mips4
21789 Equivalent to @option{-march=mips4}.
21790
21791 @item -mips32
21792 @opindex mips32
21793 Equivalent to @option{-march=mips32}.
21794
21795 @item -mips32r3
21796 @opindex mips32r3
21797 Equivalent to @option{-march=mips32r3}.
21798
21799 @item -mips32r5
21800 @opindex mips32r5
21801 Equivalent to @option{-march=mips32r5}.
21802
21803 @item -mips32r6
21804 @opindex mips32r6
21805 Equivalent to @option{-march=mips32r6}.
21806
21807 @item -mips64
21808 @opindex mips64
21809 Equivalent to @option{-march=mips64}.
21810
21811 @item -mips64r2
21812 @opindex mips64r2
21813 Equivalent to @option{-march=mips64r2}.
21814
21815 @item -mips64r3
21816 @opindex mips64r3
21817 Equivalent to @option{-march=mips64r3}.
21818
21819 @item -mips64r5
21820 @opindex mips64r5
21821 Equivalent to @option{-march=mips64r5}.
21822
21823 @item -mips64r6
21824 @opindex mips64r6
21825 Equivalent to @option{-march=mips64r6}.
21826
21827 @item -mips16
21828 @itemx -mno-mips16
21829 @opindex mips16
21830 @opindex mno-mips16
21831 Generate (do not generate) MIPS16 code. If GCC is targeting a
21832 MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE@.
21833
21834 MIPS16 code generation can also be controlled on a per-function basis
21835 by means of @code{mips16} and @code{nomips16} attributes.
21836 @xref{Function Attributes}, for more information.
21837
21838 @item -mflip-mips16
21839 @opindex mflip-mips16
21840 Generate MIPS16 code on alternating functions. This option is provided
21841 for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
21842 not intended for ordinary use in compiling user code.
21843
21844 @item -minterlink-compressed
21845 @itemx -mno-interlink-compressed
21846 @opindex minterlink-compressed
21847 @opindex mno-interlink-compressed
21848 Require (do not require) that code using the standard (uncompressed) MIPS ISA
21849 be link-compatible with MIPS16 and microMIPS code, and vice versa.
21850
21851 For example, code using the standard ISA encoding cannot jump directly
21852 to MIPS16 or microMIPS code; it must either use a call or an indirect jump.
21853 @option{-minterlink-compressed} therefore disables direct jumps unless GCC
21854 knows that the target of the jump is not compressed.
21855
21856 @item -minterlink-mips16
21857 @itemx -mno-interlink-mips16
21858 @opindex minterlink-mips16
21859 @opindex mno-interlink-mips16
21860 Aliases of @option{-minterlink-compressed} and
21861 @option{-mno-interlink-compressed}. These options predate the microMIPS ASE
21862 and are retained for backwards compatibility.
21863
21864 @item -mabi=32
21865 @itemx -mabi=o64
21866 @itemx -mabi=n32
21867 @itemx -mabi=64
21868 @itemx -mabi=eabi
21869 @opindex mabi=32
21870 @opindex mabi=o64
21871 @opindex mabi=n32
21872 @opindex mabi=64
21873 @opindex mabi=eabi
21874 Generate code for the given ABI@.
21875
21876 Note that the EABI has a 32-bit and a 64-bit variant. GCC normally
21877 generates 64-bit code when you select a 64-bit architecture, but you
21878 can use @option{-mgp32} to get 32-bit code instead.
21879
21880 For information about the O64 ABI, see
21881 @uref{http://gcc.gnu.org/@/projects/@/mipso64-abi.html}.
21882
21883 GCC supports a variant of the o32 ABI in which floating-point registers
21884 are 64 rather than 32 bits wide. You can select this combination with
21885 @option{-mabi=32} @option{-mfp64}. This ABI relies on the @code{mthc1}
21886 and @code{mfhc1} instructions and is therefore only supported for
21887 MIPS32R2, MIPS32R3 and MIPS32R5 processors.
21888
21889 The register assignments for arguments and return values remain the
21890 same, but each scalar value is passed in a single 64-bit register
21891 rather than a pair of 32-bit registers. For example, scalar
21892 floating-point values are returned in @samp{$f0} only, not a
21893 @samp{$f0}/@samp{$f1} pair. The set of call-saved registers also
21894 remains the same in that the even-numbered double-precision registers
21895 are saved.
21896
21897 Two additional variants of the o32 ABI are supported to enable
21898 a transition from 32-bit to 64-bit registers. These are FPXX
21899 (@option{-mfpxx}) and FP64A (@option{-mfp64} @option{-mno-odd-spreg}).
21900 The FPXX extension mandates that all code must execute correctly
21901 when run using 32-bit or 64-bit registers. The code can be interlinked
21902 with either FP32 or FP64, but not both.
21903 The FP64A extension is similar to the FP64 extension but forbids the
21904 use of odd-numbered single-precision registers. This can be used
21905 in conjunction with the @code{FRE} mode of FPUs in MIPS32R5
21906 processors and allows both FP32 and FP64A code to interlink and
21907 run in the same process without changing FPU modes.
21908
21909 @item -mabicalls
21910 @itemx -mno-abicalls
21911 @opindex mabicalls
21912 @opindex mno-abicalls
21913 Generate (do not generate) code that is suitable for SVR4-style
21914 dynamic objects. @option{-mabicalls} is the default for SVR4-based
21915 systems.
21916
21917 @item -mshared
21918 @itemx -mno-shared
21919 Generate (do not generate) code that is fully position-independent,
21920 and that can therefore be linked into shared libraries. This option
21921 only affects @option{-mabicalls}.
21922
21923 All @option{-mabicalls} code has traditionally been position-independent,
21924 regardless of options like @option{-fPIC} and @option{-fpic}. However,
21925 as an extension, the GNU toolchain allows executables to use absolute
21926 accesses for locally-binding symbols. It can also use shorter GP
21927 initialization sequences and generate direct calls to locally-defined
21928 functions. This mode is selected by @option{-mno-shared}.
21929
21930 @option{-mno-shared} depends on binutils 2.16 or higher and generates
21931 objects that can only be linked by the GNU linker. However, the option
21932 does not affect the ABI of the final executable; it only affects the ABI
21933 of relocatable objects. Using @option{-mno-shared} generally makes
21934 executables both smaller and quicker.
21935
21936 @option{-mshared} is the default.
21937
21938 @item -mplt
21939 @itemx -mno-plt
21940 @opindex mplt
21941 @opindex mno-plt
21942 Assume (do not assume) that the static and dynamic linkers
21943 support PLTs and copy relocations. This option only affects
21944 @option{-mno-shared -mabicalls}. For the n64 ABI, this option
21945 has no effect without @option{-msym32}.
21946
21947 You can make @option{-mplt} the default by configuring
21948 GCC with @option{--with-mips-plt}. The default is
21949 @option{-mno-plt} otherwise.
21950
21951 @item -mxgot
21952 @itemx -mno-xgot
21953 @opindex mxgot
21954 @opindex mno-xgot
21955 Lift (do not lift) the usual restrictions on the size of the global
21956 offset table.
21957
21958 GCC normally uses a single instruction to load values from the GOT@.
21959 While this is relatively efficient, it only works if the GOT
21960 is smaller than about 64k. Anything larger causes the linker
21961 to report an error such as:
21962
21963 @cindex relocation truncated to fit (MIPS)
21964 @smallexample
21965 relocation truncated to fit: R_MIPS_GOT16 foobar
21966 @end smallexample
21967
21968 If this happens, you should recompile your code with @option{-mxgot}.
21969 This works with very large GOTs, although the code is also
21970 less efficient, since it takes three instructions to fetch the
21971 value of a global symbol.
21972
21973 Note that some linkers can create multiple GOTs. If you have such a
21974 linker, you should only need to use @option{-mxgot} when a single object
21975 file accesses more than 64k's worth of GOT entries. Very few do.
21976
21977 These options have no effect unless GCC is generating position
21978 independent code.
21979
21980 @item -mgp32
21981 @opindex mgp32
21982 Assume that general-purpose registers are 32 bits wide.
21983
21984 @item -mgp64
21985 @opindex mgp64
21986 Assume that general-purpose registers are 64 bits wide.
21987
21988 @item -mfp32
21989 @opindex mfp32
21990 Assume that floating-point registers are 32 bits wide.
21991
21992 @item -mfp64
21993 @opindex mfp64
21994 Assume that floating-point registers are 64 bits wide.
21995
21996 @item -mfpxx
21997 @opindex mfpxx
21998 Do not assume the width of floating-point registers.
21999
22000 @item -mhard-float
22001 @opindex mhard-float
22002 Use floating-point coprocessor instructions.
22003
22004 @item -msoft-float
22005 @opindex msoft-float
22006 Do not use floating-point coprocessor instructions. Implement
22007 floating-point calculations using library calls instead.
22008
22009 @item -mno-float
22010 @opindex mno-float
22011 Equivalent to @option{-msoft-float}, but additionally asserts that the
22012 program being compiled does not perform any floating-point operations.
22013 This option is presently supported only by some bare-metal MIPS
22014 configurations, where it may select a special set of libraries
22015 that lack all floating-point support (including, for example, the
22016 floating-point @code{printf} formats).
22017 If code compiled with @option{-mno-float} accidentally contains
22018 floating-point operations, it is likely to suffer a link-time
22019 or run-time failure.
22020
22021 @item -msingle-float
22022 @opindex msingle-float
22023 Assume that the floating-point coprocessor only supports single-precision
22024 operations.
22025
22026 @item -mdouble-float
22027 @opindex mdouble-float
22028 Assume that the floating-point coprocessor supports double-precision
22029 operations. This is the default.
22030
22031 @item -modd-spreg
22032 @itemx -mno-odd-spreg
22033 @opindex modd-spreg
22034 @opindex mno-odd-spreg
22035 Enable the use of odd-numbered single-precision floating-point registers
22036 for the o32 ABI. This is the default for processors that are known to
22037 support these registers. When using the o32 FPXX ABI, @option{-mno-odd-spreg}
22038 is set by default.
22039
22040 @item -mabs=2008
22041 @itemx -mabs=legacy
22042 @opindex mabs=2008
22043 @opindex mabs=legacy
22044 These options control the treatment of the special not-a-number (NaN)
22045 IEEE 754 floating-point data with the @code{abs.@i{fmt}} and
22046 @code{neg.@i{fmt}} machine instructions.
22047
22048 By default or when @option{-mabs=legacy} is used the legacy
22049 treatment is selected. In this case these instructions are considered
22050 arithmetic and avoided where correct operation is required and the
22051 input operand might be a NaN. A longer sequence of instructions that
22052 manipulate the sign bit of floating-point datum manually is used
22053 instead unless the @option{-ffinite-math-only} option has also been
22054 specified.
22055
22056 The @option{-mabs=2008} option selects the IEEE 754-2008 treatment. In
22057 this case these instructions are considered non-arithmetic and therefore
22058 operating correctly in all cases, including in particular where the
22059 input operand is a NaN. These instructions are therefore always used
22060 for the respective operations.
22061
22062 @item -mnan=2008
22063 @itemx -mnan=legacy
22064 @opindex mnan=2008
22065 @opindex mnan=legacy
22066 These options control the encoding of the special not-a-number (NaN)
22067 IEEE 754 floating-point data.
22068
22069 The @option{-mnan=legacy} option selects the legacy encoding. In this
22070 case quiet NaNs (qNaNs) are denoted by the first bit of their trailing
22071 significand field being 0, whereas signaling NaNs (sNaNs) are denoted
22072 by the first bit of their trailing significand field being 1.
22073
22074 The @option{-mnan=2008} option selects the IEEE 754-2008 encoding. In
22075 this case qNaNs are denoted by the first bit of their trailing
22076 significand field being 1, whereas sNaNs are denoted by the first bit of
22077 their trailing significand field being 0.
22078
22079 The default is @option{-mnan=legacy} unless GCC has been configured with
22080 @option{--with-nan=2008}.
22081
22082 @item -mllsc
22083 @itemx -mno-llsc
22084 @opindex mllsc
22085 @opindex mno-llsc
22086 Use (do not use) @samp{ll}, @samp{sc}, and @samp{sync} instructions to
22087 implement atomic memory built-in functions. When neither option is
22088 specified, GCC uses the instructions if the target architecture
22089 supports them.
22090
22091 @option{-mllsc} is useful if the runtime environment can emulate the
22092 instructions and @option{-mno-llsc} can be useful when compiling for
22093 nonstandard ISAs. You can make either option the default by
22094 configuring GCC with @option{--with-llsc} and @option{--without-llsc}
22095 respectively. @option{--with-llsc} is the default for some
22096 configurations; see the installation documentation for details.
22097
22098 @item -mdsp
22099 @itemx -mno-dsp
22100 @opindex mdsp
22101 @opindex mno-dsp
22102 Use (do not use) revision 1 of the MIPS DSP ASE@.
22103 @xref{MIPS DSP Built-in Functions}. This option defines the
22104 preprocessor macro @code{__mips_dsp}. It also defines
22105 @code{__mips_dsp_rev} to 1.
22106
22107 @item -mdspr2
22108 @itemx -mno-dspr2
22109 @opindex mdspr2
22110 @opindex mno-dspr2
22111 Use (do not use) revision 2 of the MIPS DSP ASE@.
22112 @xref{MIPS DSP Built-in Functions}. This option defines the
22113 preprocessor macros @code{__mips_dsp} and @code{__mips_dspr2}.
22114 It also defines @code{__mips_dsp_rev} to 2.
22115
22116 @item -msmartmips
22117 @itemx -mno-smartmips
22118 @opindex msmartmips
22119 @opindex mno-smartmips
22120 Use (do not use) the MIPS SmartMIPS ASE.
22121
22122 @item -mpaired-single
22123 @itemx -mno-paired-single
22124 @opindex mpaired-single
22125 @opindex mno-paired-single
22126 Use (do not use) paired-single floating-point instructions.
22127 @xref{MIPS Paired-Single Support}. This option requires
22128 hardware floating-point support to be enabled.
22129
22130 @item -mdmx
22131 @itemx -mno-mdmx
22132 @opindex mdmx
22133 @opindex mno-mdmx
22134 Use (do not use) MIPS Digital Media Extension instructions.
22135 This option can only be used when generating 64-bit code and requires
22136 hardware floating-point support to be enabled.
22137
22138 @item -mips3d
22139 @itemx -mno-mips3d
22140 @opindex mips3d
22141 @opindex mno-mips3d
22142 Use (do not use) the MIPS-3D ASE@. @xref{MIPS-3D Built-in Functions}.
22143 The option @option{-mips3d} implies @option{-mpaired-single}.
22144
22145 @item -mmicromips
22146 @itemx -mno-micromips
22147 @opindex mmicromips
22148 @opindex mno-mmicromips
22149 Generate (do not generate) microMIPS code.
22150
22151 MicroMIPS code generation can also be controlled on a per-function basis
22152 by means of @code{micromips} and @code{nomicromips} attributes.
22153 @xref{Function Attributes}, for more information.
22154
22155 @item -mmt
22156 @itemx -mno-mt
22157 @opindex mmt
22158 @opindex mno-mt
22159 Use (do not use) MT Multithreading instructions.
22160
22161 @item -mmcu
22162 @itemx -mno-mcu
22163 @opindex mmcu
22164 @opindex mno-mcu
22165 Use (do not use) the MIPS MCU ASE instructions.
22166
22167 @item -meva
22168 @itemx -mno-eva
22169 @opindex meva
22170 @opindex mno-eva
22171 Use (do not use) the MIPS Enhanced Virtual Addressing instructions.
22172
22173 @item -mvirt
22174 @itemx -mno-virt
22175 @opindex mvirt
22176 @opindex mno-virt
22177 Use (do not use) the MIPS Virtualization (VZ) instructions.
22178
22179 @item -mxpa
22180 @itemx -mno-xpa
22181 @opindex mxpa
22182 @opindex mno-xpa
22183 Use (do not use) the MIPS eXtended Physical Address (XPA) instructions.
22184
22185 @item -mcrc
22186 @itemx -mno-crc
22187 @opindex mcrc
22188 @opindex mno-crc
22189 Use (do not use) the MIPS Cyclic Redundancy Check (CRC) instructions.
22190
22191 @item -mginv
22192 @itemx -mno-ginv
22193 @opindex mginv
22194 @opindex mno-ginv
22195 Use (do not use) the MIPS Global INValidate (GINV) instructions.
22196
22197 @item -mloongson-mmi
22198 @itemx -mno-loongson-mmi
22199 @opindex mloongson-mmi
22200 @opindex mno-loongson-mmi
22201 Use (do not use) the MIPS Loongson MultiMedia extensions Instructions (MMI).
22202
22203 @item -mloongson-ext
22204 @itemx -mno-loongson-ext
22205 @opindex mloongson-ext
22206 @opindex mno-loongson-ext
22207 Use (do not use) the MIPS Loongson EXTensions (EXT) instructions.
22208
22209 @item -mloongson-ext2
22210 @itemx -mno-loongson-ext2
22211 @opindex mloongson-ext2
22212 @opindex mno-loongson-ext2
22213 Use (do not use) the MIPS Loongson EXTensions r2 (EXT2) instructions.
22214
22215 @item -mlong64
22216 @opindex mlong64
22217 Force @code{long} types to be 64 bits wide. See @option{-mlong32} for
22218 an explanation of the default and the way that the pointer size is
22219 determined.
22220
22221 @item -mlong32
22222 @opindex mlong32
22223 Force @code{long}, @code{int}, and pointer types to be 32 bits wide.
22224
22225 The default size of @code{int}s, @code{long}s and pointers depends on
22226 the ABI@. All the supported ABIs use 32-bit @code{int}s. The n64 ABI
22227 uses 64-bit @code{long}s, as does the 64-bit EABI; the others use
22228 32-bit @code{long}s. Pointers are the same size as @code{long}s,
22229 or the same size as integer registers, whichever is smaller.
22230
22231 @item -msym32
22232 @itemx -mno-sym32
22233 @opindex msym32
22234 @opindex mno-sym32
22235 Assume (do not assume) that all symbols have 32-bit values, regardless
22236 of the selected ABI@. This option is useful in combination with
22237 @option{-mabi=64} and @option{-mno-abicalls} because it allows GCC
22238 to generate shorter and faster references to symbolic addresses.
22239
22240 @item -G @var{num}
22241 @opindex G
22242 Put definitions of externally-visible data in a small data section
22243 if that data is no bigger than @var{num} bytes. GCC can then generate
22244 more efficient accesses to the data; see @option{-mgpopt} for details.
22245
22246 The default @option{-G} option depends on the configuration.
22247
22248 @item -mlocal-sdata
22249 @itemx -mno-local-sdata
22250 @opindex mlocal-sdata
22251 @opindex mno-local-sdata
22252 Extend (do not extend) the @option{-G} behavior to local data too,
22253 such as to static variables in C@. @option{-mlocal-sdata} is the
22254 default for all configurations.
22255
22256 If the linker complains that an application is using too much small data,
22257 you might want to try rebuilding the less performance-critical parts with
22258 @option{-mno-local-sdata}. You might also want to build large
22259 libraries with @option{-mno-local-sdata}, so that the libraries leave
22260 more room for the main program.
22261
22262 @item -mextern-sdata
22263 @itemx -mno-extern-sdata
22264 @opindex mextern-sdata
22265 @opindex mno-extern-sdata
22266 Assume (do not assume) that externally-defined data is in
22267 a small data section if the size of that data is within the @option{-G} limit.
22268 @option{-mextern-sdata} is the default for all configurations.
22269
22270 If you compile a module @var{Mod} with @option{-mextern-sdata} @option{-G
22271 @var{num}} @option{-mgpopt}, and @var{Mod} references a variable @var{Var}
22272 that is no bigger than @var{num} bytes, you must make sure that @var{Var}
22273 is placed in a small data section. If @var{Var} is defined by another
22274 module, you must either compile that module with a high-enough
22275 @option{-G} setting or attach a @code{section} attribute to @var{Var}'s
22276 definition. If @var{Var} is common, you must link the application
22277 with a high-enough @option{-G} setting.
22278
22279 The easiest way of satisfying these restrictions is to compile
22280 and link every module with the same @option{-G} option. However,
22281 you may wish to build a library that supports several different
22282 small data limits. You can do this by compiling the library with
22283 the highest supported @option{-G} setting and additionally using
22284 @option{-mno-extern-sdata} to stop the library from making assumptions
22285 about externally-defined data.
22286
22287 @item -mgpopt
22288 @itemx -mno-gpopt
22289 @opindex mgpopt
22290 @opindex mno-gpopt
22291 Use (do not use) GP-relative accesses for symbols that are known to be
22292 in a small data section; see @option{-G}, @option{-mlocal-sdata} and
22293 @option{-mextern-sdata}. @option{-mgpopt} is the default for all
22294 configurations.
22295
22296 @option{-mno-gpopt} is useful for cases where the @code{$gp} register
22297 might not hold the value of @code{_gp}. For example, if the code is
22298 part of a library that might be used in a boot monitor, programs that
22299 call boot monitor routines pass an unknown value in @code{$gp}.
22300 (In such situations, the boot monitor itself is usually compiled
22301 with @option{-G0}.)
22302
22303 @option{-mno-gpopt} implies @option{-mno-local-sdata} and
22304 @option{-mno-extern-sdata}.
22305
22306 @item -membedded-data
22307 @itemx -mno-embedded-data
22308 @opindex membedded-data
22309 @opindex mno-embedded-data
22310 Allocate variables to the read-only data section first if possible, then
22311 next in the small data section if possible, otherwise in data. This gives
22312 slightly slower code than the default, but reduces the amount of RAM required
22313 when executing, and thus may be preferred for some embedded systems.
22314
22315 @item -muninit-const-in-rodata
22316 @itemx -mno-uninit-const-in-rodata
22317 @opindex muninit-const-in-rodata
22318 @opindex mno-uninit-const-in-rodata
22319 Put uninitialized @code{const} variables in the read-only data section.
22320 This option is only meaningful in conjunction with @option{-membedded-data}.
22321
22322 @item -mcode-readable=@var{setting}
22323 @opindex mcode-readable
22324 Specify whether GCC may generate code that reads from executable sections.
22325 There are three possible settings:
22326
22327 @table @gcctabopt
22328 @item -mcode-readable=yes
22329 Instructions may freely access executable sections. This is the
22330 default setting.
22331
22332 @item -mcode-readable=pcrel
22333 MIPS16 PC-relative load instructions can access executable sections,
22334 but other instructions must not do so. This option is useful on 4KSc
22335 and 4KSd processors when the code TLBs have the Read Inhibit bit set.
22336 It is also useful on processors that can be configured to have a dual
22337 instruction/data SRAM interface and that, like the M4K, automatically
22338 redirect PC-relative loads to the instruction RAM.
22339
22340 @item -mcode-readable=no
22341 Instructions must not access executable sections. This option can be
22342 useful on targets that are configured to have a dual instruction/data
22343 SRAM interface but that (unlike the M4K) do not automatically redirect
22344 PC-relative loads to the instruction RAM.
22345 @end table
22346
22347 @item -msplit-addresses
22348 @itemx -mno-split-addresses
22349 @opindex msplit-addresses
22350 @opindex mno-split-addresses
22351 Enable (disable) use of the @code{%hi()} and @code{%lo()} assembler
22352 relocation operators. This option has been superseded by
22353 @option{-mexplicit-relocs} but is retained for backwards compatibility.
22354
22355 @item -mexplicit-relocs
22356 @itemx -mno-explicit-relocs
22357 @opindex mexplicit-relocs
22358 @opindex mno-explicit-relocs
22359 Use (do not use) assembler relocation operators when dealing with symbolic
22360 addresses. The alternative, selected by @option{-mno-explicit-relocs},
22361 is to use assembler macros instead.
22362
22363 @option{-mexplicit-relocs} is the default if GCC was configured
22364 to use an assembler that supports relocation operators.
22365
22366 @item -mcheck-zero-division
22367 @itemx -mno-check-zero-division
22368 @opindex mcheck-zero-division
22369 @opindex mno-check-zero-division
22370 Trap (do not trap) on integer division by zero.
22371
22372 The default is @option{-mcheck-zero-division}.
22373
22374 @item -mdivide-traps
22375 @itemx -mdivide-breaks
22376 @opindex mdivide-traps
22377 @opindex mdivide-breaks
22378 MIPS systems check for division by zero by generating either a
22379 conditional trap or a break instruction. Using traps results in
22380 smaller code, but is only supported on MIPS II and later. Also, some
22381 versions of the Linux kernel have a bug that prevents trap from
22382 generating the proper signal (@code{SIGFPE}). Use @option{-mdivide-traps} to
22383 allow conditional traps on architectures that support them and
22384 @option{-mdivide-breaks} to force the use of breaks.
22385
22386 The default is usually @option{-mdivide-traps}, but this can be
22387 overridden at configure time using @option{--with-divide=breaks}.
22388 Divide-by-zero checks can be completely disabled using
22389 @option{-mno-check-zero-division}.
22390
22391 @item -mload-store-pairs
22392 @itemx -mno-load-store-pairs
22393 @opindex mload-store-pairs
22394 @opindex mno-load-store-pairs
22395 Enable (disable) an optimization that pairs consecutive load or store
22396 instructions to enable load/store bonding. This option is enabled by
22397 default but only takes effect when the selected architecture is known
22398 to support bonding.
22399
22400 @item -mmemcpy
22401 @itemx -mno-memcpy
22402 @opindex mmemcpy
22403 @opindex mno-memcpy
22404 Force (do not force) the use of @code{memcpy} for non-trivial block
22405 moves. The default is @option{-mno-memcpy}, which allows GCC to inline
22406 most constant-sized copies.
22407
22408 @item -mlong-calls
22409 @itemx -mno-long-calls
22410 @opindex mlong-calls
22411 @opindex mno-long-calls
22412 Disable (do not disable) use of the @code{jal} instruction. Calling
22413 functions using @code{jal} is more efficient but requires the caller
22414 and callee to be in the same 256 megabyte segment.
22415
22416 This option has no effect on abicalls code. The default is
22417 @option{-mno-long-calls}.
22418
22419 @item -mmad
22420 @itemx -mno-mad
22421 @opindex mmad
22422 @opindex mno-mad
22423 Enable (disable) use of the @code{mad}, @code{madu} and @code{mul}
22424 instructions, as provided by the R4650 ISA@.
22425
22426 @item -mimadd
22427 @itemx -mno-imadd
22428 @opindex mimadd
22429 @opindex mno-imadd
22430 Enable (disable) use of the @code{madd} and @code{msub} integer
22431 instructions. The default is @option{-mimadd} on architectures
22432 that support @code{madd} and @code{msub} except for the 74k
22433 architecture where it was found to generate slower code.
22434
22435 @item -mfused-madd
22436 @itemx -mno-fused-madd
22437 @opindex mfused-madd
22438 @opindex mno-fused-madd
22439 Enable (disable) use of the floating-point multiply-accumulate
22440 instructions, when they are available. The default is
22441 @option{-mfused-madd}.
22442
22443 On the R8000 CPU when multiply-accumulate instructions are used,
22444 the intermediate product is calculated to infinite precision
22445 and is not subject to the FCSR Flush to Zero bit. This may be
22446 undesirable in some circumstances. On other processors the result
22447 is numerically identical to the equivalent computation using
22448 separate multiply, add, subtract and negate instructions.
22449
22450 @item -nocpp
22451 @opindex nocpp
22452 Tell the MIPS assembler to not run its preprocessor over user
22453 assembler files (with a @samp{.s} suffix) when assembling them.
22454
22455 @item -mfix-24k
22456 @itemx -mno-fix-24k
22457 @opindex mfix-24k
22458 @opindex mno-fix-24k
22459 Work around the 24K E48 (lost data on stores during refill) errata.
22460 The workarounds are implemented by the assembler rather than by GCC@.
22461
22462 @item -mfix-r4000
22463 @itemx -mno-fix-r4000
22464 @opindex mfix-r4000
22465 @opindex mno-fix-r4000
22466 Work around certain R4000 CPU errata:
22467 @itemize @minus
22468 @item
22469 A double-word or a variable shift may give an incorrect result if executed
22470 immediately after starting an integer division.
22471 @item
22472 A double-word or a variable shift may give an incorrect result if executed
22473 while an integer multiplication is in progress.
22474 @item
22475 An integer division may give an incorrect result if started in a delay slot
22476 of a taken branch or a jump.
22477 @end itemize
22478
22479 @item -mfix-r4400
22480 @itemx -mno-fix-r4400
22481 @opindex mfix-r4400
22482 @opindex mno-fix-r4400
22483 Work around certain R4400 CPU errata:
22484 @itemize @minus
22485 @item
22486 A double-word or a variable shift may give an incorrect result if executed
22487 immediately after starting an integer division.
22488 @end itemize
22489
22490 @item -mfix-r10000
22491 @itemx -mno-fix-r10000
22492 @opindex mfix-r10000
22493 @opindex mno-fix-r10000
22494 Work around certain R10000 errata:
22495 @itemize @minus
22496 @item
22497 @code{ll}/@code{sc} sequences may not behave atomically on revisions
22498 prior to 3.0. They may deadlock on revisions 2.6 and earlier.
22499 @end itemize
22500
22501 This option can only be used if the target architecture supports
22502 branch-likely instructions. @option{-mfix-r10000} is the default when
22503 @option{-march=r10000} is used; @option{-mno-fix-r10000} is the default
22504 otherwise.
22505
22506 @item -mfix-r5900
22507 @itemx -mno-fix-r5900
22508 @opindex mfix-r5900
22509 Do not attempt to schedule the preceding instruction into the delay slot
22510 of a branch instruction placed at the end of a short loop of six
22511 instructions or fewer and always schedule a @code{nop} instruction there
22512 instead. The short loop bug under certain conditions causes loops to
22513 execute only once or twice, due to a hardware bug in the R5900 chip. The
22514 workaround is implemented by the assembler rather than by GCC@.
22515
22516 @item -mfix-rm7000
22517 @itemx -mno-fix-rm7000
22518 @opindex mfix-rm7000
22519 Work around the RM7000 @code{dmult}/@code{dmultu} errata. The
22520 workarounds are implemented by the assembler rather than by GCC@.
22521
22522 @item -mfix-vr4120
22523 @itemx -mno-fix-vr4120
22524 @opindex mfix-vr4120
22525 Work around certain VR4120 errata:
22526 @itemize @minus
22527 @item
22528 @code{dmultu} does not always produce the correct result.
22529 @item
22530 @code{div} and @code{ddiv} do not always produce the correct result if one
22531 of the operands is negative.
22532 @end itemize
22533 The workarounds for the division errata rely on special functions in
22534 @file{libgcc.a}. At present, these functions are only provided by
22535 the @code{mips64vr*-elf} configurations.
22536
22537 Other VR4120 errata require a NOP to be inserted between certain pairs of
22538 instructions. These errata are handled by the assembler, not by GCC itself.
22539
22540 @item -mfix-vr4130
22541 @opindex mfix-vr4130
22542 Work around the VR4130 @code{mflo}/@code{mfhi} errata. The
22543 workarounds are implemented by the assembler rather than by GCC,
22544 although GCC avoids using @code{mflo} and @code{mfhi} if the
22545 VR4130 @code{macc}, @code{macchi}, @code{dmacc} and @code{dmacchi}
22546 instructions are available instead.
22547
22548 @item -mfix-sb1
22549 @itemx -mno-fix-sb1
22550 @opindex mfix-sb1
22551 Work around certain SB-1 CPU core errata.
22552 (This flag currently works around the SB-1 revision 2
22553 ``F1'' and ``F2'' floating-point errata.)
22554
22555 @item -mr10k-cache-barrier=@var{setting}
22556 @opindex mr10k-cache-barrier
22557 Specify whether GCC should insert cache barriers to avoid the
22558 side effects of speculation on R10K processors.
22559
22560 In common with many processors, the R10K tries to predict the outcome
22561 of a conditional branch and speculatively executes instructions from
22562 the ``taken'' branch. It later aborts these instructions if the
22563 predicted outcome is wrong. However, on the R10K, even aborted
22564 instructions can have side effects.
22565
22566 This problem only affects kernel stores and, depending on the system,
22567 kernel loads. As an example, a speculatively-executed store may load
22568 the target memory into cache and mark the cache line as dirty, even if
22569 the store itself is later aborted. If a DMA operation writes to the
22570 same area of memory before the ``dirty'' line is flushed, the cached
22571 data overwrites the DMA-ed data. See the R10K processor manual
22572 for a full description, including other potential problems.
22573
22574 One workaround is to insert cache barrier instructions before every memory
22575 access that might be speculatively executed and that might have side
22576 effects even if aborted. @option{-mr10k-cache-barrier=@var{setting}}
22577 controls GCC's implementation of this workaround. It assumes that
22578 aborted accesses to any byte in the following regions does not have
22579 side effects:
22580
22581 @enumerate
22582 @item
22583 the memory occupied by the current function's stack frame;
22584
22585 @item
22586 the memory occupied by an incoming stack argument;
22587
22588 @item
22589 the memory occupied by an object with a link-time-constant address.
22590 @end enumerate
22591
22592 It is the kernel's responsibility to ensure that speculative
22593 accesses to these regions are indeed safe.
22594
22595 If the input program contains a function declaration such as:
22596
22597 @smallexample
22598 void foo (void);
22599 @end smallexample
22600
22601 then the implementation of @code{foo} must allow @code{j foo} and
22602 @code{jal foo} to be executed speculatively. GCC honors this
22603 restriction for functions it compiles itself. It expects non-GCC
22604 functions (such as hand-written assembly code) to do the same.
22605
22606 The option has three forms:
22607
22608 @table @gcctabopt
22609 @item -mr10k-cache-barrier=load-store
22610 Insert a cache barrier before a load or store that might be
22611 speculatively executed and that might have side effects even
22612 if aborted.
22613
22614 @item -mr10k-cache-barrier=store
22615 Insert a cache barrier before a store that might be speculatively
22616 executed and that might have side effects even if aborted.
22617
22618 @item -mr10k-cache-barrier=none
22619 Disable the insertion of cache barriers. This is the default setting.
22620 @end table
22621
22622 @item -mflush-func=@var{func}
22623 @itemx -mno-flush-func
22624 @opindex mflush-func
22625 Specifies the function to call to flush the I and D caches, or to not
22626 call any such function. If called, the function must take the same
22627 arguments as the common @code{_flush_func}, that is, the address of the
22628 memory range for which the cache is being flushed, the size of the
22629 memory range, and the number 3 (to flush both caches). The default
22630 depends on the target GCC was configured for, but commonly is either
22631 @code{_flush_func} or @code{__cpu_flush}.
22632
22633 @item mbranch-cost=@var{num}
22634 @opindex mbranch-cost
22635 Set the cost of branches to roughly @var{num} ``simple'' instructions.
22636 This cost is only a heuristic and is not guaranteed to produce
22637 consistent results across releases. A zero cost redundantly selects
22638 the default, which is based on the @option{-mtune} setting.
22639
22640 @item -mbranch-likely
22641 @itemx -mno-branch-likely
22642 @opindex mbranch-likely
22643 @opindex mno-branch-likely
22644 Enable or disable use of Branch Likely instructions, regardless of the
22645 default for the selected architecture. By default, Branch Likely
22646 instructions may be generated if they are supported by the selected
22647 architecture. An exception is for the MIPS32 and MIPS64 architectures
22648 and processors that implement those architectures; for those, Branch
22649 Likely instructions are not be generated by default because the MIPS32
22650 and MIPS64 architectures specifically deprecate their use.
22651
22652 @item -mcompact-branches=never
22653 @itemx -mcompact-branches=optimal
22654 @itemx -mcompact-branches=always
22655 @opindex mcompact-branches=never
22656 @opindex mcompact-branches=optimal
22657 @opindex mcompact-branches=always
22658 These options control which form of branches will be generated. The
22659 default is @option{-mcompact-branches=optimal}.
22660
22661 The @option{-mcompact-branches=never} option ensures that compact branch
22662 instructions will never be generated.
22663
22664 The @option{-mcompact-branches=always} option ensures that a compact
22665 branch instruction will be generated if available. If a compact branch
22666 instruction is not available, a delay slot form of the branch will be
22667 used instead.
22668
22669 This option is supported from MIPS Release 6 onwards.
22670
22671 The @option{-mcompact-branches=optimal} option will cause a delay slot
22672 branch to be used if one is available in the current ISA and the delay
22673 slot is successfully filled. If the delay slot is not filled, a compact
22674 branch will be chosen if one is available.
22675
22676 @item -mfp-exceptions
22677 @itemx -mno-fp-exceptions
22678 @opindex mfp-exceptions
22679 Specifies whether FP exceptions are enabled. This affects how
22680 FP instructions are scheduled for some processors.
22681 The default is that FP exceptions are
22682 enabled.
22683
22684 For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
22685 64-bit code, then we can use both FP pipes. Otherwise, we can only use one
22686 FP pipe.
22687
22688 @item -mvr4130-align
22689 @itemx -mno-vr4130-align
22690 @opindex mvr4130-align
22691 The VR4130 pipeline is two-way superscalar, but can only issue two
22692 instructions together if the first one is 8-byte aligned. When this
22693 option is enabled, GCC aligns pairs of instructions that it
22694 thinks should execute in parallel.
22695
22696 This option only has an effect when optimizing for the VR4130.
22697 It normally makes code faster, but at the expense of making it bigger.
22698 It is enabled by default at optimization level @option{-O3}.
22699
22700 @item -msynci
22701 @itemx -mno-synci
22702 @opindex msynci
22703 Enable (disable) generation of @code{synci} instructions on
22704 architectures that support it. The @code{synci} instructions (if
22705 enabled) are generated when @code{__builtin___clear_cache} is
22706 compiled.
22707
22708 This option defaults to @option{-mno-synci}, but the default can be
22709 overridden by configuring GCC with @option{--with-synci}.
22710
22711 When compiling code for single processor systems, it is generally safe
22712 to use @code{synci}. However, on many multi-core (SMP) systems, it
22713 does not invalidate the instruction caches on all cores and may lead
22714 to undefined behavior.
22715
22716 @item -mrelax-pic-calls
22717 @itemx -mno-relax-pic-calls
22718 @opindex mrelax-pic-calls
22719 Try to turn PIC calls that are normally dispatched via register
22720 @code{$25} into direct calls. This is only possible if the linker can
22721 resolve the destination at link time and if the destination is within
22722 range for a direct call.
22723
22724 @option{-mrelax-pic-calls} is the default if GCC was configured to use
22725 an assembler and a linker that support the @code{.reloc} assembly
22726 directive and @option{-mexplicit-relocs} is in effect. With
22727 @option{-mno-explicit-relocs}, this optimization can be performed by the
22728 assembler and the linker alone without help from the compiler.
22729
22730 @item -mmcount-ra-address
22731 @itemx -mno-mcount-ra-address
22732 @opindex mmcount-ra-address
22733 @opindex mno-mcount-ra-address
22734 Emit (do not emit) code that allows @code{_mcount} to modify the
22735 calling function's return address. When enabled, this option extends
22736 the usual @code{_mcount} interface with a new @var{ra-address}
22737 parameter, which has type @code{intptr_t *} and is passed in register
22738 @code{$12}. @code{_mcount} can then modify the return address by
22739 doing both of the following:
22740 @itemize
22741 @item
22742 Returning the new address in register @code{$31}.
22743 @item
22744 Storing the new address in @code{*@var{ra-address}},
22745 if @var{ra-address} is nonnull.
22746 @end itemize
22747
22748 The default is @option{-mno-mcount-ra-address}.
22749
22750 @item -mframe-header-opt
22751 @itemx -mno-frame-header-opt
22752 @opindex mframe-header-opt
22753 Enable (disable) frame header optimization in the o32 ABI. When using the
22754 o32 ABI, calling functions will allocate 16 bytes on the stack for the called
22755 function to write out register arguments. When enabled, this optimization
22756 will suppress the allocation of the frame header if it can be determined that
22757 it is unused.
22758
22759 This optimization is off by default at all optimization levels.
22760
22761 @item -mlxc1-sxc1
22762 @itemx -mno-lxc1-sxc1
22763 @opindex mlxc1-sxc1
22764 When applicable, enable (disable) the generation of @code{lwxc1},
22765 @code{swxc1}, @code{ldxc1}, @code{sdxc1} instructions. Enabled by default.
22766
22767 @item -mmadd4
22768 @itemx -mno-madd4
22769 @opindex mmadd4
22770 When applicable, enable (disable) the generation of 4-operand @code{madd.s},
22771 @code{madd.d} and related instructions. Enabled by default.
22772
22773 @end table
22774
22775 @node MMIX Options
22776 @subsection MMIX Options
22777 @cindex MMIX Options
22778
22779 These options are defined for the MMIX:
22780
22781 @table @gcctabopt
22782 @item -mlibfuncs
22783 @itemx -mno-libfuncs
22784 @opindex mlibfuncs
22785 @opindex mno-libfuncs
22786 Specify that intrinsic library functions are being compiled, passing all
22787 values in registers, no matter the size.
22788
22789 @item -mepsilon
22790 @itemx -mno-epsilon
22791 @opindex mepsilon
22792 @opindex mno-epsilon
22793 Generate floating-point comparison instructions that compare with respect
22794 to the @code{rE} epsilon register.
22795
22796 @item -mabi=mmixware
22797 @itemx -mabi=gnu
22798 @opindex mabi=mmixware
22799 @opindex mabi=gnu
22800 Generate code that passes function parameters and return values that (in
22801 the called function) are seen as registers @code{$0} and up, as opposed to
22802 the GNU ABI which uses global registers @code{$231} and up.
22803
22804 @item -mzero-extend
22805 @itemx -mno-zero-extend
22806 @opindex mzero-extend
22807 @opindex mno-zero-extend
22808 When reading data from memory in sizes shorter than 64 bits, use (do not
22809 use) zero-extending load instructions by default, rather than
22810 sign-extending ones.
22811
22812 @item -mknuthdiv
22813 @itemx -mno-knuthdiv
22814 @opindex mknuthdiv
22815 @opindex mno-knuthdiv
22816 Make the result of a division yielding a remainder have the same sign as
22817 the divisor. With the default, @option{-mno-knuthdiv}, the sign of the
22818 remainder follows the sign of the dividend. Both methods are
22819 arithmetically valid, the latter being almost exclusively used.
22820
22821 @item -mtoplevel-symbols
22822 @itemx -mno-toplevel-symbols
22823 @opindex mtoplevel-symbols
22824 @opindex mno-toplevel-symbols
22825 Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly
22826 code can be used with the @code{PREFIX} assembly directive.
22827
22828 @item -melf
22829 @opindex melf
22830 Generate an executable in the ELF format, rather than the default
22831 @samp{mmo} format used by the @command{mmix} simulator.
22832
22833 @item -mbranch-predict
22834 @itemx -mno-branch-predict
22835 @opindex mbranch-predict
22836 @opindex mno-branch-predict
22837 Use (do not use) the probable-branch instructions, when static branch
22838 prediction indicates a probable branch.
22839
22840 @item -mbase-addresses
22841 @itemx -mno-base-addresses
22842 @opindex mbase-addresses
22843 @opindex mno-base-addresses
22844 Generate (do not generate) code that uses @emph{base addresses}. Using a
22845 base address automatically generates a request (handled by the assembler
22846 and the linker) for a constant to be set up in a global register. The
22847 register is used for one or more base address requests within the range 0
22848 to 255 from the value held in the register. The generally leads to short
22849 and fast code, but the number of different data items that can be
22850 addressed is limited. This means that a program that uses lots of static
22851 data may require @option{-mno-base-addresses}.
22852
22853 @item -msingle-exit
22854 @itemx -mno-single-exit
22855 @opindex msingle-exit
22856 @opindex mno-single-exit
22857 Force (do not force) generated code to have a single exit point in each
22858 function.
22859 @end table
22860
22861 @node MN10300 Options
22862 @subsection MN10300 Options
22863 @cindex MN10300 options
22864
22865 These @option{-m} options are defined for Matsushita MN10300 architectures:
22866
22867 @table @gcctabopt
22868 @item -mmult-bug
22869 @opindex mmult-bug
22870 Generate code to avoid bugs in the multiply instructions for the MN10300
22871 processors. This is the default.
22872
22873 @item -mno-mult-bug
22874 @opindex mno-mult-bug
22875 Do not generate code to avoid bugs in the multiply instructions for the
22876 MN10300 processors.
22877
22878 @item -mam33
22879 @opindex mam33
22880 Generate code using features specific to the AM33 processor.
22881
22882 @item -mno-am33
22883 @opindex mno-am33
22884 Do not generate code using features specific to the AM33 processor. This
22885 is the default.
22886
22887 @item -mam33-2
22888 @opindex mam33-2
22889 Generate code using features specific to the AM33/2.0 processor.
22890
22891 @item -mam34
22892 @opindex mam34
22893 Generate code using features specific to the AM34 processor.
22894
22895 @item -mtune=@var{cpu-type}
22896 @opindex mtune
22897 Use the timing characteristics of the indicated CPU type when
22898 scheduling instructions. This does not change the targeted processor
22899 type. The CPU type must be one of @samp{mn10300}, @samp{am33},
22900 @samp{am33-2} or @samp{am34}.
22901
22902 @item -mreturn-pointer-on-d0
22903 @opindex mreturn-pointer-on-d0
22904 When generating a function that returns a pointer, return the pointer
22905 in both @code{a0} and @code{d0}. Otherwise, the pointer is returned
22906 only in @code{a0}, and attempts to call such functions without a prototype
22907 result in errors. Note that this option is on by default; use
22908 @option{-mno-return-pointer-on-d0} to disable it.
22909
22910 @item -mno-crt0
22911 @opindex mno-crt0
22912 Do not link in the C run-time initialization object file.
22913
22914 @item -mrelax
22915 @opindex mrelax
22916 Indicate to the linker that it should perform a relaxation optimization pass
22917 to shorten branches, calls and absolute memory addresses. This option only
22918 has an effect when used on the command line for the final link step.
22919
22920 This option makes symbolic debugging impossible.
22921
22922 @item -mliw
22923 @opindex mliw
22924 Allow the compiler to generate @emph{Long Instruction Word}
22925 instructions if the target is the @samp{AM33} or later. This is the
22926 default. This option defines the preprocessor macro @code{__LIW__}.
22927
22928 @item -mno-liw
22929 @opindex mno-liw
22930 Do not allow the compiler to generate @emph{Long Instruction Word}
22931 instructions. This option defines the preprocessor macro
22932 @code{__NO_LIW__}.
22933
22934 @item -msetlb
22935 @opindex msetlb
22936 Allow the compiler to generate the @emph{SETLB} and @emph{Lcc}
22937 instructions if the target is the @samp{AM33} or later. This is the
22938 default. This option defines the preprocessor macro @code{__SETLB__}.
22939
22940 @item -mno-setlb
22941 @opindex mno-setlb
22942 Do not allow the compiler to generate @emph{SETLB} or @emph{Lcc}
22943 instructions. This option defines the preprocessor macro
22944 @code{__NO_SETLB__}.
22945
22946 @end table
22947
22948 @node Moxie Options
22949 @subsection Moxie Options
22950 @cindex Moxie Options
22951
22952 @table @gcctabopt
22953
22954 @item -meb
22955 @opindex meb
22956 Generate big-endian code. This is the default for @samp{moxie-*-*}
22957 configurations.
22958
22959 @item -mel
22960 @opindex mel
22961 Generate little-endian code.
22962
22963 @item -mmul.x
22964 @opindex mmul.x
22965 Generate mul.x and umul.x instructions. This is the default for
22966 @samp{moxiebox-*-*} configurations.
22967
22968 @item -mno-crt0
22969 @opindex mno-crt0
22970 Do not link in the C run-time initialization object file.
22971
22972 @end table
22973
22974 @node MSP430 Options
22975 @subsection MSP430 Options
22976 @cindex MSP430 Options
22977
22978 These options are defined for the MSP430:
22979
22980 @table @gcctabopt
22981
22982 @item -masm-hex
22983 @opindex masm-hex
22984 Force assembly output to always use hex constants. Normally such
22985 constants are signed decimals, but this option is available for
22986 testsuite and/or aesthetic purposes.
22987
22988 @item -mmcu=
22989 @opindex mmcu=
22990 Select the MCU to target. This is used to create a C preprocessor
22991 symbol based upon the MCU name, converted to upper case and pre- and
22992 post-fixed with @samp{__}. This in turn is used by the
22993 @file{msp430.h} header file to select an MCU-specific supplementary
22994 header file.
22995
22996 The option also sets the ISA to use. If the MCU name is one that is
22997 known to only support the 430 ISA then that is selected, otherwise the
22998 430X ISA is selected. A generic MCU name of @samp{msp430} can also be
22999 used to select the 430 ISA. Similarly the generic @samp{msp430x} MCU
23000 name selects the 430X ISA.
23001
23002 In addition an MCU-specific linker script is added to the linker
23003 command line. The script's name is the name of the MCU with
23004 @file{.ld} appended. Thus specifying @option{-mmcu=xxx} on the @command{gcc}
23005 command line defines the C preprocessor symbol @code{__XXX__} and
23006 cause the linker to search for a script called @file{xxx.ld}.
23007
23008 This option is also passed on to the assembler.
23009
23010 @item -mwarn-mcu
23011 @itemx -mno-warn-mcu
23012 @opindex mwarn-mcu
23013 @opindex mno-warn-mcu
23014 This option enables or disables warnings about conflicts between the
23015 MCU name specified by the @option{-mmcu} option and the ISA set by the
23016 @option{-mcpu} option and/or the hardware multiply support set by the
23017 @option{-mhwmult} option. It also toggles warnings about unrecognized
23018 MCU names. This option is on by default.
23019
23020 @item -mcpu=
23021 @opindex mcpu=
23022 Specifies the ISA to use. Accepted values are @samp{msp430},
23023 @samp{msp430x} and @samp{msp430xv2}. This option is deprecated. The
23024 @option{-mmcu=} option should be used to select the ISA.
23025
23026 @item -msim
23027 @opindex msim
23028 Link to the simulator runtime libraries and linker script. Overrides
23029 any scripts that would be selected by the @option{-mmcu=} option.
23030
23031 @item -mlarge
23032 @opindex mlarge
23033 Use large-model addressing (20-bit pointers, 32-bit @code{size_t}).
23034
23035 @item -msmall
23036 @opindex msmall
23037 Use small-model addressing (16-bit pointers, 16-bit @code{size_t}).
23038
23039 @item -mrelax
23040 @opindex mrelax
23041 This option is passed to the assembler and linker, and allows the
23042 linker to perform certain optimizations that cannot be done until
23043 the final link.
23044
23045 @item mhwmult=
23046 @opindex mhwmult=
23047 Describes the type of hardware multiply supported by the target.
23048 Accepted values are @samp{none} for no hardware multiply, @samp{16bit}
23049 for the original 16-bit-only multiply supported by early MCUs.
23050 @samp{32bit} for the 16/32-bit multiply supported by later MCUs and
23051 @samp{f5series} for the 16/32-bit multiply supported by F5-series MCUs.
23052 A value of @samp{auto} can also be given. This tells GCC to deduce
23053 the hardware multiply support based upon the MCU name provided by the
23054 @option{-mmcu} option. If no @option{-mmcu} option is specified or if
23055 the MCU name is not recognized then no hardware multiply support is
23056 assumed. @code{auto} is the default setting.
23057
23058 Hardware multiplies are normally performed by calling a library
23059 routine. This saves space in the generated code. When compiling at
23060 @option{-O3} or higher however the hardware multiplier is invoked
23061 inline. This makes for bigger, but faster code.
23062
23063 The hardware multiply routines disable interrupts whilst running and
23064 restore the previous interrupt state when they finish. This makes
23065 them safe to use inside interrupt handlers as well as in normal code.
23066
23067 @item -minrt
23068 @opindex minrt
23069 Enable the use of a minimum runtime environment - no static
23070 initializers or constructors. This is intended for memory-constrained
23071 devices. The compiler includes special symbols in some objects
23072 that tell the linker and runtime which code fragments are required.
23073
23074 @item -mcode-region=
23075 @itemx -mdata-region=
23076 @opindex mcode-region
23077 @opindex mdata-region
23078 These options tell the compiler where to place functions and data that
23079 do not have one of the @code{lower}, @code{upper}, @code{either} or
23080 @code{section} attributes. Possible values are @code{lower},
23081 @code{upper}, @code{either} or @code{any}. The first three behave
23082 like the corresponding attribute. The fourth possible value -
23083 @code{any} - is the default. It leaves placement entirely up to the
23084 linker script and how it assigns the standard sections
23085 (@code{.text}, @code{.data}, etc) to the memory regions.
23086
23087 @item -msilicon-errata=
23088 @opindex msilicon-errata
23089 This option passes on a request to assembler to enable the fixes for
23090 the named silicon errata.
23091
23092 @item -msilicon-errata-warn=
23093 @opindex msilicon-errata-warn
23094 This option passes on a request to the assembler to enable warning
23095 messages when a silicon errata might need to be applied.
23096
23097 @end table
23098
23099 @node NDS32 Options
23100 @subsection NDS32 Options
23101 @cindex NDS32 Options
23102
23103 These options are defined for NDS32 implementations:
23104
23105 @table @gcctabopt
23106
23107 @item -mbig-endian
23108 @opindex mbig-endian
23109 Generate code in big-endian mode.
23110
23111 @item -mlittle-endian
23112 @opindex mlittle-endian
23113 Generate code in little-endian mode.
23114
23115 @item -mreduced-regs
23116 @opindex mreduced-regs
23117 Use reduced-set registers for register allocation.
23118
23119 @item -mfull-regs
23120 @opindex mfull-regs
23121 Use full-set registers for register allocation.
23122
23123 @item -mcmov
23124 @opindex mcmov
23125 Generate conditional move instructions.
23126
23127 @item -mno-cmov
23128 @opindex mno-cmov
23129 Do not generate conditional move instructions.
23130
23131 @item -mext-perf
23132 @opindex mext-perf
23133 Generate performance extension instructions.
23134
23135 @item -mno-ext-perf
23136 @opindex mno-ext-perf
23137 Do not generate performance extension instructions.
23138
23139 @item -mext-perf2
23140 @opindex mext-perf2
23141 Generate performance extension 2 instructions.
23142
23143 @item -mno-ext-perf2
23144 @opindex mno-ext-perf2
23145 Do not generate performance extension 2 instructions.
23146
23147 @item -mext-string
23148 @opindex mext-string
23149 Generate string extension instructions.
23150
23151 @item -mno-ext-string
23152 @opindex mno-ext-string
23153 Do not generate string extension instructions.
23154
23155 @item -mv3push
23156 @opindex mv3push
23157 Generate v3 push25/pop25 instructions.
23158
23159 @item -mno-v3push
23160 @opindex mno-v3push
23161 Do not generate v3 push25/pop25 instructions.
23162
23163 @item -m16-bit
23164 @opindex m16-bit
23165 Generate 16-bit instructions.
23166
23167 @item -mno-16-bit
23168 @opindex mno-16-bit
23169 Do not generate 16-bit instructions.
23170
23171 @item -misr-vector-size=@var{num}
23172 @opindex misr-vector-size
23173 Specify the size of each interrupt vector, which must be 4 or 16.
23174
23175 @item -mcache-block-size=@var{num}
23176 @opindex mcache-block-size
23177 Specify the size of each cache block,
23178 which must be a power of 2 between 4 and 512.
23179
23180 @item -march=@var{arch}
23181 @opindex march
23182 Specify the name of the target architecture.
23183
23184 @item -mcmodel=@var{code-model}
23185 @opindex mcmodel
23186 Set the code model to one of
23187 @table @asis
23188 @item @samp{small}
23189 All the data and read-only data segments must be within 512KB addressing space.
23190 The text segment must be within 16MB addressing space.
23191 @item @samp{medium}
23192 The data segment must be within 512KB while the read-only data segment can be
23193 within 4GB addressing space. The text segment should be still within 16MB
23194 addressing space.
23195 @item @samp{large}
23196 All the text and data segments can be within 4GB addressing space.
23197 @end table
23198
23199 @item -mctor-dtor
23200 @opindex mctor-dtor
23201 Enable constructor/destructor feature.
23202
23203 @item -mrelax
23204 @opindex mrelax
23205 Guide linker to relax instructions.
23206
23207 @end table
23208
23209 @node Nios II Options
23210 @subsection Nios II Options
23211 @cindex Nios II options
23212 @cindex Altera Nios II options
23213
23214 These are the options defined for the Altera Nios II processor.
23215
23216 @table @gcctabopt
23217
23218 @item -G @var{num}
23219 @opindex G
23220 @cindex smaller data references
23221 Put global and static objects less than or equal to @var{num} bytes
23222 into the small data or BSS sections instead of the normal data or BSS
23223 sections. The default value of @var{num} is 8.
23224
23225 @item -mgpopt=@var{option}
23226 @itemx -mgpopt
23227 @itemx -mno-gpopt
23228 @opindex mgpopt
23229 @opindex mno-gpopt
23230 Generate (do not generate) GP-relative accesses. The following
23231 @var{option} names are recognized:
23232
23233 @table @samp
23234
23235 @item none
23236 Do not generate GP-relative accesses.
23237
23238 @item local
23239 Generate GP-relative accesses for small data objects that are not
23240 external, weak, or uninitialized common symbols.
23241 Also use GP-relative addressing for objects that
23242 have been explicitly placed in a small data section via a @code{section}
23243 attribute.
23244
23245 @item global
23246 As for @samp{local}, but also generate GP-relative accesses for
23247 small data objects that are external, weak, or common. If you use this option,
23248 you must ensure that all parts of your program (including libraries) are
23249 compiled with the same @option{-G} setting.
23250
23251 @item data
23252 Generate GP-relative accesses for all data objects in the program. If you
23253 use this option, the entire data and BSS segments
23254 of your program must fit in 64K of memory and you must use an appropriate
23255 linker script to allocate them within the addressable range of the
23256 global pointer.
23257
23258 @item all
23259 Generate GP-relative addresses for function pointers as well as data
23260 pointers. If you use this option, the entire text, data, and BSS segments
23261 of your program must fit in 64K of memory and you must use an appropriate
23262 linker script to allocate them within the addressable range of the
23263 global pointer.
23264
23265 @end table
23266
23267 @option{-mgpopt} is equivalent to @option{-mgpopt=local}, and
23268 @option{-mno-gpopt} is equivalent to @option{-mgpopt=none}.
23269
23270 The default is @option{-mgpopt} except when @option{-fpic} or
23271 @option{-fPIC} is specified to generate position-independent code.
23272 Note that the Nios II ABI does not permit GP-relative accesses from
23273 shared libraries.
23274
23275 You may need to specify @option{-mno-gpopt} explicitly when building
23276 programs that include large amounts of small data, including large
23277 GOT data sections. In this case, the 16-bit offset for GP-relative
23278 addressing may not be large enough to allow access to the entire
23279 small data section.
23280
23281 @item -mgprel-sec=@var{regexp}
23282 @opindex mgprel-sec
23283 This option specifies additional section names that can be accessed via
23284 GP-relative addressing. It is most useful in conjunction with
23285 @code{section} attributes on variable declarations
23286 (@pxref{Common Variable Attributes}) and a custom linker script.
23287 The @var{regexp} is a POSIX Extended Regular Expression.
23288
23289 This option does not affect the behavior of the @option{-G} option, and
23290 the specified sections are in addition to the standard @code{.sdata}
23291 and @code{.sbss} small-data sections that are recognized by @option{-mgpopt}.
23292
23293 @item -mr0rel-sec=@var{regexp}
23294 @opindex mr0rel-sec
23295 This option specifies names of sections that can be accessed via a
23296 16-bit offset from @code{r0}; that is, in the low 32K or high 32K
23297 of the 32-bit address space. It is most useful in conjunction with
23298 @code{section} attributes on variable declarations
23299 (@pxref{Common Variable Attributes}) and a custom linker script.
23300 The @var{regexp} is a POSIX Extended Regular Expression.
23301
23302 In contrast to the use of GP-relative addressing for small data,
23303 zero-based addressing is never generated by default and there are no
23304 conventional section names used in standard linker scripts for sections
23305 in the low or high areas of memory.
23306
23307 @item -mel
23308 @itemx -meb
23309 @opindex mel
23310 @opindex meb
23311 Generate little-endian (default) or big-endian (experimental) code,
23312 respectively.
23313
23314 @item -march=@var{arch}
23315 @opindex march
23316 This specifies the name of the target Nios II architecture. GCC uses this
23317 name to determine what kind of instructions it can emit when generating
23318 assembly code. Permissible names are: @samp{r1}, @samp{r2}.
23319
23320 The preprocessor macro @code{__nios2_arch__} is available to programs,
23321 with value 1 or 2, indicating the targeted ISA level.
23322
23323 @item -mbypass-cache
23324 @itemx -mno-bypass-cache
23325 @opindex mno-bypass-cache
23326 @opindex mbypass-cache
23327 Force all load and store instructions to always bypass cache by
23328 using I/O variants of the instructions. The default is not to
23329 bypass the cache.
23330
23331 @item -mno-cache-volatile
23332 @itemx -mcache-volatile
23333 @opindex mcache-volatile
23334 @opindex mno-cache-volatile
23335 Volatile memory access bypass the cache using the I/O variants of
23336 the load and store instructions. The default is not to bypass the cache.
23337
23338 @item -mno-fast-sw-div
23339 @itemx -mfast-sw-div
23340 @opindex mno-fast-sw-div
23341 @opindex mfast-sw-div
23342 Do not use table-based fast divide for small numbers. The default
23343 is to use the fast divide at @option{-O3} and above.
23344
23345 @item -mno-hw-mul
23346 @itemx -mhw-mul
23347 @itemx -mno-hw-mulx
23348 @itemx -mhw-mulx
23349 @itemx -mno-hw-div
23350 @itemx -mhw-div
23351 @opindex mno-hw-mul
23352 @opindex mhw-mul
23353 @opindex mno-hw-mulx
23354 @opindex mhw-mulx
23355 @opindex mno-hw-div
23356 @opindex mhw-div
23357 Enable or disable emitting @code{mul}, @code{mulx} and @code{div} family of
23358 instructions by the compiler. The default is to emit @code{mul}
23359 and not emit @code{div} and @code{mulx}.
23360
23361 @item -mbmx
23362 @itemx -mno-bmx
23363 @itemx -mcdx
23364 @itemx -mno-cdx
23365 Enable or disable generation of Nios II R2 BMX (bit manipulation) and
23366 CDX (code density) instructions. Enabling these instructions also
23367 requires @option{-march=r2}. Since these instructions are optional
23368 extensions to the R2 architecture, the default is not to emit them.
23369
23370 @item -mcustom-@var{insn}=@var{N}
23371 @itemx -mno-custom-@var{insn}
23372 @opindex mcustom-@var{insn}
23373 @opindex mno-custom-@var{insn}
23374 Each @option{-mcustom-@var{insn}=@var{N}} option enables use of a
23375 custom instruction with encoding @var{N} when generating code that uses
23376 @var{insn}. For example, @option{-mcustom-fadds=253} generates custom
23377 instruction 253 for single-precision floating-point add operations instead
23378 of the default behavior of using a library call.
23379
23380 The following values of @var{insn} are supported. Except as otherwise
23381 noted, floating-point operations are expected to be implemented with
23382 normal IEEE 754 semantics and correspond directly to the C operators or the
23383 equivalent GCC built-in functions (@pxref{Other Builtins}).
23384
23385 Single-precision floating point:
23386 @table @asis
23387
23388 @item @samp{fadds}, @samp{fsubs}, @samp{fdivs}, @samp{fmuls}
23389 Binary arithmetic operations.
23390
23391 @item @samp{fnegs}
23392 Unary negation.
23393
23394 @item @samp{fabss}
23395 Unary absolute value.
23396
23397 @item @samp{fcmpeqs}, @samp{fcmpges}, @samp{fcmpgts}, @samp{fcmples}, @samp{fcmplts}, @samp{fcmpnes}
23398 Comparison operations.
23399
23400 @item @samp{fmins}, @samp{fmaxs}
23401 Floating-point minimum and maximum. These instructions are only
23402 generated if @option{-ffinite-math-only} is specified.
23403
23404 @item @samp{fsqrts}
23405 Unary square root operation.
23406
23407 @item @samp{fcoss}, @samp{fsins}, @samp{ftans}, @samp{fatans}, @samp{fexps}, @samp{flogs}
23408 Floating-point trigonometric and exponential functions. These instructions
23409 are only generated if @option{-funsafe-math-optimizations} is also specified.
23410
23411 @end table
23412
23413 Double-precision floating point:
23414 @table @asis
23415
23416 @item @samp{faddd}, @samp{fsubd}, @samp{fdivd}, @samp{fmuld}
23417 Binary arithmetic operations.
23418
23419 @item @samp{fnegd}
23420 Unary negation.
23421
23422 @item @samp{fabsd}
23423 Unary absolute value.
23424
23425 @item @samp{fcmpeqd}, @samp{fcmpged}, @samp{fcmpgtd}, @samp{fcmpled}, @samp{fcmpltd}, @samp{fcmpned}
23426 Comparison operations.
23427
23428 @item @samp{fmind}, @samp{fmaxd}
23429 Double-precision minimum and maximum. These instructions are only
23430 generated if @option{-ffinite-math-only} is specified.
23431
23432 @item @samp{fsqrtd}
23433 Unary square root operation.
23434
23435 @item @samp{fcosd}, @samp{fsind}, @samp{ftand}, @samp{fatand}, @samp{fexpd}, @samp{flogd}
23436 Double-precision trigonometric and exponential functions. These instructions
23437 are only generated if @option{-funsafe-math-optimizations} is also specified.
23438
23439 @end table
23440
23441 Conversions:
23442 @table @asis
23443 @item @samp{fextsd}
23444 Conversion from single precision to double precision.
23445
23446 @item @samp{ftruncds}
23447 Conversion from double precision to single precision.
23448
23449 @item @samp{fixsi}, @samp{fixsu}, @samp{fixdi}, @samp{fixdu}
23450 Conversion from floating point to signed or unsigned integer types, with
23451 truncation towards zero.
23452
23453 @item @samp{round}
23454 Conversion from single-precision floating point to signed integer,
23455 rounding to the nearest integer and ties away from zero.
23456 This corresponds to the @code{__builtin_lroundf} function when
23457 @option{-fno-math-errno} is used.
23458
23459 @item @samp{floatis}, @samp{floatus}, @samp{floatid}, @samp{floatud}
23460 Conversion from signed or unsigned integer types to floating-point types.
23461
23462 @end table
23463
23464 In addition, all of the following transfer instructions for internal
23465 registers X and Y must be provided to use any of the double-precision
23466 floating-point instructions. Custom instructions taking two
23467 double-precision source operands expect the first operand in the
23468 64-bit register X. The other operand (or only operand of a unary
23469 operation) is given to the custom arithmetic instruction with the
23470 least significant half in source register @var{src1} and the most
23471 significant half in @var{src2}. A custom instruction that returns a
23472 double-precision result returns the most significant 32 bits in the
23473 destination register and the other half in 32-bit register Y.
23474 GCC automatically generates the necessary code sequences to write
23475 register X and/or read register Y when double-precision floating-point
23476 instructions are used.
23477
23478 @table @asis
23479
23480 @item @samp{fwrx}
23481 Write @var{src1} into the least significant half of X and @var{src2} into
23482 the most significant half of X.
23483
23484 @item @samp{fwry}
23485 Write @var{src1} into Y.
23486
23487 @item @samp{frdxhi}, @samp{frdxlo}
23488 Read the most or least (respectively) significant half of X and store it in
23489 @var{dest}.
23490
23491 @item @samp{frdy}
23492 Read the value of Y and store it into @var{dest}.
23493 @end table
23494
23495 Note that you can gain more local control over generation of Nios II custom
23496 instructions by using the @code{target("custom-@var{insn}=@var{N}")}
23497 and @code{target("no-custom-@var{insn}")} function attributes
23498 (@pxref{Function Attributes})
23499 or pragmas (@pxref{Function Specific Option Pragmas}).
23500
23501 @item -mcustom-fpu-cfg=@var{name}
23502 @opindex mcustom-fpu-cfg
23503
23504 This option enables a predefined, named set of custom instruction encodings
23505 (see @option{-mcustom-@var{insn}} above).
23506 Currently, the following sets are defined:
23507
23508 @option{-mcustom-fpu-cfg=60-1} is equivalent to:
23509 @gccoptlist{-mcustom-fmuls=252 @gol
23510 -mcustom-fadds=253 @gol
23511 -mcustom-fsubs=254 @gol
23512 -fsingle-precision-constant}
23513
23514 @option{-mcustom-fpu-cfg=60-2} is equivalent to:
23515 @gccoptlist{-mcustom-fmuls=252 @gol
23516 -mcustom-fadds=253 @gol
23517 -mcustom-fsubs=254 @gol
23518 -mcustom-fdivs=255 @gol
23519 -fsingle-precision-constant}
23520
23521 @option{-mcustom-fpu-cfg=72-3} is equivalent to:
23522 @gccoptlist{-mcustom-floatus=243 @gol
23523 -mcustom-fixsi=244 @gol
23524 -mcustom-floatis=245 @gol
23525 -mcustom-fcmpgts=246 @gol
23526 -mcustom-fcmples=249 @gol
23527 -mcustom-fcmpeqs=250 @gol
23528 -mcustom-fcmpnes=251 @gol
23529 -mcustom-fmuls=252 @gol
23530 -mcustom-fadds=253 @gol
23531 -mcustom-fsubs=254 @gol
23532 -mcustom-fdivs=255 @gol
23533 -fsingle-precision-constant}
23534
23535 Custom instruction assignments given by individual
23536 @option{-mcustom-@var{insn}=} options override those given by
23537 @option{-mcustom-fpu-cfg=}, regardless of the
23538 order of the options on the command line.
23539
23540 Note that you can gain more local control over selection of a FPU
23541 configuration by using the @code{target("custom-fpu-cfg=@var{name}")}
23542 function attribute (@pxref{Function Attributes})
23543 or pragma (@pxref{Function Specific Option Pragmas}).
23544
23545 @end table
23546
23547 These additional @samp{-m} options are available for the Altera Nios II
23548 ELF (bare-metal) target:
23549
23550 @table @gcctabopt
23551
23552 @item -mhal
23553 @opindex mhal
23554 Link with HAL BSP. This suppresses linking with the GCC-provided C runtime
23555 startup and termination code, and is typically used in conjunction with
23556 @option{-msys-crt0=} to specify the location of the alternate startup code
23557 provided by the HAL BSP.
23558
23559 @item -msmallc
23560 @opindex msmallc
23561 Link with a limited version of the C library, @option{-lsmallc}, rather than
23562 Newlib.
23563
23564 @item -msys-crt0=@var{startfile}
23565 @opindex msys-crt0
23566 @var{startfile} is the file name of the startfile (crt0) to use
23567 when linking. This option is only useful in conjunction with @option{-mhal}.
23568
23569 @item -msys-lib=@var{systemlib}
23570 @opindex msys-lib
23571 @var{systemlib} is the library name of the library that provides
23572 low-level system calls required by the C library,
23573 e.g.@: @code{read} and @code{write}.
23574 This option is typically used to link with a library provided by a HAL BSP.
23575
23576 @end table
23577
23578 @node Nvidia PTX Options
23579 @subsection Nvidia PTX Options
23580 @cindex Nvidia PTX options
23581 @cindex nvptx options
23582
23583 These options are defined for Nvidia PTX:
23584
23585 @table @gcctabopt
23586
23587 @item -m32
23588 @itemx -m64
23589 @opindex m32
23590 @opindex m64
23591 Generate code for 32-bit or 64-bit ABI.
23592
23593 @item -misa=@var{ISA-string}
23594 @opindex march
23595 Generate code for given the specified PTX ISA (e.g.@: @samp{sm_35}). ISA
23596 strings must be lower-case. Valid ISA strings include @samp{sm_30} and
23597 @samp{sm_35}. The default ISA is sm_30.
23598
23599 @item -mmainkernel
23600 @opindex mmainkernel
23601 Link in code for a __main kernel. This is for stand-alone instead of
23602 offloading execution.
23603
23604 @item -moptimize
23605 @opindex moptimize
23606 Apply partitioned execution optimizations. This is the default when any
23607 level of optimization is selected.
23608
23609 @item -msoft-stack
23610 @opindex msoft-stack
23611 Generate code that does not use @code{.local} memory
23612 directly for stack storage. Instead, a per-warp stack pointer is
23613 maintained explicitly. This enables variable-length stack allocation (with
23614 variable-length arrays or @code{alloca}), and when global memory is used for
23615 underlying storage, makes it possible to access automatic variables from other
23616 threads, or with atomic instructions. This code generation variant is used
23617 for OpenMP offloading, but the option is exposed on its own for the purpose
23618 of testing the compiler; to generate code suitable for linking into programs
23619 using OpenMP offloading, use option @option{-mgomp}.
23620
23621 @item -muniform-simt
23622 @opindex muniform-simt
23623 Switch to code generation variant that allows to execute all threads in each
23624 warp, while maintaining memory state and side effects as if only one thread
23625 in each warp was active outside of OpenMP SIMD regions. All atomic operations
23626 and calls to runtime (malloc, free, vprintf) are conditionally executed (iff
23627 current lane index equals the master lane index), and the register being
23628 assigned is copied via a shuffle instruction from the master lane. Outside of
23629 SIMD regions lane 0 is the master; inside, each thread sees itself as the
23630 master. Shared memory array @code{int __nvptx_uni[]} stores all-zeros or
23631 all-ones bitmasks for each warp, indicating current mode (0 outside of SIMD
23632 regions). Each thread can bitwise-and the bitmask at position @code{tid.y}
23633 with current lane index to compute the master lane index.
23634
23635 @item -mgomp
23636 @opindex mgomp
23637 Generate code for use in OpenMP offloading: enables @option{-msoft-stack} and
23638 @option{-muniform-simt} options, and selects corresponding multilib variant.
23639
23640 @end table
23641
23642 @node OpenRISC Options
23643 @subsection OpenRISC Options
23644 @cindex OpenRISC Options
23645
23646 These options are defined for OpenRISC:
23647
23648 @table @gcctabopt
23649
23650 @item -mboard=@var{name}
23651 @opindex mboard
23652 Configure a board specific runtime. This will be passed to the linker for
23653 newlib board library linking. The default is @code{or1ksim}.
23654
23655 @item -mnewlib
23656 @opindex mnewlib
23657 This option is ignored; it is for compatibility purposes only. This used to
23658 select linker and preprocessor options for use with newlib.
23659
23660 @item -msoft-div
23661 @itemx -mhard-div
23662 @opindex msoft-div
23663 @opindex mhard-div
23664 Select software or hardware divide (@code{l.div}, @code{l.divu}) instructions.
23665 This default is hardware divide.
23666
23667 @item -msoft-mul
23668 @itemx -mhard-mul
23669 @opindex msoft-mul
23670 @opindex mhard-mul
23671 Select software or hardware multiply (@code{l.mul}, @code{l.muli}) instructions.
23672 This default is hardware multiply.
23673
23674 @item -msoft-float
23675 @itemx -mhard-float
23676 @opindex msoft-float
23677 @opindex mhard-float
23678 Select software or hardware for floating point operations.
23679 The default is software.
23680
23681 @item -mdouble-float
23682 @opindex mdouble-float
23683 When @option{-mhard-float} is selected, enables generation of double-precision
23684 floating point instructions. By default functions from @file{libgcc} are used
23685 to perform double-precision floating point operations.
23686
23687 @item -munordered-float
23688 @opindex munordered-float
23689 When @option{-mhard-float} is selected, enables generation of unordered
23690 floating point compare and set flag (@code{lf.sfun*}) instructions. By default
23691 functions from @file{libgcc} are used to perform unordered floating point
23692 compare and set flag operations.
23693
23694 @item -mcmov
23695 @opindex mcmov
23696 Enable generation of conditional move (@code{l.cmov}) instructions. By
23697 default the equivalent will be generated using using set and branch.
23698
23699 @item -mror
23700 @opindex mror
23701 Enable generation of rotate right (@code{l.ror}) instructions. By default
23702 functions from @file{libgcc} are used to perform rotate right operations.
23703
23704 @item -mrori
23705 @opindex mrori
23706 Enable generation of rotate right with immediate (@code{l.rori}) instructions.
23707 By default functions from @file{libgcc} are used to perform rotate right with
23708 immediate operations.
23709
23710 @item -msext
23711 @opindex msext
23712 Enable generation of sign extension (@code{l.ext*}) instructions. By default
23713 memory loads are used to perform sign extension.
23714
23715 @item -msfimm
23716 @opindex msfimm
23717 Enable generation of compare and set flag with immediate (@code{l.sf*i})
23718 instructions. By default extra instructions will be generated to store the
23719 immediate to a register first.
23720
23721 @item -mshftimm
23722 @opindex mshftimm
23723 Enable generation of shift with immediate (@code{l.srai}, @code{l.srli},
23724 @code{l.slli}) instructions. By default extra instructions will be generated
23725 to store the immediate to a register first.
23726
23727
23728 @end table
23729
23730 @node PDP-11 Options
23731 @subsection PDP-11 Options
23732 @cindex PDP-11 Options
23733
23734 These options are defined for the PDP-11:
23735
23736 @table @gcctabopt
23737 @item -mfpu
23738 @opindex mfpu
23739 Use hardware FPP floating point. This is the default. (FIS floating
23740 point on the PDP-11/40 is not supported.) Implies -m45.
23741
23742 @item -msoft-float
23743 @opindex msoft-float
23744 Do not use hardware floating point.
23745
23746 @item -mac0
23747 @opindex mac0
23748 Return floating-point results in ac0 (fr0 in Unix assembler syntax).
23749
23750 @item -mno-ac0
23751 @opindex mno-ac0
23752 Return floating-point results in memory. This is the default.
23753
23754 @item -m40
23755 @opindex m40
23756 Generate code for a PDP-11/40. Implies -msoft-float -mno-split.
23757
23758 @item -m45
23759 @opindex m45
23760 Generate code for a PDP-11/45. This is the default.
23761
23762 @item -m10
23763 @opindex m10
23764 Generate code for a PDP-11/10. Implies -msoft-float -mno-split.
23765
23766 @item -mint16
23767 @itemx -mno-int32
23768 @opindex mint16
23769 @opindex mno-int32
23770 Use 16-bit @code{int}. This is the default.
23771
23772 @item -mint32
23773 @itemx -mno-int16
23774 @opindex mint32
23775 @opindex mno-int16
23776 Use 32-bit @code{int}.
23777
23778 @item -msplit
23779 @opindex msplit
23780 Target has split instruction and data space. Implies -m45.
23781
23782 @item -munix-asm
23783 @opindex munix-asm
23784 Use Unix assembler syntax.
23785
23786 @item -mdec-asm
23787 @opindex mdec-asm
23788 Use DEC assembler syntax.
23789
23790 @item -mgnu-asm
23791 @opindex mgnu-asm
23792 Use GNU assembler syntax. This is the default.
23793
23794 @item -mlra
23795 @opindex mlra
23796 Use the new LRA register allocator. By default, the old ``reload''
23797 allocator is used.
23798 @end table
23799
23800 @node picoChip Options
23801 @subsection picoChip Options
23802 @cindex picoChip options
23803
23804 These @samp{-m} options are defined for picoChip implementations:
23805
23806 @table @gcctabopt
23807
23808 @item -mae=@var{ae_type}
23809 @opindex mcpu
23810 Set the instruction set, register set, and instruction scheduling
23811 parameters for array element type @var{ae_type}. Supported values
23812 for @var{ae_type} are @samp{ANY}, @samp{MUL}, and @samp{MAC}.
23813
23814 @option{-mae=ANY} selects a completely generic AE type. Code
23815 generated with this option runs on any of the other AE types. The
23816 code is not as efficient as it would be if compiled for a specific
23817 AE type, and some types of operation (e.g., multiplication) do not
23818 work properly on all types of AE.
23819
23820 @option{-mae=MUL} selects a MUL AE type. This is the most useful AE type
23821 for compiled code, and is the default.
23822
23823 @option{-mae=MAC} selects a DSP-style MAC AE. Code compiled with this
23824 option may suffer from poor performance of byte (char) manipulation,
23825 since the DSP AE does not provide hardware support for byte load/stores.
23826
23827 @item -msymbol-as-address
23828 Enable the compiler to directly use a symbol name as an address in a
23829 load/store instruction, without first loading it into a
23830 register. Typically, the use of this option generates larger
23831 programs, which run faster than when the option isn't used. However, the
23832 results vary from program to program, so it is left as a user option,
23833 rather than being permanently enabled.
23834
23835 @item -mno-inefficient-warnings
23836 Disables warnings about the generation of inefficient code. These
23837 warnings can be generated, for example, when compiling code that
23838 performs byte-level memory operations on the MAC AE type. The MAC AE has
23839 no hardware support for byte-level memory operations, so all byte
23840 load/stores must be synthesized from word load/store operations. This is
23841 inefficient and a warning is generated to indicate
23842 that you should rewrite the code to avoid byte operations, or to target
23843 an AE type that has the necessary hardware support. This option disables
23844 these warnings.
23845
23846 @end table
23847
23848 @node PowerPC Options
23849 @subsection PowerPC Options
23850 @cindex PowerPC options
23851
23852 These are listed under @xref{RS/6000 and PowerPC Options}.
23853
23854 @node PRU Options
23855 @subsection PRU Options
23856 @cindex PRU Options
23857
23858 These command-line options are defined for PRU target:
23859
23860 @table @gcctabopt
23861 @item -minrt
23862 @opindex minrt
23863 Link with a minimum runtime environment, with no support for static
23864 initializers and constructors. Using this option can significantly reduce
23865 the size of the final ELF binary. Beware that the compiler could still
23866 generate code with static initializers and constructors. It is up to the
23867 programmer to ensure that the source program will not use those features.
23868
23869 @item -mmcu=@var{mcu}
23870 @opindex mmcu
23871 Specify the PRU MCU variant to use. Check Newlib for the exact list of
23872 supported MCUs.
23873
23874 @item -mno-relax
23875 @opindex mno-relax
23876 Make GCC pass the @option{--no-relax} command-line option to the linker
23877 instead of the @option{--relax} option.
23878
23879 @item -mloop
23880 @opindex mloop
23881 Allow (or do not allow) GCC to use the LOOP instruction.
23882
23883 @item -mabi=@var{variant}
23884 @opindex mabi
23885 Specify the ABI variant to output code for. @option{-mabi=ti} selects the
23886 unmodified TI ABI while @option{-mabi=gnu} selects a GNU variant that copes
23887 more naturally with certain GCC assumptions. These are the differences:
23888
23889 @table @samp
23890 @item Function Pointer Size
23891 TI ABI specifies that function (code) pointers are 16-bit, whereas GNU
23892 supports only 32-bit data and code pointers.
23893
23894 @item Optional Return Value Pointer
23895 Function return values larger than 64 bits are passed by using a hidden
23896 pointer as the first argument of the function. TI ABI, though, mandates that
23897 the pointer can be NULL in case the caller is not using the returned value.
23898 GNU always passes and expects a valid return value pointer.
23899
23900 @end table
23901
23902 The current @option{-mabi=ti} implementation simply raises a compile error
23903 when any of the above code constructs is detected. As a consequence
23904 the standard C library cannot be built and it is omitted when linking with
23905 @option{-mabi=ti}.
23906
23907 Relaxation is a GNU feature and for safety reasons is disabled when using
23908 @option{-mabi=ti}. The TI toolchain does not emit relocations for QBBx
23909 instructions, so the GNU linker cannot adjust them when shortening adjacent
23910 LDI32 pseudo instructions.
23911
23912 @end table
23913
23914 @node RISC-V Options
23915 @subsection RISC-V Options
23916 @cindex RISC-V Options
23917
23918 These command-line options are defined for RISC-V targets:
23919
23920 @table @gcctabopt
23921 @item -mbranch-cost=@var{n}
23922 @opindex mbranch-cost
23923 Set the cost of branches to roughly @var{n} instructions.
23924
23925 @item -mplt
23926 @itemx -mno-plt
23927 @opindex plt
23928 When generating PIC code, do or don't allow the use of PLTs. Ignored for
23929 non-PIC. The default is @option{-mplt}.
23930
23931 @item -mabi=@var{ABI-string}
23932 @opindex mabi
23933 Specify integer and floating-point calling convention. @var{ABI-string}
23934 contains two parts: the size of integer types and the registers used for
23935 floating-point types. For example @samp{-march=rv64ifd -mabi=lp64d} means that
23936 @samp{long} and pointers are 64-bit (implicitly defining @samp{int} to be
23937 32-bit), and that floating-point values up to 64 bits wide are passed in F
23938 registers. Contrast this with @samp{-march=rv64ifd -mabi=lp64f}, which still
23939 allows the compiler to generate code that uses the F and D extensions but only
23940 allows floating-point values up to 32 bits long to be passed in registers; or
23941 @samp{-march=rv64ifd -mabi=lp64}, in which no floating-point arguments will be
23942 passed in registers.
23943
23944 The default for this argument is system dependent, users who want a specific
23945 calling convention should specify one explicitly. The valid calling
23946 conventions are: @samp{ilp32}, @samp{ilp32f}, @samp{ilp32d}, @samp{lp64},
23947 @samp{lp64f}, and @samp{lp64d}. Some calling conventions are impossible to
23948 implement on some ISAs: for example, @samp{-march=rv32if -mabi=ilp32d} is
23949 invalid because the ABI requires 64-bit values be passed in F registers, but F
23950 registers are only 32 bits wide. There is also the @samp{ilp32e} ABI that can
23951 only be used with the @samp{rv32e} architecture. This ABI is not well
23952 specified at present, and is subject to change.
23953
23954 @item -mfdiv
23955 @itemx -mno-fdiv
23956 @opindex mfdiv
23957 Do or don't use hardware floating-point divide and square root instructions.
23958 This requires the F or D extensions for floating-point registers. The default
23959 is to use them if the specified architecture has these instructions.
23960
23961 @item -mdiv
23962 @itemx -mno-div
23963 @opindex mdiv
23964 Do or don't use hardware instructions for integer division. This requires the
23965 M extension. The default is to use them if the specified architecture has
23966 these instructions.
23967
23968 @item -march=@var{ISA-string}
23969 @opindex march
23970 Generate code for given RISC-V ISA (e.g.@: @samp{rv64im}). ISA strings must be
23971 lower-case. Examples include @samp{rv64i}, @samp{rv32g}, @samp{rv32e}, and
23972 @samp{rv32imaf}.
23973
23974 @item -mtune=@var{processor-string}
23975 @opindex mtune
23976 Optimize the output for the given processor, specified by microarchitecture
23977 name. Permissible values for this option are: @samp{rocket},
23978 @samp{sifive-3-series}, @samp{sifive-5-series}, @samp{sifive-7-series},
23979 and @samp{size}.
23980
23981 When @option{-mtune=} is not specified, the default is @samp{rocket}.
23982
23983 The @samp{size} choice is not intended for use by end-users. This is used
23984 when @option{-Os} is specified. It overrides the instruction cost info
23985 provided by @option{-mtune=}, but does not override the pipeline info. This
23986 helps reduce code size while still giving good performance.
23987
23988 @item -mpreferred-stack-boundary=@var{num}
23989 @opindex mpreferred-stack-boundary
23990 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
23991 byte boundary. If @option{-mpreferred-stack-boundary} is not specified,
23992 the default is 4 (16 bytes or 128-bits).
23993
23994 @strong{Warning:} If you use this switch, then you must build all modules with
23995 the same value, including any libraries. This includes the system libraries
23996 and startup modules.
23997
23998 @item -msmall-data-limit=@var{n}
23999 @opindex msmall-data-limit
24000 Put global and static data smaller than @var{n} bytes into a special section
24001 (on some targets).
24002
24003 @item -msave-restore
24004 @itemx -mno-save-restore
24005 @opindex msave-restore
24006 Do or don't use smaller but slower prologue and epilogue code that uses
24007 library function calls. The default is to use fast inline prologues and
24008 epilogues.
24009
24010 @item -mstrict-align
24011 @itemx -mno-strict-align
24012 @opindex mstrict-align
24013 Do not or do generate unaligned memory accesses. The default is set depending
24014 on whether the processor we are optimizing for supports fast unaligned access
24015 or not.
24016
24017 @item -mcmodel=medlow
24018 @opindex mcmodel=medlow
24019 Generate code for the medium-low code model. The program and its statically
24020 defined symbols must lie within a single 2 GiB address range and must lie
24021 between absolute addresses @minus{}2 GiB and +2 GiB. Programs can be
24022 statically or dynamically linked. This is the default code model.
24023
24024 @item -mcmodel=medany
24025 @opindex mcmodel=medany
24026 Generate code for the medium-any code model. The program and its statically
24027 defined symbols must be within any single 2 GiB address range. Programs can be
24028 statically or dynamically linked.
24029
24030 @item -mexplicit-relocs
24031 @itemx -mno-exlicit-relocs
24032 Use or do not use assembler relocation operators when dealing with symbolic
24033 addresses. The alternative is to use assembler macros instead, which may
24034 limit optimization.
24035
24036 @item -mrelax
24037 @itemx -mno-relax
24038 Take advantage of linker relaxations to reduce the number of instructions
24039 required to materialize symbol addresses. The default is to take advantage of
24040 linker relaxations.
24041
24042 @item -memit-attribute
24043 @itemx -mno-emit-attribute
24044 Emit (do not emit) RISC-V attribute to record extra information into ELF
24045 objects. This feature requires at least binutils 2.32.
24046
24047 @item -malign-data=@var{type}
24048 @opindex malign-data
24049 Control how GCC aligns variables and constants of array, structure, or union
24050 types. Supported values for @var{type} are @samp{xlen} which uses x register
24051 width as the alignment value, and @samp{natural} which uses natural alignment.
24052 @samp{xlen} is the default.
24053 @end table
24054
24055 @node RL78 Options
24056 @subsection RL78 Options
24057 @cindex RL78 Options
24058
24059 @table @gcctabopt
24060
24061 @item -msim
24062 @opindex msim
24063 Links in additional target libraries to support operation within a
24064 simulator.
24065
24066 @item -mmul=none
24067 @itemx -mmul=g10
24068 @itemx -mmul=g13
24069 @itemx -mmul=g14
24070 @itemx -mmul=rl78
24071 @opindex mmul
24072 Specifies the type of hardware multiplication and division support to
24073 be used. The simplest is @code{none}, which uses software for both
24074 multiplication and division. This is the default. The @code{g13}
24075 value is for the hardware multiply/divide peripheral found on the
24076 RL78/G13 (S2 core) targets. The @code{g14} value selects the use of
24077 the multiplication and division instructions supported by the RL78/G14
24078 (S3 core) parts. The value @code{rl78} is an alias for @code{g14} and
24079 the value @code{mg10} is an alias for @code{none}.
24080
24081 In addition a C preprocessor macro is defined, based upon the setting
24082 of this option. Possible values are: @code{__RL78_MUL_NONE__},
24083 @code{__RL78_MUL_G13__} or @code{__RL78_MUL_G14__}.
24084
24085 @item -mcpu=g10
24086 @itemx -mcpu=g13
24087 @itemx -mcpu=g14
24088 @itemx -mcpu=rl78
24089 @opindex mcpu
24090 Specifies the RL78 core to target. The default is the G14 core, also
24091 known as an S3 core or just RL78. The G13 or S2 core does not have
24092 multiply or divide instructions, instead it uses a hardware peripheral
24093 for these operations. The G10 or S1 core does not have register
24094 banks, so it uses a different calling convention.
24095
24096 If this option is set it also selects the type of hardware multiply
24097 support to use, unless this is overridden by an explicit
24098 @option{-mmul=none} option on the command line. Thus specifying
24099 @option{-mcpu=g13} enables the use of the G13 hardware multiply
24100 peripheral and specifying @option{-mcpu=g10} disables the use of
24101 hardware multiplications altogether.
24102
24103 Note, although the RL78/G14 core is the default target, specifying
24104 @option{-mcpu=g14} or @option{-mcpu=rl78} on the command line does
24105 change the behavior of the toolchain since it also enables G14
24106 hardware multiply support. If these options are not specified on the
24107 command line then software multiplication routines will be used even
24108 though the code targets the RL78 core. This is for backwards
24109 compatibility with older toolchains which did not have hardware
24110 multiply and divide support.
24111
24112 In addition a C preprocessor macro is defined, based upon the setting
24113 of this option. Possible values are: @code{__RL78_G10__},
24114 @code{__RL78_G13__} or @code{__RL78_G14__}.
24115
24116 @item -mg10
24117 @itemx -mg13
24118 @itemx -mg14
24119 @itemx -mrl78
24120 @opindex mg10
24121 @opindex mg13
24122 @opindex mg14
24123 @opindex mrl78
24124 These are aliases for the corresponding @option{-mcpu=} option. They
24125 are provided for backwards compatibility.
24126
24127 @item -mallregs
24128 @opindex mallregs
24129 Allow the compiler to use all of the available registers. By default
24130 registers @code{r24..r31} are reserved for use in interrupt handlers.
24131 With this option enabled these registers can be used in ordinary
24132 functions as well.
24133
24134 @item -m64bit-doubles
24135 @itemx -m32bit-doubles
24136 @opindex m64bit-doubles
24137 @opindex m32bit-doubles
24138 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
24139 or 32 bits (@option{-m32bit-doubles}) in size. The default is
24140 @option{-m32bit-doubles}.
24141
24142 @item -msave-mduc-in-interrupts
24143 @itemx -mno-save-mduc-in-interrupts
24144 @opindex msave-mduc-in-interrupts
24145 @opindex mno-save-mduc-in-interrupts
24146 Specifies that interrupt handler functions should preserve the
24147 MDUC registers. This is only necessary if normal code might use
24148 the MDUC registers, for example because it performs multiplication
24149 and division operations. The default is to ignore the MDUC registers
24150 as this makes the interrupt handlers faster. The target option -mg13
24151 needs to be passed for this to work as this feature is only available
24152 on the G13 target (S2 core). The MDUC registers will only be saved
24153 if the interrupt handler performs a multiplication or division
24154 operation or it calls another function.
24155
24156 @end table
24157
24158 @node RS/6000 and PowerPC Options
24159 @subsection IBM RS/6000 and PowerPC Options
24160 @cindex RS/6000 and PowerPC Options
24161 @cindex IBM RS/6000 and PowerPC Options
24162
24163 These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
24164 @table @gcctabopt
24165 @item -mpowerpc-gpopt
24166 @itemx -mno-powerpc-gpopt
24167 @itemx -mpowerpc-gfxopt
24168 @itemx -mno-powerpc-gfxopt
24169 @need 800
24170 @itemx -mpowerpc64
24171 @itemx -mno-powerpc64
24172 @itemx -mmfcrf
24173 @itemx -mno-mfcrf
24174 @itemx -mpopcntb
24175 @itemx -mno-popcntb
24176 @itemx -mpopcntd
24177 @itemx -mno-popcntd
24178 @itemx -mfprnd
24179 @itemx -mno-fprnd
24180 @need 800
24181 @itemx -mcmpb
24182 @itemx -mno-cmpb
24183 @itemx -mhard-dfp
24184 @itemx -mno-hard-dfp
24185 @opindex mpowerpc-gpopt
24186 @opindex mno-powerpc-gpopt
24187 @opindex mpowerpc-gfxopt
24188 @opindex mno-powerpc-gfxopt
24189 @opindex mpowerpc64
24190 @opindex mno-powerpc64
24191 @opindex mmfcrf
24192 @opindex mno-mfcrf
24193 @opindex mpopcntb
24194 @opindex mno-popcntb
24195 @opindex mpopcntd
24196 @opindex mno-popcntd
24197 @opindex mfprnd
24198 @opindex mno-fprnd
24199 @opindex mcmpb
24200 @opindex mno-cmpb
24201 @opindex mhard-dfp
24202 @opindex mno-hard-dfp
24203 You use these options to specify which instructions are available on the
24204 processor you are using. The default value of these options is
24205 determined when configuring GCC@. Specifying the
24206 @option{-mcpu=@var{cpu_type}} overrides the specification of these
24207 options. We recommend you use the @option{-mcpu=@var{cpu_type}} option
24208 rather than the options listed above.
24209
24210 Specifying @option{-mpowerpc-gpopt} allows
24211 GCC to use the optional PowerPC architecture instructions in the
24212 General Purpose group, including floating-point square root. Specifying
24213 @option{-mpowerpc-gfxopt} allows GCC to
24214 use the optional PowerPC architecture instructions in the Graphics
24215 group, including floating-point select.
24216
24217 The @option{-mmfcrf} option allows GCC to generate the move from
24218 condition register field instruction implemented on the POWER4
24219 processor and other processors that support the PowerPC V2.01
24220 architecture.
24221 The @option{-mpopcntb} option allows GCC to generate the popcount and
24222 double-precision FP reciprocal estimate instruction implemented on the
24223 POWER5 processor and other processors that support the PowerPC V2.02
24224 architecture.
24225 The @option{-mpopcntd} option allows GCC to generate the popcount
24226 instruction implemented on the POWER7 processor and other processors
24227 that support the PowerPC V2.06 architecture.
24228 The @option{-mfprnd} option allows GCC to generate the FP round to
24229 integer instructions implemented on the POWER5+ processor and other
24230 processors that support the PowerPC V2.03 architecture.
24231 The @option{-mcmpb} option allows GCC to generate the compare bytes
24232 instruction implemented on the POWER6 processor and other processors
24233 that support the PowerPC V2.05 architecture.
24234 The @option{-mhard-dfp} option allows GCC to generate the decimal
24235 floating-point instructions implemented on some POWER processors.
24236
24237 The @option{-mpowerpc64} option allows GCC to generate the additional
24238 64-bit instructions that are found in the full PowerPC64 architecture
24239 and to treat GPRs as 64-bit, doubleword quantities. GCC defaults to
24240 @option{-mno-powerpc64}.
24241
24242 @item -mcpu=@var{cpu_type}
24243 @opindex mcpu
24244 Set architecture type, register usage, and
24245 instruction scheduling parameters for machine type @var{cpu_type}.
24246 Supported values for @var{cpu_type} are @samp{401}, @samp{403},
24247 @samp{405}, @samp{405fp}, @samp{440}, @samp{440fp}, @samp{464}, @samp{464fp},
24248 @samp{476}, @samp{476fp}, @samp{505}, @samp{601}, @samp{602}, @samp{603},
24249 @samp{603e}, @samp{604}, @samp{604e}, @samp{620}, @samp{630}, @samp{740},
24250 @samp{7400}, @samp{7450}, @samp{750}, @samp{801}, @samp{821}, @samp{823},
24251 @samp{860}, @samp{970}, @samp{8540}, @samp{a2}, @samp{e300c2},
24252 @samp{e300c3}, @samp{e500mc}, @samp{e500mc64}, @samp{e5500},
24253 @samp{e6500}, @samp{ec603e}, @samp{G3}, @samp{G4}, @samp{G5},
24254 @samp{titan}, @samp{power3}, @samp{power4}, @samp{power5}, @samp{power5+},
24255 @samp{power6}, @samp{power6x}, @samp{power7}, @samp{power8},
24256 @samp{power9}, @samp{future}, @samp{powerpc}, @samp{powerpc64},
24257 @samp{powerpc64le}, @samp{rs64}, and @samp{native}.
24258
24259 @option{-mcpu=powerpc}, @option{-mcpu=powerpc64}, and
24260 @option{-mcpu=powerpc64le} specify pure 32-bit PowerPC (either
24261 endian), 64-bit big endian PowerPC and 64-bit little endian PowerPC
24262 architecture machine types, with an appropriate, generic processor
24263 model assumed for scheduling purposes.
24264
24265 Specifying @samp{native} as cpu type detects and selects the
24266 architecture option that corresponds to the host processor of the
24267 system performing the compilation.
24268 @option{-mcpu=native} has no effect if GCC does not recognize the
24269 processor.
24270
24271 The other options specify a specific processor. Code generated under
24272 those options runs best on that processor, and may not run at all on
24273 others.
24274
24275 The @option{-mcpu} options automatically enable or disable the
24276 following options:
24277
24278 @gccoptlist{-maltivec -mfprnd -mhard-float -mmfcrf -mmultiple @gol
24279 -mpopcntb -mpopcntd -mpowerpc64 @gol
24280 -mpowerpc-gpopt -mpowerpc-gfxopt @gol
24281 -mmulhw -mdlmzb -mmfpgpr -mvsx @gol
24282 -mcrypto -mhtm -mpower8-fusion -mpower8-vector @gol
24283 -mquad-memory -mquad-memory-atomic -mfloat128 -mfloat128-hardware}
24284
24285 The particular options set for any particular CPU varies between
24286 compiler versions, depending on what setting seems to produce optimal
24287 code for that CPU; it doesn't necessarily reflect the actual hardware's
24288 capabilities. If you wish to set an individual option to a particular
24289 value, you may specify it after the @option{-mcpu} option, like
24290 @option{-mcpu=970 -mno-altivec}.
24291
24292 On AIX, the @option{-maltivec} and @option{-mpowerpc64} options are
24293 not enabled or disabled by the @option{-mcpu} option at present because
24294 AIX does not have full support for these options. You may still
24295 enable or disable them individually if you're sure it'll work in your
24296 environment.
24297
24298 @item -mtune=@var{cpu_type}
24299 @opindex mtune
24300 Set the instruction scheduling parameters for machine type
24301 @var{cpu_type}, but do not set the architecture type or register usage,
24302 as @option{-mcpu=@var{cpu_type}} does. The same
24303 values for @var{cpu_type} are used for @option{-mtune} as for
24304 @option{-mcpu}. If both are specified, the code generated uses the
24305 architecture and registers set by @option{-mcpu}, but the
24306 scheduling parameters set by @option{-mtune}.
24307
24308 @item -mcmodel=small
24309 @opindex mcmodel=small
24310 Generate PowerPC64 code for the small model: The TOC is limited to
24311 64k.
24312
24313 @item -mcmodel=medium
24314 @opindex mcmodel=medium
24315 Generate PowerPC64 code for the medium model: The TOC and other static
24316 data may be up to a total of 4G in size. This is the default for 64-bit
24317 Linux.
24318
24319 @item -mcmodel=large
24320 @opindex mcmodel=large
24321 Generate PowerPC64 code for the large model: The TOC may be up to 4G
24322 in size. Other data and code is only limited by the 64-bit address
24323 space.
24324
24325 @item -maltivec
24326 @itemx -mno-altivec
24327 @opindex maltivec
24328 @opindex mno-altivec
24329 Generate code that uses (does not use) AltiVec instructions, and also
24330 enable the use of built-in functions that allow more direct access to
24331 the AltiVec instruction set. You may also need to set
24332 @option{-mabi=altivec} to adjust the current ABI with AltiVec ABI
24333 enhancements.
24334
24335 When @option{-maltivec} is used, the element order for AltiVec intrinsics
24336 such as @code{vec_splat}, @code{vec_extract}, and @code{vec_insert}
24337 match array element order corresponding to the endianness of the
24338 target. That is, element zero identifies the leftmost element in a
24339 vector register when targeting a big-endian platform, and identifies
24340 the rightmost element in a vector register when targeting a
24341 little-endian platform.
24342
24343 @item -mvrsave
24344 @itemx -mno-vrsave
24345 @opindex mvrsave
24346 @opindex mno-vrsave
24347 Generate VRSAVE instructions when generating AltiVec code.
24348
24349 @item -msecure-plt
24350 @opindex msecure-plt
24351 Generate code that allows @command{ld} and @command{ld.so}
24352 to build executables and shared
24353 libraries with non-executable @code{.plt} and @code{.got} sections.
24354 This is a PowerPC
24355 32-bit SYSV ABI option.
24356
24357 @item -mbss-plt
24358 @opindex mbss-plt
24359 Generate code that uses a BSS @code{.plt} section that @command{ld.so}
24360 fills in, and
24361 requires @code{.plt} and @code{.got}
24362 sections that are both writable and executable.
24363 This is a PowerPC 32-bit SYSV ABI option.
24364
24365 @item -misel
24366 @itemx -mno-isel
24367 @opindex misel
24368 @opindex mno-isel
24369 This switch enables or disables the generation of ISEL instructions.
24370
24371 @item -mvsx
24372 @itemx -mno-vsx
24373 @opindex mvsx
24374 @opindex mno-vsx
24375 Generate code that uses (does not use) vector/scalar (VSX)
24376 instructions, and also enable the use of built-in functions that allow
24377 more direct access to the VSX instruction set.
24378
24379 @item -mcrypto
24380 @itemx -mno-crypto
24381 @opindex mcrypto
24382 @opindex mno-crypto
24383 Enable the use (disable) of the built-in functions that allow direct
24384 access to the cryptographic instructions that were added in version
24385 2.07 of the PowerPC ISA.
24386
24387 @item -mhtm
24388 @itemx -mno-htm
24389 @opindex mhtm
24390 @opindex mno-htm
24391 Enable (disable) the use of the built-in functions that allow direct
24392 access to the Hardware Transactional Memory (HTM) instructions that
24393 were added in version 2.07 of the PowerPC ISA.
24394
24395 @item -mpower8-fusion
24396 @itemx -mno-power8-fusion
24397 @opindex mpower8-fusion
24398 @opindex mno-power8-fusion
24399 Generate code that keeps (does not keeps) some integer operations
24400 adjacent so that the instructions can be fused together on power8 and
24401 later processors.
24402
24403 @item -mpower8-vector
24404 @itemx -mno-power8-vector
24405 @opindex mpower8-vector
24406 @opindex mno-power8-vector
24407 Generate code that uses (does not use) the vector and scalar
24408 instructions that were added in version 2.07 of the PowerPC ISA. Also
24409 enable the use of built-in functions that allow more direct access to
24410 the vector instructions.
24411
24412 @item -mquad-memory
24413 @itemx -mno-quad-memory
24414 @opindex mquad-memory
24415 @opindex mno-quad-memory
24416 Generate code that uses (does not use) the non-atomic quad word memory
24417 instructions. The @option{-mquad-memory} option requires use of
24418 64-bit mode.
24419
24420 @item -mquad-memory-atomic
24421 @itemx -mno-quad-memory-atomic
24422 @opindex mquad-memory-atomic
24423 @opindex mno-quad-memory-atomic
24424 Generate code that uses (does not use) the atomic quad word memory
24425 instructions. The @option{-mquad-memory-atomic} option requires use of
24426 64-bit mode.
24427
24428 @item -mfloat128
24429 @itemx -mno-float128
24430 @opindex mfloat128
24431 @opindex mno-float128
24432 Enable/disable the @var{__float128} keyword for IEEE 128-bit floating point
24433 and use either software emulation for IEEE 128-bit floating point or
24434 hardware instructions.
24435
24436 The VSX instruction set (@option{-mvsx}, @option{-mcpu=power7},
24437 @option{-mcpu=power8}), or @option{-mcpu=power9} must be enabled to
24438 use the IEEE 128-bit floating point support. The IEEE 128-bit
24439 floating point support only works on PowerPC Linux systems.
24440
24441 The default for @option{-mfloat128} is enabled on PowerPC Linux
24442 systems using the VSX instruction set, and disabled on other systems.
24443
24444 If you use the ISA 3.0 instruction set (@option{-mpower9-vector} or
24445 @option{-mcpu=power9}) on a 64-bit system, the IEEE 128-bit floating
24446 point support will also enable the generation of ISA 3.0 IEEE 128-bit
24447 floating point instructions. Otherwise, if you do not specify to
24448 generate ISA 3.0 instructions or you are targeting a 32-bit big endian
24449 system, IEEE 128-bit floating point will be done with software
24450 emulation.
24451
24452 @item -mfloat128-hardware
24453 @itemx -mno-float128-hardware
24454 @opindex mfloat128-hardware
24455 @opindex mno-float128-hardware
24456 Enable/disable using ISA 3.0 hardware instructions to support the
24457 @var{__float128} data type.
24458
24459 The default for @option{-mfloat128-hardware} is enabled on PowerPC
24460 Linux systems using the ISA 3.0 instruction set, and disabled on other
24461 systems.
24462
24463 @item -m32
24464 @itemx -m64
24465 @opindex m32
24466 @opindex m64
24467 Generate code for 32-bit or 64-bit environments of Darwin and SVR4
24468 targets (including GNU/Linux). The 32-bit environment sets int, long
24469 and pointer to 32 bits and generates code that runs on any PowerPC
24470 variant. The 64-bit environment sets int to 32 bits and long and
24471 pointer to 64 bits, and generates code for PowerPC64, as for
24472 @option{-mpowerpc64}.
24473
24474 @item -mfull-toc
24475 @itemx -mno-fp-in-toc
24476 @itemx -mno-sum-in-toc
24477 @itemx -mminimal-toc
24478 @opindex mfull-toc
24479 @opindex mno-fp-in-toc
24480 @opindex mno-sum-in-toc
24481 @opindex mminimal-toc
24482 Modify generation of the TOC (Table Of Contents), which is created for
24483 every executable file. The @option{-mfull-toc} option is selected by
24484 default. In that case, GCC allocates at least one TOC entry for
24485 each unique non-automatic variable reference in your program. GCC
24486 also places floating-point constants in the TOC@. However, only
24487 16,384 entries are available in the TOC@.
24488
24489 If you receive a linker error message that saying you have overflowed
24490 the available TOC space, you can reduce the amount of TOC space used
24491 with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
24492 @option{-mno-fp-in-toc} prevents GCC from putting floating-point
24493 constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
24494 generate code to calculate the sum of an address and a constant at
24495 run time instead of putting that sum into the TOC@. You may specify one
24496 or both of these options. Each causes GCC to produce very slightly
24497 slower and larger code at the expense of conserving TOC space.
24498
24499 If you still run out of space in the TOC even when you specify both of
24500 these options, specify @option{-mminimal-toc} instead. This option causes
24501 GCC to make only one TOC entry for every file. When you specify this
24502 option, GCC produces code that is slower and larger but which
24503 uses extremely little TOC space. You may wish to use this option
24504 only on files that contain less frequently-executed code.
24505
24506 @item -maix64
24507 @itemx -maix32
24508 @opindex maix64
24509 @opindex maix32
24510 Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
24511 @code{long} type, and the infrastructure needed to support them.
24512 Specifying @option{-maix64} implies @option{-mpowerpc64},
24513 while @option{-maix32} disables the 64-bit ABI and
24514 implies @option{-mno-powerpc64}. GCC defaults to @option{-maix32}.
24515
24516 @item -mxl-compat
24517 @itemx -mno-xl-compat
24518 @opindex mxl-compat
24519 @opindex mno-xl-compat
24520 Produce code that conforms more closely to IBM XL compiler semantics
24521 when using AIX-compatible ABI@. Pass floating-point arguments to
24522 prototyped functions beyond the register save area (RSA) on the stack
24523 in addition to argument FPRs. Do not assume that most significant
24524 double in 128-bit long double value is properly rounded when comparing
24525 values and converting to double. Use XL symbol names for long double
24526 support routines.
24527
24528 The AIX calling convention was extended but not initially documented to
24529 handle an obscure K&R C case of calling a function that takes the
24530 address of its arguments with fewer arguments than declared. IBM XL
24531 compilers access floating-point arguments that do not fit in the
24532 RSA from the stack when a subroutine is compiled without
24533 optimization. Because always storing floating-point arguments on the
24534 stack is inefficient and rarely needed, this option is not enabled by
24535 default and only is necessary when calling subroutines compiled by IBM
24536 XL compilers without optimization.
24537
24538 @item -mpe
24539 @opindex mpe
24540 Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@. Link an
24541 application written to use message passing with special startup code to
24542 enable the application to run. The system must have PE installed in the
24543 standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
24544 must be overridden with the @option{-specs=} option to specify the
24545 appropriate directory location. The Parallel Environment does not
24546 support threads, so the @option{-mpe} option and the @option{-pthread}
24547 option are incompatible.
24548
24549 @item -malign-natural
24550 @itemx -malign-power
24551 @opindex malign-natural
24552 @opindex malign-power
24553 On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
24554 @option{-malign-natural} overrides the ABI-defined alignment of larger
24555 types, such as floating-point doubles, on their natural size-based boundary.
24556 The option @option{-malign-power} instructs GCC to follow the ABI-specified
24557 alignment rules. GCC defaults to the standard alignment defined in the ABI@.
24558
24559 On 64-bit Darwin, natural alignment is the default, and @option{-malign-power}
24560 is not supported.
24561
24562 @item -msoft-float
24563 @itemx -mhard-float
24564 @opindex msoft-float
24565 @opindex mhard-float
24566 Generate code that does not use (uses) the floating-point register set.
24567 Software floating-point emulation is provided if you use the
24568 @option{-msoft-float} option, and pass the option to GCC when linking.
24569
24570 @item -mmultiple
24571 @itemx -mno-multiple
24572 @opindex mmultiple
24573 @opindex mno-multiple
24574 Generate code that uses (does not use) the load multiple word
24575 instructions and the store multiple word instructions. These
24576 instructions are generated by default on POWER systems, and not
24577 generated on PowerPC systems. Do not use @option{-mmultiple} on little-endian
24578 PowerPC systems, since those instructions do not work when the
24579 processor is in little-endian mode. The exceptions are PPC740 and
24580 PPC750 which permit these instructions in little-endian mode.
24581
24582 @item -mupdate
24583 @itemx -mno-update
24584 @opindex mupdate
24585 @opindex mno-update
24586 Generate code that uses (does not use) the load or store instructions
24587 that update the base register to the address of the calculated memory
24588 location. These instructions are generated by default. If you use
24589 @option{-mno-update}, there is a small window between the time that the
24590 stack pointer is updated and the address of the previous frame is
24591 stored, which means code that walks the stack frame across interrupts or
24592 signals may get corrupted data.
24593
24594 @item -mavoid-indexed-addresses
24595 @itemx -mno-avoid-indexed-addresses
24596 @opindex mavoid-indexed-addresses
24597 @opindex mno-avoid-indexed-addresses
24598 Generate code that tries to avoid (not avoid) the use of indexed load
24599 or store instructions. These instructions can incur a performance
24600 penalty on Power6 processors in certain situations, such as when
24601 stepping through large arrays that cross a 16M boundary. This option
24602 is enabled by default when targeting Power6 and disabled otherwise.
24603
24604 @item -mfused-madd
24605 @itemx -mno-fused-madd
24606 @opindex mfused-madd
24607 @opindex mno-fused-madd
24608 Generate code that uses (does not use) the floating-point multiply and
24609 accumulate instructions. These instructions are generated by default
24610 if hardware floating point is used. The machine-dependent
24611 @option{-mfused-madd} option is now mapped to the machine-independent
24612 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
24613 mapped to @option{-ffp-contract=off}.
24614
24615 @item -mmulhw
24616 @itemx -mno-mulhw
24617 @opindex mmulhw
24618 @opindex mno-mulhw
24619 Generate code that uses (does not use) the half-word multiply and
24620 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
24621 These instructions are generated by default when targeting those
24622 processors.
24623
24624 @item -mdlmzb
24625 @itemx -mno-dlmzb
24626 @opindex mdlmzb
24627 @opindex mno-dlmzb
24628 Generate code that uses (does not use) the string-search @samp{dlmzb}
24629 instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
24630 generated by default when targeting those processors.
24631
24632 @item -mno-bit-align
24633 @itemx -mbit-align
24634 @opindex mno-bit-align
24635 @opindex mbit-align
24636 On System V.4 and embedded PowerPC systems do not (do) force structures
24637 and unions that contain bit-fields to be aligned to the base type of the
24638 bit-field.
24639
24640 For example, by default a structure containing nothing but 8
24641 @code{unsigned} bit-fields of length 1 is aligned to a 4-byte
24642 boundary and has a size of 4 bytes. By using @option{-mno-bit-align},
24643 the structure is aligned to a 1-byte boundary and is 1 byte in
24644 size.
24645
24646 @item -mno-strict-align
24647 @itemx -mstrict-align
24648 @opindex mno-strict-align
24649 @opindex mstrict-align
24650 On System V.4 and embedded PowerPC systems do not (do) assume that
24651 unaligned memory references are handled by the system.
24652
24653 @item -mrelocatable
24654 @itemx -mno-relocatable
24655 @opindex mrelocatable
24656 @opindex mno-relocatable
24657 Generate code that allows (does not allow) a static executable to be
24658 relocated to a different address at run time. A simple embedded
24659 PowerPC system loader should relocate the entire contents of
24660 @code{.got2} and 4-byte locations listed in the @code{.fixup} section,
24661 a table of 32-bit addresses generated by this option. For this to
24662 work, all objects linked together must be compiled with
24663 @option{-mrelocatable} or @option{-mrelocatable-lib}.
24664 @option{-mrelocatable} code aligns the stack to an 8-byte boundary.
24665
24666 @item -mrelocatable-lib
24667 @itemx -mno-relocatable-lib
24668 @opindex mrelocatable-lib
24669 @opindex mno-relocatable-lib
24670 Like @option{-mrelocatable}, @option{-mrelocatable-lib} generates a
24671 @code{.fixup} section to allow static executables to be relocated at
24672 run time, but @option{-mrelocatable-lib} does not use the smaller stack
24673 alignment of @option{-mrelocatable}. Objects compiled with
24674 @option{-mrelocatable-lib} may be linked with objects compiled with
24675 any combination of the @option{-mrelocatable} options.
24676
24677 @item -mno-toc
24678 @itemx -mtoc
24679 @opindex mno-toc
24680 @opindex mtoc
24681 On System V.4 and embedded PowerPC systems do not (do) assume that
24682 register 2 contains a pointer to a global area pointing to the addresses
24683 used in the program.
24684
24685 @item -mlittle
24686 @itemx -mlittle-endian
24687 @opindex mlittle
24688 @opindex mlittle-endian
24689 On System V.4 and embedded PowerPC systems compile code for the
24690 processor in little-endian mode. The @option{-mlittle-endian} option is
24691 the same as @option{-mlittle}.
24692
24693 @item -mbig
24694 @itemx -mbig-endian
24695 @opindex mbig
24696 @opindex mbig-endian
24697 On System V.4 and embedded PowerPC systems compile code for the
24698 processor in big-endian mode. The @option{-mbig-endian} option is
24699 the same as @option{-mbig}.
24700
24701 @item -mdynamic-no-pic
24702 @opindex mdynamic-no-pic
24703 On Darwin and Mac OS X systems, compile code so that it is not
24704 relocatable, but that its external references are relocatable. The
24705 resulting code is suitable for applications, but not shared
24706 libraries.
24707
24708 @item -msingle-pic-base
24709 @opindex msingle-pic-base
24710 Treat the register used for PIC addressing as read-only, rather than
24711 loading it in the prologue for each function. The runtime system is
24712 responsible for initializing this register with an appropriate value
24713 before execution begins.
24714
24715 @item -mprioritize-restricted-insns=@var{priority}
24716 @opindex mprioritize-restricted-insns
24717 This option controls the priority that is assigned to
24718 dispatch-slot restricted instructions during the second scheduling
24719 pass. The argument @var{priority} takes the value @samp{0}, @samp{1},
24720 or @samp{2} to assign no, highest, or second-highest (respectively)
24721 priority to dispatch-slot restricted
24722 instructions.
24723
24724 @item -msched-costly-dep=@var{dependence_type}
24725 @opindex msched-costly-dep
24726 This option controls which dependences are considered costly
24727 by the target during instruction scheduling. The argument
24728 @var{dependence_type} takes one of the following values:
24729
24730 @table @asis
24731 @item @samp{no}
24732 No dependence is costly.
24733
24734 @item @samp{all}
24735 All dependences are costly.
24736
24737 @item @samp{true_store_to_load}
24738 A true dependence from store to load is costly.
24739
24740 @item @samp{store_to_load}
24741 Any dependence from store to load is costly.
24742
24743 @item @var{number}
24744 Any dependence for which the latency is greater than or equal to
24745 @var{number} is costly.
24746 @end table
24747
24748 @item -minsert-sched-nops=@var{scheme}
24749 @opindex minsert-sched-nops
24750 This option controls which NOP insertion scheme is used during
24751 the second scheduling pass. The argument @var{scheme} takes one of the
24752 following values:
24753
24754 @table @asis
24755 @item @samp{no}
24756 Don't insert NOPs.
24757
24758 @item @samp{pad}
24759 Pad with NOPs any dispatch group that has vacant issue slots,
24760 according to the scheduler's grouping.
24761
24762 @item @samp{regroup_exact}
24763 Insert NOPs to force costly dependent insns into
24764 separate groups. Insert exactly as many NOPs as needed to force an insn
24765 to a new group, according to the estimated processor grouping.
24766
24767 @item @var{number}
24768 Insert NOPs to force costly dependent insns into
24769 separate groups. Insert @var{number} NOPs to force an insn to a new group.
24770 @end table
24771
24772 @item -mcall-sysv
24773 @opindex mcall-sysv
24774 On System V.4 and embedded PowerPC systems compile code using calling
24775 conventions that adhere to the March 1995 draft of the System V
24776 Application Binary Interface, PowerPC processor supplement. This is the
24777 default unless you configured GCC using @samp{powerpc-*-eabiaix}.
24778
24779 @item -mcall-sysv-eabi
24780 @itemx -mcall-eabi
24781 @opindex mcall-sysv-eabi
24782 @opindex mcall-eabi
24783 Specify both @option{-mcall-sysv} and @option{-meabi} options.
24784
24785 @item -mcall-sysv-noeabi
24786 @opindex mcall-sysv-noeabi
24787 Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
24788
24789 @item -mcall-aixdesc
24790 @opindex m
24791 On System V.4 and embedded PowerPC systems compile code for the AIX
24792 operating system.
24793
24794 @item -mcall-linux
24795 @opindex mcall-linux
24796 On System V.4 and embedded PowerPC systems compile code for the
24797 Linux-based GNU system.
24798
24799 @item -mcall-freebsd
24800 @opindex mcall-freebsd
24801 On System V.4 and embedded PowerPC systems compile code for the
24802 FreeBSD operating system.
24803
24804 @item -mcall-netbsd
24805 @opindex mcall-netbsd
24806 On System V.4 and embedded PowerPC systems compile code for the
24807 NetBSD operating system.
24808
24809 @item -mcall-openbsd
24810 @opindex mcall-netbsd
24811 On System V.4 and embedded PowerPC systems compile code for the
24812 OpenBSD operating system.
24813
24814 @item -mtraceback=@var{traceback_type}
24815 @opindex mtraceback
24816 Select the type of traceback table. Valid values for @var{traceback_type}
24817 are @samp{full}, @samp{part}, and @samp{no}.
24818
24819 @item -maix-struct-return
24820 @opindex maix-struct-return
24821 Return all structures in memory (as specified by the AIX ABI)@.
24822
24823 @item -msvr4-struct-return
24824 @opindex msvr4-struct-return
24825 Return structures smaller than 8 bytes in registers (as specified by the
24826 SVR4 ABI)@.
24827
24828 @item -mabi=@var{abi-type}
24829 @opindex mabi
24830 Extend the current ABI with a particular extension, or remove such extension.
24831 Valid values are @samp{altivec}, @samp{no-altivec},
24832 @samp{ibmlongdouble}, @samp{ieeelongdouble},
24833 @samp{elfv1}, @samp{elfv2}@.
24834
24835 @item -mabi=ibmlongdouble
24836 @opindex mabi=ibmlongdouble
24837 Change the current ABI to use IBM extended-precision long double.
24838 This is not likely to work if your system defaults to using IEEE
24839 extended-precision long double. If you change the long double type
24840 from IEEE extended-precision, the compiler will issue a warning unless
24841 you use the @option{-Wno-psabi} option. Requires @option{-mlong-double-128}
24842 to be enabled.
24843
24844 @item -mabi=ieeelongdouble
24845 @opindex mabi=ieeelongdouble
24846 Change the current ABI to use IEEE extended-precision long double.
24847 This is not likely to work if your system defaults to using IBM
24848 extended-precision long double. If you change the long double type
24849 from IBM extended-precision, the compiler will issue a warning unless
24850 you use the @option{-Wno-psabi} option. Requires @option{-mlong-double-128}
24851 to be enabled.
24852
24853 @item -mabi=elfv1
24854 @opindex mabi=elfv1
24855 Change the current ABI to use the ELFv1 ABI.
24856 This is the default ABI for big-endian PowerPC 64-bit Linux.
24857 Overriding the default ABI requires special system support and is
24858 likely to fail in spectacular ways.
24859
24860 @item -mabi=elfv2
24861 @opindex mabi=elfv2
24862 Change the current ABI to use the ELFv2 ABI.
24863 This is the default ABI for little-endian PowerPC 64-bit Linux.
24864 Overriding the default ABI requires special system support and is
24865 likely to fail in spectacular ways.
24866
24867 @item -mgnu-attribute
24868 @itemx -mno-gnu-attribute
24869 @opindex mgnu-attribute
24870 @opindex mno-gnu-attribute
24871 Emit .gnu_attribute assembly directives to set tag/value pairs in a
24872 .gnu.attributes section that specify ABI variations in function
24873 parameters or return values.
24874
24875 @item -mprototype
24876 @itemx -mno-prototype
24877 @opindex mprototype
24878 @opindex mno-prototype
24879 On System V.4 and embedded PowerPC systems assume that all calls to
24880 variable argument functions are properly prototyped. Otherwise, the
24881 compiler must insert an instruction before every non-prototyped call to
24882 set or clear bit 6 of the condition code register (@code{CR}) to
24883 indicate whether floating-point values are passed in the floating-point
24884 registers in case the function takes variable arguments. With
24885 @option{-mprototype}, only calls to prototyped variable argument functions
24886 set or clear the bit.
24887
24888 @item -msim
24889 @opindex msim
24890 On embedded PowerPC systems, assume that the startup module is called
24891 @file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
24892 @file{libc.a}. This is the default for @samp{powerpc-*-eabisim}
24893 configurations.
24894
24895 @item -mmvme
24896 @opindex mmvme
24897 On embedded PowerPC systems, assume that the startup module is called
24898 @file{crt0.o} and the standard C libraries are @file{libmvme.a} and
24899 @file{libc.a}.
24900
24901 @item -mads
24902 @opindex mads
24903 On embedded PowerPC systems, assume that the startup module is called
24904 @file{crt0.o} and the standard C libraries are @file{libads.a} and
24905 @file{libc.a}.
24906
24907 @item -myellowknife
24908 @opindex myellowknife
24909 On embedded PowerPC systems, assume that the startup module is called
24910 @file{crt0.o} and the standard C libraries are @file{libyk.a} and
24911 @file{libc.a}.
24912
24913 @item -mvxworks
24914 @opindex mvxworks
24915 On System V.4 and embedded PowerPC systems, specify that you are
24916 compiling for a VxWorks system.
24917
24918 @item -memb
24919 @opindex memb
24920 On embedded PowerPC systems, set the @code{PPC_EMB} bit in the ELF flags
24921 header to indicate that @samp{eabi} extended relocations are used.
24922
24923 @item -meabi
24924 @itemx -mno-eabi
24925 @opindex meabi
24926 @opindex mno-eabi
24927 On System V.4 and embedded PowerPC systems do (do not) adhere to the
24928 Embedded Applications Binary Interface (EABI), which is a set of
24929 modifications to the System V.4 specifications. Selecting @option{-meabi}
24930 means that the stack is aligned to an 8-byte boundary, a function
24931 @code{__eabi} is called from @code{main} to set up the EABI
24932 environment, and the @option{-msdata} option can use both @code{r2} and
24933 @code{r13} to point to two separate small data areas. Selecting
24934 @option{-mno-eabi} means that the stack is aligned to a 16-byte boundary,
24935 no EABI initialization function is called from @code{main}, and the
24936 @option{-msdata} option only uses @code{r13} to point to a single
24937 small data area. The @option{-meabi} option is on by default if you
24938 configured GCC using one of the @samp{powerpc*-*-eabi*} options.
24939
24940 @item -msdata=eabi
24941 @opindex msdata=eabi
24942 On System V.4 and embedded PowerPC systems, put small initialized
24943 @code{const} global and static data in the @code{.sdata2} section, which
24944 is pointed to by register @code{r2}. Put small initialized
24945 non-@code{const} global and static data in the @code{.sdata} section,
24946 which is pointed to by register @code{r13}. Put small uninitialized
24947 global and static data in the @code{.sbss} section, which is adjacent to
24948 the @code{.sdata} section. The @option{-msdata=eabi} option is
24949 incompatible with the @option{-mrelocatable} option. The
24950 @option{-msdata=eabi} option also sets the @option{-memb} option.
24951
24952 @item -msdata=sysv
24953 @opindex msdata=sysv
24954 On System V.4 and embedded PowerPC systems, put small global and static
24955 data in the @code{.sdata} section, which is pointed to by register
24956 @code{r13}. Put small uninitialized global and static data in the
24957 @code{.sbss} section, which is adjacent to the @code{.sdata} section.
24958 The @option{-msdata=sysv} option is incompatible with the
24959 @option{-mrelocatable} option.
24960
24961 @item -msdata=default
24962 @itemx -msdata
24963 @opindex msdata=default
24964 @opindex msdata
24965 On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
24966 compile code the same as @option{-msdata=eabi}, otherwise compile code the
24967 same as @option{-msdata=sysv}.
24968
24969 @item -msdata=data
24970 @opindex msdata=data
24971 On System V.4 and embedded PowerPC systems, put small global
24972 data in the @code{.sdata} section. Put small uninitialized global
24973 data in the @code{.sbss} section. Do not use register @code{r13}
24974 to address small data however. This is the default behavior unless
24975 other @option{-msdata} options are used.
24976
24977 @item -msdata=none
24978 @itemx -mno-sdata
24979 @opindex msdata=none
24980 @opindex mno-sdata
24981 On embedded PowerPC systems, put all initialized global and static data
24982 in the @code{.data} section, and all uninitialized data in the
24983 @code{.bss} section.
24984
24985 @item -mreadonly-in-sdata
24986 @opindex mreadonly-in-sdata
24987 @opindex mno-readonly-in-sdata
24988 Put read-only objects in the @code{.sdata} section as well. This is the
24989 default.
24990
24991 @item -mblock-move-inline-limit=@var{num}
24992 @opindex mblock-move-inline-limit
24993 Inline all block moves (such as calls to @code{memcpy} or structure
24994 copies) less than or equal to @var{num} bytes. The minimum value for
24995 @var{num} is 32 bytes on 32-bit targets and 64 bytes on 64-bit
24996 targets. The default value is target-specific.
24997
24998 @item -mblock-compare-inline-limit=@var{num}
24999 @opindex mblock-compare-inline-limit
25000 Generate non-looping inline code for all block compares (such as calls
25001 to @code{memcmp} or structure compares) less than or equal to @var{num}
25002 bytes. If @var{num} is 0, all inline expansion (non-loop and loop) of
25003 block compare is disabled. The default value is target-specific.
25004
25005 @item -mblock-compare-inline-loop-limit=@var{num}
25006 @opindex mblock-compare-inline-loop-limit
25007 Generate an inline expansion using loop code for all block compares that
25008 are less than or equal to @var{num} bytes, but greater than the limit
25009 for non-loop inline block compare expansion. If the block length is not
25010 constant, at most @var{num} bytes will be compared before @code{memcmp}
25011 is called to compare the remainder of the block. The default value is
25012 target-specific.
25013
25014 @item -mstring-compare-inline-limit=@var{num}
25015 @opindex mstring-compare-inline-limit
25016 Compare at most @var{num} string bytes with inline code.
25017 If the difference or end of string is not found at the
25018 end of the inline compare a call to @code{strcmp} or @code{strncmp} will
25019 take care of the rest of the comparison. The default is 64 bytes.
25020
25021 @item -G @var{num}
25022 @opindex G
25023 @cindex smaller data references (PowerPC)
25024 @cindex .sdata/.sdata2 references (PowerPC)
25025 On embedded PowerPC systems, put global and static items less than or
25026 equal to @var{num} bytes into the small data or BSS sections instead of
25027 the normal data or BSS section. By default, @var{num} is 8. The
25028 @option{-G @var{num}} switch is also passed to the linker.
25029 All modules should be compiled with the same @option{-G @var{num}} value.
25030
25031 @item -mregnames
25032 @itemx -mno-regnames
25033 @opindex mregnames
25034 @opindex mno-regnames
25035 On System V.4 and embedded PowerPC systems do (do not) emit register
25036 names in the assembly language output using symbolic forms.
25037
25038 @item -mlongcall
25039 @itemx -mno-longcall
25040 @opindex mlongcall
25041 @opindex mno-longcall
25042 By default assume that all calls are far away so that a longer and more
25043 expensive calling sequence is required. This is required for calls
25044 farther than 32 megabytes (33,554,432 bytes) from the current location.
25045 A short call is generated if the compiler knows
25046 the call cannot be that far away. This setting can be overridden by
25047 the @code{shortcall} function attribute, or by @code{#pragma
25048 longcall(0)}.
25049
25050 Some linkers are capable of detecting out-of-range calls and generating
25051 glue code on the fly. On these systems, long calls are unnecessary and
25052 generate slower code. As of this writing, the AIX linker can do this,
25053 as can the GNU linker for PowerPC/64. It is planned to add this feature
25054 to the GNU linker for 32-bit PowerPC systems as well.
25055
25056 On PowerPC64 ELFv2 and 32-bit PowerPC systems with newer GNU linkers,
25057 GCC can generate long calls using an inline PLT call sequence (see
25058 @option{-mpltseq}). PowerPC with @option{-mbss-plt} and PowerPC64
25059 ELFv1 (big-endian) do not support inline PLT calls.
25060
25061 On Darwin/PPC systems, @code{#pragma longcall} generates @code{jbsr
25062 callee, L42}, plus a @dfn{branch island} (glue code). The two target
25063 addresses represent the callee and the branch island. The
25064 Darwin/PPC linker prefers the first address and generates a @code{bl
25065 callee} if the PPC @code{bl} instruction reaches the callee directly;
25066 otherwise, the linker generates @code{bl L42} to call the branch
25067 island. The branch island is appended to the body of the
25068 calling function; it computes the full 32-bit address of the callee
25069 and jumps to it.
25070
25071 On Mach-O (Darwin) systems, this option directs the compiler emit to
25072 the glue for every direct call, and the Darwin linker decides whether
25073 to use or discard it.
25074
25075 In the future, GCC may ignore all longcall specifications
25076 when the linker is known to generate glue.
25077
25078 @item -mpltseq
25079 @itemx -mno-pltseq
25080 @opindex mpltseq
25081 @opindex mno-pltseq
25082 Implement (do not implement) -fno-plt and long calls using an inline
25083 PLT call sequence that supports lazy linking and long calls to
25084 functions in dlopen'd shared libraries. Inline PLT calls are only
25085 supported on PowerPC64 ELFv2 and 32-bit PowerPC systems with newer GNU
25086 linkers, and are enabled by default if the support is detected when
25087 configuring GCC, and, in the case of 32-bit PowerPC, if GCC is
25088 configured with @option{--enable-secureplt}. @option{-mpltseq} code
25089 and @option{-mbss-plt} 32-bit PowerPC relocatable objects may not be
25090 linked together.
25091
25092 @item -mtls-markers
25093 @itemx -mno-tls-markers
25094 @opindex mtls-markers
25095 @opindex mno-tls-markers
25096 Mark (do not mark) calls to @code{__tls_get_addr} with a relocation
25097 specifying the function argument. The relocation allows the linker to
25098 reliably associate function call with argument setup instructions for
25099 TLS optimization, which in turn allows GCC to better schedule the
25100 sequence.
25101
25102 @item -mrecip
25103 @itemx -mno-recip
25104 @opindex mrecip
25105 This option enables use of the reciprocal estimate and
25106 reciprocal square root estimate instructions with additional
25107 Newton-Raphson steps to increase precision instead of doing a divide or
25108 square root and divide for floating-point arguments. You should use
25109 the @option{-ffast-math} option when using @option{-mrecip} (or at
25110 least @option{-funsafe-math-optimizations},
25111 @option{-ffinite-math-only}, @option{-freciprocal-math} and
25112 @option{-fno-trapping-math}). Note that while the throughput of the
25113 sequence is generally higher than the throughput of the non-reciprocal
25114 instruction, the precision of the sequence can be decreased by up to 2
25115 ulp (i.e.@: the inverse of 1.0 equals 0.99999994) for reciprocal square
25116 roots.
25117
25118 @item -mrecip=@var{opt}
25119 @opindex mrecip=opt
25120 This option controls which reciprocal estimate instructions
25121 may be used. @var{opt} is a comma-separated list of options, which may
25122 be preceded by a @code{!} to invert the option:
25123
25124 @table @samp
25125
25126 @item all
25127 Enable all estimate instructions.
25128
25129 @item default
25130 Enable the default instructions, equivalent to @option{-mrecip}.
25131
25132 @item none
25133 Disable all estimate instructions, equivalent to @option{-mno-recip}.
25134
25135 @item div
25136 Enable the reciprocal approximation instructions for both
25137 single and double precision.
25138
25139 @item divf
25140 Enable the single-precision reciprocal approximation instructions.
25141
25142 @item divd
25143 Enable the double-precision reciprocal approximation instructions.
25144
25145 @item rsqrt
25146 Enable the reciprocal square root approximation instructions for both
25147 single and double precision.
25148
25149 @item rsqrtf
25150 Enable the single-precision reciprocal square root approximation instructions.
25151
25152 @item rsqrtd
25153 Enable the double-precision reciprocal square root approximation instructions.
25154
25155 @end table
25156
25157 So, for example, @option{-mrecip=all,!rsqrtd} enables
25158 all of the reciprocal estimate instructions, except for the
25159 @code{FRSQRTE}, @code{XSRSQRTEDP}, and @code{XVRSQRTEDP} instructions
25160 which handle the double-precision reciprocal square root calculations.
25161
25162 @item -mrecip-precision
25163 @itemx -mno-recip-precision
25164 @opindex mrecip-precision
25165 Assume (do not assume) that the reciprocal estimate instructions
25166 provide higher-precision estimates than is mandated by the PowerPC
25167 ABI. Selecting @option{-mcpu=power6}, @option{-mcpu=power7} or
25168 @option{-mcpu=power8} automatically selects @option{-mrecip-precision}.
25169 The double-precision square root estimate instructions are not generated by
25170 default on low-precision machines, since they do not provide an
25171 estimate that converges after three steps.
25172
25173 @item -mveclibabi=@var{type}
25174 @opindex mveclibabi
25175 Specifies the ABI type to use for vectorizing intrinsics using an
25176 external library. The only type supported at present is @samp{mass},
25177 which specifies to use IBM's Mathematical Acceleration Subsystem
25178 (MASS) libraries for vectorizing intrinsics using external libraries.
25179 GCC currently emits calls to @code{acosd2}, @code{acosf4},
25180 @code{acoshd2}, @code{acoshf4}, @code{asind2}, @code{asinf4},
25181 @code{asinhd2}, @code{asinhf4}, @code{atan2d2}, @code{atan2f4},
25182 @code{atand2}, @code{atanf4}, @code{atanhd2}, @code{atanhf4},
25183 @code{cbrtd2}, @code{cbrtf4}, @code{cosd2}, @code{cosf4},
25184 @code{coshd2}, @code{coshf4}, @code{erfcd2}, @code{erfcf4},
25185 @code{erfd2}, @code{erff4}, @code{exp2d2}, @code{exp2f4},
25186 @code{expd2}, @code{expf4}, @code{expm1d2}, @code{expm1f4},
25187 @code{hypotd2}, @code{hypotf4}, @code{lgammad2}, @code{lgammaf4},
25188 @code{log10d2}, @code{log10f4}, @code{log1pd2}, @code{log1pf4},
25189 @code{log2d2}, @code{log2f4}, @code{logd2}, @code{logf4},
25190 @code{powd2}, @code{powf4}, @code{sind2}, @code{sinf4}, @code{sinhd2},
25191 @code{sinhf4}, @code{sqrtd2}, @code{sqrtf4}, @code{tand2},
25192 @code{tanf4}, @code{tanhd2}, and @code{tanhf4} when generating code
25193 for power7. Both @option{-ftree-vectorize} and
25194 @option{-funsafe-math-optimizations} must also be enabled. The MASS
25195 libraries must be specified at link time.
25196
25197 @item -mfriz
25198 @itemx -mno-friz
25199 @opindex mfriz
25200 Generate (do not generate) the @code{friz} instruction when the
25201 @option{-funsafe-math-optimizations} option is used to optimize
25202 rounding of floating-point values to 64-bit integer and back to floating
25203 point. The @code{friz} instruction does not return the same value if
25204 the floating-point number is too large to fit in an integer.
25205
25206 @item -mpointers-to-nested-functions
25207 @itemx -mno-pointers-to-nested-functions
25208 @opindex mpointers-to-nested-functions
25209 Generate (do not generate) code to load up the static chain register
25210 (@code{r11}) when calling through a pointer on AIX and 64-bit Linux
25211 systems where a function pointer points to a 3-word descriptor giving
25212 the function address, TOC value to be loaded in register @code{r2}, and
25213 static chain value to be loaded in register @code{r11}. The
25214 @option{-mpointers-to-nested-functions} is on by default. You cannot
25215 call through pointers to nested functions or pointers
25216 to functions compiled in other languages that use the static chain if
25217 you use @option{-mno-pointers-to-nested-functions}.
25218
25219 @item -msave-toc-indirect
25220 @itemx -mno-save-toc-indirect
25221 @opindex msave-toc-indirect
25222 Generate (do not generate) code to save the TOC value in the reserved
25223 stack location in the function prologue if the function calls through
25224 a pointer on AIX and 64-bit Linux systems. If the TOC value is not
25225 saved in the prologue, it is saved just before the call through the
25226 pointer. The @option{-mno-save-toc-indirect} option is the default.
25227
25228 @item -mcompat-align-parm
25229 @itemx -mno-compat-align-parm
25230 @opindex mcompat-align-parm
25231 Generate (do not generate) code to pass structure parameters with a
25232 maximum alignment of 64 bits, for compatibility with older versions
25233 of GCC.
25234
25235 Older versions of GCC (prior to 4.9.0) incorrectly did not align a
25236 structure parameter on a 128-bit boundary when that structure contained
25237 a member requiring 128-bit alignment. This is corrected in more
25238 recent versions of GCC. This option may be used to generate code
25239 that is compatible with functions compiled with older versions of
25240 GCC.
25241
25242 The @option{-mno-compat-align-parm} option is the default.
25243
25244 @item -mstack-protector-guard=@var{guard}
25245 @itemx -mstack-protector-guard-reg=@var{reg}
25246 @itemx -mstack-protector-guard-offset=@var{offset}
25247 @itemx -mstack-protector-guard-symbol=@var{symbol}
25248 @opindex mstack-protector-guard
25249 @opindex mstack-protector-guard-reg
25250 @opindex mstack-protector-guard-offset
25251 @opindex mstack-protector-guard-symbol
25252 Generate stack protection code using canary at @var{guard}. Supported
25253 locations are @samp{global} for global canary or @samp{tls} for per-thread
25254 canary in the TLS block (the default with GNU libc version 2.4 or later).
25255
25256 With the latter choice the options
25257 @option{-mstack-protector-guard-reg=@var{reg}} and
25258 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
25259 which register to use as base register for reading the canary, and from what
25260 offset from that base register. The default for those is as specified in the
25261 relevant ABI. @option{-mstack-protector-guard-symbol=@var{symbol}} overrides
25262 the offset with a symbol reference to a canary in the TLS block.
25263
25264 @item -mpcrel
25265 @itemx -mno-pcrel
25266 @opindex mpcrel
25267 @opindex mno-pcrel
25268 Generate (do not generate) pc-relative addressing when the option
25269 @option{-mcpu=future} is used.
25270 @end table
25271
25272 @node RX Options
25273 @subsection RX Options
25274 @cindex RX Options
25275
25276 These command-line options are defined for RX targets:
25277
25278 @table @gcctabopt
25279 @item -m64bit-doubles
25280 @itemx -m32bit-doubles
25281 @opindex m64bit-doubles
25282 @opindex m32bit-doubles
25283 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
25284 or 32 bits (@option{-m32bit-doubles}) in size. The default is
25285 @option{-m32bit-doubles}. @emph{Note} RX floating-point hardware only
25286 works on 32-bit values, which is why the default is
25287 @option{-m32bit-doubles}.
25288
25289 @item -fpu
25290 @itemx -nofpu
25291 @opindex fpu
25292 @opindex nofpu
25293 Enables (@option{-fpu}) or disables (@option{-nofpu}) the use of RX
25294 floating-point hardware. The default is enabled for the RX600
25295 series and disabled for the RX200 series.
25296
25297 Floating-point instructions are only generated for 32-bit floating-point
25298 values, however, so the FPU hardware is not used for doubles if the
25299 @option{-m64bit-doubles} option is used.
25300
25301 @emph{Note} If the @option{-fpu} option is enabled then
25302 @option{-funsafe-math-optimizations} is also enabled automatically.
25303 This is because the RX FPU instructions are themselves unsafe.
25304
25305 @item -mcpu=@var{name}
25306 @opindex mcpu
25307 Selects the type of RX CPU to be targeted. Currently three types are
25308 supported, the generic @samp{RX600} and @samp{RX200} series hardware and
25309 the specific @samp{RX610} CPU. The default is @samp{RX600}.
25310
25311 The only difference between @samp{RX600} and @samp{RX610} is that the
25312 @samp{RX610} does not support the @code{MVTIPL} instruction.
25313
25314 The @samp{RX200} series does not have a hardware floating-point unit
25315 and so @option{-nofpu} is enabled by default when this type is
25316 selected.
25317
25318 @item -mbig-endian-data
25319 @itemx -mlittle-endian-data
25320 @opindex mbig-endian-data
25321 @opindex mlittle-endian-data
25322 Store data (but not code) in the big-endian format. The default is
25323 @option{-mlittle-endian-data}, i.e.@: to store data in the little-endian
25324 format.
25325
25326 @item -msmall-data-limit=@var{N}
25327 @opindex msmall-data-limit
25328 Specifies the maximum size in bytes of global and static variables
25329 which can be placed into the small data area. Using the small data
25330 area can lead to smaller and faster code, but the size of area is
25331 limited and it is up to the programmer to ensure that the area does
25332 not overflow. Also when the small data area is used one of the RX's
25333 registers (usually @code{r13}) is reserved for use pointing to this
25334 area, so it is no longer available for use by the compiler. This
25335 could result in slower and/or larger code if variables are pushed onto
25336 the stack instead of being held in this register.
25337
25338 Note, common variables (variables that have not been initialized) and
25339 constants are not placed into the small data area as they are assigned
25340 to other sections in the output executable.
25341
25342 The default value is zero, which disables this feature. Note, this
25343 feature is not enabled by default with higher optimization levels
25344 (@option{-O2} etc) because of the potentially detrimental effects of
25345 reserving a register. It is up to the programmer to experiment and
25346 discover whether this feature is of benefit to their program. See the
25347 description of the @option{-mpid} option for a description of how the
25348 actual register to hold the small data area pointer is chosen.
25349
25350 @item -msim
25351 @itemx -mno-sim
25352 @opindex msim
25353 @opindex mno-sim
25354 Use the simulator runtime. The default is to use the libgloss
25355 board-specific runtime.
25356
25357 @item -mas100-syntax
25358 @itemx -mno-as100-syntax
25359 @opindex mas100-syntax
25360 @opindex mno-as100-syntax
25361 When generating assembler output use a syntax that is compatible with
25362 Renesas's AS100 assembler. This syntax can also be handled by the GAS
25363 assembler, but it has some restrictions so it is not generated by default.
25364
25365 @item -mmax-constant-size=@var{N}
25366 @opindex mmax-constant-size
25367 Specifies the maximum size, in bytes, of a constant that can be used as
25368 an operand in a RX instruction. Although the RX instruction set does
25369 allow constants of up to 4 bytes in length to be used in instructions,
25370 a longer value equates to a longer instruction. Thus in some
25371 circumstances it can be beneficial to restrict the size of constants
25372 that are used in instructions. Constants that are too big are instead
25373 placed into a constant pool and referenced via register indirection.
25374
25375 The value @var{N} can be between 0 and 4. A value of 0 (the default)
25376 or 4 means that constants of any size are allowed.
25377
25378 @item -mrelax
25379 @opindex mrelax
25380 Enable linker relaxation. Linker relaxation is a process whereby the
25381 linker attempts to reduce the size of a program by finding shorter
25382 versions of various instructions. Disabled by default.
25383
25384 @item -mint-register=@var{N}
25385 @opindex mint-register
25386 Specify the number of registers to reserve for fast interrupt handler
25387 functions. The value @var{N} can be between 0 and 4. A value of 1
25388 means that register @code{r13} is reserved for the exclusive use
25389 of fast interrupt handlers. A value of 2 reserves @code{r13} and
25390 @code{r12}. A value of 3 reserves @code{r13}, @code{r12} and
25391 @code{r11}, and a value of 4 reserves @code{r13} through @code{r10}.
25392 A value of 0, the default, does not reserve any registers.
25393
25394 @item -msave-acc-in-interrupts
25395 @opindex msave-acc-in-interrupts
25396 Specifies that interrupt handler functions should preserve the
25397 accumulator register. This is only necessary if normal code might use
25398 the accumulator register, for example because it performs 64-bit
25399 multiplications. The default is to ignore the accumulator as this
25400 makes the interrupt handlers faster.
25401
25402 @item -mpid
25403 @itemx -mno-pid
25404 @opindex mpid
25405 @opindex mno-pid
25406 Enables the generation of position independent data. When enabled any
25407 access to constant data is done via an offset from a base address
25408 held in a register. This allows the location of constant data to be
25409 determined at run time without requiring the executable to be
25410 relocated, which is a benefit to embedded applications with tight
25411 memory constraints. Data that can be modified is not affected by this
25412 option.
25413
25414 Note, using this feature reserves a register, usually @code{r13}, for
25415 the constant data base address. This can result in slower and/or
25416 larger code, especially in complicated functions.
25417
25418 The actual register chosen to hold the constant data base address
25419 depends upon whether the @option{-msmall-data-limit} and/or the
25420 @option{-mint-register} command-line options are enabled. Starting
25421 with register @code{r13} and proceeding downwards, registers are
25422 allocated first to satisfy the requirements of @option{-mint-register},
25423 then @option{-mpid} and finally @option{-msmall-data-limit}. Thus it
25424 is possible for the small data area register to be @code{r8} if both
25425 @option{-mint-register=4} and @option{-mpid} are specified on the
25426 command line.
25427
25428 By default this feature is not enabled. The default can be restored
25429 via the @option{-mno-pid} command-line option.
25430
25431 @item -mno-warn-multiple-fast-interrupts
25432 @itemx -mwarn-multiple-fast-interrupts
25433 @opindex mno-warn-multiple-fast-interrupts
25434 @opindex mwarn-multiple-fast-interrupts
25435 Prevents GCC from issuing a warning message if it finds more than one
25436 fast interrupt handler when it is compiling a file. The default is to
25437 issue a warning for each extra fast interrupt handler found, as the RX
25438 only supports one such interrupt.
25439
25440 @item -mallow-string-insns
25441 @itemx -mno-allow-string-insns
25442 @opindex mallow-string-insns
25443 @opindex mno-allow-string-insns
25444 Enables or disables the use of the string manipulation instructions
25445 @code{SMOVF}, @code{SCMPU}, @code{SMOVB}, @code{SMOVU}, @code{SUNTIL}
25446 @code{SWHILE} and also the @code{RMPA} instruction. These
25447 instructions may prefetch data, which is not safe to do if accessing
25448 an I/O register. (See section 12.2.7 of the RX62N Group User's Manual
25449 for more information).
25450
25451 The default is to allow these instructions, but it is not possible for
25452 GCC to reliably detect all circumstances where a string instruction
25453 might be used to access an I/O register, so their use cannot be
25454 disabled automatically. Instead it is reliant upon the programmer to
25455 use the @option{-mno-allow-string-insns} option if their program
25456 accesses I/O space.
25457
25458 When the instructions are enabled GCC defines the C preprocessor
25459 symbol @code{__RX_ALLOW_STRING_INSNS__}, otherwise it defines the
25460 symbol @code{__RX_DISALLOW_STRING_INSNS__}.
25461
25462 @item -mjsr
25463 @itemx -mno-jsr
25464 @opindex mjsr
25465 @opindex mno-jsr
25466 Use only (or not only) @code{JSR} instructions to access functions.
25467 This option can be used when code size exceeds the range of @code{BSR}
25468 instructions. Note that @option{-mno-jsr} does not mean to not use
25469 @code{JSR} but instead means that any type of branch may be used.
25470 @end table
25471
25472 @emph{Note:} The generic GCC command-line option @option{-ffixed-@var{reg}}
25473 has special significance to the RX port when used with the
25474 @code{interrupt} function attribute. This attribute indicates a
25475 function intended to process fast interrupts. GCC ensures
25476 that it only uses the registers @code{r10}, @code{r11}, @code{r12}
25477 and/or @code{r13} and only provided that the normal use of the
25478 corresponding registers have been restricted via the
25479 @option{-ffixed-@var{reg}} or @option{-mint-register} command-line
25480 options.
25481
25482 @node S/390 and zSeries Options
25483 @subsection S/390 and zSeries Options
25484 @cindex S/390 and zSeries Options
25485
25486 These are the @samp{-m} options defined for the S/390 and zSeries architecture.
25487
25488 @table @gcctabopt
25489 @item -mhard-float
25490 @itemx -msoft-float
25491 @opindex mhard-float
25492 @opindex msoft-float
25493 Use (do not use) the hardware floating-point instructions and registers
25494 for floating-point operations. When @option{-msoft-float} is specified,
25495 functions in @file{libgcc.a} are used to perform floating-point
25496 operations. When @option{-mhard-float} is specified, the compiler
25497 generates IEEE floating-point instructions. This is the default.
25498
25499 @item -mhard-dfp
25500 @itemx -mno-hard-dfp
25501 @opindex mhard-dfp
25502 @opindex mno-hard-dfp
25503 Use (do not use) the hardware decimal-floating-point instructions for
25504 decimal-floating-point operations. When @option{-mno-hard-dfp} is
25505 specified, functions in @file{libgcc.a} are used to perform
25506 decimal-floating-point operations. When @option{-mhard-dfp} is
25507 specified, the compiler generates decimal-floating-point hardware
25508 instructions. This is the default for @option{-march=z9-ec} or higher.
25509
25510 @item -mlong-double-64
25511 @itemx -mlong-double-128
25512 @opindex mlong-double-64
25513 @opindex mlong-double-128
25514 These switches control the size of @code{long double} type. A size
25515 of 64 bits makes the @code{long double} type equivalent to the @code{double}
25516 type. This is the default.
25517
25518 @item -mbackchain
25519 @itemx -mno-backchain
25520 @opindex mbackchain
25521 @opindex mno-backchain
25522 Store (do not store) the address of the caller's frame as backchain pointer
25523 into the callee's stack frame.
25524 A backchain may be needed to allow debugging using tools that do not understand
25525 DWARF call frame information.
25526 When @option{-mno-packed-stack} is in effect, the backchain pointer is stored
25527 at the bottom of the stack frame; when @option{-mpacked-stack} is in effect,
25528 the backchain is placed into the topmost word of the 96/160 byte register
25529 save area.
25530
25531 In general, code compiled with @option{-mbackchain} is call-compatible with
25532 code compiled with @option{-mmo-backchain}; however, use of the backchain
25533 for debugging purposes usually requires that the whole binary is built with
25534 @option{-mbackchain}. Note that the combination of @option{-mbackchain},
25535 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
25536 to build a linux kernel use @option{-msoft-float}.
25537
25538 The default is to not maintain the backchain.
25539
25540 @item -mpacked-stack
25541 @itemx -mno-packed-stack
25542 @opindex mpacked-stack
25543 @opindex mno-packed-stack
25544 Use (do not use) the packed stack layout. When @option{-mno-packed-stack} is
25545 specified, the compiler uses the all fields of the 96/160 byte register save
25546 area only for their default purpose; unused fields still take up stack space.
25547 When @option{-mpacked-stack} is specified, register save slots are densely
25548 packed at the top of the register save area; unused space is reused for other
25549 purposes, allowing for more efficient use of the available stack space.
25550 However, when @option{-mbackchain} is also in effect, the topmost word of
25551 the save area is always used to store the backchain, and the return address
25552 register is always saved two words below the backchain.
25553
25554 As long as the stack frame backchain is not used, code generated with
25555 @option{-mpacked-stack} is call-compatible with code generated with
25556 @option{-mno-packed-stack}. Note that some non-FSF releases of GCC 2.95 for
25557 S/390 or zSeries generated code that uses the stack frame backchain at run
25558 time, not just for debugging purposes. Such code is not call-compatible
25559 with code compiled with @option{-mpacked-stack}. Also, note that the
25560 combination of @option{-mbackchain},
25561 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
25562 to build a linux kernel use @option{-msoft-float}.
25563
25564 The default is to not use the packed stack layout.
25565
25566 @item -msmall-exec
25567 @itemx -mno-small-exec
25568 @opindex msmall-exec
25569 @opindex mno-small-exec
25570 Generate (or do not generate) code using the @code{bras} instruction
25571 to do subroutine calls.
25572 This only works reliably if the total executable size does not
25573 exceed 64k. The default is to use the @code{basr} instruction instead,
25574 which does not have this limitation.
25575
25576 @item -m64
25577 @itemx -m31
25578 @opindex m64
25579 @opindex m31
25580 When @option{-m31} is specified, generate code compliant to the
25581 GNU/Linux for S/390 ABI@. When @option{-m64} is specified, generate
25582 code compliant to the GNU/Linux for zSeries ABI@. This allows GCC in
25583 particular to generate 64-bit instructions. For the @samp{s390}
25584 targets, the default is @option{-m31}, while the @samp{s390x}
25585 targets default to @option{-m64}.
25586
25587 @item -mzarch
25588 @itemx -mesa
25589 @opindex mzarch
25590 @opindex mesa
25591 When @option{-mzarch} is specified, generate code using the
25592 instructions available on z/Architecture.
25593 When @option{-mesa} is specified, generate code using the
25594 instructions available on ESA/390. Note that @option{-mesa} is
25595 not possible with @option{-m64}.
25596 When generating code compliant to the GNU/Linux for S/390 ABI,
25597 the default is @option{-mesa}. When generating code compliant
25598 to the GNU/Linux for zSeries ABI, the default is @option{-mzarch}.
25599
25600 @item -mhtm
25601 @itemx -mno-htm
25602 @opindex mhtm
25603 @opindex mno-htm
25604 The @option{-mhtm} option enables a set of builtins making use of
25605 instructions available with the transactional execution facility
25606 introduced with the IBM zEnterprise EC12 machine generation
25607 @ref{S/390 System z Built-in Functions}.
25608 @option{-mhtm} is enabled by default when using @option{-march=zEC12}.
25609
25610 @item -mvx
25611 @itemx -mno-vx
25612 @opindex mvx
25613 @opindex mno-vx
25614 When @option{-mvx} is specified, generate code using the instructions
25615 available with the vector extension facility introduced with the IBM
25616 z13 machine generation.
25617 This option changes the ABI for some vector type values with regard to
25618 alignment and calling conventions. In case vector type values are
25619 being used in an ABI-relevant context a GAS @samp{.gnu_attribute}
25620 command will be added to mark the resulting binary with the ABI used.
25621 @option{-mvx} is enabled by default when using @option{-march=z13}.
25622
25623 @item -mzvector
25624 @itemx -mno-zvector
25625 @opindex mzvector
25626 @opindex mno-zvector
25627 The @option{-mzvector} option enables vector language extensions and
25628 builtins using instructions available with the vector extension
25629 facility introduced with the IBM z13 machine generation.
25630 This option adds support for @samp{vector} to be used as a keyword to
25631 define vector type variables and arguments. @samp{vector} is only
25632 available when GNU extensions are enabled. It will not be expanded
25633 when requesting strict standard compliance e.g.@: with @option{-std=c99}.
25634 In addition to the GCC low-level builtins @option{-mzvector} enables
25635 a set of builtins added for compatibility with AltiVec-style
25636 implementations like Power and Cell. In order to make use of these
25637 builtins the header file @file{vecintrin.h} needs to be included.
25638 @option{-mzvector} is disabled by default.
25639
25640 @item -mmvcle
25641 @itemx -mno-mvcle
25642 @opindex mmvcle
25643 @opindex mno-mvcle
25644 Generate (or do not generate) code using the @code{mvcle} instruction
25645 to perform block moves. When @option{-mno-mvcle} is specified,
25646 use a @code{mvc} loop instead. This is the default unless optimizing for
25647 size.
25648
25649 @item -mdebug
25650 @itemx -mno-debug
25651 @opindex mdebug
25652 @opindex mno-debug
25653 Print (or do not print) additional debug information when compiling.
25654 The default is to not print debug information.
25655
25656 @item -march=@var{cpu-type}
25657 @opindex march
25658 Generate code that runs on @var{cpu-type}, which is the name of a
25659 system representing a certain processor type. Possible values for
25660 @var{cpu-type} are @samp{z900}/@samp{arch5}, @samp{z990}/@samp{arch6},
25661 @samp{z9-109}, @samp{z9-ec}/@samp{arch7}, @samp{z10}/@samp{arch8},
25662 @samp{z196}/@samp{arch9}, @samp{zEC12}, @samp{z13}/@samp{arch11},
25663 @samp{z14}/@samp{arch12}, and @samp{native}.
25664
25665 The default is @option{-march=z900}.
25666
25667 Specifying @samp{native} as cpu type can be used to select the best
25668 architecture option for the host processor.
25669 @option{-march=native} has no effect if GCC does not recognize the
25670 processor.
25671
25672 @item -mtune=@var{cpu-type}
25673 @opindex mtune
25674 Tune to @var{cpu-type} everything applicable about the generated code,
25675 except for the ABI and the set of available instructions.
25676 The list of @var{cpu-type} values is the same as for @option{-march}.
25677 The default is the value used for @option{-march}.
25678
25679 @item -mtpf-trace
25680 @itemx -mno-tpf-trace
25681 @opindex mtpf-trace
25682 @opindex mno-tpf-trace
25683 Generate code that adds (does not add) in TPF OS specific branches to trace
25684 routines in the operating system. This option is off by default, even
25685 when compiling for the TPF OS@.
25686
25687 @item -mfused-madd
25688 @itemx -mno-fused-madd
25689 @opindex mfused-madd
25690 @opindex mno-fused-madd
25691 Generate code that uses (does not use) the floating-point multiply and
25692 accumulate instructions. These instructions are generated by default if
25693 hardware floating point is used.
25694
25695 @item -mwarn-framesize=@var{framesize}
25696 @opindex mwarn-framesize
25697 Emit a warning if the current function exceeds the given frame size. Because
25698 this is a compile-time check it doesn't need to be a real problem when the program
25699 runs. It is intended to identify functions that most probably cause
25700 a stack overflow. It is useful to be used in an environment with limited stack
25701 size e.g.@: the linux kernel.
25702
25703 @item -mwarn-dynamicstack
25704 @opindex mwarn-dynamicstack
25705 Emit a warning if the function calls @code{alloca} or uses dynamically-sized
25706 arrays. This is generally a bad idea with a limited stack size.
25707
25708 @item -mstack-guard=@var{stack-guard}
25709 @itemx -mstack-size=@var{stack-size}
25710 @opindex mstack-guard
25711 @opindex mstack-size
25712 If these options are provided the S/390 back end emits additional instructions in
25713 the function prologue that trigger a trap if the stack size is @var{stack-guard}
25714 bytes above the @var{stack-size} (remember that the stack on S/390 grows downward).
25715 If the @var{stack-guard} option is omitted the smallest power of 2 larger than
25716 the frame size of the compiled function is chosen.
25717 These options are intended to be used to help debugging stack overflow problems.
25718 The additionally emitted code causes only little overhead and hence can also be
25719 used in production-like systems without greater performance degradation. The given
25720 values have to be exact powers of 2 and @var{stack-size} has to be greater than
25721 @var{stack-guard} without exceeding 64k.
25722 In order to be efficient the extra code makes the assumption that the stack starts
25723 at an address aligned to the value given by @var{stack-size}.
25724 The @var{stack-guard} option can only be used in conjunction with @var{stack-size}.
25725
25726 @item -mhotpatch=@var{pre-halfwords},@var{post-halfwords}
25727 @opindex mhotpatch
25728 If the hotpatch option is enabled, a ``hot-patching'' function
25729 prologue is generated for all functions in the compilation unit.
25730 The funtion label is prepended with the given number of two-byte
25731 NOP instructions (@var{pre-halfwords}, maximum 1000000). After
25732 the label, 2 * @var{post-halfwords} bytes are appended, using the
25733 largest NOP like instructions the architecture allows (maximum
25734 1000000).
25735
25736 If both arguments are zero, hotpatching is disabled.
25737
25738 This option can be overridden for individual functions with the
25739 @code{hotpatch} attribute.
25740 @end table
25741
25742 @node Score Options
25743 @subsection Score Options
25744 @cindex Score Options
25745
25746 These options are defined for Score implementations:
25747
25748 @table @gcctabopt
25749 @item -meb
25750 @opindex meb
25751 Compile code for big-endian mode. This is the default.
25752
25753 @item -mel
25754 @opindex mel
25755 Compile code for little-endian mode.
25756
25757 @item -mnhwloop
25758 @opindex mnhwloop
25759 Disable generation of @code{bcnz} instructions.
25760
25761 @item -muls
25762 @opindex muls
25763 Enable generation of unaligned load and store instructions.
25764
25765 @item -mmac
25766 @opindex mmac
25767 Enable the use of multiply-accumulate instructions. Disabled by default.
25768
25769 @item -mscore5
25770 @opindex mscore5
25771 Specify the SCORE5 as the target architecture.
25772
25773 @item -mscore5u
25774 @opindex mscore5u
25775 Specify the SCORE5U of the target architecture.
25776
25777 @item -mscore7
25778 @opindex mscore7
25779 Specify the SCORE7 as the target architecture. This is the default.
25780
25781 @item -mscore7d
25782 @opindex mscore7d
25783 Specify the SCORE7D as the target architecture.
25784 @end table
25785
25786 @node SH Options
25787 @subsection SH Options
25788
25789 These @samp{-m} options are defined for the SH implementations:
25790
25791 @table @gcctabopt
25792 @item -m1
25793 @opindex m1
25794 Generate code for the SH1.
25795
25796 @item -m2
25797 @opindex m2
25798 Generate code for the SH2.
25799
25800 @item -m2e
25801 Generate code for the SH2e.
25802
25803 @item -m2a-nofpu
25804 @opindex m2a-nofpu
25805 Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
25806 that the floating-point unit is not used.
25807
25808 @item -m2a-single-only
25809 @opindex m2a-single-only
25810 Generate code for the SH2a-FPU, in such a way that no double-precision
25811 floating-point operations are used.
25812
25813 @item -m2a-single
25814 @opindex m2a-single
25815 Generate code for the SH2a-FPU assuming the floating-point unit is in
25816 single-precision mode by default.
25817
25818 @item -m2a
25819 @opindex m2a
25820 Generate code for the SH2a-FPU assuming the floating-point unit is in
25821 double-precision mode by default.
25822
25823 @item -m3
25824 @opindex m3
25825 Generate code for the SH3.
25826
25827 @item -m3e
25828 @opindex m3e
25829 Generate code for the SH3e.
25830
25831 @item -m4-nofpu
25832 @opindex m4-nofpu
25833 Generate code for the SH4 without a floating-point unit.
25834
25835 @item -m4-single-only
25836 @opindex m4-single-only
25837 Generate code for the SH4 with a floating-point unit that only
25838 supports single-precision arithmetic.
25839
25840 @item -m4-single
25841 @opindex m4-single
25842 Generate code for the SH4 assuming the floating-point unit is in
25843 single-precision mode by default.
25844
25845 @item -m4
25846 @opindex m4
25847 Generate code for the SH4.
25848
25849 @item -m4-100
25850 @opindex m4-100
25851 Generate code for SH4-100.
25852
25853 @item -m4-100-nofpu
25854 @opindex m4-100-nofpu
25855 Generate code for SH4-100 in such a way that the
25856 floating-point unit is not used.
25857
25858 @item -m4-100-single
25859 @opindex m4-100-single
25860 Generate code for SH4-100 assuming the floating-point unit is in
25861 single-precision mode by default.
25862
25863 @item -m4-100-single-only
25864 @opindex m4-100-single-only
25865 Generate code for SH4-100 in such a way that no double-precision
25866 floating-point operations are used.
25867
25868 @item -m4-200
25869 @opindex m4-200
25870 Generate code for SH4-200.
25871
25872 @item -m4-200-nofpu
25873 @opindex m4-200-nofpu
25874 Generate code for SH4-200 without in such a way that the
25875 floating-point unit is not used.
25876
25877 @item -m4-200-single
25878 @opindex m4-200-single
25879 Generate code for SH4-200 assuming the floating-point unit is in
25880 single-precision mode by default.
25881
25882 @item -m4-200-single-only
25883 @opindex m4-200-single-only
25884 Generate code for SH4-200 in such a way that no double-precision
25885 floating-point operations are used.
25886
25887 @item -m4-300
25888 @opindex m4-300
25889 Generate code for SH4-300.
25890
25891 @item -m4-300-nofpu
25892 @opindex m4-300-nofpu
25893 Generate code for SH4-300 without in such a way that the
25894 floating-point unit is not used.
25895
25896 @item -m4-300-single
25897 @opindex m4-300-single
25898 Generate code for SH4-300 in such a way that no double-precision
25899 floating-point operations are used.
25900
25901 @item -m4-300-single-only
25902 @opindex m4-300-single-only
25903 Generate code for SH4-300 in such a way that no double-precision
25904 floating-point operations are used.
25905
25906 @item -m4-340
25907 @opindex m4-340
25908 Generate code for SH4-340 (no MMU, no FPU).
25909
25910 @item -m4-500
25911 @opindex m4-500
25912 Generate code for SH4-500 (no FPU). Passes @option{-isa=sh4-nofpu} to the
25913 assembler.
25914
25915 @item -m4a-nofpu
25916 @opindex m4a-nofpu
25917 Generate code for the SH4al-dsp, or for a SH4a in such a way that the
25918 floating-point unit is not used.
25919
25920 @item -m4a-single-only
25921 @opindex m4a-single-only
25922 Generate code for the SH4a, in such a way that no double-precision
25923 floating-point operations are used.
25924
25925 @item -m4a-single
25926 @opindex m4a-single
25927 Generate code for the SH4a assuming the floating-point unit is in
25928 single-precision mode by default.
25929
25930 @item -m4a
25931 @opindex m4a
25932 Generate code for the SH4a.
25933
25934 @item -m4al
25935 @opindex m4al
25936 Same as @option{-m4a-nofpu}, except that it implicitly passes
25937 @option{-dsp} to the assembler. GCC doesn't generate any DSP
25938 instructions at the moment.
25939
25940 @item -mb
25941 @opindex mb
25942 Compile code for the processor in big-endian mode.
25943
25944 @item -ml
25945 @opindex ml
25946 Compile code for the processor in little-endian mode.
25947
25948 @item -mdalign
25949 @opindex mdalign
25950 Align doubles at 64-bit boundaries. Note that this changes the calling
25951 conventions, and thus some functions from the standard C library do
25952 not work unless you recompile it first with @option{-mdalign}.
25953
25954 @item -mrelax
25955 @opindex mrelax
25956 Shorten some address references at link time, when possible; uses the
25957 linker option @option{-relax}.
25958
25959 @item -mbigtable
25960 @opindex mbigtable
25961 Use 32-bit offsets in @code{switch} tables. The default is to use
25962 16-bit offsets.
25963
25964 @item -mbitops
25965 @opindex mbitops
25966 Enable the use of bit manipulation instructions on SH2A.
25967
25968 @item -mfmovd
25969 @opindex mfmovd
25970 Enable the use of the instruction @code{fmovd}. Check @option{-mdalign} for
25971 alignment constraints.
25972
25973 @item -mrenesas
25974 @opindex mrenesas
25975 Comply with the calling conventions defined by Renesas.
25976
25977 @item -mno-renesas
25978 @opindex mno-renesas
25979 Comply with the calling conventions defined for GCC before the Renesas
25980 conventions were available. This option is the default for all
25981 targets of the SH toolchain.
25982
25983 @item -mnomacsave
25984 @opindex mnomacsave
25985 Mark the @code{MAC} register as call-clobbered, even if
25986 @option{-mrenesas} is given.
25987
25988 @item -mieee
25989 @itemx -mno-ieee
25990 @opindex mieee
25991 @opindex mno-ieee
25992 Control the IEEE compliance of floating-point comparisons, which affects the
25993 handling of cases where the result of a comparison is unordered. By default
25994 @option{-mieee} is implicitly enabled. If @option{-ffinite-math-only} is
25995 enabled @option{-mno-ieee} is implicitly set, which results in faster
25996 floating-point greater-equal and less-equal comparisons. The implicit settings
25997 can be overridden by specifying either @option{-mieee} or @option{-mno-ieee}.
25998
25999 @item -minline-ic_invalidate
26000 @opindex minline-ic_invalidate
26001 Inline code to invalidate instruction cache entries after setting up
26002 nested function trampolines.
26003 This option has no effect if @option{-musermode} is in effect and the selected
26004 code generation option (e.g.@: @option{-m4}) does not allow the use of the @code{icbi}
26005 instruction.
26006 If the selected code generation option does not allow the use of the @code{icbi}
26007 instruction, and @option{-musermode} is not in effect, the inlined code
26008 manipulates the instruction cache address array directly with an associative
26009 write. This not only requires privileged mode at run time, but it also
26010 fails if the cache line had been mapped via the TLB and has become unmapped.
26011
26012 @item -misize
26013 @opindex misize
26014 Dump instruction size and location in the assembly code.
26015
26016 @item -mpadstruct
26017 @opindex mpadstruct
26018 This option is deprecated. It pads structures to multiple of 4 bytes,
26019 which is incompatible with the SH ABI@.
26020
26021 @item -matomic-model=@var{model}
26022 @opindex matomic-model=@var{model}
26023 Sets the model of atomic operations and additional parameters as a comma
26024 separated list. For details on the atomic built-in functions see
26025 @ref{__atomic Builtins}. The following models and parameters are supported:
26026
26027 @table @samp
26028
26029 @item none
26030 Disable compiler generated atomic sequences and emit library calls for atomic
26031 operations. This is the default if the target is not @code{sh*-*-linux*}.
26032
26033 @item soft-gusa
26034 Generate GNU/Linux compatible gUSA software atomic sequences for the atomic
26035 built-in functions. The generated atomic sequences require additional support
26036 from the interrupt/exception handling code of the system and are only suitable
26037 for SH3* and SH4* single-core systems. This option is enabled by default when
26038 the target is @code{sh*-*-linux*} and SH3* or SH4*. When the target is SH4A,
26039 this option also partially utilizes the hardware atomic instructions
26040 @code{movli.l} and @code{movco.l} to create more efficient code, unless
26041 @samp{strict} is specified.
26042
26043 @item soft-tcb
26044 Generate software atomic sequences that use a variable in the thread control
26045 block. This is a variation of the gUSA sequences which can also be used on
26046 SH1* and SH2* targets. The generated atomic sequences require additional
26047 support from the interrupt/exception handling code of the system and are only
26048 suitable for single-core systems. When using this model, the @samp{gbr-offset=}
26049 parameter has to be specified as well.
26050
26051 @item soft-imask
26052 Generate software atomic sequences that temporarily disable interrupts by
26053 setting @code{SR.IMASK = 1111}. This model works only when the program runs
26054 in privileged mode and is only suitable for single-core systems. Additional
26055 support from the interrupt/exception handling code of the system is not
26056 required. This model is enabled by default when the target is
26057 @code{sh*-*-linux*} and SH1* or SH2*.
26058
26059 @item hard-llcs
26060 Generate hardware atomic sequences using the @code{movli.l} and @code{movco.l}
26061 instructions only. This is only available on SH4A and is suitable for
26062 multi-core systems. Since the hardware instructions support only 32 bit atomic
26063 variables access to 8 or 16 bit variables is emulated with 32 bit accesses.
26064 Code compiled with this option is also compatible with other software
26065 atomic model interrupt/exception handling systems if executed on an SH4A
26066 system. Additional support from the interrupt/exception handling code of the
26067 system is not required for this model.
26068
26069 @item gbr-offset=
26070 This parameter specifies the offset in bytes of the variable in the thread
26071 control block structure that should be used by the generated atomic sequences
26072 when the @samp{soft-tcb} model has been selected. For other models this
26073 parameter is ignored. The specified value must be an integer multiple of four
26074 and in the range 0-1020.
26075
26076 @item strict
26077 This parameter prevents mixed usage of multiple atomic models, even if they
26078 are compatible, and makes the compiler generate atomic sequences of the
26079 specified model only.
26080
26081 @end table
26082
26083 @item -mtas
26084 @opindex mtas
26085 Generate the @code{tas.b} opcode for @code{__atomic_test_and_set}.
26086 Notice that depending on the particular hardware and software configuration
26087 this can degrade overall performance due to the operand cache line flushes
26088 that are implied by the @code{tas.b} instruction. On multi-core SH4A
26089 processors the @code{tas.b} instruction must be used with caution since it
26090 can result in data corruption for certain cache configurations.
26091
26092 @item -mprefergot
26093 @opindex mprefergot
26094 When generating position-independent code, emit function calls using
26095 the Global Offset Table instead of the Procedure Linkage Table.
26096
26097 @item -musermode
26098 @itemx -mno-usermode
26099 @opindex musermode
26100 @opindex mno-usermode
26101 Don't allow (allow) the compiler generating privileged mode code. Specifying
26102 @option{-musermode} also implies @option{-mno-inline-ic_invalidate} if the
26103 inlined code would not work in user mode. @option{-musermode} is the default
26104 when the target is @code{sh*-*-linux*}. If the target is SH1* or SH2*
26105 @option{-musermode} has no effect, since there is no user mode.
26106
26107 @item -multcost=@var{number}
26108 @opindex multcost=@var{number}
26109 Set the cost to assume for a multiply insn.
26110
26111 @item -mdiv=@var{strategy}
26112 @opindex mdiv=@var{strategy}
26113 Set the division strategy to be used for integer division operations.
26114 @var{strategy} can be one of:
26115
26116 @table @samp
26117
26118 @item call-div1
26119 Calls a library function that uses the single-step division instruction
26120 @code{div1} to perform the operation. Division by zero calculates an
26121 unspecified result and does not trap. This is the default except for SH4,
26122 SH2A and SHcompact.
26123
26124 @item call-fp
26125 Calls a library function that performs the operation in double precision
26126 floating point. Division by zero causes a floating-point exception. This is
26127 the default for SHcompact with FPU. Specifying this for targets that do not
26128 have a double precision FPU defaults to @code{call-div1}.
26129
26130 @item call-table
26131 Calls a library function that uses a lookup table for small divisors and
26132 the @code{div1} instruction with case distinction for larger divisors. Division
26133 by zero calculates an unspecified result and does not trap. This is the default
26134 for SH4. Specifying this for targets that do not have dynamic shift
26135 instructions defaults to @code{call-div1}.
26136
26137 @end table
26138
26139 When a division strategy has not been specified the default strategy is
26140 selected based on the current target. For SH2A the default strategy is to
26141 use the @code{divs} and @code{divu} instructions instead of library function
26142 calls.
26143
26144 @item -maccumulate-outgoing-args
26145 @opindex maccumulate-outgoing-args
26146 Reserve space once for outgoing arguments in the function prologue rather
26147 than around each call. Generally beneficial for performance and size. Also
26148 needed for unwinding to avoid changing the stack frame around conditional code.
26149
26150 @item -mdivsi3_libfunc=@var{name}
26151 @opindex mdivsi3_libfunc=@var{name}
26152 Set the name of the library function used for 32-bit signed division to
26153 @var{name}.
26154 This only affects the name used in the @samp{call} division strategies, and
26155 the compiler still expects the same sets of input/output/clobbered registers as
26156 if this option were not present.
26157
26158 @item -mfixed-range=@var{register-range}
26159 @opindex mfixed-range
26160 Generate code treating the given register range as fixed registers.
26161 A fixed register is one that the register allocator cannot use. This is
26162 useful when compiling kernel code. A register range is specified as
26163 two registers separated by a dash. Multiple register ranges can be
26164 specified separated by a comma.
26165
26166 @item -mbranch-cost=@var{num}
26167 @opindex mbranch-cost=@var{num}
26168 Assume @var{num} to be the cost for a branch instruction. Higher numbers
26169 make the compiler try to generate more branch-free code if possible.
26170 If not specified the value is selected depending on the processor type that
26171 is being compiled for.
26172
26173 @item -mzdcbranch
26174 @itemx -mno-zdcbranch
26175 @opindex mzdcbranch
26176 @opindex mno-zdcbranch
26177 Assume (do not assume) that zero displacement conditional branch instructions
26178 @code{bt} and @code{bf} are fast. If @option{-mzdcbranch} is specified, the
26179 compiler prefers zero displacement branch code sequences. This is
26180 enabled by default when generating code for SH4 and SH4A. It can be explicitly
26181 disabled by specifying @option{-mno-zdcbranch}.
26182
26183 @item -mcbranch-force-delay-slot
26184 @opindex mcbranch-force-delay-slot
26185 Force the usage of delay slots for conditional branches, which stuffs the delay
26186 slot with a @code{nop} if a suitable instruction cannot be found. By default
26187 this option is disabled. It can be enabled to work around hardware bugs as
26188 found in the original SH7055.
26189
26190 @item -mfused-madd
26191 @itemx -mno-fused-madd
26192 @opindex mfused-madd
26193 @opindex mno-fused-madd
26194 Generate code that uses (does not use) the floating-point multiply and
26195 accumulate instructions. These instructions are generated by default
26196 if hardware floating point is used. The machine-dependent
26197 @option{-mfused-madd} option is now mapped to the machine-independent
26198 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
26199 mapped to @option{-ffp-contract=off}.
26200
26201 @item -mfsca
26202 @itemx -mno-fsca
26203 @opindex mfsca
26204 @opindex mno-fsca
26205 Allow or disallow the compiler to emit the @code{fsca} instruction for sine
26206 and cosine approximations. The option @option{-mfsca} must be used in
26207 combination with @option{-funsafe-math-optimizations}. It is enabled by default
26208 when generating code for SH4A. Using @option{-mno-fsca} disables sine and cosine
26209 approximations even if @option{-funsafe-math-optimizations} is in effect.
26210
26211 @item -mfsrra
26212 @itemx -mno-fsrra
26213 @opindex mfsrra
26214 @opindex mno-fsrra
26215 Allow or disallow the compiler to emit the @code{fsrra} instruction for
26216 reciprocal square root approximations. The option @option{-mfsrra} must be used
26217 in combination with @option{-funsafe-math-optimizations} and
26218 @option{-ffinite-math-only}. It is enabled by default when generating code for
26219 SH4A. Using @option{-mno-fsrra} disables reciprocal square root approximations
26220 even if @option{-funsafe-math-optimizations} and @option{-ffinite-math-only} are
26221 in effect.
26222
26223 @item -mpretend-cmove
26224 @opindex mpretend-cmove
26225 Prefer zero-displacement conditional branches for conditional move instruction
26226 patterns. This can result in faster code on the SH4 processor.
26227
26228 @item -mfdpic
26229 @opindex fdpic
26230 Generate code using the FDPIC ABI.
26231
26232 @end table
26233
26234 @node Solaris 2 Options
26235 @subsection Solaris 2 Options
26236 @cindex Solaris 2 options
26237
26238 These @samp{-m} options are supported on Solaris 2:
26239
26240 @table @gcctabopt
26241 @item -mclear-hwcap
26242 @opindex mclear-hwcap
26243 @option{-mclear-hwcap} tells the compiler to remove the hardware
26244 capabilities generated by the Solaris assembler. This is only necessary
26245 when object files use ISA extensions not supported by the current
26246 machine, but check at runtime whether or not to use them.
26247
26248 @item -mimpure-text
26249 @opindex mimpure-text
26250 @option{-mimpure-text}, used in addition to @option{-shared}, tells
26251 the compiler to not pass @option{-z text} to the linker when linking a
26252 shared object. Using this option, you can link position-dependent
26253 code into a shared object.
26254
26255 @option{-mimpure-text} suppresses the ``relocations remain against
26256 allocatable but non-writable sections'' linker error message.
26257 However, the necessary relocations trigger copy-on-write, and the
26258 shared object is not actually shared across processes. Instead of
26259 using @option{-mimpure-text}, you should compile all source code with
26260 @option{-fpic} or @option{-fPIC}.
26261
26262 @end table
26263
26264 These switches are supported in addition to the above on Solaris 2:
26265
26266 @table @gcctabopt
26267 @item -pthreads
26268 @opindex pthreads
26269 This is a synonym for @option{-pthread}.
26270 @end table
26271
26272 @node SPARC Options
26273 @subsection SPARC Options
26274 @cindex SPARC options
26275
26276 These @samp{-m} options are supported on the SPARC:
26277
26278 @table @gcctabopt
26279 @item -mno-app-regs
26280 @itemx -mapp-regs
26281 @opindex mno-app-regs
26282 @opindex mapp-regs
26283 Specify @option{-mapp-regs} to generate output using the global registers
26284 2 through 4, which the SPARC SVR4 ABI reserves for applications. Like the
26285 global register 1, each global register 2 through 4 is then treated as an
26286 allocable register that is clobbered by function calls. This is the default.
26287
26288 To be fully SVR4 ABI-compliant at the cost of some performance loss,
26289 specify @option{-mno-app-regs}. You should compile libraries and system
26290 software with this option.
26291
26292 @item -mflat
26293 @itemx -mno-flat
26294 @opindex mflat
26295 @opindex mno-flat
26296 With @option{-mflat}, the compiler does not generate save/restore instructions
26297 and uses a ``flat'' or single register window model. This model is compatible
26298 with the regular register window model. The local registers and the input
26299 registers (0--5) are still treated as ``call-saved'' registers and are
26300 saved on the stack as needed.
26301
26302 With @option{-mno-flat} (the default), the compiler generates save/restore
26303 instructions (except for leaf functions). This is the normal operating mode.
26304
26305 @item -mfpu
26306 @itemx -mhard-float
26307 @opindex mfpu
26308 @opindex mhard-float
26309 Generate output containing floating-point instructions. This is the
26310 default.
26311
26312 @item -mno-fpu
26313 @itemx -msoft-float
26314 @opindex mno-fpu
26315 @opindex msoft-float
26316 Generate output containing library calls for floating point.
26317 @strong{Warning:} the requisite libraries are not available for all SPARC
26318 targets. Normally the facilities of the machine's usual C compiler are
26319 used, but this cannot be done directly in cross-compilation. You must make
26320 your own arrangements to provide suitable library functions for
26321 cross-compilation. The embedded targets @samp{sparc-*-aout} and
26322 @samp{sparclite-*-*} do provide software floating-point support.
26323
26324 @option{-msoft-float} changes the calling convention in the output file;
26325 therefore, it is only useful if you compile @emph{all} of a program with
26326 this option. In particular, you need to compile @file{libgcc.a}, the
26327 library that comes with GCC, with @option{-msoft-float} in order for
26328 this to work.
26329
26330 @item -mhard-quad-float
26331 @opindex mhard-quad-float
26332 Generate output containing quad-word (long double) floating-point
26333 instructions.
26334
26335 @item -msoft-quad-float
26336 @opindex msoft-quad-float
26337 Generate output containing library calls for quad-word (long double)
26338 floating-point instructions. The functions called are those specified
26339 in the SPARC ABI@. This is the default.
26340
26341 As of this writing, there are no SPARC implementations that have hardware
26342 support for the quad-word floating-point instructions. They all invoke
26343 a trap handler for one of these instructions, and then the trap handler
26344 emulates the effect of the instruction. Because of the trap handler overhead,
26345 this is much slower than calling the ABI library routines. Thus the
26346 @option{-msoft-quad-float} option is the default.
26347
26348 @item -mno-unaligned-doubles
26349 @itemx -munaligned-doubles
26350 @opindex mno-unaligned-doubles
26351 @opindex munaligned-doubles
26352 Assume that doubles have 8-byte alignment. This is the default.
26353
26354 With @option{-munaligned-doubles}, GCC assumes that doubles have 8-byte
26355 alignment only if they are contained in another type, or if they have an
26356 absolute address. Otherwise, it assumes they have 4-byte alignment.
26357 Specifying this option avoids some rare compatibility problems with code
26358 generated by other compilers. It is not the default because it results
26359 in a performance loss, especially for floating-point code.
26360
26361 @item -muser-mode
26362 @itemx -mno-user-mode
26363 @opindex muser-mode
26364 @opindex mno-user-mode
26365 Do not generate code that can only run in supervisor mode. This is relevant
26366 only for the @code{casa} instruction emitted for the LEON3 processor. This
26367 is the default.
26368
26369 @item -mfaster-structs
26370 @itemx -mno-faster-structs
26371 @opindex mfaster-structs
26372 @opindex mno-faster-structs
26373 With @option{-mfaster-structs}, the compiler assumes that structures
26374 should have 8-byte alignment. This enables the use of pairs of
26375 @code{ldd} and @code{std} instructions for copies in structure
26376 assignment, in place of twice as many @code{ld} and @code{st} pairs.
26377 However, the use of this changed alignment directly violates the SPARC
26378 ABI@. Thus, it's intended only for use on targets where the developer
26379 acknowledges that their resulting code is not directly in line with
26380 the rules of the ABI@.
26381
26382 @item -mstd-struct-return
26383 @itemx -mno-std-struct-return
26384 @opindex mstd-struct-return
26385 @opindex mno-std-struct-return
26386 With @option{-mstd-struct-return}, the compiler generates checking code
26387 in functions returning structures or unions to detect size mismatches
26388 between the two sides of function calls, as per the 32-bit ABI@.
26389
26390 The default is @option{-mno-std-struct-return}. This option has no effect
26391 in 64-bit mode.
26392
26393 @item -mlra
26394 @itemx -mno-lra
26395 @opindex mlra
26396 @opindex mno-lra
26397 Enable Local Register Allocation. This is the default for SPARC since GCC 7
26398 so @option{-mno-lra} needs to be passed to get old Reload.
26399
26400 @item -mcpu=@var{cpu_type}
26401 @opindex mcpu
26402 Set the instruction set, register set, and instruction scheduling parameters
26403 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
26404 @samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{hypersparc},
26405 @samp{leon}, @samp{leon3}, @samp{leon3v7}, @samp{sparclite}, @samp{f930},
26406 @samp{f934}, @samp{sparclite86x}, @samp{sparclet}, @samp{tsc701}, @samp{v9},
26407 @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
26408 @samp{niagara3}, @samp{niagara4}, @samp{niagara7} and @samp{m8}.
26409
26410 Native Solaris and GNU/Linux toolchains also support the value @samp{native},
26411 which selects the best architecture option for the host processor.
26412 @option{-mcpu=native} has no effect if GCC does not recognize
26413 the processor.
26414
26415 Default instruction scheduling parameters are used for values that select
26416 an architecture and not an implementation. These are @samp{v7}, @samp{v8},
26417 @samp{sparclite}, @samp{sparclet}, @samp{v9}.
26418
26419 Here is a list of each supported architecture and their supported
26420 implementations.
26421
26422 @table @asis
26423 @item v7
26424 cypress, leon3v7
26425
26426 @item v8
26427 supersparc, hypersparc, leon, leon3
26428
26429 @item sparclite
26430 f930, f934, sparclite86x
26431
26432 @item sparclet
26433 tsc701
26434
26435 @item v9
26436 ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4,
26437 niagara7, m8
26438 @end table
26439
26440 By default (unless configured otherwise), GCC generates code for the V7
26441 variant of the SPARC architecture. With @option{-mcpu=cypress}, the compiler
26442 additionally optimizes it for the Cypress CY7C602 chip, as used in the
26443 SPARCStation/SPARCServer 3xx series. This is also appropriate for the older
26444 SPARCStation 1, 2, IPX etc.
26445
26446 With @option{-mcpu=v8}, GCC generates code for the V8 variant of the SPARC
26447 architecture. The only difference from V7 code is that the compiler emits
26448 the integer multiply and integer divide instructions which exist in SPARC-V8
26449 but not in SPARC-V7. With @option{-mcpu=supersparc}, the compiler additionally
26450 optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
26451 2000 series.
26452
26453 With @option{-mcpu=sparclite}, GCC generates code for the SPARClite variant of
26454 the SPARC architecture. This adds the integer multiply, integer divide step
26455 and scan (@code{ffs}) instructions which exist in SPARClite but not in SPARC-V7.
26456 With @option{-mcpu=f930}, the compiler additionally optimizes it for the
26457 Fujitsu MB86930 chip, which is the original SPARClite, with no FPU@. With
26458 @option{-mcpu=f934}, the compiler additionally optimizes it for the Fujitsu
26459 MB86934 chip, which is the more recent SPARClite with FPU@.
26460
26461 With @option{-mcpu=sparclet}, GCC generates code for the SPARClet variant of
26462 the SPARC architecture. This adds the integer multiply, multiply/accumulate,
26463 integer divide step and scan (@code{ffs}) instructions which exist in SPARClet
26464 but not in SPARC-V7. With @option{-mcpu=tsc701}, the compiler additionally
26465 optimizes it for the TEMIC SPARClet chip.
26466
26467 With @option{-mcpu=v9}, GCC generates code for the V9 variant of the SPARC
26468 architecture. This adds 64-bit integer and floating-point move instructions,
26469 3 additional floating-point condition code registers and conditional move
26470 instructions. With @option{-mcpu=ultrasparc}, the compiler additionally
26471 optimizes it for the Sun UltraSPARC I/II/IIi chips. With
26472 @option{-mcpu=ultrasparc3}, the compiler additionally optimizes it for the
26473 Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips. With
26474 @option{-mcpu=niagara}, the compiler additionally optimizes it for
26475 Sun UltraSPARC T1 chips. With @option{-mcpu=niagara2}, the compiler
26476 additionally optimizes it for Sun UltraSPARC T2 chips. With
26477 @option{-mcpu=niagara3}, the compiler additionally optimizes it for Sun
26478 UltraSPARC T3 chips. With @option{-mcpu=niagara4}, the compiler
26479 additionally optimizes it for Sun UltraSPARC T4 chips. With
26480 @option{-mcpu=niagara7}, the compiler additionally optimizes it for
26481 Oracle SPARC M7 chips. With @option{-mcpu=m8}, the compiler
26482 additionally optimizes it for Oracle M8 chips.
26483
26484 @item -mtune=@var{cpu_type}
26485 @opindex mtune
26486 Set the instruction scheduling parameters for machine type
26487 @var{cpu_type}, but do not set the instruction set or register set that the
26488 option @option{-mcpu=@var{cpu_type}} does.
26489
26490 The same values for @option{-mcpu=@var{cpu_type}} can be used for
26491 @option{-mtune=@var{cpu_type}}, but the only useful values are those
26492 that select a particular CPU implementation. Those are
26493 @samp{cypress}, @samp{supersparc}, @samp{hypersparc}, @samp{leon},
26494 @samp{leon3}, @samp{leon3v7}, @samp{f930}, @samp{f934},
26495 @samp{sparclite86x}, @samp{tsc701}, @samp{ultrasparc},
26496 @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2}, @samp{niagara3},
26497 @samp{niagara4}, @samp{niagara7} and @samp{m8}. With native Solaris
26498 and GNU/Linux toolchains, @samp{native} can also be used.
26499
26500 @item -mv8plus
26501 @itemx -mno-v8plus
26502 @opindex mv8plus
26503 @opindex mno-v8plus
26504 With @option{-mv8plus}, GCC generates code for the SPARC-V8+ ABI@. The
26505 difference from the V8 ABI is that the global and out registers are
26506 considered 64 bits wide. This is enabled by default on Solaris in 32-bit
26507 mode for all SPARC-V9 processors.
26508
26509 @item -mvis
26510 @itemx -mno-vis
26511 @opindex mvis
26512 @opindex mno-vis
26513 With @option{-mvis}, GCC generates code that takes advantage of the UltraSPARC
26514 Visual Instruction Set extensions. The default is @option{-mno-vis}.
26515
26516 @item -mvis2
26517 @itemx -mno-vis2
26518 @opindex mvis2
26519 @opindex mno-vis2
26520 With @option{-mvis2}, GCC generates code that takes advantage of
26521 version 2.0 of the UltraSPARC Visual Instruction Set extensions. The
26522 default is @option{-mvis2} when targeting a cpu that supports such
26523 instructions, such as UltraSPARC-III and later. Setting @option{-mvis2}
26524 also sets @option{-mvis}.
26525
26526 @item -mvis3
26527 @itemx -mno-vis3
26528 @opindex mvis3
26529 @opindex mno-vis3
26530 With @option{-mvis3}, GCC generates code that takes advantage of
26531 version 3.0 of the UltraSPARC Visual Instruction Set extensions. The
26532 default is @option{-mvis3} when targeting a cpu that supports such
26533 instructions, such as niagara-3 and later. Setting @option{-mvis3}
26534 also sets @option{-mvis2} and @option{-mvis}.
26535
26536 @item -mvis4
26537 @itemx -mno-vis4
26538 @opindex mvis4
26539 @opindex mno-vis4
26540 With @option{-mvis4}, GCC generates code that takes advantage of
26541 version 4.0 of the UltraSPARC Visual Instruction Set extensions. The
26542 default is @option{-mvis4} when targeting a cpu that supports such
26543 instructions, such as niagara-7 and later. Setting @option{-mvis4}
26544 also sets @option{-mvis3}, @option{-mvis2} and @option{-mvis}.
26545
26546 @item -mvis4b
26547 @itemx -mno-vis4b
26548 @opindex mvis4b
26549 @opindex mno-vis4b
26550 With @option{-mvis4b}, GCC generates code that takes advantage of
26551 version 4.0 of the UltraSPARC Visual Instruction Set extensions, plus
26552 the additional VIS instructions introduced in the Oracle SPARC
26553 Architecture 2017. The default is @option{-mvis4b} when targeting a
26554 cpu that supports such instructions, such as m8 and later. Setting
26555 @option{-mvis4b} also sets @option{-mvis4}, @option{-mvis3},
26556 @option{-mvis2} and @option{-mvis}.
26557
26558 @item -mcbcond
26559 @itemx -mno-cbcond
26560 @opindex mcbcond
26561 @opindex mno-cbcond
26562 With @option{-mcbcond}, GCC generates code that takes advantage of the UltraSPARC
26563 Compare-and-Branch-on-Condition instructions. The default is @option{-mcbcond}
26564 when targeting a CPU that supports such instructions, such as Niagara-4 and
26565 later.
26566
26567 @item -mfmaf
26568 @itemx -mno-fmaf
26569 @opindex mfmaf
26570 @opindex mno-fmaf
26571 With @option{-mfmaf}, GCC generates code that takes advantage of the UltraSPARC
26572 Fused Multiply-Add Floating-point instructions. The default is @option{-mfmaf}
26573 when targeting a CPU that supports such instructions, such as Niagara-3 and
26574 later.
26575
26576 @item -mfsmuld
26577 @itemx -mno-fsmuld
26578 @opindex mfsmuld
26579 @opindex mno-fsmuld
26580 With @option{-mfsmuld}, GCC generates code that takes advantage of the
26581 Floating-point Multiply Single to Double (FsMULd) instruction. The default is
26582 @option{-mfsmuld} when targeting a CPU supporting the architecture versions V8
26583 or V9 with FPU except @option{-mcpu=leon}.
26584
26585 @item -mpopc
26586 @itemx -mno-popc
26587 @opindex mpopc
26588 @opindex mno-popc
26589 With @option{-mpopc}, GCC generates code that takes advantage of the UltraSPARC
26590 Population Count instruction. The default is @option{-mpopc}
26591 when targeting a CPU that supports such an instruction, such as Niagara-2 and
26592 later.
26593
26594 @item -msubxc
26595 @itemx -mno-subxc
26596 @opindex msubxc
26597 @opindex mno-subxc
26598 With @option{-msubxc}, GCC generates code that takes advantage of the UltraSPARC
26599 Subtract-Extended-with-Carry instruction. The default is @option{-msubxc}
26600 when targeting a CPU that supports such an instruction, such as Niagara-7 and
26601 later.
26602
26603 @item -mfix-at697f
26604 @opindex mfix-at697f
26605 Enable the documented workaround for the single erratum of the Atmel AT697F
26606 processor (which corresponds to erratum #13 of the AT697E processor).
26607
26608 @item -mfix-ut699
26609 @opindex mfix-ut699
26610 Enable the documented workarounds for the floating-point errata and the data
26611 cache nullify errata of the UT699 processor.
26612
26613 @item -mfix-ut700
26614 @opindex mfix-ut700
26615 Enable the documented workaround for the back-to-back store errata of
26616 the UT699E/UT700 processor.
26617
26618 @item -mfix-gr712rc
26619 @opindex mfix-gr712rc
26620 Enable the documented workaround for the back-to-back store errata of
26621 the GR712RC processor.
26622 @end table
26623
26624 These @samp{-m} options are supported in addition to the above
26625 on SPARC-V9 processors in 64-bit environments:
26626
26627 @table @gcctabopt
26628 @item -m32
26629 @itemx -m64
26630 @opindex m32
26631 @opindex m64
26632 Generate code for a 32-bit or 64-bit environment.
26633 The 32-bit environment sets int, long and pointer to 32 bits.
26634 The 64-bit environment sets int to 32 bits and long and pointer
26635 to 64 bits.
26636
26637 @item -mcmodel=@var{which}
26638 @opindex mcmodel
26639 Set the code model to one of
26640
26641 @table @samp
26642 @item medlow
26643 The Medium/Low code model: 64-bit addresses, programs
26644 must be linked in the low 32 bits of memory. Programs can be statically
26645 or dynamically linked.
26646
26647 @item medmid
26648 The Medium/Middle code model: 64-bit addresses, programs
26649 must be linked in the low 44 bits of memory, the text and data segments must
26650 be less than 2GB in size and the data segment must be located within 2GB of
26651 the text segment.
26652
26653 @item medany
26654 The Medium/Anywhere code model: 64-bit addresses, programs
26655 may be linked anywhere in memory, the text and data segments must be less
26656 than 2GB in size and the data segment must be located within 2GB of the
26657 text segment.
26658
26659 @item embmedany
26660 The Medium/Anywhere code model for embedded systems:
26661 64-bit addresses, the text and data segments must be less than 2GB in
26662 size, both starting anywhere in memory (determined at link time). The
26663 global register %g4 points to the base of the data segment. Programs
26664 are statically linked and PIC is not supported.
26665 @end table
26666
26667 @item -mmemory-model=@var{mem-model}
26668 @opindex mmemory-model
26669 Set the memory model in force on the processor to one of
26670
26671 @table @samp
26672 @item default
26673 The default memory model for the processor and operating system.
26674
26675 @item rmo
26676 Relaxed Memory Order
26677
26678 @item pso
26679 Partial Store Order
26680
26681 @item tso
26682 Total Store Order
26683
26684 @item sc
26685 Sequential Consistency
26686 @end table
26687
26688 These memory models are formally defined in Appendix D of the SPARC-V9
26689 architecture manual, as set in the processor's @code{PSTATE.MM} field.
26690
26691 @item -mstack-bias
26692 @itemx -mno-stack-bias
26693 @opindex mstack-bias
26694 @opindex mno-stack-bias
26695 With @option{-mstack-bias}, GCC assumes that the stack pointer, and
26696 frame pointer if present, are offset by @minus{}2047 which must be added back
26697 when making stack frame references. This is the default in 64-bit mode.
26698 Otherwise, assume no such offset is present.
26699 @end table
26700
26701 @node SPU Options
26702 @subsection SPU Options
26703 @cindex SPU options
26704
26705 These @samp{-m} options are supported on the SPU:
26706
26707 @table @gcctabopt
26708 @item -mwarn-reloc
26709 @itemx -merror-reloc
26710 @opindex mwarn-reloc
26711 @opindex merror-reloc
26712
26713 The loader for SPU does not handle dynamic relocations. By default, GCC
26714 gives an error when it generates code that requires a dynamic
26715 relocation. @option{-mno-error-reloc} disables the error,
26716 @option{-mwarn-reloc} generates a warning instead.
26717
26718 @item -msafe-dma
26719 @itemx -munsafe-dma
26720 @opindex msafe-dma
26721 @opindex munsafe-dma
26722
26723 Instructions that initiate or test completion of DMA must not be
26724 reordered with respect to loads and stores of the memory that is being
26725 accessed.
26726 With @option{-munsafe-dma} you must use the @code{volatile} keyword to protect
26727 memory accesses, but that can lead to inefficient code in places where the
26728 memory is known to not change. Rather than mark the memory as volatile,
26729 you can use @option{-msafe-dma} to tell the compiler to treat
26730 the DMA instructions as potentially affecting all memory.
26731
26732 @item -mbranch-hints
26733 @opindex mbranch-hints
26734
26735 By default, GCC generates a branch hint instruction to avoid
26736 pipeline stalls for always-taken or probably-taken branches. A hint
26737 is not generated closer than 8 instructions away from its branch.
26738 There is little reason to disable them, except for debugging purposes,
26739 or to make an object a little bit smaller.
26740
26741 @item -msmall-mem
26742 @itemx -mlarge-mem
26743 @opindex msmall-mem
26744 @opindex mlarge-mem
26745
26746 By default, GCC generates code assuming that addresses are never larger
26747 than 18 bits. With @option{-mlarge-mem} code is generated that assumes
26748 a full 32-bit address.
26749
26750 @item -mstdmain
26751 @opindex mstdmain
26752
26753 By default, GCC links against startup code that assumes the SPU-style
26754 main function interface (which has an unconventional parameter list).
26755 With @option{-mstdmain}, GCC links your program against startup
26756 code that assumes a C99-style interface to @code{main}, including a
26757 local copy of @code{argv} strings.
26758
26759 @item -mfixed-range=@var{register-range}
26760 @opindex mfixed-range
26761 Generate code treating the given register range as fixed registers.
26762 A fixed register is one that the register allocator cannot use. This is
26763 useful when compiling kernel code. A register range is specified as
26764 two registers separated by a dash. Multiple register ranges can be
26765 specified separated by a comma.
26766
26767 @item -mea32
26768 @itemx -mea64
26769 @opindex mea32
26770 @opindex mea64
26771 Compile code assuming that pointers to the PPU address space accessed
26772 via the @code{__ea} named address space qualifier are either 32 or 64
26773 bits wide. The default is 32 bits. As this is an ABI-changing option,
26774 all object code in an executable must be compiled with the same setting.
26775
26776 @item -maddress-space-conversion
26777 @itemx -mno-address-space-conversion
26778 @opindex maddress-space-conversion
26779 @opindex mno-address-space-conversion
26780 Allow/disallow treating the @code{__ea} address space as superset
26781 of the generic address space. This enables explicit type casts
26782 between @code{__ea} and generic pointer as well as implicit
26783 conversions of generic pointers to @code{__ea} pointers. The
26784 default is to allow address space pointer conversions.
26785
26786 @item -mcache-size=@var{cache-size}
26787 @opindex mcache-size
26788 This option controls the version of libgcc that the compiler links to an
26789 executable and selects a software-managed cache for accessing variables
26790 in the @code{__ea} address space with a particular cache size. Possible
26791 options for @var{cache-size} are @samp{8}, @samp{16}, @samp{32}, @samp{64}
26792 and @samp{128}. The default cache size is 64KB.
26793
26794 @item -matomic-updates
26795 @itemx -mno-atomic-updates
26796 @opindex matomic-updates
26797 @opindex mno-atomic-updates
26798 This option controls the version of libgcc that the compiler links to an
26799 executable and selects whether atomic updates to the software-managed
26800 cache of PPU-side variables are used. If you use atomic updates, changes
26801 to a PPU variable from SPU code using the @code{__ea} named address space
26802 qualifier do not interfere with changes to other PPU variables residing
26803 in the same cache line from PPU code. If you do not use atomic updates,
26804 such interference may occur; however, writing back cache lines is
26805 more efficient. The default behavior is to use atomic updates.
26806
26807 @item -mdual-nops
26808 @itemx -mdual-nops=@var{n}
26809 @opindex mdual-nops
26810 By default, GCC inserts NOPs to increase dual issue when it expects
26811 it to increase performance. @var{n} can be a value from 0 to 10. A
26812 smaller @var{n} inserts fewer NOPs. 10 is the default, 0 is the
26813 same as @option{-mno-dual-nops}. Disabled with @option{-Os}.
26814
26815 @item -mhint-max-nops=@var{n}
26816 @opindex mhint-max-nops
26817 Maximum number of NOPs to insert for a branch hint. A branch hint must
26818 be at least 8 instructions away from the branch it is affecting. GCC
26819 inserts up to @var{n} NOPs to enforce this, otherwise it does not
26820 generate the branch hint.
26821
26822 @item -mhint-max-distance=@var{n}
26823 @opindex mhint-max-distance
26824 The encoding of the branch hint instruction limits the hint to be within
26825 256 instructions of the branch it is affecting. By default, GCC makes
26826 sure it is within 125.
26827
26828 @item -msafe-hints
26829 @opindex msafe-hints
26830 Work around a hardware bug that causes the SPU to stall indefinitely.
26831 By default, GCC inserts the @code{hbrp} instruction to make sure
26832 this stall won't happen.
26833
26834 @end table
26835
26836 @node System V Options
26837 @subsection Options for System V
26838
26839 These additional options are available on System V Release 4 for
26840 compatibility with other compilers on those systems:
26841
26842 @table @gcctabopt
26843 @item -G
26844 @opindex G
26845 Create a shared object.
26846 It is recommended that @option{-symbolic} or @option{-shared} be used instead.
26847
26848 @item -Qy
26849 @opindex Qy
26850 Identify the versions of each tool used by the compiler, in a
26851 @code{.ident} assembler directive in the output.
26852
26853 @item -Qn
26854 @opindex Qn
26855 Refrain from adding @code{.ident} directives to the output file (this is
26856 the default).
26857
26858 @item -YP,@var{dirs}
26859 @opindex YP
26860 Search the directories @var{dirs}, and no others, for libraries
26861 specified with @option{-l}.
26862
26863 @item -Ym,@var{dir}
26864 @opindex Ym
26865 Look in the directory @var{dir} to find the M4 preprocessor.
26866 The assembler uses this option.
26867 @c This is supposed to go with a -Yd for predefined M4 macro files, but
26868 @c the generic assembler that comes with Solaris takes just -Ym.
26869 @end table
26870
26871 @node TILE-Gx Options
26872 @subsection TILE-Gx Options
26873 @cindex TILE-Gx options
26874
26875 These @samp{-m} options are supported on the TILE-Gx:
26876
26877 @table @gcctabopt
26878 @item -mcmodel=small
26879 @opindex mcmodel=small
26880 Generate code for the small model. The distance for direct calls is
26881 limited to 500M in either direction. PC-relative addresses are 32
26882 bits. Absolute addresses support the full address range.
26883
26884 @item -mcmodel=large
26885 @opindex mcmodel=large
26886 Generate code for the large model. There is no limitation on call
26887 distance, pc-relative addresses, or absolute addresses.
26888
26889 @item -mcpu=@var{name}
26890 @opindex mcpu
26891 Selects the type of CPU to be targeted. Currently the only supported
26892 type is @samp{tilegx}.
26893
26894 @item -m32
26895 @itemx -m64
26896 @opindex m32
26897 @opindex m64
26898 Generate code for a 32-bit or 64-bit environment. The 32-bit
26899 environment sets int, long, and pointer to 32 bits. The 64-bit
26900 environment sets int to 32 bits and long and pointer to 64 bits.
26901
26902 @item -mbig-endian
26903 @itemx -mlittle-endian
26904 @opindex mbig-endian
26905 @opindex mlittle-endian
26906 Generate code in big/little endian mode, respectively.
26907 @end table
26908
26909 @node TILEPro Options
26910 @subsection TILEPro Options
26911 @cindex TILEPro options
26912
26913 These @samp{-m} options are supported on the TILEPro:
26914
26915 @table @gcctabopt
26916 @item -mcpu=@var{name}
26917 @opindex mcpu
26918 Selects the type of CPU to be targeted. Currently the only supported
26919 type is @samp{tilepro}.
26920
26921 @item -m32
26922 @opindex m32
26923 Generate code for a 32-bit environment, which sets int, long, and
26924 pointer to 32 bits. This is the only supported behavior so the flag
26925 is essentially ignored.
26926 @end table
26927
26928 @node V850 Options
26929 @subsection V850 Options
26930 @cindex V850 Options
26931
26932 These @samp{-m} options are defined for V850 implementations:
26933
26934 @table @gcctabopt
26935 @item -mlong-calls
26936 @itemx -mno-long-calls
26937 @opindex mlong-calls
26938 @opindex mno-long-calls
26939 Treat all calls as being far away (near). If calls are assumed to be
26940 far away, the compiler always loads the function's address into a
26941 register, and calls indirect through the pointer.
26942
26943 @item -mno-ep
26944 @itemx -mep
26945 @opindex mno-ep
26946 @opindex mep
26947 Do not optimize (do optimize) basic blocks that use the same index
26948 pointer 4 or more times to copy pointer into the @code{ep} register, and
26949 use the shorter @code{sld} and @code{sst} instructions. The @option{-mep}
26950 option is on by default if you optimize.
26951
26952 @item -mno-prolog-function
26953 @itemx -mprolog-function
26954 @opindex mno-prolog-function
26955 @opindex mprolog-function
26956 Do not use (do use) external functions to save and restore registers
26957 at the prologue and epilogue of a function. The external functions
26958 are slower, but use less code space if more than one function saves
26959 the same number of registers. The @option{-mprolog-function} option
26960 is on by default if you optimize.
26961
26962 @item -mspace
26963 @opindex mspace
26964 Try to make the code as small as possible. At present, this just turns
26965 on the @option{-mep} and @option{-mprolog-function} options.
26966
26967 @item -mtda=@var{n}
26968 @opindex mtda
26969 Put static or global variables whose size is @var{n} bytes or less into
26970 the tiny data area that register @code{ep} points to. The tiny data
26971 area can hold up to 256 bytes in total (128 bytes for byte references).
26972
26973 @item -msda=@var{n}
26974 @opindex msda
26975 Put static or global variables whose size is @var{n} bytes or less into
26976 the small data area that register @code{gp} points to. The small data
26977 area can hold up to 64 kilobytes.
26978
26979 @item -mzda=@var{n}
26980 @opindex mzda
26981 Put static or global variables whose size is @var{n} bytes or less into
26982 the first 32 kilobytes of memory.
26983
26984 @item -mv850
26985 @opindex mv850
26986 Specify that the target processor is the V850.
26987
26988 @item -mv850e3v5
26989 @opindex mv850e3v5
26990 Specify that the target processor is the V850E3V5. The preprocessor
26991 constant @code{__v850e3v5__} is defined if this option is used.
26992
26993 @item -mv850e2v4
26994 @opindex mv850e2v4
26995 Specify that the target processor is the V850E3V5. This is an alias for
26996 the @option{-mv850e3v5} option.
26997
26998 @item -mv850e2v3
26999 @opindex mv850e2v3
27000 Specify that the target processor is the V850E2V3. The preprocessor
27001 constant @code{__v850e2v3__} is defined if this option is used.
27002
27003 @item -mv850e2
27004 @opindex mv850e2
27005 Specify that the target processor is the V850E2. The preprocessor
27006 constant @code{__v850e2__} is defined if this option is used.
27007
27008 @item -mv850e1
27009 @opindex mv850e1
27010 Specify that the target processor is the V850E1. The preprocessor
27011 constants @code{__v850e1__} and @code{__v850e__} are defined if
27012 this option is used.
27013
27014 @item -mv850es
27015 @opindex mv850es
27016 Specify that the target processor is the V850ES. This is an alias for
27017 the @option{-mv850e1} option.
27018
27019 @item -mv850e
27020 @opindex mv850e
27021 Specify that the target processor is the V850E@. The preprocessor
27022 constant @code{__v850e__} is defined if this option is used.
27023
27024 If neither @option{-mv850} nor @option{-mv850e} nor @option{-mv850e1}
27025 nor @option{-mv850e2} nor @option{-mv850e2v3} nor @option{-mv850e3v5}
27026 are defined then a default target processor is chosen and the
27027 relevant @samp{__v850*__} preprocessor constant is defined.
27028
27029 The preprocessor constants @code{__v850} and @code{__v851__} are always
27030 defined, regardless of which processor variant is the target.
27031
27032 @item -mdisable-callt
27033 @itemx -mno-disable-callt
27034 @opindex mdisable-callt
27035 @opindex mno-disable-callt
27036 This option suppresses generation of the @code{CALLT} instruction for the
27037 v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850
27038 architecture.
27039
27040 This option is enabled by default when the RH850 ABI is
27041 in use (see @option{-mrh850-abi}), and disabled by default when the
27042 GCC ABI is in use. If @code{CALLT} instructions are being generated
27043 then the C preprocessor symbol @code{__V850_CALLT__} is defined.
27044
27045 @item -mrelax
27046 @itemx -mno-relax
27047 @opindex mrelax
27048 @opindex mno-relax
27049 Pass on (or do not pass on) the @option{-mrelax} command-line option
27050 to the assembler.
27051
27052 @item -mlong-jumps
27053 @itemx -mno-long-jumps
27054 @opindex mlong-jumps
27055 @opindex mno-long-jumps
27056 Disable (or re-enable) the generation of PC-relative jump instructions.
27057
27058 @item -msoft-float
27059 @itemx -mhard-float
27060 @opindex msoft-float
27061 @opindex mhard-float
27062 Disable (or re-enable) the generation of hardware floating point
27063 instructions. This option is only significant when the target
27064 architecture is @samp{V850E2V3} or higher. If hardware floating point
27065 instructions are being generated then the C preprocessor symbol
27066 @code{__FPU_OK__} is defined, otherwise the symbol
27067 @code{__NO_FPU__} is defined.
27068
27069 @item -mloop
27070 @opindex mloop
27071 Enables the use of the e3v5 LOOP instruction. The use of this
27072 instruction is not enabled by default when the e3v5 architecture is
27073 selected because its use is still experimental.
27074
27075 @item -mrh850-abi
27076 @itemx -mghs
27077 @opindex mrh850-abi
27078 @opindex mghs
27079 Enables support for the RH850 version of the V850 ABI. This is the
27080 default. With this version of the ABI the following rules apply:
27081
27082 @itemize
27083 @item
27084 Integer sized structures and unions are returned via a memory pointer
27085 rather than a register.
27086
27087 @item
27088 Large structures and unions (more than 8 bytes in size) are passed by
27089 value.
27090
27091 @item
27092 Functions are aligned to 16-bit boundaries.
27093
27094 @item
27095 The @option{-m8byte-align} command-line option is supported.
27096
27097 @item
27098 The @option{-mdisable-callt} command-line option is enabled by
27099 default. The @option{-mno-disable-callt} command-line option is not
27100 supported.
27101 @end itemize
27102
27103 When this version of the ABI is enabled the C preprocessor symbol
27104 @code{__V850_RH850_ABI__} is defined.
27105
27106 @item -mgcc-abi
27107 @opindex mgcc-abi
27108 Enables support for the old GCC version of the V850 ABI. With this
27109 version of the ABI the following rules apply:
27110
27111 @itemize
27112 @item
27113 Integer sized structures and unions are returned in register @code{r10}.
27114
27115 @item
27116 Large structures and unions (more than 8 bytes in size) are passed by
27117 reference.
27118
27119 @item
27120 Functions are aligned to 32-bit boundaries, unless optimizing for
27121 size.
27122
27123 @item
27124 The @option{-m8byte-align} command-line option is not supported.
27125
27126 @item
27127 The @option{-mdisable-callt} command-line option is supported but not
27128 enabled by default.
27129 @end itemize
27130
27131 When this version of the ABI is enabled the C preprocessor symbol
27132 @code{__V850_GCC_ABI__} is defined.
27133
27134 @item -m8byte-align
27135 @itemx -mno-8byte-align
27136 @opindex m8byte-align
27137 @opindex mno-8byte-align
27138 Enables support for @code{double} and @code{long long} types to be
27139 aligned on 8-byte boundaries. The default is to restrict the
27140 alignment of all objects to at most 4-bytes. When
27141 @option{-m8byte-align} is in effect the C preprocessor symbol
27142 @code{__V850_8BYTE_ALIGN__} is defined.
27143
27144 @item -mbig-switch
27145 @opindex mbig-switch
27146 Generate code suitable for big switch tables. Use this option only if
27147 the assembler/linker complain about out of range branches within a switch
27148 table.
27149
27150 @item -mapp-regs
27151 @opindex mapp-regs
27152 This option causes r2 and r5 to be used in the code generated by
27153 the compiler. This setting is the default.
27154
27155 @item -mno-app-regs
27156 @opindex mno-app-regs
27157 This option causes r2 and r5 to be treated as fixed registers.
27158
27159 @end table
27160
27161 @node VAX Options
27162 @subsection VAX Options
27163 @cindex VAX options
27164
27165 These @samp{-m} options are defined for the VAX:
27166
27167 @table @gcctabopt
27168 @item -munix
27169 @opindex munix
27170 Do not output certain jump instructions (@code{aobleq} and so on)
27171 that the Unix assembler for the VAX cannot handle across long
27172 ranges.
27173
27174 @item -mgnu
27175 @opindex mgnu
27176 Do output those jump instructions, on the assumption that the
27177 GNU assembler is being used.
27178
27179 @item -mg
27180 @opindex mg
27181 Output code for G-format floating-point numbers instead of D-format.
27182 @end table
27183
27184 @node Visium Options
27185 @subsection Visium Options
27186 @cindex Visium options
27187
27188 @table @gcctabopt
27189
27190 @item -mdebug
27191 @opindex mdebug
27192 A program which performs file I/O and is destined to run on an MCM target
27193 should be linked with this option. It causes the libraries libc.a and
27194 libdebug.a to be linked. The program should be run on the target under
27195 the control of the GDB remote debugging stub.
27196
27197 @item -msim
27198 @opindex msim
27199 A program which performs file I/O and is destined to run on the simulator
27200 should be linked with option. This causes libraries libc.a and libsim.a to
27201 be linked.
27202
27203 @item -mfpu
27204 @itemx -mhard-float
27205 @opindex mfpu
27206 @opindex mhard-float
27207 Generate code containing floating-point instructions. This is the
27208 default.
27209
27210 @item -mno-fpu
27211 @itemx -msoft-float
27212 @opindex mno-fpu
27213 @opindex msoft-float
27214 Generate code containing library calls for floating-point.
27215
27216 @option{-msoft-float} changes the calling convention in the output file;
27217 therefore, it is only useful if you compile @emph{all} of a program with
27218 this option. In particular, you need to compile @file{libgcc.a}, the
27219 library that comes with GCC, with @option{-msoft-float} in order for
27220 this to work.
27221
27222 @item -mcpu=@var{cpu_type}
27223 @opindex mcpu
27224 Set the instruction set, register set, and instruction scheduling parameters
27225 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
27226 @samp{mcm}, @samp{gr5} and @samp{gr6}.
27227
27228 @samp{mcm} is a synonym of @samp{gr5} present for backward compatibility.
27229
27230 By default (unless configured otherwise), GCC generates code for the GR5
27231 variant of the Visium architecture.
27232
27233 With @option{-mcpu=gr6}, GCC generates code for the GR6 variant of the Visium
27234 architecture. The only difference from GR5 code is that the compiler will
27235 generate block move instructions.
27236
27237 @item -mtune=@var{cpu_type}
27238 @opindex mtune
27239 Set the instruction scheduling parameters for machine type @var{cpu_type},
27240 but do not set the instruction set or register set that the option
27241 @option{-mcpu=@var{cpu_type}} would.
27242
27243 @item -msv-mode
27244 @opindex msv-mode
27245 Generate code for the supervisor mode, where there are no restrictions on
27246 the access to general registers. This is the default.
27247
27248 @item -muser-mode
27249 @opindex muser-mode
27250 Generate code for the user mode, where the access to some general registers
27251 is forbidden: on the GR5, registers r24 to r31 cannot be accessed in this
27252 mode; on the GR6, only registers r29 to r31 are affected.
27253 @end table
27254
27255 @node VMS Options
27256 @subsection VMS Options
27257
27258 These @samp{-m} options are defined for the VMS implementations:
27259
27260 @table @gcctabopt
27261 @item -mvms-return-codes
27262 @opindex mvms-return-codes
27263 Return VMS condition codes from @code{main}. The default is to return POSIX-style
27264 condition (e.g.@: error) codes.
27265
27266 @item -mdebug-main=@var{prefix}
27267 @opindex mdebug-main=@var{prefix}
27268 Flag the first routine whose name starts with @var{prefix} as the main
27269 routine for the debugger.
27270
27271 @item -mmalloc64
27272 @opindex mmalloc64
27273 Default to 64-bit memory allocation routines.
27274
27275 @item -mpointer-size=@var{size}
27276 @opindex mpointer-size=@var{size}
27277 Set the default size of pointers. Possible options for @var{size} are
27278 @samp{32} or @samp{short} for 32 bit pointers, @samp{64} or @samp{long}
27279 for 64 bit pointers, and @samp{no} for supporting only 32 bit pointers.
27280 The later option disables @code{pragma pointer_size}.
27281 @end table
27282
27283 @node VxWorks Options
27284 @subsection VxWorks Options
27285 @cindex VxWorks Options
27286
27287 The options in this section are defined for all VxWorks targets.
27288 Options specific to the target hardware are listed with the other
27289 options for that target.
27290
27291 @table @gcctabopt
27292 @item -mrtp
27293 @opindex mrtp
27294 GCC can generate code for both VxWorks kernels and real time processes
27295 (RTPs). This option switches from the former to the latter. It also
27296 defines the preprocessor macro @code{__RTP__}.
27297
27298 @item -non-static
27299 @opindex non-static
27300 Link an RTP executable against shared libraries rather than static
27301 libraries. The options @option{-static} and @option{-shared} can
27302 also be used for RTPs (@pxref{Link Options}); @option{-static}
27303 is the default.
27304
27305 @item -Bstatic
27306 @itemx -Bdynamic
27307 @opindex Bstatic
27308 @opindex Bdynamic
27309 These options are passed down to the linker. They are defined for
27310 compatibility with Diab.
27311
27312 @item -Xbind-lazy
27313 @opindex Xbind-lazy
27314 Enable lazy binding of function calls. This option is equivalent to
27315 @option{-Wl,-z,now} and is defined for compatibility with Diab.
27316
27317 @item -Xbind-now
27318 @opindex Xbind-now
27319 Disable lazy binding of function calls. This option is the default and
27320 is defined for compatibility with Diab.
27321 @end table
27322
27323 @node x86 Options
27324 @subsection x86 Options
27325 @cindex x86 Options
27326
27327 These @samp{-m} options are defined for the x86 family of computers.
27328
27329 @table @gcctabopt
27330
27331 @item -march=@var{cpu-type}
27332 @opindex march
27333 Generate instructions for the machine type @var{cpu-type}. In contrast to
27334 @option{-mtune=@var{cpu-type}}, which merely tunes the generated code
27335 for the specified @var{cpu-type}, @option{-march=@var{cpu-type}} allows GCC
27336 to generate code that may not run at all on processors other than the one
27337 indicated. Specifying @option{-march=@var{cpu-type}} implies
27338 @option{-mtune=@var{cpu-type}}.
27339
27340 The choices for @var{cpu-type} are:
27341
27342 @table @samp
27343 @item native
27344 This selects the CPU to generate code for at compilation time by determining
27345 the processor type of the compiling machine. Using @option{-march=native}
27346 enables all instruction subsets supported by the local machine (hence
27347 the result might not run on different machines). Using @option{-mtune=native}
27348 produces code optimized for the local machine under the constraints
27349 of the selected instruction set.
27350
27351 @item x86-64
27352 A generic CPU with 64-bit extensions.
27353
27354 @item i386
27355 Original Intel i386 CPU@.
27356
27357 @item i486
27358 Intel i486 CPU@. (No scheduling is implemented for this chip.)
27359
27360 @item i586
27361 @itemx pentium
27362 Intel Pentium CPU with no MMX support.
27363
27364 @item lakemont
27365 Intel Lakemont MCU, based on Intel Pentium CPU.
27366
27367 @item pentium-mmx
27368 Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support.
27369
27370 @item pentiumpro
27371 Intel Pentium Pro CPU@.
27372
27373 @item i686
27374 When used with @option{-march}, the Pentium Pro
27375 instruction set is used, so the code runs on all i686 family chips.
27376 When used with @option{-mtune}, it has the same meaning as @samp{generic}.
27377
27378 @item pentium2
27379 Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set
27380 support.
27381
27382 @item pentium3
27383 @itemx pentium3m
27384 Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction
27385 set support.
27386
27387 @item pentium-m
27388 Intel Pentium M; low-power version of Intel Pentium III CPU
27389 with MMX, SSE and SSE2 instruction set support. Used by Centrino notebooks.
27390
27391 @item pentium4
27392 @itemx pentium4m
27393 Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support.
27394
27395 @item prescott
27396 Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction
27397 set support.
27398
27399 @item nocona
27400 Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE,
27401 SSE2 and SSE3 instruction set support.
27402
27403 @item core2
27404 Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
27405 instruction set support.
27406
27407 @item nehalem
27408 Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
27409 SSE4.1, SSE4.2 and POPCNT instruction set support.
27410
27411 @item westmere
27412 Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
27413 SSE4.1, SSE4.2, POPCNT, AES and PCLMUL instruction set support.
27414
27415 @item sandybridge
27416 Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
27417 SSE4.1, SSE4.2, POPCNT, AVX, AES and PCLMUL instruction set support.
27418
27419 @item ivybridge
27420 Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
27421 SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C
27422 instruction set support.
27423
27424 @item haswell
27425 Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27426 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27427 BMI, BMI2 and F16C instruction set support.
27428
27429 @item broadwell
27430 Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27431 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27432 BMI, BMI2, F16C, RDSEED, ADCX and PREFETCHW instruction set support.
27433
27434 @item skylake
27435 Intel Skylake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27436 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27437 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC and
27438 XSAVES instruction set support.
27439
27440 @item bonnell
27441 Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3
27442 instruction set support.
27443
27444 @item silvermont
27445 Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27446 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL and RDRND instruction set support.
27447
27448 @item goldmont
27449 Intel Goldmont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27450 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL, RDRND, XSAVE, XSAVEOPT and FSGSBASE
27451 instruction set support.
27452
27453 @item goldmont-plus
27454 Intel Goldmont Plus CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
27455 SSSE3, SSE4.1, SSE4.2, POPCNT, AES, PCLMUL, RDRND, XSAVE, XSAVEOPT, FSGSBASE,
27456 PTWRITE, RDPID, SGX and UMIP instruction set support.
27457
27458 @item tremont
27459 Intel Tremont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27460 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL, RDRND, XSAVE, XSAVEOPT, FSGSBASE, PTWRITE,
27461 RDPID, SGX, UMIP, GFNI-SSE, CLWB and ENCLV instruction set support.
27462
27463 @item knl
27464 Intel Knight's Landing CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
27465 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27466 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER and
27467 AVX512CD instruction set support.
27468
27469 @item knm
27470 Intel Knights Mill CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
27471 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27472 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER, AVX512CD,
27473 AVX5124VNNIW, AVX5124FMAPS and AVX512VPOPCNTDQ instruction set support.
27474
27475 @item skylake-avx512
27476 Intel Skylake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
27477 SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27478 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,
27479 CLWB, AVX512VL, AVX512BW, AVX512DQ and AVX512CD instruction set support.
27480
27481 @item cannonlake
27482 Intel Cannonlake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
27483 SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
27484 RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
27485 XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
27486 AVX512IFMA, SHA and UMIP instruction set support.
27487
27488 @item icelake-client
27489 Intel Icelake Client CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
27490 SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
27491 RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
27492 XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
27493 AVX512IFMA, SHA, CLWB, UMIP, RDPID, GFNI, AVX512VBMI2, AVX512VPOPCNTDQ,
27494 AVX512BITALG, AVX512VNNI, VPCLMULQDQ, VAES instruction set support.
27495
27496 @item icelake-server
27497 Intel Icelake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
27498 SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
27499 RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
27500 XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
27501 AVX512IFMA, SHA, CLWB, UMIP, RDPID, GFNI, AVX512VBMI2, AVX512VPOPCNTDQ,
27502 AVX512BITALG, AVX512VNNI, VPCLMULQDQ, VAES, PCONFIG and WBNOINVD instruction
27503 set support.
27504
27505 @item cascadelake
27506 Intel Cascadelake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27507 SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI,
27508 BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F, CLWB,
27509 AVX512VL, AVX512BW, AVX512DQ, AVX512CD and AVX512VNNI instruction set support.
27510
27511 @item k6
27512 AMD K6 CPU with MMX instruction set support.
27513
27514 @item k6-2
27515 @itemx k6-3
27516 Improved versions of AMD K6 CPU with MMX and 3DNow!@: instruction set support.
27517
27518 @item athlon
27519 @itemx athlon-tbird
27520 AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow!@: and SSE prefetch instructions
27521 support.
27522
27523 @item athlon-4
27524 @itemx athlon-xp
27525 @itemx athlon-mp
27526 Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow!@: and full SSE
27527 instruction set support.
27528
27529 @item k8
27530 @itemx opteron
27531 @itemx athlon64
27532 @itemx athlon-fx
27533 Processors based on the AMD K8 core with x86-64 instruction set support,
27534 including the AMD Opteron, Athlon 64, and Athlon 64 FX processors.
27535 (This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow!@: and 64-bit
27536 instruction set extensions.)
27537
27538 @item k8-sse3
27539 @itemx opteron-sse3
27540 @itemx athlon64-sse3
27541 Improved versions of AMD K8 cores with SSE3 instruction set support.
27542
27543 @item amdfam10
27544 @itemx barcelona
27545 CPUs based on AMD Family 10h cores with x86-64 instruction set support. (This
27546 supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit
27547 instruction set extensions.)
27548
27549 @item bdver1
27550 CPUs based on AMD Family 15h cores with x86-64 instruction set support. (This
27551 supersets FMA4, AVX, XOP, LWP, AES, PCLMUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
27552 SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)
27553 @item bdver2
27554 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
27555 supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCLMUL, CX16, MMX,
27556 SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set
27557 extensions.)
27558 @item bdver3
27559 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
27560 supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES,
27561 PCLMUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and
27562 64-bit instruction set extensions.
27563 @item bdver4
27564 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
27565 supersets BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP,
27566 AES, PCLMUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,
27567 SSE4.2, ABM and 64-bit instruction set extensions.
27568
27569 @item znver1
27570 AMD Family 17h core based CPUs with x86-64 instruction set support. (This
27571 supersets BMI, BMI2, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED, MWAITX,
27572 SHA, CLZERO, AES, PCLMUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3,
27573 SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, and 64-bit
27574 instruction set extensions.
27575 @item znver2
27576 AMD Family 17h core based CPUs with x86-64 instruction set support. (This
27577 supersets BMI, BMI2, ,CLWB, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED,
27578 MWAITX, SHA, CLZERO, AES, PCLMUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A,
27579 SSSE3, SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, and 64-bit
27580 instruction set extensions.)
27581
27582
27583 @item btver1
27584 CPUs based on AMD Family 14h cores with x86-64 instruction set support. (This
27585 supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit
27586 instruction set extensions.)
27587
27588 @item btver2
27589 CPUs based on AMD Family 16h cores with x86-64 instruction set support. This
27590 includes MOVBE, F16C, BMI, AVX, PCLMUL, AES, SSE4.2, SSE4.1, CX16, ABM,
27591 SSE4A, SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set extensions.
27592
27593 @item winchip-c6
27594 IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction
27595 set support.
27596
27597 @item winchip2
27598 IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and 3DNow!@:
27599 instruction set support.
27600
27601 @item c3
27602 VIA C3 CPU with MMX and 3DNow!@: instruction set support.
27603 (No scheduling is implemented for this chip.)
27604
27605 @item c3-2
27606 VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support.
27607 (No scheduling is implemented for this chip.)
27608
27609 @item c7
27610 VIA C7 (Esther) CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
27611 (No scheduling is implemented for this chip.)
27612
27613 @item samuel-2
27614 VIA Eden Samuel 2 CPU with MMX and 3DNow!@: instruction set support.
27615 (No scheduling is implemented for this chip.)
27616
27617 @item nehemiah
27618 VIA Eden Nehemiah CPU with MMX and SSE instruction set support.
27619 (No scheduling is implemented for this chip.)
27620
27621 @item esther
27622 VIA Eden Esther CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
27623 (No scheduling is implemented for this chip.)
27624
27625 @item eden-x2
27626 VIA Eden X2 CPU with x86-64, MMX, SSE, SSE2 and SSE3 instruction set support.
27627 (No scheduling is implemented for this chip.)
27628
27629 @item eden-x4
27630 VIA Eden X4 CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
27631 AVX and AVX2 instruction set support.
27632 (No scheduling is implemented for this chip.)
27633
27634 @item nano
27635 Generic VIA Nano CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
27636 instruction set support.
27637 (No scheduling is implemented for this chip.)
27638
27639 @item nano-1000
27640 VIA Nano 1xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
27641 instruction set support.
27642 (No scheduling is implemented for this chip.)
27643
27644 @item nano-2000
27645 VIA Nano 2xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
27646 instruction set support.
27647 (No scheduling is implemented for this chip.)
27648
27649 @item nano-3000
27650 VIA Nano 3xxx CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
27651 instruction set support.
27652 (No scheduling is implemented for this chip.)
27653
27654 @item nano-x2
27655 VIA Nano Dual Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
27656 instruction set support.
27657 (No scheduling is implemented for this chip.)
27658
27659 @item nano-x4
27660 VIA Nano Quad Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
27661 instruction set support.
27662 (No scheduling is implemented for this chip.)
27663
27664 @item geode
27665 AMD Geode embedded processor with MMX and 3DNow!@: instruction set support.
27666 @end table
27667
27668 @item -mtune=@var{cpu-type}
27669 @opindex mtune
27670 Tune to @var{cpu-type} everything applicable about the generated code, except
27671 for the ABI and the set of available instructions.
27672 While picking a specific @var{cpu-type} schedules things appropriately
27673 for that particular chip, the compiler does not generate any code that
27674 cannot run on the default machine type unless you use a
27675 @option{-march=@var{cpu-type}} option.
27676 For example, if GCC is configured for i686-pc-linux-gnu
27677 then @option{-mtune=pentium4} generates code that is tuned for Pentium 4
27678 but still runs on i686 machines.
27679
27680 The choices for @var{cpu-type} are the same as for @option{-march}.
27681 In addition, @option{-mtune} supports 2 extra choices for @var{cpu-type}:
27682
27683 @table @samp
27684 @item generic
27685 Produce code optimized for the most common IA32/@/AMD64/@/EM64T processors.
27686 If you know the CPU on which your code will run, then you should use
27687 the corresponding @option{-mtune} or @option{-march} option instead of
27688 @option{-mtune=generic}. But, if you do not know exactly what CPU users
27689 of your application will have, then you should use this option.
27690
27691 As new processors are deployed in the marketplace, the behavior of this
27692 option will change. Therefore, if you upgrade to a newer version of
27693 GCC, code generation controlled by this option will change to reflect
27694 the processors
27695 that are most common at the time that version of GCC is released.
27696
27697 There is no @option{-march=generic} option because @option{-march}
27698 indicates the instruction set the compiler can use, and there is no
27699 generic instruction set applicable to all processors. In contrast,
27700 @option{-mtune} indicates the processor (or, in this case, collection of
27701 processors) for which the code is optimized.
27702
27703 @item intel
27704 Produce code optimized for the most current Intel processors, which are
27705 Haswell and Silvermont for this version of GCC. If you know the CPU
27706 on which your code will run, then you should use the corresponding
27707 @option{-mtune} or @option{-march} option instead of @option{-mtune=intel}.
27708 But, if you want your application performs better on both Haswell and
27709 Silvermont, then you should use this option.
27710
27711 As new Intel processors are deployed in the marketplace, the behavior of
27712 this option will change. Therefore, if you upgrade to a newer version of
27713 GCC, code generation controlled by this option will change to reflect
27714 the most current Intel processors at the time that version of GCC is
27715 released.
27716
27717 There is no @option{-march=intel} option because @option{-march} indicates
27718 the instruction set the compiler can use, and there is no common
27719 instruction set applicable to all processors. In contrast,
27720 @option{-mtune} indicates the processor (or, in this case, collection of
27721 processors) for which the code is optimized.
27722 @end table
27723
27724 @item -mcpu=@var{cpu-type}
27725 @opindex mcpu
27726 A deprecated synonym for @option{-mtune}.
27727
27728 @item -mfpmath=@var{unit}
27729 @opindex mfpmath
27730 Generate floating-point arithmetic for selected unit @var{unit}. The choices
27731 for @var{unit} are:
27732
27733 @table @samp
27734 @item 387
27735 Use the standard 387 floating-point coprocessor present on the majority of chips and
27736 emulated otherwise. Code compiled with this option runs almost everywhere.
27737 The temporary results are computed in 80-bit precision instead of the precision
27738 specified by the type, resulting in slightly different results compared to most
27739 of other chips. See @option{-ffloat-store} for more detailed description.
27740
27741 This is the default choice for non-Darwin x86-32 targets.
27742
27743 @item sse
27744 Use scalar floating-point instructions present in the SSE instruction set.
27745 This instruction set is supported by Pentium III and newer chips,
27746 and in the AMD line
27747 by Athlon-4, Athlon XP and Athlon MP chips. The earlier version of the SSE
27748 instruction set supports only single-precision arithmetic, thus the double and
27749 extended-precision arithmetic are still done using 387. A later version, present
27750 only in Pentium 4 and AMD x86-64 chips, supports double-precision
27751 arithmetic too.
27752
27753 For the x86-32 compiler, you must use @option{-march=@var{cpu-type}}, @option{-msse}
27754 or @option{-msse2} switches to enable SSE extensions and make this option
27755 effective. For the x86-64 compiler, these extensions are enabled by default.
27756
27757 The resulting code should be considerably faster in the majority of cases and avoid
27758 the numerical instability problems of 387 code, but may break some existing
27759 code that expects temporaries to be 80 bits.
27760
27761 This is the default choice for the x86-64 compiler, Darwin x86-32 targets,
27762 and the default choice for x86-32 targets with the SSE2 instruction set
27763 when @option{-ffast-math} is enabled.
27764
27765 @item sse,387
27766 @itemx sse+387
27767 @itemx both
27768 Attempt to utilize both instruction sets at once. This effectively doubles the
27769 amount of available registers, and on chips with separate execution units for
27770 387 and SSE the execution resources too. Use this option with care, as it is
27771 still experimental, because the GCC register allocator does not model separate
27772 functional units well, resulting in unstable performance.
27773 @end table
27774
27775 @item -masm=@var{dialect}
27776 @opindex masm=@var{dialect}
27777 Output assembly instructions using selected @var{dialect}. Also affects
27778 which dialect is used for basic @code{asm} (@pxref{Basic Asm}) and
27779 extended @code{asm} (@pxref{Extended Asm}). Supported choices (in dialect
27780 order) are @samp{att} or @samp{intel}. The default is @samp{att}. Darwin does
27781 not support @samp{intel}.
27782
27783 @item -mieee-fp
27784 @itemx -mno-ieee-fp
27785 @opindex mieee-fp
27786 @opindex mno-ieee-fp
27787 Control whether or not the compiler uses IEEE floating-point
27788 comparisons. These correctly handle the case where the result of a
27789 comparison is unordered.
27790
27791 @item -m80387
27792 @itemx -mhard-float
27793 @opindex 80387
27794 @opindex mhard-float
27795 Generate output containing 80387 instructions for floating point.
27796
27797 @item -mno-80387
27798 @itemx -msoft-float
27799 @opindex no-80387
27800 @opindex msoft-float
27801 Generate output containing library calls for floating point.
27802
27803 @strong{Warning:} the requisite libraries are not part of GCC@.
27804 Normally the facilities of the machine's usual C compiler are used, but
27805 this cannot be done directly in cross-compilation. You must make your
27806 own arrangements to provide suitable library functions for
27807 cross-compilation.
27808
27809 On machines where a function returns floating-point results in the 80387
27810 register stack, some floating-point opcodes may be emitted even if
27811 @option{-msoft-float} is used.
27812
27813 @item -mno-fp-ret-in-387
27814 @opindex mno-fp-ret-in-387
27815 @opindex mfp-ret-in-387
27816 Do not use the FPU registers for return values of functions.
27817
27818 The usual calling convention has functions return values of types
27819 @code{float} and @code{double} in an FPU register, even if there
27820 is no FPU@. The idea is that the operating system should emulate
27821 an FPU@.
27822
27823 The option @option{-mno-fp-ret-in-387} causes such values to be returned
27824 in ordinary CPU registers instead.
27825
27826 @item -mno-fancy-math-387
27827 @opindex mno-fancy-math-387
27828 @opindex mfancy-math-387
27829 Some 387 emulators do not support the @code{sin}, @code{cos} and
27830 @code{sqrt} instructions for the 387. Specify this option to avoid
27831 generating those instructions.
27832 This option is overridden when @option{-march}
27833 indicates that the target CPU always has an FPU and so the
27834 instruction does not need emulation. These
27835 instructions are not generated unless you also use the
27836 @option{-funsafe-math-optimizations} switch.
27837
27838 @item -malign-double
27839 @itemx -mno-align-double
27840 @opindex malign-double
27841 @opindex mno-align-double
27842 Control whether GCC aligns @code{double}, @code{long double}, and
27843 @code{long long} variables on a two-word boundary or a one-word
27844 boundary. Aligning @code{double} variables on a two-word boundary
27845 produces code that runs somewhat faster on a Pentium at the
27846 expense of more memory.
27847
27848 On x86-64, @option{-malign-double} is enabled by default.
27849
27850 @strong{Warning:} if you use the @option{-malign-double} switch,
27851 structures containing the above types are aligned differently than
27852 the published application binary interface specifications for the x86-32
27853 and are not binary compatible with structures in code compiled
27854 without that switch.
27855
27856 @item -m96bit-long-double
27857 @itemx -m128bit-long-double
27858 @opindex m96bit-long-double
27859 @opindex m128bit-long-double
27860 These switches control the size of @code{long double} type. The x86-32
27861 application binary interface specifies the size to be 96 bits,
27862 so @option{-m96bit-long-double} is the default in 32-bit mode.
27863
27864 Modern architectures (Pentium and newer) prefer @code{long double}
27865 to be aligned to an 8- or 16-byte boundary. In arrays or structures
27866 conforming to the ABI, this is not possible. So specifying
27867 @option{-m128bit-long-double} aligns @code{long double}
27868 to a 16-byte boundary by padding the @code{long double} with an additional
27869 32-bit zero.
27870
27871 In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as
27872 its ABI specifies that @code{long double} is aligned on 16-byte boundary.
27873
27874 Notice that neither of these options enable any extra precision over the x87
27875 standard of 80 bits for a @code{long double}.
27876
27877 @strong{Warning:} if you override the default value for your target ABI, this
27878 changes the size of
27879 structures and arrays containing @code{long double} variables,
27880 as well as modifying the function calling convention for functions taking
27881 @code{long double}. Hence they are not binary-compatible
27882 with code compiled without that switch.
27883
27884 @item -mlong-double-64
27885 @itemx -mlong-double-80
27886 @itemx -mlong-double-128
27887 @opindex mlong-double-64
27888 @opindex mlong-double-80
27889 @opindex mlong-double-128
27890 These switches control the size of @code{long double} type. A size
27891 of 64 bits makes the @code{long double} type equivalent to the @code{double}
27892 type. This is the default for 32-bit Bionic C library. A size
27893 of 128 bits makes the @code{long double} type equivalent to the
27894 @code{__float128} type. This is the default for 64-bit Bionic C library.
27895
27896 @strong{Warning:} if you override the default value for your target ABI, this
27897 changes the size of
27898 structures and arrays containing @code{long double} variables,
27899 as well as modifying the function calling convention for functions taking
27900 @code{long double}. Hence they are not binary-compatible
27901 with code compiled without that switch.
27902
27903 @item -malign-data=@var{type}
27904 @opindex malign-data
27905 Control how GCC aligns variables. Supported values for @var{type} are
27906 @samp{compat} uses increased alignment value compatible uses GCC 4.8
27907 and earlier, @samp{abi} uses alignment value as specified by the
27908 psABI, and @samp{cacheline} uses increased alignment value to match
27909 the cache line size. @samp{compat} is the default.
27910
27911 @item -mlarge-data-threshold=@var{threshold}
27912 @opindex mlarge-data-threshold
27913 When @option{-mcmodel=medium} is specified, data objects larger than
27914 @var{threshold} are placed in the large data section. This value must be the
27915 same across all objects linked into the binary, and defaults to 65535.
27916
27917 @item -mrtd
27918 @opindex mrtd
27919 Use a different function-calling convention, in which functions that
27920 take a fixed number of arguments return with the @code{ret @var{num}}
27921 instruction, which pops their arguments while returning. This saves one
27922 instruction in the caller since there is no need to pop the arguments
27923 there.
27924
27925 You can specify that an individual function is called with this calling
27926 sequence with the function attribute @code{stdcall}. You can also
27927 override the @option{-mrtd} option by using the function attribute
27928 @code{cdecl}. @xref{Function Attributes}.
27929
27930 @strong{Warning:} this calling convention is incompatible with the one
27931 normally used on Unix, so you cannot use it if you need to call
27932 libraries compiled with the Unix compiler.
27933
27934 Also, you must provide function prototypes for all functions that
27935 take variable numbers of arguments (including @code{printf});
27936 otherwise incorrect code is generated for calls to those
27937 functions.
27938
27939 In addition, seriously incorrect code results if you call a
27940 function with too many arguments. (Normally, extra arguments are
27941 harmlessly ignored.)
27942
27943 @item -mregparm=@var{num}
27944 @opindex mregparm
27945 Control how many registers are used to pass integer arguments. By
27946 default, no registers are used to pass arguments, and at most 3
27947 registers can be used. You can control this behavior for a specific
27948 function by using the function attribute @code{regparm}.
27949 @xref{Function Attributes}.
27950
27951 @strong{Warning:} if you use this switch, and
27952 @var{num} is nonzero, then you must build all modules with the same
27953 value, including any libraries. This includes the system libraries and
27954 startup modules.
27955
27956 @item -msseregparm
27957 @opindex msseregparm
27958 Use SSE register passing conventions for float and double arguments
27959 and return values. You can control this behavior for a specific
27960 function by using the function attribute @code{sseregparm}.
27961 @xref{Function Attributes}.
27962
27963 @strong{Warning:} if you use this switch then you must build all
27964 modules with the same value, including any libraries. This includes
27965 the system libraries and startup modules.
27966
27967 @item -mvect8-ret-in-mem
27968 @opindex mvect8-ret-in-mem
27969 Return 8-byte vectors in memory instead of MMX registers. This is the
27970 default on VxWorks to match the ABI of the Sun Studio compilers until
27971 version 12. @emph{Only} use this option if you need to remain
27972 compatible with existing code produced by those previous compiler
27973 versions or older versions of GCC@.
27974
27975 @item -mpc32
27976 @itemx -mpc64
27977 @itemx -mpc80
27978 @opindex mpc32
27979 @opindex mpc64
27980 @opindex mpc80
27981
27982 Set 80387 floating-point precision to 32, 64 or 80 bits. When @option{-mpc32}
27983 is specified, the significands of results of floating-point operations are
27984 rounded to 24 bits (single precision); @option{-mpc64} rounds the
27985 significands of results of floating-point operations to 53 bits (double
27986 precision) and @option{-mpc80} rounds the significands of results of
27987 floating-point operations to 64 bits (extended double precision), which is
27988 the default. When this option is used, floating-point operations in higher
27989 precisions are not available to the programmer without setting the FPU
27990 control word explicitly.
27991
27992 Setting the rounding of floating-point operations to less than the default
27993 80 bits can speed some programs by 2% or more. Note that some mathematical
27994 libraries assume that extended-precision (80-bit) floating-point operations
27995 are enabled by default; routines in such libraries could suffer significant
27996 loss of accuracy, typically through so-called ``catastrophic cancellation'',
27997 when this option is used to set the precision to less than extended precision.
27998
27999 @item -mstackrealign
28000 @opindex mstackrealign
28001 Realign the stack at entry. On the x86, the @option{-mstackrealign}
28002 option generates an alternate prologue and epilogue that realigns the
28003 run-time stack if necessary. This supports mixing legacy codes that keep
28004 4-byte stack alignment with modern codes that keep 16-byte stack alignment for
28005 SSE compatibility. See also the attribute @code{force_align_arg_pointer},
28006 applicable to individual functions.
28007
28008 @item -mpreferred-stack-boundary=@var{num}
28009 @opindex mpreferred-stack-boundary
28010 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
28011 byte boundary. If @option{-mpreferred-stack-boundary} is not specified,
28012 the default is 4 (16 bytes or 128 bits).
28013
28014 @strong{Warning:} When generating code for the x86-64 architecture with
28015 SSE extensions disabled, @option{-mpreferred-stack-boundary=3} can be
28016 used to keep the stack boundary aligned to 8 byte boundary. Since
28017 x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and
28018 intended to be used in controlled environment where stack space is
28019 important limitation. This option leads to wrong code when functions
28020 compiled with 16 byte stack alignment (such as functions from a standard
28021 library) are called with misaligned stack. In this case, SSE
28022 instructions may lead to misaligned memory access traps. In addition,
28023 variable arguments are handled incorrectly for 16 byte aligned
28024 objects (including x87 long double and __int128), leading to wrong
28025 results. You must build all modules with
28026 @option{-mpreferred-stack-boundary=3}, including any libraries. This
28027 includes the system libraries and startup modules.
28028
28029 @item -mincoming-stack-boundary=@var{num}
28030 @opindex mincoming-stack-boundary
28031 Assume the incoming stack is aligned to a 2 raised to @var{num} byte
28032 boundary. If @option{-mincoming-stack-boundary} is not specified,
28033 the one specified by @option{-mpreferred-stack-boundary} is used.
28034
28035 On Pentium and Pentium Pro, @code{double} and @code{long double} values
28036 should be aligned to an 8-byte boundary (see @option{-malign-double}) or
28037 suffer significant run time performance penalties. On Pentium III, the
28038 Streaming SIMD Extension (SSE) data type @code{__m128} may not work
28039 properly if it is not 16-byte aligned.
28040
28041 To ensure proper alignment of this values on the stack, the stack boundary
28042 must be as aligned as that required by any value stored on the stack.
28043 Further, every function must be generated such that it keeps the stack
28044 aligned. Thus calling a function compiled with a higher preferred
28045 stack boundary from a function compiled with a lower preferred stack
28046 boundary most likely misaligns the stack. It is recommended that
28047 libraries that use callbacks always use the default setting.
28048
28049 This extra alignment does consume extra stack space, and generally
28050 increases code size. Code that is sensitive to stack space usage, such
28051 as embedded systems and operating system kernels, may want to reduce the
28052 preferred alignment to @option{-mpreferred-stack-boundary=2}.
28053
28054 @need 200
28055 @item -mmmx
28056 @opindex mmmx
28057 @need 200
28058 @itemx -msse
28059 @opindex msse
28060 @need 200
28061 @itemx -msse2
28062 @opindex msse2
28063 @need 200
28064 @itemx -msse3
28065 @opindex msse3
28066 @need 200
28067 @itemx -mssse3
28068 @opindex mssse3
28069 @need 200
28070 @itemx -msse4
28071 @opindex msse4
28072 @need 200
28073 @itemx -msse4a
28074 @opindex msse4a
28075 @need 200
28076 @itemx -msse4.1
28077 @opindex msse4.1
28078 @need 200
28079 @itemx -msse4.2
28080 @opindex msse4.2
28081 @need 200
28082 @itemx -mavx
28083 @opindex mavx
28084 @need 200
28085 @itemx -mavx2
28086 @opindex mavx2
28087 @need 200
28088 @itemx -mavx512f
28089 @opindex mavx512f
28090 @need 200
28091 @itemx -mavx512pf
28092 @opindex mavx512pf
28093 @need 200
28094 @itemx -mavx512er
28095 @opindex mavx512er
28096 @need 200
28097 @itemx -mavx512cd
28098 @opindex mavx512cd
28099 @need 200
28100 @itemx -mavx512vl
28101 @opindex mavx512vl
28102 @need 200
28103 @itemx -mavx512bw
28104 @opindex mavx512bw
28105 @need 200
28106 @itemx -mavx512dq
28107 @opindex mavx512dq
28108 @need 200
28109 @itemx -mavx512ifma
28110 @opindex mavx512ifma
28111 @need 200
28112 @itemx -mavx512vbmi
28113 @opindex mavx512vbmi
28114 @need 200
28115 @itemx -msha
28116 @opindex msha
28117 @need 200
28118 @itemx -maes
28119 @opindex maes
28120 @need 200
28121 @itemx -mpclmul
28122 @opindex mpclmul
28123 @need 200
28124 @itemx -mclflushopt
28125 @opindex mclflushopt
28126 @need 200
28127 @itemx -mclwb
28128 @opindex mclwb
28129 @need 200
28130 @itemx -mfsgsbase
28131 @opindex mfsgsbase
28132 @need 200
28133 @itemx -mptwrite
28134 @opindex mptwrite
28135 @need 200
28136 @itemx -mrdrnd
28137 @opindex mrdrnd
28138 @need 200
28139 @itemx -mf16c
28140 @opindex mf16c
28141 @need 200
28142 @itemx -mfma
28143 @opindex mfma
28144 @need 200
28145 @itemx -mpconfig
28146 @opindex mpconfig
28147 @need 200
28148 @itemx -mwbnoinvd
28149 @opindex mwbnoinvd
28150 @need 200
28151 @itemx -mfma4
28152 @opindex mfma4
28153 @need 200
28154 @itemx -mprfchw
28155 @opindex mprfchw
28156 @need 200
28157 @itemx -mrdpid
28158 @opindex mrdpid
28159 @need 200
28160 @itemx -mprefetchwt1
28161 @opindex mprefetchwt1
28162 @need 200
28163 @itemx -mrdseed
28164 @opindex mrdseed
28165 @need 200
28166 @itemx -msgx
28167 @opindex msgx
28168 @need 200
28169 @itemx -mxop
28170 @opindex mxop
28171 @need 200
28172 @itemx -mlwp
28173 @opindex mlwp
28174 @need 200
28175 @itemx -m3dnow
28176 @opindex m3dnow
28177 @need 200
28178 @itemx -m3dnowa
28179 @opindex m3dnowa
28180 @need 200
28181 @itemx -mpopcnt
28182 @opindex mpopcnt
28183 @need 200
28184 @itemx -mabm
28185 @opindex mabm
28186 @need 200
28187 @itemx -madx
28188 @opindex madx
28189 @need 200
28190 @itemx -mbmi
28191 @opindex mbmi
28192 @need 200
28193 @itemx -mbmi2
28194 @opindex mbmi2
28195 @need 200
28196 @itemx -mlzcnt
28197 @opindex mlzcnt
28198 @need 200
28199 @itemx -mfxsr
28200 @opindex mfxsr
28201 @need 200
28202 @itemx -mxsave
28203 @opindex mxsave
28204 @need 200
28205 @itemx -mxsaveopt
28206 @opindex mxsaveopt
28207 @need 200
28208 @itemx -mxsavec
28209 @opindex mxsavec
28210 @need 200
28211 @itemx -mxsaves
28212 @opindex mxsaves
28213 @need 200
28214 @itemx -mrtm
28215 @opindex mrtm
28216 @need 200
28217 @itemx -mhle
28218 @opindex mhle
28219 @need 200
28220 @itemx -mtbm
28221 @opindex mtbm
28222 @need 200
28223 @itemx -mmwaitx
28224 @opindex mmwaitx
28225 @need 200
28226 @itemx -mclzero
28227 @opindex mclzero
28228 @need 200
28229 @itemx -mpku
28230 @opindex mpku
28231 @need 200
28232 @itemx -mavx512vbmi2
28233 @opindex mavx512vbmi2
28234 @need 200
28235 @itemx -mavx512bf16
28236 @opindex mavx512bf16
28237 @need 200
28238 @itemx -mgfni
28239 @opindex mgfni
28240 @need 200
28241 @itemx -mvaes
28242 @opindex mvaes
28243 @need 200
28244 @itemx -mwaitpkg
28245 @opindex mwaitpkg
28246 @need 200
28247 @itemx -mvpclmulqdq
28248 @opindex mvpclmulqdq
28249 @need 200
28250 @itemx -mavx512bitalg
28251 @opindex mavx512bitalg
28252 @need 200
28253 @itemx -mmovdiri
28254 @opindex mmovdiri
28255 @need 200
28256 @itemx -mmovdir64b
28257 @opindex mmovdir64b
28258 @need 200
28259 @itemx -menqcmd
28260 @opindex menqcmd
28261 @need 200
28262 @itemx -mavx512vpopcntdq
28263 @opindex mavx512vpopcntdq
28264 @need 200
28265 @itemx -mavx512vp2intersect
28266 @opindex mavx512vp2intersect
28267 @need 200
28268 @itemx -mavx5124fmaps
28269 @opindex mavx5124fmaps
28270 @need 200
28271 @itemx -mavx512vnni
28272 @opindex mavx512vnni
28273 @need 200
28274 @itemx -mavx5124vnniw
28275 @opindex mavx5124vnniw
28276 @need 200
28277 @itemx -mcldemote
28278 @opindex mcldemote
28279 These switches enable the use of instructions in the MMX, SSE,
28280 SSE2, SSE3, SSSE3, SSE4, SSE4A, SSE4.1, SSE4.2, AVX, AVX2, AVX512F, AVX512PF,
28281 AVX512ER, AVX512CD, AVX512VL, AVX512BW, AVX512DQ, AVX512IFMA, AVX512VBMI, SHA,
28282 AES, PCLMUL, CLFLUSHOPT, CLWB, FSGSBASE, PTWRITE, RDRND, F16C, FMA, PCONFIG,
28283 WBNOINVD, FMA4, PREFETCHW, RDPID, PREFETCHWT1, RDSEED, SGX, XOP, LWP,
28284 3DNow!@:, enhanced 3DNow!@:, POPCNT, ABM, ADX, BMI, BMI2, LZCNT, FXSR, XSAVE,
28285 XSAVEOPT, XSAVEC, XSAVES, RTM, HLE, TBM, MWAITX, CLZERO, PKU, AVX512VBMI2,
28286 GFNI, VAES, WAITPKG, VPCLMULQDQ, AVX512BITALG, MOVDIRI, MOVDIR64B, AVX512BF16,
28287 ENQCMD, AVX512VPOPCNTDQ, AVX5124FMAPS, AVX512VNNI, AVX5124VNNIW, or CLDEMOTE
28288 extended instruction sets. Each has a corresponding @option{-mno-} option to
28289 disable use of these instructions.
28290
28291 These extensions are also available as built-in functions: see
28292 @ref{x86 Built-in Functions}, for details of the functions enabled and
28293 disabled by these switches.
28294
28295 To generate SSE/SSE2 instructions automatically from floating-point
28296 code (as opposed to 387 instructions), see @option{-mfpmath=sse}.
28297
28298 GCC depresses SSEx instructions when @option{-mavx} is used. Instead, it
28299 generates new AVX instructions or AVX equivalence for all SSEx instructions
28300 when needed.
28301
28302 These options enable GCC to use these extended instructions in
28303 generated code, even without @option{-mfpmath=sse}. Applications that
28304 perform run-time CPU detection must compile separate files for each
28305 supported architecture, using the appropriate flags. In particular,
28306 the file containing the CPU detection code should be compiled without
28307 these options.
28308
28309 @item -mdump-tune-features
28310 @opindex mdump-tune-features
28311 This option instructs GCC to dump the names of the x86 performance
28312 tuning features and default settings. The names can be used in
28313 @option{-mtune-ctrl=@var{feature-list}}.
28314
28315 @item -mtune-ctrl=@var{feature-list}
28316 @opindex mtune-ctrl=@var{feature-list}
28317 This option is used to do fine grain control of x86 code generation features.
28318 @var{feature-list} is a comma separated list of @var{feature} names. See also
28319 @option{-mdump-tune-features}. When specified, the @var{feature} is turned
28320 on if it is not preceded with @samp{^}, otherwise, it is turned off.
28321 @option{-mtune-ctrl=@var{feature-list}} is intended to be used by GCC
28322 developers. Using it may lead to code paths not covered by testing and can
28323 potentially result in compiler ICEs or runtime errors.
28324
28325 @item -mno-default
28326 @opindex mno-default
28327 This option instructs GCC to turn off all tunable features. See also
28328 @option{-mtune-ctrl=@var{feature-list}} and @option{-mdump-tune-features}.
28329
28330 @item -mcld
28331 @opindex mcld
28332 This option instructs GCC to emit a @code{cld} instruction in the prologue
28333 of functions that use string instructions. String instructions depend on
28334 the DF flag to select between autoincrement or autodecrement mode. While the
28335 ABI specifies the DF flag to be cleared on function entry, some operating
28336 systems violate this specification by not clearing the DF flag in their
28337 exception dispatchers. The exception handler can be invoked with the DF flag
28338 set, which leads to wrong direction mode when string instructions are used.
28339 This option can be enabled by default on 32-bit x86 targets by configuring
28340 GCC with the @option{--enable-cld} configure option. Generation of @code{cld}
28341 instructions can be suppressed with the @option{-mno-cld} compiler option
28342 in this case.
28343
28344 @item -mvzeroupper
28345 @opindex mvzeroupper
28346 This option instructs GCC to emit a @code{vzeroupper} instruction
28347 before a transfer of control flow out of the function to minimize
28348 the AVX to SSE transition penalty as well as remove unnecessary @code{zeroupper}
28349 intrinsics.
28350
28351 @item -mprefer-avx128
28352 @opindex mprefer-avx128
28353 This option instructs GCC to use 128-bit AVX instructions instead of
28354 256-bit AVX instructions in the auto-vectorizer.
28355
28356 @item -mprefer-vector-width=@var{opt}
28357 @opindex mprefer-vector-width
28358 This option instructs GCC to use @var{opt}-bit vector width in instructions
28359 instead of default on the selected platform.
28360
28361 @table @samp
28362 @item none
28363 No extra limitations applied to GCC other than defined by the selected platform.
28364
28365 @item 128
28366 Prefer 128-bit vector width for instructions.
28367
28368 @item 256
28369 Prefer 256-bit vector width for instructions.
28370
28371 @item 512
28372 Prefer 512-bit vector width for instructions.
28373 @end table
28374
28375 @item -mcx16
28376 @opindex mcx16
28377 This option enables GCC to generate @code{CMPXCHG16B} instructions in 64-bit
28378 code to implement compare-and-exchange operations on 16-byte aligned 128-bit
28379 objects. This is useful for atomic updates of data structures exceeding one
28380 machine word in size. The compiler uses this instruction to implement
28381 @ref{__sync Builtins}. However, for @ref{__atomic Builtins} operating on
28382 128-bit integers, a library call is always used.
28383
28384 @item -msahf
28385 @opindex msahf
28386 This option enables generation of @code{SAHF} instructions in 64-bit code.
28387 Early Intel Pentium 4 CPUs with Intel 64 support,
28388 prior to the introduction of Pentium 4 G1 step in December 2005,
28389 lacked the @code{LAHF} and @code{SAHF} instructions
28390 which are supported by AMD64.
28391 These are load and store instructions, respectively, for certain status flags.
28392 In 64-bit mode, the @code{SAHF} instruction is used to optimize @code{fmod},
28393 @code{drem}, and @code{remainder} built-in functions;
28394 see @ref{Other Builtins} for details.
28395
28396 @item -mmovbe
28397 @opindex mmovbe
28398 This option enables use of the @code{movbe} instruction to implement
28399 @code{__builtin_bswap32} and @code{__builtin_bswap64}.
28400
28401 @item -mshstk
28402 @opindex mshstk
28403 The @option{-mshstk} option enables shadow stack built-in functions
28404 from x86 Control-flow Enforcement Technology (CET).
28405
28406 @item -mcrc32
28407 @opindex mcrc32
28408 This option enables built-in functions @code{__builtin_ia32_crc32qi},
28409 @code{__builtin_ia32_crc32hi}, @code{__builtin_ia32_crc32si} and
28410 @code{__builtin_ia32_crc32di} to generate the @code{crc32} machine instruction.
28411
28412 @item -mrecip
28413 @opindex mrecip
28414 This option enables use of @code{RCPSS} and @code{RSQRTSS} instructions
28415 (and their vectorized variants @code{RCPPS} and @code{RSQRTPS})
28416 with an additional Newton-Raphson step
28417 to increase precision instead of @code{DIVSS} and @code{SQRTSS}
28418 (and their vectorized
28419 variants) for single-precision floating-point arguments. These instructions
28420 are generated only when @option{-funsafe-math-optimizations} is enabled
28421 together with @option{-ffinite-math-only} and @option{-fno-trapping-math}.
28422 Note that while the throughput of the sequence is higher than the throughput
28423 of the non-reciprocal instruction, the precision of the sequence can be
28424 decreased by up to 2 ulp (i.e.@: the inverse of 1.0 equals 0.99999994).
28425
28426 Note that GCC implements @code{1.0f/sqrtf(@var{x})} in terms of @code{RSQRTSS}
28427 (or @code{RSQRTPS}) already with @option{-ffast-math} (or the above option
28428 combination), and doesn't need @option{-mrecip}.
28429
28430 Also note that GCC emits the above sequence with additional Newton-Raphson step
28431 for vectorized single-float division and vectorized @code{sqrtf(@var{x})}
28432 already with @option{-ffast-math} (or the above option combination), and
28433 doesn't need @option{-mrecip}.
28434
28435 @item -mrecip=@var{opt}
28436 @opindex mrecip=opt
28437 This option controls which reciprocal estimate instructions
28438 may be used. @var{opt} is a comma-separated list of options, which may
28439 be preceded by a @samp{!} to invert the option:
28440
28441 @table @samp
28442 @item all
28443 Enable all estimate instructions.
28444
28445 @item default
28446 Enable the default instructions, equivalent to @option{-mrecip}.
28447
28448 @item none
28449 Disable all estimate instructions, equivalent to @option{-mno-recip}.
28450
28451 @item div
28452 Enable the approximation for scalar division.
28453
28454 @item vec-div
28455 Enable the approximation for vectorized division.
28456
28457 @item sqrt
28458 Enable the approximation for scalar square root.
28459
28460 @item vec-sqrt
28461 Enable the approximation for vectorized square root.
28462 @end table
28463
28464 So, for example, @option{-mrecip=all,!sqrt} enables
28465 all of the reciprocal approximations, except for square root.
28466
28467 @item -mveclibabi=@var{type}
28468 @opindex mveclibabi
28469 Specifies the ABI type to use for vectorizing intrinsics using an
28470 external library. Supported values for @var{type} are @samp{svml}
28471 for the Intel short
28472 vector math library and @samp{acml} for the AMD math core library.
28473 To use this option, both @option{-ftree-vectorize} and
28474 @option{-funsafe-math-optimizations} have to be enabled, and an SVML or ACML
28475 ABI-compatible library must be specified at link time.
28476
28477 GCC currently emits calls to @code{vmldExp2},
28478 @code{vmldLn2}, @code{vmldLog102}, @code{vmldPow2},
28479 @code{vmldTanh2}, @code{vmldTan2}, @code{vmldAtan2}, @code{vmldAtanh2},
28480 @code{vmldCbrt2}, @code{vmldSinh2}, @code{vmldSin2}, @code{vmldAsinh2},
28481 @code{vmldAsin2}, @code{vmldCosh2}, @code{vmldCos2}, @code{vmldAcosh2},
28482 @code{vmldAcos2}, @code{vmlsExp4}, @code{vmlsLn4},
28483 @code{vmlsLog104}, @code{vmlsPow4}, @code{vmlsTanh4}, @code{vmlsTan4},
28484 @code{vmlsAtan4}, @code{vmlsAtanh4}, @code{vmlsCbrt4}, @code{vmlsSinh4},
28485 @code{vmlsSin4}, @code{vmlsAsinh4}, @code{vmlsAsin4}, @code{vmlsCosh4},
28486 @code{vmlsCos4}, @code{vmlsAcosh4} and @code{vmlsAcos4} for corresponding
28487 function type when @option{-mveclibabi=svml} is used, and @code{__vrd2_sin},
28488 @code{__vrd2_cos}, @code{__vrd2_exp}, @code{__vrd2_log}, @code{__vrd2_log2},
28489 @code{__vrd2_log10}, @code{__vrs4_sinf}, @code{__vrs4_cosf},
28490 @code{__vrs4_expf}, @code{__vrs4_logf}, @code{__vrs4_log2f},
28491 @code{__vrs4_log10f} and @code{__vrs4_powf} for the corresponding function type
28492 when @option{-mveclibabi=acml} is used.
28493
28494 @item -mabi=@var{name}
28495 @opindex mabi
28496 Generate code for the specified calling convention. Permissible values
28497 are @samp{sysv} for the ABI used on GNU/Linux and other systems, and
28498 @samp{ms} for the Microsoft ABI. The default is to use the Microsoft
28499 ABI when targeting Microsoft Windows and the SysV ABI on all other systems.
28500 You can control this behavior for specific functions by
28501 using the function attributes @code{ms_abi} and @code{sysv_abi}.
28502 @xref{Function Attributes}.
28503
28504 @item -mforce-indirect-call
28505 @opindex mforce-indirect-call
28506 Force all calls to functions to be indirect. This is useful
28507 when using Intel Processor Trace where it generates more precise timing
28508 information for function calls.
28509
28510 @item -mmanual-endbr
28511 @opindex mmanual-endbr
28512 Insert ENDBR instruction at function entry only via the @code{cf_check}
28513 function attribute. This is useful when used with the option
28514 @option{-fcf-protection=branch} to control ENDBR insertion at the
28515 function entry.
28516
28517 @item -mcall-ms2sysv-xlogues
28518 @opindex mcall-ms2sysv-xlogues
28519 @opindex mno-call-ms2sysv-xlogues
28520 Due to differences in 64-bit ABIs, any Microsoft ABI function that calls a
28521 System V ABI function must consider RSI, RDI and XMM6-15 as clobbered. By
28522 default, the code for saving and restoring these registers is emitted inline,
28523 resulting in fairly lengthy prologues and epilogues. Using
28524 @option{-mcall-ms2sysv-xlogues} emits prologues and epilogues that
28525 use stubs in the static portion of libgcc to perform these saves and restores,
28526 thus reducing function size at the cost of a few extra instructions.
28527
28528 @item -mtls-dialect=@var{type}
28529 @opindex mtls-dialect
28530 Generate code to access thread-local storage using the @samp{gnu} or
28531 @samp{gnu2} conventions. @samp{gnu} is the conservative default;
28532 @samp{gnu2} is more efficient, but it may add compile- and run-time
28533 requirements that cannot be satisfied on all systems.
28534
28535 @item -mpush-args
28536 @itemx -mno-push-args
28537 @opindex mpush-args
28538 @opindex mno-push-args
28539 Use PUSH operations to store outgoing parameters. This method is shorter
28540 and usually equally fast as method using SUB/MOV operations and is enabled
28541 by default. In some cases disabling it may improve performance because of
28542 improved scheduling and reduced dependencies.
28543
28544 @item -maccumulate-outgoing-args
28545 @opindex maccumulate-outgoing-args
28546 If enabled, the maximum amount of space required for outgoing arguments is
28547 computed in the function prologue. This is faster on most modern CPUs
28548 because of reduced dependencies, improved scheduling and reduced stack usage
28549 when the preferred stack boundary is not equal to 2. The drawback is a notable
28550 increase in code size. This switch implies @option{-mno-push-args}.
28551
28552 @item -mthreads
28553 @opindex mthreads
28554 Support thread-safe exception handling on MinGW. Programs that rely
28555 on thread-safe exception handling must compile and link all code with the
28556 @option{-mthreads} option. When compiling, @option{-mthreads} defines
28557 @option{-D_MT}; when linking, it links in a special thread helper library
28558 @option{-lmingwthrd} which cleans up per-thread exception-handling data.
28559
28560 @item -mms-bitfields
28561 @itemx -mno-ms-bitfields
28562 @opindex mms-bitfields
28563 @opindex mno-ms-bitfields
28564
28565 Enable/disable bit-field layout compatible with the native Microsoft
28566 Windows compiler.
28567
28568 If @code{packed} is used on a structure, or if bit-fields are used,
28569 it may be that the Microsoft ABI lays out the structure differently
28570 than the way GCC normally does. Particularly when moving packed
28571 data between functions compiled with GCC and the native Microsoft compiler
28572 (either via function call or as data in a file), it may be necessary to access
28573 either format.
28574
28575 This option is enabled by default for Microsoft Windows
28576 targets. This behavior can also be controlled locally by use of variable
28577 or type attributes. For more information, see @ref{x86 Variable Attributes}
28578 and @ref{x86 Type Attributes}.
28579
28580 The Microsoft structure layout algorithm is fairly simple with the exception
28581 of the bit-field packing.
28582 The padding and alignment of members of structures and whether a bit-field
28583 can straddle a storage-unit boundary are determine by these rules:
28584
28585 @enumerate
28586 @item Structure members are stored sequentially in the order in which they are
28587 declared: the first member has the lowest memory address and the last member
28588 the highest.
28589
28590 @item Every data object has an alignment requirement. The alignment requirement
28591 for all data except structures, unions, and arrays is either the size of the
28592 object or the current packing size (specified with either the
28593 @code{aligned} attribute or the @code{pack} pragma),
28594 whichever is less. For structures, unions, and arrays,
28595 the alignment requirement is the largest alignment requirement of its members.
28596 Every object is allocated an offset so that:
28597
28598 @smallexample
28599 offset % alignment_requirement == 0
28600 @end smallexample
28601
28602 @item Adjacent bit-fields are packed into the same 1-, 2-, or 4-byte allocation
28603 unit if the integral types are the same size and if the next bit-field fits
28604 into the current allocation unit without crossing the boundary imposed by the
28605 common alignment requirements of the bit-fields.
28606 @end enumerate
28607
28608 MSVC interprets zero-length bit-fields in the following ways:
28609
28610 @enumerate
28611 @item If a zero-length bit-field is inserted between two bit-fields that
28612 are normally coalesced, the bit-fields are not coalesced.
28613
28614 For example:
28615
28616 @smallexample
28617 struct
28618 @{
28619 unsigned long bf_1 : 12;
28620 unsigned long : 0;
28621 unsigned long bf_2 : 12;
28622 @} t1;
28623 @end smallexample
28624
28625 @noindent
28626 The size of @code{t1} is 8 bytes with the zero-length bit-field. If the
28627 zero-length bit-field were removed, @code{t1}'s size would be 4 bytes.
28628
28629 @item If a zero-length bit-field is inserted after a bit-field, @code{foo}, and the
28630 alignment of the zero-length bit-field is greater than the member that follows it,
28631 @code{bar}, @code{bar} is aligned as the type of the zero-length bit-field.
28632
28633 For example:
28634
28635 @smallexample
28636 struct
28637 @{
28638 char foo : 4;
28639 short : 0;
28640 char bar;
28641 @} t2;
28642
28643 struct
28644 @{
28645 char foo : 4;
28646 short : 0;
28647 double bar;
28648 @} t3;
28649 @end smallexample
28650
28651 @noindent
28652 For @code{t2}, @code{bar} is placed at offset 2, rather than offset 1.
28653 Accordingly, the size of @code{t2} is 4. For @code{t3}, the zero-length
28654 bit-field does not affect the alignment of @code{bar} or, as a result, the size
28655 of the structure.
28656
28657 Taking this into account, it is important to note the following:
28658
28659 @enumerate
28660 @item If a zero-length bit-field follows a normal bit-field, the type of the
28661 zero-length bit-field may affect the alignment of the structure as whole. For
28662 example, @code{t2} has a size of 4 bytes, since the zero-length bit-field follows a
28663 normal bit-field, and is of type short.
28664
28665 @item Even if a zero-length bit-field is not followed by a normal bit-field, it may
28666 still affect the alignment of the structure:
28667
28668 @smallexample
28669 struct
28670 @{
28671 char foo : 6;
28672 long : 0;
28673 @} t4;
28674 @end smallexample
28675
28676 @noindent
28677 Here, @code{t4} takes up 4 bytes.
28678 @end enumerate
28679
28680 @item Zero-length bit-fields following non-bit-field members are ignored:
28681
28682 @smallexample
28683 struct
28684 @{
28685 char foo;
28686 long : 0;
28687 char bar;
28688 @} t5;
28689 @end smallexample
28690
28691 @noindent
28692 Here, @code{t5} takes up 2 bytes.
28693 @end enumerate
28694
28695
28696 @item -mno-align-stringops
28697 @opindex mno-align-stringops
28698 @opindex malign-stringops
28699 Do not align the destination of inlined string operations. This switch reduces
28700 code size and improves performance in case the destination is already aligned,
28701 but GCC doesn't know about it.
28702
28703 @item -minline-all-stringops
28704 @opindex minline-all-stringops
28705 By default GCC inlines string operations only when the destination is
28706 known to be aligned to least a 4-byte boundary.
28707 This enables more inlining and increases code
28708 size, but may improve performance of code that depends on fast
28709 @code{memcpy} and @code{memset} for short lengths.
28710 The option enables inline expansion of @code{strlen} for all
28711 pointer alignments.
28712
28713 @item -minline-stringops-dynamically
28714 @opindex minline-stringops-dynamically
28715 For string operations of unknown size, use run-time checks with
28716 inline code for small blocks and a library call for large blocks.
28717
28718 @item -mstringop-strategy=@var{alg}
28719 @opindex mstringop-strategy=@var{alg}
28720 Override the internal decision heuristic for the particular algorithm to use
28721 for inlining string operations. The allowed values for @var{alg} are:
28722
28723 @table @samp
28724 @item rep_byte
28725 @itemx rep_4byte
28726 @itemx rep_8byte
28727 Expand using i386 @code{rep} prefix of the specified size.
28728
28729 @item byte_loop
28730 @itemx loop
28731 @itemx unrolled_loop
28732 Expand into an inline loop.
28733
28734 @item libcall
28735 Always use a library call.
28736 @end table
28737
28738 @item -mmemcpy-strategy=@var{strategy}
28739 @opindex mmemcpy-strategy=@var{strategy}
28740 Override the internal decision heuristic to decide if @code{__builtin_memcpy}
28741 should be inlined and what inline algorithm to use when the expected size
28742 of the copy operation is known. @var{strategy}
28743 is a comma-separated list of @var{alg}:@var{max_size}:@var{dest_align} triplets.
28744 @var{alg} is specified in @option{-mstringop-strategy}, @var{max_size} specifies
28745 the max byte size with which inline algorithm @var{alg} is allowed. For the last
28746 triplet, the @var{max_size} must be @code{-1}. The @var{max_size} of the triplets
28747 in the list must be specified in increasing order. The minimal byte size for
28748 @var{alg} is @code{0} for the first triplet and @code{@var{max_size} + 1} of the
28749 preceding range.
28750
28751 @item -mmemset-strategy=@var{strategy}
28752 @opindex mmemset-strategy=@var{strategy}
28753 The option is similar to @option{-mmemcpy-strategy=} except that it is to control
28754 @code{__builtin_memset} expansion.
28755
28756 @item -momit-leaf-frame-pointer
28757 @opindex momit-leaf-frame-pointer
28758 Don't keep the frame pointer in a register for leaf functions. This
28759 avoids the instructions to save, set up, and restore frame pointers and
28760 makes an extra register available in leaf functions. The option
28761 @option{-fomit-leaf-frame-pointer} removes the frame pointer for leaf functions,
28762 which might make debugging harder.
28763
28764 @item -mtls-direct-seg-refs
28765 @itemx -mno-tls-direct-seg-refs
28766 @opindex mtls-direct-seg-refs
28767 Controls whether TLS variables may be accessed with offsets from the
28768 TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
28769 or whether the thread base pointer must be added. Whether or not this
28770 is valid depends on the operating system, and whether it maps the
28771 segment to cover the entire TLS area.
28772
28773 For systems that use the GNU C Library, the default is on.
28774
28775 @item -msse2avx
28776 @itemx -mno-sse2avx
28777 @opindex msse2avx
28778 Specify that the assembler should encode SSE instructions with VEX
28779 prefix. The option @option{-mavx} turns this on by default.
28780
28781 @item -mfentry
28782 @itemx -mno-fentry
28783 @opindex mfentry
28784 If profiling is active (@option{-pg}), put the profiling
28785 counter call before the prologue.
28786 Note: On x86 architectures the attribute @code{ms_hook_prologue}
28787 isn't possible at the moment for @option{-mfentry} and @option{-pg}.
28788
28789 @item -mrecord-mcount
28790 @itemx -mno-record-mcount
28791 @opindex mrecord-mcount
28792 If profiling is active (@option{-pg}), generate a __mcount_loc section
28793 that contains pointers to each profiling call. This is useful for
28794 automatically patching and out calls.
28795
28796 @item -mnop-mcount
28797 @itemx -mno-nop-mcount
28798 @opindex mnop-mcount
28799 If profiling is active (@option{-pg}), generate the calls to
28800 the profiling functions as NOPs. This is useful when they
28801 should be patched in later dynamically. This is likely only
28802 useful together with @option{-mrecord-mcount}.
28803
28804 @item -minstrument-return=@var{type}
28805 @opindex minstrument-return
28806 Instrument function exit in -pg -mfentry instrumented functions with
28807 call to specified function. This only instruments true returns ending
28808 with ret, but not sibling calls ending with jump. Valid types
28809 are @var{none} to not instrument, @var{call} to generate a call to __return__,
28810 or @var{nop5} to generate a 5 byte nop.
28811
28812 @item -mrecord-return
28813 @itemx -mno-record-return
28814 @opindex mrecord-return
28815 Generate a __return_loc section pointing to all return instrumentation code.
28816
28817 @item -mfentry-name=@var{name}
28818 @opindex mfentry-name
28819 Set name of __fentry__ symbol called at function entry for -pg -mfentry functions.
28820
28821 @item -mfentry-section=@var{name}
28822 @opindex mfentry-section
28823 Set name of section to record -mrecord-mcount calls (default __mcount_loc).
28824
28825 @item -mskip-rax-setup
28826 @itemx -mno-skip-rax-setup
28827 @opindex mskip-rax-setup
28828 When generating code for the x86-64 architecture with SSE extensions
28829 disabled, @option{-mskip-rax-setup} can be used to skip setting up RAX
28830 register when there are no variable arguments passed in vector registers.
28831
28832 @strong{Warning:} Since RAX register is used to avoid unnecessarily
28833 saving vector registers on stack when passing variable arguments, the
28834 impacts of this option are callees may waste some stack space,
28835 misbehave or jump to a random location. GCC 4.4 or newer don't have
28836 those issues, regardless the RAX register value.
28837
28838 @item -m8bit-idiv
28839 @itemx -mno-8bit-idiv
28840 @opindex m8bit-idiv
28841 On some processors, like Intel Atom, 8-bit unsigned integer divide is
28842 much faster than 32-bit/64-bit integer divide. This option generates a
28843 run-time check. If both dividend and divisor are within range of 0
28844 to 255, 8-bit unsigned integer divide is used instead of
28845 32-bit/64-bit integer divide.
28846
28847 @item -mavx256-split-unaligned-load
28848 @itemx -mavx256-split-unaligned-store
28849 @opindex mavx256-split-unaligned-load
28850 @opindex mavx256-split-unaligned-store
28851 Split 32-byte AVX unaligned load and store.
28852
28853 @item -mstack-protector-guard=@var{guard}
28854 @itemx -mstack-protector-guard-reg=@var{reg}
28855 @itemx -mstack-protector-guard-offset=@var{offset}
28856 @opindex mstack-protector-guard
28857 @opindex mstack-protector-guard-reg
28858 @opindex mstack-protector-guard-offset
28859 Generate stack protection code using canary at @var{guard}. Supported
28860 locations are @samp{global} for global canary or @samp{tls} for per-thread
28861 canary in the TLS block (the default). This option has effect only when
28862 @option{-fstack-protector} or @option{-fstack-protector-all} is specified.
28863
28864 With the latter choice the options
28865 @option{-mstack-protector-guard-reg=@var{reg}} and
28866 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
28867 which segment register (@code{%fs} or @code{%gs}) to use as base register
28868 for reading the canary, and from what offset from that base register.
28869 The default for those is as specified in the relevant ABI.
28870
28871 @item -mgeneral-regs-only
28872 @opindex mgeneral-regs-only
28873 Generate code that uses only the general-purpose registers. This
28874 prevents the compiler from using floating-point, vector, mask and bound
28875 registers.
28876
28877 @item -mindirect-branch=@var{choice}
28878 @opindex mindirect-branch
28879 Convert indirect call and jump with @var{choice}. The default is
28880 @samp{keep}, which keeps indirect call and jump unmodified.
28881 @samp{thunk} converts indirect call and jump to call and return thunk.
28882 @samp{thunk-inline} converts indirect call and jump to inlined call
28883 and return thunk. @samp{thunk-extern} converts indirect call and jump
28884 to external call and return thunk provided in a separate object file.
28885 You can control this behavior for a specific function by using the
28886 function attribute @code{indirect_branch}. @xref{Function Attributes}.
28887
28888 Note that @option{-mcmodel=large} is incompatible with
28889 @option{-mindirect-branch=thunk} and
28890 @option{-mindirect-branch=thunk-extern} since the thunk function may
28891 not be reachable in the large code model.
28892
28893 Note that @option{-mindirect-branch=thunk-extern} is incompatible with
28894 @option{-fcf-protection=branch} since the external thunk cannot be modified
28895 to disable control-flow check.
28896
28897 @item -mfunction-return=@var{choice}
28898 @opindex mfunction-return
28899 Convert function return with @var{choice}. The default is @samp{keep},
28900 which keeps function return unmodified. @samp{thunk} converts function
28901 return to call and return thunk. @samp{thunk-inline} converts function
28902 return to inlined call and return thunk. @samp{thunk-extern} converts
28903 function return to external call and return thunk provided in a separate
28904 object file. You can control this behavior for a specific function by
28905 using the function attribute @code{function_return}.
28906 @xref{Function Attributes}.
28907
28908 Note that @option{-mcmodel=large} is incompatible with
28909 @option{-mfunction-return=thunk} and
28910 @option{-mfunction-return=thunk-extern} since the thunk function may
28911 not be reachable in the large code model.
28912
28913
28914 @item -mindirect-branch-register
28915 @opindex mindirect-branch-register
28916 Force indirect call and jump via register.
28917
28918 @end table
28919
28920 These @samp{-m} switches are supported in addition to the above
28921 on x86-64 processors in 64-bit environments.
28922
28923 @table @gcctabopt
28924 @item -m32
28925 @itemx -m64
28926 @itemx -mx32
28927 @itemx -m16
28928 @itemx -miamcu
28929 @opindex m32
28930 @opindex m64
28931 @opindex mx32
28932 @opindex m16
28933 @opindex miamcu
28934 Generate code for a 16-bit, 32-bit or 64-bit environment.
28935 The @option{-m32} option sets @code{int}, @code{long}, and pointer types
28936 to 32 bits, and
28937 generates code that runs on any i386 system.
28938
28939 The @option{-m64} option sets @code{int} to 32 bits and @code{long} and pointer
28940 types to 64 bits, and generates code for the x86-64 architecture.
28941 For Darwin only the @option{-m64} option also turns off the @option{-fno-pic}
28942 and @option{-mdynamic-no-pic} options.
28943
28944 The @option{-mx32} option sets @code{int}, @code{long}, and pointer types
28945 to 32 bits, and
28946 generates code for the x86-64 architecture.
28947
28948 The @option{-m16} option is the same as @option{-m32}, except for that
28949 it outputs the @code{.code16gcc} assembly directive at the beginning of
28950 the assembly output so that the binary can run in 16-bit mode.
28951
28952 The @option{-miamcu} option generates code which conforms to Intel MCU
28953 psABI. It requires the @option{-m32} option to be turned on.
28954
28955 @item -mno-red-zone
28956 @opindex mno-red-zone
28957 @opindex mred-zone
28958 Do not use a so-called ``red zone'' for x86-64 code. The red zone is mandated
28959 by the x86-64 ABI; it is a 128-byte area beyond the location of the
28960 stack pointer that is not modified by signal or interrupt handlers
28961 and therefore can be used for temporary data without adjusting the stack
28962 pointer. The flag @option{-mno-red-zone} disables this red zone.
28963
28964 @item -mcmodel=small
28965 @opindex mcmodel=small
28966 Generate code for the small code model: the program and its symbols must
28967 be linked in the lower 2 GB of the address space. Pointers are 64 bits.
28968 Programs can be statically or dynamically linked. This is the default
28969 code model.
28970
28971 @item -mcmodel=kernel
28972 @opindex mcmodel=kernel
28973 Generate code for the kernel code model. The kernel runs in the
28974 negative 2 GB of the address space.
28975 This model has to be used for Linux kernel code.
28976
28977 @item -mcmodel=medium
28978 @opindex mcmodel=medium
28979 Generate code for the medium model: the program is linked in the lower 2
28980 GB of the address space. Small symbols are also placed there. Symbols
28981 with sizes larger than @option{-mlarge-data-threshold} are put into
28982 large data or BSS sections and can be located above 2GB. Programs can
28983 be statically or dynamically linked.
28984
28985 @item -mcmodel=large
28986 @opindex mcmodel=large
28987 Generate code for the large model. This model makes no assumptions
28988 about addresses and sizes of sections.
28989
28990 @item -maddress-mode=long
28991 @opindex maddress-mode=long
28992 Generate code for long address mode. This is only supported for 64-bit
28993 and x32 environments. It is the default address mode for 64-bit
28994 environments.
28995
28996 @item -maddress-mode=short
28997 @opindex maddress-mode=short
28998 Generate code for short address mode. This is only supported for 32-bit
28999 and x32 environments. It is the default address mode for 32-bit and
29000 x32 environments.
29001 @end table
29002
29003 @node x86 Windows Options
29004 @subsection x86 Windows Options
29005 @cindex x86 Windows Options
29006 @cindex Windows Options for x86
29007
29008 These additional options are available for Microsoft Windows targets:
29009
29010 @table @gcctabopt
29011 @item -mconsole
29012 @opindex mconsole
29013 This option
29014 specifies that a console application is to be generated, by
29015 instructing the linker to set the PE header subsystem type
29016 required for console applications.
29017 This option is available for Cygwin and MinGW targets and is
29018 enabled by default on those targets.
29019
29020 @item -mdll
29021 @opindex mdll
29022 This option is available for Cygwin and MinGW targets. It
29023 specifies that a DLL---a dynamic link library---is to be
29024 generated, enabling the selection of the required runtime
29025 startup object and entry point.
29026
29027 @item -mnop-fun-dllimport
29028 @opindex mnop-fun-dllimport
29029 This option is available for Cygwin and MinGW targets. It
29030 specifies that the @code{dllimport} attribute should be ignored.
29031
29032 @item -mthread
29033 @opindex mthread
29034 This option is available for MinGW targets. It specifies
29035 that MinGW-specific thread support is to be used.
29036
29037 @item -municode
29038 @opindex municode
29039 This option is available for MinGW-w64 targets. It causes
29040 the @code{UNICODE} preprocessor macro to be predefined, and
29041 chooses Unicode-capable runtime startup code.
29042
29043 @item -mwin32
29044 @opindex mwin32
29045 This option is available for Cygwin and MinGW targets. It
29046 specifies that the typical Microsoft Windows predefined macros are to
29047 be set in the pre-processor, but does not influence the choice
29048 of runtime library/startup code.
29049
29050 @item -mwindows
29051 @opindex mwindows
29052 This option is available for Cygwin and MinGW targets. It
29053 specifies that a GUI application is to be generated by
29054 instructing the linker to set the PE header subsystem type
29055 appropriately.
29056
29057 @item -fno-set-stack-executable
29058 @opindex fno-set-stack-executable
29059 @opindex fset-stack-executable
29060 This option is available for MinGW targets. It specifies that
29061 the executable flag for the stack used by nested functions isn't
29062 set. This is necessary for binaries running in kernel mode of
29063 Microsoft Windows, as there the User32 API, which is used to set executable
29064 privileges, isn't available.
29065
29066 @item -fwritable-relocated-rdata
29067 @opindex fno-writable-relocated-rdata
29068 @opindex fwritable-relocated-rdata
29069 This option is available for MinGW and Cygwin targets. It specifies
29070 that relocated-data in read-only section is put into the @code{.data}
29071 section. This is a necessary for older runtimes not supporting
29072 modification of @code{.rdata} sections for pseudo-relocation.
29073
29074 @item -mpe-aligned-commons
29075 @opindex mpe-aligned-commons
29076 This option is available for Cygwin and MinGW targets. It
29077 specifies that the GNU extension to the PE file format that
29078 permits the correct alignment of COMMON variables should be
29079 used when generating code. It is enabled by default if
29080 GCC detects that the target assembler found during configuration
29081 supports the feature.
29082 @end table
29083
29084 See also under @ref{x86 Options} for standard options.
29085
29086 @node Xstormy16 Options
29087 @subsection Xstormy16 Options
29088 @cindex Xstormy16 Options
29089
29090 These options are defined for Xstormy16:
29091
29092 @table @gcctabopt
29093 @item -msim
29094 @opindex msim
29095 Choose startup files and linker script suitable for the simulator.
29096 @end table
29097
29098 @node Xtensa Options
29099 @subsection Xtensa Options
29100 @cindex Xtensa Options
29101
29102 These options are supported for Xtensa targets:
29103
29104 @table @gcctabopt
29105 @item -mconst16
29106 @itemx -mno-const16
29107 @opindex mconst16
29108 @opindex mno-const16
29109 Enable or disable use of @code{CONST16} instructions for loading
29110 constant values. The @code{CONST16} instruction is currently not a
29111 standard option from Tensilica. When enabled, @code{CONST16}
29112 instructions are always used in place of the standard @code{L32R}
29113 instructions. The use of @code{CONST16} is enabled by default only if
29114 the @code{L32R} instruction is not available.
29115
29116 @item -mfused-madd
29117 @itemx -mno-fused-madd
29118 @opindex mfused-madd
29119 @opindex mno-fused-madd
29120 Enable or disable use of fused multiply/add and multiply/subtract
29121 instructions in the floating-point option. This has no effect if the
29122 floating-point option is not also enabled. Disabling fused multiply/add
29123 and multiply/subtract instructions forces the compiler to use separate
29124 instructions for the multiply and add/subtract operations. This may be
29125 desirable in some cases where strict IEEE 754-compliant results are
29126 required: the fused multiply add/subtract instructions do not round the
29127 intermediate result, thereby producing results with @emph{more} bits of
29128 precision than specified by the IEEE standard. Disabling fused multiply
29129 add/subtract instructions also ensures that the program output is not
29130 sensitive to the compiler's ability to combine multiply and add/subtract
29131 operations.
29132
29133 @item -mserialize-volatile
29134 @itemx -mno-serialize-volatile
29135 @opindex mserialize-volatile
29136 @opindex mno-serialize-volatile
29137 When this option is enabled, GCC inserts @code{MEMW} instructions before
29138 @code{volatile} memory references to guarantee sequential consistency.
29139 The default is @option{-mserialize-volatile}. Use
29140 @option{-mno-serialize-volatile} to omit the @code{MEMW} instructions.
29141
29142 @item -mforce-no-pic
29143 @opindex mforce-no-pic
29144 For targets, like GNU/Linux, where all user-mode Xtensa code must be
29145 position-independent code (PIC), this option disables PIC for compiling
29146 kernel code.
29147
29148 @item -mtext-section-literals
29149 @itemx -mno-text-section-literals
29150 @opindex mtext-section-literals
29151 @opindex mno-text-section-literals
29152 These options control the treatment of literal pools. The default is
29153 @option{-mno-text-section-literals}, which places literals in a separate
29154 section in the output file. This allows the literal pool to be placed
29155 in a data RAM/ROM, and it also allows the linker to combine literal
29156 pools from separate object files to remove redundant literals and
29157 improve code size. With @option{-mtext-section-literals}, the literals
29158 are interspersed in the text section in order to keep them as close as
29159 possible to their references. This may be necessary for large assembly
29160 files. Literals for each function are placed right before that function.
29161
29162 @item -mauto-litpools
29163 @itemx -mno-auto-litpools
29164 @opindex mauto-litpools
29165 @opindex mno-auto-litpools
29166 These options control the treatment of literal pools. The default is
29167 @option{-mno-auto-litpools}, which places literals in a separate
29168 section in the output file unless @option{-mtext-section-literals} is
29169 used. With @option{-mauto-litpools} the literals are interspersed in
29170 the text section by the assembler. Compiler does not produce explicit
29171 @code{.literal} directives and loads literals into registers with
29172 @code{MOVI} instructions instead of @code{L32R} to let the assembler
29173 do relaxation and place literals as necessary. This option allows
29174 assembler to create several literal pools per function and assemble
29175 very big functions, which may not be possible with
29176 @option{-mtext-section-literals}.
29177
29178 @item -mtarget-align
29179 @itemx -mno-target-align
29180 @opindex mtarget-align
29181 @opindex mno-target-align
29182 When this option is enabled, GCC instructs the assembler to
29183 automatically align instructions to reduce branch penalties at the
29184 expense of some code density. The assembler attempts to widen density
29185 instructions to align branch targets and the instructions following call
29186 instructions. If there are not enough preceding safe density
29187 instructions to align a target, no widening is performed. The
29188 default is @option{-mtarget-align}. These options do not affect the
29189 treatment of auto-aligned instructions like @code{LOOP}, which the
29190 assembler always aligns, either by widening density instructions or
29191 by inserting NOP instructions.
29192
29193 @item -mlongcalls
29194 @itemx -mno-longcalls
29195 @opindex mlongcalls
29196 @opindex mno-longcalls
29197 When this option is enabled, GCC instructs the assembler to translate
29198 direct calls to indirect calls unless it can determine that the target
29199 of a direct call is in the range allowed by the call instruction. This
29200 translation typically occurs for calls to functions in other source
29201 files. Specifically, the assembler translates a direct @code{CALL}
29202 instruction into an @code{L32R} followed by a @code{CALLX} instruction.
29203 The default is @option{-mno-longcalls}. This option should be used in
29204 programs where the call target can potentially be out of range. This
29205 option is implemented in the assembler, not the compiler, so the
29206 assembly code generated by GCC still shows direct call
29207 instructions---look at the disassembled object code to see the actual
29208 instructions. Note that the assembler uses an indirect call for
29209 every cross-file call, not just those that really are out of range.
29210 @end table
29211
29212 @node zSeries Options
29213 @subsection zSeries Options
29214 @cindex zSeries options
29215
29216 These are listed under @xref{S/390 and zSeries Options}.
29217
29218
29219 @c man end
29220
29221 @node Spec Files
29222 @section Specifying Subprocesses and the Switches to Pass to Them
29223 @cindex Spec Files
29224
29225 @command{gcc} is a driver program. It performs its job by invoking a
29226 sequence of other programs to do the work of compiling, assembling and
29227 linking. GCC interprets its command-line parameters and uses these to
29228 deduce which programs it should invoke, and which command-line options
29229 it ought to place on their command lines. This behavior is controlled
29230 by @dfn{spec strings}. In most cases there is one spec string for each
29231 program that GCC can invoke, but a few programs have multiple spec
29232 strings to control their behavior. The spec strings built into GCC can
29233 be overridden by using the @option{-specs=} command-line switch to specify
29234 a spec file.
29235
29236 @dfn{Spec files} are plain-text files that are used to construct spec
29237 strings. They consist of a sequence of directives separated by blank
29238 lines. The type of directive is determined by the first non-whitespace
29239 character on the line, which can be one of the following:
29240
29241 @table @code
29242 @item %@var{command}
29243 Issues a @var{command} to the spec file processor. The commands that can
29244 appear here are:
29245
29246 @table @code
29247 @item %include <@var{file}>
29248 @cindex @code{%include}
29249 Search for @var{file} and insert its text at the current point in the
29250 specs file.
29251
29252 @item %include_noerr <@var{file}>
29253 @cindex @code{%include_noerr}
29254 Just like @samp{%include}, but do not generate an error message if the include
29255 file cannot be found.
29256
29257 @item %rename @var{old_name} @var{new_name}
29258 @cindex @code{%rename}
29259 Rename the spec string @var{old_name} to @var{new_name}.
29260
29261 @end table
29262
29263 @item *[@var{spec_name}]:
29264 This tells the compiler to create, override or delete the named spec
29265 string. All lines after this directive up to the next directive or
29266 blank line are considered to be the text for the spec string. If this
29267 results in an empty string then the spec is deleted. (Or, if the
29268 spec did not exist, then nothing happens.) Otherwise, if the spec
29269 does not currently exist a new spec is created. If the spec does
29270 exist then its contents are overridden by the text of this
29271 directive, unless the first character of that text is the @samp{+}
29272 character, in which case the text is appended to the spec.
29273
29274 @item [@var{suffix}]:
29275 Creates a new @samp{[@var{suffix}] spec} pair. All lines after this directive
29276 and up to the next directive or blank line are considered to make up the
29277 spec string for the indicated suffix. When the compiler encounters an
29278 input file with the named suffix, it processes the spec string in
29279 order to work out how to compile that file. For example:
29280
29281 @smallexample
29282 .ZZ:
29283 z-compile -input %i
29284 @end smallexample
29285
29286 This says that any input file whose name ends in @samp{.ZZ} should be
29287 passed to the program @samp{z-compile}, which should be invoked with the
29288 command-line switch @option{-input} and with the result of performing the
29289 @samp{%i} substitution. (See below.)
29290
29291 As an alternative to providing a spec string, the text following a
29292 suffix directive can be one of the following:
29293
29294 @table @code
29295 @item @@@var{language}
29296 This says that the suffix is an alias for a known @var{language}. This is
29297 similar to using the @option{-x} command-line switch to GCC to specify a
29298 language explicitly. For example:
29299
29300 @smallexample
29301 .ZZ:
29302 @@c++
29303 @end smallexample
29304
29305 Says that .ZZ files are, in fact, C++ source files.
29306
29307 @item #@var{name}
29308 This causes an error messages saying:
29309
29310 @smallexample
29311 @var{name} compiler not installed on this system.
29312 @end smallexample
29313 @end table
29314
29315 GCC already has an extensive list of suffixes built into it.
29316 This directive adds an entry to the end of the list of suffixes, but
29317 since the list is searched from the end backwards, it is effectively
29318 possible to override earlier entries using this technique.
29319
29320 @end table
29321
29322 GCC has the following spec strings built into it. Spec files can
29323 override these strings or create their own. Note that individual
29324 targets can also add their own spec strings to this list.
29325
29326 @smallexample
29327 asm Options to pass to the assembler
29328 asm_final Options to pass to the assembler post-processor
29329 cpp Options to pass to the C preprocessor
29330 cc1 Options to pass to the C compiler
29331 cc1plus Options to pass to the C++ compiler
29332 endfile Object files to include at the end of the link
29333 link Options to pass to the linker
29334 lib Libraries to include on the command line to the linker
29335 libgcc Decides which GCC support library to pass to the linker
29336 linker Sets the name of the linker
29337 predefines Defines to be passed to the C preprocessor
29338 signed_char Defines to pass to CPP to say whether @code{char} is signed
29339 by default
29340 startfile Object files to include at the start of the link
29341 @end smallexample
29342
29343 Here is a small example of a spec file:
29344
29345 @smallexample
29346 %rename lib old_lib
29347
29348 *lib:
29349 --start-group -lgcc -lc -leval1 --end-group %(old_lib)
29350 @end smallexample
29351
29352 This example renames the spec called @samp{lib} to @samp{old_lib} and
29353 then overrides the previous definition of @samp{lib} with a new one.
29354 The new definition adds in some extra command-line options before
29355 including the text of the old definition.
29356
29357 @dfn{Spec strings} are a list of command-line options to be passed to their
29358 corresponding program. In addition, the spec strings can contain
29359 @samp{%}-prefixed sequences to substitute variable text or to
29360 conditionally insert text into the command line. Using these constructs
29361 it is possible to generate quite complex command lines.
29362
29363 Here is a table of all defined @samp{%}-sequences for spec
29364 strings. Note that spaces are not generated automatically around the
29365 results of expanding these sequences. Therefore you can concatenate them
29366 together or combine them with constant text in a single argument.
29367
29368 @table @code
29369 @item %%
29370 Substitute one @samp{%} into the program name or argument.
29371
29372 @item %i
29373 Substitute the name of the input file being processed.
29374
29375 @item %b
29376 Substitute the basename of the input file being processed.
29377 This is the substring up to (and not including) the last period
29378 and not including the directory.
29379
29380 @item %B
29381 This is the same as @samp{%b}, but include the file suffix (text after
29382 the last period).
29383
29384 @item %d
29385 Marks the argument containing or following the @samp{%d} as a
29386 temporary file name, so that that file is deleted if GCC exits
29387 successfully. Unlike @samp{%g}, this contributes no text to the
29388 argument.
29389
29390 @item %g@var{suffix}
29391 Substitute a file name that has suffix @var{suffix} and is chosen
29392 once per compilation, and mark the argument in the same way as
29393 @samp{%d}. To reduce exposure to denial-of-service attacks, the file
29394 name is now chosen in a way that is hard to predict even when previously
29395 chosen file names are known. For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
29396 might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}. @var{suffix} matches
29397 the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
29398 treated exactly as if @samp{%O} had been preprocessed. Previously, @samp{%g}
29399 was simply substituted with a file name chosen once per compilation,
29400 without regard to any appended suffix (which was therefore treated
29401 just like ordinary text), making such attacks more likely to succeed.
29402
29403 @item %u@var{suffix}
29404 Like @samp{%g}, but generates a new temporary file name
29405 each time it appears instead of once per compilation.
29406
29407 @item %U@var{suffix}
29408 Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
29409 new one if there is no such last file name. In the absence of any
29410 @samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
29411 the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s}
29412 involves the generation of two distinct file names, one
29413 for each @samp{%g.s} and another for each @samp{%U.s}. Previously, @samp{%U} was
29414 simply substituted with a file name chosen for the previous @samp{%u},
29415 without regard to any appended suffix.
29416
29417 @item %j@var{suffix}
29418 Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
29419 writable, and if @option{-save-temps} is not used;
29420 otherwise, substitute the name
29421 of a temporary file, just like @samp{%u}. This temporary file is not
29422 meant for communication between processes, but rather as a junk
29423 disposal mechanism.
29424
29425 @item %|@var{suffix}
29426 @itemx %m@var{suffix}
29427 Like @samp{%g}, except if @option{-pipe} is in effect. In that case
29428 @samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
29429 all. These are the two most common ways to instruct a program that it
29430 should read from standard input or write to standard output. If you
29431 need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
29432 construct: see for example @file{gcc/fortran/lang-specs.h}.
29433
29434 @item %.@var{SUFFIX}
29435 Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args
29436 when it is subsequently output with @samp{%*}. @var{SUFFIX} is
29437 terminated by the next space or %.
29438
29439 @item %w
29440 Marks the argument containing or following the @samp{%w} as the
29441 designated output file of this compilation. This puts the argument
29442 into the sequence of arguments that @samp{%o} substitutes.
29443
29444 @item %o
29445 Substitutes the names of all the output files, with spaces
29446 automatically placed around them. You should write spaces
29447 around the @samp{%o} as well or the results are undefined.
29448 @samp{%o} is for use in the specs for running the linker.
29449 Input files whose names have no recognized suffix are not compiled
29450 at all, but they are included among the output files, so they are
29451 linked.
29452
29453 @item %O
29454 Substitutes the suffix for object files. Note that this is
29455 handled specially when it immediately follows @samp{%g, %u, or %U},
29456 because of the need for those to form complete file names. The
29457 handling is such that @samp{%O} is treated exactly as if it had already
29458 been substituted, except that @samp{%g, %u, and %U} do not currently
29459 support additional @var{suffix} characters following @samp{%O} as they do
29460 following, for example, @samp{.o}.
29461
29462 @item %p
29463 Substitutes the standard macro predefinitions for the
29464 current target machine. Use this when running @command{cpp}.
29465
29466 @item %P
29467 Like @samp{%p}, but puts @samp{__} before and after the name of each
29468 predefined macro, except for macros that start with @samp{__} or with
29469 @samp{_@var{L}}, where @var{L} is an uppercase letter. This is for ISO
29470 C@.
29471
29472 @item %I
29473 Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
29474 @option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}),
29475 @option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
29476 and @option{-imultilib} as necessary.
29477
29478 @item %s
29479 Current argument is the name of a library or startup file of some sort.
29480 Search for that file in a standard list of directories and substitute
29481 the full name found. The current working directory is included in the
29482 list of directories scanned.
29483
29484 @item %T
29485 Current argument is the name of a linker script. Search for that file
29486 in the current list of directories to scan for libraries. If the file
29487 is located insert a @option{--script} option into the command line
29488 followed by the full path name found. If the file is not found then
29489 generate an error message. Note: the current working directory is not
29490 searched.
29491
29492 @item %e@var{str}
29493 Print @var{str} as an error message. @var{str} is terminated by a newline.
29494 Use this when inconsistent options are detected.
29495
29496 @item %(@var{name})
29497 Substitute the contents of spec string @var{name} at this point.
29498
29499 @item %x@{@var{option}@}
29500 Accumulate an option for @samp{%X}.
29501
29502 @item %X
29503 Output the accumulated linker options specified by @option{-Wl} or a @samp{%x}
29504 spec string.
29505
29506 @item %Y
29507 Output the accumulated assembler options specified by @option{-Wa}.
29508
29509 @item %Z
29510 Output the accumulated preprocessor options specified by @option{-Wp}.
29511
29512 @item %a
29513 Process the @code{asm} spec. This is used to compute the
29514 switches to be passed to the assembler.
29515
29516 @item %A
29517 Process the @code{asm_final} spec. This is a spec string for
29518 passing switches to an assembler post-processor, if such a program is
29519 needed.
29520
29521 @item %l
29522 Process the @code{link} spec. This is the spec for computing the
29523 command line passed to the linker. Typically it makes use of the
29524 @samp{%L %G %S %D and %E} sequences.
29525
29526 @item %D
29527 Dump out a @option{-L} option for each directory that GCC believes might
29528 contain startup files. If the target supports multilibs then the
29529 current multilib directory is prepended to each of these paths.
29530
29531 @item %L
29532 Process the @code{lib} spec. This is a spec string for deciding which
29533 libraries are included on the command line to the linker.
29534
29535 @item %G
29536 Process the @code{libgcc} spec. This is a spec string for deciding
29537 which GCC support library is included on the command line to the linker.
29538
29539 @item %S
29540 Process the @code{startfile} spec. This is a spec for deciding which
29541 object files are the first ones passed to the linker. Typically
29542 this might be a file named @file{crt0.o}.
29543
29544 @item %E
29545 Process the @code{endfile} spec. This is a spec string that specifies
29546 the last object files that are passed to the linker.
29547
29548 @item %C
29549 Process the @code{cpp} spec. This is used to construct the arguments
29550 to be passed to the C preprocessor.
29551
29552 @item %1
29553 Process the @code{cc1} spec. This is used to construct the options to be
29554 passed to the actual C compiler (@command{cc1}).
29555
29556 @item %2
29557 Process the @code{cc1plus} spec. This is used to construct the options to be
29558 passed to the actual C++ compiler (@command{cc1plus}).
29559
29560 @item %*
29561 Substitute the variable part of a matched option. See below.
29562 Note that each comma in the substituted string is replaced by
29563 a single space.
29564
29565 @item %<S
29566 Remove all occurrences of @code{-S} from the command line. Note---this
29567 command is position dependent. @samp{%} commands in the spec string
29568 before this one see @code{-S}, @samp{%} commands in the spec string
29569 after this one do not.
29570
29571 @item %:@var{function}(@var{args})
29572 Call the named function @var{function}, passing it @var{args}.
29573 @var{args} is first processed as a nested spec string, then split
29574 into an argument vector in the usual fashion. The function returns
29575 a string which is processed as if it had appeared literally as part
29576 of the current spec.
29577
29578 The following built-in spec functions are provided:
29579
29580 @table @code
29581 @item @code{getenv}
29582 The @code{getenv} spec function takes two arguments: an environment
29583 variable name and a string. If the environment variable is not
29584 defined, a fatal error is issued. Otherwise, the return value is the
29585 value of the environment variable concatenated with the string. For
29586 example, if @env{TOPDIR} is defined as @file{/path/to/top}, then:
29587
29588 @smallexample
29589 %:getenv(TOPDIR /include)
29590 @end smallexample
29591
29592 expands to @file{/path/to/top/include}.
29593
29594 @item @code{if-exists}
29595 The @code{if-exists} spec function takes one argument, an absolute
29596 pathname to a file. If the file exists, @code{if-exists} returns the
29597 pathname. Here is a small example of its usage:
29598
29599 @smallexample
29600 *startfile:
29601 crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
29602 @end smallexample
29603
29604 @item @code{if-exists-else}
29605 The @code{if-exists-else} spec function is similar to the @code{if-exists}
29606 spec function, except that it takes two arguments. The first argument is
29607 an absolute pathname to a file. If the file exists, @code{if-exists-else}
29608 returns the pathname. If it does not exist, it returns the second argument.
29609 This way, @code{if-exists-else} can be used to select one file or another,
29610 based on the existence of the first. Here is a small example of its usage:
29611
29612 @smallexample
29613 *startfile:
29614 crt0%O%s %:if-exists(crti%O%s) \
29615 %:if-exists-else(crtbeginT%O%s crtbegin%O%s)
29616 @end smallexample
29617
29618 @item @code{replace-outfile}
29619 The @code{replace-outfile} spec function takes two arguments. It looks for the
29620 first argument in the outfiles array and replaces it with the second argument. Here
29621 is a small example of its usage:
29622
29623 @smallexample
29624 %@{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)@}
29625 @end smallexample
29626
29627 @item @code{remove-outfile}
29628 The @code{remove-outfile} spec function takes one argument. It looks for the
29629 first argument in the outfiles array and removes it. Here is a small example
29630 its usage:
29631
29632 @smallexample
29633 %:remove-outfile(-lm)
29634 @end smallexample
29635
29636 @item @code{pass-through-libs}
29637 The @code{pass-through-libs} spec function takes any number of arguments. It
29638 finds any @option{-l} options and any non-options ending in @file{.a} (which it
29639 assumes are the names of linker input library archive files) and returns a
29640 result containing all the found arguments each prepended by
29641 @option{-plugin-opt=-pass-through=} and joined by spaces. This list is
29642 intended to be passed to the LTO linker plugin.
29643
29644 @smallexample
29645 %:pass-through-libs(%G %L %G)
29646 @end smallexample
29647
29648 @item @code{print-asm-header}
29649 The @code{print-asm-header} function takes no arguments and simply
29650 prints a banner like:
29651
29652 @smallexample
29653 Assembler options
29654 =================
29655
29656 Use "-Wa,OPTION" to pass "OPTION" to the assembler.
29657 @end smallexample
29658
29659 It is used to separate compiler options from assembler options
29660 in the @option{--target-help} output.
29661 @end table
29662
29663 @item %@{S@}
29664 Substitutes the @code{-S} switch, if that switch is given to GCC@.
29665 If that switch is not specified, this substitutes nothing. Note that
29666 the leading dash is omitted when specifying this option, and it is
29667 automatically inserted if the substitution is performed. Thus the spec
29668 string @samp{%@{foo@}} matches the command-line option @option{-foo}
29669 and outputs the command-line option @option{-foo}.
29670
29671 @item %W@{S@}
29672 Like %@{@code{S}@} but mark last argument supplied within as a file to be
29673 deleted on failure.
29674
29675 @item %@{S*@}
29676 Substitutes all the switches specified to GCC whose names start
29677 with @code{-S}, but which also take an argument. This is used for
29678 switches like @option{-o}, @option{-D}, @option{-I}, etc.
29679 GCC considers @option{-o foo} as being
29680 one switch whose name starts with @samp{o}. %@{o*@} substitutes this
29681 text, including the space. Thus two arguments are generated.
29682
29683 @item %@{S*&T*@}
29684 Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options
29685 (the order of @code{S} and @code{T} in the spec is not significant).
29686 There can be any number of ampersand-separated variables; for each the
29687 wild card is optional. Useful for CPP as @samp{%@{D*&U*&A*@}}.
29688
29689 @item %@{S:X@}
29690 Substitutes @code{X}, if the @option{-S} switch is given to GCC@.
29691
29692 @item %@{!S:X@}
29693 Substitutes @code{X}, if the @option{-S} switch is @emph{not} given to GCC@.
29694
29695 @item %@{S*:X@}
29696 Substitutes @code{X} if one or more switches whose names start with
29697 @code{-S} are specified to GCC@. Normally @code{X} is substituted only
29698 once, no matter how many such switches appeared. However, if @code{%*}
29699 appears somewhere in @code{X}, then @code{X} is substituted once
29700 for each matching switch, with the @code{%*} replaced by the part of
29701 that switch matching the @code{*}.
29702
29703 If @code{%*} appears as the last part of a spec sequence then a space
29704 is added after the end of the last substitution. If there is more
29705 text in the sequence, however, then a space is not generated. This
29706 allows the @code{%*} substitution to be used as part of a larger
29707 string. For example, a spec string like this:
29708
29709 @smallexample
29710 %@{mcu=*:--script=%*/memory.ld@}
29711 @end smallexample
29712
29713 @noindent
29714 when matching an option like @option{-mcu=newchip} produces:
29715
29716 @smallexample
29717 --script=newchip/memory.ld
29718 @end smallexample
29719
29720 @item %@{.S:X@}
29721 Substitutes @code{X}, if processing a file with suffix @code{S}.
29722
29723 @item %@{!.S:X@}
29724 Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}.
29725
29726 @item %@{,S:X@}
29727 Substitutes @code{X}, if processing a file for language @code{S}.
29728
29729 @item %@{!,S:X@}
29730 Substitutes @code{X}, if not processing a file for language @code{S}.
29731
29732 @item %@{S|P:X@}
29733 Substitutes @code{X} if either @code{-S} or @code{-P} is given to
29734 GCC@. This may be combined with @samp{!}, @samp{.}, @samp{,}, and
29735 @code{*} sequences as well, although they have a stronger binding than
29736 the @samp{|}. If @code{%*} appears in @code{X}, all of the
29737 alternatives must be starred, and only the first matching alternative
29738 is substituted.
29739
29740 For example, a spec string like this:
29741
29742 @smallexample
29743 %@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
29744 @end smallexample
29745
29746 @noindent
29747 outputs the following command-line options from the following input
29748 command-line options:
29749
29750 @smallexample
29751 fred.c -foo -baz
29752 jim.d -bar -boggle
29753 -d fred.c -foo -baz -boggle
29754 -d jim.d -bar -baz -boggle
29755 @end smallexample
29756
29757 @item %@{S:X; T:Y; :D@}
29758
29759 If @code{S} is given to GCC, substitutes @code{X}; else if @code{T} is
29760 given to GCC, substitutes @code{Y}; else substitutes @code{D}. There can
29761 be as many clauses as you need. This may be combined with @code{.},
29762 @code{,}, @code{!}, @code{|}, and @code{*} as needed.
29763
29764
29765 @end table
29766
29767 The switch matching text @code{S} in a @samp{%@{S@}}, @samp{%@{S:X@}}
29768 or similar construct can use a backslash to ignore the special meaning
29769 of the character following it, thus allowing literal matching of a
29770 character that is otherwise specially treated. For example,
29771 @samp{%@{std=iso9899\:1999:X@}} substitutes @code{X} if the
29772 @option{-std=iso9899:1999} option is given.
29773
29774 The conditional text @code{X} in a @samp{%@{S:X@}} or similar
29775 construct may contain other nested @samp{%} constructs or spaces, or
29776 even newlines. They are processed as usual, as described above.
29777 Trailing white space in @code{X} is ignored. White space may also
29778 appear anywhere on the left side of the colon in these constructs,
29779 except between @code{.} or @code{*} and the corresponding word.
29780
29781 The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
29782 handled specifically in these constructs. If another value of
29783 @option{-O} or the negated form of a @option{-f}, @option{-m}, or
29784 @option{-W} switch is found later in the command line, the earlier
29785 switch value is ignored, except with @{@code{S}*@} where @code{S} is
29786 just one letter, which passes all matching options.
29787
29788 The character @samp{|} at the beginning of the predicate text is used to
29789 indicate that a command should be piped to the following command, but
29790 only if @option{-pipe} is specified.
29791
29792 It is built into GCC which switches take arguments and which do not.
29793 (You might think it would be useful to generalize this to allow each
29794 compiler's spec to say which switches take arguments. But this cannot
29795 be done in a consistent fashion. GCC cannot even decide which input
29796 files have been specified without knowing which switches take arguments,
29797 and it must know which input files to compile in order to tell which
29798 compilers to run).
29799
29800 GCC also knows implicitly that arguments starting in @option{-l} are to be
29801 treated as compiler output files, and passed to the linker in their
29802 proper position among the other output files.
29803
29804 @node Environment Variables
29805 @section Environment Variables Affecting GCC
29806 @cindex environment variables
29807
29808 @c man begin ENVIRONMENT
29809 This section describes several environment variables that affect how GCC
29810 operates. Some of them work by specifying directories or prefixes to use
29811 when searching for various kinds of files. Some are used to specify other
29812 aspects of the compilation environment.
29813
29814 Note that you can also specify places to search using options such as
29815 @option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}). These
29816 take precedence over places specified using environment variables, which
29817 in turn take precedence over those specified by the configuration of GCC@.
29818 @xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint,
29819 GNU Compiler Collection (GCC) Internals}.
29820
29821 @table @env
29822 @item LANG
29823 @itemx LC_CTYPE
29824 @c @itemx LC_COLLATE
29825 @itemx LC_MESSAGES
29826 @c @itemx LC_MONETARY
29827 @c @itemx LC_NUMERIC
29828 @c @itemx LC_TIME
29829 @itemx LC_ALL
29830 @findex LANG
29831 @findex LC_CTYPE
29832 @c @findex LC_COLLATE
29833 @findex LC_MESSAGES
29834 @c @findex LC_MONETARY
29835 @c @findex LC_NUMERIC
29836 @c @findex LC_TIME
29837 @findex LC_ALL
29838 @cindex locale
29839 These environment variables control the way that GCC uses
29840 localization information which allows GCC to work with different
29841 national conventions. GCC inspects the locale categories
29842 @env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do
29843 so. These locale categories can be set to any value supported by your
29844 installation. A typical value is @samp{en_GB.UTF-8} for English in the United
29845 Kingdom encoded in UTF-8.
29846
29847 The @env{LC_CTYPE} environment variable specifies character
29848 classification. GCC uses it to determine the character boundaries in
29849 a string; this is needed for some multibyte encodings that contain quote
29850 and escape characters that are otherwise interpreted as a string
29851 end or escape.
29852
29853 The @env{LC_MESSAGES} environment variable specifies the language to
29854 use in diagnostic messages.
29855
29856 If the @env{LC_ALL} environment variable is set, it overrides the value
29857 of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE}
29858 and @env{LC_MESSAGES} default to the value of the @env{LANG}
29859 environment variable. If none of these variables are set, GCC
29860 defaults to traditional C English behavior.
29861
29862 @item TMPDIR
29863 @findex TMPDIR
29864 If @env{TMPDIR} is set, it specifies the directory to use for temporary
29865 files. GCC uses temporary files to hold the output of one stage of
29866 compilation which is to be used as input to the next stage: for example,
29867 the output of the preprocessor, which is the input to the compiler
29868 proper.
29869
29870 @item GCC_COMPARE_DEBUG
29871 @findex GCC_COMPARE_DEBUG
29872 Setting @env{GCC_COMPARE_DEBUG} is nearly equivalent to passing
29873 @option{-fcompare-debug} to the compiler driver. See the documentation
29874 of this option for more details.
29875
29876 @item GCC_EXEC_PREFIX
29877 @findex GCC_EXEC_PREFIX
29878 If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
29879 names of the subprograms executed by the compiler. No slash is added
29880 when this prefix is combined with the name of a subprogram, but you can
29881 specify a prefix that ends with a slash if you wish.
29882
29883 If @env{GCC_EXEC_PREFIX} is not set, GCC attempts to figure out
29884 an appropriate prefix to use based on the pathname it is invoked with.
29885
29886 If GCC cannot find the subprogram using the specified prefix, it
29887 tries looking in the usual places for the subprogram.
29888
29889 The default value of @env{GCC_EXEC_PREFIX} is
29890 @file{@var{prefix}/lib/gcc/} where @var{prefix} is the prefix to
29891 the installed compiler. In many cases @var{prefix} is the value
29892 of @code{prefix} when you ran the @file{configure} script.
29893
29894 Other prefixes specified with @option{-B} take precedence over this prefix.
29895
29896 This prefix is also used for finding files such as @file{crt0.o} that are
29897 used for linking.
29898
29899 In addition, the prefix is used in an unusual way in finding the
29900 directories to search for header files. For each of the standard
29901 directories whose name normally begins with @samp{/usr/local/lib/gcc}
29902 (more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries
29903 replacing that beginning with the specified prefix to produce an
29904 alternate directory name. Thus, with @option{-Bfoo/}, GCC searches
29905 @file{foo/bar} just before it searches the standard directory
29906 @file{/usr/local/lib/bar}.
29907 If a standard directory begins with the configured
29908 @var{prefix} then the value of @var{prefix} is replaced by
29909 @env{GCC_EXEC_PREFIX} when looking for header files.
29910
29911 @item COMPILER_PATH
29912 @findex COMPILER_PATH
29913 The value of @env{COMPILER_PATH} is a colon-separated list of
29914 directories, much like @env{PATH}. GCC tries the directories thus
29915 specified when searching for subprograms, if it cannot find the
29916 subprograms using @env{GCC_EXEC_PREFIX}.
29917
29918 @item LIBRARY_PATH
29919 @findex LIBRARY_PATH
29920 The value of @env{LIBRARY_PATH} is a colon-separated list of
29921 directories, much like @env{PATH}. When configured as a native compiler,
29922 GCC tries the directories thus specified when searching for special
29923 linker files, if it cannot find them using @env{GCC_EXEC_PREFIX}. Linking
29924 using GCC also uses these directories when searching for ordinary
29925 libraries for the @option{-l} option (but directories specified with
29926 @option{-L} come first).
29927
29928 @item LANG
29929 @findex LANG
29930 @cindex locale definition
29931 This variable is used to pass locale information to the compiler. One way in
29932 which this information is used is to determine the character set to be used
29933 when character literals, string literals and comments are parsed in C and C++.
29934 When the compiler is configured to allow multibyte characters,
29935 the following values for @env{LANG} are recognized:
29936
29937 @table @samp
29938 @item C-JIS
29939 Recognize JIS characters.
29940 @item C-SJIS
29941 Recognize SJIS characters.
29942 @item C-EUCJP
29943 Recognize EUCJP characters.
29944 @end table
29945
29946 If @env{LANG} is not defined, or if it has some other value, then the
29947 compiler uses @code{mblen} and @code{mbtowc} as defined by the default locale to
29948 recognize and translate multibyte characters.
29949 @end table
29950
29951 @noindent
29952 Some additional environment variables affect the behavior of the
29953 preprocessor.
29954
29955 @include cppenv.texi
29956
29957 @c man end
29958
29959 @node Precompiled Headers
29960 @section Using Precompiled Headers
29961 @cindex precompiled headers
29962 @cindex speed of compilation
29963
29964 Often large projects have many header files that are included in every
29965 source file. The time the compiler takes to process these header files
29966 over and over again can account for nearly all of the time required to
29967 build the project. To make builds faster, GCC allows you to
29968 @dfn{precompile} a header file.
29969
29970 To create a precompiled header file, simply compile it as you would any
29971 other file, if necessary using the @option{-x} option to make the driver
29972 treat it as a C or C++ header file. You may want to use a
29973 tool like @command{make} to keep the precompiled header up-to-date when
29974 the headers it contains change.
29975
29976 A precompiled header file is searched for when @code{#include} is
29977 seen in the compilation. As it searches for the included file
29978 (@pxref{Search Path,,Search Path,cpp,The C Preprocessor}) the
29979 compiler looks for a precompiled header in each directory just before it
29980 looks for the include file in that directory. The name searched for is
29981 the name specified in the @code{#include} with @samp{.gch} appended. If
29982 the precompiled header file cannot be used, it is ignored.
29983
29984 For instance, if you have @code{#include "all.h"}, and you have
29985 @file{all.h.gch} in the same directory as @file{all.h}, then the
29986 precompiled header file is used if possible, and the original
29987 header is used otherwise.
29988
29989 Alternatively, you might decide to put the precompiled header file in a
29990 directory and use @option{-I} to ensure that directory is searched
29991 before (or instead of) the directory containing the original header.
29992 Then, if you want to check that the precompiled header file is always
29993 used, you can put a file of the same name as the original header in this
29994 directory containing an @code{#error} command.
29995
29996 This also works with @option{-include}. So yet another way to use
29997 precompiled headers, good for projects not designed with precompiled
29998 header files in mind, is to simply take most of the header files used by
29999 a project, include them from another header file, precompile that header
30000 file, and @option{-include} the precompiled header. If the header files
30001 have guards against multiple inclusion, they are skipped because
30002 they've already been included (in the precompiled header).
30003
30004 If you need to precompile the same header file for different
30005 languages, targets, or compiler options, you can instead make a
30006 @emph{directory} named like @file{all.h.gch}, and put each precompiled
30007 header in the directory, perhaps using @option{-o}. It doesn't matter
30008 what you call the files in the directory; every precompiled header in
30009 the directory is considered. The first precompiled header
30010 encountered in the directory that is valid for this compilation is
30011 used; they're searched in no particular order.
30012
30013 There are many other possibilities, limited only by your imagination,
30014 good sense, and the constraints of your build system.
30015
30016 A precompiled header file can be used only when these conditions apply:
30017
30018 @itemize
30019 @item
30020 Only one precompiled header can be used in a particular compilation.
30021
30022 @item
30023 A precompiled header cannot be used once the first C token is seen. You
30024 can have preprocessor directives before a precompiled header; you cannot
30025 include a precompiled header from inside another header.
30026
30027 @item
30028 The precompiled header file must be produced for the same language as
30029 the current compilation. You cannot use a C precompiled header for a C++
30030 compilation.
30031
30032 @item
30033 The precompiled header file must have been produced by the same compiler
30034 binary as the current compilation is using.
30035
30036 @item
30037 Any macros defined before the precompiled header is included must
30038 either be defined in the same way as when the precompiled header was
30039 generated, or must not affect the precompiled header, which usually
30040 means that they don't appear in the precompiled header at all.
30041
30042 The @option{-D} option is one way to define a macro before a
30043 precompiled header is included; using a @code{#define} can also do it.
30044 There are also some options that define macros implicitly, like
30045 @option{-O} and @option{-Wdeprecated}; the same rule applies to macros
30046 defined this way.
30047
30048 @item If debugging information is output when using the precompiled
30049 header, using @option{-g} or similar, the same kind of debugging information
30050 must have been output when building the precompiled header. However,
30051 a precompiled header built using @option{-g} can be used in a compilation
30052 when no debugging information is being output.
30053
30054 @item The same @option{-m} options must generally be used when building
30055 and using the precompiled header. @xref{Submodel Options},
30056 for any cases where this rule is relaxed.
30057
30058 @item Each of the following options must be the same when building and using
30059 the precompiled header:
30060
30061 @gccoptlist{-fexceptions}
30062
30063 @item
30064 Some other command-line options starting with @option{-f},
30065 @option{-p}, or @option{-O} must be defined in the same way as when
30066 the precompiled header was generated. At present, it's not clear
30067 which options are safe to change and which are not; the safest choice
30068 is to use exactly the same options when generating and using the
30069 precompiled header. The following are known to be safe:
30070
30071 @gccoptlist{-fmessage-length= -fpreprocessed -fsched-interblock @gol
30072 -fsched-spec -fsched-spec-load -fsched-spec-load-dangerous @gol
30073 -fsched-verbose=@var{number} -fschedule-insns -fvisibility= @gol
30074 -pedantic-errors}
30075
30076 @end itemize
30077
30078 For all of these except the last, the compiler automatically
30079 ignores the precompiled header if the conditions aren't met. If you
30080 find an option combination that doesn't work and doesn't cause the
30081 precompiled header to be ignored, please consider filing a bug report,
30082 see @ref{Bugs}.
30083
30084 If you do use differing options when generating and using the
30085 precompiled header, the actual behavior is a mixture of the
30086 behavior for the options. For instance, if you use @option{-g} to
30087 generate the precompiled header but not when using it, you may or may
30088 not get debugging information for routines in the precompiled header.