]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/doc/invoke.texi
gcc/
[thirdparty/gcc.git] / gcc / doc / invoke.texi
1 @c Copyright (C) 1988-2015 Free Software Foundation, Inc.
2 @c This is part of the GCC manual.
3 @c For copying conditions, see the file gcc.texi.
4
5 @ignore
6 @c man begin INCLUDE
7 @include gcc-vers.texi
8 @c man end
9
10 @c man begin COPYRIGHT
11 Copyright @copyright{} 1988-2015 Free Software Foundation, Inc.
12
13 Permission is granted to copy, distribute and/or modify this document
14 under the terms of the GNU Free Documentation License, Version 1.3 or
15 any later version published by the Free Software Foundation; with the
16 Invariant Sections being ``GNU General Public License'' and ``Funding
17 Free Software'', the Front-Cover texts being (a) (see below), and with
18 the Back-Cover Texts being (b) (see below). A copy of the license is
19 included in the gfdl(7) man page.
20
21 (a) The FSF's Front-Cover Text is:
22
23 A GNU Manual
24
25 (b) The FSF's Back-Cover Text is:
26
27 You have freedom to copy and modify this GNU Manual, like GNU
28 software. Copies published by the Free Software Foundation raise
29 funds for GNU development.
30 @c man end
31 @c Set file name and title for the man page.
32 @setfilename gcc
33 @settitle GNU project C and C++ compiler
34 @c man begin SYNOPSIS
35 gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}]
36 [@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
37 [@option{-W}@var{warn}@dots{}] [@option{-Wpedantic}]
38 [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
39 [@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
40 [@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
41 [@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{}
42
43 Only the most useful options are listed here; see below for the
44 remainder. @command{g++} accepts mostly the same options as @command{gcc}.
45 @c man end
46 @c man begin SEEALSO
47 gpl(7), gfdl(7), fsf-funding(7),
48 cpp(1), gcov(1), as(1), ld(1), gdb(1), adb(1), dbx(1), sdb(1)
49 and the Info entries for @file{gcc}, @file{cpp}, @file{as},
50 @file{ld}, @file{binutils} and @file{gdb}.
51 @c man end
52 @c man begin BUGS
53 For instructions on reporting bugs, see
54 @w{@value{BUGURL}}.
55 @c man end
56 @c man begin AUTHOR
57 See the Info entry for @command{gcc}, or
58 @w{@uref{http://gcc.gnu.org/onlinedocs/gcc/Contributors.html}},
59 for contributors to GCC@.
60 @c man end
61 @end ignore
62
63 @node Invoking GCC
64 @chapter GCC Command Options
65 @cindex GCC command options
66 @cindex command options
67 @cindex options, GCC command
68
69 @c man begin DESCRIPTION
70 When you invoke GCC, it normally does preprocessing, compilation,
71 assembly and linking. The ``overall options'' allow you to stop this
72 process at an intermediate stage. For example, the @option{-c} option
73 says not to run the linker. Then the output consists of object files
74 output by the assembler.
75
76 Other options are passed on to one stage of processing. Some options
77 control the preprocessor and others the compiler itself. Yet other
78 options control the assembler and linker; most of these are not
79 documented here, since you rarely need to use any of them.
80
81 @cindex C compilation options
82 Most of the command-line options that you can use with GCC are useful
83 for C programs; when an option is only useful with another language
84 (usually C++), the explanation says so explicitly. If the description
85 for a particular option does not mention a source language, you can use
86 that option with all supported languages.
87
88 @cindex C++ compilation options
89 @xref{Invoking G++,,Compiling C++ Programs}, for a summary of special
90 options for compiling C++ programs.
91
92 @cindex grouping options
93 @cindex options, grouping
94 The @command{gcc} program accepts options and file names as operands. Many
95 options have multi-letter names; therefore multiple single-letter options
96 may @emph{not} be grouped: @option{-dv} is very different from @w{@samp{-d
97 -v}}.
98
99 @cindex order of options
100 @cindex options, order
101 You can mix options and other arguments. For the most part, the order
102 you use doesn't matter. Order does matter when you use several
103 options of the same kind; for example, if you specify @option{-L} more
104 than once, the directories are searched in the order specified. Also,
105 the placement of the @option{-l} option is significant.
106
107 Many options have long names starting with @samp{-f} or with
108 @samp{-W}---for example,
109 @option{-fmove-loop-invariants}, @option{-Wformat} and so on. Most of
110 these have both positive and negative forms; the negative form of
111 @option{-ffoo} is @option{-fno-foo}. This manual documents
112 only one of these two forms, whichever one is not the default.
113
114 @c man end
115
116 @xref{Option Index}, for an index to GCC's options.
117
118 @menu
119 * Option Summary:: Brief list of all options, without explanations.
120 * Overall Options:: Controlling the kind of output:
121 an executable, object files, assembler files,
122 or preprocessed source.
123 * Invoking G++:: Compiling C++ programs.
124 * C Dialect Options:: Controlling the variant of C language compiled.
125 * C++ Dialect Options:: Variations on C++.
126 * Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
127 and Objective-C++.
128 * Diagnostic Message Formatting Options:: Controlling how diagnostics should
129 be formatted.
130 * Warning Options:: How picky should the compiler be?
131 * Debugging Options:: Symbol tables, measurements, and debugging dumps.
132 * Optimize Options:: How much optimization?
133 * Preprocessor Options:: Controlling header files and macro definitions.
134 Also, getting dependency information for Make.
135 * Assembler Options:: Passing options to the assembler.
136 * Link Options:: Specifying libraries and so on.
137 * Directory Options:: Where to find header files and libraries.
138 Where to find the compiler executable files.
139 * Spec Files:: How to pass switches to sub-processes.
140 * Target Options:: Running a cross-compiler, or an old version of GCC.
141 * Submodel Options:: Specifying minor hardware or convention variations,
142 such as 68010 vs 68020.
143 * Code Gen Options:: Specifying conventions for function calls, data layout
144 and register usage.
145 * Environment Variables:: Env vars that affect GCC.
146 * Precompiled Headers:: Compiling a header once, and using it many times.
147 @end menu
148
149 @c man begin OPTIONS
150
151 @node Option Summary
152 @section Option Summary
153
154 Here is a summary of all the options, grouped by type. Explanations are
155 in the following sections.
156
157 @table @emph
158 @item Overall Options
159 @xref{Overall Options,,Options Controlling the Kind of Output}.
160 @gccoptlist{-c -S -E -o @var{file} -no-canonical-prefixes @gol
161 -pipe -pass-exit-codes @gol
162 -x @var{language} -v -### --help@r{[}=@var{class}@r{[},@dots{}@r{]]} --target-help @gol
163 --version -wrapper @@@var{file} -fplugin=@var{file} -fplugin-arg-@var{name}=@var{arg} @gol
164 -fdump-ada-spec@r{[}-slim@r{]} -fada-spec-parent=@var{unit} -fdump-go-spec=@var{file}}
165
166 @item C Language Options
167 @xref{C Dialect Options,,Options Controlling C Dialect}.
168 @gccoptlist{-ansi -std=@var{standard} -fgnu89-inline @gol
169 -aux-info @var{filename} -fallow-parameterless-variadic-functions @gol
170 -fno-asm -fno-builtin -fno-builtin-@var{function} @gol
171 -fhosted -ffreestanding -fopenacc -fopenmp -fopenmp-simd @gol
172 -fms-extensions -fplan9-extensions -trigraphs -traditional -traditional-cpp @gol
173 -fallow-single-precision -fcond-mismatch -flax-vector-conversions @gol
174 -fsigned-bitfields -fsigned-char @gol
175 -funsigned-bitfields -funsigned-char}
176
177 @item C++ Language Options
178 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
179 @gccoptlist{-fabi-version=@var{n} -fno-access-control -fcheck-new @gol
180 -fconstexpr-depth=@var{n} -ffriend-injection @gol
181 -fno-elide-constructors @gol
182 -fno-enforce-eh-specs @gol
183 -ffor-scope -fno-for-scope -fno-gnu-keywords @gol
184 -fno-implicit-templates @gol
185 -fno-implicit-inline-templates @gol
186 -fno-implement-inlines -fms-extensions @gol
187 -fno-nonansi-builtins -fnothrow-opt -fno-operator-names @gol
188 -fno-optional-diags -fpermissive @gol
189 -fno-pretty-templates @gol
190 -frepo -fno-rtti -fsized-deallocation @gol
191 -fstats -ftemplate-backtrace-limit=@var{n} @gol
192 -ftemplate-depth=@var{n} @gol
193 -fno-threadsafe-statics -fuse-cxa-atexit @gol
194 -fno-weak -nostdinc++ @gol
195 -fvisibility-inlines-hidden @gol
196 -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]} @gol
197 -fvtv-counts -fvtv-debug @gol
198 -fvisibility-ms-compat @gol
199 -fext-numeric-literals @gol
200 -Wabi=@var{n} -Wabi-tag -Wconversion-null -Wctor-dtor-privacy @gol
201 -Wdelete-non-virtual-dtor -Wliteral-suffix -Wnarrowing @gol
202 -Wnoexcept -Wnon-virtual-dtor -Wreorder @gol
203 -Weffc++ -Wstrict-null-sentinel @gol
204 -Wno-non-template-friend -Wold-style-cast @gol
205 -Woverloaded-virtual -Wno-pmf-conversions @gol
206 -Wsign-promo}
207
208 @item Objective-C and Objective-C++ Language Options
209 @xref{Objective-C and Objective-C++ Dialect Options,,Options Controlling
210 Objective-C and Objective-C++ Dialects}.
211 @gccoptlist{-fconstant-string-class=@var{class-name} @gol
212 -fgnu-runtime -fnext-runtime @gol
213 -fno-nil-receivers @gol
214 -fobjc-abi-version=@var{n} @gol
215 -fobjc-call-cxx-cdtors @gol
216 -fobjc-direct-dispatch @gol
217 -fobjc-exceptions @gol
218 -fobjc-gc @gol
219 -fobjc-nilcheck @gol
220 -fobjc-std=objc1 @gol
221 -fno-local-ivars @gol
222 -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]} @gol
223 -freplace-objc-classes @gol
224 -fzero-link @gol
225 -gen-decls @gol
226 -Wassign-intercept @gol
227 -Wno-protocol -Wselector @gol
228 -Wstrict-selector-match @gol
229 -Wundeclared-selector}
230
231 @item Diagnostic Message Formatting Options
232 @xref{Diagnostic Message Formatting Options,,Options to Control Diagnostic Messages Formatting}.
233 @gccoptlist{-fmessage-length=@var{n} @gol
234 -fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]} @gol
235 -fdiagnostics-color=@r{[}auto@r{|}never@r{|}always@r{]} @gol
236 -fno-diagnostics-show-option -fno-diagnostics-show-caret}
237
238 @item Warning Options
239 @xref{Warning Options,,Options to Request or Suppress Warnings}.
240 @gccoptlist{-fsyntax-only -fmax-errors=@var{n} -Wpedantic @gol
241 -pedantic-errors @gol
242 -w -Wextra -Wall -Waddress -Waggregate-return @gol
243 -Waggressive-loop-optimizations -Warray-bounds -Warray-bounds=@var{n} @gol
244 -Wbool-compare -Wframe-address @gol
245 -Wno-attributes -Wno-builtin-macro-redefined @gol
246 -Wc90-c99-compat -Wc99-c11-compat @gol
247 -Wc++-compat -Wc++11-compat -Wc++14-compat -Wcast-align -Wcast-qual @gol
248 -Wchar-subscripts -Wclobbered -Wcomment -Wconditionally-supported @gol
249 -Wconversion -Wcoverage-mismatch -Wdate-time -Wdelete-incomplete -Wno-cpp @gol
250 -Wno-deprecated -Wno-deprecated-declarations -Wno-designated-init @gol
251 -Wdisabled-optimization @gol
252 -Wno-discarded-qualifiers -Wno-discarded-array-qualifiers @gol
253 -Wno-div-by-zero -Wdouble-promotion -Wempty-body -Wenum-compare @gol
254 -Wno-endif-labels -Werror -Werror=* @gol
255 -Wfatal-errors -Wfloat-equal -Wformat -Wformat=2 @gol
256 -Wno-format-contains-nul -Wno-format-extra-args -Wformat-nonliteral @gol
257 -Wformat-security -Wformat-signedness -Wformat-y2k @gol
258 -Wframe-larger-than=@var{len} -Wno-free-nonheap-object -Wjump-misses-init @gol
259 -Wignored-qualifiers -Wincompatible-pointer-types @gol
260 -Wimplicit -Wimplicit-function-declaration -Wimplicit-int @gol
261 -Winit-self -Winline -Wno-int-conversion @gol
262 -Wno-int-to-pointer-cast -Wno-invalid-offsetof @gol
263 -Wnull-dereference @gol
264 -Winvalid-pch -Wlarger-than=@var{len} -Wunsafe-loop-optimizations @gol
265 -Wlogical-op -Wlogical-not-parentheses -Wlong-long @gol
266 -Wmain -Wmaybe-uninitialized -Wmemset-transposed-args @gol
267 -Wmisleading-indentation -Wmissing-braces @gol
268 -Wmissing-field-initializers -Wmissing-include-dirs @gol
269 -Wno-multichar -Wnonnull -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]} @gol
270 -Wodr -Wno-overflow -Wopenmp-simd @gol
271 -Woverride-init-side-effects @gol
272 -Woverlength-strings -Wpacked -Wpacked-bitfield-compat -Wpadded @gol
273 -Wparentheses -Wpedantic-ms-format -Wno-pedantic-ms-format @gol
274 -Wpointer-arith -Wno-pointer-to-int-cast @gol
275 -Wredundant-decls -Wno-return-local-addr @gol
276 -Wreturn-type -Wsequence-point -Wshadow -Wno-shadow-ivar @gol
277 -Wshift-overflow -Wshift-overflow=@var{n} @gol
278 -Wshift-count-negative -Wshift-count-overflow -Wshift-negative-value @gol
279 -Wsign-compare -Wsign-conversion -Wfloat-conversion @gol
280 -Wsizeof-pointer-memaccess -Wsizeof-array-argument @gol
281 -Wstack-protector -Wstack-usage=@var{len} -Wstrict-aliasing @gol
282 -Wstrict-aliasing=n @gol -Wstrict-overflow -Wstrict-overflow=@var{n} @gol
283 -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{]} @gol
284 -Wsuggest-final-types @gol -Wsuggest-final-methods -Wsuggest-override @gol
285 -Wmissing-format-attribute @gol
286 -Wswitch -Wswitch-default -Wswitch-enum -Wswitch-bool -Wsync-nand @gol
287 -Wsystem-headers -Wtautological-compare -Wtrampolines -Wtrigraphs @gol
288 -Wtype-limits -Wundef @gol
289 -Wuninitialized -Wunknown-pragmas -Wno-pragmas @gol
290 -Wunsuffixed-float-constants -Wunused -Wunused-function @gol
291 -Wunused-label -Wunused-local-typedefs -Wunused-parameter @gol
292 -Wno-unused-result -Wunused-value @gol -Wunused-variable @gol
293 -Wunused-but-set-parameter -Wunused-but-set-variable @gol
294 -Wuseless-cast -Wvariadic-macros -Wvector-operation-performance @gol
295 -Wvla -Wvolatile-register-var -Wwrite-strings @gol
296 -Wzero-as-null-pointer-constant}
297
298 @item C and Objective-C-only Warning Options
299 @gccoptlist{-Wbad-function-cast -Wmissing-declarations @gol
300 -Wmissing-parameter-type -Wmissing-prototypes -Wnested-externs @gol
301 -Wold-style-declaration -Wold-style-definition @gol
302 -Wstrict-prototypes -Wtraditional -Wtraditional-conversion @gol
303 -Wdeclaration-after-statement -Wpointer-sign}
304
305 @item Debugging Options
306 @xref{Debugging Options,,Options for Debugging Your Program or GCC}.
307 @gccoptlist{-d@var{letters} -dumpspecs -dumpmachine -dumpversion @gol
308 -fsanitize=@var{style} -fsanitize-recover -fsanitize-recover=@var{style} @gol
309 -fasan-shadow-offset=@var{number} -fsanitize-sections=@var{s1},@var{s2},... @gol
310 -fsanitize-undefined-trap-on-error @gol
311 -fcheck-pointer-bounds -fchkp-check-incomplete-type @gol
312 -fchkp-first-field-has-own-bounds -fchkp-narrow-bounds @gol
313 -fchkp-narrow-to-innermost-array -fchkp-optimize @gol
314 -fchkp-use-fast-string-functions -fchkp-use-nochk-string-functions @gol
315 -fchkp-use-static-bounds -fchkp-use-static-const-bounds @gol
316 -fchkp-treat-zero-dynamic-size-as-infinite -fchkp-check-read @gol
317 -fchkp-check-read -fchkp-check-write -fchkp-store-bounds @gol
318 -fchkp-instrument-calls -fchkp-instrument-marked-only @gol
319 -fchkp-use-wrappers @gol
320 -fdbg-cnt-list -fdbg-cnt=@var{counter-value-list} @gol
321 -fdisable-ipa-@var{pass_name} @gol
322 -fdisable-rtl-@var{pass_name} @gol
323 -fdisable-rtl-@var{pass-name}=@var{range-list} @gol
324 -fdisable-tree-@var{pass_name} @gol
325 -fdisable-tree-@var{pass-name}=@var{range-list} @gol
326 -fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links @gol
327 -fdump-translation-unit@r{[}-@var{n}@r{]} @gol
328 -fdump-class-hierarchy@r{[}-@var{n}@r{]} @gol
329 -fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline @gol
330 -fdump-passes @gol
331 -fdump-statistics @gol
332 -fdump-tree-all @gol
333 -fdump-tree-original@r{[}-@var{n}@r{]} @gol
334 -fdump-tree-optimized@r{[}-@var{n}@r{]} @gol
335 -fdump-tree-cfg -fdump-tree-alias @gol
336 -fdump-tree-ch @gol
337 -fdump-tree-ssa@r{[}-@var{n}@r{]} -fdump-tree-pre@r{[}-@var{n}@r{]} @gol
338 -fdump-tree-ccp@r{[}-@var{n}@r{]} -fdump-tree-dce@r{[}-@var{n}@r{]} @gol
339 -fdump-tree-gimple@r{[}-raw@r{]} @gol
340 -fdump-tree-dom@r{[}-@var{n}@r{]} @gol
341 -fdump-tree-dse@r{[}-@var{n}@r{]} @gol
342 -fdump-tree-phiprop@r{[}-@var{n}@r{]} @gol
343 -fdump-tree-phiopt@r{[}-@var{n}@r{]} @gol
344 -fdump-tree-forwprop@r{[}-@var{n}@r{]} @gol
345 -fdump-tree-copyrename@r{[}-@var{n}@r{]} @gol
346 -fdump-tree-nrv -fdump-tree-vect @gol
347 -fdump-tree-sink @gol
348 -fdump-tree-sra@r{[}-@var{n}@r{]} @gol
349 -fdump-tree-forwprop@r{[}-@var{n}@r{]} @gol
350 -fdump-tree-fre@r{[}-@var{n}@r{]} @gol
351 -fdump-tree-vtable-verify @gol
352 -fdump-tree-vrp@r{[}-@var{n}@r{]} @gol
353 -fdump-tree-storeccp@r{[}-@var{n}@r{]} @gol
354 -fdump-final-insns=@var{file} @gol
355 -fcompare-debug@r{[}=@var{opts}@r{]} -fcompare-debug-second @gol
356 -feliminate-dwarf2-dups -fno-eliminate-unused-debug-types @gol
357 -feliminate-unused-debug-symbols -femit-class-debug-always @gol
358 -fenable-@var{kind}-@var{pass} @gol
359 -fenable-@var{kind}-@var{pass}=@var{range-list} @gol
360 -fdebug-types-section -fmem-report-wpa @gol
361 -fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report -fprofile-arcs @gol
362 -fopt-info @gol
363 -fopt-info-@var{options}@r{[}=@var{file}@r{]} @gol
364 -frandom-seed=@var{number} -fsched-verbose=@var{n} @gol
365 -fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose @gol
366 -fstack-usage -ftest-coverage -ftime-report -fvar-tracking @gol
367 -fvar-tracking-assignments -fvar-tracking-assignments-toggle @gol
368 -g -g@var{level} -gtoggle -gcoff -gdwarf-@var{version} @gol
369 -ggdb -grecord-gcc-switches -gno-record-gcc-switches @gol
370 -gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf @gol
371 -gvms -gxcoff -gxcoff+ -gz@r{[}=@var{type}@r{]} @gol
372 -fno-merge-debug-strings -fno-dwarf2-cfi-asm @gol
373 -fdebug-prefix-map=@var{old}=@var{new} @gol
374 -femit-struct-debug-baseonly -femit-struct-debug-reduced @gol
375 -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]} @gol
376 -p -pg -print-file-name=@var{library} -print-libgcc-file-name @gol
377 -print-multi-directory -print-multi-lib -print-multi-os-directory @gol
378 -print-prog-name=@var{program} -print-search-dirs -Q @gol
379 -print-sysroot -print-sysroot-headers-suffix @gol
380 -save-temps -save-temps=cwd -save-temps=obj -time@r{[}=@var{file}@r{]}}
381
382 @item Optimization Options
383 @xref{Optimize Options,,Options that Control Optimization}.
384 @gccoptlist{-faggressive-loop-optimizations -falign-functions[=@var{n}] @gol
385 -falign-jumps[=@var{n}] @gol
386 -falign-labels[=@var{n}] -falign-loops[=@var{n}] @gol
387 -fassociative-math -fauto-profile -fauto-profile[=@var{path}] @gol
388 -fauto-inc-dec -fbranch-probabilities @gol
389 -fbranch-target-load-optimize -fbranch-target-load-optimize2 @gol
390 -fbtr-bb-exclusive -fcaller-saves @gol
391 -fcombine-stack-adjustments -fconserve-stack @gol
392 -fcompare-elim -fcprop-registers -fcrossjumping @gol
393 -fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules @gol
394 -fcx-limited-range @gol
395 -fdata-sections -fdce -fdelayed-branch @gol
396 -fdelete-null-pointer-checks -fdevirtualize -fdevirtualize-speculatively @gol
397 -fdevirtualize-at-ltrans -fdse @gol
398 -fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects @gol
399 -ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=@var{style} @gol
400 -fforward-propagate -ffp-contract=@var{style} -ffunction-sections @gol
401 -fgcse -fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity @gol
402 -fgcse-sm -fhoist-adjacent-loads -fif-conversion @gol
403 -fif-conversion2 -findirect-inlining @gol
404 -finline-functions -finline-functions-called-once -finline-limit=@var{n} @gol
405 -finline-small-functions -fipa-cp -fipa-cp-clone -fipa-cp-alignment @gol
406 -fipa-pta -fipa-profile -fipa-pure-const -fipa-reference -fipa-icf @gol
407 -fira-algorithm=@var{algorithm} @gol
408 -fira-region=@var{region} -fira-hoist-pressure @gol
409 -fira-loop-pressure -fno-ira-share-save-slots @gol
410 -fno-ira-share-spill-slots -fira-verbose=@var{n} @gol
411 -fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute @gol
412 -fivopts -fkeep-inline-functions -fkeep-static-consts @gol
413 -flive-range-shrinkage @gol
414 -floop-block -floop-interchange -floop-strip-mine @gol
415 -floop-unroll-and-jam -floop-nest-optimize @gol
416 -floop-parallelize-all -flra-remat -flto -flto-compression-level @gol
417 -flto-partition=@var{alg} -flto-report -flto-report-wpa -fmerge-all-constants @gol
418 -fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves @gol
419 -fmove-loop-invariants -fno-branch-count-reg @gol
420 -fno-defer-pop -fno-function-cse -fno-guess-branch-probability @gol
421 -fno-inline -fno-math-errno -fno-peephole -fno-peephole2 @gol
422 -fno-sched-interblock -fno-sched-spec -fno-signed-zeros @gol
423 -fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss @gol
424 -fomit-frame-pointer -foptimize-sibling-calls @gol
425 -fpartial-inlining -fpeel-loops -fpredictive-commoning @gol
426 -fprefetch-loop-arrays -fprofile-report @gol
427 -fprofile-correction -fprofile-dir=@var{path} -fprofile-generate @gol
428 -fprofile-generate=@var{path} @gol
429 -fprofile-use -fprofile-use=@var{path} -fprofile-values @gol
430 -fprofile-reorder-functions @gol
431 -freciprocal-math -free -frename-registers -freorder-blocks @gol
432 -freorder-blocks-and-partition -freorder-functions @gol
433 -frerun-cse-after-loop -freschedule-modulo-scheduled-loops @gol
434 -frounding-math -fsched2-use-superblocks -fsched-pressure @gol
435 -fsched-spec-load -fsched-spec-load-dangerous @gol
436 -fsched-stalled-insns-dep[=@var{n}] -fsched-stalled-insns[=@var{n}] @gol
437 -fsched-group-heuristic -fsched-critical-path-heuristic @gol
438 -fsched-spec-insn-heuristic -fsched-rank-heuristic @gol
439 -fsched-last-insn-heuristic -fsched-dep-count-heuristic @gol
440 -fschedule-fusion @gol
441 -fschedule-insns -fschedule-insns2 -fsection-anchors @gol
442 -fselective-scheduling -fselective-scheduling2 @gol
443 -fsel-sched-pipelining -fsel-sched-pipelining-outer-loops @gol
444 -fsemantic-interposition @gol
445 -fshrink-wrap -fsignaling-nans -fsingle-precision-constant @gol
446 -fsplit-ivs-in-unroller -fsplit-wide-types -fssa-phiopt @gol
447 -fstack-protector -fstack-protector-all -fstack-protector-strong @gol
448 -fstack-protector-explicit -fstdarg-opt -fstrict-aliasing @gol
449 -fstrict-overflow -fthread-jumps -ftracer -ftree-bit-ccp @gol
450 -ftree-builtin-call-dce -ftree-ccp -ftree-ch @gol
451 -ftree-coalesce-inline-vars -ftree-coalesce-vars -ftree-copy-prop @gol
452 -ftree-copyrename -ftree-dce -ftree-dominator-opts -ftree-dse @gol
453 -ftree-forwprop -ftree-fre -ftree-loop-if-convert @gol
454 -ftree-loop-if-convert-stores -ftree-loop-im @gol
455 -ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns @gol
456 -ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize @gol
457 -ftree-loop-vectorize @gol
458 -ftree-parallelize-loops=@var{n} -ftree-pre -ftree-partial-pre -ftree-pta @gol
459 -ftree-reassoc -ftree-sink -ftree-slsr -ftree-sra @gol
460 -ftree-switch-conversion -ftree-tail-merge -ftree-ter @gol
461 -ftree-vectorize -ftree-vrp @gol
462 -funit-at-a-time -funroll-all-loops -funroll-loops @gol
463 -funsafe-loop-optimizations -funsafe-math-optimizations -funswitch-loops @gol
464 -fipa-ra -fvariable-expansion-in-unroller -fvect-cost-model -fvpt @gol
465 -fweb -fwhole-program -fwpa -fuse-linker-plugin @gol
466 --param @var{name}=@var{value}
467 -O -O0 -O1 -O2 -O3 -Os -Ofast -Og}
468
469 @item Preprocessor Options
470 @xref{Preprocessor Options,,Options Controlling the Preprocessor}.
471 @gccoptlist{-A@var{question}=@var{answer} @gol
472 -A-@var{question}@r{[}=@var{answer}@r{]} @gol
473 -C -dD -dI -dM -dN @gol
474 -D@var{macro}@r{[}=@var{defn}@r{]} -E -H @gol
475 -idirafter @var{dir} @gol
476 -include @var{file} -imacros @var{file} @gol
477 -iprefix @var{file} -iwithprefix @var{dir} @gol
478 -iwithprefixbefore @var{dir} -isystem @var{dir} @gol
479 -imultilib @var{dir} -isysroot @var{dir} @gol
480 -M -MM -MF -MG -MP -MQ -MT -nostdinc @gol
481 -P -fdebug-cpp -ftrack-macro-expansion -fworking-directory @gol
482 -remap -trigraphs -undef -U@var{macro} @gol
483 -Wp,@var{option} -Xpreprocessor @var{option} -no-integrated-cpp}
484
485 @item Assembler Option
486 @xref{Assembler Options,,Passing Options to the Assembler}.
487 @gccoptlist{-Wa,@var{option} -Xassembler @var{option}}
488
489 @item Linker Options
490 @xref{Link Options,,Options for Linking}.
491 @gccoptlist{@var{object-file-name} -fuse-ld=@var{linker} -l@var{library} @gol
492 -nostartfiles -nodefaultlibs -nostdlib -pie -rdynamic @gol
493 -s -static -static-libgcc -static-libstdc++ @gol
494 -static-libasan -static-libtsan -static-liblsan -static-libubsan @gol
495 -static-libmpx -static-libmpxwrappers @gol
496 -shared -shared-libgcc -symbolic @gol
497 -T @var{script} -Wl,@var{option} -Xlinker @var{option} @gol
498 -u @var{symbol} -z @var{keyword}}
499
500 @item Directory Options
501 @xref{Directory Options,,Options for Directory Search}.
502 @gccoptlist{-B@var{prefix} -I@var{dir} -iplugindir=@var{dir} @gol
503 -iquote@var{dir} -L@var{dir} -specs=@var{file} -I- @gol
504 --sysroot=@var{dir} --no-sysroot-suffix}
505
506 @item Machine Dependent Options
507 @xref{Submodel Options,,Hardware Models and Configurations}.
508 @c This list is ordered alphanumerically by subsection name.
509 @c Try and put the significant identifier (CPU or system) first,
510 @c so users have a clue at guessing where the ones they want will be.
511
512 @emph{AArch64 Options}
513 @gccoptlist{-mabi=@var{name} -mbig-endian -mlittle-endian @gol
514 -mgeneral-regs-only @gol
515 -mcmodel=tiny -mcmodel=small -mcmodel=large @gol
516 -mstrict-align @gol
517 -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer @gol
518 -mtls-dialect=desc -mtls-dialect=traditional @gol
519 -mfix-cortex-a53-835769 -mno-fix-cortex-a53-835769 @gol
520 -mfix-cortex-a53-843419 -mno-fix-cortex-a53-843419 @gol
521 -march=@var{name} -mcpu=@var{name} -mtune=@var{name}}
522
523 @emph{Adapteva Epiphany Options}
524 @gccoptlist{-mhalf-reg-file -mprefer-short-insn-regs @gol
525 -mbranch-cost=@var{num} -mcmove -mnops=@var{num} -msoft-cmpsf @gol
526 -msplit-lohi -mpost-inc -mpost-modify -mstack-offset=@var{num} @gol
527 -mround-nearest -mlong-calls -mshort-calls -msmall16 @gol
528 -mfp-mode=@var{mode} -mvect-double -max-vect-align=@var{num} @gol
529 -msplit-vecmove-early -m1reg-@var{reg}}
530
531 @emph{ARC Options}
532 @gccoptlist{-mbarrel-shifter @gol
533 -mcpu=@var{cpu} -mA6 -mARC600 -mA7 -mARC700 @gol
534 -mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr @gol
535 -mea -mno-mpy -mmul32x16 -mmul64 @gol
536 -mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float -mswap @gol
537 -mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape @gol
538 -mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof @gol
539 -mepilogue-cfi -mlong-calls -mmedium-calls -msdata @gol
540 -mucb-mcount -mvolatile-cache @gol
541 -malign-call -mauto-modify-reg -mbbit-peephole -mno-brcc @gol
542 -mcase-vector-pcrel -mcompact-casesi -mno-cond-exec -mearly-cbranchsi @gol
543 -mexpand-adddi -mindexed-loads -mlra -mlra-priority-none @gol
544 -mlra-priority-compact mlra-priority-noncompact -mno-millicode @gol
545 -mmixed-code -mq-class -mRcq -mRcw -msize-level=@var{level} @gol
546 -mtune=@var{cpu} -mmultcost=@var{num} -munalign-prob-threshold=@var{probability}}
547
548 @emph{ARM Options}
549 @gccoptlist{-mapcs-frame -mno-apcs-frame @gol
550 -mabi=@var{name} @gol
551 -mapcs-stack-check -mno-apcs-stack-check @gol
552 -mapcs-float -mno-apcs-float @gol
553 -mapcs-reentrant -mno-apcs-reentrant @gol
554 -msched-prolog -mno-sched-prolog @gol
555 -mlittle-endian -mbig-endian @gol
556 -mfloat-abi=@var{name} @gol
557 -mfp16-format=@var{name}
558 -mthumb-interwork -mno-thumb-interwork @gol
559 -mcpu=@var{name} -march=@var{name} -mfpu=@var{name} @gol
560 -mtune=@var{name} -mprint-tune-info @gol
561 -mstructure-size-boundary=@var{n} @gol
562 -mabort-on-noreturn @gol
563 -mlong-calls -mno-long-calls @gol
564 -msingle-pic-base -mno-single-pic-base @gol
565 -mpic-register=@var{reg} @gol
566 -mnop-fun-dllimport @gol
567 -mpoke-function-name @gol
568 -mthumb -marm @gol
569 -mtpcs-frame -mtpcs-leaf-frame @gol
570 -mcaller-super-interworking -mcallee-super-interworking @gol
571 -mtp=@var{name} -mtls-dialect=@var{dialect} @gol
572 -mword-relocations @gol
573 -mfix-cortex-m3-ldrd @gol
574 -munaligned-access @gol
575 -mneon-for-64bits @gol
576 -mslow-flash-data @gol
577 -masm-syntax-unified @gol
578 -mrestrict-it}
579
580 @emph{AVR Options}
581 @gccoptlist{-mmcu=@var{mcu} -maccumulate-args -mbranch-cost=@var{cost} @gol
582 -mcall-prologues -mint8 -mn_flash=@var{size} -mno-interrupts @gol
583 -mrelax -mrmw -mstrict-X -mtiny-stack -nodevicelib -Waddr-space-convert}
584
585 @emph{Blackfin Options}
586 @gccoptlist{-mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]} @gol
587 -msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer @gol
588 -mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly @gol
589 -mlow-64k -mno-low64k -mstack-check-l1 -mid-shared-library @gol
590 -mno-id-shared-library -mshared-library-id=@var{n} @gol
591 -mleaf-id-shared-library -mno-leaf-id-shared-library @gol
592 -msep-data -mno-sep-data -mlong-calls -mno-long-calls @gol
593 -mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram @gol
594 -micplb}
595
596 @emph{C6X Options}
597 @gccoptlist{-mbig-endian -mlittle-endian -march=@var{cpu} @gol
598 -msim -msdata=@var{sdata-type}}
599
600 @emph{CRIS Options}
601 @gccoptlist{-mcpu=@var{cpu} -march=@var{cpu} -mtune=@var{cpu} @gol
602 -mmax-stack-frame=@var{n} -melinux-stacksize=@var{n} @gol
603 -metrax4 -metrax100 -mpdebug -mcc-init -mno-side-effects @gol
604 -mstack-align -mdata-align -mconst-align @gol
605 -m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt @gol
606 -melf -maout -melinux -mlinux -sim -sim2 @gol
607 -mmul-bug-workaround -mno-mul-bug-workaround}
608
609 @emph{CR16 Options}
610 @gccoptlist{-mmac @gol
611 -mcr16cplus -mcr16c @gol
612 -msim -mint32 -mbit-ops
613 -mdata-model=@var{model}}
614
615 @emph{Darwin Options}
616 @gccoptlist{-all_load -allowable_client -arch -arch_errors_fatal @gol
617 -arch_only -bind_at_load -bundle -bundle_loader @gol
618 -client_name -compatibility_version -current_version @gol
619 -dead_strip @gol
620 -dependency-file -dylib_file -dylinker_install_name @gol
621 -dynamic -dynamiclib -exported_symbols_list @gol
622 -filelist -flat_namespace -force_cpusubtype_ALL @gol
623 -force_flat_namespace -headerpad_max_install_names @gol
624 -iframework @gol
625 -image_base -init -install_name -keep_private_externs @gol
626 -multi_module -multiply_defined -multiply_defined_unused @gol
627 -noall_load -no_dead_strip_inits_and_terms @gol
628 -nofixprebinding -nomultidefs -noprebind -noseglinkedit @gol
629 -pagezero_size -prebind -prebind_all_twolevel_modules @gol
630 -private_bundle -read_only_relocs -sectalign @gol
631 -sectobjectsymbols -whyload -seg1addr @gol
632 -sectcreate -sectobjectsymbols -sectorder @gol
633 -segaddr -segs_read_only_addr -segs_read_write_addr @gol
634 -seg_addr_table -seg_addr_table_filename -seglinkedit @gol
635 -segprot -segs_read_only_addr -segs_read_write_addr @gol
636 -single_module -static -sub_library -sub_umbrella @gol
637 -twolevel_namespace -umbrella -undefined @gol
638 -unexported_symbols_list -weak_reference_mismatches @gol
639 -whatsloaded -F -gused -gfull -mmacosx-version-min=@var{version} @gol
640 -mkernel -mone-byte-bool}
641
642 @emph{DEC Alpha Options}
643 @gccoptlist{-mno-fp-regs -msoft-float @gol
644 -mieee -mieee-with-inexact -mieee-conformant @gol
645 -mfp-trap-mode=@var{mode} -mfp-rounding-mode=@var{mode} @gol
646 -mtrap-precision=@var{mode} -mbuild-constants @gol
647 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} @gol
648 -mbwx -mmax -mfix -mcix @gol
649 -mfloat-vax -mfloat-ieee @gol
650 -mexplicit-relocs -msmall-data -mlarge-data @gol
651 -msmall-text -mlarge-text @gol
652 -mmemory-latency=@var{time}}
653
654 @emph{FR30 Options}
655 @gccoptlist{-msmall-model -mno-lsim}
656
657 @emph{FT32 Options}
658 @gccoptlist{-msim -mlra}
659
660 @emph{FRV Options}
661 @gccoptlist{-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64 @gol
662 -mhard-float -msoft-float @gol
663 -malloc-cc -mfixed-cc -mdword -mno-dword @gol
664 -mdouble -mno-double @gol
665 -mmedia -mno-media -mmuladd -mno-muladd @gol
666 -mfdpic -minline-plt -mgprel-ro -multilib-library-pic @gol
667 -mlinked-fp -mlong-calls -malign-labels @gol
668 -mlibrary-pic -macc-4 -macc-8 @gol
669 -mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move @gol
670 -moptimize-membar -mno-optimize-membar @gol
671 -mscc -mno-scc -mcond-exec -mno-cond-exec @gol
672 -mvliw-branch -mno-vliw-branch @gol
673 -mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec @gol
674 -mno-nested-cond-exec -mtomcat-stats @gol
675 -mTLS -mtls @gol
676 -mcpu=@var{cpu}}
677
678 @emph{GNU/Linux Options}
679 @gccoptlist{-mglibc -muclibc -mmusl -mbionic -mandroid @gol
680 -tno-android-cc -tno-android-ld}
681
682 @emph{H8/300 Options}
683 @gccoptlist{-mrelax -mh -ms -mn -mexr -mno-exr -mint32 -malign-300}
684
685 @emph{HPPA Options}
686 @gccoptlist{-march=@var{architecture-type} @gol
687 -mdisable-fpregs -mdisable-indexing @gol
688 -mfast-indirect-calls -mgas -mgnu-ld -mhp-ld @gol
689 -mfixed-range=@var{register-range} @gol
690 -mjump-in-delay -mlinker-opt -mlong-calls @gol
691 -mlong-load-store -mno-disable-fpregs @gol
692 -mno-disable-indexing -mno-fast-indirect-calls -mno-gas @gol
693 -mno-jump-in-delay -mno-long-load-store @gol
694 -mno-portable-runtime -mno-soft-float @gol
695 -mno-space-regs -msoft-float -mpa-risc-1-0 @gol
696 -mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime @gol
697 -mschedule=@var{cpu-type} -mspace-regs -msio -mwsio @gol
698 -munix=@var{unix-std} -nolibdld -static -threads}
699
700 @emph{IA-64 Options}
701 @gccoptlist{-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic @gol
702 -mvolatile-asm-stop -mregister-names -msdata -mno-sdata @gol
703 -mconstant-gp -mauto-pic -mfused-madd @gol
704 -minline-float-divide-min-latency @gol
705 -minline-float-divide-max-throughput @gol
706 -mno-inline-float-divide @gol
707 -minline-int-divide-min-latency @gol
708 -minline-int-divide-max-throughput @gol
709 -mno-inline-int-divide @gol
710 -minline-sqrt-min-latency -minline-sqrt-max-throughput @gol
711 -mno-inline-sqrt @gol
712 -mdwarf2-asm -mearly-stop-bits @gol
713 -mfixed-range=@var{register-range} -mtls-size=@var{tls-size} @gol
714 -mtune=@var{cpu-type} -milp32 -mlp64 @gol
715 -msched-br-data-spec -msched-ar-data-spec -msched-control-spec @gol
716 -msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec @gol
717 -msched-spec-ldc -msched-spec-control-ldc @gol
718 -msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns @gol
719 -msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path @gol
720 -msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost @gol
721 -msched-max-memory-insns-hard-limit -msched-max-memory-insns=@var{max-insns}}
722
723 @emph{LM32 Options}
724 @gccoptlist{-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled @gol
725 -msign-extend-enabled -muser-enabled}
726
727 @emph{M32R/D Options}
728 @gccoptlist{-m32r2 -m32rx -m32r @gol
729 -mdebug @gol
730 -malign-loops -mno-align-loops @gol
731 -missue-rate=@var{number} @gol
732 -mbranch-cost=@var{number} @gol
733 -mmodel=@var{code-size-model-type} @gol
734 -msdata=@var{sdata-type} @gol
735 -mno-flush-func -mflush-func=@var{name} @gol
736 -mno-flush-trap -mflush-trap=@var{number} @gol
737 -G @var{num}}
738
739 @emph{M32C Options}
740 @gccoptlist{-mcpu=@var{cpu} -msim -memregs=@var{number}}
741
742 @emph{M680x0 Options}
743 @gccoptlist{-march=@var{arch} -mcpu=@var{cpu} -mtune=@var{tune} @gol
744 -m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040 @gol
745 -m68060 -mcpu32 -m5200 -m5206e -m528x -m5307 -m5407 @gol
746 -mcfv4e -mbitfield -mno-bitfield -mc68000 -mc68020 @gol
747 -mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort @gol
748 -mno-short -mhard-float -m68881 -msoft-float -mpcrel @gol
749 -malign-int -mstrict-align -msep-data -mno-sep-data @gol
750 -mshared-library-id=n -mid-shared-library -mno-id-shared-library @gol
751 -mxgot -mno-xgot}
752
753 @emph{MCore Options}
754 @gccoptlist{-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates @gol
755 -mno-relax-immediates -mwide-bitfields -mno-wide-bitfields @gol
756 -m4byte-functions -mno-4byte-functions -mcallgraph-data @gol
757 -mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim @gol
758 -mlittle-endian -mbig-endian -m210 -m340 -mstack-increment}
759
760 @emph{MeP Options}
761 @gccoptlist{-mabsdiff -mall-opts -maverage -mbased=@var{n} -mbitops @gol
762 -mc=@var{n} -mclip -mconfig=@var{name} -mcop -mcop32 -mcop64 -mivc2 @gol
763 -mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax @gol
764 -mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf @gol
765 -mtiny=@var{n}}
766
767 @emph{MicroBlaze Options}
768 @gccoptlist{-msoft-float -mhard-float -msmall-divides -mcpu=@var{cpu} @gol
769 -mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift @gol
770 -mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss @gol
771 -mxl-multiply-high -mxl-float-convert -mxl-float-sqrt @gol
772 -mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-@var{app-model}}
773
774 @emph{MIPS Options}
775 @gccoptlist{-EL -EB -march=@var{arch} -mtune=@var{arch} @gol
776 -mips1 -mips2 -mips3 -mips4 -mips32 -mips32r2 -mips32r3 -mips32r5 @gol
777 -mips32r6 -mips64 -mips64r2 -mips64r3 -mips64r5 -mips64r6 @gol
778 -mips16 -mno-mips16 -mflip-mips16 @gol
779 -minterlink-compressed -mno-interlink-compressed @gol
780 -minterlink-mips16 -mno-interlink-mips16 @gol
781 -mabi=@var{abi} -mabicalls -mno-abicalls @gol
782 -mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot @gol
783 -mgp32 -mgp64 -mfp32 -mfpxx -mfp64 -mhard-float -msoft-float @gol
784 -mno-float -msingle-float -mdouble-float @gol
785 -modd-spreg -mno-odd-spreg @gol
786 -mabs=@var{mode} -mnan=@var{encoding} @gol
787 -mdsp -mno-dsp -mdspr2 -mno-dspr2 @gol
788 -mmcu -mmno-mcu @gol
789 -meva -mno-eva @gol
790 -mvirt -mno-virt @gol
791 -mxpa -mno-xpa @gol
792 -mmicromips -mno-micromips @gol
793 -mfpu=@var{fpu-type} @gol
794 -msmartmips -mno-smartmips @gol
795 -mpaired-single -mno-paired-single -mdmx -mno-mdmx @gol
796 -mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc @gol
797 -mlong64 -mlong32 -msym32 -mno-sym32 @gol
798 -G@var{num} -mlocal-sdata -mno-local-sdata @gol
799 -mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt @gol
800 -membedded-data -mno-embedded-data @gol
801 -muninit-const-in-rodata -mno-uninit-const-in-rodata @gol
802 -mcode-readable=@var{setting} @gol
803 -msplit-addresses -mno-split-addresses @gol
804 -mexplicit-relocs -mno-explicit-relocs @gol
805 -mcheck-zero-division -mno-check-zero-division @gol
806 -mdivide-traps -mdivide-breaks @gol
807 -mmemcpy -mno-memcpy -mlong-calls -mno-long-calls @gol
808 -mmad -mno-mad -mimadd -mno-imadd -mfused-madd -mno-fused-madd -nocpp @gol
809 -mfix-24k -mno-fix-24k @gol
810 -mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400 @gol
811 -mfix-r10000 -mno-fix-r10000 -mfix-rm7000 -mno-fix-rm7000 @gol
812 -mfix-vr4120 -mno-fix-vr4120 @gol
813 -mfix-vr4130 -mno-fix-vr4130 -mfix-sb1 -mno-fix-sb1 @gol
814 -mflush-func=@var{func} -mno-flush-func @gol
815 -mbranch-cost=@var{num} -mbranch-likely -mno-branch-likely @gol
816 -mfp-exceptions -mno-fp-exceptions @gol
817 -mvr4130-align -mno-vr4130-align -msynci -mno-synci @gol
818 -mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address}
819
820 @emph{MMIX Options}
821 @gccoptlist{-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu @gol
822 -mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols @gol
823 -melf -mbranch-predict -mno-branch-predict -mbase-addresses @gol
824 -mno-base-addresses -msingle-exit -mno-single-exit}
825
826 @emph{MN10300 Options}
827 @gccoptlist{-mmult-bug -mno-mult-bug @gol
828 -mno-am33 -mam33 -mam33-2 -mam34 @gol
829 -mtune=@var{cpu-type} @gol
830 -mreturn-pointer-on-d0 @gol
831 -mno-crt0 -mrelax -mliw -msetlb}
832
833 @emph{Moxie Options}
834 @gccoptlist{-meb -mel -mmul.x -mno-crt0}
835
836 @emph{MSP430 Options}
837 @gccoptlist{-msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax @gol
838 -mcode-region= -mdata-region= @gol
839 -mhwmult= -minrt}
840
841 @emph{NDS32 Options}
842 @gccoptlist{-mbig-endian -mlittle-endian @gol
843 -mreduced-regs -mfull-regs @gol
844 -mcmov -mno-cmov @gol
845 -mperf-ext -mno-perf-ext @gol
846 -mv3push -mno-v3push @gol
847 -m16bit -mno-16bit @gol
848 -misr-vector-size=@var{num} @gol
849 -mcache-block-size=@var{num} @gol
850 -march=@var{arch} @gol
851 -mcmodel=@var{code-model} @gol
852 -mctor-dtor -mrelax}
853
854 @emph{Nios II Options}
855 @gccoptlist{-G @var{num} -mgpopt=@var{option} -mgpopt -mno-gpopt @gol
856 -mel -meb @gol
857 -mno-bypass-cache -mbypass-cache @gol
858 -mno-cache-volatile -mcache-volatile @gol
859 -mno-fast-sw-div -mfast-sw-div @gol
860 -mhw-mul -mno-hw-mul -mhw-mulx -mno-hw-mulx -mno-hw-div -mhw-div @gol
861 -mcustom-@var{insn}=@var{N} -mno-custom-@var{insn} @gol
862 -mcustom-fpu-cfg=@var{name} @gol
863 -mhal -msmallc -msys-crt0=@var{name} -msys-lib=@var{name} @gol
864 -march=@var{arch} -mbmx -mno-bmx -mcdx -mno-cdx}
865
866 @emph{Nvidia PTX Options}
867 @gccoptlist{-m32 -m64 -mmainkernel}
868
869 @emph{PDP-11 Options}
870 @gccoptlist{-mfpu -msoft-float -mac0 -mno-ac0 -m40 -m45 -m10 @gol
871 -mbcopy -mbcopy-builtin -mint32 -mno-int16 @gol
872 -mint16 -mno-int32 -mfloat32 -mno-float64 @gol
873 -mfloat64 -mno-float32 -mabshi -mno-abshi @gol
874 -mbranch-expensive -mbranch-cheap @gol
875 -munix-asm -mdec-asm}
876
877 @emph{picoChip Options}
878 @gccoptlist{-mae=@var{ae_type} -mvliw-lookahead=@var{N} @gol
879 -msymbol-as-address -mno-inefficient-warnings}
880
881 @emph{PowerPC Options}
882 See RS/6000 and PowerPC Options.
883
884 @emph{RL78 Options}
885 @gccoptlist{-msim -mmul=none -mmul=g13 -mmul=g14 -mallregs @gol
886 -mcpu=g10 -mcpu=g13 -mcpu=g14 -mg10 -mg13 -mg14 @gol
887 -m64bit-doubles -m32bit-doubles}
888
889 @emph{RS/6000 and PowerPC Options}
890 @gccoptlist{-mcpu=@var{cpu-type} @gol
891 -mtune=@var{cpu-type} @gol
892 -mcmodel=@var{code-model} @gol
893 -mpowerpc64 @gol
894 -maltivec -mno-altivec @gol
895 -mpowerpc-gpopt -mno-powerpc-gpopt @gol
896 -mpowerpc-gfxopt -mno-powerpc-gfxopt @gol
897 -mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mpopcntd -mno-popcntd @gol
898 -mfprnd -mno-fprnd @gol
899 -mcmpb -mno-cmpb -mmfpgpr -mno-mfpgpr -mhard-dfp -mno-hard-dfp @gol
900 -mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc @gol
901 -m64 -m32 -mxl-compat -mno-xl-compat -mpe @gol
902 -malign-power -malign-natural @gol
903 -msoft-float -mhard-float -mmultiple -mno-multiple @gol
904 -msingle-float -mdouble-float -msimple-fpu @gol
905 -mstring -mno-string -mupdate -mno-update @gol
906 -mavoid-indexed-addresses -mno-avoid-indexed-addresses @gol
907 -mfused-madd -mno-fused-madd -mbit-align -mno-bit-align @gol
908 -mstrict-align -mno-strict-align -mrelocatable @gol
909 -mno-relocatable -mrelocatable-lib -mno-relocatable-lib @gol
910 -mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian @gol
911 -mdynamic-no-pic -maltivec -mswdiv -msingle-pic-base @gol
912 -mprioritize-restricted-insns=@var{priority} @gol
913 -msched-costly-dep=@var{dependence_type} @gol
914 -minsert-sched-nops=@var{scheme} @gol
915 -mcall-sysv -mcall-netbsd @gol
916 -maix-struct-return -msvr4-struct-return @gol
917 -mabi=@var{abi-type} -msecure-plt -mbss-plt @gol
918 -mblock-move-inline-limit=@var{num} @gol
919 -misel -mno-isel @gol
920 -misel=yes -misel=no @gol
921 -mspe -mno-spe @gol
922 -mspe=yes -mspe=no @gol
923 -mpaired @gol
924 -mgen-cell-microcode -mwarn-cell-microcode @gol
925 -mvrsave -mno-vrsave @gol
926 -mmulhw -mno-mulhw @gol
927 -mdlmzb -mno-dlmzb @gol
928 -mfloat-gprs=yes -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double @gol
929 -mprototype -mno-prototype @gol
930 -msim -mmvme -mads -myellowknife -memb -msdata @gol
931 -msdata=@var{opt} -mvxworks -G @var{num} -pthread @gol
932 -mrecip -mrecip=@var{opt} -mno-recip -mrecip-precision @gol
933 -mno-recip-precision @gol
934 -mveclibabi=@var{type} -mfriz -mno-friz @gol
935 -mpointers-to-nested-functions -mno-pointers-to-nested-functions @gol
936 -msave-toc-indirect -mno-save-toc-indirect @gol
937 -mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector @gol
938 -mcrypto -mno-crypto -mdirect-move -mno-direct-move @gol
939 -mquad-memory -mno-quad-memory @gol
940 -mquad-memory-atomic -mno-quad-memory-atomic @gol
941 -mcompat-align-parm -mno-compat-align-parm @gol
942 -mupper-regs-df -mno-upper-regs-df -mupper-regs-sf -mno-upper-regs-sf @gol
943 -mupper-regs -mno-upper-regs}
944
945 @emph{RX Options}
946 @gccoptlist{-m64bit-doubles -m32bit-doubles -fpu -nofpu@gol
947 -mcpu=@gol
948 -mbig-endian-data -mlittle-endian-data @gol
949 -msmall-data @gol
950 -msim -mno-sim@gol
951 -mas100-syntax -mno-as100-syntax@gol
952 -mrelax@gol
953 -mmax-constant-size=@gol
954 -mint-register=@gol
955 -mpid@gol
956 -mallow-string-insns -mno-allow-string-insns@gol
957 -mno-warn-multiple-fast-interrupts@gol
958 -msave-acc-in-interrupts}
959
960 @emph{S/390 and zSeries Options}
961 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
962 -mhard-float -msoft-float -mhard-dfp -mno-hard-dfp @gol
963 -mlong-double-64 -mlong-double-128 @gol
964 -mbackchain -mno-backchain -mpacked-stack -mno-packed-stack @gol
965 -msmall-exec -mno-small-exec -mmvcle -mno-mvcle @gol
966 -m64 -m31 -mdebug -mno-debug -mesa -mzarch @gol
967 -mhtm -mvx -mzvector @gol
968 -mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd @gol
969 -mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard @gol
970 -mhotpatch=@var{halfwords},@var{halfwords}}
971
972 @emph{Score Options}
973 @gccoptlist{-meb -mel @gol
974 -mnhwloop @gol
975 -muls @gol
976 -mmac @gol
977 -mscore5 -mscore5u -mscore7 -mscore7d}
978
979 @emph{SH Options}
980 @gccoptlist{-m1 -m2 -m2e @gol
981 -m2a-nofpu -m2a-single-only -m2a-single -m2a @gol
982 -m3 -m3e @gol
983 -m4-nofpu -m4-single-only -m4-single -m4 @gol
984 -m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al @gol
985 -m5-64media -m5-64media-nofpu @gol
986 -m5-32media -m5-32media-nofpu @gol
987 -m5-compact -m5-compact-nofpu @gol
988 -mb -ml -mdalign -mrelax @gol
989 -mbigtable -mfmovd -mhitachi -mrenesas -mno-renesas -mnomacsave @gol
990 -mieee -mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct @gol
991 -mspace -mprefergot -musermode -multcost=@var{number} -mdiv=@var{strategy} @gol
992 -mdivsi3_libfunc=@var{name} -mfixed-range=@var{register-range} @gol
993 -mindexed-addressing -mgettrcost=@var{number} -mpt-fixed @gol
994 -maccumulate-outgoing-args -minvalid-symbols @gol
995 -matomic-model=@var{atomic-model} @gol
996 -mbranch-cost=@var{num} -mzdcbranch -mno-zdcbranch @gol
997 -mcbranch-force-delay-slot @gol
998 -mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra @gol
999 -mpretend-cmove -mtas}
1000
1001 @emph{Solaris 2 Options}
1002 @gccoptlist{-mclear-hwcap -mno-clear-hwcap -mimpure-text -mno-impure-text @gol
1003 -pthreads -pthread}
1004
1005 @emph{SPARC Options}
1006 @gccoptlist{-mcpu=@var{cpu-type} @gol
1007 -mtune=@var{cpu-type} @gol
1008 -mcmodel=@var{code-model} @gol
1009 -mmemory-model=@var{mem-model} @gol
1010 -m32 -m64 -mapp-regs -mno-app-regs @gol
1011 -mfaster-structs -mno-faster-structs -mflat -mno-flat @gol
1012 -mfpu -mno-fpu -mhard-float -msoft-float @gol
1013 -mhard-quad-float -msoft-quad-float @gol
1014 -mstack-bias -mno-stack-bias @gol
1015 -munaligned-doubles -mno-unaligned-doubles @gol
1016 -muser-mode -mno-user-mode @gol
1017 -mv8plus -mno-v8plus -mvis -mno-vis @gol
1018 -mvis2 -mno-vis2 -mvis3 -mno-vis3 @gol
1019 -mcbcond -mno-cbcond @gol
1020 -mfmaf -mno-fmaf -mpopc -mno-popc @gol
1021 -mfix-at697f -mfix-ut699}
1022
1023 @emph{SPU Options}
1024 @gccoptlist{-mwarn-reloc -merror-reloc @gol
1025 -msafe-dma -munsafe-dma @gol
1026 -mbranch-hints @gol
1027 -msmall-mem -mlarge-mem -mstdmain @gol
1028 -mfixed-range=@var{register-range} @gol
1029 -mea32 -mea64 @gol
1030 -maddress-space-conversion -mno-address-space-conversion @gol
1031 -mcache-size=@var{cache-size} @gol
1032 -matomic-updates -mno-atomic-updates}
1033
1034 @emph{System V Options}
1035 @gccoptlist{-Qy -Qn -YP,@var{paths} -Ym,@var{dir}}
1036
1037 @emph{TILE-Gx Options}
1038 @gccoptlist{-mcpu=CPU -m32 -m64 -mbig-endian -mlittle-endian @gol
1039 -mcmodel=@var{code-model}}
1040
1041 @emph{TILEPro Options}
1042 @gccoptlist{-mcpu=@var{cpu} -m32}
1043
1044 @emph{V850 Options}
1045 @gccoptlist{-mlong-calls -mno-long-calls -mep -mno-ep @gol
1046 -mprolog-function -mno-prolog-function -mspace @gol
1047 -mtda=@var{n} -msda=@var{n} -mzda=@var{n} @gol
1048 -mapp-regs -mno-app-regs @gol
1049 -mdisable-callt -mno-disable-callt @gol
1050 -mv850e2v3 -mv850e2 -mv850e1 -mv850es @gol
1051 -mv850e -mv850 -mv850e3v5 @gol
1052 -mloop @gol
1053 -mrelax @gol
1054 -mlong-jumps @gol
1055 -msoft-float @gol
1056 -mhard-float @gol
1057 -mgcc-abi @gol
1058 -mrh850-abi @gol
1059 -mbig-switch}
1060
1061 @emph{VAX Options}
1062 @gccoptlist{-mg -mgnu -munix}
1063
1064 @emph{Visium Options}
1065 @gccoptlist{-mdebug -msim -mfpu -mno-fpu -mhard-float -msoft-float @gol
1066 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} -msv-mode -muser-mode}
1067
1068 @emph{VMS Options}
1069 @gccoptlist{-mvms-return-codes -mdebug-main=@var{prefix} -mmalloc64 @gol
1070 -mpointer-size=@var{size}}
1071
1072 @emph{VxWorks Options}
1073 @gccoptlist{-mrtp -non-static -Bstatic -Bdynamic @gol
1074 -Xbind-lazy -Xbind-now}
1075
1076 @emph{x86 Options}
1077 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
1078 -mtune-ctrl=@var{feature-list} -mdump-tune-features -mno-default @gol
1079 -mfpmath=@var{unit} @gol
1080 -masm=@var{dialect} -mno-fancy-math-387 @gol
1081 -mno-fp-ret-in-387 -msoft-float @gol
1082 -mno-wide-multiply -mrtd -malign-double @gol
1083 -mpreferred-stack-boundary=@var{num} @gol
1084 -mincoming-stack-boundary=@var{num} @gol
1085 -mcld -mcx16 -msahf -mmovbe -mcrc32 @gol
1086 -mrecip -mrecip=@var{opt} @gol
1087 -mvzeroupper -mprefer-avx128 @gol
1088 -mmmx -msse -msse2 -msse3 -mssse3 -msse4.1 -msse4.2 -msse4 -mavx @gol
1089 -mavx2 -mavx512f -mavx512pf -mavx512er -mavx512cd -msha @gol
1090 -maes -mpclmul -mfsgsbase -mrdrnd -mf16c -mfma -mprefetchwt1 @gol
1091 -mclflushopt -mxsavec -mxsaves @gol
1092 -msse4a -m3dnow -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop -mlzcnt @gol
1093 -mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm -mlwp -mmpx -mmwaitx -mthreads @gol
1094 -mno-align-stringops -minline-all-stringops @gol
1095 -minline-stringops-dynamically -mstringop-strategy=@var{alg} @gol
1096 -mmemcpy-strategy=@var{strategy} -mmemset-strategy=@var{strategy} @gol
1097 -mpush-args -maccumulate-outgoing-args -m128bit-long-double @gol
1098 -m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128 @gol
1099 -mregparm=@var{num} -msseregparm @gol
1100 -mveclibabi=@var{type} -mvect8-ret-in-mem @gol
1101 -mpc32 -mpc64 -mpc80 -mstackrealign @gol
1102 -momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs @gol
1103 -mcmodel=@var{code-model} -mabi=@var{name} -maddress-mode=@var{mode} @gol
1104 -m32 -m64 -mx32 -m16 -miamcu -mlarge-data-threshold=@var{num} @gol
1105 -msse2avx -mfentry -mrecord-mcount -mnop-mcount -m8bit-idiv @gol
1106 -mavx256-split-unaligned-load -mavx256-split-unaligned-store @gol
1107 -malign-data=@var{type} -mstack-protector-guard=@var{guard}}
1108
1109 @emph{x86 Windows Options}
1110 @gccoptlist{-mconsole -mcygwin -mno-cygwin -mdll @gol
1111 -mnop-fun-dllimport -mthread @gol
1112 -municode -mwin32 -mwindows -fno-set-stack-executable}
1113
1114 @emph{Xstormy16 Options}
1115 @gccoptlist{-msim}
1116
1117 @emph{Xtensa Options}
1118 @gccoptlist{-mconst16 -mno-const16 @gol
1119 -mfused-madd -mno-fused-madd @gol
1120 -mforce-no-pic @gol
1121 -mserialize-volatile -mno-serialize-volatile @gol
1122 -mtext-section-literals -mno-text-section-literals @gol
1123 -mauto-litpools -mno-auto-litpools @gol
1124 -mtarget-align -mno-target-align @gol
1125 -mlongcalls -mno-longcalls}
1126
1127 @emph{zSeries Options}
1128 See S/390 and zSeries Options.
1129
1130 @item Code Generation Options
1131 @xref{Code Gen Options,,Options for Code Generation Conventions}.
1132 @gccoptlist{-fcall-saved-@var{reg} -fcall-used-@var{reg} @gol
1133 -ffixed-@var{reg} -fexceptions @gol
1134 -fnon-call-exceptions -fdelete-dead-exceptions -funwind-tables @gol
1135 -fasynchronous-unwind-tables @gol
1136 -fno-gnu-unique @gol
1137 -finhibit-size-directive -finstrument-functions @gol
1138 -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{} @gol
1139 -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{} @gol
1140 -fno-common -fno-ident @gol
1141 -fpcc-struct-return -fpic -fPIC -fpie -fPIE -fno-plt @gol
1142 -fno-jump-tables @gol
1143 -frecord-gcc-switches @gol
1144 -freg-struct-return -fshort-enums @gol
1145 -fshort-double -fshort-wchar @gol
1146 -fverbose-asm -fpack-struct[=@var{n}] -fstack-check @gol
1147 -fstack-limit-register=@var{reg} -fstack-limit-symbol=@var{sym} @gol
1148 -fno-stack-limit -fsplit-stack @gol
1149 -fleading-underscore -ftls-model=@var{model} @gol
1150 -fstack-reuse=@var{reuse_level} @gol
1151 -ftrapv -fwrapv -fbounds-check @gol
1152 -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]} @gol
1153 -fstrict-volatile-bitfields -fsync-libcalls}
1154 @end table
1155
1156
1157 @node Overall Options
1158 @section Options Controlling the Kind of Output
1159
1160 Compilation can involve up to four stages: preprocessing, compilation
1161 proper, assembly and linking, always in that order. GCC is capable of
1162 preprocessing and compiling several files either into several
1163 assembler input files, or into one assembler input file; then each
1164 assembler input file produces an object file, and linking combines all
1165 the object files (those newly compiled, and those specified as input)
1166 into an executable file.
1167
1168 @cindex file name suffix
1169 For any given input file, the file name suffix determines what kind of
1170 compilation is done:
1171
1172 @table @gcctabopt
1173 @item @var{file}.c
1174 C source code that must be preprocessed.
1175
1176 @item @var{file}.i
1177 C source code that should not be preprocessed.
1178
1179 @item @var{file}.ii
1180 C++ source code that should not be preprocessed.
1181
1182 @item @var{file}.m
1183 Objective-C source code. Note that you must link with the @file{libobjc}
1184 library to make an Objective-C program work.
1185
1186 @item @var{file}.mi
1187 Objective-C source code that should not be preprocessed.
1188
1189 @item @var{file}.mm
1190 @itemx @var{file}.M
1191 Objective-C++ source code. Note that you must link with the @file{libobjc}
1192 library to make an Objective-C++ program work. Note that @samp{.M} refers
1193 to a literal capital M@.
1194
1195 @item @var{file}.mii
1196 Objective-C++ source code that should not be preprocessed.
1197
1198 @item @var{file}.h
1199 C, C++, Objective-C or Objective-C++ header file to be turned into a
1200 precompiled header (default), or C, C++ header file to be turned into an
1201 Ada spec (via the @option{-fdump-ada-spec} switch).
1202
1203 @item @var{file}.cc
1204 @itemx @var{file}.cp
1205 @itemx @var{file}.cxx
1206 @itemx @var{file}.cpp
1207 @itemx @var{file}.CPP
1208 @itemx @var{file}.c++
1209 @itemx @var{file}.C
1210 C++ source code that must be preprocessed. Note that in @samp{.cxx},
1211 the last two letters must both be literally @samp{x}. Likewise,
1212 @samp{.C} refers to a literal capital C@.
1213
1214 @item @var{file}.mm
1215 @itemx @var{file}.M
1216 Objective-C++ source code that must be preprocessed.
1217
1218 @item @var{file}.mii
1219 Objective-C++ source code that should not be preprocessed.
1220
1221 @item @var{file}.hh
1222 @itemx @var{file}.H
1223 @itemx @var{file}.hp
1224 @itemx @var{file}.hxx
1225 @itemx @var{file}.hpp
1226 @itemx @var{file}.HPP
1227 @itemx @var{file}.h++
1228 @itemx @var{file}.tcc
1229 C++ header file to be turned into a precompiled header or Ada spec.
1230
1231 @item @var{file}.f
1232 @itemx @var{file}.for
1233 @itemx @var{file}.ftn
1234 Fixed form Fortran source code that should not be preprocessed.
1235
1236 @item @var{file}.F
1237 @itemx @var{file}.FOR
1238 @itemx @var{file}.fpp
1239 @itemx @var{file}.FPP
1240 @itemx @var{file}.FTN
1241 Fixed form Fortran source code that must be preprocessed (with the traditional
1242 preprocessor).
1243
1244 @item @var{file}.f90
1245 @itemx @var{file}.f95
1246 @itemx @var{file}.f03
1247 @itemx @var{file}.f08
1248 Free form Fortran source code that should not be preprocessed.
1249
1250 @item @var{file}.F90
1251 @itemx @var{file}.F95
1252 @itemx @var{file}.F03
1253 @itemx @var{file}.F08
1254 Free form Fortran source code that must be preprocessed (with the
1255 traditional preprocessor).
1256
1257 @item @var{file}.go
1258 Go source code.
1259
1260 @c FIXME: Descriptions of Java file types.
1261 @c @var{file}.java
1262 @c @var{file}.class
1263 @c @var{file}.zip
1264 @c @var{file}.jar
1265
1266 @item @var{file}.ads
1267 Ada source code file that contains a library unit declaration (a
1268 declaration of a package, subprogram, or generic, or a generic
1269 instantiation), or a library unit renaming declaration (a package,
1270 generic, or subprogram renaming declaration). Such files are also
1271 called @dfn{specs}.
1272
1273 @item @var{file}.adb
1274 Ada source code file containing a library unit body (a subprogram or
1275 package body). Such files are also called @dfn{bodies}.
1276
1277 @c GCC also knows about some suffixes for languages not yet included:
1278 @c Pascal:
1279 @c @var{file}.p
1280 @c @var{file}.pas
1281 @c Ratfor:
1282 @c @var{file}.r
1283
1284 @item @var{file}.s
1285 Assembler code.
1286
1287 @item @var{file}.S
1288 @itemx @var{file}.sx
1289 Assembler code that must be preprocessed.
1290
1291 @item @var{other}
1292 An object file to be fed straight into linking.
1293 Any file name with no recognized suffix is treated this way.
1294 @end table
1295
1296 @opindex x
1297 You can specify the input language explicitly with the @option{-x} option:
1298
1299 @table @gcctabopt
1300 @item -x @var{language}
1301 Specify explicitly the @var{language} for the following input files
1302 (rather than letting the compiler choose a default based on the file
1303 name suffix). This option applies to all following input files until
1304 the next @option{-x} option. Possible values for @var{language} are:
1305 @smallexample
1306 c c-header cpp-output
1307 c++ c++-header c++-cpp-output
1308 objective-c objective-c-header objective-c-cpp-output
1309 objective-c++ objective-c++-header objective-c++-cpp-output
1310 assembler assembler-with-cpp
1311 ada
1312 f77 f77-cpp-input f95 f95-cpp-input
1313 go
1314 java
1315 @end smallexample
1316
1317 @item -x none
1318 Turn off any specification of a language, so that subsequent files are
1319 handled according to their file name suffixes (as they are if @option{-x}
1320 has not been used at all).
1321
1322 @item -pass-exit-codes
1323 @opindex pass-exit-codes
1324 Normally the @command{gcc} program exits with the code of 1 if any
1325 phase of the compiler returns a non-success return code. If you specify
1326 @option{-pass-exit-codes}, the @command{gcc} program instead returns with
1327 the numerically highest error produced by any phase returning an error
1328 indication. The C, C++, and Fortran front ends return 4 if an internal
1329 compiler error is encountered.
1330 @end table
1331
1332 If you only want some of the stages of compilation, you can use
1333 @option{-x} (or filename suffixes) to tell @command{gcc} where to start, and
1334 one of the options @option{-c}, @option{-S}, or @option{-E} to say where
1335 @command{gcc} is to stop. Note that some combinations (for example,
1336 @samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all.
1337
1338 @table @gcctabopt
1339 @item -c
1340 @opindex c
1341 Compile or assemble the source files, but do not link. The linking
1342 stage simply is not done. The ultimate output is in the form of an
1343 object file for each source file.
1344
1345 By default, the object file name for a source file is made by replacing
1346 the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
1347
1348 Unrecognized input files, not requiring compilation or assembly, are
1349 ignored.
1350
1351 @item -S
1352 @opindex S
1353 Stop after the stage of compilation proper; do not assemble. The output
1354 is in the form of an assembler code file for each non-assembler input
1355 file specified.
1356
1357 By default, the assembler file name for a source file is made by
1358 replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
1359
1360 Input files that don't require compilation are ignored.
1361
1362 @item -E
1363 @opindex E
1364 Stop after the preprocessing stage; do not run the compiler proper. The
1365 output is in the form of preprocessed source code, which is sent to the
1366 standard output.
1367
1368 Input files that don't require preprocessing are ignored.
1369
1370 @cindex output file option
1371 @item -o @var{file}
1372 @opindex o
1373 Place output in file @var{file}. This applies to whatever
1374 sort of output is being produced, whether it be an executable file,
1375 an object file, an assembler file or preprocessed C code.
1376
1377 If @option{-o} is not specified, the default is to put an executable
1378 file in @file{a.out}, the object file for
1379 @file{@var{source}.@var{suffix}} in @file{@var{source}.o}, its
1380 assembler file in @file{@var{source}.s}, a precompiled header file in
1381 @file{@var{source}.@var{suffix}.gch}, and all preprocessed C source on
1382 standard output.
1383
1384 @item -v
1385 @opindex v
1386 Print (on standard error output) the commands executed to run the stages
1387 of compilation. Also print the version number of the compiler driver
1388 program and of the preprocessor and the compiler proper.
1389
1390 @item -###
1391 @opindex ###
1392 Like @option{-v} except the commands are not executed and arguments
1393 are quoted unless they contain only alphanumeric characters or @code{./-_}.
1394 This is useful for shell scripts to capture the driver-generated command lines.
1395
1396 @item -pipe
1397 @opindex pipe
1398 Use pipes rather than temporary files for communication between the
1399 various stages of compilation. This fails to work on some systems where
1400 the assembler is unable to read from a pipe; but the GNU assembler has
1401 no trouble.
1402
1403 @item --help
1404 @opindex help
1405 Print (on the standard output) a description of the command-line options
1406 understood by @command{gcc}. If the @option{-v} option is also specified
1407 then @option{--help} is also passed on to the various processes
1408 invoked by @command{gcc}, so that they can display the command-line options
1409 they accept. If the @option{-Wextra} option has also been specified
1410 (prior to the @option{--help} option), then command-line options that
1411 have no documentation associated with them are also displayed.
1412
1413 @item --target-help
1414 @opindex target-help
1415 Print (on the standard output) a description of target-specific command-line
1416 options for each tool. For some targets extra target-specific
1417 information may also be printed.
1418
1419 @item --help=@{@var{class}@r{|[}^@r{]}@var{qualifier}@}@r{[},@dots{}@r{]}
1420 Print (on the standard output) a description of the command-line
1421 options understood by the compiler that fit into all specified classes
1422 and qualifiers. These are the supported classes:
1423
1424 @table @asis
1425 @item @samp{optimizers}
1426 Display all of the optimization options supported by the
1427 compiler.
1428
1429 @item @samp{warnings}
1430 Display all of the options controlling warning messages
1431 produced by the compiler.
1432
1433 @item @samp{target}
1434 Display target-specific options. Unlike the
1435 @option{--target-help} option however, target-specific options of the
1436 linker and assembler are not displayed. This is because those
1437 tools do not currently support the extended @option{--help=} syntax.
1438
1439 @item @samp{params}
1440 Display the values recognized by the @option{--param}
1441 option.
1442
1443 @item @var{language}
1444 Display the options supported for @var{language}, where
1445 @var{language} is the name of one of the languages supported in this
1446 version of GCC@.
1447
1448 @item @samp{common}
1449 Display the options that are common to all languages.
1450 @end table
1451
1452 These are the supported qualifiers:
1453
1454 @table @asis
1455 @item @samp{undocumented}
1456 Display only those options that are undocumented.
1457
1458 @item @samp{joined}
1459 Display options taking an argument that appears after an equal
1460 sign in the same continuous piece of text, such as:
1461 @samp{--help=target}.
1462
1463 @item @samp{separate}
1464 Display options taking an argument that appears as a separate word
1465 following the original option, such as: @samp{-o output-file}.
1466 @end table
1467
1468 Thus for example to display all the undocumented target-specific
1469 switches supported by the compiler, use:
1470
1471 @smallexample
1472 --help=target,undocumented
1473 @end smallexample
1474
1475 The sense of a qualifier can be inverted by prefixing it with the
1476 @samp{^} character, so for example to display all binary warning
1477 options (i.e., ones that are either on or off and that do not take an
1478 argument) that have a description, use:
1479
1480 @smallexample
1481 --help=warnings,^joined,^undocumented
1482 @end smallexample
1483
1484 The argument to @option{--help=} should not consist solely of inverted
1485 qualifiers.
1486
1487 Combining several classes is possible, although this usually
1488 restricts the output so much that there is nothing to display. One
1489 case where it does work, however, is when one of the classes is
1490 @var{target}. For example, to display all the target-specific
1491 optimization options, use:
1492
1493 @smallexample
1494 --help=target,optimizers
1495 @end smallexample
1496
1497 The @option{--help=} option can be repeated on the command line. Each
1498 successive use displays its requested class of options, skipping
1499 those that have already been displayed.
1500
1501 If the @option{-Q} option appears on the command line before the
1502 @option{--help=} option, then the descriptive text displayed by
1503 @option{--help=} is changed. Instead of describing the displayed
1504 options, an indication is given as to whether the option is enabled,
1505 disabled or set to a specific value (assuming that the compiler
1506 knows this at the point where the @option{--help=} option is used).
1507
1508 Here is a truncated example from the ARM port of @command{gcc}:
1509
1510 @smallexample
1511 % gcc -Q -mabi=2 --help=target -c
1512 The following options are target specific:
1513 -mabi= 2
1514 -mabort-on-noreturn [disabled]
1515 -mapcs [disabled]
1516 @end smallexample
1517
1518 The output is sensitive to the effects of previous command-line
1519 options, so for example it is possible to find out which optimizations
1520 are enabled at @option{-O2} by using:
1521
1522 @smallexample
1523 -Q -O2 --help=optimizers
1524 @end smallexample
1525
1526 Alternatively you can discover which binary optimizations are enabled
1527 by @option{-O3} by using:
1528
1529 @smallexample
1530 gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
1531 gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
1532 diff /tmp/O2-opts /tmp/O3-opts | grep enabled
1533 @end smallexample
1534
1535 @item -no-canonical-prefixes
1536 @opindex no-canonical-prefixes
1537 Do not expand any symbolic links, resolve references to @samp{/../}
1538 or @samp{/./}, or make the path absolute when generating a relative
1539 prefix.
1540
1541 @item --version
1542 @opindex version
1543 Display the version number and copyrights of the invoked GCC@.
1544
1545 @item -wrapper
1546 @opindex wrapper
1547 Invoke all subcommands under a wrapper program. The name of the
1548 wrapper program and its parameters are passed as a comma separated
1549 list.
1550
1551 @smallexample
1552 gcc -c t.c -wrapper gdb,--args
1553 @end smallexample
1554
1555 @noindent
1556 This invokes all subprograms of @command{gcc} under
1557 @samp{gdb --args}, thus the invocation of @command{cc1} is
1558 @samp{gdb --args cc1 @dots{}}.
1559
1560 @item -fplugin=@var{name}.so
1561 @opindex fplugin
1562 Load the plugin code in file @var{name}.so, assumed to be a
1563 shared object to be dlopen'd by the compiler. The base name of
1564 the shared object file is used to identify the plugin for the
1565 purposes of argument parsing (See
1566 @option{-fplugin-arg-@var{name}-@var{key}=@var{value}} below).
1567 Each plugin should define the callback functions specified in the
1568 Plugins API.
1569
1570 @item -fplugin-arg-@var{name}-@var{key}=@var{value}
1571 @opindex fplugin-arg
1572 Define an argument called @var{key} with a value of @var{value}
1573 for the plugin called @var{name}.
1574
1575 @item -fdump-ada-spec@r{[}-slim@r{]}
1576 @opindex fdump-ada-spec
1577 For C and C++ source and include files, generate corresponding Ada specs.
1578 @xref{Generating Ada Bindings for C and C++ headers,,, gnat_ugn,
1579 GNAT User's Guide}, which provides detailed documentation on this feature.
1580
1581 @item -fada-spec-parent=@var{unit}
1582 @opindex fada-spec-parent
1583 In conjunction with @option{-fdump-ada-spec@r{[}-slim@r{]}} above, generate
1584 Ada specs as child units of parent @var{unit}.
1585
1586 @item -fdump-go-spec=@var{file}
1587 @opindex fdump-go-spec
1588 For input files in any language, generate corresponding Go
1589 declarations in @var{file}. This generates Go @code{const},
1590 @code{type}, @code{var}, and @code{func} declarations which may be a
1591 useful way to start writing a Go interface to code written in some
1592 other language.
1593
1594 @include @value{srcdir}/../libiberty/at-file.texi
1595 @end table
1596
1597 @node Invoking G++
1598 @section Compiling C++ Programs
1599
1600 @cindex suffixes for C++ source
1601 @cindex C++ source file suffixes
1602 C++ source files conventionally use one of the suffixes @samp{.C},
1603 @samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or
1604 @samp{.cxx}; C++ header files often use @samp{.hh}, @samp{.hpp},
1605 @samp{.H}, or (for shared template code) @samp{.tcc}; and
1606 preprocessed C++ files use the suffix @samp{.ii}. GCC recognizes
1607 files with these names and compiles them as C++ programs even if you
1608 call the compiler the same way as for compiling C programs (usually
1609 with the name @command{gcc}).
1610
1611 @findex g++
1612 @findex c++
1613 However, the use of @command{gcc} does not add the C++ library.
1614 @command{g++} is a program that calls GCC and automatically specifies linking
1615 against the C++ library. It treats @samp{.c},
1616 @samp{.h} and @samp{.i} files as C++ source files instead of C source
1617 files unless @option{-x} is used. This program is also useful when
1618 precompiling a C header file with a @samp{.h} extension for use in C++
1619 compilations. On many systems, @command{g++} is also installed with
1620 the name @command{c++}.
1621
1622 @cindex invoking @command{g++}
1623 When you compile C++ programs, you may specify many of the same
1624 command-line options that you use for compiling programs in any
1625 language; or command-line options meaningful for C and related
1626 languages; or options that are meaningful only for C++ programs.
1627 @xref{C Dialect Options,,Options Controlling C Dialect}, for
1628 explanations of options for languages related to C@.
1629 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
1630 explanations of options that are meaningful only for C++ programs.
1631
1632 @node C Dialect Options
1633 @section Options Controlling C Dialect
1634 @cindex dialect options
1635 @cindex language dialect options
1636 @cindex options, dialect
1637
1638 The following options control the dialect of C (or languages derived
1639 from C, such as C++, Objective-C and Objective-C++) that the compiler
1640 accepts:
1641
1642 @table @gcctabopt
1643 @cindex ANSI support
1644 @cindex ISO support
1645 @item -ansi
1646 @opindex ansi
1647 In C mode, this is equivalent to @option{-std=c90}. In C++ mode, it is
1648 equivalent to @option{-std=c++98}.
1649
1650 This turns off certain features of GCC that are incompatible with ISO
1651 C90 (when compiling C code), or of standard C++ (when compiling C++ code),
1652 such as the @code{asm} and @code{typeof} keywords, and
1653 predefined macros such as @code{unix} and @code{vax} that identify the
1654 type of system you are using. It also enables the undesirable and
1655 rarely used ISO trigraph feature. For the C compiler,
1656 it disables recognition of C++ style @samp{//} comments as well as
1657 the @code{inline} keyword.
1658
1659 The alternate keywords @code{__asm__}, @code{__extension__},
1660 @code{__inline__} and @code{__typeof__} continue to work despite
1661 @option{-ansi}. You would not want to use them in an ISO C program, of
1662 course, but it is useful to put them in header files that might be included
1663 in compilations done with @option{-ansi}. Alternate predefined macros
1664 such as @code{__unix__} and @code{__vax__} are also available, with or
1665 without @option{-ansi}.
1666
1667 The @option{-ansi} option does not cause non-ISO programs to be
1668 rejected gratuitously. For that, @option{-Wpedantic} is required in
1669 addition to @option{-ansi}. @xref{Warning Options}.
1670
1671 The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi}
1672 option is used. Some header files may notice this macro and refrain
1673 from declaring certain functions or defining certain macros that the
1674 ISO standard doesn't call for; this is to avoid interfering with any
1675 programs that might use these names for other things.
1676
1677 Functions that are normally built in but do not have semantics
1678 defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in
1679 functions when @option{-ansi} is used. @xref{Other Builtins,,Other
1680 built-in functions provided by GCC}, for details of the functions
1681 affected.
1682
1683 @item -std=
1684 @opindex std
1685 Determine the language standard. @xref{Standards,,Language Standards
1686 Supported by GCC}, for details of these standard versions. This option
1687 is currently only supported when compiling C or C++.
1688
1689 The compiler can accept several base standards, such as @samp{c90} or
1690 @samp{c++98}, and GNU dialects of those standards, such as
1691 @samp{gnu90} or @samp{gnu++98}. When a base standard is specified, the
1692 compiler accepts all programs following that standard plus those
1693 using GNU extensions that do not contradict it. For example,
1694 @option{-std=c90} turns off certain features of GCC that are
1695 incompatible with ISO C90, such as the @code{asm} and @code{typeof}
1696 keywords, but not other GNU extensions that do not have a meaning in
1697 ISO C90, such as omitting the middle term of a @code{?:}
1698 expression. On the other hand, when a GNU dialect of a standard is
1699 specified, all features supported by the compiler are enabled, even when
1700 those features change the meaning of the base standard. As a result, some
1701 strict-conforming programs may be rejected. The particular standard
1702 is used by @option{-Wpedantic} to identify which features are GNU
1703 extensions given that version of the standard. For example
1704 @option{-std=gnu90 -Wpedantic} warns about C++ style @samp{//}
1705 comments, while @option{-std=gnu99 -Wpedantic} does not.
1706
1707 A value for this option must be provided; possible values are
1708
1709 @table @samp
1710 @item c90
1711 @itemx c89
1712 @itemx iso9899:1990
1713 Support all ISO C90 programs (certain GNU extensions that conflict
1714 with ISO C90 are disabled). Same as @option{-ansi} for C code.
1715
1716 @item iso9899:199409
1717 ISO C90 as modified in amendment 1.
1718
1719 @item c99
1720 @itemx c9x
1721 @itemx iso9899:1999
1722 @itemx iso9899:199x
1723 ISO C99. This standard is substantially completely supported, modulo
1724 bugs and floating-point issues
1725 (mainly but not entirely relating to optional C99 features from
1726 Annexes F and G). See
1727 @w{@uref{http://gcc.gnu.org/c99status.html}} for more information. The
1728 names @samp{c9x} and @samp{iso9899:199x} are deprecated.
1729
1730 @item c11
1731 @itemx c1x
1732 @itemx iso9899:2011
1733 ISO C11, the 2011 revision of the ISO C standard. This standard is
1734 substantially completely supported, modulo bugs, floating-point issues
1735 (mainly but not entirely relating to optional C11 features from
1736 Annexes F and G) and the optional Annexes K (Bounds-checking
1737 interfaces) and L (Analyzability). The name @samp{c1x} is deprecated.
1738
1739 @item gnu90
1740 @itemx gnu89
1741 GNU dialect of ISO C90 (including some C99 features).
1742
1743 @item gnu99
1744 @itemx gnu9x
1745 GNU dialect of ISO C99. The name @samp{gnu9x} is deprecated.
1746
1747 @item gnu11
1748 @itemx gnu1x
1749 GNU dialect of ISO C11. This is the default for C code.
1750 The name @samp{gnu1x} is deprecated.
1751
1752 @item c++98
1753 @itemx c++03
1754 The 1998 ISO C++ standard plus the 2003 technical corrigendum and some
1755 additional defect reports. Same as @option{-ansi} for C++ code.
1756
1757 @item gnu++98
1758 @itemx gnu++03
1759 GNU dialect of @option{-std=c++98}. This is the default for
1760 C++ code.
1761
1762 @item c++11
1763 @itemx c++0x
1764 The 2011 ISO C++ standard plus amendments.
1765 The name @samp{c++0x} is deprecated.
1766
1767 @item gnu++11
1768 @itemx gnu++0x
1769 GNU dialect of @option{-std=c++11}.
1770 The name @samp{gnu++0x} is deprecated.
1771
1772 @item c++14
1773 @itemx c++1y
1774 The 2014 ISO C++ standard plus amendments.
1775 The name @samp{c++1y} is deprecated.
1776
1777 @item gnu++14
1778 @itemx gnu++1y
1779 GNU dialect of @option{-std=c++14}.
1780 The name @samp{gnu++1y} is deprecated.
1781
1782 @item c++1z
1783 The next revision of the ISO C++ standard, tentatively planned for
1784 2017. Support is highly experimental, and will almost certainly
1785 change in incompatible ways in future releases.
1786
1787 @item gnu++1z
1788 GNU dialect of @option{-std=c++1z}. Support is highly experimental,
1789 and will almost certainly change in incompatible ways in future
1790 releases.
1791 @end table
1792
1793 @item -fgnu89-inline
1794 @opindex fgnu89-inline
1795 The option @option{-fgnu89-inline} tells GCC to use the traditional
1796 GNU semantics for @code{inline} functions when in C99 mode.
1797 @xref{Inline,,An Inline Function is As Fast As a Macro}.
1798 Using this option is roughly equivalent to adding the
1799 @code{gnu_inline} function attribute to all inline functions
1800 (@pxref{Function Attributes}).
1801
1802 The option @option{-fno-gnu89-inline} explicitly tells GCC to use the
1803 C99 semantics for @code{inline} when in C99 or gnu99 mode (i.e., it
1804 specifies the default behavior).
1805 This option is not supported in @option{-std=c90} or
1806 @option{-std=gnu90} mode.
1807
1808 The preprocessor macros @code{__GNUC_GNU_INLINE__} and
1809 @code{__GNUC_STDC_INLINE__} may be used to check which semantics are
1810 in effect for @code{inline} functions. @xref{Common Predefined
1811 Macros,,,cpp,The C Preprocessor}.
1812
1813 @item -aux-info @var{filename}
1814 @opindex aux-info
1815 Output to the given filename prototyped declarations for all functions
1816 declared and/or defined in a translation unit, including those in header
1817 files. This option is silently ignored in any language other than C@.
1818
1819 Besides declarations, the file indicates, in comments, the origin of
1820 each declaration (source file and line), whether the declaration was
1821 implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or
1822 @samp{O} for old, respectively, in the first character after the line
1823 number and the colon), and whether it came from a declaration or a
1824 definition (@samp{C} or @samp{F}, respectively, in the following
1825 character). In the case of function definitions, a K&R-style list of
1826 arguments followed by their declarations is also provided, inside
1827 comments, after the declaration.
1828
1829 @item -fallow-parameterless-variadic-functions
1830 @opindex fallow-parameterless-variadic-functions
1831 Accept variadic functions without named parameters.
1832
1833 Although it is possible to define such a function, this is not very
1834 useful as it is not possible to read the arguments. This is only
1835 supported for C as this construct is allowed by C++.
1836
1837 @item -fno-asm
1838 @opindex fno-asm
1839 Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
1840 keyword, so that code can use these words as identifiers. You can use
1841 the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
1842 instead. @option{-ansi} implies @option{-fno-asm}.
1843
1844 In C++, this switch only affects the @code{typeof} keyword, since
1845 @code{asm} and @code{inline} are standard keywords. You may want to
1846 use the @option{-fno-gnu-keywords} flag instead, which has the same
1847 effect. In C99 mode (@option{-std=c99} or @option{-std=gnu99}), this
1848 switch only affects the @code{asm} and @code{typeof} keywords, since
1849 @code{inline} is a standard keyword in ISO C99.
1850
1851 @item -fno-builtin
1852 @itemx -fno-builtin-@var{function}
1853 @opindex fno-builtin
1854 @cindex built-in functions
1855 Don't recognize built-in functions that do not begin with
1856 @samp{__builtin_} as prefix. @xref{Other Builtins,,Other built-in
1857 functions provided by GCC}, for details of the functions affected,
1858 including those which are not built-in functions when @option{-ansi} or
1859 @option{-std} options for strict ISO C conformance are used because they
1860 do not have an ISO standard meaning.
1861
1862 GCC normally generates special code to handle certain built-in functions
1863 more efficiently; for instance, calls to @code{alloca} may become single
1864 instructions which adjust the stack directly, and calls to @code{memcpy}
1865 may become inline copy loops. The resulting code is often both smaller
1866 and faster, but since the function calls no longer appear as such, you
1867 cannot set a breakpoint on those calls, nor can you change the behavior
1868 of the functions by linking with a different library. In addition,
1869 when a function is recognized as a built-in function, GCC may use
1870 information about that function to warn about problems with calls to
1871 that function, or to generate more efficient code, even if the
1872 resulting code still contains calls to that function. For example,
1873 warnings are given with @option{-Wformat} for bad calls to
1874 @code{printf} when @code{printf} is built in and @code{strlen} is
1875 known not to modify global memory.
1876
1877 With the @option{-fno-builtin-@var{function}} option
1878 only the built-in function @var{function} is
1879 disabled. @var{function} must not begin with @samp{__builtin_}. If a
1880 function is named that is not built-in in this version of GCC, this
1881 option is ignored. There is no corresponding
1882 @option{-fbuiltin-@var{function}} option; if you wish to enable
1883 built-in functions selectively when using @option{-fno-builtin} or
1884 @option{-ffreestanding}, you may define macros such as:
1885
1886 @smallexample
1887 #define abs(n) __builtin_abs ((n))
1888 #define strcpy(d, s) __builtin_strcpy ((d), (s))
1889 @end smallexample
1890
1891 @item -fhosted
1892 @opindex fhosted
1893 @cindex hosted environment
1894
1895 Assert that compilation targets a hosted environment. This implies
1896 @option{-fbuiltin}. A hosted environment is one in which the
1897 entire standard library is available, and in which @code{main} has a return
1898 type of @code{int}. Examples are nearly everything except a kernel.
1899 This is equivalent to @option{-fno-freestanding}.
1900
1901 @item -ffreestanding
1902 @opindex ffreestanding
1903 @cindex hosted environment
1904
1905 Assert that compilation targets a freestanding environment. This
1906 implies @option{-fno-builtin}. A freestanding environment
1907 is one in which the standard library may not exist, and program startup may
1908 not necessarily be at @code{main}. The most obvious example is an OS kernel.
1909 This is equivalent to @option{-fno-hosted}.
1910
1911 @xref{Standards,,Language Standards Supported by GCC}, for details of
1912 freestanding and hosted environments.
1913
1914 @item -fopenacc
1915 @opindex fopenacc
1916 @cindex OpenACC accelerator programming
1917 Enable handling of OpenACC directives @code{#pragma acc} in C/C++ and
1918 @code{!$acc} in Fortran. When @option{-fopenacc} is specified, the
1919 compiler generates accelerated code according to the OpenACC Application
1920 Programming Interface v2.0 @w{@uref{http://www.openacc.org/}}. This option
1921 implies @option{-pthread}, and thus is only supported on targets that
1922 have support for @option{-pthread}.
1923
1924 Note that this is an experimental feature, incomplete, and subject to
1925 change in future versions of GCC. See
1926 @w{@uref{https://gcc.gnu.org/wiki/OpenACC}} for more information.
1927
1928 @item -fopenmp
1929 @opindex fopenmp
1930 @cindex OpenMP parallel
1931 Enable handling of OpenMP directives @code{#pragma omp} in C/C++ and
1932 @code{!$omp} in Fortran. When @option{-fopenmp} is specified, the
1933 compiler generates parallel code according to the OpenMP Application
1934 Program Interface v4.0 @w{@uref{http://www.openmp.org/}}. This option
1935 implies @option{-pthread}, and thus is only supported on targets that
1936 have support for @option{-pthread}. @option{-fopenmp} implies
1937 @option{-fopenmp-simd}.
1938
1939 @item -fopenmp-simd
1940 @opindex fopenmp-simd
1941 @cindex OpenMP SIMD
1942 @cindex SIMD
1943 Enable handling of OpenMP's SIMD directives with @code{#pragma omp}
1944 in C/C++ and @code{!$omp} in Fortran. Other OpenMP directives
1945 are ignored.
1946
1947 @item -fcilkplus
1948 @opindex fcilkplus
1949 @cindex Enable Cilk Plus
1950 Enable the usage of Cilk Plus language extension features for C/C++.
1951 When the option @option{-fcilkplus} is specified, enable the usage of
1952 the Cilk Plus Language extension features for C/C++. The present
1953 implementation follows ABI version 1.2. This is an experimental
1954 feature that is only partially complete, and whose interface may
1955 change in future versions of GCC as the official specification
1956 changes. Currently, all features but @code{_Cilk_for} have been
1957 implemented.
1958
1959 @item -fgnu-tm
1960 @opindex fgnu-tm
1961 When the option @option{-fgnu-tm} is specified, the compiler
1962 generates code for the Linux variant of Intel's current Transactional
1963 Memory ABI specification document (Revision 1.1, May 6 2009). This is
1964 an experimental feature whose interface may change in future versions
1965 of GCC, as the official specification changes. Please note that not
1966 all architectures are supported for this feature.
1967
1968 For more information on GCC's support for transactional memory,
1969 @xref{Enabling libitm,,The GNU Transactional Memory Library,libitm,GNU
1970 Transactional Memory Library}.
1971
1972 Note that the transactional memory feature is not supported with
1973 non-call exceptions (@option{-fnon-call-exceptions}).
1974
1975 @item -fms-extensions
1976 @opindex fms-extensions
1977 Accept some non-standard constructs used in Microsoft header files.
1978
1979 In C++ code, this allows member names in structures to be similar
1980 to previous types declarations.
1981
1982 @smallexample
1983 typedef int UOW;
1984 struct ABC @{
1985 UOW UOW;
1986 @};
1987 @end smallexample
1988
1989 Some cases of unnamed fields in structures and unions are only
1990 accepted with this option. @xref{Unnamed Fields,,Unnamed struct/union
1991 fields within structs/unions}, for details.
1992
1993 Note that this option is off for all targets but x86
1994 targets using ms-abi.
1995
1996 @item -fplan9-extensions
1997 @opindex fplan9-extensions
1998 Accept some non-standard constructs used in Plan 9 code.
1999
2000 This enables @option{-fms-extensions}, permits passing pointers to
2001 structures with anonymous fields to functions that expect pointers to
2002 elements of the type of the field, and permits referring to anonymous
2003 fields declared using a typedef. @xref{Unnamed Fields,,Unnamed
2004 struct/union fields within structs/unions}, for details. This is only
2005 supported for C, not C++.
2006
2007 @item -trigraphs
2008 @opindex trigraphs
2009 Support ISO C trigraphs. The @option{-ansi} option (and @option{-std}
2010 options for strict ISO C conformance) implies @option{-trigraphs}.
2011
2012 @cindex traditional C language
2013 @cindex C language, traditional
2014 @item -traditional
2015 @itemx -traditional-cpp
2016 @opindex traditional-cpp
2017 @opindex traditional
2018 Formerly, these options caused GCC to attempt to emulate a pre-standard
2019 C compiler. They are now only supported with the @option{-E} switch.
2020 The preprocessor continues to support a pre-standard mode. See the GNU
2021 CPP manual for details.
2022
2023 @item -fcond-mismatch
2024 @opindex fcond-mismatch
2025 Allow conditional expressions with mismatched types in the second and
2026 third arguments. The value of such an expression is void. This option
2027 is not supported for C++.
2028
2029 @item -flax-vector-conversions
2030 @opindex flax-vector-conversions
2031 Allow implicit conversions between vectors with differing numbers of
2032 elements and/or incompatible element types. This option should not be
2033 used for new code.
2034
2035 @item -funsigned-char
2036 @opindex funsigned-char
2037 Let the type @code{char} be unsigned, like @code{unsigned char}.
2038
2039 Each kind of machine has a default for what @code{char} should
2040 be. It is either like @code{unsigned char} by default or like
2041 @code{signed char} by default.
2042
2043 Ideally, a portable program should always use @code{signed char} or
2044 @code{unsigned char} when it depends on the signedness of an object.
2045 But many programs have been written to use plain @code{char} and
2046 expect it to be signed, or expect it to be unsigned, depending on the
2047 machines they were written for. This option, and its inverse, let you
2048 make such a program work with the opposite default.
2049
2050 The type @code{char} is always a distinct type from each of
2051 @code{signed char} or @code{unsigned char}, even though its behavior
2052 is always just like one of those two.
2053
2054 @item -fsigned-char
2055 @opindex fsigned-char
2056 Let the type @code{char} be signed, like @code{signed char}.
2057
2058 Note that this is equivalent to @option{-fno-unsigned-char}, which is
2059 the negative form of @option{-funsigned-char}. Likewise, the option
2060 @option{-fno-signed-char} is equivalent to @option{-funsigned-char}.
2061
2062 @item -fsigned-bitfields
2063 @itemx -funsigned-bitfields
2064 @itemx -fno-signed-bitfields
2065 @itemx -fno-unsigned-bitfields
2066 @opindex fsigned-bitfields
2067 @opindex funsigned-bitfields
2068 @opindex fno-signed-bitfields
2069 @opindex fno-unsigned-bitfields
2070 These options control whether a bit-field is signed or unsigned, when the
2071 declaration does not use either @code{signed} or @code{unsigned}. By
2072 default, such a bit-field is signed, because this is consistent: the
2073 basic integer types such as @code{int} are signed types.
2074 @end table
2075
2076 @node C++ Dialect Options
2077 @section Options Controlling C++ Dialect
2078
2079 @cindex compiler options, C++
2080 @cindex C++ options, command-line
2081 @cindex options, C++
2082 This section describes the command-line options that are only meaningful
2083 for C++ programs. You can also use most of the GNU compiler options
2084 regardless of what language your program is in. For example, you
2085 might compile a file @file{firstClass.C} like this:
2086
2087 @smallexample
2088 g++ -g -frepo -O -c firstClass.C
2089 @end smallexample
2090
2091 @noindent
2092 In this example, only @option{-frepo} is an option meant
2093 only for C++ programs; you can use the other options with any
2094 language supported by GCC@.
2095
2096 Here is a list of options that are @emph{only} for compiling C++ programs:
2097
2098 @table @gcctabopt
2099
2100 @item -fabi-version=@var{n}
2101 @opindex fabi-version
2102 Use version @var{n} of the C++ ABI@. The default is version 0.
2103
2104 Version 0 refers to the version conforming most closely to
2105 the C++ ABI specification. Therefore, the ABI obtained using version 0
2106 will change in different versions of G++ as ABI bugs are fixed.
2107
2108 Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.
2109
2110 Version 2 is the version of the C++ ABI that first appeared in G++
2111 3.4, and was the default through G++ 4.9.
2112
2113 Version 3 corrects an error in mangling a constant address as a
2114 template argument.
2115
2116 Version 4, which first appeared in G++ 4.5, implements a standard
2117 mangling for vector types.
2118
2119 Version 5, which first appeared in G++ 4.6, corrects the mangling of
2120 attribute const/volatile on function pointer types, decltype of a
2121 plain decl, and use of a function parameter in the declaration of
2122 another parameter.
2123
2124 Version 6, which first appeared in G++ 4.7, corrects the promotion
2125 behavior of C++11 scoped enums and the mangling of template argument
2126 packs, const/static_cast, prefix ++ and --, and a class scope function
2127 used as a template argument.
2128
2129 Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a
2130 builtin type and corrects the mangling of lambdas in default argument
2131 scope.
2132
2133 Version 8, which first appeared in G++ 4.9, corrects the substitution
2134 behavior of function types with function-cv-qualifiers.
2135
2136 See also @option{-Wabi}.
2137
2138 @item -fabi-compat-version=@var{n}
2139 @opindex fabi-compat-version
2140 On targets that support strong aliases, G++
2141 works around mangling changes by creating an alias with the correct
2142 mangled name when defining a symbol with an incorrect mangled name.
2143 This switch specifies which ABI version to use for the alias.
2144
2145 With @option{-fabi-version=0} (the default), this defaults to 2. If
2146 another ABI version is explicitly selected, this defaults to 0.
2147
2148 The compatibility version is also set by @option{-Wabi=@var{n}}.
2149
2150 @item -fno-access-control
2151 @opindex fno-access-control
2152 Turn off all access checking. This switch is mainly useful for working
2153 around bugs in the access control code.
2154
2155 @item -fcheck-new
2156 @opindex fcheck-new
2157 Check that the pointer returned by @code{operator new} is non-null
2158 before attempting to modify the storage allocated. This check is
2159 normally unnecessary because the C++ standard specifies that
2160 @code{operator new} only returns @code{0} if it is declared
2161 @code{throw()}, in which case the compiler always checks the
2162 return value even without this option. In all other cases, when
2163 @code{operator new} has a non-empty exception specification, memory
2164 exhaustion is signalled by throwing @code{std::bad_alloc}. See also
2165 @samp{new (nothrow)}.
2166
2167 @item -fconstexpr-depth=@var{n}
2168 @opindex fconstexpr-depth
2169 Set the maximum nested evaluation depth for C++11 constexpr functions
2170 to @var{n}. A limit is needed to detect endless recursion during
2171 constant expression evaluation. The minimum specified by the standard
2172 is 512.
2173
2174 @item -fdeduce-init-list
2175 @opindex fdeduce-init-list
2176 Enable deduction of a template type parameter as
2177 @code{std::initializer_list} from a brace-enclosed initializer list, i.e.@:
2178
2179 @smallexample
2180 template <class T> auto forward(T t) -> decltype (realfn (t))
2181 @{
2182 return realfn (t);
2183 @}
2184
2185 void f()
2186 @{
2187 forward(@{1,2@}); // call forward<std::initializer_list<int>>
2188 @}
2189 @end smallexample
2190
2191 This deduction was implemented as a possible extension to the
2192 originally proposed semantics for the C++11 standard, but was not part
2193 of the final standard, so it is disabled by default. This option is
2194 deprecated, and may be removed in a future version of G++.
2195
2196 @item -ffriend-injection
2197 @opindex ffriend-injection
2198 Inject friend functions into the enclosing namespace, so that they are
2199 visible outside the scope of the class in which they are declared.
2200 Friend functions were documented to work this way in the old Annotated
2201 C++ Reference Manual.
2202 However, in ISO C++ a friend function that is not declared
2203 in an enclosing scope can only be found using argument dependent
2204 lookup. GCC defaults to the standard behavior.
2205
2206 This option is for compatibility, and may be removed in a future
2207 release of G++.
2208
2209 @item -fno-elide-constructors
2210 @opindex fno-elide-constructors
2211 The C++ standard allows an implementation to omit creating a temporary
2212 that is only used to initialize another object of the same type.
2213 Specifying this option disables that optimization, and forces G++ to
2214 call the copy constructor in all cases.
2215
2216 @item -fno-enforce-eh-specs
2217 @opindex fno-enforce-eh-specs
2218 Don't generate code to check for violation of exception specifications
2219 at run time. This option violates the C++ standard, but may be useful
2220 for reducing code size in production builds, much like defining
2221 @code{NDEBUG}. This does not give user code permission to throw
2222 exceptions in violation of the exception specifications; the compiler
2223 still optimizes based on the specifications, so throwing an
2224 unexpected exception results in undefined behavior at run time.
2225
2226 @item -fextern-tls-init
2227 @itemx -fno-extern-tls-init
2228 @opindex fextern-tls-init
2229 @opindex fno-extern-tls-init
2230 The C++11 and OpenMP standards allow @code{thread_local} and
2231 @code{threadprivate} variables to have dynamic (runtime)
2232 initialization. To support this, any use of such a variable goes
2233 through a wrapper function that performs any necessary initialization.
2234 When the use and definition of the variable are in the same
2235 translation unit, this overhead can be optimized away, but when the
2236 use is in a different translation unit there is significant overhead
2237 even if the variable doesn't actually need dynamic initialization. If
2238 the programmer can be sure that no use of the variable in a
2239 non-defining TU needs to trigger dynamic initialization (either
2240 because the variable is statically initialized, or a use of the
2241 variable in the defining TU will be executed before any uses in
2242 another TU), they can avoid this overhead with the
2243 @option{-fno-extern-tls-init} option.
2244
2245 On targets that support symbol aliases, the default is
2246 @option{-fextern-tls-init}. On targets that do not support symbol
2247 aliases, the default is @option{-fno-extern-tls-init}.
2248
2249 @item -ffor-scope
2250 @itemx -fno-for-scope
2251 @opindex ffor-scope
2252 @opindex fno-for-scope
2253 If @option{-ffor-scope} is specified, the scope of variables declared in
2254 a @i{for-init-statement} is limited to the @code{for} loop itself,
2255 as specified by the C++ standard.
2256 If @option{-fno-for-scope} is specified, the scope of variables declared in
2257 a @i{for-init-statement} extends to the end of the enclosing scope,
2258 as was the case in old versions of G++, and other (traditional)
2259 implementations of C++.
2260
2261 If neither flag is given, the default is to follow the standard,
2262 but to allow and give a warning for old-style code that would
2263 otherwise be invalid, or have different behavior.
2264
2265 @item -fno-gnu-keywords
2266 @opindex fno-gnu-keywords
2267 Do not recognize @code{typeof} as a keyword, so that code can use this
2268 word as an identifier. You can use the keyword @code{__typeof__} instead.
2269 @option{-ansi} implies @option{-fno-gnu-keywords}.
2270
2271 @item -fno-implicit-templates
2272 @opindex fno-implicit-templates
2273 Never emit code for non-inline templates that are instantiated
2274 implicitly (i.e.@: by use); only emit code for explicit instantiations.
2275 @xref{Template Instantiation}, for more information.
2276
2277 @item -fno-implicit-inline-templates
2278 @opindex fno-implicit-inline-templates
2279 Don't emit code for implicit instantiations of inline templates, either.
2280 The default is to handle inlines differently so that compiles with and
2281 without optimization need the same set of explicit instantiations.
2282
2283 @item -fno-implement-inlines
2284 @opindex fno-implement-inlines
2285 To save space, do not emit out-of-line copies of inline functions
2286 controlled by @code{#pragma implementation}. This causes linker
2287 errors if these functions are not inlined everywhere they are called.
2288
2289 @item -fms-extensions
2290 @opindex fms-extensions
2291 Disable Wpedantic warnings about constructs used in MFC, such as implicit
2292 int and getting a pointer to member function via non-standard syntax.
2293
2294 @item -fno-nonansi-builtins
2295 @opindex fno-nonansi-builtins
2296 Disable built-in declarations of functions that are not mandated by
2297 ANSI/ISO C@. These include @code{ffs}, @code{alloca}, @code{_exit},
2298 @code{index}, @code{bzero}, @code{conjf}, and other related functions.
2299
2300 @item -fnothrow-opt
2301 @opindex fnothrow-opt
2302 Treat a @code{throw()} exception specification as if it were a
2303 @code{noexcept} specification to reduce or eliminate the text size
2304 overhead relative to a function with no exception specification. If
2305 the function has local variables of types with non-trivial
2306 destructors, the exception specification actually makes the
2307 function smaller because the EH cleanups for those variables can be
2308 optimized away. The semantic effect is that an exception thrown out of
2309 a function with such an exception specification results in a call
2310 to @code{terminate} rather than @code{unexpected}.
2311
2312 @item -fno-operator-names
2313 @opindex fno-operator-names
2314 Do not treat the operator name keywords @code{and}, @code{bitand},
2315 @code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
2316 synonyms as keywords.
2317
2318 @item -fno-optional-diags
2319 @opindex fno-optional-diags
2320 Disable diagnostics that the standard says a compiler does not need to
2321 issue. Currently, the only such diagnostic issued by G++ is the one for
2322 a name having multiple meanings within a class.
2323
2324 @item -fpermissive
2325 @opindex fpermissive
2326 Downgrade some diagnostics about nonconformant code from errors to
2327 warnings. Thus, using @option{-fpermissive} allows some
2328 nonconforming code to compile.
2329
2330 @item -fno-pretty-templates
2331 @opindex fno-pretty-templates
2332 When an error message refers to a specialization of a function
2333 template, the compiler normally prints the signature of the
2334 template followed by the template arguments and any typedefs or
2335 typenames in the signature (e.g. @code{void f(T) [with T = int]}
2336 rather than @code{void f(int)}) so that it's clear which template is
2337 involved. When an error message refers to a specialization of a class
2338 template, the compiler omits any template arguments that match
2339 the default template arguments for that template. If either of these
2340 behaviors make it harder to understand the error message rather than
2341 easier, you can use @option{-fno-pretty-templates} to disable them.
2342
2343 @item -frepo
2344 @opindex frepo
2345 Enable automatic template instantiation at link time. This option also
2346 implies @option{-fno-implicit-templates}. @xref{Template
2347 Instantiation}, for more information.
2348
2349 @item -fno-rtti
2350 @opindex fno-rtti
2351 Disable generation of information about every class with virtual
2352 functions for use by the C++ run-time type identification features
2353 (@code{dynamic_cast} and @code{typeid}). If you don't use those parts
2354 of the language, you can save some space by using this flag. Note that
2355 exception handling uses the same information, but G++ generates it as
2356 needed. The @code{dynamic_cast} operator can still be used for casts that
2357 do not require run-time type information, i.e.@: casts to @code{void *} or to
2358 unambiguous base classes.
2359
2360 @item -fsized-deallocation
2361 @opindex fsized-deallocation
2362 Enable the built-in global declarations
2363 @smallexample
2364 void operator delete (void *, std::size_t) noexcept;
2365 void operator delete[] (void *, std::size_t) noexcept;
2366 @end smallexample
2367 as introduced in C++14. This is useful for user-defined replacement
2368 deallocation functions that, for example, use the size of the object
2369 to make deallocation faster. Enabled by default under
2370 @option{-std=c++14} and above. The flag @option{-Wsized-deallocation}
2371 warns about places that might want to add a definition.
2372
2373 @item -fstats
2374 @opindex fstats
2375 Emit statistics about front-end processing at the end of the compilation.
2376 This information is generally only useful to the G++ development team.
2377
2378 @item -fstrict-enums
2379 @opindex fstrict-enums
2380 Allow the compiler to optimize using the assumption that a value of
2381 enumerated type can only be one of the values of the enumeration (as
2382 defined in the C++ standard; basically, a value that can be
2383 represented in the minimum number of bits needed to represent all the
2384 enumerators). This assumption may not be valid if the program uses a
2385 cast to convert an arbitrary integer value to the enumerated type.
2386
2387 @item -ftemplate-backtrace-limit=@var{n}
2388 @opindex ftemplate-backtrace-limit
2389 Set the maximum number of template instantiation notes for a single
2390 warning or error to @var{n}. The default value is 10.
2391
2392 @item -ftemplate-depth=@var{n}
2393 @opindex ftemplate-depth
2394 Set the maximum instantiation depth for template classes to @var{n}.
2395 A limit on the template instantiation depth is needed to detect
2396 endless recursions during template class instantiation. ANSI/ISO C++
2397 conforming programs must not rely on a maximum depth greater than 17
2398 (changed to 1024 in C++11). The default value is 900, as the compiler
2399 can run out of stack space before hitting 1024 in some situations.
2400
2401 @item -fno-threadsafe-statics
2402 @opindex fno-threadsafe-statics
2403 Do not emit the extra code to use the routines specified in the C++
2404 ABI for thread-safe initialization of local statics. You can use this
2405 option to reduce code size slightly in code that doesn't need to be
2406 thread-safe.
2407
2408 @item -fuse-cxa-atexit
2409 @opindex fuse-cxa-atexit
2410 Register destructors for objects with static storage duration with the
2411 @code{__cxa_atexit} function rather than the @code{atexit} function.
2412 This option is required for fully standards-compliant handling of static
2413 destructors, but only works if your C library supports
2414 @code{__cxa_atexit}.
2415
2416 @item -fno-use-cxa-get-exception-ptr
2417 @opindex fno-use-cxa-get-exception-ptr
2418 Don't use the @code{__cxa_get_exception_ptr} runtime routine. This
2419 causes @code{std::uncaught_exception} to be incorrect, but is necessary
2420 if the runtime routine is not available.
2421
2422 @item -fvisibility-inlines-hidden
2423 @opindex fvisibility-inlines-hidden
2424 This switch declares that the user does not attempt to compare
2425 pointers to inline functions or methods where the addresses of the two functions
2426 are taken in different shared objects.
2427
2428 The effect of this is that GCC may, effectively, mark inline methods with
2429 @code{__attribute__ ((visibility ("hidden")))} so that they do not
2430 appear in the export table of a DSO and do not require a PLT indirection
2431 when used within the DSO@. Enabling this option can have a dramatic effect
2432 on load and link times of a DSO as it massively reduces the size of the
2433 dynamic export table when the library makes heavy use of templates.
2434
2435 The behavior of this switch is not quite the same as marking the
2436 methods as hidden directly, because it does not affect static variables
2437 local to the function or cause the compiler to deduce that
2438 the function is defined in only one shared object.
2439
2440 You may mark a method as having a visibility explicitly to negate the
2441 effect of the switch for that method. For example, if you do want to
2442 compare pointers to a particular inline method, you might mark it as
2443 having default visibility. Marking the enclosing class with explicit
2444 visibility has no effect.
2445
2446 Explicitly instantiated inline methods are unaffected by this option
2447 as their linkage might otherwise cross a shared library boundary.
2448 @xref{Template Instantiation}.
2449
2450 @item -fvisibility-ms-compat
2451 @opindex fvisibility-ms-compat
2452 This flag attempts to use visibility settings to make GCC's C++
2453 linkage model compatible with that of Microsoft Visual Studio.
2454
2455 The flag makes these changes to GCC's linkage model:
2456
2457 @enumerate
2458 @item
2459 It sets the default visibility to @code{hidden}, like
2460 @option{-fvisibility=hidden}.
2461
2462 @item
2463 Types, but not their members, are not hidden by default.
2464
2465 @item
2466 The One Definition Rule is relaxed for types without explicit
2467 visibility specifications that are defined in more than one
2468 shared object: those declarations are permitted if they are
2469 permitted when this option is not used.
2470 @end enumerate
2471
2472 In new code it is better to use @option{-fvisibility=hidden} and
2473 export those classes that are intended to be externally visible.
2474 Unfortunately it is possible for code to rely, perhaps accidentally,
2475 on the Visual Studio behavior.
2476
2477 Among the consequences of these changes are that static data members
2478 of the same type with the same name but defined in different shared
2479 objects are different, so changing one does not change the other;
2480 and that pointers to function members defined in different shared
2481 objects may not compare equal. When this flag is given, it is a
2482 violation of the ODR to define types with the same name differently.
2483
2484 @item -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]}
2485 @opindex fvtable-verify
2486 Turn on (or off, if using @option{-fvtable-verify=none}) the security
2487 feature that verifies at run time, for every virtual call, that
2488 the vtable pointer through which the call is made is valid for the type of
2489 the object, and has not been corrupted or overwritten. If an invalid vtable
2490 pointer is detected at run time, an error is reported and execution of the
2491 program is immediately halted.
2492
2493 This option causes run-time data structures to be built at program startup,
2494 which are used for verifying the vtable pointers.
2495 The options @samp{std} and @samp{preinit}
2496 control the timing of when these data structures are built. In both cases the
2497 data structures are built before execution reaches @code{main}. Using
2498 @option{-fvtable-verify=std} causes the data structures to be built after
2499 shared libraries have been loaded and initialized.
2500 @option{-fvtable-verify=preinit} causes them to be built before shared
2501 libraries have been loaded and initialized.
2502
2503 If this option appears multiple times in the command line with different
2504 values specified, @samp{none} takes highest priority over both @samp{std} and
2505 @samp{preinit}; @samp{preinit} takes priority over @samp{std}.
2506
2507 @item -fvtv-debug
2508 @opindex fvtv-debug
2509 When used in conjunction with @option{-fvtable-verify=std} or
2510 @option{-fvtable-verify=preinit}, causes debug versions of the
2511 runtime functions for the vtable verification feature to be called.
2512 This flag also causes the compiler to log information about which
2513 vtable pointers it finds for each class.
2514 This information is written to a file named @file{vtv_set_ptr_data.log}
2515 in the directory named by the environment variable @env{VTV_LOGS_DIR}
2516 if that is defined or the current working directory otherwise.
2517
2518 Note: This feature @emph{appends} data to the log file. If you want a fresh log
2519 file, be sure to delete any existing one.
2520
2521 @item -fvtv-counts
2522 @opindex fvtv-counts
2523 This is a debugging flag. When used in conjunction with
2524 @option{-fvtable-verify=std} or @option{-fvtable-verify=preinit}, this
2525 causes the compiler to keep track of the total number of virtual calls
2526 it encounters and the number of verifications it inserts. It also
2527 counts the number of calls to certain run-time library functions
2528 that it inserts and logs this information for each compilation unit.
2529 The compiler writes this information to a file named
2530 @file{vtv_count_data.log} in the directory named by the environment
2531 variable @env{VTV_LOGS_DIR} if that is defined or the current working
2532 directory otherwise. It also counts the size of the vtable pointer sets
2533 for each class, and writes this information to @file{vtv_class_set_sizes.log}
2534 in the same directory.
2535
2536 Note: This feature @emph{appends} data to the log files. To get fresh log
2537 files, be sure to delete any existing ones.
2538
2539 @item -fno-weak
2540 @opindex fno-weak
2541 Do not use weak symbol support, even if it is provided by the linker.
2542 By default, G++ uses weak symbols if they are available. This
2543 option exists only for testing, and should not be used by end-users;
2544 it results in inferior code and has no benefits. This option may
2545 be removed in a future release of G++.
2546
2547 @item -nostdinc++
2548 @opindex nostdinc++
2549 Do not search for header files in the standard directories specific to
2550 C++, but do still search the other standard directories. (This option
2551 is used when building the C++ library.)
2552 @end table
2553
2554 In addition, these optimization, warning, and code generation options
2555 have meanings only for C++ programs:
2556
2557 @table @gcctabopt
2558 @item -Wabi @r{(C, Objective-C, C++ and Objective-C++ only)}
2559 @opindex Wabi
2560 @opindex Wno-abi
2561 When an explicit @option{-fabi-version=@var{n}} option is used, causes
2562 G++ to warn when it generates code that is probably not compatible with the
2563 vendor-neutral C++ ABI@. Since G++ now defaults to
2564 @option{-fabi-version=0}, @option{-Wabi} has no effect unless either
2565 an older ABI version is selected (with @option{-fabi-version=@var{n}})
2566 or an older compatibility version is selected (with
2567 @option{-Wabi=@var{n}} or @option{-fabi-compat-version=@var{n}}).
2568
2569 Although an effort has been made to warn about
2570 all such cases, there are probably some cases that are not warned about,
2571 even though G++ is generating incompatible code. There may also be
2572 cases where warnings are emitted even though the code that is generated
2573 is compatible.
2574
2575 You should rewrite your code to avoid these warnings if you are
2576 concerned about the fact that code generated by G++ may not be binary
2577 compatible with code generated by other compilers.
2578
2579 @option{-Wabi} can also be used with an explicit version number to
2580 warn about compatibility with a particular @option{-fabi-version}
2581 level, e.g. @option{-Wabi=2} to warn about changes relative to
2582 @option{-fabi-version=2}. Specifying a version number also sets
2583 @option{-fabi-compat-version=@var{n}}.
2584
2585 The known incompatibilities in @option{-fabi-version=2} (which was the
2586 default from GCC 3.4 to 4.9) include:
2587
2588 @itemize @bullet
2589
2590 @item
2591 A template with a non-type template parameter of reference type was
2592 mangled incorrectly:
2593 @smallexample
2594 extern int N;
2595 template <int &> struct S @{@};
2596 void n (S<N>) @{2@}
2597 @end smallexample
2598
2599 This was fixed in @option{-fabi-version=3}.
2600
2601 @item
2602 SIMD vector types declared using @code{__attribute ((vector_size))} were
2603 mangled in a non-standard way that does not allow for overloading of
2604 functions taking vectors of different sizes.
2605
2606 The mangling was changed in @option{-fabi-version=4}.
2607
2608 @item
2609 @code{__attribute ((const))} and @code{noreturn} were mangled as type
2610 qualifiers, and @code{decltype} of a plain declaration was folded away.
2611
2612 These mangling issues were fixed in @option{-fabi-version=5}.
2613
2614 @item
2615 Scoped enumerators passed as arguments to a variadic function are
2616 promoted like unscoped enumerators, causing @code{va_arg} to complain.
2617 On most targets this does not actually affect the parameter passing
2618 ABI, as there is no way to pass an argument smaller than @code{int}.
2619
2620 Also, the ABI changed the mangling of template argument packs,
2621 @code{const_cast}, @code{static_cast}, prefix increment/decrement, and
2622 a class scope function used as a template argument.
2623
2624 These issues were corrected in @option{-fabi-version=6}.
2625
2626 @item
2627 Lambdas in default argument scope were mangled incorrectly, and the
2628 ABI changed the mangling of @code{nullptr_t}.
2629
2630 These issues were corrected in @option{-fabi-version=7}.
2631
2632 @item
2633 When mangling a function type with function-cv-qualifiers, the
2634 un-qualified function type was incorrectly treated as a substitution
2635 candidate.
2636
2637 This was fixed in @option{-fabi-version=8}.
2638 @end itemize
2639
2640 It also warns about psABI-related changes. The known psABI changes at this
2641 point include:
2642
2643 @itemize @bullet
2644
2645 @item
2646 For SysV/x86-64, unions with @code{long double} members are
2647 passed in memory as specified in psABI. For example:
2648
2649 @smallexample
2650 union U @{
2651 long double ld;
2652 int i;
2653 @};
2654 @end smallexample
2655
2656 @noindent
2657 @code{union U} is always passed in memory.
2658
2659 @end itemize
2660
2661 @item -Wabi-tag @r{(C++ and Objective-C++ only)}
2662 @opindex Wabi-tag
2663 @opindex -Wabi-tag
2664 Warn when a type with an ABI tag is used in a context that does not
2665 have that ABI tag. See @ref{C++ Attributes} for more information
2666 about ABI tags.
2667
2668 @item -Wctor-dtor-privacy @r{(C++ and Objective-C++ only)}
2669 @opindex Wctor-dtor-privacy
2670 @opindex Wno-ctor-dtor-privacy
2671 Warn when a class seems unusable because all the constructors or
2672 destructors in that class are private, and it has neither friends nor
2673 public static member functions. Also warn if there are no non-private
2674 methods, and there's at least one private member function that isn't
2675 a constructor or destructor.
2676
2677 @item -Wdelete-non-virtual-dtor @r{(C++ and Objective-C++ only)}
2678 @opindex Wdelete-non-virtual-dtor
2679 @opindex Wno-delete-non-virtual-dtor
2680 Warn when @code{delete} is used to destroy an instance of a class that
2681 has virtual functions and non-virtual destructor. It is unsafe to delete
2682 an instance of a derived class through a pointer to a base class if the
2683 base class does not have a virtual destructor. This warning is enabled
2684 by @option{-Wall}.
2685
2686 @item -Wliteral-suffix @r{(C++ and Objective-C++ only)}
2687 @opindex Wliteral-suffix
2688 @opindex Wno-literal-suffix
2689 Warn when a string or character literal is followed by a ud-suffix which does
2690 not begin with an underscore. As a conforming extension, GCC treats such
2691 suffixes as separate preprocessing tokens in order to maintain backwards
2692 compatibility with code that uses formatting macros from @code{<inttypes.h>}.
2693 For example:
2694
2695 @smallexample
2696 #define __STDC_FORMAT_MACROS
2697 #include <inttypes.h>
2698 #include <stdio.h>
2699
2700 int main() @{
2701 int64_t i64 = 123;
2702 printf("My int64: %" PRId64"\n", i64);
2703 @}
2704 @end smallexample
2705
2706 In this case, @code{PRId64} is treated as a separate preprocessing token.
2707
2708 This warning is enabled by default.
2709
2710 @item -Wlto-type-mismatch
2711 @opindex Wlto-type-mismatch
2712 @opindex Wno-lto-type-mistmach
2713
2714 During the link-time optimization warn about type mismatches in between
2715 global declarations from different compilation units.
2716 Requires @option{-flto} to be enabled. Enabled by default.
2717
2718 @item -Wnarrowing @r{(C++ and Objective-C++ only)}
2719 @opindex Wnarrowing
2720 @opindex Wno-narrowing
2721 Warn when a narrowing conversion prohibited by C++11 occurs within
2722 @samp{@{ @}}, e.g.
2723
2724 @smallexample
2725 int i = @{ 2.2 @}; // error: narrowing from double to int
2726 @end smallexample
2727
2728 This flag is included in @option{-Wall} and @option{-Wc++11-compat}.
2729
2730 With @option{-std=c++11}, @option{-Wno-narrowing} suppresses the diagnostic
2731 required by the standard. Note that this does not affect the meaning
2732 of well-formed code; narrowing conversions are still considered
2733 ill-formed in SFINAE context.
2734
2735 @item -Wnoexcept @r{(C++ and Objective-C++ only)}
2736 @opindex Wnoexcept
2737 @opindex Wno-noexcept
2738 Warn when a noexcept-expression evaluates to false because of a call
2739 to a function that does not have a non-throwing exception
2740 specification (i.e. @code{throw()} or @code{noexcept}) but is known by
2741 the compiler to never throw an exception.
2742
2743 @item -Wnon-virtual-dtor @r{(C++ and Objective-C++ only)}
2744 @opindex Wnon-virtual-dtor
2745 @opindex Wno-non-virtual-dtor
2746 Warn when a class has virtual functions and an accessible non-virtual
2747 destructor itself or in an accessible polymorphic base class, in which
2748 case it is possible but unsafe to delete an instance of a derived
2749 class through a pointer to the class itself or base class. This
2750 warning is automatically enabled if @option{-Weffc++} is specified.
2751
2752 @item -Wreorder @r{(C++ and Objective-C++ only)}
2753 @opindex Wreorder
2754 @opindex Wno-reorder
2755 @cindex reordering, warning
2756 @cindex warning for reordering of member initializers
2757 Warn when the order of member initializers given in the code does not
2758 match the order in which they must be executed. For instance:
2759
2760 @smallexample
2761 struct A @{
2762 int i;
2763 int j;
2764 A(): j (0), i (1) @{ @}
2765 @};
2766 @end smallexample
2767
2768 @noindent
2769 The compiler rearranges the member initializers for @code{i}
2770 and @code{j} to match the declaration order of the members, emitting
2771 a warning to that effect. This warning is enabled by @option{-Wall}.
2772
2773 @item -fext-numeric-literals @r{(C++ and Objective-C++ only)}
2774 @opindex fext-numeric-literals
2775 @opindex fno-ext-numeric-literals
2776 Accept imaginary, fixed-point, or machine-defined
2777 literal number suffixes as GNU extensions.
2778 When this option is turned off these suffixes are treated
2779 as C++11 user-defined literal numeric suffixes.
2780 This is on by default for all pre-C++11 dialects and all GNU dialects:
2781 @option{-std=c++98}, @option{-std=gnu++98}, @option{-std=gnu++11},
2782 @option{-std=gnu++14}.
2783 This option is off by default
2784 for ISO C++11 onwards (@option{-std=c++11}, ...).
2785 @end table
2786
2787 The following @option{-W@dots{}} options are not affected by @option{-Wall}.
2788
2789 @table @gcctabopt
2790 @item -Weffc++ @r{(C++ and Objective-C++ only)}
2791 @opindex Weffc++
2792 @opindex Wno-effc++
2793 Warn about violations of the following style guidelines from Scott Meyers'
2794 @cite{Effective C++} series of books:
2795
2796 @itemize @bullet
2797 @item
2798 Define a copy constructor and an assignment operator for classes
2799 with dynamically-allocated memory.
2800
2801 @item
2802 Prefer initialization to assignment in constructors.
2803
2804 @item
2805 Have @code{operator=} return a reference to @code{*this}.
2806
2807 @item
2808 Don't try to return a reference when you must return an object.
2809
2810 @item
2811 Distinguish between prefix and postfix forms of increment and
2812 decrement operators.
2813
2814 @item
2815 Never overload @code{&&}, @code{||}, or @code{,}.
2816
2817 @end itemize
2818
2819 This option also enables @option{-Wnon-virtual-dtor}, which is also
2820 one of the effective C++ recommendations. However, the check is
2821 extended to warn about the lack of virtual destructor in accessible
2822 non-polymorphic bases classes too.
2823
2824 When selecting this option, be aware that the standard library
2825 headers do not obey all of these guidelines; use @samp{grep -v}
2826 to filter out those warnings.
2827
2828 @item -Wstrict-null-sentinel @r{(C++ and Objective-C++ only)}
2829 @opindex Wstrict-null-sentinel
2830 @opindex Wno-strict-null-sentinel
2831 Warn about the use of an uncasted @code{NULL} as sentinel. When
2832 compiling only with GCC this is a valid sentinel, as @code{NULL} is defined
2833 to @code{__null}. Although it is a null pointer constant rather than a
2834 null pointer, it is guaranteed to be of the same size as a pointer.
2835 But this use is not portable across different compilers.
2836
2837 @item -Wno-non-template-friend @r{(C++ and Objective-C++ only)}
2838 @opindex Wno-non-template-friend
2839 @opindex Wnon-template-friend
2840 Disable warnings when non-templatized friend functions are declared
2841 within a template. Since the advent of explicit template specification
2842 support in G++, if the name of the friend is an unqualified-id (i.e.,
2843 @samp{friend foo(int)}), the C++ language specification demands that the
2844 friend declare or define an ordinary, nontemplate function. (Section
2845 14.5.3). Before G++ implemented explicit specification, unqualified-ids
2846 could be interpreted as a particular specialization of a templatized
2847 function. Because this non-conforming behavior is no longer the default
2848 behavior for G++, @option{-Wnon-template-friend} allows the compiler to
2849 check existing code for potential trouble spots and is on by default.
2850 This new compiler behavior can be turned off with
2851 @option{-Wno-non-template-friend}, which keeps the conformant compiler code
2852 but disables the helpful warning.
2853
2854 @item -Wold-style-cast @r{(C++ and Objective-C++ only)}
2855 @opindex Wold-style-cast
2856 @opindex Wno-old-style-cast
2857 Warn if an old-style (C-style) cast to a non-void type is used within
2858 a C++ program. The new-style casts (@code{dynamic_cast},
2859 @code{static_cast}, @code{reinterpret_cast}, and @code{const_cast}) are
2860 less vulnerable to unintended effects and much easier to search for.
2861
2862 @item -Woverloaded-virtual @r{(C++ and Objective-C++ only)}
2863 @opindex Woverloaded-virtual
2864 @opindex Wno-overloaded-virtual
2865 @cindex overloaded virtual function, warning
2866 @cindex warning for overloaded virtual function
2867 Warn when a function declaration hides virtual functions from a
2868 base class. For example, in:
2869
2870 @smallexample
2871 struct A @{
2872 virtual void f();
2873 @};
2874
2875 struct B: public A @{
2876 void f(int);
2877 @};
2878 @end smallexample
2879
2880 the @code{A} class version of @code{f} is hidden in @code{B}, and code
2881 like:
2882
2883 @smallexample
2884 B* b;
2885 b->f();
2886 @end smallexample
2887
2888 @noindent
2889 fails to compile.
2890
2891 @item -Wno-pmf-conversions @r{(C++ and Objective-C++ only)}
2892 @opindex Wno-pmf-conversions
2893 @opindex Wpmf-conversions
2894 Disable the diagnostic for converting a bound pointer to member function
2895 to a plain pointer.
2896
2897 @item -Wsign-promo @r{(C++ and Objective-C++ only)}
2898 @opindex Wsign-promo
2899 @opindex Wno-sign-promo
2900 Warn when overload resolution chooses a promotion from unsigned or
2901 enumerated type to a signed type, over a conversion to an unsigned type of
2902 the same size. Previous versions of G++ tried to preserve
2903 unsignedness, but the standard mandates the current behavior.
2904
2905 @item -Wno-terminate @r{(C++ and Objective-C++ only)}
2906 @opindex Wterminate
2907 @opindex Wno-terminate
2908 Disable the warning about a throw-expression that will immediately
2909 result in a call to @code{terminate}.
2910 @end table
2911
2912 @node Objective-C and Objective-C++ Dialect Options
2913 @section Options Controlling Objective-C and Objective-C++ Dialects
2914
2915 @cindex compiler options, Objective-C and Objective-C++
2916 @cindex Objective-C and Objective-C++ options, command-line
2917 @cindex options, Objective-C and Objective-C++
2918 (NOTE: This manual does not describe the Objective-C and Objective-C++
2919 languages themselves. @xref{Standards,,Language Standards
2920 Supported by GCC}, for references.)
2921
2922 This section describes the command-line options that are only meaningful
2923 for Objective-C and Objective-C++ programs. You can also use most of
2924 the language-independent GNU compiler options.
2925 For example, you might compile a file @file{some_class.m} like this:
2926
2927 @smallexample
2928 gcc -g -fgnu-runtime -O -c some_class.m
2929 @end smallexample
2930
2931 @noindent
2932 In this example, @option{-fgnu-runtime} is an option meant only for
2933 Objective-C and Objective-C++ programs; you can use the other options with
2934 any language supported by GCC@.
2935
2936 Note that since Objective-C is an extension of the C language, Objective-C
2937 compilations may also use options specific to the C front-end (e.g.,
2938 @option{-Wtraditional}). Similarly, Objective-C++ compilations may use
2939 C++-specific options (e.g., @option{-Wabi}).
2940
2941 Here is a list of options that are @emph{only} for compiling Objective-C
2942 and Objective-C++ programs:
2943
2944 @table @gcctabopt
2945 @item -fconstant-string-class=@var{class-name}
2946 @opindex fconstant-string-class
2947 Use @var{class-name} as the name of the class to instantiate for each
2948 literal string specified with the syntax @code{@@"@dots{}"}. The default
2949 class name is @code{NXConstantString} if the GNU runtime is being used, and
2950 @code{NSConstantString} if the NeXT runtime is being used (see below). The
2951 @option{-fconstant-cfstrings} option, if also present, overrides the
2952 @option{-fconstant-string-class} setting and cause @code{@@"@dots{}"} literals
2953 to be laid out as constant CoreFoundation strings.
2954
2955 @item -fgnu-runtime
2956 @opindex fgnu-runtime
2957 Generate object code compatible with the standard GNU Objective-C
2958 runtime. This is the default for most types of systems.
2959
2960 @item -fnext-runtime
2961 @opindex fnext-runtime
2962 Generate output compatible with the NeXT runtime. This is the default
2963 for NeXT-based systems, including Darwin and Mac OS X@. The macro
2964 @code{__NEXT_RUNTIME__} is predefined if (and only if) this option is
2965 used.
2966
2967 @item -fno-nil-receivers
2968 @opindex fno-nil-receivers
2969 Assume that all Objective-C message dispatches (@code{[receiver
2970 message:arg]}) in this translation unit ensure that the receiver is
2971 not @code{nil}. This allows for more efficient entry points in the
2972 runtime to be used. This option is only available in conjunction with
2973 the NeXT runtime and ABI version 0 or 1.
2974
2975 @item -fobjc-abi-version=@var{n}
2976 @opindex fobjc-abi-version
2977 Use version @var{n} of the Objective-C ABI for the selected runtime.
2978 This option is currently supported only for the NeXT runtime. In that
2979 case, Version 0 is the traditional (32-bit) ABI without support for
2980 properties and other Objective-C 2.0 additions. Version 1 is the
2981 traditional (32-bit) ABI with support for properties and other
2982 Objective-C 2.0 additions. Version 2 is the modern (64-bit) ABI. If
2983 nothing is specified, the default is Version 0 on 32-bit target
2984 machines, and Version 2 on 64-bit target machines.
2985
2986 @item -fobjc-call-cxx-cdtors
2987 @opindex fobjc-call-cxx-cdtors
2988 For each Objective-C class, check if any of its instance variables is a
2989 C++ object with a non-trivial default constructor. If so, synthesize a
2990 special @code{- (id) .cxx_construct} instance method which runs
2991 non-trivial default constructors on any such instance variables, in order,
2992 and then return @code{self}. Similarly, check if any instance variable
2993 is a C++ object with a non-trivial destructor, and if so, synthesize a
2994 special @code{- (void) .cxx_destruct} method which runs
2995 all such default destructors, in reverse order.
2996
2997 The @code{- (id) .cxx_construct} and @code{- (void) .cxx_destruct}
2998 methods thusly generated only operate on instance variables
2999 declared in the current Objective-C class, and not those inherited
3000 from superclasses. It is the responsibility of the Objective-C
3001 runtime to invoke all such methods in an object's inheritance
3002 hierarchy. The @code{- (id) .cxx_construct} methods are invoked
3003 by the runtime immediately after a new object instance is allocated;
3004 the @code{- (void) .cxx_destruct} methods are invoked immediately
3005 before the runtime deallocates an object instance.
3006
3007 As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
3008 support for invoking the @code{- (id) .cxx_construct} and
3009 @code{- (void) .cxx_destruct} methods.
3010
3011 @item -fobjc-direct-dispatch
3012 @opindex fobjc-direct-dispatch
3013 Allow fast jumps to the message dispatcher. On Darwin this is
3014 accomplished via the comm page.
3015
3016 @item -fobjc-exceptions
3017 @opindex fobjc-exceptions
3018 Enable syntactic support for structured exception handling in
3019 Objective-C, similar to what is offered by C++ and Java. This option
3020 is required to use the Objective-C keywords @code{@@try},
3021 @code{@@throw}, @code{@@catch}, @code{@@finally} and
3022 @code{@@synchronized}. This option is available with both the GNU
3023 runtime and the NeXT runtime (but not available in conjunction with
3024 the NeXT runtime on Mac OS X 10.2 and earlier).
3025
3026 @item -fobjc-gc
3027 @opindex fobjc-gc
3028 Enable garbage collection (GC) in Objective-C and Objective-C++
3029 programs. This option is only available with the NeXT runtime; the
3030 GNU runtime has a different garbage collection implementation that
3031 does not require special compiler flags.
3032
3033 @item -fobjc-nilcheck
3034 @opindex fobjc-nilcheck
3035 For the NeXT runtime with version 2 of the ABI, check for a nil
3036 receiver in method invocations before doing the actual method call.
3037 This is the default and can be disabled using
3038 @option{-fno-objc-nilcheck}. Class methods and super calls are never
3039 checked for nil in this way no matter what this flag is set to.
3040 Currently this flag does nothing when the GNU runtime, or an older
3041 version of the NeXT runtime ABI, is used.
3042
3043 @item -fobjc-std=objc1
3044 @opindex fobjc-std
3045 Conform to the language syntax of Objective-C 1.0, the language
3046 recognized by GCC 4.0. This only affects the Objective-C additions to
3047 the C/C++ language; it does not affect conformance to C/C++ standards,
3048 which is controlled by the separate C/C++ dialect option flags. When
3049 this option is used with the Objective-C or Objective-C++ compiler,
3050 any Objective-C syntax that is not recognized by GCC 4.0 is rejected.
3051 This is useful if you need to make sure that your Objective-C code can
3052 be compiled with older versions of GCC@.
3053
3054 @item -freplace-objc-classes
3055 @opindex freplace-objc-classes
3056 Emit a special marker instructing @command{ld(1)} not to statically link in
3057 the resulting object file, and allow @command{dyld(1)} to load it in at
3058 run time instead. This is used in conjunction with the Fix-and-Continue
3059 debugging mode, where the object file in question may be recompiled and
3060 dynamically reloaded in the course of program execution, without the need
3061 to restart the program itself. Currently, Fix-and-Continue functionality
3062 is only available in conjunction with the NeXT runtime on Mac OS X 10.3
3063 and later.
3064
3065 @item -fzero-link
3066 @opindex fzero-link
3067 When compiling for the NeXT runtime, the compiler ordinarily replaces calls
3068 to @code{objc_getClass("@dots{}")} (when the name of the class is known at
3069 compile time) with static class references that get initialized at load time,
3070 which improves run-time performance. Specifying the @option{-fzero-link} flag
3071 suppresses this behavior and causes calls to @code{objc_getClass("@dots{}")}
3072 to be retained. This is useful in Zero-Link debugging mode, since it allows
3073 for individual class implementations to be modified during program execution.
3074 The GNU runtime currently always retains calls to @code{objc_get_class("@dots{}")}
3075 regardless of command-line options.
3076
3077 @item -fno-local-ivars
3078 @opindex fno-local-ivars
3079 @opindex flocal-ivars
3080 By default instance variables in Objective-C can be accessed as if
3081 they were local variables from within the methods of the class they're
3082 declared in. This can lead to shadowing between instance variables
3083 and other variables declared either locally inside a class method or
3084 globally with the same name. Specifying the @option{-fno-local-ivars}
3085 flag disables this behavior thus avoiding variable shadowing issues.
3086
3087 @item -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]}
3088 @opindex fivar-visibility
3089 Set the default instance variable visibility to the specified option
3090 so that instance variables declared outside the scope of any access
3091 modifier directives default to the specified visibility.
3092
3093 @item -gen-decls
3094 @opindex gen-decls
3095 Dump interface declarations for all classes seen in the source file to a
3096 file named @file{@var{sourcename}.decl}.
3097
3098 @item -Wassign-intercept @r{(Objective-C and Objective-C++ only)}
3099 @opindex Wassign-intercept
3100 @opindex Wno-assign-intercept
3101 Warn whenever an Objective-C assignment is being intercepted by the
3102 garbage collector.
3103
3104 @item -Wno-protocol @r{(Objective-C and Objective-C++ only)}
3105 @opindex Wno-protocol
3106 @opindex Wprotocol
3107 If a class is declared to implement a protocol, a warning is issued for
3108 every method in the protocol that is not implemented by the class. The
3109 default behavior is to issue a warning for every method not explicitly
3110 implemented in the class, even if a method implementation is inherited
3111 from the superclass. If you use the @option{-Wno-protocol} option, then
3112 methods inherited from the superclass are considered to be implemented,
3113 and no warning is issued for them.
3114
3115 @item -Wselector @r{(Objective-C and Objective-C++ only)}
3116 @opindex Wselector
3117 @opindex Wno-selector
3118 Warn if multiple methods of different types for the same selector are
3119 found during compilation. The check is performed on the list of methods
3120 in the final stage of compilation. Additionally, a check is performed
3121 for each selector appearing in a @code{@@selector(@dots{})}
3122 expression, and a corresponding method for that selector has been found
3123 during compilation. Because these checks scan the method table only at
3124 the end of compilation, these warnings are not produced if the final
3125 stage of compilation is not reached, for example because an error is
3126 found during compilation, or because the @option{-fsyntax-only} option is
3127 being used.
3128
3129 @item -Wstrict-selector-match @r{(Objective-C and Objective-C++ only)}
3130 @opindex Wstrict-selector-match
3131 @opindex Wno-strict-selector-match
3132 Warn if multiple methods with differing argument and/or return types are
3133 found for a given selector when attempting to send a message using this
3134 selector to a receiver of type @code{id} or @code{Class}. When this flag
3135 is off (which is the default behavior), the compiler omits such warnings
3136 if any differences found are confined to types that share the same size
3137 and alignment.
3138
3139 @item -Wundeclared-selector @r{(Objective-C and Objective-C++ only)}
3140 @opindex Wundeclared-selector
3141 @opindex Wno-undeclared-selector
3142 Warn if a @code{@@selector(@dots{})} expression referring to an
3143 undeclared selector is found. A selector is considered undeclared if no
3144 method with that name has been declared before the
3145 @code{@@selector(@dots{})} expression, either explicitly in an
3146 @code{@@interface} or @code{@@protocol} declaration, or implicitly in
3147 an @code{@@implementation} section. This option always performs its
3148 checks as soon as a @code{@@selector(@dots{})} expression is found,
3149 while @option{-Wselector} only performs its checks in the final stage of
3150 compilation. This also enforces the coding style convention
3151 that methods and selectors must be declared before being used.
3152
3153 @item -print-objc-runtime-info
3154 @opindex print-objc-runtime-info
3155 Generate C header describing the largest structure that is passed by
3156 value, if any.
3157
3158 @end table
3159
3160 @node Diagnostic Message Formatting Options
3161 @section Options to Control Diagnostic Messages Formatting
3162 @cindex options to control diagnostics formatting
3163 @cindex diagnostic messages
3164 @cindex message formatting
3165
3166 Traditionally, diagnostic messages have been formatted irrespective of
3167 the output device's aspect (e.g.@: its width, @dots{}). You can use the
3168 options described below
3169 to control the formatting algorithm for diagnostic messages,
3170 e.g.@: how many characters per line, how often source location
3171 information should be reported. Note that some language front ends may not
3172 honor these options.
3173
3174 @table @gcctabopt
3175 @item -fmessage-length=@var{n}
3176 @opindex fmessage-length
3177 Try to format error messages so that they fit on lines of about
3178 @var{n} characters. If @var{n} is zero, then no line-wrapping is
3179 done; each error message appears on a single line. This is the
3180 default for all front ends.
3181
3182 @item -fdiagnostics-show-location=once
3183 @opindex fdiagnostics-show-location
3184 Only meaningful in line-wrapping mode. Instructs the diagnostic messages
3185 reporter to emit source location information @emph{once}; that is, in
3186 case the message is too long to fit on a single physical line and has to
3187 be wrapped, the source location won't be emitted (as prefix) again,
3188 over and over, in subsequent continuation lines. This is the default
3189 behavior.
3190
3191 @item -fdiagnostics-show-location=every-line
3192 Only meaningful in line-wrapping mode. Instructs the diagnostic
3193 messages reporter to emit the same source location information (as
3194 prefix) for physical lines that result from the process of breaking
3195 a message which is too long to fit on a single line.
3196
3197 @item -fdiagnostics-color[=@var{WHEN}]
3198 @itemx -fno-diagnostics-color
3199 @opindex fdiagnostics-color
3200 @cindex highlight, color, colour
3201 @vindex GCC_COLORS @r{environment variable}
3202 Use color in diagnostics. @var{WHEN} is @samp{never}, @samp{always},
3203 or @samp{auto}. The default depends on how the compiler has been configured,
3204 it can be any of the above @var{WHEN} options or also @samp{never}
3205 if @env{GCC_COLORS} environment variable isn't present in the environment,
3206 and @samp{auto} otherwise.
3207 @samp{auto} means to use color only when the standard error is a terminal.
3208 The forms @option{-fdiagnostics-color} and @option{-fno-diagnostics-color} are
3209 aliases for @option{-fdiagnostics-color=always} and
3210 @option{-fdiagnostics-color=never}, respectively.
3211
3212 The colors are defined by the environment variable @env{GCC_COLORS}.
3213 Its value is a colon-separated list of capabilities and Select Graphic
3214 Rendition (SGR) substrings. SGR commands are interpreted by the
3215 terminal or terminal emulator. (See the section in the documentation
3216 of your text terminal for permitted values and their meanings as
3217 character attributes.) These substring values are integers in decimal
3218 representation and can be concatenated with semicolons.
3219 Common values to concatenate include
3220 @samp{1} for bold,
3221 @samp{4} for underline,
3222 @samp{5} for blink,
3223 @samp{7} for inverse,
3224 @samp{39} for default foreground color,
3225 @samp{30} to @samp{37} for foreground colors,
3226 @samp{90} to @samp{97} for 16-color mode foreground colors,
3227 @samp{38;5;0} to @samp{38;5;255}
3228 for 88-color and 256-color modes foreground colors,
3229 @samp{49} for default background color,
3230 @samp{40} to @samp{47} for background colors,
3231 @samp{100} to @samp{107} for 16-color mode background colors,
3232 and @samp{48;5;0} to @samp{48;5;255}
3233 for 88-color and 256-color modes background colors.
3234
3235 The default @env{GCC_COLORS} is
3236 @smallexample
3237 error=01;31:warning=01;35:note=01;36:caret=01;32:locus=01:quote=01
3238 @end smallexample
3239 @noindent
3240 where @samp{01;31} is bold red, @samp{01;35} is bold magenta,
3241 @samp{01;36} is bold cyan, @samp{01;32} is bold green and
3242 @samp{01} is bold. Setting @env{GCC_COLORS} to the empty
3243 string disables colors.
3244 Supported capabilities are as follows.
3245
3246 @table @code
3247 @item error=
3248 @vindex error GCC_COLORS @r{capability}
3249 SGR substring for error: markers.
3250
3251 @item warning=
3252 @vindex warning GCC_COLORS @r{capability}
3253 SGR substring for warning: markers.
3254
3255 @item note=
3256 @vindex note GCC_COLORS @r{capability}
3257 SGR substring for note: markers.
3258
3259 @item caret=
3260 @vindex caret GCC_COLORS @r{capability}
3261 SGR substring for caret line.
3262
3263 @item locus=
3264 @vindex locus GCC_COLORS @r{capability}
3265 SGR substring for location information, @samp{file:line} or
3266 @samp{file:line:column} etc.
3267
3268 @item quote=
3269 @vindex quote GCC_COLORS @r{capability}
3270 SGR substring for information printed within quotes.
3271 @end table
3272
3273 @item -fno-diagnostics-show-option
3274 @opindex fno-diagnostics-show-option
3275 @opindex fdiagnostics-show-option
3276 By default, each diagnostic emitted includes text indicating the
3277 command-line option that directly controls the diagnostic (if such an
3278 option is known to the diagnostic machinery). Specifying the
3279 @option{-fno-diagnostics-show-option} flag suppresses that behavior.
3280
3281 @item -fno-diagnostics-show-caret
3282 @opindex fno-diagnostics-show-caret
3283 @opindex fdiagnostics-show-caret
3284 By default, each diagnostic emitted includes the original source line
3285 and a caret '^' indicating the column. This option suppresses this
3286 information. The source line is truncated to @var{n} characters, if
3287 the @option{-fmessage-length=n} option is given. When the output is done
3288 to the terminal, the width is limited to the width given by the
3289 @env{COLUMNS} environment variable or, if not set, to the terminal width.
3290
3291 @end table
3292
3293 @node Warning Options
3294 @section Options to Request or Suppress Warnings
3295 @cindex options to control warnings
3296 @cindex warning messages
3297 @cindex messages, warning
3298 @cindex suppressing warnings
3299
3300 Warnings are diagnostic messages that report constructions that
3301 are not inherently erroneous but that are risky or suggest there
3302 may have been an error.
3303
3304 The following language-independent options do not enable specific
3305 warnings but control the kinds of diagnostics produced by GCC@.
3306
3307 @table @gcctabopt
3308 @cindex syntax checking
3309 @item -fsyntax-only
3310 @opindex fsyntax-only
3311 Check the code for syntax errors, but don't do anything beyond that.
3312
3313 @item -fmax-errors=@var{n}
3314 @opindex fmax-errors
3315 Limits the maximum number of error messages to @var{n}, at which point
3316 GCC bails out rather than attempting to continue processing the source
3317 code. If @var{n} is 0 (the default), there is no limit on the number
3318 of error messages produced. If @option{-Wfatal-errors} is also
3319 specified, then @option{-Wfatal-errors} takes precedence over this
3320 option.
3321
3322 @item -w
3323 @opindex w
3324 Inhibit all warning messages.
3325
3326 @item -Werror
3327 @opindex Werror
3328 @opindex Wno-error
3329 Make all warnings into errors.
3330
3331 @item -Werror=
3332 @opindex Werror=
3333 @opindex Wno-error=
3334 Make the specified warning into an error. The specifier for a warning
3335 is appended; for example @option{-Werror=switch} turns the warnings
3336 controlled by @option{-Wswitch} into errors. This switch takes a
3337 negative form, to be used to negate @option{-Werror} for specific
3338 warnings; for example @option{-Wno-error=switch} makes
3339 @option{-Wswitch} warnings not be errors, even when @option{-Werror}
3340 is in effect.
3341
3342 The warning message for each controllable warning includes the
3343 option that controls the warning. That option can then be used with
3344 @option{-Werror=} and @option{-Wno-error=} as described above.
3345 (Printing of the option in the warning message can be disabled using the
3346 @option{-fno-diagnostics-show-option} flag.)
3347
3348 Note that specifying @option{-Werror=}@var{foo} automatically implies
3349 @option{-W}@var{foo}. However, @option{-Wno-error=}@var{foo} does not
3350 imply anything.
3351
3352 @item -Wfatal-errors
3353 @opindex Wfatal-errors
3354 @opindex Wno-fatal-errors
3355 This option causes the compiler to abort compilation on the first error
3356 occurred rather than trying to keep going and printing further error
3357 messages.
3358
3359 @end table
3360
3361 You can request many specific warnings with options beginning with
3362 @samp{-W}, for example @option{-Wimplicit} to request warnings on
3363 implicit declarations. Each of these specific warning options also
3364 has a negative form beginning @samp{-Wno-} to turn off warnings; for
3365 example, @option{-Wno-implicit}. This manual lists only one of the
3366 two forms, whichever is not the default. For further
3367 language-specific options also refer to @ref{C++ Dialect Options} and
3368 @ref{Objective-C and Objective-C++ Dialect Options}.
3369
3370 Some options, such as @option{-Wall} and @option{-Wextra}, turn on other
3371 options, such as @option{-Wunused}, which may turn on further options,
3372 such as @option{-Wunused-value}. The combined effect of positive and
3373 negative forms is that more specific options have priority over less
3374 specific ones, independently of their position in the command-line. For
3375 options of the same specificity, the last one takes effect. Options
3376 enabled or disabled via pragmas (@pxref{Diagnostic Pragmas}) take effect
3377 as if they appeared at the end of the command-line.
3378
3379 When an unrecognized warning option is requested (e.g.,
3380 @option{-Wunknown-warning}), GCC emits a diagnostic stating
3381 that the option is not recognized. However, if the @option{-Wno-} form
3382 is used, the behavior is slightly different: no diagnostic is
3383 produced for @option{-Wno-unknown-warning} unless other diagnostics
3384 are being produced. This allows the use of new @option{-Wno-} options
3385 with old compilers, but if something goes wrong, the compiler
3386 warns that an unrecognized option is present.
3387
3388 @table @gcctabopt
3389 @item -Wpedantic
3390 @itemx -pedantic
3391 @opindex pedantic
3392 @opindex Wpedantic
3393 Issue all the warnings demanded by strict ISO C and ISO C++;
3394 reject all programs that use forbidden extensions, and some other
3395 programs that do not follow ISO C and ISO C++. For ISO C, follows the
3396 version of the ISO C standard specified by any @option{-std} option used.
3397
3398 Valid ISO C and ISO C++ programs should compile properly with or without
3399 this option (though a rare few require @option{-ansi} or a
3400 @option{-std} option specifying the required version of ISO C)@. However,
3401 without this option, certain GNU extensions and traditional C and C++
3402 features are supported as well. With this option, they are rejected.
3403
3404 @option{-Wpedantic} does not cause warning messages for use of the
3405 alternate keywords whose names begin and end with @samp{__}. Pedantic
3406 warnings are also disabled in the expression that follows
3407 @code{__extension__}. However, only system header files should use
3408 these escape routes; application programs should avoid them.
3409 @xref{Alternate Keywords}.
3410
3411 Some users try to use @option{-Wpedantic} to check programs for strict ISO
3412 C conformance. They soon find that it does not do quite what they want:
3413 it finds some non-ISO practices, but not all---only those for which
3414 ISO C @emph{requires} a diagnostic, and some others for which
3415 diagnostics have been added.
3416
3417 A feature to report any failure to conform to ISO C might be useful in
3418 some instances, but would require considerable additional work and would
3419 be quite different from @option{-Wpedantic}. We don't have plans to
3420 support such a feature in the near future.
3421
3422 Where the standard specified with @option{-std} represents a GNU
3423 extended dialect of C, such as @samp{gnu90} or @samp{gnu99}, there is a
3424 corresponding @dfn{base standard}, the version of ISO C on which the GNU
3425 extended dialect is based. Warnings from @option{-Wpedantic} are given
3426 where they are required by the base standard. (It does not make sense
3427 for such warnings to be given only for features not in the specified GNU
3428 C dialect, since by definition the GNU dialects of C include all
3429 features the compiler supports with the given option, and there would be
3430 nothing to warn about.)
3431
3432 @item -pedantic-errors
3433 @opindex pedantic-errors
3434 Give an error whenever the @dfn{base standard} (see @option{-Wpedantic})
3435 requires a diagnostic, in some cases where there is undefined behavior
3436 at compile-time and in some other cases that do not prevent compilation
3437 of programs that are valid according to the standard. This is not
3438 equivalent to @option{-Werror=pedantic}, since there are errors enabled
3439 by this option and not enabled by the latter and vice versa.
3440
3441 @item -Wall
3442 @opindex Wall
3443 @opindex Wno-all
3444 This enables all the warnings about constructions that some users
3445 consider questionable, and that are easy to avoid (or modify to
3446 prevent the warning), even in conjunction with macros. This also
3447 enables some language-specific warnings described in @ref{C++ Dialect
3448 Options} and @ref{Objective-C and Objective-C++ Dialect Options}.
3449
3450 @option{-Wall} turns on the following warning flags:
3451
3452 @gccoptlist{-Waddress @gol
3453 -Warray-bounds=1 @r{(only with} @option{-O2}@r{)} @gol
3454 -Wc++11-compat -Wc++14-compat@gol
3455 -Wchar-subscripts @gol
3456 -Wenum-compare @r{(in C/ObjC; this is on by default in C++)} @gol
3457 -Wimplicit-int @r{(C and Objective-C only)} @gol
3458 -Wimplicit-function-declaration @r{(C and Objective-C only)} @gol
3459 -Wbool-compare @gol
3460 -Wcomment @gol
3461 -Wformat @gol
3462 -Wmain @r{(only for C/ObjC and unless} @option{-ffreestanding}@r{)} @gol
3463 -Wmaybe-uninitialized @gol
3464 -Wmissing-braces @r{(only for C/ObjC)} @gol
3465 -Wnonnull @gol
3466 -Wopenmp-simd @gol
3467 -Wparentheses @gol
3468 -Wpointer-sign @gol
3469 -Wreorder @gol
3470 -Wreturn-type @gol
3471 -Wsequence-point @gol
3472 -Wsign-compare @r{(only in C++)} @gol
3473 -Wstrict-aliasing @gol
3474 -Wstrict-overflow=1 @gol
3475 -Wswitch @gol
3476 -Wtautological-compare @gol
3477 -Wtrigraphs @gol
3478 -Wuninitialized @gol
3479 -Wunknown-pragmas @gol
3480 -Wunused-function @gol
3481 -Wunused-label @gol
3482 -Wunused-value @gol
3483 -Wunused-variable @gol
3484 -Wvolatile-register-var @gol
3485 }
3486
3487 Note that some warning flags are not implied by @option{-Wall}. Some of
3488 them warn about constructions that users generally do not consider
3489 questionable, but which occasionally you might wish to check for;
3490 others warn about constructions that are necessary or hard to avoid in
3491 some cases, and there is no simple way to modify the code to suppress
3492 the warning. Some of them are enabled by @option{-Wextra} but many of
3493 them must be enabled individually.
3494
3495 @item -Wextra
3496 @opindex W
3497 @opindex Wextra
3498 @opindex Wno-extra
3499 This enables some extra warning flags that are not enabled by
3500 @option{-Wall}. (This option used to be called @option{-W}. The older
3501 name is still supported, but the newer name is more descriptive.)
3502
3503 @gccoptlist{-Wclobbered @gol
3504 -Wempty-body @gol
3505 -Wignored-qualifiers @gol
3506 -Wmissing-field-initializers @gol
3507 -Wmissing-parameter-type @r{(C only)} @gol
3508 -Wold-style-declaration @r{(C only)} @gol
3509 -Woverride-init @gol
3510 -Wsign-compare @gol
3511 -Wtype-limits @gol
3512 -Wuninitialized @gol
3513 -Wshift-negative-value @gol
3514 -Wunused-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
3515 -Wunused-but-set-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
3516 }
3517
3518 The option @option{-Wextra} also prints warning messages for the
3519 following cases:
3520
3521 @itemize @bullet
3522
3523 @item
3524 A pointer is compared against integer zero with @code{<}, @code{<=},
3525 @code{>}, or @code{>=}.
3526
3527 @item
3528 (C++ only) An enumerator and a non-enumerator both appear in a
3529 conditional expression.
3530
3531 @item
3532 (C++ only) Ambiguous virtual bases.
3533
3534 @item
3535 (C++ only) Subscripting an array that has been declared @code{register}.
3536
3537 @item
3538 (C++ only) Taking the address of a variable that has been declared
3539 @code{register}.
3540
3541 @item
3542 (C++ only) A base class is not initialized in a derived class's copy
3543 constructor.
3544
3545 @end itemize
3546
3547 @item -Wchar-subscripts
3548 @opindex Wchar-subscripts
3549 @opindex Wno-char-subscripts
3550 Warn if an array subscript has type @code{char}. This is a common cause
3551 of error, as programmers often forget that this type is signed on some
3552 machines.
3553 This warning is enabled by @option{-Wall}.
3554
3555 @item -Wcomment
3556 @opindex Wcomment
3557 @opindex Wno-comment
3558 Warn whenever a comment-start sequence @samp{/*} appears in a @samp{/*}
3559 comment, or whenever a Backslash-Newline appears in a @samp{//} comment.
3560 This warning is enabled by @option{-Wall}.
3561
3562 @item -Wno-coverage-mismatch
3563 @opindex Wno-coverage-mismatch
3564 Warn if feedback profiles do not match when using the
3565 @option{-fprofile-use} option.
3566 If a source file is changed between compiling with @option{-fprofile-gen} and
3567 with @option{-fprofile-use}, the files with the profile feedback can fail
3568 to match the source file and GCC cannot use the profile feedback
3569 information. By default, this warning is enabled and is treated as an
3570 error. @option{-Wno-coverage-mismatch} can be used to disable the
3571 warning or @option{-Wno-error=coverage-mismatch} can be used to
3572 disable the error. Disabling the error for this warning can result in
3573 poorly optimized code and is useful only in the
3574 case of very minor changes such as bug fixes to an existing code-base.
3575 Completely disabling the warning is not recommended.
3576
3577 @item -Wno-cpp
3578 @r{(C, Objective-C, C++, Objective-C++ and Fortran only)}
3579
3580 Suppress warning messages emitted by @code{#warning} directives.
3581
3582 @item -Wdouble-promotion @r{(C, C++, Objective-C and Objective-C++ only)}
3583 @opindex Wdouble-promotion
3584 @opindex Wno-double-promotion
3585 Give a warning when a value of type @code{float} is implicitly
3586 promoted to @code{double}. CPUs with a 32-bit ``single-precision''
3587 floating-point unit implement @code{float} in hardware, but emulate
3588 @code{double} in software. On such a machine, doing computations
3589 using @code{double} values is much more expensive because of the
3590 overhead required for software emulation.
3591
3592 It is easy to accidentally do computations with @code{double} because
3593 floating-point literals are implicitly of type @code{double}. For
3594 example, in:
3595 @smallexample
3596 @group
3597 float area(float radius)
3598 @{
3599 return 3.14159 * radius * radius;
3600 @}
3601 @end group
3602 @end smallexample
3603 the compiler performs the entire computation with @code{double}
3604 because the floating-point literal is a @code{double}.
3605
3606 @item -Wformat
3607 @itemx -Wformat=@var{n}
3608 @opindex Wformat
3609 @opindex Wno-format
3610 @opindex ffreestanding
3611 @opindex fno-builtin
3612 @opindex Wformat=
3613 Check calls to @code{printf} and @code{scanf}, etc., to make sure that
3614 the arguments supplied have types appropriate to the format string
3615 specified, and that the conversions specified in the format string make
3616 sense. This includes standard functions, and others specified by format
3617 attributes (@pxref{Function Attributes}), in the @code{printf},
3618 @code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
3619 not in the C standard) families (or other target-specific families).
3620 Which functions are checked without format attributes having been
3621 specified depends on the standard version selected, and such checks of
3622 functions without the attribute specified are disabled by
3623 @option{-ffreestanding} or @option{-fno-builtin}.
3624
3625 The formats are checked against the format features supported by GNU
3626 libc version 2.2. These include all ISO C90 and C99 features, as well
3627 as features from the Single Unix Specification and some BSD and GNU
3628 extensions. Other library implementations may not support all these
3629 features; GCC does not support warning about features that go beyond a
3630 particular library's limitations. However, if @option{-Wpedantic} is used
3631 with @option{-Wformat}, warnings are given about format features not
3632 in the selected standard version (but not for @code{strfmon} formats,
3633 since those are not in any version of the C standard). @xref{C Dialect
3634 Options,,Options Controlling C Dialect}.
3635
3636 @table @gcctabopt
3637 @item -Wformat=1
3638 @itemx -Wformat
3639 @opindex Wformat
3640 @opindex Wformat=1
3641 Option @option{-Wformat} is equivalent to @option{-Wformat=1}, and
3642 @option{-Wno-format} is equivalent to @option{-Wformat=0}. Since
3643 @option{-Wformat} also checks for null format arguments for several
3644 functions, @option{-Wformat} also implies @option{-Wnonnull}. Some
3645 aspects of this level of format checking can be disabled by the
3646 options: @option{-Wno-format-contains-nul},
3647 @option{-Wno-format-extra-args}, and @option{-Wno-format-zero-length}.
3648 @option{-Wformat} is enabled by @option{-Wall}.
3649
3650 @item -Wno-format-contains-nul
3651 @opindex Wno-format-contains-nul
3652 @opindex Wformat-contains-nul
3653 If @option{-Wformat} is specified, do not warn about format strings that
3654 contain NUL bytes.
3655
3656 @item -Wno-format-extra-args
3657 @opindex Wno-format-extra-args
3658 @opindex Wformat-extra-args
3659 If @option{-Wformat} is specified, do not warn about excess arguments to a
3660 @code{printf} or @code{scanf} format function. The C standard specifies
3661 that such arguments are ignored.
3662
3663 Where the unused arguments lie between used arguments that are
3664 specified with @samp{$} operand number specifications, normally
3665 warnings are still given, since the implementation could not know what
3666 type to pass to @code{va_arg} to skip the unused arguments. However,
3667 in the case of @code{scanf} formats, this option suppresses the
3668 warning if the unused arguments are all pointers, since the Single
3669 Unix Specification says that such unused arguments are allowed.
3670
3671 @item -Wno-format-zero-length
3672 @opindex Wno-format-zero-length
3673 @opindex Wformat-zero-length
3674 If @option{-Wformat} is specified, do not warn about zero-length formats.
3675 The C standard specifies that zero-length formats are allowed.
3676
3677
3678 @item -Wformat=2
3679 @opindex Wformat=2
3680 Enable @option{-Wformat} plus additional format checks. Currently
3681 equivalent to @option{-Wformat -Wformat-nonliteral -Wformat-security
3682 -Wformat-y2k}.
3683
3684 @item -Wformat-nonliteral
3685 @opindex Wformat-nonliteral
3686 @opindex Wno-format-nonliteral
3687 If @option{-Wformat} is specified, also warn if the format string is not a
3688 string literal and so cannot be checked, unless the format function
3689 takes its format arguments as a @code{va_list}.
3690
3691 @item -Wformat-security
3692 @opindex Wformat-security
3693 @opindex Wno-format-security
3694 If @option{-Wformat} is specified, also warn about uses of format
3695 functions that represent possible security problems. At present, this
3696 warns about calls to @code{printf} and @code{scanf} functions where the
3697 format string is not a string literal and there are no format arguments,
3698 as in @code{printf (foo);}. This may be a security hole if the format
3699 string came from untrusted input and contains @samp{%n}. (This is
3700 currently a subset of what @option{-Wformat-nonliteral} warns about, but
3701 in future warnings may be added to @option{-Wformat-security} that are not
3702 included in @option{-Wformat-nonliteral}.)
3703
3704 @item -Wformat-signedness
3705 @opindex Wformat-signedness
3706 @opindex Wno-format-signedness
3707 If @option{-Wformat} is specified, also warn if the format string
3708 requires an unsigned argument and the argument is signed and vice versa.
3709
3710 @item -Wformat-y2k
3711 @opindex Wformat-y2k
3712 @opindex Wno-format-y2k
3713 If @option{-Wformat} is specified, also warn about @code{strftime}
3714 formats that may yield only a two-digit year.
3715 @end table
3716
3717 @item -Wnonnull
3718 @opindex Wnonnull
3719 @opindex Wno-nonnull
3720 Warn about passing a null pointer for arguments marked as
3721 requiring a non-null value by the @code{nonnull} function attribute.
3722
3723 @option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}. It
3724 can be disabled with the @option{-Wno-nonnull} option.
3725
3726 @item -Wnull-dereference
3727 @opindex Wnull-dereference
3728 @opindex Wno-null-dereference
3729 Warn if the compiler detects paths that trigger erroneous or
3730 undefined behavior due to dereferencing a null pointer. This option
3731 is only active when @option{-fdelete-null-pointer-checks} is active,
3732 which is enabled by optimizations in most targets. The precision of
3733 the warnings depends on the optimization options used.
3734
3735 @item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)}
3736 @opindex Winit-self
3737 @opindex Wno-init-self
3738 Warn about uninitialized variables that are initialized with themselves.
3739 Note this option can only be used with the @option{-Wuninitialized} option.
3740
3741 For example, GCC warns about @code{i} being uninitialized in the
3742 following snippet only when @option{-Winit-self} has been specified:
3743 @smallexample
3744 @group
3745 int f()
3746 @{
3747 int i = i;
3748 return i;
3749 @}
3750 @end group
3751 @end smallexample
3752
3753 This warning is enabled by @option{-Wall} in C++.
3754
3755 @item -Wimplicit-int @r{(C and Objective-C only)}
3756 @opindex Wimplicit-int
3757 @opindex Wno-implicit-int
3758 Warn when a declaration does not specify a type.
3759 This warning is enabled by @option{-Wall}.
3760
3761 @item -Wimplicit-function-declaration @r{(C and Objective-C only)}
3762 @opindex Wimplicit-function-declaration
3763 @opindex Wno-implicit-function-declaration
3764 Give a warning whenever a function is used before being declared. In
3765 C99 mode (@option{-std=c99} or @option{-std=gnu99}), this warning is
3766 enabled by default and it is made into an error by
3767 @option{-pedantic-errors}. This warning is also enabled by
3768 @option{-Wall}.
3769
3770 @item -Wimplicit @r{(C and Objective-C only)}
3771 @opindex Wimplicit
3772 @opindex Wno-implicit
3773 Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
3774 This warning is enabled by @option{-Wall}.
3775
3776 @item -Wignored-qualifiers @r{(C and C++ only)}
3777 @opindex Wignored-qualifiers
3778 @opindex Wno-ignored-qualifiers
3779 Warn if the return type of a function has a type qualifier
3780 such as @code{const}. For ISO C such a type qualifier has no effect,
3781 since the value returned by a function is not an lvalue.
3782 For C++, the warning is only emitted for scalar types or @code{void}.
3783 ISO C prohibits qualified @code{void} return types on function
3784 definitions, so such return types always receive a warning
3785 even without this option.
3786
3787 This warning is also enabled by @option{-Wextra}.
3788
3789 @item -Wmain
3790 @opindex Wmain
3791 @opindex Wno-main
3792 Warn if the type of @code{main} is suspicious. @code{main} should be
3793 a function with external linkage, returning int, taking either zero
3794 arguments, two, or three arguments of appropriate types. This warning
3795 is enabled by default in C++ and is enabled by either @option{-Wall}
3796 or @option{-Wpedantic}.
3797
3798 @item -Wmisleading-indentation @r{(C and C++ only)}
3799 @opindex Wmisleading-indentation
3800 @opindex Wno-misleading-indentation
3801 Warn when the indentation of the code does not reflect the block structure.
3802 Specifically, a warning is issued for @code{if}, @code{else}, @code{while}, and
3803 @code{for} clauses with a guarded statement that does not use braces,
3804 followed by an unguarded statement with the same indentation.
3805
3806 This warning is disabled by default.
3807
3808 In the following example, the call to ``bar'' is misleadingly indented as
3809 if it were guarded by the ``if'' conditional.
3810
3811 @smallexample
3812 if (some_condition ())
3813 foo ();
3814 bar (); /* Gotcha: this is not guarded by the "if". */
3815 @end smallexample
3816
3817 In the case of mixed tabs and spaces, the warning uses the
3818 @option{-ftabstop=} option to determine if the statements line up
3819 (defaulting to 8).
3820
3821 The warning is not issued for code involving multiline preprocessor logic
3822 such as the following example.
3823
3824 @smallexample
3825 if (flagA)
3826 foo (0);
3827 #if SOME_CONDITION_THAT_DOES_NOT_HOLD
3828 if (flagB)
3829 #endif
3830 foo (1);
3831 @end smallexample
3832
3833 The warning is not issued after a @code{#line} directive, since this
3834 typically indicates autogenerated code, and no assumptions can be made
3835 about the layout of the file that the directive references.
3836
3837 @item -Wmissing-braces
3838 @opindex Wmissing-braces
3839 @opindex Wno-missing-braces
3840 Warn if an aggregate or union initializer is not fully bracketed. In
3841 the following example, the initializer for @code{a} is not fully
3842 bracketed, but that for @code{b} is fully bracketed. This warning is
3843 enabled by @option{-Wall} in C.
3844
3845 @smallexample
3846 int a[2][2] = @{ 0, 1, 2, 3 @};
3847 int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
3848 @end smallexample
3849
3850 This warning is enabled by @option{-Wall}.
3851
3852 @item -Wmissing-include-dirs @r{(C, C++, Objective-C and Objective-C++ only)}
3853 @opindex Wmissing-include-dirs
3854 @opindex Wno-missing-include-dirs
3855 Warn if a user-supplied include directory does not exist.
3856
3857 @item -Wparentheses
3858 @opindex Wparentheses
3859 @opindex Wno-parentheses
3860 Warn if parentheses are omitted in certain contexts, such
3861 as when there is an assignment in a context where a truth value
3862 is expected, or when operators are nested whose precedence people
3863 often get confused about.
3864
3865 Also warn if a comparison like @code{x<=y<=z} appears; this is
3866 equivalent to @code{(x<=y ? 1 : 0) <= z}, which is a different
3867 interpretation from that of ordinary mathematical notation.
3868
3869 Also warn about constructions where there may be confusion to which
3870 @code{if} statement an @code{else} branch belongs. Here is an example of
3871 such a case:
3872
3873 @smallexample
3874 @group
3875 @{
3876 if (a)
3877 if (b)
3878 foo ();
3879 else
3880 bar ();
3881 @}
3882 @end group
3883 @end smallexample
3884
3885 In C/C++, every @code{else} branch belongs to the innermost possible
3886 @code{if} statement, which in this example is @code{if (b)}. This is
3887 often not what the programmer expected, as illustrated in the above
3888 example by indentation the programmer chose. When there is the
3889 potential for this confusion, GCC issues a warning when this flag
3890 is specified. To eliminate the warning, add explicit braces around
3891 the innermost @code{if} statement so there is no way the @code{else}
3892 can belong to the enclosing @code{if}. The resulting code
3893 looks like this:
3894
3895 @smallexample
3896 @group
3897 @{
3898 if (a)
3899 @{
3900 if (b)
3901 foo ();
3902 else
3903 bar ();
3904 @}
3905 @}
3906 @end group
3907 @end smallexample
3908
3909 Also warn for dangerous uses of the GNU extension to
3910 @code{?:} with omitted middle operand. When the condition
3911 in the @code{?}: operator is a boolean expression, the omitted value is
3912 always 1. Often programmers expect it to be a value computed
3913 inside the conditional expression instead.
3914
3915 This warning is enabled by @option{-Wall}.
3916
3917 @item -Wsequence-point
3918 @opindex Wsequence-point
3919 @opindex Wno-sequence-point
3920 Warn about code that may have undefined semantics because of violations
3921 of sequence point rules in the C and C++ standards.
3922
3923 The C and C++ standards define the order in which expressions in a C/C++
3924 program are evaluated in terms of @dfn{sequence points}, which represent
3925 a partial ordering between the execution of parts of the program: those
3926 executed before the sequence point, and those executed after it. These
3927 occur after the evaluation of a full expression (one which is not part
3928 of a larger expression), after the evaluation of the first operand of a
3929 @code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
3930 function is called (but after the evaluation of its arguments and the
3931 expression denoting the called function), and in certain other places.
3932 Other than as expressed by the sequence point rules, the order of
3933 evaluation of subexpressions of an expression is not specified. All
3934 these rules describe only a partial order rather than a total order,
3935 since, for example, if two functions are called within one expression
3936 with no sequence point between them, the order in which the functions
3937 are called is not specified. However, the standards committee have
3938 ruled that function calls do not overlap.
3939
3940 It is not specified when between sequence points modifications to the
3941 values of objects take effect. Programs whose behavior depends on this
3942 have undefined behavior; the C and C++ standards specify that ``Between
3943 the previous and next sequence point an object shall have its stored
3944 value modified at most once by the evaluation of an expression.
3945 Furthermore, the prior value shall be read only to determine the value
3946 to be stored.''. If a program breaks these rules, the results on any
3947 particular implementation are entirely unpredictable.
3948
3949 Examples of code with undefined behavior are @code{a = a++;}, @code{a[n]
3950 = b[n++]} and @code{a[i++] = i;}. Some more complicated cases are not
3951 diagnosed by this option, and it may give an occasional false positive
3952 result, but in general it has been found fairly effective at detecting
3953 this sort of problem in programs.
3954
3955 The standard is worded confusingly, therefore there is some debate
3956 over the precise meaning of the sequence point rules in subtle cases.
3957 Links to discussions of the problem, including proposed formal
3958 definitions, may be found on the GCC readings page, at
3959 @uref{http://gcc.gnu.org/@/readings.html}.
3960
3961 This warning is enabled by @option{-Wall} for C and C++.
3962
3963 @item -Wno-return-local-addr
3964 @opindex Wno-return-local-addr
3965 @opindex Wreturn-local-addr
3966 Do not warn about returning a pointer (or in C++, a reference) to a
3967 variable that goes out of scope after the function returns.
3968
3969 @item -Wreturn-type
3970 @opindex Wreturn-type
3971 @opindex Wno-return-type
3972 Warn whenever a function is defined with a return type that defaults
3973 to @code{int}. Also warn about any @code{return} statement with no
3974 return value in a function whose return type is not @code{void}
3975 (falling off the end of the function body is considered returning
3976 without a value), and about a @code{return} statement with an
3977 expression in a function whose return type is @code{void}.
3978
3979 For C++, a function without return type always produces a diagnostic
3980 message, even when @option{-Wno-return-type} is specified. The only
3981 exceptions are @code{main} and functions defined in system headers.
3982
3983 This warning is enabled by @option{-Wall}.
3984
3985 @item -Wshift-count-negative
3986 @opindex Wshift-count-negative
3987 @opindex Wno-shift-count-negative
3988 Warn if shift count is negative. This warning is enabled by default.
3989
3990 @item -Wshift-count-overflow
3991 @opindex Wshift-count-overflow
3992 @opindex Wno-shift-count-overflow
3993 Warn if shift count >= width of type. This warning is enabled by default.
3994
3995 @item -Wshift-negative-value
3996 @opindex Wshift-negative-value
3997 @opindex Wno-shift-negative-value
3998 Warn if left shifting a negative value. This warning is enabled by
3999 @option{-Wextra} in C99 and C++11 modes (and newer).
4000
4001 @item -Wshift-overflow
4002 @itemx -Wshift-overflow=@var{n}
4003 @opindex Wshift-overflow
4004 @opindex Wno-shift-overflow
4005 Warn about left shift overflows. This warning is enabled by
4006 default in C99 and C++11 modes (and newer).
4007
4008 @table @gcctabopt
4009 @item -Wshift-overflow=1
4010 This is the warning level of @option{-Wshift-overflow} and is enabled
4011 by default in C99 and C++11 modes (and newer). This warning level does
4012 not warn about left-shifting 1 into the sign bit. (However, in C, such
4013 an overflow is still rejected in contexts where an integer constant expression
4014 is required.)
4015
4016 @item -Wshift-overflow=2
4017 This warning level also warns about left-shifting 1 into the sign bit,
4018 unless C++14 mode is active.
4019 @end table
4020
4021 @item -Wswitch
4022 @opindex Wswitch
4023 @opindex Wno-switch
4024 Warn whenever a @code{switch} statement has an index of enumerated type
4025 and lacks a @code{case} for one or more of the named codes of that
4026 enumeration. (The presence of a @code{default} label prevents this
4027 warning.) @code{case} labels outside the enumeration range also
4028 provoke warnings when this option is used (even if there is a
4029 @code{default} label).
4030 This warning is enabled by @option{-Wall}.
4031
4032 @item -Wswitch-default
4033 @opindex Wswitch-default
4034 @opindex Wno-switch-default
4035 Warn whenever a @code{switch} statement does not have a @code{default}
4036 case.
4037
4038 @item -Wswitch-enum
4039 @opindex Wswitch-enum
4040 @opindex Wno-switch-enum
4041 Warn whenever a @code{switch} statement has an index of enumerated type
4042 and lacks a @code{case} for one or more of the named codes of that
4043 enumeration. @code{case} labels outside the enumeration range also
4044 provoke warnings when this option is used. The only difference
4045 between @option{-Wswitch} and this option is that this option gives a
4046 warning about an omitted enumeration code even if there is a
4047 @code{default} label.
4048
4049 @item -Wswitch-bool
4050 @opindex Wswitch-bool
4051 @opindex Wno-switch-bool
4052 Warn whenever a @code{switch} statement has an index of boolean type
4053 and the case values are outside the range of a boolean type.
4054 It is possible to suppress this warning by casting the controlling
4055 expression to a type other than @code{bool}. For example:
4056 @smallexample
4057 @group
4058 switch ((int) (a == 4))
4059 @{
4060 @dots{}
4061 @}
4062 @end group
4063 @end smallexample
4064 This warning is enabled by default for C and C++ programs.
4065
4066 @item -Wsync-nand @r{(C and C++ only)}
4067 @opindex Wsync-nand
4068 @opindex Wno-sync-nand
4069 Warn when @code{__sync_fetch_and_nand} and @code{__sync_nand_and_fetch}
4070 built-in functions are used. These functions changed semantics in GCC 4.4.
4071
4072 @item -Wtrigraphs
4073 @opindex Wtrigraphs
4074 @opindex Wno-trigraphs
4075 Warn if any trigraphs are encountered that might change the meaning of
4076 the program (trigraphs within comments are not warned about).
4077 This warning is enabled by @option{-Wall}.
4078
4079 @item -Wunused-but-set-parameter
4080 @opindex Wunused-but-set-parameter
4081 @opindex Wno-unused-but-set-parameter
4082 Warn whenever a function parameter is assigned to, but otherwise unused
4083 (aside from its declaration).
4084
4085 To suppress this warning use the @code{unused} attribute
4086 (@pxref{Variable Attributes}).
4087
4088 This warning is also enabled by @option{-Wunused} together with
4089 @option{-Wextra}.
4090
4091 @item -Wunused-but-set-variable
4092 @opindex Wunused-but-set-variable
4093 @opindex Wno-unused-but-set-variable
4094 Warn whenever a local variable is assigned to, but otherwise unused
4095 (aside from its declaration).
4096 This warning is enabled by @option{-Wall}.
4097
4098 To suppress this warning use the @code{unused} attribute
4099 (@pxref{Variable Attributes}).
4100
4101 This warning is also enabled by @option{-Wunused}, which is enabled
4102 by @option{-Wall}.
4103
4104 @item -Wunused-function
4105 @opindex Wunused-function
4106 @opindex Wno-unused-function
4107 Warn whenever a static function is declared but not defined or a
4108 non-inline static function is unused.
4109 This warning is enabled by @option{-Wall}.
4110
4111 @item -Wunused-label
4112 @opindex Wunused-label
4113 @opindex Wno-unused-label
4114 Warn whenever a label is declared but not used.
4115 This warning is enabled by @option{-Wall}.
4116
4117 To suppress this warning use the @code{unused} attribute
4118 (@pxref{Variable Attributes}).
4119
4120 @item -Wunused-local-typedefs @r{(C, Objective-C, C++ and Objective-C++ only)}
4121 @opindex Wunused-local-typedefs
4122 Warn when a typedef locally defined in a function is not used.
4123 This warning is enabled by @option{-Wall}.
4124
4125 @item -Wunused-parameter
4126 @opindex Wunused-parameter
4127 @opindex Wno-unused-parameter
4128 Warn whenever a function parameter is unused aside from its declaration.
4129
4130 To suppress this warning use the @code{unused} attribute
4131 (@pxref{Variable Attributes}).
4132
4133 @item -Wno-unused-result
4134 @opindex Wunused-result
4135 @opindex Wno-unused-result
4136 Do not warn if a caller of a function marked with attribute
4137 @code{warn_unused_result} (@pxref{Function Attributes}) does not use
4138 its return value. The default is @option{-Wunused-result}.
4139
4140 @item -Wunused-variable
4141 @opindex Wunused-variable
4142 @opindex Wno-unused-variable
4143 Warn whenever a local variable or non-constant static variable is unused
4144 aside from its declaration.
4145 This warning is enabled by @option{-Wall}.
4146
4147 To suppress this warning use the @code{unused} attribute
4148 (@pxref{Variable Attributes}).
4149
4150 @item -Wunused-value
4151 @opindex Wunused-value
4152 @opindex Wno-unused-value
4153 Warn whenever a statement computes a result that is explicitly not
4154 used. To suppress this warning cast the unused expression to
4155 @code{void}. This includes an expression-statement or the left-hand
4156 side of a comma expression that contains no side effects. For example,
4157 an expression such as @code{x[i,j]} causes a warning, while
4158 @code{x[(void)i,j]} does not.
4159
4160 This warning is enabled by @option{-Wall}.
4161
4162 @item -Wunused
4163 @opindex Wunused
4164 @opindex Wno-unused
4165 All the above @option{-Wunused} options combined.
4166
4167 In order to get a warning about an unused function parameter, you must
4168 either specify @option{-Wextra -Wunused} (note that @option{-Wall} implies
4169 @option{-Wunused}), or separately specify @option{-Wunused-parameter}.
4170
4171 @item -Wuninitialized
4172 @opindex Wuninitialized
4173 @opindex Wno-uninitialized
4174 Warn if an automatic variable is used without first being initialized
4175 or if a variable may be clobbered by a @code{setjmp} call. In C++,
4176 warn if a non-static reference or non-static @code{const} member
4177 appears in a class without constructors.
4178
4179 If you want to warn about code that uses the uninitialized value of the
4180 variable in its own initializer, use the @option{-Winit-self} option.
4181
4182 These warnings occur for individual uninitialized or clobbered
4183 elements of structure, union or array variables as well as for
4184 variables that are uninitialized or clobbered as a whole. They do
4185 not occur for variables or elements declared @code{volatile}. Because
4186 these warnings depend on optimization, the exact variables or elements
4187 for which there are warnings depends on the precise optimization
4188 options and version of GCC used.
4189
4190 Note that there may be no warning about a variable that is used only
4191 to compute a value that itself is never used, because such
4192 computations may be deleted by data flow analysis before the warnings
4193 are printed.
4194
4195 @item -Wmaybe-uninitialized
4196 @opindex Wmaybe-uninitialized
4197 @opindex Wno-maybe-uninitialized
4198 For an automatic variable, if there exists a path from the function
4199 entry to a use of the variable that is initialized, but there exist
4200 some other paths for which the variable is not initialized, the compiler
4201 emits a warning if it cannot prove the uninitialized paths are not
4202 executed at run time. These warnings are made optional because GCC is
4203 not smart enough to see all the reasons why the code might be correct
4204 in spite of appearing to have an error. Here is one example of how
4205 this can happen:
4206
4207 @smallexample
4208 @group
4209 @{
4210 int x;
4211 switch (y)
4212 @{
4213 case 1: x = 1;
4214 break;
4215 case 2: x = 4;
4216 break;
4217 case 3: x = 5;
4218 @}
4219 foo (x);
4220 @}
4221 @end group
4222 @end smallexample
4223
4224 @noindent
4225 If the value of @code{y} is always 1, 2 or 3, then @code{x} is
4226 always initialized, but GCC doesn't know this. To suppress the
4227 warning, you need to provide a default case with assert(0) or
4228 similar code.
4229
4230 @cindex @code{longjmp} warnings
4231 This option also warns when a non-volatile automatic variable might be
4232 changed by a call to @code{longjmp}. These warnings as well are possible
4233 only in optimizing compilation.
4234
4235 The compiler sees only the calls to @code{setjmp}. It cannot know
4236 where @code{longjmp} will be called; in fact, a signal handler could
4237 call it at any point in the code. As a result, you may get a warning
4238 even when there is in fact no problem because @code{longjmp} cannot
4239 in fact be called at the place that would cause a problem.
4240
4241 Some spurious warnings can be avoided if you declare all the functions
4242 you use that never return as @code{noreturn}. @xref{Function
4243 Attributes}.
4244
4245 This warning is enabled by @option{-Wall} or @option{-Wextra}.
4246
4247 @item -Wunknown-pragmas
4248 @opindex Wunknown-pragmas
4249 @opindex Wno-unknown-pragmas
4250 @cindex warning for unknown pragmas
4251 @cindex unknown pragmas, warning
4252 @cindex pragmas, warning of unknown
4253 Warn when a @code{#pragma} directive is encountered that is not understood by
4254 GCC@. If this command-line option is used, warnings are even issued
4255 for unknown pragmas in system header files. This is not the case if
4256 the warnings are only enabled by the @option{-Wall} command-line option.
4257
4258 @item -Wno-pragmas
4259 @opindex Wno-pragmas
4260 @opindex Wpragmas
4261 Do not warn about misuses of pragmas, such as incorrect parameters,
4262 invalid syntax, or conflicts between pragmas. See also
4263 @option{-Wunknown-pragmas}.
4264
4265 @item -Wstrict-aliasing
4266 @opindex Wstrict-aliasing
4267 @opindex Wno-strict-aliasing
4268 This option is only active when @option{-fstrict-aliasing} is active.
4269 It warns about code that might break the strict aliasing rules that the
4270 compiler is using for optimization. The warning does not catch all
4271 cases, but does attempt to catch the more common pitfalls. It is
4272 included in @option{-Wall}.
4273 It is equivalent to @option{-Wstrict-aliasing=3}
4274
4275 @item -Wstrict-aliasing=n
4276 @opindex Wstrict-aliasing=n
4277 This option is only active when @option{-fstrict-aliasing} is active.
4278 It warns about code that might break the strict aliasing rules that the
4279 compiler is using for optimization.
4280 Higher levels correspond to higher accuracy (fewer false positives).
4281 Higher levels also correspond to more effort, similar to the way @option{-O}
4282 works.
4283 @option{-Wstrict-aliasing} is equivalent to @option{-Wstrict-aliasing=3}.
4284
4285 Level 1: Most aggressive, quick, least accurate.
4286 Possibly useful when higher levels
4287 do not warn but @option{-fstrict-aliasing} still breaks the code, as it has very few
4288 false negatives. However, it has many false positives.
4289 Warns for all pointer conversions between possibly incompatible types,
4290 even if never dereferenced. Runs in the front end only.
4291
4292 Level 2: Aggressive, quick, not too precise.
4293 May still have many false positives (not as many as level 1 though),
4294 and few false negatives (but possibly more than level 1).
4295 Unlike level 1, it only warns when an address is taken. Warns about
4296 incomplete types. Runs in the front end only.
4297
4298 Level 3 (default for @option{-Wstrict-aliasing}):
4299 Should have very few false positives and few false
4300 negatives. Slightly slower than levels 1 or 2 when optimization is enabled.
4301 Takes care of the common pun+dereference pattern in the front end:
4302 @code{*(int*)&some_float}.
4303 If optimization is enabled, it also runs in the back end, where it deals
4304 with multiple statement cases using flow-sensitive points-to information.
4305 Only warns when the converted pointer is dereferenced.
4306 Does not warn about incomplete types.
4307
4308 @item -Wstrict-overflow
4309 @itemx -Wstrict-overflow=@var{n}
4310 @opindex Wstrict-overflow
4311 @opindex Wno-strict-overflow
4312 This option is only active when @option{-fstrict-overflow} is active.
4313 It warns about cases where the compiler optimizes based on the
4314 assumption that signed overflow does not occur. Note that it does not
4315 warn about all cases where the code might overflow: it only warns
4316 about cases where the compiler implements some optimization. Thus
4317 this warning depends on the optimization level.
4318
4319 An optimization that assumes that signed overflow does not occur is
4320 perfectly safe if the values of the variables involved are such that
4321 overflow never does, in fact, occur. Therefore this warning can
4322 easily give a false positive: a warning about code that is not
4323 actually a problem. To help focus on important issues, several
4324 warning levels are defined. No warnings are issued for the use of
4325 undefined signed overflow when estimating how many iterations a loop
4326 requires, in particular when determining whether a loop will be
4327 executed at all.
4328
4329 @table @gcctabopt
4330 @item -Wstrict-overflow=1
4331 Warn about cases that are both questionable and easy to avoid. For
4332 example, with @option{-fstrict-overflow}, the compiler simplifies
4333 @code{x + 1 > x} to @code{1}. This level of
4334 @option{-Wstrict-overflow} is enabled by @option{-Wall}; higher levels
4335 are not, and must be explicitly requested.
4336
4337 @item -Wstrict-overflow=2
4338 Also warn about other cases where a comparison is simplified to a
4339 constant. For example: @code{abs (x) >= 0}. This can only be
4340 simplified when @option{-fstrict-overflow} is in effect, because
4341 @code{abs (INT_MIN)} overflows to @code{INT_MIN}, which is less than
4342 zero. @option{-Wstrict-overflow} (with no level) is the same as
4343 @option{-Wstrict-overflow=2}.
4344
4345 @item -Wstrict-overflow=3
4346 Also warn about other cases where a comparison is simplified. For
4347 example: @code{x + 1 > 1} is simplified to @code{x > 0}.
4348
4349 @item -Wstrict-overflow=4
4350 Also warn about other simplifications not covered by the above cases.
4351 For example: @code{(x * 10) / 5} is simplified to @code{x * 2}.
4352
4353 @item -Wstrict-overflow=5
4354 Also warn about cases where the compiler reduces the magnitude of a
4355 constant involved in a comparison. For example: @code{x + 2 > y} is
4356 simplified to @code{x + 1 >= y}. This is reported only at the
4357 highest warning level because this simplification applies to many
4358 comparisons, so this warning level gives a very large number of
4359 false positives.
4360 @end table
4361
4362 @item -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{]}
4363 @opindex Wsuggest-attribute=
4364 @opindex Wno-suggest-attribute=
4365 Warn for cases where adding an attribute may be beneficial. The
4366 attributes currently supported are listed below.
4367
4368 @table @gcctabopt
4369 @item -Wsuggest-attribute=pure
4370 @itemx -Wsuggest-attribute=const
4371 @itemx -Wsuggest-attribute=noreturn
4372 @opindex Wsuggest-attribute=pure
4373 @opindex Wno-suggest-attribute=pure
4374 @opindex Wsuggest-attribute=const
4375 @opindex Wno-suggest-attribute=const
4376 @opindex Wsuggest-attribute=noreturn
4377 @opindex Wno-suggest-attribute=noreturn
4378
4379 Warn about functions that might be candidates for attributes
4380 @code{pure}, @code{const} or @code{noreturn}. The compiler only warns for
4381 functions visible in other compilation units or (in the case of @code{pure} and
4382 @code{const}) if it cannot prove that the function returns normally. A function
4383 returns normally if it doesn't contain an infinite loop or return abnormally
4384 by throwing, calling @code{abort} or trapping. This analysis requires option
4385 @option{-fipa-pure-const}, which is enabled by default at @option{-O} and
4386 higher. Higher optimization levels improve the accuracy of the analysis.
4387
4388 @item -Wsuggest-attribute=format
4389 @itemx -Wmissing-format-attribute
4390 @opindex Wsuggest-attribute=format
4391 @opindex Wmissing-format-attribute
4392 @opindex Wno-suggest-attribute=format
4393 @opindex Wno-missing-format-attribute
4394 @opindex Wformat
4395 @opindex Wno-format
4396
4397 Warn about function pointers that might be candidates for @code{format}
4398 attributes. Note these are only possible candidates, not absolute ones.
4399 GCC guesses that function pointers with @code{format} attributes that
4400 are used in assignment, initialization, parameter passing or return
4401 statements should have a corresponding @code{format} attribute in the
4402 resulting type. I.e.@: the left-hand side of the assignment or
4403 initialization, the type of the parameter variable, or the return type
4404 of the containing function respectively should also have a @code{format}
4405 attribute to avoid the warning.
4406
4407 GCC also warns about function definitions that might be
4408 candidates for @code{format} attributes. Again, these are only
4409 possible candidates. GCC guesses that @code{format} attributes
4410 might be appropriate for any function that calls a function like
4411 @code{vprintf} or @code{vscanf}, but this might not always be the
4412 case, and some functions for which @code{format} attributes are
4413 appropriate may not be detected.
4414 @end table
4415
4416 @item -Wsuggest-final-types
4417 @opindex Wno-suggest-final-types
4418 @opindex Wsuggest-final-types
4419 Warn about types with virtual methods where code quality would be improved
4420 if the type were declared with the C++11 @code{final} specifier,
4421 or, if possible,
4422 declared in an anonymous namespace. This allows GCC to more aggressively
4423 devirtualize the polymorphic calls. This warning is more effective with link
4424 time optimization, where the information about the class hierarchy graph is
4425 more complete.
4426
4427 @item -Wsuggest-final-methods
4428 @opindex Wno-suggest-final-methods
4429 @opindex Wsuggest-final-methods
4430 Warn about virtual methods where code quality would be improved if the method
4431 were declared with the C++11 @code{final} specifier,
4432 or, if possible, its type were
4433 declared in an anonymous namespace or with the @code{final} specifier.
4434 This warning is
4435 more effective with link time optimization, where the information about the
4436 class hierarchy graph is more complete. It is recommended to first consider
4437 suggestions of @option{-Wsuggest-final-types} and then rebuild with new
4438 annotations.
4439
4440 @item -Wsuggest-override
4441 Warn about overriding virtual functions that are not marked with the override
4442 keyword.
4443
4444 @item -Warray-bounds
4445 @itemx -Warray-bounds=@var{n}
4446 @opindex Wno-array-bounds
4447 @opindex Warray-bounds
4448 This option is only active when @option{-ftree-vrp} is active
4449 (default for @option{-O2} and above). It warns about subscripts to arrays
4450 that are always out of bounds. This warning is enabled by @option{-Wall}.
4451
4452 @table @gcctabopt
4453 @item -Warray-bounds=1
4454 This is the warning level of @option{-Warray-bounds} and is enabled
4455 by @option{-Wall}; higher levels are not, and must be explicitly requested.
4456
4457 @item -Warray-bounds=2
4458 This warning level also warns about out of bounds access for
4459 arrays at the end of a struct and for arrays accessed through
4460 pointers. This warning level may give a larger number of
4461 false positives and is deactivated by default.
4462 @end table
4463
4464 @item -Wbool-compare
4465 @opindex Wno-bool-compare
4466 @opindex Wbool-compare
4467 Warn about boolean expression compared with an integer value different from
4468 @code{true}/@code{false}. For instance, the following comparison is
4469 always false:
4470 @smallexample
4471 int n = 5;
4472 @dots{}
4473 if ((n > 1) == 2) @{ @dots{} @}
4474 @end smallexample
4475 This warning is enabled by @option{-Wall}.
4476
4477 @item -Wframe-address
4478 @opindex Wno-frame-address
4479 @opindex Wframe-address
4480 Warn when the @samp{__builtin_frame_address} or @samp{__builtin_return_address}
4481 is called with an argument greater than 0. Such calls may return indeterminate
4482 values or crash the program. The warning is included in @option{-Wall}.
4483
4484 @item -Wno-discarded-qualifiers @r{(C and Objective-C only)}
4485 @opindex Wno-discarded-qualifiers
4486 @opindex Wdiscarded-qualifiers
4487 Do not warn if type qualifiers on pointers are being discarded.
4488 Typically, the compiler warns if a @code{const char *} variable is
4489 passed to a function that takes a @code{char *} parameter. This option
4490 can be used to suppress such a warning.
4491
4492 @item -Wno-discarded-array-qualifiers @r{(C and Objective-C only)}
4493 @opindex Wno-discarded-array-qualifiers
4494 @opindex Wdiscarded-array-qualifiers
4495 Do not warn if type qualifiers on arrays which are pointer targets
4496 are being discarded. Typically, the compiler warns if a
4497 @code{const int (*)[]} variable is passed to a function that
4498 takes a @code{int (*)[]} parameter. This option can be used to
4499 suppress such a warning.
4500
4501 @item -Wno-incompatible-pointer-types @r{(C and Objective-C only)}
4502 @opindex Wno-incompatible-pointer-types
4503 @opindex Wincompatible-pointer-types
4504 Do not warn when there is a conversion between pointers that have incompatible
4505 types. This warning is for cases not covered by @option{-Wno-pointer-sign},
4506 which warns for pointer argument passing or assignment with different
4507 signedness.
4508
4509 @item -Wno-int-conversion @r{(C and Objective-C only)}
4510 @opindex Wno-int-conversion
4511 @opindex Wint-conversion
4512 Do not warn about incompatible integer to pointer and pointer to integer
4513 conversions. This warning is about implicit conversions; for explicit
4514 conversions the warnings @option{-Wno-int-to-pointer-cast} and
4515 @option{-Wno-pointer-to-int-cast} may be used.
4516
4517 @item -Wno-div-by-zero
4518 @opindex Wno-div-by-zero
4519 @opindex Wdiv-by-zero
4520 Do not warn about compile-time integer division by zero. Floating-point
4521 division by zero is not warned about, as it can be a legitimate way of
4522 obtaining infinities and NaNs.
4523
4524 @item -Wsystem-headers
4525 @opindex Wsystem-headers
4526 @opindex Wno-system-headers
4527 @cindex warnings from system headers
4528 @cindex system headers, warnings from
4529 Print warning messages for constructs found in system header files.
4530 Warnings from system headers are normally suppressed, on the assumption
4531 that they usually do not indicate real problems and would only make the
4532 compiler output harder to read. Using this command-line option tells
4533 GCC to emit warnings from system headers as if they occurred in user
4534 code. However, note that using @option{-Wall} in conjunction with this
4535 option does @emph{not} warn about unknown pragmas in system
4536 headers---for that, @option{-Wunknown-pragmas} must also be used.
4537
4538 @item -Wtautological-compare
4539 @opindex Wtautological-compare
4540 @opindex Wno-tautological-compare
4541 Warn if a self-comparison always evaluates to true or false. This
4542 warning detects various mistakes such as:
4543 @smallexample
4544 int i = 1;
4545 @dots{}
4546 if (i > i) @{ @dots{} @}
4547 @end smallexample
4548 This warning is enabled by @option{-Wall}.
4549
4550 @item -Wtrampolines
4551 @opindex Wtrampolines
4552 @opindex Wno-trampolines
4553 Warn about trampolines generated for pointers to nested functions.
4554 A trampoline is a small piece of data or code that is created at run
4555 time on the stack when the address of a nested function is taken, and is
4556 used to call the nested function indirectly. For some targets, it is
4557 made up of data only and thus requires no special treatment. But, for
4558 most targets, it is made up of code and thus requires the stack to be
4559 made executable in order for the program to work properly.
4560
4561 @item -Wfloat-equal
4562 @opindex Wfloat-equal
4563 @opindex Wno-float-equal
4564 Warn if floating-point values are used in equality comparisons.
4565
4566 The idea behind this is that sometimes it is convenient (for the
4567 programmer) to consider floating-point values as approximations to
4568 infinitely precise real numbers. If you are doing this, then you need
4569 to compute (by analyzing the code, or in some other way) the maximum or
4570 likely maximum error that the computation introduces, and allow for it
4571 when performing comparisons (and when producing output, but that's a
4572 different problem). In particular, instead of testing for equality, you
4573 should check to see whether the two values have ranges that overlap; and
4574 this is done with the relational operators, so equality comparisons are
4575 probably mistaken.
4576
4577 @item -Wtraditional @r{(C and Objective-C only)}
4578 @opindex Wtraditional
4579 @opindex Wno-traditional
4580 Warn about certain constructs that behave differently in traditional and
4581 ISO C@. Also warn about ISO C constructs that have no traditional C
4582 equivalent, and/or problematic constructs that should be avoided.
4583
4584 @itemize @bullet
4585 @item
4586 Macro parameters that appear within string literals in the macro body.
4587 In traditional C macro replacement takes place within string literals,
4588 but in ISO C it does not.
4589
4590 @item
4591 In traditional C, some preprocessor directives did not exist.
4592 Traditional preprocessors only considered a line to be a directive
4593 if the @samp{#} appeared in column 1 on the line. Therefore
4594 @option{-Wtraditional} warns about directives that traditional C
4595 understands but ignores because the @samp{#} does not appear as the
4596 first character on the line. It also suggests you hide directives like
4597 @code{#pragma} not understood by traditional C by indenting them. Some
4598 traditional implementations do not recognize @code{#elif}, so this option
4599 suggests avoiding it altogether.
4600
4601 @item
4602 A function-like macro that appears without arguments.
4603
4604 @item
4605 The unary plus operator.
4606
4607 @item
4608 The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating-point
4609 constant suffixes. (Traditional C does support the @samp{L} suffix on integer
4610 constants.) Note, these suffixes appear in macros defined in the system
4611 headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}.
4612 Use of these macros in user code might normally lead to spurious
4613 warnings, however GCC's integrated preprocessor has enough context to
4614 avoid warning in these cases.
4615
4616 @item
4617 A function declared external in one block and then used after the end of
4618 the block.
4619
4620 @item
4621 A @code{switch} statement has an operand of type @code{long}.
4622
4623 @item
4624 A non-@code{static} function declaration follows a @code{static} one.
4625 This construct is not accepted by some traditional C compilers.
4626
4627 @item
4628 The ISO type of an integer constant has a different width or
4629 signedness from its traditional type. This warning is only issued if
4630 the base of the constant is ten. I.e.@: hexadecimal or octal values, which
4631 typically represent bit patterns, are not warned about.
4632
4633 @item
4634 Usage of ISO string concatenation is detected.
4635
4636 @item
4637 Initialization of automatic aggregates.
4638
4639 @item
4640 Identifier conflicts with labels. Traditional C lacks a separate
4641 namespace for labels.
4642
4643 @item
4644 Initialization of unions. If the initializer is zero, the warning is
4645 omitted. This is done under the assumption that the zero initializer in
4646 user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
4647 initializer warnings and relies on default initialization to zero in the
4648 traditional C case.
4649
4650 @item
4651 Conversions by prototypes between fixed/floating-point values and vice
4652 versa. The absence of these prototypes when compiling with traditional
4653 C causes serious problems. This is a subset of the possible
4654 conversion warnings; for the full set use @option{-Wtraditional-conversion}.
4655
4656 @item
4657 Use of ISO C style function definitions. This warning intentionally is
4658 @emph{not} issued for prototype declarations or variadic functions
4659 because these ISO C features appear in your code when using
4660 libiberty's traditional C compatibility macros, @code{PARAMS} and
4661 @code{VPARAMS}. This warning is also bypassed for nested functions
4662 because that feature is already a GCC extension and thus not relevant to
4663 traditional C compatibility.
4664 @end itemize
4665
4666 @item -Wtraditional-conversion @r{(C and Objective-C only)}
4667 @opindex Wtraditional-conversion
4668 @opindex Wno-traditional-conversion
4669 Warn if a prototype causes a type conversion that is different from what
4670 would happen to the same argument in the absence of a prototype. This
4671 includes conversions of fixed point to floating and vice versa, and
4672 conversions changing the width or signedness of a fixed-point argument
4673 except when the same as the default promotion.
4674
4675 @item -Wdeclaration-after-statement @r{(C and Objective-C only)}
4676 @opindex Wdeclaration-after-statement
4677 @opindex Wno-declaration-after-statement
4678 Warn when a declaration is found after a statement in a block. This
4679 construct, known from C++, was introduced with ISO C99 and is by default
4680 allowed in GCC@. It is not supported by ISO C90. @xref{Mixed Declarations}.
4681
4682 @item -Wundef
4683 @opindex Wundef
4684 @opindex Wno-undef
4685 Warn if an undefined identifier is evaluated in an @code{#if} directive.
4686
4687 @item -Wno-endif-labels
4688 @opindex Wno-endif-labels
4689 @opindex Wendif-labels
4690 Do not warn whenever an @code{#else} or an @code{#endif} are followed by text.
4691
4692 @item -Wshadow
4693 @opindex Wshadow
4694 @opindex Wno-shadow
4695 Warn whenever a local variable or type declaration shadows another
4696 variable, parameter, type, class member (in C++), or instance variable
4697 (in Objective-C) or whenever a built-in function is shadowed. Note
4698 that in C++, the compiler warns if a local variable shadows an
4699 explicit typedef, but not if it shadows a struct/class/enum.
4700
4701 @item -Wno-shadow-ivar @r{(Objective-C only)}
4702 @opindex Wno-shadow-ivar
4703 @opindex Wshadow-ivar
4704 Do not warn whenever a local variable shadows an instance variable in an
4705 Objective-C method.
4706
4707 @item -Wlarger-than=@var{len}
4708 @opindex Wlarger-than=@var{len}
4709 @opindex Wlarger-than-@var{len}
4710 Warn whenever an object of larger than @var{len} bytes is defined.
4711
4712 @item -Wframe-larger-than=@var{len}
4713 @opindex Wframe-larger-than
4714 Warn if the size of a function frame is larger than @var{len} bytes.
4715 The computation done to determine the stack frame size is approximate
4716 and not conservative.
4717 The actual requirements may be somewhat greater than @var{len}
4718 even if you do not get a warning. In addition, any space allocated
4719 via @code{alloca}, variable-length arrays, or related constructs
4720 is not included by the compiler when determining
4721 whether or not to issue a warning.
4722
4723 @item -Wno-free-nonheap-object
4724 @opindex Wno-free-nonheap-object
4725 @opindex Wfree-nonheap-object
4726 Do not warn when attempting to free an object that was not allocated
4727 on the heap.
4728
4729 @item -Wstack-usage=@var{len}
4730 @opindex Wstack-usage
4731 Warn if the stack usage of a function might be larger than @var{len} bytes.
4732 The computation done to determine the stack usage is conservative.
4733 Any space allocated via @code{alloca}, variable-length arrays, or related
4734 constructs is included by the compiler when determining whether or not to
4735 issue a warning.
4736
4737 The message is in keeping with the output of @option{-fstack-usage}.
4738
4739 @itemize
4740 @item
4741 If the stack usage is fully static but exceeds the specified amount, it's:
4742
4743 @smallexample
4744 warning: stack usage is 1120 bytes
4745 @end smallexample
4746 @item
4747 If the stack usage is (partly) dynamic but bounded, it's:
4748
4749 @smallexample
4750 warning: stack usage might be 1648 bytes
4751 @end smallexample
4752 @item
4753 If the stack usage is (partly) dynamic and not bounded, it's:
4754
4755 @smallexample
4756 warning: stack usage might be unbounded
4757 @end smallexample
4758 @end itemize
4759
4760 @item -Wunsafe-loop-optimizations
4761 @opindex Wunsafe-loop-optimizations
4762 @opindex Wno-unsafe-loop-optimizations
4763 Warn if the loop cannot be optimized because the compiler cannot
4764 assume anything on the bounds of the loop indices. With
4765 @option{-funsafe-loop-optimizations} warn if the compiler makes
4766 such assumptions.
4767
4768 @item -Wno-pedantic-ms-format @r{(MinGW targets only)}
4769 @opindex Wno-pedantic-ms-format
4770 @opindex Wpedantic-ms-format
4771 When used in combination with @option{-Wformat}
4772 and @option{-pedantic} without GNU extensions, this option
4773 disables the warnings about non-ISO @code{printf} / @code{scanf} format
4774 width specifiers @code{I32}, @code{I64}, and @code{I} used on Windows targets,
4775 which depend on the MS runtime.
4776
4777 @item -Wpointer-arith
4778 @opindex Wpointer-arith
4779 @opindex Wno-pointer-arith
4780 Warn about anything that depends on the ``size of'' a function type or
4781 of @code{void}. GNU C assigns these types a size of 1, for
4782 convenience in calculations with @code{void *} pointers and pointers
4783 to functions. In C++, warn also when an arithmetic operation involves
4784 @code{NULL}. This warning is also enabled by @option{-Wpedantic}.
4785
4786 @item -Wtype-limits
4787 @opindex Wtype-limits
4788 @opindex Wno-type-limits
4789 Warn if a comparison is always true or always false due to the limited
4790 range of the data type, but do not warn for constant expressions. For
4791 example, warn if an unsigned variable is compared against zero with
4792 @code{<} or @code{>=}. This warning is also enabled by
4793 @option{-Wextra}.
4794
4795 @item -Wbad-function-cast @r{(C and Objective-C only)}
4796 @opindex Wbad-function-cast
4797 @opindex Wno-bad-function-cast
4798 Warn when a function call is cast to a non-matching type.
4799 For example, warn if a call to a function returning an integer type
4800 is cast to a pointer type.
4801
4802 @item -Wc90-c99-compat @r{(C and Objective-C only)}
4803 @opindex Wc90-c99-compat
4804 @opindex Wno-c90-c99-compat
4805 Warn about features not present in ISO C90, but present in ISO C99.
4806 For instance, warn about use of variable length arrays, @code{long long}
4807 type, @code{bool} type, compound literals, designated initializers, and so
4808 on. This option is independent of the standards mode. Warnings are disabled
4809 in the expression that follows @code{__extension__}.
4810
4811 @item -Wc99-c11-compat @r{(C and Objective-C only)}
4812 @opindex Wc99-c11-compat
4813 @opindex Wno-c99-c11-compat
4814 Warn about features not present in ISO C99, but present in ISO C11.
4815 For instance, warn about use of anonymous structures and unions,
4816 @code{_Atomic} type qualifier, @code{_Thread_local} storage-class specifier,
4817 @code{_Alignas} specifier, @code{Alignof} operator, @code{_Generic} keyword,
4818 and so on. This option is independent of the standards mode. Warnings are
4819 disabled in the expression that follows @code{__extension__}.
4820
4821 @item -Wc++-compat @r{(C and Objective-C only)}
4822 @opindex Wc++-compat
4823 Warn about ISO C constructs that are outside of the common subset of
4824 ISO C and ISO C++, e.g.@: request for implicit conversion from
4825 @code{void *} to a pointer to non-@code{void} type.
4826
4827 @item -Wc++11-compat @r{(C++ and Objective-C++ only)}
4828 @opindex Wc++11-compat
4829 Warn about C++ constructs whose meaning differs between ISO C++ 1998
4830 and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords
4831 in ISO C++ 2011. This warning turns on @option{-Wnarrowing} and is
4832 enabled by @option{-Wall}.
4833
4834 @item -Wc++14-compat @r{(C++ and Objective-C++ only)}
4835 @opindex Wc++14-compat
4836 Warn about C++ constructs whose meaning differs between ISO C++ 2011
4837 and ISO C++ 2014. This warning is enabled by @option{-Wall}.
4838
4839 @item -Wcast-qual
4840 @opindex Wcast-qual
4841 @opindex Wno-cast-qual
4842 Warn whenever a pointer is cast so as to remove a type qualifier from
4843 the target type. For example, warn if a @code{const char *} is cast
4844 to an ordinary @code{char *}.
4845
4846 Also warn when making a cast that introduces a type qualifier in an
4847 unsafe way. For example, casting @code{char **} to @code{const char **}
4848 is unsafe, as in this example:
4849
4850 @smallexample
4851 /* p is char ** value. */
4852 const char **q = (const char **) p;
4853 /* Assignment of readonly string to const char * is OK. */
4854 *q = "string";
4855 /* Now char** pointer points to read-only memory. */
4856 **p = 'b';
4857 @end smallexample
4858
4859 @item -Wcast-align
4860 @opindex Wcast-align
4861 @opindex Wno-cast-align
4862 Warn whenever a pointer is cast such that the required alignment of the
4863 target is increased. For example, warn if a @code{char *} is cast to
4864 an @code{int *} on machines where integers can only be accessed at
4865 two- or four-byte boundaries.
4866
4867 @item -Wwrite-strings
4868 @opindex Wwrite-strings
4869 @opindex Wno-write-strings
4870 When compiling C, give string constants the type @code{const
4871 char[@var{length}]} so that copying the address of one into a
4872 non-@code{const} @code{char *} pointer produces a warning. These
4873 warnings help you find at compile time code that can try to write
4874 into a string constant, but only if you have been very careful about
4875 using @code{const} in declarations and prototypes. Otherwise, it is
4876 just a nuisance. This is why we did not make @option{-Wall} request
4877 these warnings.
4878
4879 When compiling C++, warn about the deprecated conversion from string
4880 literals to @code{char *}. This warning is enabled by default for C++
4881 programs.
4882
4883 @item -Wclobbered
4884 @opindex Wclobbered
4885 @opindex Wno-clobbered
4886 Warn for variables that might be changed by @code{longjmp} or
4887 @code{vfork}. This warning is also enabled by @option{-Wextra}.
4888
4889 @item -Wconditionally-supported @r{(C++ and Objective-C++ only)}
4890 @opindex Wconditionally-supported
4891 @opindex Wno-conditionally-supported
4892 Warn for conditionally-supported (C++11 [intro.defs]) constructs.
4893
4894 @item -Wconversion
4895 @opindex Wconversion
4896 @opindex Wno-conversion
4897 Warn for implicit conversions that may alter a value. This includes
4898 conversions between real and integer, like @code{abs (x)} when
4899 @code{x} is @code{double}; conversions between signed and unsigned,
4900 like @code{unsigned ui = -1}; and conversions to smaller types, like
4901 @code{sqrtf (M_PI)}. Do not warn for explicit casts like @code{abs
4902 ((int) x)} and @code{ui = (unsigned) -1}, or if the value is not
4903 changed by the conversion like in @code{abs (2.0)}. Warnings about
4904 conversions between signed and unsigned integers can be disabled by
4905 using @option{-Wno-sign-conversion}.
4906
4907 For C++, also warn for confusing overload resolution for user-defined
4908 conversions; and conversions that never use a type conversion
4909 operator: conversions to @code{void}, the same type, a base class or a
4910 reference to them. Warnings about conversions between signed and
4911 unsigned integers are disabled by default in C++ unless
4912 @option{-Wsign-conversion} is explicitly enabled.
4913
4914 @item -Wno-conversion-null @r{(C++ and Objective-C++ only)}
4915 @opindex Wconversion-null
4916 @opindex Wno-conversion-null
4917 Do not warn for conversions between @code{NULL} and non-pointer
4918 types. @option{-Wconversion-null} is enabled by default.
4919
4920 @item -Wzero-as-null-pointer-constant @r{(C++ and Objective-C++ only)}
4921 @opindex Wzero-as-null-pointer-constant
4922 @opindex Wno-zero-as-null-pointer-constant
4923 Warn when a literal '0' is used as null pointer constant. This can
4924 be useful to facilitate the conversion to @code{nullptr} in C++11.
4925
4926 @item -Wdate-time
4927 @opindex Wdate-time
4928 @opindex Wno-date-time
4929 Warn when macros @code{__TIME__}, @code{__DATE__} or @code{__TIMESTAMP__}
4930 are encountered as they might prevent bit-wise-identical reproducible
4931 compilations.
4932
4933 @item -Wdelete-incomplete @r{(C++ and Objective-C++ only)}
4934 @opindex Wdelete-incomplete
4935 @opindex Wno-delete-incomplete
4936 Warn when deleting a pointer to incomplete type, which may cause
4937 undefined behavior at runtime. This warning is enabled by default.
4938
4939 @item -Wuseless-cast @r{(C++ and Objective-C++ only)}
4940 @opindex Wuseless-cast
4941 @opindex Wno-useless-cast
4942 Warn when an expression is casted to its own type.
4943
4944 @item -Wempty-body
4945 @opindex Wempty-body
4946 @opindex Wno-empty-body
4947 Warn if an empty body occurs in an @code{if}, @code{else} or @code{do
4948 while} statement. This warning is also enabled by @option{-Wextra}.
4949
4950 @item -Wenum-compare
4951 @opindex Wenum-compare
4952 @opindex Wno-enum-compare
4953 Warn about a comparison between values of different enumerated types.
4954 In C++ enumeral mismatches in conditional expressions are also
4955 diagnosed and the warning is enabled by default. In C this warning is
4956 enabled by @option{-Wall}.
4957
4958 @item -Wjump-misses-init @r{(C, Objective-C only)}
4959 @opindex Wjump-misses-init
4960 @opindex Wno-jump-misses-init
4961 Warn if a @code{goto} statement or a @code{switch} statement jumps
4962 forward across the initialization of a variable, or jumps backward to a
4963 label after the variable has been initialized. This only warns about
4964 variables that are initialized when they are declared. This warning is
4965 only supported for C and Objective-C; in C++ this sort of branch is an
4966 error in any case.
4967
4968 @option{-Wjump-misses-init} is included in @option{-Wc++-compat}. It
4969 can be disabled with the @option{-Wno-jump-misses-init} option.
4970
4971 @item -Wsign-compare
4972 @opindex Wsign-compare
4973 @opindex Wno-sign-compare
4974 @cindex warning for comparison of signed and unsigned values
4975 @cindex comparison of signed and unsigned values, warning
4976 @cindex signed and unsigned values, comparison warning
4977 Warn when a comparison between signed and unsigned values could produce
4978 an incorrect result when the signed value is converted to unsigned.
4979 This warning is also enabled by @option{-Wextra}; to get the other warnings
4980 of @option{-Wextra} without this warning, use @option{-Wextra -Wno-sign-compare}.
4981
4982 @item -Wsign-conversion
4983 @opindex Wsign-conversion
4984 @opindex Wno-sign-conversion
4985 Warn for implicit conversions that may change the sign of an integer
4986 value, like assigning a signed integer expression to an unsigned
4987 integer variable. An explicit cast silences the warning. In C, this
4988 option is enabled also by @option{-Wconversion}.
4989
4990 @item -Wfloat-conversion
4991 @opindex Wfloat-conversion
4992 @opindex Wno-float-conversion
4993 Warn for implicit conversions that reduce the precision of a real value.
4994 This includes conversions from real to integer, and from higher precision
4995 real to lower precision real values. This option is also enabled by
4996 @option{-Wconversion}.
4997
4998 @item -Wsized-deallocation @r{(C++ and Objective-C++ only)}
4999 @opindex Wsized-deallocation
5000 @opindex Wno-sized-deallocation
5001 Warn about a definition of an unsized deallocation function
5002 @smallexample
5003 void operator delete (void *) noexcept;
5004 void operator delete[] (void *) noexcept;
5005 @end smallexample
5006 without a definition of the corresponding sized deallocation function
5007 @smallexample
5008 void operator delete (void *, std::size_t) noexcept;
5009 void operator delete[] (void *, std::size_t) noexcept;
5010 @end smallexample
5011 or vice versa. Enabled by @option{-Wextra} along with
5012 @option{-fsized-deallocation}.
5013
5014 @item -Wsizeof-pointer-memaccess
5015 @opindex Wsizeof-pointer-memaccess
5016 @opindex Wno-sizeof-pointer-memaccess
5017 Warn for suspicious length parameters to certain string and memory built-in
5018 functions if the argument uses @code{sizeof}. This warning warns e.g.@:
5019 about @code{memset (ptr, 0, sizeof (ptr));} if @code{ptr} is not an array,
5020 but a pointer, and suggests a possible fix, or about
5021 @code{memcpy (&foo, ptr, sizeof (&foo));}. This warning is enabled by
5022 @option{-Wall}.
5023
5024 @item -Wsizeof-array-argument
5025 @opindex Wsizeof-array-argument
5026 @opindex Wno-sizeof-array-argument
5027 Warn when the @code{sizeof} operator is applied to a parameter that is
5028 declared as an array in a function definition. This warning is enabled by
5029 default for C and C++ programs.
5030
5031 @item -Wmemset-transposed-args
5032 @opindex Wmemset-transposed-args
5033 @opindex Wno-memset-transposed-args
5034 Warn for suspicious calls to the @code{memset} built-in function, if the
5035 second argument is not zero and the third argument is zero. This warns e.g.@
5036 about @code{memset (buf, sizeof buf, 0)} where most probably
5037 @code{memset (buf, 0, sizeof buf)} was meant instead. The diagnostics
5038 is only emitted if the third argument is literal zero. If it is some
5039 expression that is folded to zero, a cast of zero to some type, etc.,
5040 it is far less likely that the user has mistakenly exchanged the arguments
5041 and no warning is emitted. This warning is enabled by @option{-Wall}.
5042
5043 @item -Waddress
5044 @opindex Waddress
5045 @opindex Wno-address
5046 Warn about suspicious uses of memory addresses. These include using
5047 the address of a function in a conditional expression, such as
5048 @code{void func(void); if (func)}, and comparisons against the memory
5049 address of a string literal, such as @code{if (x == "abc")}. Such
5050 uses typically indicate a programmer error: the address of a function
5051 always evaluates to true, so their use in a conditional usually
5052 indicate that the programmer forgot the parentheses in a function
5053 call; and comparisons against string literals result in unspecified
5054 behavior and are not portable in C, so they usually indicate that the
5055 programmer intended to use @code{strcmp}. This warning is enabled by
5056 @option{-Wall}.
5057
5058 @item -Wlogical-op
5059 @opindex Wlogical-op
5060 @opindex Wno-logical-op
5061 Warn about suspicious uses of logical operators in expressions.
5062 This includes using logical operators in contexts where a
5063 bit-wise operator is likely to be expected. Also warns when
5064 the operands of a logical operator are the same:
5065 @smallexample
5066 extern int a;
5067 if (a < 0 && a < 0) @{ @dots{} @}
5068 @end smallexample
5069
5070 @item -Wlogical-not-parentheses
5071 @opindex Wlogical-not-parentheses
5072 @opindex Wno-logical-not-parentheses
5073 Warn about logical not used on the left hand side operand of a comparison.
5074 This option does not warn if the RHS operand is of a boolean type. Its
5075 purpose is to detect suspicious code like the following:
5076 @smallexample
5077 int a;
5078 @dots{}
5079 if (!a > 1) @{ @dots{} @}
5080 @end smallexample
5081
5082 It is possible to suppress the warning by wrapping the LHS into
5083 parentheses:
5084 @smallexample
5085 if ((!a) > 1) @{ @dots{} @}
5086 @end smallexample
5087
5088 This warning is enabled by @option{-Wall}.
5089
5090 @item -Waggregate-return
5091 @opindex Waggregate-return
5092 @opindex Wno-aggregate-return
5093 Warn if any functions that return structures or unions are defined or
5094 called. (In languages where you can return an array, this also elicits
5095 a warning.)
5096
5097 @item -Wno-aggressive-loop-optimizations
5098 @opindex Wno-aggressive-loop-optimizations
5099 @opindex Waggressive-loop-optimizations
5100 Warn if in a loop with constant number of iterations the compiler detects
5101 undefined behavior in some statement during one or more of the iterations.
5102
5103 @item -Wno-attributes
5104 @opindex Wno-attributes
5105 @opindex Wattributes
5106 Do not warn if an unexpected @code{__attribute__} is used, such as
5107 unrecognized attributes, function attributes applied to variables,
5108 etc. This does not stop errors for incorrect use of supported
5109 attributes.
5110
5111 @item -Wno-builtin-macro-redefined
5112 @opindex Wno-builtin-macro-redefined
5113 @opindex Wbuiltin-macro-redefined
5114 Do not warn if certain built-in macros are redefined. This suppresses
5115 warnings for redefinition of @code{__TIMESTAMP__}, @code{__TIME__},
5116 @code{__DATE__}, @code{__FILE__}, and @code{__BASE_FILE__}.
5117
5118 @item -Wstrict-prototypes @r{(C and Objective-C only)}
5119 @opindex Wstrict-prototypes
5120 @opindex Wno-strict-prototypes
5121 Warn if a function is declared or defined without specifying the
5122 argument types. (An old-style function definition is permitted without
5123 a warning if preceded by a declaration that specifies the argument
5124 types.)
5125
5126 @item -Wold-style-declaration @r{(C and Objective-C only)}
5127 @opindex Wold-style-declaration
5128 @opindex Wno-old-style-declaration
5129 Warn for obsolescent usages, according to the C Standard, in a
5130 declaration. For example, warn if storage-class specifiers like
5131 @code{static} are not the first things in a declaration. This warning
5132 is also enabled by @option{-Wextra}.
5133
5134 @item -Wold-style-definition @r{(C and Objective-C only)}
5135 @opindex Wold-style-definition
5136 @opindex Wno-old-style-definition
5137 Warn if an old-style function definition is used. A warning is given
5138 even if there is a previous prototype.
5139
5140 @item -Wmissing-parameter-type @r{(C and Objective-C only)}
5141 @opindex Wmissing-parameter-type
5142 @opindex Wno-missing-parameter-type
5143 A function parameter is declared without a type specifier in K&R-style
5144 functions:
5145
5146 @smallexample
5147 void foo(bar) @{ @}
5148 @end smallexample
5149
5150 This warning is also enabled by @option{-Wextra}.
5151
5152 @item -Wmissing-prototypes @r{(C and Objective-C only)}
5153 @opindex Wmissing-prototypes
5154 @opindex Wno-missing-prototypes
5155 Warn if a global function is defined without a previous prototype
5156 declaration. This warning is issued even if the definition itself
5157 provides a prototype. Use this option to detect global functions
5158 that do not have a matching prototype declaration in a header file.
5159 This option is not valid for C++ because all function declarations
5160 provide prototypes and a non-matching declaration declares an
5161 overload rather than conflict with an earlier declaration.
5162 Use @option{-Wmissing-declarations} to detect missing declarations in C++.
5163
5164 @item -Wmissing-declarations
5165 @opindex Wmissing-declarations
5166 @opindex Wno-missing-declarations
5167 Warn if a global function is defined without a previous declaration.
5168 Do so even if the definition itself provides a prototype.
5169 Use this option to detect global functions that are not declared in
5170 header files. In C, no warnings are issued for functions with previous
5171 non-prototype declarations; use @option{-Wmissing-prototypes} to detect
5172 missing prototypes. In C++, no warnings are issued for function templates,
5173 or for inline functions, or for functions in anonymous namespaces.
5174
5175 @item -Wmissing-field-initializers
5176 @opindex Wmissing-field-initializers
5177 @opindex Wno-missing-field-initializers
5178 @opindex W
5179 @opindex Wextra
5180 @opindex Wno-extra
5181 Warn if a structure's initializer has some fields missing. For
5182 example, the following code causes such a warning, because
5183 @code{x.h} is implicitly zero:
5184
5185 @smallexample
5186 struct s @{ int f, g, h; @};
5187 struct s x = @{ 3, 4 @};
5188 @end smallexample
5189
5190 This option does not warn about designated initializers, so the following
5191 modification does not trigger a warning:
5192
5193 @smallexample
5194 struct s @{ int f, g, h; @};
5195 struct s x = @{ .f = 3, .g = 4 @};
5196 @end smallexample
5197
5198 In C++ this option does not warn either about the empty @{ @}
5199 initializer, for example:
5200
5201 @smallexample
5202 struct s @{ int f, g, h; @};
5203 s x = @{ @};
5204 @end smallexample
5205
5206 This warning is included in @option{-Wextra}. To get other @option{-Wextra}
5207 warnings without this one, use @option{-Wextra -Wno-missing-field-initializers}.
5208
5209 @item -Wno-multichar
5210 @opindex Wno-multichar
5211 @opindex Wmultichar
5212 Do not warn if a multicharacter constant (@samp{'FOOF'}) is used.
5213 Usually they indicate a typo in the user's code, as they have
5214 implementation-defined values, and should not be used in portable code.
5215
5216 @item -Wnormalized@r{[}=@r{<}none@r{|}id@r{|}nfc@r{|}nfkc@r{>]}
5217 @opindex Wnormalized=
5218 @opindex Wnormalized
5219 @opindex Wno-normalized
5220 @cindex NFC
5221 @cindex NFKC
5222 @cindex character set, input normalization
5223 In ISO C and ISO C++, two identifiers are different if they are
5224 different sequences of characters. However, sometimes when characters
5225 outside the basic ASCII character set are used, you can have two
5226 different character sequences that look the same. To avoid confusion,
5227 the ISO 10646 standard sets out some @dfn{normalization rules} which
5228 when applied ensure that two sequences that look the same are turned into
5229 the same sequence. GCC can warn you if you are using identifiers that
5230 have not been normalized; this option controls that warning.
5231
5232 There are four levels of warning supported by GCC@. The default is
5233 @option{-Wnormalized=nfc}, which warns about any identifier that is
5234 not in the ISO 10646 ``C'' normalized form, @dfn{NFC}. NFC is the
5235 recommended form for most uses. It is equivalent to
5236 @option{-Wnormalized}.
5237
5238 Unfortunately, there are some characters allowed in identifiers by
5239 ISO C and ISO C++ that, when turned into NFC, are not allowed in
5240 identifiers. That is, there's no way to use these symbols in portable
5241 ISO C or C++ and have all your identifiers in NFC@.
5242 @option{-Wnormalized=id} suppresses the warning for these characters.
5243 It is hoped that future versions of the standards involved will correct
5244 this, which is why this option is not the default.
5245
5246 You can switch the warning off for all characters by writing
5247 @option{-Wnormalized=none} or @option{-Wno-normalized}. You should
5248 only do this if you are using some other normalization scheme (like
5249 ``D''), because otherwise you can easily create bugs that are
5250 literally impossible to see.
5251
5252 Some characters in ISO 10646 have distinct meanings but look identical
5253 in some fonts or display methodologies, especially once formatting has
5254 been applied. For instance @code{\u207F}, ``SUPERSCRIPT LATIN SMALL
5255 LETTER N'', displays just like a regular @code{n} that has been
5256 placed in a superscript. ISO 10646 defines the @dfn{NFKC}
5257 normalization scheme to convert all these into a standard form as
5258 well, and GCC warns if your code is not in NFKC if you use
5259 @option{-Wnormalized=nfkc}. This warning is comparable to warning
5260 about every identifier that contains the letter O because it might be
5261 confused with the digit 0, and so is not the default, but may be
5262 useful as a local coding convention if the programming environment
5263 cannot be fixed to display these characters distinctly.
5264
5265 @item -Wno-deprecated
5266 @opindex Wno-deprecated
5267 @opindex Wdeprecated
5268 Do not warn about usage of deprecated features. @xref{Deprecated Features}.
5269
5270 @item -Wno-deprecated-declarations
5271 @opindex Wno-deprecated-declarations
5272 @opindex Wdeprecated-declarations
5273 Do not warn about uses of functions (@pxref{Function Attributes}),
5274 variables (@pxref{Variable Attributes}), and types (@pxref{Type
5275 Attributes}) marked as deprecated by using the @code{deprecated}
5276 attribute.
5277
5278 @item -Wno-overflow
5279 @opindex Wno-overflow
5280 @opindex Woverflow
5281 Do not warn about compile-time overflow in constant expressions.
5282
5283 @item -Wno-odr
5284 @opindex Wno-odr
5285 @opindex Wodr
5286 Warn about One Definition Rule violations during link-time optimization.
5287 Requires @option{-flto-odr-type-merging} to be enabled. Enabled by default.
5288
5289 @item -Wopenmp-simd
5290 @opindex Wopenm-simd
5291 Warn if the vectorizer cost model overrides the OpenMP or the Cilk Plus
5292 simd directive set by user. The @option{-fsimd-cost-model=unlimited}
5293 option can be used to relax the cost model.
5294
5295 @item -Woverride-init @r{(C and Objective-C only)}
5296 @opindex Woverride-init
5297 @opindex Wno-override-init
5298 @opindex W
5299 @opindex Wextra
5300 @opindex Wno-extra
5301 Warn if an initialized field without side effects is overridden when
5302 using designated initializers (@pxref{Designated Inits, , Designated
5303 Initializers}).
5304
5305 This warning is included in @option{-Wextra}. To get other
5306 @option{-Wextra} warnings without this one, use @option{-Wextra
5307 -Wno-override-init}.
5308
5309 @item -Woverride-init-side-effects @r{(C and Objective-C only)}
5310 @opindex Woverride-init-side-effects
5311 @opindex Wno-override-init-side-effects
5312 Warn if an initialized field with side effects is overridden when
5313 using designated initializers (@pxref{Designated Inits, , Designated
5314 Initializers}). This warning is enabled by default.
5315
5316 @item -Wpacked
5317 @opindex Wpacked
5318 @opindex Wno-packed
5319 Warn if a structure is given the packed attribute, but the packed
5320 attribute has no effect on the layout or size of the structure.
5321 Such structures may be mis-aligned for little benefit. For
5322 instance, in this code, the variable @code{f.x} in @code{struct bar}
5323 is misaligned even though @code{struct bar} does not itself
5324 have the packed attribute:
5325
5326 @smallexample
5327 @group
5328 struct foo @{
5329 int x;
5330 char a, b, c, d;
5331 @} __attribute__((packed));
5332 struct bar @{
5333 char z;
5334 struct foo f;
5335 @};
5336 @end group
5337 @end smallexample
5338
5339 @item -Wpacked-bitfield-compat
5340 @opindex Wpacked-bitfield-compat
5341 @opindex Wno-packed-bitfield-compat
5342 The 4.1, 4.2 and 4.3 series of GCC ignore the @code{packed} attribute
5343 on bit-fields of type @code{char}. This has been fixed in GCC 4.4 but
5344 the change can lead to differences in the structure layout. GCC
5345 informs you when the offset of such a field has changed in GCC 4.4.
5346 For example there is no longer a 4-bit padding between field @code{a}
5347 and @code{b} in this structure:
5348
5349 @smallexample
5350 struct foo
5351 @{
5352 char a:4;
5353 char b:8;
5354 @} __attribute__ ((packed));
5355 @end smallexample
5356
5357 This warning is enabled by default. Use
5358 @option{-Wno-packed-bitfield-compat} to disable this warning.
5359
5360 @item -Wpadded
5361 @opindex Wpadded
5362 @opindex Wno-padded
5363 Warn if padding is included in a structure, either to align an element
5364 of the structure or to align the whole structure. Sometimes when this
5365 happens it is possible to rearrange the fields of the structure to
5366 reduce the padding and so make the structure smaller.
5367
5368 @item -Wredundant-decls
5369 @opindex Wredundant-decls
5370 @opindex Wno-redundant-decls
5371 Warn if anything is declared more than once in the same scope, even in
5372 cases where multiple declaration is valid and changes nothing.
5373
5374 @item -Wnested-externs @r{(C and Objective-C only)}
5375 @opindex Wnested-externs
5376 @opindex Wno-nested-externs
5377 Warn if an @code{extern} declaration is encountered within a function.
5378
5379 @item -Wno-inherited-variadic-ctor
5380 @opindex Winherited-variadic-ctor
5381 @opindex Wno-inherited-variadic-ctor
5382 Suppress warnings about use of C++11 inheriting constructors when the
5383 base class inherited from has a C variadic constructor; the warning is
5384 on by default because the ellipsis is not inherited.
5385
5386 @item -Winline
5387 @opindex Winline
5388 @opindex Wno-inline
5389 Warn if a function that is declared as inline cannot be inlined.
5390 Even with this option, the compiler does not warn about failures to
5391 inline functions declared in system headers.
5392
5393 The compiler uses a variety of heuristics to determine whether or not
5394 to inline a function. For example, the compiler takes into account
5395 the size of the function being inlined and the amount of inlining
5396 that has already been done in the current function. Therefore,
5397 seemingly insignificant changes in the source program can cause the
5398 warnings produced by @option{-Winline} to appear or disappear.
5399
5400 @item -Wno-invalid-offsetof @r{(C++ and Objective-C++ only)}
5401 @opindex Wno-invalid-offsetof
5402 @opindex Winvalid-offsetof
5403 Suppress warnings from applying the @code{offsetof} macro to a non-POD
5404 type. According to the 2014 ISO C++ standard, applying @code{offsetof}
5405 to a non-standard-layout type is undefined. In existing C++ implementations,
5406 however, @code{offsetof} typically gives meaningful results.
5407 This flag is for users who are aware that they are
5408 writing nonportable code and who have deliberately chosen to ignore the
5409 warning about it.
5410
5411 The restrictions on @code{offsetof} may be relaxed in a future version
5412 of the C++ standard.
5413
5414 @item -Wno-int-to-pointer-cast
5415 @opindex Wno-int-to-pointer-cast
5416 @opindex Wint-to-pointer-cast
5417 Suppress warnings from casts to pointer type of an integer of a
5418 different size. In C++, casting to a pointer type of smaller size is
5419 an error. @option{Wint-to-pointer-cast} is enabled by default.
5420
5421
5422 @item -Wno-pointer-to-int-cast @r{(C and Objective-C only)}
5423 @opindex Wno-pointer-to-int-cast
5424 @opindex Wpointer-to-int-cast
5425 Suppress warnings from casts from a pointer to an integer type of a
5426 different size.
5427
5428 @item -Winvalid-pch
5429 @opindex Winvalid-pch
5430 @opindex Wno-invalid-pch
5431 Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
5432 the search path but can't be used.
5433
5434 @item -Wlong-long
5435 @opindex Wlong-long
5436 @opindex Wno-long-long
5437 Warn if @code{long long} type is used. This is enabled by either
5438 @option{-Wpedantic} or @option{-Wtraditional} in ISO C90 and C++98
5439 modes. To inhibit the warning messages, use @option{-Wno-long-long}.
5440
5441 @item -Wvariadic-macros
5442 @opindex Wvariadic-macros
5443 @opindex Wno-variadic-macros
5444 Warn if variadic macros are used in ISO C90 mode, or if the GNU
5445 alternate syntax is used in ISO C99 mode. This is enabled by either
5446 @option{-Wpedantic} or @option{-Wtraditional}. To inhibit the warning
5447 messages, use @option{-Wno-variadic-macros}.
5448
5449 @item -Wvarargs
5450 @opindex Wvarargs
5451 @opindex Wno-varargs
5452 Warn upon questionable usage of the macros used to handle variable
5453 arguments like @code{va_start}. This is default. To inhibit the
5454 warning messages, use @option{-Wno-varargs}.
5455
5456 @item -Wvector-operation-performance
5457 @opindex Wvector-operation-performance
5458 @opindex Wno-vector-operation-performance
5459 Warn if vector operation is not implemented via SIMD capabilities of the
5460 architecture. Mainly useful for the performance tuning.
5461 Vector operation can be implemented @code{piecewise}, which means that the
5462 scalar operation is performed on every vector element;
5463 @code{in parallel}, which means that the vector operation is implemented
5464 using scalars of wider type, which normally is more performance efficient;
5465 and @code{as a single scalar}, which means that vector fits into a
5466 scalar type.
5467
5468 @item -Wno-virtual-move-assign
5469 @opindex Wvirtual-move-assign
5470 @opindex Wno-virtual-move-assign
5471 Suppress warnings about inheriting from a virtual base with a
5472 non-trivial C++11 move assignment operator. This is dangerous because
5473 if the virtual base is reachable along more than one path, it is
5474 moved multiple times, which can mean both objects end up in the
5475 moved-from state. If the move assignment operator is written to avoid
5476 moving from a moved-from object, this warning can be disabled.
5477
5478 @item -Wvla
5479 @opindex Wvla
5480 @opindex Wno-vla
5481 Warn if variable length array is used in the code.
5482 @option{-Wno-vla} prevents the @option{-Wpedantic} warning of
5483 the variable length array.
5484
5485 @item -Wvolatile-register-var
5486 @opindex Wvolatile-register-var
5487 @opindex Wno-volatile-register-var
5488 Warn if a register variable is declared volatile. The volatile
5489 modifier does not inhibit all optimizations that may eliminate reads
5490 and/or writes to register variables. This warning is enabled by
5491 @option{-Wall}.
5492
5493 @item -Wdisabled-optimization
5494 @opindex Wdisabled-optimization
5495 @opindex Wno-disabled-optimization
5496 Warn if a requested optimization pass is disabled. This warning does
5497 not generally indicate that there is anything wrong with your code; it
5498 merely indicates that GCC's optimizers are unable to handle the code
5499 effectively. Often, the problem is that your code is too big or too
5500 complex; GCC refuses to optimize programs when the optimization
5501 itself is likely to take inordinate amounts of time.
5502
5503 @item -Wpointer-sign @r{(C and Objective-C only)}
5504 @opindex Wpointer-sign
5505 @opindex Wno-pointer-sign
5506 Warn for pointer argument passing or assignment with different signedness.
5507 This option is only supported for C and Objective-C@. It is implied by
5508 @option{-Wall} and by @option{-Wpedantic}, which can be disabled with
5509 @option{-Wno-pointer-sign}.
5510
5511 @item -Wstack-protector
5512 @opindex Wstack-protector
5513 @opindex Wno-stack-protector
5514 This option is only active when @option{-fstack-protector} is active. It
5515 warns about functions that are not protected against stack smashing.
5516
5517 @item -Woverlength-strings
5518 @opindex Woverlength-strings
5519 @opindex Wno-overlength-strings
5520 Warn about string constants that are longer than the ``minimum
5521 maximum'' length specified in the C standard. Modern compilers
5522 generally allow string constants that are much longer than the
5523 standard's minimum limit, but very portable programs should avoid
5524 using longer strings.
5525
5526 The limit applies @emph{after} string constant concatenation, and does
5527 not count the trailing NUL@. In C90, the limit was 509 characters; in
5528 C99, it was raised to 4095. C++98 does not specify a normative
5529 minimum maximum, so we do not diagnose overlength strings in C++@.
5530
5531 This option is implied by @option{-Wpedantic}, and can be disabled with
5532 @option{-Wno-overlength-strings}.
5533
5534 @item -Wunsuffixed-float-constants @r{(C and Objective-C only)}
5535 @opindex Wunsuffixed-float-constants
5536
5537 Issue a warning for any floating constant that does not have
5538 a suffix. When used together with @option{-Wsystem-headers} it
5539 warns about such constants in system header files. This can be useful
5540 when preparing code to use with the @code{FLOAT_CONST_DECIMAL64} pragma
5541 from the decimal floating-point extension to C99.
5542
5543 @item -Wno-designated-init @r{(C and Objective-C only)}
5544 Suppress warnings when a positional initializer is used to initialize
5545 a structure that has been marked with the @code{designated_init}
5546 attribute.
5547
5548 @end table
5549
5550 @node Debugging Options
5551 @section Options for Debugging Your Program or GCC
5552 @cindex options, debugging
5553 @cindex debugging information options
5554
5555 GCC has various special options that are used for debugging
5556 either your program or GCC:
5557
5558 @table @gcctabopt
5559 @item -g
5560 @opindex g
5561 Produce debugging information in the operating system's native format
5562 (stabs, COFF, XCOFF, or DWARF 2)@. GDB can work with this debugging
5563 information.
5564
5565 On most systems that use stabs format, @option{-g} enables use of extra
5566 debugging information that only GDB can use; this extra information
5567 makes debugging work better in GDB but probably makes other debuggers
5568 crash or
5569 refuse to read the program. If you want to control for certain whether
5570 to generate the extra information, use @option{-gstabs+}, @option{-gstabs},
5571 @option{-gxcoff+}, @option{-gxcoff}, or @option{-gvms} (see below).
5572
5573 GCC allows you to use @option{-g} with
5574 @option{-O}. The shortcuts taken by optimized code may occasionally
5575 produce surprising results: some variables you declared may not exist
5576 at all; flow of control may briefly move where you did not expect it;
5577 some statements may not be executed because they compute constant
5578 results or their values are already at hand; some statements may
5579 execute in different places because they have been moved out of loops.
5580
5581 Nevertheless it proves possible to debug optimized output. This makes
5582 it reasonable to use the optimizer for programs that might have bugs.
5583
5584 The following options are useful when GCC is generated with the
5585 capability for more than one debugging format.
5586
5587 @item -gsplit-dwarf
5588 @opindex gsplit-dwarf
5589 Separate as much dwarf debugging information as possible into a
5590 separate output file with the extension .dwo. This option allows
5591 the build system to avoid linking files with debug information. To
5592 be useful, this option requires a debugger capable of reading .dwo
5593 files.
5594
5595 @item -ggdb
5596 @opindex ggdb
5597 Produce debugging information for use by GDB@. This means to use the
5598 most expressive format available (DWARF 2, stabs, or the native format
5599 if neither of those are supported), including GDB extensions if at all
5600 possible.
5601
5602 @item -gpubnames
5603 @opindex gpubnames
5604 Generate dwarf .debug_pubnames and .debug_pubtypes sections.
5605
5606 @item -ggnu-pubnames
5607 @opindex ggnu-pubnames
5608 Generate .debug_pubnames and .debug_pubtypes sections in a format
5609 suitable for conversion into a GDB@ index. This option is only useful
5610 with a linker that can produce GDB@ index version 7.
5611
5612 @item -gstabs
5613 @opindex gstabs
5614 Produce debugging information in stabs format (if that is supported),
5615 without GDB extensions. This is the format used by DBX on most BSD
5616 systems. On MIPS, Alpha and System V Release 4 systems this option
5617 produces stabs debugging output that is not understood by DBX or SDB@.
5618 On System V Release 4 systems this option requires the GNU assembler.
5619
5620 @item -feliminate-unused-debug-symbols
5621 @opindex feliminate-unused-debug-symbols
5622 Produce debugging information in stabs format (if that is supported),
5623 for only symbols that are actually used.
5624
5625 @item -femit-class-debug-always
5626 @opindex femit-class-debug-always
5627 Instead of emitting debugging information for a C++ class in only one
5628 object file, emit it in all object files using the class. This option
5629 should be used only with debuggers that are unable to handle the way GCC
5630 normally emits debugging information for classes because using this
5631 option increases the size of debugging information by as much as a
5632 factor of two.
5633
5634 @item -fdebug-types-section
5635 @opindex fdebug-types-section
5636 @opindex fno-debug-types-section
5637 When using DWARF Version 4 or higher, type DIEs can be put into
5638 their own @code{.debug_types} section instead of making them part of the
5639 @code{.debug_info} section. It is more efficient to put them in a separate
5640 comdat sections since the linker can then remove duplicates.
5641 But not all DWARF consumers support @code{.debug_types} sections yet
5642 and on some objects @code{.debug_types} produces larger instead of smaller
5643 debugging information.
5644
5645 @item -gstabs+
5646 @opindex gstabs+
5647 Produce debugging information in stabs format (if that is supported),
5648 using GNU extensions understood only by the GNU debugger (GDB)@. The
5649 use of these extensions is likely to make other debuggers crash or
5650 refuse to read the program.
5651
5652 @item -gcoff
5653 @opindex gcoff
5654 Produce debugging information in COFF format (if that is supported).
5655 This is the format used by SDB on most System V systems prior to
5656 System V Release 4.
5657
5658 @item -gxcoff
5659 @opindex gxcoff
5660 Produce debugging information in XCOFF format (if that is supported).
5661 This is the format used by the DBX debugger on IBM RS/6000 systems.
5662
5663 @item -gxcoff+
5664 @opindex gxcoff+
5665 Produce debugging information in XCOFF format (if that is supported),
5666 using GNU extensions understood only by the GNU debugger (GDB)@. The
5667 use of these extensions is likely to make other debuggers crash or
5668 refuse to read the program, and may cause assemblers other than the GNU
5669 assembler (GAS) to fail with an error.
5670
5671 @item -gdwarf-@var{version}
5672 @opindex gdwarf-@var{version}
5673 Produce debugging information in DWARF format (if that is supported).
5674 The value of @var{version} may be either 2, 3, 4 or 5; the default version
5675 for most targets is 4. DWARF Version 5 is only experimental.
5676
5677 Note that with DWARF Version 2, some ports require and always
5678 use some non-conflicting DWARF 3 extensions in the unwind tables.
5679
5680 Version 4 may require GDB 7.0 and @option{-fvar-tracking-assignments}
5681 for maximum benefit.
5682
5683 @item -grecord-gcc-switches
5684 @opindex grecord-gcc-switches
5685 This switch causes the command-line options used to invoke the
5686 compiler that may affect code generation to be appended to the
5687 DW_AT_producer attribute in DWARF debugging information. The options
5688 are concatenated with spaces separating them from each other and from
5689 the compiler version. See also @option{-frecord-gcc-switches} for another
5690 way of storing compiler options into the object file. This is the default.
5691
5692 @item -gno-record-gcc-switches
5693 @opindex gno-record-gcc-switches
5694 Disallow appending command-line options to the DW_AT_producer attribute
5695 in DWARF debugging information.
5696
5697 @item -gstrict-dwarf
5698 @opindex gstrict-dwarf
5699 Disallow using extensions of later DWARF standard version than selected
5700 with @option{-gdwarf-@var{version}}. On most targets using non-conflicting
5701 DWARF extensions from later standard versions is allowed.
5702
5703 @item -gno-strict-dwarf
5704 @opindex gno-strict-dwarf
5705 Allow using extensions of later DWARF standard version than selected with
5706 @option{-gdwarf-@var{version}}.
5707
5708 @item -gz@r{[}=@var{type}@r{]}
5709 @opindex gz
5710 Produce compressed debug sections in DWARF format, if that is supported.
5711 If @var{type} is not given, the default type depends on the capabilities
5712 of the assembler and linker used. @var{type} may be one of
5713 @samp{none} (don't compress debug sections), @samp{zlib} (use zlib
5714 compression in ELF gABI format), or @samp{zlib-gnu} (use zlib
5715 compression in traditional GNU format). If the linker doesn't support
5716 writing compressed debug sections, the option is rejected. Otherwise,
5717 if the assembler does not support them, @option{-gz} is silently ignored
5718 when producing object files.
5719
5720 @item -gvms
5721 @opindex gvms
5722 Produce debugging information in Alpha/VMS debug format (if that is
5723 supported). This is the format used by DEBUG on Alpha/VMS systems.
5724
5725 @item -g@var{level}
5726 @itemx -ggdb@var{level}
5727 @itemx -gstabs@var{level}
5728 @itemx -gcoff@var{level}
5729 @itemx -gxcoff@var{level}
5730 @itemx -gvms@var{level}
5731 Request debugging information and also use @var{level} to specify how
5732 much information. The default level is 2.
5733
5734 Level 0 produces no debug information at all. Thus, @option{-g0} negates
5735 @option{-g}.
5736
5737 Level 1 produces minimal information, enough for making backtraces in
5738 parts of the program that you don't plan to debug. This includes
5739 descriptions of functions and external variables, and line number
5740 tables, but no information about local variables.
5741
5742 Level 3 includes extra information, such as all the macro definitions
5743 present in the program. Some debuggers support macro expansion when
5744 you use @option{-g3}.
5745
5746 @option{-gdwarf-2} does not accept a concatenated debug level, because
5747 GCC used to support an option @option{-gdwarf} that meant to generate
5748 debug information in version 1 of the DWARF format (which is very
5749 different from version 2), and it would have been too confusing. That
5750 debug format is long obsolete, but the option cannot be changed now.
5751 Instead use an additional @option{-g@var{level}} option to change the
5752 debug level for DWARF.
5753
5754 @item -gtoggle
5755 @opindex gtoggle
5756 Turn off generation of debug info, if leaving out this option
5757 generates it, or turn it on at level 2 otherwise. The position of this
5758 argument in the command line does not matter; it takes effect after all
5759 other options are processed, and it does so only once, no matter how
5760 many times it is given. This is mainly intended to be used with
5761 @option{-fcompare-debug}.
5762
5763 @item -fsanitize=address
5764 @opindex fsanitize=address
5765 Enable AddressSanitizer, a fast memory error detector.
5766 Memory access instructions are instrumented to detect
5767 out-of-bounds and use-after-free bugs.
5768 See @uref{http://code.google.com/p/address-sanitizer/} for
5769 more details. The run-time behavior can be influenced using the
5770 @env{ASAN_OPTIONS} environment variable; see
5771 @url{https://code.google.com/p/address-sanitizer/wiki/Flags#Run-time_flags} for
5772 a list of supported options.
5773
5774 @item -fsanitize=kernel-address
5775 @opindex fsanitize=kernel-address
5776 Enable AddressSanitizer for Linux kernel.
5777 See @uref{http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel} for more details.
5778
5779 @item -fsanitize=thread
5780 @opindex fsanitize=thread
5781 Enable ThreadSanitizer, a fast data race detector.
5782 Memory access instructions are instrumented to detect
5783 data race bugs. See @uref{http://code.google.com/p/thread-sanitizer/} for more
5784 details. The run-time behavior can be influenced using the @env{TSAN_OPTIONS}
5785 environment variable; see
5786 @url{https://code.google.com/p/thread-sanitizer/wiki/Flags} for a list of
5787 supported options.
5788
5789 @item -fsanitize=leak
5790 @opindex fsanitize=leak
5791 Enable LeakSanitizer, a memory leak detector.
5792 This option only matters for linking of executables and if neither
5793 @option{-fsanitize=address} nor @option{-fsanitize=thread} is used. In that
5794 case the executable is linked against a library that overrides @code{malloc}
5795 and other allocator functions. See
5796 @uref{https://code.google.com/p/address-sanitizer/wiki/LeakSanitizer} for more
5797 details. The run-time behavior can be influenced using the
5798 @env{LSAN_OPTIONS} environment variable.
5799
5800 @item -fsanitize=undefined
5801 @opindex fsanitize=undefined
5802 Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector.
5803 Various computations are instrumented to detect undefined behavior
5804 at runtime. Current suboptions are:
5805
5806 @table @gcctabopt
5807
5808 @item -fsanitize=shift
5809 @opindex fsanitize=shift
5810 This option enables checking that the result of a shift operation is
5811 not undefined. Note that what exactly is considered undefined differs
5812 slightly between C and C++, as well as between ISO C90 and C99, etc.
5813
5814 @item -fsanitize=integer-divide-by-zero
5815 @opindex fsanitize=integer-divide-by-zero
5816 Detect integer division by zero as well as @code{INT_MIN / -1} division.
5817
5818 @item -fsanitize=unreachable
5819 @opindex fsanitize=unreachable
5820 With this option, the compiler turns the @code{__builtin_unreachable}
5821 call into a diagnostics message call instead. When reaching the
5822 @code{__builtin_unreachable} call, the behavior is undefined.
5823
5824 @item -fsanitize=vla-bound
5825 @opindex fsanitize=vla-bound
5826 This option instructs the compiler to check that the size of a variable
5827 length array is positive.
5828
5829 @item -fsanitize=null
5830 @opindex fsanitize=null
5831 This option enables pointer checking. Particularly, the application
5832 built with this option turned on will issue an error message when it
5833 tries to dereference a NULL pointer, or if a reference (possibly an
5834 rvalue reference) is bound to a NULL pointer, or if a method is invoked
5835 on an object pointed by a NULL pointer.
5836
5837 @item -fsanitize=return
5838 @opindex fsanitize=return
5839 This option enables return statement checking. Programs
5840 built with this option turned on will issue an error message
5841 when the end of a non-void function is reached without actually
5842 returning a value. This option works in C++ only.
5843
5844 @item -fsanitize=signed-integer-overflow
5845 @opindex fsanitize=signed-integer-overflow
5846 This option enables signed integer overflow checking. We check that
5847 the result of @code{+}, @code{*}, and both unary and binary @code{-}
5848 does not overflow in the signed arithmetics. Note, integer promotion
5849 rules must be taken into account. That is, the following is not an
5850 overflow:
5851 @smallexample
5852 signed char a = SCHAR_MAX;
5853 a++;
5854 @end smallexample
5855
5856 @item -fsanitize=bounds
5857 @opindex fsanitize=bounds
5858 This option enables instrumentation of array bounds. Various out of bounds
5859 accesses are detected. Flexible array members, flexible array member-like
5860 arrays, and initializers of variables with static storage are not instrumented.
5861
5862 @item -fsanitize=bounds-strict
5863 @opindex fsanitize=bounds-strict
5864 This option enables strict instrumentation of array bounds. Most out of bounds
5865 accesses are detected, including flexible array members and flexible array
5866 member-like arrays. Initializers of variables with static storage are not
5867 instrumented.
5868
5869 @item -fsanitize=alignment
5870 @opindex fsanitize=alignment
5871
5872 This option enables checking of alignment of pointers when they are
5873 dereferenced, or when a reference is bound to insufficiently aligned target,
5874 or when a method or constructor is invoked on insufficiently aligned object.
5875
5876 @item -fsanitize=object-size
5877 @opindex fsanitize=object-size
5878 This option enables instrumentation of memory references using the
5879 @code{__builtin_object_size} function. Various out of bounds pointer
5880 accesses are detected.
5881
5882 @item -fsanitize=float-divide-by-zero
5883 @opindex fsanitize=float-divide-by-zero
5884 Detect floating-point division by zero. Unlike other similar options,
5885 @option{-fsanitize=float-divide-by-zero} is not enabled by
5886 @option{-fsanitize=undefined}, since floating-point division by zero can
5887 be a legitimate way of obtaining infinities and NaNs.
5888
5889 @item -fsanitize=float-cast-overflow
5890 @opindex fsanitize=float-cast-overflow
5891 This option enables floating-point type to integer conversion checking.
5892 We check that the result of the conversion does not overflow.
5893 Unlike other similar options, @option{-fsanitize=float-cast-overflow} is
5894 not enabled by @option{-fsanitize=undefined}.
5895 This option does not work well with @code{FE_INVALID} exceptions enabled.
5896
5897 @item -fsanitize=nonnull-attribute
5898 @opindex fsanitize=nonnull-attribute
5899
5900 This option enables instrumentation of calls, checking whether null values
5901 are not passed to arguments marked as requiring a non-null value by the
5902 @code{nonnull} function attribute.
5903
5904 @item -fsanitize=returns-nonnull-attribute
5905 @opindex fsanitize=returns-nonnull-attribute
5906
5907 This option enables instrumentation of return statements in functions
5908 marked with @code{returns_nonnull} function attribute, to detect returning
5909 of null values from such functions.
5910
5911 @item -fsanitize=bool
5912 @opindex fsanitize=bool
5913
5914 This option enables instrumentation of loads from bool. If a value other
5915 than 0/1 is loaded, a run-time error is issued.
5916
5917 @item -fsanitize=enum
5918 @opindex fsanitize=enum
5919
5920 This option enables instrumentation of loads from an enum type. If
5921 a value outside the range of values for the enum type is loaded,
5922 a run-time error is issued.
5923
5924 @item -fsanitize=vptr
5925 @opindex fsanitize=vptr
5926
5927 This option enables instrumentation of C++ member function calls, member
5928 accesses and some conversions between pointers to base and derived classes,
5929 to verify the referenced object has the correct dynamic type.
5930
5931 @end table
5932
5933 While @option{-ftrapv} causes traps for signed overflows to be emitted,
5934 @option{-fsanitize=undefined} gives a diagnostic message.
5935 This currently works only for the C family of languages.
5936
5937 @item -fno-sanitize=all
5938 @opindex fno-sanitize=all
5939
5940 This option disables all previously enabled sanitizers.
5941 @option{-fsanitize=all} is not allowed, as some sanitizers cannot be used
5942 together.
5943
5944 @item -fasan-shadow-offset=@var{number}
5945 @opindex fasan-shadow-offset
5946 This option forces GCC to use custom shadow offset in AddressSanitizer checks.
5947 It is useful for experimenting with different shadow memory layouts in
5948 Kernel AddressSanitizer.
5949
5950 @item -fsanitize-sections=@var{s1},@var{s2},...
5951 @opindex fsanitize-sections
5952 Sanitize global variables in selected user-defined sections. @var{si} may
5953 contain wildcards.
5954
5955 @item -fsanitize-recover@r{[}=@var{opts}@r{]}
5956 @opindex fsanitize-recover
5957 @opindex fno-sanitize-recover
5958 @option{-fsanitize-recover=} controls error recovery mode for sanitizers
5959 mentioned in comma-separated list of @var{opts}. Enabling this option
5960 for a sanitizer component causes it to attempt to continue
5961 running the program as if no error happened. This means multiple
5962 runtime errors can be reported in a single program run, and the exit
5963 code of the program may indicate success even when errors
5964 have been reported. The @option{-fno-sanitize-recover=} option
5965 can be used to alter
5966 this behavior: only the first detected error is reported
5967 and program then exits with a non-zero exit code.
5968
5969 Currently this feature only works for @option{-fsanitize=undefined} (and its suboptions
5970 except for @option{-fsanitize=unreachable} and @option{-fsanitize=return}),
5971 @option{-fsanitize=float-cast-overflow}, @option{-fsanitize=float-divide-by-zero} and
5972 @option{-fsanitize=kernel-address}. For these sanitizers error recovery is turned on by default.
5973 @option{-fsanitize-recover=all} and @option{-fno-sanitize-recover=all} is also
5974 accepted, the former enables recovery for all sanitizers that support it,
5975 the latter disables recovery for all sanitizers that support it.
5976
5977 Syntax without explicit @var{opts} parameter is deprecated. It is equivalent to
5978 @smallexample
5979 -fsanitize-recover=undefined,float-cast-overflow,float-divide-by-zero
5980 @end smallexample
5981 @noindent
5982 Similarly @option{-fno-sanitize-recover} is equivalent to
5983 @smallexample
5984 -fno-sanitize-recover=undefined,float-cast-overflow,float-divide-by-zero
5985 @end smallexample
5986
5987 @item -fsanitize-undefined-trap-on-error
5988 @opindex fsanitize-undefined-trap-on-error
5989 The @option{-fsanitize-undefined-trap-on-error} option instructs the compiler to
5990 report undefined behavior using @code{__builtin_trap} rather than
5991 a @code{libubsan} library routine. The advantage of this is that the
5992 @code{libubsan} library is not needed and is not linked in, so this
5993 is usable even in freestanding environments.
5994
5995 @item -fcheck-pointer-bounds
5996 @opindex fcheck-pointer-bounds
5997 @opindex fno-check-pointer-bounds
5998 @cindex Pointer Bounds Checker options
5999 Enable Pointer Bounds Checker instrumentation. Each memory reference
6000 is instrumented with checks of the pointer used for memory access against
6001 bounds associated with that pointer.
6002
6003 Currently there
6004 is only an implementation for Intel MPX available, thus x86 target
6005 and @option{-mmpx} are required to enable this feature.
6006 MPX-based instrumentation requires
6007 a runtime library to enable MPX in hardware and handle bounds
6008 violation signals. By default when @option{-fcheck-pointer-bounds}
6009 and @option{-mmpx} options are used to link a program, the GCC driver
6010 links against the @file{libmpx} runtime library and @file{libmpxwrappers}
6011 library. It also passes '-z bndplt' to a linker in case it supports this
6012 option (which is checked on libmpx configuration). Note that old versions
6013 of linker may ignore option. Gold linker doesn't support '-z bndplt'
6014 option. With no '-z bndplt' support in linker all calls to dynamic libraries
6015 lose passed bounds reducing overall protection level. It's highly
6016 recommended to use linker with '-z bndplt' support. In case such linker
6017 is not available it is adviced to always use @option{-static-libmpxwrappers}
6018 for better protection level or use @option{-static} to completely avoid
6019 external calls to dynamic libraries. MPX-based instrumentation
6020 may be used for debugging and also may be included in production code
6021 to increase program security. Depending on usage, you may
6022 have different requirements for the runtime library. The current version
6023 of the MPX runtime library is more oriented for use as a debugging
6024 tool. MPX runtime library usage implies @option{-lpthread}. See
6025 also @option{-static-libmpx}. The runtime library behavior can be
6026 influenced using various @env{CHKP_RT_*} environment variables. See
6027 @uref{https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler}
6028 for more details.
6029
6030 Generated instrumentation may be controlled by various
6031 @option{-fchkp-*} options and by the @code{bnd_variable_size}
6032 structure field attribute (@pxref{Type Attributes}) and
6033 @code{bnd_legacy}, and @code{bnd_instrument} function attributes
6034 (@pxref{Function Attributes}). GCC also provides a number of built-in
6035 functions for controlling the Pointer Bounds Checker. @xref{Pointer
6036 Bounds Checker builtins}, for more information.
6037
6038 @item -fchkp-check-incomplete-type
6039 @opindex fchkp-check-incomplete-type
6040 @opindex fno-chkp-check-incomplete-type
6041 Generate pointer bounds checks for variables with incomplete type.
6042 Enabled by default.
6043
6044 @item -fchkp-narrow-bounds
6045 @opindex fchkp-narrow-bounds
6046 @opindex fno-chkp-narrow-bounds
6047 Controls bounds used by Pointer Bounds Checker for pointers to object
6048 fields. If narrowing is enabled then field bounds are used. Otherwise
6049 object bounds are used. See also @option{-fchkp-narrow-to-innermost-array}
6050 and @option{-fchkp-first-field-has-own-bounds}. Enabled by default.
6051
6052 @item -fchkp-first-field-has-own-bounds
6053 @opindex fchkp-first-field-has-own-bounds
6054 @opindex fno-chkp-first-field-has-own-bounds
6055 Forces Pointer Bounds Checker to use narrowed bounds for the address of the
6056 first field in the structure. By default a pointer to the first field has
6057 the same bounds as a pointer to the whole structure.
6058
6059 @item -fchkp-narrow-to-innermost-array
6060 @opindex fchkp-narrow-to-innermost-array
6061 @opindex fno-chkp-narrow-to-innermost-array
6062 Forces Pointer Bounds Checker to use bounds of the innermost arrays in
6063 case of nested static array access. By default this option is disabled and
6064 bounds of the outermost array are used.
6065
6066 @item -fchkp-optimize
6067 @opindex fchkp-optimize
6068 @opindex fno-chkp-optimize
6069 Enables Pointer Bounds Checker optimizations. Enabled by default at
6070 optimization levels @option{-O}, @option{-O2}, @option{-O3}.
6071
6072 @item -fchkp-use-fast-string-functions
6073 @opindex fchkp-use-fast-string-functions
6074 @opindex fno-chkp-use-fast-string-functions
6075 Enables use of @code{*_nobnd} versions of string functions (not copying bounds)
6076 by Pointer Bounds Checker. Disabled by default.
6077
6078 @item -fchkp-use-nochk-string-functions
6079 @opindex fchkp-use-nochk-string-functions
6080 @opindex fno-chkp-use-nochk-string-functions
6081 Enables use of @code{*_nochk} versions of string functions (not checking bounds)
6082 by Pointer Bounds Checker. Disabled by default.
6083
6084 @item -fchkp-use-static-bounds
6085 @opindex fchkp-use-static-bounds
6086 @opindex fno-chkp-use-static-bounds
6087 Allow Pointer Bounds Checker to generate static bounds holding
6088 bounds of static variables. Enabled by default.
6089
6090 @item -fchkp-use-static-const-bounds
6091 @opindex fchkp-use-static-const-bounds
6092 @opindex fno-chkp-use-static-const-bounds
6093 Use statically-initialized bounds for constant bounds instead of
6094 generating them each time they are required. By default enabled when
6095 @option{-fchkp-use-static-bounds} is enabled.
6096
6097 @item -fchkp-treat-zero-dynamic-size-as-infinite
6098 @opindex fchkp-treat-zero-dynamic-size-as-infinite
6099 @opindex fno-chkp-treat-zero-dynamic-size-as-infinite
6100 With this option, objects with incomplete type whose
6101 dynamically-obtained size is zero are treated as having infinite size
6102 instead by Pointer Bounds
6103 Checker. This option may be helpful if a program is linked with a library
6104 missing size information for some symbols. Disabled by default.
6105
6106 @item -fchkp-check-read
6107 @opindex fchkp-check-read
6108 @opindex fno-chkp-check-read
6109 Instructs Pointer Bounds Checker to generate checks for all read
6110 accesses to memory. Enabled by default.
6111
6112 @item -fchkp-check-write
6113 @opindex fchkp-check-write
6114 @opindex fno-chkp-check-write
6115 Instructs Pointer Bounds Checker to generate checks for all write
6116 accesses to memory. Enabled by default.
6117
6118 @item -fchkp-store-bounds
6119 @opindex fchkp-store-bounds
6120 @opindex fno-chkp-store-bounds
6121 Instructs Pointer Bounds Checker to generate bounds stores for
6122 pointer writes. Enabled by default.
6123
6124 @item -fchkp-instrument-calls
6125 @opindex fchkp-instrument-calls
6126 @opindex fno-chkp-instrument-calls
6127 Instructs Pointer Bounds Checker to pass pointer bounds to calls.
6128 Enabled by default.
6129
6130 @item -fchkp-instrument-marked-only
6131 @opindex fchkp-instrument-marked-only
6132 @opindex fno-chkp-instrument-marked-only
6133 Instructs Pointer Bounds Checker to instrument only functions
6134 marked with the @code{bnd_instrument} attribute
6135 (@pxref{Function Attributes}). Disabled by default.
6136
6137 @item -fchkp-use-wrappers
6138 @opindex fchkp-use-wrappers
6139 @opindex fno-chkp-use-wrappers
6140 Allows Pointer Bounds Checker to replace calls to built-in functions
6141 with calls to wrapper functions. When @option{-fchkp-use-wrappers}
6142 is used to link a program, the GCC driver automatically links
6143 against @file{libmpxwrappers}. See also @option{-static-libmpxwrappers}.
6144 Enabled by default.
6145
6146 @item -fdump-final-insns@r{[}=@var{file}@r{]}
6147 @opindex fdump-final-insns
6148 Dump the final internal representation (RTL) to @var{file}. If the
6149 optional argument is omitted (or if @var{file} is @code{.}), the name
6150 of the dump file is determined by appending @code{.gkd} to the
6151 compilation output file name.
6152
6153 @item -fcompare-debug@r{[}=@var{opts}@r{]}
6154 @opindex fcompare-debug
6155 @opindex fno-compare-debug
6156 If no error occurs during compilation, run the compiler a second time,
6157 adding @var{opts} and @option{-fcompare-debug-second} to the arguments
6158 passed to the second compilation. Dump the final internal
6159 representation in both compilations, and print an error if they differ.
6160
6161 If the equal sign is omitted, the default @option{-gtoggle} is used.
6162
6163 The environment variable @env{GCC_COMPARE_DEBUG}, if defined, non-empty
6164 and nonzero, implicitly enables @option{-fcompare-debug}. If
6165 @env{GCC_COMPARE_DEBUG} is defined to a string starting with a dash,
6166 then it is used for @var{opts}, otherwise the default @option{-gtoggle}
6167 is used.
6168
6169 @option{-fcompare-debug=}, with the equal sign but without @var{opts},
6170 is equivalent to @option{-fno-compare-debug}, which disables the dumping
6171 of the final representation and the second compilation, preventing even
6172 @env{GCC_COMPARE_DEBUG} from taking effect.
6173
6174 To verify full coverage during @option{-fcompare-debug} testing, set
6175 @env{GCC_COMPARE_DEBUG} to say @option{-fcompare-debug-not-overridden},
6176 which GCC rejects as an invalid option in any actual compilation
6177 (rather than preprocessing, assembly or linking). To get just a
6178 warning, setting @env{GCC_COMPARE_DEBUG} to @samp{-w%n-fcompare-debug
6179 not overridden} will do.
6180
6181 @item -fcompare-debug-second
6182 @opindex fcompare-debug-second
6183 This option is implicitly passed to the compiler for the second
6184 compilation requested by @option{-fcompare-debug}, along with options to
6185 silence warnings, and omitting other options that would cause
6186 side-effect compiler outputs to files or to the standard output. Dump
6187 files and preserved temporary files are renamed so as to contain the
6188 @code{.gk} additional extension during the second compilation, to avoid
6189 overwriting those generated by the first.
6190
6191 When this option is passed to the compiler driver, it causes the
6192 @emph{first} compilation to be skipped, which makes it useful for little
6193 other than debugging the compiler proper.
6194
6195 @item -feliminate-dwarf2-dups
6196 @opindex feliminate-dwarf2-dups
6197 Compress DWARF 2 debugging information by eliminating duplicated
6198 information about each symbol. This option only makes sense when
6199 generating DWARF 2 debugging information with @option{-gdwarf-2}.
6200
6201 @item -femit-struct-debug-baseonly
6202 @opindex femit-struct-debug-baseonly
6203 Emit debug information for struct-like types
6204 only when the base name of the compilation source file
6205 matches the base name of file in which the struct is defined.
6206
6207 This option substantially reduces the size of debugging information,
6208 but at significant potential loss in type information to the debugger.
6209 See @option{-femit-struct-debug-reduced} for a less aggressive option.
6210 See @option{-femit-struct-debug-detailed} for more detailed control.
6211
6212 This option works only with DWARF 2.
6213
6214 @item -femit-struct-debug-reduced
6215 @opindex femit-struct-debug-reduced
6216 Emit debug information for struct-like types
6217 only when the base name of the compilation source file
6218 matches the base name of file in which the type is defined,
6219 unless the struct is a template or defined in a system header.
6220
6221 This option significantly reduces the size of debugging information,
6222 with some potential loss in type information to the debugger.
6223 See @option{-femit-struct-debug-baseonly} for a more aggressive option.
6224 See @option{-femit-struct-debug-detailed} for more detailed control.
6225
6226 This option works only with DWARF 2.
6227
6228 @item -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]}
6229 @opindex femit-struct-debug-detailed
6230 Specify the struct-like types
6231 for which the compiler generates debug information.
6232 The intent is to reduce duplicate struct debug information
6233 between different object files within the same program.
6234
6235 This option is a detailed version of
6236 @option{-femit-struct-debug-reduced} and @option{-femit-struct-debug-baseonly},
6237 which serves for most needs.
6238
6239 A specification has the syntax@*
6240 [@samp{dir:}|@samp{ind:}][@samp{ord:}|@samp{gen:}](@samp{any}|@samp{sys}|@samp{base}|@samp{none})
6241
6242 The optional first word limits the specification to
6243 structs that are used directly (@samp{dir:}) or used indirectly (@samp{ind:}).
6244 A struct type is used directly when it is the type of a variable, member.
6245 Indirect uses arise through pointers to structs.
6246 That is, when use of an incomplete struct is valid, the use is indirect.
6247 An example is
6248 @samp{struct one direct; struct two * indirect;}.
6249
6250 The optional second word limits the specification to
6251 ordinary structs (@samp{ord:}) or generic structs (@samp{gen:}).
6252 Generic structs are a bit complicated to explain.
6253 For C++, these are non-explicit specializations of template classes,
6254 or non-template classes within the above.
6255 Other programming languages have generics,
6256 but @option{-femit-struct-debug-detailed} does not yet implement them.
6257
6258 The third word specifies the source files for those
6259 structs for which the compiler should emit debug information.
6260 The values @samp{none} and @samp{any} have the normal meaning.
6261 The value @samp{base} means that
6262 the base of name of the file in which the type declaration appears
6263 must match the base of the name of the main compilation file.
6264 In practice, this means that when compiling @file{foo.c}, debug information
6265 is generated for types declared in that file and @file{foo.h},
6266 but not other header files.
6267 The value @samp{sys} means those types satisfying @samp{base}
6268 or declared in system or compiler headers.
6269
6270 You may need to experiment to determine the best settings for your application.
6271
6272 The default is @option{-femit-struct-debug-detailed=all}.
6273
6274 This option works only with DWARF 2.
6275
6276 @item -fno-merge-debug-strings
6277 @opindex fmerge-debug-strings
6278 @opindex fno-merge-debug-strings
6279 Direct the linker to not merge together strings in the debugging
6280 information that are identical in different object files. Merging is
6281 not supported by all assemblers or linkers. Merging decreases the size
6282 of the debug information in the output file at the cost of increasing
6283 link processing time. Merging is enabled by default.
6284
6285 @item -fdebug-prefix-map=@var{old}=@var{new}
6286 @opindex fdebug-prefix-map
6287 When compiling files in directory @file{@var{old}}, record debugging
6288 information describing them as in @file{@var{new}} instead.
6289
6290 @item -fno-dwarf2-cfi-asm
6291 @opindex fdwarf2-cfi-asm
6292 @opindex fno-dwarf2-cfi-asm
6293 Emit DWARF 2 unwind info as compiler generated @code{.eh_frame} section
6294 instead of using GAS @code{.cfi_*} directives.
6295
6296 @cindex @command{prof}
6297 @item -p
6298 @opindex p
6299 Generate extra code to write profile information suitable for the
6300 analysis program @command{prof}. You must use this option when compiling
6301 the source files you want data about, and you must also use it when
6302 linking.
6303
6304 @cindex @command{gprof}
6305 @item -pg
6306 @opindex pg
6307 Generate extra code to write profile information suitable for the
6308 analysis program @command{gprof}. You must use this option when compiling
6309 the source files you want data about, and you must also use it when
6310 linking.
6311
6312 @item -Q
6313 @opindex Q
6314 Makes the compiler print out each function name as it is compiled, and
6315 print some statistics about each pass when it finishes.
6316
6317 @item -ftime-report
6318 @opindex ftime-report
6319 Makes the compiler print some statistics about the time consumed by each
6320 pass when it finishes.
6321
6322 @item -fmem-report
6323 @opindex fmem-report
6324 Makes the compiler print some statistics about permanent memory
6325 allocation when it finishes.
6326
6327 @item -fmem-report-wpa
6328 @opindex fmem-report-wpa
6329 Makes the compiler print some statistics about permanent memory
6330 allocation for the WPA phase only.
6331
6332 @item -fpre-ipa-mem-report
6333 @opindex fpre-ipa-mem-report
6334 @item -fpost-ipa-mem-report
6335 @opindex fpost-ipa-mem-report
6336 Makes the compiler print some statistics about permanent memory
6337 allocation before or after interprocedural optimization.
6338
6339 @item -fprofile-report
6340 @opindex fprofile-report
6341 Makes the compiler print some statistics about consistency of the
6342 (estimated) profile and effect of individual passes.
6343
6344 @item -fstack-usage
6345 @opindex fstack-usage
6346 Makes the compiler output stack usage information for the program, on a
6347 per-function basis. The filename for the dump is made by appending
6348 @file{.su} to the @var{auxname}. @var{auxname} is generated from the name of
6349 the output file, if explicitly specified and it is not an executable,
6350 otherwise it is the basename of the source file. An entry is made up
6351 of three fields:
6352
6353 @itemize
6354 @item
6355 The name of the function.
6356 @item
6357 A number of bytes.
6358 @item
6359 One or more qualifiers: @code{static}, @code{dynamic}, @code{bounded}.
6360 @end itemize
6361
6362 The qualifier @code{static} means that the function manipulates the stack
6363 statically: a fixed number of bytes are allocated for the frame on function
6364 entry and released on function exit; no stack adjustments are otherwise made
6365 in the function. The second field is this fixed number of bytes.
6366
6367 The qualifier @code{dynamic} means that the function manipulates the stack
6368 dynamically: in addition to the static allocation described above, stack
6369 adjustments are made in the body of the function, for example to push/pop
6370 arguments around function calls. If the qualifier @code{bounded} is also
6371 present, the amount of these adjustments is bounded at compile time and
6372 the second field is an upper bound of the total amount of stack used by
6373 the function. If it is not present, the amount of these adjustments is
6374 not bounded at compile time and the second field only represents the
6375 bounded part.
6376
6377 @item -fprofile-arcs
6378 @opindex fprofile-arcs
6379 Add code so that program flow @dfn{arcs} are instrumented. During
6380 execution the program records how many times each branch and call is
6381 executed and how many times it is taken or returns. When the compiled
6382 program exits it saves this data to a file called
6383 @file{@var{auxname}.gcda} for each source file. The data may be used for
6384 profile-directed optimizations (@option{-fbranch-probabilities}), or for
6385 test coverage analysis (@option{-ftest-coverage}). Each object file's
6386 @var{auxname} is generated from the name of the output file, if
6387 explicitly specified and it is not the final executable, otherwise it is
6388 the basename of the source file. In both cases any suffix is removed
6389 (e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or
6390 @file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}).
6391 @xref{Cross-profiling}.
6392
6393 @cindex @command{gcov}
6394 @item --coverage
6395 @opindex coverage
6396
6397 This option is used to compile and link code instrumented for coverage
6398 analysis. The option is a synonym for @option{-fprofile-arcs}
6399 @option{-ftest-coverage} (when compiling) and @option{-lgcov} (when
6400 linking). See the documentation for those options for more details.
6401
6402 @itemize
6403
6404 @item
6405 Compile the source files with @option{-fprofile-arcs} plus optimization
6406 and code generation options. For test coverage analysis, use the
6407 additional @option{-ftest-coverage} option. You do not need to profile
6408 every source file in a program.
6409
6410 @item
6411 Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
6412 (the latter implies the former).
6413
6414 @item
6415 Run the program on a representative workload to generate the arc profile
6416 information. This may be repeated any number of times. You can run
6417 concurrent instances of your program, and provided that the file system
6418 supports locking, the data files will be correctly updated. Also
6419 @code{fork} calls are detected and correctly handled (double counting
6420 will not happen).
6421
6422 @item
6423 For profile-directed optimizations, compile the source files again with
6424 the same optimization and code generation options plus
6425 @option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
6426 Control Optimization}).
6427
6428 @item
6429 For test coverage analysis, use @command{gcov} to produce human readable
6430 information from the @file{.gcno} and @file{.gcda} files. Refer to the
6431 @command{gcov} documentation for further information.
6432
6433 @end itemize
6434
6435 With @option{-fprofile-arcs}, for each function of your program GCC
6436 creates a program flow graph, then finds a spanning tree for the graph.
6437 Only arcs that are not on the spanning tree have to be instrumented: the
6438 compiler adds code to count the number of times that these arcs are
6439 executed. When an arc is the only exit or only entrance to a block, the
6440 instrumentation code can be added to the block; otherwise, a new basic
6441 block must be created to hold the instrumentation code.
6442
6443 @need 2000
6444 @item -ftest-coverage
6445 @opindex ftest-coverage
6446 Produce a notes file that the @command{gcov} code-coverage utility
6447 (@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
6448 show program coverage. Each source file's note file is called
6449 @file{@var{auxname}.gcno}. Refer to the @option{-fprofile-arcs} option
6450 above for a description of @var{auxname} and instructions on how to
6451 generate test coverage data. Coverage data matches the source files
6452 more closely if you do not optimize.
6453
6454 @item -fdbg-cnt-list
6455 @opindex fdbg-cnt-list
6456 Print the name and the counter upper bound for all debug counters.
6457
6458
6459 @item -fdbg-cnt=@var{counter-value-list}
6460 @opindex fdbg-cnt
6461 Set the internal debug counter upper bound. @var{counter-value-list}
6462 is a comma-separated list of @var{name}:@var{value} pairs
6463 which sets the upper bound of each debug counter @var{name} to @var{value}.
6464 All debug counters have the initial upper bound of @code{UINT_MAX};
6465 thus @code{dbg_cnt} returns true always unless the upper bound
6466 is set by this option.
6467 For example, with @option{-fdbg-cnt=dce:10,tail_call:0},
6468 @code{dbg_cnt(dce)} returns true only for first 10 invocations.
6469
6470 @item -fenable-@var{kind}-@var{pass}
6471 @itemx -fdisable-@var{kind}-@var{pass}=@var{range-list}
6472 @opindex fdisable-
6473 @opindex fenable-
6474
6475 This is a set of options that are used to explicitly disable/enable
6476 optimization passes. These options are intended for use for debugging GCC.
6477 Compiler users should use regular options for enabling/disabling
6478 passes instead.
6479
6480 @table @gcctabopt
6481
6482 @item -fdisable-ipa-@var{pass}
6483 Disable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
6484 statically invoked in the compiler multiple times, the pass name should be
6485 appended with a sequential number starting from 1.
6486
6487 @item -fdisable-rtl-@var{pass}
6488 @itemx -fdisable-rtl-@var{pass}=@var{range-list}
6489 Disable RTL pass @var{pass}. @var{pass} is the pass name. If the same pass is
6490 statically invoked in the compiler multiple times, the pass name should be
6491 appended with a sequential number starting from 1. @var{range-list} is a
6492 comma-separated list of function ranges or assembler names. Each range is a number
6493 pair separated by a colon. The range is inclusive in both ends. If the range
6494 is trivial, the number pair can be simplified as a single number. If the
6495 function's call graph node's @var{uid} falls within one of the specified ranges,
6496 the @var{pass} is disabled for that function. The @var{uid} is shown in the
6497 function header of a dump file, and the pass names can be dumped by using
6498 option @option{-fdump-passes}.
6499
6500 @item -fdisable-tree-@var{pass}
6501 @itemx -fdisable-tree-@var{pass}=@var{range-list}
6502 Disable tree pass @var{pass}. See @option{-fdisable-rtl} for the description of
6503 option arguments.
6504
6505 @item -fenable-ipa-@var{pass}
6506 Enable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
6507 statically invoked in the compiler multiple times, the pass name should be
6508 appended with a sequential number starting from 1.
6509
6510 @item -fenable-rtl-@var{pass}
6511 @itemx -fenable-rtl-@var{pass}=@var{range-list}
6512 Enable RTL pass @var{pass}. See @option{-fdisable-rtl} for option argument
6513 description and examples.
6514
6515 @item -fenable-tree-@var{pass}
6516 @itemx -fenable-tree-@var{pass}=@var{range-list}
6517 Enable tree pass @var{pass}. See @option{-fdisable-rtl} for the description
6518 of option arguments.
6519
6520 @end table
6521
6522 Here are some examples showing uses of these options.
6523
6524 @smallexample
6525
6526 # disable ccp1 for all functions
6527 -fdisable-tree-ccp1
6528 # disable complete unroll for function whose cgraph node uid is 1
6529 -fenable-tree-cunroll=1
6530 # disable gcse2 for functions at the following ranges [1,1],
6531 # [300,400], and [400,1000]
6532 # disable gcse2 for functions foo and foo2
6533 -fdisable-rtl-gcse2=foo,foo2
6534 # disable early inlining
6535 -fdisable-tree-einline
6536 # disable ipa inlining
6537 -fdisable-ipa-inline
6538 # enable tree full unroll
6539 -fenable-tree-unroll
6540
6541 @end smallexample
6542
6543 @item -d@var{letters}
6544 @itemx -fdump-rtl-@var{pass}
6545 @itemx -fdump-rtl-@var{pass}=@var{filename}
6546 @opindex d
6547 @opindex fdump-rtl-@var{pass}
6548 Says to make debugging dumps during compilation at times specified by
6549 @var{letters}. This is used for debugging the RTL-based passes of the
6550 compiler. The file names for most of the dumps are made by appending
6551 a pass number and a word to the @var{dumpname}, and the files are
6552 created in the directory of the output file. In case of
6553 @option{=@var{filename}} option, the dump is output on the given file
6554 instead of the pass numbered dump files. Note that the pass number is
6555 computed statically as passes get registered into the pass manager.
6556 Thus the numbering is not related to the dynamic order of execution of
6557 passes. In particular, a pass installed by a plugin could have a
6558 number over 200 even if it executed quite early. @var{dumpname} is
6559 generated from the name of the output file, if explicitly specified
6560 and it is not an executable, otherwise it is the basename of the
6561 source file. These switches may have different effects when
6562 @option{-E} is used for preprocessing.
6563
6564 Debug dumps can be enabled with a @option{-fdump-rtl} switch or some
6565 @option{-d} option @var{letters}. Here are the possible
6566 letters for use in @var{pass} and @var{letters}, and their meanings:
6567
6568 @table @gcctabopt
6569
6570 @item -fdump-rtl-alignments
6571 @opindex fdump-rtl-alignments
6572 Dump after branch alignments have been computed.
6573
6574 @item -fdump-rtl-asmcons
6575 @opindex fdump-rtl-asmcons
6576 Dump after fixing rtl statements that have unsatisfied in/out constraints.
6577
6578 @item -fdump-rtl-auto_inc_dec
6579 @opindex fdump-rtl-auto_inc_dec
6580 Dump after auto-inc-dec discovery. This pass is only run on
6581 architectures that have auto inc or auto dec instructions.
6582
6583 @item -fdump-rtl-barriers
6584 @opindex fdump-rtl-barriers
6585 Dump after cleaning up the barrier instructions.
6586
6587 @item -fdump-rtl-bbpart
6588 @opindex fdump-rtl-bbpart
6589 Dump after partitioning hot and cold basic blocks.
6590
6591 @item -fdump-rtl-bbro
6592 @opindex fdump-rtl-bbro
6593 Dump after block reordering.
6594
6595 @item -fdump-rtl-btl1
6596 @itemx -fdump-rtl-btl2
6597 @opindex fdump-rtl-btl2
6598 @opindex fdump-rtl-btl2
6599 @option{-fdump-rtl-btl1} and @option{-fdump-rtl-btl2} enable dumping
6600 after the two branch
6601 target load optimization passes.
6602
6603 @item -fdump-rtl-bypass
6604 @opindex fdump-rtl-bypass
6605 Dump after jump bypassing and control flow optimizations.
6606
6607 @item -fdump-rtl-combine
6608 @opindex fdump-rtl-combine
6609 Dump after the RTL instruction combination pass.
6610
6611 @item -fdump-rtl-compgotos
6612 @opindex fdump-rtl-compgotos
6613 Dump after duplicating the computed gotos.
6614
6615 @item -fdump-rtl-ce1
6616 @itemx -fdump-rtl-ce2
6617 @itemx -fdump-rtl-ce3
6618 @opindex fdump-rtl-ce1
6619 @opindex fdump-rtl-ce2
6620 @opindex fdump-rtl-ce3
6621 @option{-fdump-rtl-ce1}, @option{-fdump-rtl-ce2}, and
6622 @option{-fdump-rtl-ce3} enable dumping after the three
6623 if conversion passes.
6624
6625 @item -fdump-rtl-cprop_hardreg
6626 @opindex fdump-rtl-cprop_hardreg
6627 Dump after hard register copy propagation.
6628
6629 @item -fdump-rtl-csa
6630 @opindex fdump-rtl-csa
6631 Dump after combining stack adjustments.
6632
6633 @item -fdump-rtl-cse1
6634 @itemx -fdump-rtl-cse2
6635 @opindex fdump-rtl-cse1
6636 @opindex fdump-rtl-cse2
6637 @option{-fdump-rtl-cse1} and @option{-fdump-rtl-cse2} enable dumping after
6638 the two common subexpression elimination passes.
6639
6640 @item -fdump-rtl-dce
6641 @opindex fdump-rtl-dce
6642 Dump after the standalone dead code elimination passes.
6643
6644 @item -fdump-rtl-dbr
6645 @opindex fdump-rtl-dbr
6646 Dump after delayed branch scheduling.
6647
6648 @item -fdump-rtl-dce1
6649 @itemx -fdump-rtl-dce2
6650 @opindex fdump-rtl-dce1
6651 @opindex fdump-rtl-dce2
6652 @option{-fdump-rtl-dce1} and @option{-fdump-rtl-dce2} enable dumping after
6653 the two dead store elimination passes.
6654
6655 @item -fdump-rtl-eh
6656 @opindex fdump-rtl-eh
6657 Dump after finalization of EH handling code.
6658
6659 @item -fdump-rtl-eh_ranges
6660 @opindex fdump-rtl-eh_ranges
6661 Dump after conversion of EH handling range regions.
6662
6663 @item -fdump-rtl-expand
6664 @opindex fdump-rtl-expand
6665 Dump after RTL generation.
6666
6667 @item -fdump-rtl-fwprop1
6668 @itemx -fdump-rtl-fwprop2
6669 @opindex fdump-rtl-fwprop1
6670 @opindex fdump-rtl-fwprop2
6671 @option{-fdump-rtl-fwprop1} and @option{-fdump-rtl-fwprop2} enable
6672 dumping after the two forward propagation passes.
6673
6674 @item -fdump-rtl-gcse1
6675 @itemx -fdump-rtl-gcse2
6676 @opindex fdump-rtl-gcse1
6677 @opindex fdump-rtl-gcse2
6678 @option{-fdump-rtl-gcse1} and @option{-fdump-rtl-gcse2} enable dumping
6679 after global common subexpression elimination.
6680
6681 @item -fdump-rtl-init-regs
6682 @opindex fdump-rtl-init-regs
6683 Dump after the initialization of the registers.
6684
6685 @item -fdump-rtl-initvals
6686 @opindex fdump-rtl-initvals
6687 Dump after the computation of the initial value sets.
6688
6689 @item -fdump-rtl-into_cfglayout
6690 @opindex fdump-rtl-into_cfglayout
6691 Dump after converting to cfglayout mode.
6692
6693 @item -fdump-rtl-ira
6694 @opindex fdump-rtl-ira
6695 Dump after iterated register allocation.
6696
6697 @item -fdump-rtl-jump
6698 @opindex fdump-rtl-jump
6699 Dump after the second jump optimization.
6700
6701 @item -fdump-rtl-loop2
6702 @opindex fdump-rtl-loop2
6703 @option{-fdump-rtl-loop2} enables dumping after the rtl
6704 loop optimization passes.
6705
6706 @item -fdump-rtl-mach
6707 @opindex fdump-rtl-mach
6708 Dump after performing the machine dependent reorganization pass, if that
6709 pass exists.
6710
6711 @item -fdump-rtl-mode_sw
6712 @opindex fdump-rtl-mode_sw
6713 Dump after removing redundant mode switches.
6714
6715 @item -fdump-rtl-rnreg
6716 @opindex fdump-rtl-rnreg
6717 Dump after register renumbering.
6718
6719 @item -fdump-rtl-outof_cfglayout
6720 @opindex fdump-rtl-outof_cfglayout
6721 Dump after converting from cfglayout mode.
6722
6723 @item -fdump-rtl-peephole2
6724 @opindex fdump-rtl-peephole2
6725 Dump after the peephole pass.
6726
6727 @item -fdump-rtl-postreload
6728 @opindex fdump-rtl-postreload
6729 Dump after post-reload optimizations.
6730
6731 @item -fdump-rtl-pro_and_epilogue
6732 @opindex fdump-rtl-pro_and_epilogue
6733 Dump after generating the function prologues and epilogues.
6734
6735 @item -fdump-rtl-sched1
6736 @itemx -fdump-rtl-sched2
6737 @opindex fdump-rtl-sched1
6738 @opindex fdump-rtl-sched2
6739 @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2} enable dumping
6740 after the basic block scheduling passes.
6741
6742 @item -fdump-rtl-ree
6743 @opindex fdump-rtl-ree
6744 Dump after sign/zero extension elimination.
6745
6746 @item -fdump-rtl-seqabstr
6747 @opindex fdump-rtl-seqabstr
6748 Dump after common sequence discovery.
6749
6750 @item -fdump-rtl-shorten
6751 @opindex fdump-rtl-shorten
6752 Dump after shortening branches.
6753
6754 @item -fdump-rtl-sibling
6755 @opindex fdump-rtl-sibling
6756 Dump after sibling call optimizations.
6757
6758 @item -fdump-rtl-split1
6759 @itemx -fdump-rtl-split2
6760 @itemx -fdump-rtl-split3
6761 @itemx -fdump-rtl-split4
6762 @itemx -fdump-rtl-split5
6763 @opindex fdump-rtl-split1
6764 @opindex fdump-rtl-split2
6765 @opindex fdump-rtl-split3
6766 @opindex fdump-rtl-split4
6767 @opindex fdump-rtl-split5
6768 These options enable dumping after five rounds of
6769 instruction splitting.
6770
6771 @item -fdump-rtl-sms
6772 @opindex fdump-rtl-sms
6773 Dump after modulo scheduling. This pass is only run on some
6774 architectures.
6775
6776 @item -fdump-rtl-stack
6777 @opindex fdump-rtl-stack
6778 Dump after conversion from GCC's ``flat register file'' registers to the
6779 x87's stack-like registers. This pass is only run on x86 variants.
6780
6781 @item -fdump-rtl-subreg1
6782 @itemx -fdump-rtl-subreg2
6783 @opindex fdump-rtl-subreg1
6784 @opindex fdump-rtl-subreg2
6785 @option{-fdump-rtl-subreg1} and @option{-fdump-rtl-subreg2} enable dumping after
6786 the two subreg expansion passes.
6787
6788 @item -fdump-rtl-unshare
6789 @opindex fdump-rtl-unshare
6790 Dump after all rtl has been unshared.
6791
6792 @item -fdump-rtl-vartrack
6793 @opindex fdump-rtl-vartrack
6794 Dump after variable tracking.
6795
6796 @item -fdump-rtl-vregs
6797 @opindex fdump-rtl-vregs
6798 Dump after converting virtual registers to hard registers.
6799
6800 @item -fdump-rtl-web
6801 @opindex fdump-rtl-web
6802 Dump after live range splitting.
6803
6804 @item -fdump-rtl-regclass
6805 @itemx -fdump-rtl-subregs_of_mode_init
6806 @itemx -fdump-rtl-subregs_of_mode_finish
6807 @itemx -fdump-rtl-dfinit
6808 @itemx -fdump-rtl-dfinish
6809 @opindex fdump-rtl-regclass
6810 @opindex fdump-rtl-subregs_of_mode_init
6811 @opindex fdump-rtl-subregs_of_mode_finish
6812 @opindex fdump-rtl-dfinit
6813 @opindex fdump-rtl-dfinish
6814 These dumps are defined but always produce empty files.
6815
6816 @item -da
6817 @itemx -fdump-rtl-all
6818 @opindex da
6819 @opindex fdump-rtl-all
6820 Produce all the dumps listed above.
6821
6822 @item -dA
6823 @opindex dA
6824 Annotate the assembler output with miscellaneous debugging information.
6825
6826 @item -dD
6827 @opindex dD
6828 Dump all macro definitions, at the end of preprocessing, in addition to
6829 normal output.
6830
6831 @item -dH
6832 @opindex dH
6833 Produce a core dump whenever an error occurs.
6834
6835 @item -dp
6836 @opindex dp
6837 Annotate the assembler output with a comment indicating which
6838 pattern and alternative is used. The length of each instruction is
6839 also printed.
6840
6841 @item -dP
6842 @opindex dP
6843 Dump the RTL in the assembler output as a comment before each instruction.
6844 Also turns on @option{-dp} annotation.
6845
6846 @item -dx
6847 @opindex dx
6848 Just generate RTL for a function instead of compiling it. Usually used
6849 with @option{-fdump-rtl-expand}.
6850 @end table
6851
6852 @item -fdump-noaddr
6853 @opindex fdump-noaddr
6854 When doing debugging dumps, suppress address output. This makes it more
6855 feasible to use diff on debugging dumps for compiler invocations with
6856 different compiler binaries and/or different
6857 text / bss / data / heap / stack / dso start locations.
6858
6859 @item -freport-bug
6860 @opindex freport-bug
6861 Collect and dump debug information into temporary file if ICE in C/C++
6862 compiler occured.
6863
6864 @item -fdump-unnumbered
6865 @opindex fdump-unnumbered
6866 When doing debugging dumps, suppress instruction numbers and address output.
6867 This makes it more feasible to use diff on debugging dumps for compiler
6868 invocations with different options, in particular with and without
6869 @option{-g}.
6870
6871 @item -fdump-unnumbered-links
6872 @opindex fdump-unnumbered-links
6873 When doing debugging dumps (see @option{-d} option above), suppress
6874 instruction numbers for the links to the previous and next instructions
6875 in a sequence.
6876
6877 @item -fdump-translation-unit @r{(C++ only)}
6878 @itemx -fdump-translation-unit-@var{options} @r{(C++ only)}
6879 @opindex fdump-translation-unit
6880 Dump a representation of the tree structure for the entire translation
6881 unit to a file. The file name is made by appending @file{.tu} to the
6882 source file name, and the file is created in the same directory as the
6883 output file. If the @samp{-@var{options}} form is used, @var{options}
6884 controls the details of the dump as described for the
6885 @option{-fdump-tree} options.
6886
6887 @item -fdump-class-hierarchy @r{(C++ only)}
6888 @itemx -fdump-class-hierarchy-@var{options} @r{(C++ only)}
6889 @opindex fdump-class-hierarchy
6890 Dump a representation of each class's hierarchy and virtual function
6891 table layout to a file. The file name is made by appending
6892 @file{.class} to the source file name, and the file is created in the
6893 same directory as the output file. If the @samp{-@var{options}} form
6894 is used, @var{options} controls the details of the dump as described
6895 for the @option{-fdump-tree} options.
6896
6897 @item -fdump-ipa-@var{switch}
6898 @opindex fdump-ipa
6899 Control the dumping at various stages of inter-procedural analysis
6900 language tree to a file. The file name is generated by appending a
6901 switch specific suffix to the source file name, and the file is created
6902 in the same directory as the output file. The following dumps are
6903 possible:
6904
6905 @table @samp
6906 @item all
6907 Enables all inter-procedural analysis dumps.
6908
6909 @item cgraph
6910 Dumps information about call-graph optimization, unused function removal,
6911 and inlining decisions.
6912
6913 @item inline
6914 Dump after function inlining.
6915
6916 @end table
6917
6918 @item -fdump-passes
6919 @opindex fdump-passes
6920 Dump the list of optimization passes that are turned on and off by
6921 the current command-line options.
6922
6923 @item -fdump-statistics-@var{option}
6924 @opindex fdump-statistics
6925 Enable and control dumping of pass statistics in a separate file. The
6926 file name is generated by appending a suffix ending in
6927 @samp{.statistics} to the source file name, and the file is created in
6928 the same directory as the output file. If the @samp{-@var{option}}
6929 form is used, @samp{-stats} causes counters to be summed over the
6930 whole compilation unit while @samp{-details} dumps every event as
6931 the passes generate them. The default with no option is to sum
6932 counters for each function compiled.
6933
6934 @item -fdump-tree-@var{switch}
6935 @itemx -fdump-tree-@var{switch}-@var{options}
6936 @itemx -fdump-tree-@var{switch}-@var{options}=@var{filename}
6937 @opindex fdump-tree
6938 Control the dumping at various stages of processing the intermediate
6939 language tree to a file. The file name is generated by appending a
6940 switch-specific suffix to the source file name, and the file is
6941 created in the same directory as the output file. In case of
6942 @option{=@var{filename}} option, the dump is output on the given file
6943 instead of the auto named dump files. If the @samp{-@var{options}}
6944 form is used, @var{options} is a list of @samp{-} separated options
6945 which control the details of the dump. Not all options are applicable
6946 to all dumps; those that are not meaningful are ignored. The
6947 following options are available
6948
6949 @table @samp
6950 @item address
6951 Print the address of each node. Usually this is not meaningful as it
6952 changes according to the environment and source file. Its primary use
6953 is for tying up a dump file with a debug environment.
6954 @item asmname
6955 If @code{DECL_ASSEMBLER_NAME} has been set for a given decl, use that
6956 in the dump instead of @code{DECL_NAME}. Its primary use is ease of
6957 use working backward from mangled names in the assembly file.
6958 @item slim
6959 When dumping front-end intermediate representations, inhibit dumping
6960 of members of a scope or body of a function merely because that scope
6961 has been reached. Only dump such items when they are directly reachable
6962 by some other path.
6963
6964 When dumping pretty-printed trees, this option inhibits dumping the
6965 bodies of control structures.
6966
6967 When dumping RTL, print the RTL in slim (condensed) form instead of
6968 the default LISP-like representation.
6969 @item raw
6970 Print a raw representation of the tree. By default, trees are
6971 pretty-printed into a C-like representation.
6972 @item details
6973 Enable more detailed dumps (not honored by every dump option). Also
6974 include information from the optimization passes.
6975 @item stats
6976 Enable dumping various statistics about the pass (not honored by every dump
6977 option).
6978 @item blocks
6979 Enable showing basic block boundaries (disabled in raw dumps).
6980 @item graph
6981 For each of the other indicated dump files (@option{-fdump-rtl-@var{pass}}),
6982 dump a representation of the control flow graph suitable for viewing with
6983 GraphViz to @file{@var{file}.@var{passid}.@var{pass}.dot}. Each function in
6984 the file is pretty-printed as a subgraph, so that GraphViz can render them
6985 all in a single plot.
6986
6987 This option currently only works for RTL dumps, and the RTL is always
6988 dumped in slim form.
6989 @item vops
6990 Enable showing virtual operands for every statement.
6991 @item lineno
6992 Enable showing line numbers for statements.
6993 @item uid
6994 Enable showing the unique ID (@code{DECL_UID}) for each variable.
6995 @item verbose
6996 Enable showing the tree dump for each statement.
6997 @item eh
6998 Enable showing the EH region number holding each statement.
6999 @item scev
7000 Enable showing scalar evolution analysis details.
7001 @item optimized
7002 Enable showing optimization information (only available in certain
7003 passes).
7004 @item missed
7005 Enable showing missed optimization information (only available in certain
7006 passes).
7007 @item note
7008 Enable other detailed optimization information (only available in
7009 certain passes).
7010 @item =@var{filename}
7011 Instead of an auto named dump file, output into the given file
7012 name. The file names @file{stdout} and @file{stderr} are treated
7013 specially and are considered already open standard streams. For
7014 example,
7015
7016 @smallexample
7017 gcc -O2 -ftree-vectorize -fdump-tree-vect-blocks=foo.dump
7018 -fdump-tree-pre=stderr file.c
7019 @end smallexample
7020
7021 outputs vectorizer dump into @file{foo.dump}, while the PRE dump is
7022 output on to @file{stderr}. If two conflicting dump filenames are
7023 given for the same pass, then the latter option overrides the earlier
7024 one.
7025
7026 @item all
7027 Turn on all options, except @option{raw}, @option{slim}, @option{verbose}
7028 and @option{lineno}.
7029
7030 @item optall
7031 Turn on all optimization options, i.e., @option{optimized},
7032 @option{missed}, and @option{note}.
7033 @end table
7034
7035 The following tree dumps are possible:
7036 @table @samp
7037
7038 @item original
7039 @opindex fdump-tree-original
7040 Dump before any tree based optimization, to @file{@var{file}.original}.
7041
7042 @item optimized
7043 @opindex fdump-tree-optimized
7044 Dump after all tree based optimization, to @file{@var{file}.optimized}.
7045
7046 @item gimple
7047 @opindex fdump-tree-gimple
7048 Dump each function before and after the gimplification pass to a file. The
7049 file name is made by appending @file{.gimple} to the source file name.
7050
7051 @item cfg
7052 @opindex fdump-tree-cfg
7053 Dump the control flow graph of each function to a file. The file name is
7054 made by appending @file{.cfg} to the source file name.
7055
7056 @item ch
7057 @opindex fdump-tree-ch
7058 Dump each function after copying loop headers. The file name is made by
7059 appending @file{.ch} to the source file name.
7060
7061 @item ssa
7062 @opindex fdump-tree-ssa
7063 Dump SSA related information to a file. The file name is made by appending
7064 @file{.ssa} to the source file name.
7065
7066 @item alias
7067 @opindex fdump-tree-alias
7068 Dump aliasing information for each function. The file name is made by
7069 appending @file{.alias} to the source file name.
7070
7071 @item ccp
7072 @opindex fdump-tree-ccp
7073 Dump each function after CCP@. The file name is made by appending
7074 @file{.ccp} to the source file name.
7075
7076 @item storeccp
7077 @opindex fdump-tree-storeccp
7078 Dump each function after STORE-CCP@. The file name is made by appending
7079 @file{.storeccp} to the source file name.
7080
7081 @item pre
7082 @opindex fdump-tree-pre
7083 Dump trees after partial redundancy elimination. The file name is made
7084 by appending @file{.pre} to the source file name.
7085
7086 @item fre
7087 @opindex fdump-tree-fre
7088 Dump trees after full redundancy elimination. The file name is made
7089 by appending @file{.fre} to the source file name.
7090
7091 @item copyprop
7092 @opindex fdump-tree-copyprop
7093 Dump trees after copy propagation. The file name is made
7094 by appending @file{.copyprop} to the source file name.
7095
7096 @item store_copyprop
7097 @opindex fdump-tree-store_copyprop
7098 Dump trees after store copy-propagation. The file name is made
7099 by appending @file{.store_copyprop} to the source file name.
7100
7101 @item dce
7102 @opindex fdump-tree-dce
7103 Dump each function after dead code elimination. The file name is made by
7104 appending @file{.dce} to the source file name.
7105
7106 @item sra
7107 @opindex fdump-tree-sra
7108 Dump each function after performing scalar replacement of aggregates. The
7109 file name is made by appending @file{.sra} to the source file name.
7110
7111 @item sink
7112 @opindex fdump-tree-sink
7113 Dump each function after performing code sinking. The file name is made
7114 by appending @file{.sink} to the source file name.
7115
7116 @item dom
7117 @opindex fdump-tree-dom
7118 Dump each function after applying dominator tree optimizations. The file
7119 name is made by appending @file{.dom} to the source file name.
7120
7121 @item dse
7122 @opindex fdump-tree-dse
7123 Dump each function after applying dead store elimination. The file
7124 name is made by appending @file{.dse} to the source file name.
7125
7126 @item phiopt
7127 @opindex fdump-tree-phiopt
7128 Dump each function after optimizing PHI nodes into straightline code. The file
7129 name is made by appending @file{.phiopt} to the source file name.
7130
7131 @item forwprop
7132 @opindex fdump-tree-forwprop
7133 Dump each function after forward propagating single use variables. The file
7134 name is made by appending @file{.forwprop} to the source file name.
7135
7136 @item copyrename
7137 @opindex fdump-tree-copyrename
7138 Dump each function after applying the copy rename optimization. The file
7139 name is made by appending @file{.copyrename} to the source file name.
7140
7141 @item nrv
7142 @opindex fdump-tree-nrv
7143 Dump each function after applying the named return value optimization on
7144 generic trees. The file name is made by appending @file{.nrv} to the source
7145 file name.
7146
7147 @item vect
7148 @opindex fdump-tree-vect
7149 Dump each function after applying vectorization of loops. The file name is
7150 made by appending @file{.vect} to the source file name.
7151
7152 @item slp
7153 @opindex fdump-tree-slp
7154 Dump each function after applying vectorization of basic blocks. The file name
7155 is made by appending @file{.slp} to the source file name.
7156
7157 @item vrp
7158 @opindex fdump-tree-vrp
7159 Dump each function after Value Range Propagation (VRP). The file name
7160 is made by appending @file{.vrp} to the source file name.
7161
7162 @item all
7163 @opindex fdump-tree-all
7164 Enable all the available tree dumps with the flags provided in this option.
7165 @end table
7166
7167 @item -fopt-info
7168 @itemx -fopt-info-@var{options}
7169 @itemx -fopt-info-@var{options}=@var{filename}
7170 @opindex fopt-info
7171 Controls optimization dumps from various optimization passes. If the
7172 @samp{-@var{options}} form is used, @var{options} is a list of
7173 @samp{-} separated option keywords to select the dump details and
7174 optimizations.
7175
7176 The @var{options} can be divided into two groups: options describing the
7177 verbosity of the dump, and options describing which optimizations
7178 should be included. The options from both the groups can be freely
7179 mixed as they are non-overlapping. However, in case of any conflicts,
7180 the later options override the earlier options on the command
7181 line.
7182
7183 The following options control the dump verbosity:
7184
7185 @table @samp
7186 @item optimized
7187 Print information when an optimization is successfully applied. It is
7188 up to a pass to decide which information is relevant. For example, the
7189 vectorizer passes print the source location of loops which are
7190 successfully vectorized.
7191 @item missed
7192 Print information about missed optimizations. Individual passes
7193 control which information to include in the output.
7194 @item note
7195 Print verbose information about optimizations, such as certain
7196 transformations, more detailed messages about decisions etc.
7197 @item all
7198 Print detailed optimization information. This includes
7199 @samp{optimized}, @samp{missed}, and @samp{note}.
7200 @end table
7201
7202 One or more of the following option keywords can be used to describe a
7203 group of optimizations:
7204
7205 @table @samp
7206 @item ipa
7207 Enable dumps from all interprocedural optimizations.
7208 @item loop
7209 Enable dumps from all loop optimizations.
7210 @item inline
7211 Enable dumps from all inlining optimizations.
7212 @item vec
7213 Enable dumps from all vectorization optimizations.
7214 @item optall
7215 Enable dumps from all optimizations. This is a superset of
7216 the optimization groups listed above.
7217 @end table
7218
7219 If @var{options} is
7220 omitted, it defaults to @samp{optimized-optall}, which means to dump all
7221 info about successful optimizations from all the passes.
7222
7223 If the @var{filename} is provided, then the dumps from all the
7224 applicable optimizations are concatenated into the @var{filename}.
7225 Otherwise the dump is output onto @file{stderr}. Though multiple
7226 @option{-fopt-info} options are accepted, only one of them can include
7227 a @var{filename}. If other filenames are provided then all but the
7228 first such option are ignored.
7229
7230 Note that the output @var{filename} is overwritten
7231 in case of multiple translation units. If a combined output from
7232 multiple translation units is desired, @file{stderr} should be used
7233 instead.
7234
7235 In the following example, the optimization info is output to
7236 @file{stderr}:
7237
7238 @smallexample
7239 gcc -O3 -fopt-info
7240 @end smallexample
7241
7242 This example:
7243 @smallexample
7244 gcc -O3 -fopt-info-missed=missed.all
7245 @end smallexample
7246
7247 @noindent
7248 outputs missed optimization report from all the passes into
7249 @file{missed.all}, and this one:
7250
7251 @smallexample
7252 gcc -O2 -ftree-vectorize -fopt-info-vec-missed
7253 @end smallexample
7254
7255 @noindent
7256 prints information about missed optimization opportunities from
7257 vectorization passes on @file{stderr}.
7258 Note that @option{-fopt-info-vec-missed} is equivalent to
7259 @option{-fopt-info-missed-vec}.
7260
7261 As another example,
7262 @smallexample
7263 gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
7264 @end smallexample
7265
7266 @noindent
7267 outputs information about missed optimizations as well as
7268 optimized locations from all the inlining passes into
7269 @file{inline.txt}.
7270
7271 Finally, consider:
7272
7273 @smallexample
7274 gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
7275 @end smallexample
7276
7277 @noindent
7278 Here the two output filenames @file{vec.miss} and @file{loop.opt} are
7279 in conflict since only one output file is allowed. In this case, only
7280 the first option takes effect and the subsequent options are
7281 ignored. Thus only @file{vec.miss} is produced which contains
7282 dumps from the vectorizer about missed opportunities.
7283
7284 @item -frandom-seed=@var{number}
7285 @opindex frandom-seed
7286 This option provides a seed that GCC uses in place of
7287 random numbers in generating certain symbol names
7288 that have to be different in every compiled file. It is also used to
7289 place unique stamps in coverage data files and the object files that
7290 produce them. You can use the @option{-frandom-seed} option to produce
7291 reproducibly identical object files.
7292
7293 The @var{number} should be different for every file you compile.
7294
7295 @item -fsched-verbose=@var{n}
7296 @opindex fsched-verbose
7297 On targets that use instruction scheduling, this option controls the
7298 amount of debugging output the scheduler prints. This information is
7299 written to standard error, unless @option{-fdump-rtl-sched1} or
7300 @option{-fdump-rtl-sched2} is specified, in which case it is output
7301 to the usual dump listing file, @file{.sched1} or @file{.sched2}
7302 respectively. However for @var{n} greater than nine, the output is
7303 always printed to standard error.
7304
7305 For @var{n} greater than zero, @option{-fsched-verbose} outputs the
7306 same information as @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2}.
7307 For @var{n} greater than one, it also output basic block probabilities,
7308 detailed ready list information and unit/insn info. For @var{n} greater
7309 than two, it includes RTL at abort point, control-flow and regions info.
7310 And for @var{n} over four, @option{-fsched-verbose} also includes
7311 dependence info.
7312
7313 @item -save-temps
7314 @itemx -save-temps=cwd
7315 @opindex save-temps
7316 Store the usual ``temporary'' intermediate files permanently; place them
7317 in the current directory and name them based on the source file. Thus,
7318 compiling @file{foo.c} with @option{-c -save-temps} produces files
7319 @file{foo.i} and @file{foo.s}, as well as @file{foo.o}. This creates a
7320 preprocessed @file{foo.i} output file even though the compiler now
7321 normally uses an integrated preprocessor.
7322
7323 When used in combination with the @option{-x} command-line option,
7324 @option{-save-temps} is sensible enough to avoid over writing an
7325 input source file with the same extension as an intermediate file.
7326 The corresponding intermediate file may be obtained by renaming the
7327 source file before using @option{-save-temps}.
7328
7329 If you invoke GCC in parallel, compiling several different source
7330 files that share a common base name in different subdirectories or the
7331 same source file compiled for multiple output destinations, it is
7332 likely that the different parallel compilers will interfere with each
7333 other, and overwrite the temporary files. For instance:
7334
7335 @smallexample
7336 gcc -save-temps -o outdir1/foo.o indir1/foo.c&
7337 gcc -save-temps -o outdir2/foo.o indir2/foo.c&
7338 @end smallexample
7339
7340 may result in @file{foo.i} and @file{foo.o} being written to
7341 simultaneously by both compilers.
7342
7343 @item -save-temps=obj
7344 @opindex save-temps=obj
7345 Store the usual ``temporary'' intermediate files permanently. If the
7346 @option{-o} option is used, the temporary files are based on the
7347 object file. If the @option{-o} option is not used, the
7348 @option{-save-temps=obj} switch behaves like @option{-save-temps}.
7349
7350 For example:
7351
7352 @smallexample
7353 gcc -save-temps=obj -c foo.c
7354 gcc -save-temps=obj -c bar.c -o dir/xbar.o
7355 gcc -save-temps=obj foobar.c -o dir2/yfoobar
7356 @end smallexample
7357
7358 @noindent
7359 creates @file{foo.i}, @file{foo.s}, @file{dir/xbar.i},
7360 @file{dir/xbar.s}, @file{dir2/yfoobar.i}, @file{dir2/yfoobar.s}, and
7361 @file{dir2/yfoobar.o}.
7362
7363 @item -time@r{[}=@var{file}@r{]}
7364 @opindex time
7365 Report the CPU time taken by each subprocess in the compilation
7366 sequence. For C source files, this is the compiler proper and assembler
7367 (plus the linker if linking is done).
7368
7369 Without the specification of an output file, the output looks like this:
7370
7371 @smallexample
7372 # cc1 0.12 0.01
7373 # as 0.00 0.01
7374 @end smallexample
7375
7376 The first number on each line is the ``user time'', that is time spent
7377 executing the program itself. The second number is ``system time'',
7378 time spent executing operating system routines on behalf of the program.
7379 Both numbers are in seconds.
7380
7381 With the specification of an output file, the output is appended to the
7382 named file, and it looks like this:
7383
7384 @smallexample
7385 0.12 0.01 cc1 @var{options}
7386 0.00 0.01 as @var{options}
7387 @end smallexample
7388
7389 The ``user time'' and the ``system time'' are moved before the program
7390 name, and the options passed to the program are displayed, so that one
7391 can later tell what file was being compiled, and with which options.
7392
7393 @item -fvar-tracking
7394 @opindex fvar-tracking
7395 Run variable tracking pass. It computes where variables are stored at each
7396 position in code. Better debugging information is then generated
7397 (if the debugging information format supports this information).
7398
7399 It is enabled by default when compiling with optimization (@option{-Os},
7400 @option{-O}, @option{-O2}, @dots{}), debugging information (@option{-g}) and
7401 the debug info format supports it.
7402
7403 @item -fvar-tracking-assignments
7404 @opindex fvar-tracking-assignments
7405 @opindex fno-var-tracking-assignments
7406 Annotate assignments to user variables early in the compilation and
7407 attempt to carry the annotations over throughout the compilation all the
7408 way to the end, in an attempt to improve debug information while
7409 optimizing. Use of @option{-gdwarf-4} is recommended along with it.
7410
7411 It can be enabled even if var-tracking is disabled, in which case
7412 annotations are created and maintained, but discarded at the end.
7413 By default, this flag is enabled together with @option{-fvar-tracking},
7414 except when selective scheduling is enabled.
7415
7416 @item -fvar-tracking-assignments-toggle
7417 @opindex fvar-tracking-assignments-toggle
7418 @opindex fno-var-tracking-assignments-toggle
7419 Toggle @option{-fvar-tracking-assignments}, in the same way that
7420 @option{-gtoggle} toggles @option{-g}.
7421
7422 @item -print-file-name=@var{library}
7423 @opindex print-file-name
7424 Print the full absolute name of the library file @var{library} that
7425 would be used when linking---and don't do anything else. With this
7426 option, GCC does not compile or link anything; it just prints the
7427 file name.
7428
7429 @item -print-multi-directory
7430 @opindex print-multi-directory
7431 Print the directory name corresponding to the multilib selected by any
7432 other switches present in the command line. This directory is supposed
7433 to exist in @env{GCC_EXEC_PREFIX}.
7434
7435 @item -print-multi-lib
7436 @opindex print-multi-lib
7437 Print the mapping from multilib directory names to compiler switches
7438 that enable them. The directory name is separated from the switches by
7439 @samp{;}, and each switch starts with an @samp{@@} instead of the
7440 @samp{-}, without spaces between multiple switches. This is supposed to
7441 ease shell processing.
7442
7443 @item -print-multi-os-directory
7444 @opindex print-multi-os-directory
7445 Print the path to OS libraries for the selected
7446 multilib, relative to some @file{lib} subdirectory. If OS libraries are
7447 present in the @file{lib} subdirectory and no multilibs are used, this is
7448 usually just @file{.}, if OS libraries are present in @file{lib@var{suffix}}
7449 sibling directories this prints e.g.@: @file{../lib64}, @file{../lib} or
7450 @file{../lib32}, or if OS libraries are present in @file{lib/@var{subdir}}
7451 subdirectories it prints e.g.@: @file{amd64}, @file{sparcv9} or @file{ev6}.
7452
7453 @item -print-multiarch
7454 @opindex print-multiarch
7455 Print the path to OS libraries for the selected multiarch,
7456 relative to some @file{lib} subdirectory.
7457
7458 @item -print-prog-name=@var{program}
7459 @opindex print-prog-name
7460 Like @option{-print-file-name}, but searches for a program such as @command{cpp}.
7461
7462 @item -print-libgcc-file-name
7463 @opindex print-libgcc-file-name
7464 Same as @option{-print-file-name=libgcc.a}.
7465
7466 This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
7467 but you do want to link with @file{libgcc.a}. You can do:
7468
7469 @smallexample
7470 gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
7471 @end smallexample
7472
7473 @item -print-search-dirs
7474 @opindex print-search-dirs
7475 Print the name of the configured installation directory and a list of
7476 program and library directories @command{gcc} searches---and don't do anything else.
7477
7478 This is useful when @command{gcc} prints the error message
7479 @samp{installation problem, cannot exec cpp0: No such file or directory}.
7480 To resolve this you either need to put @file{cpp0} and the other compiler
7481 components where @command{gcc} expects to find them, or you can set the environment
7482 variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
7483 Don't forget the trailing @samp{/}.
7484 @xref{Environment Variables}.
7485
7486 @item -print-sysroot
7487 @opindex print-sysroot
7488 Print the target sysroot directory that is used during
7489 compilation. This is the target sysroot specified either at configure
7490 time or using the @option{--sysroot} option, possibly with an extra
7491 suffix that depends on compilation options. If no target sysroot is
7492 specified, the option prints nothing.
7493
7494 @item -print-sysroot-headers-suffix
7495 @opindex print-sysroot-headers-suffix
7496 Print the suffix added to the target sysroot when searching for
7497 headers, or give an error if the compiler is not configured with such
7498 a suffix---and don't do anything else.
7499
7500 @item -dumpmachine
7501 @opindex dumpmachine
7502 Print the compiler's target machine (for example,
7503 @samp{i686-pc-linux-gnu})---and don't do anything else.
7504
7505 @item -dumpversion
7506 @opindex dumpversion
7507 Print the compiler version (for example, @code{3.0})---and don't do
7508 anything else.
7509
7510 @item -dumpspecs
7511 @opindex dumpspecs
7512 Print the compiler's built-in specs---and don't do anything else. (This
7513 is used when GCC itself is being built.) @xref{Spec Files}.
7514
7515 @item -fno-eliminate-unused-debug-types
7516 @opindex feliminate-unused-debug-types
7517 @opindex fno-eliminate-unused-debug-types
7518 Normally, when producing DWARF 2 output, GCC avoids producing debug symbol
7519 output for types that are nowhere used in the source file being compiled.
7520 Sometimes it is useful to have GCC emit debugging
7521 information for all types declared in a compilation
7522 unit, regardless of whether or not they are actually used
7523 in that compilation unit, for example
7524 if, in the debugger, you want to cast a value to a type that is
7525 not actually used in your program (but is declared). More often,
7526 however, this results in a significant amount of wasted space.
7527 @end table
7528
7529 @node Optimize Options
7530 @section Options That Control Optimization
7531 @cindex optimize options
7532 @cindex options, optimization
7533
7534 These options control various sorts of optimizations.
7535
7536 Without any optimization option, the compiler's goal is to reduce the
7537 cost of compilation and to make debugging produce the expected
7538 results. Statements are independent: if you stop the program with a
7539 breakpoint between statements, you can then assign a new value to any
7540 variable or change the program counter to any other statement in the
7541 function and get exactly the results you expect from the source
7542 code.
7543
7544 Turning on optimization flags makes the compiler attempt to improve
7545 the performance and/or code size at the expense of compilation time
7546 and possibly the ability to debug the program.
7547
7548 The compiler performs optimization based on the knowledge it has of the
7549 program. Compiling multiple files at once to a single output file mode allows
7550 the compiler to use information gained from all of the files when compiling
7551 each of them.
7552
7553 Not all optimizations are controlled directly by a flag. Only
7554 optimizations that have a flag are listed in this section.
7555
7556 Most optimizations are only enabled if an @option{-O} level is set on
7557 the command line. Otherwise they are disabled, even if individual
7558 optimization flags are specified.
7559
7560 Depending on the target and how GCC was configured, a slightly different
7561 set of optimizations may be enabled at each @option{-O} level than
7562 those listed here. You can invoke GCC with @option{-Q --help=optimizers}
7563 to find out the exact set of optimizations that are enabled at each level.
7564 @xref{Overall Options}, for examples.
7565
7566 @table @gcctabopt
7567 @item -O
7568 @itemx -O1
7569 @opindex O
7570 @opindex O1
7571 Optimize. Optimizing compilation takes somewhat more time, and a lot
7572 more memory for a large function.
7573
7574 With @option{-O}, the compiler tries to reduce code size and execution
7575 time, without performing any optimizations that take a great deal of
7576 compilation time.
7577
7578 @option{-O} turns on the following optimization flags:
7579 @gccoptlist{
7580 -fauto-inc-dec @gol
7581 -fbranch-count-reg @gol
7582 -fcombine-stack-adjustments @gol
7583 -fcompare-elim @gol
7584 -fcprop-registers @gol
7585 -fdce @gol
7586 -fdefer-pop @gol
7587 -fdelayed-branch @gol
7588 -fdse @gol
7589 -fforward-propagate @gol
7590 -fguess-branch-probability @gol
7591 -fif-conversion2 @gol
7592 -fif-conversion @gol
7593 -finline-functions-called-once @gol
7594 -fipa-pure-const @gol
7595 -fipa-profile @gol
7596 -fipa-reference @gol
7597 -fmerge-constants @gol
7598 -fmove-loop-invariants @gol
7599 -fshrink-wrap @gol
7600 -fsplit-wide-types @gol
7601 -ftree-bit-ccp @gol
7602 -ftree-ccp @gol
7603 -fssa-phiopt @gol
7604 -ftree-ch @gol
7605 -ftree-copy-prop @gol
7606 -ftree-copyrename @gol
7607 -ftree-dce @gol
7608 -ftree-dominator-opts @gol
7609 -ftree-dse @gol
7610 -ftree-forwprop @gol
7611 -ftree-fre @gol
7612 -ftree-phiprop @gol
7613 -ftree-sink @gol
7614 -ftree-slsr @gol
7615 -ftree-sra @gol
7616 -ftree-pta @gol
7617 -ftree-ter @gol
7618 -funit-at-a-time}
7619
7620 @option{-O} also turns on @option{-fomit-frame-pointer} on machines
7621 where doing so does not interfere with debugging.
7622
7623 @item -O2
7624 @opindex O2
7625 Optimize even more. GCC performs nearly all supported optimizations
7626 that do not involve a space-speed tradeoff.
7627 As compared to @option{-O}, this option increases both compilation time
7628 and the performance of the generated code.
7629
7630 @option{-O2} turns on all optimization flags specified by @option{-O}. It
7631 also turns on the following optimization flags:
7632 @gccoptlist{-fthread-jumps @gol
7633 -falign-functions -falign-jumps @gol
7634 -falign-loops -falign-labels @gol
7635 -fcaller-saves @gol
7636 -fcrossjumping @gol
7637 -fcse-follow-jumps -fcse-skip-blocks @gol
7638 -fdelete-null-pointer-checks @gol
7639 -fdevirtualize -fdevirtualize-speculatively @gol
7640 -fexpensive-optimizations @gol
7641 -fgcse -fgcse-lm @gol
7642 -fhoist-adjacent-loads @gol
7643 -finline-small-functions @gol
7644 -findirect-inlining @gol
7645 -fipa-cp @gol
7646 -fipa-cp-alignment @gol
7647 -fipa-sra @gol
7648 -fipa-icf @gol
7649 -fisolate-erroneous-paths-dereference @gol
7650 -flra-remat @gol
7651 -foptimize-sibling-calls @gol
7652 -foptimize-strlen @gol
7653 -fpartial-inlining @gol
7654 -fpeephole2 @gol
7655 -freorder-blocks -freorder-blocks-and-partition -freorder-functions @gol
7656 -frerun-cse-after-loop @gol
7657 -fsched-interblock -fsched-spec @gol
7658 -fschedule-insns -fschedule-insns2 @gol
7659 -fstrict-aliasing -fstrict-overflow @gol
7660 -ftree-builtin-call-dce @gol
7661 -ftree-switch-conversion -ftree-tail-merge @gol
7662 -ftree-pre @gol
7663 -ftree-vrp @gol
7664 -fipa-ra}
7665
7666 Please note the warning under @option{-fgcse} about
7667 invoking @option{-O2} on programs that use computed gotos.
7668
7669 @item -O3
7670 @opindex O3
7671 Optimize yet more. @option{-O3} turns on all optimizations specified
7672 by @option{-O2} and also turns on the @option{-finline-functions},
7673 @option{-funswitch-loops}, @option{-fpredictive-commoning},
7674 @option{-fgcse-after-reload}, @option{-ftree-loop-vectorize},
7675 @option{-ftree-loop-distribute-patterns},
7676 @option{-ftree-slp-vectorize}, @option{-fvect-cost-model},
7677 @option{-ftree-partial-pre} and @option{-fipa-cp-clone} options.
7678
7679 @item -O0
7680 @opindex O0
7681 Reduce compilation time and make debugging produce the expected
7682 results. This is the default.
7683
7684 @item -Os
7685 @opindex Os
7686 Optimize for size. @option{-Os} enables all @option{-O2} optimizations that
7687 do not typically increase code size. It also performs further
7688 optimizations designed to reduce code size.
7689
7690 @option{-Os} disables the following optimization flags:
7691 @gccoptlist{-falign-functions -falign-jumps -falign-loops @gol
7692 -falign-labels -freorder-blocks -freorder-blocks-and-partition @gol
7693 -fprefetch-loop-arrays}
7694
7695 @item -Ofast
7696 @opindex Ofast
7697 Disregard strict standards compliance. @option{-Ofast} enables all
7698 @option{-O3} optimizations. It also enables optimizations that are not
7699 valid for all standard-compliant programs.
7700 It turns on @option{-ffast-math} and the Fortran-specific
7701 @option{-fno-protect-parens} and @option{-fstack-arrays}.
7702
7703 @item -Og
7704 @opindex Og
7705 Optimize debugging experience. @option{-Og} enables optimizations
7706 that do not interfere with debugging. It should be the optimization
7707 level of choice for the standard edit-compile-debug cycle, offering
7708 a reasonable level of optimization while maintaining fast compilation
7709 and a good debugging experience.
7710
7711 If you use multiple @option{-O} options, with or without level numbers,
7712 the last such option is the one that is effective.
7713 @end table
7714
7715 Options of the form @option{-f@var{flag}} specify machine-independent
7716 flags. Most flags have both positive and negative forms; the negative
7717 form of @option{-ffoo} is @option{-fno-foo}. In the table
7718 below, only one of the forms is listed---the one you typically
7719 use. You can figure out the other form by either removing @samp{no-}
7720 or adding it.
7721
7722 The following options control specific optimizations. They are either
7723 activated by @option{-O} options or are related to ones that are. You
7724 can use the following flags in the rare cases when ``fine-tuning'' of
7725 optimizations to be performed is desired.
7726
7727 @table @gcctabopt
7728 @item -fno-defer-pop
7729 @opindex fno-defer-pop
7730 Always pop the arguments to each function call as soon as that function
7731 returns. For machines that must pop arguments after a function call,
7732 the compiler normally lets arguments accumulate on the stack for several
7733 function calls and pops them all at once.
7734
7735 Disabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7736
7737 @item -fforward-propagate
7738 @opindex fforward-propagate
7739 Perform a forward propagation pass on RTL@. The pass tries to combine two
7740 instructions and checks if the result can be simplified. If loop unrolling
7741 is active, two passes are performed and the second is scheduled after
7742 loop unrolling.
7743
7744 This option is enabled by default at optimization levels @option{-O},
7745 @option{-O2}, @option{-O3}, @option{-Os}.
7746
7747 @item -ffp-contract=@var{style}
7748 @opindex ffp-contract
7749 @option{-ffp-contract=off} disables floating-point expression contraction.
7750 @option{-ffp-contract=fast} enables floating-point expression contraction
7751 such as forming of fused multiply-add operations if the target has
7752 native support for them.
7753 @option{-ffp-contract=on} enables floating-point expression contraction
7754 if allowed by the language standard. This is currently not implemented
7755 and treated equal to @option{-ffp-contract=off}.
7756
7757 The default is @option{-ffp-contract=fast}.
7758
7759 @item -fomit-frame-pointer
7760 @opindex fomit-frame-pointer
7761 Don't keep the frame pointer in a register for functions that
7762 don't need one. This avoids the instructions to save, set up and
7763 restore frame pointers; it also makes an extra register available
7764 in many functions. @strong{It also makes debugging impossible on
7765 some machines.}
7766
7767 On some machines, such as the VAX, this flag has no effect, because
7768 the standard calling sequence automatically handles the frame pointer
7769 and nothing is saved by pretending it doesn't exist. The
7770 machine-description macro @code{FRAME_POINTER_REQUIRED} controls
7771 whether a target machine supports this flag. @xref{Registers,,Register
7772 Usage, gccint, GNU Compiler Collection (GCC) Internals}.
7773
7774 The default setting (when not optimizing for
7775 size) for 32-bit GNU/Linux x86 and 32-bit Darwin x86 targets is
7776 @option{-fomit-frame-pointer}. You can configure GCC with the
7777 @option{--enable-frame-pointer} configure option to change the default.
7778
7779 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7780
7781 @item -foptimize-sibling-calls
7782 @opindex foptimize-sibling-calls
7783 Optimize sibling and tail recursive calls.
7784
7785 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7786
7787 @item -foptimize-strlen
7788 @opindex foptimize-strlen
7789 Optimize various standard C string functions (e.g. @code{strlen},
7790 @code{strchr} or @code{strcpy}) and
7791 their @code{_FORTIFY_SOURCE} counterparts into faster alternatives.
7792
7793 Enabled at levels @option{-O2}, @option{-O3}.
7794
7795 @item -fno-inline
7796 @opindex fno-inline
7797 Do not expand any functions inline apart from those marked with
7798 the @code{always_inline} attribute. This is the default when not
7799 optimizing.
7800
7801 Single functions can be exempted from inlining by marking them
7802 with the @code{noinline} attribute.
7803
7804 @item -finline-small-functions
7805 @opindex finline-small-functions
7806 Integrate functions into their callers when their body is smaller than expected
7807 function call code (so overall size of program gets smaller). The compiler
7808 heuristically decides which functions are simple enough to be worth integrating
7809 in this way. This inlining applies to all functions, even those not declared
7810 inline.
7811
7812 Enabled at level @option{-O2}.
7813
7814 @item -findirect-inlining
7815 @opindex findirect-inlining
7816 Inline also indirect calls that are discovered to be known at compile
7817 time thanks to previous inlining. This option has any effect only
7818 when inlining itself is turned on by the @option{-finline-functions}
7819 or @option{-finline-small-functions} options.
7820
7821 Enabled at level @option{-O2}.
7822
7823 @item -finline-functions
7824 @opindex finline-functions
7825 Consider all functions for inlining, even if they are not declared inline.
7826 The compiler heuristically decides which functions are worth integrating
7827 in this way.
7828
7829 If all calls to a given function are integrated, and the function is
7830 declared @code{static}, then the function is normally not output as
7831 assembler code in its own right.
7832
7833 Enabled at level @option{-O3}.
7834
7835 @item -finline-functions-called-once
7836 @opindex finline-functions-called-once
7837 Consider all @code{static} functions called once for inlining into their
7838 caller even if they are not marked @code{inline}. If a call to a given
7839 function is integrated, then the function is not output as assembler code
7840 in its own right.
7841
7842 Enabled at levels @option{-O1}, @option{-O2}, @option{-O3} and @option{-Os}.
7843
7844 @item -fearly-inlining
7845 @opindex fearly-inlining
7846 Inline functions marked by @code{always_inline} and functions whose body seems
7847 smaller than the function call overhead early before doing
7848 @option{-fprofile-generate} instrumentation and real inlining pass. Doing so
7849 makes profiling significantly cheaper and usually inlining faster on programs
7850 having large chains of nested wrapper functions.
7851
7852 Enabled by default.
7853
7854 @item -fipa-sra
7855 @opindex fipa-sra
7856 Perform interprocedural scalar replacement of aggregates, removal of
7857 unused parameters and replacement of parameters passed by reference
7858 by parameters passed by value.
7859
7860 Enabled at levels @option{-O2}, @option{-O3} and @option{-Os}.
7861
7862 @item -finline-limit=@var{n}
7863 @opindex finline-limit
7864 By default, GCC limits the size of functions that can be inlined. This flag
7865 allows coarse control of this limit. @var{n} is the size of functions that
7866 can be inlined in number of pseudo instructions.
7867
7868 Inlining is actually controlled by a number of parameters, which may be
7869 specified individually by using @option{--param @var{name}=@var{value}}.
7870 The @option{-finline-limit=@var{n}} option sets some of these parameters
7871 as follows:
7872
7873 @table @gcctabopt
7874 @item max-inline-insns-single
7875 is set to @var{n}/2.
7876 @item max-inline-insns-auto
7877 is set to @var{n}/2.
7878 @end table
7879
7880 See below for a documentation of the individual
7881 parameters controlling inlining and for the defaults of these parameters.
7882
7883 @emph{Note:} there may be no value to @option{-finline-limit} that results
7884 in default behavior.
7885
7886 @emph{Note:} pseudo instruction represents, in this particular context, an
7887 abstract measurement of function's size. In no way does it represent a count
7888 of assembly instructions and as such its exact meaning might change from one
7889 release to an another.
7890
7891 @item -fno-keep-inline-dllexport
7892 @opindex fno-keep-inline-dllexport
7893 This is a more fine-grained version of @option{-fkeep-inline-functions},
7894 which applies only to functions that are declared using the @code{dllexport}
7895 attribute or declspec (@xref{Function Attributes,,Declaring Attributes of
7896 Functions}.)
7897
7898 @item -fkeep-inline-functions
7899 @opindex fkeep-inline-functions
7900 In C, emit @code{static} functions that are declared @code{inline}
7901 into the object file, even if the function has been inlined into all
7902 of its callers. This switch does not affect functions using the
7903 @code{extern inline} extension in GNU C90@. In C++, emit any and all
7904 inline functions into the object file.
7905
7906 @item -fkeep-static-consts
7907 @opindex fkeep-static-consts
7908 Emit variables declared @code{static const} when optimization isn't turned
7909 on, even if the variables aren't referenced.
7910
7911 GCC enables this option by default. If you want to force the compiler to
7912 check if a variable is referenced, regardless of whether or not
7913 optimization is turned on, use the @option{-fno-keep-static-consts} option.
7914
7915 @item -fmerge-constants
7916 @opindex fmerge-constants
7917 Attempt to merge identical constants (string constants and floating-point
7918 constants) across compilation units.
7919
7920 This option is the default for optimized compilation if the assembler and
7921 linker support it. Use @option{-fno-merge-constants} to inhibit this
7922 behavior.
7923
7924 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7925
7926 @item -fmerge-all-constants
7927 @opindex fmerge-all-constants
7928 Attempt to merge identical constants and identical variables.
7929
7930 This option implies @option{-fmerge-constants}. In addition to
7931 @option{-fmerge-constants} this considers e.g.@: even constant initialized
7932 arrays or initialized constant variables with integral or floating-point
7933 types. Languages like C or C++ require each variable, including multiple
7934 instances of the same variable in recursive calls, to have distinct locations,
7935 so using this option results in non-conforming
7936 behavior.
7937
7938 @item -fmodulo-sched
7939 @opindex fmodulo-sched
7940 Perform swing modulo scheduling immediately before the first scheduling
7941 pass. This pass looks at innermost loops and reorders their
7942 instructions by overlapping different iterations.
7943
7944 @item -fmodulo-sched-allow-regmoves
7945 @opindex fmodulo-sched-allow-regmoves
7946 Perform more aggressive SMS-based modulo scheduling with register moves
7947 allowed. By setting this flag certain anti-dependences edges are
7948 deleted, which triggers the generation of reg-moves based on the
7949 life-range analysis. This option is effective only with
7950 @option{-fmodulo-sched} enabled.
7951
7952 @item -fno-branch-count-reg
7953 @opindex fno-branch-count-reg
7954 Do not use ``decrement and branch'' instructions on a count register,
7955 but instead generate a sequence of instructions that decrement a
7956 register, compare it against zero, then branch based upon the result.
7957 This option is only meaningful on architectures that support such
7958 instructions, which include x86, PowerPC, IA-64 and S/390.
7959
7960 Enabled by default at @option{-O1} and higher.
7961
7962 The default is @option{-fbranch-count-reg}.
7963
7964 @item -fno-function-cse
7965 @opindex fno-function-cse
7966 Do not put function addresses in registers; make each instruction that
7967 calls a constant function contain the function's address explicitly.
7968
7969 This option results in less efficient code, but some strange hacks
7970 that alter the assembler output may be confused by the optimizations
7971 performed when this option is not used.
7972
7973 The default is @option{-ffunction-cse}
7974
7975 @item -fno-zero-initialized-in-bss
7976 @opindex fno-zero-initialized-in-bss
7977 If the target supports a BSS section, GCC by default puts variables that
7978 are initialized to zero into BSS@. This can save space in the resulting
7979 code.
7980
7981 This option turns off this behavior because some programs explicitly
7982 rely on variables going to the data section---e.g., so that the
7983 resulting executable can find the beginning of that section and/or make
7984 assumptions based on that.
7985
7986 The default is @option{-fzero-initialized-in-bss}.
7987
7988 @item -fthread-jumps
7989 @opindex fthread-jumps
7990 Perform optimizations that check to see if a jump branches to a
7991 location where another comparison subsumed by the first is found. If
7992 so, the first branch is redirected to either the destination of the
7993 second branch or a point immediately following it, depending on whether
7994 the condition is known to be true or false.
7995
7996 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7997
7998 @item -fsplit-wide-types
7999 @opindex fsplit-wide-types
8000 When using a type that occupies multiple registers, such as @code{long
8001 long} on a 32-bit system, split the registers apart and allocate them
8002 independently. This normally generates better code for those types,
8003 but may make debugging more difficult.
8004
8005 Enabled at levels @option{-O}, @option{-O2}, @option{-O3},
8006 @option{-Os}.
8007
8008 @item -fcse-follow-jumps
8009 @opindex fcse-follow-jumps
8010 In common subexpression elimination (CSE), scan through jump instructions
8011 when the target of the jump is not reached by any other path. For
8012 example, when CSE encounters an @code{if} statement with an
8013 @code{else} clause, CSE follows the jump when the condition
8014 tested is false.
8015
8016 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8017
8018 @item -fcse-skip-blocks
8019 @opindex fcse-skip-blocks
8020 This is similar to @option{-fcse-follow-jumps}, but causes CSE to
8021 follow jumps that conditionally skip over blocks. When CSE
8022 encounters a simple @code{if} statement with no else clause,
8023 @option{-fcse-skip-blocks} causes CSE to follow the jump around the
8024 body of the @code{if}.
8025
8026 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8027
8028 @item -frerun-cse-after-loop
8029 @opindex frerun-cse-after-loop
8030 Re-run common subexpression elimination after loop optimizations are
8031 performed.
8032
8033 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8034
8035 @item -fgcse
8036 @opindex fgcse
8037 Perform a global common subexpression elimination pass.
8038 This pass also performs global constant and copy propagation.
8039
8040 @emph{Note:} When compiling a program using computed gotos, a GCC
8041 extension, you may get better run-time performance if you disable
8042 the global common subexpression elimination pass by adding
8043 @option{-fno-gcse} to the command line.
8044
8045 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8046
8047 @item -fgcse-lm
8048 @opindex fgcse-lm
8049 When @option{-fgcse-lm} is enabled, global common subexpression elimination
8050 attempts to move loads that are only killed by stores into themselves. This
8051 allows a loop containing a load/store sequence to be changed to a load outside
8052 the loop, and a copy/store within the loop.
8053
8054 Enabled by default when @option{-fgcse} is enabled.
8055
8056 @item -fgcse-sm
8057 @opindex fgcse-sm
8058 When @option{-fgcse-sm} is enabled, a store motion pass is run after
8059 global common subexpression elimination. This pass attempts to move
8060 stores out of loops. When used in conjunction with @option{-fgcse-lm},
8061 loops containing a load/store sequence can be changed to a load before
8062 the loop and a store after the loop.
8063
8064 Not enabled at any optimization level.
8065
8066 @item -fgcse-las
8067 @opindex fgcse-las
8068 When @option{-fgcse-las} is enabled, the global common subexpression
8069 elimination pass eliminates redundant loads that come after stores to the
8070 same memory location (both partial and full redundancies).
8071
8072 Not enabled at any optimization level.
8073
8074 @item -fgcse-after-reload
8075 @opindex fgcse-after-reload
8076 When @option{-fgcse-after-reload} is enabled, a redundant load elimination
8077 pass is performed after reload. The purpose of this pass is to clean up
8078 redundant spilling.
8079
8080 @item -faggressive-loop-optimizations
8081 @opindex faggressive-loop-optimizations
8082 This option tells the loop optimizer to use language constraints to
8083 derive bounds for the number of iterations of a loop. This assumes that
8084 loop code does not invoke undefined behavior by for example causing signed
8085 integer overflows or out-of-bound array accesses. The bounds for the
8086 number of iterations of a loop are used to guide loop unrolling and peeling
8087 and loop exit test optimizations.
8088 This option is enabled by default.
8089
8090 @item -funsafe-loop-optimizations
8091 @opindex funsafe-loop-optimizations
8092 This option tells the loop optimizer to assume that loop indices do not
8093 overflow, and that loops with nontrivial exit condition are not
8094 infinite. This enables a wider range of loop optimizations even if
8095 the loop optimizer itself cannot prove that these assumptions are valid.
8096 If you use @option{-Wunsafe-loop-optimizations}, the compiler warns you
8097 if it finds this kind of loop.
8098
8099 @item -fcrossjumping
8100 @opindex fcrossjumping
8101 Perform cross-jumping transformation.
8102 This transformation unifies equivalent code and saves code size. The
8103 resulting code may or may not perform better than without cross-jumping.
8104
8105 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8106
8107 @item -fauto-inc-dec
8108 @opindex fauto-inc-dec
8109 Combine increments or decrements of addresses with memory accesses.
8110 This pass is always skipped on architectures that do not have
8111 instructions to support this. Enabled by default at @option{-O} and
8112 higher on architectures that support this.
8113
8114 @item -fdce
8115 @opindex fdce
8116 Perform dead code elimination (DCE) on RTL@.
8117 Enabled by default at @option{-O} and higher.
8118
8119 @item -fdse
8120 @opindex fdse
8121 Perform dead store elimination (DSE) on RTL@.
8122 Enabled by default at @option{-O} and higher.
8123
8124 @item -fif-conversion
8125 @opindex fif-conversion
8126 Attempt to transform conditional jumps into branch-less equivalents. This
8127 includes use of conditional moves, min, max, set flags and abs instructions, and
8128 some tricks doable by standard arithmetics. The use of conditional execution
8129 on chips where it is available is controlled by @option{-fif-conversion2}.
8130
8131 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8132
8133 @item -fif-conversion2
8134 @opindex fif-conversion2
8135 Use conditional execution (where available) to transform conditional jumps into
8136 branch-less equivalents.
8137
8138 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8139
8140 @item -fdeclone-ctor-dtor
8141 @opindex fdeclone-ctor-dtor
8142 The C++ ABI requires multiple entry points for constructors and
8143 destructors: one for a base subobject, one for a complete object, and
8144 one for a virtual destructor that calls operator delete afterwards.
8145 For a hierarchy with virtual bases, the base and complete variants are
8146 clones, which means two copies of the function. With this option, the
8147 base and complete variants are changed to be thunks that call a common
8148 implementation.
8149
8150 Enabled by @option{-Os}.
8151
8152 @item -fdelete-null-pointer-checks
8153 @opindex fdelete-null-pointer-checks
8154 Assume that programs cannot safely dereference null pointers, and that
8155 no code or data element resides at address zero.
8156 This option enables simple constant
8157 folding optimizations at all optimization levels. In addition, other
8158 optimization passes in GCC use this flag to control global dataflow
8159 analyses that eliminate useless checks for null pointers; these assume
8160 that a memory access to address zero always results in a trap, so
8161 that if a pointer is checked after it has already been dereferenced,
8162 it cannot be null.
8163
8164 Note however that in some environments this assumption is not true.
8165 Use @option{-fno-delete-null-pointer-checks} to disable this optimization
8166 for programs that depend on that behavior.
8167
8168 This option is enabled by default on most targets. On Nios II ELF, it
8169 defaults to off. On AVR and CR16, this option is completely disabled.
8170
8171 Passes that use the dataflow information
8172 are enabled independently at different optimization levels.
8173
8174 @item -fdevirtualize
8175 @opindex fdevirtualize
8176 Attempt to convert calls to virtual functions to direct calls. This
8177 is done both within a procedure and interprocedurally as part of
8178 indirect inlining (@option{-findirect-inlining}) and interprocedural constant
8179 propagation (@option{-fipa-cp}).
8180 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8181
8182 @item -fdevirtualize-speculatively
8183 @opindex fdevirtualize-speculatively
8184 Attempt to convert calls to virtual functions to speculative direct calls.
8185 Based on the analysis of the type inheritance graph, determine for a given call
8186 the set of likely targets. If the set is small, preferably of size 1, change
8187 the call into a conditional deciding between direct and indirect calls. The
8188 speculative calls enable more optimizations, such as inlining. When they seem
8189 useless after further optimization, they are converted back into original form.
8190
8191 @item -fdevirtualize-at-ltrans
8192 @opindex fdevirtualize-at-ltrans
8193 Stream extra information needed for aggressive devirtualization when running
8194 the link-time optimizer in local transformation mode.
8195 This option enables more devirtualization but
8196 significantly increases the size of streamed data. For this reason it is
8197 disabled by default.
8198
8199 @item -fexpensive-optimizations
8200 @opindex fexpensive-optimizations
8201 Perform a number of minor optimizations that are relatively expensive.
8202
8203 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8204
8205 @item -free
8206 @opindex free
8207 Attempt to remove redundant extension instructions. This is especially
8208 helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit
8209 registers after writing to their lower 32-bit half.
8210
8211 Enabled for Alpha, AArch64 and x86 at levels @option{-O2},
8212 @option{-O3}, @option{-Os}.
8213
8214 @item -fno-lifetime-dse
8215 @opindex fno-lifetime-dse
8216 In C++ the value of an object is only affected by changes within its
8217 lifetime: when the constructor begins, the object has an indeterminate
8218 value, and any changes during the lifetime of the object are dead when
8219 the object is destroyed. Normally dead store elimination will take
8220 advantage of this; if your code relies on the value of the object
8221 storage persisting beyond the lifetime of the object, you can use this
8222 flag to disable this optimization.
8223
8224 @item -flive-range-shrinkage
8225 @opindex flive-range-shrinkage
8226 Attempt to decrease register pressure through register live range
8227 shrinkage. This is helpful for fast processors with small or moderate
8228 size register sets.
8229
8230 @item -fira-algorithm=@var{algorithm}
8231 @opindex fira-algorithm
8232 Use the specified coloring algorithm for the integrated register
8233 allocator. The @var{algorithm} argument can be @samp{priority}, which
8234 specifies Chow's priority coloring, or @samp{CB}, which specifies
8235 Chaitin-Briggs coloring. Chaitin-Briggs coloring is not implemented
8236 for all architectures, but for those targets that do support it, it is
8237 the default because it generates better code.
8238
8239 @item -fira-region=@var{region}
8240 @opindex fira-region
8241 Use specified regions for the integrated register allocator. The
8242 @var{region} argument should be one of the following:
8243
8244 @table @samp
8245
8246 @item all
8247 Use all loops as register allocation regions.
8248 This can give the best results for machines with a small and/or
8249 irregular register set.
8250
8251 @item mixed
8252 Use all loops except for loops with small register pressure
8253 as the regions. This value usually gives
8254 the best results in most cases and for most architectures,
8255 and is enabled by default when compiling with optimization for speed
8256 (@option{-O}, @option{-O2}, @dots{}).
8257
8258 @item one
8259 Use all functions as a single region.
8260 This typically results in the smallest code size, and is enabled by default for
8261 @option{-Os} or @option{-O0}.
8262
8263 @end table
8264
8265 @item -fira-hoist-pressure
8266 @opindex fira-hoist-pressure
8267 Use IRA to evaluate register pressure in the code hoisting pass for
8268 decisions to hoist expressions. This option usually results in smaller
8269 code, but it can slow the compiler down.
8270
8271 This option is enabled at level @option{-Os} for all targets.
8272
8273 @item -fira-loop-pressure
8274 @opindex fira-loop-pressure
8275 Use IRA to evaluate register pressure in loops for decisions to move
8276 loop invariants. This option usually results in generation
8277 of faster and smaller code on machines with large register files (>= 32
8278 registers), but it can slow the compiler down.
8279
8280 This option is enabled at level @option{-O3} for some targets.
8281
8282 @item -fno-ira-share-save-slots
8283 @opindex fno-ira-share-save-slots
8284 Disable sharing of stack slots used for saving call-used hard
8285 registers living through a call. Each hard register gets a
8286 separate stack slot, and as a result function stack frames are
8287 larger.
8288
8289 @item -fno-ira-share-spill-slots
8290 @opindex fno-ira-share-spill-slots
8291 Disable sharing of stack slots allocated for pseudo-registers. Each
8292 pseudo-register that does not get a hard register gets a separate
8293 stack slot, and as a result function stack frames are larger.
8294
8295 @item -fira-verbose=@var{n}
8296 @opindex fira-verbose
8297 Control the verbosity of the dump file for the integrated register allocator.
8298 The default value is 5. If the value @var{n} is greater or equal to 10,
8299 the dump output is sent to stderr using the same format as @var{n} minus 10.
8300
8301 @item -flra-remat
8302 @opindex flra-remat
8303 Enable CFG-sensitive rematerialization in LRA. Instead of loading
8304 values of spilled pseudos, LRA tries to rematerialize (recalculate)
8305 values if it is profitable.
8306
8307 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8308
8309 @item -fdelayed-branch
8310 @opindex fdelayed-branch
8311 If supported for the target machine, attempt to reorder instructions
8312 to exploit instruction slots available after delayed branch
8313 instructions.
8314
8315 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8316
8317 @item -fschedule-insns
8318 @opindex fschedule-insns
8319 If supported for the target machine, attempt to reorder instructions to
8320 eliminate execution stalls due to required data being unavailable. This
8321 helps machines that have slow floating point or memory load instructions
8322 by allowing other instructions to be issued until the result of the load
8323 or floating-point instruction is required.
8324
8325 Enabled at levels @option{-O2}, @option{-O3}.
8326
8327 @item -fschedule-insns2
8328 @opindex fschedule-insns2
8329 Similar to @option{-fschedule-insns}, but requests an additional pass of
8330 instruction scheduling after register allocation has been done. This is
8331 especially useful on machines with a relatively small number of
8332 registers and where memory load instructions take more than one cycle.
8333
8334 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8335
8336 @item -fno-sched-interblock
8337 @opindex fno-sched-interblock
8338 Don't schedule instructions across basic blocks. This is normally
8339 enabled by default when scheduling before register allocation, i.e.@:
8340 with @option{-fschedule-insns} or at @option{-O2} or higher.
8341
8342 @item -fno-sched-spec
8343 @opindex fno-sched-spec
8344 Don't allow speculative motion of non-load instructions. This is normally
8345 enabled by default when scheduling before register allocation, i.e.@:
8346 with @option{-fschedule-insns} or at @option{-O2} or higher.
8347
8348 @item -fsched-pressure
8349 @opindex fsched-pressure
8350 Enable register pressure sensitive insn scheduling before register
8351 allocation. This only makes sense when scheduling before register
8352 allocation is enabled, i.e.@: with @option{-fschedule-insns} or at
8353 @option{-O2} or higher. Usage of this option can improve the
8354 generated code and decrease its size by preventing register pressure
8355 increase above the number of available hard registers and subsequent
8356 spills in register allocation.
8357
8358 @item -fsched-spec-load
8359 @opindex fsched-spec-load
8360 Allow speculative motion of some load instructions. This only makes
8361 sense when scheduling before register allocation, i.e.@: with
8362 @option{-fschedule-insns} or at @option{-O2} or higher.
8363
8364 @item -fsched-spec-load-dangerous
8365 @opindex fsched-spec-load-dangerous
8366 Allow speculative motion of more load instructions. This only makes
8367 sense when scheduling before register allocation, i.e.@: with
8368 @option{-fschedule-insns} or at @option{-O2} or higher.
8369
8370 @item -fsched-stalled-insns
8371 @itemx -fsched-stalled-insns=@var{n}
8372 @opindex fsched-stalled-insns
8373 Define how many insns (if any) can be moved prematurely from the queue
8374 of stalled insns into the ready list during the second scheduling pass.
8375 @option{-fno-sched-stalled-insns} means that no insns are moved
8376 prematurely, @option{-fsched-stalled-insns=0} means there is no limit
8377 on how many queued insns can be moved prematurely.
8378 @option{-fsched-stalled-insns} without a value is equivalent to
8379 @option{-fsched-stalled-insns=1}.
8380
8381 @item -fsched-stalled-insns-dep
8382 @itemx -fsched-stalled-insns-dep=@var{n}
8383 @opindex fsched-stalled-insns-dep
8384 Define how many insn groups (cycles) are examined for a dependency
8385 on a stalled insn that is a candidate for premature removal from the queue
8386 of stalled insns. This has an effect only during the second scheduling pass,
8387 and only if @option{-fsched-stalled-insns} is used.
8388 @option{-fno-sched-stalled-insns-dep} is equivalent to
8389 @option{-fsched-stalled-insns-dep=0}.
8390 @option{-fsched-stalled-insns-dep} without a value is equivalent to
8391 @option{-fsched-stalled-insns-dep=1}.
8392
8393 @item -fsched2-use-superblocks
8394 @opindex fsched2-use-superblocks
8395 When scheduling after register allocation, use superblock scheduling.
8396 This allows motion across basic block boundaries,
8397 resulting in faster schedules. This option is experimental, as not all machine
8398 descriptions used by GCC model the CPU closely enough to avoid unreliable
8399 results from the algorithm.
8400
8401 This only makes sense when scheduling after register allocation, i.e.@: with
8402 @option{-fschedule-insns2} or at @option{-O2} or higher.
8403
8404 @item -fsched-group-heuristic
8405 @opindex fsched-group-heuristic
8406 Enable the group heuristic in the scheduler. This heuristic favors
8407 the instruction that belongs to a schedule group. This is enabled
8408 by default when scheduling is enabled, i.e.@: with @option{-fschedule-insns}
8409 or @option{-fschedule-insns2} or at @option{-O2} or higher.
8410
8411 @item -fsched-critical-path-heuristic
8412 @opindex fsched-critical-path-heuristic
8413 Enable the critical-path heuristic in the scheduler. This heuristic favors
8414 instructions on the critical path. This is enabled by default when
8415 scheduling is enabled, i.e.@: with @option{-fschedule-insns}
8416 or @option{-fschedule-insns2} or at @option{-O2} or higher.
8417
8418 @item -fsched-spec-insn-heuristic
8419 @opindex fsched-spec-insn-heuristic
8420 Enable the speculative instruction heuristic in the scheduler. This
8421 heuristic favors speculative instructions with greater dependency weakness.
8422 This is enabled by default when scheduling is enabled, i.e.@:
8423 with @option{-fschedule-insns} or @option{-fschedule-insns2}
8424 or at @option{-O2} or higher.
8425
8426 @item -fsched-rank-heuristic
8427 @opindex fsched-rank-heuristic
8428 Enable the rank heuristic in the scheduler. This heuristic favors
8429 the instruction belonging to a basic block with greater size or frequency.
8430 This is enabled by default when scheduling is enabled, i.e.@:
8431 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8432 at @option{-O2} or higher.
8433
8434 @item -fsched-last-insn-heuristic
8435 @opindex fsched-last-insn-heuristic
8436 Enable the last-instruction heuristic in the scheduler. This heuristic
8437 favors the instruction that is less dependent on the last instruction
8438 scheduled. This is enabled by default when scheduling is enabled,
8439 i.e.@: with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8440 at @option{-O2} or higher.
8441
8442 @item -fsched-dep-count-heuristic
8443 @opindex fsched-dep-count-heuristic
8444 Enable the dependent-count heuristic in the scheduler. This heuristic
8445 favors the instruction that has more instructions depending on it.
8446 This is enabled by default when scheduling is enabled, i.e.@:
8447 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8448 at @option{-O2} or higher.
8449
8450 @item -freschedule-modulo-scheduled-loops
8451 @opindex freschedule-modulo-scheduled-loops
8452 Modulo scheduling is performed before traditional scheduling. If a loop
8453 is modulo scheduled, later scheduling passes may change its schedule.
8454 Use this option to control that behavior.
8455
8456 @item -fselective-scheduling
8457 @opindex fselective-scheduling
8458 Schedule instructions using selective scheduling algorithm. Selective
8459 scheduling runs instead of the first scheduler pass.
8460
8461 @item -fselective-scheduling2
8462 @opindex fselective-scheduling2
8463 Schedule instructions using selective scheduling algorithm. Selective
8464 scheduling runs instead of the second scheduler pass.
8465
8466 @item -fsel-sched-pipelining
8467 @opindex fsel-sched-pipelining
8468 Enable software pipelining of innermost loops during selective scheduling.
8469 This option has no effect unless one of @option{-fselective-scheduling} or
8470 @option{-fselective-scheduling2} is turned on.
8471
8472 @item -fsel-sched-pipelining-outer-loops
8473 @opindex fsel-sched-pipelining-outer-loops
8474 When pipelining loops during selective scheduling, also pipeline outer loops.
8475 This option has no effect unless @option{-fsel-sched-pipelining} is turned on.
8476
8477 @item -fsemantic-interposition
8478 @opindex fsemantic-interposition
8479 Some object formats, like ELF, allow interposing of symbols by the
8480 dynamic linker.
8481 This means that for symbols exported from the DSO, the compiler cannot perform
8482 interprocedural propagation, inlining and other optimizations in anticipation
8483 that the function or variable in question may change. While this feature is
8484 useful, for example, to rewrite memory allocation functions by a debugging
8485 implementation, it is expensive in the terms of code quality.
8486 With @option{-fno-semantic-interposition} the compiler assumes that
8487 if interposition happens for functions the overwriting function will have
8488 precisely the same semantics (and side effects).
8489 Similarly if interposition happens
8490 for variables, the constructor of the variable will be the same. The flag
8491 has no effect for functions explicitly declared inline
8492 (where it is never allowed for interposition to change semantics)
8493 and for symbols explicitly declared weak.
8494
8495 @item -fshrink-wrap
8496 @opindex fshrink-wrap
8497 Emit function prologues only before parts of the function that need it,
8498 rather than at the top of the function. This flag is enabled by default at
8499 @option{-O} and higher.
8500
8501 @item -fcaller-saves
8502 @opindex fcaller-saves
8503 Enable allocation of values to registers that are clobbered by
8504 function calls, by emitting extra instructions to save and restore the
8505 registers around such calls. Such allocation is done only when it
8506 seems to result in better code.
8507
8508 This option is always enabled by default on certain machines, usually
8509 those which have no call-preserved registers to use instead.
8510
8511 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8512
8513 @item -fcombine-stack-adjustments
8514 @opindex fcombine-stack-adjustments
8515 Tracks stack adjustments (pushes and pops) and stack memory references
8516 and then tries to find ways to combine them.
8517
8518 Enabled by default at @option{-O1} and higher.
8519
8520 @item -fipa-ra
8521 @opindex fipa-ra
8522 Use caller save registers for allocation if those registers are not used by
8523 any called function. In that case it is not necessary to save and restore
8524 them around calls. This is only possible if called functions are part of
8525 same compilation unit as current function and they are compiled before it.
8526
8527 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8528
8529 @item -fconserve-stack
8530 @opindex fconserve-stack
8531 Attempt to minimize stack usage. The compiler attempts to use less
8532 stack space, even if that makes the program slower. This option
8533 implies setting the @option{large-stack-frame} parameter to 100
8534 and the @option{large-stack-frame-growth} parameter to 400.
8535
8536 @item -ftree-reassoc
8537 @opindex ftree-reassoc
8538 Perform reassociation on trees. This flag is enabled by default
8539 at @option{-O} and higher.
8540
8541 @item -ftree-pre
8542 @opindex ftree-pre
8543 Perform partial redundancy elimination (PRE) on trees. This flag is
8544 enabled by default at @option{-O2} and @option{-O3}.
8545
8546 @item -ftree-partial-pre
8547 @opindex ftree-partial-pre
8548 Make partial redundancy elimination (PRE) more aggressive. This flag is
8549 enabled by default at @option{-O3}.
8550
8551 @item -ftree-forwprop
8552 @opindex ftree-forwprop
8553 Perform forward propagation on trees. This flag is enabled by default
8554 at @option{-O} and higher.
8555
8556 @item -ftree-fre
8557 @opindex ftree-fre
8558 Perform full redundancy elimination (FRE) on trees. The difference
8559 between FRE and PRE is that FRE only considers expressions
8560 that are computed on all paths leading to the redundant computation.
8561 This analysis is faster than PRE, though it exposes fewer redundancies.
8562 This flag is enabled by default at @option{-O} and higher.
8563
8564 @item -ftree-phiprop
8565 @opindex ftree-phiprop
8566 Perform hoisting of loads from conditional pointers on trees. This
8567 pass is enabled by default at @option{-O} and higher.
8568
8569 @item -fhoist-adjacent-loads
8570 @opindex fhoist-adjacent-loads
8571 Speculatively hoist loads from both branches of an if-then-else if the
8572 loads are from adjacent locations in the same structure and the target
8573 architecture has a conditional move instruction. This flag is enabled
8574 by default at @option{-O2} and higher.
8575
8576 @item -ftree-copy-prop
8577 @opindex ftree-copy-prop
8578 Perform copy propagation on trees. This pass eliminates unnecessary
8579 copy operations. This flag is enabled by default at @option{-O} and
8580 higher.
8581
8582 @item -fipa-pure-const
8583 @opindex fipa-pure-const
8584 Discover which functions are pure or constant.
8585 Enabled by default at @option{-O} and higher.
8586
8587 @item -fipa-reference
8588 @opindex fipa-reference
8589 Discover which static variables do not escape the
8590 compilation unit.
8591 Enabled by default at @option{-O} and higher.
8592
8593 @item -fipa-pta
8594 @opindex fipa-pta
8595 Perform interprocedural pointer analysis and interprocedural modification
8596 and reference analysis. This option can cause excessive memory and
8597 compile-time usage on large compilation units. It is not enabled by
8598 default at any optimization level.
8599
8600 @item -fipa-profile
8601 @opindex fipa-profile
8602 Perform interprocedural profile propagation. The functions called only from
8603 cold functions are marked as cold. Also functions executed once (such as
8604 @code{cold}, @code{noreturn}, static constructors or destructors) are identified. Cold
8605 functions and loop less parts of functions executed once are then optimized for
8606 size.
8607 Enabled by default at @option{-O} and higher.
8608
8609 @item -fipa-cp
8610 @opindex fipa-cp
8611 Perform interprocedural constant propagation.
8612 This optimization analyzes the program to determine when values passed
8613 to functions are constants and then optimizes accordingly.
8614 This optimization can substantially increase performance
8615 if the application has constants passed to functions.
8616 This flag is enabled by default at @option{-O2}, @option{-Os} and @option{-O3}.
8617
8618 @item -fipa-cp-clone
8619 @opindex fipa-cp-clone
8620 Perform function cloning to make interprocedural constant propagation stronger.
8621 When enabled, interprocedural constant propagation performs function cloning
8622 when externally visible function can be called with constant arguments.
8623 Because this optimization can create multiple copies of functions,
8624 it may significantly increase code size
8625 (see @option{--param ipcp-unit-growth=@var{value}}).
8626 This flag is enabled by default at @option{-O3}.
8627
8628 @item -fipa-cp-alignment
8629 @opindex -fipa-cp-alignment
8630 When enabled, this optimization propagates alignment of function
8631 parameters to support better vectorization and string operations.
8632
8633 This flag is enabled by default at @option{-O2} and @option{-Os}. It
8634 requires that @option{-fipa-cp} is enabled.
8635
8636 @item -fipa-icf
8637 @opindex fipa-icf
8638 Perform Identical Code Folding for functions and read-only variables.
8639 The optimization reduces code size and may disturb unwind stacks by replacing
8640 a function by equivalent one with a different name. The optimization works
8641 more effectively with link time optimization enabled.
8642
8643 Nevertheless the behavior is similar to Gold Linker ICF optimization, GCC ICF
8644 works on different levels and thus the optimizations are not same - there are
8645 equivalences that are found only by GCC and equivalences found only by Gold.
8646
8647 This flag is enabled by default at @option{-O2} and @option{-Os}.
8648
8649 @item -fisolate-erroneous-paths-dereference
8650 @opindex fisolate-erroneous-paths-dereference
8651 Detect paths that trigger erroneous or undefined behavior due to
8652 dereferencing a null pointer. Isolate those paths from the main control
8653 flow and turn the statement with erroneous or undefined behavior into a trap.
8654 This flag is enabled by default at @option{-O2} and higher and depends on
8655 @option{-fdelete-null-pointer-checks} also being enabled.
8656
8657 @item -fisolate-erroneous-paths-attribute
8658 @opindex fisolate-erroneous-paths-attribute
8659 Detect paths that trigger erroneous or undefined behavior due a null value
8660 being used in a way forbidden by a @code{returns_nonnull} or @code{nonnull}
8661 attribute. Isolate those paths from the main control flow and turn the
8662 statement with erroneous or undefined behavior into a trap. This is not
8663 currently enabled, but may be enabled by @option{-O2} in the future.
8664
8665 @item -ftree-sink
8666 @opindex ftree-sink
8667 Perform forward store motion on trees. This flag is
8668 enabled by default at @option{-O} and higher.
8669
8670 @item -ftree-bit-ccp
8671 @opindex ftree-bit-ccp
8672 Perform sparse conditional bit constant propagation on trees and propagate
8673 pointer alignment information.
8674 This pass only operates on local scalar variables and is enabled by default
8675 at @option{-O} and higher. It requires that @option{-ftree-ccp} is enabled.
8676
8677 @item -ftree-ccp
8678 @opindex ftree-ccp
8679 Perform sparse conditional constant propagation (CCP) on trees. This
8680 pass only operates on local scalar variables and is enabled by default
8681 at @option{-O} and higher.
8682
8683 @item -fssa-phiopt
8684 @opindex fssa-phiopt
8685 Perform pattern matching on SSA PHI nodes to optimize conditional
8686 code. This pass is enabled by default at @option{-O} and higher.
8687
8688 @item -ftree-switch-conversion
8689 @opindex ftree-switch-conversion
8690 Perform conversion of simple initializations in a switch to
8691 initializations from a scalar array. This flag is enabled by default
8692 at @option{-O2} and higher.
8693
8694 @item -ftree-tail-merge
8695 @opindex ftree-tail-merge
8696 Look for identical code sequences. When found, replace one with a jump to the
8697 other. This optimization is known as tail merging or cross jumping. This flag
8698 is enabled by default at @option{-O2} and higher. The compilation time
8699 in this pass can
8700 be limited using @option{max-tail-merge-comparisons} parameter and
8701 @option{max-tail-merge-iterations} parameter.
8702
8703 @item -ftree-dce
8704 @opindex ftree-dce
8705 Perform dead code elimination (DCE) on trees. This flag is enabled by
8706 default at @option{-O} and higher.
8707
8708 @item -ftree-builtin-call-dce
8709 @opindex ftree-builtin-call-dce
8710 Perform conditional dead code elimination (DCE) for calls to built-in functions
8711 that may set @code{errno} but are otherwise side-effect free. This flag is
8712 enabled by default at @option{-O2} and higher if @option{-Os} is not also
8713 specified.
8714
8715 @item -ftree-dominator-opts
8716 @opindex ftree-dominator-opts
8717 Perform a variety of simple scalar cleanups (constant/copy
8718 propagation, redundancy elimination, range propagation and expression
8719 simplification) based on a dominator tree traversal. This also
8720 performs jump threading (to reduce jumps to jumps). This flag is
8721 enabled by default at @option{-O} and higher.
8722
8723 @item -ftree-dse
8724 @opindex ftree-dse
8725 Perform dead store elimination (DSE) on trees. A dead store is a store into
8726 a memory location that is later overwritten by another store without
8727 any intervening loads. In this case the earlier store can be deleted. This
8728 flag is enabled by default at @option{-O} and higher.
8729
8730 @item -ftree-ch
8731 @opindex ftree-ch
8732 Perform loop header copying on trees. This is beneficial since it increases
8733 effectiveness of code motion optimizations. It also saves one jump. This flag
8734 is enabled by default at @option{-O} and higher. It is not enabled
8735 for @option{-Os}, since it usually increases code size.
8736
8737 @item -ftree-loop-optimize
8738 @opindex ftree-loop-optimize
8739 Perform loop optimizations on trees. This flag is enabled by default
8740 at @option{-O} and higher.
8741
8742 @item -ftree-loop-linear
8743 @opindex ftree-loop-linear
8744 Perform loop interchange transformations on tree. Same as
8745 @option{-floop-interchange}. To use this code transformation, GCC has
8746 to be configured with @option{--with-isl} to enable the Graphite loop
8747 transformation infrastructure.
8748
8749 @item -floop-interchange
8750 @opindex floop-interchange
8751 Perform loop interchange transformations on loops. Interchanging two
8752 nested loops switches the inner and outer loops. For example, given a
8753 loop like:
8754 @smallexample
8755 DO J = 1, M
8756 DO I = 1, N
8757 A(J, I) = A(J, I) * C
8758 ENDDO
8759 ENDDO
8760 @end smallexample
8761 @noindent
8762 loop interchange transforms the loop as if it were written:
8763 @smallexample
8764 DO I = 1, N
8765 DO J = 1, M
8766 A(J, I) = A(J, I) * C
8767 ENDDO
8768 ENDDO
8769 @end smallexample
8770 which can be beneficial when @code{N} is larger than the caches,
8771 because in Fortran, the elements of an array are stored in memory
8772 contiguously by column, and the original loop iterates over rows,
8773 potentially creating at each access a cache miss. This optimization
8774 applies to all the languages supported by GCC and is not limited to
8775 Fortran. To use this code transformation, GCC has to be configured
8776 with @option{--with-isl} to enable the Graphite loop transformation
8777 infrastructure.
8778
8779 @item -floop-strip-mine
8780 @opindex floop-strip-mine
8781 Perform loop strip mining transformations on loops. Strip mining
8782 splits a loop into two nested loops. The outer loop has strides
8783 equal to the strip size and the inner loop has strides of the
8784 original loop within a strip. The strip length can be changed
8785 using the @option{loop-block-tile-size} parameter. For example,
8786 given a loop like:
8787 @smallexample
8788 DO I = 1, N
8789 A(I) = A(I) + C
8790 ENDDO
8791 @end smallexample
8792 @noindent
8793 loop strip mining transforms the loop as if it were written:
8794 @smallexample
8795 DO II = 1, N, 51
8796 DO I = II, min (II + 50, N)
8797 A(I) = A(I) + C
8798 ENDDO
8799 ENDDO
8800 @end smallexample
8801 This optimization applies to all the languages supported by GCC and is
8802 not limited to Fortran. To use this code transformation, GCC has to
8803 be configured with @option{--with-isl} to enable the Graphite loop
8804 transformation infrastructure.
8805
8806 @item -floop-block
8807 @opindex floop-block
8808 Perform loop blocking transformations on loops. Blocking strip mines
8809 each loop in the loop nest such that the memory accesses of the
8810 element loops fit inside caches. The strip length can be changed
8811 using the @option{loop-block-tile-size} parameter. For example, given
8812 a loop like:
8813 @smallexample
8814 DO I = 1, N
8815 DO J = 1, M
8816 A(J, I) = B(I) + C(J)
8817 ENDDO
8818 ENDDO
8819 @end smallexample
8820 @noindent
8821 loop blocking transforms the loop as if it were written:
8822 @smallexample
8823 DO II = 1, N, 51
8824 DO JJ = 1, M, 51
8825 DO I = II, min (II + 50, N)
8826 DO J = JJ, min (JJ + 50, M)
8827 A(J, I) = B(I) + C(J)
8828 ENDDO
8829 ENDDO
8830 ENDDO
8831 ENDDO
8832 @end smallexample
8833 which can be beneficial when @code{M} is larger than the caches,
8834 because the innermost loop iterates over a smaller amount of data
8835 which can be kept in the caches. This optimization applies to all the
8836 languages supported by GCC and is not limited to Fortran. To use this
8837 code transformation, GCC has to be configured with @option{--with-isl}
8838 to enable the Graphite loop transformation infrastructure.
8839
8840 @item -fgraphite-identity
8841 @opindex fgraphite-identity
8842 Enable the identity transformation for graphite. For every SCoP we generate
8843 the polyhedral representation and transform it back to gimple. Using
8844 @option{-fgraphite-identity} we can check the costs or benefits of the
8845 GIMPLE -> GRAPHITE -> GIMPLE transformation. Some minimal optimizations
8846 are also performed by the code generator ISL, like index splitting and
8847 dead code elimination in loops.
8848
8849 @item -floop-nest-optimize
8850 @opindex floop-nest-optimize
8851 Enable the ISL based loop nest optimizer. This is a generic loop nest
8852 optimizer based on the Pluto optimization algorithms. It calculates a loop
8853 structure optimized for data-locality and parallelism. This option
8854 is experimental.
8855
8856 @item -floop-unroll-and-jam
8857 @opindex floop-unroll-and-jam
8858 Enable unroll and jam for the ISL based loop nest optimizer. The unroll
8859 factor can be changed using the @option{loop-unroll-jam-size} parameter.
8860 The unrolled dimension (counting from the most inner one) can be changed
8861 using the @option{loop-unroll-jam-depth} parameter. .
8862
8863 @item -floop-parallelize-all
8864 @opindex floop-parallelize-all
8865 Use the Graphite data dependence analysis to identify loops that can
8866 be parallelized. Parallelize all the loops that can be analyzed to
8867 not contain loop carried dependences without checking that it is
8868 profitable to parallelize the loops.
8869
8870 @item -ftree-loop-if-convert
8871 @opindex ftree-loop-if-convert
8872 Attempt to transform conditional jumps in the innermost loops to
8873 branch-less equivalents. The intent is to remove control-flow from
8874 the innermost loops in order to improve the ability of the
8875 vectorization pass to handle these loops. This is enabled by default
8876 if vectorization is enabled.
8877
8878 @item -ftree-loop-if-convert-stores
8879 @opindex ftree-loop-if-convert-stores
8880 Attempt to also if-convert conditional jumps containing memory writes.
8881 This transformation can be unsafe for multi-threaded programs as it
8882 transforms conditional memory writes into unconditional memory writes.
8883 For example,
8884 @smallexample
8885 for (i = 0; i < N; i++)
8886 if (cond)
8887 A[i] = expr;
8888 @end smallexample
8889 is transformed to
8890 @smallexample
8891 for (i = 0; i < N; i++)
8892 A[i] = cond ? expr : A[i];
8893 @end smallexample
8894 potentially producing data races.
8895
8896 @item -ftree-loop-distribution
8897 @opindex ftree-loop-distribution
8898 Perform loop distribution. This flag can improve cache performance on
8899 big loop bodies and allow further loop optimizations, like
8900 parallelization or vectorization, to take place. For example, the loop
8901 @smallexample
8902 DO I = 1, N
8903 A(I) = B(I) + C
8904 D(I) = E(I) * F
8905 ENDDO
8906 @end smallexample
8907 is transformed to
8908 @smallexample
8909 DO I = 1, N
8910 A(I) = B(I) + C
8911 ENDDO
8912 DO I = 1, N
8913 D(I) = E(I) * F
8914 ENDDO
8915 @end smallexample
8916
8917 @item -ftree-loop-distribute-patterns
8918 @opindex ftree-loop-distribute-patterns
8919 Perform loop distribution of patterns that can be code generated with
8920 calls to a library. This flag is enabled by default at @option{-O3}.
8921
8922 This pass distributes the initialization loops and generates a call to
8923 memset zero. For example, the loop
8924 @smallexample
8925 DO I = 1, N
8926 A(I) = 0
8927 B(I) = A(I) + I
8928 ENDDO
8929 @end smallexample
8930 is transformed to
8931 @smallexample
8932 DO I = 1, N
8933 A(I) = 0
8934 ENDDO
8935 DO I = 1, N
8936 B(I) = A(I) + I
8937 ENDDO
8938 @end smallexample
8939 and the initialization loop is transformed into a call to memset zero.
8940
8941 @item -ftree-loop-im
8942 @opindex ftree-loop-im
8943 Perform loop invariant motion on trees. This pass moves only invariants that
8944 are hard to handle at RTL level (function calls, operations that expand to
8945 nontrivial sequences of insns). With @option{-funswitch-loops} it also moves
8946 operands of conditions that are invariant out of the loop, so that we can use
8947 just trivial invariantness analysis in loop unswitching. The pass also includes
8948 store motion.
8949
8950 @item -ftree-loop-ivcanon
8951 @opindex ftree-loop-ivcanon
8952 Create a canonical counter for number of iterations in loops for which
8953 determining number of iterations requires complicated analysis. Later
8954 optimizations then may determine the number easily. Useful especially
8955 in connection with unrolling.
8956
8957 @item -fivopts
8958 @opindex fivopts
8959 Perform induction variable optimizations (strength reduction, induction
8960 variable merging and induction variable elimination) on trees.
8961
8962 @item -ftree-parallelize-loops=n
8963 @opindex ftree-parallelize-loops
8964 Parallelize loops, i.e., split their iteration space to run in n threads.
8965 This is only possible for loops whose iterations are independent
8966 and can be arbitrarily reordered. The optimization is only
8967 profitable on multiprocessor machines, for loops that are CPU-intensive,
8968 rather than constrained e.g.@: by memory bandwidth. This option
8969 implies @option{-pthread}, and thus is only supported on targets
8970 that have support for @option{-pthread}.
8971
8972 @item -ftree-pta
8973 @opindex ftree-pta
8974 Perform function-local points-to analysis on trees. This flag is
8975 enabled by default at @option{-O} and higher.
8976
8977 @item -ftree-sra
8978 @opindex ftree-sra
8979 Perform scalar replacement of aggregates. This pass replaces structure
8980 references with scalars to prevent committing structures to memory too
8981 early. This flag is enabled by default at @option{-O} and higher.
8982
8983 @item -ftree-copyrename
8984 @opindex ftree-copyrename
8985 Perform copy renaming on trees. This pass attempts to rename compiler
8986 temporaries to other variables at copy locations, usually resulting in
8987 variable names which more closely resemble the original variables. This flag
8988 is enabled by default at @option{-O} and higher.
8989
8990 @item -ftree-coalesce-inlined-vars
8991 @opindex ftree-coalesce-inlined-vars
8992 Tell the copyrename pass (see @option{-ftree-copyrename}) to attempt to
8993 combine small user-defined variables too, but only if they are inlined
8994 from other functions. It is a more limited form of
8995 @option{-ftree-coalesce-vars}. This may harm debug information of such
8996 inlined variables, but it keeps variables of the inlined-into
8997 function apart from each other, such that they are more likely to
8998 contain the expected values in a debugging session.
8999
9000 @item -ftree-coalesce-vars
9001 @opindex ftree-coalesce-vars
9002 Tell the copyrename pass (see @option{-ftree-copyrename}) to attempt to
9003 combine small user-defined variables too, instead of just compiler
9004 temporaries. This may severely limit the ability to debug an optimized
9005 program compiled with @option{-fno-var-tracking-assignments}. In the
9006 negated form, this flag prevents SSA coalescing of user variables,
9007 including inlined ones. This option is enabled by default.
9008
9009 @item -ftree-ter
9010 @opindex ftree-ter
9011 Perform temporary expression replacement during the SSA->normal phase. Single
9012 use/single def temporaries are replaced at their use location with their
9013 defining expression. This results in non-GIMPLE code, but gives the expanders
9014 much more complex trees to work on resulting in better RTL generation. This is
9015 enabled by default at @option{-O} and higher.
9016
9017 @item -ftree-slsr
9018 @opindex ftree-slsr
9019 Perform straight-line strength reduction on trees. This recognizes related
9020 expressions involving multiplications and replaces them by less expensive
9021 calculations when possible. This is enabled by default at @option{-O} and
9022 higher.
9023
9024 @item -ftree-vectorize
9025 @opindex ftree-vectorize
9026 Perform vectorization on trees. This flag enables @option{-ftree-loop-vectorize}
9027 and @option{-ftree-slp-vectorize} if not explicitly specified.
9028
9029 @item -ftree-loop-vectorize
9030 @opindex ftree-loop-vectorize
9031 Perform loop vectorization on trees. This flag is enabled by default at
9032 @option{-O3} and when @option{-ftree-vectorize} is enabled.
9033
9034 @item -ftree-slp-vectorize
9035 @opindex ftree-slp-vectorize
9036 Perform basic block vectorization on trees. This flag is enabled by default at
9037 @option{-O3} and when @option{-ftree-vectorize} is enabled.
9038
9039 @item -fvect-cost-model=@var{model}
9040 @opindex fvect-cost-model
9041 Alter the cost model used for vectorization. The @var{model} argument
9042 should be one of @samp{unlimited}, @samp{dynamic} or @samp{cheap}.
9043 With the @samp{unlimited} model the vectorized code-path is assumed
9044 to be profitable while with the @samp{dynamic} model a runtime check
9045 guards the vectorized code-path to enable it only for iteration
9046 counts that will likely execute faster than when executing the original
9047 scalar loop. The @samp{cheap} model disables vectorization of
9048 loops where doing so would be cost prohibitive for example due to
9049 required runtime checks for data dependence or alignment but otherwise
9050 is equal to the @samp{dynamic} model.
9051 The default cost model depends on other optimization flags and is
9052 either @samp{dynamic} or @samp{cheap}.
9053
9054 @item -fsimd-cost-model=@var{model}
9055 @opindex fsimd-cost-model
9056 Alter the cost model used for vectorization of loops marked with the OpenMP
9057 or Cilk Plus simd directive. The @var{model} argument should be one of
9058 @samp{unlimited}, @samp{dynamic}, @samp{cheap}. All values of @var{model}
9059 have the same meaning as described in @option{-fvect-cost-model} and by
9060 default a cost model defined with @option{-fvect-cost-model} is used.
9061
9062 @item -ftree-vrp
9063 @opindex ftree-vrp
9064 Perform Value Range Propagation on trees. This is similar to the
9065 constant propagation pass, but instead of values, ranges of values are
9066 propagated. This allows the optimizers to remove unnecessary range
9067 checks like array bound checks and null pointer checks. This is
9068 enabled by default at @option{-O2} and higher. Null pointer check
9069 elimination is only done if @option{-fdelete-null-pointer-checks} is
9070 enabled.
9071
9072 @item -fsplit-ivs-in-unroller
9073 @opindex fsplit-ivs-in-unroller
9074 Enables expression of values of induction variables in later iterations
9075 of the unrolled loop using the value in the first iteration. This breaks
9076 long dependency chains, thus improving efficiency of the scheduling passes.
9077
9078 A combination of @option{-fweb} and CSE is often sufficient to obtain the
9079 same effect. However, that is not reliable in cases where the loop body
9080 is more complicated than a single basic block. It also does not work at all
9081 on some architectures due to restrictions in the CSE pass.
9082
9083 This optimization is enabled by default.
9084
9085 @item -fvariable-expansion-in-unroller
9086 @opindex fvariable-expansion-in-unroller
9087 With this option, the compiler creates multiple copies of some
9088 local variables when unrolling a loop, which can result in superior code.
9089
9090 @item -fpartial-inlining
9091 @opindex fpartial-inlining
9092 Inline parts of functions. This option has any effect only
9093 when inlining itself is turned on by the @option{-finline-functions}
9094 or @option{-finline-small-functions} options.
9095
9096 Enabled at level @option{-O2}.
9097
9098 @item -fpredictive-commoning
9099 @opindex fpredictive-commoning
9100 Perform predictive commoning optimization, i.e., reusing computations
9101 (especially memory loads and stores) performed in previous
9102 iterations of loops.
9103
9104 This option is enabled at level @option{-O3}.
9105
9106 @item -fprefetch-loop-arrays
9107 @opindex fprefetch-loop-arrays
9108 If supported by the target machine, generate instructions to prefetch
9109 memory to improve the performance of loops that access large arrays.
9110
9111 This option may generate better or worse code; results are highly
9112 dependent on the structure of loops within the source code.
9113
9114 Disabled at level @option{-Os}.
9115
9116 @item -fno-peephole
9117 @itemx -fno-peephole2
9118 @opindex fno-peephole
9119 @opindex fno-peephole2
9120 Disable any machine-specific peephole optimizations. The difference
9121 between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
9122 are implemented in the compiler; some targets use one, some use the
9123 other, a few use both.
9124
9125 @option{-fpeephole} is enabled by default.
9126 @option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9127
9128 @item -fno-guess-branch-probability
9129 @opindex fno-guess-branch-probability
9130 Do not guess branch probabilities using heuristics.
9131
9132 GCC uses heuristics to guess branch probabilities if they are
9133 not provided by profiling feedback (@option{-fprofile-arcs}). These
9134 heuristics are based on the control flow graph. If some branch probabilities
9135 are specified by @code{__builtin_expect}, then the heuristics are
9136 used to guess branch probabilities for the rest of the control flow graph,
9137 taking the @code{__builtin_expect} info into account. The interactions
9138 between the heuristics and @code{__builtin_expect} can be complex, and in
9139 some cases, it may be useful to disable the heuristics so that the effects
9140 of @code{__builtin_expect} are easier to understand.
9141
9142 The default is @option{-fguess-branch-probability} at levels
9143 @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9144
9145 @item -freorder-blocks
9146 @opindex freorder-blocks
9147 Reorder basic blocks in the compiled function in order to reduce number of
9148 taken branches and improve code locality.
9149
9150 Enabled at levels @option{-O2}, @option{-O3}.
9151
9152 @item -freorder-blocks-and-partition
9153 @opindex freorder-blocks-and-partition
9154 In addition to reordering basic blocks in the compiled function, in order
9155 to reduce number of taken branches, partitions hot and cold basic blocks
9156 into separate sections of the assembly and .o files, to improve
9157 paging and cache locality performance.
9158
9159 This optimization is automatically turned off in the presence of
9160 exception handling, for linkonce sections, for functions with a user-defined
9161 section attribute and on any architecture that does not support named
9162 sections.
9163
9164 Enabled for x86 at levels @option{-O2}, @option{-O3}.
9165
9166 @item -freorder-functions
9167 @opindex freorder-functions
9168 Reorder functions in the object file in order to
9169 improve code locality. This is implemented by using special
9170 subsections @code{.text.hot} for most frequently executed functions and
9171 @code{.text.unlikely} for unlikely executed functions. Reordering is done by
9172 the linker so object file format must support named sections and linker must
9173 place them in a reasonable way.
9174
9175 Also profile feedback must be available to make this option effective. See
9176 @option{-fprofile-arcs} for details.
9177
9178 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9179
9180 @item -fstrict-aliasing
9181 @opindex fstrict-aliasing
9182 Allow the compiler to assume the strictest aliasing rules applicable to
9183 the language being compiled. For C (and C++), this activates
9184 optimizations based on the type of expressions. In particular, an
9185 object of one type is assumed never to reside at the same address as an
9186 object of a different type, unless the types are almost the same. For
9187 example, an @code{unsigned int} can alias an @code{int}, but not a
9188 @code{void*} or a @code{double}. A character type may alias any other
9189 type.
9190
9191 @anchor{Type-punning}Pay special attention to code like this:
9192 @smallexample
9193 union a_union @{
9194 int i;
9195 double d;
9196 @};
9197
9198 int f() @{
9199 union a_union t;
9200 t.d = 3.0;
9201 return t.i;
9202 @}
9203 @end smallexample
9204 The practice of reading from a different union member than the one most
9205 recently written to (called ``type-punning'') is common. Even with
9206 @option{-fstrict-aliasing}, type-punning is allowed, provided the memory
9207 is accessed through the union type. So, the code above works as
9208 expected. @xref{Structures unions enumerations and bit-fields
9209 implementation}. However, this code might not:
9210 @smallexample
9211 int f() @{
9212 union a_union t;
9213 int* ip;
9214 t.d = 3.0;
9215 ip = &t.i;
9216 return *ip;
9217 @}
9218 @end smallexample
9219
9220 Similarly, access by taking the address, casting the resulting pointer
9221 and dereferencing the result has undefined behavior, even if the cast
9222 uses a union type, e.g.:
9223 @smallexample
9224 int f() @{
9225 double d = 3.0;
9226 return ((union a_union *) &d)->i;
9227 @}
9228 @end smallexample
9229
9230 The @option{-fstrict-aliasing} option is enabled at levels
9231 @option{-O2}, @option{-O3}, @option{-Os}.
9232
9233 @item -fstrict-overflow
9234 @opindex fstrict-overflow
9235 Allow the compiler to assume strict signed overflow rules, depending
9236 on the language being compiled. For C (and C++) this means that
9237 overflow when doing arithmetic with signed numbers is undefined, which
9238 means that the compiler may assume that it does not happen. This
9239 permits various optimizations. For example, the compiler assumes
9240 that an expression like @code{i + 10 > i} is always true for
9241 signed @code{i}. This assumption is only valid if signed overflow is
9242 undefined, as the expression is false if @code{i + 10} overflows when
9243 using twos complement arithmetic. When this option is in effect any
9244 attempt to determine whether an operation on signed numbers
9245 overflows must be written carefully to not actually involve overflow.
9246
9247 This option also allows the compiler to assume strict pointer
9248 semantics: given a pointer to an object, if adding an offset to that
9249 pointer does not produce a pointer to the same object, the addition is
9250 undefined. This permits the compiler to conclude that @code{p + u >
9251 p} is always true for a pointer @code{p} and unsigned integer
9252 @code{u}. This assumption is only valid because pointer wraparound is
9253 undefined, as the expression is false if @code{p + u} overflows using
9254 twos complement arithmetic.
9255
9256 See also the @option{-fwrapv} option. Using @option{-fwrapv} means
9257 that integer signed overflow is fully defined: it wraps. When
9258 @option{-fwrapv} is used, there is no difference between
9259 @option{-fstrict-overflow} and @option{-fno-strict-overflow} for
9260 integers. With @option{-fwrapv} certain types of overflow are
9261 permitted. For example, if the compiler gets an overflow when doing
9262 arithmetic on constants, the overflowed value can still be used with
9263 @option{-fwrapv}, but not otherwise.
9264
9265 The @option{-fstrict-overflow} option is enabled at levels
9266 @option{-O2}, @option{-O3}, @option{-Os}.
9267
9268 @item -falign-functions
9269 @itemx -falign-functions=@var{n}
9270 @opindex falign-functions
9271 Align the start of functions to the next power-of-two greater than
9272 @var{n}, skipping up to @var{n} bytes. For instance,
9273 @option{-falign-functions=32} aligns functions to the next 32-byte
9274 boundary, but @option{-falign-functions=24} aligns to the next
9275 32-byte boundary only if this can be done by skipping 23 bytes or less.
9276
9277 @option{-fno-align-functions} and @option{-falign-functions=1} are
9278 equivalent and mean that functions are not aligned.
9279
9280 Some assemblers only support this flag when @var{n} is a power of two;
9281 in that case, it is rounded up.
9282
9283 If @var{n} is not specified or is zero, use a machine-dependent default.
9284
9285 Enabled at levels @option{-O2}, @option{-O3}.
9286
9287 @item -falign-labels
9288 @itemx -falign-labels=@var{n}
9289 @opindex falign-labels
9290 Align all branch targets to a power-of-two boundary, skipping up to
9291 @var{n} bytes like @option{-falign-functions}. This option can easily
9292 make code slower, because it must insert dummy operations for when the
9293 branch target is reached in the usual flow of the code.
9294
9295 @option{-fno-align-labels} and @option{-falign-labels=1} are
9296 equivalent and mean that labels are not aligned.
9297
9298 If @option{-falign-loops} or @option{-falign-jumps} are applicable and
9299 are greater than this value, then their values are used instead.
9300
9301 If @var{n} is not specified or is zero, use a machine-dependent default
9302 which is very likely to be @samp{1}, meaning no alignment.
9303
9304 Enabled at levels @option{-O2}, @option{-O3}.
9305
9306 @item -falign-loops
9307 @itemx -falign-loops=@var{n}
9308 @opindex falign-loops
9309 Align loops to a power-of-two boundary, skipping up to @var{n} bytes
9310 like @option{-falign-functions}. If the loops are
9311 executed many times, this makes up for any execution of the dummy
9312 operations.
9313
9314 @option{-fno-align-loops} and @option{-falign-loops=1} are
9315 equivalent and mean that loops are not aligned.
9316
9317 If @var{n} is not specified or is zero, use a machine-dependent default.
9318
9319 Enabled at levels @option{-O2}, @option{-O3}.
9320
9321 @item -falign-jumps
9322 @itemx -falign-jumps=@var{n}
9323 @opindex falign-jumps
9324 Align branch targets to a power-of-two boundary, for branch targets
9325 where the targets can only be reached by jumping, skipping up to @var{n}
9326 bytes like @option{-falign-functions}. In this case, no dummy operations
9327 need be executed.
9328
9329 @option{-fno-align-jumps} and @option{-falign-jumps=1} are
9330 equivalent and mean that loops are not aligned.
9331
9332 If @var{n} is not specified or is zero, use a machine-dependent default.
9333
9334 Enabled at levels @option{-O2}, @option{-O3}.
9335
9336 @item -funit-at-a-time
9337 @opindex funit-at-a-time
9338 This option is left for compatibility reasons. @option{-funit-at-a-time}
9339 has no effect, while @option{-fno-unit-at-a-time} implies
9340 @option{-fno-toplevel-reorder} and @option{-fno-section-anchors}.
9341
9342 Enabled by default.
9343
9344 @item -fno-toplevel-reorder
9345 @opindex fno-toplevel-reorder
9346 Do not reorder top-level functions, variables, and @code{asm}
9347 statements. Output them in the same order that they appear in the
9348 input file. When this option is used, unreferenced static variables
9349 are not removed. This option is intended to support existing code
9350 that relies on a particular ordering. For new code, it is better to
9351 use attributes when possible.
9352
9353 Enabled at level @option{-O0}. When disabled explicitly, it also implies
9354 @option{-fno-section-anchors}, which is otherwise enabled at @option{-O0} on some
9355 targets.
9356
9357 @item -fweb
9358 @opindex fweb
9359 Constructs webs as commonly used for register allocation purposes and assign
9360 each web individual pseudo register. This allows the register allocation pass
9361 to operate on pseudos directly, but also strengthens several other optimization
9362 passes, such as CSE, loop optimizer and trivial dead code remover. It can,
9363 however, make debugging impossible, since variables no longer stay in a
9364 ``home register''.
9365
9366 Enabled by default with @option{-funroll-loops}.
9367
9368 @item -fwhole-program
9369 @opindex fwhole-program
9370 Assume that the current compilation unit represents the whole program being
9371 compiled. All public functions and variables with the exception of @code{main}
9372 and those merged by attribute @code{externally_visible} become static functions
9373 and in effect are optimized more aggressively by interprocedural optimizers.
9374
9375 This option should not be used in combination with @option{-flto}.
9376 Instead relying on a linker plugin should provide safer and more precise
9377 information.
9378
9379 @item -flto[=@var{n}]
9380 @opindex flto
9381 This option runs the standard link-time optimizer. When invoked
9382 with source code, it generates GIMPLE (one of GCC's internal
9383 representations) and writes it to special ELF sections in the object
9384 file. When the object files are linked together, all the function
9385 bodies are read from these ELF sections and instantiated as if they
9386 had been part of the same translation unit.
9387
9388 To use the link-time optimizer, @option{-flto} and optimization
9389 options should be specified at compile time and during the final link.
9390 For example:
9391
9392 @smallexample
9393 gcc -c -O2 -flto foo.c
9394 gcc -c -O2 -flto bar.c
9395 gcc -o myprog -flto -O2 foo.o bar.o
9396 @end smallexample
9397
9398 The first two invocations to GCC save a bytecode representation
9399 of GIMPLE into special ELF sections inside @file{foo.o} and
9400 @file{bar.o}. The final invocation reads the GIMPLE bytecode from
9401 @file{foo.o} and @file{bar.o}, merges the two files into a single
9402 internal image, and compiles the result as usual. Since both
9403 @file{foo.o} and @file{bar.o} are merged into a single image, this
9404 causes all the interprocedural analyses and optimizations in GCC to
9405 work across the two files as if they were a single one. This means,
9406 for example, that the inliner is able to inline functions in
9407 @file{bar.o} into functions in @file{foo.o} and vice-versa.
9408
9409 Another (simpler) way to enable link-time optimization is:
9410
9411 @smallexample
9412 gcc -o myprog -flto -O2 foo.c bar.c
9413 @end smallexample
9414
9415 The above generates bytecode for @file{foo.c} and @file{bar.c},
9416 merges them together into a single GIMPLE representation and optimizes
9417 them as usual to produce @file{myprog}.
9418
9419 The only important thing to keep in mind is that to enable link-time
9420 optimizations you need to use the GCC driver to perform the link-step.
9421 GCC then automatically performs link-time optimization if any of the
9422 objects involved were compiled with the @option{-flto} command-line option.
9423 You generally
9424 should specify the optimization options to be used for link-time
9425 optimization though GCC tries to be clever at guessing an
9426 optimization level to use from the options used at compile-time
9427 if you fail to specify one at link-time. You can always override
9428 the automatic decision to do link-time optimization at link-time
9429 by passing @option{-fno-lto} to the link command.
9430
9431 To make whole program optimization effective, it is necessary to make
9432 certain whole program assumptions. The compiler needs to know
9433 what functions and variables can be accessed by libraries and runtime
9434 outside of the link-time optimized unit. When supported by the linker,
9435 the linker plugin (see @option{-fuse-linker-plugin}) passes information
9436 to the compiler about used and externally visible symbols. When
9437 the linker plugin is not available, @option{-fwhole-program} should be
9438 used to allow the compiler to make these assumptions, which leads
9439 to more aggressive optimization decisions.
9440
9441 When @option{-fuse-linker-plugin} is not enabled then, when a file is
9442 compiled with @option{-flto}, the generated object file is larger than
9443 a regular object file because it contains GIMPLE bytecodes and the usual
9444 final code (see @option{-ffat-lto-objects}. This means that
9445 object files with LTO information can be linked as normal object
9446 files; if @option{-fno-lto} is passed to the linker, no
9447 interprocedural optimizations are applied. Note that when
9448 @option{-fno-fat-lto-objects} is enabled the compile-stage is faster
9449 but you cannot perform a regular, non-LTO link on them.
9450
9451 Additionally, the optimization flags used to compile individual files
9452 are not necessarily related to those used at link time. For instance,
9453
9454 @smallexample
9455 gcc -c -O0 -ffat-lto-objects -flto foo.c
9456 gcc -c -O0 -ffat-lto-objects -flto bar.c
9457 gcc -o myprog -O3 foo.o bar.o
9458 @end smallexample
9459
9460 This produces individual object files with unoptimized assembler
9461 code, but the resulting binary @file{myprog} is optimized at
9462 @option{-O3}. If, instead, the final binary is generated with
9463 @option{-fno-lto}, then @file{myprog} is not optimized.
9464
9465 When producing the final binary, GCC only
9466 applies link-time optimizations to those files that contain bytecode.
9467 Therefore, you can mix and match object files and libraries with
9468 GIMPLE bytecodes and final object code. GCC automatically selects
9469 which files to optimize in LTO mode and which files to link without
9470 further processing.
9471
9472 There are some code generation flags preserved by GCC when
9473 generating bytecodes, as they need to be used during the final link
9474 stage. Generally options specified at link-time override those
9475 specified at compile-time.
9476
9477 If you do not specify an optimization level option @option{-O} at
9478 link-time then GCC computes one based on the optimization levels
9479 used when compiling the object files. The highest optimization
9480 level wins here.
9481
9482 Currently, the following options and their setting are take from
9483 the first object file that explicitely specified it:
9484 @option{-fPIC}, @option{-fpic}, @option{-fpie}, @option{-fcommon},
9485 @option{-fexceptions}, @option{-fnon-call-exceptions}, @option{-fgnu-tm}
9486 and all the @option{-m} target flags.
9487
9488 Certain ABI changing flags are required to match in all compilation-units
9489 and trying to override this at link-time with a conflicting value
9490 is ignored. This includes options such as @option{-freg-struct-return}
9491 and @option{-fpcc-struct-return}.
9492
9493 Other options such as @option{-ffp-contract}, @option{-fno-strict-overflow},
9494 @option{-fwrapv}, @option{-fno-trapv} or @option{-fno-strict-aliasing}
9495 are passed through to the link stage and merged conservatively for
9496 conflicting translation units. Specifically
9497 @option{-fno-strict-overflow}, @option{-fwrapv} and @option{-fno-trapv} take
9498 precedence and for example @option{-ffp-contract=off} takes precedence
9499 over @option{-ffp-contract=fast}. You can override them at linke-time.
9500
9501 It is recommended that you compile all the files participating in the
9502 same link with the same options and also specify those options at
9503 link time.
9504
9505 If LTO encounters objects with C linkage declared with incompatible
9506 types in separate translation units to be linked together (undefined
9507 behavior according to ISO C99 6.2.7), a non-fatal diagnostic may be
9508 issued. The behavior is still undefined at run time. Similar
9509 diagnostics may be raised for other languages.
9510
9511 Another feature of LTO is that it is possible to apply interprocedural
9512 optimizations on files written in different languages:
9513
9514 @smallexample
9515 gcc -c -flto foo.c
9516 g++ -c -flto bar.cc
9517 gfortran -c -flto baz.f90
9518 g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
9519 @end smallexample
9520
9521 Notice that the final link is done with @command{g++} to get the C++
9522 runtime libraries and @option{-lgfortran} is added to get the Fortran
9523 runtime libraries. In general, when mixing languages in LTO mode, you
9524 should use the same link command options as when mixing languages in a
9525 regular (non-LTO) compilation.
9526
9527 If object files containing GIMPLE bytecode are stored in a library archive, say
9528 @file{libfoo.a}, it is possible to extract and use them in an LTO link if you
9529 are using a linker with plugin support. To create static libraries suitable
9530 for LTO, use @command{gcc-ar} and @command{gcc-ranlib} instead of @command{ar}
9531 and @command{ranlib};
9532 to show the symbols of object files with GIMPLE bytecode, use
9533 @command{gcc-nm}. Those commands require that @command{ar}, @command{ranlib}
9534 and @command{nm} have been compiled with plugin support. At link time, use the the
9535 flag @option{-fuse-linker-plugin} to ensure that the library participates in
9536 the LTO optimization process:
9537
9538 @smallexample
9539 gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
9540 @end smallexample
9541
9542 With the linker plugin enabled, the linker extracts the needed
9543 GIMPLE files from @file{libfoo.a} and passes them on to the running GCC
9544 to make them part of the aggregated GIMPLE image to be optimized.
9545
9546 If you are not using a linker with plugin support and/or do not
9547 enable the linker plugin, then the objects inside @file{libfoo.a}
9548 are extracted and linked as usual, but they do not participate
9549 in the LTO optimization process. In order to make a static library suitable
9550 for both LTO optimization and usual linkage, compile its object files with
9551 @option{-flto} @option{-ffat-lto-objects}.
9552
9553 Link-time optimizations do not require the presence of the whole program to
9554 operate. If the program does not require any symbols to be exported, it is
9555 possible to combine @option{-flto} and @option{-fwhole-program} to allow
9556 the interprocedural optimizers to use more aggressive assumptions which may
9557 lead to improved optimization opportunities.
9558 Use of @option{-fwhole-program} is not needed when linker plugin is
9559 active (see @option{-fuse-linker-plugin}).
9560
9561 The current implementation of LTO makes no
9562 attempt to generate bytecode that is portable between different
9563 types of hosts. The bytecode files are versioned and there is a
9564 strict version check, so bytecode files generated in one version of
9565 GCC do not work with an older or newer version of GCC.
9566
9567 Link-time optimization does not work well with generation of debugging
9568 information. Combining @option{-flto} with
9569 @option{-g} is currently experimental and expected to produce unexpected
9570 results.
9571
9572 If you specify the optional @var{n}, the optimization and code
9573 generation done at link time is executed in parallel using @var{n}
9574 parallel jobs by utilizing an installed @command{make} program. The
9575 environment variable @env{MAKE} may be used to override the program
9576 used. The default value for @var{n} is 1.
9577
9578 You can also specify @option{-flto=jobserver} to use GNU make's
9579 job server mode to determine the number of parallel jobs. This
9580 is useful when the Makefile calling GCC is already executing in parallel.
9581 You must prepend a @samp{+} to the command recipe in the parent Makefile
9582 for this to work. This option likely only works if @env{MAKE} is
9583 GNU make.
9584
9585 @item -flto-partition=@var{alg}
9586 @opindex flto-partition
9587 Specify the partitioning algorithm used by the link-time optimizer.
9588 The value is either @samp{1to1} to specify a partitioning mirroring
9589 the original source files or @samp{balanced} to specify partitioning
9590 into equally sized chunks (whenever possible) or @samp{max} to create
9591 new partition for every symbol where possible. Specifying @samp{none}
9592 as an algorithm disables partitioning and streaming completely.
9593 The default value is @samp{balanced}. While @samp{1to1} can be used
9594 as an workaround for various code ordering issues, the @samp{max}
9595 partitioning is intended for internal testing only.
9596 The value @samp{one} specifies that exactly one partition should be
9597 used while the value @samp{none} bypasses partitioning and executes
9598 the link-time optimization step directly from the WPA phase.
9599
9600 @item -flto-odr-type-merging
9601 @opindex flto-odr-type-merging
9602 Enable streaming of mangled types names of C++ types and their unification
9603 at linktime. This increases size of LTO object files, but enable
9604 diagnostics about One Definition Rule violations.
9605
9606 @item -flto-compression-level=@var{n}
9607 @opindex flto-compression-level
9608 This option specifies the level of compression used for intermediate
9609 language written to LTO object files, and is only meaningful in
9610 conjunction with LTO mode (@option{-flto}). Valid
9611 values are 0 (no compression) to 9 (maximum compression). Values
9612 outside this range are clamped to either 0 or 9. If the option is not
9613 given, a default balanced compression setting is used.
9614
9615 @item -flto-report
9616 @opindex flto-report
9617 Prints a report with internal details on the workings of the link-time
9618 optimizer. The contents of this report vary from version to version.
9619 It is meant to be useful to GCC developers when processing object
9620 files in LTO mode (via @option{-flto}).
9621
9622 Disabled by default.
9623
9624 @item -flto-report-wpa
9625 @opindex flto-report-wpa
9626 Like @option{-flto-report}, but only print for the WPA phase of Link
9627 Time Optimization.
9628
9629 @item -fuse-linker-plugin
9630 @opindex fuse-linker-plugin
9631 Enables the use of a linker plugin during link-time optimization. This
9632 option relies on plugin support in the linker, which is available in gold
9633 or in GNU ld 2.21 or newer.
9634
9635 This option enables the extraction of object files with GIMPLE bytecode out
9636 of library archives. This improves the quality of optimization by exposing
9637 more code to the link-time optimizer. This information specifies what
9638 symbols can be accessed externally (by non-LTO object or during dynamic
9639 linking). Resulting code quality improvements on binaries (and shared
9640 libraries that use hidden visibility) are similar to @option{-fwhole-program}.
9641 See @option{-flto} for a description of the effect of this flag and how to
9642 use it.
9643
9644 This option is enabled by default when LTO support in GCC is enabled
9645 and GCC was configured for use with
9646 a linker supporting plugins (GNU ld 2.21 or newer or gold).
9647
9648 @item -ffat-lto-objects
9649 @opindex ffat-lto-objects
9650 Fat LTO objects are object files that contain both the intermediate language
9651 and the object code. This makes them usable for both LTO linking and normal
9652 linking. This option is effective only when compiling with @option{-flto}
9653 and is ignored at link time.
9654
9655 @option{-fno-fat-lto-objects} improves compilation time over plain LTO, but
9656 requires the complete toolchain to be aware of LTO. It requires a linker with
9657 linker plugin support for basic functionality. Additionally,
9658 @command{nm}, @command{ar} and @command{ranlib}
9659 need to support linker plugins to allow a full-featured build environment
9660 (capable of building static libraries etc). GCC provides the @command{gcc-ar},
9661 @command{gcc-nm}, @command{gcc-ranlib} wrappers to pass the right options
9662 to these tools. With non fat LTO makefiles need to be modified to use them.
9663
9664 The default is @option{-fno-fat-lto-objects} on targets with linker plugin
9665 support.
9666
9667 @item -fcompare-elim
9668 @opindex fcompare-elim
9669 After register allocation and post-register allocation instruction splitting,
9670 identify arithmetic instructions that compute processor flags similar to a
9671 comparison operation based on that arithmetic. If possible, eliminate the
9672 explicit comparison operation.
9673
9674 This pass only applies to certain targets that cannot explicitly represent
9675 the comparison operation before register allocation is complete.
9676
9677 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9678
9679 @item -fcprop-registers
9680 @opindex fcprop-registers
9681 After register allocation and post-register allocation instruction splitting,
9682 perform a copy-propagation pass to try to reduce scheduling dependencies
9683 and occasionally eliminate the copy.
9684
9685 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9686
9687 @item -fprofile-correction
9688 @opindex fprofile-correction
9689 Profiles collected using an instrumented binary for multi-threaded programs may
9690 be inconsistent due to missed counter updates. When this option is specified,
9691 GCC uses heuristics to correct or smooth out such inconsistencies. By
9692 default, GCC emits an error message when an inconsistent profile is detected.
9693
9694 @item -fprofile-dir=@var{path}
9695 @opindex fprofile-dir
9696
9697 Set the directory to search for the profile data files in to @var{path}.
9698 This option affects only the profile data generated by
9699 @option{-fprofile-generate}, @option{-ftest-coverage}, @option{-fprofile-arcs}
9700 and used by @option{-fprofile-use} and @option{-fbranch-probabilities}
9701 and its related options. Both absolute and relative paths can be used.
9702 By default, GCC uses the current directory as @var{path}, thus the
9703 profile data file appears in the same directory as the object file.
9704
9705 @item -fprofile-generate
9706 @itemx -fprofile-generate=@var{path}
9707 @opindex fprofile-generate
9708
9709 Enable options usually used for instrumenting application to produce
9710 profile useful for later recompilation with profile feedback based
9711 optimization. You must use @option{-fprofile-generate} both when
9712 compiling and when linking your program.
9713
9714 The following options are enabled: @option{-fprofile-arcs}, @option{-fprofile-values}, @option{-fvpt}.
9715
9716 If @var{path} is specified, GCC looks at the @var{path} to find
9717 the profile feedback data files. See @option{-fprofile-dir}.
9718
9719 @item -fprofile-use
9720 @itemx -fprofile-use=@var{path}
9721 @opindex fprofile-use
9722 Enable profile feedback-directed optimizations,
9723 and the following optimizations
9724 which are generally profitable only with profile feedback available:
9725 @option{-fbranch-probabilities}, @option{-fvpt},
9726 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer},
9727 @option{-ftree-vectorize}, and @option{ftree-loop-distribute-patterns}.
9728
9729 By default, GCC emits an error message if the feedback profiles do not
9730 match the source code. This error can be turned into a warning by using
9731 @option{-Wcoverage-mismatch}. Note this may result in poorly optimized
9732 code.
9733
9734 If @var{path} is specified, GCC looks at the @var{path} to find
9735 the profile feedback data files. See @option{-fprofile-dir}.
9736
9737 @item -fauto-profile
9738 @itemx -fauto-profile=@var{path}
9739 @opindex fauto-profile
9740 Enable sampling-based feedback-directed optimizations,
9741 and the following optimizations
9742 which are generally profitable only with profile feedback available:
9743 @option{-fbranch-probabilities}, @option{-fvpt},
9744 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer},
9745 @option{-ftree-vectorize},
9746 @option{-finline-functions}, @option{-fipa-cp}, @option{-fipa-cp-clone},
9747 @option{-fpredictive-commoning}, @option{-funswitch-loops},
9748 @option{-fgcse-after-reload}, and @option{-ftree-loop-distribute-patterns}.
9749
9750 @var{path} is the name of a file containing AutoFDO profile information.
9751 If omitted, it defaults to @file{fbdata.afdo} in the current directory.
9752
9753 Producing an AutoFDO profile data file requires running your program
9754 with the @command{perf} utility on a supported GNU/Linux target system.
9755 For more information, see @uref{https://perf.wiki.kernel.org/}.
9756
9757 E.g.
9758 @smallexample
9759 perf record -e br_inst_retired:near_taken -b -o perf.data \
9760 -- your_program
9761 @end smallexample
9762
9763 Then use the @command{create_gcov} tool to convert the raw profile data
9764 to a format that can be used by GCC.@ You must also supply the
9765 unstripped binary for your program to this tool.
9766 See @uref{https://github.com/google/autofdo}.
9767
9768 E.g.
9769 @smallexample
9770 create_gcov --binary=your_program.unstripped --profile=perf.data \
9771 --gcov=profile.afdo
9772 @end smallexample
9773 @end table
9774
9775 The following options control compiler behavior regarding floating-point
9776 arithmetic. These options trade off between speed and
9777 correctness. All must be specifically enabled.
9778
9779 @table @gcctabopt
9780 @item -ffloat-store
9781 @opindex ffloat-store
9782 Do not store floating-point variables in registers, and inhibit other
9783 options that might change whether a floating-point value is taken from a
9784 register or memory.
9785
9786 @cindex floating-point precision
9787 This option prevents undesirable excess precision on machines such as
9788 the 68000 where the floating registers (of the 68881) keep more
9789 precision than a @code{double} is supposed to have. Similarly for the
9790 x86 architecture. For most programs, the excess precision does only
9791 good, but a few programs rely on the precise definition of IEEE floating
9792 point. Use @option{-ffloat-store} for such programs, after modifying
9793 them to store all pertinent intermediate computations into variables.
9794
9795 @item -fexcess-precision=@var{style}
9796 @opindex fexcess-precision
9797 This option allows further control over excess precision on machines
9798 where floating-point registers have more precision than the IEEE
9799 @code{float} and @code{double} types and the processor does not
9800 support operations rounding to those types. By default,
9801 @option{-fexcess-precision=fast} is in effect; this means that
9802 operations are carried out in the precision of the registers and that
9803 it is unpredictable when rounding to the types specified in the source
9804 code takes place. When compiling C, if
9805 @option{-fexcess-precision=standard} is specified then excess
9806 precision follows the rules specified in ISO C99; in particular,
9807 both casts and assignments cause values to be rounded to their
9808 semantic types (whereas @option{-ffloat-store} only affects
9809 assignments). This option is enabled by default for C if a strict
9810 conformance option such as @option{-std=c99} is used.
9811
9812 @opindex mfpmath
9813 @option{-fexcess-precision=standard} is not implemented for languages
9814 other than C, and has no effect if
9815 @option{-funsafe-math-optimizations} or @option{-ffast-math} is
9816 specified. On the x86, it also has no effect if @option{-mfpmath=sse}
9817 or @option{-mfpmath=sse+387} is specified; in the former case, IEEE
9818 semantics apply without excess precision, and in the latter, rounding
9819 is unpredictable.
9820
9821 @item -ffast-math
9822 @opindex ffast-math
9823 Sets the options @option{-fno-math-errno}, @option{-funsafe-math-optimizations},
9824 @option{-ffinite-math-only}, @option{-fno-rounding-math},
9825 @option{-fno-signaling-nans} and @option{-fcx-limited-range}.
9826
9827 This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.
9828
9829 This option is not turned on by any @option{-O} option besides
9830 @option{-Ofast} since it can result in incorrect output for programs
9831 that depend on an exact implementation of IEEE or ISO rules/specifications
9832 for math functions. It may, however, yield faster code for programs
9833 that do not require the guarantees of these specifications.
9834
9835 @item -fno-math-errno
9836 @opindex fno-math-errno
9837 Do not set @code{errno} after calling math functions that are executed
9838 with a single instruction, e.g., @code{sqrt}. A program that relies on
9839 IEEE exceptions for math error handling may want to use this flag
9840 for speed while maintaining IEEE arithmetic compatibility.
9841
9842 This option is not turned on by any @option{-O} option since
9843 it can result in incorrect output for programs that depend on
9844 an exact implementation of IEEE or ISO rules/specifications for
9845 math functions. It may, however, yield faster code for programs
9846 that do not require the guarantees of these specifications.
9847
9848 The default is @option{-fmath-errno}.
9849
9850 On Darwin systems, the math library never sets @code{errno}. There is
9851 therefore no reason for the compiler to consider the possibility that
9852 it might, and @option{-fno-math-errno} is the default.
9853
9854 @item -funsafe-math-optimizations
9855 @opindex funsafe-math-optimizations
9856
9857 Allow optimizations for floating-point arithmetic that (a) assume
9858 that arguments and results are valid and (b) may violate IEEE or
9859 ANSI standards. When used at link-time, it may include libraries
9860 or startup files that change the default FPU control word or other
9861 similar optimizations.
9862
9863 This option is not turned on by any @option{-O} option since
9864 it can result in incorrect output for programs that depend on
9865 an exact implementation of IEEE or ISO rules/specifications for
9866 math functions. It may, however, yield faster code for programs
9867 that do not require the guarantees of these specifications.
9868 Enables @option{-fno-signed-zeros}, @option{-fno-trapping-math},
9869 @option{-fassociative-math} and @option{-freciprocal-math}.
9870
9871 The default is @option{-fno-unsafe-math-optimizations}.
9872
9873 @item -fassociative-math
9874 @opindex fassociative-math
9875
9876 Allow re-association of operands in series of floating-point operations.
9877 This violates the ISO C and C++ language standard by possibly changing
9878 computation result. NOTE: re-ordering may change the sign of zero as
9879 well as ignore NaNs and inhibit or create underflow or overflow (and
9880 thus cannot be used on code that relies on rounding behavior like
9881 @code{(x + 2**52) - 2**52}. May also reorder floating-point comparisons
9882 and thus may not be used when ordered comparisons are required.
9883 This option requires that both @option{-fno-signed-zeros} and
9884 @option{-fno-trapping-math} be in effect. Moreover, it doesn't make
9885 much sense with @option{-frounding-math}. For Fortran the option
9886 is automatically enabled when both @option{-fno-signed-zeros} and
9887 @option{-fno-trapping-math} are in effect.
9888
9889 The default is @option{-fno-associative-math}.
9890
9891 @item -freciprocal-math
9892 @opindex freciprocal-math
9893
9894 Allow the reciprocal of a value to be used instead of dividing by
9895 the value if this enables optimizations. For example @code{x / y}
9896 can be replaced with @code{x * (1/y)}, which is useful if @code{(1/y)}
9897 is subject to common subexpression elimination. Note that this loses
9898 precision and increases the number of flops operating on the value.
9899
9900 The default is @option{-fno-reciprocal-math}.
9901
9902 @item -ffinite-math-only
9903 @opindex ffinite-math-only
9904 Allow optimizations for floating-point arithmetic that assume
9905 that arguments and results are not NaNs or +-Infs.
9906
9907 This option is not turned on by any @option{-O} option since
9908 it can result in incorrect output for programs that depend on
9909 an exact implementation of IEEE or ISO rules/specifications for
9910 math functions. It may, however, yield faster code for programs
9911 that do not require the guarantees of these specifications.
9912
9913 The default is @option{-fno-finite-math-only}.
9914
9915 @item -fno-signed-zeros
9916 @opindex fno-signed-zeros
9917 Allow optimizations for floating-point arithmetic that ignore the
9918 signedness of zero. IEEE arithmetic specifies the behavior of
9919 distinct +0.0 and @minus{}0.0 values, which then prohibits simplification
9920 of expressions such as x+0.0 or 0.0*x (even with @option{-ffinite-math-only}).
9921 This option implies that the sign of a zero result isn't significant.
9922
9923 The default is @option{-fsigned-zeros}.
9924
9925 @item -fno-trapping-math
9926 @opindex fno-trapping-math
9927 Compile code assuming that floating-point operations cannot generate
9928 user-visible traps. These traps include division by zero, overflow,
9929 underflow, inexact result and invalid operation. This option requires
9930 that @option{-fno-signaling-nans} be in effect. Setting this option may
9931 allow faster code if one relies on ``non-stop'' IEEE arithmetic, for example.
9932
9933 This option should never be turned on by any @option{-O} option since
9934 it can result in incorrect output for programs that depend on
9935 an exact implementation of IEEE or ISO rules/specifications for
9936 math functions.
9937
9938 The default is @option{-ftrapping-math}.
9939
9940 @item -frounding-math
9941 @opindex frounding-math
9942 Disable transformations and optimizations that assume default floating-point
9943 rounding behavior. This is round-to-zero for all floating point
9944 to integer conversions, and round-to-nearest for all other arithmetic
9945 truncations. This option should be specified for programs that change
9946 the FP rounding mode dynamically, or that may be executed with a
9947 non-default rounding mode. This option disables constant folding of
9948 floating-point expressions at compile time (which may be affected by
9949 rounding mode) and arithmetic transformations that are unsafe in the
9950 presence of sign-dependent rounding modes.
9951
9952 The default is @option{-fno-rounding-math}.
9953
9954 This option is experimental and does not currently guarantee to
9955 disable all GCC optimizations that are affected by rounding mode.
9956 Future versions of GCC may provide finer control of this setting
9957 using C99's @code{FENV_ACCESS} pragma. This command-line option
9958 will be used to specify the default state for @code{FENV_ACCESS}.
9959
9960 @item -fsignaling-nans
9961 @opindex fsignaling-nans
9962 Compile code assuming that IEEE signaling NaNs may generate user-visible
9963 traps during floating-point operations. Setting this option disables
9964 optimizations that may change the number of exceptions visible with
9965 signaling NaNs. This option implies @option{-ftrapping-math}.
9966
9967 This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
9968 be defined.
9969
9970 The default is @option{-fno-signaling-nans}.
9971
9972 This option is experimental and does not currently guarantee to
9973 disable all GCC optimizations that affect signaling NaN behavior.
9974
9975 @item -fsingle-precision-constant
9976 @opindex fsingle-precision-constant
9977 Treat floating-point constants as single precision instead of
9978 implicitly converting them to double-precision constants.
9979
9980 @item -fcx-limited-range
9981 @opindex fcx-limited-range
9982 When enabled, this option states that a range reduction step is not
9983 needed when performing complex division. Also, there is no checking
9984 whether the result of a complex multiplication or division is @code{NaN
9985 + I*NaN}, with an attempt to rescue the situation in that case. The
9986 default is @option{-fno-cx-limited-range}, but is enabled by
9987 @option{-ffast-math}.
9988
9989 This option controls the default setting of the ISO C99
9990 @code{CX_LIMITED_RANGE} pragma. Nevertheless, the option applies to
9991 all languages.
9992
9993 @item -fcx-fortran-rules
9994 @opindex fcx-fortran-rules
9995 Complex multiplication and division follow Fortran rules. Range
9996 reduction is done as part of complex division, but there is no checking
9997 whether the result of a complex multiplication or division is @code{NaN
9998 + I*NaN}, with an attempt to rescue the situation in that case.
9999
10000 The default is @option{-fno-cx-fortran-rules}.
10001
10002 @end table
10003
10004 The following options control optimizations that may improve
10005 performance, but are not enabled by any @option{-O} options. This
10006 section includes experimental options that may produce broken code.
10007
10008 @table @gcctabopt
10009 @item -fbranch-probabilities
10010 @opindex fbranch-probabilities
10011 After running a program compiled with @option{-fprofile-arcs}
10012 (@pxref{Debugging Options,, Options for Debugging Your Program or
10013 @command{gcc}}), you can compile it a second time using
10014 @option{-fbranch-probabilities}, to improve optimizations based on
10015 the number of times each branch was taken. When a program
10016 compiled with @option{-fprofile-arcs} exits, it saves arc execution
10017 counts to a file called @file{@var{sourcename}.gcda} for each source
10018 file. The information in this data file is very dependent on the
10019 structure of the generated code, so you must use the same source code
10020 and the same optimization options for both compilations.
10021
10022 With @option{-fbranch-probabilities}, GCC puts a
10023 @samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
10024 These can be used to improve optimization. Currently, they are only
10025 used in one place: in @file{reorg.c}, instead of guessing which path a
10026 branch is most likely to take, the @samp{REG_BR_PROB} values are used to
10027 exactly determine which path is taken more often.
10028
10029 @item -fprofile-values
10030 @opindex fprofile-values
10031 If combined with @option{-fprofile-arcs}, it adds code so that some
10032 data about values of expressions in the program is gathered.
10033
10034 With @option{-fbranch-probabilities}, it reads back the data gathered
10035 from profiling values of expressions for usage in optimizations.
10036
10037 Enabled with @option{-fprofile-generate} and @option{-fprofile-use}.
10038
10039 @item -fprofile-reorder-functions
10040 @opindex fprofile-reorder-functions
10041 Function reordering based on profile instrumentation collects
10042 first time of execution of a function and orders these functions
10043 in ascending order.
10044
10045 Enabled with @option{-fprofile-use}.
10046
10047 @item -fvpt
10048 @opindex fvpt
10049 If combined with @option{-fprofile-arcs}, this option instructs the compiler
10050 to add code to gather information about values of expressions.
10051
10052 With @option{-fbranch-probabilities}, it reads back the data gathered
10053 and actually performs the optimizations based on them.
10054 Currently the optimizations include specialization of division operations
10055 using the knowledge about the value of the denominator.
10056
10057 @item -frename-registers
10058 @opindex frename-registers
10059 Attempt to avoid false dependencies in scheduled code by making use
10060 of registers left over after register allocation. This optimization
10061 most benefits processors with lots of registers. Depending on the
10062 debug information format adopted by the target, however, it can
10063 make debugging impossible, since variables no longer stay in
10064 a ``home register''.
10065
10066 Enabled by default with @option{-funroll-loops} and @option{-fpeel-loops}.
10067
10068 @item -fschedule-fusion
10069 @opindex fschedule-fusion
10070 Performs a target dependent pass over the instruction stream to schedule
10071 instructions of same type together because target machine can execute them
10072 more efficiently if they are adjacent to each other in the instruction flow.
10073
10074 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
10075
10076 @item -ftracer
10077 @opindex ftracer
10078 Perform tail duplication to enlarge superblock size. This transformation
10079 simplifies the control flow of the function allowing other optimizations to do
10080 a better job.
10081
10082 Enabled with @option{-fprofile-use}.
10083
10084 @item -funroll-loops
10085 @opindex funroll-loops
10086 Unroll loops whose number of iterations can be determined at compile time or
10087 upon entry to the loop. @option{-funroll-loops} implies
10088 @option{-frerun-cse-after-loop}, @option{-fweb} and @option{-frename-registers}.
10089 It also turns on complete loop peeling (i.e.@: complete removal of loops with
10090 a small constant number of iterations). This option makes code larger, and may
10091 or may not make it run faster.
10092
10093 Enabled with @option{-fprofile-use}.
10094
10095 @item -funroll-all-loops
10096 @opindex funroll-all-loops
10097 Unroll all loops, even if their number of iterations is uncertain when
10098 the loop is entered. This usually makes programs run more slowly.
10099 @option{-funroll-all-loops} implies the same options as
10100 @option{-funroll-loops}.
10101
10102 @item -fpeel-loops
10103 @opindex fpeel-loops
10104 Peels loops for which there is enough information that they do not
10105 roll much (from profile feedback). It also turns on complete loop peeling
10106 (i.e.@: complete removal of loops with small constant number of iterations).
10107
10108 Enabled with @option{-fprofile-use}.
10109
10110 @item -fmove-loop-invariants
10111 @opindex fmove-loop-invariants
10112 Enables the loop invariant motion pass in the RTL loop optimizer. Enabled
10113 at level @option{-O1}
10114
10115 @item -funswitch-loops
10116 @opindex funswitch-loops
10117 Move branches with loop invariant conditions out of the loop, with duplicates
10118 of the loop on both branches (modified according to result of the condition).
10119
10120 @item -ffunction-sections
10121 @itemx -fdata-sections
10122 @opindex ffunction-sections
10123 @opindex fdata-sections
10124 Place each function or data item into its own section in the output
10125 file if the target supports arbitrary sections. The name of the
10126 function or the name of the data item determines the section's name
10127 in the output file.
10128
10129 Use these options on systems where the linker can perform optimizations
10130 to improve locality of reference in the instruction space. Most systems
10131 using the ELF object format and SPARC processors running Solaris 2 have
10132 linkers with such optimizations. AIX may have these optimizations in
10133 the future.
10134
10135 Only use these options when there are significant benefits from doing
10136 so. When you specify these options, the assembler and linker
10137 create larger object and executable files and are also slower.
10138 You cannot use @command{gprof} on all systems if you
10139 specify this option, and you may have problems with debugging if
10140 you specify both this option and @option{-g}.
10141
10142 @item -fbranch-target-load-optimize
10143 @opindex fbranch-target-load-optimize
10144 Perform branch target register load optimization before prologue / epilogue
10145 threading.
10146 The use of target registers can typically be exposed only during reload,
10147 thus hoisting loads out of loops and doing inter-block scheduling needs
10148 a separate optimization pass.
10149
10150 @item -fbranch-target-load-optimize2
10151 @opindex fbranch-target-load-optimize2
10152 Perform branch target register load optimization after prologue / epilogue
10153 threading.
10154
10155 @item -fbtr-bb-exclusive
10156 @opindex fbtr-bb-exclusive
10157 When performing branch target register load optimization, don't reuse
10158 branch target registers within any basic block.
10159
10160 @item -fstack-protector
10161 @opindex fstack-protector
10162 Emit extra code to check for buffer overflows, such as stack smashing
10163 attacks. This is done by adding a guard variable to functions with
10164 vulnerable objects. This includes functions that call @code{alloca}, and
10165 functions with buffers larger than 8 bytes. The guards are initialized
10166 when a function is entered and then checked when the function exits.
10167 If a guard check fails, an error message is printed and the program exits.
10168
10169 @item -fstack-protector-all
10170 @opindex fstack-protector-all
10171 Like @option{-fstack-protector} except that all functions are protected.
10172
10173 @item -fstack-protector-strong
10174 @opindex fstack-protector-strong
10175 Like @option{-fstack-protector} but includes additional functions to
10176 be protected --- those that have local array definitions, or have
10177 references to local frame addresses.
10178
10179 @item -fstack-protector-explicit
10180 @opindex fstack-protector-explicit
10181 Like @option{-fstack-protector} but only protects those functions which
10182 have the @code{stack_protect} attribute
10183
10184 @item -fstdarg-opt
10185 @opindex fstdarg-opt
10186 Optimize the prologue of variadic argument functions with respect to usage of
10187 those arguments.
10188
10189 @item -fsection-anchors
10190 @opindex fsection-anchors
10191 Try to reduce the number of symbolic address calculations by using
10192 shared ``anchor'' symbols to address nearby objects. This transformation
10193 can help to reduce the number of GOT entries and GOT accesses on some
10194 targets.
10195
10196 For example, the implementation of the following function @code{foo}:
10197
10198 @smallexample
10199 static int a, b, c;
10200 int foo (void) @{ return a + b + c; @}
10201 @end smallexample
10202
10203 @noindent
10204 usually calculates the addresses of all three variables, but if you
10205 compile it with @option{-fsection-anchors}, it accesses the variables
10206 from a common anchor point instead. The effect is similar to the
10207 following pseudocode (which isn't valid C):
10208
10209 @smallexample
10210 int foo (void)
10211 @{
10212 register int *xr = &x;
10213 return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
10214 @}
10215 @end smallexample
10216
10217 Not all targets support this option.
10218
10219 @item --param @var{name}=@var{value}
10220 @opindex param
10221 In some places, GCC uses various constants to control the amount of
10222 optimization that is done. For example, GCC does not inline functions
10223 that contain more than a certain number of instructions. You can
10224 control some of these constants on the command line using the
10225 @option{--param} option.
10226
10227 The names of specific parameters, and the meaning of the values, are
10228 tied to the internals of the compiler, and are subject to change
10229 without notice in future releases.
10230
10231 In each case, the @var{value} is an integer. The allowable choices for
10232 @var{name} are:
10233
10234 @table @gcctabopt
10235 @item predictable-branch-outcome
10236 When branch is predicted to be taken with probability lower than this threshold
10237 (in percent), then it is considered well predictable. The default is 10.
10238
10239 @item max-crossjump-edges
10240 The maximum number of incoming edges to consider for cross-jumping.
10241 The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
10242 the number of edges incoming to each block. Increasing values mean
10243 more aggressive optimization, making the compilation time increase with
10244 probably small improvement in executable size.
10245
10246 @item min-crossjump-insns
10247 The minimum number of instructions that must be matched at the end
10248 of two blocks before cross-jumping is performed on them. This
10249 value is ignored in the case where all instructions in the block being
10250 cross-jumped from are matched. The default value is 5.
10251
10252 @item max-grow-copy-bb-insns
10253 The maximum code size expansion factor when copying basic blocks
10254 instead of jumping. The expansion is relative to a jump instruction.
10255 The default value is 8.
10256
10257 @item max-goto-duplication-insns
10258 The maximum number of instructions to duplicate to a block that jumps
10259 to a computed goto. To avoid @math{O(N^2)} behavior in a number of
10260 passes, GCC factors computed gotos early in the compilation process,
10261 and unfactors them as late as possible. Only computed jumps at the
10262 end of a basic blocks with no more than max-goto-duplication-insns are
10263 unfactored. The default value is 8.
10264
10265 @item max-delay-slot-insn-search
10266 The maximum number of instructions to consider when looking for an
10267 instruction to fill a delay slot. If more than this arbitrary number of
10268 instructions are searched, the time savings from filling the delay slot
10269 are minimal, so stop searching. Increasing values mean more
10270 aggressive optimization, making the compilation time increase with probably
10271 small improvement in execution time.
10272
10273 @item max-delay-slot-live-search
10274 When trying to fill delay slots, the maximum number of instructions to
10275 consider when searching for a block with valid live register
10276 information. Increasing this arbitrarily chosen value means more
10277 aggressive optimization, increasing the compilation time. This parameter
10278 should be removed when the delay slot code is rewritten to maintain the
10279 control-flow graph.
10280
10281 @item max-gcse-memory
10282 The approximate maximum amount of memory that can be allocated in
10283 order to perform the global common subexpression elimination
10284 optimization. If more memory than specified is required, the
10285 optimization is not done.
10286
10287 @item max-gcse-insertion-ratio
10288 If the ratio of expression insertions to deletions is larger than this value
10289 for any expression, then RTL PRE inserts or removes the expression and thus
10290 leaves partially redundant computations in the instruction stream. The default value is 20.
10291
10292 @item max-pending-list-length
10293 The maximum number of pending dependencies scheduling allows
10294 before flushing the current state and starting over. Large functions
10295 with few branches or calls can create excessively large lists which
10296 needlessly consume memory and resources.
10297
10298 @item max-modulo-backtrack-attempts
10299 The maximum number of backtrack attempts the scheduler should make
10300 when modulo scheduling a loop. Larger values can exponentially increase
10301 compilation time.
10302
10303 @item max-inline-insns-single
10304 Several parameters control the tree inliner used in GCC@.
10305 This number sets the maximum number of instructions (counted in GCC's
10306 internal representation) in a single function that the tree inliner
10307 considers for inlining. This only affects functions declared
10308 inline and methods implemented in a class declaration (C++).
10309 The default value is 400.
10310
10311 @item max-inline-insns-auto
10312 When you use @option{-finline-functions} (included in @option{-O3}),
10313 a lot of functions that would otherwise not be considered for inlining
10314 by the compiler are investigated. To those functions, a different
10315 (more restrictive) limit compared to functions declared inline can
10316 be applied.
10317 The default value is 40.
10318
10319 @item inline-min-speedup
10320 When estimated performance improvement of caller + callee runtime exceeds this
10321 threshold (in precent), the function can be inlined regardless the limit on
10322 @option{--param max-inline-insns-single} and @option{--param
10323 max-inline-insns-auto}.
10324
10325 @item large-function-insns
10326 The limit specifying really large functions. For functions larger than this
10327 limit after inlining, inlining is constrained by
10328 @option{--param large-function-growth}. This parameter is useful primarily
10329 to avoid extreme compilation time caused by non-linear algorithms used by the
10330 back end.
10331 The default value is 2700.
10332
10333 @item large-function-growth
10334 Specifies maximal growth of large function caused by inlining in percents.
10335 The default value is 100 which limits large function growth to 2.0 times
10336 the original size.
10337
10338 @item large-unit-insns
10339 The limit specifying large translation unit. Growth caused by inlining of
10340 units larger than this limit is limited by @option{--param inline-unit-growth}.
10341 For small units this might be too tight.
10342 For example, consider a unit consisting of function A
10343 that is inline and B that just calls A three times. If B is small relative to
10344 A, the growth of unit is 300\% and yet such inlining is very sane. For very
10345 large units consisting of small inlineable functions, however, the overall unit
10346 growth limit is needed to avoid exponential explosion of code size. Thus for
10347 smaller units, the size is increased to @option{--param large-unit-insns}
10348 before applying @option{--param inline-unit-growth}. The default is 10000.
10349
10350 @item inline-unit-growth
10351 Specifies maximal overall growth of the compilation unit caused by inlining.
10352 The default value is 20 which limits unit growth to 1.2 times the original
10353 size. Cold functions (either marked cold via an attribute or by profile
10354 feedback) are not accounted into the unit size.
10355
10356 @item ipcp-unit-growth
10357 Specifies maximal overall growth of the compilation unit caused by
10358 interprocedural constant propagation. The default value is 10 which limits
10359 unit growth to 1.1 times the original size.
10360
10361 @item large-stack-frame
10362 The limit specifying large stack frames. While inlining the algorithm is trying
10363 to not grow past this limit too much. The default value is 256 bytes.
10364
10365 @item large-stack-frame-growth
10366 Specifies maximal growth of large stack frames caused by inlining in percents.
10367 The default value is 1000 which limits large stack frame growth to 11 times
10368 the original size.
10369
10370 @item max-inline-insns-recursive
10371 @itemx max-inline-insns-recursive-auto
10372 Specifies the maximum number of instructions an out-of-line copy of a
10373 self-recursive inline
10374 function can grow into by performing recursive inlining.
10375
10376 @option{--param max-inline-insns-recursive} applies to functions
10377 declared inline.
10378 For functions not declared inline, recursive inlining
10379 happens only when @option{-finline-functions} (included in @option{-O3}) is
10380 enabled; @option{--param max-inline-insns-recursive-auto} applies instead. The
10381 default value is 450.
10382
10383 @item max-inline-recursive-depth
10384 @itemx max-inline-recursive-depth-auto
10385 Specifies the maximum recursion depth used for recursive inlining.
10386
10387 @option{--param max-inline-recursive-depth} applies to functions
10388 declared inline. For functions not declared inline, recursive inlining
10389 happens only when @option{-finline-functions} (included in @option{-O3}) is
10390 enabled; @option{--param max-inline-recursive-depth-auto} applies instead. The
10391 default value is 8.
10392
10393 @item min-inline-recursive-probability
10394 Recursive inlining is profitable only for function having deep recursion
10395 in average and can hurt for function having little recursion depth by
10396 increasing the prologue size or complexity of function body to other
10397 optimizers.
10398
10399 When profile feedback is available (see @option{-fprofile-generate}) the actual
10400 recursion depth can be guessed from probability that function recurses via a
10401 given call expression. This parameter limits inlining only to call expressions
10402 whose probability exceeds the given threshold (in percents).
10403 The default value is 10.
10404
10405 @item early-inlining-insns
10406 Specify growth that the early inliner can make. In effect it increases
10407 the amount of inlining for code having a large abstraction penalty.
10408 The default value is 14.
10409
10410 @item max-early-inliner-iterations
10411 Limit of iterations of the early inliner. This basically bounds
10412 the number of nested indirect calls the early inliner can resolve.
10413 Deeper chains are still handled by late inlining.
10414
10415 @item comdat-sharing-probability
10416 Probability (in percent) that C++ inline function with comdat visibility
10417 are shared across multiple compilation units. The default value is 20.
10418
10419 @item profile-func-internal-id
10420 A parameter to control whether to use function internal id in profile
10421 database lookup. If the value is 0, the compiler uses an id that
10422 is based on function assembler name and filename, which makes old profile
10423 data more tolerant to source changes such as function reordering etc.
10424 The default value is 0.
10425
10426 @item min-vect-loop-bound
10427 The minimum number of iterations under which loops are not vectorized
10428 when @option{-ftree-vectorize} is used. The number of iterations after
10429 vectorization needs to be greater than the value specified by this option
10430 to allow vectorization. The default value is 0.
10431
10432 @item gcse-cost-distance-ratio
10433 Scaling factor in calculation of maximum distance an expression
10434 can be moved by GCSE optimizations. This is currently supported only in the
10435 code hoisting pass. The bigger the ratio, the more aggressive code hoisting
10436 is with simple expressions, i.e., the expressions that have cost
10437 less than @option{gcse-unrestricted-cost}. Specifying 0 disables
10438 hoisting of simple expressions. The default value is 10.
10439
10440 @item gcse-unrestricted-cost
10441 Cost, roughly measured as the cost of a single typical machine
10442 instruction, at which GCSE optimizations do not constrain
10443 the distance an expression can travel. This is currently
10444 supported only in the code hoisting pass. The lesser the cost,
10445 the more aggressive code hoisting is. Specifying 0
10446 allows all expressions to travel unrestricted distances.
10447 The default value is 3.
10448
10449 @item max-hoist-depth
10450 The depth of search in the dominator tree for expressions to hoist.
10451 This is used to avoid quadratic behavior in hoisting algorithm.
10452 The value of 0 does not limit on the search, but may slow down compilation
10453 of huge functions. The default value is 30.
10454
10455 @item max-tail-merge-comparisons
10456 The maximum amount of similar bbs to compare a bb with. This is used to
10457 avoid quadratic behavior in tree tail merging. The default value is 10.
10458
10459 @item max-tail-merge-iterations
10460 The maximum amount of iterations of the pass over the function. This is used to
10461 limit compilation time in tree tail merging. The default value is 2.
10462
10463 @item max-unrolled-insns
10464 The maximum number of instructions that a loop may have to be unrolled.
10465 If a loop is unrolled, this parameter also determines how many times
10466 the loop code is unrolled.
10467
10468 @item max-average-unrolled-insns
10469 The maximum number of instructions biased by probabilities of their execution
10470 that a loop may have to be unrolled. If a loop is unrolled,
10471 this parameter also determines how many times the loop code is unrolled.
10472
10473 @item max-unroll-times
10474 The maximum number of unrollings of a single loop.
10475
10476 @item max-peeled-insns
10477 The maximum number of instructions that a loop may have to be peeled.
10478 If a loop is peeled, this parameter also determines how many times
10479 the loop code is peeled.
10480
10481 @item max-peel-times
10482 The maximum number of peelings of a single loop.
10483
10484 @item max-peel-branches
10485 The maximum number of branches on the hot path through the peeled sequence.
10486
10487 @item max-completely-peeled-insns
10488 The maximum number of insns of a completely peeled loop.
10489
10490 @item max-completely-peel-times
10491 The maximum number of iterations of a loop to be suitable for complete peeling.
10492
10493 @item max-completely-peel-loop-nest-depth
10494 The maximum depth of a loop nest suitable for complete peeling.
10495
10496 @item max-unswitch-insns
10497 The maximum number of insns of an unswitched loop.
10498
10499 @item max-unswitch-level
10500 The maximum number of branches unswitched in a single loop.
10501
10502 @item lim-expensive
10503 The minimum cost of an expensive expression in the loop invariant motion.
10504
10505 @item iv-consider-all-candidates-bound
10506 Bound on number of candidates for induction variables, below which
10507 all candidates are considered for each use in induction variable
10508 optimizations. If there are more candidates than this,
10509 only the most relevant ones are considered to avoid quadratic time complexity.
10510
10511 @item iv-max-considered-uses
10512 The induction variable optimizations give up on loops that contain more
10513 induction variable uses.
10514
10515 @item iv-always-prune-cand-set-bound
10516 If the number of candidates in the set is smaller than this value,
10517 always try to remove unnecessary ivs from the set
10518 when adding a new one.
10519
10520 @item scev-max-expr-size
10521 Bound on size of expressions used in the scalar evolutions analyzer.
10522 Large expressions slow the analyzer.
10523
10524 @item scev-max-expr-complexity
10525 Bound on the complexity of the expressions in the scalar evolutions analyzer.
10526 Complex expressions slow the analyzer.
10527
10528 @item vect-max-version-for-alignment-checks
10529 The maximum number of run-time checks that can be performed when
10530 doing loop versioning for alignment in the vectorizer.
10531
10532 @item vect-max-version-for-alias-checks
10533 The maximum number of run-time checks that can be performed when
10534 doing loop versioning for alias in the vectorizer.
10535
10536 @item vect-max-peeling-for-alignment
10537 The maximum number of loop peels to enhance access alignment
10538 for vectorizer. Value -1 means 'no limit'.
10539
10540 @item max-iterations-to-track
10541 The maximum number of iterations of a loop the brute-force algorithm
10542 for analysis of the number of iterations of the loop tries to evaluate.
10543
10544 @item hot-bb-count-ws-permille
10545 A basic block profile count is considered hot if it contributes to
10546 the given permillage (i.e. 0...1000) of the entire profiled execution.
10547
10548 @item hot-bb-frequency-fraction
10549 Select fraction of the entry block frequency of executions of basic block in
10550 function given basic block needs to have to be considered hot.
10551
10552 @item max-predicted-iterations
10553 The maximum number of loop iterations we predict statically. This is useful
10554 in cases where a function contains a single loop with known bound and
10555 another loop with unknown bound.
10556 The known number of iterations is predicted correctly, while
10557 the unknown number of iterations average to roughly 10. This means that the
10558 loop without bounds appears artificially cold relative to the other one.
10559
10560 @item builtin-expect-probability
10561 Control the probability of the expression having the specified value. This
10562 parameter takes a percentage (i.e. 0 ... 100) as input.
10563 The default probability of 90 is obtained empirically.
10564
10565 @item align-threshold
10566
10567 Select fraction of the maximal frequency of executions of a basic block in
10568 a function to align the basic block.
10569
10570 @item align-loop-iterations
10571
10572 A loop expected to iterate at least the selected number of iterations is
10573 aligned.
10574
10575 @item tracer-dynamic-coverage
10576 @itemx tracer-dynamic-coverage-feedback
10577
10578 This value is used to limit superblock formation once the given percentage of
10579 executed instructions is covered. This limits unnecessary code size
10580 expansion.
10581
10582 The @option{tracer-dynamic-coverage-feedback} parameter
10583 is used only when profile
10584 feedback is available. The real profiles (as opposed to statically estimated
10585 ones) are much less balanced allowing the threshold to be larger value.
10586
10587 @item tracer-max-code-growth
10588 Stop tail duplication once code growth has reached given percentage. This is
10589 a rather artificial limit, as most of the duplicates are eliminated later in
10590 cross jumping, so it may be set to much higher values than is the desired code
10591 growth.
10592
10593 @item tracer-min-branch-ratio
10594
10595 Stop reverse growth when the reverse probability of best edge is less than this
10596 threshold (in percent).
10597
10598 @item tracer-min-branch-ratio
10599 @itemx tracer-min-branch-ratio-feedback
10600
10601 Stop forward growth if the best edge has probability lower than this
10602 threshold.
10603
10604 Similarly to @option{tracer-dynamic-coverage} two values are present, one for
10605 compilation for profile feedback and one for compilation without. The value
10606 for compilation with profile feedback needs to be more conservative (higher) in
10607 order to make tracer effective.
10608
10609 @item max-cse-path-length
10610
10611 The maximum number of basic blocks on path that CSE considers.
10612 The default is 10.
10613
10614 @item max-cse-insns
10615 The maximum number of instructions CSE processes before flushing.
10616 The default is 1000.
10617
10618 @item ggc-min-expand
10619
10620 GCC uses a garbage collector to manage its own memory allocation. This
10621 parameter specifies the minimum percentage by which the garbage
10622 collector's heap should be allowed to expand between collections.
10623 Tuning this may improve compilation speed; it has no effect on code
10624 generation.
10625
10626 The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
10627 RAM >= 1GB@. If @code{getrlimit} is available, the notion of ``RAM'' is
10628 the smallest of actual RAM and @code{RLIMIT_DATA} or @code{RLIMIT_AS}. If
10629 GCC is not able to calculate RAM on a particular platform, the lower
10630 bound of 30% is used. Setting this parameter and
10631 @option{ggc-min-heapsize} to zero causes a full collection to occur at
10632 every opportunity. This is extremely slow, but can be useful for
10633 debugging.
10634
10635 @item ggc-min-heapsize
10636
10637 Minimum size of the garbage collector's heap before it begins bothering
10638 to collect garbage. The first collection occurs after the heap expands
10639 by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}. Again,
10640 tuning this may improve compilation speed, and has no effect on code
10641 generation.
10642
10643 The default is the smaller of RAM/8, RLIMIT_RSS, or a limit that
10644 tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
10645 with a lower bound of 4096 (four megabytes) and an upper bound of
10646 131072 (128 megabytes). If GCC is not able to calculate RAM on a
10647 particular platform, the lower bound is used. Setting this parameter
10648 very large effectively disables garbage collection. Setting this
10649 parameter and @option{ggc-min-expand} to zero causes a full collection
10650 to occur at every opportunity.
10651
10652 @item max-reload-search-insns
10653 The maximum number of instruction reload should look backward for equivalent
10654 register. Increasing values mean more aggressive optimization, making the
10655 compilation time increase with probably slightly better performance.
10656 The default value is 100.
10657
10658 @item max-cselib-memory-locations
10659 The maximum number of memory locations cselib should take into account.
10660 Increasing values mean more aggressive optimization, making the compilation time
10661 increase with probably slightly better performance. The default value is 500.
10662
10663 @item reorder-blocks-duplicate
10664 @itemx reorder-blocks-duplicate-feedback
10665
10666 Used by the basic block reordering pass to decide whether to use unconditional
10667 branch or duplicate the code on its destination. Code is duplicated when its
10668 estimated size is smaller than this value multiplied by the estimated size of
10669 unconditional jump in the hot spots of the program.
10670
10671 The @option{reorder-block-duplicate-feedback} parameter
10672 is used only when profile
10673 feedback is available. It may be set to higher values than
10674 @option{reorder-block-duplicate} since information about the hot spots is more
10675 accurate.
10676
10677 @item max-sched-ready-insns
10678 The maximum number of instructions ready to be issued the scheduler should
10679 consider at any given time during the first scheduling pass. Increasing
10680 values mean more thorough searches, making the compilation time increase
10681 with probably little benefit. The default value is 100.
10682
10683 @item max-sched-region-blocks
10684 The maximum number of blocks in a region to be considered for
10685 interblock scheduling. The default value is 10.
10686
10687 @item max-pipeline-region-blocks
10688 The maximum number of blocks in a region to be considered for
10689 pipelining in the selective scheduler. The default value is 15.
10690
10691 @item max-sched-region-insns
10692 The maximum number of insns in a region to be considered for
10693 interblock scheduling. The default value is 100.
10694
10695 @item max-pipeline-region-insns
10696 The maximum number of insns in a region to be considered for
10697 pipelining in the selective scheduler. The default value is 200.
10698
10699 @item min-spec-prob
10700 The minimum probability (in percents) of reaching a source block
10701 for interblock speculative scheduling. The default value is 40.
10702
10703 @item max-sched-extend-regions-iters
10704 The maximum number of iterations through CFG to extend regions.
10705 A value of 0 (the default) disables region extensions.
10706
10707 @item max-sched-insn-conflict-delay
10708 The maximum conflict delay for an insn to be considered for speculative motion.
10709 The default value is 3.
10710
10711 @item sched-spec-prob-cutoff
10712 The minimal probability of speculation success (in percents), so that
10713 speculative insns are scheduled.
10714 The default value is 40.
10715
10716 @item sched-spec-state-edge-prob-cutoff
10717 The minimum probability an edge must have for the scheduler to save its
10718 state across it.
10719 The default value is 10.
10720
10721 @item sched-mem-true-dep-cost
10722 Minimal distance (in CPU cycles) between store and load targeting same
10723 memory locations. The default value is 1.
10724
10725 @item selsched-max-lookahead
10726 The maximum size of the lookahead window of selective scheduling. It is a
10727 depth of search for available instructions.
10728 The default value is 50.
10729
10730 @item selsched-max-sched-times
10731 The maximum number of times that an instruction is scheduled during
10732 selective scheduling. This is the limit on the number of iterations
10733 through which the instruction may be pipelined. The default value is 2.
10734
10735 @item selsched-max-insns-to-rename
10736 The maximum number of best instructions in the ready list that are considered
10737 for renaming in the selective scheduler. The default value is 2.
10738
10739 @item sms-min-sc
10740 The minimum value of stage count that swing modulo scheduler
10741 generates. The default value is 2.
10742
10743 @item max-last-value-rtl
10744 The maximum size measured as number of RTLs that can be recorded in an expression
10745 in combiner for a pseudo register as last known value of that register. The default
10746 is 10000.
10747
10748 @item max-combine-insns
10749 The maximum number of instructions the RTL combiner tries to combine.
10750 The default value is 2 at @option{-Og} and 4 otherwise.
10751
10752 @item integer-share-limit
10753 Small integer constants can use a shared data structure, reducing the
10754 compiler's memory usage and increasing its speed. This sets the maximum
10755 value of a shared integer constant. The default value is 256.
10756
10757 @item ssp-buffer-size
10758 The minimum size of buffers (i.e.@: arrays) that receive stack smashing
10759 protection when @option{-fstack-protection} is used.
10760
10761 @item min-size-for-stack-sharing
10762 The minimum size of variables taking part in stack slot sharing when not
10763 optimizing. The default value is 32.
10764
10765 @item max-jump-thread-duplication-stmts
10766 Maximum number of statements allowed in a block that needs to be
10767 duplicated when threading jumps.
10768
10769 @item max-fields-for-field-sensitive
10770 Maximum number of fields in a structure treated in
10771 a field sensitive manner during pointer analysis. The default is zero
10772 for @option{-O0} and @option{-O1},
10773 and 100 for @option{-Os}, @option{-O2}, and @option{-O3}.
10774
10775 @item prefetch-latency
10776 Estimate on average number of instructions that are executed before
10777 prefetch finishes. The distance prefetched ahead is proportional
10778 to this constant. Increasing this number may also lead to less
10779 streams being prefetched (see @option{simultaneous-prefetches}).
10780
10781 @item simultaneous-prefetches
10782 Maximum number of prefetches that can run at the same time.
10783
10784 @item l1-cache-line-size
10785 The size of cache line in L1 cache, in bytes.
10786
10787 @item l1-cache-size
10788 The size of L1 cache, in kilobytes.
10789
10790 @item l2-cache-size
10791 The size of L2 cache, in kilobytes.
10792
10793 @item min-insn-to-prefetch-ratio
10794 The minimum ratio between the number of instructions and the
10795 number of prefetches to enable prefetching in a loop.
10796
10797 @item prefetch-min-insn-to-mem-ratio
10798 The minimum ratio between the number of instructions and the
10799 number of memory references to enable prefetching in a loop.
10800
10801 @item use-canonical-types
10802 Whether the compiler should use the ``canonical'' type system. By
10803 default, this should always be 1, which uses a more efficient internal
10804 mechanism for comparing types in C++ and Objective-C++. However, if
10805 bugs in the canonical type system are causing compilation failures,
10806 set this value to 0 to disable canonical types.
10807
10808 @item switch-conversion-max-branch-ratio
10809 Switch initialization conversion refuses to create arrays that are
10810 bigger than @option{switch-conversion-max-branch-ratio} times the number of
10811 branches in the switch.
10812
10813 @item max-partial-antic-length
10814 Maximum length of the partial antic set computed during the tree
10815 partial redundancy elimination optimization (@option{-ftree-pre}) when
10816 optimizing at @option{-O3} and above. For some sorts of source code
10817 the enhanced partial redundancy elimination optimization can run away,
10818 consuming all of the memory available on the host machine. This
10819 parameter sets a limit on the length of the sets that are computed,
10820 which prevents the runaway behavior. Setting a value of 0 for
10821 this parameter allows an unlimited set length.
10822
10823 @item sccvn-max-scc-size
10824 Maximum size of a strongly connected component (SCC) during SCCVN
10825 processing. If this limit is hit, SCCVN processing for the whole
10826 function is not done and optimizations depending on it are
10827 disabled. The default maximum SCC size is 10000.
10828
10829 @item sccvn-max-alias-queries-per-access
10830 Maximum number of alias-oracle queries we perform when looking for
10831 redundancies for loads and stores. If this limit is hit the search
10832 is aborted and the load or store is not considered redundant. The
10833 number of queries is algorithmically limited to the number of
10834 stores on all paths from the load to the function entry.
10835 The default maxmimum number of queries is 1000.
10836
10837 @item ira-max-loops-num
10838 IRA uses regional register allocation by default. If a function
10839 contains more loops than the number given by this parameter, only at most
10840 the given number of the most frequently-executed loops form regions
10841 for regional register allocation. The default value of the
10842 parameter is 100.
10843
10844 @item ira-max-conflict-table-size
10845 Although IRA uses a sophisticated algorithm to compress the conflict
10846 table, the table can still require excessive amounts of memory for
10847 huge functions. If the conflict table for a function could be more
10848 than the size in MB given by this parameter, the register allocator
10849 instead uses a faster, simpler, and lower-quality
10850 algorithm that does not require building a pseudo-register conflict table.
10851 The default value of the parameter is 2000.
10852
10853 @item ira-loop-reserved-regs
10854 IRA can be used to evaluate more accurate register pressure in loops
10855 for decisions to move loop invariants (see @option{-O3}). The number
10856 of available registers reserved for some other purposes is given
10857 by this parameter. The default value of the parameter is 2, which is
10858 the minimal number of registers needed by typical instructions.
10859 This value is the best found from numerous experiments.
10860
10861 @item lra-inheritance-ebb-probability-cutoff
10862 LRA tries to reuse values reloaded in registers in subsequent insns.
10863 This optimization is called inheritance. EBB is used as a region to
10864 do this optimization. The parameter defines a minimal fall-through
10865 edge probability in percentage used to add BB to inheritance EBB in
10866 LRA. The default value of the parameter is 40. The value was chosen
10867 from numerous runs of SPEC2000 on x86-64.
10868
10869 @item loop-invariant-max-bbs-in-loop
10870 Loop invariant motion can be very expensive, both in compilation time and
10871 in amount of needed compile-time memory, with very large loops. Loops
10872 with more basic blocks than this parameter won't have loop invariant
10873 motion optimization performed on them. The default value of the
10874 parameter is 1000 for @option{-O1} and 10000 for @option{-O2} and above.
10875
10876 @item loop-max-datarefs-for-datadeps
10877 Building data dapendencies is expensive for very large loops. This
10878 parameter limits the number of data references in loops that are
10879 considered for data dependence analysis. These large loops are no
10880 handled by the optimizations using loop data dependencies.
10881 The default value is 1000.
10882
10883 @item max-vartrack-size
10884 Sets a maximum number of hash table slots to use during variable
10885 tracking dataflow analysis of any function. If this limit is exceeded
10886 with variable tracking at assignments enabled, analysis for that
10887 function is retried without it, after removing all debug insns from
10888 the function. If the limit is exceeded even without debug insns, var
10889 tracking analysis is completely disabled for the function. Setting
10890 the parameter to zero makes it unlimited.
10891
10892 @item max-vartrack-expr-depth
10893 Sets a maximum number of recursion levels when attempting to map
10894 variable names or debug temporaries to value expressions. This trades
10895 compilation time for more complete debug information. If this is set too
10896 low, value expressions that are available and could be represented in
10897 debug information may end up not being used; setting this higher may
10898 enable the compiler to find more complex debug expressions, but compile
10899 time and memory use may grow. The default is 12.
10900
10901 @item min-nondebug-insn-uid
10902 Use uids starting at this parameter for nondebug insns. The range below
10903 the parameter is reserved exclusively for debug insns created by
10904 @option{-fvar-tracking-assignments}, but debug insns may get
10905 (non-overlapping) uids above it if the reserved range is exhausted.
10906
10907 @item ipa-sra-ptr-growth-factor
10908 IPA-SRA replaces a pointer to an aggregate with one or more new
10909 parameters only when their cumulative size is less or equal to
10910 @option{ipa-sra-ptr-growth-factor} times the size of the original
10911 pointer parameter.
10912
10913 @item sra-max-scalarization-size-Ospeed
10914 @item sra-max-scalarization-size-Osize
10915 The two Scalar Reduction of Aggregates passes (SRA and IPA-SRA) aim to
10916 replace scalar parts of aggregates with uses of independent scalar
10917 variables. These parameters control the maximum size, in storage units,
10918 of aggregate which is considered for replacement when compiling for
10919 speed
10920 (@option{sra-max-scalarization-size-Ospeed}) or size
10921 (@option{sra-max-scalarization-size-Osize}) respectively.
10922
10923 @item tm-max-aggregate-size
10924 When making copies of thread-local variables in a transaction, this
10925 parameter specifies the size in bytes after which variables are
10926 saved with the logging functions as opposed to save/restore code
10927 sequence pairs. This option only applies when using
10928 @option{-fgnu-tm}.
10929
10930 @item graphite-max-nb-scop-params
10931 To avoid exponential effects in the Graphite loop transforms, the
10932 number of parameters in a Static Control Part (SCoP) is bounded. The
10933 default value is 10 parameters. A variable whose value is unknown at
10934 compilation time and defined outside a SCoP is a parameter of the SCoP.
10935
10936 @item graphite-max-bbs-per-function
10937 To avoid exponential effects in the detection of SCoPs, the size of
10938 the functions analyzed by Graphite is bounded. The default value is
10939 100 basic blocks.
10940
10941 @item loop-block-tile-size
10942 Loop blocking or strip mining transforms, enabled with
10943 @option{-floop-block} or @option{-floop-strip-mine}, strip mine each
10944 loop in the loop nest by a given number of iterations. The strip
10945 length can be changed using the @option{loop-block-tile-size}
10946 parameter. The default value is 51 iterations.
10947
10948 @item loop-unroll-jam-size
10949 Specify the unroll factor for the @option{-floop-unroll-and-jam} option. The
10950 default value is 4.
10951
10952 @item loop-unroll-jam-depth
10953 Specify the dimension to be unrolled (counting from the most inner loop)
10954 for the @option{-floop-unroll-and-jam}. The default value is 2.
10955
10956 @item ipa-cp-value-list-size
10957 IPA-CP attempts to track all possible values and types passed to a function's
10958 parameter in order to propagate them and perform devirtualization.
10959 @option{ipa-cp-value-list-size} is the maximum number of values and types it
10960 stores per one formal parameter of a function.
10961
10962 @item ipa-cp-eval-threshold
10963 IPA-CP calculates its own score of cloning profitability heuristics
10964 and performs those cloning opportunities with scores that exceed
10965 @option{ipa-cp-eval-threshold}.
10966
10967 @item ipa-cp-recursion-penalty
10968 Percentage penalty the recursive functions will receive when they
10969 are evaluated for cloning.
10970
10971 @item ipa-cp-single-call-penalty
10972 Percentage penalty functions containg a single call to another
10973 function will receive when they are evaluated for cloning.
10974
10975
10976 @item ipa-max-agg-items
10977 IPA-CP is also capable to propagate a number of scalar values passed
10978 in an aggregate. @option{ipa-max-agg-items} controls the maximum
10979 number of such values per one parameter.
10980
10981 @item ipa-cp-loop-hint-bonus
10982 When IPA-CP determines that a cloning candidate would make the number
10983 of iterations of a loop known, it adds a bonus of
10984 @option{ipa-cp-loop-hint-bonus} to the profitability score of
10985 the candidate.
10986
10987 @item ipa-cp-array-index-hint-bonus
10988 When IPA-CP determines that a cloning candidate would make the index of
10989 an array access known, it adds a bonus of
10990 @option{ipa-cp-array-index-hint-bonus} to the profitability
10991 score of the candidate.
10992
10993 @item ipa-max-aa-steps
10994 During its analysis of function bodies, IPA-CP employs alias analysis
10995 in order to track values pointed to by function parameters. In order
10996 not spend too much time analyzing huge functions, it gives up and
10997 consider all memory clobbered after examining
10998 @option{ipa-max-aa-steps} statements modifying memory.
10999
11000 @item lto-partitions
11001 Specify desired number of partitions produced during WHOPR compilation.
11002 The number of partitions should exceed the number of CPUs used for compilation.
11003 The default value is 32.
11004
11005 @item lto-minpartition
11006 Size of minimal partition for WHOPR (in estimated instructions).
11007 This prevents expenses of splitting very small programs into too many
11008 partitions.
11009
11010 @item cxx-max-namespaces-for-diagnostic-help
11011 The maximum number of namespaces to consult for suggestions when C++
11012 name lookup fails for an identifier. The default is 1000.
11013
11014 @item sink-frequency-threshold
11015 The maximum relative execution frequency (in percents) of the target block
11016 relative to a statement's original block to allow statement sinking of a
11017 statement. Larger numbers result in more aggressive statement sinking.
11018 The default value is 75. A small positive adjustment is applied for
11019 statements with memory operands as those are even more profitable so sink.
11020
11021 @item max-stores-to-sink
11022 The maximum number of conditional stores paires that can be sunk. Set to 0
11023 if either vectorization (@option{-ftree-vectorize}) or if-conversion
11024 (@option{-ftree-loop-if-convert}) is disabled. The default is 2.
11025
11026 @item allow-store-data-races
11027 Allow optimizers to introduce new data races on stores.
11028 Set to 1 to allow, otherwise to 0. This option is enabled by default
11029 at optimization level @option{-Ofast}.
11030
11031 @item case-values-threshold
11032 The smallest number of different values for which it is best to use a
11033 jump-table instead of a tree of conditional branches. If the value is
11034 0, use the default for the machine. The default is 0.
11035
11036 @item tree-reassoc-width
11037 Set the maximum number of instructions executed in parallel in
11038 reassociated tree. This parameter overrides target dependent
11039 heuristics used by default if has non zero value.
11040
11041 @item sched-pressure-algorithm
11042 Choose between the two available implementations of
11043 @option{-fsched-pressure}. Algorithm 1 is the original implementation
11044 and is the more likely to prevent instructions from being reordered.
11045 Algorithm 2 was designed to be a compromise between the relatively
11046 conservative approach taken by algorithm 1 and the rather aggressive
11047 approach taken by the default scheduler. It relies more heavily on
11048 having a regular register file and accurate register pressure classes.
11049 See @file{haifa-sched.c} in the GCC sources for more details.
11050
11051 The default choice depends on the target.
11052
11053 @item max-slsr-cand-scan
11054 Set the maximum number of existing candidates that are considered when
11055 seeking a basis for a new straight-line strength reduction candidate.
11056
11057 @item asan-globals
11058 Enable buffer overflow detection for global objects. This kind
11059 of protection is enabled by default if you are using
11060 @option{-fsanitize=address} option.
11061 To disable global objects protection use @option{--param asan-globals=0}.
11062
11063 @item asan-stack
11064 Enable buffer overflow detection for stack objects. This kind of
11065 protection is enabled by default when using@option{-fsanitize=address}.
11066 To disable stack protection use @option{--param asan-stack=0} option.
11067
11068 @item asan-instrument-reads
11069 Enable buffer overflow detection for memory reads. This kind of
11070 protection is enabled by default when using @option{-fsanitize=address}.
11071 To disable memory reads protection use
11072 @option{--param asan-instrument-reads=0}.
11073
11074 @item asan-instrument-writes
11075 Enable buffer overflow detection for memory writes. This kind of
11076 protection is enabled by default when using @option{-fsanitize=address}.
11077 To disable memory writes protection use
11078 @option{--param asan-instrument-writes=0} option.
11079
11080 @item asan-memintrin
11081 Enable detection for built-in functions. This kind of protection
11082 is enabled by default when using @option{-fsanitize=address}.
11083 To disable built-in functions protection use
11084 @option{--param asan-memintrin=0}.
11085
11086 @item asan-use-after-return
11087 Enable detection of use-after-return. This kind of protection
11088 is enabled by default when using @option{-fsanitize=address} option.
11089 To disable use-after-return detection use
11090 @option{--param asan-use-after-return=0}.
11091
11092 @item asan-instrumentation-with-call-threshold
11093 If number of memory accesses in function being instrumented
11094 is greater or equal to this number, use callbacks instead of inline checks.
11095 E.g. to disable inline code use
11096 @option{--param asan-instrumentation-with-call-threshold=0}.
11097
11098 @item chkp-max-ctor-size
11099 Static constructors generated by Pointer Bounds Checker may become very
11100 large and significantly increase compile time at optimization level
11101 @option{-O1} and higher. This parameter is a maximum nubmer of statements
11102 in a single generated constructor. Default value is 5000.
11103
11104 @item max-fsm-thread-path-insns
11105 Maximum number of instructions to copy when duplicating blocks on a
11106 finite state automaton jump thread path. The default is 100.
11107
11108 @item max-fsm-thread-length
11109 Maximum number of basic blocks on a finite state automaton jump thread
11110 path. The default is 10.
11111
11112 @item max-fsm-thread-paths
11113 Maximum number of new jump thread paths to create for a finite state
11114 automaton. The default is 50.
11115
11116 @end table
11117 @end table
11118
11119 @node Preprocessor Options
11120 @section Options Controlling the Preprocessor
11121 @cindex preprocessor options
11122 @cindex options, preprocessor
11123
11124 These options control the C preprocessor, which is run on each C source
11125 file before actual compilation.
11126
11127 If you use the @option{-E} option, nothing is done except preprocessing.
11128 Some of these options make sense only together with @option{-E} because
11129 they cause the preprocessor output to be unsuitable for actual
11130 compilation.
11131
11132 @table @gcctabopt
11133 @item -Wp,@var{option}
11134 @opindex Wp
11135 You can use @option{-Wp,@var{option}} to bypass the compiler driver
11136 and pass @var{option} directly through to the preprocessor. If
11137 @var{option} contains commas, it is split into multiple options at the
11138 commas. However, many options are modified, translated or interpreted
11139 by the compiler driver before being passed to the preprocessor, and
11140 @option{-Wp} forcibly bypasses this phase. The preprocessor's direct
11141 interface is undocumented and subject to change, so whenever possible
11142 you should avoid using @option{-Wp} and let the driver handle the
11143 options instead.
11144
11145 @item -Xpreprocessor @var{option}
11146 @opindex Xpreprocessor
11147 Pass @var{option} as an option to the preprocessor. You can use this to
11148 supply system-specific preprocessor options that GCC does not
11149 recognize.
11150
11151 If you want to pass an option that takes an argument, you must use
11152 @option{-Xpreprocessor} twice, once for the option and once for the argument.
11153
11154 @item -no-integrated-cpp
11155 @opindex no-integrated-cpp
11156 Perform preprocessing as a separate pass before compilation.
11157 By default, GCC performs preprocessing as an integrated part of
11158 input tokenization and parsing.
11159 If this option is provided, the appropriate language front end
11160 (@command{cc1}, @command{cc1plus}, or @command{cc1obj} for C, C++,
11161 and Objective-C, respectively) is instead invoked twice,
11162 once for preprocessing only and once for actual compilation
11163 of the preprocessed input.
11164 This option may be useful in conjunction with the @option{-B} or
11165 @option{-wrapper} options to specify an alternate preprocessor or
11166 perform additional processing of the program source between
11167 normal preprocessing and compilation.
11168 @end table
11169
11170 @include cppopts.texi
11171
11172 @node Assembler Options
11173 @section Passing Options to the Assembler
11174
11175 @c prevent bad page break with this line
11176 You can pass options to the assembler.
11177
11178 @table @gcctabopt
11179 @item -Wa,@var{option}
11180 @opindex Wa
11181 Pass @var{option} as an option to the assembler. If @var{option}
11182 contains commas, it is split into multiple options at the commas.
11183
11184 @item -Xassembler @var{option}
11185 @opindex Xassembler
11186 Pass @var{option} as an option to the assembler. You can use this to
11187 supply system-specific assembler options that GCC does not
11188 recognize.
11189
11190 If you want to pass an option that takes an argument, you must use
11191 @option{-Xassembler} twice, once for the option and once for the argument.
11192
11193 @end table
11194
11195 @node Link Options
11196 @section Options for Linking
11197 @cindex link options
11198 @cindex options, linking
11199
11200 These options come into play when the compiler links object files into
11201 an executable output file. They are meaningless if the compiler is
11202 not doing a link step.
11203
11204 @table @gcctabopt
11205 @cindex file names
11206 @item @var{object-file-name}
11207 A file name that does not end in a special recognized suffix is
11208 considered to name an object file or library. (Object files are
11209 distinguished from libraries by the linker according to the file
11210 contents.) If linking is done, these object files are used as input
11211 to the linker.
11212
11213 @item -c
11214 @itemx -S
11215 @itemx -E
11216 @opindex c
11217 @opindex S
11218 @opindex E
11219 If any of these options is used, then the linker is not run, and
11220 object file names should not be used as arguments. @xref{Overall
11221 Options}.
11222
11223 @item -fuse-ld=bfd
11224 @opindex fuse-ld=bfd
11225 Use the @command{bfd} linker instead of the default linker.
11226
11227 @item -fuse-ld=gold
11228 @opindex fuse-ld=gold
11229 Use the @command{gold} linker instead of the default linker.
11230
11231 @cindex Libraries
11232 @item -l@var{library}
11233 @itemx -l @var{library}
11234 @opindex l
11235 Search the library named @var{library} when linking. (The second
11236 alternative with the library as a separate argument is only for
11237 POSIX compliance and is not recommended.)
11238
11239 It makes a difference where in the command you write this option; the
11240 linker searches and processes libraries and object files in the order they
11241 are specified. Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
11242 after file @file{foo.o} but before @file{bar.o}. If @file{bar.o} refers
11243 to functions in @samp{z}, those functions may not be loaded.
11244
11245 The linker searches a standard list of directories for the library,
11246 which is actually a file named @file{lib@var{library}.a}. The linker
11247 then uses this file as if it had been specified precisely by name.
11248
11249 The directories searched include several standard system directories
11250 plus any that you specify with @option{-L}.
11251
11252 Normally the files found this way are library files---archive files
11253 whose members are object files. The linker handles an archive file by
11254 scanning through it for members which define symbols that have so far
11255 been referenced but not defined. But if the file that is found is an
11256 ordinary object file, it is linked in the usual fashion. The only
11257 difference between using an @option{-l} option and specifying a file name
11258 is that @option{-l} surrounds @var{library} with @samp{lib} and @samp{.a}
11259 and searches several directories.
11260
11261 @item -lobjc
11262 @opindex lobjc
11263 You need this special case of the @option{-l} option in order to
11264 link an Objective-C or Objective-C++ program.
11265
11266 @item -nostartfiles
11267 @opindex nostartfiles
11268 Do not use the standard system startup files when linking.
11269 The standard system libraries are used normally, unless @option{-nostdlib}
11270 or @option{-nodefaultlibs} is used.
11271
11272 @item -nodefaultlibs
11273 @opindex nodefaultlibs
11274 Do not use the standard system libraries when linking.
11275 Only the libraries you specify are passed to the linker, and options
11276 specifying linkage of the system libraries, such as @option{-static-libgcc}
11277 or @option{-shared-libgcc}, are ignored.
11278 The standard startup files are used normally, unless @option{-nostartfiles}
11279 is used.
11280
11281 The compiler may generate calls to @code{memcmp},
11282 @code{memset}, @code{memcpy} and @code{memmove}.
11283 These entries are usually resolved by entries in
11284 libc. These entry points should be supplied through some other
11285 mechanism when this option is specified.
11286
11287 @item -nostdlib
11288 @opindex nostdlib
11289 Do not use the standard system startup files or libraries when linking.
11290 No startup files and only the libraries you specify are passed to
11291 the linker, and options specifying linkage of the system libraries, such as
11292 @option{-static-libgcc} or @option{-shared-libgcc}, are ignored.
11293
11294 The compiler may generate calls to @code{memcmp}, @code{memset},
11295 @code{memcpy} and @code{memmove}.
11296 These entries are usually resolved by entries in
11297 libc. These entry points should be supplied through some other
11298 mechanism when this option is specified.
11299
11300 @cindex @option{-lgcc}, use with @option{-nostdlib}
11301 @cindex @option{-nostdlib} and unresolved references
11302 @cindex unresolved references and @option{-nostdlib}
11303 @cindex @option{-lgcc}, use with @option{-nodefaultlibs}
11304 @cindex @option{-nodefaultlibs} and unresolved references
11305 @cindex unresolved references and @option{-nodefaultlibs}
11306 One of the standard libraries bypassed by @option{-nostdlib} and
11307 @option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
11308 which GCC uses to overcome shortcomings of particular machines, or special
11309 needs for some languages.
11310 (@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
11311 Collection (GCC) Internals},
11312 for more discussion of @file{libgcc.a}.)
11313 In most cases, you need @file{libgcc.a} even when you want to avoid
11314 other standard libraries. In other words, when you specify @option{-nostdlib}
11315 or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
11316 This ensures that you have no unresolved references to internal GCC
11317 library subroutines.
11318 (An example of such an internal subroutine is @code{__main}, used to ensure C++
11319 constructors are called; @pxref{Collect2,,@code{collect2}, gccint,
11320 GNU Compiler Collection (GCC) Internals}.)
11321
11322 @item -pie
11323 @opindex pie
11324 Produce a position independent executable on targets that support it.
11325 For predictable results, you must also specify the same set of options
11326 used for compilation (@option{-fpie}, @option{-fPIE},
11327 or model suboptions) when you specify this linker option.
11328
11329 @item -no-pie
11330 @opindex no-pie
11331 Don't produce a position independent executable.
11332
11333 @item -rdynamic
11334 @opindex rdynamic
11335 Pass the flag @option{-export-dynamic} to the ELF linker, on targets
11336 that support it. This instructs the linker to add all symbols, not
11337 only used ones, to the dynamic symbol table. This option is needed
11338 for some uses of @code{dlopen} or to allow obtaining backtraces
11339 from within a program.
11340
11341 @item -s
11342 @opindex s
11343 Remove all symbol table and relocation information from the executable.
11344
11345 @item -static
11346 @opindex static
11347 On systems that support dynamic linking, this prevents linking with the shared
11348 libraries. On other systems, this option has no effect.
11349
11350 @item -shared
11351 @opindex shared
11352 Produce a shared object which can then be linked with other objects to
11353 form an executable. Not all systems support this option. For predictable
11354 results, you must also specify the same set of options used for compilation
11355 (@option{-fpic}, @option{-fPIC}, or model suboptions) when
11356 you specify this linker option.@footnote{On some systems, @samp{gcc -shared}
11357 needs to build supplementary stub code for constructors to work. On
11358 multi-libbed systems, @samp{gcc -shared} must select the correct support
11359 libraries to link against. Failing to supply the correct flags may lead
11360 to subtle defects. Supplying them in cases where they are not necessary
11361 is innocuous.}
11362
11363 @item -shared-libgcc
11364 @itemx -static-libgcc
11365 @opindex shared-libgcc
11366 @opindex static-libgcc
11367 On systems that provide @file{libgcc} as a shared library, these options
11368 force the use of either the shared or static version, respectively.
11369 If no shared version of @file{libgcc} was built when the compiler was
11370 configured, these options have no effect.
11371
11372 There are several situations in which an application should use the
11373 shared @file{libgcc} instead of the static version. The most common
11374 of these is when the application wishes to throw and catch exceptions
11375 across different shared libraries. In that case, each of the libraries
11376 as well as the application itself should use the shared @file{libgcc}.
11377
11378 Therefore, the G++ and GCJ drivers automatically add
11379 @option{-shared-libgcc} whenever you build a shared library or a main
11380 executable, because C++ and Java programs typically use exceptions, so
11381 this is the right thing to do.
11382
11383 If, instead, you use the GCC driver to create shared libraries, you may
11384 find that they are not always linked with the shared @file{libgcc}.
11385 If GCC finds, at its configuration time, that you have a non-GNU linker
11386 or a GNU linker that does not support option @option{--eh-frame-hdr},
11387 it links the shared version of @file{libgcc} into shared libraries
11388 by default. Otherwise, it takes advantage of the linker and optimizes
11389 away the linking with the shared version of @file{libgcc}, linking with
11390 the static version of libgcc by default. This allows exceptions to
11391 propagate through such shared libraries, without incurring relocation
11392 costs at library load time.
11393
11394 However, if a library or main executable is supposed to throw or catch
11395 exceptions, you must link it using the G++ or GCJ driver, as appropriate
11396 for the languages used in the program, or using the option
11397 @option{-shared-libgcc}, such that it is linked with the shared
11398 @file{libgcc}.
11399
11400 @item -static-libasan
11401 @opindex static-libasan
11402 When the @option{-fsanitize=address} option is used to link a program,
11403 the GCC driver automatically links against @option{libasan}. If
11404 @file{libasan} is available as a shared library, and the @option{-static}
11405 option is not used, then this links against the shared version of
11406 @file{libasan}. The @option{-static-libasan} option directs the GCC
11407 driver to link @file{libasan} statically, without necessarily linking
11408 other libraries statically.
11409
11410 @item -static-libtsan
11411 @opindex static-libtsan
11412 When the @option{-fsanitize=thread} option is used to link a program,
11413 the GCC driver automatically links against @option{libtsan}. If
11414 @file{libtsan} is available as a shared library, and the @option{-static}
11415 option is not used, then this links against the shared version of
11416 @file{libtsan}. The @option{-static-libtsan} option directs the GCC
11417 driver to link @file{libtsan} statically, without necessarily linking
11418 other libraries statically.
11419
11420 @item -static-liblsan
11421 @opindex static-liblsan
11422 When the @option{-fsanitize=leak} option is used to link a program,
11423 the GCC driver automatically links against @option{liblsan}. If
11424 @file{liblsan} is available as a shared library, and the @option{-static}
11425 option is not used, then this links against the shared version of
11426 @file{liblsan}. The @option{-static-liblsan} option directs the GCC
11427 driver to link @file{liblsan} statically, without necessarily linking
11428 other libraries statically.
11429
11430 @item -static-libubsan
11431 @opindex static-libubsan
11432 When the @option{-fsanitize=undefined} option is used to link a program,
11433 the GCC driver automatically links against @option{libubsan}. If
11434 @file{libubsan} is available as a shared library, and the @option{-static}
11435 option is not used, then this links against the shared version of
11436 @file{libubsan}. The @option{-static-libubsan} option directs the GCC
11437 driver to link @file{libubsan} statically, without necessarily linking
11438 other libraries statically.
11439
11440 @item -static-libmpx
11441 @opindex static-libmpx
11442 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are
11443 used to link a program, the GCC driver automatically links against
11444 @file{libmpx}. If @file{libmpx} is available as a shared library,
11445 and the @option{-static} option is not used, then this links against
11446 the shared version of @file{libmpx}. The @option{-static-libmpx}
11447 option directs the GCC driver to link @file{libmpx} statically,
11448 without necessarily linking other libraries statically.
11449
11450 @item -static-libmpxwrappers
11451 @opindex static-libmpxwrappers
11452 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are used
11453 to link a program without also using @option{-fno-chkp-use-wrappers}, the
11454 GCC driver automatically links against @file{libmpxwrappers}. If
11455 @file{libmpxwrappers} is available as a shared library, and the
11456 @option{-static} option is not used, then this links against the shared
11457 version of @file{libmpxwrappers}. The @option{-static-libmpxwrappers}
11458 option directs the GCC driver to link @file{libmpxwrappers} statically,
11459 without necessarily linking other libraries statically.
11460
11461 @item -static-libstdc++
11462 @opindex static-libstdc++
11463 When the @command{g++} program is used to link a C++ program, it
11464 normally automatically links against @option{libstdc++}. If
11465 @file{libstdc++} is available as a shared library, and the
11466 @option{-static} option is not used, then this links against the
11467 shared version of @file{libstdc++}. That is normally fine. However, it
11468 is sometimes useful to freeze the version of @file{libstdc++} used by
11469 the program without going all the way to a fully static link. The
11470 @option{-static-libstdc++} option directs the @command{g++} driver to
11471 link @file{libstdc++} statically, without necessarily linking other
11472 libraries statically.
11473
11474 @item -symbolic
11475 @opindex symbolic
11476 Bind references to global symbols when building a shared object. Warn
11477 about any unresolved references (unless overridden by the link editor
11478 option @option{-Xlinker -z -Xlinker defs}). Only a few systems support
11479 this option.
11480
11481 @item -T @var{script}
11482 @opindex T
11483 @cindex linker script
11484 Use @var{script} as the linker script. This option is supported by most
11485 systems using the GNU linker. On some targets, such as bare-board
11486 targets without an operating system, the @option{-T} option may be required
11487 when linking to avoid references to undefined symbols.
11488
11489 @item -Xlinker @var{option}
11490 @opindex Xlinker
11491 Pass @var{option} as an option to the linker. You can use this to
11492 supply system-specific linker options that GCC does not recognize.
11493
11494 If you want to pass an option that takes a separate argument, you must use
11495 @option{-Xlinker} twice, once for the option and once for the argument.
11496 For example, to pass @option{-assert definitions}, you must write
11497 @option{-Xlinker -assert -Xlinker definitions}. It does not work to write
11498 @option{-Xlinker "-assert definitions"}, because this passes the entire
11499 string as a single argument, which is not what the linker expects.
11500
11501 When using the GNU linker, it is usually more convenient to pass
11502 arguments to linker options using the @option{@var{option}=@var{value}}
11503 syntax than as separate arguments. For example, you can specify
11504 @option{-Xlinker -Map=output.map} rather than
11505 @option{-Xlinker -Map -Xlinker output.map}. Other linkers may not support
11506 this syntax for command-line options.
11507
11508 @item -Wl,@var{option}
11509 @opindex Wl
11510 Pass @var{option} as an option to the linker. If @var{option} contains
11511 commas, it is split into multiple options at the commas. You can use this
11512 syntax to pass an argument to the option.
11513 For example, @option{-Wl,-Map,output.map} passes @option{-Map output.map} to the
11514 linker. When using the GNU linker, you can also get the same effect with
11515 @option{-Wl,-Map=output.map}.
11516
11517 @item -u @var{symbol}
11518 @opindex u
11519 Pretend the symbol @var{symbol} is undefined, to force linking of
11520 library modules to define it. You can use @option{-u} multiple times with
11521 different symbols to force loading of additional library modules.
11522
11523 @item -z @var{keyword}
11524 @opindex z
11525 @option{-z} is passed directly on to the linker along with the keyword
11526 @var{keyword}. See the section in the documentation of your linker for
11527 permitted values and their meanings.
11528 @end table
11529
11530 @node Directory Options
11531 @section Options for Directory Search
11532 @cindex directory options
11533 @cindex options, directory search
11534 @cindex search path
11535
11536 These options specify directories to search for header files, for
11537 libraries and for parts of the compiler:
11538
11539 @table @gcctabopt
11540 @item -I@var{dir}
11541 @opindex I
11542 Add the directory @var{dir} to the head of the list of directories to be
11543 searched for header files. This can be used to override a system header
11544 file, substituting your own version, since these directories are
11545 searched before the system header file directories. However, you should
11546 not use this option to add directories that contain vendor-supplied
11547 system header files (use @option{-isystem} for that). If you use more than
11548 one @option{-I} option, the directories are scanned in left-to-right
11549 order; the standard system directories come after.
11550
11551 If a standard system include directory, or a directory specified with
11552 @option{-isystem}, is also specified with @option{-I}, the @option{-I}
11553 option is ignored. The directory is still searched but as a
11554 system directory at its normal position in the system include chain.
11555 This is to ensure that GCC's procedure to fix buggy system headers and
11556 the ordering for the @code{include_next} directive are not inadvertently changed.
11557 If you really need to change the search order for system directories,
11558 use the @option{-nostdinc} and/or @option{-isystem} options.
11559
11560 @item -iplugindir=@var{dir}
11561 @opindex iplugindir=
11562 Set the directory to search for plugins that are passed
11563 by @option{-fplugin=@var{name}} instead of
11564 @option{-fplugin=@var{path}/@var{name}.so}. This option is not meant
11565 to be used by the user, but only passed by the driver.
11566
11567 @item -iquote@var{dir}
11568 @opindex iquote
11569 Add the directory @var{dir} to the head of the list of directories to
11570 be searched for header files only for the case of @code{#include
11571 "@var{file}"}; they are not searched for @code{#include <@var{file}>},
11572 otherwise just like @option{-I}.
11573
11574 @item -L@var{dir}
11575 @opindex L
11576 Add directory @var{dir} to the list of directories to be searched
11577 for @option{-l}.
11578
11579 @item -B@var{prefix}
11580 @opindex B
11581 This option specifies where to find the executables, libraries,
11582 include files, and data files of the compiler itself.
11583
11584 The compiler driver program runs one or more of the subprograms
11585 @command{cpp}, @command{cc1}, @command{as} and @command{ld}. It tries
11586 @var{prefix} as a prefix for each program it tries to run, both with and
11587 without @samp{@var{machine}/@var{version}/} (@pxref{Target Options}).
11588
11589 For each subprogram to be run, the compiler driver first tries the
11590 @option{-B} prefix, if any. If that name is not found, or if @option{-B}
11591 is not specified, the driver tries two standard prefixes,
11592 @file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}. If neither of
11593 those results in a file name that is found, the unmodified program
11594 name is searched for using the directories specified in your
11595 @env{PATH} environment variable.
11596
11597 The compiler checks to see if the path provided by @option{-B}
11598 refers to a directory, and if necessary it adds a directory
11599 separator character at the end of the path.
11600
11601 @option{-B} prefixes that effectively specify directory names also apply
11602 to libraries in the linker, because the compiler translates these
11603 options into @option{-L} options for the linker. They also apply to
11604 include files in the preprocessor, because the compiler translates these
11605 options into @option{-isystem} options for the preprocessor. In this case,
11606 the compiler appends @samp{include} to the prefix.
11607
11608 The runtime support file @file{libgcc.a} can also be searched for using
11609 the @option{-B} prefix, if needed. If it is not found there, the two
11610 standard prefixes above are tried, and that is all. The file is left
11611 out of the link if it is not found by those means.
11612
11613 Another way to specify a prefix much like the @option{-B} prefix is to use
11614 the environment variable @env{GCC_EXEC_PREFIX}. @xref{Environment
11615 Variables}.
11616
11617 As a special kludge, if the path provided by @option{-B} is
11618 @file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
11619 9, then it is replaced by @file{[dir/]include}. This is to help
11620 with boot-strapping the compiler.
11621
11622 @item -specs=@var{file}
11623 @opindex specs
11624 Process @var{file} after the compiler reads in the standard @file{specs}
11625 file, in order to override the defaults which the @command{gcc} driver
11626 program uses when determining what switches to pass to @command{cc1},
11627 @command{cc1plus}, @command{as}, @command{ld}, etc. More than one
11628 @option{-specs=@var{file}} can be specified on the command line, and they
11629 are processed in order, from left to right.
11630
11631 @item --sysroot=@var{dir}
11632 @opindex sysroot
11633 Use @var{dir} as the logical root directory for headers and libraries.
11634 For example, if the compiler normally searches for headers in
11635 @file{/usr/include} and libraries in @file{/usr/lib}, it instead
11636 searches @file{@var{dir}/usr/include} and @file{@var{dir}/usr/lib}.
11637
11638 If you use both this option and the @option{-isysroot} option, then
11639 the @option{--sysroot} option applies to libraries, but the
11640 @option{-isysroot} option applies to header files.
11641
11642 The GNU linker (beginning with version 2.16) has the necessary support
11643 for this option. If your linker does not support this option, the
11644 header file aspect of @option{--sysroot} still works, but the
11645 library aspect does not.
11646
11647 @item --no-sysroot-suffix
11648 @opindex no-sysroot-suffix
11649 For some targets, a suffix is added to the root directory specified
11650 with @option{--sysroot}, depending on the other options used, so that
11651 headers may for example be found in
11652 @file{@var{dir}/@var{suffix}/usr/include} instead of
11653 @file{@var{dir}/usr/include}. This option disables the addition of
11654 such a suffix.
11655
11656 @item -I-
11657 @opindex I-
11658 This option has been deprecated. Please use @option{-iquote} instead for
11659 @option{-I} directories before the @option{-I-} and remove the @option{-I-}
11660 option.
11661 Any directories you specify with @option{-I} options before the @option{-I-}
11662 option are searched only for the case of @code{#include "@var{file}"};
11663 they are not searched for @code{#include <@var{file}>}.
11664
11665 If additional directories are specified with @option{-I} options after
11666 the @option{-I-} option, these directories are searched for all @code{#include}
11667 directives. (Ordinarily @emph{all} @option{-I} directories are used
11668 this way.)
11669
11670 In addition, the @option{-I-} option inhibits the use of the current
11671 directory (where the current input file came from) as the first search
11672 directory for @code{#include "@var{file}"}. There is no way to
11673 override this effect of @option{-I-}. With @option{-I.} you can specify
11674 searching the directory that is current when the compiler is
11675 invoked. That is not exactly the same as what the preprocessor does
11676 by default, but it is often satisfactory.
11677
11678 @option{-I-} does not inhibit the use of the standard system directories
11679 for header files. Thus, @option{-I-} and @option{-nostdinc} are
11680 independent.
11681 @end table
11682
11683 @c man end
11684
11685 @node Spec Files
11686 @section Specifying Subprocesses and the Switches to Pass to Them
11687 @cindex Spec Files
11688
11689 @command{gcc} is a driver program. It performs its job by invoking a
11690 sequence of other programs to do the work of compiling, assembling and
11691 linking. GCC interprets its command-line parameters and uses these to
11692 deduce which programs it should invoke, and which command-line options
11693 it ought to place on their command lines. This behavior is controlled
11694 by @dfn{spec strings}. In most cases there is one spec string for each
11695 program that GCC can invoke, but a few programs have multiple spec
11696 strings to control their behavior. The spec strings built into GCC can
11697 be overridden by using the @option{-specs=} command-line switch to specify
11698 a spec file.
11699
11700 @dfn{Spec files} are plaintext files that are used to construct spec
11701 strings. They consist of a sequence of directives separated by blank
11702 lines. The type of directive is determined by the first non-whitespace
11703 character on the line, which can be one of the following:
11704
11705 @table @code
11706 @item %@var{command}
11707 Issues a @var{command} to the spec file processor. The commands that can
11708 appear here are:
11709
11710 @table @code
11711 @item %include <@var{file}>
11712 @cindex @code{%include}
11713 Search for @var{file} and insert its text at the current point in the
11714 specs file.
11715
11716 @item %include_noerr <@var{file}>
11717 @cindex @code{%include_noerr}
11718 Just like @samp{%include}, but do not generate an error message if the include
11719 file cannot be found.
11720
11721 @item %rename @var{old_name} @var{new_name}
11722 @cindex @code{%rename}
11723 Rename the spec string @var{old_name} to @var{new_name}.
11724
11725 @end table
11726
11727 @item *[@var{spec_name}]:
11728 This tells the compiler to create, override or delete the named spec
11729 string. All lines after this directive up to the next directive or
11730 blank line are considered to be the text for the spec string. If this
11731 results in an empty string then the spec is deleted. (Or, if the
11732 spec did not exist, then nothing happens.) Otherwise, if the spec
11733 does not currently exist a new spec is created. If the spec does
11734 exist then its contents are overridden by the text of this
11735 directive, unless the first character of that text is the @samp{+}
11736 character, in which case the text is appended to the spec.
11737
11738 @item [@var{suffix}]:
11739 Creates a new @samp{[@var{suffix}] spec} pair. All lines after this directive
11740 and up to the next directive or blank line are considered to make up the
11741 spec string for the indicated suffix. When the compiler encounters an
11742 input file with the named suffix, it processes the spec string in
11743 order to work out how to compile that file. For example:
11744
11745 @smallexample
11746 .ZZ:
11747 z-compile -input %i
11748 @end smallexample
11749
11750 This says that any input file whose name ends in @samp{.ZZ} should be
11751 passed to the program @samp{z-compile}, which should be invoked with the
11752 command-line switch @option{-input} and with the result of performing the
11753 @samp{%i} substitution. (See below.)
11754
11755 As an alternative to providing a spec string, the text following a
11756 suffix directive can be one of the following:
11757
11758 @table @code
11759 @item @@@var{language}
11760 This says that the suffix is an alias for a known @var{language}. This is
11761 similar to using the @option{-x} command-line switch to GCC to specify a
11762 language explicitly. For example:
11763
11764 @smallexample
11765 .ZZ:
11766 @@c++
11767 @end smallexample
11768
11769 Says that .ZZ files are, in fact, C++ source files.
11770
11771 @item #@var{name}
11772 This causes an error messages saying:
11773
11774 @smallexample
11775 @var{name} compiler not installed on this system.
11776 @end smallexample
11777 @end table
11778
11779 GCC already has an extensive list of suffixes built into it.
11780 This directive adds an entry to the end of the list of suffixes, but
11781 since the list is searched from the end backwards, it is effectively
11782 possible to override earlier entries using this technique.
11783
11784 @end table
11785
11786 GCC has the following spec strings built into it. Spec files can
11787 override these strings or create their own. Note that individual
11788 targets can also add their own spec strings to this list.
11789
11790 @smallexample
11791 asm Options to pass to the assembler
11792 asm_final Options to pass to the assembler post-processor
11793 cpp Options to pass to the C preprocessor
11794 cc1 Options to pass to the C compiler
11795 cc1plus Options to pass to the C++ compiler
11796 endfile Object files to include at the end of the link
11797 link Options to pass to the linker
11798 lib Libraries to include on the command line to the linker
11799 libgcc Decides which GCC support library to pass to the linker
11800 linker Sets the name of the linker
11801 predefines Defines to be passed to the C preprocessor
11802 signed_char Defines to pass to CPP to say whether @code{char} is signed
11803 by default
11804 startfile Object files to include at the start of the link
11805 @end smallexample
11806
11807 Here is a small example of a spec file:
11808
11809 @smallexample
11810 %rename lib old_lib
11811
11812 *lib:
11813 --start-group -lgcc -lc -leval1 --end-group %(old_lib)
11814 @end smallexample
11815
11816 This example renames the spec called @samp{lib} to @samp{old_lib} and
11817 then overrides the previous definition of @samp{lib} with a new one.
11818 The new definition adds in some extra command-line options before
11819 including the text of the old definition.
11820
11821 @dfn{Spec strings} are a list of command-line options to be passed to their
11822 corresponding program. In addition, the spec strings can contain
11823 @samp{%}-prefixed sequences to substitute variable text or to
11824 conditionally insert text into the command line. Using these constructs
11825 it is possible to generate quite complex command lines.
11826
11827 Here is a table of all defined @samp{%}-sequences for spec
11828 strings. Note that spaces are not generated automatically around the
11829 results of expanding these sequences. Therefore you can concatenate them
11830 together or combine them with constant text in a single argument.
11831
11832 @table @code
11833 @item %%
11834 Substitute one @samp{%} into the program name or argument.
11835
11836 @item %i
11837 Substitute the name of the input file being processed.
11838
11839 @item %b
11840 Substitute the basename of the input file being processed.
11841 This is the substring up to (and not including) the last period
11842 and not including the directory.
11843
11844 @item %B
11845 This is the same as @samp{%b}, but include the file suffix (text after
11846 the last period).
11847
11848 @item %d
11849 Marks the argument containing or following the @samp{%d} as a
11850 temporary file name, so that that file is deleted if GCC exits
11851 successfully. Unlike @samp{%g}, this contributes no text to the
11852 argument.
11853
11854 @item %g@var{suffix}
11855 Substitute a file name that has suffix @var{suffix} and is chosen
11856 once per compilation, and mark the argument in the same way as
11857 @samp{%d}. To reduce exposure to denial-of-service attacks, the file
11858 name is now chosen in a way that is hard to predict even when previously
11859 chosen file names are known. For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
11860 might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}. @var{suffix} matches
11861 the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
11862 treated exactly as if @samp{%O} had been preprocessed. Previously, @samp{%g}
11863 was simply substituted with a file name chosen once per compilation,
11864 without regard to any appended suffix (which was therefore treated
11865 just like ordinary text), making such attacks more likely to succeed.
11866
11867 @item %u@var{suffix}
11868 Like @samp{%g}, but generates a new temporary file name
11869 each time it appears instead of once per compilation.
11870
11871 @item %U@var{suffix}
11872 Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
11873 new one if there is no such last file name. In the absence of any
11874 @samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
11875 the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s}
11876 involves the generation of two distinct file names, one
11877 for each @samp{%g.s} and another for each @samp{%U.s}. Previously, @samp{%U} was
11878 simply substituted with a file name chosen for the previous @samp{%u},
11879 without regard to any appended suffix.
11880
11881 @item %j@var{suffix}
11882 Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
11883 writable, and if @option{-save-temps} is not used;
11884 otherwise, substitute the name
11885 of a temporary file, just like @samp{%u}. This temporary file is not
11886 meant for communication between processes, but rather as a junk
11887 disposal mechanism.
11888
11889 @item %|@var{suffix}
11890 @itemx %m@var{suffix}
11891 Like @samp{%g}, except if @option{-pipe} is in effect. In that case
11892 @samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
11893 all. These are the two most common ways to instruct a program that it
11894 should read from standard input or write to standard output. If you
11895 need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
11896 construct: see for example @file{f/lang-specs.h}.
11897
11898 @item %.@var{SUFFIX}
11899 Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args
11900 when it is subsequently output with @samp{%*}. @var{SUFFIX} is
11901 terminated by the next space or %.
11902
11903 @item %w
11904 Marks the argument containing or following the @samp{%w} as the
11905 designated output file of this compilation. This puts the argument
11906 into the sequence of arguments that @samp{%o} substitutes.
11907
11908 @item %o
11909 Substitutes the names of all the output files, with spaces
11910 automatically placed around them. You should write spaces
11911 around the @samp{%o} as well or the results are undefined.
11912 @samp{%o} is for use in the specs for running the linker.
11913 Input files whose names have no recognized suffix are not compiled
11914 at all, but they are included among the output files, so they are
11915 linked.
11916
11917 @item %O
11918 Substitutes the suffix for object files. Note that this is
11919 handled specially when it immediately follows @samp{%g, %u, or %U},
11920 because of the need for those to form complete file names. The
11921 handling is such that @samp{%O} is treated exactly as if it had already
11922 been substituted, except that @samp{%g, %u, and %U} do not currently
11923 support additional @var{suffix} characters following @samp{%O} as they do
11924 following, for example, @samp{.o}.
11925
11926 @item %p
11927 Substitutes the standard macro predefinitions for the
11928 current target machine. Use this when running @command{cpp}.
11929
11930 @item %P
11931 Like @samp{%p}, but puts @samp{__} before and after the name of each
11932 predefined macro, except for macros that start with @samp{__} or with
11933 @samp{_@var{L}}, where @var{L} is an uppercase letter. This is for ISO
11934 C@.
11935
11936 @item %I
11937 Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
11938 @option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}),
11939 @option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
11940 and @option{-imultilib} as necessary.
11941
11942 @item %s
11943 Current argument is the name of a library or startup file of some sort.
11944 Search for that file in a standard list of directories and substitute
11945 the full name found. The current working directory is included in the
11946 list of directories scanned.
11947
11948 @item %T
11949 Current argument is the name of a linker script. Search for that file
11950 in the current list of directories to scan for libraries. If the file
11951 is located insert a @option{--script} option into the command line
11952 followed by the full path name found. If the file is not found then
11953 generate an error message. Note: the current working directory is not
11954 searched.
11955
11956 @item %e@var{str}
11957 Print @var{str} as an error message. @var{str} is terminated by a newline.
11958 Use this when inconsistent options are detected.
11959
11960 @item %(@var{name})
11961 Substitute the contents of spec string @var{name} at this point.
11962
11963 @item %x@{@var{option}@}
11964 Accumulate an option for @samp{%X}.
11965
11966 @item %X
11967 Output the accumulated linker options specified by @option{-Wl} or a @samp{%x}
11968 spec string.
11969
11970 @item %Y
11971 Output the accumulated assembler options specified by @option{-Wa}.
11972
11973 @item %Z
11974 Output the accumulated preprocessor options specified by @option{-Wp}.
11975
11976 @item %a
11977 Process the @code{asm} spec. This is used to compute the
11978 switches to be passed to the assembler.
11979
11980 @item %A
11981 Process the @code{asm_final} spec. This is a spec string for
11982 passing switches to an assembler post-processor, if such a program is
11983 needed.
11984
11985 @item %l
11986 Process the @code{link} spec. This is the spec for computing the
11987 command line passed to the linker. Typically it makes use of the
11988 @samp{%L %G %S %D and %E} sequences.
11989
11990 @item %D
11991 Dump out a @option{-L} option for each directory that GCC believes might
11992 contain startup files. If the target supports multilibs then the
11993 current multilib directory is prepended to each of these paths.
11994
11995 @item %L
11996 Process the @code{lib} spec. This is a spec string for deciding which
11997 libraries are included on the command line to the linker.
11998
11999 @item %G
12000 Process the @code{libgcc} spec. This is a spec string for deciding
12001 which GCC support library is included on the command line to the linker.
12002
12003 @item %S
12004 Process the @code{startfile} spec. This is a spec for deciding which
12005 object files are the first ones passed to the linker. Typically
12006 this might be a file named @file{crt0.o}.
12007
12008 @item %E
12009 Process the @code{endfile} spec. This is a spec string that specifies
12010 the last object files that are passed to the linker.
12011
12012 @item %C
12013 Process the @code{cpp} spec. This is used to construct the arguments
12014 to be passed to the C preprocessor.
12015
12016 @item %1
12017 Process the @code{cc1} spec. This is used to construct the options to be
12018 passed to the actual C compiler (@command{cc1}).
12019
12020 @item %2
12021 Process the @code{cc1plus} spec. This is used to construct the options to be
12022 passed to the actual C++ compiler (@command{cc1plus}).
12023
12024 @item %*
12025 Substitute the variable part of a matched option. See below.
12026 Note that each comma in the substituted string is replaced by
12027 a single space.
12028
12029 @item %<@code{S}
12030 Remove all occurrences of @code{-S} from the command line. Note---this
12031 command is position dependent. @samp{%} commands in the spec string
12032 before this one see @code{-S}, @samp{%} commands in the spec string
12033 after this one do not.
12034
12035 @item %:@var{function}(@var{args})
12036 Call the named function @var{function}, passing it @var{args}.
12037 @var{args} is first processed as a nested spec string, then split
12038 into an argument vector in the usual fashion. The function returns
12039 a string which is processed as if it had appeared literally as part
12040 of the current spec.
12041
12042 The following built-in spec functions are provided:
12043
12044 @table @code
12045 @item @code{getenv}
12046 The @code{getenv} spec function takes two arguments: an environment
12047 variable name and a string. If the environment variable is not
12048 defined, a fatal error is issued. Otherwise, the return value is the
12049 value of the environment variable concatenated with the string. For
12050 example, if @env{TOPDIR} is defined as @file{/path/to/top}, then:
12051
12052 @smallexample
12053 %:getenv(TOPDIR /include)
12054 @end smallexample
12055
12056 expands to @file{/path/to/top/include}.
12057
12058 @item @code{if-exists}
12059 The @code{if-exists} spec function takes one argument, an absolute
12060 pathname to a file. If the file exists, @code{if-exists} returns the
12061 pathname. Here is a small example of its usage:
12062
12063 @smallexample
12064 *startfile:
12065 crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
12066 @end smallexample
12067
12068 @item @code{if-exists-else}
12069 The @code{if-exists-else} spec function is similar to the @code{if-exists}
12070 spec function, except that it takes two arguments. The first argument is
12071 an absolute pathname to a file. If the file exists, @code{if-exists-else}
12072 returns the pathname. If it does not exist, it returns the second argument.
12073 This way, @code{if-exists-else} can be used to select one file or another,
12074 based on the existence of the first. Here is a small example of its usage:
12075
12076 @smallexample
12077 *startfile:
12078 crt0%O%s %:if-exists(crti%O%s) \
12079 %:if-exists-else(crtbeginT%O%s crtbegin%O%s)
12080 @end smallexample
12081
12082 @item @code{replace-outfile}
12083 The @code{replace-outfile} spec function takes two arguments. It looks for the
12084 first argument in the outfiles array and replaces it with the second argument. Here
12085 is a small example of its usage:
12086
12087 @smallexample
12088 %@{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)@}
12089 @end smallexample
12090
12091 @item @code{remove-outfile}
12092 The @code{remove-outfile} spec function takes one argument. It looks for the
12093 first argument in the outfiles array and removes it. Here is a small example
12094 its usage:
12095
12096 @smallexample
12097 %:remove-outfile(-lm)
12098 @end smallexample
12099
12100 @item @code{pass-through-libs}
12101 The @code{pass-through-libs} spec function takes any number of arguments. It
12102 finds any @option{-l} options and any non-options ending in @file{.a} (which it
12103 assumes are the names of linker input library archive files) and returns a
12104 result containing all the found arguments each prepended by
12105 @option{-plugin-opt=-pass-through=} and joined by spaces. This list is
12106 intended to be passed to the LTO linker plugin.
12107
12108 @smallexample
12109 %:pass-through-libs(%G %L %G)
12110 @end smallexample
12111
12112 @item @code{print-asm-header}
12113 The @code{print-asm-header} function takes no arguments and simply
12114 prints a banner like:
12115
12116 @smallexample
12117 Assembler options
12118 =================
12119
12120 Use "-Wa,OPTION" to pass "OPTION" to the assembler.
12121 @end smallexample
12122
12123 It is used to separate compiler options from assembler options
12124 in the @option{--target-help} output.
12125 @end table
12126
12127 @item %@{@code{S}@}
12128 Substitutes the @code{-S} switch, if that switch is given to GCC@.
12129 If that switch is not specified, this substitutes nothing. Note that
12130 the leading dash is omitted when specifying this option, and it is
12131 automatically inserted if the substitution is performed. Thus the spec
12132 string @samp{%@{foo@}} matches the command-line option @option{-foo}
12133 and outputs the command-line option @option{-foo}.
12134
12135 @item %W@{@code{S}@}
12136 Like %@{@code{S}@} but mark last argument supplied within as a file to be
12137 deleted on failure.
12138
12139 @item %@{@code{S}*@}
12140 Substitutes all the switches specified to GCC whose names start
12141 with @code{-S}, but which also take an argument. This is used for
12142 switches like @option{-o}, @option{-D}, @option{-I}, etc.
12143 GCC considers @option{-o foo} as being
12144 one switch whose name starts with @samp{o}. %@{o*@} substitutes this
12145 text, including the space. Thus two arguments are generated.
12146
12147 @item %@{@code{S}*&@code{T}*@}
12148 Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options
12149 (the order of @code{S} and @code{T} in the spec is not significant).
12150 There can be any number of ampersand-separated variables; for each the
12151 wild card is optional. Useful for CPP as @samp{%@{D*&U*&A*@}}.
12152
12153 @item %@{@code{S}:@code{X}@}
12154 Substitutes @code{X}, if the @option{-S} switch is given to GCC@.
12155
12156 @item %@{!@code{S}:@code{X}@}
12157 Substitutes @code{X}, if the @option{-S} switch is @emph{not} given to GCC@.
12158
12159 @item %@{@code{S}*:@code{X}@}
12160 Substitutes @code{X} if one or more switches whose names start with
12161 @code{-S} are specified to GCC@. Normally @code{X} is substituted only
12162 once, no matter how many such switches appeared. However, if @code{%*}
12163 appears somewhere in @code{X}, then @code{X} is substituted once
12164 for each matching switch, with the @code{%*} replaced by the part of
12165 that switch matching the @code{*}.
12166
12167 If @code{%*} appears as the last part of a spec sequence then a space
12168 is added after the end of the last substitution. If there is more
12169 text in the sequence, however, then a space is not generated. This
12170 allows the @code{%*} substitution to be used as part of a larger
12171 string. For example, a spec string like this:
12172
12173 @smallexample
12174 %@{mcu=*:--script=%*/memory.ld@}
12175 @end smallexample
12176
12177 @noindent
12178 when matching an option like @option{-mcu=newchip} produces:
12179
12180 @smallexample
12181 --script=newchip/memory.ld
12182 @end smallexample
12183
12184 @item %@{.@code{S}:@code{X}@}
12185 Substitutes @code{X}, if processing a file with suffix @code{S}.
12186
12187 @item %@{!.@code{S}:@code{X}@}
12188 Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}.
12189
12190 @item %@{,@code{S}:@code{X}@}
12191 Substitutes @code{X}, if processing a file for language @code{S}.
12192
12193 @item %@{!,@code{S}:@code{X}@}
12194 Substitutes @code{X}, if not processing a file for language @code{S}.
12195
12196 @item %@{@code{S}|@code{P}:@code{X}@}
12197 Substitutes @code{X} if either @code{-S} or @code{-P} is given to
12198 GCC@. This may be combined with @samp{!}, @samp{.}, @samp{,}, and
12199 @code{*} sequences as well, although they have a stronger binding than
12200 the @samp{|}. If @code{%*} appears in @code{X}, all of the
12201 alternatives must be starred, and only the first matching alternative
12202 is substituted.
12203
12204 For example, a spec string like this:
12205
12206 @smallexample
12207 %@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
12208 @end smallexample
12209
12210 @noindent
12211 outputs the following command-line options from the following input
12212 command-line options:
12213
12214 @smallexample
12215 fred.c -foo -baz
12216 jim.d -bar -boggle
12217 -d fred.c -foo -baz -boggle
12218 -d jim.d -bar -baz -boggle
12219 @end smallexample
12220
12221 @item %@{S:X; T:Y; :D@}
12222
12223 If @code{S} is given to GCC, substitutes @code{X}; else if @code{T} is
12224 given to GCC, substitutes @code{Y}; else substitutes @code{D}. There can
12225 be as many clauses as you need. This may be combined with @code{.},
12226 @code{,}, @code{!}, @code{|}, and @code{*} as needed.
12227
12228
12229 @end table
12230
12231 The conditional text @code{X} in a %@{@code{S}:@code{X}@} or similar
12232 construct may contain other nested @samp{%} constructs or spaces, or
12233 even newlines. They are processed as usual, as described above.
12234 Trailing white space in @code{X} is ignored. White space may also
12235 appear anywhere on the left side of the colon in these constructs,
12236 except between @code{.} or @code{*} and the corresponding word.
12237
12238 The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
12239 handled specifically in these constructs. If another value of
12240 @option{-O} or the negated form of a @option{-f}, @option{-m}, or
12241 @option{-W} switch is found later in the command line, the earlier
12242 switch value is ignored, except with @{@code{S}*@} where @code{S} is
12243 just one letter, which passes all matching options.
12244
12245 The character @samp{|} at the beginning of the predicate text is used to
12246 indicate that a command should be piped to the following command, but
12247 only if @option{-pipe} is specified.
12248
12249 It is built into GCC which switches take arguments and which do not.
12250 (You might think it would be useful to generalize this to allow each
12251 compiler's spec to say which switches take arguments. But this cannot
12252 be done in a consistent fashion. GCC cannot even decide which input
12253 files have been specified without knowing which switches take arguments,
12254 and it must know which input files to compile in order to tell which
12255 compilers to run).
12256
12257 GCC also knows implicitly that arguments starting in @option{-l} are to be
12258 treated as compiler output files, and passed to the linker in their
12259 proper position among the other output files.
12260
12261 @c man begin OPTIONS
12262
12263 @node Target Options
12264 @section Specifying Target Machine and Compiler Version
12265 @cindex target options
12266 @cindex cross compiling
12267 @cindex specifying machine version
12268 @cindex specifying compiler version and target machine
12269 @cindex compiler version, specifying
12270 @cindex target machine, specifying
12271
12272 The usual way to run GCC is to run the executable called @command{gcc}, or
12273 @command{@var{machine}-gcc} when cross-compiling, or
12274 @command{@var{machine}-gcc-@var{version}} to run a version other than the
12275 one that was installed last.
12276
12277 @node Submodel Options
12278 @section Hardware Models and Configurations
12279 @cindex submodel options
12280 @cindex specifying hardware config
12281 @cindex hardware models and configurations, specifying
12282 @cindex machine dependent options
12283
12284 Each target machine types can have its own
12285 special options, starting with @samp{-m}, to choose among various
12286 hardware models or configurations---for example, 68010 vs 68020,
12287 floating coprocessor or none. A single installed version of the
12288 compiler can compile for any model or configuration, according to the
12289 options specified.
12290
12291 Some configurations of the compiler also support additional special
12292 options, usually for compatibility with other compilers on the same
12293 platform.
12294
12295 @c This list is ordered alphanumerically by subsection name.
12296 @c It should be the same order and spelling as these options are listed
12297 @c in Machine Dependent Options
12298
12299 @menu
12300 * AArch64 Options::
12301 * Adapteva Epiphany Options::
12302 * ARC Options::
12303 * ARM Options::
12304 * AVR Options::
12305 * Blackfin Options::
12306 * C6X Options::
12307 * CRIS Options::
12308 * CR16 Options::
12309 * Darwin Options::
12310 * DEC Alpha Options::
12311 * FR30 Options::
12312 * FT32 Options::
12313 * FRV Options::
12314 * GNU/Linux Options::
12315 * H8/300 Options::
12316 * HPPA Options::
12317 * IA-64 Options::
12318 * LM32 Options::
12319 * M32C Options::
12320 * M32R/D Options::
12321 * M680x0 Options::
12322 * MCore Options::
12323 * MeP Options::
12324 * MicroBlaze Options::
12325 * MIPS Options::
12326 * MMIX Options::
12327 * MN10300 Options::
12328 * Moxie Options::
12329 * MSP430 Options::
12330 * NDS32 Options::
12331 * Nios II Options::
12332 * Nvidia PTX Options::
12333 * PDP-11 Options::
12334 * picoChip Options::
12335 * PowerPC Options::
12336 * RL78 Options::
12337 * RS/6000 and PowerPC Options::
12338 * RX Options::
12339 * S/390 and zSeries Options::
12340 * Score Options::
12341 * SH Options::
12342 * Solaris 2 Options::
12343 * SPARC Options::
12344 * SPU Options::
12345 * System V Options::
12346 * TILE-Gx Options::
12347 * TILEPro Options::
12348 * V850 Options::
12349 * VAX Options::
12350 * Visium Options::
12351 * VMS Options::
12352 * VxWorks Options::
12353 * x86 Options::
12354 * x86 Windows Options::
12355 * Xstormy16 Options::
12356 * Xtensa Options::
12357 * zSeries Options::
12358 @end menu
12359
12360 @node AArch64 Options
12361 @subsection AArch64 Options
12362 @cindex AArch64 Options
12363
12364 These options are defined for AArch64 implementations:
12365
12366 @table @gcctabopt
12367
12368 @item -mabi=@var{name}
12369 @opindex mabi
12370 Generate code for the specified data model. Permissible values
12371 are @samp{ilp32} for SysV-like data model where int, long int and pointer
12372 are 32-bit, and @samp{lp64} for SysV-like data model where int is 32-bit,
12373 but long int and pointer are 64-bit.
12374
12375 The default depends on the specific target configuration. Note that
12376 the LP64 and ILP32 ABIs are not link-compatible; you must compile your
12377 entire program with the same ABI, and link with a compatible set of libraries.
12378
12379 @item -mbig-endian
12380 @opindex mbig-endian
12381 Generate big-endian code. This is the default when GCC is configured for an
12382 @samp{aarch64_be-*-*} target.
12383
12384 @item -mgeneral-regs-only
12385 @opindex mgeneral-regs-only
12386 Generate code which uses only the general-purpose registers. This is equivalent
12387 to feature modifier @option{nofp} of @option{-march} or @option{-mcpu}, except
12388 that @option{-mgeneral-regs-only} takes precedence over any conflicting feature
12389 modifier regardless of sequence.
12390
12391 @item -mlittle-endian
12392 @opindex mlittle-endian
12393 Generate little-endian code. This is the default when GCC is configured for an
12394 @samp{aarch64-*-*} but not an @samp{aarch64_be-*-*} target.
12395
12396 @item -mcmodel=tiny
12397 @opindex mcmodel=tiny
12398 Generate code for the tiny code model. The program and its statically defined
12399 symbols must be within 1GB of each other. Pointers are 64 bits. Programs can
12400 be statically or dynamically linked. This model is not fully implemented and
12401 mostly treated as @samp{small}.
12402
12403 @item -mcmodel=small
12404 @opindex mcmodel=small
12405 Generate code for the small code model. The program and its statically defined
12406 symbols must be within 4GB of each other. Pointers are 64 bits. Programs can
12407 be statically or dynamically linked. This is the default code model.
12408
12409 @item -mcmodel=large
12410 @opindex mcmodel=large
12411 Generate code for the large code model. This makes no assumptions about
12412 addresses and sizes of sections. Pointers are 64 bits. Programs can be
12413 statically linked only.
12414
12415 @item -mstrict-align
12416 @opindex mstrict-align
12417 Do not assume that unaligned memory references are handled by the system.
12418
12419 @item -momit-leaf-frame-pointer
12420 @itemx -mno-omit-leaf-frame-pointer
12421 @opindex momit-leaf-frame-pointer
12422 @opindex mno-omit-leaf-frame-pointer
12423 Omit or keep the frame pointer in leaf functions. The former behaviour is the
12424 default.
12425
12426 @item -mtls-dialect=desc
12427 @opindex mtls-dialect=desc
12428 Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
12429 of TLS variables. This is the default.
12430
12431 @item -mtls-dialect=traditional
12432 @opindex mtls-dialect=traditional
12433 Use traditional TLS as the thread-local storage mechanism for dynamic accesses
12434 of TLS variables.
12435
12436 @item -mfix-cortex-a53-835769
12437 @itemx -mno-fix-cortex-a53-835769
12438 @opindex mfix-cortex-a53-835769
12439 @opindex mno-fix-cortex-a53-835769
12440 Enable or disable the workaround for the ARM Cortex-A53 erratum number 835769.
12441 This involves inserting a NOP instruction between memory instructions and
12442 64-bit integer multiply-accumulate instructions.
12443
12444 @item -mfix-cortex-a53-843419
12445 @itemx -mno-fix-cortex-a53-843419
12446 @opindex mfix-cortex-a53-843419
12447 @opindex mno-fix-cortex-a53-843419
12448 Enable or disable the workaround for the ARM Cortex-A53 erratum number 843419.
12449 This erratum workaround is made at link time and this will only pass the
12450 corresponding flag to the linker.
12451
12452 @item -march=@var{name}
12453 @opindex march
12454 Specify the name of the target architecture, optionally suffixed by one or
12455 more feature modifiers. This option has the form
12456 @option{-march=@var{arch}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}.
12457
12458 The permissible values for @var{arch} are @samp{armv8-a} or
12459 @samp{armv8.1-a}.
12460
12461 For the permissible values for @var{feature}, see the sub-section on
12462 @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
12463 Feature Modifiers}. Where conflicting feature modifiers are
12464 specified, the right-most feature is used.
12465
12466 Additionally on native AArch64 GNU/Linux systems the value
12467 @samp{native} is available. This option causes the compiler to pick the
12468 architecture of the host system. If the compiler is unable to recognize the
12469 architecture of the host system this option has no effect.
12470
12471 GCC uses @var{name} to determine what kind of instructions it can emit
12472 when generating assembly code. If @option{-march} is specified
12473 without either of @option{-mtune} or @option{-mcpu} also being
12474 specified, the code is tuned to perform well across a range of target
12475 processors implementing the target architecture.
12476
12477 @item -mtune=@var{name}
12478 @opindex mtune
12479 Specify the name of the target processor for which GCC should tune the
12480 performance of the code. Permissible values for this option are:
12481 @samp{generic}, @samp{cortex-a53}, @samp{cortex-a57}, @samp{cortex-a72},
12482 @samp{exynos-m1}, @samp{thunderx}, @samp{xgene1}.
12483
12484 Additionally, this option can specify that GCC should tune the performance
12485 of the code for a big.LITTLE system. Permissible values for this
12486 option are: @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53}.
12487
12488 Additionally on native AArch64 GNU/Linux systems the value
12489 @samp{native} is available. This option causes the compiler to pick
12490 the architecture of and tune the performance of the code for the
12491 processor of the host system. If the compiler is unable to recognize
12492 the processor of the host system this option has no effect.
12493
12494 Where none of @option{-mtune=}, @option{-mcpu=} or @option{-march=}
12495 are specified, the code is tuned to perform well across a range
12496 of target processors.
12497
12498 This option cannot be suffixed by feature modifiers.
12499
12500 @item -mcpu=@var{name}
12501 @opindex mcpu
12502 Specify the name of the target processor, optionally suffixed by one
12503 or more feature modifiers. This option has the form
12504 @option{-mcpu=@var{cpu}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where
12505 the permissible values for @var{cpu} are the same as those available
12506 for @option{-mtune}. The permissible values for @var{feature} are
12507 documented in the sub-section on
12508 @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
12509 Feature Modifiers}. Where conflicting feature modifiers are
12510 specified, the right-most feature is used.
12511
12512 Additionally on native AArch64 GNU/Linux systems the value
12513 @samp{native} is available. This option causes the compiler to tune
12514 the performance of the code for the processor of the host system. If
12515 the compiler is unable to recognize the processor of the host system
12516 this option has no effect.
12517
12518 GCC uses @var{name} to determine what kind of instructions it can emit when
12519 generating assembly code (as if by @option{-march}) and to determine
12520 the target processor for which to tune for performance (as if
12521 by @option{-mtune}). Where this option is used in conjunction
12522 with @option{-march} or @option{-mtune}, those options take precedence
12523 over the appropriate part of this option.
12524
12525 @item -moverride=@var{string}
12526 @opindex moverride
12527 Override tuning decisions made by the back-end in response to a
12528 @option{-mtune=} switch. The syntax, semantics, and accepted values
12529 for @var{string} in this option are not guaranteed to be consistent
12530 across releases.
12531
12532 This option is only intended to be useful when developing GCC.
12533 @end table
12534
12535 @subsubsection @option{-march} and @option{-mcpu} Feature Modifiers
12536 @anchor{aarch64-feature-modifiers}
12537 @cindex @option{-march} feature modifiers
12538 @cindex @option{-mcpu} feature modifiers
12539 Feature modifiers used with @option{-march} and @option{-mcpu} can be any of
12540 the following and their inverses @option{no@var{feature}}:
12541
12542 @table @samp
12543 @item crc
12544 Enable CRC extension.
12545 @item crypto
12546 Enable Crypto extension. This also enables Advanced SIMD and floating-point
12547 instructions.
12548 @item fp
12549 Enable floating-point instructions. This is on by default for all possible
12550 values for options @option{-march} and @option{-mcpu}.
12551 @item simd
12552 Enable Advanced SIMD instructions. This also enables floating-point
12553 instructions. This is on by default for all possible values for options
12554 @option{-march} and @option{-mcpu}.
12555 @item lse
12556 Enable Large System Extension instructions.
12557 @item pan
12558 Enable Privileged Access Never support.
12559 @item lor
12560 Enable Limited Ordering Regions support.
12561 @item rdma
12562 Enable ARMv8.1 Advanced SIMD instructions. This implies Advanced SIMD
12563 is enabled.
12564
12565 @end table
12566
12567 That is, @option{crypto} implies @option{simd} implies @option{fp}.
12568 Conversely, @option{nofp} (or equivalently, @option{-mgeneral-regs-only})
12569 implies @option{nosimd} implies @option{nocrypto}.
12570
12571 @node Adapteva Epiphany Options
12572 @subsection Adapteva Epiphany Options
12573
12574 These @samp{-m} options are defined for Adapteva Epiphany:
12575
12576 @table @gcctabopt
12577 @item -mhalf-reg-file
12578 @opindex mhalf-reg-file
12579 Don't allocate any register in the range @code{r32}@dots{}@code{r63}.
12580 That allows code to run on hardware variants that lack these registers.
12581
12582 @item -mprefer-short-insn-regs
12583 @opindex mprefer-short-insn-regs
12584 Preferrentially allocate registers that allow short instruction generation.
12585 This can result in increased instruction count, so this may either reduce or
12586 increase overall code size.
12587
12588 @item -mbranch-cost=@var{num}
12589 @opindex mbranch-cost
12590 Set the cost of branches to roughly @var{num} ``simple'' instructions.
12591 This cost is only a heuristic and is not guaranteed to produce
12592 consistent results across releases.
12593
12594 @item -mcmove
12595 @opindex mcmove
12596 Enable the generation of conditional moves.
12597
12598 @item -mnops=@var{num}
12599 @opindex mnops
12600 Emit @var{num} NOPs before every other generated instruction.
12601
12602 @item -mno-soft-cmpsf
12603 @opindex mno-soft-cmpsf
12604 For single-precision floating-point comparisons, emit an @code{fsub} instruction
12605 and test the flags. This is faster than a software comparison, but can
12606 get incorrect results in the presence of NaNs, or when two different small
12607 numbers are compared such that their difference is calculated as zero.
12608 The default is @option{-msoft-cmpsf}, which uses slower, but IEEE-compliant,
12609 software comparisons.
12610
12611 @item -mstack-offset=@var{num}
12612 @opindex mstack-offset
12613 Set the offset between the top of the stack and the stack pointer.
12614 E.g., a value of 8 means that the eight bytes in the range @code{sp+0@dots{}sp+7}
12615 can be used by leaf functions without stack allocation.
12616 Values other than @samp{8} or @samp{16} are untested and unlikely to work.
12617 Note also that this option changes the ABI; compiling a program with a
12618 different stack offset than the libraries have been compiled with
12619 generally does not work.
12620 This option can be useful if you want to evaluate if a different stack
12621 offset would give you better code, but to actually use a different stack
12622 offset to build working programs, it is recommended to configure the
12623 toolchain with the appropriate @option{--with-stack-offset=@var{num}} option.
12624
12625 @item -mno-round-nearest
12626 @opindex mno-round-nearest
12627 Make the scheduler assume that the rounding mode has been set to
12628 truncating. The default is @option{-mround-nearest}.
12629
12630 @item -mlong-calls
12631 @opindex mlong-calls
12632 If not otherwise specified by an attribute, assume all calls might be beyond
12633 the offset range of the @code{b} / @code{bl} instructions, and therefore load the
12634 function address into a register before performing a (otherwise direct) call.
12635 This is the default.
12636
12637 @item -mshort-calls
12638 @opindex short-calls
12639 If not otherwise specified by an attribute, assume all direct calls are
12640 in the range of the @code{b} / @code{bl} instructions, so use these instructions
12641 for direct calls. The default is @option{-mlong-calls}.
12642
12643 @item -msmall16
12644 @opindex msmall16
12645 Assume addresses can be loaded as 16-bit unsigned values. This does not
12646 apply to function addresses for which @option{-mlong-calls} semantics
12647 are in effect.
12648
12649 @item -mfp-mode=@var{mode}
12650 @opindex mfp-mode
12651 Set the prevailing mode of the floating-point unit.
12652 This determines the floating-point mode that is provided and expected
12653 at function call and return time. Making this mode match the mode you
12654 predominantly need at function start can make your programs smaller and
12655 faster by avoiding unnecessary mode switches.
12656
12657 @var{mode} can be set to one the following values:
12658
12659 @table @samp
12660 @item caller
12661 Any mode at function entry is valid, and retained or restored when
12662 the function returns, and when it calls other functions.
12663 This mode is useful for compiling libraries or other compilation units
12664 you might want to incorporate into different programs with different
12665 prevailing FPU modes, and the convenience of being able to use a single
12666 object file outweighs the size and speed overhead for any extra
12667 mode switching that might be needed, compared with what would be needed
12668 with a more specific choice of prevailing FPU mode.
12669
12670 @item truncate
12671 This is the mode used for floating-point calculations with
12672 truncating (i.e.@: round towards zero) rounding mode. That includes
12673 conversion from floating point to integer.
12674
12675 @item round-nearest
12676 This is the mode used for floating-point calculations with
12677 round-to-nearest-or-even rounding mode.
12678
12679 @item int
12680 This is the mode used to perform integer calculations in the FPU, e.g.@:
12681 integer multiply, or integer multiply-and-accumulate.
12682 @end table
12683
12684 The default is @option{-mfp-mode=caller}
12685
12686 @item -mnosplit-lohi
12687 @itemx -mno-postinc
12688 @itemx -mno-postmodify
12689 @opindex mnosplit-lohi
12690 @opindex mno-postinc
12691 @opindex mno-postmodify
12692 Code generation tweaks that disable, respectively, splitting of 32-bit
12693 loads, generation of post-increment addresses, and generation of
12694 post-modify addresses. The defaults are @option{msplit-lohi},
12695 @option{-mpost-inc}, and @option{-mpost-modify}.
12696
12697 @item -mnovect-double
12698 @opindex mno-vect-double
12699 Change the preferred SIMD mode to SImode. The default is
12700 @option{-mvect-double}, which uses DImode as preferred SIMD mode.
12701
12702 @item -max-vect-align=@var{num}
12703 @opindex max-vect-align
12704 The maximum alignment for SIMD vector mode types.
12705 @var{num} may be 4 or 8. The default is 8.
12706 Note that this is an ABI change, even though many library function
12707 interfaces are unaffected if they don't use SIMD vector modes
12708 in places that affect size and/or alignment of relevant types.
12709
12710 @item -msplit-vecmove-early
12711 @opindex msplit-vecmove-early
12712 Split vector moves into single word moves before reload. In theory this
12713 can give better register allocation, but so far the reverse seems to be
12714 generally the case.
12715
12716 @item -m1reg-@var{reg}
12717 @opindex m1reg-
12718 Specify a register to hold the constant @minus{}1, which makes loading small negative
12719 constants and certain bitmasks faster.
12720 Allowable values for @var{reg} are @samp{r43} and @samp{r63},
12721 which specify use of that register as a fixed register,
12722 and @samp{none}, which means that no register is used for this
12723 purpose. The default is @option{-m1reg-none}.
12724
12725 @end table
12726
12727 @node ARC Options
12728 @subsection ARC Options
12729 @cindex ARC options
12730
12731 The following options control the architecture variant for which code
12732 is being compiled:
12733
12734 @c architecture variants
12735 @table @gcctabopt
12736
12737 @item -mbarrel-shifter
12738 @opindex mbarrel-shifter
12739 Generate instructions supported by barrel shifter. This is the default
12740 unless @option{-mcpu=ARC601} is in effect.
12741
12742 @item -mcpu=@var{cpu}
12743 @opindex mcpu
12744 Set architecture type, register usage, and instruction scheduling
12745 parameters for @var{cpu}. There are also shortcut alias options
12746 available for backward compatibility and convenience. Supported
12747 values for @var{cpu} are
12748
12749 @table @samp
12750 @opindex mA6
12751 @opindex mARC600
12752 @item ARC600
12753 Compile for ARC600. Aliases: @option{-mA6}, @option{-mARC600}.
12754
12755 @item ARC601
12756 @opindex mARC601
12757 Compile for ARC601. Alias: @option{-mARC601}.
12758
12759 @item ARC700
12760 @opindex mA7
12761 @opindex mARC700
12762 Compile for ARC700. Aliases: @option{-mA7}, @option{-mARC700}.
12763 This is the default when configured with @option{--with-cpu=arc700}@.
12764 @end table
12765
12766 @item -mdpfp
12767 @opindex mdpfp
12768 @itemx -mdpfp-compact
12769 @opindex mdpfp-compact
12770 FPX: Generate Double Precision FPX instructions, tuned for the compact
12771 implementation.
12772
12773 @item -mdpfp-fast
12774 @opindex mdpfp-fast
12775 FPX: Generate Double Precision FPX instructions, tuned for the fast
12776 implementation.
12777
12778 @item -mno-dpfp-lrsr
12779 @opindex mno-dpfp-lrsr
12780 Disable LR and SR instructions from using FPX extension aux registers.
12781
12782 @item -mea
12783 @opindex mea
12784 Generate Extended arithmetic instructions. Currently only
12785 @code{divaw}, @code{adds}, @code{subs}, and @code{sat16} are
12786 supported. This is always enabled for @option{-mcpu=ARC700}.
12787
12788 @item -mno-mpy
12789 @opindex mno-mpy
12790 Do not generate mpy instructions for ARC700.
12791
12792 @item -mmul32x16
12793 @opindex mmul32x16
12794 Generate 32x16 bit multiply and mac instructions.
12795
12796 @item -mmul64
12797 @opindex mmul64
12798 Generate mul64 and mulu64 instructions. Only valid for @option{-mcpu=ARC600}.
12799
12800 @item -mnorm
12801 @opindex mnorm
12802 Generate norm instruction. This is the default if @option{-mcpu=ARC700}
12803 is in effect.
12804
12805 @item -mspfp
12806 @opindex mspfp
12807 @itemx -mspfp-compact
12808 @opindex mspfp-compact
12809 FPX: Generate Single Precision FPX instructions, tuned for the compact
12810 implementation.
12811
12812 @item -mspfp-fast
12813 @opindex mspfp-fast
12814 FPX: Generate Single Precision FPX instructions, tuned for the fast
12815 implementation.
12816
12817 @item -msimd
12818 @opindex msimd
12819 Enable generation of ARC SIMD instructions via target-specific
12820 builtins. Only valid for @option{-mcpu=ARC700}.
12821
12822 @item -msoft-float
12823 @opindex msoft-float
12824 This option ignored; it is provided for compatibility purposes only.
12825 Software floating point code is emitted by default, and this default
12826 can overridden by FPX options; @samp{mspfp}, @samp{mspfp-compact}, or
12827 @samp{mspfp-fast} for single precision, and @samp{mdpfp},
12828 @samp{mdpfp-compact}, or @samp{mdpfp-fast} for double precision.
12829
12830 @item -mswap
12831 @opindex mswap
12832 Generate swap instructions.
12833
12834 @end table
12835
12836 The following options are passed through to the assembler, and also
12837 define preprocessor macro symbols.
12838
12839 @c Flags used by the assembler, but for which we define preprocessor
12840 @c macro symbols as well.
12841 @table @gcctabopt
12842 @item -mdsp-packa
12843 @opindex mdsp-packa
12844 Passed down to the assembler to enable the DSP Pack A extensions.
12845 Also sets the preprocessor symbol @code{__Xdsp_packa}.
12846
12847 @item -mdvbf
12848 @opindex mdvbf
12849 Passed down to the assembler to enable the dual viterbi butterfly
12850 extension. Also sets the preprocessor symbol @code{__Xdvbf}.
12851
12852 @c ARC700 4.10 extension instruction
12853 @item -mlock
12854 @opindex mlock
12855 Passed down to the assembler to enable the Locked Load/Store
12856 Conditional extension. Also sets the preprocessor symbol
12857 @code{__Xlock}.
12858
12859 @item -mmac-d16
12860 @opindex mmac-d16
12861 Passed down to the assembler. Also sets the preprocessor symbol
12862 @code{__Xxmac_d16}.
12863
12864 @item -mmac-24
12865 @opindex mmac-24
12866 Passed down to the assembler. Also sets the preprocessor symbol
12867 @code{__Xxmac_24}.
12868
12869 @c ARC700 4.10 extension instruction
12870 @item -mrtsc
12871 @opindex mrtsc
12872 Passed down to the assembler to enable the 64-bit Time-Stamp Counter
12873 extension instruction. Also sets the preprocessor symbol
12874 @code{__Xrtsc}.
12875
12876 @c ARC700 4.10 extension instruction
12877 @item -mswape
12878 @opindex mswape
12879 Passed down to the assembler to enable the swap byte ordering
12880 extension instruction. Also sets the preprocessor symbol
12881 @code{__Xswape}.
12882
12883 @item -mtelephony
12884 @opindex mtelephony
12885 Passed down to the assembler to enable dual and single operand
12886 instructions for telephony. Also sets the preprocessor symbol
12887 @code{__Xtelephony}.
12888
12889 @item -mxy
12890 @opindex mxy
12891 Passed down to the assembler to enable the XY Memory extension. Also
12892 sets the preprocessor symbol @code{__Xxy}.
12893
12894 @end table
12895
12896 The following options control how the assembly code is annotated:
12897
12898 @c Assembly annotation options
12899 @table @gcctabopt
12900 @item -misize
12901 @opindex misize
12902 Annotate assembler instructions with estimated addresses.
12903
12904 @item -mannotate-align
12905 @opindex mannotate-align
12906 Explain what alignment considerations lead to the decision to make an
12907 instruction short or long.
12908
12909 @end table
12910
12911 The following options are passed through to the linker:
12912
12913 @c options passed through to the linker
12914 @table @gcctabopt
12915 @item -marclinux
12916 @opindex marclinux
12917 Passed through to the linker, to specify use of the @code{arclinux} emulation.
12918 This option is enabled by default in tool chains built for
12919 @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets
12920 when profiling is not requested.
12921
12922 @item -marclinux_prof
12923 @opindex marclinux_prof
12924 Passed through to the linker, to specify use of the
12925 @code{arclinux_prof} emulation. This option is enabled by default in
12926 tool chains built for @w{@code{arc-linux-uclibc}} and
12927 @w{@code{arceb-linux-uclibc}} targets when profiling is requested.
12928
12929 @end table
12930
12931 The following options control the semantics of generated code:
12932
12933 @c semantically relevant code generation options
12934 @table @gcctabopt
12935 @item -mepilogue-cfi
12936 @opindex mepilogue-cfi
12937 Enable generation of call frame information for epilogues.
12938
12939 @item -mno-epilogue-cfi
12940 @opindex mno-epilogue-cfi
12941 Disable generation of call frame information for epilogues.
12942
12943 @item -mlong-calls
12944 @opindex mlong-calls
12945 Generate call insns as register indirect calls, thus providing access
12946 to the full 32-bit address range.
12947
12948 @item -mmedium-calls
12949 @opindex mmedium-calls
12950 Don't use less than 25 bit addressing range for calls, which is the
12951 offset available for an unconditional branch-and-link
12952 instruction. Conditional execution of function calls is suppressed, to
12953 allow use of the 25-bit range, rather than the 21-bit range with
12954 conditional branch-and-link. This is the default for tool chains built
12955 for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets.
12956
12957 @item -mno-sdata
12958 @opindex mno-sdata
12959 Do not generate sdata references. This is the default for tool chains
12960 built for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}}
12961 targets.
12962
12963 @item -mucb-mcount
12964 @opindex mucb-mcount
12965 Instrument with mcount calls as used in UCB code. I.e. do the
12966 counting in the callee, not the caller. By default ARC instrumentation
12967 counts in the caller.
12968
12969 @item -mvolatile-cache
12970 @opindex mvolatile-cache
12971 Use ordinarily cached memory accesses for volatile references. This is the
12972 default.
12973
12974 @item -mno-volatile-cache
12975 @opindex mno-volatile-cache
12976 Enable cache bypass for volatile references.
12977
12978 @end table
12979
12980 The following options fine tune code generation:
12981 @c code generation tuning options
12982 @table @gcctabopt
12983 @item -malign-call
12984 @opindex malign-call
12985 Do alignment optimizations for call instructions.
12986
12987 @item -mauto-modify-reg
12988 @opindex mauto-modify-reg
12989 Enable the use of pre/post modify with register displacement.
12990
12991 @item -mbbit-peephole
12992 @opindex mbbit-peephole
12993 Enable bbit peephole2.
12994
12995 @item -mno-brcc
12996 @opindex mno-brcc
12997 This option disables a target-specific pass in @file{arc_reorg} to
12998 generate @code{BRcc} instructions. It has no effect on @code{BRcc}
12999 generation driven by the combiner pass.
13000
13001 @item -mcase-vector-pcrel
13002 @opindex mcase-vector-pcrel
13003 Use pc-relative switch case tables - this enables case table shortening.
13004 This is the default for @option{-Os}.
13005
13006 @item -mcompact-casesi
13007 @opindex mcompact-casesi
13008 Enable compact casesi pattern.
13009 This is the default for @option{-Os}.
13010
13011 @item -mno-cond-exec
13012 @opindex mno-cond-exec
13013 Disable ARCompact specific pass to generate conditional execution instructions.
13014 Due to delay slot scheduling and interactions between operand numbers,
13015 literal sizes, instruction lengths, and the support for conditional execution,
13016 the target-independent pass to generate conditional execution is often lacking,
13017 so the ARC port has kept a special pass around that tries to find more
13018 conditional execution generating opportunities after register allocation,
13019 branch shortening, and delay slot scheduling have been done. This pass
13020 generally, but not always, improves performance and code size, at the cost of
13021 extra compilation time, which is why there is an option to switch it off.
13022 If you have a problem with call instructions exceeding their allowable
13023 offset range because they are conditionalized, you should consider using
13024 @option{-mmedium-calls} instead.
13025
13026 @item -mearly-cbranchsi
13027 @opindex mearly-cbranchsi
13028 Enable pre-reload use of the cbranchsi pattern.
13029
13030 @item -mexpand-adddi
13031 @opindex mexpand-adddi
13032 Expand @code{adddi3} and @code{subdi3} at rtl generation time into
13033 @code{add.f}, @code{adc} etc.
13034
13035 @item -mindexed-loads
13036 @opindex mindexed-loads
13037 Enable the use of indexed loads. This can be problematic because some
13038 optimizers then assume that indexed stores exist, which is not
13039 the case.
13040
13041 @item -mlra
13042 @opindex mlra
13043 Enable Local Register Allocation. This is still experimental for ARC,
13044 so by default the compiler uses standard reload
13045 (i.e. @option{-mno-lra}).
13046
13047 @item -mlra-priority-none
13048 @opindex mlra-priority-none
13049 Don't indicate any priority for target registers.
13050
13051 @item -mlra-priority-compact
13052 @opindex mlra-priority-compact
13053 Indicate target register priority for r0..r3 / r12..r15.
13054
13055 @item -mlra-priority-noncompact
13056 @opindex mlra-priority-noncompact
13057 Reduce target regsiter priority for r0..r3 / r12..r15.
13058
13059 @item -mno-millicode
13060 @opindex mno-millicode
13061 When optimizing for size (using @option{-Os}), prologues and epilogues
13062 that have to save or restore a large number of registers are often
13063 shortened by using call to a special function in libgcc; this is
13064 referred to as a @emph{millicode} call. As these calls can pose
13065 performance issues, and/or cause linking issues when linking in a
13066 nonstandard way, this option is provided to turn off millicode call
13067 generation.
13068
13069 @item -mmixed-code
13070 @opindex mmixed-code
13071 Tweak register allocation to help 16-bit instruction generation.
13072 This generally has the effect of decreasing the average instruction size
13073 while increasing the instruction count.
13074
13075 @item -mq-class
13076 @opindex mq-class
13077 Enable 'q' instruction alternatives.
13078 This is the default for @option{-Os}.
13079
13080 @item -mRcq
13081 @opindex mRcq
13082 Enable Rcq constraint handling - most short code generation depends on this.
13083 This is the default.
13084
13085 @item -mRcw
13086 @opindex mRcw
13087 Enable Rcw constraint handling - ccfsm condexec mostly depends on this.
13088 This is the default.
13089
13090 @item -msize-level=@var{level}
13091 @opindex msize-level
13092 Fine-tune size optimization with regards to instruction lengths and alignment.
13093 The recognized values for @var{level} are:
13094 @table @samp
13095 @item 0
13096 No size optimization. This level is deprecated and treated like @samp{1}.
13097
13098 @item 1
13099 Short instructions are used opportunistically.
13100
13101 @item 2
13102 In addition, alignment of loops and of code after barriers are dropped.
13103
13104 @item 3
13105 In addition, optional data alignment is dropped, and the option @option{Os} is enabled.
13106
13107 @end table
13108
13109 This defaults to @samp{3} when @option{-Os} is in effect. Otherwise,
13110 the behavior when this is not set is equivalent to level @samp{1}.
13111
13112 @item -mtune=@var{cpu}
13113 @opindex mtune
13114 Set instruction scheduling parameters for @var{cpu}, overriding any implied
13115 by @option{-mcpu=}.
13116
13117 Supported values for @var{cpu} are
13118
13119 @table @samp
13120 @item ARC600
13121 Tune for ARC600 cpu.
13122
13123 @item ARC601
13124 Tune for ARC601 cpu.
13125
13126 @item ARC700
13127 Tune for ARC700 cpu with standard multiplier block.
13128
13129 @item ARC700-xmac
13130 Tune for ARC700 cpu with XMAC block.
13131
13132 @item ARC725D
13133 Tune for ARC725D cpu.
13134
13135 @item ARC750D
13136 Tune for ARC750D cpu.
13137
13138 @end table
13139
13140 @item -mmultcost=@var{num}
13141 @opindex mmultcost
13142 Cost to assume for a multiply instruction, with @samp{4} being equal to a
13143 normal instruction.
13144
13145 @item -munalign-prob-threshold=@var{probability}
13146 @opindex munalign-prob-threshold
13147 Set probability threshold for unaligning branches.
13148 When tuning for @samp{ARC700} and optimizing for speed, branches without
13149 filled delay slot are preferably emitted unaligned and long, unless
13150 profiling indicates that the probability for the branch to be taken
13151 is below @var{probability}. @xref{Cross-profiling}.
13152 The default is (REG_BR_PROB_BASE/2), i.e.@: 5000.
13153
13154 @end table
13155
13156 The following options are maintained for backward compatibility, but
13157 are now deprecated and will be removed in a future release:
13158
13159 @c Deprecated options
13160 @table @gcctabopt
13161
13162 @item -margonaut
13163 @opindex margonaut
13164 Obsolete FPX.
13165
13166 @item -mbig-endian
13167 @opindex mbig-endian
13168 @itemx -EB
13169 @opindex EB
13170 Compile code for big endian targets. Use of these options is now
13171 deprecated. Users wanting big-endian code, should use the
13172 @w{@code{arceb-elf32}} and @w{@code{arceb-linux-uclibc}} targets when
13173 building the tool chain, for which big-endian is the default.
13174
13175 @item -mlittle-endian
13176 @opindex mlittle-endian
13177 @itemx -EL
13178 @opindex EL
13179 Compile code for little endian targets. Use of these options is now
13180 deprecated. Users wanting little-endian code should use the
13181 @w{@code{arc-elf32}} and @w{@code{arc-linux-uclibc}} targets when
13182 building the tool chain, for which little-endian is the default.
13183
13184 @item -mbarrel_shifter
13185 @opindex mbarrel_shifter
13186 Replaced by @option{-mbarrel-shifter}.
13187
13188 @item -mdpfp_compact
13189 @opindex mdpfp_compact
13190 Replaced by @option{-mdpfp-compact}.
13191
13192 @item -mdpfp_fast
13193 @opindex mdpfp_fast
13194 Replaced by @option{-mdpfp-fast}.
13195
13196 @item -mdsp_packa
13197 @opindex mdsp_packa
13198 Replaced by @option{-mdsp-packa}.
13199
13200 @item -mEA
13201 @opindex mEA
13202 Replaced by @option{-mea}.
13203
13204 @item -mmac_24
13205 @opindex mmac_24
13206 Replaced by @option{-mmac-24}.
13207
13208 @item -mmac_d16
13209 @opindex mmac_d16
13210 Replaced by @option{-mmac-d16}.
13211
13212 @item -mspfp_compact
13213 @opindex mspfp_compact
13214 Replaced by @option{-mspfp-compact}.
13215
13216 @item -mspfp_fast
13217 @opindex mspfp_fast
13218 Replaced by @option{-mspfp-fast}.
13219
13220 @item -mtune=@var{cpu}
13221 @opindex mtune
13222 Values @samp{arc600}, @samp{arc601}, @samp{arc700} and
13223 @samp{arc700-xmac} for @var{cpu} are replaced by @samp{ARC600},
13224 @samp{ARC601}, @samp{ARC700} and @samp{ARC700-xmac} respectively
13225
13226 @item -multcost=@var{num}
13227 @opindex multcost
13228 Replaced by @option{-mmultcost}.
13229
13230 @end table
13231
13232 @node ARM Options
13233 @subsection ARM Options
13234 @cindex ARM options
13235
13236 These @samp{-m} options are defined for the ARM port:
13237
13238 @table @gcctabopt
13239 @item -mabi=@var{name}
13240 @opindex mabi
13241 Generate code for the specified ABI@. Permissible values are: @samp{apcs-gnu},
13242 @samp{atpcs}, @samp{aapcs}, @samp{aapcs-linux} and @samp{iwmmxt}.
13243
13244 @item -mapcs-frame
13245 @opindex mapcs-frame
13246 Generate a stack frame that is compliant with the ARM Procedure Call
13247 Standard for all functions, even if this is not strictly necessary for
13248 correct execution of the code. Specifying @option{-fomit-frame-pointer}
13249 with this option causes the stack frames not to be generated for
13250 leaf functions. The default is @option{-mno-apcs-frame}.
13251 This option is deprecated.
13252
13253 @item -mapcs
13254 @opindex mapcs
13255 This is a synonym for @option{-mapcs-frame} and is deprecated.
13256
13257 @ignore
13258 @c not currently implemented
13259 @item -mapcs-stack-check
13260 @opindex mapcs-stack-check
13261 Generate code to check the amount of stack space available upon entry to
13262 every function (that actually uses some stack space). If there is
13263 insufficient space available then either the function
13264 @code{__rt_stkovf_split_small} or @code{__rt_stkovf_split_big} is
13265 called, depending upon the amount of stack space required. The runtime
13266 system is required to provide these functions. The default is
13267 @option{-mno-apcs-stack-check}, since this produces smaller code.
13268
13269 @c not currently implemented
13270 @item -mapcs-float
13271 @opindex mapcs-float
13272 Pass floating-point arguments using the floating-point registers. This is
13273 one of the variants of the APCS@. This option is recommended if the
13274 target hardware has a floating-point unit or if a lot of floating-point
13275 arithmetic is going to be performed by the code. The default is
13276 @option{-mno-apcs-float}, since the size of integer-only code is
13277 slightly increased if @option{-mapcs-float} is used.
13278
13279 @c not currently implemented
13280 @item -mapcs-reentrant
13281 @opindex mapcs-reentrant
13282 Generate reentrant, position-independent code. The default is
13283 @option{-mno-apcs-reentrant}.
13284 @end ignore
13285
13286 @item -mthumb-interwork
13287 @opindex mthumb-interwork
13288 Generate code that supports calling between the ARM and Thumb
13289 instruction sets. Without this option, on pre-v5 architectures, the
13290 two instruction sets cannot be reliably used inside one program. The
13291 default is @option{-mno-thumb-interwork}, since slightly larger code
13292 is generated when @option{-mthumb-interwork} is specified. In AAPCS
13293 configurations this option is meaningless.
13294
13295 @item -mno-sched-prolog
13296 @opindex mno-sched-prolog
13297 Prevent the reordering of instructions in the function prologue, or the
13298 merging of those instruction with the instructions in the function's
13299 body. This means that all functions start with a recognizable set
13300 of instructions (or in fact one of a choice from a small set of
13301 different function prologues), and this information can be used to
13302 locate the start of functions inside an executable piece of code. The
13303 default is @option{-msched-prolog}.
13304
13305 @item -mfloat-abi=@var{name}
13306 @opindex mfloat-abi
13307 Specifies which floating-point ABI to use. Permissible values
13308 are: @samp{soft}, @samp{softfp} and @samp{hard}.
13309
13310 Specifying @samp{soft} causes GCC to generate output containing
13311 library calls for floating-point operations.
13312 @samp{softfp} allows the generation of code using hardware floating-point
13313 instructions, but still uses the soft-float calling conventions.
13314 @samp{hard} allows generation of floating-point instructions
13315 and uses FPU-specific calling conventions.
13316
13317 The default depends on the specific target configuration. Note that
13318 the hard-float and soft-float ABIs are not link-compatible; you must
13319 compile your entire program with the same ABI, and link with a
13320 compatible set of libraries.
13321
13322 @item -mlittle-endian
13323 @opindex mlittle-endian
13324 Generate code for a processor running in little-endian mode. This is
13325 the default for all standard configurations.
13326
13327 @item -mbig-endian
13328 @opindex mbig-endian
13329 Generate code for a processor running in big-endian mode; the default is
13330 to compile code for a little-endian processor.
13331
13332 @item -march=@var{name}
13333 @opindex march
13334 This specifies the name of the target ARM architecture. GCC uses this
13335 name to determine what kind of instructions it can emit when generating
13336 assembly code. This option can be used in conjunction with or instead
13337 of the @option{-mcpu=} option. Permissible names are: @samp{armv2},
13338 @samp{armv2a}, @samp{armv3}, @samp{armv3m}, @samp{armv4}, @samp{armv4t},
13339 @samp{armv5}, @samp{armv5t}, @samp{armv5e}, @samp{armv5te},
13340 @samp{armv6}, @samp{armv6j},
13341 @samp{armv6t2}, @samp{armv6z}, @samp{armv6kz}, @samp{armv6-m},
13342 @samp{armv7}, @samp{armv7-a}, @samp{armv7-r}, @samp{armv7-m}, @samp{armv7e-m},
13343 @samp{armv7ve}, @samp{armv8-a}, @samp{armv8-a+crc},
13344 @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312}.
13345
13346 @option{-march=armv7ve} is the armv7-a architecture with virtualization
13347 extensions.
13348
13349 @option{-march=armv8-a+crc} enables code generation for the ARMv8-A
13350 architecture together with the optional CRC32 extensions.
13351
13352 @option{-march=native} causes the compiler to auto-detect the architecture
13353 of the build computer. At present, this feature is only supported on
13354 GNU/Linux, and not all architectures are recognized. If the auto-detect
13355 is unsuccessful the option has no effect.
13356
13357 @item -mtune=@var{name}
13358 @opindex mtune
13359 This option specifies the name of the target ARM processor for
13360 which GCC should tune the performance of the code.
13361 For some ARM implementations better performance can be obtained by using
13362 this option.
13363 Permissible names are: @samp{arm2}, @samp{arm250},
13364 @samp{arm3}, @samp{arm6}, @samp{arm60}, @samp{arm600}, @samp{arm610},
13365 @samp{arm620}, @samp{arm7}, @samp{arm7m}, @samp{arm7d}, @samp{arm7dm},
13366 @samp{arm7di}, @samp{arm7dmi}, @samp{arm70}, @samp{arm700},
13367 @samp{arm700i}, @samp{arm710}, @samp{arm710c}, @samp{arm7100},
13368 @samp{arm720},
13369 @samp{arm7500}, @samp{arm7500fe}, @samp{arm7tdmi}, @samp{arm7tdmi-s},
13370 @samp{arm710t}, @samp{arm720t}, @samp{arm740t},
13371 @samp{strongarm}, @samp{strongarm110}, @samp{strongarm1100},
13372 @samp{strongarm1110},
13373 @samp{arm8}, @samp{arm810}, @samp{arm9}, @samp{arm9e}, @samp{arm920},
13374 @samp{arm920t}, @samp{arm922t}, @samp{arm946e-s}, @samp{arm966e-s},
13375 @samp{arm968e-s}, @samp{arm926ej-s}, @samp{arm940t}, @samp{arm9tdmi},
13376 @samp{arm10tdmi}, @samp{arm1020t}, @samp{arm1026ej-s},
13377 @samp{arm10e}, @samp{arm1020e}, @samp{arm1022e},
13378 @samp{arm1136j-s}, @samp{arm1136jf-s}, @samp{mpcore}, @samp{mpcorenovfp},
13379 @samp{arm1156t2-s}, @samp{arm1156t2f-s}, @samp{arm1176jz-s}, @samp{arm1176jzf-s},
13380 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}, @samp{cortex-a8},
13381 @samp{cortex-a9}, @samp{cortex-a12}, @samp{cortex-a15}, @samp{cortex-a17},
13382 @samp{cortex-a53}, @samp{cortex-a57}, @samp{cortex-a72},
13383 @samp{cortex-r4},
13384 @samp{cortex-r4f}, @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-m7},
13385 @samp{cortex-m4},
13386 @samp{cortex-m3},
13387 @samp{cortex-m1},
13388 @samp{cortex-m0},
13389 @samp{cortex-m0plus},
13390 @samp{cortex-m1.small-multiply},
13391 @samp{cortex-m0.small-multiply},
13392 @samp{cortex-m0plus.small-multiply},
13393 @samp{exynos-m1},
13394 @samp{marvell-pj4},
13395 @samp{xscale}, @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312},
13396 @samp{fa526}, @samp{fa626},
13397 @samp{fa606te}, @samp{fa626te}, @samp{fmp626}, @samp{fa726te},
13398 @samp{xgene1}.
13399
13400 Additionally, this option can specify that GCC should tune the performance
13401 of the code for a big.LITTLE system. Permissible names are:
13402 @samp{cortex-a15.cortex-a7}, @samp{cortex-a17.cortex-a7},
13403 @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53}.
13404
13405 @option{-mtune=generic-@var{arch}} specifies that GCC should tune the
13406 performance for a blend of processors within architecture @var{arch}.
13407 The aim is to generate code that run well on the current most popular
13408 processors, balancing between optimizations that benefit some CPUs in the
13409 range, and avoiding performance pitfalls of other CPUs. The effects of
13410 this option may change in future GCC versions as CPU models come and go.
13411
13412 @option{-mtune=native} causes the compiler to auto-detect the CPU
13413 of the build computer. At present, this feature is only supported on
13414 GNU/Linux, and not all architectures are recognized. If the auto-detect is
13415 unsuccessful the option has no effect.
13416
13417 @item -mcpu=@var{name}
13418 @opindex mcpu
13419 This specifies the name of the target ARM processor. GCC uses this name
13420 to derive the name of the target ARM architecture (as if specified
13421 by @option{-march}) and the ARM processor type for which to tune for
13422 performance (as if specified by @option{-mtune}). Where this option
13423 is used in conjunction with @option{-march} or @option{-mtune},
13424 those options take precedence over the appropriate part of this option.
13425
13426 Permissible names for this option are the same as those for
13427 @option{-mtune}.
13428
13429 @option{-mcpu=generic-@var{arch}} is also permissible, and is
13430 equivalent to @option{-march=@var{arch} -mtune=generic-@var{arch}}.
13431 See @option{-mtune} for more information.
13432
13433 @option{-mcpu=native} causes the compiler to auto-detect the CPU
13434 of the build computer. At present, this feature is only supported on
13435 GNU/Linux, and not all architectures are recognized. If the auto-detect
13436 is unsuccessful the option has no effect.
13437
13438 @item -mfpu=@var{name}
13439 @opindex mfpu
13440 This specifies what floating-point hardware (or hardware emulation) is
13441 available on the target. Permissible names are: @samp{vfp}, @samp{vfpv3},
13442 @samp{vfpv3-fp16}, @samp{vfpv3-d16}, @samp{vfpv3-d16-fp16}, @samp{vfpv3xd},
13443 @samp{vfpv3xd-fp16}, @samp{neon}, @samp{neon-fp16}, @samp{vfpv4},
13444 @samp{vfpv4-d16}, @samp{fpv4-sp-d16}, @samp{neon-vfpv4},
13445 @samp{fpv5-d16}, @samp{fpv5-sp-d16},
13446 @samp{fp-armv8}, @samp{neon-fp-armv8}, and @samp{crypto-neon-fp-armv8}.
13447
13448 If @option{-msoft-float} is specified this specifies the format of
13449 floating-point values.
13450
13451 If the selected floating-point hardware includes the NEON extension
13452 (e.g. @option{-mfpu}=@samp{neon}), note that floating-point
13453 operations are not generated by GCC's auto-vectorization pass unless
13454 @option{-funsafe-math-optimizations} is also specified. This is
13455 because NEON hardware does not fully implement the IEEE 754 standard for
13456 floating-point arithmetic (in particular denormal values are treated as
13457 zero), so the use of NEON instructions may lead to a loss of precision.
13458
13459 @item -mfp16-format=@var{name}
13460 @opindex mfp16-format
13461 Specify the format of the @code{__fp16} half-precision floating-point type.
13462 Permissible names are @samp{none}, @samp{ieee}, and @samp{alternative};
13463 the default is @samp{none}, in which case the @code{__fp16} type is not
13464 defined. @xref{Half-Precision}, for more information.
13465
13466 @item -mstructure-size-boundary=@var{n}
13467 @opindex mstructure-size-boundary
13468 The sizes of all structures and unions are rounded up to a multiple
13469 of the number of bits set by this option. Permissible values are 8, 32
13470 and 64. The default value varies for different toolchains. For the COFF
13471 targeted toolchain the default value is 8. A value of 64 is only allowed
13472 if the underlying ABI supports it.
13473
13474 Specifying a larger number can produce faster, more efficient code, but
13475 can also increase the size of the program. Different values are potentially
13476 incompatible. Code compiled with one value cannot necessarily expect to
13477 work with code or libraries compiled with another value, if they exchange
13478 information using structures or unions.
13479
13480 @item -mabort-on-noreturn
13481 @opindex mabort-on-noreturn
13482 Generate a call to the function @code{abort} at the end of a
13483 @code{noreturn} function. It is executed if the function tries to
13484 return.
13485
13486 @item -mlong-calls
13487 @itemx -mno-long-calls
13488 @opindex mlong-calls
13489 @opindex mno-long-calls
13490 Tells the compiler to perform function calls by first loading the
13491 address of the function into a register and then performing a subroutine
13492 call on this register. This switch is needed if the target function
13493 lies outside of the 64-megabyte addressing range of the offset-based
13494 version of subroutine call instruction.
13495
13496 Even if this switch is enabled, not all function calls are turned
13497 into long calls. The heuristic is that static functions, functions
13498 that have the @code{short_call} attribute, functions that are inside
13499 the scope of a @code{#pragma no_long_calls} directive, and functions whose
13500 definitions have already been compiled within the current compilation
13501 unit are not turned into long calls. The exceptions to this rule are
13502 that weak function definitions, functions with the @code{long_call}
13503 attribute or the @code{section} attribute, and functions that are within
13504 the scope of a @code{#pragma long_calls} directive are always
13505 turned into long calls.
13506
13507 This feature is not enabled by default. Specifying
13508 @option{-mno-long-calls} restores the default behavior, as does
13509 placing the function calls within the scope of a @code{#pragma
13510 long_calls_off} directive. Note these switches have no effect on how
13511 the compiler generates code to handle function calls via function
13512 pointers.
13513
13514 @item -msingle-pic-base
13515 @opindex msingle-pic-base
13516 Treat the register used for PIC addressing as read-only, rather than
13517 loading it in the prologue for each function. The runtime system is
13518 responsible for initializing this register with an appropriate value
13519 before execution begins.
13520
13521 @item -mpic-register=@var{reg}
13522 @opindex mpic-register
13523 Specify the register to be used for PIC addressing.
13524 For standard PIC base case, the default is any suitable register
13525 determined by compiler. For single PIC base case, the default is
13526 @samp{R9} if target is EABI based or stack-checking is enabled,
13527 otherwise the default is @samp{R10}.
13528
13529 @item -mpic-data-is-text-relative
13530 @opindex mpic-data-is-text-relative
13531 Assume that each data segments are relative to text segment at load time.
13532 Therefore, it permits addressing data using PC-relative operations.
13533 This option is on by default for targets other than VxWorks RTP.
13534
13535 @item -mpoke-function-name
13536 @opindex mpoke-function-name
13537 Write the name of each function into the text section, directly
13538 preceding the function prologue. The generated code is similar to this:
13539
13540 @smallexample
13541 t0
13542 .ascii "arm_poke_function_name", 0
13543 .align
13544 t1
13545 .word 0xff000000 + (t1 - t0)
13546 arm_poke_function_name
13547 mov ip, sp
13548 stmfd sp!, @{fp, ip, lr, pc@}
13549 sub fp, ip, #4
13550 @end smallexample
13551
13552 When performing a stack backtrace, code can inspect the value of
13553 @code{pc} stored at @code{fp + 0}. If the trace function then looks at
13554 location @code{pc - 12} and the top 8 bits are set, then we know that
13555 there is a function name embedded immediately preceding this location
13556 and has length @code{((pc[-3]) & 0xff000000)}.
13557
13558 @item -mthumb
13559 @itemx -marm
13560 @opindex marm
13561 @opindex mthumb
13562
13563 Select between generating code that executes in ARM and Thumb
13564 states. The default for most configurations is to generate code
13565 that executes in ARM state, but the default can be changed by
13566 configuring GCC with the @option{--with-mode=}@var{state}
13567 configure option.
13568
13569 You can also override the ARM and Thumb mode for each function
13570 by using the @code{target("thumb")} and @code{target("arm")} function attributes
13571 (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
13572
13573 @item -mtpcs-frame
13574 @opindex mtpcs-frame
13575 Generate a stack frame that is compliant with the Thumb Procedure Call
13576 Standard for all non-leaf functions. (A leaf function is one that does
13577 not call any other functions.) The default is @option{-mno-tpcs-frame}.
13578
13579 @item -mtpcs-leaf-frame
13580 @opindex mtpcs-leaf-frame
13581 Generate a stack frame that is compliant with the Thumb Procedure Call
13582 Standard for all leaf functions. (A leaf function is one that does
13583 not call any other functions.) The default is @option{-mno-apcs-leaf-frame}.
13584
13585 @item -mcallee-super-interworking
13586 @opindex mcallee-super-interworking
13587 Gives all externally visible functions in the file being compiled an ARM
13588 instruction set header which switches to Thumb mode before executing the
13589 rest of the function. This allows these functions to be called from
13590 non-interworking code. This option is not valid in AAPCS configurations
13591 because interworking is enabled by default.
13592
13593 @item -mcaller-super-interworking
13594 @opindex mcaller-super-interworking
13595 Allows calls via function pointers (including virtual functions) to
13596 execute correctly regardless of whether the target code has been
13597 compiled for interworking or not. There is a small overhead in the cost
13598 of executing a function pointer if this option is enabled. This option
13599 is not valid in AAPCS configurations because interworking is enabled
13600 by default.
13601
13602 @item -mtp=@var{name}
13603 @opindex mtp
13604 Specify the access model for the thread local storage pointer. The valid
13605 models are @samp{soft}, which generates calls to @code{__aeabi_read_tp},
13606 @samp{cp15}, which fetches the thread pointer from @code{cp15} directly
13607 (supported in the arm6k architecture), and @samp{auto}, which uses the
13608 best available method for the selected processor. The default setting is
13609 @samp{auto}.
13610
13611 @item -mtls-dialect=@var{dialect}
13612 @opindex mtls-dialect
13613 Specify the dialect to use for accessing thread local storage. Two
13614 @var{dialect}s are supported---@samp{gnu} and @samp{gnu2}. The
13615 @samp{gnu} dialect selects the original GNU scheme for supporting
13616 local and global dynamic TLS models. The @samp{gnu2} dialect
13617 selects the GNU descriptor scheme, which provides better performance
13618 for shared libraries. The GNU descriptor scheme is compatible with
13619 the original scheme, but does require new assembler, linker and
13620 library support. Initial and local exec TLS models are unaffected by
13621 this option and always use the original scheme.
13622
13623 @item -mword-relocations
13624 @opindex mword-relocations
13625 Only generate absolute relocations on word-sized values (i.e. R_ARM_ABS32).
13626 This is enabled by default on targets (uClinux, SymbianOS) where the runtime
13627 loader imposes this restriction, and when @option{-fpic} or @option{-fPIC}
13628 is specified.
13629
13630 @item -mfix-cortex-m3-ldrd
13631 @opindex mfix-cortex-m3-ldrd
13632 Some Cortex-M3 cores can cause data corruption when @code{ldrd} instructions
13633 with overlapping destination and base registers are used. This option avoids
13634 generating these instructions. This option is enabled by default when
13635 @option{-mcpu=cortex-m3} is specified.
13636
13637 @item -munaligned-access
13638 @itemx -mno-unaligned-access
13639 @opindex munaligned-access
13640 @opindex mno-unaligned-access
13641 Enables (or disables) reading and writing of 16- and 32- bit values
13642 from addresses that are not 16- or 32- bit aligned. By default
13643 unaligned access is disabled for all pre-ARMv6 and all ARMv6-M
13644 architectures, and enabled for all other architectures. If unaligned
13645 access is not enabled then words in packed data structures are
13646 accessed a byte at a time.
13647
13648 The ARM attribute @code{Tag_CPU_unaligned_access} is set in the
13649 generated object file to either true or false, depending upon the
13650 setting of this option. If unaligned access is enabled then the
13651 preprocessor symbol @code{__ARM_FEATURE_UNALIGNED} is also
13652 defined.
13653
13654 @item -mneon-for-64bits
13655 @opindex mneon-for-64bits
13656 Enables using Neon to handle scalar 64-bits operations. This is
13657 disabled by default since the cost of moving data from core registers
13658 to Neon is high.
13659
13660 @item -mslow-flash-data
13661 @opindex mslow-flash-data
13662 Assume loading data from flash is slower than fetching instruction.
13663 Therefore literal load is minimized for better performance.
13664 This option is only supported when compiling for ARMv7 M-profile and
13665 off by default.
13666
13667 @item -masm-syntax-unified
13668 @opindex masm-syntax-unified
13669 Assume inline assembler is using unified asm syntax. The default is
13670 currently off which implies divided syntax. Currently this option is
13671 available only for Thumb1 and has no effect on ARM state and Thumb2.
13672 However, this may change in future releases of GCC. Divided syntax
13673 should be considered deprecated.
13674
13675 @item -mrestrict-it
13676 @opindex mrestrict-it
13677 Restricts generation of IT blocks to conform to the rules of ARMv8.
13678 IT blocks can only contain a single 16-bit instruction from a select
13679 set of instructions. This option is on by default for ARMv8 Thumb mode.
13680
13681 @item -mprint-tune-info
13682 @opindex mprint-tune-info
13683 Print CPU tuning information as comment in assembler file. This is
13684 an option used only for regression testing of the compiler and not
13685 intended for ordinary use in compiling code. This option is disabled
13686 by default.
13687 @end table
13688
13689 @node AVR Options
13690 @subsection AVR Options
13691 @cindex AVR Options
13692
13693 These options are defined for AVR implementations:
13694
13695 @table @gcctabopt
13696 @item -mmcu=@var{mcu}
13697 @opindex mmcu
13698 Specify Atmel AVR instruction set architectures (ISA) or MCU type.
13699
13700 The default for this option is@tie{}@samp{avr2}.
13701
13702 GCC supports the following AVR devices and ISAs:
13703
13704 @include avr-mmcu.texi
13705
13706 @item -maccumulate-args
13707 @opindex maccumulate-args
13708 Accumulate outgoing function arguments and acquire/release the needed
13709 stack space for outgoing function arguments once in function
13710 prologue/epilogue. Without this option, outgoing arguments are pushed
13711 before calling a function and popped afterwards.
13712
13713 Popping the arguments after the function call can be expensive on
13714 AVR so that accumulating the stack space might lead to smaller
13715 executables because arguments need not to be removed from the
13716 stack after such a function call.
13717
13718 This option can lead to reduced code size for functions that perform
13719 several calls to functions that get their arguments on the stack like
13720 calls to printf-like functions.
13721
13722 @item -mbranch-cost=@var{cost}
13723 @opindex mbranch-cost
13724 Set the branch costs for conditional branch instructions to
13725 @var{cost}. Reasonable values for @var{cost} are small, non-negative
13726 integers. The default branch cost is 0.
13727
13728 @item -mcall-prologues
13729 @opindex mcall-prologues
13730 Functions prologues/epilogues are expanded as calls to appropriate
13731 subroutines. Code size is smaller.
13732
13733 @item -mint8
13734 @opindex mint8
13735 Assume @code{int} to be 8-bit integer. This affects the sizes of all types: a
13736 @code{char} is 1 byte, an @code{int} is 1 byte, a @code{long} is 2 bytes,
13737 and @code{long long} is 4 bytes. Please note that this option does not
13738 conform to the C standards, but it results in smaller code
13739 size.
13740
13741 @item -mn-flash=@var{num}
13742 @opindex mn-flash
13743 Assume that the flash memory has a size of
13744 @var{num} times 64@tie{}KiB.
13745
13746 @item -mno-interrupts
13747 @opindex mno-interrupts
13748 Generated code is not compatible with hardware interrupts.
13749 Code size is smaller.
13750
13751 @item -mrelax
13752 @opindex mrelax
13753 Try to replace @code{CALL} resp.@: @code{JMP} instruction by the shorter
13754 @code{RCALL} resp.@: @code{RJMP} instruction if applicable.
13755 Setting @option{-mrelax} just adds the @option{--mlink-relax} option to
13756 the assembler's command line and the @option{--relax} option to the
13757 linker's command line.
13758
13759 Jump relaxing is performed by the linker because jump offsets are not
13760 known before code is located. Therefore, the assembler code generated by the
13761 compiler is the same, but the instructions in the executable may
13762 differ from instructions in the assembler code.
13763
13764 Relaxing must be turned on if linker stubs are needed, see the
13765 section on @code{EIND} and linker stubs below.
13766
13767 @item -mrmw
13768 @opindex mrmw
13769 Assume that the device supports the Read-Modify-Write
13770 instructions @code{XCH}, @code{LAC}, @code{LAS} and @code{LAT}.
13771
13772 @item -msp8
13773 @opindex msp8
13774 Treat the stack pointer register as an 8-bit register,
13775 i.e.@: assume the high byte of the stack pointer is zero.
13776 In general, you don't need to set this option by hand.
13777
13778 This option is used internally by the compiler to select and
13779 build multilibs for architectures @code{avr2} and @code{avr25}.
13780 These architectures mix devices with and without @code{SPH}.
13781 For any setting other than @option{-mmcu=avr2} or @option{-mmcu=avr25}
13782 the compiler driver adds or removes this option from the compiler
13783 proper's command line, because the compiler then knows if the device
13784 or architecture has an 8-bit stack pointer and thus no @code{SPH}
13785 register or not.
13786
13787 @item -mstrict-X
13788 @opindex mstrict-X
13789 Use address register @code{X} in a way proposed by the hardware. This means
13790 that @code{X} is only used in indirect, post-increment or
13791 pre-decrement addressing.
13792
13793 Without this option, the @code{X} register may be used in the same way
13794 as @code{Y} or @code{Z} which then is emulated by additional
13795 instructions.
13796 For example, loading a value with @code{X+const} addressing with a
13797 small non-negative @code{const < 64} to a register @var{Rn} is
13798 performed as
13799
13800 @example
13801 adiw r26, const ; X += const
13802 ld @var{Rn}, X ; @var{Rn} = *X
13803 sbiw r26, const ; X -= const
13804 @end example
13805
13806 @item -mtiny-stack
13807 @opindex mtiny-stack
13808 Only change the lower 8@tie{}bits of the stack pointer.
13809
13810 @item -nodevicelib
13811 @opindex nodevicelib
13812 Don't link against AVR-LibC's device specific library @code{libdev.a}.
13813
13814 @item -Waddr-space-convert
13815 @opindex Waddr-space-convert
13816 Warn about conversions between address spaces in the case where the
13817 resulting address space is not contained in the incoming address space.
13818 @end table
13819
13820 @subsubsection @code{EIND} and Devices with More Than 128 Ki Bytes of Flash
13821 @cindex @code{EIND}
13822 Pointers in the implementation are 16@tie{}bits wide.
13823 The address of a function or label is represented as word address so
13824 that indirect jumps and calls can target any code address in the
13825 range of 64@tie{}Ki words.
13826
13827 In order to facilitate indirect jump on devices with more than 128@tie{}Ki
13828 bytes of program memory space, there is a special function register called
13829 @code{EIND} that serves as most significant part of the target address
13830 when @code{EICALL} or @code{EIJMP} instructions are used.
13831
13832 Indirect jumps and calls on these devices are handled as follows by
13833 the compiler and are subject to some limitations:
13834
13835 @itemize @bullet
13836
13837 @item
13838 The compiler never sets @code{EIND}.
13839
13840 @item
13841 The compiler uses @code{EIND} implicitely in @code{EICALL}/@code{EIJMP}
13842 instructions or might read @code{EIND} directly in order to emulate an
13843 indirect call/jump by means of a @code{RET} instruction.
13844
13845 @item
13846 The compiler assumes that @code{EIND} never changes during the startup
13847 code or during the application. In particular, @code{EIND} is not
13848 saved/restored in function or interrupt service routine
13849 prologue/epilogue.
13850
13851 @item
13852 For indirect calls to functions and computed goto, the linker
13853 generates @emph{stubs}. Stubs are jump pads sometimes also called
13854 @emph{trampolines}. Thus, the indirect call/jump jumps to such a stub.
13855 The stub contains a direct jump to the desired address.
13856
13857 @item
13858 Linker relaxation must be turned on so that the linker generates
13859 the stubs correctly in all situations. See the compiler option
13860 @option{-mrelax} and the linker option @option{--relax}.
13861 There are corner cases where the linker is supposed to generate stubs
13862 but aborts without relaxation and without a helpful error message.
13863
13864 @item
13865 The default linker script is arranged for code with @code{EIND = 0}.
13866 If code is supposed to work for a setup with @code{EIND != 0}, a custom
13867 linker script has to be used in order to place the sections whose
13868 name start with @code{.trampolines} into the segment where @code{EIND}
13869 points to.
13870
13871 @item
13872 The startup code from libgcc never sets @code{EIND}.
13873 Notice that startup code is a blend of code from libgcc and AVR-LibC.
13874 For the impact of AVR-LibC on @code{EIND}, see the
13875 @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC user manual}}.
13876
13877 @item
13878 It is legitimate for user-specific startup code to set up @code{EIND}
13879 early, for example by means of initialization code located in
13880 section @code{.init3}. Such code runs prior to general startup code
13881 that initializes RAM and calls constructors, but after the bit
13882 of startup code from AVR-LibC that sets @code{EIND} to the segment
13883 where the vector table is located.
13884 @example
13885 #include <avr/io.h>
13886
13887 static void
13888 __attribute__((section(".init3"),naked,used,no_instrument_function))
13889 init3_set_eind (void)
13890 @{
13891 __asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
13892 "out %i0,r24" :: "n" (&EIND) : "r24","memory");
13893 @}
13894 @end example
13895
13896 @noindent
13897 The @code{__trampolines_start} symbol is defined in the linker script.
13898
13899 @item
13900 Stubs are generated automatically by the linker if
13901 the following two conditions are met:
13902 @itemize @minus
13903
13904 @item The address of a label is taken by means of the @code{gs} modifier
13905 (short for @emph{generate stubs}) like so:
13906 @example
13907 LDI r24, lo8(gs(@var{func}))
13908 LDI r25, hi8(gs(@var{func}))
13909 @end example
13910 @item The final location of that label is in a code segment
13911 @emph{outside} the segment where the stubs are located.
13912 @end itemize
13913
13914 @item
13915 The compiler emits such @code{gs} modifiers for code labels in the
13916 following situations:
13917 @itemize @minus
13918 @item Taking address of a function or code label.
13919 @item Computed goto.
13920 @item If prologue-save function is used, see @option{-mcall-prologues}
13921 command-line option.
13922 @item Switch/case dispatch tables. If you do not want such dispatch
13923 tables you can specify the @option{-fno-jump-tables} command-line option.
13924 @item C and C++ constructors/destructors called during startup/shutdown.
13925 @item If the tools hit a @code{gs()} modifier explained above.
13926 @end itemize
13927
13928 @item
13929 Jumping to non-symbolic addresses like so is @emph{not} supported:
13930
13931 @example
13932 int main (void)
13933 @{
13934 /* Call function at word address 0x2 */
13935 return ((int(*)(void)) 0x2)();
13936 @}
13937 @end example
13938
13939 Instead, a stub has to be set up, i.e.@: the function has to be called
13940 through a symbol (@code{func_4} in the example):
13941
13942 @example
13943 int main (void)
13944 @{
13945 extern int func_4 (void);
13946
13947 /* Call function at byte address 0x4 */
13948 return func_4();
13949 @}
13950 @end example
13951
13952 and the application be linked with @option{-Wl,--defsym,func_4=0x4}.
13953 Alternatively, @code{func_4} can be defined in the linker script.
13954 @end itemize
13955
13956 @subsubsection Handling of the @code{RAMPD}, @code{RAMPX}, @code{RAMPY} and @code{RAMPZ} Special Function Registers
13957 @cindex @code{RAMPD}
13958 @cindex @code{RAMPX}
13959 @cindex @code{RAMPY}
13960 @cindex @code{RAMPZ}
13961 Some AVR devices support memories larger than the 64@tie{}KiB range
13962 that can be accessed with 16-bit pointers. To access memory locations
13963 outside this 64@tie{}KiB range, the contentent of a @code{RAMP}
13964 register is used as high part of the address:
13965 The @code{X}, @code{Y}, @code{Z} address register is concatenated
13966 with the @code{RAMPX}, @code{RAMPY}, @code{RAMPZ} special function
13967 register, respectively, to get a wide address. Similarly,
13968 @code{RAMPD} is used together with direct addressing.
13969
13970 @itemize
13971 @item
13972 The startup code initializes the @code{RAMP} special function
13973 registers with zero.
13974
13975 @item
13976 If a @ref{AVR Named Address Spaces,named address space} other than
13977 generic or @code{__flash} is used, then @code{RAMPZ} is set
13978 as needed before the operation.
13979
13980 @item
13981 If the device supports RAM larger than 64@tie{}KiB and the compiler
13982 needs to change @code{RAMPZ} to accomplish an operation, @code{RAMPZ}
13983 is reset to zero after the operation.
13984
13985 @item
13986 If the device comes with a specific @code{RAMP} register, the ISR
13987 prologue/epilogue saves/restores that SFR and initializes it with
13988 zero in case the ISR code might (implicitly) use it.
13989
13990 @item
13991 RAM larger than 64@tie{}KiB is not supported by GCC for AVR targets.
13992 If you use inline assembler to read from locations outside the
13993 16-bit address range and change one of the @code{RAMP} registers,
13994 you must reset it to zero after the access.
13995
13996 @end itemize
13997
13998 @subsubsection AVR Built-in Macros
13999
14000 GCC defines several built-in macros so that the user code can test
14001 for the presence or absence of features. Almost any of the following
14002 built-in macros are deduced from device capabilities and thus
14003 triggered by the @option{-mmcu=} command-line option.
14004
14005 For even more AVR-specific built-in macros see
14006 @ref{AVR Named Address Spaces} and @ref{AVR Built-in Functions}.
14007
14008 @table @code
14009
14010 @item __AVR_ARCH__
14011 Build-in macro that resolves to a decimal number that identifies the
14012 architecture and depends on the @option{-mmcu=@var{mcu}} option.
14013 Possible values are:
14014
14015 @code{2}, @code{25}, @code{3}, @code{31}, @code{35},
14016 @code{4}, @code{5}, @code{51}, @code{6}
14017
14018 for @var{mcu}=@code{avr2}, @code{avr25}, @code{avr3}, @code{avr31},
14019 @code{avr35}, @code{avr4}, @code{avr5}, @code{avr51}, @code{avr6},
14020
14021 respectively and
14022
14023 @code{100}, @code{102}, @code{104},
14024 @code{105}, @code{106}, @code{107}
14025
14026 for @var{mcu}=@code{avrtiny}, @code{avrxmega2}, @code{avrxmega4},
14027 @code{avrxmega5}, @code{avrxmega6}, @code{avrxmega7}, respectively.
14028 If @var{mcu} specifies a device, this built-in macro is set
14029 accordingly. For example, with @option{-mmcu=atmega8} the macro is
14030 defined to @code{4}.
14031
14032 @item __AVR_@var{Device}__
14033 Setting @option{-mmcu=@var{device}} defines this built-in macro which reflects
14034 the device's name. For example, @option{-mmcu=atmega8} defines the
14035 built-in macro @code{__AVR_ATmega8__}, @option{-mmcu=attiny261a} defines
14036 @code{__AVR_ATtiny261A__}, etc.
14037
14038 The built-in macros' names follow
14039 the scheme @code{__AVR_@var{Device}__} where @var{Device} is
14040 the device name as from the AVR user manual. The difference between
14041 @var{Device} in the built-in macro and @var{device} in
14042 @option{-mmcu=@var{device}} is that the latter is always lowercase.
14043
14044 If @var{device} is not a device but only a core architecture like
14045 @samp{avr51}, this macro is not defined.
14046
14047 @item __AVR_DEVICE_NAME__
14048 Setting @option{-mmcu=@var{device}} defines this built-in macro to
14049 the device's name. For example, with @option{-mmcu=atmega8} the macro
14050 is defined to @code{atmega8}.
14051
14052 If @var{device} is not a device but only a core architecture like
14053 @samp{avr51}, this macro is not defined.
14054
14055 @item __AVR_XMEGA__
14056 The device / architecture belongs to the XMEGA family of devices.
14057
14058 @item __AVR_HAVE_ELPM__
14059 The device has the @code{ELPM} instruction.
14060
14061 @item __AVR_HAVE_ELPMX__
14062 The device has the @code{ELPM R@var{n},Z} and @code{ELPM
14063 R@var{n},Z+} instructions.
14064
14065 @item __AVR_HAVE_MOVW__
14066 The device has the @code{MOVW} instruction to perform 16-bit
14067 register-register moves.
14068
14069 @item __AVR_HAVE_LPMX__
14070 The device has the @code{LPM R@var{n},Z} and
14071 @code{LPM R@var{n},Z+} instructions.
14072
14073 @item __AVR_HAVE_MUL__
14074 The device has a hardware multiplier.
14075
14076 @item __AVR_HAVE_JMP_CALL__
14077 The device has the @code{JMP} and @code{CALL} instructions.
14078 This is the case for devices with at least 16@tie{}KiB of program
14079 memory.
14080
14081 @item __AVR_HAVE_EIJMP_EICALL__
14082 @itemx __AVR_3_BYTE_PC__
14083 The device has the @code{EIJMP} and @code{EICALL} instructions.
14084 This is the case for devices with more than 128@tie{}KiB of program memory.
14085 This also means that the program counter
14086 (PC) is 3@tie{}bytes wide.
14087
14088 @item __AVR_2_BYTE_PC__
14089 The program counter (PC) is 2@tie{}bytes wide. This is the case for devices
14090 with up to 128@tie{}KiB of program memory.
14091
14092 @item __AVR_HAVE_8BIT_SP__
14093 @itemx __AVR_HAVE_16BIT_SP__
14094 The stack pointer (SP) register is treated as 8-bit respectively
14095 16-bit register by the compiler.
14096 The definition of these macros is affected by @option{-mtiny-stack}.
14097
14098 @item __AVR_HAVE_SPH__
14099 @itemx __AVR_SP8__
14100 The device has the SPH (high part of stack pointer) special function
14101 register or has an 8-bit stack pointer, respectively.
14102 The definition of these macros is affected by @option{-mmcu=} and
14103 in the cases of @option{-mmcu=avr2} and @option{-mmcu=avr25} also
14104 by @option{-msp8}.
14105
14106 @item __AVR_HAVE_RAMPD__
14107 @itemx __AVR_HAVE_RAMPX__
14108 @itemx __AVR_HAVE_RAMPY__
14109 @itemx __AVR_HAVE_RAMPZ__
14110 The device has the @code{RAMPD}, @code{RAMPX}, @code{RAMPY},
14111 @code{RAMPZ} special function register, respectively.
14112
14113 @item __NO_INTERRUPTS__
14114 This macro reflects the @option{-mno-interrupts} command-line option.
14115
14116 @item __AVR_ERRATA_SKIP__
14117 @itemx __AVR_ERRATA_SKIP_JMP_CALL__
14118 Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit
14119 instructions because of a hardware erratum. Skip instructions are
14120 @code{SBRS}, @code{SBRC}, @code{SBIS}, @code{SBIC} and @code{CPSE}.
14121 The second macro is only defined if @code{__AVR_HAVE_JMP_CALL__} is also
14122 set.
14123
14124 @item __AVR_ISA_RMW__
14125 The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT).
14126
14127 @item __AVR_SFR_OFFSET__=@var{offset}
14128 Instructions that can address I/O special function registers directly
14129 like @code{IN}, @code{OUT}, @code{SBI}, etc.@: may use a different
14130 address as if addressed by an instruction to access RAM like @code{LD}
14131 or @code{STS}. This offset depends on the device architecture and has
14132 to be subtracted from the RAM address in order to get the
14133 respective I/O@tie{}address.
14134
14135 @item __WITH_AVRLIBC__
14136 The compiler is configured to be used together with AVR-Libc.
14137 See the @option{--with-avrlibc} configure option.
14138
14139 @end table
14140
14141 @node Blackfin Options
14142 @subsection Blackfin Options
14143 @cindex Blackfin Options
14144
14145 @table @gcctabopt
14146 @item -mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]}
14147 @opindex mcpu=
14148 Specifies the name of the target Blackfin processor. Currently, @var{cpu}
14149 can be one of @samp{bf512}, @samp{bf514}, @samp{bf516}, @samp{bf518},
14150 @samp{bf522}, @samp{bf523}, @samp{bf524}, @samp{bf525}, @samp{bf526},
14151 @samp{bf527}, @samp{bf531}, @samp{bf532}, @samp{bf533},
14152 @samp{bf534}, @samp{bf536}, @samp{bf537}, @samp{bf538}, @samp{bf539},
14153 @samp{bf542}, @samp{bf544}, @samp{bf547}, @samp{bf548}, @samp{bf549},
14154 @samp{bf542m}, @samp{bf544m}, @samp{bf547m}, @samp{bf548m}, @samp{bf549m},
14155 @samp{bf561}, @samp{bf592}.
14156
14157 The optional @var{sirevision} specifies the silicon revision of the target
14158 Blackfin processor. Any workarounds available for the targeted silicon revision
14159 are enabled. If @var{sirevision} is @samp{none}, no workarounds are enabled.
14160 If @var{sirevision} is @samp{any}, all workarounds for the targeted processor
14161 are enabled. The @code{__SILICON_REVISION__} macro is defined to two
14162 hexadecimal digits representing the major and minor numbers in the silicon
14163 revision. If @var{sirevision} is @samp{none}, the @code{__SILICON_REVISION__}
14164 is not defined. If @var{sirevision} is @samp{any}, the
14165 @code{__SILICON_REVISION__} is defined to be @code{0xffff}.
14166 If this optional @var{sirevision} is not used, GCC assumes the latest known
14167 silicon revision of the targeted Blackfin processor.
14168
14169 GCC defines a preprocessor macro for the specified @var{cpu}.
14170 For the @samp{bfin-elf} toolchain, this option causes the hardware BSP
14171 provided by libgloss to be linked in if @option{-msim} is not given.
14172
14173 Without this option, @samp{bf532} is used as the processor by default.
14174
14175 Note that support for @samp{bf561} is incomplete. For @samp{bf561},
14176 only the preprocessor macro is defined.
14177
14178 @item -msim
14179 @opindex msim
14180 Specifies that the program will be run on the simulator. This causes
14181 the simulator BSP provided by libgloss to be linked in. This option
14182 has effect only for @samp{bfin-elf} toolchain.
14183 Certain other options, such as @option{-mid-shared-library} and
14184 @option{-mfdpic}, imply @option{-msim}.
14185
14186 @item -momit-leaf-frame-pointer
14187 @opindex momit-leaf-frame-pointer
14188 Don't keep the frame pointer in a register for leaf functions. This
14189 avoids the instructions to save, set up and restore frame pointers and
14190 makes an extra register available in leaf functions. The option
14191 @option{-fomit-frame-pointer} removes the frame pointer for all functions,
14192 which might make debugging harder.
14193
14194 @item -mspecld-anomaly
14195 @opindex mspecld-anomaly
14196 When enabled, the compiler ensures that the generated code does not
14197 contain speculative loads after jump instructions. If this option is used,
14198 @code{__WORKAROUND_SPECULATIVE_LOADS} is defined.
14199
14200 @item -mno-specld-anomaly
14201 @opindex mno-specld-anomaly
14202 Don't generate extra code to prevent speculative loads from occurring.
14203
14204 @item -mcsync-anomaly
14205 @opindex mcsync-anomaly
14206 When enabled, the compiler ensures that the generated code does not
14207 contain CSYNC or SSYNC instructions too soon after conditional branches.
14208 If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined.
14209
14210 @item -mno-csync-anomaly
14211 @opindex mno-csync-anomaly
14212 Don't generate extra code to prevent CSYNC or SSYNC instructions from
14213 occurring too soon after a conditional branch.
14214
14215 @item -mlow-64k
14216 @opindex mlow-64k
14217 When enabled, the compiler is free to take advantage of the knowledge that
14218 the entire program fits into the low 64k of memory.
14219
14220 @item -mno-low-64k
14221 @opindex mno-low-64k
14222 Assume that the program is arbitrarily large. This is the default.
14223
14224 @item -mstack-check-l1
14225 @opindex mstack-check-l1
14226 Do stack checking using information placed into L1 scratchpad memory by the
14227 uClinux kernel.
14228
14229 @item -mid-shared-library
14230 @opindex mid-shared-library
14231 Generate code that supports shared libraries via the library ID method.
14232 This allows for execute in place and shared libraries in an environment
14233 without virtual memory management. This option implies @option{-fPIC}.
14234 With a @samp{bfin-elf} target, this option implies @option{-msim}.
14235
14236 @item -mno-id-shared-library
14237 @opindex mno-id-shared-library
14238 Generate code that doesn't assume ID-based shared libraries are being used.
14239 This is the default.
14240
14241 @item -mleaf-id-shared-library
14242 @opindex mleaf-id-shared-library
14243 Generate code that supports shared libraries via the library ID method,
14244 but assumes that this library or executable won't link against any other
14245 ID shared libraries. That allows the compiler to use faster code for jumps
14246 and calls.
14247
14248 @item -mno-leaf-id-shared-library
14249 @opindex mno-leaf-id-shared-library
14250 Do not assume that the code being compiled won't link against any ID shared
14251 libraries. Slower code is generated for jump and call insns.
14252
14253 @item -mshared-library-id=n
14254 @opindex mshared-library-id
14255 Specifies the identification number of the ID-based shared library being
14256 compiled. Specifying a value of 0 generates more compact code; specifying
14257 other values forces the allocation of that number to the current
14258 library but is no more space- or time-efficient than omitting this option.
14259
14260 @item -msep-data
14261 @opindex msep-data
14262 Generate code that allows the data segment to be located in a different
14263 area of memory from the text segment. This allows for execute in place in
14264 an environment without virtual memory management by eliminating relocations
14265 against the text section.
14266
14267 @item -mno-sep-data
14268 @opindex mno-sep-data
14269 Generate code that assumes that the data segment follows the text segment.
14270 This is the default.
14271
14272 @item -mlong-calls
14273 @itemx -mno-long-calls
14274 @opindex mlong-calls
14275 @opindex mno-long-calls
14276 Tells the compiler to perform function calls by first loading the
14277 address of the function into a register and then performing a subroutine
14278 call on this register. This switch is needed if the target function
14279 lies outside of the 24-bit addressing range of the offset-based
14280 version of subroutine call instruction.
14281
14282 This feature is not enabled by default. Specifying
14283 @option{-mno-long-calls} restores the default behavior. Note these
14284 switches have no effect on how the compiler generates code to handle
14285 function calls via function pointers.
14286
14287 @item -mfast-fp
14288 @opindex mfast-fp
14289 Link with the fast floating-point library. This library relaxes some of
14290 the IEEE floating-point standard's rules for checking inputs against
14291 Not-a-Number (NAN), in the interest of performance.
14292
14293 @item -minline-plt
14294 @opindex minline-plt
14295 Enable inlining of PLT entries in function calls to functions that are
14296 not known to bind locally. It has no effect without @option{-mfdpic}.
14297
14298 @item -mmulticore
14299 @opindex mmulticore
14300 Build a standalone application for multicore Blackfin processors.
14301 This option causes proper start files and link scripts supporting
14302 multicore to be used, and defines the macro @code{__BFIN_MULTICORE}.
14303 It can only be used with @option{-mcpu=bf561@r{[}-@var{sirevision}@r{]}}.
14304
14305 This option can be used with @option{-mcorea} or @option{-mcoreb}, which
14306 selects the one-application-per-core programming model. Without
14307 @option{-mcorea} or @option{-mcoreb}, the single-application/dual-core
14308 programming model is used. In this model, the main function of Core B
14309 should be named as @code{coreb_main}.
14310
14311 If this option is not used, the single-core application programming
14312 model is used.
14313
14314 @item -mcorea
14315 @opindex mcorea
14316 Build a standalone application for Core A of BF561 when using
14317 the one-application-per-core programming model. Proper start files
14318 and link scripts are used to support Core A, and the macro
14319 @code{__BFIN_COREA} is defined.
14320 This option can only be used in conjunction with @option{-mmulticore}.
14321
14322 @item -mcoreb
14323 @opindex mcoreb
14324 Build a standalone application for Core B of BF561 when using
14325 the one-application-per-core programming model. Proper start files
14326 and link scripts are used to support Core B, and the macro
14327 @code{__BFIN_COREB} is defined. When this option is used, @code{coreb_main}
14328 should be used instead of @code{main}.
14329 This option can only be used in conjunction with @option{-mmulticore}.
14330
14331 @item -msdram
14332 @opindex msdram
14333 Build a standalone application for SDRAM. Proper start files and
14334 link scripts are used to put the application into SDRAM, and the macro
14335 @code{__BFIN_SDRAM} is defined.
14336 The loader should initialize SDRAM before loading the application.
14337
14338 @item -micplb
14339 @opindex micplb
14340 Assume that ICPLBs are enabled at run time. This has an effect on certain
14341 anomaly workarounds. For Linux targets, the default is to assume ICPLBs
14342 are enabled; for standalone applications the default is off.
14343 @end table
14344
14345 @node C6X Options
14346 @subsection C6X Options
14347 @cindex C6X Options
14348
14349 @table @gcctabopt
14350 @item -march=@var{name}
14351 @opindex march
14352 This specifies the name of the target architecture. GCC uses this
14353 name to determine what kind of instructions it can emit when generating
14354 assembly code. Permissible names are: @samp{c62x},
14355 @samp{c64x}, @samp{c64x+}, @samp{c67x}, @samp{c67x+}, @samp{c674x}.
14356
14357 @item -mbig-endian
14358 @opindex mbig-endian
14359 Generate code for a big-endian target.
14360
14361 @item -mlittle-endian
14362 @opindex mlittle-endian
14363 Generate code for a little-endian target. This is the default.
14364
14365 @item -msim
14366 @opindex msim
14367 Choose startup files and linker script suitable for the simulator.
14368
14369 @item -msdata=default
14370 @opindex msdata=default
14371 Put small global and static data in the @code{.neardata} section,
14372 which is pointed to by register @code{B14}. Put small uninitialized
14373 global and static data in the @code{.bss} section, which is adjacent
14374 to the @code{.neardata} section. Put small read-only data into the
14375 @code{.rodata} section. The corresponding sections used for large
14376 pieces of data are @code{.fardata}, @code{.far} and @code{.const}.
14377
14378 @item -msdata=all
14379 @opindex msdata=all
14380 Put all data, not just small objects, into the sections reserved for
14381 small data, and use addressing relative to the @code{B14} register to
14382 access them.
14383
14384 @item -msdata=none
14385 @opindex msdata=none
14386 Make no use of the sections reserved for small data, and use absolute
14387 addresses to access all data. Put all initialized global and static
14388 data in the @code{.fardata} section, and all uninitialized data in the
14389 @code{.far} section. Put all constant data into the @code{.const}
14390 section.
14391 @end table
14392
14393 @node CRIS Options
14394 @subsection CRIS Options
14395 @cindex CRIS Options
14396
14397 These options are defined specifically for the CRIS ports.
14398
14399 @table @gcctabopt
14400 @item -march=@var{architecture-type}
14401 @itemx -mcpu=@var{architecture-type}
14402 @opindex march
14403 @opindex mcpu
14404 Generate code for the specified architecture. The choices for
14405 @var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
14406 respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX@.
14407 Default is @samp{v0} except for cris-axis-linux-gnu, where the default is
14408 @samp{v10}.
14409
14410 @item -mtune=@var{architecture-type}
14411 @opindex mtune
14412 Tune to @var{architecture-type} everything applicable about the generated
14413 code, except for the ABI and the set of available instructions. The
14414 choices for @var{architecture-type} are the same as for
14415 @option{-march=@var{architecture-type}}.
14416
14417 @item -mmax-stack-frame=@var{n}
14418 @opindex mmax-stack-frame
14419 Warn when the stack frame of a function exceeds @var{n} bytes.
14420
14421 @item -metrax4
14422 @itemx -metrax100
14423 @opindex metrax4
14424 @opindex metrax100
14425 The options @option{-metrax4} and @option{-metrax100} are synonyms for
14426 @option{-march=v3} and @option{-march=v8} respectively.
14427
14428 @item -mmul-bug-workaround
14429 @itemx -mno-mul-bug-workaround
14430 @opindex mmul-bug-workaround
14431 @opindex mno-mul-bug-workaround
14432 Work around a bug in the @code{muls} and @code{mulu} instructions for CPU
14433 models where it applies. This option is active by default.
14434
14435 @item -mpdebug
14436 @opindex mpdebug
14437 Enable CRIS-specific verbose debug-related information in the assembly
14438 code. This option also has the effect of turning off the @samp{#NO_APP}
14439 formatted-code indicator to the assembler at the beginning of the
14440 assembly file.
14441
14442 @item -mcc-init
14443 @opindex mcc-init
14444 Do not use condition-code results from previous instruction; always emit
14445 compare and test instructions before use of condition codes.
14446
14447 @item -mno-side-effects
14448 @opindex mno-side-effects
14449 Do not emit instructions with side effects in addressing modes other than
14450 post-increment.
14451
14452 @item -mstack-align
14453 @itemx -mno-stack-align
14454 @itemx -mdata-align
14455 @itemx -mno-data-align
14456 @itemx -mconst-align
14457 @itemx -mno-const-align
14458 @opindex mstack-align
14459 @opindex mno-stack-align
14460 @opindex mdata-align
14461 @opindex mno-data-align
14462 @opindex mconst-align
14463 @opindex mno-const-align
14464 These options (@samp{no-} options) arrange (eliminate arrangements) for the
14465 stack frame, individual data and constants to be aligned for the maximum
14466 single data access size for the chosen CPU model. The default is to
14467 arrange for 32-bit alignment. ABI details such as structure layout are
14468 not affected by these options.
14469
14470 @item -m32-bit
14471 @itemx -m16-bit
14472 @itemx -m8-bit
14473 @opindex m32-bit
14474 @opindex m16-bit
14475 @opindex m8-bit
14476 Similar to the stack- data- and const-align options above, these options
14477 arrange for stack frame, writable data and constants to all be 32-bit,
14478 16-bit or 8-bit aligned. The default is 32-bit alignment.
14479
14480 @item -mno-prologue-epilogue
14481 @itemx -mprologue-epilogue
14482 @opindex mno-prologue-epilogue
14483 @opindex mprologue-epilogue
14484 With @option{-mno-prologue-epilogue}, the normal function prologue and
14485 epilogue which set up the stack frame are omitted and no return
14486 instructions or return sequences are generated in the code. Use this
14487 option only together with visual inspection of the compiled code: no
14488 warnings or errors are generated when call-saved registers must be saved,
14489 or storage for local variables needs to be allocated.
14490
14491 @item -mno-gotplt
14492 @itemx -mgotplt
14493 @opindex mno-gotplt
14494 @opindex mgotplt
14495 With @option{-fpic} and @option{-fPIC}, don't generate (do generate)
14496 instruction sequences that load addresses for functions from the PLT part
14497 of the GOT rather than (traditional on other architectures) calls to the
14498 PLT@. The default is @option{-mgotplt}.
14499
14500 @item -melf
14501 @opindex melf
14502 Legacy no-op option only recognized with the cris-axis-elf and
14503 cris-axis-linux-gnu targets.
14504
14505 @item -mlinux
14506 @opindex mlinux
14507 Legacy no-op option only recognized with the cris-axis-linux-gnu target.
14508
14509 @item -sim
14510 @opindex sim
14511 This option, recognized for the cris-axis-elf, arranges
14512 to link with input-output functions from a simulator library. Code,
14513 initialized data and zero-initialized data are allocated consecutively.
14514
14515 @item -sim2
14516 @opindex sim2
14517 Like @option{-sim}, but pass linker options to locate initialized data at
14518 0x40000000 and zero-initialized data at 0x80000000.
14519 @end table
14520
14521 @node CR16 Options
14522 @subsection CR16 Options
14523 @cindex CR16 Options
14524
14525 These options are defined specifically for the CR16 ports.
14526
14527 @table @gcctabopt
14528
14529 @item -mmac
14530 @opindex mmac
14531 Enable the use of multiply-accumulate instructions. Disabled by default.
14532
14533 @item -mcr16cplus
14534 @itemx -mcr16c
14535 @opindex mcr16cplus
14536 @opindex mcr16c
14537 Generate code for CR16C or CR16C+ architecture. CR16C+ architecture
14538 is default.
14539
14540 @item -msim
14541 @opindex msim
14542 Links the library libsim.a which is in compatible with simulator. Applicable
14543 to ELF compiler only.
14544
14545 @item -mint32
14546 @opindex mint32
14547 Choose integer type as 32-bit wide.
14548
14549 @item -mbit-ops
14550 @opindex mbit-ops
14551 Generates @code{sbit}/@code{cbit} instructions for bit manipulations.
14552
14553 @item -mdata-model=@var{model}
14554 @opindex mdata-model
14555 Choose a data model. The choices for @var{model} are @samp{near},
14556 @samp{far} or @samp{medium}. @samp{medium} is default.
14557 However, @samp{far} is not valid with @option{-mcr16c}, as the
14558 CR16C architecture does not support the far data model.
14559 @end table
14560
14561 @node Darwin Options
14562 @subsection Darwin Options
14563 @cindex Darwin options
14564
14565 These options are defined for all architectures running the Darwin operating
14566 system.
14567
14568 FSF GCC on Darwin does not create ``fat'' object files; it creates
14569 an object file for the single architecture that GCC was built to
14570 target. Apple's GCC on Darwin does create ``fat'' files if multiple
14571 @option{-arch} options are used; it does so by running the compiler or
14572 linker multiple times and joining the results together with
14573 @file{lipo}.
14574
14575 The subtype of the file created (like @samp{ppc7400} or @samp{ppc970} or
14576 @samp{i686}) is determined by the flags that specify the ISA
14577 that GCC is targeting, like @option{-mcpu} or @option{-march}. The
14578 @option{-force_cpusubtype_ALL} option can be used to override this.
14579
14580 The Darwin tools vary in their behavior when presented with an ISA
14581 mismatch. The assembler, @file{as}, only permits instructions to
14582 be used that are valid for the subtype of the file it is generating,
14583 so you cannot put 64-bit instructions in a @samp{ppc750} object file.
14584 The linker for shared libraries, @file{/usr/bin/libtool}, fails
14585 and prints an error if asked to create a shared library with a less
14586 restrictive subtype than its input files (for instance, trying to put
14587 a @samp{ppc970} object file in a @samp{ppc7400} library). The linker
14588 for executables, @command{ld}, quietly gives the executable the most
14589 restrictive subtype of any of its input files.
14590
14591 @table @gcctabopt
14592 @item -F@var{dir}
14593 @opindex F
14594 Add the framework directory @var{dir} to the head of the list of
14595 directories to be searched for header files. These directories are
14596 interleaved with those specified by @option{-I} options and are
14597 scanned in a left-to-right order.
14598
14599 A framework directory is a directory with frameworks in it. A
14600 framework is a directory with a @file{Headers} and/or
14601 @file{PrivateHeaders} directory contained directly in it that ends
14602 in @file{.framework}. The name of a framework is the name of this
14603 directory excluding the @file{.framework}. Headers associated with
14604 the framework are found in one of those two directories, with
14605 @file{Headers} being searched first. A subframework is a framework
14606 directory that is in a framework's @file{Frameworks} directory.
14607 Includes of subframework headers can only appear in a header of a
14608 framework that contains the subframework, or in a sibling subframework
14609 header. Two subframeworks are siblings if they occur in the same
14610 framework. A subframework should not have the same name as a
14611 framework; a warning is issued if this is violated. Currently a
14612 subframework cannot have subframeworks; in the future, the mechanism
14613 may be extended to support this. The standard frameworks can be found
14614 in @file{/System/Library/Frameworks} and
14615 @file{/Library/Frameworks}. An example include looks like
14616 @code{#include <Framework/header.h>}, where @file{Framework} denotes
14617 the name of the framework and @file{header.h} is found in the
14618 @file{PrivateHeaders} or @file{Headers} directory.
14619
14620 @item -iframework@var{dir}
14621 @opindex iframework
14622 Like @option{-F} except the directory is a treated as a system
14623 directory. The main difference between this @option{-iframework} and
14624 @option{-F} is that with @option{-iframework} the compiler does not
14625 warn about constructs contained within header files found via
14626 @var{dir}. This option is valid only for the C family of languages.
14627
14628 @item -gused
14629 @opindex gused
14630 Emit debugging information for symbols that are used. For stabs
14631 debugging format, this enables @option{-feliminate-unused-debug-symbols}.
14632 This is by default ON@.
14633
14634 @item -gfull
14635 @opindex gfull
14636 Emit debugging information for all symbols and types.
14637
14638 @item -mmacosx-version-min=@var{version}
14639 The earliest version of MacOS X that this executable will run on
14640 is @var{version}. Typical values of @var{version} include @code{10.1},
14641 @code{10.2}, and @code{10.3.9}.
14642
14643 If the compiler was built to use the system's headers by default,
14644 then the default for this option is the system version on which the
14645 compiler is running, otherwise the default is to make choices that
14646 are compatible with as many systems and code bases as possible.
14647
14648 @item -mkernel
14649 @opindex mkernel
14650 Enable kernel development mode. The @option{-mkernel} option sets
14651 @option{-static}, @option{-fno-common}, @option{-fno-use-cxa-atexit},
14652 @option{-fno-exceptions}, @option{-fno-non-call-exceptions},
14653 @option{-fapple-kext}, @option{-fno-weak} and @option{-fno-rtti} where
14654 applicable. This mode also sets @option{-mno-altivec},
14655 @option{-msoft-float}, @option{-fno-builtin} and
14656 @option{-mlong-branch} for PowerPC targets.
14657
14658 @item -mone-byte-bool
14659 @opindex mone-byte-bool
14660 Override the defaults for @code{bool} so that @code{sizeof(bool)==1}.
14661 By default @code{sizeof(bool)} is @code{4} when compiling for
14662 Darwin/PowerPC and @code{1} when compiling for Darwin/x86, so this
14663 option has no effect on x86.
14664
14665 @strong{Warning:} The @option{-mone-byte-bool} switch causes GCC
14666 to generate code that is not binary compatible with code generated
14667 without that switch. Using this switch may require recompiling all
14668 other modules in a program, including system libraries. Use this
14669 switch to conform to a non-default data model.
14670
14671 @item -mfix-and-continue
14672 @itemx -ffix-and-continue
14673 @itemx -findirect-data
14674 @opindex mfix-and-continue
14675 @opindex ffix-and-continue
14676 @opindex findirect-data
14677 Generate code suitable for fast turnaround development, such as to
14678 allow GDB to dynamically load @file{.o} files into already-running
14679 programs. @option{-findirect-data} and @option{-ffix-and-continue}
14680 are provided for backwards compatibility.
14681
14682 @item -all_load
14683 @opindex all_load
14684 Loads all members of static archive libraries.
14685 See man ld(1) for more information.
14686
14687 @item -arch_errors_fatal
14688 @opindex arch_errors_fatal
14689 Cause the errors having to do with files that have the wrong architecture
14690 to be fatal.
14691
14692 @item -bind_at_load
14693 @opindex bind_at_load
14694 Causes the output file to be marked such that the dynamic linker will
14695 bind all undefined references when the file is loaded or launched.
14696
14697 @item -bundle
14698 @opindex bundle
14699 Produce a Mach-o bundle format file.
14700 See man ld(1) for more information.
14701
14702 @item -bundle_loader @var{executable}
14703 @opindex bundle_loader
14704 This option specifies the @var{executable} that will load the build
14705 output file being linked. See man ld(1) for more information.
14706
14707 @item -dynamiclib
14708 @opindex dynamiclib
14709 When passed this option, GCC produces a dynamic library instead of
14710 an executable when linking, using the Darwin @file{libtool} command.
14711
14712 @item -force_cpusubtype_ALL
14713 @opindex force_cpusubtype_ALL
14714 This causes GCC's output file to have the @samp{ALL} subtype, instead of
14715 one controlled by the @option{-mcpu} or @option{-march} option.
14716
14717 @item -allowable_client @var{client_name}
14718 @itemx -client_name
14719 @itemx -compatibility_version
14720 @itemx -current_version
14721 @itemx -dead_strip
14722 @itemx -dependency-file
14723 @itemx -dylib_file
14724 @itemx -dylinker_install_name
14725 @itemx -dynamic
14726 @itemx -exported_symbols_list
14727 @itemx -filelist
14728 @need 800
14729 @itemx -flat_namespace
14730 @itemx -force_flat_namespace
14731 @itemx -headerpad_max_install_names
14732 @itemx -image_base
14733 @itemx -init
14734 @itemx -install_name
14735 @itemx -keep_private_externs
14736 @itemx -multi_module
14737 @itemx -multiply_defined
14738 @itemx -multiply_defined_unused
14739 @need 800
14740 @itemx -noall_load
14741 @itemx -no_dead_strip_inits_and_terms
14742 @itemx -nofixprebinding
14743 @itemx -nomultidefs
14744 @itemx -noprebind
14745 @itemx -noseglinkedit
14746 @itemx -pagezero_size
14747 @itemx -prebind
14748 @itemx -prebind_all_twolevel_modules
14749 @itemx -private_bundle
14750 @need 800
14751 @itemx -read_only_relocs
14752 @itemx -sectalign
14753 @itemx -sectobjectsymbols
14754 @itemx -whyload
14755 @itemx -seg1addr
14756 @itemx -sectcreate
14757 @itemx -sectobjectsymbols
14758 @itemx -sectorder
14759 @itemx -segaddr
14760 @itemx -segs_read_only_addr
14761 @need 800
14762 @itemx -segs_read_write_addr
14763 @itemx -seg_addr_table
14764 @itemx -seg_addr_table_filename
14765 @itemx -seglinkedit
14766 @itemx -segprot
14767 @itemx -segs_read_only_addr
14768 @itemx -segs_read_write_addr
14769 @itemx -single_module
14770 @itemx -static
14771 @itemx -sub_library
14772 @need 800
14773 @itemx -sub_umbrella
14774 @itemx -twolevel_namespace
14775 @itemx -umbrella
14776 @itemx -undefined
14777 @itemx -unexported_symbols_list
14778 @itemx -weak_reference_mismatches
14779 @itemx -whatsloaded
14780 @opindex allowable_client
14781 @opindex client_name
14782 @opindex compatibility_version
14783 @opindex current_version
14784 @opindex dead_strip
14785 @opindex dependency-file
14786 @opindex dylib_file
14787 @opindex dylinker_install_name
14788 @opindex dynamic
14789 @opindex exported_symbols_list
14790 @opindex filelist
14791 @opindex flat_namespace
14792 @opindex force_flat_namespace
14793 @opindex headerpad_max_install_names
14794 @opindex image_base
14795 @opindex init
14796 @opindex install_name
14797 @opindex keep_private_externs
14798 @opindex multi_module
14799 @opindex multiply_defined
14800 @opindex multiply_defined_unused
14801 @opindex noall_load
14802 @opindex no_dead_strip_inits_and_terms
14803 @opindex nofixprebinding
14804 @opindex nomultidefs
14805 @opindex noprebind
14806 @opindex noseglinkedit
14807 @opindex pagezero_size
14808 @opindex prebind
14809 @opindex prebind_all_twolevel_modules
14810 @opindex private_bundle
14811 @opindex read_only_relocs
14812 @opindex sectalign
14813 @opindex sectobjectsymbols
14814 @opindex whyload
14815 @opindex seg1addr
14816 @opindex sectcreate
14817 @opindex sectobjectsymbols
14818 @opindex sectorder
14819 @opindex segaddr
14820 @opindex segs_read_only_addr
14821 @opindex segs_read_write_addr
14822 @opindex seg_addr_table
14823 @opindex seg_addr_table_filename
14824 @opindex seglinkedit
14825 @opindex segprot
14826 @opindex segs_read_only_addr
14827 @opindex segs_read_write_addr
14828 @opindex single_module
14829 @opindex static
14830 @opindex sub_library
14831 @opindex sub_umbrella
14832 @opindex twolevel_namespace
14833 @opindex umbrella
14834 @opindex undefined
14835 @opindex unexported_symbols_list
14836 @opindex weak_reference_mismatches
14837 @opindex whatsloaded
14838 These options are passed to the Darwin linker. The Darwin linker man page
14839 describes them in detail.
14840 @end table
14841
14842 @node DEC Alpha Options
14843 @subsection DEC Alpha Options
14844
14845 These @samp{-m} options are defined for the DEC Alpha implementations:
14846
14847 @table @gcctabopt
14848 @item -mno-soft-float
14849 @itemx -msoft-float
14850 @opindex mno-soft-float
14851 @opindex msoft-float
14852 Use (do not use) the hardware floating-point instructions for
14853 floating-point operations. When @option{-msoft-float} is specified,
14854 functions in @file{libgcc.a} are used to perform floating-point
14855 operations. Unless they are replaced by routines that emulate the
14856 floating-point operations, or compiled in such a way as to call such
14857 emulations routines, these routines issue floating-point
14858 operations. If you are compiling for an Alpha without floating-point
14859 operations, you must ensure that the library is built so as not to call
14860 them.
14861
14862 Note that Alpha implementations without floating-point operations are
14863 required to have floating-point registers.
14864
14865 @item -mfp-reg
14866 @itemx -mno-fp-regs
14867 @opindex mfp-reg
14868 @opindex mno-fp-regs
14869 Generate code that uses (does not use) the floating-point register set.
14870 @option{-mno-fp-regs} implies @option{-msoft-float}. If the floating-point
14871 register set is not used, floating-point operands are passed in integer
14872 registers as if they were integers and floating-point results are passed
14873 in @code{$0} instead of @code{$f0}. This is a non-standard calling sequence,
14874 so any function with a floating-point argument or return value called by code
14875 compiled with @option{-mno-fp-regs} must also be compiled with that
14876 option.
14877
14878 A typical use of this option is building a kernel that does not use,
14879 and hence need not save and restore, any floating-point registers.
14880
14881 @item -mieee
14882 @opindex mieee
14883 The Alpha architecture implements floating-point hardware optimized for
14884 maximum performance. It is mostly compliant with the IEEE floating-point
14885 standard. However, for full compliance, software assistance is
14886 required. This option generates code fully IEEE-compliant code
14887 @emph{except} that the @var{inexact-flag} is not maintained (see below).
14888 If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
14889 defined during compilation. The resulting code is less efficient but is
14890 able to correctly support denormalized numbers and exceptional IEEE
14891 values such as not-a-number and plus/minus infinity. Other Alpha
14892 compilers call this option @option{-ieee_with_no_inexact}.
14893
14894 @item -mieee-with-inexact
14895 @opindex mieee-with-inexact
14896 This is like @option{-mieee} except the generated code also maintains
14897 the IEEE @var{inexact-flag}. Turning on this option causes the
14898 generated code to implement fully-compliant IEEE math. In addition to
14899 @code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
14900 macro. On some Alpha implementations the resulting code may execute
14901 significantly slower than the code generated by default. Since there is
14902 very little code that depends on the @var{inexact-flag}, you should
14903 normally not specify this option. Other Alpha compilers call this
14904 option @option{-ieee_with_inexact}.
14905
14906 @item -mfp-trap-mode=@var{trap-mode}
14907 @opindex mfp-trap-mode
14908 This option controls what floating-point related traps are enabled.
14909 Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
14910 The trap mode can be set to one of four values:
14911
14912 @table @samp
14913 @item n
14914 This is the default (normal) setting. The only traps that are enabled
14915 are the ones that cannot be disabled in software (e.g., division by zero
14916 trap).
14917
14918 @item u
14919 In addition to the traps enabled by @samp{n}, underflow traps are enabled
14920 as well.
14921
14922 @item su
14923 Like @samp{u}, but the instructions are marked to be safe for software
14924 completion (see Alpha architecture manual for details).
14925
14926 @item sui
14927 Like @samp{su}, but inexact traps are enabled as well.
14928 @end table
14929
14930 @item -mfp-rounding-mode=@var{rounding-mode}
14931 @opindex mfp-rounding-mode
14932 Selects the IEEE rounding mode. Other Alpha compilers call this option
14933 @option{-fprm @var{rounding-mode}}. The @var{rounding-mode} can be one
14934 of:
14935
14936 @table @samp
14937 @item n
14938 Normal IEEE rounding mode. Floating-point numbers are rounded towards
14939 the nearest machine number or towards the even machine number in case
14940 of a tie.
14941
14942 @item m
14943 Round towards minus infinity.
14944
14945 @item c
14946 Chopped rounding mode. Floating-point numbers are rounded towards zero.
14947
14948 @item d
14949 Dynamic rounding mode. A field in the floating-point control register
14950 (@var{fpcr}, see Alpha architecture reference manual) controls the
14951 rounding mode in effect. The C library initializes this register for
14952 rounding towards plus infinity. Thus, unless your program modifies the
14953 @var{fpcr}, @samp{d} corresponds to round towards plus infinity.
14954 @end table
14955
14956 @item -mtrap-precision=@var{trap-precision}
14957 @opindex mtrap-precision
14958 In the Alpha architecture, floating-point traps are imprecise. This
14959 means without software assistance it is impossible to recover from a
14960 floating trap and program execution normally needs to be terminated.
14961 GCC can generate code that can assist operating system trap handlers
14962 in determining the exact location that caused a floating-point trap.
14963 Depending on the requirements of an application, different levels of
14964 precisions can be selected:
14965
14966 @table @samp
14967 @item p
14968 Program precision. This option is the default and means a trap handler
14969 can only identify which program caused a floating-point exception.
14970
14971 @item f
14972 Function precision. The trap handler can determine the function that
14973 caused a floating-point exception.
14974
14975 @item i
14976 Instruction precision. The trap handler can determine the exact
14977 instruction that caused a floating-point exception.
14978 @end table
14979
14980 Other Alpha compilers provide the equivalent options called
14981 @option{-scope_safe} and @option{-resumption_safe}.
14982
14983 @item -mieee-conformant
14984 @opindex mieee-conformant
14985 This option marks the generated code as IEEE conformant. You must not
14986 use this option unless you also specify @option{-mtrap-precision=i} and either
14987 @option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}. Its only effect
14988 is to emit the line @samp{.eflag 48} in the function prologue of the
14989 generated assembly file.
14990
14991 @item -mbuild-constants
14992 @opindex mbuild-constants
14993 Normally GCC examines a 32- or 64-bit integer constant to
14994 see if it can construct it from smaller constants in two or three
14995 instructions. If it cannot, it outputs the constant as a literal and
14996 generates code to load it from the data segment at run time.
14997
14998 Use this option to require GCC to construct @emph{all} integer constants
14999 using code, even if it takes more instructions (the maximum is six).
15000
15001 You typically use this option to build a shared library dynamic
15002 loader. Itself a shared library, it must relocate itself in memory
15003 before it can find the variables and constants in its own data segment.
15004
15005 @item -mbwx
15006 @itemx -mno-bwx
15007 @itemx -mcix
15008 @itemx -mno-cix
15009 @itemx -mfix
15010 @itemx -mno-fix
15011 @itemx -mmax
15012 @itemx -mno-max
15013 @opindex mbwx
15014 @opindex mno-bwx
15015 @opindex mcix
15016 @opindex mno-cix
15017 @opindex mfix
15018 @opindex mno-fix
15019 @opindex mmax
15020 @opindex mno-max
15021 Indicate whether GCC should generate code to use the optional BWX,
15022 CIX, FIX and MAX instruction sets. The default is to use the instruction
15023 sets supported by the CPU type specified via @option{-mcpu=} option or that
15024 of the CPU on which GCC was built if none is specified.
15025
15026 @item -mfloat-vax
15027 @itemx -mfloat-ieee
15028 @opindex mfloat-vax
15029 @opindex mfloat-ieee
15030 Generate code that uses (does not use) VAX F and G floating-point
15031 arithmetic instead of IEEE single and double precision.
15032
15033 @item -mexplicit-relocs
15034 @itemx -mno-explicit-relocs
15035 @opindex mexplicit-relocs
15036 @opindex mno-explicit-relocs
15037 Older Alpha assemblers provided no way to generate symbol relocations
15038 except via assembler macros. Use of these macros does not allow
15039 optimal instruction scheduling. GNU binutils as of version 2.12
15040 supports a new syntax that allows the compiler to explicitly mark
15041 which relocations should apply to which instructions. This option
15042 is mostly useful for debugging, as GCC detects the capabilities of
15043 the assembler when it is built and sets the default accordingly.
15044
15045 @item -msmall-data
15046 @itemx -mlarge-data
15047 @opindex msmall-data
15048 @opindex mlarge-data
15049 When @option{-mexplicit-relocs} is in effect, static data is
15050 accessed via @dfn{gp-relative} relocations. When @option{-msmall-data}
15051 is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
15052 (the @code{.sdata} and @code{.sbss} sections) and are accessed via
15053 16-bit relocations off of the @code{$gp} register. This limits the
15054 size of the small data area to 64KB, but allows the variables to be
15055 directly accessed via a single instruction.
15056
15057 The default is @option{-mlarge-data}. With this option the data area
15058 is limited to just below 2GB@. Programs that require more than 2GB of
15059 data must use @code{malloc} or @code{mmap} to allocate the data in the
15060 heap instead of in the program's data segment.
15061
15062 When generating code for shared libraries, @option{-fpic} implies
15063 @option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.
15064
15065 @item -msmall-text
15066 @itemx -mlarge-text
15067 @opindex msmall-text
15068 @opindex mlarge-text
15069 When @option{-msmall-text} is used, the compiler assumes that the
15070 code of the entire program (or shared library) fits in 4MB, and is
15071 thus reachable with a branch instruction. When @option{-msmall-data}
15072 is used, the compiler can assume that all local symbols share the
15073 same @code{$gp} value, and thus reduce the number of instructions
15074 required for a function call from 4 to 1.
15075
15076 The default is @option{-mlarge-text}.
15077
15078 @item -mcpu=@var{cpu_type}
15079 @opindex mcpu
15080 Set the instruction set and instruction scheduling parameters for
15081 machine type @var{cpu_type}. You can specify either the @samp{EV}
15082 style name or the corresponding chip number. GCC supports scheduling
15083 parameters for the EV4, EV5 and EV6 family of processors and
15084 chooses the default values for the instruction set from the processor
15085 you specify. If you do not specify a processor type, GCC defaults
15086 to the processor on which the compiler was built.
15087
15088 Supported values for @var{cpu_type} are
15089
15090 @table @samp
15091 @item ev4
15092 @itemx ev45
15093 @itemx 21064
15094 Schedules as an EV4 and has no instruction set extensions.
15095
15096 @item ev5
15097 @itemx 21164
15098 Schedules as an EV5 and has no instruction set extensions.
15099
15100 @item ev56
15101 @itemx 21164a
15102 Schedules as an EV5 and supports the BWX extension.
15103
15104 @item pca56
15105 @itemx 21164pc
15106 @itemx 21164PC
15107 Schedules as an EV5 and supports the BWX and MAX extensions.
15108
15109 @item ev6
15110 @itemx 21264
15111 Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
15112
15113 @item ev67
15114 @itemx 21264a
15115 Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
15116 @end table
15117
15118 Native toolchains also support the value @samp{native},
15119 which selects the best architecture option for the host processor.
15120 @option{-mcpu=native} has no effect if GCC does not recognize
15121 the processor.
15122
15123 @item -mtune=@var{cpu_type}
15124 @opindex mtune
15125 Set only the instruction scheduling parameters for machine type
15126 @var{cpu_type}. The instruction set is not changed.
15127
15128 Native toolchains also support the value @samp{native},
15129 which selects the best architecture option for the host processor.
15130 @option{-mtune=native} has no effect if GCC does not recognize
15131 the processor.
15132
15133 @item -mmemory-latency=@var{time}
15134 @opindex mmemory-latency
15135 Sets the latency the scheduler should assume for typical memory
15136 references as seen by the application. This number is highly
15137 dependent on the memory access patterns used by the application
15138 and the size of the external cache on the machine.
15139
15140 Valid options for @var{time} are
15141
15142 @table @samp
15143 @item @var{number}
15144 A decimal number representing clock cycles.
15145
15146 @item L1
15147 @itemx L2
15148 @itemx L3
15149 @itemx main
15150 The compiler contains estimates of the number of clock cycles for
15151 ``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
15152 (also called Dcache, Scache, and Bcache), as well as to main memory.
15153 Note that L3 is only valid for EV5.
15154
15155 @end table
15156 @end table
15157
15158 @node FR30 Options
15159 @subsection FR30 Options
15160 @cindex FR30 Options
15161
15162 These options are defined specifically for the FR30 port.
15163
15164 @table @gcctabopt
15165
15166 @item -msmall-model
15167 @opindex msmall-model
15168 Use the small address space model. This can produce smaller code, but
15169 it does assume that all symbolic values and addresses fit into a
15170 20-bit range.
15171
15172 @item -mno-lsim
15173 @opindex mno-lsim
15174 Assume that runtime support has been provided and so there is no need
15175 to include the simulator library (@file{libsim.a}) on the linker
15176 command line.
15177
15178 @end table
15179
15180 @node FT32 Options
15181 @subsection FT32 Options
15182 @cindex FT32 Options
15183
15184 These options are defined specifically for the FT32 port.
15185
15186 @table @gcctabopt
15187
15188 @item -msim
15189 @opindex msim
15190 Specifies that the program will be run on the simulator. This causes
15191 an alternate runtime startup and library to be linked.
15192 You must not use this option when generating programs that will run on
15193 real hardware; you must provide your own runtime library for whatever
15194 I/O functions are needed.
15195
15196 @item -mlra
15197 @opindex mlra
15198 Enable Local Register Allocation. This is still experimental for FT32,
15199 so by default the compiler uses standard reload.
15200
15201 @end table
15202
15203 @node FRV Options
15204 @subsection FRV Options
15205 @cindex FRV Options
15206
15207 @table @gcctabopt
15208 @item -mgpr-32
15209 @opindex mgpr-32
15210
15211 Only use the first 32 general-purpose registers.
15212
15213 @item -mgpr-64
15214 @opindex mgpr-64
15215
15216 Use all 64 general-purpose registers.
15217
15218 @item -mfpr-32
15219 @opindex mfpr-32
15220
15221 Use only the first 32 floating-point registers.
15222
15223 @item -mfpr-64
15224 @opindex mfpr-64
15225
15226 Use all 64 floating-point registers.
15227
15228 @item -mhard-float
15229 @opindex mhard-float
15230
15231 Use hardware instructions for floating-point operations.
15232
15233 @item -msoft-float
15234 @opindex msoft-float
15235
15236 Use library routines for floating-point operations.
15237
15238 @item -malloc-cc
15239 @opindex malloc-cc
15240
15241 Dynamically allocate condition code registers.
15242
15243 @item -mfixed-cc
15244 @opindex mfixed-cc
15245
15246 Do not try to dynamically allocate condition code registers, only
15247 use @code{icc0} and @code{fcc0}.
15248
15249 @item -mdword
15250 @opindex mdword
15251
15252 Change ABI to use double word insns.
15253
15254 @item -mno-dword
15255 @opindex mno-dword
15256
15257 Do not use double word instructions.
15258
15259 @item -mdouble
15260 @opindex mdouble
15261
15262 Use floating-point double instructions.
15263
15264 @item -mno-double
15265 @opindex mno-double
15266
15267 Do not use floating-point double instructions.
15268
15269 @item -mmedia
15270 @opindex mmedia
15271
15272 Use media instructions.
15273
15274 @item -mno-media
15275 @opindex mno-media
15276
15277 Do not use media instructions.
15278
15279 @item -mmuladd
15280 @opindex mmuladd
15281
15282 Use multiply and add/subtract instructions.
15283
15284 @item -mno-muladd
15285 @opindex mno-muladd
15286
15287 Do not use multiply and add/subtract instructions.
15288
15289 @item -mfdpic
15290 @opindex mfdpic
15291
15292 Select the FDPIC ABI, which uses function descriptors to represent
15293 pointers to functions. Without any PIC/PIE-related options, it
15294 implies @option{-fPIE}. With @option{-fpic} or @option{-fpie}, it
15295 assumes GOT entries and small data are within a 12-bit range from the
15296 GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets
15297 are computed with 32 bits.
15298 With a @samp{bfin-elf} target, this option implies @option{-msim}.
15299
15300 @item -minline-plt
15301 @opindex minline-plt
15302
15303 Enable inlining of PLT entries in function calls to functions that are
15304 not known to bind locally. It has no effect without @option{-mfdpic}.
15305 It's enabled by default if optimizing for speed and compiling for
15306 shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an
15307 optimization option such as @option{-O3} or above is present in the
15308 command line.
15309
15310 @item -mTLS
15311 @opindex mTLS
15312
15313 Assume a large TLS segment when generating thread-local code.
15314
15315 @item -mtls
15316 @opindex mtls
15317
15318 Do not assume a large TLS segment when generating thread-local code.
15319
15320 @item -mgprel-ro
15321 @opindex mgprel-ro
15322
15323 Enable the use of @code{GPREL} relocations in the FDPIC ABI for data
15324 that is known to be in read-only sections. It's enabled by default,
15325 except for @option{-fpic} or @option{-fpie}: even though it may help
15326 make the global offset table smaller, it trades 1 instruction for 4.
15327 With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4,
15328 one of which may be shared by multiple symbols, and it avoids the need
15329 for a GOT entry for the referenced symbol, so it's more likely to be a
15330 win. If it is not, @option{-mno-gprel-ro} can be used to disable it.
15331
15332 @item -multilib-library-pic
15333 @opindex multilib-library-pic
15334
15335 Link with the (library, not FD) pic libraries. It's implied by
15336 @option{-mlibrary-pic}, as well as by @option{-fPIC} and
15337 @option{-fpic} without @option{-mfdpic}. You should never have to use
15338 it explicitly.
15339
15340 @item -mlinked-fp
15341 @opindex mlinked-fp
15342
15343 Follow the EABI requirement of always creating a frame pointer whenever
15344 a stack frame is allocated. This option is enabled by default and can
15345 be disabled with @option{-mno-linked-fp}.
15346
15347 @item -mlong-calls
15348 @opindex mlong-calls
15349
15350 Use indirect addressing to call functions outside the current
15351 compilation unit. This allows the functions to be placed anywhere
15352 within the 32-bit address space.
15353
15354 @item -malign-labels
15355 @opindex malign-labels
15356
15357 Try to align labels to an 8-byte boundary by inserting NOPs into the
15358 previous packet. This option only has an effect when VLIW packing
15359 is enabled. It doesn't create new packets; it merely adds NOPs to
15360 existing ones.
15361
15362 @item -mlibrary-pic
15363 @opindex mlibrary-pic
15364
15365 Generate position-independent EABI code.
15366
15367 @item -macc-4
15368 @opindex macc-4
15369
15370 Use only the first four media accumulator registers.
15371
15372 @item -macc-8
15373 @opindex macc-8
15374
15375 Use all eight media accumulator registers.
15376
15377 @item -mpack
15378 @opindex mpack
15379
15380 Pack VLIW instructions.
15381
15382 @item -mno-pack
15383 @opindex mno-pack
15384
15385 Do not pack VLIW instructions.
15386
15387 @item -mno-eflags
15388 @opindex mno-eflags
15389
15390 Do not mark ABI switches in e_flags.
15391
15392 @item -mcond-move
15393 @opindex mcond-move
15394
15395 Enable the use of conditional-move instructions (default).
15396
15397 This switch is mainly for debugging the compiler and will likely be removed
15398 in a future version.
15399
15400 @item -mno-cond-move
15401 @opindex mno-cond-move
15402
15403 Disable the use of conditional-move instructions.
15404
15405 This switch is mainly for debugging the compiler and will likely be removed
15406 in a future version.
15407
15408 @item -mscc
15409 @opindex mscc
15410
15411 Enable the use of conditional set instructions (default).
15412
15413 This switch is mainly for debugging the compiler and will likely be removed
15414 in a future version.
15415
15416 @item -mno-scc
15417 @opindex mno-scc
15418
15419 Disable the use of conditional set instructions.
15420
15421 This switch is mainly for debugging the compiler and will likely be removed
15422 in a future version.
15423
15424 @item -mcond-exec
15425 @opindex mcond-exec
15426
15427 Enable the use of conditional execution (default).
15428
15429 This switch is mainly for debugging the compiler and will likely be removed
15430 in a future version.
15431
15432 @item -mno-cond-exec
15433 @opindex mno-cond-exec
15434
15435 Disable the use of conditional execution.
15436
15437 This switch is mainly for debugging the compiler and will likely be removed
15438 in a future version.
15439
15440 @item -mvliw-branch
15441 @opindex mvliw-branch
15442
15443 Run a pass to pack branches into VLIW instructions (default).
15444
15445 This switch is mainly for debugging the compiler and will likely be removed
15446 in a future version.
15447
15448 @item -mno-vliw-branch
15449 @opindex mno-vliw-branch
15450
15451 Do not run a pass to pack branches into VLIW instructions.
15452
15453 This switch is mainly for debugging the compiler and will likely be removed
15454 in a future version.
15455
15456 @item -mmulti-cond-exec
15457 @opindex mmulti-cond-exec
15458
15459 Enable optimization of @code{&&} and @code{||} in conditional execution
15460 (default).
15461
15462 This switch is mainly for debugging the compiler and will likely be removed
15463 in a future version.
15464
15465 @item -mno-multi-cond-exec
15466 @opindex mno-multi-cond-exec
15467
15468 Disable optimization of @code{&&} and @code{||} in conditional execution.
15469
15470 This switch is mainly for debugging the compiler and will likely be removed
15471 in a future version.
15472
15473 @item -mnested-cond-exec
15474 @opindex mnested-cond-exec
15475
15476 Enable nested conditional execution optimizations (default).
15477
15478 This switch is mainly for debugging the compiler and will likely be removed
15479 in a future version.
15480
15481 @item -mno-nested-cond-exec
15482 @opindex mno-nested-cond-exec
15483
15484 Disable nested conditional execution optimizations.
15485
15486 This switch is mainly for debugging the compiler and will likely be removed
15487 in a future version.
15488
15489 @item -moptimize-membar
15490 @opindex moptimize-membar
15491
15492 This switch removes redundant @code{membar} instructions from the
15493 compiler-generated code. It is enabled by default.
15494
15495 @item -mno-optimize-membar
15496 @opindex mno-optimize-membar
15497
15498 This switch disables the automatic removal of redundant @code{membar}
15499 instructions from the generated code.
15500
15501 @item -mtomcat-stats
15502 @opindex mtomcat-stats
15503
15504 Cause gas to print out tomcat statistics.
15505
15506 @item -mcpu=@var{cpu}
15507 @opindex mcpu
15508
15509 Select the processor type for which to generate code. Possible values are
15510 @samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450},
15511 @samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}.
15512
15513 @end table
15514
15515 @node GNU/Linux Options
15516 @subsection GNU/Linux Options
15517
15518 These @samp{-m} options are defined for GNU/Linux targets:
15519
15520 @table @gcctabopt
15521 @item -mglibc
15522 @opindex mglibc
15523 Use the GNU C library. This is the default except
15524 on @samp{*-*-linux-*uclibc*}, @samp{*-*-linux-*musl*} and
15525 @samp{*-*-linux-*android*} targets.
15526
15527 @item -muclibc
15528 @opindex muclibc
15529 Use uClibc C library. This is the default on
15530 @samp{*-*-linux-*uclibc*} targets.
15531
15532 @item -mmusl
15533 @opindex mmusl
15534 Use the musl C library. This is the default on
15535 @samp{*-*-linux-*musl*} targets.
15536
15537 @item -mbionic
15538 @opindex mbionic
15539 Use Bionic C library. This is the default on
15540 @samp{*-*-linux-*android*} targets.
15541
15542 @item -mandroid
15543 @opindex mandroid
15544 Compile code compatible with Android platform. This is the default on
15545 @samp{*-*-linux-*android*} targets.
15546
15547 When compiling, this option enables @option{-mbionic}, @option{-fPIC},
15548 @option{-fno-exceptions} and @option{-fno-rtti} by default. When linking,
15549 this option makes the GCC driver pass Android-specific options to the linker.
15550 Finally, this option causes the preprocessor macro @code{__ANDROID__}
15551 to be defined.
15552
15553 @item -tno-android-cc
15554 @opindex tno-android-cc
15555 Disable compilation effects of @option{-mandroid}, i.e., do not enable
15556 @option{-mbionic}, @option{-fPIC}, @option{-fno-exceptions} and
15557 @option{-fno-rtti} by default.
15558
15559 @item -tno-android-ld
15560 @opindex tno-android-ld
15561 Disable linking effects of @option{-mandroid}, i.e., pass standard Linux
15562 linking options to the linker.
15563
15564 @end table
15565
15566 @node H8/300 Options
15567 @subsection H8/300 Options
15568
15569 These @samp{-m} options are defined for the H8/300 implementations:
15570
15571 @table @gcctabopt
15572 @item -mrelax
15573 @opindex mrelax
15574 Shorten some address references at link time, when possible; uses the
15575 linker option @option{-relax}. @xref{H8/300,, @code{ld} and the H8/300,
15576 ld, Using ld}, for a fuller description.
15577
15578 @item -mh
15579 @opindex mh
15580 Generate code for the H8/300H@.
15581
15582 @item -ms
15583 @opindex ms
15584 Generate code for the H8S@.
15585
15586 @item -mn
15587 @opindex mn
15588 Generate code for the H8S and H8/300H in the normal mode. This switch
15589 must be used either with @option{-mh} or @option{-ms}.
15590
15591 @item -ms2600
15592 @opindex ms2600
15593 Generate code for the H8S/2600. This switch must be used with @option{-ms}.
15594
15595 @item -mexr
15596 @opindex mexr
15597 Extended registers are stored on stack before execution of function
15598 with monitor attribute. Default option is @option{-mexr}.
15599 This option is valid only for H8S targets.
15600
15601 @item -mno-exr
15602 @opindex mno-exr
15603 Extended registers are not stored on stack before execution of function
15604 with monitor attribute. Default option is @option{-mno-exr}.
15605 This option is valid only for H8S targets.
15606
15607 @item -mint32
15608 @opindex mint32
15609 Make @code{int} data 32 bits by default.
15610
15611 @item -malign-300
15612 @opindex malign-300
15613 On the H8/300H and H8S, use the same alignment rules as for the H8/300.
15614 The default for the H8/300H and H8S is to align longs and floats on
15615 4-byte boundaries.
15616 @option{-malign-300} causes them to be aligned on 2-byte boundaries.
15617 This option has no effect on the H8/300.
15618 @end table
15619
15620 @node HPPA Options
15621 @subsection HPPA Options
15622 @cindex HPPA Options
15623
15624 These @samp{-m} options are defined for the HPPA family of computers:
15625
15626 @table @gcctabopt
15627 @item -march=@var{architecture-type}
15628 @opindex march
15629 Generate code for the specified architecture. The choices for
15630 @var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
15631 1.1, and @samp{2.0} for PA 2.0 processors. Refer to
15632 @file{/usr/lib/sched.models} on an HP-UX system to determine the proper
15633 architecture option for your machine. Code compiled for lower numbered
15634 architectures runs on higher numbered architectures, but not the
15635 other way around.
15636
15637 @item -mpa-risc-1-0
15638 @itemx -mpa-risc-1-1
15639 @itemx -mpa-risc-2-0
15640 @opindex mpa-risc-1-0
15641 @opindex mpa-risc-1-1
15642 @opindex mpa-risc-2-0
15643 Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively.
15644
15645 @item -mjump-in-delay
15646 @opindex mjump-in-delay
15647 This option is ignored and provided for compatibility purposes only.
15648
15649 @item -mdisable-fpregs
15650 @opindex mdisable-fpregs
15651 Prevent floating-point registers from being used in any manner. This is
15652 necessary for compiling kernels that perform lazy context switching of
15653 floating-point registers. If you use this option and attempt to perform
15654 floating-point operations, the compiler aborts.
15655
15656 @item -mdisable-indexing
15657 @opindex mdisable-indexing
15658 Prevent the compiler from using indexing address modes. This avoids some
15659 rather obscure problems when compiling MIG generated code under MACH@.
15660
15661 @item -mno-space-regs
15662 @opindex mno-space-regs
15663 Generate code that assumes the target has no space registers. This allows
15664 GCC to generate faster indirect calls and use unscaled index address modes.
15665
15666 Such code is suitable for level 0 PA systems and kernels.
15667
15668 @item -mfast-indirect-calls
15669 @opindex mfast-indirect-calls
15670 Generate code that assumes calls never cross space boundaries. This
15671 allows GCC to emit code that performs faster indirect calls.
15672
15673 This option does not work in the presence of shared libraries or nested
15674 functions.
15675
15676 @item -mfixed-range=@var{register-range}
15677 @opindex mfixed-range
15678 Generate code treating the given register range as fixed registers.
15679 A fixed register is one that the register allocator cannot use. This is
15680 useful when compiling kernel code. A register range is specified as
15681 two registers separated by a dash. Multiple register ranges can be
15682 specified separated by a comma.
15683
15684 @item -mlong-load-store
15685 @opindex mlong-load-store
15686 Generate 3-instruction load and store sequences as sometimes required by
15687 the HP-UX 10 linker. This is equivalent to the @samp{+k} option to
15688 the HP compilers.
15689
15690 @item -mportable-runtime
15691 @opindex mportable-runtime
15692 Use the portable calling conventions proposed by HP for ELF systems.
15693
15694 @item -mgas
15695 @opindex mgas
15696 Enable the use of assembler directives only GAS understands.
15697
15698 @item -mschedule=@var{cpu-type}
15699 @opindex mschedule
15700 Schedule code according to the constraints for the machine type
15701 @var{cpu-type}. The choices for @var{cpu-type} are @samp{700}
15702 @samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}. Refer
15703 to @file{/usr/lib/sched.models} on an HP-UX system to determine the
15704 proper scheduling option for your machine. The default scheduling is
15705 @samp{8000}.
15706
15707 @item -mlinker-opt
15708 @opindex mlinker-opt
15709 Enable the optimization pass in the HP-UX linker. Note this makes symbolic
15710 debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9
15711 linkers in which they give bogus error messages when linking some programs.
15712
15713 @item -msoft-float
15714 @opindex msoft-float
15715 Generate output containing library calls for floating point.
15716 @strong{Warning:} the requisite libraries are not available for all HPPA
15717 targets. Normally the facilities of the machine's usual C compiler are
15718 used, but this cannot be done directly in cross-compilation. You must make
15719 your own arrangements to provide suitable library functions for
15720 cross-compilation.
15721
15722 @option{-msoft-float} changes the calling convention in the output file;
15723 therefore, it is only useful if you compile @emph{all} of a program with
15724 this option. In particular, you need to compile @file{libgcc.a}, the
15725 library that comes with GCC, with @option{-msoft-float} in order for
15726 this to work.
15727
15728 @item -msio
15729 @opindex msio
15730 Generate the predefine, @code{_SIO}, for server IO@. The default is
15731 @option{-mwsio}. This generates the predefines, @code{__hp9000s700},
15732 @code{__hp9000s700__} and @code{_WSIO}, for workstation IO@. These
15733 options are available under HP-UX and HI-UX@.
15734
15735 @item -mgnu-ld
15736 @opindex mgnu-ld
15737 Use options specific to GNU @command{ld}.
15738 This passes @option{-shared} to @command{ld} when
15739 building a shared library. It is the default when GCC is configured,
15740 explicitly or implicitly, with the GNU linker. This option does not
15741 affect which @command{ld} is called; it only changes what parameters
15742 are passed to that @command{ld}.
15743 The @command{ld} that is called is determined by the
15744 @option{--with-ld} configure option, GCC's program search path, and
15745 finally by the user's @env{PATH}. The linker used by GCC can be printed
15746 using @samp{which `gcc -print-prog-name=ld`}. This option is only available
15747 on the 64-bit HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
15748
15749 @item -mhp-ld
15750 @opindex mhp-ld
15751 Use options specific to HP @command{ld}.
15752 This passes @option{-b} to @command{ld} when building
15753 a shared library and passes @option{+Accept TypeMismatch} to @command{ld} on all
15754 links. It is the default when GCC is configured, explicitly or
15755 implicitly, with the HP linker. This option does not affect
15756 which @command{ld} is called; it only changes what parameters are passed to that
15757 @command{ld}.
15758 The @command{ld} that is called is determined by the @option{--with-ld}
15759 configure option, GCC's program search path, and finally by the user's
15760 @env{PATH}. The linker used by GCC can be printed using @samp{which
15761 `gcc -print-prog-name=ld`}. This option is only available on the 64-bit
15762 HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
15763
15764 @item -mlong-calls
15765 @opindex mno-long-calls
15766 Generate code that uses long call sequences. This ensures that a call
15767 is always able to reach linker generated stubs. The default is to generate
15768 long calls only when the distance from the call site to the beginning
15769 of the function or translation unit, as the case may be, exceeds a
15770 predefined limit set by the branch type being used. The limits for
15771 normal calls are 7,600,000 and 240,000 bytes, respectively for the
15772 PA 2.0 and PA 1.X architectures. Sibcalls are always limited at
15773 240,000 bytes.
15774
15775 Distances are measured from the beginning of functions when using the
15776 @option{-ffunction-sections} option, or when using the @option{-mgas}
15777 and @option{-mno-portable-runtime} options together under HP-UX with
15778 the SOM linker.
15779
15780 It is normally not desirable to use this option as it degrades
15781 performance. However, it may be useful in large applications,
15782 particularly when partial linking is used to build the application.
15783
15784 The types of long calls used depends on the capabilities of the
15785 assembler and linker, and the type of code being generated. The
15786 impact on systems that support long absolute calls, and long pic
15787 symbol-difference or pc-relative calls should be relatively small.
15788 However, an indirect call is used on 32-bit ELF systems in pic code
15789 and it is quite long.
15790
15791 @item -munix=@var{unix-std}
15792 @opindex march
15793 Generate compiler predefines and select a startfile for the specified
15794 UNIX standard. The choices for @var{unix-std} are @samp{93}, @samp{95}
15795 and @samp{98}. @samp{93} is supported on all HP-UX versions. @samp{95}
15796 is available on HP-UX 10.10 and later. @samp{98} is available on HP-UX
15797 11.11 and later. The default values are @samp{93} for HP-UX 10.00,
15798 @samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11
15799 and later.
15800
15801 @option{-munix=93} provides the same predefines as GCC 3.3 and 3.4.
15802 @option{-munix=95} provides additional predefines for @code{XOPEN_UNIX}
15803 and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}.
15804 @option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX},
15805 @code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and
15806 @code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}.
15807
15808 It is @emph{important} to note that this option changes the interfaces
15809 for various library routines. It also affects the operational behavior
15810 of the C library. Thus, @emph{extreme} care is needed in using this
15811 option.
15812
15813 Library code that is intended to operate with more than one UNIX
15814 standard must test, set and restore the variable @code{__xpg4_extended_mask}
15815 as appropriate. Most GNU software doesn't provide this capability.
15816
15817 @item -nolibdld
15818 @opindex nolibdld
15819 Suppress the generation of link options to search libdld.sl when the
15820 @option{-static} option is specified on HP-UX 10 and later.
15821
15822 @item -static
15823 @opindex static
15824 The HP-UX implementation of setlocale in libc has a dependency on
15825 libdld.sl. There isn't an archive version of libdld.sl. Thus,
15826 when the @option{-static} option is specified, special link options
15827 are needed to resolve this dependency.
15828
15829 On HP-UX 10 and later, the GCC driver adds the necessary options to
15830 link with libdld.sl when the @option{-static} option is specified.
15831 This causes the resulting binary to be dynamic. On the 64-bit port,
15832 the linkers generate dynamic binaries by default in any case. The
15833 @option{-nolibdld} option can be used to prevent the GCC driver from
15834 adding these link options.
15835
15836 @item -threads
15837 @opindex threads
15838 Add support for multithreading with the @dfn{dce thread} library
15839 under HP-UX@. This option sets flags for both the preprocessor and
15840 linker.
15841 @end table
15842
15843 @node IA-64 Options
15844 @subsection IA-64 Options
15845 @cindex IA-64 Options
15846
15847 These are the @samp{-m} options defined for the Intel IA-64 architecture.
15848
15849 @table @gcctabopt
15850 @item -mbig-endian
15851 @opindex mbig-endian
15852 Generate code for a big-endian target. This is the default for HP-UX@.
15853
15854 @item -mlittle-endian
15855 @opindex mlittle-endian
15856 Generate code for a little-endian target. This is the default for AIX5
15857 and GNU/Linux.
15858
15859 @item -mgnu-as
15860 @itemx -mno-gnu-as
15861 @opindex mgnu-as
15862 @opindex mno-gnu-as
15863 Generate (or don't) code for the GNU assembler. This is the default.
15864 @c Also, this is the default if the configure option @option{--with-gnu-as}
15865 @c is used.
15866
15867 @item -mgnu-ld
15868 @itemx -mno-gnu-ld
15869 @opindex mgnu-ld
15870 @opindex mno-gnu-ld
15871 Generate (or don't) code for the GNU linker. This is the default.
15872 @c Also, this is the default if the configure option @option{--with-gnu-ld}
15873 @c is used.
15874
15875 @item -mno-pic
15876 @opindex mno-pic
15877 Generate code that does not use a global pointer register. The result
15878 is not position independent code, and violates the IA-64 ABI@.
15879
15880 @item -mvolatile-asm-stop
15881 @itemx -mno-volatile-asm-stop
15882 @opindex mvolatile-asm-stop
15883 @opindex mno-volatile-asm-stop
15884 Generate (or don't) a stop bit immediately before and after volatile asm
15885 statements.
15886
15887 @item -mregister-names
15888 @itemx -mno-register-names
15889 @opindex mregister-names
15890 @opindex mno-register-names
15891 Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for
15892 the stacked registers. This may make assembler output more readable.
15893
15894 @item -mno-sdata
15895 @itemx -msdata
15896 @opindex mno-sdata
15897 @opindex msdata
15898 Disable (or enable) optimizations that use the small data section. This may
15899 be useful for working around optimizer bugs.
15900
15901 @item -mconstant-gp
15902 @opindex mconstant-gp
15903 Generate code that uses a single constant global pointer value. This is
15904 useful when compiling kernel code.
15905
15906 @item -mauto-pic
15907 @opindex mauto-pic
15908 Generate code that is self-relocatable. This implies @option{-mconstant-gp}.
15909 This is useful when compiling firmware code.
15910
15911 @item -minline-float-divide-min-latency
15912 @opindex minline-float-divide-min-latency
15913 Generate code for inline divides of floating-point values
15914 using the minimum latency algorithm.
15915
15916 @item -minline-float-divide-max-throughput
15917 @opindex minline-float-divide-max-throughput
15918 Generate code for inline divides of floating-point values
15919 using the maximum throughput algorithm.
15920
15921 @item -mno-inline-float-divide
15922 @opindex mno-inline-float-divide
15923 Do not generate inline code for divides of floating-point values.
15924
15925 @item -minline-int-divide-min-latency
15926 @opindex minline-int-divide-min-latency
15927 Generate code for inline divides of integer values
15928 using the minimum latency algorithm.
15929
15930 @item -minline-int-divide-max-throughput
15931 @opindex minline-int-divide-max-throughput
15932 Generate code for inline divides of integer values
15933 using the maximum throughput algorithm.
15934
15935 @item -mno-inline-int-divide
15936 @opindex mno-inline-int-divide
15937 Do not generate inline code for divides of integer values.
15938
15939 @item -minline-sqrt-min-latency
15940 @opindex minline-sqrt-min-latency
15941 Generate code for inline square roots
15942 using the minimum latency algorithm.
15943
15944 @item -minline-sqrt-max-throughput
15945 @opindex minline-sqrt-max-throughput
15946 Generate code for inline square roots
15947 using the maximum throughput algorithm.
15948
15949 @item -mno-inline-sqrt
15950 @opindex mno-inline-sqrt
15951 Do not generate inline code for @code{sqrt}.
15952
15953 @item -mfused-madd
15954 @itemx -mno-fused-madd
15955 @opindex mfused-madd
15956 @opindex mno-fused-madd
15957 Do (don't) generate code that uses the fused multiply/add or multiply/subtract
15958 instructions. The default is to use these instructions.
15959
15960 @item -mno-dwarf2-asm
15961 @itemx -mdwarf2-asm
15962 @opindex mno-dwarf2-asm
15963 @opindex mdwarf2-asm
15964 Don't (or do) generate assembler code for the DWARF 2 line number debugging
15965 info. This may be useful when not using the GNU assembler.
15966
15967 @item -mearly-stop-bits
15968 @itemx -mno-early-stop-bits
15969 @opindex mearly-stop-bits
15970 @opindex mno-early-stop-bits
15971 Allow stop bits to be placed earlier than immediately preceding the
15972 instruction that triggered the stop bit. This can improve instruction
15973 scheduling, but does not always do so.
15974
15975 @item -mfixed-range=@var{register-range}
15976 @opindex mfixed-range
15977 Generate code treating the given register range as fixed registers.
15978 A fixed register is one that the register allocator cannot use. This is
15979 useful when compiling kernel code. A register range is specified as
15980 two registers separated by a dash. Multiple register ranges can be
15981 specified separated by a comma.
15982
15983 @item -mtls-size=@var{tls-size}
15984 @opindex mtls-size
15985 Specify bit size of immediate TLS offsets. Valid values are 14, 22, and
15986 64.
15987
15988 @item -mtune=@var{cpu-type}
15989 @opindex mtune
15990 Tune the instruction scheduling for a particular CPU, Valid values are
15991 @samp{itanium}, @samp{itanium1}, @samp{merced}, @samp{itanium2},
15992 and @samp{mckinley}.
15993
15994 @item -milp32
15995 @itemx -mlp64
15996 @opindex milp32
15997 @opindex mlp64
15998 Generate code for a 32-bit or 64-bit environment.
15999 The 32-bit environment sets int, long and pointer to 32 bits.
16000 The 64-bit environment sets int to 32 bits and long and pointer
16001 to 64 bits. These are HP-UX specific flags.
16002
16003 @item -mno-sched-br-data-spec
16004 @itemx -msched-br-data-spec
16005 @opindex mno-sched-br-data-spec
16006 @opindex msched-br-data-spec
16007 (Dis/En)able data speculative scheduling before reload.
16008 This results in generation of @code{ld.a} instructions and
16009 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
16010 The default is 'disable'.
16011
16012 @item -msched-ar-data-spec
16013 @itemx -mno-sched-ar-data-spec
16014 @opindex msched-ar-data-spec
16015 @opindex mno-sched-ar-data-spec
16016 (En/Dis)able data speculative scheduling after reload.
16017 This results in generation of @code{ld.a} instructions and
16018 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
16019 The default is 'enable'.
16020
16021 @item -mno-sched-control-spec
16022 @itemx -msched-control-spec
16023 @opindex mno-sched-control-spec
16024 @opindex msched-control-spec
16025 (Dis/En)able control speculative scheduling. This feature is
16026 available only during region scheduling (i.e.@: before reload).
16027 This results in generation of the @code{ld.s} instructions and
16028 the corresponding check instructions @code{chk.s}.
16029 The default is 'disable'.
16030
16031 @item -msched-br-in-data-spec
16032 @itemx -mno-sched-br-in-data-spec
16033 @opindex msched-br-in-data-spec
16034 @opindex mno-sched-br-in-data-spec
16035 (En/Dis)able speculative scheduling of the instructions that
16036 are dependent on the data speculative loads before reload.
16037 This is effective only with @option{-msched-br-data-spec} enabled.
16038 The default is 'enable'.
16039
16040 @item -msched-ar-in-data-spec
16041 @itemx -mno-sched-ar-in-data-spec
16042 @opindex msched-ar-in-data-spec
16043 @opindex mno-sched-ar-in-data-spec
16044 (En/Dis)able speculative scheduling of the instructions that
16045 are dependent on the data speculative loads after reload.
16046 This is effective only with @option{-msched-ar-data-spec} enabled.
16047 The default is 'enable'.
16048
16049 @item -msched-in-control-spec
16050 @itemx -mno-sched-in-control-spec
16051 @opindex msched-in-control-spec
16052 @opindex mno-sched-in-control-spec
16053 (En/Dis)able speculative scheduling of the instructions that
16054 are dependent on the control speculative loads.
16055 This is effective only with @option{-msched-control-spec} enabled.
16056 The default is 'enable'.
16057
16058 @item -mno-sched-prefer-non-data-spec-insns
16059 @itemx -msched-prefer-non-data-spec-insns
16060 @opindex mno-sched-prefer-non-data-spec-insns
16061 @opindex msched-prefer-non-data-spec-insns
16062 If enabled, data-speculative instructions are chosen for schedule
16063 only if there are no other choices at the moment. This makes
16064 the use of the data speculation much more conservative.
16065 The default is 'disable'.
16066
16067 @item -mno-sched-prefer-non-control-spec-insns
16068 @itemx -msched-prefer-non-control-spec-insns
16069 @opindex mno-sched-prefer-non-control-spec-insns
16070 @opindex msched-prefer-non-control-spec-insns
16071 If enabled, control-speculative instructions are chosen for schedule
16072 only if there are no other choices at the moment. This makes
16073 the use of the control speculation much more conservative.
16074 The default is 'disable'.
16075
16076 @item -mno-sched-count-spec-in-critical-path
16077 @itemx -msched-count-spec-in-critical-path
16078 @opindex mno-sched-count-spec-in-critical-path
16079 @opindex msched-count-spec-in-critical-path
16080 If enabled, speculative dependencies are considered during
16081 computation of the instructions priorities. This makes the use of the
16082 speculation a bit more conservative.
16083 The default is 'disable'.
16084
16085 @item -msched-spec-ldc
16086 @opindex msched-spec-ldc
16087 Use a simple data speculation check. This option is on by default.
16088
16089 @item -msched-control-spec-ldc
16090 @opindex msched-spec-ldc
16091 Use a simple check for control speculation. This option is on by default.
16092
16093 @item -msched-stop-bits-after-every-cycle
16094 @opindex msched-stop-bits-after-every-cycle
16095 Place a stop bit after every cycle when scheduling. This option is on
16096 by default.
16097
16098 @item -msched-fp-mem-deps-zero-cost
16099 @opindex msched-fp-mem-deps-zero-cost
16100 Assume that floating-point stores and loads are not likely to cause a conflict
16101 when placed into the same instruction group. This option is disabled by
16102 default.
16103
16104 @item -msel-sched-dont-check-control-spec
16105 @opindex msel-sched-dont-check-control-spec
16106 Generate checks for control speculation in selective scheduling.
16107 This flag is disabled by default.
16108
16109 @item -msched-max-memory-insns=@var{max-insns}
16110 @opindex msched-max-memory-insns
16111 Limit on the number of memory insns per instruction group, giving lower
16112 priority to subsequent memory insns attempting to schedule in the same
16113 instruction group. Frequently useful to prevent cache bank conflicts.
16114 The default value is 1.
16115
16116 @item -msched-max-memory-insns-hard-limit
16117 @opindex msched-max-memory-insns-hard-limit
16118 Makes the limit specified by @option{msched-max-memory-insns} a hard limit,
16119 disallowing more than that number in an instruction group.
16120 Otherwise, the limit is ``soft'', meaning that non-memory operations
16121 are preferred when the limit is reached, but memory operations may still
16122 be scheduled.
16123
16124 @end table
16125
16126 @node LM32 Options
16127 @subsection LM32 Options
16128 @cindex LM32 options
16129
16130 These @option{-m} options are defined for the LatticeMico32 architecture:
16131
16132 @table @gcctabopt
16133 @item -mbarrel-shift-enabled
16134 @opindex mbarrel-shift-enabled
16135 Enable barrel-shift instructions.
16136
16137 @item -mdivide-enabled
16138 @opindex mdivide-enabled
16139 Enable divide and modulus instructions.
16140
16141 @item -mmultiply-enabled
16142 @opindex multiply-enabled
16143 Enable multiply instructions.
16144
16145 @item -msign-extend-enabled
16146 @opindex msign-extend-enabled
16147 Enable sign extend instructions.
16148
16149 @item -muser-enabled
16150 @opindex muser-enabled
16151 Enable user-defined instructions.
16152
16153 @end table
16154
16155 @node M32C Options
16156 @subsection M32C Options
16157 @cindex M32C options
16158
16159 @table @gcctabopt
16160 @item -mcpu=@var{name}
16161 @opindex mcpu=
16162 Select the CPU for which code is generated. @var{name} may be one of
16163 @samp{r8c} for the R8C/Tiny series, @samp{m16c} for the M16C (up to
16164 /60) series, @samp{m32cm} for the M16C/80 series, or @samp{m32c} for
16165 the M32C/80 series.
16166
16167 @item -msim
16168 @opindex msim
16169 Specifies that the program will be run on the simulator. This causes
16170 an alternate runtime library to be linked in which supports, for
16171 example, file I/O@. You must not use this option when generating
16172 programs that will run on real hardware; you must provide your own
16173 runtime library for whatever I/O functions are needed.
16174
16175 @item -memregs=@var{number}
16176 @opindex memregs=
16177 Specifies the number of memory-based pseudo-registers GCC uses
16178 during code generation. These pseudo-registers are used like real
16179 registers, so there is a tradeoff between GCC's ability to fit the
16180 code into available registers, and the performance penalty of using
16181 memory instead of registers. Note that all modules in a program must
16182 be compiled with the same value for this option. Because of that, you
16183 must not use this option with GCC's default runtime libraries.
16184
16185 @end table
16186
16187 @node M32R/D Options
16188 @subsection M32R/D Options
16189 @cindex M32R/D options
16190
16191 These @option{-m} options are defined for Renesas M32R/D architectures:
16192
16193 @table @gcctabopt
16194 @item -m32r2
16195 @opindex m32r2
16196 Generate code for the M32R/2@.
16197
16198 @item -m32rx
16199 @opindex m32rx
16200 Generate code for the M32R/X@.
16201
16202 @item -m32r
16203 @opindex m32r
16204 Generate code for the M32R@. This is the default.
16205
16206 @item -mmodel=small
16207 @opindex mmodel=small
16208 Assume all objects live in the lower 16MB of memory (so that their addresses
16209 can be loaded with the @code{ld24} instruction), and assume all subroutines
16210 are reachable with the @code{bl} instruction.
16211 This is the default.
16212
16213 The addressability of a particular object can be set with the
16214 @code{model} attribute.
16215
16216 @item -mmodel=medium
16217 @opindex mmodel=medium
16218 Assume objects may be anywhere in the 32-bit address space (the compiler
16219 generates @code{seth/add3} instructions to load their addresses), and
16220 assume all subroutines are reachable with the @code{bl} instruction.
16221
16222 @item -mmodel=large
16223 @opindex mmodel=large
16224 Assume objects may be anywhere in the 32-bit address space (the compiler
16225 generates @code{seth/add3} instructions to load their addresses), and
16226 assume subroutines may not be reachable with the @code{bl} instruction
16227 (the compiler generates the much slower @code{seth/add3/jl}
16228 instruction sequence).
16229
16230 @item -msdata=none
16231 @opindex msdata=none
16232 Disable use of the small data area. Variables are put into
16233 one of @code{.data}, @code{.bss}, or @code{.rodata} (unless the
16234 @code{section} attribute has been specified).
16235 This is the default.
16236
16237 The small data area consists of sections @code{.sdata} and @code{.sbss}.
16238 Objects may be explicitly put in the small data area with the
16239 @code{section} attribute using one of these sections.
16240
16241 @item -msdata=sdata
16242 @opindex msdata=sdata
16243 Put small global and static data in the small data area, but do not
16244 generate special code to reference them.
16245
16246 @item -msdata=use
16247 @opindex msdata=use
16248 Put small global and static data in the small data area, and generate
16249 special instructions to reference them.
16250
16251 @item -G @var{num}
16252 @opindex G
16253 @cindex smaller data references
16254 Put global and static objects less than or equal to @var{num} bytes
16255 into the small data or BSS sections instead of the normal data or BSS
16256 sections. The default value of @var{num} is 8.
16257 The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
16258 for this option to have any effect.
16259
16260 All modules should be compiled with the same @option{-G @var{num}} value.
16261 Compiling with different values of @var{num} may or may not work; if it
16262 doesn't the linker gives an error message---incorrect code is not
16263 generated.
16264
16265 @item -mdebug
16266 @opindex mdebug
16267 Makes the M32R-specific code in the compiler display some statistics
16268 that might help in debugging programs.
16269
16270 @item -malign-loops
16271 @opindex malign-loops
16272 Align all loops to a 32-byte boundary.
16273
16274 @item -mno-align-loops
16275 @opindex mno-align-loops
16276 Do not enforce a 32-byte alignment for loops. This is the default.
16277
16278 @item -missue-rate=@var{number}
16279 @opindex missue-rate=@var{number}
16280 Issue @var{number} instructions per cycle. @var{number} can only be 1
16281 or 2.
16282
16283 @item -mbranch-cost=@var{number}
16284 @opindex mbranch-cost=@var{number}
16285 @var{number} can only be 1 or 2. If it is 1 then branches are
16286 preferred over conditional code, if it is 2, then the opposite applies.
16287
16288 @item -mflush-trap=@var{number}
16289 @opindex mflush-trap=@var{number}
16290 Specifies the trap number to use to flush the cache. The default is
16291 12. Valid numbers are between 0 and 15 inclusive.
16292
16293 @item -mno-flush-trap
16294 @opindex mno-flush-trap
16295 Specifies that the cache cannot be flushed by using a trap.
16296
16297 @item -mflush-func=@var{name}
16298 @opindex mflush-func=@var{name}
16299 Specifies the name of the operating system function to call to flush
16300 the cache. The default is @samp{_flush_cache}, but a function call
16301 is only used if a trap is not available.
16302
16303 @item -mno-flush-func
16304 @opindex mno-flush-func
16305 Indicates that there is no OS function for flushing the cache.
16306
16307 @end table
16308
16309 @node M680x0 Options
16310 @subsection M680x0 Options
16311 @cindex M680x0 options
16312
16313 These are the @samp{-m} options defined for M680x0 and ColdFire processors.
16314 The default settings depend on which architecture was selected when
16315 the compiler was configured; the defaults for the most common choices
16316 are given below.
16317
16318 @table @gcctabopt
16319 @item -march=@var{arch}
16320 @opindex march
16321 Generate code for a specific M680x0 or ColdFire instruction set
16322 architecture. Permissible values of @var{arch} for M680x0
16323 architectures are: @samp{68000}, @samp{68010}, @samp{68020},
16324 @samp{68030}, @samp{68040}, @samp{68060} and @samp{cpu32}. ColdFire
16325 architectures are selected according to Freescale's ISA classification
16326 and the permissible values are: @samp{isaa}, @samp{isaaplus},
16327 @samp{isab} and @samp{isac}.
16328
16329 GCC defines a macro @code{__mcf@var{arch}__} whenever it is generating
16330 code for a ColdFire target. The @var{arch} in this macro is one of the
16331 @option{-march} arguments given above.
16332
16333 When used together, @option{-march} and @option{-mtune} select code
16334 that runs on a family of similar processors but that is optimized
16335 for a particular microarchitecture.
16336
16337 @item -mcpu=@var{cpu}
16338 @opindex mcpu
16339 Generate code for a specific M680x0 or ColdFire processor.
16340 The M680x0 @var{cpu}s are: @samp{68000}, @samp{68010}, @samp{68020},
16341 @samp{68030}, @samp{68040}, @samp{68060}, @samp{68302}, @samp{68332}
16342 and @samp{cpu32}. The ColdFire @var{cpu}s are given by the table
16343 below, which also classifies the CPUs into families:
16344
16345 @multitable @columnfractions 0.20 0.80
16346 @item @strong{Family} @tab @strong{@samp{-mcpu} arguments}
16347 @item @samp{51} @tab @samp{51} @samp{51ac} @samp{51ag} @samp{51cn} @samp{51em} @samp{51je} @samp{51jf} @samp{51jg} @samp{51jm} @samp{51mm} @samp{51qe} @samp{51qm}
16348 @item @samp{5206} @tab @samp{5202} @samp{5204} @samp{5206}
16349 @item @samp{5206e} @tab @samp{5206e}
16350 @item @samp{5208} @tab @samp{5207} @samp{5208}
16351 @item @samp{5211a} @tab @samp{5210a} @samp{5211a}
16352 @item @samp{5213} @tab @samp{5211} @samp{5212} @samp{5213}
16353 @item @samp{5216} @tab @samp{5214} @samp{5216}
16354 @item @samp{52235} @tab @samp{52230} @samp{52231} @samp{52232} @samp{52233} @samp{52234} @samp{52235}
16355 @item @samp{5225} @tab @samp{5224} @samp{5225}
16356 @item @samp{52259} @tab @samp{52252} @samp{52254} @samp{52255} @samp{52256} @samp{52258} @samp{52259}
16357 @item @samp{5235} @tab @samp{5232} @samp{5233} @samp{5234} @samp{5235} @samp{523x}
16358 @item @samp{5249} @tab @samp{5249}
16359 @item @samp{5250} @tab @samp{5250}
16360 @item @samp{5271} @tab @samp{5270} @samp{5271}
16361 @item @samp{5272} @tab @samp{5272}
16362 @item @samp{5275} @tab @samp{5274} @samp{5275}
16363 @item @samp{5282} @tab @samp{5280} @samp{5281} @samp{5282} @samp{528x}
16364 @item @samp{53017} @tab @samp{53011} @samp{53012} @samp{53013} @samp{53014} @samp{53015} @samp{53016} @samp{53017}
16365 @item @samp{5307} @tab @samp{5307}
16366 @item @samp{5329} @tab @samp{5327} @samp{5328} @samp{5329} @samp{532x}
16367 @item @samp{5373} @tab @samp{5372} @samp{5373} @samp{537x}
16368 @item @samp{5407} @tab @samp{5407}
16369 @item @samp{5475} @tab @samp{5470} @samp{5471} @samp{5472} @samp{5473} @samp{5474} @samp{5475} @samp{547x} @samp{5480} @samp{5481} @samp{5482} @samp{5483} @samp{5484} @samp{5485}
16370 @end multitable
16371
16372 @option{-mcpu=@var{cpu}} overrides @option{-march=@var{arch}} if
16373 @var{arch} is compatible with @var{cpu}. Other combinations of
16374 @option{-mcpu} and @option{-march} are rejected.
16375
16376 GCC defines the macro @code{__mcf_cpu_@var{cpu}} when ColdFire target
16377 @var{cpu} is selected. It also defines @code{__mcf_family_@var{family}},
16378 where the value of @var{family} is given by the table above.
16379
16380 @item -mtune=@var{tune}
16381 @opindex mtune
16382 Tune the code for a particular microarchitecture within the
16383 constraints set by @option{-march} and @option{-mcpu}.
16384 The M680x0 microarchitectures are: @samp{68000}, @samp{68010},
16385 @samp{68020}, @samp{68030}, @samp{68040}, @samp{68060}
16386 and @samp{cpu32}. The ColdFire microarchitectures
16387 are: @samp{cfv1}, @samp{cfv2}, @samp{cfv3}, @samp{cfv4} and @samp{cfv4e}.
16388
16389 You can also use @option{-mtune=68020-40} for code that needs
16390 to run relatively well on 68020, 68030 and 68040 targets.
16391 @option{-mtune=68020-60} is similar but includes 68060 targets
16392 as well. These two options select the same tuning decisions as
16393 @option{-m68020-40} and @option{-m68020-60} respectively.
16394
16395 GCC defines the macros @code{__mc@var{arch}} and @code{__mc@var{arch}__}
16396 when tuning for 680x0 architecture @var{arch}. It also defines
16397 @code{mc@var{arch}} unless either @option{-ansi} or a non-GNU @option{-std}
16398 option is used. If GCC is tuning for a range of architectures,
16399 as selected by @option{-mtune=68020-40} or @option{-mtune=68020-60},
16400 it defines the macros for every architecture in the range.
16401
16402 GCC also defines the macro @code{__m@var{uarch}__} when tuning for
16403 ColdFire microarchitecture @var{uarch}, where @var{uarch} is one
16404 of the arguments given above.
16405
16406 @item -m68000
16407 @itemx -mc68000
16408 @opindex m68000
16409 @opindex mc68000
16410 Generate output for a 68000. This is the default
16411 when the compiler is configured for 68000-based systems.
16412 It is equivalent to @option{-march=68000}.
16413
16414 Use this option for microcontrollers with a 68000 or EC000 core,
16415 including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
16416
16417 @item -m68010
16418 @opindex m68010
16419 Generate output for a 68010. This is the default
16420 when the compiler is configured for 68010-based systems.
16421 It is equivalent to @option{-march=68010}.
16422
16423 @item -m68020
16424 @itemx -mc68020
16425 @opindex m68020
16426 @opindex mc68020
16427 Generate output for a 68020. This is the default
16428 when the compiler is configured for 68020-based systems.
16429 It is equivalent to @option{-march=68020}.
16430
16431 @item -m68030
16432 @opindex m68030
16433 Generate output for a 68030. This is the default when the compiler is
16434 configured for 68030-based systems. It is equivalent to
16435 @option{-march=68030}.
16436
16437 @item -m68040
16438 @opindex m68040
16439 Generate output for a 68040. This is the default when the compiler is
16440 configured for 68040-based systems. It is equivalent to
16441 @option{-march=68040}.
16442
16443 This option inhibits the use of 68881/68882 instructions that have to be
16444 emulated by software on the 68040. Use this option if your 68040 does not
16445 have code to emulate those instructions.
16446
16447 @item -m68060
16448 @opindex m68060
16449 Generate output for a 68060. This is the default when the compiler is
16450 configured for 68060-based systems. It is equivalent to
16451 @option{-march=68060}.
16452
16453 This option inhibits the use of 68020 and 68881/68882 instructions that
16454 have to be emulated by software on the 68060. Use this option if your 68060
16455 does not have code to emulate those instructions.
16456
16457 @item -mcpu32
16458 @opindex mcpu32
16459 Generate output for a CPU32. This is the default
16460 when the compiler is configured for CPU32-based systems.
16461 It is equivalent to @option{-march=cpu32}.
16462
16463 Use this option for microcontrollers with a
16464 CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
16465 68336, 68340, 68341, 68349 and 68360.
16466
16467 @item -m5200
16468 @opindex m5200
16469 Generate output for a 520X ColdFire CPU@. This is the default
16470 when the compiler is configured for 520X-based systems.
16471 It is equivalent to @option{-mcpu=5206}, and is now deprecated
16472 in favor of that option.
16473
16474 Use this option for microcontroller with a 5200 core, including
16475 the MCF5202, MCF5203, MCF5204 and MCF5206.
16476
16477 @item -m5206e
16478 @opindex m5206e
16479 Generate output for a 5206e ColdFire CPU@. The option is now
16480 deprecated in favor of the equivalent @option{-mcpu=5206e}.
16481
16482 @item -m528x
16483 @opindex m528x
16484 Generate output for a member of the ColdFire 528X family.
16485 The option is now deprecated in favor of the equivalent
16486 @option{-mcpu=528x}.
16487
16488 @item -m5307
16489 @opindex m5307
16490 Generate output for a ColdFire 5307 CPU@. The option is now deprecated
16491 in favor of the equivalent @option{-mcpu=5307}.
16492
16493 @item -m5407
16494 @opindex m5407
16495 Generate output for a ColdFire 5407 CPU@. The option is now deprecated
16496 in favor of the equivalent @option{-mcpu=5407}.
16497
16498 @item -mcfv4e
16499 @opindex mcfv4e
16500 Generate output for a ColdFire V4e family CPU (e.g.@: 547x/548x).
16501 This includes use of hardware floating-point instructions.
16502 The option is equivalent to @option{-mcpu=547x}, and is now
16503 deprecated in favor of that option.
16504
16505 @item -m68020-40
16506 @opindex m68020-40
16507 Generate output for a 68040, without using any of the new instructions.
16508 This results in code that can run relatively efficiently on either a
16509 68020/68881 or a 68030 or a 68040. The generated code does use the
16510 68881 instructions that are emulated on the 68040.
16511
16512 The option is equivalent to @option{-march=68020} @option{-mtune=68020-40}.
16513
16514 @item -m68020-60
16515 @opindex m68020-60
16516 Generate output for a 68060, without using any of the new instructions.
16517 This results in code that can run relatively efficiently on either a
16518 68020/68881 or a 68030 or a 68040. The generated code does use the
16519 68881 instructions that are emulated on the 68060.
16520
16521 The option is equivalent to @option{-march=68020} @option{-mtune=68020-60}.
16522
16523 @item -mhard-float
16524 @itemx -m68881
16525 @opindex mhard-float
16526 @opindex m68881
16527 Generate floating-point instructions. This is the default for 68020
16528 and above, and for ColdFire devices that have an FPU@. It defines the
16529 macro @code{__HAVE_68881__} on M680x0 targets and @code{__mcffpu__}
16530 on ColdFire targets.
16531
16532 @item -msoft-float
16533 @opindex msoft-float
16534 Do not generate floating-point instructions; use library calls instead.
16535 This is the default for 68000, 68010, and 68832 targets. It is also
16536 the default for ColdFire devices that have no FPU.
16537
16538 @item -mdiv
16539 @itemx -mno-div
16540 @opindex mdiv
16541 @opindex mno-div
16542 Generate (do not generate) ColdFire hardware divide and remainder
16543 instructions. If @option{-march} is used without @option{-mcpu},
16544 the default is ``on'' for ColdFire architectures and ``off'' for M680x0
16545 architectures. Otherwise, the default is taken from the target CPU
16546 (either the default CPU, or the one specified by @option{-mcpu}). For
16547 example, the default is ``off'' for @option{-mcpu=5206} and ``on'' for
16548 @option{-mcpu=5206e}.
16549
16550 GCC defines the macro @code{__mcfhwdiv__} when this option is enabled.
16551
16552 @item -mshort
16553 @opindex mshort
16554 Consider type @code{int} to be 16 bits wide, like @code{short int}.
16555 Additionally, parameters passed on the stack are also aligned to a
16556 16-bit boundary even on targets whose API mandates promotion to 32-bit.
16557
16558 @item -mno-short
16559 @opindex mno-short
16560 Do not consider type @code{int} to be 16 bits wide. This is the default.
16561
16562 @item -mnobitfield
16563 @itemx -mno-bitfield
16564 @opindex mnobitfield
16565 @opindex mno-bitfield
16566 Do not use the bit-field instructions. The @option{-m68000}, @option{-mcpu32}
16567 and @option{-m5200} options imply @w{@option{-mnobitfield}}.
16568
16569 @item -mbitfield
16570 @opindex mbitfield
16571 Do use the bit-field instructions. The @option{-m68020} option implies
16572 @option{-mbitfield}. This is the default if you use a configuration
16573 designed for a 68020.
16574
16575 @item -mrtd
16576 @opindex mrtd
16577 Use a different function-calling convention, in which functions
16578 that take a fixed number of arguments return with the @code{rtd}
16579 instruction, which pops their arguments while returning. This
16580 saves one instruction in the caller since there is no need to pop
16581 the arguments there.
16582
16583 This calling convention is incompatible with the one normally
16584 used on Unix, so you cannot use it if you need to call libraries
16585 compiled with the Unix compiler.
16586
16587 Also, you must provide function prototypes for all functions that
16588 take variable numbers of arguments (including @code{printf});
16589 otherwise incorrect code is generated for calls to those
16590 functions.
16591
16592 In addition, seriously incorrect code results if you call a
16593 function with too many arguments. (Normally, extra arguments are
16594 harmlessly ignored.)
16595
16596 The @code{rtd} instruction is supported by the 68010, 68020, 68030,
16597 68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
16598
16599 @item -mno-rtd
16600 @opindex mno-rtd
16601 Do not use the calling conventions selected by @option{-mrtd}.
16602 This is the default.
16603
16604 @item -malign-int
16605 @itemx -mno-align-int
16606 @opindex malign-int
16607 @opindex mno-align-int
16608 Control whether GCC aligns @code{int}, @code{long}, @code{long long},
16609 @code{float}, @code{double}, and @code{long double} variables on a 32-bit
16610 boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
16611 Aligning variables on 32-bit boundaries produces code that runs somewhat
16612 faster on processors with 32-bit busses at the expense of more memory.
16613
16614 @strong{Warning:} if you use the @option{-malign-int} switch, GCC
16615 aligns structures containing the above types differently than
16616 most published application binary interface specifications for the m68k.
16617
16618 @item -mpcrel
16619 @opindex mpcrel
16620 Use the pc-relative addressing mode of the 68000 directly, instead of
16621 using a global offset table. At present, this option implies @option{-fpic},
16622 allowing at most a 16-bit offset for pc-relative addressing. @option{-fPIC} is
16623 not presently supported with @option{-mpcrel}, though this could be supported for
16624 68020 and higher processors.
16625
16626 @item -mno-strict-align
16627 @itemx -mstrict-align
16628 @opindex mno-strict-align
16629 @opindex mstrict-align
16630 Do not (do) assume that unaligned memory references are handled by
16631 the system.
16632
16633 @item -msep-data
16634 Generate code that allows the data segment to be located in a different
16635 area of memory from the text segment. This allows for execute-in-place in
16636 an environment without virtual memory management. This option implies
16637 @option{-fPIC}.
16638
16639 @item -mno-sep-data
16640 Generate code that assumes that the data segment follows the text segment.
16641 This is the default.
16642
16643 @item -mid-shared-library
16644 Generate code that supports shared libraries via the library ID method.
16645 This allows for execute-in-place and shared libraries in an environment
16646 without virtual memory management. This option implies @option{-fPIC}.
16647
16648 @item -mno-id-shared-library
16649 Generate code that doesn't assume ID-based shared libraries are being used.
16650 This is the default.
16651
16652 @item -mshared-library-id=n
16653 Specifies the identification number of the ID-based shared library being
16654 compiled. Specifying a value of 0 generates more compact code; specifying
16655 other values forces the allocation of that number to the current
16656 library, but is no more space- or time-efficient than omitting this option.
16657
16658 @item -mxgot
16659 @itemx -mno-xgot
16660 @opindex mxgot
16661 @opindex mno-xgot
16662 When generating position-independent code for ColdFire, generate code
16663 that works if the GOT has more than 8192 entries. This code is
16664 larger and slower than code generated without this option. On M680x0
16665 processors, this option is not needed; @option{-fPIC} suffices.
16666
16667 GCC normally uses a single instruction to load values from the GOT@.
16668 While this is relatively efficient, it only works if the GOT
16669 is smaller than about 64k. Anything larger causes the linker
16670 to report an error such as:
16671
16672 @cindex relocation truncated to fit (ColdFire)
16673 @smallexample
16674 relocation truncated to fit: R_68K_GOT16O foobar
16675 @end smallexample
16676
16677 If this happens, you should recompile your code with @option{-mxgot}.
16678 It should then work with very large GOTs. However, code generated with
16679 @option{-mxgot} is less efficient, since it takes 4 instructions to fetch
16680 the value of a global symbol.
16681
16682 Note that some linkers, including newer versions of the GNU linker,
16683 can create multiple GOTs and sort GOT entries. If you have such a linker,
16684 you should only need to use @option{-mxgot} when compiling a single
16685 object file that accesses more than 8192 GOT entries. Very few do.
16686
16687 These options have no effect unless GCC is generating
16688 position-independent code.
16689
16690 @end table
16691
16692 @node MCore Options
16693 @subsection MCore Options
16694 @cindex MCore options
16695
16696 These are the @samp{-m} options defined for the Motorola M*Core
16697 processors.
16698
16699 @table @gcctabopt
16700
16701 @item -mhardlit
16702 @itemx -mno-hardlit
16703 @opindex mhardlit
16704 @opindex mno-hardlit
16705 Inline constants into the code stream if it can be done in two
16706 instructions or less.
16707
16708 @item -mdiv
16709 @itemx -mno-div
16710 @opindex mdiv
16711 @opindex mno-div
16712 Use the divide instruction. (Enabled by default).
16713
16714 @item -mrelax-immediate
16715 @itemx -mno-relax-immediate
16716 @opindex mrelax-immediate
16717 @opindex mno-relax-immediate
16718 Allow arbitrary-sized immediates in bit operations.
16719
16720 @item -mwide-bitfields
16721 @itemx -mno-wide-bitfields
16722 @opindex mwide-bitfields
16723 @opindex mno-wide-bitfields
16724 Always treat bit-fields as @code{int}-sized.
16725
16726 @item -m4byte-functions
16727 @itemx -mno-4byte-functions
16728 @opindex m4byte-functions
16729 @opindex mno-4byte-functions
16730 Force all functions to be aligned to a 4-byte boundary.
16731
16732 @item -mcallgraph-data
16733 @itemx -mno-callgraph-data
16734 @opindex mcallgraph-data
16735 @opindex mno-callgraph-data
16736 Emit callgraph information.
16737
16738 @item -mslow-bytes
16739 @itemx -mno-slow-bytes
16740 @opindex mslow-bytes
16741 @opindex mno-slow-bytes
16742 Prefer word access when reading byte quantities.
16743
16744 @item -mlittle-endian
16745 @itemx -mbig-endian
16746 @opindex mlittle-endian
16747 @opindex mbig-endian
16748 Generate code for a little-endian target.
16749
16750 @item -m210
16751 @itemx -m340
16752 @opindex m210
16753 @opindex m340
16754 Generate code for the 210 processor.
16755
16756 @item -mno-lsim
16757 @opindex mno-lsim
16758 Assume that runtime support has been provided and so omit the
16759 simulator library (@file{libsim.a)} from the linker command line.
16760
16761 @item -mstack-increment=@var{size}
16762 @opindex mstack-increment
16763 Set the maximum amount for a single stack increment operation. Large
16764 values can increase the speed of programs that contain functions
16765 that need a large amount of stack space, but they can also trigger a
16766 segmentation fault if the stack is extended too much. The default
16767 value is 0x1000.
16768
16769 @end table
16770
16771 @node MeP Options
16772 @subsection MeP Options
16773 @cindex MeP options
16774
16775 @table @gcctabopt
16776
16777 @item -mabsdiff
16778 @opindex mabsdiff
16779 Enables the @code{abs} instruction, which is the absolute difference
16780 between two registers.
16781
16782 @item -mall-opts
16783 @opindex mall-opts
16784 Enables all the optional instructions---average, multiply, divide, bit
16785 operations, leading zero, absolute difference, min/max, clip, and
16786 saturation.
16787
16788
16789 @item -maverage
16790 @opindex maverage
16791 Enables the @code{ave} instruction, which computes the average of two
16792 registers.
16793
16794 @item -mbased=@var{n}
16795 @opindex mbased=
16796 Variables of size @var{n} bytes or smaller are placed in the
16797 @code{.based} section by default. Based variables use the @code{$tp}
16798 register as a base register, and there is a 128-byte limit to the
16799 @code{.based} section.
16800
16801 @item -mbitops
16802 @opindex mbitops
16803 Enables the bit operation instructions---bit test (@code{btstm}), set
16804 (@code{bsetm}), clear (@code{bclrm}), invert (@code{bnotm}), and
16805 test-and-set (@code{tas}).
16806
16807 @item -mc=@var{name}
16808 @opindex mc=
16809 Selects which section constant data is placed in. @var{name} may
16810 be @samp{tiny}, @samp{near}, or @samp{far}.
16811
16812 @item -mclip
16813 @opindex mclip
16814 Enables the @code{clip} instruction. Note that @option{-mclip} is not
16815 useful unless you also provide @option{-mminmax}.
16816
16817 @item -mconfig=@var{name}
16818 @opindex mconfig=
16819 Selects one of the built-in core configurations. Each MeP chip has
16820 one or more modules in it; each module has a core CPU and a variety of
16821 coprocessors, optional instructions, and peripherals. The
16822 @code{MeP-Integrator} tool, not part of GCC, provides these
16823 configurations through this option; using this option is the same as
16824 using all the corresponding command-line options. The default
16825 configuration is @samp{default}.
16826
16827 @item -mcop
16828 @opindex mcop
16829 Enables the coprocessor instructions. By default, this is a 32-bit
16830 coprocessor. Note that the coprocessor is normally enabled via the
16831 @option{-mconfig=} option.
16832
16833 @item -mcop32
16834 @opindex mcop32
16835 Enables the 32-bit coprocessor's instructions.
16836
16837 @item -mcop64
16838 @opindex mcop64
16839 Enables the 64-bit coprocessor's instructions.
16840
16841 @item -mivc2
16842 @opindex mivc2
16843 Enables IVC2 scheduling. IVC2 is a 64-bit VLIW coprocessor.
16844
16845 @item -mdc
16846 @opindex mdc
16847 Causes constant variables to be placed in the @code{.near} section.
16848
16849 @item -mdiv
16850 @opindex mdiv
16851 Enables the @code{div} and @code{divu} instructions.
16852
16853 @item -meb
16854 @opindex meb
16855 Generate big-endian code.
16856
16857 @item -mel
16858 @opindex mel
16859 Generate little-endian code.
16860
16861 @item -mio-volatile
16862 @opindex mio-volatile
16863 Tells the compiler that any variable marked with the @code{io}
16864 attribute is to be considered volatile.
16865
16866 @item -ml
16867 @opindex ml
16868 Causes variables to be assigned to the @code{.far} section by default.
16869
16870 @item -mleadz
16871 @opindex mleadz
16872 Enables the @code{leadz} (leading zero) instruction.
16873
16874 @item -mm
16875 @opindex mm
16876 Causes variables to be assigned to the @code{.near} section by default.
16877
16878 @item -mminmax
16879 @opindex mminmax
16880 Enables the @code{min} and @code{max} instructions.
16881
16882 @item -mmult
16883 @opindex mmult
16884 Enables the multiplication and multiply-accumulate instructions.
16885
16886 @item -mno-opts
16887 @opindex mno-opts
16888 Disables all the optional instructions enabled by @option{-mall-opts}.
16889
16890 @item -mrepeat
16891 @opindex mrepeat
16892 Enables the @code{repeat} and @code{erepeat} instructions, used for
16893 low-overhead looping.
16894
16895 @item -ms
16896 @opindex ms
16897 Causes all variables to default to the @code{.tiny} section. Note
16898 that there is a 65536-byte limit to this section. Accesses to these
16899 variables use the @code{%gp} base register.
16900
16901 @item -msatur
16902 @opindex msatur
16903 Enables the saturation instructions. Note that the compiler does not
16904 currently generate these itself, but this option is included for
16905 compatibility with other tools, like @code{as}.
16906
16907 @item -msdram
16908 @opindex msdram
16909 Link the SDRAM-based runtime instead of the default ROM-based runtime.
16910
16911 @item -msim
16912 @opindex msim
16913 Link the simulator run-time libraries.
16914
16915 @item -msimnovec
16916 @opindex msimnovec
16917 Link the simulator runtime libraries, excluding built-in support
16918 for reset and exception vectors and tables.
16919
16920 @item -mtf
16921 @opindex mtf
16922 Causes all functions to default to the @code{.far} section. Without
16923 this option, functions default to the @code{.near} section.
16924
16925 @item -mtiny=@var{n}
16926 @opindex mtiny=
16927 Variables that are @var{n} bytes or smaller are allocated to the
16928 @code{.tiny} section. These variables use the @code{$gp} base
16929 register. The default for this option is 4, but note that there's a
16930 65536-byte limit to the @code{.tiny} section.
16931
16932 @end table
16933
16934 @node MicroBlaze Options
16935 @subsection MicroBlaze Options
16936 @cindex MicroBlaze Options
16937
16938 @table @gcctabopt
16939
16940 @item -msoft-float
16941 @opindex msoft-float
16942 Use software emulation for floating point (default).
16943
16944 @item -mhard-float
16945 @opindex mhard-float
16946 Use hardware floating-point instructions.
16947
16948 @item -mmemcpy
16949 @opindex mmemcpy
16950 Do not optimize block moves, use @code{memcpy}.
16951
16952 @item -mno-clearbss
16953 @opindex mno-clearbss
16954 This option is deprecated. Use @option{-fno-zero-initialized-in-bss} instead.
16955
16956 @item -mcpu=@var{cpu-type}
16957 @opindex mcpu=
16958 Use features of, and schedule code for, the given CPU.
16959 Supported values are in the format @samp{v@var{X}.@var{YY}.@var{Z}},
16960 where @var{X} is a major version, @var{YY} is the minor version, and
16961 @var{Z} is compatibility code. Example values are @samp{v3.00.a},
16962 @samp{v4.00.b}, @samp{v5.00.a}, @samp{v5.00.b}, @samp{v5.00.b}, @samp{v6.00.a}.
16963
16964 @item -mxl-soft-mul
16965 @opindex mxl-soft-mul
16966 Use software multiply emulation (default).
16967
16968 @item -mxl-soft-div
16969 @opindex mxl-soft-div
16970 Use software emulation for divides (default).
16971
16972 @item -mxl-barrel-shift
16973 @opindex mxl-barrel-shift
16974 Use the hardware barrel shifter.
16975
16976 @item -mxl-pattern-compare
16977 @opindex mxl-pattern-compare
16978 Use pattern compare instructions.
16979
16980 @item -msmall-divides
16981 @opindex msmall-divides
16982 Use table lookup optimization for small signed integer divisions.
16983
16984 @item -mxl-stack-check
16985 @opindex mxl-stack-check
16986 This option is deprecated. Use @option{-fstack-check} instead.
16987
16988 @item -mxl-gp-opt
16989 @opindex mxl-gp-opt
16990 Use GP-relative @code{.sdata}/@code{.sbss} sections.
16991
16992 @item -mxl-multiply-high
16993 @opindex mxl-multiply-high
16994 Use multiply high instructions for high part of 32x32 multiply.
16995
16996 @item -mxl-float-convert
16997 @opindex mxl-float-convert
16998 Use hardware floating-point conversion instructions.
16999
17000 @item -mxl-float-sqrt
17001 @opindex mxl-float-sqrt
17002 Use hardware floating-point square root instruction.
17003
17004 @item -mbig-endian
17005 @opindex mbig-endian
17006 Generate code for a big-endian target.
17007
17008 @item -mlittle-endian
17009 @opindex mlittle-endian
17010 Generate code for a little-endian target.
17011
17012 @item -mxl-reorder
17013 @opindex mxl-reorder
17014 Use reorder instructions (swap and byte reversed load/store).
17015
17016 @item -mxl-mode-@var{app-model}
17017 Select application model @var{app-model}. Valid models are
17018 @table @samp
17019 @item executable
17020 normal executable (default), uses startup code @file{crt0.o}.
17021
17022 @item xmdstub
17023 for use with Xilinx Microprocessor Debugger (XMD) based
17024 software intrusive debug agent called xmdstub. This uses startup file
17025 @file{crt1.o} and sets the start address of the program to 0x800.
17026
17027 @item bootstrap
17028 for applications that are loaded using a bootloader.
17029 This model uses startup file @file{crt2.o} which does not contain a processor
17030 reset vector handler. This is suitable for transferring control on a
17031 processor reset to the bootloader rather than the application.
17032
17033 @item novectors
17034 for applications that do not require any of the
17035 MicroBlaze vectors. This option may be useful for applications running
17036 within a monitoring application. This model uses @file{crt3.o} as a startup file.
17037 @end table
17038
17039 Option @option{-xl-mode-@var{app-model}} is a deprecated alias for
17040 @option{-mxl-mode-@var{app-model}}.
17041
17042 @end table
17043
17044 @node MIPS Options
17045 @subsection MIPS Options
17046 @cindex MIPS options
17047
17048 @table @gcctabopt
17049
17050 @item -EB
17051 @opindex EB
17052 Generate big-endian code.
17053
17054 @item -EL
17055 @opindex EL
17056 Generate little-endian code. This is the default for @samp{mips*el-*-*}
17057 configurations.
17058
17059 @item -march=@var{arch}
17060 @opindex march
17061 Generate code that runs on @var{arch}, which can be the name of a
17062 generic MIPS ISA, or the name of a particular processor.
17063 The ISA names are:
17064 @samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4},
17065 @samp{mips32}, @samp{mips32r2}, @samp{mips32r3}, @samp{mips32r5},
17066 @samp{mips32r6}, @samp{mips64}, @samp{mips64r2}, @samp{mips64r3},
17067 @samp{mips64r5} and @samp{mips64r6}.
17068 The processor names are:
17069 @samp{4kc}, @samp{4km}, @samp{4kp}, @samp{4ksc},
17070 @samp{4kec}, @samp{4kem}, @samp{4kep}, @samp{4ksd},
17071 @samp{5kc}, @samp{5kf},
17072 @samp{20kc},
17073 @samp{24kc}, @samp{24kf2_1}, @samp{24kf1_1},
17074 @samp{24kec}, @samp{24kef2_1}, @samp{24kef1_1},
17075 @samp{34kc}, @samp{34kf2_1}, @samp{34kf1_1}, @samp{34kn},
17076 @samp{74kc}, @samp{74kf2_1}, @samp{74kf1_1}, @samp{74kf3_2},
17077 @samp{1004kc}, @samp{1004kf2_1}, @samp{1004kf1_1},
17078 @samp{i6400},
17079 @samp{interaptiv},
17080 @samp{loongson2e}, @samp{loongson2f}, @samp{loongson3a},
17081 @samp{m4k},
17082 @samp{m14k}, @samp{m14kc}, @samp{m14ke}, @samp{m14kec},
17083 @samp{m5100}, @samp{m5101},
17084 @samp{octeon}, @samp{octeon+}, @samp{octeon2}, @samp{octeon3},
17085 @samp{orion},
17086 @samp{p5600},
17087 @samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400},
17088 @samp{r4600}, @samp{r4650}, @samp{r4700}, @samp{r6000}, @samp{r8000},
17089 @samp{rm7000}, @samp{rm9000},
17090 @samp{r10000}, @samp{r12000}, @samp{r14000}, @samp{r16000},
17091 @samp{sb1},
17092 @samp{sr71000},
17093 @samp{vr4100}, @samp{vr4111}, @samp{vr4120}, @samp{vr4130}, @samp{vr4300},
17094 @samp{vr5000}, @samp{vr5400}, @samp{vr5500},
17095 @samp{xlr} and @samp{xlp}.
17096 The special value @samp{from-abi} selects the
17097 most compatible architecture for the selected ABI (that is,
17098 @samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@.
17099
17100 The native Linux/GNU toolchain also supports the value @samp{native},
17101 which selects the best architecture option for the host processor.
17102 @option{-march=native} has no effect if GCC does not recognize
17103 the processor.
17104
17105 In processor names, a final @samp{000} can be abbreviated as @samp{k}
17106 (for example, @option{-march=r2k}). Prefixes are optional, and
17107 @samp{vr} may be written @samp{r}.
17108
17109 Names of the form @samp{@var{n}f2_1} refer to processors with
17110 FPUs clocked at half the rate of the core, names of the form
17111 @samp{@var{n}f1_1} refer to processors with FPUs clocked at the same
17112 rate as the core, and names of the form @samp{@var{n}f3_2} refer to
17113 processors with FPUs clocked a ratio of 3:2 with respect to the core.
17114 For compatibility reasons, @samp{@var{n}f} is accepted as a synonym
17115 for @samp{@var{n}f2_1} while @samp{@var{n}x} and @samp{@var{b}fx} are
17116 accepted as synonyms for @samp{@var{n}f1_1}.
17117
17118 GCC defines two macros based on the value of this option. The first
17119 is @code{_MIPS_ARCH}, which gives the name of target architecture, as
17120 a string. The second has the form @code{_MIPS_ARCH_@var{foo}},
17121 where @var{foo} is the capitalized value of @code{_MIPS_ARCH}@.
17122 For example, @option{-march=r2000} sets @code{_MIPS_ARCH}
17123 to @code{"r2000"} and defines the macro @code{_MIPS_ARCH_R2000}.
17124
17125 Note that the @code{_MIPS_ARCH} macro uses the processor names given
17126 above. In other words, it has the full prefix and does not
17127 abbreviate @samp{000} as @samp{k}. In the case of @samp{from-abi},
17128 the macro names the resolved architecture (either @code{"mips1"} or
17129 @code{"mips3"}). It names the default architecture when no
17130 @option{-march} option is given.
17131
17132 @item -mtune=@var{arch}
17133 @opindex mtune
17134 Optimize for @var{arch}. Among other things, this option controls
17135 the way instructions are scheduled, and the perceived cost of arithmetic
17136 operations. The list of @var{arch} values is the same as for
17137 @option{-march}.
17138
17139 When this option is not used, GCC optimizes for the processor
17140 specified by @option{-march}. By using @option{-march} and
17141 @option{-mtune} together, it is possible to generate code that
17142 runs on a family of processors, but optimize the code for one
17143 particular member of that family.
17144
17145 @option{-mtune} defines the macros @code{_MIPS_TUNE} and
17146 @code{_MIPS_TUNE_@var{foo}}, which work in the same way as the
17147 @option{-march} ones described above.
17148
17149 @item -mips1
17150 @opindex mips1
17151 Equivalent to @option{-march=mips1}.
17152
17153 @item -mips2
17154 @opindex mips2
17155 Equivalent to @option{-march=mips2}.
17156
17157 @item -mips3
17158 @opindex mips3
17159 Equivalent to @option{-march=mips3}.
17160
17161 @item -mips4
17162 @opindex mips4
17163 Equivalent to @option{-march=mips4}.
17164
17165 @item -mips32
17166 @opindex mips32
17167 Equivalent to @option{-march=mips32}.
17168
17169 @item -mips32r3
17170 @opindex mips32r3
17171 Equivalent to @option{-march=mips32r3}.
17172
17173 @item -mips32r5
17174 @opindex mips32r5
17175 Equivalent to @option{-march=mips32r5}.
17176
17177 @item -mips32r6
17178 @opindex mips32r6
17179 Equivalent to @option{-march=mips32r6}.
17180
17181 @item -mips64
17182 @opindex mips64
17183 Equivalent to @option{-march=mips64}.
17184
17185 @item -mips64r2
17186 @opindex mips64r2
17187 Equivalent to @option{-march=mips64r2}.
17188
17189 @item -mips64r3
17190 @opindex mips64r3
17191 Equivalent to @option{-march=mips64r3}.
17192
17193 @item -mips64r5
17194 @opindex mips64r5
17195 Equivalent to @option{-march=mips64r5}.
17196
17197 @item -mips64r6
17198 @opindex mips64r6
17199 Equivalent to @option{-march=mips64r6}.
17200
17201 @item -mips16
17202 @itemx -mno-mips16
17203 @opindex mips16
17204 @opindex mno-mips16
17205 Generate (do not generate) MIPS16 code. If GCC is targeting a
17206 MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE@.
17207
17208 MIPS16 code generation can also be controlled on a per-function basis
17209 by means of @code{mips16} and @code{nomips16} attributes.
17210 @xref{Function Attributes}, for more information.
17211
17212 @item -mflip-mips16
17213 @opindex mflip-mips16
17214 Generate MIPS16 code on alternating functions. This option is provided
17215 for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
17216 not intended for ordinary use in compiling user code.
17217
17218 @item -minterlink-compressed
17219 @item -mno-interlink-compressed
17220 @opindex minterlink-compressed
17221 @opindex mno-interlink-compressed
17222 Require (do not require) that code using the standard (uncompressed) MIPS ISA
17223 be link-compatible with MIPS16 and microMIPS code, and vice versa.
17224
17225 For example, code using the standard ISA encoding cannot jump directly
17226 to MIPS16 or microMIPS code; it must either use a call or an indirect jump.
17227 @option{-minterlink-compressed} therefore disables direct jumps unless GCC
17228 knows that the target of the jump is not compressed.
17229
17230 @item -minterlink-mips16
17231 @itemx -mno-interlink-mips16
17232 @opindex minterlink-mips16
17233 @opindex mno-interlink-mips16
17234 Aliases of @option{-minterlink-compressed} and
17235 @option{-mno-interlink-compressed}. These options predate the microMIPS ASE
17236 and are retained for backwards compatibility.
17237
17238 @item -mabi=32
17239 @itemx -mabi=o64
17240 @itemx -mabi=n32
17241 @itemx -mabi=64
17242 @itemx -mabi=eabi
17243 @opindex mabi=32
17244 @opindex mabi=o64
17245 @opindex mabi=n32
17246 @opindex mabi=64
17247 @opindex mabi=eabi
17248 Generate code for the given ABI@.
17249
17250 Note that the EABI has a 32-bit and a 64-bit variant. GCC normally
17251 generates 64-bit code when you select a 64-bit architecture, but you
17252 can use @option{-mgp32} to get 32-bit code instead.
17253
17254 For information about the O64 ABI, see
17255 @uref{http://gcc.gnu.org/@/projects/@/mipso64-abi.html}.
17256
17257 GCC supports a variant of the o32 ABI in which floating-point registers
17258 are 64 rather than 32 bits wide. You can select this combination with
17259 @option{-mabi=32} @option{-mfp64}. This ABI relies on the @code{mthc1}
17260 and @code{mfhc1} instructions and is therefore only supported for
17261 MIPS32R2, MIPS32R3 and MIPS32R5 processors.
17262
17263 The register assignments for arguments and return values remain the
17264 same, but each scalar value is passed in a single 64-bit register
17265 rather than a pair of 32-bit registers. For example, scalar
17266 floating-point values are returned in @samp{$f0} only, not a
17267 @samp{$f0}/@samp{$f1} pair. The set of call-saved registers also
17268 remains the same in that the even-numbered double-precision registers
17269 are saved.
17270
17271 Two additional variants of the o32 ABI are supported to enable
17272 a transition from 32-bit to 64-bit registers. These are FPXX
17273 (@option{-mfpxx}) and FP64A (@option{-mfp64} @option{-mno-odd-spreg}).
17274 The FPXX extension mandates that all code must execute correctly
17275 when run using 32-bit or 64-bit registers. The code can be interlinked
17276 with either FP32 or FP64, but not both.
17277 The FP64A extension is similar to the FP64 extension but forbids the
17278 use of odd-numbered single-precision registers. This can be used
17279 in conjunction with the @code{FRE} mode of FPUs in MIPS32R5
17280 processors and allows both FP32 and FP64A code to interlink and
17281 run in the same process without changing FPU modes.
17282
17283 @item -mabicalls
17284 @itemx -mno-abicalls
17285 @opindex mabicalls
17286 @opindex mno-abicalls
17287 Generate (do not generate) code that is suitable for SVR4-style
17288 dynamic objects. @option{-mabicalls} is the default for SVR4-based
17289 systems.
17290
17291 @item -mshared
17292 @itemx -mno-shared
17293 Generate (do not generate) code that is fully position-independent,
17294 and that can therefore be linked into shared libraries. This option
17295 only affects @option{-mabicalls}.
17296
17297 All @option{-mabicalls} code has traditionally been position-independent,
17298 regardless of options like @option{-fPIC} and @option{-fpic}. However,
17299 as an extension, the GNU toolchain allows executables to use absolute
17300 accesses for locally-binding symbols. It can also use shorter GP
17301 initialization sequences and generate direct calls to locally-defined
17302 functions. This mode is selected by @option{-mno-shared}.
17303
17304 @option{-mno-shared} depends on binutils 2.16 or higher and generates
17305 objects that can only be linked by the GNU linker. However, the option
17306 does not affect the ABI of the final executable; it only affects the ABI
17307 of relocatable objects. Using @option{-mno-shared} generally makes
17308 executables both smaller and quicker.
17309
17310 @option{-mshared} is the default.
17311
17312 @item -mplt
17313 @itemx -mno-plt
17314 @opindex mplt
17315 @opindex mno-plt
17316 Assume (do not assume) that the static and dynamic linkers
17317 support PLTs and copy relocations. This option only affects
17318 @option{-mno-shared -mabicalls}. For the n64 ABI, this option
17319 has no effect without @option{-msym32}.
17320
17321 You can make @option{-mplt} the default by configuring
17322 GCC with @option{--with-mips-plt}. The default is
17323 @option{-mno-plt} otherwise.
17324
17325 @item -mxgot
17326 @itemx -mno-xgot
17327 @opindex mxgot
17328 @opindex mno-xgot
17329 Lift (do not lift) the usual restrictions on the size of the global
17330 offset table.
17331
17332 GCC normally uses a single instruction to load values from the GOT@.
17333 While this is relatively efficient, it only works if the GOT
17334 is smaller than about 64k. Anything larger causes the linker
17335 to report an error such as:
17336
17337 @cindex relocation truncated to fit (MIPS)
17338 @smallexample
17339 relocation truncated to fit: R_MIPS_GOT16 foobar
17340 @end smallexample
17341
17342 If this happens, you should recompile your code with @option{-mxgot}.
17343 This works with very large GOTs, although the code is also
17344 less efficient, since it takes three instructions to fetch the
17345 value of a global symbol.
17346
17347 Note that some linkers can create multiple GOTs. If you have such a
17348 linker, you should only need to use @option{-mxgot} when a single object
17349 file accesses more than 64k's worth of GOT entries. Very few do.
17350
17351 These options have no effect unless GCC is generating position
17352 independent code.
17353
17354 @item -mgp32
17355 @opindex mgp32
17356 Assume that general-purpose registers are 32 bits wide.
17357
17358 @item -mgp64
17359 @opindex mgp64
17360 Assume that general-purpose registers are 64 bits wide.
17361
17362 @item -mfp32
17363 @opindex mfp32
17364 Assume that floating-point registers are 32 bits wide.
17365
17366 @item -mfp64
17367 @opindex mfp64
17368 Assume that floating-point registers are 64 bits wide.
17369
17370 @item -mfpxx
17371 @opindex mfpxx
17372 Do not assume the width of floating-point registers.
17373
17374 @item -mhard-float
17375 @opindex mhard-float
17376 Use floating-point coprocessor instructions.
17377
17378 @item -msoft-float
17379 @opindex msoft-float
17380 Do not use floating-point coprocessor instructions. Implement
17381 floating-point calculations using library calls instead.
17382
17383 @item -mno-float
17384 @opindex mno-float
17385 Equivalent to @option{-msoft-float}, but additionally asserts that the
17386 program being compiled does not perform any floating-point operations.
17387 This option is presently supported only by some bare-metal MIPS
17388 configurations, where it may select a special set of libraries
17389 that lack all floating-point support (including, for example, the
17390 floating-point @code{printf} formats).
17391 If code compiled with @option{-mno-float} accidentally contains
17392 floating-point operations, it is likely to suffer a link-time
17393 or run-time failure.
17394
17395 @item -msingle-float
17396 @opindex msingle-float
17397 Assume that the floating-point coprocessor only supports single-precision
17398 operations.
17399
17400 @item -mdouble-float
17401 @opindex mdouble-float
17402 Assume that the floating-point coprocessor supports double-precision
17403 operations. This is the default.
17404
17405 @item -modd-spreg
17406 @itemx -mno-odd-spreg
17407 @opindex modd-spreg
17408 @opindex mno-odd-spreg
17409 Enable the use of odd-numbered single-precision floating-point registers
17410 for the o32 ABI. This is the default for processors that are known to
17411 support these registers. When using the o32 FPXX ABI, @option{-mno-odd-spreg}
17412 is set by default.
17413
17414 @item -mabs=2008
17415 @itemx -mabs=legacy
17416 @opindex mabs=2008
17417 @opindex mabs=legacy
17418 These options control the treatment of the special not-a-number (NaN)
17419 IEEE 754 floating-point data with the @code{abs.@i{fmt}} and
17420 @code{neg.@i{fmt}} machine instructions.
17421
17422 By default or when @option{-mabs=legacy} is used the legacy
17423 treatment is selected. In this case these instructions are considered
17424 arithmetic and avoided where correct operation is required and the
17425 input operand might be a NaN. A longer sequence of instructions that
17426 manipulate the sign bit of floating-point datum manually is used
17427 instead unless the @option{-ffinite-math-only} option has also been
17428 specified.
17429
17430 The @option{-mabs=2008} option selects the IEEE 754-2008 treatment. In
17431 this case these instructions are considered non-arithmetic and therefore
17432 operating correctly in all cases, including in particular where the
17433 input operand is a NaN. These instructions are therefore always used
17434 for the respective operations.
17435
17436 @item -mnan=2008
17437 @itemx -mnan=legacy
17438 @opindex mnan=2008
17439 @opindex mnan=legacy
17440 These options control the encoding of the special not-a-number (NaN)
17441 IEEE 754 floating-point data.
17442
17443 The @option{-mnan=legacy} option selects the legacy encoding. In this
17444 case quiet NaNs (qNaNs) are denoted by the first bit of their trailing
17445 significand field being 0, whereas signalling NaNs (sNaNs) are denoted
17446 by the first bit of their trailing significand field being 1.
17447
17448 The @option{-mnan=2008} option selects the IEEE 754-2008 encoding. In
17449 this case qNaNs are denoted by the first bit of their trailing
17450 significand field being 1, whereas sNaNs are denoted by the first bit of
17451 their trailing significand field being 0.
17452
17453 The default is @option{-mnan=legacy} unless GCC has been configured with
17454 @option{--with-nan=2008}.
17455
17456 @item -mllsc
17457 @itemx -mno-llsc
17458 @opindex mllsc
17459 @opindex mno-llsc
17460 Use (do not use) @samp{ll}, @samp{sc}, and @samp{sync} instructions to
17461 implement atomic memory built-in functions. When neither option is
17462 specified, GCC uses the instructions if the target architecture
17463 supports them.
17464
17465 @option{-mllsc} is useful if the runtime environment can emulate the
17466 instructions and @option{-mno-llsc} can be useful when compiling for
17467 nonstandard ISAs. You can make either option the default by
17468 configuring GCC with @option{--with-llsc} and @option{--without-llsc}
17469 respectively. @option{--with-llsc} is the default for some
17470 configurations; see the installation documentation for details.
17471
17472 @item -mdsp
17473 @itemx -mno-dsp
17474 @opindex mdsp
17475 @opindex mno-dsp
17476 Use (do not use) revision 1 of the MIPS DSP ASE@.
17477 @xref{MIPS DSP Built-in Functions}. This option defines the
17478 preprocessor macro @code{__mips_dsp}. It also defines
17479 @code{__mips_dsp_rev} to 1.
17480
17481 @item -mdspr2
17482 @itemx -mno-dspr2
17483 @opindex mdspr2
17484 @opindex mno-dspr2
17485 Use (do not use) revision 2 of the MIPS DSP ASE@.
17486 @xref{MIPS DSP Built-in Functions}. This option defines the
17487 preprocessor macros @code{__mips_dsp} and @code{__mips_dspr2}.
17488 It also defines @code{__mips_dsp_rev} to 2.
17489
17490 @item -msmartmips
17491 @itemx -mno-smartmips
17492 @opindex msmartmips
17493 @opindex mno-smartmips
17494 Use (do not use) the MIPS SmartMIPS ASE.
17495
17496 @item -mpaired-single
17497 @itemx -mno-paired-single
17498 @opindex mpaired-single
17499 @opindex mno-paired-single
17500 Use (do not use) paired-single floating-point instructions.
17501 @xref{MIPS Paired-Single Support}. This option requires
17502 hardware floating-point support to be enabled.
17503
17504 @item -mdmx
17505 @itemx -mno-mdmx
17506 @opindex mdmx
17507 @opindex mno-mdmx
17508 Use (do not use) MIPS Digital Media Extension instructions.
17509 This option can only be used when generating 64-bit code and requires
17510 hardware floating-point support to be enabled.
17511
17512 @item -mips3d
17513 @itemx -mno-mips3d
17514 @opindex mips3d
17515 @opindex mno-mips3d
17516 Use (do not use) the MIPS-3D ASE@. @xref{MIPS-3D Built-in Functions}.
17517 The option @option{-mips3d} implies @option{-mpaired-single}.
17518
17519 @item -mmicromips
17520 @itemx -mno-micromips
17521 @opindex mmicromips
17522 @opindex mno-mmicromips
17523 Generate (do not generate) microMIPS code.
17524
17525 MicroMIPS code generation can also be controlled on a per-function basis
17526 by means of @code{micromips} and @code{nomicromips} attributes.
17527 @xref{Function Attributes}, for more information.
17528
17529 @item -mmt
17530 @itemx -mno-mt
17531 @opindex mmt
17532 @opindex mno-mt
17533 Use (do not use) MT Multithreading instructions.
17534
17535 @item -mmcu
17536 @itemx -mno-mcu
17537 @opindex mmcu
17538 @opindex mno-mcu
17539 Use (do not use) the MIPS MCU ASE instructions.
17540
17541 @item -meva
17542 @itemx -mno-eva
17543 @opindex meva
17544 @opindex mno-eva
17545 Use (do not use) the MIPS Enhanced Virtual Addressing instructions.
17546
17547 @item -mvirt
17548 @itemx -mno-virt
17549 @opindex mvirt
17550 @opindex mno-virt
17551 Use (do not use) the MIPS Virtualization Application Specific instructions.
17552
17553 @item -mxpa
17554 @itemx -mno-xpa
17555 @opindex mxpa
17556 @opindex mno-xpa
17557 Use (do not use) the MIPS eXtended Physical Address (XPA) instructions.
17558
17559 @item -mlong64
17560 @opindex mlong64
17561 Force @code{long} types to be 64 bits wide. See @option{-mlong32} for
17562 an explanation of the default and the way that the pointer size is
17563 determined.
17564
17565 @item -mlong32
17566 @opindex mlong32
17567 Force @code{long}, @code{int}, and pointer types to be 32 bits wide.
17568
17569 The default size of @code{int}s, @code{long}s and pointers depends on
17570 the ABI@. All the supported ABIs use 32-bit @code{int}s. The n64 ABI
17571 uses 64-bit @code{long}s, as does the 64-bit EABI; the others use
17572 32-bit @code{long}s. Pointers are the same size as @code{long}s,
17573 or the same size as integer registers, whichever is smaller.
17574
17575 @item -msym32
17576 @itemx -mno-sym32
17577 @opindex msym32
17578 @opindex mno-sym32
17579 Assume (do not assume) that all symbols have 32-bit values, regardless
17580 of the selected ABI@. This option is useful in combination with
17581 @option{-mabi=64} and @option{-mno-abicalls} because it allows GCC
17582 to generate shorter and faster references to symbolic addresses.
17583
17584 @item -G @var{num}
17585 @opindex G
17586 Put definitions of externally-visible data in a small data section
17587 if that data is no bigger than @var{num} bytes. GCC can then generate
17588 more efficient accesses to the data; see @option{-mgpopt} for details.
17589
17590 The default @option{-G} option depends on the configuration.
17591
17592 @item -mlocal-sdata
17593 @itemx -mno-local-sdata
17594 @opindex mlocal-sdata
17595 @opindex mno-local-sdata
17596 Extend (do not extend) the @option{-G} behavior to local data too,
17597 such as to static variables in C@. @option{-mlocal-sdata} is the
17598 default for all configurations.
17599
17600 If the linker complains that an application is using too much small data,
17601 you might want to try rebuilding the less performance-critical parts with
17602 @option{-mno-local-sdata}. You might also want to build large
17603 libraries with @option{-mno-local-sdata}, so that the libraries leave
17604 more room for the main program.
17605
17606 @item -mextern-sdata
17607 @itemx -mno-extern-sdata
17608 @opindex mextern-sdata
17609 @opindex mno-extern-sdata
17610 Assume (do not assume) that externally-defined data is in
17611 a small data section if the size of that data is within the @option{-G} limit.
17612 @option{-mextern-sdata} is the default for all configurations.
17613
17614 If you compile a module @var{Mod} with @option{-mextern-sdata} @option{-G
17615 @var{num}} @option{-mgpopt}, and @var{Mod} references a variable @var{Var}
17616 that is no bigger than @var{num} bytes, you must make sure that @var{Var}
17617 is placed in a small data section. If @var{Var} is defined by another
17618 module, you must either compile that module with a high-enough
17619 @option{-G} setting or attach a @code{section} attribute to @var{Var}'s
17620 definition. If @var{Var} is common, you must link the application
17621 with a high-enough @option{-G} setting.
17622
17623 The easiest way of satisfying these restrictions is to compile
17624 and link every module with the same @option{-G} option. However,
17625 you may wish to build a library that supports several different
17626 small data limits. You can do this by compiling the library with
17627 the highest supported @option{-G} setting and additionally using
17628 @option{-mno-extern-sdata} to stop the library from making assumptions
17629 about externally-defined data.
17630
17631 @item -mgpopt
17632 @itemx -mno-gpopt
17633 @opindex mgpopt
17634 @opindex mno-gpopt
17635 Use (do not use) GP-relative accesses for symbols that are known to be
17636 in a small data section; see @option{-G}, @option{-mlocal-sdata} and
17637 @option{-mextern-sdata}. @option{-mgpopt} is the default for all
17638 configurations.
17639
17640 @option{-mno-gpopt} is useful for cases where the @code{$gp} register
17641 might not hold the value of @code{_gp}. For example, if the code is
17642 part of a library that might be used in a boot monitor, programs that
17643 call boot monitor routines pass an unknown value in @code{$gp}.
17644 (In such situations, the boot monitor itself is usually compiled
17645 with @option{-G0}.)
17646
17647 @option{-mno-gpopt} implies @option{-mno-local-sdata} and
17648 @option{-mno-extern-sdata}.
17649
17650 @item -membedded-data
17651 @itemx -mno-embedded-data
17652 @opindex membedded-data
17653 @opindex mno-embedded-data
17654 Allocate variables to the read-only data section first if possible, then
17655 next in the small data section if possible, otherwise in data. This gives
17656 slightly slower code than the default, but reduces the amount of RAM required
17657 when executing, and thus may be preferred for some embedded systems.
17658
17659 @item -muninit-const-in-rodata
17660 @itemx -mno-uninit-const-in-rodata
17661 @opindex muninit-const-in-rodata
17662 @opindex mno-uninit-const-in-rodata
17663 Put uninitialized @code{const} variables in the read-only data section.
17664 This option is only meaningful in conjunction with @option{-membedded-data}.
17665
17666 @item -mcode-readable=@var{setting}
17667 @opindex mcode-readable
17668 Specify whether GCC may generate code that reads from executable sections.
17669 There are three possible settings:
17670
17671 @table @gcctabopt
17672 @item -mcode-readable=yes
17673 Instructions may freely access executable sections. This is the
17674 default setting.
17675
17676 @item -mcode-readable=pcrel
17677 MIPS16 PC-relative load instructions can access executable sections,
17678 but other instructions must not do so. This option is useful on 4KSc
17679 and 4KSd processors when the code TLBs have the Read Inhibit bit set.
17680 It is also useful on processors that can be configured to have a dual
17681 instruction/data SRAM interface and that, like the M4K, automatically
17682 redirect PC-relative loads to the instruction RAM.
17683
17684 @item -mcode-readable=no
17685 Instructions must not access executable sections. This option can be
17686 useful on targets that are configured to have a dual instruction/data
17687 SRAM interface but that (unlike the M4K) do not automatically redirect
17688 PC-relative loads to the instruction RAM.
17689 @end table
17690
17691 @item -msplit-addresses
17692 @itemx -mno-split-addresses
17693 @opindex msplit-addresses
17694 @opindex mno-split-addresses
17695 Enable (disable) use of the @code{%hi()} and @code{%lo()} assembler
17696 relocation operators. This option has been superseded by
17697 @option{-mexplicit-relocs} but is retained for backwards compatibility.
17698
17699 @item -mexplicit-relocs
17700 @itemx -mno-explicit-relocs
17701 @opindex mexplicit-relocs
17702 @opindex mno-explicit-relocs
17703 Use (do not use) assembler relocation operators when dealing with symbolic
17704 addresses. The alternative, selected by @option{-mno-explicit-relocs},
17705 is to use assembler macros instead.
17706
17707 @option{-mexplicit-relocs} is the default if GCC was configured
17708 to use an assembler that supports relocation operators.
17709
17710 @item -mcheck-zero-division
17711 @itemx -mno-check-zero-division
17712 @opindex mcheck-zero-division
17713 @opindex mno-check-zero-division
17714 Trap (do not trap) on integer division by zero.
17715
17716 The default is @option{-mcheck-zero-division}.
17717
17718 @item -mdivide-traps
17719 @itemx -mdivide-breaks
17720 @opindex mdivide-traps
17721 @opindex mdivide-breaks
17722 MIPS systems check for division by zero by generating either a
17723 conditional trap or a break instruction. Using traps results in
17724 smaller code, but is only supported on MIPS II and later. Also, some
17725 versions of the Linux kernel have a bug that prevents trap from
17726 generating the proper signal (@code{SIGFPE}). Use @option{-mdivide-traps} to
17727 allow conditional traps on architectures that support them and
17728 @option{-mdivide-breaks} to force the use of breaks.
17729
17730 The default is usually @option{-mdivide-traps}, but this can be
17731 overridden at configure time using @option{--with-divide=breaks}.
17732 Divide-by-zero checks can be completely disabled using
17733 @option{-mno-check-zero-division}.
17734
17735 @item -mmemcpy
17736 @itemx -mno-memcpy
17737 @opindex mmemcpy
17738 @opindex mno-memcpy
17739 Force (do not force) the use of @code{memcpy} for non-trivial block
17740 moves. The default is @option{-mno-memcpy}, which allows GCC to inline
17741 most constant-sized copies.
17742
17743 @item -mlong-calls
17744 @itemx -mno-long-calls
17745 @opindex mlong-calls
17746 @opindex mno-long-calls
17747 Disable (do not disable) use of the @code{jal} instruction. Calling
17748 functions using @code{jal} is more efficient but requires the caller
17749 and callee to be in the same 256 megabyte segment.
17750
17751 This option has no effect on abicalls code. The default is
17752 @option{-mno-long-calls}.
17753
17754 @item -mmad
17755 @itemx -mno-mad
17756 @opindex mmad
17757 @opindex mno-mad
17758 Enable (disable) use of the @code{mad}, @code{madu} and @code{mul}
17759 instructions, as provided by the R4650 ISA@.
17760
17761 @item -mimadd
17762 @itemx -mno-imadd
17763 @opindex mimadd
17764 @opindex mno-imadd
17765 Enable (disable) use of the @code{madd} and @code{msub} integer
17766 instructions. The default is @option{-mimadd} on architectures
17767 that support @code{madd} and @code{msub} except for the 74k
17768 architecture where it was found to generate slower code.
17769
17770 @item -mfused-madd
17771 @itemx -mno-fused-madd
17772 @opindex mfused-madd
17773 @opindex mno-fused-madd
17774 Enable (disable) use of the floating-point multiply-accumulate
17775 instructions, when they are available. The default is
17776 @option{-mfused-madd}.
17777
17778 On the R8000 CPU when multiply-accumulate instructions are used,
17779 the intermediate product is calculated to infinite precision
17780 and is not subject to the FCSR Flush to Zero bit. This may be
17781 undesirable in some circumstances. On other processors the result
17782 is numerically identical to the equivalent computation using
17783 separate multiply, add, subtract and negate instructions.
17784
17785 @item -nocpp
17786 @opindex nocpp
17787 Tell the MIPS assembler to not run its preprocessor over user
17788 assembler files (with a @samp{.s} suffix) when assembling them.
17789
17790 @item -mfix-24k
17791 @item -mno-fix-24k
17792 @opindex mfix-24k
17793 @opindex mno-fix-24k
17794 Work around the 24K E48 (lost data on stores during refill) errata.
17795 The workarounds are implemented by the assembler rather than by GCC@.
17796
17797 @item -mfix-r4000
17798 @itemx -mno-fix-r4000
17799 @opindex mfix-r4000
17800 @opindex mno-fix-r4000
17801 Work around certain R4000 CPU errata:
17802 @itemize @minus
17803 @item
17804 A double-word or a variable shift may give an incorrect result if executed
17805 immediately after starting an integer division.
17806 @item
17807 A double-word or a variable shift may give an incorrect result if executed
17808 while an integer multiplication is in progress.
17809 @item
17810 An integer division may give an incorrect result if started in a delay slot
17811 of a taken branch or a jump.
17812 @end itemize
17813
17814 @item -mfix-r4400
17815 @itemx -mno-fix-r4400
17816 @opindex mfix-r4400
17817 @opindex mno-fix-r4400
17818 Work around certain R4400 CPU errata:
17819 @itemize @minus
17820 @item
17821 A double-word or a variable shift may give an incorrect result if executed
17822 immediately after starting an integer division.
17823 @end itemize
17824
17825 @item -mfix-r10000
17826 @itemx -mno-fix-r10000
17827 @opindex mfix-r10000
17828 @opindex mno-fix-r10000
17829 Work around certain R10000 errata:
17830 @itemize @minus
17831 @item
17832 @code{ll}/@code{sc} sequences may not behave atomically on revisions
17833 prior to 3.0. They may deadlock on revisions 2.6 and earlier.
17834 @end itemize
17835
17836 This option can only be used if the target architecture supports
17837 branch-likely instructions. @option{-mfix-r10000} is the default when
17838 @option{-march=r10000} is used; @option{-mno-fix-r10000} is the default
17839 otherwise.
17840
17841 @item -mfix-rm7000
17842 @itemx -mno-fix-rm7000
17843 @opindex mfix-rm7000
17844 Work around the RM7000 @code{dmult}/@code{dmultu} errata. The
17845 workarounds are implemented by the assembler rather than by GCC@.
17846
17847 @item -mfix-vr4120
17848 @itemx -mno-fix-vr4120
17849 @opindex mfix-vr4120
17850 Work around certain VR4120 errata:
17851 @itemize @minus
17852 @item
17853 @code{dmultu} does not always produce the correct result.
17854 @item
17855 @code{div} and @code{ddiv} do not always produce the correct result if one
17856 of the operands is negative.
17857 @end itemize
17858 The workarounds for the division errata rely on special functions in
17859 @file{libgcc.a}. At present, these functions are only provided by
17860 the @code{mips64vr*-elf} configurations.
17861
17862 Other VR4120 errata require a NOP to be inserted between certain pairs of
17863 instructions. These errata are handled by the assembler, not by GCC itself.
17864
17865 @item -mfix-vr4130
17866 @opindex mfix-vr4130
17867 Work around the VR4130 @code{mflo}/@code{mfhi} errata. The
17868 workarounds are implemented by the assembler rather than by GCC,
17869 although GCC avoids using @code{mflo} and @code{mfhi} if the
17870 VR4130 @code{macc}, @code{macchi}, @code{dmacc} and @code{dmacchi}
17871 instructions are available instead.
17872
17873 @item -mfix-sb1
17874 @itemx -mno-fix-sb1
17875 @opindex mfix-sb1
17876 Work around certain SB-1 CPU core errata.
17877 (This flag currently works around the SB-1 revision 2
17878 ``F1'' and ``F2'' floating-point errata.)
17879
17880 @item -mr10k-cache-barrier=@var{setting}
17881 @opindex mr10k-cache-barrier
17882 Specify whether GCC should insert cache barriers to avoid the
17883 side-effects of speculation on R10K processors.
17884
17885 In common with many processors, the R10K tries to predict the outcome
17886 of a conditional branch and speculatively executes instructions from
17887 the ``taken'' branch. It later aborts these instructions if the
17888 predicted outcome is wrong. However, on the R10K, even aborted
17889 instructions can have side effects.
17890
17891 This problem only affects kernel stores and, depending on the system,
17892 kernel loads. As an example, a speculatively-executed store may load
17893 the target memory into cache and mark the cache line as dirty, even if
17894 the store itself is later aborted. If a DMA operation writes to the
17895 same area of memory before the ``dirty'' line is flushed, the cached
17896 data overwrites the DMA-ed data. See the R10K processor manual
17897 for a full description, including other potential problems.
17898
17899 One workaround is to insert cache barrier instructions before every memory
17900 access that might be speculatively executed and that might have side
17901 effects even if aborted. @option{-mr10k-cache-barrier=@var{setting}}
17902 controls GCC's implementation of this workaround. It assumes that
17903 aborted accesses to any byte in the following regions does not have
17904 side effects:
17905
17906 @enumerate
17907 @item
17908 the memory occupied by the current function's stack frame;
17909
17910 @item
17911 the memory occupied by an incoming stack argument;
17912
17913 @item
17914 the memory occupied by an object with a link-time-constant address.
17915 @end enumerate
17916
17917 It is the kernel's responsibility to ensure that speculative
17918 accesses to these regions are indeed safe.
17919
17920 If the input program contains a function declaration such as:
17921
17922 @smallexample
17923 void foo (void);
17924 @end smallexample
17925
17926 then the implementation of @code{foo} must allow @code{j foo} and
17927 @code{jal foo} to be executed speculatively. GCC honors this
17928 restriction for functions it compiles itself. It expects non-GCC
17929 functions (such as hand-written assembly code) to do the same.
17930
17931 The option has three forms:
17932
17933 @table @gcctabopt
17934 @item -mr10k-cache-barrier=load-store
17935 Insert a cache barrier before a load or store that might be
17936 speculatively executed and that might have side effects even
17937 if aborted.
17938
17939 @item -mr10k-cache-barrier=store
17940 Insert a cache barrier before a store that might be speculatively
17941 executed and that might have side effects even if aborted.
17942
17943 @item -mr10k-cache-barrier=none
17944 Disable the insertion of cache barriers. This is the default setting.
17945 @end table
17946
17947 @item -mflush-func=@var{func}
17948 @itemx -mno-flush-func
17949 @opindex mflush-func
17950 Specifies the function to call to flush the I and D caches, or to not
17951 call any such function. If called, the function must take the same
17952 arguments as the common @code{_flush_func}, that is, the address of the
17953 memory range for which the cache is being flushed, the size of the
17954 memory range, and the number 3 (to flush both caches). The default
17955 depends on the target GCC was configured for, but commonly is either
17956 @code{_flush_func} or @code{__cpu_flush}.
17957
17958 @item mbranch-cost=@var{num}
17959 @opindex mbranch-cost
17960 Set the cost of branches to roughly @var{num} ``simple'' instructions.
17961 This cost is only a heuristic and is not guaranteed to produce
17962 consistent results across releases. A zero cost redundantly selects
17963 the default, which is based on the @option{-mtune} setting.
17964
17965 @item -mbranch-likely
17966 @itemx -mno-branch-likely
17967 @opindex mbranch-likely
17968 @opindex mno-branch-likely
17969 Enable or disable use of Branch Likely instructions, regardless of the
17970 default for the selected architecture. By default, Branch Likely
17971 instructions may be generated if they are supported by the selected
17972 architecture. An exception is for the MIPS32 and MIPS64 architectures
17973 and processors that implement those architectures; for those, Branch
17974 Likely instructions are not be generated by default because the MIPS32
17975 and MIPS64 architectures specifically deprecate their use.
17976
17977 @item -mfp-exceptions
17978 @itemx -mno-fp-exceptions
17979 @opindex mfp-exceptions
17980 Specifies whether FP exceptions are enabled. This affects how
17981 FP instructions are scheduled for some processors.
17982 The default is that FP exceptions are
17983 enabled.
17984
17985 For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
17986 64-bit code, then we can use both FP pipes. Otherwise, we can only use one
17987 FP pipe.
17988
17989 @item -mvr4130-align
17990 @itemx -mno-vr4130-align
17991 @opindex mvr4130-align
17992 The VR4130 pipeline is two-way superscalar, but can only issue two
17993 instructions together if the first one is 8-byte aligned. When this
17994 option is enabled, GCC aligns pairs of instructions that it
17995 thinks should execute in parallel.
17996
17997 This option only has an effect when optimizing for the VR4130.
17998 It normally makes code faster, but at the expense of making it bigger.
17999 It is enabled by default at optimization level @option{-O3}.
18000
18001 @item -msynci
18002 @itemx -mno-synci
18003 @opindex msynci
18004 Enable (disable) generation of @code{synci} instructions on
18005 architectures that support it. The @code{synci} instructions (if
18006 enabled) are generated when @code{__builtin___clear_cache} is
18007 compiled.
18008
18009 This option defaults to @option{-mno-synci}, but the default can be
18010 overridden by configuring GCC with @option{--with-synci}.
18011
18012 When compiling code for single processor systems, it is generally safe
18013 to use @code{synci}. However, on many multi-core (SMP) systems, it
18014 does not invalidate the instruction caches on all cores and may lead
18015 to undefined behavior.
18016
18017 @item -mrelax-pic-calls
18018 @itemx -mno-relax-pic-calls
18019 @opindex mrelax-pic-calls
18020 Try to turn PIC calls that are normally dispatched via register
18021 @code{$25} into direct calls. This is only possible if the linker can
18022 resolve the destination at link-time and if the destination is within
18023 range for a direct call.
18024
18025 @option{-mrelax-pic-calls} is the default if GCC was configured to use
18026 an assembler and a linker that support the @code{.reloc} assembly
18027 directive and @option{-mexplicit-relocs} is in effect. With
18028 @option{-mno-explicit-relocs}, this optimization can be performed by the
18029 assembler and the linker alone without help from the compiler.
18030
18031 @item -mmcount-ra-address
18032 @itemx -mno-mcount-ra-address
18033 @opindex mmcount-ra-address
18034 @opindex mno-mcount-ra-address
18035 Emit (do not emit) code that allows @code{_mcount} to modify the
18036 calling function's return address. When enabled, this option extends
18037 the usual @code{_mcount} interface with a new @var{ra-address}
18038 parameter, which has type @code{intptr_t *} and is passed in register
18039 @code{$12}. @code{_mcount} can then modify the return address by
18040 doing both of the following:
18041 @itemize
18042 @item
18043 Returning the new address in register @code{$31}.
18044 @item
18045 Storing the new address in @code{*@var{ra-address}},
18046 if @var{ra-address} is nonnull.
18047 @end itemize
18048
18049 The default is @option{-mno-mcount-ra-address}.
18050
18051 @end table
18052
18053 @node MMIX Options
18054 @subsection MMIX Options
18055 @cindex MMIX Options
18056
18057 These options are defined for the MMIX:
18058
18059 @table @gcctabopt
18060 @item -mlibfuncs
18061 @itemx -mno-libfuncs
18062 @opindex mlibfuncs
18063 @opindex mno-libfuncs
18064 Specify that intrinsic library functions are being compiled, passing all
18065 values in registers, no matter the size.
18066
18067 @item -mepsilon
18068 @itemx -mno-epsilon
18069 @opindex mepsilon
18070 @opindex mno-epsilon
18071 Generate floating-point comparison instructions that compare with respect
18072 to the @code{rE} epsilon register.
18073
18074 @item -mabi=mmixware
18075 @itemx -mabi=gnu
18076 @opindex mabi=mmixware
18077 @opindex mabi=gnu
18078 Generate code that passes function parameters and return values that (in
18079 the called function) are seen as registers @code{$0} and up, as opposed to
18080 the GNU ABI which uses global registers @code{$231} and up.
18081
18082 @item -mzero-extend
18083 @itemx -mno-zero-extend
18084 @opindex mzero-extend
18085 @opindex mno-zero-extend
18086 When reading data from memory in sizes shorter than 64 bits, use (do not
18087 use) zero-extending load instructions by default, rather than
18088 sign-extending ones.
18089
18090 @item -mknuthdiv
18091 @itemx -mno-knuthdiv
18092 @opindex mknuthdiv
18093 @opindex mno-knuthdiv
18094 Make the result of a division yielding a remainder have the same sign as
18095 the divisor. With the default, @option{-mno-knuthdiv}, the sign of the
18096 remainder follows the sign of the dividend. Both methods are
18097 arithmetically valid, the latter being almost exclusively used.
18098
18099 @item -mtoplevel-symbols
18100 @itemx -mno-toplevel-symbols
18101 @opindex mtoplevel-symbols
18102 @opindex mno-toplevel-symbols
18103 Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly
18104 code can be used with the @code{PREFIX} assembly directive.
18105
18106 @item -melf
18107 @opindex melf
18108 Generate an executable in the ELF format, rather than the default
18109 @samp{mmo} format used by the @command{mmix} simulator.
18110
18111 @item -mbranch-predict
18112 @itemx -mno-branch-predict
18113 @opindex mbranch-predict
18114 @opindex mno-branch-predict
18115 Use (do not use) the probable-branch instructions, when static branch
18116 prediction indicates a probable branch.
18117
18118 @item -mbase-addresses
18119 @itemx -mno-base-addresses
18120 @opindex mbase-addresses
18121 @opindex mno-base-addresses
18122 Generate (do not generate) code that uses @emph{base addresses}. Using a
18123 base address automatically generates a request (handled by the assembler
18124 and the linker) for a constant to be set up in a global register. The
18125 register is used for one or more base address requests within the range 0
18126 to 255 from the value held in the register. The generally leads to short
18127 and fast code, but the number of different data items that can be
18128 addressed is limited. This means that a program that uses lots of static
18129 data may require @option{-mno-base-addresses}.
18130
18131 @item -msingle-exit
18132 @itemx -mno-single-exit
18133 @opindex msingle-exit
18134 @opindex mno-single-exit
18135 Force (do not force) generated code to have a single exit point in each
18136 function.
18137 @end table
18138
18139 @node MN10300 Options
18140 @subsection MN10300 Options
18141 @cindex MN10300 options
18142
18143 These @option{-m} options are defined for Matsushita MN10300 architectures:
18144
18145 @table @gcctabopt
18146 @item -mmult-bug
18147 @opindex mmult-bug
18148 Generate code to avoid bugs in the multiply instructions for the MN10300
18149 processors. This is the default.
18150
18151 @item -mno-mult-bug
18152 @opindex mno-mult-bug
18153 Do not generate code to avoid bugs in the multiply instructions for the
18154 MN10300 processors.
18155
18156 @item -mam33
18157 @opindex mam33
18158 Generate code using features specific to the AM33 processor.
18159
18160 @item -mno-am33
18161 @opindex mno-am33
18162 Do not generate code using features specific to the AM33 processor. This
18163 is the default.
18164
18165 @item -mam33-2
18166 @opindex mam33-2
18167 Generate code using features specific to the AM33/2.0 processor.
18168
18169 @item -mam34
18170 @opindex mam34
18171 Generate code using features specific to the AM34 processor.
18172
18173 @item -mtune=@var{cpu-type}
18174 @opindex mtune
18175 Use the timing characteristics of the indicated CPU type when
18176 scheduling instructions. This does not change the targeted processor
18177 type. The CPU type must be one of @samp{mn10300}, @samp{am33},
18178 @samp{am33-2} or @samp{am34}.
18179
18180 @item -mreturn-pointer-on-d0
18181 @opindex mreturn-pointer-on-d0
18182 When generating a function that returns a pointer, return the pointer
18183 in both @code{a0} and @code{d0}. Otherwise, the pointer is returned
18184 only in @code{a0}, and attempts to call such functions without a prototype
18185 result in errors. Note that this option is on by default; use
18186 @option{-mno-return-pointer-on-d0} to disable it.
18187
18188 @item -mno-crt0
18189 @opindex mno-crt0
18190 Do not link in the C run-time initialization object file.
18191
18192 @item -mrelax
18193 @opindex mrelax
18194 Indicate to the linker that it should perform a relaxation optimization pass
18195 to shorten branches, calls and absolute memory addresses. This option only
18196 has an effect when used on the command line for the final link step.
18197
18198 This option makes symbolic debugging impossible.
18199
18200 @item -mliw
18201 @opindex mliw
18202 Allow the compiler to generate @emph{Long Instruction Word}
18203 instructions if the target is the @samp{AM33} or later. This is the
18204 default. This option defines the preprocessor macro @code{__LIW__}.
18205
18206 @item -mnoliw
18207 @opindex mnoliw
18208 Do not allow the compiler to generate @emph{Long Instruction Word}
18209 instructions. This option defines the preprocessor macro
18210 @code{__NO_LIW__}.
18211
18212 @item -msetlb
18213 @opindex msetlb
18214 Allow the compiler to generate the @emph{SETLB} and @emph{Lcc}
18215 instructions if the target is the @samp{AM33} or later. This is the
18216 default. This option defines the preprocessor macro @code{__SETLB__}.
18217
18218 @item -mnosetlb
18219 @opindex mnosetlb
18220 Do not allow the compiler to generate @emph{SETLB} or @emph{Lcc}
18221 instructions. This option defines the preprocessor macro
18222 @code{__NO_SETLB__}.
18223
18224 @end table
18225
18226 @node Moxie Options
18227 @subsection Moxie Options
18228 @cindex Moxie Options
18229
18230 @table @gcctabopt
18231
18232 @item -meb
18233 @opindex meb
18234 Generate big-endian code. This is the default for @samp{moxie-*-*}
18235 configurations.
18236
18237 @item -mel
18238 @opindex mel
18239 Generate little-endian code.
18240
18241 @item -mmul.x
18242 @opindex mmul.x
18243 Generate mul.x and umul.x instructions. This is the default for
18244 @samp{moxiebox-*-*} configurations.
18245
18246 @item -mno-crt0
18247 @opindex mno-crt0
18248 Do not link in the C run-time initialization object file.
18249
18250 @end table
18251
18252 @node MSP430 Options
18253 @subsection MSP430 Options
18254 @cindex MSP430 Options
18255
18256 These options are defined for the MSP430:
18257
18258 @table @gcctabopt
18259
18260 @item -masm-hex
18261 @opindex masm-hex
18262 Force assembly output to always use hex constants. Normally such
18263 constants are signed decimals, but this option is available for
18264 testsuite and/or aesthetic purposes.
18265
18266 @item -mmcu=
18267 @opindex mmcu=
18268 Select the MCU to target. This is used to create a C preprocessor
18269 symbol based upon the MCU name, converted to upper case and pre- and
18270 post-fixed with @samp{__}. This in turn is used by the
18271 @file{msp430.h} header file to select an MCU-specific supplementary
18272 header file.
18273
18274 The option also sets the ISA to use. If the MCU name is one that is
18275 known to only support the 430 ISA then that is selected, otherwise the
18276 430X ISA is selected. A generic MCU name of @samp{msp430} can also be
18277 used to select the 430 ISA. Similarly the generic @samp{msp430x} MCU
18278 name selects the 430X ISA.
18279
18280 In addition an MCU-specific linker script is added to the linker
18281 command line. The script's name is the name of the MCU with
18282 @file{.ld} appended. Thus specifying @option{-mmcu=xxx} on the @command{gcc}
18283 command line defines the C preprocessor symbol @code{__XXX__} and
18284 cause the linker to search for a script called @file{xxx.ld}.
18285
18286 This option is also passed on to the assembler.
18287
18288 @item -mcpu=
18289 @opindex mcpu=
18290 Specifies the ISA to use. Accepted values are @samp{msp430},
18291 @samp{msp430x} and @samp{msp430xv2}. This option is deprecated. The
18292 @option{-mmcu=} option should be used to select the ISA.
18293
18294 @item -msim
18295 @opindex msim
18296 Link to the simulator runtime libraries and linker script. Overrides
18297 any scripts that would be selected by the @option{-mmcu=} option.
18298
18299 @item -mlarge
18300 @opindex mlarge
18301 Use large-model addressing (20-bit pointers, 32-bit @code{size_t}).
18302
18303 @item -msmall
18304 @opindex msmall
18305 Use small-model addressing (16-bit pointers, 16-bit @code{size_t}).
18306
18307 @item -mrelax
18308 @opindex mrelax
18309 This option is passed to the assembler and linker, and allows the
18310 linker to perform certain optimizations that cannot be done until
18311 the final link.
18312
18313 @item mhwmult=
18314 @opindex mhwmult=
18315 Describes the type of hardware multiply supported by the target.
18316 Accepted values are @samp{none} for no hardware multiply, @samp{16bit}
18317 for the original 16-bit-only multiply supported by early MCUs.
18318 @samp{32bit} for the 16/32-bit multiply supported by later MCUs and
18319 @samp{f5series} for the 16/32-bit multiply supported by F5-series MCUs.
18320 A value of @samp{auto} can also be given. This tells GCC to deduce
18321 the hardware multiply support based upon the MCU name provided by the
18322 @option{-mmcu} option. If no @option{-mmcu} option is specified then
18323 @samp{32bit} hardware multiply support is assumed. @samp{auto} is the
18324 default setting.
18325
18326 Hardware multiplies are normally performed by calling a library
18327 routine. This saves space in the generated code. When compiling at
18328 @option{-O3} or higher however the hardware multiplier is invoked
18329 inline. This makes for bigger, but faster code.
18330
18331 The hardware multiply routines disable interrupts whilst running and
18332 restore the previous interrupt state when they finish. This makes
18333 them safe to use inside interrupt handlers as well as in normal code.
18334
18335 @item -minrt
18336 @opindex minrt
18337 Enable the use of a minimum runtime environment - no static
18338 initializers or constructors. This is intended for memory-constrained
18339 devices. The compiler includes special symbols in some objects
18340 that tell the linker and runtime which code fragments are required.
18341
18342 @item -mcode-region=
18343 @itemx -mdata-region=
18344 @opindex mcode-region
18345 @opindex mdata-region
18346 These options tell the compiler where to place functions and data that
18347 do not have one of the @code{lower}, @code{upper}, @code{either} or
18348 @code{section} attributes. Possible values are @code{lower},
18349 @code{upper}, @code{either} or @code{any}. The first three behave
18350 like the corresponding attribute. The fourth possible value -
18351 @code{any} - is the default. It leaves placement entirely up to the
18352 linker script and how it assigns the standard sections (.text, .data
18353 etc) to the memory regions.
18354
18355 @end table
18356
18357 @node NDS32 Options
18358 @subsection NDS32 Options
18359 @cindex NDS32 Options
18360
18361 These options are defined for NDS32 implementations:
18362
18363 @table @gcctabopt
18364
18365 @item -mbig-endian
18366 @opindex mbig-endian
18367 Generate code in big-endian mode.
18368
18369 @item -mlittle-endian
18370 @opindex mlittle-endian
18371 Generate code in little-endian mode.
18372
18373 @item -mreduced-regs
18374 @opindex mreduced-regs
18375 Use reduced-set registers for register allocation.
18376
18377 @item -mfull-regs
18378 @opindex mfull-regs
18379 Use full-set registers for register allocation.
18380
18381 @item -mcmov
18382 @opindex mcmov
18383 Generate conditional move instructions.
18384
18385 @item -mno-cmov
18386 @opindex mno-cmov
18387 Do not generate conditional move instructions.
18388
18389 @item -mperf-ext
18390 @opindex mperf-ext
18391 Generate performance extension instructions.
18392
18393 @item -mno-perf-ext
18394 @opindex mno-perf-ext
18395 Do not generate performance extension instructions.
18396
18397 @item -mv3push
18398 @opindex mv3push
18399 Generate v3 push25/pop25 instructions.
18400
18401 @item -mno-v3push
18402 @opindex mno-v3push
18403 Do not generate v3 push25/pop25 instructions.
18404
18405 @item -m16-bit
18406 @opindex m16-bit
18407 Generate 16-bit instructions.
18408
18409 @item -mno-16-bit
18410 @opindex mno-16-bit
18411 Do not generate 16-bit instructions.
18412
18413 @item -misr-vector-size=@var{num}
18414 @opindex misr-vector-size
18415 Specify the size of each interrupt vector, which must be 4 or 16.
18416
18417 @item -mcache-block-size=@var{num}
18418 @opindex mcache-block-size
18419 Specify the size of each cache block,
18420 which must be a power of 2 between 4 and 512.
18421
18422 @item -march=@var{arch}
18423 @opindex march
18424 Specify the name of the target architecture.
18425
18426 @item -mcmodel=@var{code-model}
18427 @opindex mcmodel
18428 Set the code model to one of
18429 @table @asis
18430 @item @samp{small}
18431 All the data and read-only data segments must be within 512KB addressing space.
18432 The text segment must be within 16MB addressing space.
18433 @item @samp{medium}
18434 The data segment must be within 512KB while the read-only data segment can be
18435 within 4GB addressing space. The text segment should be still within 16MB
18436 addressing space.
18437 @item @samp{large}
18438 All the text and data segments can be within 4GB addressing space.
18439 @end table
18440
18441 @item -mctor-dtor
18442 @opindex mctor-dtor
18443 Enable constructor/destructor feature.
18444
18445 @item -mrelax
18446 @opindex mrelax
18447 Guide linker to relax instructions.
18448
18449 @end table
18450
18451 @node Nios II Options
18452 @subsection Nios II Options
18453 @cindex Nios II options
18454 @cindex Altera Nios II options
18455
18456 These are the options defined for the Altera Nios II processor.
18457
18458 @table @gcctabopt
18459
18460 @item -G @var{num}
18461 @opindex G
18462 @cindex smaller data references
18463 Put global and static objects less than or equal to @var{num} bytes
18464 into the small data or BSS sections instead of the normal data or BSS
18465 sections. The default value of @var{num} is 8.
18466
18467 @item -mgpopt=@var{option}
18468 @item -mgpopt
18469 @itemx -mno-gpopt
18470 @opindex mgpopt
18471 @opindex mno-gpopt
18472 Generate (do not generate) GP-relative accesses. The following
18473 @var{option} names are recognized:
18474
18475 @table @samp
18476
18477 @item none
18478 Do not generate GP-relative accesses.
18479
18480 @item local
18481 Generate GP-relative accesses for small data objects that are not
18482 external or weak. Also use GP-relative addressing for objects that
18483 have been explicitly placed in a small data section via a @code{section}
18484 attribute.
18485
18486 @item global
18487 As for @samp{local}, but also generate GP-relative accesses for
18488 small data objects that are external or weak. If you use this option,
18489 you must ensure that all parts of your program (including libraries) are
18490 compiled with the same @option{-G} setting.
18491
18492 @item data
18493 Generate GP-relative accesses for all data objects in the program. If you
18494 use this option, the entire data and BSS segments
18495 of your program must fit in 64K of memory and you must use an appropriate
18496 linker script to allocate them within the addressible range of the
18497 global pointer.
18498
18499 @item all
18500 Generate GP-relative addresses for function pointers as well as data
18501 pointers. If you use this option, the entire text, data, and BSS segments
18502 of your program must fit in 64K of memory and you must use an appropriate
18503 linker script to allocate them within the addressible range of the
18504 global pointer.
18505
18506 @end table
18507
18508 @option{-mgpopt} is equivalent to @option{-mgpopt=local}, and
18509 @option{-mno-gpopt} is equivalent to @option{-mgpopt=none}.
18510
18511 The default is @option{-mgpopt} except when @option{-fpic} or
18512 @option{-fPIC} is specified to generate position-independent code.
18513 Note that the Nios II ABI does not permit GP-relative accesses from
18514 shared libraries.
18515
18516 You may need to specify @option{-mno-gpopt} explicitly when building
18517 programs that include large amounts of small data, including large
18518 GOT data sections. In this case, the 16-bit offset for GP-relative
18519 addressing may not be large enough to allow access to the entire
18520 small data section.
18521
18522 @item -mel
18523 @itemx -meb
18524 @opindex mel
18525 @opindex meb
18526 Generate little-endian (default) or big-endian (experimental) code,
18527 respectively.
18528
18529 @item -march=@var{arch}
18530 @opindex march
18531 This specifies the name of the target Nios II architecture. GCC uses this
18532 name to determine what kind of instructions it can emit when generating
18533 assembly code. Permissible names are: @samp{r1}, @samp{r2}.
18534
18535 The preprocessor macro @code{__nios2_arch__} is available to programs,
18536 with value 1 or 2, indicating the targeted ISA level.
18537
18538 @item -mbypass-cache
18539 @itemx -mno-bypass-cache
18540 @opindex mno-bypass-cache
18541 @opindex mbypass-cache
18542 Force all load and store instructions to always bypass cache by
18543 using I/O variants of the instructions. The default is not to
18544 bypass the cache.
18545
18546 @item -mno-cache-volatile
18547 @itemx -mcache-volatile
18548 @opindex mcache-volatile
18549 @opindex mno-cache-volatile
18550 Volatile memory access bypass the cache using the I/O variants of
18551 the load and store instructions. The default is not to bypass the cache.
18552
18553 @item -mno-fast-sw-div
18554 @itemx -mfast-sw-div
18555 @opindex mno-fast-sw-div
18556 @opindex mfast-sw-div
18557 Do not use table-based fast divide for small numbers. The default
18558 is to use the fast divide at @option{-O3} and above.
18559
18560 @item -mno-hw-mul
18561 @itemx -mhw-mul
18562 @itemx -mno-hw-mulx
18563 @itemx -mhw-mulx
18564 @itemx -mno-hw-div
18565 @itemx -mhw-div
18566 @opindex mno-hw-mul
18567 @opindex mhw-mul
18568 @opindex mno-hw-mulx
18569 @opindex mhw-mulx
18570 @opindex mno-hw-div
18571 @opindex mhw-div
18572 Enable or disable emitting @code{mul}, @code{mulx} and @code{div} family of
18573 instructions by the compiler. The default is to emit @code{mul}
18574 and not emit @code{div} and @code{mulx}.
18575
18576 @item -mbmx
18577 @itemx -mno-bmx
18578 @itemx -mcdx
18579 @itemx -mno-cdx
18580 Enable or disable generation of Nios II R2 BMX (bit manipulation) and
18581 CDX (code density) instructions. Enabling these instructions also
18582 requires @option{-march=r2}. Since these instructions are optional
18583 extensions to the R2 architecture, the default is not to emit them.
18584
18585 @item -mcustom-@var{insn}=@var{N}
18586 @itemx -mno-custom-@var{insn}
18587 @opindex mcustom-@var{insn}
18588 @opindex mno-custom-@var{insn}
18589 Each @option{-mcustom-@var{insn}=@var{N}} option enables use of a
18590 custom instruction with encoding @var{N} when generating code that uses
18591 @var{insn}. For example, @option{-mcustom-fadds=253} generates custom
18592 instruction 253 for single-precision floating-point add operations instead
18593 of the default behavior of using a library call.
18594
18595 The following values of @var{insn} are supported. Except as otherwise
18596 noted, floating-point operations are expected to be implemented with
18597 normal IEEE 754 semantics and correspond directly to the C operators or the
18598 equivalent GCC built-in functions (@pxref{Other Builtins}).
18599
18600 Single-precision floating point:
18601 @table @asis
18602
18603 @item @samp{fadds}, @samp{fsubs}, @samp{fdivs}, @samp{fmuls}
18604 Binary arithmetic operations.
18605
18606 @item @samp{fnegs}
18607 Unary negation.
18608
18609 @item @samp{fabss}
18610 Unary absolute value.
18611
18612 @item @samp{fcmpeqs}, @samp{fcmpges}, @samp{fcmpgts}, @samp{fcmples}, @samp{fcmplts}, @samp{fcmpnes}
18613 Comparison operations.
18614
18615 @item @samp{fmins}, @samp{fmaxs}
18616 Floating-point minimum and maximum. These instructions are only
18617 generated if @option{-ffinite-math-only} is specified.
18618
18619 @item @samp{fsqrts}
18620 Unary square root operation.
18621
18622 @item @samp{fcoss}, @samp{fsins}, @samp{ftans}, @samp{fatans}, @samp{fexps}, @samp{flogs}
18623 Floating-point trigonometric and exponential functions. These instructions
18624 are only generated if @option{-funsafe-math-optimizations} is also specified.
18625
18626 @end table
18627
18628 Double-precision floating point:
18629 @table @asis
18630
18631 @item @samp{faddd}, @samp{fsubd}, @samp{fdivd}, @samp{fmuld}
18632 Binary arithmetic operations.
18633
18634 @item @samp{fnegd}
18635 Unary negation.
18636
18637 @item @samp{fabsd}
18638 Unary absolute value.
18639
18640 @item @samp{fcmpeqd}, @samp{fcmpged}, @samp{fcmpgtd}, @samp{fcmpled}, @samp{fcmpltd}, @samp{fcmpned}
18641 Comparison operations.
18642
18643 @item @samp{fmind}, @samp{fmaxd}
18644 Double-precision minimum and maximum. These instructions are only
18645 generated if @option{-ffinite-math-only} is specified.
18646
18647 @item @samp{fsqrtd}
18648 Unary square root operation.
18649
18650 @item @samp{fcosd}, @samp{fsind}, @samp{ftand}, @samp{fatand}, @samp{fexpd}, @samp{flogd}
18651 Double-precision trigonometric and exponential functions. These instructions
18652 are only generated if @option{-funsafe-math-optimizations} is also specified.
18653
18654 @end table
18655
18656 Conversions:
18657 @table @asis
18658 @item @samp{fextsd}
18659 Conversion from single precision to double precision.
18660
18661 @item @samp{ftruncds}
18662 Conversion from double precision to single precision.
18663
18664 @item @samp{fixsi}, @samp{fixsu}, @samp{fixdi}, @samp{fixdu}
18665 Conversion from floating point to signed or unsigned integer types, with
18666 truncation towards zero.
18667
18668 @item @samp{round}
18669 Conversion from single-precision floating point to signed integer,
18670 rounding to the nearest integer and ties away from zero.
18671 This corresponds to the @code{__builtin_lroundf} function when
18672 @option{-fno-math-errno} is used.
18673
18674 @item @samp{floatis}, @samp{floatus}, @samp{floatid}, @samp{floatud}
18675 Conversion from signed or unsigned integer types to floating-point types.
18676
18677 @end table
18678
18679 In addition, all of the following transfer instructions for internal
18680 registers X and Y must be provided to use any of the double-precision
18681 floating-point instructions. Custom instructions taking two
18682 double-precision source operands expect the first operand in the
18683 64-bit register X. The other operand (or only operand of a unary
18684 operation) is given to the custom arithmetic instruction with the
18685 least significant half in source register @var{src1} and the most
18686 significant half in @var{src2}. A custom instruction that returns a
18687 double-precision result returns the most significant 32 bits in the
18688 destination register and the other half in 32-bit register Y.
18689 GCC automatically generates the necessary code sequences to write
18690 register X and/or read register Y when double-precision floating-point
18691 instructions are used.
18692
18693 @table @asis
18694
18695 @item @samp{fwrx}
18696 Write @var{src1} into the least significant half of X and @var{src2} into
18697 the most significant half of X.
18698
18699 @item @samp{fwry}
18700 Write @var{src1} into Y.
18701
18702 @item @samp{frdxhi}, @samp{frdxlo}
18703 Read the most or least (respectively) significant half of X and store it in
18704 @var{dest}.
18705
18706 @item @samp{frdy}
18707 Read the value of Y and store it into @var{dest}.
18708 @end table
18709
18710 Note that you can gain more local control over generation of Nios II custom
18711 instructions by using the @code{target("custom-@var{insn}=@var{N}")}
18712 and @code{target("no-custom-@var{insn}")} function attributes
18713 (@pxref{Function Attributes})
18714 or pragmas (@pxref{Function Specific Option Pragmas}).
18715
18716 @item -mcustom-fpu-cfg=@var{name}
18717 @opindex mcustom-fpu-cfg
18718
18719 This option enables a predefined, named set of custom instruction encodings
18720 (see @option{-mcustom-@var{insn}} above).
18721 Currently, the following sets are defined:
18722
18723 @option{-mcustom-fpu-cfg=60-1} is equivalent to:
18724 @gccoptlist{-mcustom-fmuls=252 @gol
18725 -mcustom-fadds=253 @gol
18726 -mcustom-fsubs=254 @gol
18727 -fsingle-precision-constant}
18728
18729 @option{-mcustom-fpu-cfg=60-2} is equivalent to:
18730 @gccoptlist{-mcustom-fmuls=252 @gol
18731 -mcustom-fadds=253 @gol
18732 -mcustom-fsubs=254 @gol
18733 -mcustom-fdivs=255 @gol
18734 -fsingle-precision-constant}
18735
18736 @option{-mcustom-fpu-cfg=72-3} is equivalent to:
18737 @gccoptlist{-mcustom-floatus=243 @gol
18738 -mcustom-fixsi=244 @gol
18739 -mcustom-floatis=245 @gol
18740 -mcustom-fcmpgts=246 @gol
18741 -mcustom-fcmples=249 @gol
18742 -mcustom-fcmpeqs=250 @gol
18743 -mcustom-fcmpnes=251 @gol
18744 -mcustom-fmuls=252 @gol
18745 -mcustom-fadds=253 @gol
18746 -mcustom-fsubs=254 @gol
18747 -mcustom-fdivs=255 @gol
18748 -fsingle-precision-constant}
18749
18750 Custom instruction assignments given by individual
18751 @option{-mcustom-@var{insn}=} options override those given by
18752 @option{-mcustom-fpu-cfg=}, regardless of the
18753 order of the options on the command line.
18754
18755 Note that you can gain more local control over selection of a FPU
18756 configuration by using the @code{target("custom-fpu-cfg=@var{name}")}
18757 function attribute (@pxref{Function Attributes})
18758 or pragma (@pxref{Function Specific Option Pragmas}).
18759
18760 @end table
18761
18762 These additional @samp{-m} options are available for the Altera Nios II
18763 ELF (bare-metal) target:
18764
18765 @table @gcctabopt
18766
18767 @item -mhal
18768 @opindex mhal
18769 Link with HAL BSP. This suppresses linking with the GCC-provided C runtime
18770 startup and termination code, and is typically used in conjunction with
18771 @option{-msys-crt0=} to specify the location of the alternate startup code
18772 provided by the HAL BSP.
18773
18774 @item -msmallc
18775 @opindex msmallc
18776 Link with a limited version of the C library, @option{-lsmallc}, rather than
18777 Newlib.
18778
18779 @item -msys-crt0=@var{startfile}
18780 @opindex msys-crt0
18781 @var{startfile} is the file name of the startfile (crt0) to use
18782 when linking. This option is only useful in conjunction with @option{-mhal}.
18783
18784 @item -msys-lib=@var{systemlib}
18785 @opindex msys-lib
18786 @var{systemlib} is the library name of the library that provides
18787 low-level system calls required by the C library,
18788 e.g. @code{read} and @code{write}.
18789 This option is typically used to link with a library provided by a HAL BSP.
18790
18791 @end table
18792
18793 @node Nvidia PTX Options
18794 @subsection Nvidia PTX Options
18795 @cindex Nvidia PTX options
18796 @cindex nvptx options
18797
18798 These options are defined for Nvidia PTX:
18799
18800 @table @gcctabopt
18801
18802 @item -m32
18803 @itemx -m64
18804 @opindex m32
18805 @opindex m64
18806 Generate code for 32-bit or 64-bit ABI.
18807
18808 @item -mmainkernel
18809 @opindex mmainkernel
18810 Link in code for a __main kernel. This is for stand-alone instead of
18811 offloading execution.
18812
18813 @end table
18814
18815 @node PDP-11 Options
18816 @subsection PDP-11 Options
18817 @cindex PDP-11 Options
18818
18819 These options are defined for the PDP-11:
18820
18821 @table @gcctabopt
18822 @item -mfpu
18823 @opindex mfpu
18824 Use hardware FPP floating point. This is the default. (FIS floating
18825 point on the PDP-11/40 is not supported.)
18826
18827 @item -msoft-float
18828 @opindex msoft-float
18829 Do not use hardware floating point.
18830
18831 @item -mac0
18832 @opindex mac0
18833 Return floating-point results in ac0 (fr0 in Unix assembler syntax).
18834
18835 @item -mno-ac0
18836 @opindex mno-ac0
18837 Return floating-point results in memory. This is the default.
18838
18839 @item -m40
18840 @opindex m40
18841 Generate code for a PDP-11/40.
18842
18843 @item -m45
18844 @opindex m45
18845 Generate code for a PDP-11/45. This is the default.
18846
18847 @item -m10
18848 @opindex m10
18849 Generate code for a PDP-11/10.
18850
18851 @item -mbcopy-builtin
18852 @opindex mbcopy-builtin
18853 Use inline @code{movmemhi} patterns for copying memory. This is the
18854 default.
18855
18856 @item -mbcopy
18857 @opindex mbcopy
18858 Do not use inline @code{movmemhi} patterns for copying memory.
18859
18860 @item -mint16
18861 @itemx -mno-int32
18862 @opindex mint16
18863 @opindex mno-int32
18864 Use 16-bit @code{int}. This is the default.
18865
18866 @item -mint32
18867 @itemx -mno-int16
18868 @opindex mint32
18869 @opindex mno-int16
18870 Use 32-bit @code{int}.
18871
18872 @item -mfloat64
18873 @itemx -mno-float32
18874 @opindex mfloat64
18875 @opindex mno-float32
18876 Use 64-bit @code{float}. This is the default.
18877
18878 @item -mfloat32
18879 @itemx -mno-float64
18880 @opindex mfloat32
18881 @opindex mno-float64
18882 Use 32-bit @code{float}.
18883
18884 @item -mabshi
18885 @opindex mabshi
18886 Use @code{abshi2} pattern. This is the default.
18887
18888 @item -mno-abshi
18889 @opindex mno-abshi
18890 Do not use @code{abshi2} pattern.
18891
18892 @item -mbranch-expensive
18893 @opindex mbranch-expensive
18894 Pretend that branches are expensive. This is for experimenting with
18895 code generation only.
18896
18897 @item -mbranch-cheap
18898 @opindex mbranch-cheap
18899 Do not pretend that branches are expensive. This is the default.
18900
18901 @item -munix-asm
18902 @opindex munix-asm
18903 Use Unix assembler syntax. This is the default when configured for
18904 @samp{pdp11-*-bsd}.
18905
18906 @item -mdec-asm
18907 @opindex mdec-asm
18908 Use DEC assembler syntax. This is the default when configured for any
18909 PDP-11 target other than @samp{pdp11-*-bsd}.
18910 @end table
18911
18912 @node picoChip Options
18913 @subsection picoChip Options
18914 @cindex picoChip options
18915
18916 These @samp{-m} options are defined for picoChip implementations:
18917
18918 @table @gcctabopt
18919
18920 @item -mae=@var{ae_type}
18921 @opindex mcpu
18922 Set the instruction set, register set, and instruction scheduling
18923 parameters for array element type @var{ae_type}. Supported values
18924 for @var{ae_type} are @samp{ANY}, @samp{MUL}, and @samp{MAC}.
18925
18926 @option{-mae=ANY} selects a completely generic AE type. Code
18927 generated with this option runs on any of the other AE types. The
18928 code is not as efficient as it would be if compiled for a specific
18929 AE type, and some types of operation (e.g., multiplication) do not
18930 work properly on all types of AE.
18931
18932 @option{-mae=MUL} selects a MUL AE type. This is the most useful AE type
18933 for compiled code, and is the default.
18934
18935 @option{-mae=MAC} selects a DSP-style MAC AE. Code compiled with this
18936 option may suffer from poor performance of byte (char) manipulation,
18937 since the DSP AE does not provide hardware support for byte load/stores.
18938
18939 @item -msymbol-as-address
18940 Enable the compiler to directly use a symbol name as an address in a
18941 load/store instruction, without first loading it into a
18942 register. Typically, the use of this option generates larger
18943 programs, which run faster than when the option isn't used. However, the
18944 results vary from program to program, so it is left as a user option,
18945 rather than being permanently enabled.
18946
18947 @item -mno-inefficient-warnings
18948 Disables warnings about the generation of inefficient code. These
18949 warnings can be generated, for example, when compiling code that
18950 performs byte-level memory operations on the MAC AE type. The MAC AE has
18951 no hardware support for byte-level memory operations, so all byte
18952 load/stores must be synthesized from word load/store operations. This is
18953 inefficient and a warning is generated to indicate
18954 that you should rewrite the code to avoid byte operations, or to target
18955 an AE type that has the necessary hardware support. This option disables
18956 these warnings.
18957
18958 @end table
18959
18960 @node PowerPC Options
18961 @subsection PowerPC Options
18962 @cindex PowerPC options
18963
18964 These are listed under @xref{RS/6000 and PowerPC Options}.
18965
18966 @node RL78 Options
18967 @subsection RL78 Options
18968 @cindex RL78 Options
18969
18970 @table @gcctabopt
18971
18972 @item -msim
18973 @opindex msim
18974 Links in additional target libraries to support operation within a
18975 simulator.
18976
18977 @item -mmul=none
18978 @itemx -mmul=g10
18979 @itemx -mmul=g13
18980 @itemx -mmul=g14
18981 @itemx -mmul=rl78
18982 @opindex mmul
18983 Specifies the type of hardware multiplication and division support to
18984 be used. The simplest is @code{none}, which uses software for both
18985 multiplication and division. This is the default. The @code{g13}
18986 value is for the hardware multiply/divide peripheral found on the
18987 RL78/G13 (S2 core) targets. The @code{g14} value selects the use of
18988 the multiplication and division instructions supported by the RL78/G14
18989 (S3 core) parts. The value @code{rl78} is an alias for @code{g14} and
18990 the value @code{mg10} is an alias for @code{none}.
18991
18992 In addition a C preprocessor macro is defined, based upon the setting
18993 of this option. Possible values are: @code{__RL78_MUL_NONE__},
18994 @code{__RL78_MUL_G13__} or @code{__RL78_MUL_G14__}.
18995
18996 @item -mcpu=g10
18997 @itemx -mcpu=g13
18998 @itemx -mcpu=g14
18999 @itemx -mcpu=rl78
19000 @opindex mcpu
19001 Specifies the RL78 core to target. The default is the G14 core, also
19002 known as an S3 core or just RL78. The G13 or S2 core does not have
19003 multiply or divide instructions, instead it uses a hardware peripheral
19004 for these operations. The G10 or S1 core does not have register
19005 banks, so it uses a different calling convention.
19006
19007 If this option is set it also selects the type of hardware multiply
19008 support to use, unless this is overridden by an explicit
19009 @option{-mmul=none} option on the command line. Thus specifying
19010 @option{-mcpu=g13} enables the use of the G13 hardware multiply
19011 peripheral and specifying @option{-mcpu=g10} disables the use of
19012 hardware multipications altogether.
19013
19014 Note, although the RL78/G14 core is the default target, specifying
19015 @option{-mcpu=g14} or @option{-mcpu=rl78} on the command line does
19016 change the behaviour of the toolchain since it also enables G14
19017 hardware multiply support. If these options are not specified on the
19018 command line then software multiplication routines will be used even
19019 though the code targets the RL78 core. This is for backwards
19020 compatibility with older toolchains which did not have hardware
19021 multiply and divide support.
19022
19023 In addition a C preprocessor macro is defined, based upon the setting
19024 of this option. Possible values are: @code{__RL78_G10__},
19025 @code{__RL78_G13__} or @code{__RL78_G14__}.
19026
19027 @item -mg10
19028 @itemx -mg13
19029 @itemx -mg14
19030 @itemx -mrl78
19031 @opindex mg10
19032 @opindex mg13
19033 @opindex mg14
19034 @opindex mrl78
19035 These are aliases for the corresponding @option{-mcpu=} option. They
19036 are provided for backwards compatibility.
19037
19038 @item -mallregs
19039 @opindex mallregs
19040 Allow the compiler to use all of the available registers. By default
19041 registers @code{r24..r31} are reserved for use in interrupt handlers.
19042 With this option enabled these registers can be used in ordinary
19043 functions as well.
19044
19045 @item -m64bit-doubles
19046 @itemx -m32bit-doubles
19047 @opindex m64bit-doubles
19048 @opindex m32bit-doubles
19049 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
19050 or 32 bits (@option{-m32bit-doubles}) in size. The default is
19051 @option{-m32bit-doubles}.
19052
19053 @end table
19054
19055 @node RS/6000 and PowerPC Options
19056 @subsection IBM RS/6000 and PowerPC Options
19057 @cindex RS/6000 and PowerPC Options
19058 @cindex IBM RS/6000 and PowerPC Options
19059
19060 These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
19061 @table @gcctabopt
19062 @item -mpowerpc-gpopt
19063 @itemx -mno-powerpc-gpopt
19064 @itemx -mpowerpc-gfxopt
19065 @itemx -mno-powerpc-gfxopt
19066 @need 800
19067 @itemx -mpowerpc64
19068 @itemx -mno-powerpc64
19069 @itemx -mmfcrf
19070 @itemx -mno-mfcrf
19071 @itemx -mpopcntb
19072 @itemx -mno-popcntb
19073 @itemx -mpopcntd
19074 @itemx -mno-popcntd
19075 @itemx -mfprnd
19076 @itemx -mno-fprnd
19077 @need 800
19078 @itemx -mcmpb
19079 @itemx -mno-cmpb
19080 @itemx -mmfpgpr
19081 @itemx -mno-mfpgpr
19082 @itemx -mhard-dfp
19083 @itemx -mno-hard-dfp
19084 @opindex mpowerpc-gpopt
19085 @opindex mno-powerpc-gpopt
19086 @opindex mpowerpc-gfxopt
19087 @opindex mno-powerpc-gfxopt
19088 @opindex mpowerpc64
19089 @opindex mno-powerpc64
19090 @opindex mmfcrf
19091 @opindex mno-mfcrf
19092 @opindex mpopcntb
19093 @opindex mno-popcntb
19094 @opindex mpopcntd
19095 @opindex mno-popcntd
19096 @opindex mfprnd
19097 @opindex mno-fprnd
19098 @opindex mcmpb
19099 @opindex mno-cmpb
19100 @opindex mmfpgpr
19101 @opindex mno-mfpgpr
19102 @opindex mhard-dfp
19103 @opindex mno-hard-dfp
19104 You use these options to specify which instructions are available on the
19105 processor you are using. The default value of these options is
19106 determined when configuring GCC@. Specifying the
19107 @option{-mcpu=@var{cpu_type}} overrides the specification of these
19108 options. We recommend you use the @option{-mcpu=@var{cpu_type}} option
19109 rather than the options listed above.
19110
19111 Specifying @option{-mpowerpc-gpopt} allows
19112 GCC to use the optional PowerPC architecture instructions in the
19113 General Purpose group, including floating-point square root. Specifying
19114 @option{-mpowerpc-gfxopt} allows GCC to
19115 use the optional PowerPC architecture instructions in the Graphics
19116 group, including floating-point select.
19117
19118 The @option{-mmfcrf} option allows GCC to generate the move from
19119 condition register field instruction implemented on the POWER4
19120 processor and other processors that support the PowerPC V2.01
19121 architecture.
19122 The @option{-mpopcntb} option allows GCC to generate the popcount and
19123 double-precision FP reciprocal estimate instruction implemented on the
19124 POWER5 processor and other processors that support the PowerPC V2.02
19125 architecture.
19126 The @option{-mpopcntd} option allows GCC to generate the popcount
19127 instruction implemented on the POWER7 processor and other processors
19128 that support the PowerPC V2.06 architecture.
19129 The @option{-mfprnd} option allows GCC to generate the FP round to
19130 integer instructions implemented on the POWER5+ processor and other
19131 processors that support the PowerPC V2.03 architecture.
19132 The @option{-mcmpb} option allows GCC to generate the compare bytes
19133 instruction implemented on the POWER6 processor and other processors
19134 that support the PowerPC V2.05 architecture.
19135 The @option{-mmfpgpr} option allows GCC to generate the FP move to/from
19136 general-purpose register instructions implemented on the POWER6X
19137 processor and other processors that support the extended PowerPC V2.05
19138 architecture.
19139 The @option{-mhard-dfp} option allows GCC to generate the decimal
19140 floating-point instructions implemented on some POWER processors.
19141
19142 The @option{-mpowerpc64} option allows GCC to generate the additional
19143 64-bit instructions that are found in the full PowerPC64 architecture
19144 and to treat GPRs as 64-bit, doubleword quantities. GCC defaults to
19145 @option{-mno-powerpc64}.
19146
19147 @item -mcpu=@var{cpu_type}
19148 @opindex mcpu
19149 Set architecture type, register usage, and
19150 instruction scheduling parameters for machine type @var{cpu_type}.
19151 Supported values for @var{cpu_type} are @samp{401}, @samp{403},
19152 @samp{405}, @samp{405fp}, @samp{440}, @samp{440fp}, @samp{464}, @samp{464fp},
19153 @samp{476}, @samp{476fp}, @samp{505}, @samp{601}, @samp{602}, @samp{603},
19154 @samp{603e}, @samp{604}, @samp{604e}, @samp{620}, @samp{630}, @samp{740},
19155 @samp{7400}, @samp{7450}, @samp{750}, @samp{801}, @samp{821}, @samp{823},
19156 @samp{860}, @samp{970}, @samp{8540}, @samp{a2}, @samp{e300c2},
19157 @samp{e300c3}, @samp{e500mc}, @samp{e500mc64}, @samp{e5500},
19158 @samp{e6500}, @samp{ec603e}, @samp{G3}, @samp{G4}, @samp{G5},
19159 @samp{titan}, @samp{power3}, @samp{power4}, @samp{power5}, @samp{power5+},
19160 @samp{power6}, @samp{power6x}, @samp{power7}, @samp{power8}, @samp{powerpc},
19161 @samp{powerpc64}, @samp{powerpc64le}, and @samp{rs64}.
19162
19163 @option{-mcpu=powerpc}, @option{-mcpu=powerpc64}, and
19164 @option{-mcpu=powerpc64le} specify pure 32-bit PowerPC (either
19165 endian), 64-bit big endian PowerPC and 64-bit little endian PowerPC
19166 architecture machine types, with an appropriate, generic processor
19167 model assumed for scheduling purposes.
19168
19169 The other options specify a specific processor. Code generated under
19170 those options runs best on that processor, and may not run at all on
19171 others.
19172
19173 The @option{-mcpu} options automatically enable or disable the
19174 following options:
19175
19176 @gccoptlist{-maltivec -mfprnd -mhard-float -mmfcrf -mmultiple @gol
19177 -mpopcntb -mpopcntd -mpowerpc64 @gol
19178 -mpowerpc-gpopt -mpowerpc-gfxopt -msingle-float -mdouble-float @gol
19179 -msimple-fpu -mstring -mmulhw -mdlmzb -mmfpgpr -mvsx @gol
19180 -mcrypto -mdirect-move -mpower8-fusion -mpower8-vector @gol
19181 -mquad-memory -mquad-memory-atomic}
19182
19183 The particular options set for any particular CPU varies between
19184 compiler versions, depending on what setting seems to produce optimal
19185 code for that CPU; it doesn't necessarily reflect the actual hardware's
19186 capabilities. If you wish to set an individual option to a particular
19187 value, you may specify it after the @option{-mcpu} option, like
19188 @option{-mcpu=970 -mno-altivec}.
19189
19190 On AIX, the @option{-maltivec} and @option{-mpowerpc64} options are
19191 not enabled or disabled by the @option{-mcpu} option at present because
19192 AIX does not have full support for these options. You may still
19193 enable or disable them individually if you're sure it'll work in your
19194 environment.
19195
19196 @item -mtune=@var{cpu_type}
19197 @opindex mtune
19198 Set the instruction scheduling parameters for machine type
19199 @var{cpu_type}, but do not set the architecture type or register usage,
19200 as @option{-mcpu=@var{cpu_type}} does. The same
19201 values for @var{cpu_type} are used for @option{-mtune} as for
19202 @option{-mcpu}. If both are specified, the code generated uses the
19203 architecture and registers set by @option{-mcpu}, but the
19204 scheduling parameters set by @option{-mtune}.
19205
19206 @item -mcmodel=small
19207 @opindex mcmodel=small
19208 Generate PowerPC64 code for the small model: The TOC is limited to
19209 64k.
19210
19211 @item -mcmodel=medium
19212 @opindex mcmodel=medium
19213 Generate PowerPC64 code for the medium model: The TOC and other static
19214 data may be up to a total of 4G in size.
19215
19216 @item -mcmodel=large
19217 @opindex mcmodel=large
19218 Generate PowerPC64 code for the large model: The TOC may be up to 4G
19219 in size. Other data and code is only limited by the 64-bit address
19220 space.
19221
19222 @item -maltivec
19223 @itemx -mno-altivec
19224 @opindex maltivec
19225 @opindex mno-altivec
19226 Generate code that uses (does not use) AltiVec instructions, and also
19227 enable the use of built-in functions that allow more direct access to
19228 the AltiVec instruction set. You may also need to set
19229 @option{-mabi=altivec} to adjust the current ABI with AltiVec ABI
19230 enhancements.
19231
19232 When @option{-maltivec} is used, rather than @option{-maltivec=le} or
19233 @option{-maltivec=be}, the element order for Altivec intrinsics such
19234 as @code{vec_splat}, @code{vec_extract}, and @code{vec_insert}
19235 match array element order corresponding to the endianness of the
19236 target. That is, element zero identifies the leftmost element in a
19237 vector register when targeting a big-endian platform, and identifies
19238 the rightmost element in a vector register when targeting a
19239 little-endian platform.
19240
19241 @item -maltivec=be
19242 @opindex maltivec=be
19243 Generate Altivec instructions using big-endian element order,
19244 regardless of whether the target is big- or little-endian. This is
19245 the default when targeting a big-endian platform.
19246
19247 The element order is used to interpret element numbers in Altivec
19248 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
19249 @code{vec_insert}. By default, these match array element order
19250 corresponding to the endianness for the target.
19251
19252 @item -maltivec=le
19253 @opindex maltivec=le
19254 Generate Altivec instructions using little-endian element order,
19255 regardless of whether the target is big- or little-endian. This is
19256 the default when targeting a little-endian platform. This option is
19257 currently ignored when targeting a big-endian platform.
19258
19259 The element order is used to interpret element numbers in Altivec
19260 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
19261 @code{vec_insert}. By default, these match array element order
19262 corresponding to the endianness for the target.
19263
19264 @item -mvrsave
19265 @itemx -mno-vrsave
19266 @opindex mvrsave
19267 @opindex mno-vrsave
19268 Generate VRSAVE instructions when generating AltiVec code.
19269
19270 @item -mgen-cell-microcode
19271 @opindex mgen-cell-microcode
19272 Generate Cell microcode instructions.
19273
19274 @item -mwarn-cell-microcode
19275 @opindex mwarn-cell-microcode
19276 Warn when a Cell microcode instruction is emitted. An example
19277 of a Cell microcode instruction is a variable shift.
19278
19279 @item -msecure-plt
19280 @opindex msecure-plt
19281 Generate code that allows @command{ld} and @command{ld.so}
19282 to build executables and shared
19283 libraries with non-executable @code{.plt} and @code{.got} sections.
19284 This is a PowerPC
19285 32-bit SYSV ABI option.
19286
19287 @item -mbss-plt
19288 @opindex mbss-plt
19289 Generate code that uses a BSS @code{.plt} section that @command{ld.so}
19290 fills in, and
19291 requires @code{.plt} and @code{.got}
19292 sections that are both writable and executable.
19293 This is a PowerPC 32-bit SYSV ABI option.
19294
19295 @item -misel
19296 @itemx -mno-isel
19297 @opindex misel
19298 @opindex mno-isel
19299 This switch enables or disables the generation of ISEL instructions.
19300
19301 @item -misel=@var{yes/no}
19302 This switch has been deprecated. Use @option{-misel} and
19303 @option{-mno-isel} instead.
19304
19305 @item -mspe
19306 @itemx -mno-spe
19307 @opindex mspe
19308 @opindex mno-spe
19309 This switch enables or disables the generation of SPE simd
19310 instructions.
19311
19312 @item -mpaired
19313 @itemx -mno-paired
19314 @opindex mpaired
19315 @opindex mno-paired
19316 This switch enables or disables the generation of PAIRED simd
19317 instructions.
19318
19319 @item -mspe=@var{yes/no}
19320 This option has been deprecated. Use @option{-mspe} and
19321 @option{-mno-spe} instead.
19322
19323 @item -mvsx
19324 @itemx -mno-vsx
19325 @opindex mvsx
19326 @opindex mno-vsx
19327 Generate code that uses (does not use) vector/scalar (VSX)
19328 instructions, and also enable the use of built-in functions that allow
19329 more direct access to the VSX instruction set.
19330
19331 @item -mcrypto
19332 @itemx -mno-crypto
19333 @opindex mcrypto
19334 @opindex mno-crypto
19335 Enable the use (disable) of the built-in functions that allow direct
19336 access to the cryptographic instructions that were added in version
19337 2.07 of the PowerPC ISA.
19338
19339 @item -mdirect-move
19340 @itemx -mno-direct-move
19341 @opindex mdirect-move
19342 @opindex mno-direct-move
19343 Generate code that uses (does not use) the instructions to move data
19344 between the general purpose registers and the vector/scalar (VSX)
19345 registers that were added in version 2.07 of the PowerPC ISA.
19346
19347 @item -mpower8-fusion
19348 @itemx -mno-power8-fusion
19349 @opindex mpower8-fusion
19350 @opindex mno-power8-fusion
19351 Generate code that keeps (does not keeps) some integer operations
19352 adjacent so that the instructions can be fused together on power8 and
19353 later processors.
19354
19355 @item -mpower8-vector
19356 @itemx -mno-power8-vector
19357 @opindex mpower8-vector
19358 @opindex mno-power8-vector
19359 Generate code that uses (does not use) the vector and scalar
19360 instructions that were added in version 2.07 of the PowerPC ISA. Also
19361 enable the use of built-in functions that allow more direct access to
19362 the vector instructions.
19363
19364 @item -mquad-memory
19365 @itemx -mno-quad-memory
19366 @opindex mquad-memory
19367 @opindex mno-quad-memory
19368 Generate code that uses (does not use) the non-atomic quad word memory
19369 instructions. The @option{-mquad-memory} option requires use of
19370 64-bit mode.
19371
19372 @item -mquad-memory-atomic
19373 @itemx -mno-quad-memory-atomic
19374 @opindex mquad-memory-atomic
19375 @opindex mno-quad-memory-atomic
19376 Generate code that uses (does not use) the atomic quad word memory
19377 instructions. The @option{-mquad-memory-atomic} option requires use of
19378 64-bit mode.
19379
19380 @item -mupper-regs-df
19381 @itemx -mno-upper-regs-df
19382 @opindex mupper-regs-df
19383 @opindex mno-upper-regs-df
19384 Generate code that uses (does not use) the scalar double precision
19385 instructions that target all 64 registers in the vector/scalar
19386 floating point register set that were added in version 2.06 of the
19387 PowerPC ISA. @option{-mupper-regs-df} is turned on by default if you
19388 use any of the @option{-mcpu=power7}, @option{-mcpu=power8}, or
19389 @option{-mvsx} options.
19390
19391 @item -mupper-regs-sf
19392 @itemx -mno-upper-regs-sf
19393 @opindex mupper-regs-sf
19394 @opindex mno-upper-regs-sf
19395 Generate code that uses (does not use) the scalar single precision
19396 instructions that target all 64 registers in the vector/scalar
19397 floating point register set that were added in version 2.07 of the
19398 PowerPC ISA. @option{-mupper-regs-sf} is turned on by default if you
19399 use either of the @option{-mcpu=power8} or @option{-mpower8-vector}
19400 options.
19401
19402 @item -mupper-regs
19403 @itemx -mno-upper-regs
19404 @opindex mupper-regs
19405 @opindex mno-upper-regs
19406 Generate code that uses (does not use) the scalar
19407 instructions that target all 64 registers in the vector/scalar
19408 floating point register set, depending on the model of the machine.
19409
19410 If the @option{-mno-upper-regs} option is used, it turns off both
19411 @option{-mupper-regs-sf} and @option{-mupper-regs-df} options.
19412
19413 @item -mfloat-gprs=@var{yes/single/double/no}
19414 @itemx -mfloat-gprs
19415 @opindex mfloat-gprs
19416 This switch enables or disables the generation of floating-point
19417 operations on the general-purpose registers for architectures that
19418 support it.
19419
19420 The argument @samp{yes} or @samp{single} enables the use of
19421 single-precision floating-point operations.
19422
19423 The argument @samp{double} enables the use of single and
19424 double-precision floating-point operations.
19425
19426 The argument @samp{no} disables floating-point operations on the
19427 general-purpose registers.
19428
19429 This option is currently only available on the MPC854x.
19430
19431 @item -m32
19432 @itemx -m64
19433 @opindex m32
19434 @opindex m64
19435 Generate code for 32-bit or 64-bit environments of Darwin and SVR4
19436 targets (including GNU/Linux). The 32-bit environment sets int, long
19437 and pointer to 32 bits and generates code that runs on any PowerPC
19438 variant. The 64-bit environment sets int to 32 bits and long and
19439 pointer to 64 bits, and generates code for PowerPC64, as for
19440 @option{-mpowerpc64}.
19441
19442 @item -mfull-toc
19443 @itemx -mno-fp-in-toc
19444 @itemx -mno-sum-in-toc
19445 @itemx -mminimal-toc
19446 @opindex mfull-toc
19447 @opindex mno-fp-in-toc
19448 @opindex mno-sum-in-toc
19449 @opindex mminimal-toc
19450 Modify generation of the TOC (Table Of Contents), which is created for
19451 every executable file. The @option{-mfull-toc} option is selected by
19452 default. In that case, GCC allocates at least one TOC entry for
19453 each unique non-automatic variable reference in your program. GCC
19454 also places floating-point constants in the TOC@. However, only
19455 16,384 entries are available in the TOC@.
19456
19457 If you receive a linker error message that saying you have overflowed
19458 the available TOC space, you can reduce the amount of TOC space used
19459 with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
19460 @option{-mno-fp-in-toc} prevents GCC from putting floating-point
19461 constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
19462 generate code to calculate the sum of an address and a constant at
19463 run time instead of putting that sum into the TOC@. You may specify one
19464 or both of these options. Each causes GCC to produce very slightly
19465 slower and larger code at the expense of conserving TOC space.
19466
19467 If you still run out of space in the TOC even when you specify both of
19468 these options, specify @option{-mminimal-toc} instead. This option causes
19469 GCC to make only one TOC entry for every file. When you specify this
19470 option, GCC produces code that is slower and larger but which
19471 uses extremely little TOC space. You may wish to use this option
19472 only on files that contain less frequently-executed code.
19473
19474 @item -maix64
19475 @itemx -maix32
19476 @opindex maix64
19477 @opindex maix32
19478 Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
19479 @code{long} type, and the infrastructure needed to support them.
19480 Specifying @option{-maix64} implies @option{-mpowerpc64},
19481 while @option{-maix32} disables the 64-bit ABI and
19482 implies @option{-mno-powerpc64}. GCC defaults to @option{-maix32}.
19483
19484 @item -mxl-compat
19485 @itemx -mno-xl-compat
19486 @opindex mxl-compat
19487 @opindex mno-xl-compat
19488 Produce code that conforms more closely to IBM XL compiler semantics
19489 when using AIX-compatible ABI@. Pass floating-point arguments to
19490 prototyped functions beyond the register save area (RSA) on the stack
19491 in addition to argument FPRs. Do not assume that most significant
19492 double in 128-bit long double value is properly rounded when comparing
19493 values and converting to double. Use XL symbol names for long double
19494 support routines.
19495
19496 The AIX calling convention was extended but not initially documented to
19497 handle an obscure K&R C case of calling a function that takes the
19498 address of its arguments with fewer arguments than declared. IBM XL
19499 compilers access floating-point arguments that do not fit in the
19500 RSA from the stack when a subroutine is compiled without
19501 optimization. Because always storing floating-point arguments on the
19502 stack is inefficient and rarely needed, this option is not enabled by
19503 default and only is necessary when calling subroutines compiled by IBM
19504 XL compilers without optimization.
19505
19506 @item -mpe
19507 @opindex mpe
19508 Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@. Link an
19509 application written to use message passing with special startup code to
19510 enable the application to run. The system must have PE installed in the
19511 standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
19512 must be overridden with the @option{-specs=} option to specify the
19513 appropriate directory location. The Parallel Environment does not
19514 support threads, so the @option{-mpe} option and the @option{-pthread}
19515 option are incompatible.
19516
19517 @item -malign-natural
19518 @itemx -malign-power
19519 @opindex malign-natural
19520 @opindex malign-power
19521 On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
19522 @option{-malign-natural} overrides the ABI-defined alignment of larger
19523 types, such as floating-point doubles, on their natural size-based boundary.
19524 The option @option{-malign-power} instructs GCC to follow the ABI-specified
19525 alignment rules. GCC defaults to the standard alignment defined in the ABI@.
19526
19527 On 64-bit Darwin, natural alignment is the default, and @option{-malign-power}
19528 is not supported.
19529
19530 @item -msoft-float
19531 @itemx -mhard-float
19532 @opindex msoft-float
19533 @opindex mhard-float
19534 Generate code that does not use (uses) the floating-point register set.
19535 Software floating-point emulation is provided if you use the
19536 @option{-msoft-float} option, and pass the option to GCC when linking.
19537
19538 @item -msingle-float
19539 @itemx -mdouble-float
19540 @opindex msingle-float
19541 @opindex mdouble-float
19542 Generate code for single- or double-precision floating-point operations.
19543 @option{-mdouble-float} implies @option{-msingle-float}.
19544
19545 @item -msimple-fpu
19546 @opindex msimple-fpu
19547 Do not generate @code{sqrt} and @code{div} instructions for hardware
19548 floating-point unit.
19549
19550 @item -mfpu=@var{name}
19551 @opindex mfpu
19552 Specify type of floating-point unit. Valid values for @var{name} are
19553 @samp{sp_lite} (equivalent to @option{-msingle-float -msimple-fpu}),
19554 @samp{dp_lite} (equivalent to @option{-mdouble-float -msimple-fpu}),
19555 @samp{sp_full} (equivalent to @option{-msingle-float}),
19556 and @samp{dp_full} (equivalent to @option{-mdouble-float}).
19557
19558 @item -mxilinx-fpu
19559 @opindex mxilinx-fpu
19560 Perform optimizations for the floating-point unit on Xilinx PPC 405/440.
19561
19562 @item -mmultiple
19563 @itemx -mno-multiple
19564 @opindex mmultiple
19565 @opindex mno-multiple
19566 Generate code that uses (does not use) the load multiple word
19567 instructions and the store multiple word instructions. These
19568 instructions are generated by default on POWER systems, and not
19569 generated on PowerPC systems. Do not use @option{-mmultiple} on little-endian
19570 PowerPC systems, since those instructions do not work when the
19571 processor is in little-endian mode. The exceptions are PPC740 and
19572 PPC750 which permit these instructions in little-endian mode.
19573
19574 @item -mstring
19575 @itemx -mno-string
19576 @opindex mstring
19577 @opindex mno-string
19578 Generate code that uses (does not use) the load string instructions
19579 and the store string word instructions to save multiple registers and
19580 do small block moves. These instructions are generated by default on
19581 POWER systems, and not generated on PowerPC systems. Do not use
19582 @option{-mstring} on little-endian PowerPC systems, since those
19583 instructions do not work when the processor is in little-endian mode.
19584 The exceptions are PPC740 and PPC750 which permit these instructions
19585 in little-endian mode.
19586
19587 @item -mupdate
19588 @itemx -mno-update
19589 @opindex mupdate
19590 @opindex mno-update
19591 Generate code that uses (does not use) the load or store instructions
19592 that update the base register to the address of the calculated memory
19593 location. These instructions are generated by default. If you use
19594 @option{-mno-update}, there is a small window between the time that the
19595 stack pointer is updated and the address of the previous frame is
19596 stored, which means code that walks the stack frame across interrupts or
19597 signals may get corrupted data.
19598
19599 @item -mavoid-indexed-addresses
19600 @itemx -mno-avoid-indexed-addresses
19601 @opindex mavoid-indexed-addresses
19602 @opindex mno-avoid-indexed-addresses
19603 Generate code that tries to avoid (not avoid) the use of indexed load
19604 or store instructions. These instructions can incur a performance
19605 penalty on Power6 processors in certain situations, such as when
19606 stepping through large arrays that cross a 16M boundary. This option
19607 is enabled by default when targeting Power6 and disabled otherwise.
19608
19609 @item -mfused-madd
19610 @itemx -mno-fused-madd
19611 @opindex mfused-madd
19612 @opindex mno-fused-madd
19613 Generate code that uses (does not use) the floating-point multiply and
19614 accumulate instructions. These instructions are generated by default
19615 if hardware floating point is used. The machine-dependent
19616 @option{-mfused-madd} option is now mapped to the machine-independent
19617 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
19618 mapped to @option{-ffp-contract=off}.
19619
19620 @item -mmulhw
19621 @itemx -mno-mulhw
19622 @opindex mmulhw
19623 @opindex mno-mulhw
19624 Generate code that uses (does not use) the half-word multiply and
19625 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
19626 These instructions are generated by default when targeting those
19627 processors.
19628
19629 @item -mdlmzb
19630 @itemx -mno-dlmzb
19631 @opindex mdlmzb
19632 @opindex mno-dlmzb
19633 Generate code that uses (does not use) the string-search @samp{dlmzb}
19634 instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
19635 generated by default when targeting those processors.
19636
19637 @item -mno-bit-align
19638 @itemx -mbit-align
19639 @opindex mno-bit-align
19640 @opindex mbit-align
19641 On System V.4 and embedded PowerPC systems do not (do) force structures
19642 and unions that contain bit-fields to be aligned to the base type of the
19643 bit-field.
19644
19645 For example, by default a structure containing nothing but 8
19646 @code{unsigned} bit-fields of length 1 is aligned to a 4-byte
19647 boundary and has a size of 4 bytes. By using @option{-mno-bit-align},
19648 the structure is aligned to a 1-byte boundary and is 1 byte in
19649 size.
19650
19651 @item -mno-strict-align
19652 @itemx -mstrict-align
19653 @opindex mno-strict-align
19654 @opindex mstrict-align
19655 On System V.4 and embedded PowerPC systems do not (do) assume that
19656 unaligned memory references are handled by the system.
19657
19658 @item -mrelocatable
19659 @itemx -mno-relocatable
19660 @opindex mrelocatable
19661 @opindex mno-relocatable
19662 Generate code that allows (does not allow) a static executable to be
19663 relocated to a different address at run time. A simple embedded
19664 PowerPC system loader should relocate the entire contents of
19665 @code{.got2} and 4-byte locations listed in the @code{.fixup} section,
19666 a table of 32-bit addresses generated by this option. For this to
19667 work, all objects linked together must be compiled with
19668 @option{-mrelocatable} or @option{-mrelocatable-lib}.
19669 @option{-mrelocatable} code aligns the stack to an 8-byte boundary.
19670
19671 @item -mrelocatable-lib
19672 @itemx -mno-relocatable-lib
19673 @opindex mrelocatable-lib
19674 @opindex mno-relocatable-lib
19675 Like @option{-mrelocatable}, @option{-mrelocatable-lib} generates a
19676 @code{.fixup} section to allow static executables to be relocated at
19677 run time, but @option{-mrelocatable-lib} does not use the smaller stack
19678 alignment of @option{-mrelocatable}. Objects compiled with
19679 @option{-mrelocatable-lib} may be linked with objects compiled with
19680 any combination of the @option{-mrelocatable} options.
19681
19682 @item -mno-toc
19683 @itemx -mtoc
19684 @opindex mno-toc
19685 @opindex mtoc
19686 On System V.4 and embedded PowerPC systems do not (do) assume that
19687 register 2 contains a pointer to a global area pointing to the addresses
19688 used in the program.
19689
19690 @item -mlittle
19691 @itemx -mlittle-endian
19692 @opindex mlittle
19693 @opindex mlittle-endian
19694 On System V.4 and embedded PowerPC systems compile code for the
19695 processor in little-endian mode. The @option{-mlittle-endian} option is
19696 the same as @option{-mlittle}.
19697
19698 @item -mbig
19699 @itemx -mbig-endian
19700 @opindex mbig
19701 @opindex mbig-endian
19702 On System V.4 and embedded PowerPC systems compile code for the
19703 processor in big-endian mode. The @option{-mbig-endian} option is
19704 the same as @option{-mbig}.
19705
19706 @item -mdynamic-no-pic
19707 @opindex mdynamic-no-pic
19708 On Darwin and Mac OS X systems, compile code so that it is not
19709 relocatable, but that its external references are relocatable. The
19710 resulting code is suitable for applications, but not shared
19711 libraries.
19712
19713 @item -msingle-pic-base
19714 @opindex msingle-pic-base
19715 Treat the register used for PIC addressing as read-only, rather than
19716 loading it in the prologue for each function. The runtime system is
19717 responsible for initializing this register with an appropriate value
19718 before execution begins.
19719
19720 @item -mprioritize-restricted-insns=@var{priority}
19721 @opindex mprioritize-restricted-insns
19722 This option controls the priority that is assigned to
19723 dispatch-slot restricted instructions during the second scheduling
19724 pass. The argument @var{priority} takes the value @samp{0}, @samp{1},
19725 or @samp{2} to assign no, highest, or second-highest (respectively)
19726 priority to dispatch-slot restricted
19727 instructions.
19728
19729 @item -msched-costly-dep=@var{dependence_type}
19730 @opindex msched-costly-dep
19731 This option controls which dependences are considered costly
19732 by the target during instruction scheduling. The argument
19733 @var{dependence_type} takes one of the following values:
19734
19735 @table @asis
19736 @item @samp{no}
19737 No dependence is costly.
19738
19739 @item @samp{all}
19740 All dependences are costly.
19741
19742 @item @samp{true_store_to_load}
19743 A true dependence from store to load is costly.
19744
19745 @item @samp{store_to_load}
19746 Any dependence from store to load is costly.
19747
19748 @item @var{number}
19749 Any dependence for which the latency is greater than or equal to
19750 @var{number} is costly.
19751 @end table
19752
19753 @item -minsert-sched-nops=@var{scheme}
19754 @opindex minsert-sched-nops
19755 This option controls which NOP insertion scheme is used during
19756 the second scheduling pass. The argument @var{scheme} takes one of the
19757 following values:
19758
19759 @table @asis
19760 @item @samp{no}
19761 Don't insert NOPs.
19762
19763 @item @samp{pad}
19764 Pad with NOPs any dispatch group that has vacant issue slots,
19765 according to the scheduler's grouping.
19766
19767 @item @samp{regroup_exact}
19768 Insert NOPs to force costly dependent insns into
19769 separate groups. Insert exactly as many NOPs as needed to force an insn
19770 to a new group, according to the estimated processor grouping.
19771
19772 @item @var{number}
19773 Insert NOPs to force costly dependent insns into
19774 separate groups. Insert @var{number} NOPs to force an insn to a new group.
19775 @end table
19776
19777 @item -mcall-sysv
19778 @opindex mcall-sysv
19779 On System V.4 and embedded PowerPC systems compile code using calling
19780 conventions that adhere to the March 1995 draft of the System V
19781 Application Binary Interface, PowerPC processor supplement. This is the
19782 default unless you configured GCC using @samp{powerpc-*-eabiaix}.
19783
19784 @item -mcall-sysv-eabi
19785 @itemx -mcall-eabi
19786 @opindex mcall-sysv-eabi
19787 @opindex mcall-eabi
19788 Specify both @option{-mcall-sysv} and @option{-meabi} options.
19789
19790 @item -mcall-sysv-noeabi
19791 @opindex mcall-sysv-noeabi
19792 Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
19793
19794 @item -mcall-aixdesc
19795 @opindex m
19796 On System V.4 and embedded PowerPC systems compile code for the AIX
19797 operating system.
19798
19799 @item -mcall-linux
19800 @opindex mcall-linux
19801 On System V.4 and embedded PowerPC systems compile code for the
19802 Linux-based GNU system.
19803
19804 @item -mcall-freebsd
19805 @opindex mcall-freebsd
19806 On System V.4 and embedded PowerPC systems compile code for the
19807 FreeBSD operating system.
19808
19809 @item -mcall-netbsd
19810 @opindex mcall-netbsd
19811 On System V.4 and embedded PowerPC systems compile code for the
19812 NetBSD operating system.
19813
19814 @item -mcall-openbsd
19815 @opindex mcall-netbsd
19816 On System V.4 and embedded PowerPC systems compile code for the
19817 OpenBSD operating system.
19818
19819 @item -maix-struct-return
19820 @opindex maix-struct-return
19821 Return all structures in memory (as specified by the AIX ABI)@.
19822
19823 @item -msvr4-struct-return
19824 @opindex msvr4-struct-return
19825 Return structures smaller than 8 bytes in registers (as specified by the
19826 SVR4 ABI)@.
19827
19828 @item -mabi=@var{abi-type}
19829 @opindex mabi
19830 Extend the current ABI with a particular extension, or remove such extension.
19831 Valid values are @samp{altivec}, @samp{no-altivec}, @samp{spe},
19832 @samp{no-spe}, @samp{ibmlongdouble}, @samp{ieeelongdouble},
19833 @samp{elfv1}, @samp{elfv2}@.
19834
19835 @item -mabi=spe
19836 @opindex mabi=spe
19837 Extend the current ABI with SPE ABI extensions. This does not change
19838 the default ABI, instead it adds the SPE ABI extensions to the current
19839 ABI@.
19840
19841 @item -mabi=no-spe
19842 @opindex mabi=no-spe
19843 Disable Book-E SPE ABI extensions for the current ABI@.
19844
19845 @item -mabi=ibmlongdouble
19846 @opindex mabi=ibmlongdouble
19847 Change the current ABI to use IBM extended-precision long double.
19848 This is a PowerPC 32-bit SYSV ABI option.
19849
19850 @item -mabi=ieeelongdouble
19851 @opindex mabi=ieeelongdouble
19852 Change the current ABI to use IEEE extended-precision long double.
19853 This is a PowerPC 32-bit Linux ABI option.
19854
19855 @item -mabi=elfv1
19856 @opindex mabi=elfv1
19857 Change the current ABI to use the ELFv1 ABI.
19858 This is the default ABI for big-endian PowerPC 64-bit Linux.
19859 Overriding the default ABI requires special system support and is
19860 likely to fail in spectacular ways.
19861
19862 @item -mabi=elfv2
19863 @opindex mabi=elfv2
19864 Change the current ABI to use the ELFv2 ABI.
19865 This is the default ABI for little-endian PowerPC 64-bit Linux.
19866 Overriding the default ABI requires special system support and is
19867 likely to fail in spectacular ways.
19868
19869 @item -mprototype
19870 @itemx -mno-prototype
19871 @opindex mprototype
19872 @opindex mno-prototype
19873 On System V.4 and embedded PowerPC systems assume that all calls to
19874 variable argument functions are properly prototyped. Otherwise, the
19875 compiler must insert an instruction before every non-prototyped call to
19876 set or clear bit 6 of the condition code register (@code{CR}) to
19877 indicate whether floating-point values are passed in the floating-point
19878 registers in case the function takes variable arguments. With
19879 @option{-mprototype}, only calls to prototyped variable argument functions
19880 set or clear the bit.
19881
19882 @item -msim
19883 @opindex msim
19884 On embedded PowerPC systems, assume that the startup module is called
19885 @file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
19886 @file{libc.a}. This is the default for @samp{powerpc-*-eabisim}
19887 configurations.
19888
19889 @item -mmvme
19890 @opindex mmvme
19891 On embedded PowerPC systems, assume that the startup module is called
19892 @file{crt0.o} and the standard C libraries are @file{libmvme.a} and
19893 @file{libc.a}.
19894
19895 @item -mads
19896 @opindex mads
19897 On embedded PowerPC systems, assume that the startup module is called
19898 @file{crt0.o} and the standard C libraries are @file{libads.a} and
19899 @file{libc.a}.
19900
19901 @item -myellowknife
19902 @opindex myellowknife
19903 On embedded PowerPC systems, assume that the startup module is called
19904 @file{crt0.o} and the standard C libraries are @file{libyk.a} and
19905 @file{libc.a}.
19906
19907 @item -mvxworks
19908 @opindex mvxworks
19909 On System V.4 and embedded PowerPC systems, specify that you are
19910 compiling for a VxWorks system.
19911
19912 @item -memb
19913 @opindex memb
19914 On embedded PowerPC systems, set the @code{PPC_EMB} bit in the ELF flags
19915 header to indicate that @samp{eabi} extended relocations are used.
19916
19917 @item -meabi
19918 @itemx -mno-eabi
19919 @opindex meabi
19920 @opindex mno-eabi
19921 On System V.4 and embedded PowerPC systems do (do not) adhere to the
19922 Embedded Applications Binary Interface (EABI), which is a set of
19923 modifications to the System V.4 specifications. Selecting @option{-meabi}
19924 means that the stack is aligned to an 8-byte boundary, a function
19925 @code{__eabi} is called from @code{main} to set up the EABI
19926 environment, and the @option{-msdata} option can use both @code{r2} and
19927 @code{r13} to point to two separate small data areas. Selecting
19928 @option{-mno-eabi} means that the stack is aligned to a 16-byte boundary,
19929 no EABI initialization function is called from @code{main}, and the
19930 @option{-msdata} option only uses @code{r13} to point to a single
19931 small data area. The @option{-meabi} option is on by default if you
19932 configured GCC using one of the @samp{powerpc*-*-eabi*} options.
19933
19934 @item -msdata=eabi
19935 @opindex msdata=eabi
19936 On System V.4 and embedded PowerPC systems, put small initialized
19937 @code{const} global and static data in the @code{.sdata2} section, which
19938 is pointed to by register @code{r2}. Put small initialized
19939 non-@code{const} global and static data in the @code{.sdata} section,
19940 which is pointed to by register @code{r13}. Put small uninitialized
19941 global and static data in the @code{.sbss} section, which is adjacent to
19942 the @code{.sdata} section. The @option{-msdata=eabi} option is
19943 incompatible with the @option{-mrelocatable} option. The
19944 @option{-msdata=eabi} option also sets the @option{-memb} option.
19945
19946 @item -msdata=sysv
19947 @opindex msdata=sysv
19948 On System V.4 and embedded PowerPC systems, put small global and static
19949 data in the @code{.sdata} section, which is pointed to by register
19950 @code{r13}. Put small uninitialized global and static data in the
19951 @code{.sbss} section, which is adjacent to the @code{.sdata} section.
19952 The @option{-msdata=sysv} option is incompatible with the
19953 @option{-mrelocatable} option.
19954
19955 @item -msdata=default
19956 @itemx -msdata
19957 @opindex msdata=default
19958 @opindex msdata
19959 On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
19960 compile code the same as @option{-msdata=eabi}, otherwise compile code the
19961 same as @option{-msdata=sysv}.
19962
19963 @item -msdata=data
19964 @opindex msdata=data
19965 On System V.4 and embedded PowerPC systems, put small global
19966 data in the @code{.sdata} section. Put small uninitialized global
19967 data in the @code{.sbss} section. Do not use register @code{r13}
19968 to address small data however. This is the default behavior unless
19969 other @option{-msdata} options are used.
19970
19971 @item -msdata=none
19972 @itemx -mno-sdata
19973 @opindex msdata=none
19974 @opindex mno-sdata
19975 On embedded PowerPC systems, put all initialized global and static data
19976 in the @code{.data} section, and all uninitialized data in the
19977 @code{.bss} section.
19978
19979 @item -mblock-move-inline-limit=@var{num}
19980 @opindex mblock-move-inline-limit
19981 Inline all block moves (such as calls to @code{memcpy} or structure
19982 copies) less than or equal to @var{num} bytes. The minimum value for
19983 @var{num} is 32 bytes on 32-bit targets and 64 bytes on 64-bit
19984 targets. The default value is target-specific.
19985
19986 @item -G @var{num}
19987 @opindex G
19988 @cindex smaller data references (PowerPC)
19989 @cindex .sdata/.sdata2 references (PowerPC)
19990 On embedded PowerPC systems, put global and static items less than or
19991 equal to @var{num} bytes into the small data or BSS sections instead of
19992 the normal data or BSS section. By default, @var{num} is 8. The
19993 @option{-G @var{num}} switch is also passed to the linker.
19994 All modules should be compiled with the same @option{-G @var{num}} value.
19995
19996 @item -mregnames
19997 @itemx -mno-regnames
19998 @opindex mregnames
19999 @opindex mno-regnames
20000 On System V.4 and embedded PowerPC systems do (do not) emit register
20001 names in the assembly language output using symbolic forms.
20002
20003 @item -mlongcall
20004 @itemx -mno-longcall
20005 @opindex mlongcall
20006 @opindex mno-longcall
20007 By default assume that all calls are far away so that a longer and more
20008 expensive calling sequence is required. This is required for calls
20009 farther than 32 megabytes (33,554,432 bytes) from the current location.
20010 A short call is generated if the compiler knows
20011 the call cannot be that far away. This setting can be overridden by
20012 the @code{shortcall} function attribute, or by @code{#pragma
20013 longcall(0)}.
20014
20015 Some linkers are capable of detecting out-of-range calls and generating
20016 glue code on the fly. On these systems, long calls are unnecessary and
20017 generate slower code. As of this writing, the AIX linker can do this,
20018 as can the GNU linker for PowerPC/64. It is planned to add this feature
20019 to the GNU linker for 32-bit PowerPC systems as well.
20020
20021 On Darwin/PPC systems, @code{#pragma longcall} generates @code{jbsr
20022 callee, L42}, plus a @dfn{branch island} (glue code). The two target
20023 addresses represent the callee and the branch island. The
20024 Darwin/PPC linker prefers the first address and generates a @code{bl
20025 callee} if the PPC @code{bl} instruction reaches the callee directly;
20026 otherwise, the linker generates @code{bl L42} to call the branch
20027 island. The branch island is appended to the body of the
20028 calling function; it computes the full 32-bit address of the callee
20029 and jumps to it.
20030
20031 On Mach-O (Darwin) systems, this option directs the compiler emit to
20032 the glue for every direct call, and the Darwin linker decides whether
20033 to use or discard it.
20034
20035 In the future, GCC may ignore all longcall specifications
20036 when the linker is known to generate glue.
20037
20038 @item -mtls-markers
20039 @itemx -mno-tls-markers
20040 @opindex mtls-markers
20041 @opindex mno-tls-markers
20042 Mark (do not mark) calls to @code{__tls_get_addr} with a relocation
20043 specifying the function argument. The relocation allows the linker to
20044 reliably associate function call with argument setup instructions for
20045 TLS optimization, which in turn allows GCC to better schedule the
20046 sequence.
20047
20048 @item -pthread
20049 @opindex pthread
20050 Adds support for multithreading with the @dfn{pthreads} library.
20051 This option sets flags for both the preprocessor and linker.
20052
20053 @item -mrecip
20054 @itemx -mno-recip
20055 @opindex mrecip
20056 This option enables use of the reciprocal estimate and
20057 reciprocal square root estimate instructions with additional
20058 Newton-Raphson steps to increase precision instead of doing a divide or
20059 square root and divide for floating-point arguments. You should use
20060 the @option{-ffast-math} option when using @option{-mrecip} (or at
20061 least @option{-funsafe-math-optimizations},
20062 @option{-finite-math-only}, @option{-freciprocal-math} and
20063 @option{-fno-trapping-math}). Note that while the throughput of the
20064 sequence is generally higher than the throughput of the non-reciprocal
20065 instruction, the precision of the sequence can be decreased by up to 2
20066 ulp (i.e.@: the inverse of 1.0 equals 0.99999994) for reciprocal square
20067 roots.
20068
20069 @item -mrecip=@var{opt}
20070 @opindex mrecip=opt
20071 This option controls which reciprocal estimate instructions
20072 may be used. @var{opt} is a comma-separated list of options, which may
20073 be preceded by a @code{!} to invert the option:
20074
20075 @table @samp
20076
20077 @item all
20078 Enable all estimate instructions.
20079
20080 @item default
20081 Enable the default instructions, equivalent to @option{-mrecip}.
20082
20083 @item none
20084 Disable all estimate instructions, equivalent to @option{-mno-recip}.
20085
20086 @item div
20087 Enable the reciprocal approximation instructions for both
20088 single and double precision.
20089
20090 @item divf
20091 Enable the single-precision reciprocal approximation instructions.
20092
20093 @item divd
20094 Enable the double-precision reciprocal approximation instructions.
20095
20096 @item rsqrt
20097 Enable the reciprocal square root approximation instructions for both
20098 single and double precision.
20099
20100 @item rsqrtf
20101 Enable the single-precision reciprocal square root approximation instructions.
20102
20103 @item rsqrtd
20104 Enable the double-precision reciprocal square root approximation instructions.
20105
20106 @end table
20107
20108 So, for example, @option{-mrecip=all,!rsqrtd} enables
20109 all of the reciprocal estimate instructions, except for the
20110 @code{FRSQRTE}, @code{XSRSQRTEDP}, and @code{XVRSQRTEDP} instructions
20111 which handle the double-precision reciprocal square root calculations.
20112
20113 @item -mrecip-precision
20114 @itemx -mno-recip-precision
20115 @opindex mrecip-precision
20116 Assume (do not assume) that the reciprocal estimate instructions
20117 provide higher-precision estimates than is mandated by the PowerPC
20118 ABI. Selecting @option{-mcpu=power6}, @option{-mcpu=power7} or
20119 @option{-mcpu=power8} automatically selects @option{-mrecip-precision}.
20120 The double-precision square root estimate instructions are not generated by
20121 default on low-precision machines, since they do not provide an
20122 estimate that converges after three steps.
20123
20124 @item -mveclibabi=@var{type}
20125 @opindex mveclibabi
20126 Specifies the ABI type to use for vectorizing intrinsics using an
20127 external library. The only type supported at present is @samp{mass},
20128 which specifies to use IBM's Mathematical Acceleration Subsystem
20129 (MASS) libraries for vectorizing intrinsics using external libraries.
20130 GCC currently emits calls to @code{acosd2}, @code{acosf4},
20131 @code{acoshd2}, @code{acoshf4}, @code{asind2}, @code{asinf4},
20132 @code{asinhd2}, @code{asinhf4}, @code{atan2d2}, @code{atan2f4},
20133 @code{atand2}, @code{atanf4}, @code{atanhd2}, @code{atanhf4},
20134 @code{cbrtd2}, @code{cbrtf4}, @code{cosd2}, @code{cosf4},
20135 @code{coshd2}, @code{coshf4}, @code{erfcd2}, @code{erfcf4},
20136 @code{erfd2}, @code{erff4}, @code{exp2d2}, @code{exp2f4},
20137 @code{expd2}, @code{expf4}, @code{expm1d2}, @code{expm1f4},
20138 @code{hypotd2}, @code{hypotf4}, @code{lgammad2}, @code{lgammaf4},
20139 @code{log10d2}, @code{log10f4}, @code{log1pd2}, @code{log1pf4},
20140 @code{log2d2}, @code{log2f4}, @code{logd2}, @code{logf4},
20141 @code{powd2}, @code{powf4}, @code{sind2}, @code{sinf4}, @code{sinhd2},
20142 @code{sinhf4}, @code{sqrtd2}, @code{sqrtf4}, @code{tand2},
20143 @code{tanf4}, @code{tanhd2}, and @code{tanhf4} when generating code
20144 for power7. Both @option{-ftree-vectorize} and
20145 @option{-funsafe-math-optimizations} must also be enabled. The MASS
20146 libraries must be specified at link time.
20147
20148 @item -mfriz
20149 @itemx -mno-friz
20150 @opindex mfriz
20151 Generate (do not generate) the @code{friz} instruction when the
20152 @option{-funsafe-math-optimizations} option is used to optimize
20153 rounding of floating-point values to 64-bit integer and back to floating
20154 point. The @code{friz} instruction does not return the same value if
20155 the floating-point number is too large to fit in an integer.
20156
20157 @item -mpointers-to-nested-functions
20158 @itemx -mno-pointers-to-nested-functions
20159 @opindex mpointers-to-nested-functions
20160 Generate (do not generate) code to load up the static chain register
20161 (@code{r11}) when calling through a pointer on AIX and 64-bit Linux
20162 systems where a function pointer points to a 3-word descriptor giving
20163 the function address, TOC value to be loaded in register @code{r2}, and
20164 static chain value to be loaded in register @code{r11}. The
20165 @option{-mpointers-to-nested-functions} is on by default. You cannot
20166 call through pointers to nested functions or pointers
20167 to functions compiled in other languages that use the static chain if
20168 you use @option{-mno-pointers-to-nested-functions}.
20169
20170 @item -msave-toc-indirect
20171 @itemx -mno-save-toc-indirect
20172 @opindex msave-toc-indirect
20173 Generate (do not generate) code to save the TOC value in the reserved
20174 stack location in the function prologue if the function calls through
20175 a pointer on AIX and 64-bit Linux systems. If the TOC value is not
20176 saved in the prologue, it is saved just before the call through the
20177 pointer. The @option{-mno-save-toc-indirect} option is the default.
20178
20179 @item -mcompat-align-parm
20180 @itemx -mno-compat-align-parm
20181 @opindex mcompat-align-parm
20182 Generate (do not generate) code to pass structure parameters with a
20183 maximum alignment of 64 bits, for compatibility with older versions
20184 of GCC.
20185
20186 Older versions of GCC (prior to 4.9.0) incorrectly did not align a
20187 structure parameter on a 128-bit boundary when that structure contained
20188 a member requiring 128-bit alignment. This is corrected in more
20189 recent versions of GCC. This option may be used to generate code
20190 that is compatible with functions compiled with older versions of
20191 GCC.
20192
20193 The @option{-mno-compat-align-parm} option is the default.
20194 @end table
20195
20196 @node RX Options
20197 @subsection RX Options
20198 @cindex RX Options
20199
20200 These command-line options are defined for RX targets:
20201
20202 @table @gcctabopt
20203 @item -m64bit-doubles
20204 @itemx -m32bit-doubles
20205 @opindex m64bit-doubles
20206 @opindex m32bit-doubles
20207 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
20208 or 32 bits (@option{-m32bit-doubles}) in size. The default is
20209 @option{-m32bit-doubles}. @emph{Note} RX floating-point hardware only
20210 works on 32-bit values, which is why the default is
20211 @option{-m32bit-doubles}.
20212
20213 @item -fpu
20214 @itemx -nofpu
20215 @opindex fpu
20216 @opindex nofpu
20217 Enables (@option{-fpu}) or disables (@option{-nofpu}) the use of RX
20218 floating-point hardware. The default is enabled for the RX600
20219 series and disabled for the RX200 series.
20220
20221 Floating-point instructions are only generated for 32-bit floating-point
20222 values, however, so the FPU hardware is not used for doubles if the
20223 @option{-m64bit-doubles} option is used.
20224
20225 @emph{Note} If the @option{-fpu} option is enabled then
20226 @option{-funsafe-math-optimizations} is also enabled automatically.
20227 This is because the RX FPU instructions are themselves unsafe.
20228
20229 @item -mcpu=@var{name}
20230 @opindex mcpu
20231 Selects the type of RX CPU to be targeted. Currently three types are
20232 supported, the generic @samp{RX600} and @samp{RX200} series hardware and
20233 the specific @samp{RX610} CPU. The default is @samp{RX600}.
20234
20235 The only difference between @samp{RX600} and @samp{RX610} is that the
20236 @samp{RX610} does not support the @code{MVTIPL} instruction.
20237
20238 The @samp{RX200} series does not have a hardware floating-point unit
20239 and so @option{-nofpu} is enabled by default when this type is
20240 selected.
20241
20242 @item -mbig-endian-data
20243 @itemx -mlittle-endian-data
20244 @opindex mbig-endian-data
20245 @opindex mlittle-endian-data
20246 Store data (but not code) in the big-endian format. The default is
20247 @option{-mlittle-endian-data}, i.e.@: to store data in the little-endian
20248 format.
20249
20250 @item -msmall-data-limit=@var{N}
20251 @opindex msmall-data-limit
20252 Specifies the maximum size in bytes of global and static variables
20253 which can be placed into the small data area. Using the small data
20254 area can lead to smaller and faster code, but the size of area is
20255 limited and it is up to the programmer to ensure that the area does
20256 not overflow. Also when the small data area is used one of the RX's
20257 registers (usually @code{r13}) is reserved for use pointing to this
20258 area, so it is no longer available for use by the compiler. This
20259 could result in slower and/or larger code if variables are pushed onto
20260 the stack instead of being held in this register.
20261
20262 Note, common variables (variables that have not been initialized) and
20263 constants are not placed into the small data area as they are assigned
20264 to other sections in the output executable.
20265
20266 The default value is zero, which disables this feature. Note, this
20267 feature is not enabled by default with higher optimization levels
20268 (@option{-O2} etc) because of the potentially detrimental effects of
20269 reserving a register. It is up to the programmer to experiment and
20270 discover whether this feature is of benefit to their program. See the
20271 description of the @option{-mpid} option for a description of how the
20272 actual register to hold the small data area pointer is chosen.
20273
20274 @item -msim
20275 @itemx -mno-sim
20276 @opindex msim
20277 @opindex mno-sim
20278 Use the simulator runtime. The default is to use the libgloss
20279 board-specific runtime.
20280
20281 @item -mas100-syntax
20282 @itemx -mno-as100-syntax
20283 @opindex mas100-syntax
20284 @opindex mno-as100-syntax
20285 When generating assembler output use a syntax that is compatible with
20286 Renesas's AS100 assembler. This syntax can also be handled by the GAS
20287 assembler, but it has some restrictions so it is not generated by default.
20288
20289 @item -mmax-constant-size=@var{N}
20290 @opindex mmax-constant-size
20291 Specifies the maximum size, in bytes, of a constant that can be used as
20292 an operand in a RX instruction. Although the RX instruction set does
20293 allow constants of up to 4 bytes in length to be used in instructions,
20294 a longer value equates to a longer instruction. Thus in some
20295 circumstances it can be beneficial to restrict the size of constants
20296 that are used in instructions. Constants that are too big are instead
20297 placed into a constant pool and referenced via register indirection.
20298
20299 The value @var{N} can be between 0 and 4. A value of 0 (the default)
20300 or 4 means that constants of any size are allowed.
20301
20302 @item -mrelax
20303 @opindex mrelax
20304 Enable linker relaxation. Linker relaxation is a process whereby the
20305 linker attempts to reduce the size of a program by finding shorter
20306 versions of various instructions. Disabled by default.
20307
20308 @item -mint-register=@var{N}
20309 @opindex mint-register
20310 Specify the number of registers to reserve for fast interrupt handler
20311 functions. The value @var{N} can be between 0 and 4. A value of 1
20312 means that register @code{r13} is reserved for the exclusive use
20313 of fast interrupt handlers. A value of 2 reserves @code{r13} and
20314 @code{r12}. A value of 3 reserves @code{r13}, @code{r12} and
20315 @code{r11}, and a value of 4 reserves @code{r13} through @code{r10}.
20316 A value of 0, the default, does not reserve any registers.
20317
20318 @item -msave-acc-in-interrupts
20319 @opindex msave-acc-in-interrupts
20320 Specifies that interrupt handler functions should preserve the
20321 accumulator register. This is only necessary if normal code might use
20322 the accumulator register, for example because it performs 64-bit
20323 multiplications. The default is to ignore the accumulator as this
20324 makes the interrupt handlers faster.
20325
20326 @item -mpid
20327 @itemx -mno-pid
20328 @opindex mpid
20329 @opindex mno-pid
20330 Enables the generation of position independent data. When enabled any
20331 access to constant data is done via an offset from a base address
20332 held in a register. This allows the location of constant data to be
20333 determined at run time without requiring the executable to be
20334 relocated, which is a benefit to embedded applications with tight
20335 memory constraints. Data that can be modified is not affected by this
20336 option.
20337
20338 Note, using this feature reserves a register, usually @code{r13}, for
20339 the constant data base address. This can result in slower and/or
20340 larger code, especially in complicated functions.
20341
20342 The actual register chosen to hold the constant data base address
20343 depends upon whether the @option{-msmall-data-limit} and/or the
20344 @option{-mint-register} command-line options are enabled. Starting
20345 with register @code{r13} and proceeding downwards, registers are
20346 allocated first to satisfy the requirements of @option{-mint-register},
20347 then @option{-mpid} and finally @option{-msmall-data-limit}. Thus it
20348 is possible for the small data area register to be @code{r8} if both
20349 @option{-mint-register=4} and @option{-mpid} are specified on the
20350 command line.
20351
20352 By default this feature is not enabled. The default can be restored
20353 via the @option{-mno-pid} command-line option.
20354
20355 @item -mno-warn-multiple-fast-interrupts
20356 @itemx -mwarn-multiple-fast-interrupts
20357 @opindex mno-warn-multiple-fast-interrupts
20358 @opindex mwarn-multiple-fast-interrupts
20359 Prevents GCC from issuing a warning message if it finds more than one
20360 fast interrupt handler when it is compiling a file. The default is to
20361 issue a warning for each extra fast interrupt handler found, as the RX
20362 only supports one such interrupt.
20363
20364 @item -mallow-string-insns
20365 @itemx -mno-allow-string-insns
20366 @opindex mallow-string-insns
20367 @opindex mno-allow-string-insns
20368 Enables or disables the use of the string manipulation instructions
20369 @code{SMOVF}, @code{SCMPU}, @code{SMOVB}, @code{SMOVU}, @code{SUNTIL}
20370 @code{SWHILE} and also the @code{RMPA} instruction. These
20371 instructions may prefetch data, which is not safe to do if accessing
20372 an I/O register. (See section 12.2.7 of the RX62N Group User's Manual
20373 for more information).
20374
20375 The default is to allow these instructions, but it is not possible for
20376 GCC to reliably detect all circumstances where a string instruction
20377 might be used to access an I/O register, so their use cannot be
20378 disabled automatically. Instead it is reliant upon the programmer to
20379 use the @option{-mno-allow-string-insns} option if their program
20380 accesses I/O space.
20381
20382 When the instructions are enabled GCC defines the C preprocessor
20383 symbol @code{__RX_ALLOW_STRING_INSNS__}, otherwise it defines the
20384 symbol @code{__RX_DISALLOW_STRING_INSNS__}.
20385 @end table
20386
20387 @emph{Note:} The generic GCC command-line option @option{-ffixed-@var{reg}}
20388 has special significance to the RX port when used with the
20389 @code{interrupt} function attribute. This attribute indicates a
20390 function intended to process fast interrupts. GCC ensures
20391 that it only uses the registers @code{r10}, @code{r11}, @code{r12}
20392 and/or @code{r13} and only provided that the normal use of the
20393 corresponding registers have been restricted via the
20394 @option{-ffixed-@var{reg}} or @option{-mint-register} command-line
20395 options.
20396
20397 @node S/390 and zSeries Options
20398 @subsection S/390 and zSeries Options
20399 @cindex S/390 and zSeries Options
20400
20401 These are the @samp{-m} options defined for the S/390 and zSeries architecture.
20402
20403 @table @gcctabopt
20404 @item -mhard-float
20405 @itemx -msoft-float
20406 @opindex mhard-float
20407 @opindex msoft-float
20408 Use (do not use) the hardware floating-point instructions and registers
20409 for floating-point operations. When @option{-msoft-float} is specified,
20410 functions in @file{libgcc.a} are used to perform floating-point
20411 operations. When @option{-mhard-float} is specified, the compiler
20412 generates IEEE floating-point instructions. This is the default.
20413
20414 @item -mhard-dfp
20415 @itemx -mno-hard-dfp
20416 @opindex mhard-dfp
20417 @opindex mno-hard-dfp
20418 Use (do not use) the hardware decimal-floating-point instructions for
20419 decimal-floating-point operations. When @option{-mno-hard-dfp} is
20420 specified, functions in @file{libgcc.a} are used to perform
20421 decimal-floating-point operations. When @option{-mhard-dfp} is
20422 specified, the compiler generates decimal-floating-point hardware
20423 instructions. This is the default for @option{-march=z9-ec} or higher.
20424
20425 @item -mlong-double-64
20426 @itemx -mlong-double-128
20427 @opindex mlong-double-64
20428 @opindex mlong-double-128
20429 These switches control the size of @code{long double} type. A size
20430 of 64 bits makes the @code{long double} type equivalent to the @code{double}
20431 type. This is the default.
20432
20433 @item -mbackchain
20434 @itemx -mno-backchain
20435 @opindex mbackchain
20436 @opindex mno-backchain
20437 Store (do not store) the address of the caller's frame as backchain pointer
20438 into the callee's stack frame.
20439 A backchain may be needed to allow debugging using tools that do not understand
20440 DWARF 2 call frame information.
20441 When @option{-mno-packed-stack} is in effect, the backchain pointer is stored
20442 at the bottom of the stack frame; when @option{-mpacked-stack} is in effect,
20443 the backchain is placed into the topmost word of the 96/160 byte register
20444 save area.
20445
20446 In general, code compiled with @option{-mbackchain} is call-compatible with
20447 code compiled with @option{-mmo-backchain}; however, use of the backchain
20448 for debugging purposes usually requires that the whole binary is built with
20449 @option{-mbackchain}. Note that the combination of @option{-mbackchain},
20450 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
20451 to build a linux kernel use @option{-msoft-float}.
20452
20453 The default is to not maintain the backchain.
20454
20455 @item -mpacked-stack
20456 @itemx -mno-packed-stack
20457 @opindex mpacked-stack
20458 @opindex mno-packed-stack
20459 Use (do not use) the packed stack layout. When @option{-mno-packed-stack} is
20460 specified, the compiler uses the all fields of the 96/160 byte register save
20461 area only for their default purpose; unused fields still take up stack space.
20462 When @option{-mpacked-stack} is specified, register save slots are densely
20463 packed at the top of the register save area; unused space is reused for other
20464 purposes, allowing for more efficient use of the available stack space.
20465 However, when @option{-mbackchain} is also in effect, the topmost word of
20466 the save area is always used to store the backchain, and the return address
20467 register is always saved two words below the backchain.
20468
20469 As long as the stack frame backchain is not used, code generated with
20470 @option{-mpacked-stack} is call-compatible with code generated with
20471 @option{-mno-packed-stack}. Note that some non-FSF releases of GCC 2.95 for
20472 S/390 or zSeries generated code that uses the stack frame backchain at run
20473 time, not just for debugging purposes. Such code is not call-compatible
20474 with code compiled with @option{-mpacked-stack}. Also, note that the
20475 combination of @option{-mbackchain},
20476 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
20477 to build a linux kernel use @option{-msoft-float}.
20478
20479 The default is to not use the packed stack layout.
20480
20481 @item -msmall-exec
20482 @itemx -mno-small-exec
20483 @opindex msmall-exec
20484 @opindex mno-small-exec
20485 Generate (or do not generate) code using the @code{bras} instruction
20486 to do subroutine calls.
20487 This only works reliably if the total executable size does not
20488 exceed 64k. The default is to use the @code{basr} instruction instead,
20489 which does not have this limitation.
20490
20491 @item -m64
20492 @itemx -m31
20493 @opindex m64
20494 @opindex m31
20495 When @option{-m31} is specified, generate code compliant to the
20496 GNU/Linux for S/390 ABI@. When @option{-m64} is specified, generate
20497 code compliant to the GNU/Linux for zSeries ABI@. This allows GCC in
20498 particular to generate 64-bit instructions. For the @samp{s390}
20499 targets, the default is @option{-m31}, while the @samp{s390x}
20500 targets default to @option{-m64}.
20501
20502 @item -mzarch
20503 @itemx -mesa
20504 @opindex mzarch
20505 @opindex mesa
20506 When @option{-mzarch} is specified, generate code using the
20507 instructions available on z/Architecture.
20508 When @option{-mesa} is specified, generate code using the
20509 instructions available on ESA/390. Note that @option{-mesa} is
20510 not possible with @option{-m64}.
20511 When generating code compliant to the GNU/Linux for S/390 ABI,
20512 the default is @option{-mesa}. When generating code compliant
20513 to the GNU/Linux for zSeries ABI, the default is @option{-mzarch}.
20514
20515 @item -mhtm
20516 @itemx -mno-htm
20517 @opindex mhtm
20518 @opindex mno-htm
20519 The @option{-mhtm} option enables a set of builtins making use of
20520 instructions available with the transactional execution facility
20521 introduced with the IBM zEnterprise EC12 machine generation
20522 @ref{S/390 System z Built-in Functions}.
20523 @option{-mhtm} is enabled by default when using @option{-march=zEC12}.
20524
20525 @item -mvx
20526 @itemx -mno-vx
20527 @opindex mvx
20528 @opindex mno-vx
20529 When @option{-mvx} is specified, generate code using the instructions
20530 available with the vector extension facility introduced with the IBM
20531 z13 machine generation.
20532 This option changes the ABI for some vector type values with regard to
20533 alignment and calling conventions. In case vector type values are
20534 being used in an ABI-relevant context a GAS @samp{.gnu_attribute}
20535 command will be added to mark the resulting binary with the ABI used.
20536 @option{-mvx} is enabled by default when using @option{-march=z13}.
20537
20538 @item -mzvector
20539 @itemx -mno-zvector
20540 @opindex mzvector
20541 @opindex mno-zvector
20542 The @option{-mzvector} option enables vector language extensions and
20543 builtins using instructions available with the vector extension
20544 facility introduced with the IBM z13 machine generation.
20545 This option adds support for @samp{vector} to be used as a keyword to
20546 define vector type variables and arguments. @samp{vector} is only
20547 available when GNU extensions are enabled. It will not be expanded
20548 when requesting strict standard compliance e.g. with @option{-std=c99}.
20549 In addition to the GCC low-level builtins @option{-mzvector} enables
20550 a set of builtins added for compatibility with Altivec-style
20551 implementations like Power and Cell. In order to make use of these
20552 builtins the header file @file{vecintrin.h} needs to be included.
20553 @option{-mzvector} is disabled by default.
20554
20555 @item -mmvcle
20556 @itemx -mno-mvcle
20557 @opindex mmvcle
20558 @opindex mno-mvcle
20559 Generate (or do not generate) code using the @code{mvcle} instruction
20560 to perform block moves. When @option{-mno-mvcle} is specified,
20561 use a @code{mvc} loop instead. This is the default unless optimizing for
20562 size.
20563
20564 @item -mdebug
20565 @itemx -mno-debug
20566 @opindex mdebug
20567 @opindex mno-debug
20568 Print (or do not print) additional debug information when compiling.
20569 The default is to not print debug information.
20570
20571 @item -march=@var{cpu-type}
20572 @opindex march
20573 Generate code that runs on @var{cpu-type}, which is the name of a system
20574 representing a certain processor type. Possible values for
20575 @var{cpu-type} are @samp{g5}, @samp{g6}, @samp{z900}, @samp{z990},
20576 @samp{z9-109}, @samp{z9-ec}, @samp{z10}, @samp{z196}, @samp{zEC12},
20577 and @samp{z13}.
20578 When generating code using the instructions available on z/Architecture,
20579 the default is @option{-march=z900}. Otherwise, the default is
20580 @option{-march=g5}.
20581
20582 @item -mtune=@var{cpu-type}
20583 @opindex mtune
20584 Tune to @var{cpu-type} everything applicable about the generated code,
20585 except for the ABI and the set of available instructions.
20586 The list of @var{cpu-type} values is the same as for @option{-march}.
20587 The default is the value used for @option{-march}.
20588
20589 @item -mtpf-trace
20590 @itemx -mno-tpf-trace
20591 @opindex mtpf-trace
20592 @opindex mno-tpf-trace
20593 Generate code that adds (does not add) in TPF OS specific branches to trace
20594 routines in the operating system. This option is off by default, even
20595 when compiling for the TPF OS@.
20596
20597 @item -mfused-madd
20598 @itemx -mno-fused-madd
20599 @opindex mfused-madd
20600 @opindex mno-fused-madd
20601 Generate code that uses (does not use) the floating-point multiply and
20602 accumulate instructions. These instructions are generated by default if
20603 hardware floating point is used.
20604
20605 @item -mwarn-framesize=@var{framesize}
20606 @opindex mwarn-framesize
20607 Emit a warning if the current function exceeds the given frame size. Because
20608 this is a compile-time check it doesn't need to be a real problem when the program
20609 runs. It is intended to identify functions that most probably cause
20610 a stack overflow. It is useful to be used in an environment with limited stack
20611 size e.g.@: the linux kernel.
20612
20613 @item -mwarn-dynamicstack
20614 @opindex mwarn-dynamicstack
20615 Emit a warning if the function calls @code{alloca} or uses dynamically-sized
20616 arrays. This is generally a bad idea with a limited stack size.
20617
20618 @item -mstack-guard=@var{stack-guard}
20619 @itemx -mstack-size=@var{stack-size}
20620 @opindex mstack-guard
20621 @opindex mstack-size
20622 If these options are provided the S/390 back end emits additional instructions in
20623 the function prologue that trigger a trap if the stack size is @var{stack-guard}
20624 bytes above the @var{stack-size} (remember that the stack on S/390 grows downward).
20625 If the @var{stack-guard} option is omitted the smallest power of 2 larger than
20626 the frame size of the compiled function is chosen.
20627 These options are intended to be used to help debugging stack overflow problems.
20628 The additionally emitted code causes only little overhead and hence can also be
20629 used in production-like systems without greater performance degradation. The given
20630 values have to be exact powers of 2 and @var{stack-size} has to be greater than
20631 @var{stack-guard} without exceeding 64k.
20632 In order to be efficient the extra code makes the assumption that the stack starts
20633 at an address aligned to the value given by @var{stack-size}.
20634 The @var{stack-guard} option can only be used in conjunction with @var{stack-size}.
20635
20636 @item -mhotpatch=@var{pre-halfwords},@var{post-halfwords}
20637 @opindex mhotpatch
20638 If the hotpatch option is enabled, a ``hot-patching'' function
20639 prologue is generated for all functions in the compilation unit.
20640 The funtion label is prepended with the given number of two-byte
20641 NOP instructions (@var{pre-halfwords}, maximum 1000000). After
20642 the label, 2 * @var{post-halfwords} bytes are appended, using the
20643 largest NOP like instructions the architecture allows (maximum
20644 1000000).
20645
20646 If both arguments are zero, hotpatching is disabled.
20647
20648 This option can be overridden for individual functions with the
20649 @code{hotpatch} attribute.
20650 @end table
20651
20652 @node Score Options
20653 @subsection Score Options
20654 @cindex Score Options
20655
20656 These options are defined for Score implementations:
20657
20658 @table @gcctabopt
20659 @item -meb
20660 @opindex meb
20661 Compile code for big-endian mode. This is the default.
20662
20663 @item -mel
20664 @opindex mel
20665 Compile code for little-endian mode.
20666
20667 @item -mnhwloop
20668 @opindex mnhwloop
20669 Disable generation of @code{bcnz} instructions.
20670
20671 @item -muls
20672 @opindex muls
20673 Enable generation of unaligned load and store instructions.
20674
20675 @item -mmac
20676 @opindex mmac
20677 Enable the use of multiply-accumulate instructions. Disabled by default.
20678
20679 @item -mscore5
20680 @opindex mscore5
20681 Specify the SCORE5 as the target architecture.
20682
20683 @item -mscore5u
20684 @opindex mscore5u
20685 Specify the SCORE5U of the target architecture.
20686
20687 @item -mscore7
20688 @opindex mscore7
20689 Specify the SCORE7 as the target architecture. This is the default.
20690
20691 @item -mscore7d
20692 @opindex mscore7d
20693 Specify the SCORE7D as the target architecture.
20694 @end table
20695
20696 @node SH Options
20697 @subsection SH Options
20698
20699 These @samp{-m} options are defined for the SH implementations:
20700
20701 @table @gcctabopt
20702 @item -m1
20703 @opindex m1
20704 Generate code for the SH1.
20705
20706 @item -m2
20707 @opindex m2
20708 Generate code for the SH2.
20709
20710 @item -m2e
20711 Generate code for the SH2e.
20712
20713 @item -m2a-nofpu
20714 @opindex m2a-nofpu
20715 Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
20716 that the floating-point unit is not used.
20717
20718 @item -m2a-single-only
20719 @opindex m2a-single-only
20720 Generate code for the SH2a-FPU, in such a way that no double-precision
20721 floating-point operations are used.
20722
20723 @item -m2a-single
20724 @opindex m2a-single
20725 Generate code for the SH2a-FPU assuming the floating-point unit is in
20726 single-precision mode by default.
20727
20728 @item -m2a
20729 @opindex m2a
20730 Generate code for the SH2a-FPU assuming the floating-point unit is in
20731 double-precision mode by default.
20732
20733 @item -m3
20734 @opindex m3
20735 Generate code for the SH3.
20736
20737 @item -m3e
20738 @opindex m3e
20739 Generate code for the SH3e.
20740
20741 @item -m4-nofpu
20742 @opindex m4-nofpu
20743 Generate code for the SH4 without a floating-point unit.
20744
20745 @item -m4-single-only
20746 @opindex m4-single-only
20747 Generate code for the SH4 with a floating-point unit that only
20748 supports single-precision arithmetic.
20749
20750 @item -m4-single
20751 @opindex m4-single
20752 Generate code for the SH4 assuming the floating-point unit is in
20753 single-precision mode by default.
20754
20755 @item -m4
20756 @opindex m4
20757 Generate code for the SH4.
20758
20759 @item -m4-100
20760 @opindex m4-100
20761 Generate code for SH4-100.
20762
20763 @item -m4-100-nofpu
20764 @opindex m4-100-nofpu
20765 Generate code for SH4-100 in such a way that the
20766 floating-point unit is not used.
20767
20768 @item -m4-100-single
20769 @opindex m4-100-single
20770 Generate code for SH4-100 assuming the floating-point unit is in
20771 single-precision mode by default.
20772
20773 @item -m4-100-single-only
20774 @opindex m4-100-single-only
20775 Generate code for SH4-100 in such a way that no double-precision
20776 floating-point operations are used.
20777
20778 @item -m4-200
20779 @opindex m4-200
20780 Generate code for SH4-200.
20781
20782 @item -m4-200-nofpu
20783 @opindex m4-200-nofpu
20784 Generate code for SH4-200 without in such a way that the
20785 floating-point unit is not used.
20786
20787 @item -m4-200-single
20788 @opindex m4-200-single
20789 Generate code for SH4-200 assuming the floating-point unit is in
20790 single-precision mode by default.
20791
20792 @item -m4-200-single-only
20793 @opindex m4-200-single-only
20794 Generate code for SH4-200 in such a way that no double-precision
20795 floating-point operations are used.
20796
20797 @item -m4-300
20798 @opindex m4-300
20799 Generate code for SH4-300.
20800
20801 @item -m4-300-nofpu
20802 @opindex m4-300-nofpu
20803 Generate code for SH4-300 without in such a way that the
20804 floating-point unit is not used.
20805
20806 @item -m4-300-single
20807 @opindex m4-300-single
20808 Generate code for SH4-300 in such a way that no double-precision
20809 floating-point operations are used.
20810
20811 @item -m4-300-single-only
20812 @opindex m4-300-single-only
20813 Generate code for SH4-300 in such a way that no double-precision
20814 floating-point operations are used.
20815
20816 @item -m4-340
20817 @opindex m4-340
20818 Generate code for SH4-340 (no MMU, no FPU).
20819
20820 @item -m4-500
20821 @opindex m4-500
20822 Generate code for SH4-500 (no FPU). Passes @option{-isa=sh4-nofpu} to the
20823 assembler.
20824
20825 @item -m4a-nofpu
20826 @opindex m4a-nofpu
20827 Generate code for the SH4al-dsp, or for a SH4a in such a way that the
20828 floating-point unit is not used.
20829
20830 @item -m4a-single-only
20831 @opindex m4a-single-only
20832 Generate code for the SH4a, in such a way that no double-precision
20833 floating-point operations are used.
20834
20835 @item -m4a-single
20836 @opindex m4a-single
20837 Generate code for the SH4a assuming the floating-point unit is in
20838 single-precision mode by default.
20839
20840 @item -m4a
20841 @opindex m4a
20842 Generate code for the SH4a.
20843
20844 @item -m4al
20845 @opindex m4al
20846 Same as @option{-m4a-nofpu}, except that it implicitly passes
20847 @option{-dsp} to the assembler. GCC doesn't generate any DSP
20848 instructions at the moment.
20849
20850 @item -m5-32media
20851 @opindex m5-32media
20852 Generate 32-bit code for SHmedia.
20853
20854 @item -m5-32media-nofpu
20855 @opindex m5-32media-nofpu
20856 Generate 32-bit code for SHmedia in such a way that the
20857 floating-point unit is not used.
20858
20859 @item -m5-64media
20860 @opindex m5-64media
20861 Generate 64-bit code for SHmedia.
20862
20863 @item -m5-64media-nofpu
20864 @opindex m5-64media-nofpu
20865 Generate 64-bit code for SHmedia in such a way that the
20866 floating-point unit is not used.
20867
20868 @item -m5-compact
20869 @opindex m5-compact
20870 Generate code for SHcompact.
20871
20872 @item -m5-compact-nofpu
20873 @opindex m5-compact-nofpu
20874 Generate code for SHcompact in such a way that the
20875 floating-point unit is not used.
20876
20877 @item -mb
20878 @opindex mb
20879 Compile code for the processor in big-endian mode.
20880
20881 @item -ml
20882 @opindex ml
20883 Compile code for the processor in little-endian mode.
20884
20885 @item -mdalign
20886 @opindex mdalign
20887 Align doubles at 64-bit boundaries. Note that this changes the calling
20888 conventions, and thus some functions from the standard C library do
20889 not work unless you recompile it first with @option{-mdalign}.
20890
20891 @item -mrelax
20892 @opindex mrelax
20893 Shorten some address references at link time, when possible; uses the
20894 linker option @option{-relax}.
20895
20896 @item -mbigtable
20897 @opindex mbigtable
20898 Use 32-bit offsets in @code{switch} tables. The default is to use
20899 16-bit offsets.
20900
20901 @item -mbitops
20902 @opindex mbitops
20903 Enable the use of bit manipulation instructions on SH2A.
20904
20905 @item -mfmovd
20906 @opindex mfmovd
20907 Enable the use of the instruction @code{fmovd}. Check @option{-mdalign} for
20908 alignment constraints.
20909
20910 @item -mrenesas
20911 @opindex mrenesas
20912 Comply with the calling conventions defined by Renesas.
20913
20914 @item -mno-renesas
20915 @opindex mno-renesas
20916 Comply with the calling conventions defined for GCC before the Renesas
20917 conventions were available. This option is the default for all
20918 targets of the SH toolchain.
20919
20920 @item -mnomacsave
20921 @opindex mnomacsave
20922 Mark the @code{MAC} register as call-clobbered, even if
20923 @option{-mrenesas} is given.
20924
20925 @item -mieee
20926 @itemx -mno-ieee
20927 @opindex mieee
20928 @opindex mno-ieee
20929 Control the IEEE compliance of floating-point comparisons, which affects the
20930 handling of cases where the result of a comparison is unordered. By default
20931 @option{-mieee} is implicitly enabled. If @option{-ffinite-math-only} is
20932 enabled @option{-mno-ieee} is implicitly set, which results in faster
20933 floating-point greater-equal and less-equal comparisons. The implcit settings
20934 can be overridden by specifying either @option{-mieee} or @option{-mno-ieee}.
20935
20936 @item -minline-ic_invalidate
20937 @opindex minline-ic_invalidate
20938 Inline code to invalidate instruction cache entries after setting up
20939 nested function trampolines.
20940 This option has no effect if @option{-musermode} is in effect and the selected
20941 code generation option (e.g. @option{-m4}) does not allow the use of the @code{icbi}
20942 instruction.
20943 If the selected code generation option does not allow the use of the @code{icbi}
20944 instruction, and @option{-musermode} is not in effect, the inlined code
20945 manipulates the instruction cache address array directly with an associative
20946 write. This not only requires privileged mode at run time, but it also
20947 fails if the cache line had been mapped via the TLB and has become unmapped.
20948
20949 @item -misize
20950 @opindex misize
20951 Dump instruction size and location in the assembly code.
20952
20953 @item -mpadstruct
20954 @opindex mpadstruct
20955 This option is deprecated. It pads structures to multiple of 4 bytes,
20956 which is incompatible with the SH ABI@.
20957
20958 @item -matomic-model=@var{model}
20959 @opindex matomic-model=@var{model}
20960 Sets the model of atomic operations and additional parameters as a comma
20961 separated list. For details on the atomic built-in functions see
20962 @ref{__atomic Builtins}. The following models and parameters are supported:
20963
20964 @table @samp
20965
20966 @item none
20967 Disable compiler generated atomic sequences and emit library calls for atomic
20968 operations. This is the default if the target is not @code{sh*-*-linux*}.
20969
20970 @item soft-gusa
20971 Generate GNU/Linux compatible gUSA software atomic sequences for the atomic
20972 built-in functions. The generated atomic sequences require additional support
20973 from the interrupt/exception handling code of the system and are only suitable
20974 for SH3* and SH4* single-core systems. This option is enabled by default when
20975 the target is @code{sh*-*-linux*} and SH3* or SH4*. When the target is SH4A,
20976 this option also partially utilizes the hardware atomic instructions
20977 @code{movli.l} and @code{movco.l} to create more efficient code, unless
20978 @samp{strict} is specified.
20979
20980 @item soft-tcb
20981 Generate software atomic sequences that use a variable in the thread control
20982 block. This is a variation of the gUSA sequences which can also be used on
20983 SH1* and SH2* targets. The generated atomic sequences require additional
20984 support from the interrupt/exception handling code of the system and are only
20985 suitable for single-core systems. When using this model, the @samp{gbr-offset=}
20986 parameter has to be specified as well.
20987
20988 @item soft-imask
20989 Generate software atomic sequences that temporarily disable interrupts by
20990 setting @code{SR.IMASK = 1111}. This model works only when the program runs
20991 in privileged mode and is only suitable for single-core systems. Additional
20992 support from the interrupt/exception handling code of the system is not
20993 required. This model is enabled by default when the target is
20994 @code{sh*-*-linux*} and SH1* or SH2*.
20995
20996 @item hard-llcs
20997 Generate hardware atomic sequences using the @code{movli.l} and @code{movco.l}
20998 instructions only. This is only available on SH4A and is suitable for
20999 multi-core systems. Since the hardware instructions support only 32 bit atomic
21000 variables access to 8 or 16 bit variables is emulated with 32 bit accesses.
21001 Code compiled with this option is also compatible with other software
21002 atomic model interrupt/exception handling systems if executed on an SH4A
21003 system. Additional support from the interrupt/exception handling code of the
21004 system is not required for this model.
21005
21006 @item gbr-offset=
21007 This parameter specifies the offset in bytes of the variable in the thread
21008 control block structure that should be used by the generated atomic sequences
21009 when the @samp{soft-tcb} model has been selected. For other models this
21010 parameter is ignored. The specified value must be an integer multiple of four
21011 and in the range 0-1020.
21012
21013 @item strict
21014 This parameter prevents mixed usage of multiple atomic models, even if they
21015 are compatible, and makes the compiler generate atomic sequences of the
21016 specified model only.
21017
21018 @end table
21019
21020 @item -mtas
21021 @opindex mtas
21022 Generate the @code{tas.b} opcode for @code{__atomic_test_and_set}.
21023 Notice that depending on the particular hardware and software configuration
21024 this can degrade overall performance due to the operand cache line flushes
21025 that are implied by the @code{tas.b} instruction. On multi-core SH4A
21026 processors the @code{tas.b} instruction must be used with caution since it
21027 can result in data corruption for certain cache configurations.
21028
21029 @item -mprefergot
21030 @opindex mprefergot
21031 When generating position-independent code, emit function calls using
21032 the Global Offset Table instead of the Procedure Linkage Table.
21033
21034 @item -musermode
21035 @itemx -mno-usermode
21036 @opindex musermode
21037 @opindex mno-usermode
21038 Don't allow (allow) the compiler generating privileged mode code. Specifying
21039 @option{-musermode} also implies @option{-mno-inline-ic_invalidate} if the
21040 inlined code would not work in user mode. @option{-musermode} is the default
21041 when the target is @code{sh*-*-linux*}. If the target is SH1* or SH2*
21042 @option{-musermode} has no effect, since there is no user mode.
21043
21044 @item -multcost=@var{number}
21045 @opindex multcost=@var{number}
21046 Set the cost to assume for a multiply insn.
21047
21048 @item -mdiv=@var{strategy}
21049 @opindex mdiv=@var{strategy}
21050 Set the division strategy to be used for integer division operations.
21051 For SHmedia @var{strategy} can be one of:
21052
21053 @table @samp
21054
21055 @item fp
21056 Performs the operation in floating point. This has a very high latency,
21057 but needs only a few instructions, so it might be a good choice if
21058 your code has enough easily-exploitable ILP to allow the compiler to
21059 schedule the floating-point instructions together with other instructions.
21060 Division by zero causes a floating-point exception.
21061
21062 @item inv
21063 Uses integer operations to calculate the inverse of the divisor,
21064 and then multiplies the dividend with the inverse. This strategy allows
21065 CSE and hoisting of the inverse calculation. Division by zero calculates
21066 an unspecified result, but does not trap.
21067
21068 @item inv:minlat
21069 A variant of @samp{inv} where, if no CSE or hoisting opportunities
21070 have been found, or if the entire operation has been hoisted to the same
21071 place, the last stages of the inverse calculation are intertwined with the
21072 final multiply to reduce the overall latency, at the expense of using a few
21073 more instructions, and thus offering fewer scheduling opportunities with
21074 other code.
21075
21076 @item call
21077 Calls a library function that usually implements the @samp{inv:minlat}
21078 strategy.
21079 This gives high code density for @code{m5-*media-nofpu} compilations.
21080
21081 @item call2
21082 Uses a different entry point of the same library function, where it
21083 assumes that a pointer to a lookup table has already been set up, which
21084 exposes the pointer load to CSE and code hoisting optimizations.
21085
21086 @item inv:call
21087 @itemx inv:call2
21088 @itemx inv:fp
21089 Use the @samp{inv} algorithm for initial
21090 code generation, but if the code stays unoptimized, revert to the @samp{call},
21091 @samp{call2}, or @samp{fp} strategies, respectively. Note that the
21092 potentially-trapping side effect of division by zero is carried by a
21093 separate instruction, so it is possible that all the integer instructions
21094 are hoisted out, but the marker for the side effect stays where it is.
21095 A recombination to floating-point operations or a call is not possible
21096 in that case.
21097
21098 @item inv20u
21099 @itemx inv20l
21100 Variants of the @samp{inv:minlat} strategy. In the case
21101 that the inverse calculation is not separated from the multiply, they speed
21102 up division where the dividend fits into 20 bits (plus sign where applicable)
21103 by inserting a test to skip a number of operations in this case; this test
21104 slows down the case of larger dividends. @samp{inv20u} assumes the case of a such
21105 a small dividend to be unlikely, and @samp{inv20l} assumes it to be likely.
21106
21107 @end table
21108
21109 For targets other than SHmedia @var{strategy} can be one of:
21110
21111 @table @samp
21112
21113 @item call-div1
21114 Calls a library function that uses the single-step division instruction
21115 @code{div1} to perform the operation. Division by zero calculates an
21116 unspecified result and does not trap. This is the default except for SH4,
21117 SH2A and SHcompact.
21118
21119 @item call-fp
21120 Calls a library function that performs the operation in double precision
21121 floating point. Division by zero causes a floating-point exception. This is
21122 the default for SHcompact with FPU. Specifying this for targets that do not
21123 have a double precision FPU defaults to @code{call-div1}.
21124
21125 @item call-table
21126 Calls a library function that uses a lookup table for small divisors and
21127 the @code{div1} instruction with case distinction for larger divisors. Division
21128 by zero calculates an unspecified result and does not trap. This is the default
21129 for SH4. Specifying this for targets that do not have dynamic shift
21130 instructions defaults to @code{call-div1}.
21131
21132 @end table
21133
21134 When a division strategy has not been specified the default strategy is
21135 selected based on the current target. For SH2A the default strategy is to
21136 use the @code{divs} and @code{divu} instructions instead of library function
21137 calls.
21138
21139 @item -maccumulate-outgoing-args
21140 @opindex maccumulate-outgoing-args
21141 Reserve space once for outgoing arguments in the function prologue rather
21142 than around each call. Generally beneficial for performance and size. Also
21143 needed for unwinding to avoid changing the stack frame around conditional code.
21144
21145 @item -mdivsi3_libfunc=@var{name}
21146 @opindex mdivsi3_libfunc=@var{name}
21147 Set the name of the library function used for 32-bit signed division to
21148 @var{name}.
21149 This only affects the name used in the @samp{call} and @samp{inv:call}
21150 division strategies, and the compiler still expects the same
21151 sets of input/output/clobbered registers as if this option were not present.
21152
21153 @item -mfixed-range=@var{register-range}
21154 @opindex mfixed-range
21155 Generate code treating the given register range as fixed registers.
21156 A fixed register is one that the register allocator can not use. This is
21157 useful when compiling kernel code. A register range is specified as
21158 two registers separated by a dash. Multiple register ranges can be
21159 specified separated by a comma.
21160
21161 @item -mindexed-addressing
21162 @opindex mindexed-addressing
21163 Enable the use of the indexed addressing mode for SHmedia32/SHcompact.
21164 This is only safe if the hardware and/or OS implement 32-bit wrap-around
21165 semantics for the indexed addressing mode. The architecture allows the
21166 implementation of processors with 64-bit MMU, which the OS could use to
21167 get 32-bit addressing, but since no current hardware implementation supports
21168 this or any other way to make the indexed addressing mode safe to use in
21169 the 32-bit ABI, the default is @option{-mno-indexed-addressing}.
21170
21171 @item -mgettrcost=@var{number}
21172 @opindex mgettrcost=@var{number}
21173 Set the cost assumed for the @code{gettr} instruction to @var{number}.
21174 The default is 2 if @option{-mpt-fixed} is in effect, 100 otherwise.
21175
21176 @item -mpt-fixed
21177 @opindex mpt-fixed
21178 Assume @code{pt*} instructions won't trap. This generally generates
21179 better-scheduled code, but is unsafe on current hardware.
21180 The current architecture
21181 definition says that @code{ptabs} and @code{ptrel} trap when the target
21182 anded with 3 is 3.
21183 This has the unintentional effect of making it unsafe to schedule these
21184 instructions before a branch, or hoist them out of a loop. For example,
21185 @code{__do_global_ctors}, a part of @file{libgcc}
21186 that runs constructors at program
21187 startup, calls functions in a list which is delimited by @minus{}1. With the
21188 @option{-mpt-fixed} option, the @code{ptabs} is done before testing against @minus{}1.
21189 That means that all the constructors run a bit more quickly, but when
21190 the loop comes to the end of the list, the program crashes because @code{ptabs}
21191 loads @minus{}1 into a target register.
21192
21193 Since this option is unsafe for any
21194 hardware implementing the current architecture specification, the default
21195 is @option{-mno-pt-fixed}. Unless specified explicitly with
21196 @option{-mgettrcost}, @option{-mno-pt-fixed} also implies @option{-mgettrcost=100};
21197 this deters register allocation from using target registers for storing
21198 ordinary integers.
21199
21200 @item -minvalid-symbols
21201 @opindex minvalid-symbols
21202 Assume symbols might be invalid. Ordinary function symbols generated by
21203 the compiler are always valid to load with
21204 @code{movi}/@code{shori}/@code{ptabs} or
21205 @code{movi}/@code{shori}/@code{ptrel},
21206 but with assembler and/or linker tricks it is possible
21207 to generate symbols that cause @code{ptabs} or @code{ptrel} to trap.
21208 This option is only meaningful when @option{-mno-pt-fixed} is in effect.
21209 It prevents cross-basic-block CSE, hoisting and most scheduling
21210 of symbol loads. The default is @option{-mno-invalid-symbols}.
21211
21212 @item -mbranch-cost=@var{num}
21213 @opindex mbranch-cost=@var{num}
21214 Assume @var{num} to be the cost for a branch instruction. Higher numbers
21215 make the compiler try to generate more branch-free code if possible.
21216 If not specified the value is selected depending on the processor type that
21217 is being compiled for.
21218
21219 @item -mzdcbranch
21220 @itemx -mno-zdcbranch
21221 @opindex mzdcbranch
21222 @opindex mno-zdcbranch
21223 Assume (do not assume) that zero displacement conditional branch instructions
21224 @code{bt} and @code{bf} are fast. If @option{-mzdcbranch} is specified, the
21225 compiler prefers zero displacement branch code sequences. This is
21226 enabled by default when generating code for SH4 and SH4A. It can be explicitly
21227 disabled by specifying @option{-mno-zdcbranch}.
21228
21229 @item -mcbranch-force-delay-slot
21230 @opindex mcbranch-force-delay-slot
21231 Force the usage of delay slots for conditional branches, which stuffs the delay
21232 slot with a @code{nop} if a suitable instruction can't be found. By default
21233 this option is disabled. It can be enabled to work around hardware bugs as
21234 found in the original SH7055.
21235
21236 @item -mfused-madd
21237 @itemx -mno-fused-madd
21238 @opindex mfused-madd
21239 @opindex mno-fused-madd
21240 Generate code that uses (does not use) the floating-point multiply and
21241 accumulate instructions. These instructions are generated by default
21242 if hardware floating point is used. The machine-dependent
21243 @option{-mfused-madd} option is now mapped to the machine-independent
21244 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
21245 mapped to @option{-ffp-contract=off}.
21246
21247 @item -mfsca
21248 @itemx -mno-fsca
21249 @opindex mfsca
21250 @opindex mno-fsca
21251 Allow or disallow the compiler to emit the @code{fsca} instruction for sine
21252 and cosine approximations. The option @option{-mfsca} must be used in
21253 combination with @option{-funsafe-math-optimizations}. It is enabled by default
21254 when generating code for SH4A. Using @option{-mno-fsca} disables sine and cosine
21255 approximations even if @option{-funsafe-math-optimizations} is in effect.
21256
21257 @item -mfsrra
21258 @itemx -mno-fsrra
21259 @opindex mfsrra
21260 @opindex mno-fsrra
21261 Allow or disallow the compiler to emit the @code{fsrra} instruction for
21262 reciprocal square root approximations. The option @option{-mfsrra} must be used
21263 in combination with @option{-funsafe-math-optimizations} and
21264 @option{-ffinite-math-only}. It is enabled by default when generating code for
21265 SH4A. Using @option{-mno-fsrra} disables reciprocal square root approximations
21266 even if @option{-funsafe-math-optimizations} and @option{-ffinite-math-only} are
21267 in effect.
21268
21269 @item -mpretend-cmove
21270 @opindex mpretend-cmove
21271 Prefer zero-displacement conditional branches for conditional move instruction
21272 patterns. This can result in faster code on the SH4 processor.
21273
21274 @end table
21275
21276 @node Solaris 2 Options
21277 @subsection Solaris 2 Options
21278 @cindex Solaris 2 options
21279
21280 These @samp{-m} options are supported on Solaris 2:
21281
21282 @table @gcctabopt
21283 @item -mclear-hwcap
21284 @opindex mclear-hwcap
21285 @option{-mclear-hwcap} tells the compiler to remove the hardware
21286 capabilities generated by the Solaris assembler. This is only necessary
21287 when object files use ISA extensions not supported by the current
21288 machine, but check at runtime whether or not to use them.
21289
21290 @item -mimpure-text
21291 @opindex mimpure-text
21292 @option{-mimpure-text}, used in addition to @option{-shared}, tells
21293 the compiler to not pass @option{-z text} to the linker when linking a
21294 shared object. Using this option, you can link position-dependent
21295 code into a shared object.
21296
21297 @option{-mimpure-text} suppresses the ``relocations remain against
21298 allocatable but non-writable sections'' linker error message.
21299 However, the necessary relocations trigger copy-on-write, and the
21300 shared object is not actually shared across processes. Instead of
21301 using @option{-mimpure-text}, you should compile all source code with
21302 @option{-fpic} or @option{-fPIC}.
21303
21304 @end table
21305
21306 These switches are supported in addition to the above on Solaris 2:
21307
21308 @table @gcctabopt
21309 @item -pthreads
21310 @opindex pthreads
21311 Add support for multithreading using the POSIX threads library. This
21312 option sets flags for both the preprocessor and linker. This option does
21313 not affect the thread safety of object code produced by the compiler or
21314 that of libraries supplied with it.
21315
21316 @item -pthread
21317 @opindex pthread
21318 This is a synonym for @option{-pthreads}.
21319 @end table
21320
21321 @node SPARC Options
21322 @subsection SPARC Options
21323 @cindex SPARC options
21324
21325 These @samp{-m} options are supported on the SPARC:
21326
21327 @table @gcctabopt
21328 @item -mno-app-regs
21329 @itemx -mapp-regs
21330 @opindex mno-app-regs
21331 @opindex mapp-regs
21332 Specify @option{-mapp-regs} to generate output using the global registers
21333 2 through 4, which the SPARC SVR4 ABI reserves for applications. Like the
21334 global register 1, each global register 2 through 4 is then treated as an
21335 allocable register that is clobbered by function calls. This is the default.
21336
21337 To be fully SVR4 ABI-compliant at the cost of some performance loss,
21338 specify @option{-mno-app-regs}. You should compile libraries and system
21339 software with this option.
21340
21341 @item -mflat
21342 @itemx -mno-flat
21343 @opindex mflat
21344 @opindex mno-flat
21345 With @option{-mflat}, the compiler does not generate save/restore instructions
21346 and uses a ``flat'' or single register window model. This model is compatible
21347 with the regular register window model. The local registers and the input
21348 registers (0--5) are still treated as ``call-saved'' registers and are
21349 saved on the stack as needed.
21350
21351 With @option{-mno-flat} (the default), the compiler generates save/restore
21352 instructions (except for leaf functions). This is the normal operating mode.
21353
21354 @item -mfpu
21355 @itemx -mhard-float
21356 @opindex mfpu
21357 @opindex mhard-float
21358 Generate output containing floating-point instructions. This is the
21359 default.
21360
21361 @item -mno-fpu
21362 @itemx -msoft-float
21363 @opindex mno-fpu
21364 @opindex msoft-float
21365 Generate output containing library calls for floating point.
21366 @strong{Warning:} the requisite libraries are not available for all SPARC
21367 targets. Normally the facilities of the machine's usual C compiler are
21368 used, but this cannot be done directly in cross-compilation. You must make
21369 your own arrangements to provide suitable library functions for
21370 cross-compilation. The embedded targets @samp{sparc-*-aout} and
21371 @samp{sparclite-*-*} do provide software floating-point support.
21372
21373 @option{-msoft-float} changes the calling convention in the output file;
21374 therefore, it is only useful if you compile @emph{all} of a program with
21375 this option. In particular, you need to compile @file{libgcc.a}, the
21376 library that comes with GCC, with @option{-msoft-float} in order for
21377 this to work.
21378
21379 @item -mhard-quad-float
21380 @opindex mhard-quad-float
21381 Generate output containing quad-word (long double) floating-point
21382 instructions.
21383
21384 @item -msoft-quad-float
21385 @opindex msoft-quad-float
21386 Generate output containing library calls for quad-word (long double)
21387 floating-point instructions. The functions called are those specified
21388 in the SPARC ABI@. This is the default.
21389
21390 As of this writing, there are no SPARC implementations that have hardware
21391 support for the quad-word floating-point instructions. They all invoke
21392 a trap handler for one of these instructions, and then the trap handler
21393 emulates the effect of the instruction. Because of the trap handler overhead,
21394 this is much slower than calling the ABI library routines. Thus the
21395 @option{-msoft-quad-float} option is the default.
21396
21397 @item -mno-unaligned-doubles
21398 @itemx -munaligned-doubles
21399 @opindex mno-unaligned-doubles
21400 @opindex munaligned-doubles
21401 Assume that doubles have 8-byte alignment. This is the default.
21402
21403 With @option{-munaligned-doubles}, GCC assumes that doubles have 8-byte
21404 alignment only if they are contained in another type, or if they have an
21405 absolute address. Otherwise, it assumes they have 4-byte alignment.
21406 Specifying this option avoids some rare compatibility problems with code
21407 generated by other compilers. It is not the default because it results
21408 in a performance loss, especially for floating-point code.
21409
21410 @item -muser-mode
21411 @itemx -mno-user-mode
21412 @opindex muser-mode
21413 @opindex mno-user-mode
21414 Do not generate code that can only run in supervisor mode. This is relevant
21415 only for the @code{casa} instruction emitted for the LEON3 processor. The
21416 default is @option{-mno-user-mode}.
21417
21418 @item -mno-faster-structs
21419 @itemx -mfaster-structs
21420 @opindex mno-faster-structs
21421 @opindex mfaster-structs
21422 With @option{-mfaster-structs}, the compiler assumes that structures
21423 should have 8-byte alignment. This enables the use of pairs of
21424 @code{ldd} and @code{std} instructions for copies in structure
21425 assignment, in place of twice as many @code{ld} and @code{st} pairs.
21426 However, the use of this changed alignment directly violates the SPARC
21427 ABI@. Thus, it's intended only for use on targets where the developer
21428 acknowledges that their resulting code is not directly in line with
21429 the rules of the ABI@.
21430
21431 @item -mcpu=@var{cpu_type}
21432 @opindex mcpu
21433 Set the instruction set, register set, and instruction scheduling parameters
21434 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
21435 @samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{hypersparc},
21436 @samp{leon}, @samp{leon3}, @samp{leon3v7}, @samp{sparclite}, @samp{f930},
21437 @samp{f934}, @samp{sparclite86x}, @samp{sparclet}, @samp{tsc701}, @samp{v9},
21438 @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
21439 @samp{niagara3} and @samp{niagara4}.
21440
21441 Native Solaris and GNU/Linux toolchains also support the value @samp{native},
21442 which selects the best architecture option for the host processor.
21443 @option{-mcpu=native} has no effect if GCC does not recognize
21444 the processor.
21445
21446 Default instruction scheduling parameters are used for values that select
21447 an architecture and not an implementation. These are @samp{v7}, @samp{v8},
21448 @samp{sparclite}, @samp{sparclet}, @samp{v9}.
21449
21450 Here is a list of each supported architecture and their supported
21451 implementations.
21452
21453 @table @asis
21454 @item v7
21455 cypress, leon3v7
21456
21457 @item v8
21458 supersparc, hypersparc, leon, leon3
21459
21460 @item sparclite
21461 f930, f934, sparclite86x
21462
21463 @item sparclet
21464 tsc701
21465
21466 @item v9
21467 ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4
21468 @end table
21469
21470 By default (unless configured otherwise), GCC generates code for the V7
21471 variant of the SPARC architecture. With @option{-mcpu=cypress}, the compiler
21472 additionally optimizes it for the Cypress CY7C602 chip, as used in the
21473 SPARCStation/SPARCServer 3xx series. This is also appropriate for the older
21474 SPARCStation 1, 2, IPX etc.
21475
21476 With @option{-mcpu=v8}, GCC generates code for the V8 variant of the SPARC
21477 architecture. The only difference from V7 code is that the compiler emits
21478 the integer multiply and integer divide instructions which exist in SPARC-V8
21479 but not in SPARC-V7. With @option{-mcpu=supersparc}, the compiler additionally
21480 optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
21481 2000 series.
21482
21483 With @option{-mcpu=sparclite}, GCC generates code for the SPARClite variant of
21484 the SPARC architecture. This adds the integer multiply, integer divide step
21485 and scan (@code{ffs}) instructions which exist in SPARClite but not in SPARC-V7.
21486 With @option{-mcpu=f930}, the compiler additionally optimizes it for the
21487 Fujitsu MB86930 chip, which is the original SPARClite, with no FPU@. With
21488 @option{-mcpu=f934}, the compiler additionally optimizes it for the Fujitsu
21489 MB86934 chip, which is the more recent SPARClite with FPU@.
21490
21491 With @option{-mcpu=sparclet}, GCC generates code for the SPARClet variant of
21492 the SPARC architecture. This adds the integer multiply, multiply/accumulate,
21493 integer divide step and scan (@code{ffs}) instructions which exist in SPARClet
21494 but not in SPARC-V7. With @option{-mcpu=tsc701}, the compiler additionally
21495 optimizes it for the TEMIC SPARClet chip.
21496
21497 With @option{-mcpu=v9}, GCC generates code for the V9 variant of the SPARC
21498 architecture. This adds 64-bit integer and floating-point move instructions,
21499 3 additional floating-point condition code registers and conditional move
21500 instructions. With @option{-mcpu=ultrasparc}, the compiler additionally
21501 optimizes it for the Sun UltraSPARC I/II/IIi chips. With
21502 @option{-mcpu=ultrasparc3}, the compiler additionally optimizes it for the
21503 Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips. With
21504 @option{-mcpu=niagara}, the compiler additionally optimizes it for
21505 Sun UltraSPARC T1 chips. With @option{-mcpu=niagara2}, the compiler
21506 additionally optimizes it for Sun UltraSPARC T2 chips. With
21507 @option{-mcpu=niagara3}, the compiler additionally optimizes it for Sun
21508 UltraSPARC T3 chips. With @option{-mcpu=niagara4}, the compiler
21509 additionally optimizes it for Sun UltraSPARC T4 chips.
21510
21511 @item -mtune=@var{cpu_type}
21512 @opindex mtune
21513 Set the instruction scheduling parameters for machine type
21514 @var{cpu_type}, but do not set the instruction set or register set that the
21515 option @option{-mcpu=@var{cpu_type}} does.
21516
21517 The same values for @option{-mcpu=@var{cpu_type}} can be used for
21518 @option{-mtune=@var{cpu_type}}, but the only useful values are those
21519 that select a particular CPU implementation. Those are @samp{cypress},
21520 @samp{supersparc}, @samp{hypersparc}, @samp{leon}, @samp{leon3},
21521 @samp{leon3v7}, @samp{f930}, @samp{f934}, @samp{sparclite86x}, @samp{tsc701},
21522 @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
21523 @samp{niagara3} and @samp{niagara4}. With native Solaris and GNU/Linux
21524 toolchains, @samp{native} can also be used.
21525
21526 @item -mv8plus
21527 @itemx -mno-v8plus
21528 @opindex mv8plus
21529 @opindex mno-v8plus
21530 With @option{-mv8plus}, GCC generates code for the SPARC-V8+ ABI@. The
21531 difference from the V8 ABI is that the global and out registers are
21532 considered 64 bits wide. This is enabled by default on Solaris in 32-bit
21533 mode for all SPARC-V9 processors.
21534
21535 @item -mvis
21536 @itemx -mno-vis
21537 @opindex mvis
21538 @opindex mno-vis
21539 With @option{-mvis}, GCC generates code that takes advantage of the UltraSPARC
21540 Visual Instruction Set extensions. The default is @option{-mno-vis}.
21541
21542 @item -mvis2
21543 @itemx -mno-vis2
21544 @opindex mvis2
21545 @opindex mno-vis2
21546 With @option{-mvis2}, GCC generates code that takes advantage of
21547 version 2.0 of the UltraSPARC Visual Instruction Set extensions. The
21548 default is @option{-mvis2} when targeting a cpu that supports such
21549 instructions, such as UltraSPARC-III and later. Setting @option{-mvis2}
21550 also sets @option{-mvis}.
21551
21552 @item -mvis3
21553 @itemx -mno-vis3
21554 @opindex mvis3
21555 @opindex mno-vis3
21556 With @option{-mvis3}, GCC generates code that takes advantage of
21557 version 3.0 of the UltraSPARC Visual Instruction Set extensions. The
21558 default is @option{-mvis3} when targeting a cpu that supports such
21559 instructions, such as niagara-3 and later. Setting @option{-mvis3}
21560 also sets @option{-mvis2} and @option{-mvis}.
21561
21562 @item -mcbcond
21563 @itemx -mno-cbcond
21564 @opindex mcbcond
21565 @opindex mno-cbcond
21566 With @option{-mcbcond}, GCC generates code that takes advantage of
21567 compare-and-branch instructions, as defined in the Sparc Architecture 2011.
21568 The default is @option{-mcbcond} when targeting a cpu that supports such
21569 instructions, such as niagara-4 and later.
21570
21571 @item -mpopc
21572 @itemx -mno-popc
21573 @opindex mpopc
21574 @opindex mno-popc
21575 With @option{-mpopc}, GCC generates code that takes advantage of the UltraSPARC
21576 population count instruction. The default is @option{-mpopc}
21577 when targeting a cpu that supports such instructions, such as Niagara-2 and
21578 later.
21579
21580 @item -mfmaf
21581 @itemx -mno-fmaf
21582 @opindex mfmaf
21583 @opindex mno-fmaf
21584 With @option{-mfmaf}, GCC generates code that takes advantage of the UltraSPARC
21585 Fused Multiply-Add Floating-point extensions. The default is @option{-mfmaf}
21586 when targeting a cpu that supports such instructions, such as Niagara-3 and
21587 later.
21588
21589 @item -mfix-at697f
21590 @opindex mfix-at697f
21591 Enable the documented workaround for the single erratum of the Atmel AT697F
21592 processor (which corresponds to erratum #13 of the AT697E processor).
21593
21594 @item -mfix-ut699
21595 @opindex mfix-ut699
21596 Enable the documented workarounds for the floating-point errata and the data
21597 cache nullify errata of the UT699 processor.
21598 @end table
21599
21600 These @samp{-m} options are supported in addition to the above
21601 on SPARC-V9 processors in 64-bit environments:
21602
21603 @table @gcctabopt
21604 @item -m32
21605 @itemx -m64
21606 @opindex m32
21607 @opindex m64
21608 Generate code for a 32-bit or 64-bit environment.
21609 The 32-bit environment sets int, long and pointer to 32 bits.
21610 The 64-bit environment sets int to 32 bits and long and pointer
21611 to 64 bits.
21612
21613 @item -mcmodel=@var{which}
21614 @opindex mcmodel
21615 Set the code model to one of
21616
21617 @table @samp
21618 @item medlow
21619 The Medium/Low code model: 64-bit addresses, programs
21620 must be linked in the low 32 bits of memory. Programs can be statically
21621 or dynamically linked.
21622
21623 @item medmid
21624 The Medium/Middle code model: 64-bit addresses, programs
21625 must be linked in the low 44 bits of memory, the text and data segments must
21626 be less than 2GB in size and the data segment must be located within 2GB of
21627 the text segment.
21628
21629 @item medany
21630 The Medium/Anywhere code model: 64-bit addresses, programs
21631 may be linked anywhere in memory, the text and data segments must be less
21632 than 2GB in size and the data segment must be located within 2GB of the
21633 text segment.
21634
21635 @item embmedany
21636 The Medium/Anywhere code model for embedded systems:
21637 64-bit addresses, the text and data segments must be less than 2GB in
21638 size, both starting anywhere in memory (determined at link time). The
21639 global register %g4 points to the base of the data segment. Programs
21640 are statically linked and PIC is not supported.
21641 @end table
21642
21643 @item -mmemory-model=@var{mem-model}
21644 @opindex mmemory-model
21645 Set the memory model in force on the processor to one of
21646
21647 @table @samp
21648 @item default
21649 The default memory model for the processor and operating system.
21650
21651 @item rmo
21652 Relaxed Memory Order
21653
21654 @item pso
21655 Partial Store Order
21656
21657 @item tso
21658 Total Store Order
21659
21660 @item sc
21661 Sequential Consistency
21662 @end table
21663
21664 These memory models are formally defined in Appendix D of the Sparc V9
21665 architecture manual, as set in the processor's @code{PSTATE.MM} field.
21666
21667 @item -mstack-bias
21668 @itemx -mno-stack-bias
21669 @opindex mstack-bias
21670 @opindex mno-stack-bias
21671 With @option{-mstack-bias}, GCC assumes that the stack pointer, and
21672 frame pointer if present, are offset by @minus{}2047 which must be added back
21673 when making stack frame references. This is the default in 64-bit mode.
21674 Otherwise, assume no such offset is present.
21675 @end table
21676
21677 @node SPU Options
21678 @subsection SPU Options
21679 @cindex SPU options
21680
21681 These @samp{-m} options are supported on the SPU:
21682
21683 @table @gcctabopt
21684 @item -mwarn-reloc
21685 @itemx -merror-reloc
21686 @opindex mwarn-reloc
21687 @opindex merror-reloc
21688
21689 The loader for SPU does not handle dynamic relocations. By default, GCC
21690 gives an error when it generates code that requires a dynamic
21691 relocation. @option{-mno-error-reloc} disables the error,
21692 @option{-mwarn-reloc} generates a warning instead.
21693
21694 @item -msafe-dma
21695 @itemx -munsafe-dma
21696 @opindex msafe-dma
21697 @opindex munsafe-dma
21698
21699 Instructions that initiate or test completion of DMA must not be
21700 reordered with respect to loads and stores of the memory that is being
21701 accessed.
21702 With @option{-munsafe-dma} you must use the @code{volatile} keyword to protect
21703 memory accesses, but that can lead to inefficient code in places where the
21704 memory is known to not change. Rather than mark the memory as volatile,
21705 you can use @option{-msafe-dma} to tell the compiler to treat
21706 the DMA instructions as potentially affecting all memory.
21707
21708 @item -mbranch-hints
21709 @opindex mbranch-hints
21710
21711 By default, GCC generates a branch hint instruction to avoid
21712 pipeline stalls for always-taken or probably-taken branches. A hint
21713 is not generated closer than 8 instructions away from its branch.
21714 There is little reason to disable them, except for debugging purposes,
21715 or to make an object a little bit smaller.
21716
21717 @item -msmall-mem
21718 @itemx -mlarge-mem
21719 @opindex msmall-mem
21720 @opindex mlarge-mem
21721
21722 By default, GCC generates code assuming that addresses are never larger
21723 than 18 bits. With @option{-mlarge-mem} code is generated that assumes
21724 a full 32-bit address.
21725
21726 @item -mstdmain
21727 @opindex mstdmain
21728
21729 By default, GCC links against startup code that assumes the SPU-style
21730 main function interface (which has an unconventional parameter list).
21731 With @option{-mstdmain}, GCC links your program against startup
21732 code that assumes a C99-style interface to @code{main}, including a
21733 local copy of @code{argv} strings.
21734
21735 @item -mfixed-range=@var{register-range}
21736 @opindex mfixed-range
21737 Generate code treating the given register range as fixed registers.
21738 A fixed register is one that the register allocator cannot use. This is
21739 useful when compiling kernel code. A register range is specified as
21740 two registers separated by a dash. Multiple register ranges can be
21741 specified separated by a comma.
21742
21743 @item -mea32
21744 @itemx -mea64
21745 @opindex mea32
21746 @opindex mea64
21747 Compile code assuming that pointers to the PPU address space accessed
21748 via the @code{__ea} named address space qualifier are either 32 or 64
21749 bits wide. The default is 32 bits. As this is an ABI-changing option,
21750 all object code in an executable must be compiled with the same setting.
21751
21752 @item -maddress-space-conversion
21753 @itemx -mno-address-space-conversion
21754 @opindex maddress-space-conversion
21755 @opindex mno-address-space-conversion
21756 Allow/disallow treating the @code{__ea} address space as superset
21757 of the generic address space. This enables explicit type casts
21758 between @code{__ea} and generic pointer as well as implicit
21759 conversions of generic pointers to @code{__ea} pointers. The
21760 default is to allow address space pointer conversions.
21761
21762 @item -mcache-size=@var{cache-size}
21763 @opindex mcache-size
21764 This option controls the version of libgcc that the compiler links to an
21765 executable and selects a software-managed cache for accessing variables
21766 in the @code{__ea} address space with a particular cache size. Possible
21767 options for @var{cache-size} are @samp{8}, @samp{16}, @samp{32}, @samp{64}
21768 and @samp{128}. The default cache size is 64KB.
21769
21770 @item -matomic-updates
21771 @itemx -mno-atomic-updates
21772 @opindex matomic-updates
21773 @opindex mno-atomic-updates
21774 This option controls the version of libgcc that the compiler links to an
21775 executable and selects whether atomic updates to the software-managed
21776 cache of PPU-side variables are used. If you use atomic updates, changes
21777 to a PPU variable from SPU code using the @code{__ea} named address space
21778 qualifier do not interfere with changes to other PPU variables residing
21779 in the same cache line from PPU code. If you do not use atomic updates,
21780 such interference may occur; however, writing back cache lines is
21781 more efficient. The default behavior is to use atomic updates.
21782
21783 @item -mdual-nops
21784 @itemx -mdual-nops=@var{n}
21785 @opindex mdual-nops
21786 By default, GCC inserts nops to increase dual issue when it expects
21787 it to increase performance. @var{n} can be a value from 0 to 10. A
21788 smaller @var{n} inserts fewer nops. 10 is the default, 0 is the
21789 same as @option{-mno-dual-nops}. Disabled with @option{-Os}.
21790
21791 @item -mhint-max-nops=@var{n}
21792 @opindex mhint-max-nops
21793 Maximum number of nops to insert for a branch hint. A branch hint must
21794 be at least 8 instructions away from the branch it is affecting. GCC
21795 inserts up to @var{n} nops to enforce this, otherwise it does not
21796 generate the branch hint.
21797
21798 @item -mhint-max-distance=@var{n}
21799 @opindex mhint-max-distance
21800 The encoding of the branch hint instruction limits the hint to be within
21801 256 instructions of the branch it is affecting. By default, GCC makes
21802 sure it is within 125.
21803
21804 @item -msafe-hints
21805 @opindex msafe-hints
21806 Work around a hardware bug that causes the SPU to stall indefinitely.
21807 By default, GCC inserts the @code{hbrp} instruction to make sure
21808 this stall won't happen.
21809
21810 @end table
21811
21812 @node System V Options
21813 @subsection Options for System V
21814
21815 These additional options are available on System V Release 4 for
21816 compatibility with other compilers on those systems:
21817
21818 @table @gcctabopt
21819 @item -G
21820 @opindex G
21821 Create a shared object.
21822 It is recommended that @option{-symbolic} or @option{-shared} be used instead.
21823
21824 @item -Qy
21825 @opindex Qy
21826 Identify the versions of each tool used by the compiler, in a
21827 @code{.ident} assembler directive in the output.
21828
21829 @item -Qn
21830 @opindex Qn
21831 Refrain from adding @code{.ident} directives to the output file (this is
21832 the default).
21833
21834 @item -YP,@var{dirs}
21835 @opindex YP
21836 Search the directories @var{dirs}, and no others, for libraries
21837 specified with @option{-l}.
21838
21839 @item -Ym,@var{dir}
21840 @opindex Ym
21841 Look in the directory @var{dir} to find the M4 preprocessor.
21842 The assembler uses this option.
21843 @c This is supposed to go with a -Yd for predefined M4 macro files, but
21844 @c the generic assembler that comes with Solaris takes just -Ym.
21845 @end table
21846
21847 @node TILE-Gx Options
21848 @subsection TILE-Gx Options
21849 @cindex TILE-Gx options
21850
21851 These @samp{-m} options are supported on the TILE-Gx:
21852
21853 @table @gcctabopt
21854 @item -mcmodel=small
21855 @opindex mcmodel=small
21856 Generate code for the small model. The distance for direct calls is
21857 limited to 500M in either direction. PC-relative addresses are 32
21858 bits. Absolute addresses support the full address range.
21859
21860 @item -mcmodel=large
21861 @opindex mcmodel=large
21862 Generate code for the large model. There is no limitation on call
21863 distance, pc-relative addresses, or absolute addresses.
21864
21865 @item -mcpu=@var{name}
21866 @opindex mcpu
21867 Selects the type of CPU to be targeted. Currently the only supported
21868 type is @samp{tilegx}.
21869
21870 @item -m32
21871 @itemx -m64
21872 @opindex m32
21873 @opindex m64
21874 Generate code for a 32-bit or 64-bit environment. The 32-bit
21875 environment sets int, long, and pointer to 32 bits. The 64-bit
21876 environment sets int to 32 bits and long and pointer to 64 bits.
21877
21878 @item -mbig-endian
21879 @itemx -mlittle-endian
21880 @opindex mbig-endian
21881 @opindex mlittle-endian
21882 Generate code in big/little endian mode, respectively.
21883 @end table
21884
21885 @node TILEPro Options
21886 @subsection TILEPro Options
21887 @cindex TILEPro options
21888
21889 These @samp{-m} options are supported on the TILEPro:
21890
21891 @table @gcctabopt
21892 @item -mcpu=@var{name}
21893 @opindex mcpu
21894 Selects the type of CPU to be targeted. Currently the only supported
21895 type is @samp{tilepro}.
21896
21897 @item -m32
21898 @opindex m32
21899 Generate code for a 32-bit environment, which sets int, long, and
21900 pointer to 32 bits. This is the only supported behavior so the flag
21901 is essentially ignored.
21902 @end table
21903
21904 @node V850 Options
21905 @subsection V850 Options
21906 @cindex V850 Options
21907
21908 These @samp{-m} options are defined for V850 implementations:
21909
21910 @table @gcctabopt
21911 @item -mlong-calls
21912 @itemx -mno-long-calls
21913 @opindex mlong-calls
21914 @opindex mno-long-calls
21915 Treat all calls as being far away (near). If calls are assumed to be
21916 far away, the compiler always loads the function's address into a
21917 register, and calls indirect through the pointer.
21918
21919 @item -mno-ep
21920 @itemx -mep
21921 @opindex mno-ep
21922 @opindex mep
21923 Do not optimize (do optimize) basic blocks that use the same index
21924 pointer 4 or more times to copy pointer into the @code{ep} register, and
21925 use the shorter @code{sld} and @code{sst} instructions. The @option{-mep}
21926 option is on by default if you optimize.
21927
21928 @item -mno-prolog-function
21929 @itemx -mprolog-function
21930 @opindex mno-prolog-function
21931 @opindex mprolog-function
21932 Do not use (do use) external functions to save and restore registers
21933 at the prologue and epilogue of a function. The external functions
21934 are slower, but use less code space if more than one function saves
21935 the same number of registers. The @option{-mprolog-function} option
21936 is on by default if you optimize.
21937
21938 @item -mspace
21939 @opindex mspace
21940 Try to make the code as small as possible. At present, this just turns
21941 on the @option{-mep} and @option{-mprolog-function} options.
21942
21943 @item -mtda=@var{n}
21944 @opindex mtda
21945 Put static or global variables whose size is @var{n} bytes or less into
21946 the tiny data area that register @code{ep} points to. The tiny data
21947 area can hold up to 256 bytes in total (128 bytes for byte references).
21948
21949 @item -msda=@var{n}
21950 @opindex msda
21951 Put static or global variables whose size is @var{n} bytes or less into
21952 the small data area that register @code{gp} points to. The small data
21953 area can hold up to 64 kilobytes.
21954
21955 @item -mzda=@var{n}
21956 @opindex mzda
21957 Put static or global variables whose size is @var{n} bytes or less into
21958 the first 32 kilobytes of memory.
21959
21960 @item -mv850
21961 @opindex mv850
21962 Specify that the target processor is the V850.
21963
21964 @item -mv850e3v5
21965 @opindex mv850e3v5
21966 Specify that the target processor is the V850E3V5. The preprocessor
21967 constant @code{__v850e3v5__} is defined if this option is used.
21968
21969 @item -mv850e2v4
21970 @opindex mv850e2v4
21971 Specify that the target processor is the V850E3V5. This is an alias for
21972 the @option{-mv850e3v5} option.
21973
21974 @item -mv850e2v3
21975 @opindex mv850e2v3
21976 Specify that the target processor is the V850E2V3. The preprocessor
21977 constant @code{__v850e2v3__} is defined if this option is used.
21978
21979 @item -mv850e2
21980 @opindex mv850e2
21981 Specify that the target processor is the V850E2. The preprocessor
21982 constant @code{__v850e2__} is defined if this option is used.
21983
21984 @item -mv850e1
21985 @opindex mv850e1
21986 Specify that the target processor is the V850E1. The preprocessor
21987 constants @code{__v850e1__} and @code{__v850e__} are defined if
21988 this option is used.
21989
21990 @item -mv850es
21991 @opindex mv850es
21992 Specify that the target processor is the V850ES. This is an alias for
21993 the @option{-mv850e1} option.
21994
21995 @item -mv850e
21996 @opindex mv850e
21997 Specify that the target processor is the V850E@. The preprocessor
21998 constant @code{__v850e__} is defined if this option is used.
21999
22000 If neither @option{-mv850} nor @option{-mv850e} nor @option{-mv850e1}
22001 nor @option{-mv850e2} nor @option{-mv850e2v3} nor @option{-mv850e3v5}
22002 are defined then a default target processor is chosen and the
22003 relevant @samp{__v850*__} preprocessor constant is defined.
22004
22005 The preprocessor constants @code{__v850} and @code{__v851__} are always
22006 defined, regardless of which processor variant is the target.
22007
22008 @item -mdisable-callt
22009 @itemx -mno-disable-callt
22010 @opindex mdisable-callt
22011 @opindex mno-disable-callt
22012 This option suppresses generation of the @code{CALLT} instruction for the
22013 v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850
22014 architecture.
22015
22016 This option is enabled by default when the RH850 ABI is
22017 in use (see @option{-mrh850-abi}), and disabled by default when the
22018 GCC ABI is in use. If @code{CALLT} instructions are being generated
22019 then the C preprocessor symbol @code{__V850_CALLT__} is defined.
22020
22021 @item -mrelax
22022 @itemx -mno-relax
22023 @opindex mrelax
22024 @opindex mno-relax
22025 Pass on (or do not pass on) the @option{-mrelax} command-line option
22026 to the assembler.
22027
22028 @item -mlong-jumps
22029 @itemx -mno-long-jumps
22030 @opindex mlong-jumps
22031 @opindex mno-long-jumps
22032 Disable (or re-enable) the generation of PC-relative jump instructions.
22033
22034 @item -msoft-float
22035 @itemx -mhard-float
22036 @opindex msoft-float
22037 @opindex mhard-float
22038 Disable (or re-enable) the generation of hardware floating point
22039 instructions. This option is only significant when the target
22040 architecture is @samp{V850E2V3} or higher. If hardware floating point
22041 instructions are being generated then the C preprocessor symbol
22042 @code{__FPU_OK__} is defined, otherwise the symbol
22043 @code{__NO_FPU__} is defined.
22044
22045 @item -mloop
22046 @opindex mloop
22047 Enables the use of the e3v5 LOOP instruction. The use of this
22048 instruction is not enabled by default when the e3v5 architecture is
22049 selected because its use is still experimental.
22050
22051 @item -mrh850-abi
22052 @itemx -mghs
22053 @opindex mrh850-abi
22054 @opindex mghs
22055 Enables support for the RH850 version of the V850 ABI. This is the
22056 default. With this version of the ABI the following rules apply:
22057
22058 @itemize
22059 @item
22060 Integer sized structures and unions are returned via a memory pointer
22061 rather than a register.
22062
22063 @item
22064 Large structures and unions (more than 8 bytes in size) are passed by
22065 value.
22066
22067 @item
22068 Functions are aligned to 16-bit boundaries.
22069
22070 @item
22071 The @option{-m8byte-align} command-line option is supported.
22072
22073 @item
22074 The @option{-mdisable-callt} command-line option is enabled by
22075 default. The @option{-mno-disable-callt} command-line option is not
22076 supported.
22077 @end itemize
22078
22079 When this version of the ABI is enabled the C preprocessor symbol
22080 @code{__V850_RH850_ABI__} is defined.
22081
22082 @item -mgcc-abi
22083 @opindex mgcc-abi
22084 Enables support for the old GCC version of the V850 ABI. With this
22085 version of the ABI the following rules apply:
22086
22087 @itemize
22088 @item
22089 Integer sized structures and unions are returned in register @code{r10}.
22090
22091 @item
22092 Large structures and unions (more than 8 bytes in size) are passed by
22093 reference.
22094
22095 @item
22096 Functions are aligned to 32-bit boundaries, unless optimizing for
22097 size.
22098
22099 @item
22100 The @option{-m8byte-align} command-line option is not supported.
22101
22102 @item
22103 The @option{-mdisable-callt} command-line option is supported but not
22104 enabled by default.
22105 @end itemize
22106
22107 When this version of the ABI is enabled the C preprocessor symbol
22108 @code{__V850_GCC_ABI__} is defined.
22109
22110 @item -m8byte-align
22111 @itemx -mno-8byte-align
22112 @opindex m8byte-align
22113 @opindex mno-8byte-align
22114 Enables support for @code{double} and @code{long long} types to be
22115 aligned on 8-byte boundaries. The default is to restrict the
22116 alignment of all objects to at most 4-bytes. When
22117 @option{-m8byte-align} is in effect the C preprocessor symbol
22118 @code{__V850_8BYTE_ALIGN__} is defined.
22119
22120 @item -mbig-switch
22121 @opindex mbig-switch
22122 Generate code suitable for big switch tables. Use this option only if
22123 the assembler/linker complain about out of range branches within a switch
22124 table.
22125
22126 @item -mapp-regs
22127 @opindex mapp-regs
22128 This option causes r2 and r5 to be used in the code generated by
22129 the compiler. This setting is the default.
22130
22131 @item -mno-app-regs
22132 @opindex mno-app-regs
22133 This option causes r2 and r5 to be treated as fixed registers.
22134
22135 @end table
22136
22137 @node VAX Options
22138 @subsection VAX Options
22139 @cindex VAX options
22140
22141 These @samp{-m} options are defined for the VAX:
22142
22143 @table @gcctabopt
22144 @item -munix
22145 @opindex munix
22146 Do not output certain jump instructions (@code{aobleq} and so on)
22147 that the Unix assembler for the VAX cannot handle across long
22148 ranges.
22149
22150 @item -mgnu
22151 @opindex mgnu
22152 Do output those jump instructions, on the assumption that the
22153 GNU assembler is being used.
22154
22155 @item -mg
22156 @opindex mg
22157 Output code for G-format floating-point numbers instead of D-format.
22158 @end table
22159
22160 @node Visium Options
22161 @subsection Visium Options
22162 @cindex Visium options
22163
22164 @table @gcctabopt
22165
22166 @item -mdebug
22167 @opindex mdebug
22168 A program which performs file I/O and is destined to run on an MCM target
22169 should be linked with this option. It causes the libraries libc.a and
22170 libdebug.a to be linked. The program should be run on the target under
22171 the control of the GDB remote debugging stub.
22172
22173 @item -msim
22174 @opindex msim
22175 A program which performs file I/O and is destined to run on the simulator
22176 should be linked with option. This causes libraries libc.a and libsim.a to
22177 be linked.
22178
22179 @item -mfpu
22180 @itemx -mhard-float
22181 @opindex mfpu
22182 @opindex mhard-float
22183 Generate code containing floating-point instructions. This is the
22184 default.
22185
22186 @item -mno-fpu
22187 @itemx -msoft-float
22188 @opindex mno-fpu
22189 @opindex msoft-float
22190 Generate code containing library calls for floating-point.
22191
22192 @option{-msoft-float} changes the calling convention in the output file;
22193 therefore, it is only useful if you compile @emph{all} of a program with
22194 this option. In particular, you need to compile @file{libgcc.a}, the
22195 library that comes with GCC, with @option{-msoft-float} in order for
22196 this to work.
22197
22198 @item -mcpu=@var{cpu_type}
22199 @opindex mcpu
22200 Set the instruction set, register set, and instruction scheduling parameters
22201 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
22202 @samp{mcm}, @samp{gr5} and @samp{gr6}.
22203
22204 @samp{mcm} is a synonym of @samp{gr5} present for backward compatibility.
22205
22206 By default (unless configured otherwise), GCC generates code for the GR5
22207 variant of the Visium architecture.
22208
22209 With @option{-mcpu=gr6}, GCC generates code for the GR6 variant of the Visium
22210 architecture. The only difference from GR5 code is that the compiler will
22211 generate block move instructions.
22212
22213 @item -mtune=@var{cpu_type}
22214 @opindex mtune
22215 Set the instruction scheduling parameters for machine type @var{cpu_type},
22216 but do not set the instruction set or register set that the option
22217 @option{-mcpu=@var{cpu_type}} would.
22218
22219 @item -msv-mode
22220 @opindex msv-mode
22221 Generate code for the supervisor mode, where there are no restrictions on
22222 the access to general registers. This is the default.
22223
22224 @item -muser-mode
22225 @opindex muser-mode
22226 Generate code for the user mode, where the access to some general registers
22227 is forbidden: on the GR5, registers r24 to r31 cannot be accessed in this
22228 mode; on the GR6, only registers r29 to r31 are affected.
22229 @end table
22230
22231 @node VMS Options
22232 @subsection VMS Options
22233
22234 These @samp{-m} options are defined for the VMS implementations:
22235
22236 @table @gcctabopt
22237 @item -mvms-return-codes
22238 @opindex mvms-return-codes
22239 Return VMS condition codes from @code{main}. The default is to return POSIX-style
22240 condition (e.g.@ error) codes.
22241
22242 @item -mdebug-main=@var{prefix}
22243 @opindex mdebug-main=@var{prefix}
22244 Flag the first routine whose name starts with @var{prefix} as the main
22245 routine for the debugger.
22246
22247 @item -mmalloc64
22248 @opindex mmalloc64
22249 Default to 64-bit memory allocation routines.
22250
22251 @item -mpointer-size=@var{size}
22252 @opindex mpointer-size=@var{size}
22253 Set the default size of pointers. Possible options for @var{size} are
22254 @samp{32} or @samp{short} for 32 bit pointers, @samp{64} or @samp{long}
22255 for 64 bit pointers, and @samp{no} for supporting only 32 bit pointers.
22256 The later option disables @code{pragma pointer_size}.
22257 @end table
22258
22259 @node VxWorks Options
22260 @subsection VxWorks Options
22261 @cindex VxWorks Options
22262
22263 The options in this section are defined for all VxWorks targets.
22264 Options specific to the target hardware are listed with the other
22265 options for that target.
22266
22267 @table @gcctabopt
22268 @item -mrtp
22269 @opindex mrtp
22270 GCC can generate code for both VxWorks kernels and real time processes
22271 (RTPs). This option switches from the former to the latter. It also
22272 defines the preprocessor macro @code{__RTP__}.
22273
22274 @item -non-static
22275 @opindex non-static
22276 Link an RTP executable against shared libraries rather than static
22277 libraries. The options @option{-static} and @option{-shared} can
22278 also be used for RTPs (@pxref{Link Options}); @option{-static}
22279 is the default.
22280
22281 @item -Bstatic
22282 @itemx -Bdynamic
22283 @opindex Bstatic
22284 @opindex Bdynamic
22285 These options are passed down to the linker. They are defined for
22286 compatibility with Diab.
22287
22288 @item -Xbind-lazy
22289 @opindex Xbind-lazy
22290 Enable lazy binding of function calls. This option is equivalent to
22291 @option{-Wl,-z,now} and is defined for compatibility with Diab.
22292
22293 @item -Xbind-now
22294 @opindex Xbind-now
22295 Disable lazy binding of function calls. This option is the default and
22296 is defined for compatibility with Diab.
22297 @end table
22298
22299 @node x86 Options
22300 @subsection x86 Options
22301 @cindex x86 Options
22302
22303 These @samp{-m} options are defined for the x86 family of computers.
22304
22305 @table @gcctabopt
22306
22307 @item -march=@var{cpu-type}
22308 @opindex march
22309 Generate instructions for the machine type @var{cpu-type}. In contrast to
22310 @option{-mtune=@var{cpu-type}}, which merely tunes the generated code
22311 for the specified @var{cpu-type}, @option{-march=@var{cpu-type}} allows GCC
22312 to generate code that may not run at all on processors other than the one
22313 indicated. Specifying @option{-march=@var{cpu-type}} implies
22314 @option{-mtune=@var{cpu-type}}.
22315
22316 The choices for @var{cpu-type} are:
22317
22318 @table @samp
22319 @item native
22320 This selects the CPU to generate code for at compilation time by determining
22321 the processor type of the compiling machine. Using @option{-march=native}
22322 enables all instruction subsets supported by the local machine (hence
22323 the result might not run on different machines). Using @option{-mtune=native}
22324 produces code optimized for the local machine under the constraints
22325 of the selected instruction set.
22326
22327 @item i386
22328 Original Intel i386 CPU@.
22329
22330 @item i486
22331 Intel i486 CPU@. (No scheduling is implemented for this chip.)
22332
22333 @item i586
22334 @itemx pentium
22335 Intel Pentium CPU with no MMX support.
22336
22337 @item iamcu
22338 Intel MCU, based on Intel Pentium CPU.
22339
22340 @item pentium-mmx
22341 Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support.
22342
22343 @item pentiumpro
22344 Intel Pentium Pro CPU@.
22345
22346 @item i686
22347 When used with @option{-march}, the Pentium Pro
22348 instruction set is used, so the code runs on all i686 family chips.
22349 When used with @option{-mtune}, it has the same meaning as @samp{generic}.
22350
22351 @item pentium2
22352 Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set
22353 support.
22354
22355 @item pentium3
22356 @itemx pentium3m
22357 Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction
22358 set support.
22359
22360 @item pentium-m
22361 Intel Pentium M; low-power version of Intel Pentium III CPU
22362 with MMX, SSE and SSE2 instruction set support. Used by Centrino notebooks.
22363
22364 @item pentium4
22365 @itemx pentium4m
22366 Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support.
22367
22368 @item prescott
22369 Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction
22370 set support.
22371
22372 @item nocona
22373 Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE,
22374 SSE2 and SSE3 instruction set support.
22375
22376 @item core2
22377 Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
22378 instruction set support.
22379
22380 @item nehalem
22381 Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22382 SSE4.1, SSE4.2 and POPCNT instruction set support.
22383
22384 @item westmere
22385 Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22386 SSE4.1, SSE4.2, POPCNT, AES and PCLMUL instruction set support.
22387
22388 @item sandybridge
22389 Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22390 SSE4.1, SSE4.2, POPCNT, AVX, AES and PCLMUL instruction set support.
22391
22392 @item ivybridge
22393 Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22394 SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C
22395 instruction set support.
22396
22397 @item haswell
22398 Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22399 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22400 BMI, BMI2 and F16C instruction set support.
22401
22402 @item broadwell
22403 Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22404 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22405 BMI, BMI2, F16C, RDSEED, ADCX and PREFETCHW instruction set support.
22406
22407 @item skylake
22408 Intel Skylake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22409 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22410 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC and
22411 XSAVES instruction set support.
22412
22413 @item bonnell
22414 Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3
22415 instruction set support.
22416
22417 @item silvermont
22418 Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22419 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL and RDRND instruction set support.
22420
22421 @item knl
22422 Intel Knight's Landing CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
22423 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22424 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER and
22425 AVX512CD instruction set support.
22426
22427 @item k6
22428 AMD K6 CPU with MMX instruction set support.
22429
22430 @item k6-2
22431 @itemx k6-3
22432 Improved versions of AMD K6 CPU with MMX and 3DNow!@: instruction set support.
22433
22434 @item athlon
22435 @itemx athlon-tbird
22436 AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow!@: and SSE prefetch instructions
22437 support.
22438
22439 @item athlon-4
22440 @itemx athlon-xp
22441 @itemx athlon-mp
22442 Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow!@: and full SSE
22443 instruction set support.
22444
22445 @item k8
22446 @itemx opteron
22447 @itemx athlon64
22448 @itemx athlon-fx
22449 Processors based on the AMD K8 core with x86-64 instruction set support,
22450 including the AMD Opteron, Athlon 64, and Athlon 64 FX processors.
22451 (This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow!@: and 64-bit
22452 instruction set extensions.)
22453
22454 @item k8-sse3
22455 @itemx opteron-sse3
22456 @itemx athlon64-sse3
22457 Improved versions of AMD K8 cores with SSE3 instruction set support.
22458
22459 @item amdfam10
22460 @itemx barcelona
22461 CPUs based on AMD Family 10h cores with x86-64 instruction set support. (This
22462 supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit
22463 instruction set extensions.)
22464
22465 @item bdver1
22466 CPUs based on AMD Family 15h cores with x86-64 instruction set support. (This
22467 supersets FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
22468 SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)
22469 @item bdver2
22470 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
22471 supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX,
22472 SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set
22473 extensions.)
22474 @item bdver3
22475 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
22476 supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES,
22477 PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and
22478 64-bit instruction set extensions.
22479 @item bdver4
22480 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
22481 supersets BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP,
22482 AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,
22483 SSE4.2, ABM and 64-bit instruction set extensions.
22484
22485 @item btver1
22486 CPUs based on AMD Family 14h cores with x86-64 instruction set support. (This
22487 supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit
22488 instruction set extensions.)
22489
22490 @item btver2
22491 CPUs based on AMD Family 16h cores with x86-64 instruction set support. This
22492 includes MOVBE, F16C, BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16, ABM,
22493 SSE4A, SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set extensions.
22494
22495 @item winchip-c6
22496 IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction
22497 set support.
22498
22499 @item winchip2
22500 IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and 3DNow!@:
22501 instruction set support.
22502
22503 @item c3
22504 VIA C3 CPU with MMX and 3DNow!@: instruction set support. (No scheduling is
22505 implemented for this chip.)
22506
22507 @item c3-2
22508 VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support.
22509 (No scheduling is
22510 implemented for this chip.)
22511
22512 @item geode
22513 AMD Geode embedded processor with MMX and 3DNow!@: instruction set support.
22514 @end table
22515
22516 @item -mtune=@var{cpu-type}
22517 @opindex mtune
22518 Tune to @var{cpu-type} everything applicable about the generated code, except
22519 for the ABI and the set of available instructions.
22520 While picking a specific @var{cpu-type} schedules things appropriately
22521 for that particular chip, the compiler does not generate any code that
22522 cannot run on the default machine type unless you use a
22523 @option{-march=@var{cpu-type}} option.
22524 For example, if GCC is configured for i686-pc-linux-gnu
22525 then @option{-mtune=pentium4} generates code that is tuned for Pentium 4
22526 but still runs on i686 machines.
22527
22528 The choices for @var{cpu-type} are the same as for @option{-march}.
22529 In addition, @option{-mtune} supports 2 extra choices for @var{cpu-type}:
22530
22531 @table @samp
22532 @item generic
22533 Produce code optimized for the most common IA32/@/AMD64/@/EM64T processors.
22534 If you know the CPU on which your code will run, then you should use
22535 the corresponding @option{-mtune} or @option{-march} option instead of
22536 @option{-mtune=generic}. But, if you do not know exactly what CPU users
22537 of your application will have, then you should use this option.
22538
22539 As new processors are deployed in the marketplace, the behavior of this
22540 option will change. Therefore, if you upgrade to a newer version of
22541 GCC, code generation controlled by this option will change to reflect
22542 the processors
22543 that are most common at the time that version of GCC is released.
22544
22545 There is no @option{-march=generic} option because @option{-march}
22546 indicates the instruction set the compiler can use, and there is no
22547 generic instruction set applicable to all processors. In contrast,
22548 @option{-mtune} indicates the processor (or, in this case, collection of
22549 processors) for which the code is optimized.
22550
22551 @item intel
22552 Produce code optimized for the most current Intel processors, which are
22553 Haswell and Silvermont for this version of GCC. If you know the CPU
22554 on which your code will run, then you should use the corresponding
22555 @option{-mtune} or @option{-march} option instead of @option{-mtune=intel}.
22556 But, if you want your application performs better on both Haswell and
22557 Silvermont, then you should use this option.
22558
22559 As new Intel processors are deployed in the marketplace, the behavior of
22560 this option will change. Therefore, if you upgrade to a newer version of
22561 GCC, code generation controlled by this option will change to reflect
22562 the most current Intel processors at the time that version of GCC is
22563 released.
22564
22565 There is no @option{-march=intel} option because @option{-march} indicates
22566 the instruction set the compiler can use, and there is no common
22567 instruction set applicable to all processors. In contrast,
22568 @option{-mtune} indicates the processor (or, in this case, collection of
22569 processors) for which the code is optimized.
22570 @end table
22571
22572 @item -mcpu=@var{cpu-type}
22573 @opindex mcpu
22574 A deprecated synonym for @option{-mtune}.
22575
22576 @item -mfpmath=@var{unit}
22577 @opindex mfpmath
22578 Generate floating-point arithmetic for selected unit @var{unit}. The choices
22579 for @var{unit} are:
22580
22581 @table @samp
22582 @item 387
22583 Use the standard 387 floating-point coprocessor present on the majority of chips and
22584 emulated otherwise. Code compiled with this option runs almost everywhere.
22585 The temporary results are computed in 80-bit precision instead of the precision
22586 specified by the type, resulting in slightly different results compared to most
22587 of other chips. See @option{-ffloat-store} for more detailed description.
22588
22589 This is the default choice for x86-32 targets.
22590
22591 @item sse
22592 Use scalar floating-point instructions present in the SSE instruction set.
22593 This instruction set is supported by Pentium III and newer chips,
22594 and in the AMD line
22595 by Athlon-4, Athlon XP and Athlon MP chips. The earlier version of the SSE
22596 instruction set supports only single-precision arithmetic, thus the double and
22597 extended-precision arithmetic are still done using 387. A later version, present
22598 only in Pentium 4 and AMD x86-64 chips, supports double-precision
22599 arithmetic too.
22600
22601 For the x86-32 compiler, you must use @option{-march=@var{cpu-type}}, @option{-msse}
22602 or @option{-msse2} switches to enable SSE extensions and make this option
22603 effective. For the x86-64 compiler, these extensions are enabled by default.
22604
22605 The resulting code should be considerably faster in the majority of cases and avoid
22606 the numerical instability problems of 387 code, but may break some existing
22607 code that expects temporaries to be 80 bits.
22608
22609 This is the default choice for the x86-64 compiler.
22610
22611 @item sse,387
22612 @itemx sse+387
22613 @itemx both
22614 Attempt to utilize both instruction sets at once. This effectively doubles the
22615 amount of available registers, and on chips with separate execution units for
22616 387 and SSE the execution resources too. Use this option with care, as it is
22617 still experimental, because the GCC register allocator does not model separate
22618 functional units well, resulting in unstable performance.
22619 @end table
22620
22621 @item -masm=@var{dialect}
22622 @opindex masm=@var{dialect}
22623 Output assembly instructions using selected @var{dialect}. Also affects
22624 which dialect is used for basic @code{asm} (@pxref{Basic Asm}) and
22625 extended @code{asm} (@pxref{Extended Asm}). Supported choices (in dialect
22626 order) are @samp{att} or @samp{intel}. The default is @samp{att}. Darwin does
22627 not support @samp{intel}.
22628
22629 @item -mieee-fp
22630 @itemx -mno-ieee-fp
22631 @opindex mieee-fp
22632 @opindex mno-ieee-fp
22633 Control whether or not the compiler uses IEEE floating-point
22634 comparisons. These correctly handle the case where the result of a
22635 comparison is unordered.
22636
22637 @item -msoft-float
22638 @opindex msoft-float
22639 Generate output containing library calls for floating point.
22640
22641 @strong{Warning:} the requisite libraries are not part of GCC@.
22642 Normally the facilities of the machine's usual C compiler are used, but
22643 this can't be done directly in cross-compilation. You must make your
22644 own arrangements to provide suitable library functions for
22645 cross-compilation.
22646
22647 On machines where a function returns floating-point results in the 80387
22648 register stack, some floating-point opcodes may be emitted even if
22649 @option{-msoft-float} is used.
22650
22651 @item -mno-fp-ret-in-387
22652 @opindex mno-fp-ret-in-387
22653 Do not use the FPU registers for return values of functions.
22654
22655 The usual calling convention has functions return values of types
22656 @code{float} and @code{double} in an FPU register, even if there
22657 is no FPU@. The idea is that the operating system should emulate
22658 an FPU@.
22659
22660 The option @option{-mno-fp-ret-in-387} causes such values to be returned
22661 in ordinary CPU registers instead.
22662
22663 @item -mno-fancy-math-387
22664 @opindex mno-fancy-math-387
22665 Some 387 emulators do not support the @code{sin}, @code{cos} and
22666 @code{sqrt} instructions for the 387. Specify this option to avoid
22667 generating those instructions. This option is the default on
22668 OpenBSD and NetBSD@. This option is overridden when @option{-march}
22669 indicates that the target CPU always has an FPU and so the
22670 instruction does not need emulation. These
22671 instructions are not generated unless you also use the
22672 @option{-funsafe-math-optimizations} switch.
22673
22674 @item -malign-double
22675 @itemx -mno-align-double
22676 @opindex malign-double
22677 @opindex mno-align-double
22678 Control whether GCC aligns @code{double}, @code{long double}, and
22679 @code{long long} variables on a two-word boundary or a one-word
22680 boundary. Aligning @code{double} variables on a two-word boundary
22681 produces code that runs somewhat faster on a Pentium at the
22682 expense of more memory.
22683
22684 On x86-64, @option{-malign-double} is enabled by default.
22685
22686 @strong{Warning:} if you use the @option{-malign-double} switch,
22687 structures containing the above types are aligned differently than
22688 the published application binary interface specifications for the x86-32
22689 and are not binary compatible with structures in code compiled
22690 without that switch.
22691
22692 @item -m96bit-long-double
22693 @itemx -m128bit-long-double
22694 @opindex m96bit-long-double
22695 @opindex m128bit-long-double
22696 These switches control the size of @code{long double} type. The x86-32
22697 application binary interface specifies the size to be 96 bits,
22698 so @option{-m96bit-long-double} is the default in 32-bit mode.
22699
22700 Modern architectures (Pentium and newer) prefer @code{long double}
22701 to be aligned to an 8- or 16-byte boundary. In arrays or structures
22702 conforming to the ABI, this is not possible. So specifying
22703 @option{-m128bit-long-double} aligns @code{long double}
22704 to a 16-byte boundary by padding the @code{long double} with an additional
22705 32-bit zero.
22706
22707 In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as
22708 its ABI specifies that @code{long double} is aligned on 16-byte boundary.
22709
22710 Notice that neither of these options enable any extra precision over the x87
22711 standard of 80 bits for a @code{long double}.
22712
22713 @strong{Warning:} if you override the default value for your target ABI, this
22714 changes the size of
22715 structures and arrays containing @code{long double} variables,
22716 as well as modifying the function calling convention for functions taking
22717 @code{long double}. Hence they are not binary-compatible
22718 with code compiled without that switch.
22719
22720 @item -mlong-double-64
22721 @itemx -mlong-double-80
22722 @itemx -mlong-double-128
22723 @opindex mlong-double-64
22724 @opindex mlong-double-80
22725 @opindex mlong-double-128
22726 These switches control the size of @code{long double} type. A size
22727 of 64 bits makes the @code{long double} type equivalent to the @code{double}
22728 type. This is the default for 32-bit Bionic C library. A size
22729 of 128 bits makes the @code{long double} type equivalent to the
22730 @code{__float128} type. This is the default for 64-bit Bionic C library.
22731
22732 @strong{Warning:} if you override the default value for your target ABI, this
22733 changes the size of
22734 structures and arrays containing @code{long double} variables,
22735 as well as modifying the function calling convention for functions taking
22736 @code{long double}. Hence they are not binary-compatible
22737 with code compiled without that switch.
22738
22739 @item -malign-data=@var{type}
22740 @opindex malign-data
22741 Control how GCC aligns variables. Supported values for @var{type} are
22742 @samp{compat} uses increased alignment value compatible uses GCC 4.8
22743 and earlier, @samp{abi} uses alignment value as specified by the
22744 psABI, and @samp{cacheline} uses increased alignment value to match
22745 the cache line size. @samp{compat} is the default.
22746
22747 @item -mlarge-data-threshold=@var{threshold}
22748 @opindex mlarge-data-threshold
22749 When @option{-mcmodel=medium} is specified, data objects larger than
22750 @var{threshold} are placed in the large data section. This value must be the
22751 same across all objects linked into the binary, and defaults to 65535.
22752
22753 @item -mrtd
22754 @opindex mrtd
22755 Use a different function-calling convention, in which functions that
22756 take a fixed number of arguments return with the @code{ret @var{num}}
22757 instruction, which pops their arguments while returning. This saves one
22758 instruction in the caller since there is no need to pop the arguments
22759 there.
22760
22761 You can specify that an individual function is called with this calling
22762 sequence with the function attribute @code{stdcall}. You can also
22763 override the @option{-mrtd} option by using the function attribute
22764 @code{cdecl}. @xref{Function Attributes}.
22765
22766 @strong{Warning:} this calling convention is incompatible with the one
22767 normally used on Unix, so you cannot use it if you need to call
22768 libraries compiled with the Unix compiler.
22769
22770 Also, you must provide function prototypes for all functions that
22771 take variable numbers of arguments (including @code{printf});
22772 otherwise incorrect code is generated for calls to those
22773 functions.
22774
22775 In addition, seriously incorrect code results if you call a
22776 function with too many arguments. (Normally, extra arguments are
22777 harmlessly ignored.)
22778
22779 @item -mregparm=@var{num}
22780 @opindex mregparm
22781 Control how many registers are used to pass integer arguments. By
22782 default, no registers are used to pass arguments, and at most 3
22783 registers can be used. You can control this behavior for a specific
22784 function by using the function attribute @code{regparm}.
22785 @xref{Function Attributes}.
22786
22787 @strong{Warning:} if you use this switch, and
22788 @var{num} is nonzero, then you must build all modules with the same
22789 value, including any libraries. This includes the system libraries and
22790 startup modules.
22791
22792 @item -msseregparm
22793 @opindex msseregparm
22794 Use SSE register passing conventions for float and double arguments
22795 and return values. You can control this behavior for a specific
22796 function by using the function attribute @code{sseregparm}.
22797 @xref{Function Attributes}.
22798
22799 @strong{Warning:} if you use this switch then you must build all
22800 modules with the same value, including any libraries. This includes
22801 the system libraries and startup modules.
22802
22803 @item -mvect8-ret-in-mem
22804 @opindex mvect8-ret-in-mem
22805 Return 8-byte vectors in memory instead of MMX registers. This is the
22806 default on Solaris@tie{}8 and 9 and VxWorks to match the ABI of the Sun
22807 Studio compilers until version 12. Later compiler versions (starting
22808 with Studio 12 Update@tie{}1) follow the ABI used by other x86 targets, which
22809 is the default on Solaris@tie{}10 and later. @emph{Only} use this option if
22810 you need to remain compatible with existing code produced by those
22811 previous compiler versions or older versions of GCC@.
22812
22813 @item -mpc32
22814 @itemx -mpc64
22815 @itemx -mpc80
22816 @opindex mpc32
22817 @opindex mpc64
22818 @opindex mpc80
22819
22820 Set 80387 floating-point precision to 32, 64 or 80 bits. When @option{-mpc32}
22821 is specified, the significands of results of floating-point operations are
22822 rounded to 24 bits (single precision); @option{-mpc64} rounds the
22823 significands of results of floating-point operations to 53 bits (double
22824 precision) and @option{-mpc80} rounds the significands of results of
22825 floating-point operations to 64 bits (extended double precision), which is
22826 the default. When this option is used, floating-point operations in higher
22827 precisions are not available to the programmer without setting the FPU
22828 control word explicitly.
22829
22830 Setting the rounding of floating-point operations to less than the default
22831 80 bits can speed some programs by 2% or more. Note that some mathematical
22832 libraries assume that extended-precision (80-bit) floating-point operations
22833 are enabled by default; routines in such libraries could suffer significant
22834 loss of accuracy, typically through so-called ``catastrophic cancellation'',
22835 when this option is used to set the precision to less than extended precision.
22836
22837 @item -mstackrealign
22838 @opindex mstackrealign
22839 Realign the stack at entry. On the x86, the @option{-mstackrealign}
22840 option generates an alternate prologue and epilogue that realigns the
22841 run-time stack if necessary. This supports mixing legacy codes that keep
22842 4-byte stack alignment with modern codes that keep 16-byte stack alignment for
22843 SSE compatibility. See also the attribute @code{force_align_arg_pointer},
22844 applicable to individual functions.
22845
22846 @item -mpreferred-stack-boundary=@var{num}
22847 @opindex mpreferred-stack-boundary
22848 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
22849 byte boundary. If @option{-mpreferred-stack-boundary} is not specified,
22850 the default is 4 (16 bytes or 128 bits).
22851
22852 @strong{Warning:} When generating code for the x86-64 architecture with
22853 SSE extensions disabled, @option{-mpreferred-stack-boundary=3} can be
22854 used to keep the stack boundary aligned to 8 byte boundary. Since
22855 x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and
22856 intended to be used in controlled environment where stack space is
22857 important limitation. This option leads to wrong code when functions
22858 compiled with 16 byte stack alignment (such as functions from a standard
22859 library) are called with misaligned stack. In this case, SSE
22860 instructions may lead to misaligned memory access traps. In addition,
22861 variable arguments are handled incorrectly for 16 byte aligned
22862 objects (including x87 long double and __int128), leading to wrong
22863 results. You must build all modules with
22864 @option{-mpreferred-stack-boundary=3}, including any libraries. This
22865 includes the system libraries and startup modules.
22866
22867 @item -mincoming-stack-boundary=@var{num}
22868 @opindex mincoming-stack-boundary
22869 Assume the incoming stack is aligned to a 2 raised to @var{num} byte
22870 boundary. If @option{-mincoming-stack-boundary} is not specified,
22871 the one specified by @option{-mpreferred-stack-boundary} is used.
22872
22873 On Pentium and Pentium Pro, @code{double} and @code{long double} values
22874 should be aligned to an 8-byte boundary (see @option{-malign-double}) or
22875 suffer significant run time performance penalties. On Pentium III, the
22876 Streaming SIMD Extension (SSE) data type @code{__m128} may not work
22877 properly if it is not 16-byte aligned.
22878
22879 To ensure proper alignment of this values on the stack, the stack boundary
22880 must be as aligned as that required by any value stored on the stack.
22881 Further, every function must be generated such that it keeps the stack
22882 aligned. Thus calling a function compiled with a higher preferred
22883 stack boundary from a function compiled with a lower preferred stack
22884 boundary most likely misaligns the stack. It is recommended that
22885 libraries that use callbacks always use the default setting.
22886
22887 This extra alignment does consume extra stack space, and generally
22888 increases code size. Code that is sensitive to stack space usage, such
22889 as embedded systems and operating system kernels, may want to reduce the
22890 preferred alignment to @option{-mpreferred-stack-boundary=2}.
22891
22892 @need 200
22893 @item -mmmx
22894 @opindex mmmx
22895 @need 200
22896 @itemx -msse
22897 @opindex msse
22898 @need 200
22899 @itemx -msse2
22900 @need 200
22901 @itemx -msse3
22902 @need 200
22903 @itemx -mssse3
22904 @need 200
22905 @itemx -msse4
22906 @need 200
22907 @itemx -msse4a
22908 @need 200
22909 @itemx -msse4.1
22910 @need 200
22911 @itemx -msse4.2
22912 @need 200
22913 @itemx -mavx
22914 @opindex mavx
22915 @need 200
22916 @itemx -mavx2
22917 @need 200
22918 @itemx -mavx512f
22919 @need 200
22920 @itemx -mavx512pf
22921 @need 200
22922 @itemx -mavx512er
22923 @need 200
22924 @itemx -mavx512cd
22925 @need 200
22926 @itemx -msha
22927 @opindex msha
22928 @need 200
22929 @itemx -maes
22930 @opindex maes
22931 @need 200
22932 @itemx -mpclmul
22933 @opindex mpclmul
22934 @need 200
22935 @itemx -mclfushopt
22936 @opindex mclfushopt
22937 @need 200
22938 @itemx -mfsgsbase
22939 @opindex mfsgsbase
22940 @need 200
22941 @itemx -mrdrnd
22942 @opindex mrdrnd
22943 @need 200
22944 @itemx -mf16c
22945 @opindex mf16c
22946 @need 200
22947 @itemx -mfma
22948 @opindex mfma
22949 @need 200
22950 @itemx -mfma4
22951 @need 200
22952 @itemx -mno-fma4
22953 @need 200
22954 @itemx -mprefetchwt1
22955 @opindex mprefetchwt1
22956 @need 200
22957 @itemx -mxop
22958 @opindex mxop
22959 @need 200
22960 @itemx -mlwp
22961 @opindex mlwp
22962 @need 200
22963 @itemx -m3dnow
22964 @opindex m3dnow
22965 @need 200
22966 @itemx -mpopcnt
22967 @opindex mpopcnt
22968 @need 200
22969 @itemx -mabm
22970 @opindex mabm
22971 @need 200
22972 @itemx -mbmi
22973 @opindex mbmi
22974 @need 200
22975 @itemx -mbmi2
22976 @need 200
22977 @itemx -mlzcnt
22978 @opindex mlzcnt
22979 @need 200
22980 @itemx -mfxsr
22981 @opindex mfxsr
22982 @need 200
22983 @itemx -mxsave
22984 @opindex mxsave
22985 @need 200
22986 @itemx -mxsaveopt
22987 @opindex mxsaveopt
22988 @need 200
22989 @itemx -mxsavec
22990 @opindex mxsavec
22991 @need 200
22992 @itemx -mxsaves
22993 @opindex mxsaves
22994 @need 200
22995 @itemx -mrtm
22996 @opindex mrtm
22997 @need 200
22998 @itemx -mtbm
22999 @opindex mtbm
23000 @need 200
23001 @itemx -mmpx
23002 @opindex mmpx
23003 @need 200
23004 @itemx -mmwaitx
23005 @opindex mmwaitx
23006 These switches enable the use of instructions in the MMX, SSE,
23007 SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AVX512F, AVX512PF, AVX512ER, AVX512CD,
23008 SHA, AES, PCLMUL, FSGSBASE, RDRND, F16C, FMA, SSE4A, FMA4, XOP, LWP, ABM,
23009 BMI, BMI2, FXSR, XSAVE, XSAVEOPT, LZCNT, RTM, MPX, MWAITX or 3DNow!@:
23010 extended instruction sets. Each has a corresponding @option{-mno-} option
23011 to disable use of these instructions.
23012
23013 These extensions are also available as built-in functions: see
23014 @ref{x86 Built-in Functions}, for details of the functions enabled and
23015 disabled by these switches.
23016
23017 To generate SSE/SSE2 instructions automatically from floating-point
23018 code (as opposed to 387 instructions), see @option{-mfpmath=sse}.
23019
23020 GCC depresses SSEx instructions when @option{-mavx} is used. Instead, it
23021 generates new AVX instructions or AVX equivalence for all SSEx instructions
23022 when needed.
23023
23024 These options enable GCC to use these extended instructions in
23025 generated code, even without @option{-mfpmath=sse}. Applications that
23026 perform run-time CPU detection must compile separate files for each
23027 supported architecture, using the appropriate flags. In particular,
23028 the file containing the CPU detection code should be compiled without
23029 these options.
23030
23031 @item -mdump-tune-features
23032 @opindex mdump-tune-features
23033 This option instructs GCC to dump the names of the x86 performance
23034 tuning features and default settings. The names can be used in
23035 @option{-mtune-ctrl=@var{feature-list}}.
23036
23037 @item -mtune-ctrl=@var{feature-list}
23038 @opindex mtune-ctrl=@var{feature-list}
23039 This option is used to do fine grain control of x86 code generation features.
23040 @var{feature-list} is a comma separated list of @var{feature} names. See also
23041 @option{-mdump-tune-features}. When specified, the @var{feature} is turned
23042 on if it is not preceded with @samp{^}, otherwise, it is turned off.
23043 @option{-mtune-ctrl=@var{feature-list}} is intended to be used by GCC
23044 developers. Using it may lead to code paths not covered by testing and can
23045 potentially result in compiler ICEs or runtime errors.
23046
23047 @item -mno-default
23048 @opindex mno-default
23049 This option instructs GCC to turn off all tunable features. See also
23050 @option{-mtune-ctrl=@var{feature-list}} and @option{-mdump-tune-features}.
23051
23052 @item -mcld
23053 @opindex mcld
23054 This option instructs GCC to emit a @code{cld} instruction in the prologue
23055 of functions that use string instructions. String instructions depend on
23056 the DF flag to select between autoincrement or autodecrement mode. While the
23057 ABI specifies the DF flag to be cleared on function entry, some operating
23058 systems violate this specification by not clearing the DF flag in their
23059 exception dispatchers. The exception handler can be invoked with the DF flag
23060 set, which leads to wrong direction mode when string instructions are used.
23061 This option can be enabled by default on 32-bit x86 targets by configuring
23062 GCC with the @option{--enable-cld} configure option. Generation of @code{cld}
23063 instructions can be suppressed with the @option{-mno-cld} compiler option
23064 in this case.
23065
23066 @item -mvzeroupper
23067 @opindex mvzeroupper
23068 This option instructs GCC to emit a @code{vzeroupper} instruction
23069 before a transfer of control flow out of the function to minimize
23070 the AVX to SSE transition penalty as well as remove unnecessary @code{zeroupper}
23071 intrinsics.
23072
23073 @item -mprefer-avx128
23074 @opindex mprefer-avx128
23075 This option instructs GCC to use 128-bit AVX instructions instead of
23076 256-bit AVX instructions in the auto-vectorizer.
23077
23078 @item -mcx16
23079 @opindex mcx16
23080 This option enables GCC to generate @code{CMPXCHG16B} instructions.
23081 @code{CMPXCHG16B} allows for atomic operations on 128-bit double quadword
23082 (or oword) data types.
23083 This is useful for high-resolution counters that can be updated
23084 by multiple processors (or cores). This instruction is generated as part of
23085 atomic built-in functions: see @ref{__sync Builtins} or
23086 @ref{__atomic Builtins} for details.
23087
23088 @item -msahf
23089 @opindex msahf
23090 This option enables generation of @code{SAHF} instructions in 64-bit code.
23091 Early Intel Pentium 4 CPUs with Intel 64 support,
23092 prior to the introduction of Pentium 4 G1 step in December 2005,
23093 lacked the @code{LAHF} and @code{SAHF} instructions
23094 which are supported by AMD64.
23095 These are load and store instructions, respectively, for certain status flags.
23096 In 64-bit mode, the @code{SAHF} instruction is used to optimize @code{fmod},
23097 @code{drem}, and @code{remainder} built-in functions;
23098 see @ref{Other Builtins} for details.
23099
23100 @item -mmovbe
23101 @opindex mmovbe
23102 This option enables use of the @code{movbe} instruction to implement
23103 @code{__builtin_bswap32} and @code{__builtin_bswap64}.
23104
23105 @item -mcrc32
23106 @opindex mcrc32
23107 This option enables built-in functions @code{__builtin_ia32_crc32qi},
23108 @code{__builtin_ia32_crc32hi}, @code{__builtin_ia32_crc32si} and
23109 @code{__builtin_ia32_crc32di} to generate the @code{crc32} machine instruction.
23110
23111 @item -mrecip
23112 @opindex mrecip
23113 This option enables use of @code{RCPSS} and @code{RSQRTSS} instructions
23114 (and their vectorized variants @code{RCPPS} and @code{RSQRTPS})
23115 with an additional Newton-Raphson step
23116 to increase precision instead of @code{DIVSS} and @code{SQRTSS}
23117 (and their vectorized
23118 variants) for single-precision floating-point arguments. These instructions
23119 are generated only when @option{-funsafe-math-optimizations} is enabled
23120 together with @option{-finite-math-only} and @option{-fno-trapping-math}.
23121 Note that while the throughput of the sequence is higher than the throughput
23122 of the non-reciprocal instruction, the precision of the sequence can be
23123 decreased by up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994).
23124
23125 Note that GCC implements @code{1.0f/sqrtf(@var{x})} in terms of @code{RSQRTSS}
23126 (or @code{RSQRTPS}) already with @option{-ffast-math} (or the above option
23127 combination), and doesn't need @option{-mrecip}.
23128
23129 Also note that GCC emits the above sequence with additional Newton-Raphson step
23130 for vectorized single-float division and vectorized @code{sqrtf(@var{x})}
23131 already with @option{-ffast-math} (or the above option combination), and
23132 doesn't need @option{-mrecip}.
23133
23134 @item -mrecip=@var{opt}
23135 @opindex mrecip=opt
23136 This option controls which reciprocal estimate instructions
23137 may be used. @var{opt} is a comma-separated list of options, which may
23138 be preceded by a @samp{!} to invert the option:
23139
23140 @table @samp
23141 @item all
23142 Enable all estimate instructions.
23143
23144 @item default
23145 Enable the default instructions, equivalent to @option{-mrecip}.
23146
23147 @item none
23148 Disable all estimate instructions, equivalent to @option{-mno-recip}.
23149
23150 @item div
23151 Enable the approximation for scalar division.
23152
23153 @item vec-div
23154 Enable the approximation for vectorized division.
23155
23156 @item sqrt
23157 Enable the approximation for scalar square root.
23158
23159 @item vec-sqrt
23160 Enable the approximation for vectorized square root.
23161 @end table
23162
23163 So, for example, @option{-mrecip=all,!sqrt} enables
23164 all of the reciprocal approximations, except for square root.
23165
23166 @item -mveclibabi=@var{type}
23167 @opindex mveclibabi
23168 Specifies the ABI type to use for vectorizing intrinsics using an
23169 external library. Supported values for @var{type} are @samp{svml}
23170 for the Intel short
23171 vector math library and @samp{acml} for the AMD math core library.
23172 To use this option, both @option{-ftree-vectorize} and
23173 @option{-funsafe-math-optimizations} have to be enabled, and an SVML or ACML
23174 ABI-compatible library must be specified at link time.
23175
23176 GCC currently emits calls to @code{vmldExp2},
23177 @code{vmldLn2}, @code{vmldLog102}, @code{vmldLog102}, @code{vmldPow2},
23178 @code{vmldTanh2}, @code{vmldTan2}, @code{vmldAtan2}, @code{vmldAtanh2},
23179 @code{vmldCbrt2}, @code{vmldSinh2}, @code{vmldSin2}, @code{vmldAsinh2},
23180 @code{vmldAsin2}, @code{vmldCosh2}, @code{vmldCos2}, @code{vmldAcosh2},
23181 @code{vmldAcos2}, @code{vmlsExp4}, @code{vmlsLn4}, @code{vmlsLog104},
23182 @code{vmlsLog104}, @code{vmlsPow4}, @code{vmlsTanh4}, @code{vmlsTan4},
23183 @code{vmlsAtan4}, @code{vmlsAtanh4}, @code{vmlsCbrt4}, @code{vmlsSinh4},
23184 @code{vmlsSin4}, @code{vmlsAsinh4}, @code{vmlsAsin4}, @code{vmlsCosh4},
23185 @code{vmlsCos4}, @code{vmlsAcosh4} and @code{vmlsAcos4} for corresponding
23186 function type when @option{-mveclibabi=svml} is used, and @code{__vrd2_sin},
23187 @code{__vrd2_cos}, @code{__vrd2_exp}, @code{__vrd2_log}, @code{__vrd2_log2},
23188 @code{__vrd2_log10}, @code{__vrs4_sinf}, @code{__vrs4_cosf},
23189 @code{__vrs4_expf}, @code{__vrs4_logf}, @code{__vrs4_log2f},
23190 @code{__vrs4_log10f} and @code{__vrs4_powf} for the corresponding function type
23191 when @option{-mveclibabi=acml} is used.
23192
23193 @item -mabi=@var{name}
23194 @opindex mabi
23195 Generate code for the specified calling convention. Permissible values
23196 are @samp{sysv} for the ABI used on GNU/Linux and other systems, and
23197 @samp{ms} for the Microsoft ABI. The default is to use the Microsoft
23198 ABI when targeting Microsoft Windows and the SysV ABI on all other systems.
23199 You can control this behavior for specific functions by
23200 using the function attributes @code{ms_abi} and @code{sysv_abi}.
23201 @xref{Function Attributes}.
23202
23203 @item -mtls-dialect=@var{type}
23204 @opindex mtls-dialect
23205 Generate code to access thread-local storage using the @samp{gnu} or
23206 @samp{gnu2} conventions. @samp{gnu} is the conservative default;
23207 @samp{gnu2} is more efficient, but it may add compile- and run-time
23208 requirements that cannot be satisfied on all systems.
23209
23210 @item -mpush-args
23211 @itemx -mno-push-args
23212 @opindex mpush-args
23213 @opindex mno-push-args
23214 Use PUSH operations to store outgoing parameters. This method is shorter
23215 and usually equally fast as method using SUB/MOV operations and is enabled
23216 by default. In some cases disabling it may improve performance because of
23217 improved scheduling and reduced dependencies.
23218
23219 @item -maccumulate-outgoing-args
23220 @opindex maccumulate-outgoing-args
23221 If enabled, the maximum amount of space required for outgoing arguments is
23222 computed in the function prologue. This is faster on most modern CPUs
23223 because of reduced dependencies, improved scheduling and reduced stack usage
23224 when the preferred stack boundary is not equal to 2. The drawback is a notable
23225 increase in code size. This switch implies @option{-mno-push-args}.
23226
23227 @item -mthreads
23228 @opindex mthreads
23229 Support thread-safe exception handling on MinGW. Programs that rely
23230 on thread-safe exception handling must compile and link all code with the
23231 @option{-mthreads} option. When compiling, @option{-mthreads} defines
23232 @option{-D_MT}; when linking, it links in a special thread helper library
23233 @option{-lmingwthrd} which cleans up per-thread exception-handling data.
23234
23235 @item -mno-align-stringops
23236 @opindex mno-align-stringops
23237 Do not align the destination of inlined string operations. This switch reduces
23238 code size and improves performance in case the destination is already aligned,
23239 but GCC doesn't know about it.
23240
23241 @item -minline-all-stringops
23242 @opindex minline-all-stringops
23243 By default GCC inlines string operations only when the destination is
23244 known to be aligned to least a 4-byte boundary.
23245 This enables more inlining and increases code
23246 size, but may improve performance of code that depends on fast
23247 @code{memcpy}, @code{strlen},
23248 and @code{memset} for short lengths.
23249
23250 @item -minline-stringops-dynamically
23251 @opindex minline-stringops-dynamically
23252 For string operations of unknown size, use run-time checks with
23253 inline code for small blocks and a library call for large blocks.
23254
23255 @item -mstringop-strategy=@var{alg}
23256 @opindex mstringop-strategy=@var{alg}
23257 Override the internal decision heuristic for the particular algorithm to use
23258 for inlining string operations. The allowed values for @var{alg} are:
23259
23260 @table @samp
23261 @item rep_byte
23262 @itemx rep_4byte
23263 @itemx rep_8byte
23264 Expand using i386 @code{rep} prefix of the specified size.
23265
23266 @item byte_loop
23267 @itemx loop
23268 @itemx unrolled_loop
23269 Expand into an inline loop.
23270
23271 @item libcall
23272 Always use a library call.
23273 @end table
23274
23275 @item -mmemcpy-strategy=@var{strategy}
23276 @opindex mmemcpy-strategy=@var{strategy}
23277 Override the internal decision heuristic to decide if @code{__builtin_memcpy}
23278 should be inlined and what inline algorithm to use when the expected size
23279 of the copy operation is known. @var{strategy}
23280 is a comma-separated list of @var{alg}:@var{max_size}:@var{dest_align} triplets.
23281 @var{alg} is specified in @option{-mstringop-strategy}, @var{max_size} specifies
23282 the max byte size with which inline algorithm @var{alg} is allowed. For the last
23283 triplet, the @var{max_size} must be @code{-1}. The @var{max_size} of the triplets
23284 in the list must be specified in increasing order. The minimal byte size for
23285 @var{alg} is @code{0} for the first triplet and @code{@var{max_size} + 1} of the
23286 preceding range.
23287
23288 @item -mmemset-strategy=@var{strategy}
23289 @opindex mmemset-strategy=@var{strategy}
23290 The option is similar to @option{-mmemcpy-strategy=} except that it is to control
23291 @code{__builtin_memset} expansion.
23292
23293 @item -momit-leaf-frame-pointer
23294 @opindex momit-leaf-frame-pointer
23295 Don't keep the frame pointer in a register for leaf functions. This
23296 avoids the instructions to save, set up, and restore frame pointers and
23297 makes an extra register available in leaf functions. The option
23298 @option{-fomit-leaf-frame-pointer} removes the frame pointer for leaf functions,
23299 which might make debugging harder.
23300
23301 @item -mtls-direct-seg-refs
23302 @itemx -mno-tls-direct-seg-refs
23303 @opindex mtls-direct-seg-refs
23304 Controls whether TLS variables may be accessed with offsets from the
23305 TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
23306 or whether the thread base pointer must be added. Whether or not this
23307 is valid depends on the operating system, and whether it maps the
23308 segment to cover the entire TLS area.
23309
23310 For systems that use the GNU C Library, the default is on.
23311
23312 @item -msse2avx
23313 @itemx -mno-sse2avx
23314 @opindex msse2avx
23315 Specify that the assembler should encode SSE instructions with VEX
23316 prefix. The option @option{-mavx} turns this on by default.
23317
23318 @item -mfentry
23319 @itemx -mno-fentry
23320 @opindex mfentry
23321 If profiling is active (@option{-pg}), put the profiling
23322 counter call before the prologue.
23323 Note: On x86 architectures the attribute @code{ms_hook_prologue}
23324 isn't possible at the moment for @option{-mfentry} and @option{-pg}.
23325
23326 @item -mrecord-mcount
23327 @itemx -mno-record-mcount
23328 @opindex mrecord-mcount
23329 If profiling is active (@option{-pg}), generate a __mcount_loc section
23330 that contains pointers to each profiling call. This is useful for
23331 automatically patching and out calls.
23332
23333 @item -mnop-mcount
23334 @itemx -mno-nop-mcount
23335 @opindex mnop-mcount
23336 If profiling is active (@option{-pg}), generate the calls to
23337 the profiling functions as nops. This is useful when they
23338 should be patched in later dynamically. This is likely only
23339 useful together with @option{-mrecord-mcount}.
23340
23341 @item -mskip-rax-setup
23342 @itemx -mno-skip-rax-setup
23343 @opindex mskip-rax-setup
23344 When generating code for the x86-64 architecture with SSE extensions
23345 disabled, @option{-skip-rax-setup} can be used to skip setting up RAX
23346 register when there are no variable arguments passed in vector registers.
23347
23348 @strong{Warning:} Since RAX register is used to avoid unnecessarily
23349 saving vector registers on stack when passing variable arguments, the
23350 impacts of this option are callees may waste some stack space,
23351 misbehave or jump to a random location. GCC 4.4 or newer don't have
23352 those issues, regardless the RAX register value.
23353
23354 @item -m8bit-idiv
23355 @itemx -mno-8bit-idiv
23356 @opindex m8bit-idiv
23357 On some processors, like Intel Atom, 8-bit unsigned integer divide is
23358 much faster than 32-bit/64-bit integer divide. This option generates a
23359 run-time check. If both dividend and divisor are within range of 0
23360 to 255, 8-bit unsigned integer divide is used instead of
23361 32-bit/64-bit integer divide.
23362
23363 @item -mavx256-split-unaligned-load
23364 @itemx -mavx256-split-unaligned-store
23365 @opindex mavx256-split-unaligned-load
23366 @opindex mavx256-split-unaligned-store
23367 Split 32-byte AVX unaligned load and store.
23368
23369 @item -mstack-protector-guard=@var{guard}
23370 @opindex mstack-protector-guard=@var{guard}
23371 Generate stack protection code using canary at @var{guard}. Supported
23372 locations are @samp{global} for global canary or @samp{tls} for per-thread
23373 canary in the TLS block (the default). This option has effect only when
23374 @option{-fstack-protector} or @option{-fstack-protector-all} is specified.
23375
23376 @end table
23377
23378 These @samp{-m} switches are supported in addition to the above
23379 on x86-64 processors in 64-bit environments.
23380
23381 @table @gcctabopt
23382 @item -m32
23383 @itemx -m64
23384 @itemx -mx32
23385 @itemx -m16
23386 @itemx -miamcu
23387 @opindex m32
23388 @opindex m64
23389 @opindex mx32
23390 @opindex m16
23391 @opindex miamcu
23392 Generate code for a 16-bit, 32-bit or 64-bit environment.
23393 The @option{-m32} option sets @code{int}, @code{long}, and pointer types
23394 to 32 bits, and
23395 generates code that runs on any i386 system.
23396
23397 The @option{-m64} option sets @code{int} to 32 bits and @code{long} and pointer
23398 types to 64 bits, and generates code for the x86-64 architecture.
23399 For Darwin only the @option{-m64} option also turns off the @option{-fno-pic}
23400 and @option{-mdynamic-no-pic} options.
23401
23402 The @option{-mx32} option sets @code{int}, @code{long}, and pointer types
23403 to 32 bits, and
23404 generates code for the x86-64 architecture.
23405
23406 The @option{-m16} option is the same as @option{-m32}, except for that
23407 it outputs the @code{.code16gcc} assembly directive at the beginning of
23408 the assembly output so that the binary can run in 16-bit mode.
23409
23410 The @option{-miamcu} option generates code which conforms to Intel MCU
23411 psABI. It requires the @option{-m32} option to be turned on.
23412
23413 @item -mno-red-zone
23414 @opindex mno-red-zone
23415 Do not use a so-called ``red zone'' for x86-64 code. The red zone is mandated
23416 by the x86-64 ABI; it is a 128-byte area beyond the location of the
23417 stack pointer that is not modified by signal or interrupt handlers
23418 and therefore can be used for temporary data without adjusting the stack
23419 pointer. The flag @option{-mno-red-zone} disables this red zone.
23420
23421 @item -mcmodel=small
23422 @opindex mcmodel=small
23423 Generate code for the small code model: the program and its symbols must
23424 be linked in the lower 2 GB of the address space. Pointers are 64 bits.
23425 Programs can be statically or dynamically linked. This is the default
23426 code model.
23427
23428 @item -mcmodel=kernel
23429 @opindex mcmodel=kernel
23430 Generate code for the kernel code model. The kernel runs in the
23431 negative 2 GB of the address space.
23432 This model has to be used for Linux kernel code.
23433
23434 @item -mcmodel=medium
23435 @opindex mcmodel=medium
23436 Generate code for the medium model: the program is linked in the lower 2
23437 GB of the address space. Small symbols are also placed there. Symbols
23438 with sizes larger than @option{-mlarge-data-threshold} are put into
23439 large data or BSS sections and can be located above 2GB. Programs can
23440 be statically or dynamically linked.
23441
23442 @item -mcmodel=large
23443 @opindex mcmodel=large
23444 Generate code for the large model. This model makes no assumptions
23445 about addresses and sizes of sections.
23446
23447 @item -maddress-mode=long
23448 @opindex maddress-mode=long
23449 Generate code for long address mode. This is only supported for 64-bit
23450 and x32 environments. It is the default address mode for 64-bit
23451 environments.
23452
23453 @item -maddress-mode=short
23454 @opindex maddress-mode=short
23455 Generate code for short address mode. This is only supported for 32-bit
23456 and x32 environments. It is the default address mode for 32-bit and
23457 x32 environments.
23458 @end table
23459
23460 @node x86 Windows Options
23461 @subsection x86 Windows Options
23462 @cindex x86 Windows Options
23463 @cindex Windows Options for x86
23464
23465 These additional options are available for Microsoft Windows targets:
23466
23467 @table @gcctabopt
23468 @item -mconsole
23469 @opindex mconsole
23470 This option
23471 specifies that a console application is to be generated, by
23472 instructing the linker to set the PE header subsystem type
23473 required for console applications.
23474 This option is available for Cygwin and MinGW targets and is
23475 enabled by default on those targets.
23476
23477 @item -mdll
23478 @opindex mdll
23479 This option is available for Cygwin and MinGW targets. It
23480 specifies that a DLL---a dynamic link library---is to be
23481 generated, enabling the selection of the required runtime
23482 startup object and entry point.
23483
23484 @item -mnop-fun-dllimport
23485 @opindex mnop-fun-dllimport
23486 This option is available for Cygwin and MinGW targets. It
23487 specifies that the @code{dllimport} attribute should be ignored.
23488
23489 @item -mthread
23490 @opindex mthread
23491 This option is available for MinGW targets. It specifies
23492 that MinGW-specific thread support is to be used.
23493
23494 @item -municode
23495 @opindex municode
23496 This option is available for MinGW-w64 targets. It causes
23497 the @code{UNICODE} preprocessor macro to be predefined, and
23498 chooses Unicode-capable runtime startup code.
23499
23500 @item -mwin32
23501 @opindex mwin32
23502 This option is available for Cygwin and MinGW targets. It
23503 specifies that the typical Microsoft Windows predefined macros are to
23504 be set in the pre-processor, but does not influence the choice
23505 of runtime library/startup code.
23506
23507 @item -mwindows
23508 @opindex mwindows
23509 This option is available for Cygwin and MinGW targets. It
23510 specifies that a GUI application is to be generated by
23511 instructing the linker to set the PE header subsystem type
23512 appropriately.
23513
23514 @item -fno-set-stack-executable
23515 @opindex fno-set-stack-executable
23516 This option is available for MinGW targets. It specifies that
23517 the executable flag for the stack used by nested functions isn't
23518 set. This is necessary for binaries running in kernel mode of
23519 Microsoft Windows, as there the User32 API, which is used to set executable
23520 privileges, isn't available.
23521
23522 @item -fwritable-relocated-rdata
23523 @opindex fno-writable-relocated-rdata
23524 This option is available for MinGW and Cygwin targets. It specifies
23525 that relocated-data in read-only section is put into .data
23526 section. This is a necessary for older runtimes not supporting
23527 modification of .rdata sections for pseudo-relocation.
23528
23529 @item -mpe-aligned-commons
23530 @opindex mpe-aligned-commons
23531 This option is available for Cygwin and MinGW targets. It
23532 specifies that the GNU extension to the PE file format that
23533 permits the correct alignment of COMMON variables should be
23534 used when generating code. It is enabled by default if
23535 GCC detects that the target assembler found during configuration
23536 supports the feature.
23537 @end table
23538
23539 See also under @ref{x86 Options} for standard options.
23540
23541 @node Xstormy16 Options
23542 @subsection Xstormy16 Options
23543 @cindex Xstormy16 Options
23544
23545 These options are defined for Xstormy16:
23546
23547 @table @gcctabopt
23548 @item -msim
23549 @opindex msim
23550 Choose startup files and linker script suitable for the simulator.
23551 @end table
23552
23553 @node Xtensa Options
23554 @subsection Xtensa Options
23555 @cindex Xtensa Options
23556
23557 These options are supported for Xtensa targets:
23558
23559 @table @gcctabopt
23560 @item -mconst16
23561 @itemx -mno-const16
23562 @opindex mconst16
23563 @opindex mno-const16
23564 Enable or disable use of @code{CONST16} instructions for loading
23565 constant values. The @code{CONST16} instruction is currently not a
23566 standard option from Tensilica. When enabled, @code{CONST16}
23567 instructions are always used in place of the standard @code{L32R}
23568 instructions. The use of @code{CONST16} is enabled by default only if
23569 the @code{L32R} instruction is not available.
23570
23571 @item -mfused-madd
23572 @itemx -mno-fused-madd
23573 @opindex mfused-madd
23574 @opindex mno-fused-madd
23575 Enable or disable use of fused multiply/add and multiply/subtract
23576 instructions in the floating-point option. This has no effect if the
23577 floating-point option is not also enabled. Disabling fused multiply/add
23578 and multiply/subtract instructions forces the compiler to use separate
23579 instructions for the multiply and add/subtract operations. This may be
23580 desirable in some cases where strict IEEE 754-compliant results are
23581 required: the fused multiply add/subtract instructions do not round the
23582 intermediate result, thereby producing results with @emph{more} bits of
23583 precision than specified by the IEEE standard. Disabling fused multiply
23584 add/subtract instructions also ensures that the program output is not
23585 sensitive to the compiler's ability to combine multiply and add/subtract
23586 operations.
23587
23588 @item -mserialize-volatile
23589 @itemx -mno-serialize-volatile
23590 @opindex mserialize-volatile
23591 @opindex mno-serialize-volatile
23592 When this option is enabled, GCC inserts @code{MEMW} instructions before
23593 @code{volatile} memory references to guarantee sequential consistency.
23594 The default is @option{-mserialize-volatile}. Use
23595 @option{-mno-serialize-volatile} to omit the @code{MEMW} instructions.
23596
23597 @item -mforce-no-pic
23598 @opindex mforce-no-pic
23599 For targets, like GNU/Linux, where all user-mode Xtensa code must be
23600 position-independent code (PIC), this option disables PIC for compiling
23601 kernel code.
23602
23603 @item -mtext-section-literals
23604 @itemx -mno-text-section-literals
23605 @opindex mtext-section-literals
23606 @opindex mno-text-section-literals
23607 These options control the treatment of literal pools. The default is
23608 @option{-mno-text-section-literals}, which places literals in a separate
23609 section in the output file. This allows the literal pool to be placed
23610 in a data RAM/ROM, and it also allows the linker to combine literal
23611 pools from separate object files to remove redundant literals and
23612 improve code size. With @option{-mtext-section-literals}, the literals
23613 are interspersed in the text section in order to keep them as close as
23614 possible to their references. This may be necessary for large assembly
23615 files. Literals for each function are placed right before that function.
23616
23617 @item -mauto-litpools
23618 @itemx -mno-auto-litpools
23619 @opindex mauto-litpools
23620 @opindex mno-auto-litpools
23621 These options control the treatment of literal pools. The default is
23622 @option{-mno-auto-litpools}, which places literals in a separate
23623 section in the output file unless @option{-mtext-section-literals} is
23624 used. With @option{-mauto-litpools} the literals are interspersed in
23625 the text section by the assembler. Compiler does not produce explicit
23626 @code{.literal} directives and loads literals into registers with
23627 @code{MOVI} instructions instead of @code{L32R} to let the assembler
23628 do relaxation and place literals as necessary. This option allows
23629 assembler to create several literal pools per function and assemble
23630 very big functions, which may not be possible with
23631 @option{-mtext-section-literals}.
23632
23633 @item -mtarget-align
23634 @itemx -mno-target-align
23635 @opindex mtarget-align
23636 @opindex mno-target-align
23637 When this option is enabled, GCC instructs the assembler to
23638 automatically align instructions to reduce branch penalties at the
23639 expense of some code density. The assembler attempts to widen density
23640 instructions to align branch targets and the instructions following call
23641 instructions. If there are not enough preceding safe density
23642 instructions to align a target, no widening is performed. The
23643 default is @option{-mtarget-align}. These options do not affect the
23644 treatment of auto-aligned instructions like @code{LOOP}, which the
23645 assembler always aligns, either by widening density instructions or
23646 by inserting NOP instructions.
23647
23648 @item -mlongcalls
23649 @itemx -mno-longcalls
23650 @opindex mlongcalls
23651 @opindex mno-longcalls
23652 When this option is enabled, GCC instructs the assembler to translate
23653 direct calls to indirect calls unless it can determine that the target
23654 of a direct call is in the range allowed by the call instruction. This
23655 translation typically occurs for calls to functions in other source
23656 files. Specifically, the assembler translates a direct @code{CALL}
23657 instruction into an @code{L32R} followed by a @code{CALLX} instruction.
23658 The default is @option{-mno-longcalls}. This option should be used in
23659 programs where the call target can potentially be out of range. This
23660 option is implemented in the assembler, not the compiler, so the
23661 assembly code generated by GCC still shows direct call
23662 instructions---look at the disassembled object code to see the actual
23663 instructions. Note that the assembler uses an indirect call for
23664 every cross-file call, not just those that really are out of range.
23665 @end table
23666
23667 @node zSeries Options
23668 @subsection zSeries Options
23669 @cindex zSeries options
23670
23671 These are listed under @xref{S/390 and zSeries Options}.
23672
23673 @node Code Gen Options
23674 @section Options for Code Generation Conventions
23675 @cindex code generation conventions
23676 @cindex options, code generation
23677 @cindex run-time options
23678
23679 These machine-independent options control the interface conventions
23680 used in code generation.
23681
23682 Most of them have both positive and negative forms; the negative form
23683 of @option{-ffoo} is @option{-fno-foo}. In the table below, only
23684 one of the forms is listed---the one that is not the default. You
23685 can figure out the other form by either removing @samp{no-} or adding
23686 it.
23687
23688 @table @gcctabopt
23689 @item -fbounds-check
23690 @opindex fbounds-check
23691 For front ends that support it, generate additional code to check that
23692 indices used to access arrays are within the declared range. This is
23693 currently only supported by the Java and Fortran front ends, where
23694 this option defaults to true and false respectively.
23695
23696 @item -fstack-reuse=@var{reuse-level}
23697 @opindex fstack_reuse
23698 This option controls stack space reuse for user declared local/auto variables
23699 and compiler generated temporaries. @var{reuse_level} can be @samp{all},
23700 @samp{named_vars}, or @samp{none}. @samp{all} enables stack reuse for all
23701 local variables and temporaries, @samp{named_vars} enables the reuse only for
23702 user defined local variables with names, and @samp{none} disables stack reuse
23703 completely. The default value is @samp{all}. The option is needed when the
23704 program extends the lifetime of a scoped local variable or a compiler generated
23705 temporary beyond the end point defined by the language. When a lifetime of
23706 a variable ends, and if the variable lives in memory, the optimizing compiler
23707 has the freedom to reuse its stack space with other temporaries or scoped
23708 local variables whose live range does not overlap with it. Legacy code extending
23709 local lifetime is likely to break with the stack reuse optimization.
23710
23711 For example,
23712
23713 @smallexample
23714 int *p;
23715 @{
23716 int local1;
23717
23718 p = &local1;
23719 local1 = 10;
23720 ....
23721 @}
23722 @{
23723 int local2;
23724 local2 = 20;
23725 ...
23726 @}
23727
23728 if (*p == 10) // out of scope use of local1
23729 @{
23730
23731 @}
23732 @end smallexample
23733
23734 Another example:
23735 @smallexample
23736
23737 struct A
23738 @{
23739 A(int k) : i(k), j(k) @{ @}
23740 int i;
23741 int j;
23742 @};
23743
23744 A *ap;
23745
23746 void foo(const A& ar)
23747 @{
23748 ap = &ar;
23749 @}
23750
23751 void bar()
23752 @{
23753 foo(A(10)); // temp object's lifetime ends when foo returns
23754
23755 @{
23756 A a(20);
23757 ....
23758 @}
23759 ap->i+= 10; // ap references out of scope temp whose space
23760 // is reused with a. What is the value of ap->i?
23761 @}
23762
23763 @end smallexample
23764
23765 The lifetime of a compiler generated temporary is well defined by the C++
23766 standard. When a lifetime of a temporary ends, and if the temporary lives
23767 in memory, the optimizing compiler has the freedom to reuse its stack
23768 space with other temporaries or scoped local variables whose live range
23769 does not overlap with it. However some of the legacy code relies on
23770 the behavior of older compilers in which temporaries' stack space is
23771 not reused, the aggressive stack reuse can lead to runtime errors. This
23772 option is used to control the temporary stack reuse optimization.
23773
23774 @item -ftrapv
23775 @opindex ftrapv
23776 This option generates traps for signed overflow on addition, subtraction,
23777 multiplication operations.
23778
23779 @item -fwrapv
23780 @opindex fwrapv
23781 This option instructs the compiler to assume that signed arithmetic
23782 overflow of addition, subtraction and multiplication wraps around
23783 using twos-complement representation. This flag enables some optimizations
23784 and disables others. This option is enabled by default for the Java
23785 front end, as required by the Java language specification.
23786
23787 @item -fexceptions
23788 @opindex fexceptions
23789 Enable exception handling. Generates extra code needed to propagate
23790 exceptions. For some targets, this implies GCC generates frame
23791 unwind information for all functions, which can produce significant data
23792 size overhead, although it does not affect execution. If you do not
23793 specify this option, GCC enables it by default for languages like
23794 C++ that normally require exception handling, and disables it for
23795 languages like C that do not normally require it. However, you may need
23796 to enable this option when compiling C code that needs to interoperate
23797 properly with exception handlers written in C++. You may also wish to
23798 disable this option if you are compiling older C++ programs that don't
23799 use exception handling.
23800
23801 @item -fnon-call-exceptions
23802 @opindex fnon-call-exceptions
23803 Generate code that allows trapping instructions to throw exceptions.
23804 Note that this requires platform-specific runtime support that does
23805 not exist everywhere. Moreover, it only allows @emph{trapping}
23806 instructions to throw exceptions, i.e.@: memory references or floating-point
23807 instructions. It does not allow exceptions to be thrown from
23808 arbitrary signal handlers such as @code{SIGALRM}.
23809
23810 @item -fdelete-dead-exceptions
23811 @opindex fdelete-dead-exceptions
23812 Consider that instructions that may throw exceptions but don't otherwise
23813 contribute to the execution of the program can be optimized away.
23814 This option is enabled by default for the Ada front end, as permitted by
23815 the Ada language specification.
23816 Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels.
23817
23818 @item -funwind-tables
23819 @opindex funwind-tables
23820 Similar to @option{-fexceptions}, except that it just generates any needed
23821 static data, but does not affect the generated code in any other way.
23822 You normally do not need to enable this option; instead, a language processor
23823 that needs this handling enables it on your behalf.
23824
23825 @item -fasynchronous-unwind-tables
23826 @opindex fasynchronous-unwind-tables
23827 Generate unwind table in DWARF 2 format, if supported by target machine. The
23828 table is exact at each instruction boundary, so it can be used for stack
23829 unwinding from asynchronous events (such as debugger or garbage collector).
23830
23831 @item -fno-gnu-unique
23832 @opindex fno-gnu-unique
23833 On systems with recent GNU assembler and C library, the C++ compiler
23834 uses the @code{STB_GNU_UNIQUE} binding to make sure that definitions
23835 of template static data members and static local variables in inline
23836 functions are unique even in the presence of @code{RTLD_LOCAL}; this
23837 is necessary to avoid problems with a library used by two different
23838 @code{RTLD_LOCAL} plugins depending on a definition in one of them and
23839 therefore disagreeing with the other one about the binding of the
23840 symbol. But this causes @code{dlclose} to be ignored for affected
23841 DSOs; if your program relies on reinitialization of a DSO via
23842 @code{dlclose} and @code{dlopen}, you can use
23843 @option{-fno-gnu-unique}.
23844
23845 @item -fpcc-struct-return
23846 @opindex fpcc-struct-return
23847 Return ``short'' @code{struct} and @code{union} values in memory like
23848 longer ones, rather than in registers. This convention is less
23849 efficient, but it has the advantage of allowing intercallability between
23850 GCC-compiled files and files compiled with other compilers, particularly
23851 the Portable C Compiler (pcc).
23852
23853 The precise convention for returning structures in memory depends
23854 on the target configuration macros.
23855
23856 Short structures and unions are those whose size and alignment match
23857 that of some integer type.
23858
23859 @strong{Warning:} code compiled with the @option{-fpcc-struct-return}
23860 switch is not binary compatible with code compiled with the
23861 @option{-freg-struct-return} switch.
23862 Use it to conform to a non-default application binary interface.
23863
23864 @item -freg-struct-return
23865 @opindex freg-struct-return
23866 Return @code{struct} and @code{union} values in registers when possible.
23867 This is more efficient for small structures than
23868 @option{-fpcc-struct-return}.
23869
23870 If you specify neither @option{-fpcc-struct-return} nor
23871 @option{-freg-struct-return}, GCC defaults to whichever convention is
23872 standard for the target. If there is no standard convention, GCC
23873 defaults to @option{-fpcc-struct-return}, except on targets where GCC is
23874 the principal compiler. In those cases, we can choose the standard, and
23875 we chose the more efficient register return alternative.
23876
23877 @strong{Warning:} code compiled with the @option{-freg-struct-return}
23878 switch is not binary compatible with code compiled with the
23879 @option{-fpcc-struct-return} switch.
23880 Use it to conform to a non-default application binary interface.
23881
23882 @item -fshort-enums
23883 @opindex fshort-enums
23884 Allocate to an @code{enum} type only as many bytes as it needs for the
23885 declared range of possible values. Specifically, the @code{enum} type
23886 is equivalent to the smallest integer type that has enough room.
23887
23888 @strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate
23889 code that is not binary compatible with code generated without that switch.
23890 Use it to conform to a non-default application binary interface.
23891
23892 @item -fshort-double
23893 @opindex fshort-double
23894 Use the same size for @code{double} as for @code{float}.
23895
23896 @strong{Warning:} the @option{-fshort-double} switch causes GCC to generate
23897 code that is not binary compatible with code generated without that switch.
23898 Use it to conform to a non-default application binary interface.
23899
23900 @item -fshort-wchar
23901 @opindex fshort-wchar
23902 Override the underlying type for @code{wchar_t} to be @code{short
23903 unsigned int} instead of the default for the target. This option is
23904 useful for building programs to run under WINE@.
23905
23906 @strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate
23907 code that is not binary compatible with code generated without that switch.
23908 Use it to conform to a non-default application binary interface.
23909
23910 @item -fno-common
23911 @opindex fno-common
23912 In C code, controls the placement of uninitialized global variables.
23913 Unix C compilers have traditionally permitted multiple definitions of
23914 such variables in different compilation units by placing the variables
23915 in a common block.
23916 This is the behavior specified by @option{-fcommon}, and is the default
23917 for GCC on most targets.
23918 On the other hand, this behavior is not required by ISO C, and on some
23919 targets may carry a speed or code size penalty on variable references.
23920 The @option{-fno-common} option specifies that the compiler should place
23921 uninitialized global variables in the data section of the object file,
23922 rather than generating them as common blocks.
23923 This has the effect that if the same variable is declared
23924 (without @code{extern}) in two different compilations,
23925 you get a multiple-definition error when you link them.
23926 In this case, you must compile with @option{-fcommon} instead.
23927 Compiling with @option{-fno-common} is useful on targets for which
23928 it provides better performance, or if you wish to verify that the
23929 program will work on other systems that always treat uninitialized
23930 variable declarations this way.
23931
23932 @item -fno-ident
23933 @opindex fno-ident
23934 Ignore the @code{#ident} directive.
23935
23936 @item -finhibit-size-directive
23937 @opindex finhibit-size-directive
23938 Don't output a @code{.size} assembler directive, or anything else that
23939 would cause trouble if the function is split in the middle, and the
23940 two halves are placed at locations far apart in memory. This option is
23941 used when compiling @file{crtstuff.c}; you should not need to use it
23942 for anything else.
23943
23944 @item -fverbose-asm
23945 @opindex fverbose-asm
23946 Put extra commentary information in the generated assembly code to
23947 make it more readable. This option is generally only of use to those
23948 who actually need to read the generated assembly code (perhaps while
23949 debugging the compiler itself).
23950
23951 @option{-fno-verbose-asm}, the default, causes the
23952 extra information to be omitted and is useful when comparing two assembler
23953 files.
23954
23955 @item -frecord-gcc-switches
23956 @opindex frecord-gcc-switches
23957 This switch causes the command line used to invoke the
23958 compiler to be recorded into the object file that is being created.
23959 This switch is only implemented on some targets and the exact format
23960 of the recording is target and binary file format dependent, but it
23961 usually takes the form of a section containing ASCII text. This
23962 switch is related to the @option{-fverbose-asm} switch, but that
23963 switch only records information in the assembler output file as
23964 comments, so it never reaches the object file.
23965 See also @option{-grecord-gcc-switches} for another
23966 way of storing compiler options into the object file.
23967
23968 @item -fpic
23969 @opindex fpic
23970 @cindex global offset table
23971 @cindex PIC
23972 Generate position-independent code (PIC) suitable for use in a shared
23973 library, if supported for the target machine. Such code accesses all
23974 constant addresses through a global offset table (GOT)@. The dynamic
23975 loader resolves the GOT entries when the program starts (the dynamic
23976 loader is not part of GCC; it is part of the operating system). If
23977 the GOT size for the linked executable exceeds a machine-specific
23978 maximum size, you get an error message from the linker indicating that
23979 @option{-fpic} does not work; in that case, recompile with @option{-fPIC}
23980 instead. (These maximums are 8k on the SPARC and 32k
23981 on the m68k and RS/6000. The x86 has no such limit.)
23982
23983 Position-independent code requires special support, and therefore works
23984 only on certain machines. For the x86, GCC supports PIC for System V
23985 but not for the Sun 386i. Code generated for the IBM RS/6000 is always
23986 position-independent.
23987
23988 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
23989 are defined to 1.
23990
23991 @item -fPIC
23992 @opindex fPIC
23993 If supported for the target machine, emit position-independent code,
23994 suitable for dynamic linking and avoiding any limit on the size of the
23995 global offset table. This option makes a difference on the m68k,
23996 PowerPC and SPARC@.
23997
23998 Position-independent code requires special support, and therefore works
23999 only on certain machines.
24000
24001 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
24002 are defined to 2.
24003
24004 @item -fpie
24005 @itemx -fPIE
24006 @opindex fpie
24007 @opindex fPIE
24008 These options are similar to @option{-fpic} and @option{-fPIC}, but
24009 generated position independent code can be only linked into executables.
24010 Usually these options are used when @option{-pie} GCC option is
24011 used during linking.
24012
24013 @option{-fpie} and @option{-fPIE} both define the macros
24014 @code{__pie__} and @code{__PIE__}. The macros have the value 1
24015 for @option{-fpie} and 2 for @option{-fPIE}.
24016
24017 @item -fno-plt
24018 @opindex fno-plt
24019 Do not use PLT for external function calls in position-independent code.
24020 Instead, load callee address at call site from GOT and branch to it.
24021 This leads to more efficient code by eliminating PLT stubs and exposing
24022 GOT load to optimizations. On architectures such as 32-bit x86 where
24023 PLT stubs expect GOT pointer in a specific register, this gives more
24024 register allocation freedom to the compiler. Lazy binding requires PLT:
24025 with @option{-fno-plt} all external symbols are resolved at load time.
24026
24027 Alternatively, function attribute @code{noplt} can be used to avoid PLT
24028 for calls to specific external functions by marking those functions with
24029 this attribute.
24030
24031 Additionally, a few targets also convert calls to those functions that are
24032 marked to not use the PLT to use the GOT instead for non-position independent
24033 code.
24034
24035 @item -fno-jump-tables
24036 @opindex fno-jump-tables
24037 Do not use jump tables for switch statements even where it would be
24038 more efficient than other code generation strategies. This option is
24039 of use in conjunction with @option{-fpic} or @option{-fPIC} for
24040 building code that forms part of a dynamic linker and cannot
24041 reference the address of a jump table. On some targets, jump tables
24042 do not require a GOT and this option is not needed.
24043
24044 @item -ffixed-@var{reg}
24045 @opindex ffixed
24046 Treat the register named @var{reg} as a fixed register; generated code
24047 should never refer to it (except perhaps as a stack pointer, frame
24048 pointer or in some other fixed role).
24049
24050 @var{reg} must be the name of a register. The register names accepted
24051 are machine-specific and are defined in the @code{REGISTER_NAMES}
24052 macro in the machine description macro file.
24053
24054 This flag does not have a negative form, because it specifies a
24055 three-way choice.
24056
24057 @item -fcall-used-@var{reg}
24058 @opindex fcall-used
24059 Treat the register named @var{reg} as an allocable register that is
24060 clobbered by function calls. It may be allocated for temporaries or
24061 variables that do not live across a call. Functions compiled this way
24062 do not save and restore the register @var{reg}.
24063
24064 It is an error to use this flag with the frame pointer or stack pointer.
24065 Use of this flag for other registers that have fixed pervasive roles in
24066 the machine's execution model produces disastrous results.
24067
24068 This flag does not have a negative form, because it specifies a
24069 three-way choice.
24070
24071 @item -fcall-saved-@var{reg}
24072 @opindex fcall-saved
24073 Treat the register named @var{reg} as an allocable register saved by
24074 functions. It may be allocated even for temporaries or variables that
24075 live across a call. Functions compiled this way save and restore
24076 the register @var{reg} if they use it.
24077
24078 It is an error to use this flag with the frame pointer or stack pointer.
24079 Use of this flag for other registers that have fixed pervasive roles in
24080 the machine's execution model produces disastrous results.
24081
24082 A different sort of disaster results from the use of this flag for
24083 a register in which function values may be returned.
24084
24085 This flag does not have a negative form, because it specifies a
24086 three-way choice.
24087
24088 @item -fpack-struct[=@var{n}]
24089 @opindex fpack-struct
24090 Without a value specified, pack all structure members together without
24091 holes. When a value is specified (which must be a small power of two), pack
24092 structure members according to this value, representing the maximum
24093 alignment (that is, objects with default alignment requirements larger than
24094 this are output potentially unaligned at the next fitting location.
24095
24096 @strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate
24097 code that is not binary compatible with code generated without that switch.
24098 Additionally, it makes the code suboptimal.
24099 Use it to conform to a non-default application binary interface.
24100
24101 @item -finstrument-functions
24102 @opindex finstrument-functions
24103 Generate instrumentation calls for entry and exit to functions. Just
24104 after function entry and just before function exit, the following
24105 profiling functions are called with the address of the current
24106 function and its call site. (On some platforms,
24107 @code{__builtin_return_address} does not work beyond the current
24108 function, so the call site information may not be available to the
24109 profiling functions otherwise.)
24110
24111 @smallexample
24112 void __cyg_profile_func_enter (void *this_fn,
24113 void *call_site);
24114 void __cyg_profile_func_exit (void *this_fn,
24115 void *call_site);
24116 @end smallexample
24117
24118 The first argument is the address of the start of the current function,
24119 which may be looked up exactly in the symbol table.
24120
24121 This instrumentation is also done for functions expanded inline in other
24122 functions. The profiling calls indicate where, conceptually, the
24123 inline function is entered and exited. This means that addressable
24124 versions of such functions must be available. If all your uses of a
24125 function are expanded inline, this may mean an additional expansion of
24126 code size. If you use @code{extern inline} in your C code, an
24127 addressable version of such functions must be provided. (This is
24128 normally the case anyway, but if you get lucky and the optimizer always
24129 expands the functions inline, you might have gotten away without
24130 providing static copies.)
24131
24132 A function may be given the attribute @code{no_instrument_function}, in
24133 which case this instrumentation is not done. This can be used, for
24134 example, for the profiling functions listed above, high-priority
24135 interrupt routines, and any functions from which the profiling functions
24136 cannot safely be called (perhaps signal handlers, if the profiling
24137 routines generate output or allocate memory).
24138
24139 @item -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}
24140 @opindex finstrument-functions-exclude-file-list
24141
24142 Set the list of functions that are excluded from instrumentation (see
24143 the description of @option{-finstrument-functions}). If the file that
24144 contains a function definition matches with one of @var{file}, then
24145 that function is not instrumented. The match is done on substrings:
24146 if the @var{file} parameter is a substring of the file name, it is
24147 considered to be a match.
24148
24149 For example:
24150
24151 @smallexample
24152 -finstrument-functions-exclude-file-list=/bits/stl,include/sys
24153 @end smallexample
24154
24155 @noindent
24156 excludes any inline function defined in files whose pathnames
24157 contain @file{/bits/stl} or @file{include/sys}.
24158
24159 If, for some reason, you want to include letter @samp{,} in one of
24160 @var{sym}, write @samp{\,}. For example,
24161 @option{-finstrument-functions-exclude-file-list='\,\,tmp'}
24162 (note the single quote surrounding the option).
24163
24164 @item -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{}
24165 @opindex finstrument-functions-exclude-function-list
24166
24167 This is similar to @option{-finstrument-functions-exclude-file-list},
24168 but this option sets the list of function names to be excluded from
24169 instrumentation. The function name to be matched is its user-visible
24170 name, such as @code{vector<int> blah(const vector<int> &)}, not the
24171 internal mangled name (e.g., @code{_Z4blahRSt6vectorIiSaIiEE}). The
24172 match is done on substrings: if the @var{sym} parameter is a substring
24173 of the function name, it is considered to be a match. For C99 and C++
24174 extended identifiers, the function name must be given in UTF-8, not
24175 using universal character names.
24176
24177 @item -fstack-check
24178 @opindex fstack-check
24179 Generate code to verify that you do not go beyond the boundary of the
24180 stack. You should specify this flag if you are running in an
24181 environment with multiple threads, but you only rarely need to specify it in
24182 a single-threaded environment since stack overflow is automatically
24183 detected on nearly all systems if there is only one stack.
24184
24185 Note that this switch does not actually cause checking to be done; the
24186 operating system or the language runtime must do that. The switch causes
24187 generation of code to ensure that they see the stack being extended.
24188
24189 You can additionally specify a string parameter: @samp{no} means no
24190 checking, @samp{generic} means force the use of old-style checking,
24191 @samp{specific} means use the best checking method and is equivalent
24192 to bare @option{-fstack-check}.
24193
24194 Old-style checking is a generic mechanism that requires no specific
24195 target support in the compiler but comes with the following drawbacks:
24196
24197 @enumerate
24198 @item
24199 Modified allocation strategy for large objects: they are always
24200 allocated dynamically if their size exceeds a fixed threshold.
24201
24202 @item
24203 Fixed limit on the size of the static frame of functions: when it is
24204 topped by a particular function, stack checking is not reliable and
24205 a warning is issued by the compiler.
24206
24207 @item
24208 Inefficiency: because of both the modified allocation strategy and the
24209 generic implementation, code performance is hampered.
24210 @end enumerate
24211
24212 Note that old-style stack checking is also the fallback method for
24213 @samp{specific} if no target support has been added in the compiler.
24214
24215 @item -fstack-limit-register=@var{reg}
24216 @itemx -fstack-limit-symbol=@var{sym}
24217 @itemx -fno-stack-limit
24218 @opindex fstack-limit-register
24219 @opindex fstack-limit-symbol
24220 @opindex fno-stack-limit
24221 Generate code to ensure that the stack does not grow beyond a certain value,
24222 either the value of a register or the address of a symbol. If a larger
24223 stack is required, a signal is raised at run time. For most targets,
24224 the signal is raised before the stack overruns the boundary, so
24225 it is possible to catch the signal without taking special precautions.
24226
24227 For instance, if the stack starts at absolute address @samp{0x80000000}
24228 and grows downwards, you can use the flags
24229 @option{-fstack-limit-symbol=__stack_limit} and
24230 @option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit
24231 of 128KB@. Note that this may only work with the GNU linker.
24232
24233 @item -fsplit-stack
24234 @opindex fsplit-stack
24235 Generate code to automatically split the stack before it overflows.
24236 The resulting program has a discontiguous stack which can only
24237 overflow if the program is unable to allocate any more memory. This
24238 is most useful when running threaded programs, as it is no longer
24239 necessary to calculate a good stack size to use for each thread. This
24240 is currently only implemented for the x86 targets running
24241 GNU/Linux.
24242
24243 When code compiled with @option{-fsplit-stack} calls code compiled
24244 without @option{-fsplit-stack}, there may not be much stack space
24245 available for the latter code to run. If compiling all code,
24246 including library code, with @option{-fsplit-stack} is not an option,
24247 then the linker can fix up these calls so that the code compiled
24248 without @option{-fsplit-stack} always has a large stack. Support for
24249 this is implemented in the gold linker in GNU binutils release 2.21
24250 and later.
24251
24252 @item -fleading-underscore
24253 @opindex fleading-underscore
24254 This option and its counterpart, @option{-fno-leading-underscore}, forcibly
24255 change the way C symbols are represented in the object file. One use
24256 is to help link with legacy assembly code.
24257
24258 @strong{Warning:} the @option{-fleading-underscore} switch causes GCC to
24259 generate code that is not binary compatible with code generated without that
24260 switch. Use it to conform to a non-default application binary interface.
24261 Not all targets provide complete support for this switch.
24262
24263 @item -ftls-model=@var{model}
24264 @opindex ftls-model
24265 Alter the thread-local storage model to be used (@pxref{Thread-Local}).
24266 The @var{model} argument should be one of @samp{global-dynamic},
24267 @samp{local-dynamic}, @samp{initial-exec} or @samp{local-exec}.
24268 Note that the choice is subject to optimization: the compiler may use
24269 a more efficient model for symbols not visible outside of the translation
24270 unit, or if @option{-fpic} is not given on the command line.
24271
24272 The default without @option{-fpic} is @samp{initial-exec}; with
24273 @option{-fpic} the default is @samp{global-dynamic}.
24274
24275 @item -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]}
24276 @opindex fvisibility
24277 Set the default ELF image symbol visibility to the specified option---all
24278 symbols are marked with this unless overridden within the code.
24279 Using this feature can very substantially improve linking and
24280 load times of shared object libraries, produce more optimized
24281 code, provide near-perfect API export and prevent symbol clashes.
24282 It is @strong{strongly} recommended that you use this in any shared objects
24283 you distribute.
24284
24285 Despite the nomenclature, @samp{default} always means public; i.e.,
24286 available to be linked against from outside the shared object.
24287 @samp{protected} and @samp{internal} are pretty useless in real-world
24288 usage so the only other commonly used option is @samp{hidden}.
24289 The default if @option{-fvisibility} isn't specified is
24290 @samp{default}, i.e., make every symbol public.
24291
24292 A good explanation of the benefits offered by ensuring ELF
24293 symbols have the correct visibility is given by ``How To Write
24294 Shared Libraries'' by Ulrich Drepper (which can be found at
24295 @w{@uref{http://www.akkadia.org/drepper/}})---however a superior
24296 solution made possible by this option to marking things hidden when
24297 the default is public is to make the default hidden and mark things
24298 public. This is the norm with DLLs on Windows and with @option{-fvisibility=hidden}
24299 and @code{__attribute__ ((visibility("default")))} instead of
24300 @code{__declspec(dllexport)} you get almost identical semantics with
24301 identical syntax. This is a great boon to those working with
24302 cross-platform projects.
24303
24304 For those adding visibility support to existing code, you may find
24305 @code{#pragma GCC visibility} of use. This works by you enclosing
24306 the declarations you wish to set visibility for with (for example)
24307 @code{#pragma GCC visibility push(hidden)} and
24308 @code{#pragma GCC visibility pop}.
24309 Bear in mind that symbol visibility should be viewed @strong{as
24310 part of the API interface contract} and thus all new code should
24311 always specify visibility when it is not the default; i.e., declarations
24312 only for use within the local DSO should @strong{always} be marked explicitly
24313 as hidden as so to avoid PLT indirection overheads---making this
24314 abundantly clear also aids readability and self-documentation of the code.
24315 Note that due to ISO C++ specification requirements, @code{operator new} and
24316 @code{operator delete} must always be of default visibility.
24317
24318 Be aware that headers from outside your project, in particular system
24319 headers and headers from any other library you use, may not be
24320 expecting to be compiled with visibility other than the default. You
24321 may need to explicitly say @code{#pragma GCC visibility push(default)}
24322 before including any such headers.
24323
24324 @code{extern} declarations are not affected by @option{-fvisibility}, so
24325 a lot of code can be recompiled with @option{-fvisibility=hidden} with
24326 no modifications. However, this means that calls to @code{extern}
24327 functions with no explicit visibility use the PLT, so it is more
24328 effective to use @code{__attribute ((visibility))} and/or
24329 @code{#pragma GCC visibility} to tell the compiler which @code{extern}
24330 declarations should be treated as hidden.
24331
24332 Note that @option{-fvisibility} does affect C++ vague linkage
24333 entities. This means that, for instance, an exception class that is
24334 be thrown between DSOs must be explicitly marked with default
24335 visibility so that the @samp{type_info} nodes are unified between
24336 the DSOs.
24337
24338 An overview of these techniques, their benefits and how to use them
24339 is at @uref{http://gcc.gnu.org/@/wiki/@/Visibility}.
24340
24341 @item -fstrict-volatile-bitfields
24342 @opindex fstrict-volatile-bitfields
24343 This option should be used if accesses to volatile bit-fields (or other
24344 structure fields, although the compiler usually honors those types
24345 anyway) should use a single access of the width of the
24346 field's type, aligned to a natural alignment if possible. For
24347 example, targets with memory-mapped peripheral registers might require
24348 all such accesses to be 16 bits wide; with this flag you can
24349 declare all peripheral bit-fields as @code{unsigned short} (assuming short
24350 is 16 bits on these targets) to force GCC to use 16-bit accesses
24351 instead of, perhaps, a more efficient 32-bit access.
24352
24353 If this option is disabled, the compiler uses the most efficient
24354 instruction. In the previous example, that might be a 32-bit load
24355 instruction, even though that accesses bytes that do not contain
24356 any portion of the bit-field, or memory-mapped registers unrelated to
24357 the one being updated.
24358
24359 In some cases, such as when the @code{packed} attribute is applied to a
24360 structure field, it may not be possible to access the field with a single
24361 read or write that is correctly aligned for the target machine. In this
24362 case GCC falls back to generating multiple accesses rather than code that
24363 will fault or truncate the result at run time.
24364
24365 Note: Due to restrictions of the C/C++11 memory model, write accesses are
24366 not allowed to touch non bit-field members. It is therefore recommended
24367 to define all bits of the field's type as bit-field members.
24368
24369 The default value of this option is determined by the application binary
24370 interface for the target processor.
24371
24372 @item -fsync-libcalls
24373 @opindex fsync-libcalls
24374 This option controls whether any out-of-line instance of the @code{__sync}
24375 family of functions may be used to implement the C++11 @code{__atomic}
24376 family of functions.
24377
24378 The default value of this option is enabled, thus the only useful form
24379 of the option is @option{-fno-sync-libcalls}. This option is used in
24380 the implementation of the @file{libatomic} runtime library.
24381
24382 @end table
24383
24384 @c man end
24385
24386 @node Environment Variables
24387 @section Environment Variables Affecting GCC
24388 @cindex environment variables
24389
24390 @c man begin ENVIRONMENT
24391 This section describes several environment variables that affect how GCC
24392 operates. Some of them work by specifying directories or prefixes to use
24393 when searching for various kinds of files. Some are used to specify other
24394 aspects of the compilation environment.
24395
24396 Note that you can also specify places to search using options such as
24397 @option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}). These
24398 take precedence over places specified using environment variables, which
24399 in turn take precedence over those specified by the configuration of GCC@.
24400 @xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint,
24401 GNU Compiler Collection (GCC) Internals}.
24402
24403 @table @env
24404 @item LANG
24405 @itemx LC_CTYPE
24406 @c @itemx LC_COLLATE
24407 @itemx LC_MESSAGES
24408 @c @itemx LC_MONETARY
24409 @c @itemx LC_NUMERIC
24410 @c @itemx LC_TIME
24411 @itemx LC_ALL
24412 @findex LANG
24413 @findex LC_CTYPE
24414 @c @findex LC_COLLATE
24415 @findex LC_MESSAGES
24416 @c @findex LC_MONETARY
24417 @c @findex LC_NUMERIC
24418 @c @findex LC_TIME
24419 @findex LC_ALL
24420 @cindex locale
24421 These environment variables control the way that GCC uses
24422 localization information which allows GCC to work with different
24423 national conventions. GCC inspects the locale categories
24424 @env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do
24425 so. These locale categories can be set to any value supported by your
24426 installation. A typical value is @samp{en_GB.UTF-8} for English in the United
24427 Kingdom encoded in UTF-8.
24428
24429 The @env{LC_CTYPE} environment variable specifies character
24430 classification. GCC uses it to determine the character boundaries in
24431 a string; this is needed for some multibyte encodings that contain quote
24432 and escape characters that are otherwise interpreted as a string
24433 end or escape.
24434
24435 The @env{LC_MESSAGES} environment variable specifies the language to
24436 use in diagnostic messages.
24437
24438 If the @env{LC_ALL} environment variable is set, it overrides the value
24439 of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE}
24440 and @env{LC_MESSAGES} default to the value of the @env{LANG}
24441 environment variable. If none of these variables are set, GCC
24442 defaults to traditional C English behavior.
24443
24444 @item TMPDIR
24445 @findex TMPDIR
24446 If @env{TMPDIR} is set, it specifies the directory to use for temporary
24447 files. GCC uses temporary files to hold the output of one stage of
24448 compilation which is to be used as input to the next stage: for example,
24449 the output of the preprocessor, which is the input to the compiler
24450 proper.
24451
24452 @item GCC_COMPARE_DEBUG
24453 @findex GCC_COMPARE_DEBUG
24454 Setting @env{GCC_COMPARE_DEBUG} is nearly equivalent to passing
24455 @option{-fcompare-debug} to the compiler driver. See the documentation
24456 of this option for more details.
24457
24458 @item GCC_EXEC_PREFIX
24459 @findex GCC_EXEC_PREFIX
24460 If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
24461 names of the subprograms executed by the compiler. No slash is added
24462 when this prefix is combined with the name of a subprogram, but you can
24463 specify a prefix that ends with a slash if you wish.
24464
24465 If @env{GCC_EXEC_PREFIX} is not set, GCC attempts to figure out
24466 an appropriate prefix to use based on the pathname it is invoked with.
24467
24468 If GCC cannot find the subprogram using the specified prefix, it
24469 tries looking in the usual places for the subprogram.
24470
24471 The default value of @env{GCC_EXEC_PREFIX} is
24472 @file{@var{prefix}/lib/gcc/} where @var{prefix} is the prefix to
24473 the installed compiler. In many cases @var{prefix} is the value
24474 of @code{prefix} when you ran the @file{configure} script.
24475
24476 Other prefixes specified with @option{-B} take precedence over this prefix.
24477
24478 This prefix is also used for finding files such as @file{crt0.o} that are
24479 used for linking.
24480
24481 In addition, the prefix is used in an unusual way in finding the
24482 directories to search for header files. For each of the standard
24483 directories whose name normally begins with @samp{/usr/local/lib/gcc}
24484 (more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries
24485 replacing that beginning with the specified prefix to produce an
24486 alternate directory name. Thus, with @option{-Bfoo/}, GCC searches
24487 @file{foo/bar} just before it searches the standard directory
24488 @file{/usr/local/lib/bar}.
24489 If a standard directory begins with the configured
24490 @var{prefix} then the value of @var{prefix} is replaced by
24491 @env{GCC_EXEC_PREFIX} when looking for header files.
24492
24493 @item COMPILER_PATH
24494 @findex COMPILER_PATH
24495 The value of @env{COMPILER_PATH} is a colon-separated list of
24496 directories, much like @env{PATH}. GCC tries the directories thus
24497 specified when searching for subprograms, if it can't find the
24498 subprograms using @env{GCC_EXEC_PREFIX}.
24499
24500 @item LIBRARY_PATH
24501 @findex LIBRARY_PATH
24502 The value of @env{LIBRARY_PATH} is a colon-separated list of
24503 directories, much like @env{PATH}. When configured as a native compiler,
24504 GCC tries the directories thus specified when searching for special
24505 linker files, if it can't find them using @env{GCC_EXEC_PREFIX}. Linking
24506 using GCC also uses these directories when searching for ordinary
24507 libraries for the @option{-l} option (but directories specified with
24508 @option{-L} come first).
24509
24510 @item LANG
24511 @findex LANG
24512 @cindex locale definition
24513 This variable is used to pass locale information to the compiler. One way in
24514 which this information is used is to determine the character set to be used
24515 when character literals, string literals and comments are parsed in C and C++.
24516 When the compiler is configured to allow multibyte characters,
24517 the following values for @env{LANG} are recognized:
24518
24519 @table @samp
24520 @item C-JIS
24521 Recognize JIS characters.
24522 @item C-SJIS
24523 Recognize SJIS characters.
24524 @item C-EUCJP
24525 Recognize EUCJP characters.
24526 @end table
24527
24528 If @env{LANG} is not defined, or if it has some other value, then the
24529 compiler uses @code{mblen} and @code{mbtowc} as defined by the default locale to
24530 recognize and translate multibyte characters.
24531 @end table
24532
24533 @noindent
24534 Some additional environment variables affect the behavior of the
24535 preprocessor.
24536
24537 @include cppenv.texi
24538
24539 @c man end
24540
24541 @node Precompiled Headers
24542 @section Using Precompiled Headers
24543 @cindex precompiled headers
24544 @cindex speed of compilation
24545
24546 Often large projects have many header files that are included in every
24547 source file. The time the compiler takes to process these header files
24548 over and over again can account for nearly all of the time required to
24549 build the project. To make builds faster, GCC allows you to
24550 @dfn{precompile} a header file.
24551
24552 To create a precompiled header file, simply compile it as you would any
24553 other file, if necessary using the @option{-x} option to make the driver
24554 treat it as a C or C++ header file. You may want to use a
24555 tool like @command{make} to keep the precompiled header up-to-date when
24556 the headers it contains change.
24557
24558 A precompiled header file is searched for when @code{#include} is
24559 seen in the compilation. As it searches for the included file
24560 (@pxref{Search Path,,Search Path,cpp,The C Preprocessor}) the
24561 compiler looks for a precompiled header in each directory just before it
24562 looks for the include file in that directory. The name searched for is
24563 the name specified in the @code{#include} with @samp{.gch} appended. If
24564 the precompiled header file can't be used, it is ignored.
24565
24566 For instance, if you have @code{#include "all.h"}, and you have
24567 @file{all.h.gch} in the same directory as @file{all.h}, then the
24568 precompiled header file is used if possible, and the original
24569 header is used otherwise.
24570
24571 Alternatively, you might decide to put the precompiled header file in a
24572 directory and use @option{-I} to ensure that directory is searched
24573 before (or instead of) the directory containing the original header.
24574 Then, if you want to check that the precompiled header file is always
24575 used, you can put a file of the same name as the original header in this
24576 directory containing an @code{#error} command.
24577
24578 This also works with @option{-include}. So yet another way to use
24579 precompiled headers, good for projects not designed with precompiled
24580 header files in mind, is to simply take most of the header files used by
24581 a project, include them from another header file, precompile that header
24582 file, and @option{-include} the precompiled header. If the header files
24583 have guards against multiple inclusion, they are skipped because
24584 they've already been included (in the precompiled header).
24585
24586 If you need to precompile the same header file for different
24587 languages, targets, or compiler options, you can instead make a
24588 @emph{directory} named like @file{all.h.gch}, and put each precompiled
24589 header in the directory, perhaps using @option{-o}. It doesn't matter
24590 what you call the files in the directory; every precompiled header in
24591 the directory is considered. The first precompiled header
24592 encountered in the directory that is valid for this compilation is
24593 used; they're searched in no particular order.
24594
24595 There are many other possibilities, limited only by your imagination,
24596 good sense, and the constraints of your build system.
24597
24598 A precompiled header file can be used only when these conditions apply:
24599
24600 @itemize
24601 @item
24602 Only one precompiled header can be used in a particular compilation.
24603
24604 @item
24605 A precompiled header can't be used once the first C token is seen. You
24606 can have preprocessor directives before a precompiled header; you cannot
24607 include a precompiled header from inside another header.
24608
24609 @item
24610 The precompiled header file must be produced for the same language as
24611 the current compilation. You can't use a C precompiled header for a C++
24612 compilation.
24613
24614 @item
24615 The precompiled header file must have been produced by the same compiler
24616 binary as the current compilation is using.
24617
24618 @item
24619 Any macros defined before the precompiled header is included must
24620 either be defined in the same way as when the precompiled header was
24621 generated, or must not affect the precompiled header, which usually
24622 means that they don't appear in the precompiled header at all.
24623
24624 The @option{-D} option is one way to define a macro before a
24625 precompiled header is included; using a @code{#define} can also do it.
24626 There are also some options that define macros implicitly, like
24627 @option{-O} and @option{-Wdeprecated}; the same rule applies to macros
24628 defined this way.
24629
24630 @item If debugging information is output when using the precompiled
24631 header, using @option{-g} or similar, the same kind of debugging information
24632 must have been output when building the precompiled header. However,
24633 a precompiled header built using @option{-g} can be used in a compilation
24634 when no debugging information is being output.
24635
24636 @item The same @option{-m} options must generally be used when building
24637 and using the precompiled header. @xref{Submodel Options},
24638 for any cases where this rule is relaxed.
24639
24640 @item Each of the following options must be the same when building and using
24641 the precompiled header:
24642
24643 @gccoptlist{-fexceptions}
24644
24645 @item
24646 Some other command-line options starting with @option{-f},
24647 @option{-p}, or @option{-O} must be defined in the same way as when
24648 the precompiled header was generated. At present, it's not clear
24649 which options are safe to change and which are not; the safest choice
24650 is to use exactly the same options when generating and using the
24651 precompiled header. The following are known to be safe:
24652
24653 @gccoptlist{-fmessage-length= -fpreprocessed -fsched-interblock @gol
24654 -fsched-spec -fsched-spec-load -fsched-spec-load-dangerous @gol
24655 -fsched-verbose=@var{number} -fschedule-insns -fvisibility= @gol
24656 -pedantic-errors}
24657
24658 @end itemize
24659
24660 For all of these except the last, the compiler automatically
24661 ignores the precompiled header if the conditions aren't met. If you
24662 find an option combination that doesn't work and doesn't cause the
24663 precompiled header to be ignored, please consider filing a bug report,
24664 see @ref{Bugs}.
24665
24666 If you do use differing options when generating and using the
24667 precompiled header, the actual behavior is a mixture of the
24668 behavior for the options. For instance, if you use @option{-g} to
24669 generate the precompiled header but not when using it, you may or may
24670 not get debugging information for routines in the precompiled header.