]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/doc/invoke.texi
asan.c (asan_emit_stack_protection): Update.
[thirdparty/gcc.git] / gcc / doc / invoke.texi
1 @c Copyright (C) 1988-2017 Free Software Foundation, Inc.
2 @c This is part of the GCC manual.
3 @c For copying conditions, see the file gcc.texi.
4
5 @ignore
6 @c man begin INCLUDE
7 @include gcc-vers.texi
8 @c man end
9
10 @c man begin COPYRIGHT
11 Copyright @copyright{} 1988-2017 Free Software Foundation, Inc.
12
13 Permission is granted to copy, distribute and/or modify this document
14 under the terms of the GNU Free Documentation License, Version 1.3 or
15 any later version published by the Free Software Foundation; with the
16 Invariant Sections being ``GNU General Public License'' and ``Funding
17 Free Software'', the Front-Cover texts being (a) (see below), and with
18 the Back-Cover Texts being (b) (see below). A copy of the license is
19 included in the gfdl(7) man page.
20
21 (a) The FSF's Front-Cover Text is:
22
23 A GNU Manual
24
25 (b) The FSF's Back-Cover Text is:
26
27 You have freedom to copy and modify this GNU Manual, like GNU
28 software. Copies published by the Free Software Foundation raise
29 funds for GNU development.
30 @c man end
31 @c Set file name and title for the man page.
32 @setfilename gcc
33 @settitle GNU project C and C++ compiler
34 @c man begin SYNOPSIS
35 gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}]
36 [@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
37 [@option{-W}@var{warn}@dots{}] [@option{-Wpedantic}]
38 [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
39 [@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
40 [@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
41 [@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{}
42
43 Only the most useful options are listed here; see below for the
44 remainder. @command{g++} accepts mostly the same options as @command{gcc}.
45 @c man end
46 @c man begin SEEALSO
47 gpl(7), gfdl(7), fsf-funding(7),
48 cpp(1), gcov(1), as(1), ld(1), gdb(1), adb(1), dbx(1), sdb(1)
49 and the Info entries for @file{gcc}, @file{cpp}, @file{as},
50 @file{ld}, @file{binutils} and @file{gdb}.
51 @c man end
52 @c man begin BUGS
53 For instructions on reporting bugs, see
54 @w{@value{BUGURL}}.
55 @c man end
56 @c man begin AUTHOR
57 See the Info entry for @command{gcc}, or
58 @w{@uref{http://gcc.gnu.org/onlinedocs/gcc/Contributors.html}},
59 for contributors to GCC@.
60 @c man end
61 @end ignore
62
63 @node Invoking GCC
64 @chapter GCC Command Options
65 @cindex GCC command options
66 @cindex command options
67 @cindex options, GCC command
68
69 @c man begin DESCRIPTION
70 When you invoke GCC, it normally does preprocessing, compilation,
71 assembly and linking. The ``overall options'' allow you to stop this
72 process at an intermediate stage. For example, the @option{-c} option
73 says not to run the linker. Then the output consists of object files
74 output by the assembler.
75 @xref{Overall Options,,Options Controlling the Kind of Output}.
76
77 Other options are passed on to one or more stages of processing. Some options
78 control the preprocessor and others the compiler itself. Yet other
79 options control the assembler and linker; most of these are not
80 documented here, since you rarely need to use any of them.
81
82 @cindex C compilation options
83 Most of the command-line options that you can use with GCC are useful
84 for C programs; when an option is only useful with another language
85 (usually C++), the explanation says so explicitly. If the description
86 for a particular option does not mention a source language, you can use
87 that option with all supported languages.
88
89 @cindex cross compiling
90 @cindex specifying machine version
91 @cindex specifying compiler version and target machine
92 @cindex compiler version, specifying
93 @cindex target machine, specifying
94 The usual way to run GCC is to run the executable called @command{gcc}, or
95 @command{@var{machine}-gcc} when cross-compiling, or
96 @command{@var{machine}-gcc-@var{version}} to run a specific version of GCC.
97 When you compile C++ programs, you should invoke GCC as @command{g++}
98 instead. @xref{Invoking G++,,Compiling C++ Programs},
99 for information about the differences in behavior between @command{gcc}
100 and @code{g++} when compiling C++ programs.
101
102 @cindex grouping options
103 @cindex options, grouping
104 The @command{gcc} program accepts options and file names as operands. Many
105 options have multi-letter names; therefore multiple single-letter options
106 may @emph{not} be grouped: @option{-dv} is very different from @w{@samp{-d
107 -v}}.
108
109 @cindex order of options
110 @cindex options, order
111 You can mix options and other arguments. For the most part, the order
112 you use doesn't matter. Order does matter when you use several
113 options of the same kind; for example, if you specify @option{-L} more
114 than once, the directories are searched in the order specified. Also,
115 the placement of the @option{-l} option is significant.
116
117 Many options have long names starting with @samp{-f} or with
118 @samp{-W}---for example,
119 @option{-fmove-loop-invariants}, @option{-Wformat} and so on. Most of
120 these have both positive and negative forms; the negative form of
121 @option{-ffoo} is @option{-fno-foo}. This manual documents
122 only one of these two forms, whichever one is not the default.
123
124 @c man end
125
126 @xref{Option Index}, for an index to GCC's options.
127
128 @menu
129 * Option Summary:: Brief list of all options, without explanations.
130 * Overall Options:: Controlling the kind of output:
131 an executable, object files, assembler files,
132 or preprocessed source.
133 * Invoking G++:: Compiling C++ programs.
134 * C Dialect Options:: Controlling the variant of C language compiled.
135 * C++ Dialect Options:: Variations on C++.
136 * Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
137 and Objective-C++.
138 * Diagnostic Message Formatting Options:: Controlling how diagnostics should
139 be formatted.
140 * Warning Options:: How picky should the compiler be?
141 * Debugging Options:: Producing debuggable code.
142 * Optimize Options:: How much optimization?
143 * Instrumentation Options:: Enabling profiling and extra run-time error checking.
144 * Preprocessor Options:: Controlling header files and macro definitions.
145 Also, getting dependency information for Make.
146 * Assembler Options:: Passing options to the assembler.
147 * Link Options:: Specifying libraries and so on.
148 * Directory Options:: Where to find header files and libraries.
149 Where to find the compiler executable files.
150 * Code Gen Options:: Specifying conventions for function calls, data layout
151 and register usage.
152 * Developer Options:: Printing GCC configuration info, statistics, and
153 debugging dumps.
154 * Submodel Options:: Target-specific options, such as compiling for a
155 specific processor variant.
156 * Spec Files:: How to pass switches to sub-processes.
157 * Environment Variables:: Env vars that affect GCC.
158 * Precompiled Headers:: Compiling a header once, and using it many times.
159 @end menu
160
161 @c man begin OPTIONS
162
163 @node Option Summary
164 @section Option Summary
165
166 Here is a summary of all the options, grouped by type. Explanations are
167 in the following sections.
168
169 @table @emph
170 @item Overall Options
171 @xref{Overall Options,,Options Controlling the Kind of Output}.
172 @gccoptlist{-c -S -E -o @var{file} -x @var{language} @gol
173 -v -### --help@r{[}=@var{class}@r{[},@dots{}@r{]]} --target-help --version @gol
174 -pass-exit-codes -pipe -specs=@var{file} -wrapper @gol
175 @@@var{file} -fplugin=@var{file} -fplugin-arg-@var{name}=@var{arg} @gol
176 -fdump-ada-spec@r{[}-slim@r{]} -fada-spec-parent=@var{unit} -fdump-go-spec=@var{file}}
177
178 @item C Language Options
179 @xref{C Dialect Options,,Options Controlling C Dialect}.
180 @gccoptlist{-ansi -std=@var{standard} -fgnu89-inline @gol
181 -fpermitted-flt-eval-methods=@var{standard} @gol
182 -aux-info @var{filename} -fallow-parameterless-variadic-functions @gol
183 -fno-asm -fno-builtin -fno-builtin-@var{function} -fgimple@gol
184 -fhosted -ffreestanding -fopenacc -fopenmp -fopenmp-simd @gol
185 -fms-extensions -fplan9-extensions -fsso-struct=@var{endianness} @gol
186 -fallow-single-precision -fcond-mismatch -flax-vector-conversions @gol
187 -fsigned-bitfields -fsigned-char @gol
188 -funsigned-bitfields -funsigned-char}
189
190 @item C++ Language Options
191 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
192 @gccoptlist{-fabi-version=@var{n} -fno-access-control @gol
193 -faligned-new=@var{n} -fargs-in-order=@var{n} -fcheck-new @gol
194 -fconstexpr-depth=@var{n} -fconstexpr-loop-limit=@var{n} @gol
195 -ffriend-injection @gol
196 -fno-elide-constructors @gol
197 -fno-enforce-eh-specs @gol
198 -ffor-scope -fno-for-scope -fno-gnu-keywords @gol
199 -fno-implicit-templates @gol
200 -fno-implicit-inline-templates @gol
201 -fno-implement-inlines -fms-extensions @gol
202 -fnew-inheriting-ctors @gol
203 -fnew-ttp-matching @gol
204 -fno-nonansi-builtins -fnothrow-opt -fno-operator-names @gol
205 -fno-optional-diags -fpermissive @gol
206 -fno-pretty-templates @gol
207 -frepo -fno-rtti -fsized-deallocation @gol
208 -ftemplate-backtrace-limit=@var{n} @gol
209 -ftemplate-depth=@var{n} @gol
210 -fno-threadsafe-statics -fuse-cxa-atexit @gol
211 -fno-weak -nostdinc++ @gol
212 -fvisibility-inlines-hidden @gol
213 -fvisibility-ms-compat @gol
214 -fext-numeric-literals @gol
215 -Wabi=@var{n} -Wabi-tag -Wconversion-null -Wctor-dtor-privacy @gol
216 -Wdelete-non-virtual-dtor -Wliteral-suffix -Wmultiple-inheritance @gol
217 -Wnamespaces -Wnarrowing @gol
218 -Wnoexcept -Wnoexcept-type -Wclass-memaccess @gol
219 -Wnon-virtual-dtor -Wreorder -Wregister @gol
220 -Weffc++ -Wstrict-null-sentinel -Wtemplates @gol
221 -Wno-non-template-friend -Wold-style-cast @gol
222 -Woverloaded-virtual -Wno-pmf-conversions @gol
223 -Wsign-promo -Wvirtual-inheritance}
224
225 @item Objective-C and Objective-C++ Language Options
226 @xref{Objective-C and Objective-C++ Dialect Options,,Options Controlling
227 Objective-C and Objective-C++ Dialects}.
228 @gccoptlist{-fconstant-string-class=@var{class-name} @gol
229 -fgnu-runtime -fnext-runtime @gol
230 -fno-nil-receivers @gol
231 -fobjc-abi-version=@var{n} @gol
232 -fobjc-call-cxx-cdtors @gol
233 -fobjc-direct-dispatch @gol
234 -fobjc-exceptions @gol
235 -fobjc-gc @gol
236 -fobjc-nilcheck @gol
237 -fobjc-std=objc1 @gol
238 -fno-local-ivars @gol
239 -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]} @gol
240 -freplace-objc-classes @gol
241 -fzero-link @gol
242 -gen-decls @gol
243 -Wassign-intercept @gol
244 -Wno-protocol -Wselector @gol
245 -Wstrict-selector-match @gol
246 -Wundeclared-selector}
247
248 @item Diagnostic Message Formatting Options
249 @xref{Diagnostic Message Formatting Options,,Options to Control Diagnostic Messages Formatting}.
250 @gccoptlist{-fmessage-length=@var{n} @gol
251 -fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]} @gol
252 -fdiagnostics-color=@r{[}auto@r{|}never@r{|}always@r{]} @gol
253 -fno-diagnostics-show-option -fno-diagnostics-show-caret @gol
254 -fdiagnostics-parseable-fixits -fdiagnostics-generate-patch @gol
255 -fdiagnostics-show-template-tree -fno-elide-type @gol
256 -fno-show-column}
257
258 @item Warning Options
259 @xref{Warning Options,,Options to Request or Suppress Warnings}.
260 @gccoptlist{-fsyntax-only -fmax-errors=@var{n} -Wpedantic @gol
261 -pedantic-errors @gol
262 -w -Wextra -Wall -Waddress -Waggregate-return @gol
263 -Walloc-zero -Walloc-size-larger-than=@var{n}
264 -Walloca -Walloca-larger-than=@var{n} @gol
265 -Wno-aggressive-loop-optimizations -Warray-bounds -Warray-bounds=@var{n} @gol
266 -Wno-attributes -Wbool-compare -Wbool-operation @gol
267 -Wno-builtin-declaration-mismatch @gol
268 -Wno-builtin-macro-redefined -Wc90-c99-compat -Wc99-c11-compat @gol
269 -Wc++-compat -Wc++11-compat -Wc++14-compat -Wcast-align -Wcast-qual @gol
270 -Wchar-subscripts -Wchkp -Wcatch-value -Wcatch-value=@var{n} @gol
271 -Wclobbered -Wcomment -Wconditionally-supported @gol
272 -Wconversion -Wcoverage-mismatch -Wno-cpp -Wdangling-else -Wdate-time @gol
273 -Wdelete-incomplete @gol
274 -Wno-deprecated -Wno-deprecated-declarations -Wno-designated-init @gol
275 -Wdisabled-optimization @gol
276 -Wno-discarded-qualifiers -Wno-discarded-array-qualifiers @gol
277 -Wno-div-by-zero -Wdouble-promotion @gol
278 -Wduplicated-branches -Wduplicated-cond @gol
279 -Wempty-body -Wenum-compare -Wno-endif-labels -Wexpansion-to-defined @gol
280 -Werror -Werror=* -Wextra-semi -Wfatal-errors @gol
281 -Wfloat-equal -Wformat -Wformat=2 @gol
282 -Wno-format-contains-nul -Wno-format-extra-args @gol
283 -Wformat-nonliteral -Wformat-overflow=@var{n} @gol
284 -Wformat-security -Wformat-signedness -Wformat-truncation=@var{n} @gol
285 -Wformat-y2k -Wframe-address @gol
286 -Wframe-larger-than=@var{len} -Wno-free-nonheap-object -Wjump-misses-init @gol
287 -Wignored-qualifiers -Wignored-attributes -Wincompatible-pointer-types @gol
288 -Wimplicit -Wimplicit-fallthrough -Wimplicit-fallthrough=@var{n} @gol
289 -Wimplicit-function-declaration -Wimplicit-int @gol
290 -Winit-self -Winline -Wno-int-conversion -Wint-in-bool-context @gol
291 -Wno-int-to-pointer-cast -Winvalid-memory-model -Wno-invalid-offsetof @gol
292 -Winvalid-pch -Wlarger-than=@var{len} @gol
293 -Wlogical-op -Wlogical-not-parentheses -Wlong-long @gol
294 -Wmain -Wmaybe-uninitialized -Wmemset-elt-size -Wmemset-transposed-args @gol
295 -Wmisleading-indentation -Wmissing-braces @gol
296 -Wmissing-field-initializers -Wmissing-include-dirs @gol
297 -Wno-multichar -Wmultistatement-macros -Wnonnull -Wnonnull-compare @gol
298 -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]} @gol
299 -Wnull-dereference -Wodr -Wno-overflow -Wopenmp-simd @gol
300 -Woverride-init-side-effects -Woverlength-strings @gol
301 -Wpacked -Wpacked-bitfield-compat -Wpadded @gol
302 -Wparentheses -Wno-pedantic-ms-format @gol
303 -Wplacement-new -Wplacement-new=@var{n} @gol
304 -Wpointer-arith -Wpointer-compare -Wno-pointer-to-int-cast @gol
305 -Wno-pragmas -Wredundant-decls -Wrestrict -Wno-return-local-addr @gol
306 -Wreturn-type -Wsequence-point -Wshadow -Wno-shadow-ivar @gol
307 -Wshadow=global, -Wshadow=local, -Wshadow=compatible-local @gol
308 -Wshift-overflow -Wshift-overflow=@var{n} @gol
309 -Wshift-count-negative -Wshift-count-overflow -Wshift-negative-value @gol
310 -Wsign-compare -Wsign-conversion -Wfloat-conversion @gol
311 -Wno-scalar-storage-order -Wsizeof-pointer-div @gol
312 -Wsizeof-pointer-memaccess -Wsizeof-array-argument @gol
313 -Wstack-protector -Wstack-usage=@var{len} -Wstrict-aliasing @gol
314 -Wstrict-aliasing=n -Wstrict-overflow -Wstrict-overflow=@var{n} @gol
315 -Wstringop-overflow=@var{n} @gol
316 -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{]} @gol
317 -Wsuggest-final-types @gol -Wsuggest-final-methods -Wsuggest-override @gol
318 -Wmissing-format-attribute -Wsubobject-linkage @gol
319 -Wswitch -Wswitch-bool -Wswitch-default -Wswitch-enum @gol
320 -Wswitch-unreachable -Wsync-nand @gol
321 -Wsystem-headers -Wtautological-compare -Wtrampolines -Wtrigraphs @gol
322 -Wtype-limits -Wundef @gol
323 -Wuninitialized -Wunknown-pragmas -Wunsafe-loop-optimizations @gol
324 -Wunsuffixed-float-constants -Wunused -Wunused-function @gol
325 -Wunused-label -Wunused-local-typedefs -Wunused-macros @gol
326 -Wunused-parameter -Wno-unused-result @gol
327 -Wunused-value -Wunused-variable @gol
328 -Wunused-const-variable -Wunused-const-variable=@var{n} @gol
329 -Wunused-but-set-parameter -Wunused-but-set-variable @gol
330 -Wuseless-cast -Wvariadic-macros -Wvector-operation-performance @gol
331 -Wvla -Wvla-larger-than=@var{n} -Wvolatile-register-var -Wwrite-strings @gol
332 -Wzero-as-null-pointer-constant -Whsa}
333
334 @item C and Objective-C-only Warning Options
335 @gccoptlist{-Wbad-function-cast -Wmissing-declarations @gol
336 -Wmissing-parameter-type -Wmissing-prototypes -Wnested-externs @gol
337 -Wold-style-declaration -Wold-style-definition @gol
338 -Wstrict-prototypes -Wtraditional -Wtraditional-conversion @gol
339 -Wdeclaration-after-statement -Wpointer-sign}
340
341 @item Debugging Options
342 @xref{Debugging Options,,Options for Debugging Your Program}.
343 @gccoptlist{-g -g@var{level} -gcoff -gdwarf -gdwarf-@var{version} @gol
344 -ggdb -grecord-gcc-switches -gno-record-gcc-switches @gol
345 -gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf @gol
346 -gcolumn-info -gno-column-info @gol
347 -gvms -gxcoff -gxcoff+ -gz@r{[}=@var{type}@r{]} @gol
348 -fdebug-prefix-map=@var{old}=@var{new} -fdebug-types-section @gol
349 -feliminate-dwarf2-dups -fno-eliminate-unused-debug-types @gol
350 -femit-struct-debug-baseonly -femit-struct-debug-reduced @gol
351 -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]} @gol
352 -feliminate-unused-debug-symbols -femit-class-debug-always @gol
353 -fno-merge-debug-strings -fno-dwarf2-cfi-asm @gol
354 -fvar-tracking -fvar-tracking-assignments}
355
356 @item Optimization Options
357 @xref{Optimize Options,,Options that Control Optimization}.
358 @gccoptlist{-faggressive-loop-optimizations -falign-functions[=@var{n}] @gol
359 -falign-jumps[=@var{n}] @gol
360 -falign-labels[=@var{n}] -falign-loops[=@var{n}] @gol
361 -fassociative-math -fauto-profile -fauto-profile[=@var{path}] @gol
362 -fauto-inc-dec -fbranch-probabilities @gol
363 -fbranch-target-load-optimize -fbranch-target-load-optimize2 @gol
364 -fbtr-bb-exclusive -fcaller-saves @gol
365 -fcombine-stack-adjustments -fconserve-stack @gol
366 -fcompare-elim -fcprop-registers -fcrossjumping @gol
367 -fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules @gol
368 -fcx-limited-range @gol
369 -fdata-sections -fdce -fdelayed-branch @gol
370 -fdelete-null-pointer-checks -fdevirtualize -fdevirtualize-speculatively @gol
371 -fdevirtualize-at-ltrans -fdse @gol
372 -fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects @gol
373 -ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=@var{style} @gol
374 -fforward-propagate -ffp-contract=@var{style} -ffunction-sections @gol
375 -fgcse -fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity @gol
376 -fgcse-sm -fhoist-adjacent-loads -fif-conversion @gol
377 -fif-conversion2 -findirect-inlining @gol
378 -finline-functions -finline-functions-called-once -finline-limit=@var{n} @gol
379 -finline-small-functions -fipa-cp -fipa-cp-clone @gol
380 -fipa-bit-cp -fipa-vrp @gol
381 -fipa-pta -fipa-profile -fipa-pure-const -fipa-reference -fipa-icf @gol
382 -fira-algorithm=@var{algorithm} @gol
383 -fira-region=@var{region} -fira-hoist-pressure @gol
384 -fira-loop-pressure -fno-ira-share-save-slots @gol
385 -fno-ira-share-spill-slots @gol
386 -fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute @gol
387 -fivopts -fkeep-inline-functions -fkeep-static-functions @gol
388 -fkeep-static-consts -flimit-function-alignment -flive-range-shrinkage @gol
389 -floop-block -floop-interchange -floop-strip-mine @gol
390 -floop-unroll-and-jam -floop-nest-optimize @gol
391 -floop-parallelize-all -flra-remat -flto -flto-compression-level @gol
392 -flto-partition=@var{alg} -fmerge-all-constants @gol
393 -fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves @gol
394 -fmove-loop-invariants -fno-branch-count-reg @gol
395 -fno-defer-pop -fno-fp-int-builtin-inexact -fno-function-cse @gol
396 -fno-guess-branch-probability -fno-inline -fno-math-errno -fno-peephole @gol
397 -fno-peephole2 -fno-printf-return-value -fno-sched-interblock @gol
398 -fno-sched-spec -fno-signed-zeros @gol
399 -fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss @gol
400 -fomit-frame-pointer -foptimize-sibling-calls @gol
401 -fpartial-inlining -fpeel-loops -fpredictive-commoning @gol
402 -fprefetch-loop-arrays @gol
403 -fprofile-correction @gol
404 -fprofile-use -fprofile-use=@var{path} -fprofile-values @gol
405 -fprofile-reorder-functions @gol
406 -freciprocal-math -free -frename-registers -freorder-blocks @gol
407 -freorder-blocks-algorithm=@var{algorithm} @gol
408 -freorder-blocks-and-partition -freorder-functions @gol
409 -frerun-cse-after-loop -freschedule-modulo-scheduled-loops @gol
410 -frounding-math -fsched2-use-superblocks -fsched-pressure @gol
411 -fsched-spec-load -fsched-spec-load-dangerous @gol
412 -fsched-stalled-insns-dep[=@var{n}] -fsched-stalled-insns[=@var{n}] @gol
413 -fsched-group-heuristic -fsched-critical-path-heuristic @gol
414 -fsched-spec-insn-heuristic -fsched-rank-heuristic @gol
415 -fsched-last-insn-heuristic -fsched-dep-count-heuristic @gol
416 -fschedule-fusion @gol
417 -fschedule-insns -fschedule-insns2 -fsection-anchors @gol
418 -fselective-scheduling -fselective-scheduling2 @gol
419 -fsel-sched-pipelining -fsel-sched-pipelining-outer-loops @gol
420 -fsemantic-interposition -fshrink-wrap -fshrink-wrap-separate @gol
421 -fsignaling-nans @gol
422 -fsingle-precision-constant -fsplit-ivs-in-unroller -fsplit-loops@gol
423 -fsplit-paths @gol
424 -fsplit-wide-types -fssa-backprop -fssa-phiopt @gol
425 -fstdarg-opt -fstore-merging -fstrict-aliasing @gol
426 -fthread-jumps -ftracer -ftree-bit-ccp @gol
427 -ftree-builtin-call-dce -ftree-ccp -ftree-ch @gol
428 -ftree-coalesce-vars -ftree-copy-prop -ftree-dce -ftree-dominator-opts @gol
429 -ftree-dse -ftree-forwprop -ftree-fre -fcode-hoisting @gol
430 -ftree-loop-if-convert -ftree-loop-im @gol
431 -ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns @gol
432 -ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize @gol
433 -ftree-loop-vectorize @gol
434 -ftree-parallelize-loops=@var{n} -ftree-pre -ftree-partial-pre -ftree-pta @gol
435 -ftree-reassoc -ftree-sink -ftree-slsr -ftree-sra @gol
436 -ftree-switch-conversion -ftree-tail-merge @gol
437 -ftree-ter -ftree-vectorize -ftree-vrp -funconstrained-commons @gol
438 -funit-at-a-time -funroll-all-loops -funroll-loops @gol
439 -funsafe-math-optimizations -funswitch-loops @gol
440 -fipa-ra -fvariable-expansion-in-unroller -fvect-cost-model -fvpt @gol
441 -fweb -fwhole-program -fwpa -fuse-linker-plugin @gol
442 --param @var{name}=@var{value}
443 -O -O0 -O1 -O2 -O3 -Os -Ofast -Og}
444
445 @item Program Instrumentation Options
446 @xref{Instrumentation Options,,Program Instrumentation Options}.
447 @gccoptlist{-p -pg -fprofile-arcs --coverage -ftest-coverage @gol
448 -fprofile-abs-path @gol
449 -fprofile-dir=@var{path} -fprofile-generate -fprofile-generate=@var{path} @gol
450 -fsanitize=@var{style} -fsanitize-recover -fsanitize-recover=@var{style} @gol
451 -fasan-shadow-offset=@var{number} -fsanitize-sections=@var{s1},@var{s2},... @gol
452 -fsanitize-undefined-trap-on-error -fbounds-check @gol
453 -fcheck-pointer-bounds -fchkp-check-incomplete-type @gol
454 -fchkp-first-field-has-own-bounds -fchkp-narrow-bounds @gol
455 -fchkp-narrow-to-innermost-array -fchkp-optimize @gol
456 -fchkp-use-fast-string-functions -fchkp-use-nochk-string-functions @gol
457 -fchkp-use-static-bounds -fchkp-use-static-const-bounds @gol
458 -fchkp-treat-zero-dynamic-size-as-infinite -fchkp-check-read @gol
459 -fchkp-check-read -fchkp-check-write -fchkp-store-bounds @gol
460 -fchkp-instrument-calls -fchkp-instrument-marked-only @gol
461 -fchkp-use-wrappers -fchkp-flexible-struct-trailing-arrays@gol
462 -fstack-protector -fstack-protector-all -fstack-protector-strong @gol
463 -fstack-protector-explicit -fstack-check @gol
464 -fstack-limit-register=@var{reg} -fstack-limit-symbol=@var{sym} @gol
465 -fno-stack-limit -fsplit-stack @gol
466 -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]} @gol
467 -fvtv-counts -fvtv-debug @gol
468 -finstrument-functions @gol
469 -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{} @gol
470 -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}}
471
472 @item Preprocessor Options
473 @xref{Preprocessor Options,,Options Controlling the Preprocessor}.
474 @gccoptlist{-A@var{question}=@var{answer} @gol
475 -A-@var{question}@r{[}=@var{answer}@r{]} @gol
476 -C -CC -D@var{macro}@r{[}=@var{defn}@r{]} @gol
477 -dD -dI -dM -dN -dU @gol
478 -fdebug-cpp -fdirectives-only -fdollars-in-identifiers @gol
479 -fexec-charset=@var{charset} -fextended-identifiers @gol
480 -finput-charset=@var{charset} -fno-canonical-system-headers @gol
481 -fpch-deps -fpch-preprocess -fpreprocessed @gol
482 -ftabstop=@var{width} -ftrack-macro-expansion @gol
483 -fwide-exec-charset=@var{charset} -fworking-directory @gol
484 -H -imacros @var{file} -include @var{file} @gol
485 -M -MD -MF -MG -MM -MMD -MP -MQ -MT @gol
486 -no-integrated-cpp -P -pthread -remap @gol
487 -traditional -traditional-cpp -trigraphs @gol
488 -U@var{macro} -undef @gol
489 -Wp,@var{option} -Xpreprocessor @var{option}}
490
491 @item Assembler Options
492 @xref{Assembler Options,,Passing Options to the Assembler}.
493 @gccoptlist{-Wa,@var{option} -Xassembler @var{option}}
494
495 @item Linker Options
496 @xref{Link Options,,Options for Linking}.
497 @gccoptlist{@var{object-file-name} -fuse-ld=@var{linker} -l@var{library} @gol
498 -nostartfiles -nodefaultlibs -nostdlib -pie -pthread -rdynamic @gol
499 -s -static -static-libgcc -static-libstdc++ @gol
500 -static-libasan -static-libtsan -static-liblsan -static-libubsan @gol
501 -static-libmpx -static-libmpxwrappers @gol
502 -shared -shared-libgcc -symbolic @gol
503 -T @var{script} -Wl,@var{option} -Xlinker @var{option} @gol
504 -u @var{symbol} -z @var{keyword}}
505
506 @item Directory Options
507 @xref{Directory Options,,Options for Directory Search}.
508 @gccoptlist{-B@var{prefix} -I@var{dir} -I- @gol
509 -idirafter @var{dir} @gol
510 -imacros @var{file} -imultilib @var{dir} @gol
511 -iplugindir=@var{dir} -iprefix @var{file} @gol
512 -iquote @var{dir} -isysroot @var{dir} -isystem @var{dir} @gol
513 -iwithprefix @var{dir} -iwithprefixbefore @var{dir} @gol
514 -L@var{dir} -no-canonical-prefixes --no-sysroot-suffix @gol
515 -nostdinc -nostdinc++ --sysroot=@var{dir}}
516
517 @item Code Generation Options
518 @xref{Code Gen Options,,Options for Code Generation Conventions}.
519 @gccoptlist{-fcall-saved-@var{reg} -fcall-used-@var{reg} @gol
520 -ffixed-@var{reg} -fexceptions @gol
521 -fnon-call-exceptions -fdelete-dead-exceptions -funwind-tables @gol
522 -fasynchronous-unwind-tables @gol
523 -fno-gnu-unique @gol
524 -finhibit-size-directive -fno-common -fno-ident @gol
525 -fpcc-struct-return -fpic -fPIC -fpie -fPIE -fno-plt @gol
526 -fno-jump-tables @gol
527 -frecord-gcc-switches @gol
528 -freg-struct-return -fshort-enums -fshort-wchar @gol
529 -fverbose-asm -fpack-struct[=@var{n}] @gol
530 -fleading-underscore -ftls-model=@var{model} @gol
531 -fstack-reuse=@var{reuse_level} @gol
532 -ftrampolines -ftrapv -fwrapv @gol
533 -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]} @gol
534 -fstrict-volatile-bitfields -fsync-libcalls}
535
536 @item Developer Options
537 @xref{Developer Options,,GCC Developer Options}.
538 @gccoptlist{-d@var{letters} -dumpspecs -dumpmachine -dumpversion @gol
539 -dumpfullversion -fchecking -fchecking=@var{n} -fdbg-cnt-list @gol
540 -fdbg-cnt=@var{counter-value-list} @gol
541 -fdisable-ipa-@var{pass_name} @gol
542 -fdisable-rtl-@var{pass_name} @gol
543 -fdisable-rtl-@var{pass-name}=@var{range-list} @gol
544 -fdisable-tree-@var{pass_name} @gol
545 -fdisable-tree-@var{pass-name}=@var{range-list} @gol
546 -fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links @gol
547 -fdump-class-hierarchy@r{[}-@var{n}@r{]} @gol
548 -fdump-final-insns@r{[}=@var{file}@r{]}
549 -fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline @gol
550 -fdump-lang-all @gol
551 -fdump-lang-@var{switch} @gol
552 -fdump-lang-@var{switch}-@var{options} @gol
553 -fdump-lang-@var{switch}-@var{options}=@var{filename} @gol
554 -fdump-passes @gol
555 -fdump-rtl-@var{pass} -fdump-rtl-@var{pass}=@var{filename} @gol
556 -fdump-statistics @gol
557 -fdump-tree-all @gol
558 -fdump-tree-@var{switch} @gol
559 -fdump-tree-@var{switch}-@var{options} @gol
560 -fdump-tree-@var{switch}-@var{options}=@var{filename} @gol
561 -fcompare-debug@r{[}=@var{opts}@r{]} -fcompare-debug-second @gol
562 -fenable-@var{kind}-@var{pass} @gol
563 -fenable-@var{kind}-@var{pass}=@var{range-list} @gol
564 -fira-verbose=@var{n} @gol
565 -flto-report -flto-report-wpa -fmem-report-wpa @gol
566 -fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report @gol
567 -fopt-info -fopt-info-@var{options}@r{[}=@var{file}@r{]} @gol
568 -fprofile-report @gol
569 -frandom-seed=@var{string} -fsched-verbose=@var{n} @gol
570 -fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose @gol
571 -fstats -fstack-usage -ftime-report -ftime-report-details @gol
572 -fvar-tracking-assignments-toggle -gtoggle @gol
573 -print-file-name=@var{library} -print-libgcc-file-name @gol
574 -print-multi-directory -print-multi-lib -print-multi-os-directory @gol
575 -print-prog-name=@var{program} -print-search-dirs -Q @gol
576 -print-sysroot -print-sysroot-headers-suffix @gol
577 -save-temps -save-temps=cwd -save-temps=obj -time@r{[}=@var{file}@r{]}}
578
579 @item Machine-Dependent Options
580 @xref{Submodel Options,,Machine-Dependent Options}.
581 @c This list is ordered alphanumerically by subsection name.
582 @c Try and put the significant identifier (CPU or system) first,
583 @c so users have a clue at guessing where the ones they want will be.
584
585 @emph{AArch64 Options}
586 @gccoptlist{-mabi=@var{name} -mbig-endian -mlittle-endian @gol
587 -mgeneral-regs-only @gol
588 -mcmodel=tiny -mcmodel=small -mcmodel=large @gol
589 -mstrict-align @gol
590 -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer @gol
591 -mtls-dialect=desc -mtls-dialect=traditional @gol
592 -mtls-size=@var{size} @gol
593 -mfix-cortex-a53-835769 -mno-fix-cortex-a53-835769 @gol
594 -mfix-cortex-a53-843419 -mno-fix-cortex-a53-843419 @gol
595 -mlow-precision-recip-sqrt -mno-low-precision-recip-sqrt@gol
596 -mlow-precision-sqrt -mno-low-precision-sqrt@gol
597 -mlow-precision-div -mno-low-precision-div @gol
598 -march=@var{name} -mcpu=@var{name} -mtune=@var{name}}
599
600 @emph{Adapteva Epiphany Options}
601 @gccoptlist{-mhalf-reg-file -mprefer-short-insn-regs @gol
602 -mbranch-cost=@var{num} -mcmove -mnops=@var{num} -msoft-cmpsf @gol
603 -msplit-lohi -mpost-inc -mpost-modify -mstack-offset=@var{num} @gol
604 -mround-nearest -mlong-calls -mshort-calls -msmall16 @gol
605 -mfp-mode=@var{mode} -mvect-double -max-vect-align=@var{num} @gol
606 -msplit-vecmove-early -m1reg-@var{reg}}
607
608 @emph{ARC Options}
609 @gccoptlist{-mbarrel-shifter @gol
610 -mcpu=@var{cpu} -mA6 -mARC600 -mA7 -mARC700 @gol
611 -mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr @gol
612 -mea -mno-mpy -mmul32x16 -mmul64 -matomic @gol
613 -mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float -mswap @gol
614 -mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape @gol
615 -mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof @gol
616 -mlong-calls -mmedium-calls -msdata -mirq-ctrl-saved @gol
617 -mrgf-banked-regs @gol
618 -mvolatile-cache -mtp-regno=@var{regno} @gol
619 -malign-call -mauto-modify-reg -mbbit-peephole -mno-brcc @gol
620 -mcase-vector-pcrel -mcompact-casesi -mno-cond-exec -mearly-cbranchsi @gol
621 -mexpand-adddi -mindexed-loads -mlra -mlra-priority-none @gol
622 -mlra-priority-compact mlra-priority-noncompact -mno-millicode @gol
623 -mmixed-code -mq-class -mRcq -mRcw -msize-level=@var{level} @gol
624 -mtune=@var{cpu} -mmultcost=@var{num} @gol
625 -munalign-prob-threshold=@var{probability} -mmpy-option=@var{multo} @gol
626 -mdiv-rem -mcode-density -mll64 -mfpu=@var{fpu}}
627
628 @emph{ARM Options}
629 @gccoptlist{-mapcs-frame -mno-apcs-frame @gol
630 -mabi=@var{name} @gol
631 -mapcs-stack-check -mno-apcs-stack-check @gol
632 -mapcs-reentrant -mno-apcs-reentrant @gol
633 -msched-prolog -mno-sched-prolog @gol
634 -mlittle-endian -mbig-endian @gol
635 -mfloat-abi=@var{name} @gol
636 -mfp16-format=@var{name}
637 -mthumb-interwork -mno-thumb-interwork @gol
638 -mcpu=@var{name} -march=@var{name} -mfpu=@var{name} @gol
639 -mtune=@var{name} -mprint-tune-info @gol
640 -mstructure-size-boundary=@var{n} @gol
641 -mabort-on-noreturn @gol
642 -mlong-calls -mno-long-calls @gol
643 -msingle-pic-base -mno-single-pic-base @gol
644 -mpic-register=@var{reg} @gol
645 -mnop-fun-dllimport @gol
646 -mpoke-function-name @gol
647 -mthumb -marm @gol
648 -mtpcs-frame -mtpcs-leaf-frame @gol
649 -mcaller-super-interworking -mcallee-super-interworking @gol
650 -mtp=@var{name} -mtls-dialect=@var{dialect} @gol
651 -mword-relocations @gol
652 -mfix-cortex-m3-ldrd @gol
653 -munaligned-access @gol
654 -mneon-for-64bits @gol
655 -mslow-flash-data @gol
656 -masm-syntax-unified @gol
657 -mrestrict-it @gol
658 -mpure-code @gol
659 -mcmse}
660
661 @emph{AVR Options}
662 @gccoptlist{-mmcu=@var{mcu} -mabsdata -maccumulate-args @gol
663 -mbranch-cost=@var{cost} @gol
664 -mcall-prologues -mint8 -mn_flash=@var{size} -mno-interrupts @gol
665 -mrelax -mrmw -mstrict-X -mtiny-stack -mfract-convert-truncate @gol
666 -mshort-calls -nodevicelib @gol
667 -Waddr-space-convert -Wmisspelled-isr}
668
669 @emph{Blackfin Options}
670 @gccoptlist{-mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]} @gol
671 -msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer @gol
672 -mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly @gol
673 -mlow-64k -mno-low64k -mstack-check-l1 -mid-shared-library @gol
674 -mno-id-shared-library -mshared-library-id=@var{n} @gol
675 -mleaf-id-shared-library -mno-leaf-id-shared-library @gol
676 -msep-data -mno-sep-data -mlong-calls -mno-long-calls @gol
677 -mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram @gol
678 -micplb}
679
680 @emph{C6X Options}
681 @gccoptlist{-mbig-endian -mlittle-endian -march=@var{cpu} @gol
682 -msim -msdata=@var{sdata-type}}
683
684 @emph{CRIS Options}
685 @gccoptlist{-mcpu=@var{cpu} -march=@var{cpu} -mtune=@var{cpu} @gol
686 -mmax-stack-frame=@var{n} -melinux-stacksize=@var{n} @gol
687 -metrax4 -metrax100 -mpdebug -mcc-init -mno-side-effects @gol
688 -mstack-align -mdata-align -mconst-align @gol
689 -m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt @gol
690 -melf -maout -melinux -mlinux -sim -sim2 @gol
691 -mmul-bug-workaround -mno-mul-bug-workaround}
692
693 @emph{CR16 Options}
694 @gccoptlist{-mmac @gol
695 -mcr16cplus -mcr16c @gol
696 -msim -mint32 -mbit-ops
697 -mdata-model=@var{model}}
698
699 @emph{Darwin Options}
700 @gccoptlist{-all_load -allowable_client -arch -arch_errors_fatal @gol
701 -arch_only -bind_at_load -bundle -bundle_loader @gol
702 -client_name -compatibility_version -current_version @gol
703 -dead_strip @gol
704 -dependency-file -dylib_file -dylinker_install_name @gol
705 -dynamic -dynamiclib -exported_symbols_list @gol
706 -filelist -flat_namespace -force_cpusubtype_ALL @gol
707 -force_flat_namespace -headerpad_max_install_names @gol
708 -iframework @gol
709 -image_base -init -install_name -keep_private_externs @gol
710 -multi_module -multiply_defined -multiply_defined_unused @gol
711 -noall_load -no_dead_strip_inits_and_terms @gol
712 -nofixprebinding -nomultidefs -noprebind -noseglinkedit @gol
713 -pagezero_size -prebind -prebind_all_twolevel_modules @gol
714 -private_bundle -read_only_relocs -sectalign @gol
715 -sectobjectsymbols -whyload -seg1addr @gol
716 -sectcreate -sectobjectsymbols -sectorder @gol
717 -segaddr -segs_read_only_addr -segs_read_write_addr @gol
718 -seg_addr_table -seg_addr_table_filename -seglinkedit @gol
719 -segprot -segs_read_only_addr -segs_read_write_addr @gol
720 -single_module -static -sub_library -sub_umbrella @gol
721 -twolevel_namespace -umbrella -undefined @gol
722 -unexported_symbols_list -weak_reference_mismatches @gol
723 -whatsloaded -F -gused -gfull -mmacosx-version-min=@var{version} @gol
724 -mkernel -mone-byte-bool}
725
726 @emph{DEC Alpha Options}
727 @gccoptlist{-mno-fp-regs -msoft-float @gol
728 -mieee -mieee-with-inexact -mieee-conformant @gol
729 -mfp-trap-mode=@var{mode} -mfp-rounding-mode=@var{mode} @gol
730 -mtrap-precision=@var{mode} -mbuild-constants @gol
731 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} @gol
732 -mbwx -mmax -mfix -mcix @gol
733 -mfloat-vax -mfloat-ieee @gol
734 -mexplicit-relocs -msmall-data -mlarge-data @gol
735 -msmall-text -mlarge-text @gol
736 -mmemory-latency=@var{time}}
737
738 @emph{FR30 Options}
739 @gccoptlist{-msmall-model -mno-lsim}
740
741 @emph{FT32 Options}
742 @gccoptlist{-msim -mlra -mnodiv}
743
744 @emph{FRV Options}
745 @gccoptlist{-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64 @gol
746 -mhard-float -msoft-float @gol
747 -malloc-cc -mfixed-cc -mdword -mno-dword @gol
748 -mdouble -mno-double @gol
749 -mmedia -mno-media -mmuladd -mno-muladd @gol
750 -mfdpic -minline-plt -mgprel-ro -multilib-library-pic @gol
751 -mlinked-fp -mlong-calls -malign-labels @gol
752 -mlibrary-pic -macc-4 -macc-8 @gol
753 -mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move @gol
754 -moptimize-membar -mno-optimize-membar @gol
755 -mscc -mno-scc -mcond-exec -mno-cond-exec @gol
756 -mvliw-branch -mno-vliw-branch @gol
757 -mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec @gol
758 -mno-nested-cond-exec -mtomcat-stats @gol
759 -mTLS -mtls @gol
760 -mcpu=@var{cpu}}
761
762 @emph{GNU/Linux Options}
763 @gccoptlist{-mglibc -muclibc -mmusl -mbionic -mandroid @gol
764 -tno-android-cc -tno-android-ld}
765
766 @emph{H8/300 Options}
767 @gccoptlist{-mrelax -mh -ms -mn -mexr -mno-exr -mint32 -malign-300}
768
769 @emph{HPPA Options}
770 @gccoptlist{-march=@var{architecture-type} @gol
771 -mcaller-copies -mdisable-fpregs -mdisable-indexing @gol
772 -mfast-indirect-calls -mgas -mgnu-ld -mhp-ld @gol
773 -mfixed-range=@var{register-range} @gol
774 -mjump-in-delay -mlinker-opt -mlong-calls @gol
775 -mlong-load-store -mno-disable-fpregs @gol
776 -mno-disable-indexing -mno-fast-indirect-calls -mno-gas @gol
777 -mno-jump-in-delay -mno-long-load-store @gol
778 -mno-portable-runtime -mno-soft-float @gol
779 -mno-space-regs -msoft-float -mpa-risc-1-0 @gol
780 -mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime @gol
781 -mschedule=@var{cpu-type} -mspace-regs -msio -mwsio @gol
782 -munix=@var{unix-std} -nolibdld -static -threads}
783
784 @emph{IA-64 Options}
785 @gccoptlist{-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic @gol
786 -mvolatile-asm-stop -mregister-names -msdata -mno-sdata @gol
787 -mconstant-gp -mauto-pic -mfused-madd @gol
788 -minline-float-divide-min-latency @gol
789 -minline-float-divide-max-throughput @gol
790 -mno-inline-float-divide @gol
791 -minline-int-divide-min-latency @gol
792 -minline-int-divide-max-throughput @gol
793 -mno-inline-int-divide @gol
794 -minline-sqrt-min-latency -minline-sqrt-max-throughput @gol
795 -mno-inline-sqrt @gol
796 -mdwarf2-asm -mearly-stop-bits @gol
797 -mfixed-range=@var{register-range} -mtls-size=@var{tls-size} @gol
798 -mtune=@var{cpu-type} -milp32 -mlp64 @gol
799 -msched-br-data-spec -msched-ar-data-spec -msched-control-spec @gol
800 -msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec @gol
801 -msched-spec-ldc -msched-spec-control-ldc @gol
802 -msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns @gol
803 -msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path @gol
804 -msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost @gol
805 -msched-max-memory-insns-hard-limit -msched-max-memory-insns=@var{max-insns}}
806
807 @emph{LM32 Options}
808 @gccoptlist{-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled @gol
809 -msign-extend-enabled -muser-enabled}
810
811 @emph{M32R/D Options}
812 @gccoptlist{-m32r2 -m32rx -m32r @gol
813 -mdebug @gol
814 -malign-loops -mno-align-loops @gol
815 -missue-rate=@var{number} @gol
816 -mbranch-cost=@var{number} @gol
817 -mmodel=@var{code-size-model-type} @gol
818 -msdata=@var{sdata-type} @gol
819 -mno-flush-func -mflush-func=@var{name} @gol
820 -mno-flush-trap -mflush-trap=@var{number} @gol
821 -G @var{num}}
822
823 @emph{M32C Options}
824 @gccoptlist{-mcpu=@var{cpu} -msim -memregs=@var{number}}
825
826 @emph{M680x0 Options}
827 @gccoptlist{-march=@var{arch} -mcpu=@var{cpu} -mtune=@var{tune} @gol
828 -m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040 @gol
829 -m68060 -mcpu32 -m5200 -m5206e -m528x -m5307 -m5407 @gol
830 -mcfv4e -mbitfield -mno-bitfield -mc68000 -mc68020 @gol
831 -mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort @gol
832 -mno-short -mhard-float -m68881 -msoft-float -mpcrel @gol
833 -malign-int -mstrict-align -msep-data -mno-sep-data @gol
834 -mshared-library-id=n -mid-shared-library -mno-id-shared-library @gol
835 -mxgot -mno-xgot -mlong-jump-table-offsets}
836
837 @emph{MCore Options}
838 @gccoptlist{-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates @gol
839 -mno-relax-immediates -mwide-bitfields -mno-wide-bitfields @gol
840 -m4byte-functions -mno-4byte-functions -mcallgraph-data @gol
841 -mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim @gol
842 -mlittle-endian -mbig-endian -m210 -m340 -mstack-increment}
843
844 @emph{MeP Options}
845 @gccoptlist{-mabsdiff -mall-opts -maverage -mbased=@var{n} -mbitops @gol
846 -mc=@var{n} -mclip -mconfig=@var{name} -mcop -mcop32 -mcop64 -mivc2 @gol
847 -mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax @gol
848 -mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf @gol
849 -mtiny=@var{n}}
850
851 @emph{MicroBlaze Options}
852 @gccoptlist{-msoft-float -mhard-float -msmall-divides -mcpu=@var{cpu} @gol
853 -mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift @gol
854 -mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss @gol
855 -mxl-multiply-high -mxl-float-convert -mxl-float-sqrt @gol
856 -mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-@var{app-model}}
857
858 @emph{MIPS Options}
859 @gccoptlist{-EL -EB -march=@var{arch} -mtune=@var{arch} @gol
860 -mips1 -mips2 -mips3 -mips4 -mips32 -mips32r2 -mips32r3 -mips32r5 @gol
861 -mips32r6 -mips64 -mips64r2 -mips64r3 -mips64r5 -mips64r6 @gol
862 -mips16 -mno-mips16 -mflip-mips16 @gol
863 -minterlink-compressed -mno-interlink-compressed @gol
864 -minterlink-mips16 -mno-interlink-mips16 @gol
865 -mabi=@var{abi} -mabicalls -mno-abicalls @gol
866 -mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot @gol
867 -mgp32 -mgp64 -mfp32 -mfpxx -mfp64 -mhard-float -msoft-float @gol
868 -mno-float -msingle-float -mdouble-float @gol
869 -modd-spreg -mno-odd-spreg @gol
870 -mabs=@var{mode} -mnan=@var{encoding} @gol
871 -mdsp -mno-dsp -mdspr2 -mno-dspr2 @gol
872 -mmcu -mmno-mcu @gol
873 -meva -mno-eva @gol
874 -mvirt -mno-virt @gol
875 -mxpa -mno-xpa @gol
876 -mmicromips -mno-micromips @gol
877 -mmsa -mno-msa @gol
878 -mfpu=@var{fpu-type} @gol
879 -msmartmips -mno-smartmips @gol
880 -mpaired-single -mno-paired-single -mdmx -mno-mdmx @gol
881 -mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc @gol
882 -mlong64 -mlong32 -msym32 -mno-sym32 @gol
883 -G@var{num} -mlocal-sdata -mno-local-sdata @gol
884 -mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt @gol
885 -membedded-data -mno-embedded-data @gol
886 -muninit-const-in-rodata -mno-uninit-const-in-rodata @gol
887 -mcode-readable=@var{setting} @gol
888 -msplit-addresses -mno-split-addresses @gol
889 -mexplicit-relocs -mno-explicit-relocs @gol
890 -mcheck-zero-division -mno-check-zero-division @gol
891 -mdivide-traps -mdivide-breaks @gol
892 -mload-store-pairs -mno-load-store-pairs @gol
893 -mmemcpy -mno-memcpy -mlong-calls -mno-long-calls @gol
894 -mmad -mno-mad -mimadd -mno-imadd -mfused-madd -mno-fused-madd -nocpp @gol
895 -mfix-24k -mno-fix-24k @gol
896 -mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400 @gol
897 -mfix-r10000 -mno-fix-r10000 -mfix-rm7000 -mno-fix-rm7000 @gol
898 -mfix-vr4120 -mno-fix-vr4120 @gol
899 -mfix-vr4130 -mno-fix-vr4130 -mfix-sb1 -mno-fix-sb1 @gol
900 -mflush-func=@var{func} -mno-flush-func @gol
901 -mbranch-cost=@var{num} -mbranch-likely -mno-branch-likely @gol
902 -mcompact-branches=@var{policy} @gol
903 -mfp-exceptions -mno-fp-exceptions @gol
904 -mvr4130-align -mno-vr4130-align -msynci -mno-synci @gol
905 -mlxc1-sxc1 -mno-lxc1-sxc1 -mmadd4 -mno-madd4 @gol
906 -mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address @gol
907 -mframe-header-opt -mno-frame-header-opt}
908
909 @emph{MMIX Options}
910 @gccoptlist{-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu @gol
911 -mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols @gol
912 -melf -mbranch-predict -mno-branch-predict -mbase-addresses @gol
913 -mno-base-addresses -msingle-exit -mno-single-exit}
914
915 @emph{MN10300 Options}
916 @gccoptlist{-mmult-bug -mno-mult-bug @gol
917 -mno-am33 -mam33 -mam33-2 -mam34 @gol
918 -mtune=@var{cpu-type} @gol
919 -mreturn-pointer-on-d0 @gol
920 -mno-crt0 -mrelax -mliw -msetlb}
921
922 @emph{Moxie Options}
923 @gccoptlist{-meb -mel -mmul.x -mno-crt0}
924
925 @emph{MSP430 Options}
926 @gccoptlist{-msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax @gol
927 -mwarn-mcu @gol
928 -mcode-region= -mdata-region= @gol
929 -msilicon-errata= -msilicon-errata-warn= @gol
930 -mhwmult= -minrt}
931
932 @emph{NDS32 Options}
933 @gccoptlist{-mbig-endian -mlittle-endian @gol
934 -mreduced-regs -mfull-regs @gol
935 -mcmov -mno-cmov @gol
936 -mperf-ext -mno-perf-ext @gol
937 -mv3push -mno-v3push @gol
938 -m16bit -mno-16bit @gol
939 -misr-vector-size=@var{num} @gol
940 -mcache-block-size=@var{num} @gol
941 -march=@var{arch} @gol
942 -mcmodel=@var{code-model} @gol
943 -mctor-dtor -mrelax}
944
945 @emph{Nios II Options}
946 @gccoptlist{-G @var{num} -mgpopt=@var{option} -mgpopt -mno-gpopt @gol
947 -mel -meb @gol
948 -mno-bypass-cache -mbypass-cache @gol
949 -mno-cache-volatile -mcache-volatile @gol
950 -mno-fast-sw-div -mfast-sw-div @gol
951 -mhw-mul -mno-hw-mul -mhw-mulx -mno-hw-mulx -mno-hw-div -mhw-div @gol
952 -mcustom-@var{insn}=@var{N} -mno-custom-@var{insn} @gol
953 -mcustom-fpu-cfg=@var{name} @gol
954 -mhal -msmallc -msys-crt0=@var{name} -msys-lib=@var{name} @gol
955 -march=@var{arch} -mbmx -mno-bmx -mcdx -mno-cdx}
956
957 @emph{Nvidia PTX Options}
958 @gccoptlist{-m32 -m64 -mmainkernel -moptimize}
959
960 @emph{PDP-11 Options}
961 @gccoptlist{-mfpu -msoft-float -mac0 -mno-ac0 -m40 -m45 -m10 @gol
962 -mbcopy -mbcopy-builtin -mint32 -mno-int16 @gol
963 -mint16 -mno-int32 -mfloat32 -mno-float64 @gol
964 -mfloat64 -mno-float32 -mabshi -mno-abshi @gol
965 -mbranch-expensive -mbranch-cheap @gol
966 -munix-asm -mdec-asm}
967
968 @emph{picoChip Options}
969 @gccoptlist{-mae=@var{ae_type} -mvliw-lookahead=@var{N} @gol
970 -msymbol-as-address -mno-inefficient-warnings}
971
972 @emph{PowerPC Options}
973 See RS/6000 and PowerPC Options.
974
975 @emph{RISC-V Options}
976 @gccoptlist{-mbranch-cost=@var{N-instruction} @gol
977 -mmemcpy -mno-memcpy @gol
978 -mplt -mno-plt @gol
979 -mabi=@var{ABI-string} @gol
980 -mfdiv -mno-fdiv @gol
981 -mdiv -mno-div @gol
982 -march=@var{ISA-string} @gol
983 -mtune=@var{processor-string} @gol
984 -msmall-data-limit=@var{N-bytes} @gol
985 -msave-restore -mno-save-restore @gol
986 -mstrict-align -mno-strict-align @gol
987 -mcmodel=@var{code-model} @gol
988 -mexplicit-relocs -mno-explicit-relocs @gol}
989
990 @emph{RL78 Options}
991 @gccoptlist{-msim -mmul=none -mmul=g13 -mmul=g14 -mallregs @gol
992 -mcpu=g10 -mcpu=g13 -mcpu=g14 -mg10 -mg13 -mg14 @gol
993 -m64bit-doubles -m32bit-doubles -msave-mduc-in-interrupts}
994
995 @emph{RS/6000 and PowerPC Options}
996 @gccoptlist{-mcpu=@var{cpu-type} @gol
997 -mtune=@var{cpu-type} @gol
998 -mcmodel=@var{code-model} @gol
999 -mpowerpc64 @gol
1000 -maltivec -mno-altivec @gol
1001 -mpowerpc-gpopt -mno-powerpc-gpopt @gol
1002 -mpowerpc-gfxopt -mno-powerpc-gfxopt @gol
1003 -mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mpopcntd -mno-popcntd @gol
1004 -mfprnd -mno-fprnd @gol
1005 -mcmpb -mno-cmpb -mmfpgpr -mno-mfpgpr -mhard-dfp -mno-hard-dfp @gol
1006 -mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc @gol
1007 -m64 -m32 -mxl-compat -mno-xl-compat -mpe @gol
1008 -malign-power -malign-natural @gol
1009 -msoft-float -mhard-float -mmultiple -mno-multiple @gol
1010 -msingle-float -mdouble-float -msimple-fpu @gol
1011 -mstring -mno-string -mupdate -mno-update @gol
1012 -mavoid-indexed-addresses -mno-avoid-indexed-addresses @gol
1013 -mfused-madd -mno-fused-madd -mbit-align -mno-bit-align @gol
1014 -mstrict-align -mno-strict-align -mrelocatable @gol
1015 -mno-relocatable -mrelocatable-lib -mno-relocatable-lib @gol
1016 -mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian @gol
1017 -mdynamic-no-pic -maltivec -mswdiv -msingle-pic-base @gol
1018 -mprioritize-restricted-insns=@var{priority} @gol
1019 -msched-costly-dep=@var{dependence_type} @gol
1020 -minsert-sched-nops=@var{scheme} @gol
1021 -mcall-sysv -mcall-netbsd @gol
1022 -maix-struct-return -msvr4-struct-return @gol
1023 -mabi=@var{abi-type} -msecure-plt -mbss-plt @gol
1024 -mblock-move-inline-limit=@var{num} @gol
1025 -misel -mno-isel @gol
1026 -misel=yes -misel=no @gol
1027 -mspe -mno-spe @gol
1028 -mspe=yes -mspe=no @gol
1029 -mpaired @gol
1030 -mvrsave -mno-vrsave @gol
1031 -mmulhw -mno-mulhw @gol
1032 -mdlmzb -mno-dlmzb @gol
1033 -mfloat-gprs=yes -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double @gol
1034 -mprototype -mno-prototype @gol
1035 -msim -mmvme -mads -myellowknife -memb -msdata @gol
1036 -msdata=@var{opt} -mvxworks -G @var{num} @gol
1037 -mrecip -mrecip=@var{opt} -mno-recip -mrecip-precision @gol
1038 -mno-recip-precision @gol
1039 -mveclibabi=@var{type} -mfriz -mno-friz @gol
1040 -mpointers-to-nested-functions -mno-pointers-to-nested-functions @gol
1041 -msave-toc-indirect -mno-save-toc-indirect @gol
1042 -mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector @gol
1043 -mcrypto -mno-crypto -mhtm -mno-htm -mdirect-move -mno-direct-move @gol
1044 -mquad-memory -mno-quad-memory @gol
1045 -mquad-memory-atomic -mno-quad-memory-atomic @gol
1046 -mcompat-align-parm -mno-compat-align-parm @gol
1047 -mupper-regs-df -mno-upper-regs-df -mupper-regs-sf -mno-upper-regs-sf @gol
1048 -mupper-regs-di -mno-upper-regs-di @gol
1049 -mupper-regs -mno-upper-regs @gol
1050 -mfloat128 -mno-float128 -mfloat128-hardware -mno-float128-hardware @gol
1051 -mgnu-attribute -mno-gnu-attribute @gol
1052 -mstack-protector-guard=@var{guard} -mstack-protector-guard-reg=@var{reg} @gol
1053 -mstack-protector-guard-offset=@var{offset} @gol
1054 -mlra -mno-lra}
1055
1056 @emph{RX Options}
1057 @gccoptlist{-m64bit-doubles -m32bit-doubles -fpu -nofpu@gol
1058 -mcpu=@gol
1059 -mbig-endian-data -mlittle-endian-data @gol
1060 -msmall-data @gol
1061 -msim -mno-sim@gol
1062 -mas100-syntax -mno-as100-syntax@gol
1063 -mrelax@gol
1064 -mmax-constant-size=@gol
1065 -mint-register=@gol
1066 -mpid@gol
1067 -mallow-string-insns -mno-allow-string-insns@gol
1068 -mjsr@gol
1069 -mno-warn-multiple-fast-interrupts@gol
1070 -msave-acc-in-interrupts}
1071
1072 @emph{S/390 and zSeries Options}
1073 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
1074 -mhard-float -msoft-float -mhard-dfp -mno-hard-dfp @gol
1075 -mlong-double-64 -mlong-double-128 @gol
1076 -mbackchain -mno-backchain -mpacked-stack -mno-packed-stack @gol
1077 -msmall-exec -mno-small-exec -mmvcle -mno-mvcle @gol
1078 -m64 -m31 -mdebug -mno-debug -mesa -mzarch @gol
1079 -mhtm -mvx -mzvector @gol
1080 -mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd @gol
1081 -mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard @gol
1082 -mhotpatch=@var{halfwords},@var{halfwords}}
1083
1084 @emph{Score Options}
1085 @gccoptlist{-meb -mel @gol
1086 -mnhwloop @gol
1087 -muls @gol
1088 -mmac @gol
1089 -mscore5 -mscore5u -mscore7 -mscore7d}
1090
1091 @emph{SH Options}
1092 @gccoptlist{-m1 -m2 -m2e @gol
1093 -m2a-nofpu -m2a-single-only -m2a-single -m2a @gol
1094 -m3 -m3e @gol
1095 -m4-nofpu -m4-single-only -m4-single -m4 @gol
1096 -m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al @gol
1097 -mb -ml -mdalign -mrelax @gol
1098 -mbigtable -mfmovd -mrenesas -mno-renesas -mnomacsave @gol
1099 -mieee -mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct @gol
1100 -mprefergot -musermode -multcost=@var{number} -mdiv=@var{strategy} @gol
1101 -mdivsi3_libfunc=@var{name} -mfixed-range=@var{register-range} @gol
1102 -maccumulate-outgoing-args @gol
1103 -matomic-model=@var{atomic-model} @gol
1104 -mbranch-cost=@var{num} -mzdcbranch -mno-zdcbranch @gol
1105 -mcbranch-force-delay-slot @gol
1106 -mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra @gol
1107 -mpretend-cmove -mtas}
1108
1109 @emph{Solaris 2 Options}
1110 @gccoptlist{-mclear-hwcap -mno-clear-hwcap -mimpure-text -mno-impure-text @gol
1111 -pthreads}
1112
1113 @emph{SPARC Options}
1114 @gccoptlist{-mcpu=@var{cpu-type} @gol
1115 -mtune=@var{cpu-type} @gol
1116 -mcmodel=@var{code-model} @gol
1117 -mmemory-model=@var{mem-model} @gol
1118 -m32 -m64 -mapp-regs -mno-app-regs @gol
1119 -mfaster-structs -mno-faster-structs -mflat -mno-flat @gol
1120 -mfpu -mno-fpu -mhard-float -msoft-float @gol
1121 -mhard-quad-float -msoft-quad-float @gol
1122 -mstack-bias -mno-stack-bias @gol
1123 -mstd-struct-return -mno-std-struct-return @gol
1124 -munaligned-doubles -mno-unaligned-doubles @gol
1125 -muser-mode -mno-user-mode @gol
1126 -mv8plus -mno-v8plus -mvis -mno-vis @gol
1127 -mvis2 -mno-vis2 -mvis3 -mno-vis3 @gol
1128 -mcbcond -mno-cbcond -mfmaf -mno-fmaf @gol
1129 -mpopc -mno-popc -msubxc -mno-subxc@gol
1130 -mfix-at697f -mfix-ut699 @gol
1131 -mlra -mno-lra}
1132
1133 @emph{SPU Options}
1134 @gccoptlist{-mwarn-reloc -merror-reloc @gol
1135 -msafe-dma -munsafe-dma @gol
1136 -mbranch-hints @gol
1137 -msmall-mem -mlarge-mem -mstdmain @gol
1138 -mfixed-range=@var{register-range} @gol
1139 -mea32 -mea64 @gol
1140 -maddress-space-conversion -mno-address-space-conversion @gol
1141 -mcache-size=@var{cache-size} @gol
1142 -matomic-updates -mno-atomic-updates}
1143
1144 @emph{System V Options}
1145 @gccoptlist{-Qy -Qn -YP,@var{paths} -Ym,@var{dir}}
1146
1147 @emph{TILE-Gx Options}
1148 @gccoptlist{-mcpu=CPU -m32 -m64 -mbig-endian -mlittle-endian @gol
1149 -mcmodel=@var{code-model}}
1150
1151 @emph{TILEPro Options}
1152 @gccoptlist{-mcpu=@var{cpu} -m32}
1153
1154 @emph{V850 Options}
1155 @gccoptlist{-mlong-calls -mno-long-calls -mep -mno-ep @gol
1156 -mprolog-function -mno-prolog-function -mspace @gol
1157 -mtda=@var{n} -msda=@var{n} -mzda=@var{n} @gol
1158 -mapp-regs -mno-app-regs @gol
1159 -mdisable-callt -mno-disable-callt @gol
1160 -mv850e2v3 -mv850e2 -mv850e1 -mv850es @gol
1161 -mv850e -mv850 -mv850e3v5 @gol
1162 -mloop @gol
1163 -mrelax @gol
1164 -mlong-jumps @gol
1165 -msoft-float @gol
1166 -mhard-float @gol
1167 -mgcc-abi @gol
1168 -mrh850-abi @gol
1169 -mbig-switch}
1170
1171 @emph{VAX Options}
1172 @gccoptlist{-mg -mgnu -munix}
1173
1174 @emph{Visium Options}
1175 @gccoptlist{-mdebug -msim -mfpu -mno-fpu -mhard-float -msoft-float @gol
1176 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} -msv-mode -muser-mode}
1177
1178 @emph{VMS Options}
1179 @gccoptlist{-mvms-return-codes -mdebug-main=@var{prefix} -mmalloc64 @gol
1180 -mpointer-size=@var{size}}
1181
1182 @emph{VxWorks Options}
1183 @gccoptlist{-mrtp -non-static -Bstatic -Bdynamic @gol
1184 -Xbind-lazy -Xbind-now}
1185
1186 @emph{x86 Options}
1187 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
1188 -mtune-ctrl=@var{feature-list} -mdump-tune-features -mno-default @gol
1189 -mfpmath=@var{unit} @gol
1190 -masm=@var{dialect} -mno-fancy-math-387 @gol
1191 -mno-fp-ret-in-387 -m80387 -mhard-float -msoft-float @gol
1192 -mno-wide-multiply -mrtd -malign-double @gol
1193 -mpreferred-stack-boundary=@var{num} @gol
1194 -mincoming-stack-boundary=@var{num} @gol
1195 -mcld -mcx16 -msahf -mmovbe -mcrc32 @gol
1196 -mrecip -mrecip=@var{opt} @gol
1197 -mvzeroupper -mprefer-avx128 @gol
1198 -mmmx -msse -msse2 -msse3 -mssse3 -msse4.1 -msse4.2 -msse4 -mavx @gol
1199 -mavx2 -mavx512f -mavx512pf -mavx512er -mavx512cd -mavx512vl @gol
1200 -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi -msha -maes @gol
1201 -mpclmul -mfsgsbase -mrdrnd -mf16c -mfma @gol
1202 -mprefetchwt1 -mclflushopt -mxsavec -mxsaves @gol
1203 -msse4a -m3dnow -m3dnowa -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop @gol
1204 -mlzcnt -mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm -mlwp -mmpx @gol
1205 -mmwaitx -mclzero -mpku -mthreads @gol
1206 -mms-bitfields -mno-align-stringops -minline-all-stringops @gol
1207 -minline-stringops-dynamically -mstringop-strategy=@var{alg} @gol
1208 -mmemcpy-strategy=@var{strategy} -mmemset-strategy=@var{strategy} @gol
1209 -mpush-args -maccumulate-outgoing-args -m128bit-long-double @gol
1210 -m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128 @gol
1211 -mregparm=@var{num} -msseregparm @gol
1212 -mveclibabi=@var{type} -mvect8-ret-in-mem @gol
1213 -mpc32 -mpc64 -mpc80 -mstackrealign @gol
1214 -momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs @gol
1215 -mcmodel=@var{code-model} -mabi=@var{name} -maddress-mode=@var{mode} @gol
1216 -m32 -m64 -mx32 -m16 -miamcu -mlarge-data-threshold=@var{num} @gol
1217 -msse2avx -mfentry -mrecord-mcount -mnop-mcount -m8bit-idiv @gol
1218 -mavx256-split-unaligned-load -mavx256-split-unaligned-store @gol
1219 -malign-data=@var{type} -mstack-protector-guard=@var{guard} @gol
1220 -mmitigate-rop -mgeneral-regs-only -mcall-ms2sysv-xlogues}
1221
1222 @emph{x86 Windows Options}
1223 @gccoptlist{-mconsole -mcygwin -mno-cygwin -mdll @gol
1224 -mnop-fun-dllimport -mthread @gol
1225 -municode -mwin32 -mwindows -fno-set-stack-executable}
1226
1227 @emph{Xstormy16 Options}
1228 @gccoptlist{-msim}
1229
1230 @emph{Xtensa Options}
1231 @gccoptlist{-mconst16 -mno-const16 @gol
1232 -mfused-madd -mno-fused-madd @gol
1233 -mforce-no-pic @gol
1234 -mserialize-volatile -mno-serialize-volatile @gol
1235 -mtext-section-literals -mno-text-section-literals @gol
1236 -mauto-litpools -mno-auto-litpools @gol
1237 -mtarget-align -mno-target-align @gol
1238 -mlongcalls -mno-longcalls}
1239
1240 @emph{zSeries Options}
1241 See S/390 and zSeries Options.
1242 @end table
1243
1244
1245 @node Overall Options
1246 @section Options Controlling the Kind of Output
1247
1248 Compilation can involve up to four stages: preprocessing, compilation
1249 proper, assembly and linking, always in that order. GCC is capable of
1250 preprocessing and compiling several files either into several
1251 assembler input files, or into one assembler input file; then each
1252 assembler input file produces an object file, and linking combines all
1253 the object files (those newly compiled, and those specified as input)
1254 into an executable file.
1255
1256 @cindex file name suffix
1257 For any given input file, the file name suffix determines what kind of
1258 compilation is done:
1259
1260 @table @gcctabopt
1261 @item @var{file}.c
1262 C source code that must be preprocessed.
1263
1264 @item @var{file}.i
1265 C source code that should not be preprocessed.
1266
1267 @item @var{file}.ii
1268 C++ source code that should not be preprocessed.
1269
1270 @item @var{file}.m
1271 Objective-C source code. Note that you must link with the @file{libobjc}
1272 library to make an Objective-C program work.
1273
1274 @item @var{file}.mi
1275 Objective-C source code that should not be preprocessed.
1276
1277 @item @var{file}.mm
1278 @itemx @var{file}.M
1279 Objective-C++ source code. Note that you must link with the @file{libobjc}
1280 library to make an Objective-C++ program work. Note that @samp{.M} refers
1281 to a literal capital M@.
1282
1283 @item @var{file}.mii
1284 Objective-C++ source code that should not be preprocessed.
1285
1286 @item @var{file}.h
1287 C, C++, Objective-C or Objective-C++ header file to be turned into a
1288 precompiled header (default), or C, C++ header file to be turned into an
1289 Ada spec (via the @option{-fdump-ada-spec} switch).
1290
1291 @item @var{file}.cc
1292 @itemx @var{file}.cp
1293 @itemx @var{file}.cxx
1294 @itemx @var{file}.cpp
1295 @itemx @var{file}.CPP
1296 @itemx @var{file}.c++
1297 @itemx @var{file}.C
1298 C++ source code that must be preprocessed. Note that in @samp{.cxx},
1299 the last two letters must both be literally @samp{x}. Likewise,
1300 @samp{.C} refers to a literal capital C@.
1301
1302 @item @var{file}.mm
1303 @itemx @var{file}.M
1304 Objective-C++ source code that must be preprocessed.
1305
1306 @item @var{file}.mii
1307 Objective-C++ source code that should not be preprocessed.
1308
1309 @item @var{file}.hh
1310 @itemx @var{file}.H
1311 @itemx @var{file}.hp
1312 @itemx @var{file}.hxx
1313 @itemx @var{file}.hpp
1314 @itemx @var{file}.HPP
1315 @itemx @var{file}.h++
1316 @itemx @var{file}.tcc
1317 C++ header file to be turned into a precompiled header or Ada spec.
1318
1319 @item @var{file}.f
1320 @itemx @var{file}.for
1321 @itemx @var{file}.ftn
1322 Fixed form Fortran source code that should not be preprocessed.
1323
1324 @item @var{file}.F
1325 @itemx @var{file}.FOR
1326 @itemx @var{file}.fpp
1327 @itemx @var{file}.FPP
1328 @itemx @var{file}.FTN
1329 Fixed form Fortran source code that must be preprocessed (with the traditional
1330 preprocessor).
1331
1332 @item @var{file}.f90
1333 @itemx @var{file}.f95
1334 @itemx @var{file}.f03
1335 @itemx @var{file}.f08
1336 Free form Fortran source code that should not be preprocessed.
1337
1338 @item @var{file}.F90
1339 @itemx @var{file}.F95
1340 @itemx @var{file}.F03
1341 @itemx @var{file}.F08
1342 Free form Fortran source code that must be preprocessed (with the
1343 traditional preprocessor).
1344
1345 @item @var{file}.go
1346 Go source code.
1347
1348 @item @var{file}.brig
1349 BRIG files (binary representation of HSAIL).
1350
1351 @item @var{file}.ads
1352 Ada source code file that contains a library unit declaration (a
1353 declaration of a package, subprogram, or generic, or a generic
1354 instantiation), or a library unit renaming declaration (a package,
1355 generic, or subprogram renaming declaration). Such files are also
1356 called @dfn{specs}.
1357
1358 @item @var{file}.adb
1359 Ada source code file containing a library unit body (a subprogram or
1360 package body). Such files are also called @dfn{bodies}.
1361
1362 @c GCC also knows about some suffixes for languages not yet included:
1363 @c Pascal:
1364 @c @var{file}.p
1365 @c @var{file}.pas
1366 @c Ratfor:
1367 @c @var{file}.r
1368
1369 @item @var{file}.s
1370 Assembler code.
1371
1372 @item @var{file}.S
1373 @itemx @var{file}.sx
1374 Assembler code that must be preprocessed.
1375
1376 @item @var{other}
1377 An object file to be fed straight into linking.
1378 Any file name with no recognized suffix is treated this way.
1379 @end table
1380
1381 @opindex x
1382 You can specify the input language explicitly with the @option{-x} option:
1383
1384 @table @gcctabopt
1385 @item -x @var{language}
1386 Specify explicitly the @var{language} for the following input files
1387 (rather than letting the compiler choose a default based on the file
1388 name suffix). This option applies to all following input files until
1389 the next @option{-x} option. Possible values for @var{language} are:
1390 @smallexample
1391 c c-header cpp-output
1392 c++ c++-header c++-cpp-output
1393 objective-c objective-c-header objective-c-cpp-output
1394 objective-c++ objective-c++-header objective-c++-cpp-output
1395 assembler assembler-with-cpp
1396 ada
1397 f77 f77-cpp-input f95 f95-cpp-input
1398 go
1399 brig
1400 @end smallexample
1401
1402 @item -x none
1403 Turn off any specification of a language, so that subsequent files are
1404 handled according to their file name suffixes (as they are if @option{-x}
1405 has not been used at all).
1406 @end table
1407
1408 If you only want some of the stages of compilation, you can use
1409 @option{-x} (or filename suffixes) to tell @command{gcc} where to start, and
1410 one of the options @option{-c}, @option{-S}, or @option{-E} to say where
1411 @command{gcc} is to stop. Note that some combinations (for example,
1412 @samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all.
1413
1414 @table @gcctabopt
1415 @item -c
1416 @opindex c
1417 Compile or assemble the source files, but do not link. The linking
1418 stage simply is not done. The ultimate output is in the form of an
1419 object file for each source file.
1420
1421 By default, the object file name for a source file is made by replacing
1422 the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
1423
1424 Unrecognized input files, not requiring compilation or assembly, are
1425 ignored.
1426
1427 @item -S
1428 @opindex S
1429 Stop after the stage of compilation proper; do not assemble. The output
1430 is in the form of an assembler code file for each non-assembler input
1431 file specified.
1432
1433 By default, the assembler file name for a source file is made by
1434 replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
1435
1436 Input files that don't require compilation are ignored.
1437
1438 @item -E
1439 @opindex E
1440 Stop after the preprocessing stage; do not run the compiler proper. The
1441 output is in the form of preprocessed source code, which is sent to the
1442 standard output.
1443
1444 Input files that don't require preprocessing are ignored.
1445
1446 @cindex output file option
1447 @item -o @var{file}
1448 @opindex o
1449 Place output in file @var{file}. This applies to whatever
1450 sort of output is being produced, whether it be an executable file,
1451 an object file, an assembler file or preprocessed C code.
1452
1453 If @option{-o} is not specified, the default is to put an executable
1454 file in @file{a.out}, the object file for
1455 @file{@var{source}.@var{suffix}} in @file{@var{source}.o}, its
1456 assembler file in @file{@var{source}.s}, a precompiled header file in
1457 @file{@var{source}.@var{suffix}.gch}, and all preprocessed C source on
1458 standard output.
1459
1460 @item -v
1461 @opindex v
1462 Print (on standard error output) the commands executed to run the stages
1463 of compilation. Also print the version number of the compiler driver
1464 program and of the preprocessor and the compiler proper.
1465
1466 @item -###
1467 @opindex ###
1468 Like @option{-v} except the commands are not executed and arguments
1469 are quoted unless they contain only alphanumeric characters or @code{./-_}.
1470 This is useful for shell scripts to capture the driver-generated command lines.
1471
1472 @item --help
1473 @opindex help
1474 Print (on the standard output) a description of the command-line options
1475 understood by @command{gcc}. If the @option{-v} option is also specified
1476 then @option{--help} is also passed on to the various processes
1477 invoked by @command{gcc}, so that they can display the command-line options
1478 they accept. If the @option{-Wextra} option has also been specified
1479 (prior to the @option{--help} option), then command-line options that
1480 have no documentation associated with them are also displayed.
1481
1482 @item --target-help
1483 @opindex target-help
1484 Print (on the standard output) a description of target-specific command-line
1485 options for each tool. For some targets extra target-specific
1486 information may also be printed.
1487
1488 @item --help=@{@var{class}@r{|[}^@r{]}@var{qualifier}@}@r{[},@dots{}@r{]}
1489 Print (on the standard output) a description of the command-line
1490 options understood by the compiler that fit into all specified classes
1491 and qualifiers. These are the supported classes:
1492
1493 @table @asis
1494 @item @samp{optimizers}
1495 Display all of the optimization options supported by the
1496 compiler.
1497
1498 @item @samp{warnings}
1499 Display all of the options controlling warning messages
1500 produced by the compiler.
1501
1502 @item @samp{target}
1503 Display target-specific options. Unlike the
1504 @option{--target-help} option however, target-specific options of the
1505 linker and assembler are not displayed. This is because those
1506 tools do not currently support the extended @option{--help=} syntax.
1507
1508 @item @samp{params}
1509 Display the values recognized by the @option{--param}
1510 option.
1511
1512 @item @var{language}
1513 Display the options supported for @var{language}, where
1514 @var{language} is the name of one of the languages supported in this
1515 version of GCC@.
1516
1517 @item @samp{common}
1518 Display the options that are common to all languages.
1519 @end table
1520
1521 These are the supported qualifiers:
1522
1523 @table @asis
1524 @item @samp{undocumented}
1525 Display only those options that are undocumented.
1526
1527 @item @samp{joined}
1528 Display options taking an argument that appears after an equal
1529 sign in the same continuous piece of text, such as:
1530 @samp{--help=target}.
1531
1532 @item @samp{separate}
1533 Display options taking an argument that appears as a separate word
1534 following the original option, such as: @samp{-o output-file}.
1535 @end table
1536
1537 Thus for example to display all the undocumented target-specific
1538 switches supported by the compiler, use:
1539
1540 @smallexample
1541 --help=target,undocumented
1542 @end smallexample
1543
1544 The sense of a qualifier can be inverted by prefixing it with the
1545 @samp{^} character, so for example to display all binary warning
1546 options (i.e., ones that are either on or off and that do not take an
1547 argument) that have a description, use:
1548
1549 @smallexample
1550 --help=warnings,^joined,^undocumented
1551 @end smallexample
1552
1553 The argument to @option{--help=} should not consist solely of inverted
1554 qualifiers.
1555
1556 Combining several classes is possible, although this usually
1557 restricts the output so much that there is nothing to display. One
1558 case where it does work, however, is when one of the classes is
1559 @var{target}. For example, to display all the target-specific
1560 optimization options, use:
1561
1562 @smallexample
1563 --help=target,optimizers
1564 @end smallexample
1565
1566 The @option{--help=} option can be repeated on the command line. Each
1567 successive use displays its requested class of options, skipping
1568 those that have already been displayed.
1569
1570 If the @option{-Q} option appears on the command line before the
1571 @option{--help=} option, then the descriptive text displayed by
1572 @option{--help=} is changed. Instead of describing the displayed
1573 options, an indication is given as to whether the option is enabled,
1574 disabled or set to a specific value (assuming that the compiler
1575 knows this at the point where the @option{--help=} option is used).
1576
1577 Here is a truncated example from the ARM port of @command{gcc}:
1578
1579 @smallexample
1580 % gcc -Q -mabi=2 --help=target -c
1581 The following options are target specific:
1582 -mabi= 2
1583 -mabort-on-noreturn [disabled]
1584 -mapcs [disabled]
1585 @end smallexample
1586
1587 The output is sensitive to the effects of previous command-line
1588 options, so for example it is possible to find out which optimizations
1589 are enabled at @option{-O2} by using:
1590
1591 @smallexample
1592 -Q -O2 --help=optimizers
1593 @end smallexample
1594
1595 Alternatively you can discover which binary optimizations are enabled
1596 by @option{-O3} by using:
1597
1598 @smallexample
1599 gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
1600 gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
1601 diff /tmp/O2-opts /tmp/O3-opts | grep enabled
1602 @end smallexample
1603
1604 @item --version
1605 @opindex version
1606 Display the version number and copyrights of the invoked GCC@.
1607
1608 @item -pass-exit-codes
1609 @opindex pass-exit-codes
1610 Normally the @command{gcc} program exits with the code of 1 if any
1611 phase of the compiler returns a non-success return code. If you specify
1612 @option{-pass-exit-codes}, the @command{gcc} program instead returns with
1613 the numerically highest error produced by any phase returning an error
1614 indication. The C, C++, and Fortran front ends return 4 if an internal
1615 compiler error is encountered.
1616
1617 @item -pipe
1618 @opindex pipe
1619 Use pipes rather than temporary files for communication between the
1620 various stages of compilation. This fails to work on some systems where
1621 the assembler is unable to read from a pipe; but the GNU assembler has
1622 no trouble.
1623
1624 @item -specs=@var{file}
1625 @opindex specs
1626 Process @var{file} after the compiler reads in the standard @file{specs}
1627 file, in order to override the defaults which the @command{gcc} driver
1628 program uses when determining what switches to pass to @command{cc1},
1629 @command{cc1plus}, @command{as}, @command{ld}, etc. More than one
1630 @option{-specs=@var{file}} can be specified on the command line, and they
1631 are processed in order, from left to right. @xref{Spec Files}, for
1632 information about the format of the @var{file}.
1633
1634 @item -wrapper
1635 @opindex wrapper
1636 Invoke all subcommands under a wrapper program. The name of the
1637 wrapper program and its parameters are passed as a comma separated
1638 list.
1639
1640 @smallexample
1641 gcc -c t.c -wrapper gdb,--args
1642 @end smallexample
1643
1644 @noindent
1645 This invokes all subprograms of @command{gcc} under
1646 @samp{gdb --args}, thus the invocation of @command{cc1} is
1647 @samp{gdb --args cc1 @dots{}}.
1648
1649 @item -fplugin=@var{name}.so
1650 @opindex fplugin
1651 Load the plugin code in file @var{name}.so, assumed to be a
1652 shared object to be dlopen'd by the compiler. The base name of
1653 the shared object file is used to identify the plugin for the
1654 purposes of argument parsing (See
1655 @option{-fplugin-arg-@var{name}-@var{key}=@var{value}} below).
1656 Each plugin should define the callback functions specified in the
1657 Plugins API.
1658
1659 @item -fplugin-arg-@var{name}-@var{key}=@var{value}
1660 @opindex fplugin-arg
1661 Define an argument called @var{key} with a value of @var{value}
1662 for the plugin called @var{name}.
1663
1664 @item -fdump-ada-spec@r{[}-slim@r{]}
1665 @opindex fdump-ada-spec
1666 For C and C++ source and include files, generate corresponding Ada specs.
1667 @xref{Generating Ada Bindings for C and C++ headers,,, gnat_ugn,
1668 GNAT User's Guide}, which provides detailed documentation on this feature.
1669
1670 @item -fada-spec-parent=@var{unit}
1671 @opindex fada-spec-parent
1672 In conjunction with @option{-fdump-ada-spec@r{[}-slim@r{]}} above, generate
1673 Ada specs as child units of parent @var{unit}.
1674
1675 @item -fdump-go-spec=@var{file}
1676 @opindex fdump-go-spec
1677 For input files in any language, generate corresponding Go
1678 declarations in @var{file}. This generates Go @code{const},
1679 @code{type}, @code{var}, and @code{func} declarations which may be a
1680 useful way to start writing a Go interface to code written in some
1681 other language.
1682
1683 @include @value{srcdir}/../libiberty/at-file.texi
1684 @end table
1685
1686 @node Invoking G++
1687 @section Compiling C++ Programs
1688
1689 @cindex suffixes for C++ source
1690 @cindex C++ source file suffixes
1691 C++ source files conventionally use one of the suffixes @samp{.C},
1692 @samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or
1693 @samp{.cxx}; C++ header files often use @samp{.hh}, @samp{.hpp},
1694 @samp{.H}, or (for shared template code) @samp{.tcc}; and
1695 preprocessed C++ files use the suffix @samp{.ii}. GCC recognizes
1696 files with these names and compiles them as C++ programs even if you
1697 call the compiler the same way as for compiling C programs (usually
1698 with the name @command{gcc}).
1699
1700 @findex g++
1701 @findex c++
1702 However, the use of @command{gcc} does not add the C++ library.
1703 @command{g++} is a program that calls GCC and automatically specifies linking
1704 against the C++ library. It treats @samp{.c},
1705 @samp{.h} and @samp{.i} files as C++ source files instead of C source
1706 files unless @option{-x} is used. This program is also useful when
1707 precompiling a C header file with a @samp{.h} extension for use in C++
1708 compilations. On many systems, @command{g++} is also installed with
1709 the name @command{c++}.
1710
1711 @cindex invoking @command{g++}
1712 When you compile C++ programs, you may specify many of the same
1713 command-line options that you use for compiling programs in any
1714 language; or command-line options meaningful for C and related
1715 languages; or options that are meaningful only for C++ programs.
1716 @xref{C Dialect Options,,Options Controlling C Dialect}, for
1717 explanations of options for languages related to C@.
1718 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
1719 explanations of options that are meaningful only for C++ programs.
1720
1721 @node C Dialect Options
1722 @section Options Controlling C Dialect
1723 @cindex dialect options
1724 @cindex language dialect options
1725 @cindex options, dialect
1726
1727 The following options control the dialect of C (or languages derived
1728 from C, such as C++, Objective-C and Objective-C++) that the compiler
1729 accepts:
1730
1731 @table @gcctabopt
1732 @cindex ANSI support
1733 @cindex ISO support
1734 @item -ansi
1735 @opindex ansi
1736 In C mode, this is equivalent to @option{-std=c90}. In C++ mode, it is
1737 equivalent to @option{-std=c++98}.
1738
1739 This turns off certain features of GCC that are incompatible with ISO
1740 C90 (when compiling C code), or of standard C++ (when compiling C++ code),
1741 such as the @code{asm} and @code{typeof} keywords, and
1742 predefined macros such as @code{unix} and @code{vax} that identify the
1743 type of system you are using. It also enables the undesirable and
1744 rarely used ISO trigraph feature. For the C compiler,
1745 it disables recognition of C++ style @samp{//} comments as well as
1746 the @code{inline} keyword.
1747
1748 The alternate keywords @code{__asm__}, @code{__extension__},
1749 @code{__inline__} and @code{__typeof__} continue to work despite
1750 @option{-ansi}. You would not want to use them in an ISO C program, of
1751 course, but it is useful to put them in header files that might be included
1752 in compilations done with @option{-ansi}. Alternate predefined macros
1753 such as @code{__unix__} and @code{__vax__} are also available, with or
1754 without @option{-ansi}.
1755
1756 The @option{-ansi} option does not cause non-ISO programs to be
1757 rejected gratuitously. For that, @option{-Wpedantic} is required in
1758 addition to @option{-ansi}. @xref{Warning Options}.
1759
1760 The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi}
1761 option is used. Some header files may notice this macro and refrain
1762 from declaring certain functions or defining certain macros that the
1763 ISO standard doesn't call for; this is to avoid interfering with any
1764 programs that might use these names for other things.
1765
1766 Functions that are normally built in but do not have semantics
1767 defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in
1768 functions when @option{-ansi} is used. @xref{Other Builtins,,Other
1769 built-in functions provided by GCC}, for details of the functions
1770 affected.
1771
1772 @item -std=
1773 @opindex std
1774 Determine the language standard. @xref{Standards,,Language Standards
1775 Supported by GCC}, for details of these standard versions. This option
1776 is currently only supported when compiling C or C++.
1777
1778 The compiler can accept several base standards, such as @samp{c90} or
1779 @samp{c++98}, and GNU dialects of those standards, such as
1780 @samp{gnu90} or @samp{gnu++98}. When a base standard is specified, the
1781 compiler accepts all programs following that standard plus those
1782 using GNU extensions that do not contradict it. For example,
1783 @option{-std=c90} turns off certain features of GCC that are
1784 incompatible with ISO C90, such as the @code{asm} and @code{typeof}
1785 keywords, but not other GNU extensions that do not have a meaning in
1786 ISO C90, such as omitting the middle term of a @code{?:}
1787 expression. On the other hand, when a GNU dialect of a standard is
1788 specified, all features supported by the compiler are enabled, even when
1789 those features change the meaning of the base standard. As a result, some
1790 strict-conforming programs may be rejected. The particular standard
1791 is used by @option{-Wpedantic} to identify which features are GNU
1792 extensions given that version of the standard. For example
1793 @option{-std=gnu90 -Wpedantic} warns about C++ style @samp{//}
1794 comments, while @option{-std=gnu99 -Wpedantic} does not.
1795
1796 A value for this option must be provided; possible values are
1797
1798 @table @samp
1799 @item c90
1800 @itemx c89
1801 @itemx iso9899:1990
1802 Support all ISO C90 programs (certain GNU extensions that conflict
1803 with ISO C90 are disabled). Same as @option{-ansi} for C code.
1804
1805 @item iso9899:199409
1806 ISO C90 as modified in amendment 1.
1807
1808 @item c99
1809 @itemx c9x
1810 @itemx iso9899:1999
1811 @itemx iso9899:199x
1812 ISO C99. This standard is substantially completely supported, modulo
1813 bugs and floating-point issues
1814 (mainly but not entirely relating to optional C99 features from
1815 Annexes F and G). See
1816 @w{@uref{http://gcc.gnu.org/c99status.html}} for more information. The
1817 names @samp{c9x} and @samp{iso9899:199x} are deprecated.
1818
1819 @item c11
1820 @itemx c1x
1821 @itemx iso9899:2011
1822 ISO C11, the 2011 revision of the ISO C standard. This standard is
1823 substantially completely supported, modulo bugs, floating-point issues
1824 (mainly but not entirely relating to optional C11 features from
1825 Annexes F and G) and the optional Annexes K (Bounds-checking
1826 interfaces) and L (Analyzability). The name @samp{c1x} is deprecated.
1827
1828 @item gnu90
1829 @itemx gnu89
1830 GNU dialect of ISO C90 (including some C99 features).
1831
1832 @item gnu99
1833 @itemx gnu9x
1834 GNU dialect of ISO C99. The name @samp{gnu9x} is deprecated.
1835
1836 @item gnu11
1837 @itemx gnu1x
1838 GNU dialect of ISO C11. This is the default for C code.
1839 The name @samp{gnu1x} is deprecated.
1840
1841 @item c++98
1842 @itemx c++03
1843 The 1998 ISO C++ standard plus the 2003 technical corrigendum and some
1844 additional defect reports. Same as @option{-ansi} for C++ code.
1845
1846 @item gnu++98
1847 @itemx gnu++03
1848 GNU dialect of @option{-std=c++98}.
1849
1850 @item c++11
1851 @itemx c++0x
1852 The 2011 ISO C++ standard plus amendments.
1853 The name @samp{c++0x} is deprecated.
1854
1855 @item gnu++11
1856 @itemx gnu++0x
1857 GNU dialect of @option{-std=c++11}.
1858 The name @samp{gnu++0x} is deprecated.
1859
1860 @item c++14
1861 @itemx c++1y
1862 The 2014 ISO C++ standard plus amendments.
1863 The name @samp{c++1y} is deprecated.
1864
1865 @item gnu++14
1866 @itemx gnu++1y
1867 GNU dialect of @option{-std=c++14}.
1868 This is the default for C++ code.
1869 The name @samp{gnu++1y} is deprecated.
1870
1871 @item c++1z
1872 The next revision of the ISO C++ standard, tentatively planned for
1873 2017. Support is highly experimental, and will almost certainly
1874 change in incompatible ways in future releases.
1875
1876 @item gnu++1z
1877 GNU dialect of @option{-std=c++1z}. Support is highly experimental,
1878 and will almost certainly change in incompatible ways in future
1879 releases.
1880 @end table
1881
1882 @item -fgnu89-inline
1883 @opindex fgnu89-inline
1884 The option @option{-fgnu89-inline} tells GCC to use the traditional
1885 GNU semantics for @code{inline} functions when in C99 mode.
1886 @xref{Inline,,An Inline Function is As Fast As a Macro}.
1887 Using this option is roughly equivalent to adding the
1888 @code{gnu_inline} function attribute to all inline functions
1889 (@pxref{Function Attributes}).
1890
1891 The option @option{-fno-gnu89-inline} explicitly tells GCC to use the
1892 C99 semantics for @code{inline} when in C99 or gnu99 mode (i.e., it
1893 specifies the default behavior).
1894 This option is not supported in @option{-std=c90} or
1895 @option{-std=gnu90} mode.
1896
1897 The preprocessor macros @code{__GNUC_GNU_INLINE__} and
1898 @code{__GNUC_STDC_INLINE__} may be used to check which semantics are
1899 in effect for @code{inline} functions. @xref{Common Predefined
1900 Macros,,,cpp,The C Preprocessor}.
1901
1902 @item -fpermitted-flt-eval-methods=@var{style}
1903 @opindex fpermitted-flt-eval-methods
1904 @opindex fpermitted-flt-eval-methods=c11
1905 @opindex fpermitted-flt-eval-methods=ts-18661-3
1906 ISO/IEC TS 18661-3 defines new permissible values for
1907 @code{FLT_EVAL_METHOD} that indicate that operations and constants with
1908 a semantic type that is an interchange or extended format should be
1909 evaluated to the precision and range of that type. These new values are
1910 a superset of those permitted under C99/C11, which does not specify the
1911 meaning of other positive values of @code{FLT_EVAL_METHOD}. As such, code
1912 conforming to C11 may not have been written expecting the possibility of
1913 the new values.
1914
1915 @option{-fpermitted-flt-eval-methods} specifies whether the compiler
1916 should allow only the values of @code{FLT_EVAL_METHOD} specified in C99/C11,
1917 or the extended set of values specified in ISO/IEC TS 18661-3.
1918
1919 @var{style} is either @code{c11} or @code{ts-18661-3} as appropriate.
1920
1921 The default when in a standards compliant mode (@option{-std=c11} or similar)
1922 is @option{-fpermitted-flt-eval-methods=c11}. The default when in a GNU
1923 dialect (@option{-std=gnu11} or similar) is
1924 @option{-fpermitted-flt-eval-methods=ts-18661-3}.
1925
1926 @item -aux-info @var{filename}
1927 @opindex aux-info
1928 Output to the given filename prototyped declarations for all functions
1929 declared and/or defined in a translation unit, including those in header
1930 files. This option is silently ignored in any language other than C@.
1931
1932 Besides declarations, the file indicates, in comments, the origin of
1933 each declaration (source file and line), whether the declaration was
1934 implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or
1935 @samp{O} for old, respectively, in the first character after the line
1936 number and the colon), and whether it came from a declaration or a
1937 definition (@samp{C} or @samp{F}, respectively, in the following
1938 character). In the case of function definitions, a K&R-style list of
1939 arguments followed by their declarations is also provided, inside
1940 comments, after the declaration.
1941
1942 @item -fallow-parameterless-variadic-functions
1943 @opindex fallow-parameterless-variadic-functions
1944 Accept variadic functions without named parameters.
1945
1946 Although it is possible to define such a function, this is not very
1947 useful as it is not possible to read the arguments. This is only
1948 supported for C as this construct is allowed by C++.
1949
1950 @item -fno-asm
1951 @opindex fno-asm
1952 Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
1953 keyword, so that code can use these words as identifiers. You can use
1954 the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
1955 instead. @option{-ansi} implies @option{-fno-asm}.
1956
1957 In C++, this switch only affects the @code{typeof} keyword, since
1958 @code{asm} and @code{inline} are standard keywords. You may want to
1959 use the @option{-fno-gnu-keywords} flag instead, which has the same
1960 effect. In C99 mode (@option{-std=c99} or @option{-std=gnu99}), this
1961 switch only affects the @code{asm} and @code{typeof} keywords, since
1962 @code{inline} is a standard keyword in ISO C99.
1963
1964 @item -fno-builtin
1965 @itemx -fno-builtin-@var{function}
1966 @opindex fno-builtin
1967 @cindex built-in functions
1968 Don't recognize built-in functions that do not begin with
1969 @samp{__builtin_} as prefix. @xref{Other Builtins,,Other built-in
1970 functions provided by GCC}, for details of the functions affected,
1971 including those which are not built-in functions when @option{-ansi} or
1972 @option{-std} options for strict ISO C conformance are used because they
1973 do not have an ISO standard meaning.
1974
1975 GCC normally generates special code to handle certain built-in functions
1976 more efficiently; for instance, calls to @code{alloca} may become single
1977 instructions which adjust the stack directly, and calls to @code{memcpy}
1978 may become inline copy loops. The resulting code is often both smaller
1979 and faster, but since the function calls no longer appear as such, you
1980 cannot set a breakpoint on those calls, nor can you change the behavior
1981 of the functions by linking with a different library. In addition,
1982 when a function is recognized as a built-in function, GCC may use
1983 information about that function to warn about problems with calls to
1984 that function, or to generate more efficient code, even if the
1985 resulting code still contains calls to that function. For example,
1986 warnings are given with @option{-Wformat} for bad calls to
1987 @code{printf} when @code{printf} is built in and @code{strlen} is
1988 known not to modify global memory.
1989
1990 With the @option{-fno-builtin-@var{function}} option
1991 only the built-in function @var{function} is
1992 disabled. @var{function} must not begin with @samp{__builtin_}. If a
1993 function is named that is not built-in in this version of GCC, this
1994 option is ignored. There is no corresponding
1995 @option{-fbuiltin-@var{function}} option; if you wish to enable
1996 built-in functions selectively when using @option{-fno-builtin} or
1997 @option{-ffreestanding}, you may define macros such as:
1998
1999 @smallexample
2000 #define abs(n) __builtin_abs ((n))
2001 #define strcpy(d, s) __builtin_strcpy ((d), (s))
2002 @end smallexample
2003
2004 @item -fgimple
2005 @opindex fgimple
2006
2007 Enable parsing of function definitions marked with @code{__GIMPLE}.
2008 This is an experimental feature that allows unit testing of GIMPLE
2009 passes.
2010
2011 @item -fhosted
2012 @opindex fhosted
2013 @cindex hosted environment
2014
2015 Assert that compilation targets a hosted environment. This implies
2016 @option{-fbuiltin}. A hosted environment is one in which the
2017 entire standard library is available, and in which @code{main} has a return
2018 type of @code{int}. Examples are nearly everything except a kernel.
2019 This is equivalent to @option{-fno-freestanding}.
2020
2021 @item -ffreestanding
2022 @opindex ffreestanding
2023 @cindex hosted environment
2024
2025 Assert that compilation targets a freestanding environment. This
2026 implies @option{-fno-builtin}. A freestanding environment
2027 is one in which the standard library may not exist, and program startup may
2028 not necessarily be at @code{main}. The most obvious example is an OS kernel.
2029 This is equivalent to @option{-fno-hosted}.
2030
2031 @xref{Standards,,Language Standards Supported by GCC}, for details of
2032 freestanding and hosted environments.
2033
2034 @item -fopenacc
2035 @opindex fopenacc
2036 @cindex OpenACC accelerator programming
2037 Enable handling of OpenACC directives @code{#pragma acc} in C/C++ and
2038 @code{!$acc} in Fortran. When @option{-fopenacc} is specified, the
2039 compiler generates accelerated code according to the OpenACC Application
2040 Programming Interface v2.0 @w{@uref{http://www.openacc.org/}}. This option
2041 implies @option{-pthread}, and thus is only supported on targets that
2042 have support for @option{-pthread}.
2043
2044 @item -fopenacc-dim=@var{geom}
2045 @opindex fopenacc-dim
2046 @cindex OpenACC accelerator programming
2047 Specify default compute dimensions for parallel offload regions that do
2048 not explicitly specify. The @var{geom} value is a triple of
2049 ':'-separated sizes, in order 'gang', 'worker' and, 'vector'. A size
2050 can be omitted, to use a target-specific default value.
2051
2052 @item -fopenmp
2053 @opindex fopenmp
2054 @cindex OpenMP parallel
2055 Enable handling of OpenMP directives @code{#pragma omp} in C/C++ and
2056 @code{!$omp} in Fortran. When @option{-fopenmp} is specified, the
2057 compiler generates parallel code according to the OpenMP Application
2058 Program Interface v4.5 @w{@uref{http://www.openmp.org/}}. This option
2059 implies @option{-pthread}, and thus is only supported on targets that
2060 have support for @option{-pthread}. @option{-fopenmp} implies
2061 @option{-fopenmp-simd}.
2062
2063 @item -fopenmp-simd
2064 @opindex fopenmp-simd
2065 @cindex OpenMP SIMD
2066 @cindex SIMD
2067 Enable handling of OpenMP's SIMD directives with @code{#pragma omp}
2068 in C/C++ and @code{!$omp} in Fortran. Other OpenMP directives
2069 are ignored.
2070
2071 @item -fcilkplus
2072 @opindex fcilkplus
2073 @cindex Enable Cilk Plus
2074 Enable the usage of Cilk Plus language extension features for C/C++.
2075 When the option @option{-fcilkplus} is specified, enable the usage of
2076 the Cilk Plus Language extension features for C/C++. The present
2077 implementation follows ABI version 1.2. This is an experimental
2078 feature that is only partially complete, and whose interface may
2079 change in future versions of GCC as the official specification
2080 changes. Currently, all features but @code{_Cilk_for} have been
2081 implemented.
2082
2083 @item -fgnu-tm
2084 @opindex fgnu-tm
2085 When the option @option{-fgnu-tm} is specified, the compiler
2086 generates code for the Linux variant of Intel's current Transactional
2087 Memory ABI specification document (Revision 1.1, May 6 2009). This is
2088 an experimental feature whose interface may change in future versions
2089 of GCC, as the official specification changes. Please note that not
2090 all architectures are supported for this feature.
2091
2092 For more information on GCC's support for transactional memory,
2093 @xref{Enabling libitm,,The GNU Transactional Memory Library,libitm,GNU
2094 Transactional Memory Library}.
2095
2096 Note that the transactional memory feature is not supported with
2097 non-call exceptions (@option{-fnon-call-exceptions}).
2098
2099 @item -fms-extensions
2100 @opindex fms-extensions
2101 Accept some non-standard constructs used in Microsoft header files.
2102
2103 In C++ code, this allows member names in structures to be similar
2104 to previous types declarations.
2105
2106 @smallexample
2107 typedef int UOW;
2108 struct ABC @{
2109 UOW UOW;
2110 @};
2111 @end smallexample
2112
2113 Some cases of unnamed fields in structures and unions are only
2114 accepted with this option. @xref{Unnamed Fields,,Unnamed struct/union
2115 fields within structs/unions}, for details.
2116
2117 Note that this option is off for all targets but x86
2118 targets using ms-abi.
2119
2120 @item -fplan9-extensions
2121 @opindex fplan9-extensions
2122 Accept some non-standard constructs used in Plan 9 code.
2123
2124 This enables @option{-fms-extensions}, permits passing pointers to
2125 structures with anonymous fields to functions that expect pointers to
2126 elements of the type of the field, and permits referring to anonymous
2127 fields declared using a typedef. @xref{Unnamed Fields,,Unnamed
2128 struct/union fields within structs/unions}, for details. This is only
2129 supported for C, not C++.
2130
2131 @item -fcond-mismatch
2132 @opindex fcond-mismatch
2133 Allow conditional expressions with mismatched types in the second and
2134 third arguments. The value of such an expression is void. This option
2135 is not supported for C++.
2136
2137 @item -flax-vector-conversions
2138 @opindex flax-vector-conversions
2139 Allow implicit conversions between vectors with differing numbers of
2140 elements and/or incompatible element types. This option should not be
2141 used for new code.
2142
2143 @item -funsigned-char
2144 @opindex funsigned-char
2145 Let the type @code{char} be unsigned, like @code{unsigned char}.
2146
2147 Each kind of machine has a default for what @code{char} should
2148 be. It is either like @code{unsigned char} by default or like
2149 @code{signed char} by default.
2150
2151 Ideally, a portable program should always use @code{signed char} or
2152 @code{unsigned char} when it depends on the signedness of an object.
2153 But many programs have been written to use plain @code{char} and
2154 expect it to be signed, or expect it to be unsigned, depending on the
2155 machines they were written for. This option, and its inverse, let you
2156 make such a program work with the opposite default.
2157
2158 The type @code{char} is always a distinct type from each of
2159 @code{signed char} or @code{unsigned char}, even though its behavior
2160 is always just like one of those two.
2161
2162 @item -fsigned-char
2163 @opindex fsigned-char
2164 Let the type @code{char} be signed, like @code{signed char}.
2165
2166 Note that this is equivalent to @option{-fno-unsigned-char}, which is
2167 the negative form of @option{-funsigned-char}. Likewise, the option
2168 @option{-fno-signed-char} is equivalent to @option{-funsigned-char}.
2169
2170 @item -fsigned-bitfields
2171 @itemx -funsigned-bitfields
2172 @itemx -fno-signed-bitfields
2173 @itemx -fno-unsigned-bitfields
2174 @opindex fsigned-bitfields
2175 @opindex funsigned-bitfields
2176 @opindex fno-signed-bitfields
2177 @opindex fno-unsigned-bitfields
2178 These options control whether a bit-field is signed or unsigned, when the
2179 declaration does not use either @code{signed} or @code{unsigned}. By
2180 default, such a bit-field is signed, because this is consistent: the
2181 basic integer types such as @code{int} are signed types.
2182
2183 @item -fsso-struct=@var{endianness}
2184 @opindex fsso-struct
2185 Set the default scalar storage order of structures and unions to the
2186 specified endianness. The accepted values are @samp{big-endian},
2187 @samp{little-endian} and @samp{native} for the native endianness of
2188 the target (the default). This option is not supported for C++.
2189
2190 @strong{Warning:} the @option{-fsso-struct} switch causes GCC to generate
2191 code that is not binary compatible with code generated without it if the
2192 specified endianness is not the native endianness of the target.
2193 @end table
2194
2195 @node C++ Dialect Options
2196 @section Options Controlling C++ Dialect
2197
2198 @cindex compiler options, C++
2199 @cindex C++ options, command-line
2200 @cindex options, C++
2201 This section describes the command-line options that are only meaningful
2202 for C++ programs. You can also use most of the GNU compiler options
2203 regardless of what language your program is in. For example, you
2204 might compile a file @file{firstClass.C} like this:
2205
2206 @smallexample
2207 g++ -g -fstrict-enums -O -c firstClass.C
2208 @end smallexample
2209
2210 @noindent
2211 In this example, only @option{-fstrict-enums} is an option meant
2212 only for C++ programs; you can use the other options with any
2213 language supported by GCC@.
2214
2215 Some options for compiling C programs, such as @option{-std}, are also
2216 relevant for C++ programs.
2217 @xref{C Dialect Options,,Options Controlling C Dialect}.
2218
2219 Here is a list of options that are @emph{only} for compiling C++ programs:
2220
2221 @table @gcctabopt
2222
2223 @item -fabi-version=@var{n}
2224 @opindex fabi-version
2225 Use version @var{n} of the C++ ABI@. The default is version 0.
2226
2227 Version 0 refers to the version conforming most closely to
2228 the C++ ABI specification. Therefore, the ABI obtained using version 0
2229 will change in different versions of G++ as ABI bugs are fixed.
2230
2231 Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.
2232
2233 Version 2 is the version of the C++ ABI that first appeared in G++
2234 3.4, and was the default through G++ 4.9.
2235
2236 Version 3 corrects an error in mangling a constant address as a
2237 template argument.
2238
2239 Version 4, which first appeared in G++ 4.5, implements a standard
2240 mangling for vector types.
2241
2242 Version 5, which first appeared in G++ 4.6, corrects the mangling of
2243 attribute const/volatile on function pointer types, decltype of a
2244 plain decl, and use of a function parameter in the declaration of
2245 another parameter.
2246
2247 Version 6, which first appeared in G++ 4.7, corrects the promotion
2248 behavior of C++11 scoped enums and the mangling of template argument
2249 packs, const/static_cast, prefix ++ and --, and a class scope function
2250 used as a template argument.
2251
2252 Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a
2253 builtin type and corrects the mangling of lambdas in default argument
2254 scope.
2255
2256 Version 8, which first appeared in G++ 4.9, corrects the substitution
2257 behavior of function types with function-cv-qualifiers.
2258
2259 Version 9, which first appeared in G++ 5.2, corrects the alignment of
2260 @code{nullptr_t}.
2261
2262 Version 10, which first appeared in G++ 6.1, adds mangling of
2263 attributes that affect type identity, such as ia32 calling convention
2264 attributes (e.g. @samp{stdcall}).
2265
2266 Version 11, which first appeared in G++ 7, corrects the mangling of
2267 sizeof... expressions and operator names. For multiple entities with
2268 the same name within a function, that are declared in different scopes,
2269 the mangling now changes starting with the twelfth occurrence. It also
2270 implies @option{-fnew-inheriting-ctors}.
2271
2272 See also @option{-Wabi}.
2273
2274 @item -fabi-compat-version=@var{n}
2275 @opindex fabi-compat-version
2276 On targets that support strong aliases, G++
2277 works around mangling changes by creating an alias with the correct
2278 mangled name when defining a symbol with an incorrect mangled name.
2279 This switch specifies which ABI version to use for the alias.
2280
2281 With @option{-fabi-version=0} (the default), this defaults to 8 (GCC 5
2282 compatibility). If another ABI version is explicitly selected, this
2283 defaults to 0. For compatibility with GCC versions 3.2 through 4.9,
2284 use @option{-fabi-compat-version=2}.
2285
2286 If this option is not provided but @option{-Wabi=@var{n}} is, that
2287 version is used for compatibility aliases. If this option is provided
2288 along with @option{-Wabi} (without the version), the version from this
2289 option is used for the warning.
2290
2291 @item -fno-access-control
2292 @opindex fno-access-control
2293 Turn off all access checking. This switch is mainly useful for working
2294 around bugs in the access control code.
2295
2296 @item -faligned-new
2297 @opindex faligned-new
2298 Enable support for C++17 @code{new} of types that require more
2299 alignment than @code{void* ::operator new(std::size_t)} provides. A
2300 numeric argument such as @code{-faligned-new=32} can be used to
2301 specify how much alignment (in bytes) is provided by that function,
2302 but few users will need to override the default of
2303 @code{alignof(std::max_align_t)}.
2304
2305 This flag is enabled by default for @option{-std=c++1z}.
2306
2307 @item -fcheck-new
2308 @opindex fcheck-new
2309 Check that the pointer returned by @code{operator new} is non-null
2310 before attempting to modify the storage allocated. This check is
2311 normally unnecessary because the C++ standard specifies that
2312 @code{operator new} only returns @code{0} if it is declared
2313 @code{throw()}, in which case the compiler always checks the
2314 return value even without this option. In all other cases, when
2315 @code{operator new} has a non-empty exception specification, memory
2316 exhaustion is signalled by throwing @code{std::bad_alloc}. See also
2317 @samp{new (nothrow)}.
2318
2319 @item -fconcepts
2320 @opindex fconcepts
2321 Enable support for the C++ Extensions for Concepts Technical
2322 Specification, ISO 19217 (2015), which allows code like
2323
2324 @smallexample
2325 template <class T> concept bool Addable = requires (T t) @{ t + t; @};
2326 template <Addable T> T add (T a, T b) @{ return a + b; @}
2327 @end smallexample
2328
2329 @item -fconstexpr-depth=@var{n}
2330 @opindex fconstexpr-depth
2331 Set the maximum nested evaluation depth for C++11 constexpr functions
2332 to @var{n}. A limit is needed to detect endless recursion during
2333 constant expression evaluation. The minimum specified by the standard
2334 is 512.
2335
2336 @item -fconstexpr-loop-limit=@var{n}
2337 @opindex fconstexpr-loop-limit
2338 Set the maximum number of iterations for a loop in C++14 constexpr functions
2339 to @var{n}. A limit is needed to detect infinite loops during
2340 constant expression evaluation. The default is 262144 (1<<18).
2341
2342 @item -fdeduce-init-list
2343 @opindex fdeduce-init-list
2344 Enable deduction of a template type parameter as
2345 @code{std::initializer_list} from a brace-enclosed initializer list, i.e.@:
2346
2347 @smallexample
2348 template <class T> auto forward(T t) -> decltype (realfn (t))
2349 @{
2350 return realfn (t);
2351 @}
2352
2353 void f()
2354 @{
2355 forward(@{1,2@}); // call forward<std::initializer_list<int>>
2356 @}
2357 @end smallexample
2358
2359 This deduction was implemented as a possible extension to the
2360 originally proposed semantics for the C++11 standard, but was not part
2361 of the final standard, so it is disabled by default. This option is
2362 deprecated, and may be removed in a future version of G++.
2363
2364 @item -ffriend-injection
2365 @opindex ffriend-injection
2366 Inject friend functions into the enclosing namespace, so that they are
2367 visible outside the scope of the class in which they are declared.
2368 Friend functions were documented to work this way in the old Annotated
2369 C++ Reference Manual.
2370 However, in ISO C++ a friend function that is not declared
2371 in an enclosing scope can only be found using argument dependent
2372 lookup. GCC defaults to the standard behavior.
2373
2374 This option is for compatibility, and may be removed in a future
2375 release of G++.
2376
2377 @item -fno-elide-constructors
2378 @opindex fno-elide-constructors
2379 The C++ standard allows an implementation to omit creating a temporary
2380 that is only used to initialize another object of the same type.
2381 Specifying this option disables that optimization, and forces G++ to
2382 call the copy constructor in all cases. This option also causes G++
2383 to call trivial member functions which otherwise would be expanded inline.
2384
2385 In C++17, the compiler is required to omit these temporaries, but this
2386 option still affects trivial member functions.
2387
2388 @item -fno-enforce-eh-specs
2389 @opindex fno-enforce-eh-specs
2390 Don't generate code to check for violation of exception specifications
2391 at run time. This option violates the C++ standard, but may be useful
2392 for reducing code size in production builds, much like defining
2393 @code{NDEBUG}. This does not give user code permission to throw
2394 exceptions in violation of the exception specifications; the compiler
2395 still optimizes based on the specifications, so throwing an
2396 unexpected exception results in undefined behavior at run time.
2397
2398 @item -fextern-tls-init
2399 @itemx -fno-extern-tls-init
2400 @opindex fextern-tls-init
2401 @opindex fno-extern-tls-init
2402 The C++11 and OpenMP standards allow @code{thread_local} and
2403 @code{threadprivate} variables to have dynamic (runtime)
2404 initialization. To support this, any use of such a variable goes
2405 through a wrapper function that performs any necessary initialization.
2406 When the use and definition of the variable are in the same
2407 translation unit, this overhead can be optimized away, but when the
2408 use is in a different translation unit there is significant overhead
2409 even if the variable doesn't actually need dynamic initialization. If
2410 the programmer can be sure that no use of the variable in a
2411 non-defining TU needs to trigger dynamic initialization (either
2412 because the variable is statically initialized, or a use of the
2413 variable in the defining TU will be executed before any uses in
2414 another TU), they can avoid this overhead with the
2415 @option{-fno-extern-tls-init} option.
2416
2417 On targets that support symbol aliases, the default is
2418 @option{-fextern-tls-init}. On targets that do not support symbol
2419 aliases, the default is @option{-fno-extern-tls-init}.
2420
2421 @item -ffor-scope
2422 @itemx -fno-for-scope
2423 @opindex ffor-scope
2424 @opindex fno-for-scope
2425 If @option{-ffor-scope} is specified, the scope of variables declared in
2426 a @i{for-init-statement} is limited to the @code{for} loop itself,
2427 as specified by the C++ standard.
2428 If @option{-fno-for-scope} is specified, the scope of variables declared in
2429 a @i{for-init-statement} extends to the end of the enclosing scope,
2430 as was the case in old versions of G++, and other (traditional)
2431 implementations of C++.
2432
2433 If neither flag is given, the default is to follow the standard,
2434 but to allow and give a warning for old-style code that would
2435 otherwise be invalid, or have different behavior.
2436
2437 @item -fno-gnu-keywords
2438 @opindex fno-gnu-keywords
2439 Do not recognize @code{typeof} as a keyword, so that code can use this
2440 word as an identifier. You can use the keyword @code{__typeof__} instead.
2441 This option is implied by the strict ISO C++ dialects: @option{-ansi},
2442 @option{-std=c++98}, @option{-std=c++11}, etc.
2443
2444 @item -fno-implicit-templates
2445 @opindex fno-implicit-templates
2446 Never emit code for non-inline templates that are instantiated
2447 implicitly (i.e.@: by use); only emit code for explicit instantiations.
2448 @xref{Template Instantiation}, for more information.
2449
2450 @item -fno-implicit-inline-templates
2451 @opindex fno-implicit-inline-templates
2452 Don't emit code for implicit instantiations of inline templates, either.
2453 The default is to handle inlines differently so that compiles with and
2454 without optimization need the same set of explicit instantiations.
2455
2456 @item -fno-implement-inlines
2457 @opindex fno-implement-inlines
2458 To save space, do not emit out-of-line copies of inline functions
2459 controlled by @code{#pragma implementation}. This causes linker
2460 errors if these functions are not inlined everywhere they are called.
2461
2462 @item -fms-extensions
2463 @opindex fms-extensions
2464 Disable Wpedantic warnings about constructs used in MFC, such as implicit
2465 int and getting a pointer to member function via non-standard syntax.
2466
2467 @item -fnew-inheriting-ctors
2468 @opindex fnew-inheriting-ctors
2469 Enable the P0136 adjustment to the semantics of C++11 constructor
2470 inheritance. This is part of C++17 but also considered to be a Defect
2471 Report against C++11 and C++14. This flag is enabled by default
2472 unless @option{-fabi-version=10} or lower is specified.
2473
2474 @item -fnew-ttp-matching
2475 @opindex fnew-ttp-matching
2476 Enable the P0522 resolution to Core issue 150, template template
2477 parameters and default arguments: this allows a template with default
2478 template arguments as an argument for a template template parameter
2479 with fewer template parameters. This flag is enabled by default for
2480 @option{-std=c++1z}.
2481
2482 @item -fno-nonansi-builtins
2483 @opindex fno-nonansi-builtins
2484 Disable built-in declarations of functions that are not mandated by
2485 ANSI/ISO C@. These include @code{ffs}, @code{alloca}, @code{_exit},
2486 @code{index}, @code{bzero}, @code{conjf}, and other related functions.
2487
2488 @item -fnothrow-opt
2489 @opindex fnothrow-opt
2490 Treat a @code{throw()} exception specification as if it were a
2491 @code{noexcept} specification to reduce or eliminate the text size
2492 overhead relative to a function with no exception specification. If
2493 the function has local variables of types with non-trivial
2494 destructors, the exception specification actually makes the
2495 function smaller because the EH cleanups for those variables can be
2496 optimized away. The semantic effect is that an exception thrown out of
2497 a function with such an exception specification results in a call
2498 to @code{terminate} rather than @code{unexpected}.
2499
2500 @item -fno-operator-names
2501 @opindex fno-operator-names
2502 Do not treat the operator name keywords @code{and}, @code{bitand},
2503 @code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
2504 synonyms as keywords.
2505
2506 @item -fno-optional-diags
2507 @opindex fno-optional-diags
2508 Disable diagnostics that the standard says a compiler does not need to
2509 issue. Currently, the only such diagnostic issued by G++ is the one for
2510 a name having multiple meanings within a class.
2511
2512 @item -fpermissive
2513 @opindex fpermissive
2514 Downgrade some diagnostics about nonconformant code from errors to
2515 warnings. Thus, using @option{-fpermissive} allows some
2516 nonconforming code to compile.
2517
2518 @item -fno-pretty-templates
2519 @opindex fno-pretty-templates
2520 When an error message refers to a specialization of a function
2521 template, the compiler normally prints the signature of the
2522 template followed by the template arguments and any typedefs or
2523 typenames in the signature (e.g. @code{void f(T) [with T = int]}
2524 rather than @code{void f(int)}) so that it's clear which template is
2525 involved. When an error message refers to a specialization of a class
2526 template, the compiler omits any template arguments that match
2527 the default template arguments for that template. If either of these
2528 behaviors make it harder to understand the error message rather than
2529 easier, you can use @option{-fno-pretty-templates} to disable them.
2530
2531 @item -frepo
2532 @opindex frepo
2533 Enable automatic template instantiation at link time. This option also
2534 implies @option{-fno-implicit-templates}. @xref{Template
2535 Instantiation}, for more information.
2536
2537 @item -fno-rtti
2538 @opindex fno-rtti
2539 Disable generation of information about every class with virtual
2540 functions for use by the C++ run-time type identification features
2541 (@code{dynamic_cast} and @code{typeid}). If you don't use those parts
2542 of the language, you can save some space by using this flag. Note that
2543 exception handling uses the same information, but G++ generates it as
2544 needed. The @code{dynamic_cast} operator can still be used for casts that
2545 do not require run-time type information, i.e.@: casts to @code{void *} or to
2546 unambiguous base classes.
2547
2548 @item -fsized-deallocation
2549 @opindex fsized-deallocation
2550 Enable the built-in global declarations
2551 @smallexample
2552 void operator delete (void *, std::size_t) noexcept;
2553 void operator delete[] (void *, std::size_t) noexcept;
2554 @end smallexample
2555 as introduced in C++14. This is useful for user-defined replacement
2556 deallocation functions that, for example, use the size of the object
2557 to make deallocation faster. Enabled by default under
2558 @option{-std=c++14} and above. The flag @option{-Wsized-deallocation}
2559 warns about places that might want to add a definition.
2560
2561 @item -fstrict-enums
2562 @opindex fstrict-enums
2563 Allow the compiler to optimize using the assumption that a value of
2564 enumerated type can only be one of the values of the enumeration (as
2565 defined in the C++ standard; basically, a value that can be
2566 represented in the minimum number of bits needed to represent all the
2567 enumerators). This assumption may not be valid if the program uses a
2568 cast to convert an arbitrary integer value to the enumerated type.
2569
2570 @item -fstrong-eval-order
2571 @opindex fstrong-eval-order
2572 Evaluate member access, array subscripting, and shift expressions in
2573 left-to-right order, and evaluate assignment in right-to-left order,
2574 as adopted for C++17. Enabled by default with @option{-std=c++1z}.
2575 @option{-fstrong-eval-order=some} enables just the ordering of member
2576 access and shift expressions, and is the default without
2577 @option{-std=c++1z}.
2578
2579 @item -ftemplate-backtrace-limit=@var{n}
2580 @opindex ftemplate-backtrace-limit
2581 Set the maximum number of template instantiation notes for a single
2582 warning or error to @var{n}. The default value is 10.
2583
2584 @item -ftemplate-depth=@var{n}
2585 @opindex ftemplate-depth
2586 Set the maximum instantiation depth for template classes to @var{n}.
2587 A limit on the template instantiation depth is needed to detect
2588 endless recursions during template class instantiation. ANSI/ISO C++
2589 conforming programs must not rely on a maximum depth greater than 17
2590 (changed to 1024 in C++11). The default value is 900, as the compiler
2591 can run out of stack space before hitting 1024 in some situations.
2592
2593 @item -fno-threadsafe-statics
2594 @opindex fno-threadsafe-statics
2595 Do not emit the extra code to use the routines specified in the C++
2596 ABI for thread-safe initialization of local statics. You can use this
2597 option to reduce code size slightly in code that doesn't need to be
2598 thread-safe.
2599
2600 @item -fuse-cxa-atexit
2601 @opindex fuse-cxa-atexit
2602 Register destructors for objects with static storage duration with the
2603 @code{__cxa_atexit} function rather than the @code{atexit} function.
2604 This option is required for fully standards-compliant handling of static
2605 destructors, but only works if your C library supports
2606 @code{__cxa_atexit}.
2607
2608 @item -fno-use-cxa-get-exception-ptr
2609 @opindex fno-use-cxa-get-exception-ptr
2610 Don't use the @code{__cxa_get_exception_ptr} runtime routine. This
2611 causes @code{std::uncaught_exception} to be incorrect, but is necessary
2612 if the runtime routine is not available.
2613
2614 @item -fvisibility-inlines-hidden
2615 @opindex fvisibility-inlines-hidden
2616 This switch declares that the user does not attempt to compare
2617 pointers to inline functions or methods where the addresses of the two functions
2618 are taken in different shared objects.
2619
2620 The effect of this is that GCC may, effectively, mark inline methods with
2621 @code{__attribute__ ((visibility ("hidden")))} so that they do not
2622 appear in the export table of a DSO and do not require a PLT indirection
2623 when used within the DSO@. Enabling this option can have a dramatic effect
2624 on load and link times of a DSO as it massively reduces the size of the
2625 dynamic export table when the library makes heavy use of templates.
2626
2627 The behavior of this switch is not quite the same as marking the
2628 methods as hidden directly, because it does not affect static variables
2629 local to the function or cause the compiler to deduce that
2630 the function is defined in only one shared object.
2631
2632 You may mark a method as having a visibility explicitly to negate the
2633 effect of the switch for that method. For example, if you do want to
2634 compare pointers to a particular inline method, you might mark it as
2635 having default visibility. Marking the enclosing class with explicit
2636 visibility has no effect.
2637
2638 Explicitly instantiated inline methods are unaffected by this option
2639 as their linkage might otherwise cross a shared library boundary.
2640 @xref{Template Instantiation}.
2641
2642 @item -fvisibility-ms-compat
2643 @opindex fvisibility-ms-compat
2644 This flag attempts to use visibility settings to make GCC's C++
2645 linkage model compatible with that of Microsoft Visual Studio.
2646
2647 The flag makes these changes to GCC's linkage model:
2648
2649 @enumerate
2650 @item
2651 It sets the default visibility to @code{hidden}, like
2652 @option{-fvisibility=hidden}.
2653
2654 @item
2655 Types, but not their members, are not hidden by default.
2656
2657 @item
2658 The One Definition Rule is relaxed for types without explicit
2659 visibility specifications that are defined in more than one
2660 shared object: those declarations are permitted if they are
2661 permitted when this option is not used.
2662 @end enumerate
2663
2664 In new code it is better to use @option{-fvisibility=hidden} and
2665 export those classes that are intended to be externally visible.
2666 Unfortunately it is possible for code to rely, perhaps accidentally,
2667 on the Visual Studio behavior.
2668
2669 Among the consequences of these changes are that static data members
2670 of the same type with the same name but defined in different shared
2671 objects are different, so changing one does not change the other;
2672 and that pointers to function members defined in different shared
2673 objects may not compare equal. When this flag is given, it is a
2674 violation of the ODR to define types with the same name differently.
2675
2676 @item -fno-weak
2677 @opindex fno-weak
2678 Do not use weak symbol support, even if it is provided by the linker.
2679 By default, G++ uses weak symbols if they are available. This
2680 option exists only for testing, and should not be used by end-users;
2681 it results in inferior code and has no benefits. This option may
2682 be removed in a future release of G++.
2683
2684 @item -nostdinc++
2685 @opindex nostdinc++
2686 Do not search for header files in the standard directories specific to
2687 C++, but do still search the other standard directories. (This option
2688 is used when building the C++ library.)
2689 @end table
2690
2691 In addition, these optimization, warning, and code generation options
2692 have meanings only for C++ programs:
2693
2694 @table @gcctabopt
2695 @item -Wabi @r{(C, Objective-C, C++ and Objective-C++ only)}
2696 @opindex Wabi
2697 @opindex Wno-abi
2698 Warn when G++ it generates code that is probably not compatible with
2699 the vendor-neutral C++ ABI@. Since G++ now defaults to updating the
2700 ABI with each major release, normally @option{-Wabi} will warn only if
2701 there is a check added later in a release series for an ABI issue
2702 discovered since the initial release. @option{-Wabi} will warn about
2703 more things if an older ABI version is selected (with
2704 @option{-fabi-version=@var{n}}).
2705
2706 @option{-Wabi} can also be used with an explicit version number to
2707 warn about compatibility with a particular @option{-fabi-version}
2708 level, e.g. @option{-Wabi=2} to warn about changes relative to
2709 @option{-fabi-version=2}.
2710
2711 If an explicit version number is provided and
2712 @option{-fabi-compat-version} is not specified, the version number
2713 from this option is used for compatibility aliases. If no explicit
2714 version number is provided with this option, but
2715 @option{-fabi-compat-version} is specified, that version number is
2716 used for ABI warnings.
2717
2718 Although an effort has been made to warn about
2719 all such cases, there are probably some cases that are not warned about,
2720 even though G++ is generating incompatible code. There may also be
2721 cases where warnings are emitted even though the code that is generated
2722 is compatible.
2723
2724 You should rewrite your code to avoid these warnings if you are
2725 concerned about the fact that code generated by G++ may not be binary
2726 compatible with code generated by other compilers.
2727
2728 Known incompatibilities in @option{-fabi-version=2} (which was the
2729 default from GCC 3.4 to 4.9) include:
2730
2731 @itemize @bullet
2732
2733 @item
2734 A template with a non-type template parameter of reference type was
2735 mangled incorrectly:
2736 @smallexample
2737 extern int N;
2738 template <int &> struct S @{@};
2739 void n (S<N>) @{2@}
2740 @end smallexample
2741
2742 This was fixed in @option{-fabi-version=3}.
2743
2744 @item
2745 SIMD vector types declared using @code{__attribute ((vector_size))} were
2746 mangled in a non-standard way that does not allow for overloading of
2747 functions taking vectors of different sizes.
2748
2749 The mangling was changed in @option{-fabi-version=4}.
2750
2751 @item
2752 @code{__attribute ((const))} and @code{noreturn} were mangled as type
2753 qualifiers, and @code{decltype} of a plain declaration was folded away.
2754
2755 These mangling issues were fixed in @option{-fabi-version=5}.
2756
2757 @item
2758 Scoped enumerators passed as arguments to a variadic function are
2759 promoted like unscoped enumerators, causing @code{va_arg} to complain.
2760 On most targets this does not actually affect the parameter passing
2761 ABI, as there is no way to pass an argument smaller than @code{int}.
2762
2763 Also, the ABI changed the mangling of template argument packs,
2764 @code{const_cast}, @code{static_cast}, prefix increment/decrement, and
2765 a class scope function used as a template argument.
2766
2767 These issues were corrected in @option{-fabi-version=6}.
2768
2769 @item
2770 Lambdas in default argument scope were mangled incorrectly, and the
2771 ABI changed the mangling of @code{nullptr_t}.
2772
2773 These issues were corrected in @option{-fabi-version=7}.
2774
2775 @item
2776 When mangling a function type with function-cv-qualifiers, the
2777 un-qualified function type was incorrectly treated as a substitution
2778 candidate.
2779
2780 This was fixed in @option{-fabi-version=8}, the default for GCC 5.1.
2781
2782 @item
2783 @code{decltype(nullptr)} incorrectly had an alignment of 1, leading to
2784 unaligned accesses. Note that this did not affect the ABI of a
2785 function with a @code{nullptr_t} parameter, as parameters have a
2786 minimum alignment.
2787
2788 This was fixed in @option{-fabi-version=9}, the default for GCC 5.2.
2789
2790 @item
2791 Target-specific attributes that affect the identity of a type, such as
2792 ia32 calling conventions on a function type (stdcall, regparm, etc.),
2793 did not affect the mangled name, leading to name collisions when
2794 function pointers were used as template arguments.
2795
2796 This was fixed in @option{-fabi-version=10}, the default for GCC 6.1.
2797
2798 @end itemize
2799
2800 It also warns about psABI-related changes. The known psABI changes at this
2801 point include:
2802
2803 @itemize @bullet
2804
2805 @item
2806 For SysV/x86-64, unions with @code{long double} members are
2807 passed in memory as specified in psABI. For example:
2808
2809 @smallexample
2810 union U @{
2811 long double ld;
2812 int i;
2813 @};
2814 @end smallexample
2815
2816 @noindent
2817 @code{union U} is always passed in memory.
2818
2819 @end itemize
2820
2821 @item -Wabi-tag @r{(C++ and Objective-C++ only)}
2822 @opindex Wabi-tag
2823 @opindex -Wabi-tag
2824 Warn when a type with an ABI tag is used in a context that does not
2825 have that ABI tag. See @ref{C++ Attributes} for more information
2826 about ABI tags.
2827
2828 @item -Wctor-dtor-privacy @r{(C++ and Objective-C++ only)}
2829 @opindex Wctor-dtor-privacy
2830 @opindex Wno-ctor-dtor-privacy
2831 Warn when a class seems unusable because all the constructors or
2832 destructors in that class are private, and it has neither friends nor
2833 public static member functions. Also warn if there are no non-private
2834 methods, and there's at least one private member function that isn't
2835 a constructor or destructor.
2836
2837 @item -Wdelete-non-virtual-dtor @r{(C++ and Objective-C++ only)}
2838 @opindex Wdelete-non-virtual-dtor
2839 @opindex Wno-delete-non-virtual-dtor
2840 Warn when @code{delete} is used to destroy an instance of a class that
2841 has virtual functions and non-virtual destructor. It is unsafe to delete
2842 an instance of a derived class through a pointer to a base class if the
2843 base class does not have a virtual destructor. This warning is enabled
2844 by @option{-Wall}.
2845
2846 @item -Wliteral-suffix @r{(C++ and Objective-C++ only)}
2847 @opindex Wliteral-suffix
2848 @opindex Wno-literal-suffix
2849 Warn when a string or character literal is followed by a ud-suffix which does
2850 not begin with an underscore. As a conforming extension, GCC treats such
2851 suffixes as separate preprocessing tokens in order to maintain backwards
2852 compatibility with code that uses formatting macros from @code{<inttypes.h>}.
2853 For example:
2854
2855 @smallexample
2856 #define __STDC_FORMAT_MACROS
2857 #include <inttypes.h>
2858 #include <stdio.h>
2859
2860 int main() @{
2861 int64_t i64 = 123;
2862 printf("My int64: %" PRId64"\n", i64);
2863 @}
2864 @end smallexample
2865
2866 In this case, @code{PRId64} is treated as a separate preprocessing token.
2867
2868 Additionally, warn when a user-defined literal operator is declared with
2869 a literal suffix identifier that doesn't begin with an underscore. Literal
2870 suffix identifiers that don't begin with an underscore are reserved for
2871 future standardization.
2872
2873 This warning is enabled by default.
2874
2875 @item -Wlto-type-mismatch
2876 @opindex Wlto-type-mismatch
2877 @opindex Wno-lto-type-mismatch
2878
2879 During the link-time optimization warn about type mismatches in
2880 global declarations from different compilation units.
2881 Requires @option{-flto} to be enabled. Enabled by default.
2882
2883 @item -Wno-narrowing @r{(C++ and Objective-C++ only)}
2884 @opindex Wnarrowing
2885 @opindex Wno-narrowing
2886 For C++11 and later standards, narrowing conversions are diagnosed by default,
2887 as required by the standard. A narrowing conversion from a constant produces
2888 an error, and a narrowing conversion from a non-constant produces a warning,
2889 but @option{-Wno-narrowing} suppresses the diagnostic.
2890 Note that this does not affect the meaning of well-formed code;
2891 narrowing conversions are still considered ill-formed in SFINAE contexts.
2892
2893 With @option{-Wnarrowing} in C++98, warn when a narrowing
2894 conversion prohibited by C++11 occurs within
2895 @samp{@{ @}}, e.g.
2896
2897 @smallexample
2898 int i = @{ 2.2 @}; // error: narrowing from double to int
2899 @end smallexample
2900
2901 This flag is included in @option{-Wall} and @option{-Wc++11-compat}.
2902
2903 @item -Wnoexcept @r{(C++ and Objective-C++ only)}
2904 @opindex Wnoexcept
2905 @opindex Wno-noexcept
2906 Warn when a noexcept-expression evaluates to false because of a call
2907 to a function that does not have a non-throwing exception
2908 specification (i.e. @code{throw()} or @code{noexcept}) but is known by
2909 the compiler to never throw an exception.
2910
2911 @item -Wnoexcept-type @r{(C++ and Objective-C++ only)}
2912 @opindex Wnoexcept-type
2913 @opindex Wno-noexcept-type
2914 Warn if the C++1z feature making @code{noexcept} part of a function
2915 type changes the mangled name of a symbol relative to C++14. Enabled
2916 by @option{-Wabi} and @option{-Wc++1z-compat}.
2917
2918 @smallexample
2919 template <class T> void f(T t) @{ t(); @};
2920 void g() noexcept;
2921 void h() @{ f(g); @} // in C++14 calls f<void(*)()>, in C++1z calls f<void(*)()noexcept>
2922 @end smallexample
2923
2924 @item -Wclass-memaccess @r{(C++ and Objective-C++ only)}
2925 @opindex Wclass-memaccess
2926 Warn when the destination of a call to a raw memory function such as
2927 @code{memset} or @code{memcpy} is an object of class type writing into which
2928 might bypass the class non-trivial or deleted constructor or copy assignment,
2929 violate const-correctness or encapsulation, or corrupt the virtual table.
2930 Modifying the representation of such objects may violate invariants maintained
2931 by member functions of the class. For example, the call to @code{memset}
2932 below is undefined becase it modifies a non-trivial class object and is,
2933 therefore, diagnosed. The safe way to either initialize or clear the storage
2934 of objects of such types is by using the appropriate constructor or assignment
2935 operator, if one is available.
2936 @smallexample
2937 std::string str = "abc";
2938 memset (&str, 0, 3);
2939 @end smallexample
2940 The @option{-Wclass-memaccess} option is enabled by @option{-Wall}.
2941
2942 @item -Wnon-virtual-dtor @r{(C++ and Objective-C++ only)}
2943 @opindex Wnon-virtual-dtor
2944 @opindex Wno-non-virtual-dtor
2945 Warn when a class has virtual functions and an accessible non-virtual
2946 destructor itself or in an accessible polymorphic base class, in which
2947 case it is possible but unsafe to delete an instance of a derived
2948 class through a pointer to the class itself or base class. This
2949 warning is automatically enabled if @option{-Weffc++} is specified.
2950
2951 @item -Wregister @r{(C++ and Objective-C++ only)}
2952 @opindex Wregister
2953 @opindex Wno-register
2954 Warn on uses of the @code{register} storage class specifier, except
2955 when it is part of the GNU @ref{Explicit Register Variables} extension.
2956 The use of the @code{register} keyword as storage class specifier has
2957 been deprecated in C++11 and removed in C++17.
2958 Enabled by default with @option{-std=c++1z}.
2959
2960 @item -Wreorder @r{(C++ and Objective-C++ only)}
2961 @opindex Wreorder
2962 @opindex Wno-reorder
2963 @cindex reordering, warning
2964 @cindex warning for reordering of member initializers
2965 Warn when the order of member initializers given in the code does not
2966 match the order in which they must be executed. For instance:
2967
2968 @smallexample
2969 struct A @{
2970 int i;
2971 int j;
2972 A(): j (0), i (1) @{ @}
2973 @};
2974 @end smallexample
2975
2976 @noindent
2977 The compiler rearranges the member initializers for @code{i}
2978 and @code{j} to match the declaration order of the members, emitting
2979 a warning to that effect. This warning is enabled by @option{-Wall}.
2980
2981 @item -fext-numeric-literals @r{(C++ and Objective-C++ only)}
2982 @opindex fext-numeric-literals
2983 @opindex fno-ext-numeric-literals
2984 Accept imaginary, fixed-point, or machine-defined
2985 literal number suffixes as GNU extensions.
2986 When this option is turned off these suffixes are treated
2987 as C++11 user-defined literal numeric suffixes.
2988 This is on by default for all pre-C++11 dialects and all GNU dialects:
2989 @option{-std=c++98}, @option{-std=gnu++98}, @option{-std=gnu++11},
2990 @option{-std=gnu++14}.
2991 This option is off by default
2992 for ISO C++11 onwards (@option{-std=c++11}, ...).
2993 @end table
2994
2995 The following @option{-W@dots{}} options are not affected by @option{-Wall}.
2996
2997 @table @gcctabopt
2998 @item -Weffc++ @r{(C++ and Objective-C++ only)}
2999 @opindex Weffc++
3000 @opindex Wno-effc++
3001 Warn about violations of the following style guidelines from Scott Meyers'
3002 @cite{Effective C++} series of books:
3003
3004 @itemize @bullet
3005 @item
3006 Define a copy constructor and an assignment operator for classes
3007 with dynamically-allocated memory.
3008
3009 @item
3010 Prefer initialization to assignment in constructors.
3011
3012 @item
3013 Have @code{operator=} return a reference to @code{*this}.
3014
3015 @item
3016 Don't try to return a reference when you must return an object.
3017
3018 @item
3019 Distinguish between prefix and postfix forms of increment and
3020 decrement operators.
3021
3022 @item
3023 Never overload @code{&&}, @code{||}, or @code{,}.
3024
3025 @end itemize
3026
3027 This option also enables @option{-Wnon-virtual-dtor}, which is also
3028 one of the effective C++ recommendations. However, the check is
3029 extended to warn about the lack of virtual destructor in accessible
3030 non-polymorphic bases classes too.
3031
3032 When selecting this option, be aware that the standard library
3033 headers do not obey all of these guidelines; use @samp{grep -v}
3034 to filter out those warnings.
3035
3036 @item -Wstrict-null-sentinel @r{(C++ and Objective-C++ only)}
3037 @opindex Wstrict-null-sentinel
3038 @opindex Wno-strict-null-sentinel
3039 Warn about the use of an uncasted @code{NULL} as sentinel. When
3040 compiling only with GCC this is a valid sentinel, as @code{NULL} is defined
3041 to @code{__null}. Although it is a null pointer constant rather than a
3042 null pointer, it is guaranteed to be of the same size as a pointer.
3043 But this use is not portable across different compilers.
3044
3045 @item -Wno-non-template-friend @r{(C++ and Objective-C++ only)}
3046 @opindex Wno-non-template-friend
3047 @opindex Wnon-template-friend
3048 Disable warnings when non-template friend functions are declared
3049 within a template. In very old versions of GCC that predate implementation
3050 of the ISO standard, declarations such as
3051 @samp{friend int foo(int)}, where the name of the friend is an unqualified-id,
3052 could be interpreted as a particular specialization of a template
3053 function; the warning exists to diagnose compatibility problems,
3054 and is enabled by default.
3055
3056 @item -Wold-style-cast @r{(C++ and Objective-C++ only)}
3057 @opindex Wold-style-cast
3058 @opindex Wno-old-style-cast
3059 Warn if an old-style (C-style) cast to a non-void type is used within
3060 a C++ program. The new-style casts (@code{dynamic_cast},
3061 @code{static_cast}, @code{reinterpret_cast}, and @code{const_cast}) are
3062 less vulnerable to unintended effects and much easier to search for.
3063
3064 @item -Woverloaded-virtual @r{(C++ and Objective-C++ only)}
3065 @opindex Woverloaded-virtual
3066 @opindex Wno-overloaded-virtual
3067 @cindex overloaded virtual function, warning
3068 @cindex warning for overloaded virtual function
3069 Warn when a function declaration hides virtual functions from a
3070 base class. For example, in:
3071
3072 @smallexample
3073 struct A @{
3074 virtual void f();
3075 @};
3076
3077 struct B: public A @{
3078 void f(int);
3079 @};
3080 @end smallexample
3081
3082 the @code{A} class version of @code{f} is hidden in @code{B}, and code
3083 like:
3084
3085 @smallexample
3086 B* b;
3087 b->f();
3088 @end smallexample
3089
3090 @noindent
3091 fails to compile.
3092
3093 @item -Wno-pmf-conversions @r{(C++ and Objective-C++ only)}
3094 @opindex Wno-pmf-conversions
3095 @opindex Wpmf-conversions
3096 Disable the diagnostic for converting a bound pointer to member function
3097 to a plain pointer.
3098
3099 @item -Wsign-promo @r{(C++ and Objective-C++ only)}
3100 @opindex Wsign-promo
3101 @opindex Wno-sign-promo
3102 Warn when overload resolution chooses a promotion from unsigned or
3103 enumerated type to a signed type, over a conversion to an unsigned type of
3104 the same size. Previous versions of G++ tried to preserve
3105 unsignedness, but the standard mandates the current behavior.
3106
3107 @item -Wtemplates @r{(C++ and Objective-C++ only)}
3108 @opindex Wtemplates
3109 Warn when a primary template declaration is encountered. Some coding
3110 rules disallow templates, and this may be used to enforce that rule.
3111 The warning is inactive inside a system header file, such as the STL, so
3112 one can still use the STL. One may also instantiate or specialize
3113 templates.
3114
3115 @item -Wmultiple-inheritance @r{(C++ and Objective-C++ only)}
3116 @opindex Wmultiple-inheritance
3117 Warn when a class is defined with multiple direct base classes. Some
3118 coding rules disallow multiple inheritance, and this may be used to
3119 enforce that rule. The warning is inactive inside a system header file,
3120 such as the STL, so one can still use the STL. One may also define
3121 classes that indirectly use multiple inheritance.
3122
3123 @item -Wvirtual-inheritance
3124 @opindex Wvirtual-inheritance
3125 Warn when a class is defined with a virtual direct base class. Some
3126 coding rules disallow multiple inheritance, and this may be used to
3127 enforce that rule. The warning is inactive inside a system header file,
3128 such as the STL, so one can still use the STL. One may also define
3129 classes that indirectly use virtual inheritance.
3130
3131 @item -Wnamespaces
3132 @opindex Wnamespaces
3133 Warn when a namespace definition is opened. Some coding rules disallow
3134 namespaces, and this may be used to enforce that rule. The warning is
3135 inactive inside a system header file, such as the STL, so one can still
3136 use the STL. One may also use using directives and qualified names.
3137
3138 @item -Wno-terminate @r{(C++ and Objective-C++ only)}
3139 @opindex Wterminate
3140 @opindex Wno-terminate
3141 Disable the warning about a throw-expression that will immediately
3142 result in a call to @code{terminate}.
3143 @end table
3144
3145 @node Objective-C and Objective-C++ Dialect Options
3146 @section Options Controlling Objective-C and Objective-C++ Dialects
3147
3148 @cindex compiler options, Objective-C and Objective-C++
3149 @cindex Objective-C and Objective-C++ options, command-line
3150 @cindex options, Objective-C and Objective-C++
3151 (NOTE: This manual does not describe the Objective-C and Objective-C++
3152 languages themselves. @xref{Standards,,Language Standards
3153 Supported by GCC}, for references.)
3154
3155 This section describes the command-line options that are only meaningful
3156 for Objective-C and Objective-C++ programs. You can also use most of
3157 the language-independent GNU compiler options.
3158 For example, you might compile a file @file{some_class.m} like this:
3159
3160 @smallexample
3161 gcc -g -fgnu-runtime -O -c some_class.m
3162 @end smallexample
3163
3164 @noindent
3165 In this example, @option{-fgnu-runtime} is an option meant only for
3166 Objective-C and Objective-C++ programs; you can use the other options with
3167 any language supported by GCC@.
3168
3169 Note that since Objective-C is an extension of the C language, Objective-C
3170 compilations may also use options specific to the C front-end (e.g.,
3171 @option{-Wtraditional}). Similarly, Objective-C++ compilations may use
3172 C++-specific options (e.g., @option{-Wabi}).
3173
3174 Here is a list of options that are @emph{only} for compiling Objective-C
3175 and Objective-C++ programs:
3176
3177 @table @gcctabopt
3178 @item -fconstant-string-class=@var{class-name}
3179 @opindex fconstant-string-class
3180 Use @var{class-name} as the name of the class to instantiate for each
3181 literal string specified with the syntax @code{@@"@dots{}"}. The default
3182 class name is @code{NXConstantString} if the GNU runtime is being used, and
3183 @code{NSConstantString} if the NeXT runtime is being used (see below). The
3184 @option{-fconstant-cfstrings} option, if also present, overrides the
3185 @option{-fconstant-string-class} setting and cause @code{@@"@dots{}"} literals
3186 to be laid out as constant CoreFoundation strings.
3187
3188 @item -fgnu-runtime
3189 @opindex fgnu-runtime
3190 Generate object code compatible with the standard GNU Objective-C
3191 runtime. This is the default for most types of systems.
3192
3193 @item -fnext-runtime
3194 @opindex fnext-runtime
3195 Generate output compatible with the NeXT runtime. This is the default
3196 for NeXT-based systems, including Darwin and Mac OS X@. The macro
3197 @code{__NEXT_RUNTIME__} is predefined if (and only if) this option is
3198 used.
3199
3200 @item -fno-nil-receivers
3201 @opindex fno-nil-receivers
3202 Assume that all Objective-C message dispatches (@code{[receiver
3203 message:arg]}) in this translation unit ensure that the receiver is
3204 not @code{nil}. This allows for more efficient entry points in the
3205 runtime to be used. This option is only available in conjunction with
3206 the NeXT runtime and ABI version 0 or 1.
3207
3208 @item -fobjc-abi-version=@var{n}
3209 @opindex fobjc-abi-version
3210 Use version @var{n} of the Objective-C ABI for the selected runtime.
3211 This option is currently supported only for the NeXT runtime. In that
3212 case, Version 0 is the traditional (32-bit) ABI without support for
3213 properties and other Objective-C 2.0 additions. Version 1 is the
3214 traditional (32-bit) ABI with support for properties and other
3215 Objective-C 2.0 additions. Version 2 is the modern (64-bit) ABI. If
3216 nothing is specified, the default is Version 0 on 32-bit target
3217 machines, and Version 2 on 64-bit target machines.
3218
3219 @item -fobjc-call-cxx-cdtors
3220 @opindex fobjc-call-cxx-cdtors
3221 For each Objective-C class, check if any of its instance variables is a
3222 C++ object with a non-trivial default constructor. If so, synthesize a
3223 special @code{- (id) .cxx_construct} instance method which runs
3224 non-trivial default constructors on any such instance variables, in order,
3225 and then return @code{self}. Similarly, check if any instance variable
3226 is a C++ object with a non-trivial destructor, and if so, synthesize a
3227 special @code{- (void) .cxx_destruct} method which runs
3228 all such default destructors, in reverse order.
3229
3230 The @code{- (id) .cxx_construct} and @code{- (void) .cxx_destruct}
3231 methods thusly generated only operate on instance variables
3232 declared in the current Objective-C class, and not those inherited
3233 from superclasses. It is the responsibility of the Objective-C
3234 runtime to invoke all such methods in an object's inheritance
3235 hierarchy. The @code{- (id) .cxx_construct} methods are invoked
3236 by the runtime immediately after a new object instance is allocated;
3237 the @code{- (void) .cxx_destruct} methods are invoked immediately
3238 before the runtime deallocates an object instance.
3239
3240 As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
3241 support for invoking the @code{- (id) .cxx_construct} and
3242 @code{- (void) .cxx_destruct} methods.
3243
3244 @item -fobjc-direct-dispatch
3245 @opindex fobjc-direct-dispatch
3246 Allow fast jumps to the message dispatcher. On Darwin this is
3247 accomplished via the comm page.
3248
3249 @item -fobjc-exceptions
3250 @opindex fobjc-exceptions
3251 Enable syntactic support for structured exception handling in
3252 Objective-C, similar to what is offered by C++. This option
3253 is required to use the Objective-C keywords @code{@@try},
3254 @code{@@throw}, @code{@@catch}, @code{@@finally} and
3255 @code{@@synchronized}. This option is available with both the GNU
3256 runtime and the NeXT runtime (but not available in conjunction with
3257 the NeXT runtime on Mac OS X 10.2 and earlier).
3258
3259 @item -fobjc-gc
3260 @opindex fobjc-gc
3261 Enable garbage collection (GC) in Objective-C and Objective-C++
3262 programs. This option is only available with the NeXT runtime; the
3263 GNU runtime has a different garbage collection implementation that
3264 does not require special compiler flags.
3265
3266 @item -fobjc-nilcheck
3267 @opindex fobjc-nilcheck
3268 For the NeXT runtime with version 2 of the ABI, check for a nil
3269 receiver in method invocations before doing the actual method call.
3270 This is the default and can be disabled using
3271 @option{-fno-objc-nilcheck}. Class methods and super calls are never
3272 checked for nil in this way no matter what this flag is set to.
3273 Currently this flag does nothing when the GNU runtime, or an older
3274 version of the NeXT runtime ABI, is used.
3275
3276 @item -fobjc-std=objc1
3277 @opindex fobjc-std
3278 Conform to the language syntax of Objective-C 1.0, the language
3279 recognized by GCC 4.0. This only affects the Objective-C additions to
3280 the C/C++ language; it does not affect conformance to C/C++ standards,
3281 which is controlled by the separate C/C++ dialect option flags. When
3282 this option is used with the Objective-C or Objective-C++ compiler,
3283 any Objective-C syntax that is not recognized by GCC 4.0 is rejected.
3284 This is useful if you need to make sure that your Objective-C code can
3285 be compiled with older versions of GCC@.
3286
3287 @item -freplace-objc-classes
3288 @opindex freplace-objc-classes
3289 Emit a special marker instructing @command{ld(1)} not to statically link in
3290 the resulting object file, and allow @command{dyld(1)} to load it in at
3291 run time instead. This is used in conjunction with the Fix-and-Continue
3292 debugging mode, where the object file in question may be recompiled and
3293 dynamically reloaded in the course of program execution, without the need
3294 to restart the program itself. Currently, Fix-and-Continue functionality
3295 is only available in conjunction with the NeXT runtime on Mac OS X 10.3
3296 and later.
3297
3298 @item -fzero-link
3299 @opindex fzero-link
3300 When compiling for the NeXT runtime, the compiler ordinarily replaces calls
3301 to @code{objc_getClass("@dots{}")} (when the name of the class is known at
3302 compile time) with static class references that get initialized at load time,
3303 which improves run-time performance. Specifying the @option{-fzero-link} flag
3304 suppresses this behavior and causes calls to @code{objc_getClass("@dots{}")}
3305 to be retained. This is useful in Zero-Link debugging mode, since it allows
3306 for individual class implementations to be modified during program execution.
3307 The GNU runtime currently always retains calls to @code{objc_get_class("@dots{}")}
3308 regardless of command-line options.
3309
3310 @item -fno-local-ivars
3311 @opindex fno-local-ivars
3312 @opindex flocal-ivars
3313 By default instance variables in Objective-C can be accessed as if
3314 they were local variables from within the methods of the class they're
3315 declared in. This can lead to shadowing between instance variables
3316 and other variables declared either locally inside a class method or
3317 globally with the same name. Specifying the @option{-fno-local-ivars}
3318 flag disables this behavior thus avoiding variable shadowing issues.
3319
3320 @item -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]}
3321 @opindex fivar-visibility
3322 Set the default instance variable visibility to the specified option
3323 so that instance variables declared outside the scope of any access
3324 modifier directives default to the specified visibility.
3325
3326 @item -gen-decls
3327 @opindex gen-decls
3328 Dump interface declarations for all classes seen in the source file to a
3329 file named @file{@var{sourcename}.decl}.
3330
3331 @item -Wassign-intercept @r{(Objective-C and Objective-C++ only)}
3332 @opindex Wassign-intercept
3333 @opindex Wno-assign-intercept
3334 Warn whenever an Objective-C assignment is being intercepted by the
3335 garbage collector.
3336
3337 @item -Wno-protocol @r{(Objective-C and Objective-C++ only)}
3338 @opindex Wno-protocol
3339 @opindex Wprotocol
3340 If a class is declared to implement a protocol, a warning is issued for
3341 every method in the protocol that is not implemented by the class. The
3342 default behavior is to issue a warning for every method not explicitly
3343 implemented in the class, even if a method implementation is inherited
3344 from the superclass. If you use the @option{-Wno-protocol} option, then
3345 methods inherited from the superclass are considered to be implemented,
3346 and no warning is issued for them.
3347
3348 @item -Wselector @r{(Objective-C and Objective-C++ only)}
3349 @opindex Wselector
3350 @opindex Wno-selector
3351 Warn if multiple methods of different types for the same selector are
3352 found during compilation. The check is performed on the list of methods
3353 in the final stage of compilation. Additionally, a check is performed
3354 for each selector appearing in a @code{@@selector(@dots{})}
3355 expression, and a corresponding method for that selector has been found
3356 during compilation. Because these checks scan the method table only at
3357 the end of compilation, these warnings are not produced if the final
3358 stage of compilation is not reached, for example because an error is
3359 found during compilation, or because the @option{-fsyntax-only} option is
3360 being used.
3361
3362 @item -Wstrict-selector-match @r{(Objective-C and Objective-C++ only)}
3363 @opindex Wstrict-selector-match
3364 @opindex Wno-strict-selector-match
3365 Warn if multiple methods with differing argument and/or return types are
3366 found for a given selector when attempting to send a message using this
3367 selector to a receiver of type @code{id} or @code{Class}. When this flag
3368 is off (which is the default behavior), the compiler omits such warnings
3369 if any differences found are confined to types that share the same size
3370 and alignment.
3371
3372 @item -Wundeclared-selector @r{(Objective-C and Objective-C++ only)}
3373 @opindex Wundeclared-selector
3374 @opindex Wno-undeclared-selector
3375 Warn if a @code{@@selector(@dots{})} expression referring to an
3376 undeclared selector is found. A selector is considered undeclared if no
3377 method with that name has been declared before the
3378 @code{@@selector(@dots{})} expression, either explicitly in an
3379 @code{@@interface} or @code{@@protocol} declaration, or implicitly in
3380 an @code{@@implementation} section. This option always performs its
3381 checks as soon as a @code{@@selector(@dots{})} expression is found,
3382 while @option{-Wselector} only performs its checks in the final stage of
3383 compilation. This also enforces the coding style convention
3384 that methods and selectors must be declared before being used.
3385
3386 @item -print-objc-runtime-info
3387 @opindex print-objc-runtime-info
3388 Generate C header describing the largest structure that is passed by
3389 value, if any.
3390
3391 @end table
3392
3393 @node Diagnostic Message Formatting Options
3394 @section Options to Control Diagnostic Messages Formatting
3395 @cindex options to control diagnostics formatting
3396 @cindex diagnostic messages
3397 @cindex message formatting
3398
3399 Traditionally, diagnostic messages have been formatted irrespective of
3400 the output device's aspect (e.g.@: its width, @dots{}). You can use the
3401 options described below
3402 to control the formatting algorithm for diagnostic messages,
3403 e.g.@: how many characters per line, how often source location
3404 information should be reported. Note that some language front ends may not
3405 honor these options.
3406
3407 @table @gcctabopt
3408 @item -fmessage-length=@var{n}
3409 @opindex fmessage-length
3410 Try to format error messages so that they fit on lines of about
3411 @var{n} characters. If @var{n} is zero, then no line-wrapping is
3412 done; each error message appears on a single line. This is the
3413 default for all front ends.
3414
3415 @item -fdiagnostics-show-location=once
3416 @opindex fdiagnostics-show-location
3417 Only meaningful in line-wrapping mode. Instructs the diagnostic messages
3418 reporter to emit source location information @emph{once}; that is, in
3419 case the message is too long to fit on a single physical line and has to
3420 be wrapped, the source location won't be emitted (as prefix) again,
3421 over and over, in subsequent continuation lines. This is the default
3422 behavior.
3423
3424 @item -fdiagnostics-show-location=every-line
3425 Only meaningful in line-wrapping mode. Instructs the diagnostic
3426 messages reporter to emit the same source location information (as
3427 prefix) for physical lines that result from the process of breaking
3428 a message which is too long to fit on a single line.
3429
3430 @item -fdiagnostics-color[=@var{WHEN}]
3431 @itemx -fno-diagnostics-color
3432 @opindex fdiagnostics-color
3433 @cindex highlight, color
3434 @vindex GCC_COLORS @r{environment variable}
3435 Use color in diagnostics. @var{WHEN} is @samp{never}, @samp{always},
3436 or @samp{auto}. The default depends on how the compiler has been configured,
3437 it can be any of the above @var{WHEN} options or also @samp{never}
3438 if @env{GCC_COLORS} environment variable isn't present in the environment,
3439 and @samp{auto} otherwise.
3440 @samp{auto} means to use color only when the standard error is a terminal.
3441 The forms @option{-fdiagnostics-color} and @option{-fno-diagnostics-color} are
3442 aliases for @option{-fdiagnostics-color=always} and
3443 @option{-fdiagnostics-color=never}, respectively.
3444
3445 The colors are defined by the environment variable @env{GCC_COLORS}.
3446 Its value is a colon-separated list of capabilities and Select Graphic
3447 Rendition (SGR) substrings. SGR commands are interpreted by the
3448 terminal or terminal emulator. (See the section in the documentation
3449 of your text terminal for permitted values and their meanings as
3450 character attributes.) These substring values are integers in decimal
3451 representation and can be concatenated with semicolons.
3452 Common values to concatenate include
3453 @samp{1} for bold,
3454 @samp{4} for underline,
3455 @samp{5} for blink,
3456 @samp{7} for inverse,
3457 @samp{39} for default foreground color,
3458 @samp{30} to @samp{37} for foreground colors,
3459 @samp{90} to @samp{97} for 16-color mode foreground colors,
3460 @samp{38;5;0} to @samp{38;5;255}
3461 for 88-color and 256-color modes foreground colors,
3462 @samp{49} for default background color,
3463 @samp{40} to @samp{47} for background colors,
3464 @samp{100} to @samp{107} for 16-color mode background colors,
3465 and @samp{48;5;0} to @samp{48;5;255}
3466 for 88-color and 256-color modes background colors.
3467
3468 The default @env{GCC_COLORS} is
3469 @smallexample
3470 error=01;31:warning=01;35:note=01;36:range1=32:range2=34:locus=01:\
3471 quote=01:fixit-insert=32:fixit-delete=31:\
3472 diff-filename=01:diff-hunk=32:diff-delete=31:diff-insert=32:\
3473 type-diff=01;32
3474 @end smallexample
3475 @noindent
3476 where @samp{01;31} is bold red, @samp{01;35} is bold magenta,
3477 @samp{01;36} is bold cyan, @samp{32} is green, @samp{34} is blue,
3478 @samp{01} is bold, and @samp{31} is red.
3479 Setting @env{GCC_COLORS} to the empty string disables colors.
3480 Supported capabilities are as follows.
3481
3482 @table @code
3483 @item error=
3484 @vindex error GCC_COLORS @r{capability}
3485 SGR substring for error: markers.
3486
3487 @item warning=
3488 @vindex warning GCC_COLORS @r{capability}
3489 SGR substring for warning: markers.
3490
3491 @item note=
3492 @vindex note GCC_COLORS @r{capability}
3493 SGR substring for note: markers.
3494
3495 @item range1=
3496 @vindex range1 GCC_COLORS @r{capability}
3497 SGR substring for first additional range.
3498
3499 @item range2=
3500 @vindex range2 GCC_COLORS @r{capability}
3501 SGR substring for second additional range.
3502
3503 @item locus=
3504 @vindex locus GCC_COLORS @r{capability}
3505 SGR substring for location information, @samp{file:line} or
3506 @samp{file:line:column} etc.
3507
3508 @item quote=
3509 @vindex quote GCC_COLORS @r{capability}
3510 SGR substring for information printed within quotes.
3511
3512 @item fixit-insert=
3513 @vindex fixit-insert GCC_COLORS @r{capability}
3514 SGR substring for fix-it hints suggesting text to
3515 be inserted or replaced.
3516
3517 @item fixit-delete=
3518 @vindex fixit-delete GCC_COLORS @r{capability}
3519 SGR substring for fix-it hints suggesting text to
3520 be deleted.
3521
3522 @item diff-filename=
3523 @vindex diff-filename GCC_COLORS @r{capability}
3524 SGR substring for filename headers within generated patches.
3525
3526 @item diff-hunk=
3527 @vindex diff-hunk GCC_COLORS @r{capability}
3528 SGR substring for the starts of hunks within generated patches.
3529
3530 @item diff-delete=
3531 @vindex diff-delete GCC_COLORS @r{capability}
3532 SGR substring for deleted lines within generated patches.
3533
3534 @item diff-insert=
3535 @vindex diff-insert GCC_COLORS @r{capability}
3536 SGR substring for inserted lines within generated patches.
3537
3538 @item type-diff=
3539 @vindex type-diff GCC_COLORS @r{capability}
3540 SGR substring for highlighting mismatching types within template
3541 arguments in the C++ frontend.
3542 @end table
3543
3544 @item -fno-diagnostics-show-option
3545 @opindex fno-diagnostics-show-option
3546 @opindex fdiagnostics-show-option
3547 By default, each diagnostic emitted includes text indicating the
3548 command-line option that directly controls the diagnostic (if such an
3549 option is known to the diagnostic machinery). Specifying the
3550 @option{-fno-diagnostics-show-option} flag suppresses that behavior.
3551
3552 @item -fno-diagnostics-show-caret
3553 @opindex fno-diagnostics-show-caret
3554 @opindex fdiagnostics-show-caret
3555 By default, each diagnostic emitted includes the original source line
3556 and a caret @samp{^} indicating the column. This option suppresses this
3557 information. The source line is truncated to @var{n} characters, if
3558 the @option{-fmessage-length=n} option is given. When the output is done
3559 to the terminal, the width is limited to the width given by the
3560 @env{COLUMNS} environment variable or, if not set, to the terminal width.
3561
3562 @item -fdiagnostics-parseable-fixits
3563 @opindex fdiagnostics-parseable-fixits
3564 Emit fix-it hints in a machine-parseable format, suitable for consumption
3565 by IDEs. For each fix-it, a line will be printed after the relevant
3566 diagnostic, starting with the string ``fix-it:''. For example:
3567
3568 @smallexample
3569 fix-it:"test.c":@{45:3-45:21@}:"gtk_widget_show_all"
3570 @end smallexample
3571
3572 The location is expressed as a half-open range, expressed as a count of
3573 bytes, starting at byte 1 for the initial column. In the above example,
3574 bytes 3 through 20 of line 45 of ``test.c'' are to be replaced with the
3575 given string:
3576
3577 @smallexample
3578 00000000011111111112222222222
3579 12345678901234567890123456789
3580 gtk_widget_showall (dlg);
3581 ^^^^^^^^^^^^^^^^^^
3582 gtk_widget_show_all
3583 @end smallexample
3584
3585 The filename and replacement string escape backslash as ``\\", tab as ``\t'',
3586 newline as ``\n'', double quotes as ``\"'', non-printable characters as octal
3587 (e.g. vertical tab as ``\013'').
3588
3589 An empty replacement string indicates that the given range is to be removed.
3590 An empty range (e.g. ``45:3-45:3'') indicates that the string is to
3591 be inserted at the given position.
3592
3593 @item -fdiagnostics-generate-patch
3594 @opindex fdiagnostics-generate-patch
3595 Print fix-it hints to stderr in unified diff format, after any diagnostics
3596 are printed. For example:
3597
3598 @smallexample
3599 --- test.c
3600 +++ test.c
3601 @@ -42,5 +42,5 @@
3602
3603 void show_cb(GtkDialog *dlg)
3604 @{
3605 - gtk_widget_showall(dlg);
3606 + gtk_widget_show_all(dlg);
3607 @}
3608
3609 @end smallexample
3610
3611 The diff may or may not be colorized, following the same rules
3612 as for diagnostics (see @option{-fdiagnostics-color}).
3613
3614 @item -fdiagnostics-show-template-tree
3615 @opindex fdiagnostics-show-template-tree
3616
3617 In the C++ frontend, when printing diagnostics showing mismatching
3618 template types, such as:
3619
3620 @smallexample
3621 could not convert 'std::map<int, std::vector<double> >()'
3622 from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
3623 @end smallexample
3624
3625 the @option{-fdiagnostics-show-template-tree} flag enables printing a
3626 tree-like structure showing the common and differing parts of the types,
3627 such as:
3628
3629 @smallexample
3630 map<
3631 [...],
3632 vector<
3633 [double != float]>>
3634 @end smallexample
3635
3636 The parts that differ are highlighted with color (``double'' and
3637 ``float'' in this case).
3638
3639 @item -fno-elide-type
3640 @opindex fno-elide-type
3641 @opindex felide-type
3642 By default when the C++ frontend prints diagnostics showing mismatching
3643 template types, common parts of the types are printed as ``[...]'' to
3644 simplify the error message. For example:
3645
3646 @smallexample
3647 could not convert 'std::map<int, std::vector<double> >()'
3648 from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
3649 @end smallexample
3650
3651 Specifying the @option{-fno-elide-type} flag suppresses that behavior.
3652 This flag also affects the output of the
3653 @option{-fdiagnostics-show-template-tree} flag.
3654
3655 @item -fno-show-column
3656 @opindex fno-show-column
3657 Do not print column numbers in diagnostics. This may be necessary if
3658 diagnostics are being scanned by a program that does not understand the
3659 column numbers, such as @command{dejagnu}.
3660
3661 @end table
3662
3663 @node Warning Options
3664 @section Options to Request or Suppress Warnings
3665 @cindex options to control warnings
3666 @cindex warning messages
3667 @cindex messages, warning
3668 @cindex suppressing warnings
3669
3670 Warnings are diagnostic messages that report constructions that
3671 are not inherently erroneous but that are risky or suggest there
3672 may have been an error.
3673
3674 The following language-independent options do not enable specific
3675 warnings but control the kinds of diagnostics produced by GCC@.
3676
3677 @table @gcctabopt
3678 @cindex syntax checking
3679 @item -fsyntax-only
3680 @opindex fsyntax-only
3681 Check the code for syntax errors, but don't do anything beyond that.
3682
3683 @item -fmax-errors=@var{n}
3684 @opindex fmax-errors
3685 Limits the maximum number of error messages to @var{n}, at which point
3686 GCC bails out rather than attempting to continue processing the source
3687 code. If @var{n} is 0 (the default), there is no limit on the number
3688 of error messages produced. If @option{-Wfatal-errors} is also
3689 specified, then @option{-Wfatal-errors} takes precedence over this
3690 option.
3691
3692 @item -w
3693 @opindex w
3694 Inhibit all warning messages.
3695
3696 @item -Werror
3697 @opindex Werror
3698 @opindex Wno-error
3699 Make all warnings into errors.
3700
3701 @item -Werror=
3702 @opindex Werror=
3703 @opindex Wno-error=
3704 Make the specified warning into an error. The specifier for a warning
3705 is appended; for example @option{-Werror=switch} turns the warnings
3706 controlled by @option{-Wswitch} into errors. This switch takes a
3707 negative form, to be used to negate @option{-Werror} for specific
3708 warnings; for example @option{-Wno-error=switch} makes
3709 @option{-Wswitch} warnings not be errors, even when @option{-Werror}
3710 is in effect.
3711
3712 The warning message for each controllable warning includes the
3713 option that controls the warning. That option can then be used with
3714 @option{-Werror=} and @option{-Wno-error=} as described above.
3715 (Printing of the option in the warning message can be disabled using the
3716 @option{-fno-diagnostics-show-option} flag.)
3717
3718 Note that specifying @option{-Werror=}@var{foo} automatically implies
3719 @option{-W}@var{foo}. However, @option{-Wno-error=}@var{foo} does not
3720 imply anything.
3721
3722 @item -Wfatal-errors
3723 @opindex Wfatal-errors
3724 @opindex Wno-fatal-errors
3725 This option causes the compiler to abort compilation on the first error
3726 occurred rather than trying to keep going and printing further error
3727 messages.
3728
3729 @end table
3730
3731 You can request many specific warnings with options beginning with
3732 @samp{-W}, for example @option{-Wimplicit} to request warnings on
3733 implicit declarations. Each of these specific warning options also
3734 has a negative form beginning @samp{-Wno-} to turn off warnings; for
3735 example, @option{-Wno-implicit}. This manual lists only one of the
3736 two forms, whichever is not the default. For further
3737 language-specific options also refer to @ref{C++ Dialect Options} and
3738 @ref{Objective-C and Objective-C++ Dialect Options}.
3739
3740 Some options, such as @option{-Wall} and @option{-Wextra}, turn on other
3741 options, such as @option{-Wunused}, which may turn on further options,
3742 such as @option{-Wunused-value}. The combined effect of positive and
3743 negative forms is that more specific options have priority over less
3744 specific ones, independently of their position in the command-line. For
3745 options of the same specificity, the last one takes effect. Options
3746 enabled or disabled via pragmas (@pxref{Diagnostic Pragmas}) take effect
3747 as if they appeared at the end of the command-line.
3748
3749 When an unrecognized warning option is requested (e.g.,
3750 @option{-Wunknown-warning}), GCC emits a diagnostic stating
3751 that the option is not recognized. However, if the @option{-Wno-} form
3752 is used, the behavior is slightly different: no diagnostic is
3753 produced for @option{-Wno-unknown-warning} unless other diagnostics
3754 are being produced. This allows the use of new @option{-Wno-} options
3755 with old compilers, but if something goes wrong, the compiler
3756 warns that an unrecognized option is present.
3757
3758 @table @gcctabopt
3759 @item -Wpedantic
3760 @itemx -pedantic
3761 @opindex pedantic
3762 @opindex Wpedantic
3763 Issue all the warnings demanded by strict ISO C and ISO C++;
3764 reject all programs that use forbidden extensions, and some other
3765 programs that do not follow ISO C and ISO C++. For ISO C, follows the
3766 version of the ISO C standard specified by any @option{-std} option used.
3767
3768 Valid ISO C and ISO C++ programs should compile properly with or without
3769 this option (though a rare few require @option{-ansi} or a
3770 @option{-std} option specifying the required version of ISO C)@. However,
3771 without this option, certain GNU extensions and traditional C and C++
3772 features are supported as well. With this option, they are rejected.
3773
3774 @option{-Wpedantic} does not cause warning messages for use of the
3775 alternate keywords whose names begin and end with @samp{__}. Pedantic
3776 warnings are also disabled in the expression that follows
3777 @code{__extension__}. However, only system header files should use
3778 these escape routes; application programs should avoid them.
3779 @xref{Alternate Keywords}.
3780
3781 Some users try to use @option{-Wpedantic} to check programs for strict ISO
3782 C conformance. They soon find that it does not do quite what they want:
3783 it finds some non-ISO practices, but not all---only those for which
3784 ISO C @emph{requires} a diagnostic, and some others for which
3785 diagnostics have been added.
3786
3787 A feature to report any failure to conform to ISO C might be useful in
3788 some instances, but would require considerable additional work and would
3789 be quite different from @option{-Wpedantic}. We don't have plans to
3790 support such a feature in the near future.
3791
3792 Where the standard specified with @option{-std} represents a GNU
3793 extended dialect of C, such as @samp{gnu90} or @samp{gnu99}, there is a
3794 corresponding @dfn{base standard}, the version of ISO C on which the GNU
3795 extended dialect is based. Warnings from @option{-Wpedantic} are given
3796 where they are required by the base standard. (It does not make sense
3797 for such warnings to be given only for features not in the specified GNU
3798 C dialect, since by definition the GNU dialects of C include all
3799 features the compiler supports with the given option, and there would be
3800 nothing to warn about.)
3801
3802 @item -pedantic-errors
3803 @opindex pedantic-errors
3804 Give an error whenever the @dfn{base standard} (see @option{-Wpedantic})
3805 requires a diagnostic, in some cases where there is undefined behavior
3806 at compile-time and in some other cases that do not prevent compilation
3807 of programs that are valid according to the standard. This is not
3808 equivalent to @option{-Werror=pedantic}, since there are errors enabled
3809 by this option and not enabled by the latter and vice versa.
3810
3811 @item -Wall
3812 @opindex Wall
3813 @opindex Wno-all
3814 This enables all the warnings about constructions that some users
3815 consider questionable, and that are easy to avoid (or modify to
3816 prevent the warning), even in conjunction with macros. This also
3817 enables some language-specific warnings described in @ref{C++ Dialect
3818 Options} and @ref{Objective-C and Objective-C++ Dialect Options}.
3819
3820 @option{-Wall} turns on the following warning flags:
3821
3822 @gccoptlist{-Waddress @gol
3823 -Warray-bounds=1 @r{(only with} @option{-O2}@r{)} @gol
3824 -Wbool-compare @gol
3825 -Wbool-operation @gol
3826 -Wc++11-compat -Wc++14-compat @gol
3827 -Wcatch-value @r{(C++ and Objective-C++ only)} @gol
3828 -Wchar-subscripts @gol
3829 -Wcomment @gol
3830 -Wduplicate-decl-specifier @r{(C and Objective-C only)} @gol
3831 -Wenum-compare @r{(in C/ObjC; this is on by default in C++)} @gol
3832 -Wformat @gol
3833 -Wint-in-bool-context @gol
3834 -Wimplicit @r{(C and Objective-C only)} @gol
3835 -Wimplicit-int @r{(C and Objective-C only)} @gol
3836 -Wimplicit-function-declaration @r{(C and Objective-C only)} @gol
3837 -Winit-self @r{(only for C++)} @gol
3838 -Wlogical-not-parentheses @gol
3839 -Wmain @r{(only for C/ObjC and unless} @option{-ffreestanding}@r{)} @gol
3840 -Wmaybe-uninitialized @gol
3841 -Wmemset-elt-size @gol
3842 -Wmemset-transposed-args @gol
3843 -Wmisleading-indentation @r{(only for C/C++)} @gol
3844 -Wmissing-braces @r{(only for C/ObjC)} @gol
3845 -Wmultistatement-macros @gol
3846 -Wnarrowing @r{(only for C++)} @gol
3847 -Wnonnull @gol
3848 -Wnonnull-compare @gol
3849 -Wopenmp-simd @gol
3850 -Wparentheses @gol
3851 -Wpointer-sign @gol
3852 -Wreorder @gol
3853 -Wreturn-type @gol
3854 -Wsequence-point @gol
3855 -Wsign-compare @r{(only in C++)} @gol
3856 -Wsizeof-pointer-div @gol
3857 -Wsizeof-pointer-memaccess @gol
3858 -Wstrict-aliasing @gol
3859 -Wstrict-overflow=1 @gol
3860 -Wswitch @gol
3861 -Wtautological-compare @gol
3862 -Wtrigraphs @gol
3863 -Wuninitialized @gol
3864 -Wunknown-pragmas @gol
3865 -Wunused-function @gol
3866 -Wunused-label @gol
3867 -Wunused-value @gol
3868 -Wunused-variable @gol
3869 -Wvolatile-register-var @gol
3870 }
3871
3872 Note that some warning flags are not implied by @option{-Wall}. Some of
3873 them warn about constructions that users generally do not consider
3874 questionable, but which occasionally you might wish to check for;
3875 others warn about constructions that are necessary or hard to avoid in
3876 some cases, and there is no simple way to modify the code to suppress
3877 the warning. Some of them are enabled by @option{-Wextra} but many of
3878 them must be enabled individually.
3879
3880 @item -Wextra
3881 @opindex W
3882 @opindex Wextra
3883 @opindex Wno-extra
3884 This enables some extra warning flags that are not enabled by
3885 @option{-Wall}. (This option used to be called @option{-W}. The older
3886 name is still supported, but the newer name is more descriptive.)
3887
3888 @gccoptlist{-Wclobbered @gol
3889 -Wempty-body @gol
3890 -Wignored-qualifiers @gol
3891 -Wimplicit-fallthrough=3 @gol
3892 -Wmissing-field-initializers @gol
3893 -Wmissing-parameter-type @r{(C only)} @gol
3894 -Wold-style-declaration @r{(C only)} @gol
3895 -Woverride-init @gol
3896 -Wsign-compare @r{(C only)} @gol
3897 -Wtype-limits @gol
3898 -Wuninitialized @gol
3899 -Wshift-negative-value @r{(in C++03 and in C99 and newer)} @gol
3900 -Wunused-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
3901 -Wunused-but-set-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
3902 }
3903
3904 The option @option{-Wextra} also prints warning messages for the
3905 following cases:
3906
3907 @itemize @bullet
3908
3909 @item
3910 A pointer is compared against integer zero with @code{<}, @code{<=},
3911 @code{>}, or @code{>=}.
3912
3913 @item
3914 (C++ only) An enumerator and a non-enumerator both appear in a
3915 conditional expression.
3916
3917 @item
3918 (C++ only) Ambiguous virtual bases.
3919
3920 @item
3921 (C++ only) Subscripting an array that has been declared @code{register}.
3922
3923 @item
3924 (C++ only) Taking the address of a variable that has been declared
3925 @code{register}.
3926
3927 @item
3928 (C++ only) A base class is not initialized in the copy constructor
3929 of a derived class.
3930
3931 @end itemize
3932
3933 @item -Wchar-subscripts
3934 @opindex Wchar-subscripts
3935 @opindex Wno-char-subscripts
3936 Warn if an array subscript has type @code{char}. This is a common cause
3937 of error, as programmers often forget that this type is signed on some
3938 machines.
3939 This warning is enabled by @option{-Wall}.
3940
3941 @item -Wchkp
3942 @opindex Wchkp
3943 Warn about an invalid memory access that is found by Pointer Bounds Checker
3944 (@option{-fcheck-pointer-bounds}).
3945
3946 @item -Wno-coverage-mismatch
3947 @opindex Wno-coverage-mismatch
3948 Warn if feedback profiles do not match when using the
3949 @option{-fprofile-use} option.
3950 If a source file is changed between compiling with @option{-fprofile-gen} and
3951 with @option{-fprofile-use}, the files with the profile feedback can fail
3952 to match the source file and GCC cannot use the profile feedback
3953 information. By default, this warning is enabled and is treated as an
3954 error. @option{-Wno-coverage-mismatch} can be used to disable the
3955 warning or @option{-Wno-error=coverage-mismatch} can be used to
3956 disable the error. Disabling the error for this warning can result in
3957 poorly optimized code and is useful only in the
3958 case of very minor changes such as bug fixes to an existing code-base.
3959 Completely disabling the warning is not recommended.
3960
3961 @item -Wno-cpp
3962 @r{(C, Objective-C, C++, Objective-C++ and Fortran only)}
3963
3964 Suppress warning messages emitted by @code{#warning} directives.
3965
3966 @item -Wdouble-promotion @r{(C, C++, Objective-C and Objective-C++ only)}
3967 @opindex Wdouble-promotion
3968 @opindex Wno-double-promotion
3969 Give a warning when a value of type @code{float} is implicitly
3970 promoted to @code{double}. CPUs with a 32-bit ``single-precision''
3971 floating-point unit implement @code{float} in hardware, but emulate
3972 @code{double} in software. On such a machine, doing computations
3973 using @code{double} values is much more expensive because of the
3974 overhead required for software emulation.
3975
3976 It is easy to accidentally do computations with @code{double} because
3977 floating-point literals are implicitly of type @code{double}. For
3978 example, in:
3979 @smallexample
3980 @group
3981 float area(float radius)
3982 @{
3983 return 3.14159 * radius * radius;
3984 @}
3985 @end group
3986 @end smallexample
3987 the compiler performs the entire computation with @code{double}
3988 because the floating-point literal is a @code{double}.
3989
3990 @item -Wduplicate-decl-specifier @r{(C and Objective-C only)}
3991 @opindex Wduplicate-decl-specifier
3992 @opindex Wno-duplicate-decl-specifier
3993 Warn if a declaration has duplicate @code{const}, @code{volatile},
3994 @code{restrict} or @code{_Atomic} specifier. This warning is enabled by
3995 @option{-Wall}.
3996
3997 @item -Wformat
3998 @itemx -Wformat=@var{n}
3999 @opindex Wformat
4000 @opindex Wno-format
4001 @opindex ffreestanding
4002 @opindex fno-builtin
4003 @opindex Wformat=
4004 Check calls to @code{printf} and @code{scanf}, etc., to make sure that
4005 the arguments supplied have types appropriate to the format string
4006 specified, and that the conversions specified in the format string make
4007 sense. This includes standard functions, and others specified by format
4008 attributes (@pxref{Function Attributes}), in the @code{printf},
4009 @code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
4010 not in the C standard) families (or other target-specific families).
4011 Which functions are checked without format attributes having been
4012 specified depends on the standard version selected, and such checks of
4013 functions without the attribute specified are disabled by
4014 @option{-ffreestanding} or @option{-fno-builtin}.
4015
4016 The formats are checked against the format features supported by GNU
4017 libc version 2.2. These include all ISO C90 and C99 features, as well
4018 as features from the Single Unix Specification and some BSD and GNU
4019 extensions. Other library implementations may not support all these
4020 features; GCC does not support warning about features that go beyond a
4021 particular library's limitations. However, if @option{-Wpedantic} is used
4022 with @option{-Wformat}, warnings are given about format features not
4023 in the selected standard version (but not for @code{strfmon} formats,
4024 since those are not in any version of the C standard). @xref{C Dialect
4025 Options,,Options Controlling C Dialect}.
4026
4027 @table @gcctabopt
4028 @item -Wformat=1
4029 @itemx -Wformat
4030 @opindex Wformat
4031 @opindex Wformat=1
4032 Option @option{-Wformat} is equivalent to @option{-Wformat=1}, and
4033 @option{-Wno-format} is equivalent to @option{-Wformat=0}. Since
4034 @option{-Wformat} also checks for null format arguments for several
4035 functions, @option{-Wformat} also implies @option{-Wnonnull}. Some
4036 aspects of this level of format checking can be disabled by the
4037 options: @option{-Wno-format-contains-nul},
4038 @option{-Wno-format-extra-args}, and @option{-Wno-format-zero-length}.
4039 @option{-Wformat} is enabled by @option{-Wall}.
4040
4041 @item -Wno-format-contains-nul
4042 @opindex Wno-format-contains-nul
4043 @opindex Wformat-contains-nul
4044 If @option{-Wformat} is specified, do not warn about format strings that
4045 contain NUL bytes.
4046
4047 @item -Wno-format-extra-args
4048 @opindex Wno-format-extra-args
4049 @opindex Wformat-extra-args
4050 If @option{-Wformat} is specified, do not warn about excess arguments to a
4051 @code{printf} or @code{scanf} format function. The C standard specifies
4052 that such arguments are ignored.
4053
4054 Where the unused arguments lie between used arguments that are
4055 specified with @samp{$} operand number specifications, normally
4056 warnings are still given, since the implementation could not know what
4057 type to pass to @code{va_arg} to skip the unused arguments. However,
4058 in the case of @code{scanf} formats, this option suppresses the
4059 warning if the unused arguments are all pointers, since the Single
4060 Unix Specification says that such unused arguments are allowed.
4061
4062 @item -Wformat-overflow
4063 @itemx -Wformat-overflow=@var{level}
4064 @opindex Wformat-overflow
4065 @opindex Wno-format-overflow
4066 Warn about calls to formatted input/output functions such as @code{sprintf}
4067 and @code{vsprintf} that might overflow the destination buffer. When the
4068 exact number of bytes written by a format directive cannot be determined
4069 at compile-time it is estimated based on heuristics that depend on the
4070 @var{level} argument and on optimization. While enabling optimization
4071 will in most cases improve the accuracy of the warning, it may also
4072 result in false positives.
4073
4074 @table @gcctabopt
4075 @item -Wformat-overflow
4076 @item -Wformat-overflow=1
4077 @opindex Wformat-overflow
4078 @opindex Wno-format-overflow
4079 Level @var{1} of @option{-Wformat-overflow} enabled by @option{-Wformat}
4080 employs a conservative approach that warns only about calls that most
4081 likely overflow the buffer. At this level, numeric arguments to format
4082 directives with unknown values are assumed to have the value of one, and
4083 strings of unknown length to be empty. Numeric arguments that are known
4084 to be bounded to a subrange of their type, or string arguments whose output
4085 is bounded either by their directive's precision or by a finite set of
4086 string literals, are assumed to take on the value within the range that
4087 results in the most bytes on output. For example, the call to @code{sprintf}
4088 below is diagnosed because even with both @var{a} and @var{b} equal to zero,
4089 the terminating NUL character (@code{'\0'}) appended by the function
4090 to the destination buffer will be written past its end. Increasing
4091 the size of the buffer by a single byte is sufficient to avoid the
4092 warning, though it may not be sufficient to avoid the overflow.
4093
4094 @smallexample
4095 void f (int a, int b)
4096 @{
4097 char buf [12];
4098 sprintf (buf, "a = %i, b = %i\n", a, b);
4099 @}
4100 @end smallexample
4101
4102 @item -Wformat-overflow=2
4103 Level @var{2} warns also about calls that might overflow the destination
4104 buffer given an argument of sufficient length or magnitude. At level
4105 @var{2}, unknown numeric arguments are assumed to have the minimum
4106 representable value for signed types with a precision greater than 1, and
4107 the maximum representable value otherwise. Unknown string arguments whose
4108 length cannot be assumed to be bounded either by the directive's precision,
4109 or by a finite set of string literals they may evaluate to, or the character
4110 array they may point to, are assumed to be 1 character long.
4111
4112 At level @var{2}, the call in the example above is again diagnosed, but
4113 this time because with @var{a} equal to a 32-bit @code{INT_MIN} the first
4114 @code{%i} directive will write some of its digits beyond the end of
4115 the destination buffer. To make the call safe regardless of the values
4116 of the two variables, the size of the destination buffer must be increased
4117 to at least 34 bytes. GCC includes the minimum size of the buffer in
4118 an informational note following the warning.
4119
4120 An alternative to increasing the size of the destination buffer is to
4121 constrain the range of formatted values. The maximum length of string
4122 arguments can be bounded by specifying the precision in the format
4123 directive. When numeric arguments of format directives can be assumed
4124 to be bounded by less than the precision of their type, choosing
4125 an appropriate length modifier to the format specifier will reduce
4126 the required buffer size. For example, if @var{a} and @var{b} in the
4127 example above can be assumed to be within the precision of
4128 the @code{short int} type then using either the @code{%hi} format
4129 directive or casting the argument to @code{short} reduces the maximum
4130 required size of the buffer to 24 bytes.
4131
4132 @smallexample
4133 void f (int a, int b)
4134 @{
4135 char buf [23];
4136 sprintf (buf, "a = %hi, b = %i\n", a, (short)b);
4137 @}
4138 @end smallexample
4139 @end table
4140
4141 @item -Wno-format-zero-length
4142 @opindex Wno-format-zero-length
4143 @opindex Wformat-zero-length
4144 If @option{-Wformat} is specified, do not warn about zero-length formats.
4145 The C standard specifies that zero-length formats are allowed.
4146
4147
4148 @item -Wformat=2
4149 @opindex Wformat=2
4150 Enable @option{-Wformat} plus additional format checks. Currently
4151 equivalent to @option{-Wformat -Wformat-nonliteral -Wformat-security
4152 -Wformat-y2k}.
4153
4154 @item -Wformat-nonliteral
4155 @opindex Wformat-nonliteral
4156 @opindex Wno-format-nonliteral
4157 If @option{-Wformat} is specified, also warn if the format string is not a
4158 string literal and so cannot be checked, unless the format function
4159 takes its format arguments as a @code{va_list}.
4160
4161 @item -Wformat-security
4162 @opindex Wformat-security
4163 @opindex Wno-format-security
4164 If @option{-Wformat} is specified, also warn about uses of format
4165 functions that represent possible security problems. At present, this
4166 warns about calls to @code{printf} and @code{scanf} functions where the
4167 format string is not a string literal and there are no format arguments,
4168 as in @code{printf (foo);}. This may be a security hole if the format
4169 string came from untrusted input and contains @samp{%n}. (This is
4170 currently a subset of what @option{-Wformat-nonliteral} warns about, but
4171 in future warnings may be added to @option{-Wformat-security} that are not
4172 included in @option{-Wformat-nonliteral}.)
4173
4174 @item -Wformat-signedness
4175 @opindex Wformat-signedness
4176 @opindex Wno-format-signedness
4177 If @option{-Wformat} is specified, also warn if the format string
4178 requires an unsigned argument and the argument is signed and vice versa.
4179
4180 @item -Wformat-truncation
4181 @itemx -Wformat-truncation=@var{level}
4182 @opindex Wformat-truncation
4183 @opindex Wno-format-truncation
4184 Warn about calls to formatted input/output functions such as @code{snprintf}
4185 and @code{vsnprintf} that might result in output truncation. When the exact
4186 number of bytes written by a format directive cannot be determined at
4187 compile-time it is estimated based on heuristics that depend on
4188 the @var{level} argument and on optimization. While enabling optimization
4189 will in most cases improve the accuracy of the warning, it may also result
4190 in false positives. Except as noted otherwise, the option uses the same
4191 logic @option{-Wformat-overflow}.
4192
4193 @table @gcctabopt
4194 @item -Wformat-truncation
4195 @item -Wformat-truncation=1
4196 @opindex Wformat-truncation
4197 @opindex Wno-format-overflow
4198 Level @var{1} of @option{-Wformat-truncation} enabled by @option{-Wformat}
4199 employs a conservative approach that warns only about calls to bounded
4200 functions whose return value is unused and that will most likely result
4201 in output truncation.
4202
4203 @item -Wformat-truncation=2
4204 Level @var{2} warns also about calls to bounded functions whose return
4205 value is used and that might result in truncation given an argument of
4206 sufficient length or magnitude.
4207 @end table
4208
4209 @item -Wformat-y2k
4210 @opindex Wformat-y2k
4211 @opindex Wno-format-y2k
4212 If @option{-Wformat} is specified, also warn about @code{strftime}
4213 formats that may yield only a two-digit year.
4214 @end table
4215
4216 @item -Wnonnull
4217 @opindex Wnonnull
4218 @opindex Wno-nonnull
4219 Warn about passing a null pointer for arguments marked as
4220 requiring a non-null value by the @code{nonnull} function attribute.
4221
4222 @option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}. It
4223 can be disabled with the @option{-Wno-nonnull} option.
4224
4225 @item -Wnonnull-compare
4226 @opindex Wnonnull-compare
4227 @opindex Wno-nonnull-compare
4228 Warn when comparing an argument marked with the @code{nonnull}
4229 function attribute against null inside the function.
4230
4231 @option{-Wnonnull-compare} is included in @option{-Wall}. It
4232 can be disabled with the @option{-Wno-nonnull-compare} option.
4233
4234 @item -Wnull-dereference
4235 @opindex Wnull-dereference
4236 @opindex Wno-null-dereference
4237 Warn if the compiler detects paths that trigger erroneous or
4238 undefined behavior due to dereferencing a null pointer. This option
4239 is only active when @option{-fdelete-null-pointer-checks} is active,
4240 which is enabled by optimizations in most targets. The precision of
4241 the warnings depends on the optimization options used.
4242
4243 @item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)}
4244 @opindex Winit-self
4245 @opindex Wno-init-self
4246 Warn about uninitialized variables that are initialized with themselves.
4247 Note this option can only be used with the @option{-Wuninitialized} option.
4248
4249 For example, GCC warns about @code{i} being uninitialized in the
4250 following snippet only when @option{-Winit-self} has been specified:
4251 @smallexample
4252 @group
4253 int f()
4254 @{
4255 int i = i;
4256 return i;
4257 @}
4258 @end group
4259 @end smallexample
4260
4261 This warning is enabled by @option{-Wall} in C++.
4262
4263 @item -Wimplicit-int @r{(C and Objective-C only)}
4264 @opindex Wimplicit-int
4265 @opindex Wno-implicit-int
4266 Warn when a declaration does not specify a type.
4267 This warning is enabled by @option{-Wall}.
4268
4269 @item -Wimplicit-function-declaration @r{(C and Objective-C only)}
4270 @opindex Wimplicit-function-declaration
4271 @opindex Wno-implicit-function-declaration
4272 Give a warning whenever a function is used before being declared. In
4273 C99 mode (@option{-std=c99} or @option{-std=gnu99}), this warning is
4274 enabled by default and it is made into an error by
4275 @option{-pedantic-errors}. This warning is also enabled by
4276 @option{-Wall}.
4277
4278 @item -Wimplicit @r{(C and Objective-C only)}
4279 @opindex Wimplicit
4280 @opindex Wno-implicit
4281 Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
4282 This warning is enabled by @option{-Wall}.
4283
4284 @item -Wimplicit-fallthrough
4285 @opindex Wimplicit-fallthrough
4286 @opindex Wno-implicit-fallthrough
4287 @option{-Wimplicit-fallthrough} is the same as @option{-Wimplicit-fallthrough=3}
4288 and @option{-Wno-implicit-fallthrough} is the same as
4289 @option{-Wimplicit-fallthrough=0}.
4290
4291 @item -Wimplicit-fallthrough=@var{n}
4292 @opindex Wimplicit-fallthrough=
4293 Warn when a switch case falls through. For example:
4294
4295 @smallexample
4296 @group
4297 switch (cond)
4298 @{
4299 case 1:
4300 a = 1;
4301 break;
4302 case 2:
4303 a = 2;
4304 case 3:
4305 a = 3;
4306 break;
4307 @}
4308 @end group
4309 @end smallexample
4310
4311 This warning does not warn when the last statement of a case cannot
4312 fall through, e.g. when there is a return statement or a call to function
4313 declared with the noreturn attribute. @option{-Wimplicit-fallthrough=}
4314 also takes into account control flow statements, such as ifs, and only
4315 warns when appropriate. E.g.@:
4316
4317 @smallexample
4318 @group
4319 switch (cond)
4320 @{
4321 case 1:
4322 if (i > 3) @{
4323 bar (5);
4324 break;
4325 @} else if (i < 1) @{
4326 bar (0);
4327 @} else
4328 return;
4329 default:
4330 @dots{}
4331 @}
4332 @end group
4333 @end smallexample
4334
4335 Since there are occasions where a switch case fall through is desirable,
4336 GCC provides an attribute, @code{__attribute__ ((fallthrough))}, that is
4337 to be used along with a null statement to suppress this warning that
4338 would normally occur:
4339
4340 @smallexample
4341 @group
4342 switch (cond)
4343 @{
4344 case 1:
4345 bar (0);
4346 __attribute__ ((fallthrough));
4347 default:
4348 @dots{}
4349 @}
4350 @end group
4351 @end smallexample
4352
4353 C++17 provides a standard way to suppress the @option{-Wimplicit-fallthrough}
4354 warning using @code{[[fallthrough]];} instead of the GNU attribute. In C++11
4355 or C++14 users can use @code{[[gnu::fallthrough]];}, which is a GNU extension.
4356 Instead of these attributes, it is also possible to add a fallthrough comment
4357 to silence the warning. The whole body of the C or C++ style comment should
4358 match the given regular expressions listed below. The option argument @var{n}
4359 specifies what kind of comments are accepted:
4360
4361 @itemize @bullet
4362
4363 @item @option{-Wimplicit-fallthrough=0} disables the warning altogether.
4364
4365 @item @option{-Wimplicit-fallthrough=1} matches @code{.*} regular
4366 expression, any comment is used as fallthrough comment.
4367
4368 @item @option{-Wimplicit-fallthrough=2} case insensitively matches
4369 @code{.*falls?[ \t-]*thr(ough|u).*} regular expression.
4370
4371 @item @option{-Wimplicit-fallthrough=3} case sensitively matches one of the
4372 following regular expressions:
4373
4374 @itemize @bullet
4375
4376 @item @code{-fallthrough}
4377
4378 @item @code{@@fallthrough@@}
4379
4380 @item @code{lint -fallthrough[ \t]*}
4381
4382 @item @code{[ \t.!]*(ELSE,? |INTENTIONAL(LY)? )?@*FALL(S | |-)?THR(OUGH|U)[ \t.!]*(-[^\n\r]*)?}
4383
4384 @item @code{[ \t.!]*(Else,? |Intentional(ly)? )?@*Fall((s | |-)[Tt]|t)hr(ough|u)[ \t.!]*(-[^\n\r]*)?}
4385
4386 @item @code{[ \t.!]*([Ee]lse,? |[Ii]ntentional(ly)? )?@*fall(s | |-)?thr(ough|u)[ \t.!]*(-[^\n\r]*)?}
4387
4388 @end itemize
4389
4390 @item @option{-Wimplicit-fallthrough=4} case sensitively matches one of the
4391 following regular expressions:
4392
4393 @itemize @bullet
4394
4395 @item @code{-fallthrough}
4396
4397 @item @code{@@fallthrough@@}
4398
4399 @item @code{lint -fallthrough[ \t]*}
4400
4401 @item @code{[ \t]*FALLTHR(OUGH|U)[ \t]*}
4402
4403 @end itemize
4404
4405 @item @option{-Wimplicit-fallthrough=5} doesn't recognize any comments as
4406 fallthrough comments, only attributes disable the warning.
4407
4408 @end itemize
4409
4410 The comment needs to be followed after optional whitespace and other comments
4411 by @code{case} or @code{default} keywords or by a user label that precedes some
4412 @code{case} or @code{default} label.
4413
4414 @smallexample
4415 @group
4416 switch (cond)
4417 @{
4418 case 1:
4419 bar (0);
4420 /* FALLTHRU */
4421 default:
4422 @dots{}
4423 @}
4424 @end group
4425 @end smallexample
4426
4427 The @option{-Wimplicit-fallthrough=3} warning is enabled by @option{-Wextra}.
4428
4429 @item -Wignored-qualifiers @r{(C and C++ only)}
4430 @opindex Wignored-qualifiers
4431 @opindex Wno-ignored-qualifiers
4432 Warn if the return type of a function has a type qualifier
4433 such as @code{const}. For ISO C such a type qualifier has no effect,
4434 since the value returned by a function is not an lvalue.
4435 For C++, the warning is only emitted for scalar types or @code{void}.
4436 ISO C prohibits qualified @code{void} return types on function
4437 definitions, so such return types always receive a warning
4438 even without this option.
4439
4440 This warning is also enabled by @option{-Wextra}.
4441
4442 @item -Wignored-attributes @r{(C and C++ only)}
4443 @opindex Wignored-attributes
4444 @opindex Wno-ignored-attributes
4445 Warn when an attribute is ignored. This is different from the
4446 @option{-Wattributes} option in that it warns whenever the compiler decides
4447 to drop an attribute, not that the attribute is either unknown, used in a
4448 wrong place, etc. This warning is enabled by default.
4449
4450 @item -Wmain
4451 @opindex Wmain
4452 @opindex Wno-main
4453 Warn if the type of @code{main} is suspicious. @code{main} should be
4454 a function with external linkage, returning int, taking either zero
4455 arguments, two, or three arguments of appropriate types. This warning
4456 is enabled by default in C++ and is enabled by either @option{-Wall}
4457 or @option{-Wpedantic}.
4458
4459 @item -Wmisleading-indentation @r{(C and C++ only)}
4460 @opindex Wmisleading-indentation
4461 @opindex Wno-misleading-indentation
4462 Warn when the indentation of the code does not reflect the block structure.
4463 Specifically, a warning is issued for @code{if}, @code{else}, @code{while}, and
4464 @code{for} clauses with a guarded statement that does not use braces,
4465 followed by an unguarded statement with the same indentation.
4466
4467 In the following example, the call to ``bar'' is misleadingly indented as
4468 if it were guarded by the ``if'' conditional.
4469
4470 @smallexample
4471 if (some_condition ())
4472 foo ();
4473 bar (); /* Gotcha: this is not guarded by the "if". */
4474 @end smallexample
4475
4476 In the case of mixed tabs and spaces, the warning uses the
4477 @option{-ftabstop=} option to determine if the statements line up
4478 (defaulting to 8).
4479
4480 The warning is not issued for code involving multiline preprocessor logic
4481 such as the following example.
4482
4483 @smallexample
4484 if (flagA)
4485 foo (0);
4486 #if SOME_CONDITION_THAT_DOES_NOT_HOLD
4487 if (flagB)
4488 #endif
4489 foo (1);
4490 @end smallexample
4491
4492 The warning is not issued after a @code{#line} directive, since this
4493 typically indicates autogenerated code, and no assumptions can be made
4494 about the layout of the file that the directive references.
4495
4496 This warning is enabled by @option{-Wall} in C and C++.
4497
4498 @item -Wmissing-braces
4499 @opindex Wmissing-braces
4500 @opindex Wno-missing-braces
4501 Warn if an aggregate or union initializer is not fully bracketed. In
4502 the following example, the initializer for @code{a} is not fully
4503 bracketed, but that for @code{b} is fully bracketed. This warning is
4504 enabled by @option{-Wall} in C.
4505
4506 @smallexample
4507 int a[2][2] = @{ 0, 1, 2, 3 @};
4508 int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
4509 @end smallexample
4510
4511 This warning is enabled by @option{-Wall}.
4512
4513 @item -Wmissing-include-dirs @r{(C, C++, Objective-C and Objective-C++ only)}
4514 @opindex Wmissing-include-dirs
4515 @opindex Wno-missing-include-dirs
4516 Warn if a user-supplied include directory does not exist.
4517
4518 @item -Wmultistatement-macros
4519 @opindex Wmultistatement-macros
4520 @opindex Wno-multistatement-macros
4521 Warn about unsafe multiple statement macros that appear to be guarded
4522 by a clause such as @code{if}, @code{else}, @code{for}, @code{switch}, or
4523 @code{while}, in which only the first statement is actually guarded after
4524 the macro is expanded.
4525
4526 For example:
4527
4528 @smallexample
4529 #define DOIT x++; y++
4530 if (c)
4531 DOIT;
4532 @end smallexample
4533
4534 will increment @code{y} unconditionally, not just when @code{c} holds.
4535 The can usually be fixed by wrapping the macro in a do-while loop:
4536 @smallexample
4537 #define DOIT do @{ x++; y++; @} while (0)
4538 if (c)
4539 DOIT;
4540 @end smallexample
4541
4542 This warning is enabled by @option{-Wall} in C and C++.
4543
4544 @item -Wparentheses
4545 @opindex Wparentheses
4546 @opindex Wno-parentheses
4547 Warn if parentheses are omitted in certain contexts, such
4548 as when there is an assignment in a context where a truth value
4549 is expected, or when operators are nested whose precedence people
4550 often get confused about.
4551
4552 Also warn if a comparison like @code{x<=y<=z} appears; this is
4553 equivalent to @code{(x<=y ? 1 : 0) <= z}, which is a different
4554 interpretation from that of ordinary mathematical notation.
4555
4556 Also warn for dangerous uses of the GNU extension to
4557 @code{?:} with omitted middle operand. When the condition
4558 in the @code{?}: operator is a boolean expression, the omitted value is
4559 always 1. Often programmers expect it to be a value computed
4560 inside the conditional expression instead.
4561
4562 This warning is enabled by @option{-Wall}.
4563
4564 @item -Wsequence-point
4565 @opindex Wsequence-point
4566 @opindex Wno-sequence-point
4567 Warn about code that may have undefined semantics because of violations
4568 of sequence point rules in the C and C++ standards.
4569
4570 The C and C++ standards define the order in which expressions in a C/C++
4571 program are evaluated in terms of @dfn{sequence points}, which represent
4572 a partial ordering between the execution of parts of the program: those
4573 executed before the sequence point, and those executed after it. These
4574 occur after the evaluation of a full expression (one which is not part
4575 of a larger expression), after the evaluation of the first operand of a
4576 @code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
4577 function is called (but after the evaluation of its arguments and the
4578 expression denoting the called function), and in certain other places.
4579 Other than as expressed by the sequence point rules, the order of
4580 evaluation of subexpressions of an expression is not specified. All
4581 these rules describe only a partial order rather than a total order,
4582 since, for example, if two functions are called within one expression
4583 with no sequence point between them, the order in which the functions
4584 are called is not specified. However, the standards committee have
4585 ruled that function calls do not overlap.
4586
4587 It is not specified when between sequence points modifications to the
4588 values of objects take effect. Programs whose behavior depends on this
4589 have undefined behavior; the C and C++ standards specify that ``Between
4590 the previous and next sequence point an object shall have its stored
4591 value modified at most once by the evaluation of an expression.
4592 Furthermore, the prior value shall be read only to determine the value
4593 to be stored.''. If a program breaks these rules, the results on any
4594 particular implementation are entirely unpredictable.
4595
4596 Examples of code with undefined behavior are @code{a = a++;}, @code{a[n]
4597 = b[n++]} and @code{a[i++] = i;}. Some more complicated cases are not
4598 diagnosed by this option, and it may give an occasional false positive
4599 result, but in general it has been found fairly effective at detecting
4600 this sort of problem in programs.
4601
4602 The C++17 standard will define the order of evaluation of operands in
4603 more cases: in particular it requires that the right-hand side of an
4604 assignment be evaluated before the left-hand side, so the above
4605 examples are no longer undefined. But this warning will still warn
4606 about them, to help people avoid writing code that is undefined in C
4607 and earlier revisions of C++.
4608
4609 The standard is worded confusingly, therefore there is some debate
4610 over the precise meaning of the sequence point rules in subtle cases.
4611 Links to discussions of the problem, including proposed formal
4612 definitions, may be found on the GCC readings page, at
4613 @uref{http://gcc.gnu.org/@/readings.html}.
4614
4615 This warning is enabled by @option{-Wall} for C and C++.
4616
4617 @item -Wno-return-local-addr
4618 @opindex Wno-return-local-addr
4619 @opindex Wreturn-local-addr
4620 Do not warn about returning a pointer (or in C++, a reference) to a
4621 variable that goes out of scope after the function returns.
4622
4623 @item -Wreturn-type
4624 @opindex Wreturn-type
4625 @opindex Wno-return-type
4626 Warn whenever a function is defined with a return type that defaults
4627 to @code{int}. Also warn about any @code{return} statement with no
4628 return value in a function whose return type is not @code{void}
4629 (falling off the end of the function body is considered returning
4630 without a value).
4631
4632 For C only, warn about a @code{return} statement with an expression in a
4633 function whose return type is @code{void}, unless the expression type is
4634 also @code{void}. As a GNU extension, the latter case is accepted
4635 without a warning unless @option{-Wpedantic} is used.
4636
4637 For C++, a function without return type always produces a diagnostic
4638 message, even when @option{-Wno-return-type} is specified. The only
4639 exceptions are @code{main} and functions defined in system headers.
4640
4641 This warning is enabled by @option{-Wall}.
4642
4643 @item -Wshift-count-negative
4644 @opindex Wshift-count-negative
4645 @opindex Wno-shift-count-negative
4646 Warn if shift count is negative. This warning is enabled by default.
4647
4648 @item -Wshift-count-overflow
4649 @opindex Wshift-count-overflow
4650 @opindex Wno-shift-count-overflow
4651 Warn if shift count >= width of type. This warning is enabled by default.
4652
4653 @item -Wshift-negative-value
4654 @opindex Wshift-negative-value
4655 @opindex Wno-shift-negative-value
4656 Warn if left shifting a negative value. This warning is enabled by
4657 @option{-Wextra} in C99 and C++11 modes (and newer).
4658
4659 @item -Wshift-overflow
4660 @itemx -Wshift-overflow=@var{n}
4661 @opindex Wshift-overflow
4662 @opindex Wno-shift-overflow
4663 Warn about left shift overflows. This warning is enabled by
4664 default in C99 and C++11 modes (and newer).
4665
4666 @table @gcctabopt
4667 @item -Wshift-overflow=1
4668 This is the warning level of @option{-Wshift-overflow} and is enabled
4669 by default in C99 and C++11 modes (and newer). This warning level does
4670 not warn about left-shifting 1 into the sign bit. (However, in C, such
4671 an overflow is still rejected in contexts where an integer constant expression
4672 is required.)
4673
4674 @item -Wshift-overflow=2
4675 This warning level also warns about left-shifting 1 into the sign bit,
4676 unless C++14 mode is active.
4677 @end table
4678
4679 @item -Wswitch
4680 @opindex Wswitch
4681 @opindex Wno-switch
4682 Warn whenever a @code{switch} statement has an index of enumerated type
4683 and lacks a @code{case} for one or more of the named codes of that
4684 enumeration. (The presence of a @code{default} label prevents this
4685 warning.) @code{case} labels outside the enumeration range also
4686 provoke warnings when this option is used (even if there is a
4687 @code{default} label).
4688 This warning is enabled by @option{-Wall}.
4689
4690 @item -Wswitch-default
4691 @opindex Wswitch-default
4692 @opindex Wno-switch-default
4693 Warn whenever a @code{switch} statement does not have a @code{default}
4694 case.
4695
4696 @item -Wswitch-enum
4697 @opindex Wswitch-enum
4698 @opindex Wno-switch-enum
4699 Warn whenever a @code{switch} statement has an index of enumerated type
4700 and lacks a @code{case} for one or more of the named codes of that
4701 enumeration. @code{case} labels outside the enumeration range also
4702 provoke warnings when this option is used. The only difference
4703 between @option{-Wswitch} and this option is that this option gives a
4704 warning about an omitted enumeration code even if there is a
4705 @code{default} label.
4706
4707 @item -Wswitch-bool
4708 @opindex Wswitch-bool
4709 @opindex Wno-switch-bool
4710 Warn whenever a @code{switch} statement has an index of boolean type
4711 and the case values are outside the range of a boolean type.
4712 It is possible to suppress this warning by casting the controlling
4713 expression to a type other than @code{bool}. For example:
4714 @smallexample
4715 @group
4716 switch ((int) (a == 4))
4717 @{
4718 @dots{}
4719 @}
4720 @end group
4721 @end smallexample
4722 This warning is enabled by default for C and C++ programs.
4723
4724 @item -Wswitch-unreachable
4725 @opindex Wswitch-unreachable
4726 @opindex Wno-switch-unreachable
4727 Warn whenever a @code{switch} statement contains statements between the
4728 controlling expression and the first case label, which will never be
4729 executed. For example:
4730 @smallexample
4731 @group
4732 switch (cond)
4733 @{
4734 i = 15;
4735 @dots{}
4736 case 5:
4737 @dots{}
4738 @}
4739 @end group
4740 @end smallexample
4741 @option{-Wswitch-unreachable} does not warn if the statement between the
4742 controlling expression and the first case label is just a declaration:
4743 @smallexample
4744 @group
4745 switch (cond)
4746 @{
4747 int i;
4748 @dots{}
4749 case 5:
4750 i = 5;
4751 @dots{}
4752 @}
4753 @end group
4754 @end smallexample
4755 This warning is enabled by default for C and C++ programs.
4756
4757 @item -Wsync-nand @r{(C and C++ only)}
4758 @opindex Wsync-nand
4759 @opindex Wno-sync-nand
4760 Warn when @code{__sync_fetch_and_nand} and @code{__sync_nand_and_fetch}
4761 built-in functions are used. These functions changed semantics in GCC 4.4.
4762
4763 @item -Wunused-but-set-parameter
4764 @opindex Wunused-but-set-parameter
4765 @opindex Wno-unused-but-set-parameter
4766 Warn whenever a function parameter is assigned to, but otherwise unused
4767 (aside from its declaration).
4768
4769 To suppress this warning use the @code{unused} attribute
4770 (@pxref{Variable Attributes}).
4771
4772 This warning is also enabled by @option{-Wunused} together with
4773 @option{-Wextra}.
4774
4775 @item -Wunused-but-set-variable
4776 @opindex Wunused-but-set-variable
4777 @opindex Wno-unused-but-set-variable
4778 Warn whenever a local variable is assigned to, but otherwise unused
4779 (aside from its declaration).
4780 This warning is enabled by @option{-Wall}.
4781
4782 To suppress this warning use the @code{unused} attribute
4783 (@pxref{Variable Attributes}).
4784
4785 This warning is also enabled by @option{-Wunused}, which is enabled
4786 by @option{-Wall}.
4787
4788 @item -Wunused-function
4789 @opindex Wunused-function
4790 @opindex Wno-unused-function
4791 Warn whenever a static function is declared but not defined or a
4792 non-inline static function is unused.
4793 This warning is enabled by @option{-Wall}.
4794
4795 @item -Wunused-label
4796 @opindex Wunused-label
4797 @opindex Wno-unused-label
4798 Warn whenever a label is declared but not used.
4799 This warning is enabled by @option{-Wall}.
4800
4801 To suppress this warning use the @code{unused} attribute
4802 (@pxref{Variable Attributes}).
4803
4804 @item -Wunused-local-typedefs @r{(C, Objective-C, C++ and Objective-C++ only)}
4805 @opindex Wunused-local-typedefs
4806 Warn when a typedef locally defined in a function is not used.
4807 This warning is enabled by @option{-Wall}.
4808
4809 @item -Wunused-parameter
4810 @opindex Wunused-parameter
4811 @opindex Wno-unused-parameter
4812 Warn whenever a function parameter is unused aside from its declaration.
4813
4814 To suppress this warning use the @code{unused} attribute
4815 (@pxref{Variable Attributes}).
4816
4817 @item -Wno-unused-result
4818 @opindex Wunused-result
4819 @opindex Wno-unused-result
4820 Do not warn if a caller of a function marked with attribute
4821 @code{warn_unused_result} (@pxref{Function Attributes}) does not use
4822 its return value. The default is @option{-Wunused-result}.
4823
4824 @item -Wunused-variable
4825 @opindex Wunused-variable
4826 @opindex Wno-unused-variable
4827 Warn whenever a local or static variable is unused aside from its
4828 declaration. This option implies @option{-Wunused-const-variable=1} for C,
4829 but not for C++. This warning is enabled by @option{-Wall}.
4830
4831 To suppress this warning use the @code{unused} attribute
4832 (@pxref{Variable Attributes}).
4833
4834 @item -Wunused-const-variable
4835 @itemx -Wunused-const-variable=@var{n}
4836 @opindex Wunused-const-variable
4837 @opindex Wno-unused-const-variable
4838 Warn whenever a constant static variable is unused aside from its declaration.
4839 @option{-Wunused-const-variable=1} is enabled by @option{-Wunused-variable}
4840 for C, but not for C++. In C this declares variable storage, but in C++ this
4841 is not an error since const variables take the place of @code{#define}s.
4842
4843 To suppress this warning use the @code{unused} attribute
4844 (@pxref{Variable Attributes}).
4845
4846 @table @gcctabopt
4847 @item -Wunused-const-variable=1
4848 This is the warning level that is enabled by @option{-Wunused-variable} for
4849 C. It warns only about unused static const variables defined in the main
4850 compilation unit, but not about static const variables declared in any
4851 header included.
4852
4853 @item -Wunused-const-variable=2
4854 This warning level also warns for unused constant static variables in
4855 headers (excluding system headers). This is the warning level of
4856 @option{-Wunused-const-variable} and must be explicitly requested since
4857 in C++ this isn't an error and in C it might be harder to clean up all
4858 headers included.
4859 @end table
4860
4861 @item -Wunused-value
4862 @opindex Wunused-value
4863 @opindex Wno-unused-value
4864 Warn whenever a statement computes a result that is explicitly not
4865 used. To suppress this warning cast the unused expression to
4866 @code{void}. This includes an expression-statement or the left-hand
4867 side of a comma expression that contains no side effects. For example,
4868 an expression such as @code{x[i,j]} causes a warning, while
4869 @code{x[(void)i,j]} does not.
4870
4871 This warning is enabled by @option{-Wall}.
4872
4873 @item -Wunused
4874 @opindex Wunused
4875 @opindex Wno-unused
4876 All the above @option{-Wunused} options combined.
4877
4878 In order to get a warning about an unused function parameter, you must
4879 either specify @option{-Wextra -Wunused} (note that @option{-Wall} implies
4880 @option{-Wunused}), or separately specify @option{-Wunused-parameter}.
4881
4882 @item -Wuninitialized
4883 @opindex Wuninitialized
4884 @opindex Wno-uninitialized
4885 Warn if an automatic variable is used without first being initialized
4886 or if a variable may be clobbered by a @code{setjmp} call. In C++,
4887 warn if a non-static reference or non-static @code{const} member
4888 appears in a class without constructors.
4889
4890 If you want to warn about code that uses the uninitialized value of the
4891 variable in its own initializer, use the @option{-Winit-self} option.
4892
4893 These warnings occur for individual uninitialized or clobbered
4894 elements of structure, union or array variables as well as for
4895 variables that are uninitialized or clobbered as a whole. They do
4896 not occur for variables or elements declared @code{volatile}. Because
4897 these warnings depend on optimization, the exact variables or elements
4898 for which there are warnings depends on the precise optimization
4899 options and version of GCC used.
4900
4901 Note that there may be no warning about a variable that is used only
4902 to compute a value that itself is never used, because such
4903 computations may be deleted by data flow analysis before the warnings
4904 are printed.
4905
4906 @item -Winvalid-memory-model
4907 @opindex Winvalid-memory-model
4908 @opindex Wno-invalid-memory-model
4909 Warn for invocations of @ref{__atomic Builtins}, @ref{__sync Builtins},
4910 and the C11 atomic generic functions with a memory consistency argument
4911 that is either invalid for the operation or outside the range of values
4912 of the @code{memory_order} enumeration. For example, since the
4913 @code{__atomic_store} and @code{__atomic_store_n} built-ins are only
4914 defined for the relaxed, release, and sequentially consistent memory
4915 orders the following code is diagnosed:
4916
4917 @smallexample
4918 void store (int *i)
4919 @{
4920 __atomic_store_n (i, 0, memory_order_consume);
4921 @}
4922 @end smallexample
4923
4924 @option{-Winvalid-memory-model} is enabled by default.
4925
4926 @item -Wmaybe-uninitialized
4927 @opindex Wmaybe-uninitialized
4928 @opindex Wno-maybe-uninitialized
4929 For an automatic variable, if there exists a path from the function
4930 entry to a use of the variable that is initialized, but there exist
4931 some other paths for which the variable is not initialized, the compiler
4932 emits a warning if it cannot prove the uninitialized paths are not
4933 executed at run time. These warnings are made optional because GCC is
4934 not smart enough to see all the reasons why the code might be correct
4935 in spite of appearing to have an error. Here is one example of how
4936 this can happen:
4937
4938 @smallexample
4939 @group
4940 @{
4941 int x;
4942 switch (y)
4943 @{
4944 case 1: x = 1;
4945 break;
4946 case 2: x = 4;
4947 break;
4948 case 3: x = 5;
4949 @}
4950 foo (x);
4951 @}
4952 @end group
4953 @end smallexample
4954
4955 @noindent
4956 If the value of @code{y} is always 1, 2 or 3, then @code{x} is
4957 always initialized, but GCC doesn't know this. To suppress the
4958 warning, you need to provide a default case with assert(0) or
4959 similar code.
4960
4961 @cindex @code{longjmp} warnings
4962 This option also warns when a non-volatile automatic variable might be
4963 changed by a call to @code{longjmp}. These warnings as well are possible
4964 only in optimizing compilation.
4965
4966 The compiler sees only the calls to @code{setjmp}. It cannot know
4967 where @code{longjmp} will be called; in fact, a signal handler could
4968 call it at any point in the code. As a result, you may get a warning
4969 even when there is in fact no problem because @code{longjmp} cannot
4970 in fact be called at the place that would cause a problem.
4971
4972 Some spurious warnings can be avoided if you declare all the functions
4973 you use that never return as @code{noreturn}. @xref{Function
4974 Attributes}.
4975
4976 This warning is enabled by @option{-Wall} or @option{-Wextra}.
4977
4978 @item -Wunknown-pragmas
4979 @opindex Wunknown-pragmas
4980 @opindex Wno-unknown-pragmas
4981 @cindex warning for unknown pragmas
4982 @cindex unknown pragmas, warning
4983 @cindex pragmas, warning of unknown
4984 Warn when a @code{#pragma} directive is encountered that is not understood by
4985 GCC@. If this command-line option is used, warnings are even issued
4986 for unknown pragmas in system header files. This is not the case if
4987 the warnings are only enabled by the @option{-Wall} command-line option.
4988
4989 @item -Wno-pragmas
4990 @opindex Wno-pragmas
4991 @opindex Wpragmas
4992 Do not warn about misuses of pragmas, such as incorrect parameters,
4993 invalid syntax, or conflicts between pragmas. See also
4994 @option{-Wunknown-pragmas}.
4995
4996 @item -Wstrict-aliasing
4997 @opindex Wstrict-aliasing
4998 @opindex Wno-strict-aliasing
4999 This option is only active when @option{-fstrict-aliasing} is active.
5000 It warns about code that might break the strict aliasing rules that the
5001 compiler is using for optimization. The warning does not catch all
5002 cases, but does attempt to catch the more common pitfalls. It is
5003 included in @option{-Wall}.
5004 It is equivalent to @option{-Wstrict-aliasing=3}
5005
5006 @item -Wstrict-aliasing=n
5007 @opindex Wstrict-aliasing=n
5008 This option is only active when @option{-fstrict-aliasing} is active.
5009 It warns about code that might break the strict aliasing rules that the
5010 compiler is using for optimization.
5011 Higher levels correspond to higher accuracy (fewer false positives).
5012 Higher levels also correspond to more effort, similar to the way @option{-O}
5013 works.
5014 @option{-Wstrict-aliasing} is equivalent to @option{-Wstrict-aliasing=3}.
5015
5016 Level 1: Most aggressive, quick, least accurate.
5017 Possibly useful when higher levels
5018 do not warn but @option{-fstrict-aliasing} still breaks the code, as it has very few
5019 false negatives. However, it has many false positives.
5020 Warns for all pointer conversions between possibly incompatible types,
5021 even if never dereferenced. Runs in the front end only.
5022
5023 Level 2: Aggressive, quick, not too precise.
5024 May still have many false positives (not as many as level 1 though),
5025 and few false negatives (but possibly more than level 1).
5026 Unlike level 1, it only warns when an address is taken. Warns about
5027 incomplete types. Runs in the front end only.
5028
5029 Level 3 (default for @option{-Wstrict-aliasing}):
5030 Should have very few false positives and few false
5031 negatives. Slightly slower than levels 1 or 2 when optimization is enabled.
5032 Takes care of the common pun+dereference pattern in the front end:
5033 @code{*(int*)&some_float}.
5034 If optimization is enabled, it also runs in the back end, where it deals
5035 with multiple statement cases using flow-sensitive points-to information.
5036 Only warns when the converted pointer is dereferenced.
5037 Does not warn about incomplete types.
5038
5039 @item -Wstrict-overflow
5040 @itemx -Wstrict-overflow=@var{n}
5041 @opindex Wstrict-overflow
5042 @opindex Wno-strict-overflow
5043 This option is only active when signed overflow is undefined.
5044 It warns about cases where the compiler optimizes based on the
5045 assumption that signed overflow does not occur. Note that it does not
5046 warn about all cases where the code might overflow: it only warns
5047 about cases where the compiler implements some optimization. Thus
5048 this warning depends on the optimization level.
5049
5050 An optimization that assumes that signed overflow does not occur is
5051 perfectly safe if the values of the variables involved are such that
5052 overflow never does, in fact, occur. Therefore this warning can
5053 easily give a false positive: a warning about code that is not
5054 actually a problem. To help focus on important issues, several
5055 warning levels are defined. No warnings are issued for the use of
5056 undefined signed overflow when estimating how many iterations a loop
5057 requires, in particular when determining whether a loop will be
5058 executed at all.
5059
5060 @table @gcctabopt
5061 @item -Wstrict-overflow=1
5062 Warn about cases that are both questionable and easy to avoid. For
5063 example the compiler simplifies
5064 @code{x + 1 > x} to @code{1}. This level of
5065 @option{-Wstrict-overflow} is enabled by @option{-Wall}; higher levels
5066 are not, and must be explicitly requested.
5067
5068 @item -Wstrict-overflow=2
5069 Also warn about other cases where a comparison is simplified to a
5070 constant. For example: @code{abs (x) >= 0}. This can only be
5071 simplified when signed integer overflow is undefined, because
5072 @code{abs (INT_MIN)} overflows to @code{INT_MIN}, which is less than
5073 zero. @option{-Wstrict-overflow} (with no level) is the same as
5074 @option{-Wstrict-overflow=2}.
5075
5076 @item -Wstrict-overflow=3
5077 Also warn about other cases where a comparison is simplified. For
5078 example: @code{x + 1 > 1} is simplified to @code{x > 0}.
5079
5080 @item -Wstrict-overflow=4
5081 Also warn about other simplifications not covered by the above cases.
5082 For example: @code{(x * 10) / 5} is simplified to @code{x * 2}.
5083
5084 @item -Wstrict-overflow=5
5085 Also warn about cases where the compiler reduces the magnitude of a
5086 constant involved in a comparison. For example: @code{x + 2 > y} is
5087 simplified to @code{x + 1 >= y}. This is reported only at the
5088 highest warning level because this simplification applies to many
5089 comparisons, so this warning level gives a very large number of
5090 false positives.
5091 @end table
5092
5093 @item -Wstringop-overflow
5094 @itemx -Wstringop-overflow=@var{type}
5095 @opindex Wstringop-overflow
5096 @opindex Wno-stringop-overflow
5097 Warn for calls to string manipulation functions such as @code{memcpy} and
5098 @code{strcpy} that are determined to overflow the destination buffer. The
5099 optional argument is one greater than the type of Object Size Checking to
5100 perform to determine the size of the destination. @xref{Object Size Checking}.
5101 The argument is meaningful only for functions that operate on character arrays
5102 but not for raw memory functions like @code{memcpy} which always make use
5103 of Object Size type-0. The option also warns for calls that specify a size
5104 in excess of the largest possible object or at most @code{SIZE_MAX / 2} bytes.
5105 The option produces the best results with optimization enabled but can detect
5106 a small subset of simple buffer overflows even without optimization in
5107 calls to the GCC built-in functions like @code{__builtin_memcpy} that
5108 correspond to the standard functions. In any case, the option warns about
5109 just a subset of buffer overflows detected by the corresponding overflow
5110 checking built-ins. For example, the option will issue a warning for
5111 the @code{strcpy} call below because it copies at least 5 characters
5112 (the string @code{"blue"} including the terminating NUL) into the buffer
5113 of size 4.
5114
5115 @smallexample
5116 enum Color @{ blue, purple, yellow @};
5117 const char* f (enum Color clr)
5118 @{
5119 static char buf [4];
5120 const char *str;
5121 switch (clr)
5122 @{
5123 case blue: str = "blue"; break;
5124 case purple: str = "purple"; break;
5125 case yellow: str = "yellow"; break;
5126 @}
5127
5128 return strcpy (buf, str); // warning here
5129 @}
5130 @end smallexample
5131
5132 Option @option{-Wstringop-overflow=2} is enabled by default.
5133
5134 @table @gcctabopt
5135 @item -Wstringop-overflow
5136 @item -Wstringop-overflow=1
5137 @opindex Wstringop-overflow
5138 @opindex Wno-stringop-overflow
5139 The @option{-Wstringop-overflow=1} option uses type-zero Object Size Checking
5140 to determine the sizes of destination objects. This is the default setting
5141 of the option. At this setting the option will not warn for writes past
5142 the end of subobjects of larger objects accessed by pointers unless the
5143 size of the largest surrounding object is known. When the destination may
5144 be one of several objects it is assumed to be the largest one of them. On
5145 Linux systems, when optimization is enabled at this setting the option warns
5146 for the same code as when the @code{_FORTIFY_SOURCE} macro is defined to
5147 a non-zero value.
5148
5149 @item -Wstringop-overflow=2
5150 The @option{-Wstringop-overflow=2} option uses type-one Object Size Checking
5151 to determine the sizes of destination objects. At this setting the option
5152 will warn about overflows when writing to members of the largest complete
5153 objects whose exact size is known. It will, however, not warn for excessive
5154 writes to the same members of unknown objects referenced by pointers since
5155 they may point to arrays containing unknown numbers of elements.
5156
5157 @item -Wstringop-overflow=3
5158 The @option{-Wstringop-overflow=3} option uses type-two Object Size Checking
5159 to determine the sizes of destination objects. At this setting the option
5160 warns about overflowing the smallest object or data member. This is the
5161 most restrictive setting of the option that may result in warnings for safe
5162 code.
5163
5164 @item -Wstringop-overflow=4
5165 The @option{-Wstringop-overflow=4} option uses type-three Object Size Checking
5166 to determine the sizes of destination objects. At this setting the option
5167 will warn about overflowing any data members, and when the destination is
5168 one of several objects it uses the size of the largest of them to decide
5169 whether to issue a warning. Similarly to @option{-Wstringop-overflow=3} this
5170 setting of the option may result in warnings for benign code.
5171 @end table
5172
5173 @item -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{]}
5174 @opindex Wsuggest-attribute=
5175 @opindex Wno-suggest-attribute=
5176 Warn for cases where adding an attribute may be beneficial. The
5177 attributes currently supported are listed below.
5178
5179 @table @gcctabopt
5180 @item -Wsuggest-attribute=pure
5181 @itemx -Wsuggest-attribute=const
5182 @itemx -Wsuggest-attribute=noreturn
5183 @opindex Wsuggest-attribute=pure
5184 @opindex Wno-suggest-attribute=pure
5185 @opindex Wsuggest-attribute=const
5186 @opindex Wno-suggest-attribute=const
5187 @opindex Wsuggest-attribute=noreturn
5188 @opindex Wno-suggest-attribute=noreturn
5189
5190 Warn about functions that might be candidates for attributes
5191 @code{pure}, @code{const} or @code{noreturn}. The compiler only warns for
5192 functions visible in other compilation units or (in the case of @code{pure} and
5193 @code{const}) if it cannot prove that the function returns normally. A function
5194 returns normally if it doesn't contain an infinite loop or return abnormally
5195 by throwing, calling @code{abort} or trapping. This analysis requires option
5196 @option{-fipa-pure-const}, which is enabled by default at @option{-O} and
5197 higher. Higher optimization levels improve the accuracy of the analysis.
5198
5199 @item -Wsuggest-attribute=format
5200 @itemx -Wmissing-format-attribute
5201 @opindex Wsuggest-attribute=format
5202 @opindex Wmissing-format-attribute
5203 @opindex Wno-suggest-attribute=format
5204 @opindex Wno-missing-format-attribute
5205 @opindex Wformat
5206 @opindex Wno-format
5207
5208 Warn about function pointers that might be candidates for @code{format}
5209 attributes. Note these are only possible candidates, not absolute ones.
5210 GCC guesses that function pointers with @code{format} attributes that
5211 are used in assignment, initialization, parameter passing or return
5212 statements should have a corresponding @code{format} attribute in the
5213 resulting type. I.e.@: the left-hand side of the assignment or
5214 initialization, the type of the parameter variable, or the return type
5215 of the containing function respectively should also have a @code{format}
5216 attribute to avoid the warning.
5217
5218 GCC also warns about function definitions that might be
5219 candidates for @code{format} attributes. Again, these are only
5220 possible candidates. GCC guesses that @code{format} attributes
5221 might be appropriate for any function that calls a function like
5222 @code{vprintf} or @code{vscanf}, but this might not always be the
5223 case, and some functions for which @code{format} attributes are
5224 appropriate may not be detected.
5225 @end table
5226
5227 @item -Wsuggest-final-types
5228 @opindex Wno-suggest-final-types
5229 @opindex Wsuggest-final-types
5230 Warn about types with virtual methods where code quality would be improved
5231 if the type were declared with the C++11 @code{final} specifier,
5232 or, if possible,
5233 declared in an anonymous namespace. This allows GCC to more aggressively
5234 devirtualize the polymorphic calls. This warning is more effective with link
5235 time optimization, where the information about the class hierarchy graph is
5236 more complete.
5237
5238 @item -Wsuggest-final-methods
5239 @opindex Wno-suggest-final-methods
5240 @opindex Wsuggest-final-methods
5241 Warn about virtual methods where code quality would be improved if the method
5242 were declared with the C++11 @code{final} specifier,
5243 or, if possible, its type were
5244 declared in an anonymous namespace or with the @code{final} specifier.
5245 This warning is
5246 more effective with link-time optimization, where the information about the
5247 class hierarchy graph is more complete. It is recommended to first consider
5248 suggestions of @option{-Wsuggest-final-types} and then rebuild with new
5249 annotations.
5250
5251 @item -Wsuggest-override
5252 Warn about overriding virtual functions that are not marked with the override
5253 keyword.
5254
5255 @item -Walloc-zero
5256 @opindex Wno-alloc-zero
5257 @opindex Walloc-zero
5258 Warn about calls to allocation functions decorated with attribute
5259 @code{alloc_size} that specify zero bytes, including those to the built-in
5260 forms of the functions @code{aligned_alloc}, @code{alloca}, @code{calloc},
5261 @code{malloc}, and @code{realloc}. Because the behavior of these functions
5262 when called with a zero size differs among implementations (and in the case
5263 of @code{realloc} has been deprecated) relying on it may result in subtle
5264 portability bugs and should be avoided.
5265
5266 @item -Walloc-size-larger-than=@var{n}
5267 Warn about calls to functions decorated with attribute @code{alloc_size}
5268 that attempt to allocate objects larger than the specified number of bytes,
5269 or where the result of the size computation in an integer type with infinite
5270 precision would exceed @code{SIZE_MAX / 2}. The option argument @var{n}
5271 may end in one of the standard suffixes designating a multiple of bytes
5272 such as @code{kB} and @code{KiB} for kilobyte and kibibyte, respectively,
5273 @code{MB} and @code{MiB} for megabyte and mebibyte, and so on.
5274 @xref{Function Attributes}.
5275
5276 @item -Walloca
5277 @opindex Wno-alloca
5278 @opindex Walloca
5279 This option warns on all uses of @code{alloca} in the source.
5280
5281 @item -Walloca-larger-than=@var{n}
5282 This option warns on calls to @code{alloca} that are not bounded by a
5283 controlling predicate limiting its argument of integer type to at most
5284 @var{n} bytes, or calls to @code{alloca} where the bound is unknown.
5285 Arguments of non-integer types are considered unbounded even if they
5286 appear to be constrained to the expected range.
5287
5288 For example, a bounded case of @code{alloca} could be:
5289
5290 @smallexample
5291 void func (size_t n)
5292 @{
5293 void *p;
5294 if (n <= 1000)
5295 p = alloca (n);
5296 else
5297 p = malloc (n);
5298 f (p);
5299 @}
5300 @end smallexample
5301
5302 In the above example, passing @code{-Walloca-larger-than=1000} would not
5303 issue a warning because the call to @code{alloca} is known to be at most
5304 1000 bytes. However, if @code{-Walloca-larger-than=500} were passed,
5305 the compiler would emit a warning.
5306
5307 Unbounded uses, on the other hand, are uses of @code{alloca} with no
5308 controlling predicate constraining its integer argument. For example:
5309
5310 @smallexample
5311 void func ()
5312 @{
5313 void *p = alloca (n);
5314 f (p);
5315 @}
5316 @end smallexample
5317
5318 If @code{-Walloca-larger-than=500} were passed, the above would trigger
5319 a warning, but this time because of the lack of bounds checking.
5320
5321 Note, that even seemingly correct code involving signed integers could
5322 cause a warning:
5323
5324 @smallexample
5325 void func (signed int n)
5326 @{
5327 if (n < 500)
5328 @{
5329 p = alloca (n);
5330 f (p);
5331 @}
5332 @}
5333 @end smallexample
5334
5335 In the above example, @var{n} could be negative, causing a larger than
5336 expected argument to be implicitly cast into the @code{alloca} call.
5337
5338 This option also warns when @code{alloca} is used in a loop.
5339
5340 This warning is not enabled by @option{-Wall}, and is only active when
5341 @option{-ftree-vrp} is active (default for @option{-O2} and above).
5342
5343 See also @option{-Wvla-larger-than=@var{n}}.
5344
5345 @item -Warray-bounds
5346 @itemx -Warray-bounds=@var{n}
5347 @opindex Wno-array-bounds
5348 @opindex Warray-bounds
5349 This option is only active when @option{-ftree-vrp} is active
5350 (default for @option{-O2} and above). It warns about subscripts to arrays
5351 that are always out of bounds. This warning is enabled by @option{-Wall}.
5352
5353 @table @gcctabopt
5354 @item -Warray-bounds=1
5355 This is the warning level of @option{-Warray-bounds} and is enabled
5356 by @option{-Wall}; higher levels are not, and must be explicitly requested.
5357
5358 @item -Warray-bounds=2
5359 This warning level also warns about out of bounds access for
5360 arrays at the end of a struct and for arrays accessed through
5361 pointers. This warning level may give a larger number of
5362 false positives and is deactivated by default.
5363 @end table
5364
5365 @item -Wbool-compare
5366 @opindex Wno-bool-compare
5367 @opindex Wbool-compare
5368 Warn about boolean expression compared with an integer value different from
5369 @code{true}/@code{false}. For instance, the following comparison is
5370 always false:
5371 @smallexample
5372 int n = 5;
5373 @dots{}
5374 if ((n > 1) == 2) @{ @dots{} @}
5375 @end smallexample
5376 This warning is enabled by @option{-Wall}.
5377
5378 @item -Wbool-operation
5379 @opindex Wno-bool-operation
5380 @opindex Wbool-operation
5381 Warn about suspicious operations on expressions of a boolean type. For
5382 instance, bitwise negation of a boolean is very likely a bug in the program.
5383 For C, this warning also warns about incrementing or decrementing a boolean,
5384 which rarely makes sense. (In C++, decrementing a boolean is always invalid.
5385 Incrementing a boolean is invalid in C++1z, and deprecated otherwise.)
5386
5387 This warning is enabled by @option{-Wall}.
5388
5389 @item -Wduplicated-branches
5390 @opindex Wno-duplicated-branches
5391 @opindex Wduplicated-branches
5392 Warn when an if-else has identical branches. This warning detects cases like
5393 @smallexample
5394 if (p != NULL)
5395 return 0;
5396 else
5397 return 0;
5398 @end smallexample
5399 It doesn't warn when both branches contain just a null statement. This warning
5400 also warn for conditional operators:
5401 @smallexample
5402 int i = x ? *p : *p;
5403 @end smallexample
5404
5405 @item -Wduplicated-cond
5406 @opindex Wno-duplicated-cond
5407 @opindex Wduplicated-cond
5408 Warn about duplicated conditions in an if-else-if chain. For instance,
5409 warn for the following code:
5410 @smallexample
5411 if (p->q != NULL) @{ @dots{} @}
5412 else if (p->q != NULL) @{ @dots{} @}
5413 @end smallexample
5414
5415 @item -Wframe-address
5416 @opindex Wno-frame-address
5417 @opindex Wframe-address
5418 Warn when the @samp{__builtin_frame_address} or @samp{__builtin_return_address}
5419 is called with an argument greater than 0. Such calls may return indeterminate
5420 values or crash the program. The warning is included in @option{-Wall}.
5421
5422 @item -Wno-discarded-qualifiers @r{(C and Objective-C only)}
5423 @opindex Wno-discarded-qualifiers
5424 @opindex Wdiscarded-qualifiers
5425 Do not warn if type qualifiers on pointers are being discarded.
5426 Typically, the compiler warns if a @code{const char *} variable is
5427 passed to a function that takes a @code{char *} parameter. This option
5428 can be used to suppress such a warning.
5429
5430 @item -Wno-discarded-array-qualifiers @r{(C and Objective-C only)}
5431 @opindex Wno-discarded-array-qualifiers
5432 @opindex Wdiscarded-array-qualifiers
5433 Do not warn if type qualifiers on arrays which are pointer targets
5434 are being discarded. Typically, the compiler warns if a
5435 @code{const int (*)[]} variable is passed to a function that
5436 takes a @code{int (*)[]} parameter. This option can be used to
5437 suppress such a warning.
5438
5439 @item -Wno-incompatible-pointer-types @r{(C and Objective-C only)}
5440 @opindex Wno-incompatible-pointer-types
5441 @opindex Wincompatible-pointer-types
5442 Do not warn when there is a conversion between pointers that have incompatible
5443 types. This warning is for cases not covered by @option{-Wno-pointer-sign},
5444 which warns for pointer argument passing or assignment with different
5445 signedness.
5446
5447 @item -Wno-int-conversion @r{(C and Objective-C only)}
5448 @opindex Wno-int-conversion
5449 @opindex Wint-conversion
5450 Do not warn about incompatible integer to pointer and pointer to integer
5451 conversions. This warning is about implicit conversions; for explicit
5452 conversions the warnings @option{-Wno-int-to-pointer-cast} and
5453 @option{-Wno-pointer-to-int-cast} may be used.
5454
5455 @item -Wno-div-by-zero
5456 @opindex Wno-div-by-zero
5457 @opindex Wdiv-by-zero
5458 Do not warn about compile-time integer division by zero. Floating-point
5459 division by zero is not warned about, as it can be a legitimate way of
5460 obtaining infinities and NaNs.
5461
5462 @item -Wsystem-headers
5463 @opindex Wsystem-headers
5464 @opindex Wno-system-headers
5465 @cindex warnings from system headers
5466 @cindex system headers, warnings from
5467 Print warning messages for constructs found in system header files.
5468 Warnings from system headers are normally suppressed, on the assumption
5469 that they usually do not indicate real problems and would only make the
5470 compiler output harder to read. Using this command-line option tells
5471 GCC to emit warnings from system headers as if they occurred in user
5472 code. However, note that using @option{-Wall} in conjunction with this
5473 option does @emph{not} warn about unknown pragmas in system
5474 headers---for that, @option{-Wunknown-pragmas} must also be used.
5475
5476 @item -Wtautological-compare
5477 @opindex Wtautological-compare
5478 @opindex Wno-tautological-compare
5479 Warn if a self-comparison always evaluates to true or false. This
5480 warning detects various mistakes such as:
5481 @smallexample
5482 int i = 1;
5483 @dots{}
5484 if (i > i) @{ @dots{} @}
5485 @end smallexample
5486 This warning is enabled by @option{-Wall}.
5487
5488 @item -Wtrampolines
5489 @opindex Wtrampolines
5490 @opindex Wno-trampolines
5491 Warn about trampolines generated for pointers to nested functions.
5492 A trampoline is a small piece of data or code that is created at run
5493 time on the stack when the address of a nested function is taken, and is
5494 used to call the nested function indirectly. For some targets, it is
5495 made up of data only and thus requires no special treatment. But, for
5496 most targets, it is made up of code and thus requires the stack to be
5497 made executable in order for the program to work properly.
5498
5499 @item -Wfloat-equal
5500 @opindex Wfloat-equal
5501 @opindex Wno-float-equal
5502 Warn if floating-point values are used in equality comparisons.
5503
5504 The idea behind this is that sometimes it is convenient (for the
5505 programmer) to consider floating-point values as approximations to
5506 infinitely precise real numbers. If you are doing this, then you need
5507 to compute (by analyzing the code, or in some other way) the maximum or
5508 likely maximum error that the computation introduces, and allow for it
5509 when performing comparisons (and when producing output, but that's a
5510 different problem). In particular, instead of testing for equality, you
5511 should check to see whether the two values have ranges that overlap; and
5512 this is done with the relational operators, so equality comparisons are
5513 probably mistaken.
5514
5515 @item -Wtraditional @r{(C and Objective-C only)}
5516 @opindex Wtraditional
5517 @opindex Wno-traditional
5518 Warn about certain constructs that behave differently in traditional and
5519 ISO C@. Also warn about ISO C constructs that have no traditional C
5520 equivalent, and/or problematic constructs that should be avoided.
5521
5522 @itemize @bullet
5523 @item
5524 Macro parameters that appear within string literals in the macro body.
5525 In traditional C macro replacement takes place within string literals,
5526 but in ISO C it does not.
5527
5528 @item
5529 In traditional C, some preprocessor directives did not exist.
5530 Traditional preprocessors only considered a line to be a directive
5531 if the @samp{#} appeared in column 1 on the line. Therefore
5532 @option{-Wtraditional} warns about directives that traditional C
5533 understands but ignores because the @samp{#} does not appear as the
5534 first character on the line. It also suggests you hide directives like
5535 @code{#pragma} not understood by traditional C by indenting them. Some
5536 traditional implementations do not recognize @code{#elif}, so this option
5537 suggests avoiding it altogether.
5538
5539 @item
5540 A function-like macro that appears without arguments.
5541
5542 @item
5543 The unary plus operator.
5544
5545 @item
5546 The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating-point
5547 constant suffixes. (Traditional C does support the @samp{L} suffix on integer
5548 constants.) Note, these suffixes appear in macros defined in the system
5549 headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}.
5550 Use of these macros in user code might normally lead to spurious
5551 warnings, however GCC's integrated preprocessor has enough context to
5552 avoid warning in these cases.
5553
5554 @item
5555 A function declared external in one block and then used after the end of
5556 the block.
5557
5558 @item
5559 A @code{switch} statement has an operand of type @code{long}.
5560
5561 @item
5562 A non-@code{static} function declaration follows a @code{static} one.
5563 This construct is not accepted by some traditional C compilers.
5564
5565 @item
5566 The ISO type of an integer constant has a different width or
5567 signedness from its traditional type. This warning is only issued if
5568 the base of the constant is ten. I.e.@: hexadecimal or octal values, which
5569 typically represent bit patterns, are not warned about.
5570
5571 @item
5572 Usage of ISO string concatenation is detected.
5573
5574 @item
5575 Initialization of automatic aggregates.
5576
5577 @item
5578 Identifier conflicts with labels. Traditional C lacks a separate
5579 namespace for labels.
5580
5581 @item
5582 Initialization of unions. If the initializer is zero, the warning is
5583 omitted. This is done under the assumption that the zero initializer in
5584 user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
5585 initializer warnings and relies on default initialization to zero in the
5586 traditional C case.
5587
5588 @item
5589 Conversions by prototypes between fixed/floating-point values and vice
5590 versa. The absence of these prototypes when compiling with traditional
5591 C causes serious problems. This is a subset of the possible
5592 conversion warnings; for the full set use @option{-Wtraditional-conversion}.
5593
5594 @item
5595 Use of ISO C style function definitions. This warning intentionally is
5596 @emph{not} issued for prototype declarations or variadic functions
5597 because these ISO C features appear in your code when using
5598 libiberty's traditional C compatibility macros, @code{PARAMS} and
5599 @code{VPARAMS}. This warning is also bypassed for nested functions
5600 because that feature is already a GCC extension and thus not relevant to
5601 traditional C compatibility.
5602 @end itemize
5603
5604 @item -Wtraditional-conversion @r{(C and Objective-C only)}
5605 @opindex Wtraditional-conversion
5606 @opindex Wno-traditional-conversion
5607 Warn if a prototype causes a type conversion that is different from what
5608 would happen to the same argument in the absence of a prototype. This
5609 includes conversions of fixed point to floating and vice versa, and
5610 conversions changing the width or signedness of a fixed-point argument
5611 except when the same as the default promotion.
5612
5613 @item -Wdeclaration-after-statement @r{(C and Objective-C only)}
5614 @opindex Wdeclaration-after-statement
5615 @opindex Wno-declaration-after-statement
5616 Warn when a declaration is found after a statement in a block. This
5617 construct, known from C++, was introduced with ISO C99 and is by default
5618 allowed in GCC@. It is not supported by ISO C90. @xref{Mixed Declarations}.
5619
5620 @item -Wshadow
5621 @opindex Wshadow
5622 @opindex Wno-shadow
5623 Warn whenever a local variable or type declaration shadows another
5624 variable, parameter, type, class member (in C++), or instance variable
5625 (in Objective-C) or whenever a built-in function is shadowed. Note
5626 that in C++, the compiler warns if a local variable shadows an
5627 explicit typedef, but not if it shadows a struct/class/enum.
5628 Same as @option{-Wshadow=global}.
5629
5630 @item -Wno-shadow-ivar @r{(Objective-C only)}
5631 @opindex Wno-shadow-ivar
5632 @opindex Wshadow-ivar
5633 Do not warn whenever a local variable shadows an instance variable in an
5634 Objective-C method.
5635
5636 @item -Wshadow=global
5637 @opindex Wshadow=local
5638 The default for @option{-Wshadow}. Warns for any (global) shadowing.
5639
5640 @item -Wshadow=local
5641 @opindex Wshadow=local
5642 Warn when a local variable shadows another local variable or parameter.
5643 This warning is enabled by @option{-Wshadow=global}.
5644
5645 @item -Wshadow=compatible-local
5646 @opindex Wshadow=compatible-local
5647 Warn when a local variable shadows another local variable or parameter
5648 whose type is compatible with that of the shadowing variable. In C++,
5649 type compatibility here means the type of the shadowing variable can be
5650 converted to that of the shadowed variable. The creation of this flag
5651 (in addition to @option{-Wshadow=local}) is based on the idea that when
5652 a local variable shadows another one of incompatible type, it is most
5653 likely intentional, not a bug or typo, as shown in the following example:
5654
5655 @smallexample
5656 @group
5657 for (SomeIterator i = SomeObj.begin(); i != SomeObj.end(); ++i)
5658 @{
5659 for (int i = 0; i < N; ++i)
5660 @{
5661 ...
5662 @}
5663 ...
5664 @}
5665 @end group
5666 @end smallexample
5667
5668 Since the two variable @code{i} in the example above have incompatible types,
5669 enabling only @option{-Wshadow=compatible-local} will not emit a warning.
5670 Because their types are incompatible, if a programmer accidentally uses one
5671 in place of the other, type checking will catch that and emit an error or
5672 warning. So not warning (about shadowing) in this case will not lead to
5673 undetected bugs. Use of this flag instead of @option{-Wshadow=local} can
5674 possibly reduce the number of warnings triggered by intentional shadowing.
5675
5676 This warning is enabled by @option{-Wshadow=local}.
5677
5678 @item -Wlarger-than=@var{len}
5679 @opindex Wlarger-than=@var{len}
5680 @opindex Wlarger-than-@var{len}
5681 Warn whenever an object of larger than @var{len} bytes is defined.
5682
5683 @item -Wframe-larger-than=@var{len}
5684 @opindex Wframe-larger-than
5685 Warn if the size of a function frame is larger than @var{len} bytes.
5686 The computation done to determine the stack frame size is approximate
5687 and not conservative.
5688 The actual requirements may be somewhat greater than @var{len}
5689 even if you do not get a warning. In addition, any space allocated
5690 via @code{alloca}, variable-length arrays, or related constructs
5691 is not included by the compiler when determining
5692 whether or not to issue a warning.
5693
5694 @item -Wno-free-nonheap-object
5695 @opindex Wno-free-nonheap-object
5696 @opindex Wfree-nonheap-object
5697 Do not warn when attempting to free an object that was not allocated
5698 on the heap.
5699
5700 @item -Wstack-usage=@var{len}
5701 @opindex Wstack-usage
5702 Warn if the stack usage of a function might be larger than @var{len} bytes.
5703 The computation done to determine the stack usage is conservative.
5704 Any space allocated via @code{alloca}, variable-length arrays, or related
5705 constructs is included by the compiler when determining whether or not to
5706 issue a warning.
5707
5708 The message is in keeping with the output of @option{-fstack-usage}.
5709
5710 @itemize
5711 @item
5712 If the stack usage is fully static but exceeds the specified amount, it's:
5713
5714 @smallexample
5715 warning: stack usage is 1120 bytes
5716 @end smallexample
5717 @item
5718 If the stack usage is (partly) dynamic but bounded, it's:
5719
5720 @smallexample
5721 warning: stack usage might be 1648 bytes
5722 @end smallexample
5723 @item
5724 If the stack usage is (partly) dynamic and not bounded, it's:
5725
5726 @smallexample
5727 warning: stack usage might be unbounded
5728 @end smallexample
5729 @end itemize
5730
5731 @item -Wunsafe-loop-optimizations
5732 @opindex Wunsafe-loop-optimizations
5733 @opindex Wno-unsafe-loop-optimizations
5734 Warn if the loop cannot be optimized because the compiler cannot
5735 assume anything on the bounds of the loop indices. With
5736 @option{-funsafe-loop-optimizations} warn if the compiler makes
5737 such assumptions.
5738
5739 @item -Wno-pedantic-ms-format @r{(MinGW targets only)}
5740 @opindex Wno-pedantic-ms-format
5741 @opindex Wpedantic-ms-format
5742 When used in combination with @option{-Wformat}
5743 and @option{-pedantic} without GNU extensions, this option
5744 disables the warnings about non-ISO @code{printf} / @code{scanf} format
5745 width specifiers @code{I32}, @code{I64}, and @code{I} used on Windows targets,
5746 which depend on the MS runtime.
5747
5748 @item -Waligned-new
5749 @opindex Waligned-new
5750 @opindex Wno-aligned-new
5751 Warn about a new-expression of a type that requires greater alignment
5752 than the @code{alignof(std::max_align_t)} but uses an allocation
5753 function without an explicit alignment parameter. This option is
5754 enabled by @option{-Wall}.
5755
5756 Normally this only warns about global allocation functions, but
5757 @option{-Waligned-new=all} also warns about class member allocation
5758 functions.
5759
5760 @item -Wplacement-new
5761 @itemx -Wplacement-new=@var{n}
5762 @opindex Wplacement-new
5763 @opindex Wno-placement-new
5764 Warn about placement new expressions with undefined behavior, such as
5765 constructing an object in a buffer that is smaller than the type of
5766 the object. For example, the placement new expression below is diagnosed
5767 because it attempts to construct an array of 64 integers in a buffer only
5768 64 bytes large.
5769 @smallexample
5770 char buf [64];
5771 new (buf) int[64];
5772 @end smallexample
5773 This warning is enabled by default.
5774
5775 @table @gcctabopt
5776 @item -Wplacement-new=1
5777 This is the default warning level of @option{-Wplacement-new}. At this
5778 level the warning is not issued for some strictly undefined constructs that
5779 GCC allows as extensions for compatibility with legacy code. For example,
5780 the following @code{new} expression is not diagnosed at this level even
5781 though it has undefined behavior according to the C++ standard because
5782 it writes past the end of the one-element array.
5783 @smallexample
5784 struct S @{ int n, a[1]; @};
5785 S *s = (S *)malloc (sizeof *s + 31 * sizeof s->a[0]);
5786 new (s->a)int [32]();
5787 @end smallexample
5788
5789 @item -Wplacement-new=2
5790 At this level, in addition to diagnosing all the same constructs as at level
5791 1, a diagnostic is also issued for placement new expressions that construct
5792 an object in the last member of structure whose type is an array of a single
5793 element and whose size is less than the size of the object being constructed.
5794 While the previous example would be diagnosed, the following construct makes
5795 use of the flexible member array extension to avoid the warning at level 2.
5796 @smallexample
5797 struct S @{ int n, a[]; @};
5798 S *s = (S *)malloc (sizeof *s + 32 * sizeof s->a[0]);
5799 new (s->a)int [32]();
5800 @end smallexample
5801
5802 @end table
5803
5804 @item -Wpointer-arith
5805 @opindex Wpointer-arith
5806 @opindex Wno-pointer-arith
5807 Warn about anything that depends on the ``size of'' a function type or
5808 of @code{void}. GNU C assigns these types a size of 1, for
5809 convenience in calculations with @code{void *} pointers and pointers
5810 to functions. In C++, warn also when an arithmetic operation involves
5811 @code{NULL}. This warning is also enabled by @option{-Wpedantic}.
5812
5813 @item -Wpointer-compare
5814 @opindex Wpointer-compare
5815 @opindex Wno-pointer-compare
5816 Warn if a pointer is compared with a zero character constant. This usually
5817 means that the pointer was meant to be dereferenced. For example:
5818
5819 @smallexample
5820 const char *p = foo ();
5821 if (p == '\0')
5822 return 42;
5823 @end smallexample
5824
5825 Note that the code above is invalid in C++11.
5826
5827 This warning is enabled by default.
5828
5829 @item -Wtype-limits
5830 @opindex Wtype-limits
5831 @opindex Wno-type-limits
5832 Warn if a comparison is always true or always false due to the limited
5833 range of the data type, but do not warn for constant expressions. For
5834 example, warn if an unsigned variable is compared against zero with
5835 @code{<} or @code{>=}. This warning is also enabled by
5836 @option{-Wextra}.
5837
5838 @include cppwarnopts.texi
5839
5840 @item -Wbad-function-cast @r{(C and Objective-C only)}
5841 @opindex Wbad-function-cast
5842 @opindex Wno-bad-function-cast
5843 Warn when a function call is cast to a non-matching type.
5844 For example, warn if a call to a function returning an integer type
5845 is cast to a pointer type.
5846
5847 @item -Wc90-c99-compat @r{(C and Objective-C only)}
5848 @opindex Wc90-c99-compat
5849 @opindex Wno-c90-c99-compat
5850 Warn about features not present in ISO C90, but present in ISO C99.
5851 For instance, warn about use of variable length arrays, @code{long long}
5852 type, @code{bool} type, compound literals, designated initializers, and so
5853 on. This option is independent of the standards mode. Warnings are disabled
5854 in the expression that follows @code{__extension__}.
5855
5856 @item -Wc99-c11-compat @r{(C and Objective-C only)}
5857 @opindex Wc99-c11-compat
5858 @opindex Wno-c99-c11-compat
5859 Warn about features not present in ISO C99, but present in ISO C11.
5860 For instance, warn about use of anonymous structures and unions,
5861 @code{_Atomic} type qualifier, @code{_Thread_local} storage-class specifier,
5862 @code{_Alignas} specifier, @code{Alignof} operator, @code{_Generic} keyword,
5863 and so on. This option is independent of the standards mode. Warnings are
5864 disabled in the expression that follows @code{__extension__}.
5865
5866 @item -Wc++-compat @r{(C and Objective-C only)}
5867 @opindex Wc++-compat
5868 Warn about ISO C constructs that are outside of the common subset of
5869 ISO C and ISO C++, e.g.@: request for implicit conversion from
5870 @code{void *} to a pointer to non-@code{void} type.
5871
5872 @item -Wc++11-compat @r{(C++ and Objective-C++ only)}
5873 @opindex Wc++11-compat
5874 Warn about C++ constructs whose meaning differs between ISO C++ 1998
5875 and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords
5876 in ISO C++ 2011. This warning turns on @option{-Wnarrowing} and is
5877 enabled by @option{-Wall}.
5878
5879 @item -Wc++14-compat @r{(C++ and Objective-C++ only)}
5880 @opindex Wc++14-compat
5881 Warn about C++ constructs whose meaning differs between ISO C++ 2011
5882 and ISO C++ 2014. This warning is enabled by @option{-Wall}.
5883
5884 @item -Wc++1z-compat @r{(C++ and Objective-C++ only)}
5885 @opindex Wc++1z-compat
5886 Warn about C++ constructs whose meaning differs between ISO C++ 2014
5887 and the forthoming ISO C++ 2017(?). This warning is enabled by @option{-Wall}.
5888
5889 @item -Wcast-qual
5890 @opindex Wcast-qual
5891 @opindex Wno-cast-qual
5892 Warn whenever a pointer is cast so as to remove a type qualifier from
5893 the target type. For example, warn if a @code{const char *} is cast
5894 to an ordinary @code{char *}.
5895
5896 Also warn when making a cast that introduces a type qualifier in an
5897 unsafe way. For example, casting @code{char **} to @code{const char **}
5898 is unsafe, as in this example:
5899
5900 @smallexample
5901 /* p is char ** value. */
5902 const char **q = (const char **) p;
5903 /* Assignment of readonly string to const char * is OK. */
5904 *q = "string";
5905 /* Now char** pointer points to read-only memory. */
5906 **p = 'b';
5907 @end smallexample
5908
5909 @item -Wcast-align
5910 @opindex Wcast-align
5911 @opindex Wno-cast-align
5912 Warn whenever a pointer is cast such that the required alignment of the
5913 target is increased. For example, warn if a @code{char *} is cast to
5914 an @code{int *} on machines where integers can only be accessed at
5915 two- or four-byte boundaries.
5916
5917 @item -Wwrite-strings
5918 @opindex Wwrite-strings
5919 @opindex Wno-write-strings
5920 When compiling C, give string constants the type @code{const
5921 char[@var{length}]} so that copying the address of one into a
5922 non-@code{const} @code{char *} pointer produces a warning. These
5923 warnings help you find at compile time code that can try to write
5924 into a string constant, but only if you have been very careful about
5925 using @code{const} in declarations and prototypes. Otherwise, it is
5926 just a nuisance. This is why we did not make @option{-Wall} request
5927 these warnings.
5928
5929 When compiling C++, warn about the deprecated conversion from string
5930 literals to @code{char *}. This warning is enabled by default for C++
5931 programs.
5932
5933 @item -Wcatch-value
5934 @itemx -Wcatch-value=@var{n} @r{(C++ and Objective-C++ only)}
5935 @opindex Wcatch-value
5936 @opindex Wno-catch-value
5937 Warn about catch handlers that do not catch via reference.
5938 With @option{-Wcatch-value=1} (or @option{-Wcatch-value} for short)
5939 warn about polymorphic class types that are caught by value.
5940 With @option{-Wcatch-value=2} warn about all class types that are caught
5941 by value. With @option{-Wcatch-value=3} warn about all types that are
5942 not caught by reference. @option{-Wcatch-value} is enabled by @option{-Wall}.
5943
5944 @item -Wclobbered
5945 @opindex Wclobbered
5946 @opindex Wno-clobbered
5947 Warn for variables that might be changed by @code{longjmp} or
5948 @code{vfork}. This warning is also enabled by @option{-Wextra}.
5949
5950 @item -Wconditionally-supported @r{(C++ and Objective-C++ only)}
5951 @opindex Wconditionally-supported
5952 @opindex Wno-conditionally-supported
5953 Warn for conditionally-supported (C++11 [intro.defs]) constructs.
5954
5955 @item -Wconversion
5956 @opindex Wconversion
5957 @opindex Wno-conversion
5958 Warn for implicit conversions that may alter a value. This includes
5959 conversions between real and integer, like @code{abs (x)} when
5960 @code{x} is @code{double}; conversions between signed and unsigned,
5961 like @code{unsigned ui = -1}; and conversions to smaller types, like
5962 @code{sqrtf (M_PI)}. Do not warn for explicit casts like @code{abs
5963 ((int) x)} and @code{ui = (unsigned) -1}, or if the value is not
5964 changed by the conversion like in @code{abs (2.0)}. Warnings about
5965 conversions between signed and unsigned integers can be disabled by
5966 using @option{-Wno-sign-conversion}.
5967
5968 For C++, also warn for confusing overload resolution for user-defined
5969 conversions; and conversions that never use a type conversion
5970 operator: conversions to @code{void}, the same type, a base class or a
5971 reference to them. Warnings about conversions between signed and
5972 unsigned integers are disabled by default in C++ unless
5973 @option{-Wsign-conversion} is explicitly enabled.
5974
5975 @item -Wno-conversion-null @r{(C++ and Objective-C++ only)}
5976 @opindex Wconversion-null
5977 @opindex Wno-conversion-null
5978 Do not warn for conversions between @code{NULL} and non-pointer
5979 types. @option{-Wconversion-null} is enabled by default.
5980
5981 @item -Wzero-as-null-pointer-constant @r{(C++ and Objective-C++ only)}
5982 @opindex Wzero-as-null-pointer-constant
5983 @opindex Wno-zero-as-null-pointer-constant
5984 Warn when a literal @samp{0} is used as null pointer constant. This can
5985 be useful to facilitate the conversion to @code{nullptr} in C++11.
5986
5987 @item -Wsubobject-linkage @r{(C++ and Objective-C++ only)}
5988 @opindex Wsubobject-linkage
5989 @opindex Wno-subobject-linkage
5990 Warn if a class type has a base or a field whose type uses the anonymous
5991 namespace or depends on a type with no linkage. If a type A depends on
5992 a type B with no or internal linkage, defining it in multiple
5993 translation units would be an ODR violation because the meaning of B
5994 is different in each translation unit. If A only appears in a single
5995 translation unit, the best way to silence the warning is to give it
5996 internal linkage by putting it in an anonymous namespace as well. The
5997 compiler doesn't give this warning for types defined in the main .C
5998 file, as those are unlikely to have multiple definitions.
5999 @option{-Wsubobject-linkage} is enabled by default.
6000
6001 @item -Wdangling-else
6002 @opindex Wdangling-else
6003 @opindex Wno-dangling-else
6004 Warn about constructions where there may be confusion to which
6005 @code{if} statement an @code{else} branch belongs. Here is an example of
6006 such a case:
6007
6008 @smallexample
6009 @group
6010 @{
6011 if (a)
6012 if (b)
6013 foo ();
6014 else
6015 bar ();
6016 @}
6017 @end group
6018 @end smallexample
6019
6020 In C/C++, every @code{else} branch belongs to the innermost possible
6021 @code{if} statement, which in this example is @code{if (b)}. This is
6022 often not what the programmer expected, as illustrated in the above
6023 example by indentation the programmer chose. When there is the
6024 potential for this confusion, GCC issues a warning when this flag
6025 is specified. To eliminate the warning, add explicit braces around
6026 the innermost @code{if} statement so there is no way the @code{else}
6027 can belong to the enclosing @code{if}. The resulting code
6028 looks like this:
6029
6030 @smallexample
6031 @group
6032 @{
6033 if (a)
6034 @{
6035 if (b)
6036 foo ();
6037 else
6038 bar ();
6039 @}
6040 @}
6041 @end group
6042 @end smallexample
6043
6044 This warning is enabled by @option{-Wparentheses}.
6045
6046 @item -Wdate-time
6047 @opindex Wdate-time
6048 @opindex Wno-date-time
6049 Warn when macros @code{__TIME__}, @code{__DATE__} or @code{__TIMESTAMP__}
6050 are encountered as they might prevent bit-wise-identical reproducible
6051 compilations.
6052
6053 @item -Wdelete-incomplete @r{(C++ and Objective-C++ only)}
6054 @opindex Wdelete-incomplete
6055 @opindex Wno-delete-incomplete
6056 Warn when deleting a pointer to incomplete type, which may cause
6057 undefined behavior at runtime. This warning is enabled by default.
6058
6059 @item -Wuseless-cast @r{(C++ and Objective-C++ only)}
6060 @opindex Wuseless-cast
6061 @opindex Wno-useless-cast
6062 Warn when an expression is casted to its own type.
6063
6064 @item -Wempty-body
6065 @opindex Wempty-body
6066 @opindex Wno-empty-body
6067 Warn if an empty body occurs in an @code{if}, @code{else} or @code{do
6068 while} statement. This warning is also enabled by @option{-Wextra}.
6069
6070 @item -Wenum-compare
6071 @opindex Wenum-compare
6072 @opindex Wno-enum-compare
6073 Warn about a comparison between values of different enumerated types.
6074 In C++ enumerated type mismatches in conditional expressions are also
6075 diagnosed and the warning is enabled by default. In C this warning is
6076 enabled by @option{-Wall}.
6077
6078 @item -Wextra-semi @r{(C++, Objective-C++ only)}
6079 @opindex Wextra-semi
6080 @opindex Wno-extra-semi
6081 Warn about redundant semicolon after in-class function definition.
6082
6083 @item -Wjump-misses-init @r{(C, Objective-C only)}
6084 @opindex Wjump-misses-init
6085 @opindex Wno-jump-misses-init
6086 Warn if a @code{goto} statement or a @code{switch} statement jumps
6087 forward across the initialization of a variable, or jumps backward to a
6088 label after the variable has been initialized. This only warns about
6089 variables that are initialized when they are declared. This warning is
6090 only supported for C and Objective-C; in C++ this sort of branch is an
6091 error in any case.
6092
6093 @option{-Wjump-misses-init} is included in @option{-Wc++-compat}. It
6094 can be disabled with the @option{-Wno-jump-misses-init} option.
6095
6096 @item -Wsign-compare
6097 @opindex Wsign-compare
6098 @opindex Wno-sign-compare
6099 @cindex warning for comparison of signed and unsigned values
6100 @cindex comparison of signed and unsigned values, warning
6101 @cindex signed and unsigned values, comparison warning
6102 Warn when a comparison between signed and unsigned values could produce
6103 an incorrect result when the signed value is converted to unsigned.
6104 In C++, this warning is also enabled by @option{-Wall}. In C, it is
6105 also enabled by @option{-Wextra}.
6106
6107 @item -Wsign-conversion
6108 @opindex Wsign-conversion
6109 @opindex Wno-sign-conversion
6110 Warn for implicit conversions that may change the sign of an integer
6111 value, like assigning a signed integer expression to an unsigned
6112 integer variable. An explicit cast silences the warning. In C, this
6113 option is enabled also by @option{-Wconversion}.
6114
6115 @item -Wfloat-conversion
6116 @opindex Wfloat-conversion
6117 @opindex Wno-float-conversion
6118 Warn for implicit conversions that reduce the precision of a real value.
6119 This includes conversions from real to integer, and from higher precision
6120 real to lower precision real values. This option is also enabled by
6121 @option{-Wconversion}.
6122
6123 @item -Wno-scalar-storage-order
6124 @opindex -Wno-scalar-storage-order
6125 @opindex -Wscalar-storage-order
6126 Do not warn on suspicious constructs involving reverse scalar storage order.
6127
6128 @item -Wsized-deallocation @r{(C++ and Objective-C++ only)}
6129 @opindex Wsized-deallocation
6130 @opindex Wno-sized-deallocation
6131 Warn about a definition of an unsized deallocation function
6132 @smallexample
6133 void operator delete (void *) noexcept;
6134 void operator delete[] (void *) noexcept;
6135 @end smallexample
6136 without a definition of the corresponding sized deallocation function
6137 @smallexample
6138 void operator delete (void *, std::size_t) noexcept;
6139 void operator delete[] (void *, std::size_t) noexcept;
6140 @end smallexample
6141 or vice versa. Enabled by @option{-Wextra} along with
6142 @option{-fsized-deallocation}.
6143
6144 @item -Wsizeof-pointer-div
6145 @opindex Wsizeof-pointer-div
6146 @opindex Wno-sizeof-pointer-div
6147 Warn for suspicious divisions of two sizeof expressions that divide
6148 the pointer size by the element size, which is the usual way to compute
6149 the array size but won't work out correctly with pointers. This warning
6150 warns e.g.@: about @code{sizeof (ptr) / sizeof (ptr[0])} if @code{ptr} is
6151 not an array, but a pointer. This warning is enabled by @option{-Wall}.
6152
6153 @item -Wsizeof-pointer-memaccess
6154 @opindex Wsizeof-pointer-memaccess
6155 @opindex Wno-sizeof-pointer-memaccess
6156 Warn for suspicious length parameters to certain string and memory built-in
6157 functions if the argument uses @code{sizeof}. This warning warns e.g.@:
6158 about @code{memset (ptr, 0, sizeof (ptr));} if @code{ptr} is not an array,
6159 but a pointer, and suggests a possible fix, or about
6160 @code{memcpy (&foo, ptr, sizeof (&foo));}. This warning is enabled by
6161 @option{-Wall}.
6162
6163 @item -Wsizeof-array-argument
6164 @opindex Wsizeof-array-argument
6165 @opindex Wno-sizeof-array-argument
6166 Warn when the @code{sizeof} operator is applied to a parameter that is
6167 declared as an array in a function definition. This warning is enabled by
6168 default for C and C++ programs.
6169
6170 @item -Wmemset-elt-size
6171 @opindex Wmemset-elt-size
6172 @opindex Wno-memset-elt-size
6173 Warn for suspicious calls to the @code{memset} built-in function, if the
6174 first argument references an array, and the third argument is a number
6175 equal to the number of elements, but not equal to the size of the array
6176 in memory. This indicates that the user has omitted a multiplication by
6177 the element size. This warning is enabled by @option{-Wall}.
6178
6179 @item -Wmemset-transposed-args
6180 @opindex Wmemset-transposed-args
6181 @opindex Wno-memset-transposed-args
6182 Warn for suspicious calls to the @code{memset} built-in function, if the
6183 second argument is not zero and the third argument is zero. This warns e.g.@
6184 about @code{memset (buf, sizeof buf, 0)} where most probably
6185 @code{memset (buf, 0, sizeof buf)} was meant instead. The diagnostics
6186 is only emitted if the third argument is literal zero. If it is some
6187 expression that is folded to zero, a cast of zero to some type, etc.,
6188 it is far less likely that the user has mistakenly exchanged the arguments
6189 and no warning is emitted. This warning is enabled by @option{-Wall}.
6190
6191 @item -Waddress
6192 @opindex Waddress
6193 @opindex Wno-address
6194 Warn about suspicious uses of memory addresses. These include using
6195 the address of a function in a conditional expression, such as
6196 @code{void func(void); if (func)}, and comparisons against the memory
6197 address of a string literal, such as @code{if (x == "abc")}. Such
6198 uses typically indicate a programmer error: the address of a function
6199 always evaluates to true, so their use in a conditional usually
6200 indicate that the programmer forgot the parentheses in a function
6201 call; and comparisons against string literals result in unspecified
6202 behavior and are not portable in C, so they usually indicate that the
6203 programmer intended to use @code{strcmp}. This warning is enabled by
6204 @option{-Wall}.
6205
6206 @item -Wlogical-op
6207 @opindex Wlogical-op
6208 @opindex Wno-logical-op
6209 Warn about suspicious uses of logical operators in expressions.
6210 This includes using logical operators in contexts where a
6211 bit-wise operator is likely to be expected. Also warns when
6212 the operands of a logical operator are the same:
6213 @smallexample
6214 extern int a;
6215 if (a < 0 && a < 0) @{ @dots{} @}
6216 @end smallexample
6217
6218 @item -Wlogical-not-parentheses
6219 @opindex Wlogical-not-parentheses
6220 @opindex Wno-logical-not-parentheses
6221 Warn about logical not used on the left hand side operand of a comparison.
6222 This option does not warn if the right operand is considered to be a boolean
6223 expression. Its purpose is to detect suspicious code like the following:
6224 @smallexample
6225 int a;
6226 @dots{}
6227 if (!a > 1) @{ @dots{} @}
6228 @end smallexample
6229
6230 It is possible to suppress the warning by wrapping the LHS into
6231 parentheses:
6232 @smallexample
6233 if ((!a) > 1) @{ @dots{} @}
6234 @end smallexample
6235
6236 This warning is enabled by @option{-Wall}.
6237
6238 @item -Waggregate-return
6239 @opindex Waggregate-return
6240 @opindex Wno-aggregate-return
6241 Warn if any functions that return structures or unions are defined or
6242 called. (In languages where you can return an array, this also elicits
6243 a warning.)
6244
6245 @item -Wno-aggressive-loop-optimizations
6246 @opindex Wno-aggressive-loop-optimizations
6247 @opindex Waggressive-loop-optimizations
6248 Warn if in a loop with constant number of iterations the compiler detects
6249 undefined behavior in some statement during one or more of the iterations.
6250
6251 @item -Wno-attributes
6252 @opindex Wno-attributes
6253 @opindex Wattributes
6254 Do not warn if an unexpected @code{__attribute__} is used, such as
6255 unrecognized attributes, function attributes applied to variables,
6256 etc. This does not stop errors for incorrect use of supported
6257 attributes.
6258
6259 @item -Wno-builtin-declaration-mismatch
6260 @opindex Wno-builtin-declaration-mismatch
6261 @opindex Wbuiltin-declaration-mismatch
6262 Warn if a built-in function is declared with the wrong signature.
6263 This warning is enabled by default.
6264
6265 @item -Wno-builtin-macro-redefined
6266 @opindex Wno-builtin-macro-redefined
6267 @opindex Wbuiltin-macro-redefined
6268 Do not warn if certain built-in macros are redefined. This suppresses
6269 warnings for redefinition of @code{__TIMESTAMP__}, @code{__TIME__},
6270 @code{__DATE__}, @code{__FILE__}, and @code{__BASE_FILE__}.
6271
6272 @item -Wstrict-prototypes @r{(C and Objective-C only)}
6273 @opindex Wstrict-prototypes
6274 @opindex Wno-strict-prototypes
6275 Warn if a function is declared or defined without specifying the
6276 argument types. (An old-style function definition is permitted without
6277 a warning if preceded by a declaration that specifies the argument
6278 types.)
6279
6280 @item -Wold-style-declaration @r{(C and Objective-C only)}
6281 @opindex Wold-style-declaration
6282 @opindex Wno-old-style-declaration
6283 Warn for obsolescent usages, according to the C Standard, in a
6284 declaration. For example, warn if storage-class specifiers like
6285 @code{static} are not the first things in a declaration. This warning
6286 is also enabled by @option{-Wextra}.
6287
6288 @item -Wold-style-definition @r{(C and Objective-C only)}
6289 @opindex Wold-style-definition
6290 @opindex Wno-old-style-definition
6291 Warn if an old-style function definition is used. A warning is given
6292 even if there is a previous prototype.
6293
6294 @item -Wmissing-parameter-type @r{(C and Objective-C only)}
6295 @opindex Wmissing-parameter-type
6296 @opindex Wno-missing-parameter-type
6297 A function parameter is declared without a type specifier in K&R-style
6298 functions:
6299
6300 @smallexample
6301 void foo(bar) @{ @}
6302 @end smallexample
6303
6304 This warning is also enabled by @option{-Wextra}.
6305
6306 @item -Wmissing-prototypes @r{(C and Objective-C only)}
6307 @opindex Wmissing-prototypes
6308 @opindex Wno-missing-prototypes
6309 Warn if a global function is defined without a previous prototype
6310 declaration. This warning is issued even if the definition itself
6311 provides a prototype. Use this option to detect global functions
6312 that do not have a matching prototype declaration in a header file.
6313 This option is not valid for C++ because all function declarations
6314 provide prototypes and a non-matching declaration declares an
6315 overload rather than conflict with an earlier declaration.
6316 Use @option{-Wmissing-declarations} to detect missing declarations in C++.
6317
6318 @item -Wmissing-declarations
6319 @opindex Wmissing-declarations
6320 @opindex Wno-missing-declarations
6321 Warn if a global function is defined without a previous declaration.
6322 Do so even if the definition itself provides a prototype.
6323 Use this option to detect global functions that are not declared in
6324 header files. In C, no warnings are issued for functions with previous
6325 non-prototype declarations; use @option{-Wmissing-prototypes} to detect
6326 missing prototypes. In C++, no warnings are issued for function templates,
6327 or for inline functions, or for functions in anonymous namespaces.
6328
6329 @item -Wmissing-field-initializers
6330 @opindex Wmissing-field-initializers
6331 @opindex Wno-missing-field-initializers
6332 @opindex W
6333 @opindex Wextra
6334 @opindex Wno-extra
6335 Warn if a structure's initializer has some fields missing. For
6336 example, the following code causes such a warning, because
6337 @code{x.h} is implicitly zero:
6338
6339 @smallexample
6340 struct s @{ int f, g, h; @};
6341 struct s x = @{ 3, 4 @};
6342 @end smallexample
6343
6344 This option does not warn about designated initializers, so the following
6345 modification does not trigger a warning:
6346
6347 @smallexample
6348 struct s @{ int f, g, h; @};
6349 struct s x = @{ .f = 3, .g = 4 @};
6350 @end smallexample
6351
6352 In C this option does not warn about the universal zero initializer
6353 @samp{@{ 0 @}}:
6354
6355 @smallexample
6356 struct s @{ int f, g, h; @};
6357 struct s x = @{ 0 @};
6358 @end smallexample
6359
6360 Likewise, in C++ this option does not warn about the empty @{ @}
6361 initializer, for example:
6362
6363 @smallexample
6364 struct s @{ int f, g, h; @};
6365 s x = @{ @};
6366 @end smallexample
6367
6368 This warning is included in @option{-Wextra}. To get other @option{-Wextra}
6369 warnings without this one, use @option{-Wextra -Wno-missing-field-initializers}.
6370
6371 @item -Wno-multichar
6372 @opindex Wno-multichar
6373 @opindex Wmultichar
6374 Do not warn if a multicharacter constant (@samp{'FOOF'}) is used.
6375 Usually they indicate a typo in the user's code, as they have
6376 implementation-defined values, and should not be used in portable code.
6377
6378 @item -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]}
6379 @opindex Wnormalized=
6380 @opindex Wnormalized
6381 @opindex Wno-normalized
6382 @cindex NFC
6383 @cindex NFKC
6384 @cindex character set, input normalization
6385 In ISO C and ISO C++, two identifiers are different if they are
6386 different sequences of characters. However, sometimes when characters
6387 outside the basic ASCII character set are used, you can have two
6388 different character sequences that look the same. To avoid confusion,
6389 the ISO 10646 standard sets out some @dfn{normalization rules} which
6390 when applied ensure that two sequences that look the same are turned into
6391 the same sequence. GCC can warn you if you are using identifiers that
6392 have not been normalized; this option controls that warning.
6393
6394 There are four levels of warning supported by GCC@. The default is
6395 @option{-Wnormalized=nfc}, which warns about any identifier that is
6396 not in the ISO 10646 ``C'' normalized form, @dfn{NFC}. NFC is the
6397 recommended form for most uses. It is equivalent to
6398 @option{-Wnormalized}.
6399
6400 Unfortunately, there are some characters allowed in identifiers by
6401 ISO C and ISO C++ that, when turned into NFC, are not allowed in
6402 identifiers. That is, there's no way to use these symbols in portable
6403 ISO C or C++ and have all your identifiers in NFC@.
6404 @option{-Wnormalized=id} suppresses the warning for these characters.
6405 It is hoped that future versions of the standards involved will correct
6406 this, which is why this option is not the default.
6407
6408 You can switch the warning off for all characters by writing
6409 @option{-Wnormalized=none} or @option{-Wno-normalized}. You should
6410 only do this if you are using some other normalization scheme (like
6411 ``D''), because otherwise you can easily create bugs that are
6412 literally impossible to see.
6413
6414 Some characters in ISO 10646 have distinct meanings but look identical
6415 in some fonts or display methodologies, especially once formatting has
6416 been applied. For instance @code{\u207F}, ``SUPERSCRIPT LATIN SMALL
6417 LETTER N'', displays just like a regular @code{n} that has been
6418 placed in a superscript. ISO 10646 defines the @dfn{NFKC}
6419 normalization scheme to convert all these into a standard form as
6420 well, and GCC warns if your code is not in NFKC if you use
6421 @option{-Wnormalized=nfkc}. This warning is comparable to warning
6422 about every identifier that contains the letter O because it might be
6423 confused with the digit 0, and so is not the default, but may be
6424 useful as a local coding convention if the programming environment
6425 cannot be fixed to display these characters distinctly.
6426
6427 @item -Wno-deprecated
6428 @opindex Wno-deprecated
6429 @opindex Wdeprecated
6430 Do not warn about usage of deprecated features. @xref{Deprecated Features}.
6431
6432 @item -Wno-deprecated-declarations
6433 @opindex Wno-deprecated-declarations
6434 @opindex Wdeprecated-declarations
6435 Do not warn about uses of functions (@pxref{Function Attributes}),
6436 variables (@pxref{Variable Attributes}), and types (@pxref{Type
6437 Attributes}) marked as deprecated by using the @code{deprecated}
6438 attribute.
6439
6440 @item -Wno-overflow
6441 @opindex Wno-overflow
6442 @opindex Woverflow
6443 Do not warn about compile-time overflow in constant expressions.
6444
6445 @item -Wno-odr
6446 @opindex Wno-odr
6447 @opindex Wodr
6448 Warn about One Definition Rule violations during link-time optimization.
6449 Requires @option{-flto-odr-type-merging} to be enabled. Enabled by default.
6450
6451 @item -Wopenmp-simd
6452 @opindex Wopenm-simd
6453 Warn if the vectorizer cost model overrides the OpenMP or the Cilk Plus
6454 simd directive set by user. The @option{-fsimd-cost-model=unlimited}
6455 option can be used to relax the cost model.
6456
6457 @item -Woverride-init @r{(C and Objective-C only)}
6458 @opindex Woverride-init
6459 @opindex Wno-override-init
6460 @opindex W
6461 @opindex Wextra
6462 @opindex Wno-extra
6463 Warn if an initialized field without side effects is overridden when
6464 using designated initializers (@pxref{Designated Inits, , Designated
6465 Initializers}).
6466
6467 This warning is included in @option{-Wextra}. To get other
6468 @option{-Wextra} warnings without this one, use @option{-Wextra
6469 -Wno-override-init}.
6470
6471 @item -Woverride-init-side-effects @r{(C and Objective-C only)}
6472 @opindex Woverride-init-side-effects
6473 @opindex Wno-override-init-side-effects
6474 Warn if an initialized field with side effects is overridden when
6475 using designated initializers (@pxref{Designated Inits, , Designated
6476 Initializers}). This warning is enabled by default.
6477
6478 @item -Wpacked
6479 @opindex Wpacked
6480 @opindex Wno-packed
6481 Warn if a structure is given the packed attribute, but the packed
6482 attribute has no effect on the layout or size of the structure.
6483 Such structures may be mis-aligned for little benefit. For
6484 instance, in this code, the variable @code{f.x} in @code{struct bar}
6485 is misaligned even though @code{struct bar} does not itself
6486 have the packed attribute:
6487
6488 @smallexample
6489 @group
6490 struct foo @{
6491 int x;
6492 char a, b, c, d;
6493 @} __attribute__((packed));
6494 struct bar @{
6495 char z;
6496 struct foo f;
6497 @};
6498 @end group
6499 @end smallexample
6500
6501 @item -Wpacked-bitfield-compat
6502 @opindex Wpacked-bitfield-compat
6503 @opindex Wno-packed-bitfield-compat
6504 The 4.1, 4.2 and 4.3 series of GCC ignore the @code{packed} attribute
6505 on bit-fields of type @code{char}. This has been fixed in GCC 4.4 but
6506 the change can lead to differences in the structure layout. GCC
6507 informs you when the offset of such a field has changed in GCC 4.4.
6508 For example there is no longer a 4-bit padding between field @code{a}
6509 and @code{b} in this structure:
6510
6511 @smallexample
6512 struct foo
6513 @{
6514 char a:4;
6515 char b:8;
6516 @} __attribute__ ((packed));
6517 @end smallexample
6518
6519 This warning is enabled by default. Use
6520 @option{-Wno-packed-bitfield-compat} to disable this warning.
6521
6522 @item -Wpadded
6523 @opindex Wpadded
6524 @opindex Wno-padded
6525 Warn if padding is included in a structure, either to align an element
6526 of the structure or to align the whole structure. Sometimes when this
6527 happens it is possible to rearrange the fields of the structure to
6528 reduce the padding and so make the structure smaller.
6529
6530 @item -Wredundant-decls
6531 @opindex Wredundant-decls
6532 @opindex Wno-redundant-decls
6533 Warn if anything is declared more than once in the same scope, even in
6534 cases where multiple declaration is valid and changes nothing.
6535
6536 @item -Wrestrict
6537 @opindex Wrestrict
6538 @opindex Wno-restrict
6539 Warn when an argument passed to a restrict-qualified parameter
6540 aliases with another argument.
6541
6542 @item -Wnested-externs @r{(C and Objective-C only)}
6543 @opindex Wnested-externs
6544 @opindex Wno-nested-externs
6545 Warn if an @code{extern} declaration is encountered within a function.
6546
6547 @item -Wno-inherited-variadic-ctor
6548 @opindex Winherited-variadic-ctor
6549 @opindex Wno-inherited-variadic-ctor
6550 Suppress warnings about use of C++11 inheriting constructors when the
6551 base class inherited from has a C variadic constructor; the warning is
6552 on by default because the ellipsis is not inherited.
6553
6554 @item -Winline
6555 @opindex Winline
6556 @opindex Wno-inline
6557 Warn if a function that is declared as inline cannot be inlined.
6558 Even with this option, the compiler does not warn about failures to
6559 inline functions declared in system headers.
6560
6561 The compiler uses a variety of heuristics to determine whether or not
6562 to inline a function. For example, the compiler takes into account
6563 the size of the function being inlined and the amount of inlining
6564 that has already been done in the current function. Therefore,
6565 seemingly insignificant changes in the source program can cause the
6566 warnings produced by @option{-Winline} to appear or disappear.
6567
6568 @item -Wno-invalid-offsetof @r{(C++ and Objective-C++ only)}
6569 @opindex Wno-invalid-offsetof
6570 @opindex Winvalid-offsetof
6571 Suppress warnings from applying the @code{offsetof} macro to a non-POD
6572 type. According to the 2014 ISO C++ standard, applying @code{offsetof}
6573 to a non-standard-layout type is undefined. In existing C++ implementations,
6574 however, @code{offsetof} typically gives meaningful results.
6575 This flag is for users who are aware that they are
6576 writing nonportable code and who have deliberately chosen to ignore the
6577 warning about it.
6578
6579 The restrictions on @code{offsetof} may be relaxed in a future version
6580 of the C++ standard.
6581
6582 @item -Wint-in-bool-context
6583 @opindex Wint-in-bool-context
6584 @opindex Wno-int-in-bool-context
6585 Warn for suspicious use of integer values where boolean values are expected,
6586 such as conditional expressions (?:) using non-boolean integer constants in
6587 boolean context, like @code{if (a <= b ? 2 : 3)}. Or left shifting of signed
6588 integers in boolean context, like @code{for (a = 0; 1 << a; a++);}. Likewise
6589 for all kinds of multiplications regardless of the data type.
6590 This warning is enabled by @option{-Wall}.
6591
6592 @item -Wno-int-to-pointer-cast
6593 @opindex Wno-int-to-pointer-cast
6594 @opindex Wint-to-pointer-cast
6595 Suppress warnings from casts to pointer type of an integer of a
6596 different size. In C++, casting to a pointer type of smaller size is
6597 an error. @option{Wint-to-pointer-cast} is enabled by default.
6598
6599
6600 @item -Wno-pointer-to-int-cast @r{(C and Objective-C only)}
6601 @opindex Wno-pointer-to-int-cast
6602 @opindex Wpointer-to-int-cast
6603 Suppress warnings from casts from a pointer to an integer type of a
6604 different size.
6605
6606 @item -Winvalid-pch
6607 @opindex Winvalid-pch
6608 @opindex Wno-invalid-pch
6609 Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
6610 the search path but cannot be used.
6611
6612 @item -Wlong-long
6613 @opindex Wlong-long
6614 @opindex Wno-long-long
6615 Warn if @code{long long} type is used. This is enabled by either
6616 @option{-Wpedantic} or @option{-Wtraditional} in ISO C90 and C++98
6617 modes. To inhibit the warning messages, use @option{-Wno-long-long}.
6618
6619 @item -Wvariadic-macros
6620 @opindex Wvariadic-macros
6621 @opindex Wno-variadic-macros
6622 Warn if variadic macros are used in ISO C90 mode, or if the GNU
6623 alternate syntax is used in ISO C99 mode. This is enabled by either
6624 @option{-Wpedantic} or @option{-Wtraditional}. To inhibit the warning
6625 messages, use @option{-Wno-variadic-macros}.
6626
6627 @item -Wvarargs
6628 @opindex Wvarargs
6629 @opindex Wno-varargs
6630 Warn upon questionable usage of the macros used to handle variable
6631 arguments like @code{va_start}. This is default. To inhibit the
6632 warning messages, use @option{-Wno-varargs}.
6633
6634 @item -Wvector-operation-performance
6635 @opindex Wvector-operation-performance
6636 @opindex Wno-vector-operation-performance
6637 Warn if vector operation is not implemented via SIMD capabilities of the
6638 architecture. Mainly useful for the performance tuning.
6639 Vector operation can be implemented @code{piecewise}, which means that the
6640 scalar operation is performed on every vector element;
6641 @code{in parallel}, which means that the vector operation is implemented
6642 using scalars of wider type, which normally is more performance efficient;
6643 and @code{as a single scalar}, which means that vector fits into a
6644 scalar type.
6645
6646 @item -Wno-virtual-move-assign
6647 @opindex Wvirtual-move-assign
6648 @opindex Wno-virtual-move-assign
6649 Suppress warnings about inheriting from a virtual base with a
6650 non-trivial C++11 move assignment operator. This is dangerous because
6651 if the virtual base is reachable along more than one path, it is
6652 moved multiple times, which can mean both objects end up in the
6653 moved-from state. If the move assignment operator is written to avoid
6654 moving from a moved-from object, this warning can be disabled.
6655
6656 @item -Wvla
6657 @opindex Wvla
6658 @opindex Wno-vla
6659 Warn if a variable-length array is used in the code.
6660 @option{-Wno-vla} prevents the @option{-Wpedantic} warning of
6661 the variable-length array.
6662
6663 @item -Wvla-larger-than=@var{n}
6664 If this option is used, the compiler will warn on uses of
6665 variable-length arrays where the size is either unbounded, or bounded
6666 by an argument that can be larger than @var{n} bytes. This is similar
6667 to how @option{-Walloca-larger-than=@var{n}} works, but with
6668 variable-length arrays.
6669
6670 Note that GCC may optimize small variable-length arrays of a known
6671 value into plain arrays, so this warning may not get triggered for
6672 such arrays.
6673
6674 This warning is not enabled by @option{-Wall}, and is only active when
6675 @option{-ftree-vrp} is active (default for @option{-O2} and above).
6676
6677 See also @option{-Walloca-larger-than=@var{n}}.
6678
6679 @item -Wvolatile-register-var
6680 @opindex Wvolatile-register-var
6681 @opindex Wno-volatile-register-var
6682 Warn if a register variable is declared volatile. The volatile
6683 modifier does not inhibit all optimizations that may eliminate reads
6684 and/or writes to register variables. This warning is enabled by
6685 @option{-Wall}.
6686
6687 @item -Wdisabled-optimization
6688 @opindex Wdisabled-optimization
6689 @opindex Wno-disabled-optimization
6690 Warn if a requested optimization pass is disabled. This warning does
6691 not generally indicate that there is anything wrong with your code; it
6692 merely indicates that GCC's optimizers are unable to handle the code
6693 effectively. Often, the problem is that your code is too big or too
6694 complex; GCC refuses to optimize programs when the optimization
6695 itself is likely to take inordinate amounts of time.
6696
6697 @item -Wpointer-sign @r{(C and Objective-C only)}
6698 @opindex Wpointer-sign
6699 @opindex Wno-pointer-sign
6700 Warn for pointer argument passing or assignment with different signedness.
6701 This option is only supported for C and Objective-C@. It is implied by
6702 @option{-Wall} and by @option{-Wpedantic}, which can be disabled with
6703 @option{-Wno-pointer-sign}.
6704
6705 @item -Wstack-protector
6706 @opindex Wstack-protector
6707 @opindex Wno-stack-protector
6708 This option is only active when @option{-fstack-protector} is active. It
6709 warns about functions that are not protected against stack smashing.
6710
6711 @item -Woverlength-strings
6712 @opindex Woverlength-strings
6713 @opindex Wno-overlength-strings
6714 Warn about string constants that are longer than the ``minimum
6715 maximum'' length specified in the C standard. Modern compilers
6716 generally allow string constants that are much longer than the
6717 standard's minimum limit, but very portable programs should avoid
6718 using longer strings.
6719
6720 The limit applies @emph{after} string constant concatenation, and does
6721 not count the trailing NUL@. In C90, the limit was 509 characters; in
6722 C99, it was raised to 4095. C++98 does not specify a normative
6723 minimum maximum, so we do not diagnose overlength strings in C++@.
6724
6725 This option is implied by @option{-Wpedantic}, and can be disabled with
6726 @option{-Wno-overlength-strings}.
6727
6728 @item -Wunsuffixed-float-constants @r{(C and Objective-C only)}
6729 @opindex Wunsuffixed-float-constants
6730
6731 Issue a warning for any floating constant that does not have
6732 a suffix. When used together with @option{-Wsystem-headers} it
6733 warns about such constants in system header files. This can be useful
6734 when preparing code to use with the @code{FLOAT_CONST_DECIMAL64} pragma
6735 from the decimal floating-point extension to C99.
6736
6737 @item -Wno-designated-init @r{(C and Objective-C only)}
6738 Suppress warnings when a positional initializer is used to initialize
6739 a structure that has been marked with the @code{designated_init}
6740 attribute.
6741
6742 @item -Whsa
6743 Issue a warning when HSAIL cannot be emitted for the compiled function or
6744 OpenMP construct.
6745
6746 @end table
6747
6748 @node Debugging Options
6749 @section Options for Debugging Your Program
6750 @cindex options, debugging
6751 @cindex debugging information options
6752
6753 To tell GCC to emit extra information for use by a debugger, in almost
6754 all cases you need only to add @option{-g} to your other options.
6755
6756 GCC allows you to use @option{-g} with
6757 @option{-O}. The shortcuts taken by optimized code may occasionally
6758 be surprising: some variables you declared may not exist
6759 at all; flow of control may briefly move where you did not expect it;
6760 some statements may not be executed because they compute constant
6761 results or their values are already at hand; some statements may
6762 execute in different places because they have been moved out of loops.
6763 Nevertheless it is possible to debug optimized output. This makes
6764 it reasonable to use the optimizer for programs that might have bugs.
6765
6766 If you are not using some other optimization option, consider
6767 using @option{-Og} (@pxref{Optimize Options}) with @option{-g}.
6768 With no @option{-O} option at all, some compiler passes that collect
6769 information useful for debugging do not run at all, so that
6770 @option{-Og} may result in a better debugging experience.
6771
6772 @table @gcctabopt
6773 @item -g
6774 @opindex g
6775 Produce debugging information in the operating system's native format
6776 (stabs, COFF, XCOFF, or DWARF)@. GDB can work with this debugging
6777 information.
6778
6779 On most systems that use stabs format, @option{-g} enables use of extra
6780 debugging information that only GDB can use; this extra information
6781 makes debugging work better in GDB but probably makes other debuggers
6782 crash or
6783 refuse to read the program. If you want to control for certain whether
6784 to generate the extra information, use @option{-gstabs+}, @option{-gstabs},
6785 @option{-gxcoff+}, @option{-gxcoff}, or @option{-gvms} (see below).
6786
6787 @item -ggdb
6788 @opindex ggdb
6789 Produce debugging information for use by GDB@. This means to use the
6790 most expressive format available (DWARF, stabs, or the native format
6791 if neither of those are supported), including GDB extensions if at all
6792 possible.
6793
6794 @item -gdwarf
6795 @itemx -gdwarf-@var{version}
6796 @opindex gdwarf
6797 Produce debugging information in DWARF format (if that is supported).
6798 The value of @var{version} may be either 2, 3, 4 or 5; the default version
6799 for most targets is 4. DWARF Version 5 is only experimental.
6800
6801 Note that with DWARF Version 2, some ports require and always
6802 use some non-conflicting DWARF 3 extensions in the unwind tables.
6803
6804 Version 4 may require GDB 7.0 and @option{-fvar-tracking-assignments}
6805 for maximum benefit.
6806
6807 GCC no longer supports DWARF Version 1, which is substantially
6808 different than Version 2 and later. For historical reasons, some
6809 other DWARF-related options (including @option{-feliminate-dwarf2-dups}
6810 and @option{-fno-dwarf2-cfi-asm}) retain a reference to DWARF Version 2
6811 in their names, but apply to all currently-supported versions of DWARF.
6812
6813 @item -gstabs
6814 @opindex gstabs
6815 Produce debugging information in stabs format (if that is supported),
6816 without GDB extensions. This is the format used by DBX on most BSD
6817 systems. On MIPS, Alpha and System V Release 4 systems this option
6818 produces stabs debugging output that is not understood by DBX or SDB@.
6819 On System V Release 4 systems this option requires the GNU assembler.
6820
6821 @item -gstabs+
6822 @opindex gstabs+
6823 Produce debugging information in stabs format (if that is supported),
6824 using GNU extensions understood only by the GNU debugger (GDB)@. The
6825 use of these extensions is likely to make other debuggers crash or
6826 refuse to read the program.
6827
6828 @item -gcoff
6829 @opindex gcoff
6830 Produce debugging information in COFF format (if that is supported).
6831 This is the format used by SDB on most System V systems prior to
6832 System V Release 4.
6833
6834 @item -gxcoff
6835 @opindex gxcoff
6836 Produce debugging information in XCOFF format (if that is supported).
6837 This is the format used by the DBX debugger on IBM RS/6000 systems.
6838
6839 @item -gxcoff+
6840 @opindex gxcoff+
6841 Produce debugging information in XCOFF format (if that is supported),
6842 using GNU extensions understood only by the GNU debugger (GDB)@. The
6843 use of these extensions is likely to make other debuggers crash or
6844 refuse to read the program, and may cause assemblers other than the GNU
6845 assembler (GAS) to fail with an error.
6846
6847 @item -gvms
6848 @opindex gvms
6849 Produce debugging information in Alpha/VMS debug format (if that is
6850 supported). This is the format used by DEBUG on Alpha/VMS systems.
6851
6852 @item -g@var{level}
6853 @itemx -ggdb@var{level}
6854 @itemx -gstabs@var{level}
6855 @itemx -gcoff@var{level}
6856 @itemx -gxcoff@var{level}
6857 @itemx -gvms@var{level}
6858 Request debugging information and also use @var{level} to specify how
6859 much information. The default level is 2.
6860
6861 Level 0 produces no debug information at all. Thus, @option{-g0} negates
6862 @option{-g}.
6863
6864 Level 1 produces minimal information, enough for making backtraces in
6865 parts of the program that you don't plan to debug. This includes
6866 descriptions of functions and external variables, and line number
6867 tables, but no information about local variables.
6868
6869 Level 3 includes extra information, such as all the macro definitions
6870 present in the program. Some debuggers support macro expansion when
6871 you use @option{-g3}.
6872
6873 @option{-gdwarf} does not accept a concatenated debug level, to avoid
6874 confusion with @option{-gdwarf-@var{level}}.
6875 Instead use an additional @option{-g@var{level}} option to change the
6876 debug level for DWARF.
6877
6878 @item -feliminate-unused-debug-symbols
6879 @opindex feliminate-unused-debug-symbols
6880 Produce debugging information in stabs format (if that is supported),
6881 for only symbols that are actually used.
6882
6883 @item -femit-class-debug-always
6884 @opindex femit-class-debug-always
6885 Instead of emitting debugging information for a C++ class in only one
6886 object file, emit it in all object files using the class. This option
6887 should be used only with debuggers that are unable to handle the way GCC
6888 normally emits debugging information for classes because using this
6889 option increases the size of debugging information by as much as a
6890 factor of two.
6891
6892 @item -fno-merge-debug-strings
6893 @opindex fmerge-debug-strings
6894 @opindex fno-merge-debug-strings
6895 Direct the linker to not merge together strings in the debugging
6896 information that are identical in different object files. Merging is
6897 not supported by all assemblers or linkers. Merging decreases the size
6898 of the debug information in the output file at the cost of increasing
6899 link processing time. Merging is enabled by default.
6900
6901 @item -fdebug-prefix-map=@var{old}=@var{new}
6902 @opindex fdebug-prefix-map
6903 When compiling files in directory @file{@var{old}}, record debugging
6904 information describing them as in @file{@var{new}} instead.
6905
6906 @item -fvar-tracking
6907 @opindex fvar-tracking
6908 Run variable tracking pass. It computes where variables are stored at each
6909 position in code. Better debugging information is then generated
6910 (if the debugging information format supports this information).
6911
6912 It is enabled by default when compiling with optimization (@option{-Os},
6913 @option{-O}, @option{-O2}, @dots{}), debugging information (@option{-g}) and
6914 the debug info format supports it.
6915
6916 @item -fvar-tracking-assignments
6917 @opindex fvar-tracking-assignments
6918 @opindex fno-var-tracking-assignments
6919 Annotate assignments to user variables early in the compilation and
6920 attempt to carry the annotations over throughout the compilation all the
6921 way to the end, in an attempt to improve debug information while
6922 optimizing. Use of @option{-gdwarf-4} is recommended along with it.
6923
6924 It can be enabled even if var-tracking is disabled, in which case
6925 annotations are created and maintained, but discarded at the end.
6926 By default, this flag is enabled together with @option{-fvar-tracking},
6927 except when selective scheduling is enabled.
6928
6929 @item -gsplit-dwarf
6930 @opindex gsplit-dwarf
6931 Separate as much DWARF debugging information as possible into a
6932 separate output file with the extension @file{.dwo}. This option allows
6933 the build system to avoid linking files with debug information. To
6934 be useful, this option requires a debugger capable of reading @file{.dwo}
6935 files.
6936
6937 @item -gpubnames
6938 @opindex gpubnames
6939 Generate DWARF @code{.debug_pubnames} and @code{.debug_pubtypes} sections.
6940
6941 @item -ggnu-pubnames
6942 @opindex ggnu-pubnames
6943 Generate @code{.debug_pubnames} and @code{.debug_pubtypes} sections in a format
6944 suitable for conversion into a GDB@ index. This option is only useful
6945 with a linker that can produce GDB@ index version 7.
6946
6947 @item -fdebug-types-section
6948 @opindex fdebug-types-section
6949 @opindex fno-debug-types-section
6950 When using DWARF Version 4 or higher, type DIEs can be put into
6951 their own @code{.debug_types} section instead of making them part of the
6952 @code{.debug_info} section. It is more efficient to put them in a separate
6953 comdat sections since the linker can then remove duplicates.
6954 But not all DWARF consumers support @code{.debug_types} sections yet
6955 and on some objects @code{.debug_types} produces larger instead of smaller
6956 debugging information.
6957
6958 @item -grecord-gcc-switches
6959 @item -gno-record-gcc-switches
6960 @opindex grecord-gcc-switches
6961 @opindex gno-record-gcc-switches
6962 This switch causes the command-line options used to invoke the
6963 compiler that may affect code generation to be appended to the
6964 DW_AT_producer attribute in DWARF debugging information. The options
6965 are concatenated with spaces separating them from each other and from
6966 the compiler version.
6967 It is enabled by default.
6968 See also @option{-frecord-gcc-switches} for another
6969 way of storing compiler options into the object file.
6970
6971 @item -gstrict-dwarf
6972 @opindex gstrict-dwarf
6973 Disallow using extensions of later DWARF standard version than selected
6974 with @option{-gdwarf-@var{version}}. On most targets using non-conflicting
6975 DWARF extensions from later standard versions is allowed.
6976
6977 @item -gno-strict-dwarf
6978 @opindex gno-strict-dwarf
6979 Allow using extensions of later DWARF standard version than selected with
6980 @option{-gdwarf-@var{version}}.
6981
6982 @item -gcolumn-info
6983 @item -gno-column-info
6984 @opindex gcolumn-info
6985 @opindex gno-column-info
6986 Emit location column information into DWARF debugging information, rather
6987 than just file and line.
6988 This option is disabled by default.
6989
6990 @item -gz@r{[}=@var{type}@r{]}
6991 @opindex gz
6992 Produce compressed debug sections in DWARF format, if that is supported.
6993 If @var{type} is not given, the default type depends on the capabilities
6994 of the assembler and linker used. @var{type} may be one of
6995 @samp{none} (don't compress debug sections), @samp{zlib} (use zlib
6996 compression in ELF gABI format), or @samp{zlib-gnu} (use zlib
6997 compression in traditional GNU format). If the linker doesn't support
6998 writing compressed debug sections, the option is rejected. Otherwise,
6999 if the assembler does not support them, @option{-gz} is silently ignored
7000 when producing object files.
7001
7002 @item -feliminate-dwarf2-dups
7003 @opindex feliminate-dwarf2-dups
7004 Compress DWARF debugging information by eliminating duplicated
7005 information about each symbol. This option only makes sense when
7006 generating DWARF debugging information.
7007
7008 @item -femit-struct-debug-baseonly
7009 @opindex femit-struct-debug-baseonly
7010 Emit debug information for struct-like types
7011 only when the base name of the compilation source file
7012 matches the base name of file in which the struct is defined.
7013
7014 This option substantially reduces the size of debugging information,
7015 but at significant potential loss in type information to the debugger.
7016 See @option{-femit-struct-debug-reduced} for a less aggressive option.
7017 See @option{-femit-struct-debug-detailed} for more detailed control.
7018
7019 This option works only with DWARF debug output.
7020
7021 @item -femit-struct-debug-reduced
7022 @opindex femit-struct-debug-reduced
7023 Emit debug information for struct-like types
7024 only when the base name of the compilation source file
7025 matches the base name of file in which the type is defined,
7026 unless the struct is a template or defined in a system header.
7027
7028 This option significantly reduces the size of debugging information,
7029 with some potential loss in type information to the debugger.
7030 See @option{-femit-struct-debug-baseonly} for a more aggressive option.
7031 See @option{-femit-struct-debug-detailed} for more detailed control.
7032
7033 This option works only with DWARF debug output.
7034
7035 @item -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]}
7036 @opindex femit-struct-debug-detailed
7037 Specify the struct-like types
7038 for which the compiler generates debug information.
7039 The intent is to reduce duplicate struct debug information
7040 between different object files within the same program.
7041
7042 This option is a detailed version of
7043 @option{-femit-struct-debug-reduced} and @option{-femit-struct-debug-baseonly},
7044 which serves for most needs.
7045
7046 A specification has the syntax@*
7047 [@samp{dir:}|@samp{ind:}][@samp{ord:}|@samp{gen:}](@samp{any}|@samp{sys}|@samp{base}|@samp{none})
7048
7049 The optional first word limits the specification to
7050 structs that are used directly (@samp{dir:}) or used indirectly (@samp{ind:}).
7051 A struct type is used directly when it is the type of a variable, member.
7052 Indirect uses arise through pointers to structs.
7053 That is, when use of an incomplete struct is valid, the use is indirect.
7054 An example is
7055 @samp{struct one direct; struct two * indirect;}.
7056
7057 The optional second word limits the specification to
7058 ordinary structs (@samp{ord:}) or generic structs (@samp{gen:}).
7059 Generic structs are a bit complicated to explain.
7060 For C++, these are non-explicit specializations of template classes,
7061 or non-template classes within the above.
7062 Other programming languages have generics,
7063 but @option{-femit-struct-debug-detailed} does not yet implement them.
7064
7065 The third word specifies the source files for those
7066 structs for which the compiler should emit debug information.
7067 The values @samp{none} and @samp{any} have the normal meaning.
7068 The value @samp{base} means that
7069 the base of name of the file in which the type declaration appears
7070 must match the base of the name of the main compilation file.
7071 In practice, this means that when compiling @file{foo.c}, debug information
7072 is generated for types declared in that file and @file{foo.h},
7073 but not other header files.
7074 The value @samp{sys} means those types satisfying @samp{base}
7075 or declared in system or compiler headers.
7076
7077 You may need to experiment to determine the best settings for your application.
7078
7079 The default is @option{-femit-struct-debug-detailed=all}.
7080
7081 This option works only with DWARF debug output.
7082
7083 @item -fno-dwarf2-cfi-asm
7084 @opindex fdwarf2-cfi-asm
7085 @opindex fno-dwarf2-cfi-asm
7086 Emit DWARF unwind info as compiler generated @code{.eh_frame} section
7087 instead of using GAS @code{.cfi_*} directives.
7088
7089 @item -fno-eliminate-unused-debug-types
7090 @opindex feliminate-unused-debug-types
7091 @opindex fno-eliminate-unused-debug-types
7092 Normally, when producing DWARF output, GCC avoids producing debug symbol
7093 output for types that are nowhere used in the source file being compiled.
7094 Sometimes it is useful to have GCC emit debugging
7095 information for all types declared in a compilation
7096 unit, regardless of whether or not they are actually used
7097 in that compilation unit, for example
7098 if, in the debugger, you want to cast a value to a type that is
7099 not actually used in your program (but is declared). More often,
7100 however, this results in a significant amount of wasted space.
7101 @end table
7102
7103 @node Optimize Options
7104 @section Options That Control Optimization
7105 @cindex optimize options
7106 @cindex options, optimization
7107
7108 These options control various sorts of optimizations.
7109
7110 Without any optimization option, the compiler's goal is to reduce the
7111 cost of compilation and to make debugging produce the expected
7112 results. Statements are independent: if you stop the program with a
7113 breakpoint between statements, you can then assign a new value to any
7114 variable or change the program counter to any other statement in the
7115 function and get exactly the results you expect from the source
7116 code.
7117
7118 Turning on optimization flags makes the compiler attempt to improve
7119 the performance and/or code size at the expense of compilation time
7120 and possibly the ability to debug the program.
7121
7122 The compiler performs optimization based on the knowledge it has of the
7123 program. Compiling multiple files at once to a single output file mode allows
7124 the compiler to use information gained from all of the files when compiling
7125 each of them.
7126
7127 Not all optimizations are controlled directly by a flag. Only
7128 optimizations that have a flag are listed in this section.
7129
7130 Most optimizations are only enabled if an @option{-O} level is set on
7131 the command line. Otherwise they are disabled, even if individual
7132 optimization flags are specified.
7133
7134 Depending on the target and how GCC was configured, a slightly different
7135 set of optimizations may be enabled at each @option{-O} level than
7136 those listed here. You can invoke GCC with @option{-Q --help=optimizers}
7137 to find out the exact set of optimizations that are enabled at each level.
7138 @xref{Overall Options}, for examples.
7139
7140 @table @gcctabopt
7141 @item -O
7142 @itemx -O1
7143 @opindex O
7144 @opindex O1
7145 Optimize. Optimizing compilation takes somewhat more time, and a lot
7146 more memory for a large function.
7147
7148 With @option{-O}, the compiler tries to reduce code size and execution
7149 time, without performing any optimizations that take a great deal of
7150 compilation time.
7151
7152 @option{-O} turns on the following optimization flags:
7153 @gccoptlist{
7154 -fauto-inc-dec @gol
7155 -fbranch-count-reg @gol
7156 -fcombine-stack-adjustments @gol
7157 -fcompare-elim @gol
7158 -fcprop-registers @gol
7159 -fdce @gol
7160 -fdefer-pop @gol
7161 -fdelayed-branch @gol
7162 -fdse @gol
7163 -fforward-propagate @gol
7164 -fguess-branch-probability @gol
7165 -fif-conversion2 @gol
7166 -fif-conversion @gol
7167 -finline-functions-called-once @gol
7168 -fipa-pure-const @gol
7169 -fipa-profile @gol
7170 -fipa-reference @gol
7171 -fmerge-constants @gol
7172 -fmove-loop-invariants @gol
7173 -freorder-blocks @gol
7174 -fshrink-wrap @gol
7175 -fshrink-wrap-separate @gol
7176 -fsplit-wide-types @gol
7177 -fssa-backprop @gol
7178 -fssa-phiopt @gol
7179 -ftree-bit-ccp @gol
7180 -ftree-ccp @gol
7181 -ftree-ch @gol
7182 -ftree-coalesce-vars @gol
7183 -ftree-copy-prop @gol
7184 -ftree-dce @gol
7185 -ftree-dominator-opts @gol
7186 -ftree-dse @gol
7187 -ftree-forwprop @gol
7188 -ftree-fre @gol
7189 -ftree-phiprop @gol
7190 -ftree-sink @gol
7191 -ftree-slsr @gol
7192 -ftree-sra @gol
7193 -ftree-pta @gol
7194 -ftree-ter @gol
7195 -funit-at-a-time}
7196
7197 @option{-O} also turns on @option{-fomit-frame-pointer} on machines
7198 where doing so does not interfere with debugging.
7199
7200 @item -O2
7201 @opindex O2
7202 Optimize even more. GCC performs nearly all supported optimizations
7203 that do not involve a space-speed tradeoff.
7204 As compared to @option{-O}, this option increases both compilation time
7205 and the performance of the generated code.
7206
7207 @option{-O2} turns on all optimization flags specified by @option{-O}. It
7208 also turns on the following optimization flags:
7209 @gccoptlist{-fthread-jumps @gol
7210 -falign-functions -falign-jumps @gol
7211 -falign-loops -falign-labels @gol
7212 -fcaller-saves @gol
7213 -fcrossjumping @gol
7214 -fcse-follow-jumps -fcse-skip-blocks @gol
7215 -fdelete-null-pointer-checks @gol
7216 -fdevirtualize -fdevirtualize-speculatively @gol
7217 -fexpensive-optimizations @gol
7218 -fgcse -fgcse-lm @gol
7219 -fhoist-adjacent-loads @gol
7220 -finline-small-functions @gol
7221 -findirect-inlining @gol
7222 -fipa-cp @gol
7223 -fipa-bit-cp @gol
7224 -fipa-vrp @gol
7225 -fipa-sra @gol
7226 -fipa-icf @gol
7227 -fisolate-erroneous-paths-dereference @gol
7228 -flra-remat @gol
7229 -foptimize-sibling-calls @gol
7230 -foptimize-strlen @gol
7231 -fpartial-inlining @gol
7232 -fpeephole2 @gol
7233 -freorder-blocks-algorithm=stc @gol
7234 -freorder-blocks-and-partition -freorder-functions @gol
7235 -frerun-cse-after-loop @gol
7236 -fsched-interblock -fsched-spec @gol
7237 -fschedule-insns -fschedule-insns2 @gol
7238 -fstore-merging @gol
7239 -fstrict-aliasing @gol
7240 -ftree-builtin-call-dce @gol
7241 -ftree-switch-conversion -ftree-tail-merge @gol
7242 -fcode-hoisting @gol
7243 -ftree-pre @gol
7244 -ftree-vrp @gol
7245 -fipa-ra}
7246
7247 Please note the warning under @option{-fgcse} about
7248 invoking @option{-O2} on programs that use computed gotos.
7249
7250 @item -O3
7251 @opindex O3
7252 Optimize yet more. @option{-O3} turns on all optimizations specified
7253 by @option{-O2} and also turns on the @option{-finline-functions},
7254 @option{-funswitch-loops}, @option{-fpredictive-commoning},
7255 @option{-fgcse-after-reload}, @option{-ftree-loop-vectorize},
7256 @option{-ftree-loop-distribute-patterns}, @option{-fsplit-paths}
7257 @option{-ftree-slp-vectorize}, @option{-fvect-cost-model},
7258 @option{-ftree-partial-pre}, @option{-fpeel-loops}
7259 and @option{-fipa-cp-clone} options.
7260
7261 @item -O0
7262 @opindex O0
7263 Reduce compilation time and make debugging produce the expected
7264 results. This is the default.
7265
7266 @item -Os
7267 @opindex Os
7268 Optimize for size. @option{-Os} enables all @option{-O2} optimizations that
7269 do not typically increase code size. It also performs further
7270 optimizations designed to reduce code size.
7271
7272 @option{-Os} disables the following optimization flags:
7273 @gccoptlist{-falign-functions -falign-jumps -falign-loops @gol
7274 -falign-labels -freorder-blocks -freorder-blocks-algorithm=stc @gol
7275 -freorder-blocks-and-partition -fprefetch-loop-arrays}
7276
7277 @item -Ofast
7278 @opindex Ofast
7279 Disregard strict standards compliance. @option{-Ofast} enables all
7280 @option{-O3} optimizations. It also enables optimizations that are not
7281 valid for all standard-compliant programs.
7282 It turns on @option{-ffast-math} and the Fortran-specific
7283 @option{-fno-protect-parens} and @option{-fstack-arrays}.
7284
7285 @item -Og
7286 @opindex Og
7287 Optimize debugging experience. @option{-Og} enables optimizations
7288 that do not interfere with debugging. It should be the optimization
7289 level of choice for the standard edit-compile-debug cycle, offering
7290 a reasonable level of optimization while maintaining fast compilation
7291 and a good debugging experience.
7292 @end table
7293
7294 If you use multiple @option{-O} options, with or without level numbers,
7295 the last such option is the one that is effective.
7296
7297 Options of the form @option{-f@var{flag}} specify machine-independent
7298 flags. Most flags have both positive and negative forms; the negative
7299 form of @option{-ffoo} is @option{-fno-foo}. In the table
7300 below, only one of the forms is listed---the one you typically
7301 use. You can figure out the other form by either removing @samp{no-}
7302 or adding it.
7303
7304 The following options control specific optimizations. They are either
7305 activated by @option{-O} options or are related to ones that are. You
7306 can use the following flags in the rare cases when ``fine-tuning'' of
7307 optimizations to be performed is desired.
7308
7309 @table @gcctabopt
7310 @item -fno-defer-pop
7311 @opindex fno-defer-pop
7312 Always pop the arguments to each function call as soon as that function
7313 returns. For machines that must pop arguments after a function call,
7314 the compiler normally lets arguments accumulate on the stack for several
7315 function calls and pops them all at once.
7316
7317 Disabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7318
7319 @item -fforward-propagate
7320 @opindex fforward-propagate
7321 Perform a forward propagation pass on RTL@. The pass tries to combine two
7322 instructions and checks if the result can be simplified. If loop unrolling
7323 is active, two passes are performed and the second is scheduled after
7324 loop unrolling.
7325
7326 This option is enabled by default at optimization levels @option{-O},
7327 @option{-O2}, @option{-O3}, @option{-Os}.
7328
7329 @item -ffp-contract=@var{style}
7330 @opindex ffp-contract
7331 @option{-ffp-contract=off} disables floating-point expression contraction.
7332 @option{-ffp-contract=fast} enables floating-point expression contraction
7333 such as forming of fused multiply-add operations if the target has
7334 native support for them.
7335 @option{-ffp-contract=on} enables floating-point expression contraction
7336 if allowed by the language standard. This is currently not implemented
7337 and treated equal to @option{-ffp-contract=off}.
7338
7339 The default is @option{-ffp-contract=fast}.
7340
7341 @item -fomit-frame-pointer
7342 @opindex fomit-frame-pointer
7343 Don't keep the frame pointer in a register for functions that
7344 don't need one. This avoids the instructions to save, set up and
7345 restore frame pointers; it also makes an extra register available
7346 in many functions. @strong{It also makes debugging impossible on
7347 some machines.}
7348
7349 On some machines, such as the VAX, this flag has no effect, because
7350 the standard calling sequence automatically handles the frame pointer
7351 and nothing is saved by pretending it doesn't exist. The
7352 machine-description macro @code{FRAME_POINTER_REQUIRED} controls
7353 whether a target machine supports this flag. @xref{Registers,,Register
7354 Usage, gccint, GNU Compiler Collection (GCC) Internals}.
7355
7356 The default setting (when not optimizing for
7357 size) for 32-bit GNU/Linux x86 and 32-bit Darwin x86 targets is
7358 @option{-fomit-frame-pointer}. You can configure GCC with the
7359 @option{--enable-frame-pointer} configure option to change the default.
7360
7361 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7362
7363 @item -foptimize-sibling-calls
7364 @opindex foptimize-sibling-calls
7365 Optimize sibling and tail recursive calls.
7366
7367 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7368
7369 @item -foptimize-strlen
7370 @opindex foptimize-strlen
7371 Optimize various standard C string functions (e.g. @code{strlen},
7372 @code{strchr} or @code{strcpy}) and
7373 their @code{_FORTIFY_SOURCE} counterparts into faster alternatives.
7374
7375 Enabled at levels @option{-O2}, @option{-O3}.
7376
7377 @item -fno-inline
7378 @opindex fno-inline
7379 Do not expand any functions inline apart from those marked with
7380 the @code{always_inline} attribute. This is the default when not
7381 optimizing.
7382
7383 Single functions can be exempted from inlining by marking them
7384 with the @code{noinline} attribute.
7385
7386 @item -finline-small-functions
7387 @opindex finline-small-functions
7388 Integrate functions into their callers when their body is smaller than expected
7389 function call code (so overall size of program gets smaller). The compiler
7390 heuristically decides which functions are simple enough to be worth integrating
7391 in this way. This inlining applies to all functions, even those not declared
7392 inline.
7393
7394 Enabled at level @option{-O2}.
7395
7396 @item -findirect-inlining
7397 @opindex findirect-inlining
7398 Inline also indirect calls that are discovered to be known at compile
7399 time thanks to previous inlining. This option has any effect only
7400 when inlining itself is turned on by the @option{-finline-functions}
7401 or @option{-finline-small-functions} options.
7402
7403 Enabled at level @option{-O2}.
7404
7405 @item -finline-functions
7406 @opindex finline-functions
7407 Consider all functions for inlining, even if they are not declared inline.
7408 The compiler heuristically decides which functions are worth integrating
7409 in this way.
7410
7411 If all calls to a given function are integrated, and the function is
7412 declared @code{static}, then the function is normally not output as
7413 assembler code in its own right.
7414
7415 Enabled at level @option{-O3}.
7416
7417 @item -finline-functions-called-once
7418 @opindex finline-functions-called-once
7419 Consider all @code{static} functions called once for inlining into their
7420 caller even if they are not marked @code{inline}. If a call to a given
7421 function is integrated, then the function is not output as assembler code
7422 in its own right.
7423
7424 Enabled at levels @option{-O1}, @option{-O2}, @option{-O3} and @option{-Os}.
7425
7426 @item -fearly-inlining
7427 @opindex fearly-inlining
7428 Inline functions marked by @code{always_inline} and functions whose body seems
7429 smaller than the function call overhead early before doing
7430 @option{-fprofile-generate} instrumentation and real inlining pass. Doing so
7431 makes profiling significantly cheaper and usually inlining faster on programs
7432 having large chains of nested wrapper functions.
7433
7434 Enabled by default.
7435
7436 @item -fipa-sra
7437 @opindex fipa-sra
7438 Perform interprocedural scalar replacement of aggregates, removal of
7439 unused parameters and replacement of parameters passed by reference
7440 by parameters passed by value.
7441
7442 Enabled at levels @option{-O2}, @option{-O3} and @option{-Os}.
7443
7444 @item -finline-limit=@var{n}
7445 @opindex finline-limit
7446 By default, GCC limits the size of functions that can be inlined. This flag
7447 allows coarse control of this limit. @var{n} is the size of functions that
7448 can be inlined in number of pseudo instructions.
7449
7450 Inlining is actually controlled by a number of parameters, which may be
7451 specified individually by using @option{--param @var{name}=@var{value}}.
7452 The @option{-finline-limit=@var{n}} option sets some of these parameters
7453 as follows:
7454
7455 @table @gcctabopt
7456 @item max-inline-insns-single
7457 is set to @var{n}/2.
7458 @item max-inline-insns-auto
7459 is set to @var{n}/2.
7460 @end table
7461
7462 See below for a documentation of the individual
7463 parameters controlling inlining and for the defaults of these parameters.
7464
7465 @emph{Note:} there may be no value to @option{-finline-limit} that results
7466 in default behavior.
7467
7468 @emph{Note:} pseudo instruction represents, in this particular context, an
7469 abstract measurement of function's size. In no way does it represent a count
7470 of assembly instructions and as such its exact meaning might change from one
7471 release to an another.
7472
7473 @item -fno-keep-inline-dllexport
7474 @opindex fno-keep-inline-dllexport
7475 This is a more fine-grained version of @option{-fkeep-inline-functions},
7476 which applies only to functions that are declared using the @code{dllexport}
7477 attribute or declspec. @xref{Function Attributes,,Declaring Attributes of
7478 Functions}.
7479
7480 @item -fkeep-inline-functions
7481 @opindex fkeep-inline-functions
7482 In C, emit @code{static} functions that are declared @code{inline}
7483 into the object file, even if the function has been inlined into all
7484 of its callers. This switch does not affect functions using the
7485 @code{extern inline} extension in GNU C90@. In C++, emit any and all
7486 inline functions into the object file.
7487
7488 @item -fkeep-static-functions
7489 @opindex fkeep-static-functions
7490 Emit @code{static} functions into the object file, even if the function
7491 is never used.
7492
7493 @item -fkeep-static-consts
7494 @opindex fkeep-static-consts
7495 Emit variables declared @code{static const} when optimization isn't turned
7496 on, even if the variables aren't referenced.
7497
7498 GCC enables this option by default. If you want to force the compiler to
7499 check if a variable is referenced, regardless of whether or not
7500 optimization is turned on, use the @option{-fno-keep-static-consts} option.
7501
7502 @item -fmerge-constants
7503 @opindex fmerge-constants
7504 Attempt to merge identical constants (string constants and floating-point
7505 constants) across compilation units.
7506
7507 This option is the default for optimized compilation if the assembler and
7508 linker support it. Use @option{-fno-merge-constants} to inhibit this
7509 behavior.
7510
7511 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7512
7513 @item -fmerge-all-constants
7514 @opindex fmerge-all-constants
7515 Attempt to merge identical constants and identical variables.
7516
7517 This option implies @option{-fmerge-constants}. In addition to
7518 @option{-fmerge-constants} this considers e.g.@: even constant initialized
7519 arrays or initialized constant variables with integral or floating-point
7520 types. Languages like C or C++ require each variable, including multiple
7521 instances of the same variable in recursive calls, to have distinct locations,
7522 so using this option results in non-conforming
7523 behavior.
7524
7525 @item -fmodulo-sched
7526 @opindex fmodulo-sched
7527 Perform swing modulo scheduling immediately before the first scheduling
7528 pass. This pass looks at innermost loops and reorders their
7529 instructions by overlapping different iterations.
7530
7531 @item -fmodulo-sched-allow-regmoves
7532 @opindex fmodulo-sched-allow-regmoves
7533 Perform more aggressive SMS-based modulo scheduling with register moves
7534 allowed. By setting this flag certain anti-dependences edges are
7535 deleted, which triggers the generation of reg-moves based on the
7536 life-range analysis. This option is effective only with
7537 @option{-fmodulo-sched} enabled.
7538
7539 @item -fno-branch-count-reg
7540 @opindex fno-branch-count-reg
7541 Avoid running a pass scanning for opportunities to use ``decrement and
7542 branch'' instructions on a count register instead of generating sequences
7543 of instructions that decrement a register, compare it against zero, and
7544 then branch based upon the result. This option is only meaningful on
7545 architectures that support such instructions, which include x86, PowerPC,
7546 IA-64 and S/390. Note that the @option{-fno-branch-count-reg} option
7547 doesn't remove the decrement and branch instructions from the generated
7548 instruction stream introduced by other optimization passes.
7549
7550 Enabled by default at @option{-O1} and higher.
7551
7552 The default is @option{-fbranch-count-reg}.
7553
7554 @item -fno-function-cse
7555 @opindex fno-function-cse
7556 Do not put function addresses in registers; make each instruction that
7557 calls a constant function contain the function's address explicitly.
7558
7559 This option results in less efficient code, but some strange hacks
7560 that alter the assembler output may be confused by the optimizations
7561 performed when this option is not used.
7562
7563 The default is @option{-ffunction-cse}
7564
7565 @item -fno-zero-initialized-in-bss
7566 @opindex fno-zero-initialized-in-bss
7567 If the target supports a BSS section, GCC by default puts variables that
7568 are initialized to zero into BSS@. This can save space in the resulting
7569 code.
7570
7571 This option turns off this behavior because some programs explicitly
7572 rely on variables going to the data section---e.g., so that the
7573 resulting executable can find the beginning of that section and/or make
7574 assumptions based on that.
7575
7576 The default is @option{-fzero-initialized-in-bss}.
7577
7578 @item -fthread-jumps
7579 @opindex fthread-jumps
7580 Perform optimizations that check to see if a jump branches to a
7581 location where another comparison subsumed by the first is found. If
7582 so, the first branch is redirected to either the destination of the
7583 second branch or a point immediately following it, depending on whether
7584 the condition is known to be true or false.
7585
7586 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7587
7588 @item -fsplit-wide-types
7589 @opindex fsplit-wide-types
7590 When using a type that occupies multiple registers, such as @code{long
7591 long} on a 32-bit system, split the registers apart and allocate them
7592 independently. This normally generates better code for those types,
7593 but may make debugging more difficult.
7594
7595 Enabled at levels @option{-O}, @option{-O2}, @option{-O3},
7596 @option{-Os}.
7597
7598 @item -fcse-follow-jumps
7599 @opindex fcse-follow-jumps
7600 In common subexpression elimination (CSE), scan through jump instructions
7601 when the target of the jump is not reached by any other path. For
7602 example, when CSE encounters an @code{if} statement with an
7603 @code{else} clause, CSE follows the jump when the condition
7604 tested is false.
7605
7606 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7607
7608 @item -fcse-skip-blocks
7609 @opindex fcse-skip-blocks
7610 This is similar to @option{-fcse-follow-jumps}, but causes CSE to
7611 follow jumps that conditionally skip over blocks. When CSE
7612 encounters a simple @code{if} statement with no else clause,
7613 @option{-fcse-skip-blocks} causes CSE to follow the jump around the
7614 body of the @code{if}.
7615
7616 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7617
7618 @item -frerun-cse-after-loop
7619 @opindex frerun-cse-after-loop
7620 Re-run common subexpression elimination after loop optimizations are
7621 performed.
7622
7623 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7624
7625 @item -fgcse
7626 @opindex fgcse
7627 Perform a global common subexpression elimination pass.
7628 This pass also performs global constant and copy propagation.
7629
7630 @emph{Note:} When compiling a program using computed gotos, a GCC
7631 extension, you may get better run-time performance if you disable
7632 the global common subexpression elimination pass by adding
7633 @option{-fno-gcse} to the command line.
7634
7635 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7636
7637 @item -fgcse-lm
7638 @opindex fgcse-lm
7639 When @option{-fgcse-lm} is enabled, global common subexpression elimination
7640 attempts to move loads that are only killed by stores into themselves. This
7641 allows a loop containing a load/store sequence to be changed to a load outside
7642 the loop, and a copy/store within the loop.
7643
7644 Enabled by default when @option{-fgcse} is enabled.
7645
7646 @item -fgcse-sm
7647 @opindex fgcse-sm
7648 When @option{-fgcse-sm} is enabled, a store motion pass is run after
7649 global common subexpression elimination. This pass attempts to move
7650 stores out of loops. When used in conjunction with @option{-fgcse-lm},
7651 loops containing a load/store sequence can be changed to a load before
7652 the loop and a store after the loop.
7653
7654 Not enabled at any optimization level.
7655
7656 @item -fgcse-las
7657 @opindex fgcse-las
7658 When @option{-fgcse-las} is enabled, the global common subexpression
7659 elimination pass eliminates redundant loads that come after stores to the
7660 same memory location (both partial and full redundancies).
7661
7662 Not enabled at any optimization level.
7663
7664 @item -fgcse-after-reload
7665 @opindex fgcse-after-reload
7666 When @option{-fgcse-after-reload} is enabled, a redundant load elimination
7667 pass is performed after reload. The purpose of this pass is to clean up
7668 redundant spilling.
7669
7670 @item -faggressive-loop-optimizations
7671 @opindex faggressive-loop-optimizations
7672 This option tells the loop optimizer to use language constraints to
7673 derive bounds for the number of iterations of a loop. This assumes that
7674 loop code does not invoke undefined behavior by for example causing signed
7675 integer overflows or out-of-bound array accesses. The bounds for the
7676 number of iterations of a loop are used to guide loop unrolling and peeling
7677 and loop exit test optimizations.
7678 This option is enabled by default.
7679
7680 @item -funconstrained-commons
7681 @opindex funconstrained-commons
7682 This option tells the compiler that variables declared in common blocks
7683 (e.g. Fortran) may later be overridden with longer trailing arrays. This
7684 prevents certain optimizations that depend on knowing the array bounds.
7685
7686 @item -fcrossjumping
7687 @opindex fcrossjumping
7688 Perform cross-jumping transformation.
7689 This transformation unifies equivalent code and saves code size. The
7690 resulting code may or may not perform better than without cross-jumping.
7691
7692 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7693
7694 @item -fauto-inc-dec
7695 @opindex fauto-inc-dec
7696 Combine increments or decrements of addresses with memory accesses.
7697 This pass is always skipped on architectures that do not have
7698 instructions to support this. Enabled by default at @option{-O} and
7699 higher on architectures that support this.
7700
7701 @item -fdce
7702 @opindex fdce
7703 Perform dead code elimination (DCE) on RTL@.
7704 Enabled by default at @option{-O} and higher.
7705
7706 @item -fdse
7707 @opindex fdse
7708 Perform dead store elimination (DSE) on RTL@.
7709 Enabled by default at @option{-O} and higher.
7710
7711 @item -fif-conversion
7712 @opindex fif-conversion
7713 Attempt to transform conditional jumps into branch-less equivalents. This
7714 includes use of conditional moves, min, max, set flags and abs instructions, and
7715 some tricks doable by standard arithmetics. The use of conditional execution
7716 on chips where it is available is controlled by @option{-fif-conversion2}.
7717
7718 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7719
7720 @item -fif-conversion2
7721 @opindex fif-conversion2
7722 Use conditional execution (where available) to transform conditional jumps into
7723 branch-less equivalents.
7724
7725 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7726
7727 @item -fdeclone-ctor-dtor
7728 @opindex fdeclone-ctor-dtor
7729 The C++ ABI requires multiple entry points for constructors and
7730 destructors: one for a base subobject, one for a complete object, and
7731 one for a virtual destructor that calls operator delete afterwards.
7732 For a hierarchy with virtual bases, the base and complete variants are
7733 clones, which means two copies of the function. With this option, the
7734 base and complete variants are changed to be thunks that call a common
7735 implementation.
7736
7737 Enabled by @option{-Os}.
7738
7739 @item -fdelete-null-pointer-checks
7740 @opindex fdelete-null-pointer-checks
7741 Assume that programs cannot safely dereference null pointers, and that
7742 no code or data element resides at address zero.
7743 This option enables simple constant
7744 folding optimizations at all optimization levels. In addition, other
7745 optimization passes in GCC use this flag to control global dataflow
7746 analyses that eliminate useless checks for null pointers; these assume
7747 that a memory access to address zero always results in a trap, so
7748 that if a pointer is checked after it has already been dereferenced,
7749 it cannot be null.
7750
7751 Note however that in some environments this assumption is not true.
7752 Use @option{-fno-delete-null-pointer-checks} to disable this optimization
7753 for programs that depend on that behavior.
7754
7755 This option is enabled by default on most targets. On Nios II ELF, it
7756 defaults to off. On AVR and CR16, this option is completely disabled.
7757
7758 Passes that use the dataflow information
7759 are enabled independently at different optimization levels.
7760
7761 @item -fdevirtualize
7762 @opindex fdevirtualize
7763 Attempt to convert calls to virtual functions to direct calls. This
7764 is done both within a procedure and interprocedurally as part of
7765 indirect inlining (@option{-findirect-inlining}) and interprocedural constant
7766 propagation (@option{-fipa-cp}).
7767 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7768
7769 @item -fdevirtualize-speculatively
7770 @opindex fdevirtualize-speculatively
7771 Attempt to convert calls to virtual functions to speculative direct calls.
7772 Based on the analysis of the type inheritance graph, determine for a given call
7773 the set of likely targets. If the set is small, preferably of size 1, change
7774 the call into a conditional deciding between direct and indirect calls. The
7775 speculative calls enable more optimizations, such as inlining. When they seem
7776 useless after further optimization, they are converted back into original form.
7777
7778 @item -fdevirtualize-at-ltrans
7779 @opindex fdevirtualize-at-ltrans
7780 Stream extra information needed for aggressive devirtualization when running
7781 the link-time optimizer in local transformation mode.
7782 This option enables more devirtualization but
7783 significantly increases the size of streamed data. For this reason it is
7784 disabled by default.
7785
7786 @item -fexpensive-optimizations
7787 @opindex fexpensive-optimizations
7788 Perform a number of minor optimizations that are relatively expensive.
7789
7790 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7791
7792 @item -free
7793 @opindex free
7794 Attempt to remove redundant extension instructions. This is especially
7795 helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit
7796 registers after writing to their lower 32-bit half.
7797
7798 Enabled for Alpha, AArch64 and x86 at levels @option{-O2},
7799 @option{-O3}, @option{-Os}.
7800
7801 @item -fno-lifetime-dse
7802 @opindex fno-lifetime-dse
7803 In C++ the value of an object is only affected by changes within its
7804 lifetime: when the constructor begins, the object has an indeterminate
7805 value, and any changes during the lifetime of the object are dead when
7806 the object is destroyed. Normally dead store elimination will take
7807 advantage of this; if your code relies on the value of the object
7808 storage persisting beyond the lifetime of the object, you can use this
7809 flag to disable this optimization. To preserve stores before the
7810 constructor starts (e.g. because your operator new clears the object
7811 storage) but still treat the object as dead after the destructor you,
7812 can use @option{-flifetime-dse=1}. The default behavior can be
7813 explicitly selected with @option{-flifetime-dse=2}.
7814 @option{-flifetime-dse=0} is equivalent to @option{-fno-lifetime-dse}.
7815
7816 @item -flive-range-shrinkage
7817 @opindex flive-range-shrinkage
7818 Attempt to decrease register pressure through register live range
7819 shrinkage. This is helpful for fast processors with small or moderate
7820 size register sets.
7821
7822 @item -fira-algorithm=@var{algorithm}
7823 @opindex fira-algorithm
7824 Use the specified coloring algorithm for the integrated register
7825 allocator. The @var{algorithm} argument can be @samp{priority}, which
7826 specifies Chow's priority coloring, or @samp{CB}, which specifies
7827 Chaitin-Briggs coloring. Chaitin-Briggs coloring is not implemented
7828 for all architectures, but for those targets that do support it, it is
7829 the default because it generates better code.
7830
7831 @item -fira-region=@var{region}
7832 @opindex fira-region
7833 Use specified regions for the integrated register allocator. The
7834 @var{region} argument should be one of the following:
7835
7836 @table @samp
7837
7838 @item all
7839 Use all loops as register allocation regions.
7840 This can give the best results for machines with a small and/or
7841 irregular register set.
7842
7843 @item mixed
7844 Use all loops except for loops with small register pressure
7845 as the regions. This value usually gives
7846 the best results in most cases and for most architectures,
7847 and is enabled by default when compiling with optimization for speed
7848 (@option{-O}, @option{-O2}, @dots{}).
7849
7850 @item one
7851 Use all functions as a single region.
7852 This typically results in the smallest code size, and is enabled by default for
7853 @option{-Os} or @option{-O0}.
7854
7855 @end table
7856
7857 @item -fira-hoist-pressure
7858 @opindex fira-hoist-pressure
7859 Use IRA to evaluate register pressure in the code hoisting pass for
7860 decisions to hoist expressions. This option usually results in smaller
7861 code, but it can slow the compiler down.
7862
7863 This option is enabled at level @option{-Os} for all targets.
7864
7865 @item -fira-loop-pressure
7866 @opindex fira-loop-pressure
7867 Use IRA to evaluate register pressure in loops for decisions to move
7868 loop invariants. This option usually results in generation
7869 of faster and smaller code on machines with large register files (>= 32
7870 registers), but it can slow the compiler down.
7871
7872 This option is enabled at level @option{-O3} for some targets.
7873
7874 @item -fno-ira-share-save-slots
7875 @opindex fno-ira-share-save-slots
7876 Disable sharing of stack slots used for saving call-used hard
7877 registers living through a call. Each hard register gets a
7878 separate stack slot, and as a result function stack frames are
7879 larger.
7880
7881 @item -fno-ira-share-spill-slots
7882 @opindex fno-ira-share-spill-slots
7883 Disable sharing of stack slots allocated for pseudo-registers. Each
7884 pseudo-register that does not get a hard register gets a separate
7885 stack slot, and as a result function stack frames are larger.
7886
7887 @item -flra-remat
7888 @opindex flra-remat
7889 Enable CFG-sensitive rematerialization in LRA. Instead of loading
7890 values of spilled pseudos, LRA tries to rematerialize (recalculate)
7891 values if it is profitable.
7892
7893 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7894
7895 @item -fdelayed-branch
7896 @opindex fdelayed-branch
7897 If supported for the target machine, attempt to reorder instructions
7898 to exploit instruction slots available after delayed branch
7899 instructions.
7900
7901 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7902
7903 @item -fschedule-insns
7904 @opindex fschedule-insns
7905 If supported for the target machine, attempt to reorder instructions to
7906 eliminate execution stalls due to required data being unavailable. This
7907 helps machines that have slow floating point or memory load instructions
7908 by allowing other instructions to be issued until the result of the load
7909 or floating-point instruction is required.
7910
7911 Enabled at levels @option{-O2}, @option{-O3}.
7912
7913 @item -fschedule-insns2
7914 @opindex fschedule-insns2
7915 Similar to @option{-fschedule-insns}, but requests an additional pass of
7916 instruction scheduling after register allocation has been done. This is
7917 especially useful on machines with a relatively small number of
7918 registers and where memory load instructions take more than one cycle.
7919
7920 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7921
7922 @item -fno-sched-interblock
7923 @opindex fno-sched-interblock
7924 Don't schedule instructions across basic blocks. This is normally
7925 enabled by default when scheduling before register allocation, i.e.@:
7926 with @option{-fschedule-insns} or at @option{-O2} or higher.
7927
7928 @item -fno-sched-spec
7929 @opindex fno-sched-spec
7930 Don't allow speculative motion of non-load instructions. This is normally
7931 enabled by default when scheduling before register allocation, i.e.@:
7932 with @option{-fschedule-insns} or at @option{-O2} or higher.
7933
7934 @item -fsched-pressure
7935 @opindex fsched-pressure
7936 Enable register pressure sensitive insn scheduling before register
7937 allocation. This only makes sense when scheduling before register
7938 allocation is enabled, i.e.@: with @option{-fschedule-insns} or at
7939 @option{-O2} or higher. Usage of this option can improve the
7940 generated code and decrease its size by preventing register pressure
7941 increase above the number of available hard registers and subsequent
7942 spills in register allocation.
7943
7944 @item -fsched-spec-load
7945 @opindex fsched-spec-load
7946 Allow speculative motion of some load instructions. This only makes
7947 sense when scheduling before register allocation, i.e.@: with
7948 @option{-fschedule-insns} or at @option{-O2} or higher.
7949
7950 @item -fsched-spec-load-dangerous
7951 @opindex fsched-spec-load-dangerous
7952 Allow speculative motion of more load instructions. This only makes
7953 sense when scheduling before register allocation, i.e.@: with
7954 @option{-fschedule-insns} or at @option{-O2} or higher.
7955
7956 @item -fsched-stalled-insns
7957 @itemx -fsched-stalled-insns=@var{n}
7958 @opindex fsched-stalled-insns
7959 Define how many insns (if any) can be moved prematurely from the queue
7960 of stalled insns into the ready list during the second scheduling pass.
7961 @option{-fno-sched-stalled-insns} means that no insns are moved
7962 prematurely, @option{-fsched-stalled-insns=0} means there is no limit
7963 on how many queued insns can be moved prematurely.
7964 @option{-fsched-stalled-insns} without a value is equivalent to
7965 @option{-fsched-stalled-insns=1}.
7966
7967 @item -fsched-stalled-insns-dep
7968 @itemx -fsched-stalled-insns-dep=@var{n}
7969 @opindex fsched-stalled-insns-dep
7970 Define how many insn groups (cycles) are examined for a dependency
7971 on a stalled insn that is a candidate for premature removal from the queue
7972 of stalled insns. This has an effect only during the second scheduling pass,
7973 and only if @option{-fsched-stalled-insns} is used.
7974 @option{-fno-sched-stalled-insns-dep} is equivalent to
7975 @option{-fsched-stalled-insns-dep=0}.
7976 @option{-fsched-stalled-insns-dep} without a value is equivalent to
7977 @option{-fsched-stalled-insns-dep=1}.
7978
7979 @item -fsched2-use-superblocks
7980 @opindex fsched2-use-superblocks
7981 When scheduling after register allocation, use superblock scheduling.
7982 This allows motion across basic block boundaries,
7983 resulting in faster schedules. This option is experimental, as not all machine
7984 descriptions used by GCC model the CPU closely enough to avoid unreliable
7985 results from the algorithm.
7986
7987 This only makes sense when scheduling after register allocation, i.e.@: with
7988 @option{-fschedule-insns2} or at @option{-O2} or higher.
7989
7990 @item -fsched-group-heuristic
7991 @opindex fsched-group-heuristic
7992 Enable the group heuristic in the scheduler. This heuristic favors
7993 the instruction that belongs to a schedule group. This is enabled
7994 by default when scheduling is enabled, i.e.@: with @option{-fschedule-insns}
7995 or @option{-fschedule-insns2} or at @option{-O2} or higher.
7996
7997 @item -fsched-critical-path-heuristic
7998 @opindex fsched-critical-path-heuristic
7999 Enable the critical-path heuristic in the scheduler. This heuristic favors
8000 instructions on the critical path. This is enabled by default when
8001 scheduling is enabled, i.e.@: with @option{-fschedule-insns}
8002 or @option{-fschedule-insns2} or at @option{-O2} or higher.
8003
8004 @item -fsched-spec-insn-heuristic
8005 @opindex fsched-spec-insn-heuristic
8006 Enable the speculative instruction heuristic in the scheduler. This
8007 heuristic favors speculative instructions with greater dependency weakness.
8008 This is enabled by default when scheduling is enabled, i.e.@:
8009 with @option{-fschedule-insns} or @option{-fschedule-insns2}
8010 or at @option{-O2} or higher.
8011
8012 @item -fsched-rank-heuristic
8013 @opindex fsched-rank-heuristic
8014 Enable the rank heuristic in the scheduler. This heuristic favors
8015 the instruction belonging to a basic block with greater size or frequency.
8016 This is enabled by default when scheduling is enabled, i.e.@:
8017 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8018 at @option{-O2} or higher.
8019
8020 @item -fsched-last-insn-heuristic
8021 @opindex fsched-last-insn-heuristic
8022 Enable the last-instruction heuristic in the scheduler. This heuristic
8023 favors the instruction that is less dependent on the last instruction
8024 scheduled. This is enabled by default when scheduling is enabled,
8025 i.e.@: with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8026 at @option{-O2} or higher.
8027
8028 @item -fsched-dep-count-heuristic
8029 @opindex fsched-dep-count-heuristic
8030 Enable the dependent-count heuristic in the scheduler. This heuristic
8031 favors the instruction that has more instructions depending on it.
8032 This is enabled by default when scheduling is enabled, i.e.@:
8033 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8034 at @option{-O2} or higher.
8035
8036 @item -freschedule-modulo-scheduled-loops
8037 @opindex freschedule-modulo-scheduled-loops
8038 Modulo scheduling is performed before traditional scheduling. If a loop
8039 is modulo scheduled, later scheduling passes may change its schedule.
8040 Use this option to control that behavior.
8041
8042 @item -fselective-scheduling
8043 @opindex fselective-scheduling
8044 Schedule instructions using selective scheduling algorithm. Selective
8045 scheduling runs instead of the first scheduler pass.
8046
8047 @item -fselective-scheduling2
8048 @opindex fselective-scheduling2
8049 Schedule instructions using selective scheduling algorithm. Selective
8050 scheduling runs instead of the second scheduler pass.
8051
8052 @item -fsel-sched-pipelining
8053 @opindex fsel-sched-pipelining
8054 Enable software pipelining of innermost loops during selective scheduling.
8055 This option has no effect unless one of @option{-fselective-scheduling} or
8056 @option{-fselective-scheduling2} is turned on.
8057
8058 @item -fsel-sched-pipelining-outer-loops
8059 @opindex fsel-sched-pipelining-outer-loops
8060 When pipelining loops during selective scheduling, also pipeline outer loops.
8061 This option has no effect unless @option{-fsel-sched-pipelining} is turned on.
8062
8063 @item -fsemantic-interposition
8064 @opindex fsemantic-interposition
8065 Some object formats, like ELF, allow interposing of symbols by the
8066 dynamic linker.
8067 This means that for symbols exported from the DSO, the compiler cannot perform
8068 interprocedural propagation, inlining and other optimizations in anticipation
8069 that the function or variable in question may change. While this feature is
8070 useful, for example, to rewrite memory allocation functions by a debugging
8071 implementation, it is expensive in the terms of code quality.
8072 With @option{-fno-semantic-interposition} the compiler assumes that
8073 if interposition happens for functions the overwriting function will have
8074 precisely the same semantics (and side effects).
8075 Similarly if interposition happens
8076 for variables, the constructor of the variable will be the same. The flag
8077 has no effect for functions explicitly declared inline
8078 (where it is never allowed for interposition to change semantics)
8079 and for symbols explicitly declared weak.
8080
8081 @item -fshrink-wrap
8082 @opindex fshrink-wrap
8083 Emit function prologues only before parts of the function that need it,
8084 rather than at the top of the function. This flag is enabled by default at
8085 @option{-O} and higher.
8086
8087 @item -fshrink-wrap-separate
8088 @opindex fshrink-wrap-separate
8089 Shrink-wrap separate parts of the prologue and epilogue separately, so that
8090 those parts are only executed when needed.
8091 This option is on by default, but has no effect unless @option{-fshrink-wrap}
8092 is also turned on and the target supports this.
8093
8094 @item -fcaller-saves
8095 @opindex fcaller-saves
8096 Enable allocation of values to registers that are clobbered by
8097 function calls, by emitting extra instructions to save and restore the
8098 registers around such calls. Such allocation is done only when it
8099 seems to result in better code.
8100
8101 This option is always enabled by default on certain machines, usually
8102 those which have no call-preserved registers to use instead.
8103
8104 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8105
8106 @item -fcombine-stack-adjustments
8107 @opindex fcombine-stack-adjustments
8108 Tracks stack adjustments (pushes and pops) and stack memory references
8109 and then tries to find ways to combine them.
8110
8111 Enabled by default at @option{-O1} and higher.
8112
8113 @item -fipa-ra
8114 @opindex fipa-ra
8115 Use caller save registers for allocation if those registers are not used by
8116 any called function. In that case it is not necessary to save and restore
8117 them around calls. This is only possible if called functions are part of
8118 same compilation unit as current function and they are compiled before it.
8119
8120 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}, however the option
8121 is disabled if generated code will be instrumented for profiling
8122 (@option{-p}, or @option{-pg}) or if callee's register usage cannot be known
8123 exactly (this happens on targets that do not expose prologues
8124 and epilogues in RTL).
8125
8126 @item -fconserve-stack
8127 @opindex fconserve-stack
8128 Attempt to minimize stack usage. The compiler attempts to use less
8129 stack space, even if that makes the program slower. This option
8130 implies setting the @option{large-stack-frame} parameter to 100
8131 and the @option{large-stack-frame-growth} parameter to 400.
8132
8133 @item -ftree-reassoc
8134 @opindex ftree-reassoc
8135 Perform reassociation on trees. This flag is enabled by default
8136 at @option{-O} and higher.
8137
8138 @item -fcode-hoisting
8139 @opindex fcode-hoisting
8140 Perform code hoisting. Code hoisting tries to move the
8141 evaluation of expressions executed on all paths to the function exit
8142 as early as possible. This is especially useful as a code size
8143 optimization, but it often helps for code speed as well.
8144 This flag is enabled by default at @option{-O2} and higher.
8145
8146 @item -ftree-pre
8147 @opindex ftree-pre
8148 Perform partial redundancy elimination (PRE) on trees. This flag is
8149 enabled by default at @option{-O2} and @option{-O3}.
8150
8151 @item -ftree-partial-pre
8152 @opindex ftree-partial-pre
8153 Make partial redundancy elimination (PRE) more aggressive. This flag is
8154 enabled by default at @option{-O3}.
8155
8156 @item -ftree-forwprop
8157 @opindex ftree-forwprop
8158 Perform forward propagation on trees. This flag is enabled by default
8159 at @option{-O} and higher.
8160
8161 @item -ftree-fre
8162 @opindex ftree-fre
8163 Perform full redundancy elimination (FRE) on trees. The difference
8164 between FRE and PRE is that FRE only considers expressions
8165 that are computed on all paths leading to the redundant computation.
8166 This analysis is faster than PRE, though it exposes fewer redundancies.
8167 This flag is enabled by default at @option{-O} and higher.
8168
8169 @item -ftree-phiprop
8170 @opindex ftree-phiprop
8171 Perform hoisting of loads from conditional pointers on trees. This
8172 pass is enabled by default at @option{-O} and higher.
8173
8174 @item -fhoist-adjacent-loads
8175 @opindex fhoist-adjacent-loads
8176 Speculatively hoist loads from both branches of an if-then-else if the
8177 loads are from adjacent locations in the same structure and the target
8178 architecture has a conditional move instruction. This flag is enabled
8179 by default at @option{-O2} and higher.
8180
8181 @item -ftree-copy-prop
8182 @opindex ftree-copy-prop
8183 Perform copy propagation on trees. This pass eliminates unnecessary
8184 copy operations. This flag is enabled by default at @option{-O} and
8185 higher.
8186
8187 @item -fipa-pure-const
8188 @opindex fipa-pure-const
8189 Discover which functions are pure or constant.
8190 Enabled by default at @option{-O} and higher.
8191
8192 @item -fipa-reference
8193 @opindex fipa-reference
8194 Discover which static variables do not escape the
8195 compilation unit.
8196 Enabled by default at @option{-O} and higher.
8197
8198 @item -fipa-pta
8199 @opindex fipa-pta
8200 Perform interprocedural pointer analysis and interprocedural modification
8201 and reference analysis. This option can cause excessive memory and
8202 compile-time usage on large compilation units. It is not enabled by
8203 default at any optimization level.
8204
8205 @item -fipa-profile
8206 @opindex fipa-profile
8207 Perform interprocedural profile propagation. The functions called only from
8208 cold functions are marked as cold. Also functions executed once (such as
8209 @code{cold}, @code{noreturn}, static constructors or destructors) are identified. Cold
8210 functions and loop less parts of functions executed once are then optimized for
8211 size.
8212 Enabled by default at @option{-O} and higher.
8213
8214 @item -fipa-cp
8215 @opindex fipa-cp
8216 Perform interprocedural constant propagation.
8217 This optimization analyzes the program to determine when values passed
8218 to functions are constants and then optimizes accordingly.
8219 This optimization can substantially increase performance
8220 if the application has constants passed to functions.
8221 This flag is enabled by default at @option{-O2}, @option{-Os} and @option{-O3}.
8222
8223 @item -fipa-cp-clone
8224 @opindex fipa-cp-clone
8225 Perform function cloning to make interprocedural constant propagation stronger.
8226 When enabled, interprocedural constant propagation performs function cloning
8227 when externally visible function can be called with constant arguments.
8228 Because this optimization can create multiple copies of functions,
8229 it may significantly increase code size
8230 (see @option{--param ipcp-unit-growth=@var{value}}).
8231 This flag is enabled by default at @option{-O3}.
8232
8233 @item -fipa-bit-cp
8234 @opindex -fipa-bit-cp
8235 When enabled, perform interprocedural bitwise constant
8236 propagation. This flag is enabled by default at @option{-O2}. It
8237 requires that @option{-fipa-cp} is enabled.
8238
8239 @item -fipa-vrp
8240 @opindex -fipa-vrp
8241 When enabled, perform interprocedural propagation of value
8242 ranges. This flag is enabled by default at @option{-O2}. It requires
8243 that @option{-fipa-cp} is enabled.
8244
8245 @item -fipa-icf
8246 @opindex fipa-icf
8247 Perform Identical Code Folding for functions and read-only variables.
8248 The optimization reduces code size and may disturb unwind stacks by replacing
8249 a function by equivalent one with a different name. The optimization works
8250 more effectively with link-time optimization enabled.
8251
8252 Nevertheless the behavior is similar to Gold Linker ICF optimization, GCC ICF
8253 works on different levels and thus the optimizations are not same - there are
8254 equivalences that are found only by GCC and equivalences found only by Gold.
8255
8256 This flag is enabled by default at @option{-O2} and @option{-Os}.
8257
8258 @item -fisolate-erroneous-paths-dereference
8259 @opindex fisolate-erroneous-paths-dereference
8260 Detect paths that trigger erroneous or undefined behavior due to
8261 dereferencing a null pointer. Isolate those paths from the main control
8262 flow and turn the statement with erroneous or undefined behavior into a trap.
8263 This flag is enabled by default at @option{-O2} and higher and depends on
8264 @option{-fdelete-null-pointer-checks} also being enabled.
8265
8266 @item -fisolate-erroneous-paths-attribute
8267 @opindex fisolate-erroneous-paths-attribute
8268 Detect paths that trigger erroneous or undefined behavior due a null value
8269 being used in a way forbidden by a @code{returns_nonnull} or @code{nonnull}
8270 attribute. Isolate those paths from the main control flow and turn the
8271 statement with erroneous or undefined behavior into a trap. This is not
8272 currently enabled, but may be enabled by @option{-O2} in the future.
8273
8274 @item -ftree-sink
8275 @opindex ftree-sink
8276 Perform forward store motion on trees. This flag is
8277 enabled by default at @option{-O} and higher.
8278
8279 @item -ftree-bit-ccp
8280 @opindex ftree-bit-ccp
8281 Perform sparse conditional bit constant propagation on trees and propagate
8282 pointer alignment information.
8283 This pass only operates on local scalar variables and is enabled by default
8284 at @option{-O} and higher. It requires that @option{-ftree-ccp} is enabled.
8285
8286 @item -ftree-ccp
8287 @opindex ftree-ccp
8288 Perform sparse conditional constant propagation (CCP) on trees. This
8289 pass only operates on local scalar variables and is enabled by default
8290 at @option{-O} and higher.
8291
8292 @item -fssa-backprop
8293 @opindex fssa-backprop
8294 Propagate information about uses of a value up the definition chain
8295 in order to simplify the definitions. For example, this pass strips
8296 sign operations if the sign of a value never matters. The flag is
8297 enabled by default at @option{-O} and higher.
8298
8299 @item -fssa-phiopt
8300 @opindex fssa-phiopt
8301 Perform pattern matching on SSA PHI nodes to optimize conditional
8302 code. This pass is enabled by default at @option{-O} and higher.
8303
8304 @item -ftree-switch-conversion
8305 @opindex ftree-switch-conversion
8306 Perform conversion of simple initializations in a switch to
8307 initializations from a scalar array. This flag is enabled by default
8308 at @option{-O2} and higher.
8309
8310 @item -ftree-tail-merge
8311 @opindex ftree-tail-merge
8312 Look for identical code sequences. When found, replace one with a jump to the
8313 other. This optimization is known as tail merging or cross jumping. This flag
8314 is enabled by default at @option{-O2} and higher. The compilation time
8315 in this pass can
8316 be limited using @option{max-tail-merge-comparisons} parameter and
8317 @option{max-tail-merge-iterations} parameter.
8318
8319 @item -ftree-dce
8320 @opindex ftree-dce
8321 Perform dead code elimination (DCE) on trees. This flag is enabled by
8322 default at @option{-O} and higher.
8323
8324 @item -ftree-builtin-call-dce
8325 @opindex ftree-builtin-call-dce
8326 Perform conditional dead code elimination (DCE) for calls to built-in functions
8327 that may set @code{errno} but are otherwise side-effect free. This flag is
8328 enabled by default at @option{-O2} and higher if @option{-Os} is not also
8329 specified.
8330
8331 @item -ftree-dominator-opts
8332 @opindex ftree-dominator-opts
8333 Perform a variety of simple scalar cleanups (constant/copy
8334 propagation, redundancy elimination, range propagation and expression
8335 simplification) based on a dominator tree traversal. This also
8336 performs jump threading (to reduce jumps to jumps). This flag is
8337 enabled by default at @option{-O} and higher.
8338
8339 @item -ftree-dse
8340 @opindex ftree-dse
8341 Perform dead store elimination (DSE) on trees. A dead store is a store into
8342 a memory location that is later overwritten by another store without
8343 any intervening loads. In this case the earlier store can be deleted. This
8344 flag is enabled by default at @option{-O} and higher.
8345
8346 @item -ftree-ch
8347 @opindex ftree-ch
8348 Perform loop header copying on trees. This is beneficial since it increases
8349 effectiveness of code motion optimizations. It also saves one jump. This flag
8350 is enabled by default at @option{-O} and higher. It is not enabled
8351 for @option{-Os}, since it usually increases code size.
8352
8353 @item -ftree-loop-optimize
8354 @opindex ftree-loop-optimize
8355 Perform loop optimizations on trees. This flag is enabled by default
8356 at @option{-O} and higher.
8357
8358 @item -ftree-loop-linear
8359 @itemx -floop-interchange
8360 @itemx -floop-strip-mine
8361 @itemx -floop-block
8362 @itemx -floop-unroll-and-jam
8363 @opindex ftree-loop-linear
8364 @opindex floop-interchange
8365 @opindex floop-strip-mine
8366 @opindex floop-block
8367 @opindex floop-unroll-and-jam
8368 Perform loop nest optimizations. Same as
8369 @option{-floop-nest-optimize}. To use this code transformation, GCC has
8370 to be configured with @option{--with-isl} to enable the Graphite loop
8371 transformation infrastructure.
8372
8373 @item -fgraphite-identity
8374 @opindex fgraphite-identity
8375 Enable the identity transformation for graphite. For every SCoP we generate
8376 the polyhedral representation and transform it back to gimple. Using
8377 @option{-fgraphite-identity} we can check the costs or benefits of the
8378 GIMPLE -> GRAPHITE -> GIMPLE transformation. Some minimal optimizations
8379 are also performed by the code generator isl, like index splitting and
8380 dead code elimination in loops.
8381
8382 @item -floop-nest-optimize
8383 @opindex floop-nest-optimize
8384 Enable the isl based loop nest optimizer. This is a generic loop nest
8385 optimizer based on the Pluto optimization algorithms. It calculates a loop
8386 structure optimized for data-locality and parallelism. This option
8387 is experimental.
8388
8389 @item -floop-parallelize-all
8390 @opindex floop-parallelize-all
8391 Use the Graphite data dependence analysis to identify loops that can
8392 be parallelized. Parallelize all the loops that can be analyzed to
8393 not contain loop carried dependences without checking that it is
8394 profitable to parallelize the loops.
8395
8396 @item -ftree-coalesce-vars
8397 @opindex ftree-coalesce-vars
8398 While transforming the program out of the SSA representation, attempt to
8399 reduce copying by coalescing versions of different user-defined
8400 variables, instead of just compiler temporaries. This may severely
8401 limit the ability to debug an optimized program compiled with
8402 @option{-fno-var-tracking-assignments}. In the negated form, this flag
8403 prevents SSA coalescing of user variables. This option is enabled by
8404 default if optimization is enabled, and it does very little otherwise.
8405
8406 @item -ftree-loop-if-convert
8407 @opindex ftree-loop-if-convert
8408 Attempt to transform conditional jumps in the innermost loops to
8409 branch-less equivalents. The intent is to remove control-flow from
8410 the innermost loops in order to improve the ability of the
8411 vectorization pass to handle these loops. This is enabled by default
8412 if vectorization is enabled.
8413
8414 @item -ftree-loop-distribution
8415 @opindex ftree-loop-distribution
8416 Perform loop distribution. This flag can improve cache performance on
8417 big loop bodies and allow further loop optimizations, like
8418 parallelization or vectorization, to take place. For example, the loop
8419 @smallexample
8420 DO I = 1, N
8421 A(I) = B(I) + C
8422 D(I) = E(I) * F
8423 ENDDO
8424 @end smallexample
8425 is transformed to
8426 @smallexample
8427 DO I = 1, N
8428 A(I) = B(I) + C
8429 ENDDO
8430 DO I = 1, N
8431 D(I) = E(I) * F
8432 ENDDO
8433 @end smallexample
8434
8435 @item -ftree-loop-distribute-patterns
8436 @opindex ftree-loop-distribute-patterns
8437 Perform loop distribution of patterns that can be code generated with
8438 calls to a library. This flag is enabled by default at @option{-O3}.
8439
8440 This pass distributes the initialization loops and generates a call to
8441 memset zero. For example, the loop
8442 @smallexample
8443 DO I = 1, N
8444 A(I) = 0
8445 B(I) = A(I) + I
8446 ENDDO
8447 @end smallexample
8448 is transformed to
8449 @smallexample
8450 DO I = 1, N
8451 A(I) = 0
8452 ENDDO
8453 DO I = 1, N
8454 B(I) = A(I) + I
8455 ENDDO
8456 @end smallexample
8457 and the initialization loop is transformed into a call to memset zero.
8458
8459 @item -ftree-loop-im
8460 @opindex ftree-loop-im
8461 Perform loop invariant motion on trees. This pass moves only invariants that
8462 are hard to handle at RTL level (function calls, operations that expand to
8463 nontrivial sequences of insns). With @option{-funswitch-loops} it also moves
8464 operands of conditions that are invariant out of the loop, so that we can use
8465 just trivial invariantness analysis in loop unswitching. The pass also includes
8466 store motion.
8467
8468 @item -ftree-loop-ivcanon
8469 @opindex ftree-loop-ivcanon
8470 Create a canonical counter for number of iterations in loops for which
8471 determining number of iterations requires complicated analysis. Later
8472 optimizations then may determine the number easily. Useful especially
8473 in connection with unrolling.
8474
8475 @item -fivopts
8476 @opindex fivopts
8477 Perform induction variable optimizations (strength reduction, induction
8478 variable merging and induction variable elimination) on trees.
8479
8480 @item -ftree-parallelize-loops=n
8481 @opindex ftree-parallelize-loops
8482 Parallelize loops, i.e., split their iteration space to run in n threads.
8483 This is only possible for loops whose iterations are independent
8484 and can be arbitrarily reordered. The optimization is only
8485 profitable on multiprocessor machines, for loops that are CPU-intensive,
8486 rather than constrained e.g.@: by memory bandwidth. This option
8487 implies @option{-pthread}, and thus is only supported on targets
8488 that have support for @option{-pthread}.
8489
8490 @item -ftree-pta
8491 @opindex ftree-pta
8492 Perform function-local points-to analysis on trees. This flag is
8493 enabled by default at @option{-O} and higher.
8494
8495 @item -ftree-sra
8496 @opindex ftree-sra
8497 Perform scalar replacement of aggregates. This pass replaces structure
8498 references with scalars to prevent committing structures to memory too
8499 early. This flag is enabled by default at @option{-O} and higher.
8500
8501 @item -fstore-merging
8502 @opindex fstore-merging
8503 Perform merging of narrow stores to consecutive memory addresses. This pass
8504 merges contiguous stores of immediate values narrower than a word into fewer
8505 wider stores to reduce the number of instructions. This is enabled by default
8506 at @option{-O2} and higher as well as @option{-Os}.
8507
8508 @item -ftree-ter
8509 @opindex ftree-ter
8510 Perform temporary expression replacement during the SSA->normal phase. Single
8511 use/single def temporaries are replaced at their use location with their
8512 defining expression. This results in non-GIMPLE code, but gives the expanders
8513 much more complex trees to work on resulting in better RTL generation. This is
8514 enabled by default at @option{-O} and higher.
8515
8516 @item -ftree-slsr
8517 @opindex ftree-slsr
8518 Perform straight-line strength reduction on trees. This recognizes related
8519 expressions involving multiplications and replaces them by less expensive
8520 calculations when possible. This is enabled by default at @option{-O} and
8521 higher.
8522
8523 @item -ftree-vectorize
8524 @opindex ftree-vectorize
8525 Perform vectorization on trees. This flag enables @option{-ftree-loop-vectorize}
8526 and @option{-ftree-slp-vectorize} if not explicitly specified.
8527
8528 @item -ftree-loop-vectorize
8529 @opindex ftree-loop-vectorize
8530 Perform loop vectorization on trees. This flag is enabled by default at
8531 @option{-O3} and when @option{-ftree-vectorize} is enabled.
8532
8533 @item -ftree-slp-vectorize
8534 @opindex ftree-slp-vectorize
8535 Perform basic block vectorization on trees. This flag is enabled by default at
8536 @option{-O3} and when @option{-ftree-vectorize} is enabled.
8537
8538 @item -fvect-cost-model=@var{model}
8539 @opindex fvect-cost-model
8540 Alter the cost model used for vectorization. The @var{model} argument
8541 should be one of @samp{unlimited}, @samp{dynamic} or @samp{cheap}.
8542 With the @samp{unlimited} model the vectorized code-path is assumed
8543 to be profitable while with the @samp{dynamic} model a runtime check
8544 guards the vectorized code-path to enable it only for iteration
8545 counts that will likely execute faster than when executing the original
8546 scalar loop. The @samp{cheap} model disables vectorization of
8547 loops where doing so would be cost prohibitive for example due to
8548 required runtime checks for data dependence or alignment but otherwise
8549 is equal to the @samp{dynamic} model.
8550 The default cost model depends on other optimization flags and is
8551 either @samp{dynamic} or @samp{cheap}.
8552
8553 @item -fsimd-cost-model=@var{model}
8554 @opindex fsimd-cost-model
8555 Alter the cost model used for vectorization of loops marked with the OpenMP
8556 or Cilk Plus simd directive. The @var{model} argument should be one of
8557 @samp{unlimited}, @samp{dynamic}, @samp{cheap}. All values of @var{model}
8558 have the same meaning as described in @option{-fvect-cost-model} and by
8559 default a cost model defined with @option{-fvect-cost-model} is used.
8560
8561 @item -ftree-vrp
8562 @opindex ftree-vrp
8563 Perform Value Range Propagation on trees. This is similar to the
8564 constant propagation pass, but instead of values, ranges of values are
8565 propagated. This allows the optimizers to remove unnecessary range
8566 checks like array bound checks and null pointer checks. This is
8567 enabled by default at @option{-O2} and higher. Null pointer check
8568 elimination is only done if @option{-fdelete-null-pointer-checks} is
8569 enabled.
8570
8571 @item -fsplit-paths
8572 @opindex fsplit-paths
8573 Split paths leading to loop backedges. This can improve dead code
8574 elimination and common subexpression elimination. This is enabled by
8575 default at @option{-O2} and above.
8576
8577 @item -fsplit-ivs-in-unroller
8578 @opindex fsplit-ivs-in-unroller
8579 Enables expression of values of induction variables in later iterations
8580 of the unrolled loop using the value in the first iteration. This breaks
8581 long dependency chains, thus improving efficiency of the scheduling passes.
8582
8583 A combination of @option{-fweb} and CSE is often sufficient to obtain the
8584 same effect. However, that is not reliable in cases where the loop body
8585 is more complicated than a single basic block. It also does not work at all
8586 on some architectures due to restrictions in the CSE pass.
8587
8588 This optimization is enabled by default.
8589
8590 @item -fvariable-expansion-in-unroller
8591 @opindex fvariable-expansion-in-unroller
8592 With this option, the compiler creates multiple copies of some
8593 local variables when unrolling a loop, which can result in superior code.
8594
8595 @item -fpartial-inlining
8596 @opindex fpartial-inlining
8597 Inline parts of functions. This option has any effect only
8598 when inlining itself is turned on by the @option{-finline-functions}
8599 or @option{-finline-small-functions} options.
8600
8601 Enabled at level @option{-O2}.
8602
8603 @item -fpredictive-commoning
8604 @opindex fpredictive-commoning
8605 Perform predictive commoning optimization, i.e., reusing computations
8606 (especially memory loads and stores) performed in previous
8607 iterations of loops.
8608
8609 This option is enabled at level @option{-O3}.
8610
8611 @item -fprefetch-loop-arrays
8612 @opindex fprefetch-loop-arrays
8613 If supported by the target machine, generate instructions to prefetch
8614 memory to improve the performance of loops that access large arrays.
8615
8616 This option may generate better or worse code; results are highly
8617 dependent on the structure of loops within the source code.
8618
8619 Disabled at level @option{-Os}.
8620
8621 @item -fno-printf-return-value
8622 @opindex fno-printf-return-value
8623 Do not substitute constants for known return value of formatted output
8624 functions such as @code{sprintf}, @code{snprintf}, @code{vsprintf}, and
8625 @code{vsnprintf} (but not @code{printf} of @code{fprintf}). This
8626 transformation allows GCC to optimize or even eliminate branches based
8627 on the known return value of these functions called with arguments that
8628 are either constant, or whose values are known to be in a range that
8629 makes determining the exact return value possible. For example, when
8630 @option{-fprintf-return-value} is in effect, both the branch and the
8631 body of the @code{if} statement (but not the call to @code{snprint})
8632 can be optimized away when @code{i} is a 32-bit or smaller integer
8633 because the return value is guaranteed to be at most 8.
8634
8635 @smallexample
8636 char buf[9];
8637 if (snprintf (buf, "%08x", i) >= sizeof buf)
8638 @dots{}
8639 @end smallexample
8640
8641 The @option{-fprintf-return-value} option relies on other optimizations
8642 and yields best results with @option{-O2}. It works in tandem with the
8643 @option{-Wformat-overflow} and @option{-Wformat-truncation} options.
8644 The @option{-fprintf-return-value} option is enabled by default.
8645
8646 @item -fno-peephole
8647 @itemx -fno-peephole2
8648 @opindex fno-peephole
8649 @opindex fno-peephole2
8650 Disable any machine-specific peephole optimizations. The difference
8651 between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
8652 are implemented in the compiler; some targets use one, some use the
8653 other, a few use both.
8654
8655 @option{-fpeephole} is enabled by default.
8656 @option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8657
8658 @item -fno-guess-branch-probability
8659 @opindex fno-guess-branch-probability
8660 Do not guess branch probabilities using heuristics.
8661
8662 GCC uses heuristics to guess branch probabilities if they are
8663 not provided by profiling feedback (@option{-fprofile-arcs}). These
8664 heuristics are based on the control flow graph. If some branch probabilities
8665 are specified by @code{__builtin_expect}, then the heuristics are
8666 used to guess branch probabilities for the rest of the control flow graph,
8667 taking the @code{__builtin_expect} info into account. The interactions
8668 between the heuristics and @code{__builtin_expect} can be complex, and in
8669 some cases, it may be useful to disable the heuristics so that the effects
8670 of @code{__builtin_expect} are easier to understand.
8671
8672 The default is @option{-fguess-branch-probability} at levels
8673 @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8674
8675 @item -freorder-blocks
8676 @opindex freorder-blocks
8677 Reorder basic blocks in the compiled function in order to reduce number of
8678 taken branches and improve code locality.
8679
8680 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8681
8682 @item -freorder-blocks-algorithm=@var{algorithm}
8683 @opindex freorder-blocks-algorithm
8684 Use the specified algorithm for basic block reordering. The
8685 @var{algorithm} argument can be @samp{simple}, which does not increase
8686 code size (except sometimes due to secondary effects like alignment),
8687 or @samp{stc}, the ``software trace cache'' algorithm, which tries to
8688 put all often executed code together, minimizing the number of branches
8689 executed by making extra copies of code.
8690
8691 The default is @samp{simple} at levels @option{-O}, @option{-Os}, and
8692 @samp{stc} at levels @option{-O2}, @option{-O3}.
8693
8694 @item -freorder-blocks-and-partition
8695 @opindex freorder-blocks-and-partition
8696 In addition to reordering basic blocks in the compiled function, in order
8697 to reduce number of taken branches, partitions hot and cold basic blocks
8698 into separate sections of the assembly and @file{.o} files, to improve
8699 paging and cache locality performance.
8700
8701 This optimization is automatically turned off in the presence of
8702 exception handling or unwind tables (on targets using setjump/longjump or target specific scheme), for linkonce sections, for functions with a user-defined
8703 section attribute and on any architecture that does not support named
8704 sections. When @option{-fsplit-stack} is used this option is not
8705 enabled by default (to avoid linker errors), but may be enabled
8706 explicitly (if using a working linker).
8707
8708 Enabled for x86 at levels @option{-O2}, @option{-O3}.
8709
8710 @item -freorder-functions
8711 @opindex freorder-functions
8712 Reorder functions in the object file in order to
8713 improve code locality. This is implemented by using special
8714 subsections @code{.text.hot} for most frequently executed functions and
8715 @code{.text.unlikely} for unlikely executed functions. Reordering is done by
8716 the linker so object file format must support named sections and linker must
8717 place them in a reasonable way.
8718
8719 Also profile feedback must be available to make this option effective. See
8720 @option{-fprofile-arcs} for details.
8721
8722 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8723
8724 @item -fstrict-aliasing
8725 @opindex fstrict-aliasing
8726 Allow the compiler to assume the strictest aliasing rules applicable to
8727 the language being compiled. For C (and C++), this activates
8728 optimizations based on the type of expressions. In particular, an
8729 object of one type is assumed never to reside at the same address as an
8730 object of a different type, unless the types are almost the same. For
8731 example, an @code{unsigned int} can alias an @code{int}, but not a
8732 @code{void*} or a @code{double}. A character type may alias any other
8733 type.
8734
8735 @anchor{Type-punning}Pay special attention to code like this:
8736 @smallexample
8737 union a_union @{
8738 int i;
8739 double d;
8740 @};
8741
8742 int f() @{
8743 union a_union t;
8744 t.d = 3.0;
8745 return t.i;
8746 @}
8747 @end smallexample
8748 The practice of reading from a different union member than the one most
8749 recently written to (called ``type-punning'') is common. Even with
8750 @option{-fstrict-aliasing}, type-punning is allowed, provided the memory
8751 is accessed through the union type. So, the code above works as
8752 expected. @xref{Structures unions enumerations and bit-fields
8753 implementation}. However, this code might not:
8754 @smallexample
8755 int f() @{
8756 union a_union t;
8757 int* ip;
8758 t.d = 3.0;
8759 ip = &t.i;
8760 return *ip;
8761 @}
8762 @end smallexample
8763
8764 Similarly, access by taking the address, casting the resulting pointer
8765 and dereferencing the result has undefined behavior, even if the cast
8766 uses a union type, e.g.:
8767 @smallexample
8768 int f() @{
8769 double d = 3.0;
8770 return ((union a_union *) &d)->i;
8771 @}
8772 @end smallexample
8773
8774 The @option{-fstrict-aliasing} option is enabled at levels
8775 @option{-O2}, @option{-O3}, @option{-Os}.
8776
8777 @item -falign-functions
8778 @itemx -falign-functions=@var{n}
8779 @opindex falign-functions
8780 Align the start of functions to the next power-of-two greater than
8781 @var{n}, skipping up to @var{n} bytes. For instance,
8782 @option{-falign-functions=32} aligns functions to the next 32-byte
8783 boundary, but @option{-falign-functions=24} aligns to the next
8784 32-byte boundary only if this can be done by skipping 23 bytes or less.
8785
8786 @option{-fno-align-functions} and @option{-falign-functions=1} are
8787 equivalent and mean that functions are not aligned.
8788
8789 Some assemblers only support this flag when @var{n} is a power of two;
8790 in that case, it is rounded up.
8791
8792 If @var{n} is not specified or is zero, use a machine-dependent default.
8793
8794 Enabled at levels @option{-O2}, @option{-O3}.
8795
8796 @item -flimit-function-alignment
8797 If this option is enabled, the compiler tries to avoid unnecessarily
8798 overaligning functions. It attempts to instruct the assembler to align
8799 by the amount specified by @option{-falign-functions}, but not to
8800 skip more bytes than the size of the function.
8801
8802 @item -falign-labels
8803 @itemx -falign-labels=@var{n}
8804 @opindex falign-labels
8805 Align all branch targets to a power-of-two boundary, skipping up to
8806 @var{n} bytes like @option{-falign-functions}. This option can easily
8807 make code slower, because it must insert dummy operations for when the
8808 branch target is reached in the usual flow of the code.
8809
8810 @option{-fno-align-labels} and @option{-falign-labels=1} are
8811 equivalent and mean that labels are not aligned.
8812
8813 If @option{-falign-loops} or @option{-falign-jumps} are applicable and
8814 are greater than this value, then their values are used instead.
8815
8816 If @var{n} is not specified or is zero, use a machine-dependent default
8817 which is very likely to be @samp{1}, meaning no alignment.
8818
8819 Enabled at levels @option{-O2}, @option{-O3}.
8820
8821 @item -falign-loops
8822 @itemx -falign-loops=@var{n}
8823 @opindex falign-loops
8824 Align loops to a power-of-two boundary, skipping up to @var{n} bytes
8825 like @option{-falign-functions}. If the loops are
8826 executed many times, this makes up for any execution of the dummy
8827 operations.
8828
8829 @option{-fno-align-loops} and @option{-falign-loops=1} are
8830 equivalent and mean that loops are not aligned.
8831
8832 If @var{n} is not specified or is zero, use a machine-dependent default.
8833
8834 Enabled at levels @option{-O2}, @option{-O3}.
8835
8836 @item -falign-jumps
8837 @itemx -falign-jumps=@var{n}
8838 @opindex falign-jumps
8839 Align branch targets to a power-of-two boundary, for branch targets
8840 where the targets can only be reached by jumping, skipping up to @var{n}
8841 bytes like @option{-falign-functions}. In this case, no dummy operations
8842 need be executed.
8843
8844 @option{-fno-align-jumps} and @option{-falign-jumps=1} are
8845 equivalent and mean that loops are not aligned.
8846
8847 If @var{n} is not specified or is zero, use a machine-dependent default.
8848
8849 Enabled at levels @option{-O2}, @option{-O3}.
8850
8851 @item -funit-at-a-time
8852 @opindex funit-at-a-time
8853 This option is left for compatibility reasons. @option{-funit-at-a-time}
8854 has no effect, while @option{-fno-unit-at-a-time} implies
8855 @option{-fno-toplevel-reorder} and @option{-fno-section-anchors}.
8856
8857 Enabled by default.
8858
8859 @item -fno-toplevel-reorder
8860 @opindex fno-toplevel-reorder
8861 Do not reorder top-level functions, variables, and @code{asm}
8862 statements. Output them in the same order that they appear in the
8863 input file. When this option is used, unreferenced static variables
8864 are not removed. This option is intended to support existing code
8865 that relies on a particular ordering. For new code, it is better to
8866 use attributes when possible.
8867
8868 Enabled at level @option{-O0}. When disabled explicitly, it also implies
8869 @option{-fno-section-anchors}, which is otherwise enabled at @option{-O0} on some
8870 targets.
8871
8872 @item -fweb
8873 @opindex fweb
8874 Constructs webs as commonly used for register allocation purposes and assign
8875 each web individual pseudo register. This allows the register allocation pass
8876 to operate on pseudos directly, but also strengthens several other optimization
8877 passes, such as CSE, loop optimizer and trivial dead code remover. It can,
8878 however, make debugging impossible, since variables no longer stay in a
8879 ``home register''.
8880
8881 Enabled by default with @option{-funroll-loops}.
8882
8883 @item -fwhole-program
8884 @opindex fwhole-program
8885 Assume that the current compilation unit represents the whole program being
8886 compiled. All public functions and variables with the exception of @code{main}
8887 and those merged by attribute @code{externally_visible} become static functions
8888 and in effect are optimized more aggressively by interprocedural optimizers.
8889
8890 This option should not be used in combination with @option{-flto}.
8891 Instead relying on a linker plugin should provide safer and more precise
8892 information.
8893
8894 @item -flto[=@var{n}]
8895 @opindex flto
8896 This option runs the standard link-time optimizer. When invoked
8897 with source code, it generates GIMPLE (one of GCC's internal
8898 representations) and writes it to special ELF sections in the object
8899 file. When the object files are linked together, all the function
8900 bodies are read from these ELF sections and instantiated as if they
8901 had been part of the same translation unit.
8902
8903 To use the link-time optimizer, @option{-flto} and optimization
8904 options should be specified at compile time and during the final link.
8905 It is recommended that you compile all the files participating in the
8906 same link with the same options and also specify those options at
8907 link time.
8908 For example:
8909
8910 @smallexample
8911 gcc -c -O2 -flto foo.c
8912 gcc -c -O2 -flto bar.c
8913 gcc -o myprog -flto -O2 foo.o bar.o
8914 @end smallexample
8915
8916 The first two invocations to GCC save a bytecode representation
8917 of GIMPLE into special ELF sections inside @file{foo.o} and
8918 @file{bar.o}. The final invocation reads the GIMPLE bytecode from
8919 @file{foo.o} and @file{bar.o}, merges the two files into a single
8920 internal image, and compiles the result as usual. Since both
8921 @file{foo.o} and @file{bar.o} are merged into a single image, this
8922 causes all the interprocedural analyses and optimizations in GCC to
8923 work across the two files as if they were a single one. This means,
8924 for example, that the inliner is able to inline functions in
8925 @file{bar.o} into functions in @file{foo.o} and vice-versa.
8926
8927 Another (simpler) way to enable link-time optimization is:
8928
8929 @smallexample
8930 gcc -o myprog -flto -O2 foo.c bar.c
8931 @end smallexample
8932
8933 The above generates bytecode for @file{foo.c} and @file{bar.c},
8934 merges them together into a single GIMPLE representation and optimizes
8935 them as usual to produce @file{myprog}.
8936
8937 The only important thing to keep in mind is that to enable link-time
8938 optimizations you need to use the GCC driver to perform the link step.
8939 GCC then automatically performs link-time optimization if any of the
8940 objects involved were compiled with the @option{-flto} command-line option.
8941 You generally
8942 should specify the optimization options to be used for link-time
8943 optimization though GCC tries to be clever at guessing an
8944 optimization level to use from the options used at compile time
8945 if you fail to specify one at link time. You can always override
8946 the automatic decision to do link-time optimization
8947 by passing @option{-fno-lto} to the link command.
8948
8949 To make whole program optimization effective, it is necessary to make
8950 certain whole program assumptions. The compiler needs to know
8951 what functions and variables can be accessed by libraries and runtime
8952 outside of the link-time optimized unit. When supported by the linker,
8953 the linker plugin (see @option{-fuse-linker-plugin}) passes information
8954 to the compiler about used and externally visible symbols. When
8955 the linker plugin is not available, @option{-fwhole-program} should be
8956 used to allow the compiler to make these assumptions, which leads
8957 to more aggressive optimization decisions.
8958
8959 When @option{-fuse-linker-plugin} is not enabled, when a file is
8960 compiled with @option{-flto}, the generated object file is larger than
8961 a regular object file because it contains GIMPLE bytecodes and the usual
8962 final code (see @option{-ffat-lto-objects}. This means that
8963 object files with LTO information can be linked as normal object
8964 files; if @option{-fno-lto} is passed to the linker, no
8965 interprocedural optimizations are applied. Note that when
8966 @option{-fno-fat-lto-objects} is enabled the compile stage is faster
8967 but you cannot perform a regular, non-LTO link on them.
8968
8969 Additionally, the optimization flags used to compile individual files
8970 are not necessarily related to those used at link time. For instance,
8971
8972 @smallexample
8973 gcc -c -O0 -ffat-lto-objects -flto foo.c
8974 gcc -c -O0 -ffat-lto-objects -flto bar.c
8975 gcc -o myprog -O3 foo.o bar.o
8976 @end smallexample
8977
8978 This produces individual object files with unoptimized assembler
8979 code, but the resulting binary @file{myprog} is optimized at
8980 @option{-O3}. If, instead, the final binary is generated with
8981 @option{-fno-lto}, then @file{myprog} is not optimized.
8982
8983 When producing the final binary, GCC only
8984 applies link-time optimizations to those files that contain bytecode.
8985 Therefore, you can mix and match object files and libraries with
8986 GIMPLE bytecodes and final object code. GCC automatically selects
8987 which files to optimize in LTO mode and which files to link without
8988 further processing.
8989
8990 There are some code generation flags preserved by GCC when
8991 generating bytecodes, as they need to be used during the final link
8992 stage. Generally options specified at link time override those
8993 specified at compile time.
8994
8995 If you do not specify an optimization level option @option{-O} at
8996 link time, then GCC uses the highest optimization level
8997 used when compiling the object files.
8998
8999 Currently, the following options and their settings are taken from
9000 the first object file that explicitly specifies them:
9001 @option{-fPIC}, @option{-fpic}, @option{-fpie}, @option{-fcommon},
9002 @option{-fexceptions}, @option{-fnon-call-exceptions}, @option{-fgnu-tm}
9003 and all the @option{-m} target flags.
9004
9005 Certain ABI-changing flags are required to match in all compilation units,
9006 and trying to override this at link time with a conflicting value
9007 is ignored. This includes options such as @option{-freg-struct-return}
9008 and @option{-fpcc-struct-return}.
9009
9010 Other options such as @option{-ffp-contract}, @option{-fno-strict-overflow},
9011 @option{-fwrapv}, @option{-fno-trapv} or @option{-fno-strict-aliasing}
9012 are passed through to the link stage and merged conservatively for
9013 conflicting translation units. Specifically
9014 @option{-fno-strict-overflow}, @option{-fwrapv} and @option{-fno-trapv} take
9015 precedence; and for example @option{-ffp-contract=off} takes precedence
9016 over @option{-ffp-contract=fast}. You can override them at link time.
9017
9018 If LTO encounters objects with C linkage declared with incompatible
9019 types in separate translation units to be linked together (undefined
9020 behavior according to ISO C99 6.2.7), a non-fatal diagnostic may be
9021 issued. The behavior is still undefined at run time. Similar
9022 diagnostics may be raised for other languages.
9023
9024 Another feature of LTO is that it is possible to apply interprocedural
9025 optimizations on files written in different languages:
9026
9027 @smallexample
9028 gcc -c -flto foo.c
9029 g++ -c -flto bar.cc
9030 gfortran -c -flto baz.f90
9031 g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
9032 @end smallexample
9033
9034 Notice that the final link is done with @command{g++} to get the C++
9035 runtime libraries and @option{-lgfortran} is added to get the Fortran
9036 runtime libraries. In general, when mixing languages in LTO mode, you
9037 should use the same link command options as when mixing languages in a
9038 regular (non-LTO) compilation.
9039
9040 If object files containing GIMPLE bytecode are stored in a library archive, say
9041 @file{libfoo.a}, it is possible to extract and use them in an LTO link if you
9042 are using a linker with plugin support. To create static libraries suitable
9043 for LTO, use @command{gcc-ar} and @command{gcc-ranlib} instead of @command{ar}
9044 and @command{ranlib};
9045 to show the symbols of object files with GIMPLE bytecode, use
9046 @command{gcc-nm}. Those commands require that @command{ar}, @command{ranlib}
9047 and @command{nm} have been compiled with plugin support. At link time, use the the
9048 flag @option{-fuse-linker-plugin} to ensure that the library participates in
9049 the LTO optimization process:
9050
9051 @smallexample
9052 gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
9053 @end smallexample
9054
9055 With the linker plugin enabled, the linker extracts the needed
9056 GIMPLE files from @file{libfoo.a} and passes them on to the running GCC
9057 to make them part of the aggregated GIMPLE image to be optimized.
9058
9059 If you are not using a linker with plugin support and/or do not
9060 enable the linker plugin, then the objects inside @file{libfoo.a}
9061 are extracted and linked as usual, but they do not participate
9062 in the LTO optimization process. In order to make a static library suitable
9063 for both LTO optimization and usual linkage, compile its object files with
9064 @option{-flto} @option{-ffat-lto-objects}.
9065
9066 Link-time optimizations do not require the presence of the whole program to
9067 operate. If the program does not require any symbols to be exported, it is
9068 possible to combine @option{-flto} and @option{-fwhole-program} to allow
9069 the interprocedural optimizers to use more aggressive assumptions which may
9070 lead to improved optimization opportunities.
9071 Use of @option{-fwhole-program} is not needed when linker plugin is
9072 active (see @option{-fuse-linker-plugin}).
9073
9074 The current implementation of LTO makes no
9075 attempt to generate bytecode that is portable between different
9076 types of hosts. The bytecode files are versioned and there is a
9077 strict version check, so bytecode files generated in one version of
9078 GCC do not work with an older or newer version of GCC.
9079
9080 Link-time optimization does not work well with generation of debugging
9081 information. Combining @option{-flto} with
9082 @option{-g} is currently experimental and expected to produce unexpected
9083 results.
9084
9085 If you specify the optional @var{n}, the optimization and code
9086 generation done at link time is executed in parallel using @var{n}
9087 parallel jobs by utilizing an installed @command{make} program. The
9088 environment variable @env{MAKE} may be used to override the program
9089 used. The default value for @var{n} is 1.
9090
9091 You can also specify @option{-flto=jobserver} to use GNU make's
9092 job server mode to determine the number of parallel jobs. This
9093 is useful when the Makefile calling GCC is already executing in parallel.
9094 You must prepend a @samp{+} to the command recipe in the parent Makefile
9095 for this to work. This option likely only works if @env{MAKE} is
9096 GNU make.
9097
9098 @item -flto-partition=@var{alg}
9099 @opindex flto-partition
9100 Specify the partitioning algorithm used by the link-time optimizer.
9101 The value is either @samp{1to1} to specify a partitioning mirroring
9102 the original source files or @samp{balanced} to specify partitioning
9103 into equally sized chunks (whenever possible) or @samp{max} to create
9104 new partition for every symbol where possible. Specifying @samp{none}
9105 as an algorithm disables partitioning and streaming completely.
9106 The default value is @samp{balanced}. While @samp{1to1} can be used
9107 as an workaround for various code ordering issues, the @samp{max}
9108 partitioning is intended for internal testing only.
9109 The value @samp{one} specifies that exactly one partition should be
9110 used while the value @samp{none} bypasses partitioning and executes
9111 the link-time optimization step directly from the WPA phase.
9112
9113 @item -flto-odr-type-merging
9114 @opindex flto-odr-type-merging
9115 Enable streaming of mangled types names of C++ types and their unification
9116 at link time. This increases size of LTO object files, but enables
9117 diagnostics about One Definition Rule violations.
9118
9119 @item -flto-compression-level=@var{n}
9120 @opindex flto-compression-level
9121 This option specifies the level of compression used for intermediate
9122 language written to LTO object files, and is only meaningful in
9123 conjunction with LTO mode (@option{-flto}). Valid
9124 values are 0 (no compression) to 9 (maximum compression). Values
9125 outside this range are clamped to either 0 or 9. If the option is not
9126 given, a default balanced compression setting is used.
9127
9128 @item -fuse-linker-plugin
9129 @opindex fuse-linker-plugin
9130 Enables the use of a linker plugin during link-time optimization. This
9131 option relies on plugin support in the linker, which is available in gold
9132 or in GNU ld 2.21 or newer.
9133
9134 This option enables the extraction of object files with GIMPLE bytecode out
9135 of library archives. This improves the quality of optimization by exposing
9136 more code to the link-time optimizer. This information specifies what
9137 symbols can be accessed externally (by non-LTO object or during dynamic
9138 linking). Resulting code quality improvements on binaries (and shared
9139 libraries that use hidden visibility) are similar to @option{-fwhole-program}.
9140 See @option{-flto} for a description of the effect of this flag and how to
9141 use it.
9142
9143 This option is enabled by default when LTO support in GCC is enabled
9144 and GCC was configured for use with
9145 a linker supporting plugins (GNU ld 2.21 or newer or gold).
9146
9147 @item -ffat-lto-objects
9148 @opindex ffat-lto-objects
9149 Fat LTO objects are object files that contain both the intermediate language
9150 and the object code. This makes them usable for both LTO linking and normal
9151 linking. This option is effective only when compiling with @option{-flto}
9152 and is ignored at link time.
9153
9154 @option{-fno-fat-lto-objects} improves compilation time over plain LTO, but
9155 requires the complete toolchain to be aware of LTO. It requires a linker with
9156 linker plugin support for basic functionality. Additionally,
9157 @command{nm}, @command{ar} and @command{ranlib}
9158 need to support linker plugins to allow a full-featured build environment
9159 (capable of building static libraries etc). GCC provides the @command{gcc-ar},
9160 @command{gcc-nm}, @command{gcc-ranlib} wrappers to pass the right options
9161 to these tools. With non fat LTO makefiles need to be modified to use them.
9162
9163 The default is @option{-fno-fat-lto-objects} on targets with linker plugin
9164 support.
9165
9166 @item -fcompare-elim
9167 @opindex fcompare-elim
9168 After register allocation and post-register allocation instruction splitting,
9169 identify arithmetic instructions that compute processor flags similar to a
9170 comparison operation based on that arithmetic. If possible, eliminate the
9171 explicit comparison operation.
9172
9173 This pass only applies to certain targets that cannot explicitly represent
9174 the comparison operation before register allocation is complete.
9175
9176 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9177
9178 @item -fcprop-registers
9179 @opindex fcprop-registers
9180 After register allocation and post-register allocation instruction splitting,
9181 perform a copy-propagation pass to try to reduce scheduling dependencies
9182 and occasionally eliminate the copy.
9183
9184 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9185
9186 @item -fprofile-correction
9187 @opindex fprofile-correction
9188 Profiles collected using an instrumented binary for multi-threaded programs may
9189 be inconsistent due to missed counter updates. When this option is specified,
9190 GCC uses heuristics to correct or smooth out such inconsistencies. By
9191 default, GCC emits an error message when an inconsistent profile is detected.
9192
9193 @item -fprofile-use
9194 @itemx -fprofile-use=@var{path}
9195 @opindex fprofile-use
9196 Enable profile feedback-directed optimizations,
9197 and the following optimizations
9198 which are generally profitable only with profile feedback available:
9199 @option{-fbranch-probabilities}, @option{-fvpt},
9200 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer},
9201 @option{-ftree-vectorize}, and @option{ftree-loop-distribute-patterns}.
9202
9203 Before you can use this option, you must first generate profiling information.
9204 @xref{Instrumentation Options}, for information about the
9205 @option{-fprofile-generate} option.
9206
9207 By default, GCC emits an error message if the feedback profiles do not
9208 match the source code. This error can be turned into a warning by using
9209 @option{-Wcoverage-mismatch}. Note this may result in poorly optimized
9210 code.
9211
9212 If @var{path} is specified, GCC looks at the @var{path} to find
9213 the profile feedback data files. See @option{-fprofile-dir}.
9214
9215 @item -fauto-profile
9216 @itemx -fauto-profile=@var{path}
9217 @opindex fauto-profile
9218 Enable sampling-based feedback-directed optimizations,
9219 and the following optimizations
9220 which are generally profitable only with profile feedback available:
9221 @option{-fbranch-probabilities}, @option{-fvpt},
9222 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer},
9223 @option{-ftree-vectorize},
9224 @option{-finline-functions}, @option{-fipa-cp}, @option{-fipa-cp-clone},
9225 @option{-fpredictive-commoning}, @option{-funswitch-loops},
9226 @option{-fgcse-after-reload}, and @option{-ftree-loop-distribute-patterns}.
9227
9228 @var{path} is the name of a file containing AutoFDO profile information.
9229 If omitted, it defaults to @file{fbdata.afdo} in the current directory.
9230
9231 Producing an AutoFDO profile data file requires running your program
9232 with the @command{perf} utility on a supported GNU/Linux target system.
9233 For more information, see @uref{https://perf.wiki.kernel.org/}.
9234
9235 E.g.
9236 @smallexample
9237 perf record -e br_inst_retired:near_taken -b -o perf.data \
9238 -- your_program
9239 @end smallexample
9240
9241 Then use the @command{create_gcov} tool to convert the raw profile data
9242 to a format that can be used by GCC.@ You must also supply the
9243 unstripped binary for your program to this tool.
9244 See @uref{https://github.com/google/autofdo}.
9245
9246 E.g.
9247 @smallexample
9248 create_gcov --binary=your_program.unstripped --profile=perf.data \
9249 --gcov=profile.afdo
9250 @end smallexample
9251 @end table
9252
9253 The following options control compiler behavior regarding floating-point
9254 arithmetic. These options trade off between speed and
9255 correctness. All must be specifically enabled.
9256
9257 @table @gcctabopt
9258 @item -ffloat-store
9259 @opindex ffloat-store
9260 Do not store floating-point variables in registers, and inhibit other
9261 options that might change whether a floating-point value is taken from a
9262 register or memory.
9263
9264 @cindex floating-point precision
9265 This option prevents undesirable excess precision on machines such as
9266 the 68000 where the floating registers (of the 68881) keep more
9267 precision than a @code{double} is supposed to have. Similarly for the
9268 x86 architecture. For most programs, the excess precision does only
9269 good, but a few programs rely on the precise definition of IEEE floating
9270 point. Use @option{-ffloat-store} for such programs, after modifying
9271 them to store all pertinent intermediate computations into variables.
9272
9273 @item -fexcess-precision=@var{style}
9274 @opindex fexcess-precision
9275 This option allows further control over excess precision on machines
9276 where floating-point operations occur in a format with more precision or
9277 range than the IEEE standard and interchange floating-point types. By
9278 default, @option{-fexcess-precision=fast} is in effect; this means that
9279 operations may be carried out in a wider precision than the types specified
9280 in the source if that would result in faster code, and it is unpredictable
9281 when rounding to the types specified in the source code takes place.
9282 When compiling C, if @option{-fexcess-precision=standard} is specified then
9283 excess precision follows the rules specified in ISO C99; in particular,
9284 both casts and assignments cause values to be rounded to their
9285 semantic types (whereas @option{-ffloat-store} only affects
9286 assignments). This option is enabled by default for C if a strict
9287 conformance option such as @option{-std=c99} is used.
9288 @option{-ffast-math} enables @option{-fexcess-precision=fast} by default
9289 regardless of whether a strict conformance option is used.
9290
9291 @opindex mfpmath
9292 @option{-fexcess-precision=standard} is not implemented for languages
9293 other than C. On the x86, it has no effect if @option{-mfpmath=sse}
9294 or @option{-mfpmath=sse+387} is specified; in the former case, IEEE
9295 semantics apply without excess precision, and in the latter, rounding
9296 is unpredictable.
9297
9298 @item -ffast-math
9299 @opindex ffast-math
9300 Sets the options @option{-fno-math-errno}, @option{-funsafe-math-optimizations},
9301 @option{-ffinite-math-only}, @option{-fno-rounding-math},
9302 @option{-fno-signaling-nans}, @option{-fcx-limited-range} and
9303 @option{-fexcess-precision=fast}.
9304
9305 This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.
9306
9307 This option is not turned on by any @option{-O} option besides
9308 @option{-Ofast} since it can result in incorrect output for programs
9309 that depend on an exact implementation of IEEE or ISO rules/specifications
9310 for math functions. It may, however, yield faster code for programs
9311 that do not require the guarantees of these specifications.
9312
9313 @item -fno-math-errno
9314 @opindex fno-math-errno
9315 Do not set @code{errno} after calling math functions that are executed
9316 with a single instruction, e.g., @code{sqrt}. A program that relies on
9317 IEEE exceptions for math error handling may want to use this flag
9318 for speed while maintaining IEEE arithmetic compatibility.
9319
9320 This option is not turned on by any @option{-O} option since
9321 it can result in incorrect output for programs that depend on
9322 an exact implementation of IEEE or ISO rules/specifications for
9323 math functions. It may, however, yield faster code for programs
9324 that do not require the guarantees of these specifications.
9325
9326 The default is @option{-fmath-errno}.
9327
9328 On Darwin systems, the math library never sets @code{errno}. There is
9329 therefore no reason for the compiler to consider the possibility that
9330 it might, and @option{-fno-math-errno} is the default.
9331
9332 @item -funsafe-math-optimizations
9333 @opindex funsafe-math-optimizations
9334
9335 Allow optimizations for floating-point arithmetic that (a) assume
9336 that arguments and results are valid and (b) may violate IEEE or
9337 ANSI standards. When used at link time, it may include libraries
9338 or startup files that change the default FPU control word or other
9339 similar optimizations.
9340
9341 This option is not turned on by any @option{-O} option since
9342 it can result in incorrect output for programs that depend on
9343 an exact implementation of IEEE or ISO rules/specifications for
9344 math functions. It may, however, yield faster code for programs
9345 that do not require the guarantees of these specifications.
9346 Enables @option{-fno-signed-zeros}, @option{-fno-trapping-math},
9347 @option{-fassociative-math} and @option{-freciprocal-math}.
9348
9349 The default is @option{-fno-unsafe-math-optimizations}.
9350
9351 @item -fassociative-math
9352 @opindex fassociative-math
9353
9354 Allow re-association of operands in series of floating-point operations.
9355 This violates the ISO C and C++ language standard by possibly changing
9356 computation result. NOTE: re-ordering may change the sign of zero as
9357 well as ignore NaNs and inhibit or create underflow or overflow (and
9358 thus cannot be used on code that relies on rounding behavior like
9359 @code{(x + 2**52) - 2**52}. May also reorder floating-point comparisons
9360 and thus may not be used when ordered comparisons are required.
9361 This option requires that both @option{-fno-signed-zeros} and
9362 @option{-fno-trapping-math} be in effect. Moreover, it doesn't make
9363 much sense with @option{-frounding-math}. For Fortran the option
9364 is automatically enabled when both @option{-fno-signed-zeros} and
9365 @option{-fno-trapping-math} are in effect.
9366
9367 The default is @option{-fno-associative-math}.
9368
9369 @item -freciprocal-math
9370 @opindex freciprocal-math
9371
9372 Allow the reciprocal of a value to be used instead of dividing by
9373 the value if this enables optimizations. For example @code{x / y}
9374 can be replaced with @code{x * (1/y)}, which is useful if @code{(1/y)}
9375 is subject to common subexpression elimination. Note that this loses
9376 precision and increases the number of flops operating on the value.
9377
9378 The default is @option{-fno-reciprocal-math}.
9379
9380 @item -ffinite-math-only
9381 @opindex ffinite-math-only
9382 Allow optimizations for floating-point arithmetic that assume
9383 that arguments and results are not NaNs or +-Infs.
9384
9385 This option is not turned on by any @option{-O} option since
9386 it can result in incorrect output for programs that depend on
9387 an exact implementation of IEEE or ISO rules/specifications for
9388 math functions. It may, however, yield faster code for programs
9389 that do not require the guarantees of these specifications.
9390
9391 The default is @option{-fno-finite-math-only}.
9392
9393 @item -fno-signed-zeros
9394 @opindex fno-signed-zeros
9395 Allow optimizations for floating-point arithmetic that ignore the
9396 signedness of zero. IEEE arithmetic specifies the behavior of
9397 distinct +0.0 and @minus{}0.0 values, which then prohibits simplification
9398 of expressions such as x+0.0 or 0.0*x (even with @option{-ffinite-math-only}).
9399 This option implies that the sign of a zero result isn't significant.
9400
9401 The default is @option{-fsigned-zeros}.
9402
9403 @item -fno-trapping-math
9404 @opindex fno-trapping-math
9405 Compile code assuming that floating-point operations cannot generate
9406 user-visible traps. These traps include division by zero, overflow,
9407 underflow, inexact result and invalid operation. This option requires
9408 that @option{-fno-signaling-nans} be in effect. Setting this option may
9409 allow faster code if one relies on ``non-stop'' IEEE arithmetic, for example.
9410
9411 This option should never be turned on by any @option{-O} option since
9412 it can result in incorrect output for programs that depend on
9413 an exact implementation of IEEE or ISO rules/specifications for
9414 math functions.
9415
9416 The default is @option{-ftrapping-math}.
9417
9418 @item -frounding-math
9419 @opindex frounding-math
9420 Disable transformations and optimizations that assume default floating-point
9421 rounding behavior. This is round-to-zero for all floating point
9422 to integer conversions, and round-to-nearest for all other arithmetic
9423 truncations. This option should be specified for programs that change
9424 the FP rounding mode dynamically, or that may be executed with a
9425 non-default rounding mode. This option disables constant folding of
9426 floating-point expressions at compile time (which may be affected by
9427 rounding mode) and arithmetic transformations that are unsafe in the
9428 presence of sign-dependent rounding modes.
9429
9430 The default is @option{-fno-rounding-math}.
9431
9432 This option is experimental and does not currently guarantee to
9433 disable all GCC optimizations that are affected by rounding mode.
9434 Future versions of GCC may provide finer control of this setting
9435 using C99's @code{FENV_ACCESS} pragma. This command-line option
9436 will be used to specify the default state for @code{FENV_ACCESS}.
9437
9438 @item -fsignaling-nans
9439 @opindex fsignaling-nans
9440 Compile code assuming that IEEE signaling NaNs may generate user-visible
9441 traps during floating-point operations. Setting this option disables
9442 optimizations that may change the number of exceptions visible with
9443 signaling NaNs. This option implies @option{-ftrapping-math}.
9444
9445 This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
9446 be defined.
9447
9448 The default is @option{-fno-signaling-nans}.
9449
9450 This option is experimental and does not currently guarantee to
9451 disable all GCC optimizations that affect signaling NaN behavior.
9452
9453 @item -fno-fp-int-builtin-inexact
9454 @opindex fno-fp-int-builtin-inexact
9455 Do not allow the built-in functions @code{ceil}, @code{floor},
9456 @code{round} and @code{trunc}, and their @code{float} and @code{long
9457 double} variants, to generate code that raises the ``inexact''
9458 floating-point exception for noninteger arguments. ISO C99 and C11
9459 allow these functions to raise the ``inexact'' exception, but ISO/IEC
9460 TS 18661-1:2014, the C bindings to IEEE 754-2008, does not allow these
9461 functions to do so.
9462
9463 The default is @option{-ffp-int-builtin-inexact}, allowing the
9464 exception to be raised. This option does nothing unless
9465 @option{-ftrapping-math} is in effect.
9466
9467 Even if @option{-fno-fp-int-builtin-inexact} is used, if the functions
9468 generate a call to a library function then the ``inexact'' exception
9469 may be raised if the library implementation does not follow TS 18661.
9470
9471 @item -fsingle-precision-constant
9472 @opindex fsingle-precision-constant
9473 Treat floating-point constants as single precision instead of
9474 implicitly converting them to double-precision constants.
9475
9476 @item -fcx-limited-range
9477 @opindex fcx-limited-range
9478 When enabled, this option states that a range reduction step is not
9479 needed when performing complex division. Also, there is no checking
9480 whether the result of a complex multiplication or division is @code{NaN
9481 + I*NaN}, with an attempt to rescue the situation in that case. The
9482 default is @option{-fno-cx-limited-range}, but is enabled by
9483 @option{-ffast-math}.
9484
9485 This option controls the default setting of the ISO C99
9486 @code{CX_LIMITED_RANGE} pragma. Nevertheless, the option applies to
9487 all languages.
9488
9489 @item -fcx-fortran-rules
9490 @opindex fcx-fortran-rules
9491 Complex multiplication and division follow Fortran rules. Range
9492 reduction is done as part of complex division, but there is no checking
9493 whether the result of a complex multiplication or division is @code{NaN
9494 + I*NaN}, with an attempt to rescue the situation in that case.
9495
9496 The default is @option{-fno-cx-fortran-rules}.
9497
9498 @end table
9499
9500 The following options control optimizations that may improve
9501 performance, but are not enabled by any @option{-O} options. This
9502 section includes experimental options that may produce broken code.
9503
9504 @table @gcctabopt
9505 @item -fbranch-probabilities
9506 @opindex fbranch-probabilities
9507 After running a program compiled with @option{-fprofile-arcs}
9508 (@pxref{Instrumentation Options}),
9509 you can compile it a second time using
9510 @option{-fbranch-probabilities}, to improve optimizations based on
9511 the number of times each branch was taken. When a program
9512 compiled with @option{-fprofile-arcs} exits, it saves arc execution
9513 counts to a file called @file{@var{sourcename}.gcda} for each source
9514 file. The information in this data file is very dependent on the
9515 structure of the generated code, so you must use the same source code
9516 and the same optimization options for both compilations.
9517
9518 With @option{-fbranch-probabilities}, GCC puts a
9519 @samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
9520 These can be used to improve optimization. Currently, they are only
9521 used in one place: in @file{reorg.c}, instead of guessing which path a
9522 branch is most likely to take, the @samp{REG_BR_PROB} values are used to
9523 exactly determine which path is taken more often.
9524
9525 @item -fprofile-values
9526 @opindex fprofile-values
9527 If combined with @option{-fprofile-arcs}, it adds code so that some
9528 data about values of expressions in the program is gathered.
9529
9530 With @option{-fbranch-probabilities}, it reads back the data gathered
9531 from profiling values of expressions for usage in optimizations.
9532
9533 Enabled with @option{-fprofile-generate} and @option{-fprofile-use}.
9534
9535 @item -fprofile-reorder-functions
9536 @opindex fprofile-reorder-functions
9537 Function reordering based on profile instrumentation collects
9538 first time of execution of a function and orders these functions
9539 in ascending order.
9540
9541 Enabled with @option{-fprofile-use}.
9542
9543 @item -fvpt
9544 @opindex fvpt
9545 If combined with @option{-fprofile-arcs}, this option instructs the compiler
9546 to add code to gather information about values of expressions.
9547
9548 With @option{-fbranch-probabilities}, it reads back the data gathered
9549 and actually performs the optimizations based on them.
9550 Currently the optimizations include specialization of division operations
9551 using the knowledge about the value of the denominator.
9552
9553 @item -frename-registers
9554 @opindex frename-registers
9555 Attempt to avoid false dependencies in scheduled code by making use
9556 of registers left over after register allocation. This optimization
9557 most benefits processors with lots of registers. Depending on the
9558 debug information format adopted by the target, however, it can
9559 make debugging impossible, since variables no longer stay in
9560 a ``home register''.
9561
9562 Enabled by default with @option{-funroll-loops}.
9563
9564 @item -fschedule-fusion
9565 @opindex fschedule-fusion
9566 Performs a target dependent pass over the instruction stream to schedule
9567 instructions of same type together because target machine can execute them
9568 more efficiently if they are adjacent to each other in the instruction flow.
9569
9570 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9571
9572 @item -ftracer
9573 @opindex ftracer
9574 Perform tail duplication to enlarge superblock size. This transformation
9575 simplifies the control flow of the function allowing other optimizations to do
9576 a better job.
9577
9578 Enabled with @option{-fprofile-use}.
9579
9580 @item -funroll-loops
9581 @opindex funroll-loops
9582 Unroll loops whose number of iterations can be determined at compile time or
9583 upon entry to the loop. @option{-funroll-loops} implies
9584 @option{-frerun-cse-after-loop}, @option{-fweb} and @option{-frename-registers}.
9585 It also turns on complete loop peeling (i.e.@: complete removal of loops with
9586 a small constant number of iterations). This option makes code larger, and may
9587 or may not make it run faster.
9588
9589 Enabled with @option{-fprofile-use}.
9590
9591 @item -funroll-all-loops
9592 @opindex funroll-all-loops
9593 Unroll all loops, even if their number of iterations is uncertain when
9594 the loop is entered. This usually makes programs run more slowly.
9595 @option{-funroll-all-loops} implies the same options as
9596 @option{-funroll-loops}.
9597
9598 @item -fpeel-loops
9599 @opindex fpeel-loops
9600 Peels loops for which there is enough information that they do not
9601 roll much (from profile feedback or static analysis). It also turns on
9602 complete loop peeling (i.e.@: complete removal of loops with small constant
9603 number of iterations).
9604
9605 Enabled with @option{-O3} and/or @option{-fprofile-use}.
9606
9607 @item -fmove-loop-invariants
9608 @opindex fmove-loop-invariants
9609 Enables the loop invariant motion pass in the RTL loop optimizer. Enabled
9610 at level @option{-O1}
9611
9612 @item -fsplit-loops
9613 @opindex fsplit-loops
9614 Split a loop into two if it contains a condition that's always true
9615 for one side of the iteration space and false for the other.
9616
9617 @item -funswitch-loops
9618 @opindex funswitch-loops
9619 Move branches with loop invariant conditions out of the loop, with duplicates
9620 of the loop on both branches (modified according to result of the condition).
9621
9622 @item -ffunction-sections
9623 @itemx -fdata-sections
9624 @opindex ffunction-sections
9625 @opindex fdata-sections
9626 Place each function or data item into its own section in the output
9627 file if the target supports arbitrary sections. The name of the
9628 function or the name of the data item determines the section's name
9629 in the output file.
9630
9631 Use these options on systems where the linker can perform optimizations
9632 to improve locality of reference in the instruction space. Most systems
9633 using the ELF object format and SPARC processors running Solaris 2 have
9634 linkers with such optimizations. AIX may have these optimizations in
9635 the future.
9636
9637 Only use these options when there are significant benefits from doing
9638 so. When you specify these options, the assembler and linker
9639 create larger object and executable files and are also slower.
9640 You cannot use @command{gprof} on all systems if you
9641 specify this option, and you may have problems with debugging if
9642 you specify both this option and @option{-g}.
9643
9644 @item -fbranch-target-load-optimize
9645 @opindex fbranch-target-load-optimize
9646 Perform branch target register load optimization before prologue / epilogue
9647 threading.
9648 The use of target registers can typically be exposed only during reload,
9649 thus hoisting loads out of loops and doing inter-block scheduling needs
9650 a separate optimization pass.
9651
9652 @item -fbranch-target-load-optimize2
9653 @opindex fbranch-target-load-optimize2
9654 Perform branch target register load optimization after prologue / epilogue
9655 threading.
9656
9657 @item -fbtr-bb-exclusive
9658 @opindex fbtr-bb-exclusive
9659 When performing branch target register load optimization, don't reuse
9660 branch target registers within any basic block.
9661
9662 @item -fstdarg-opt
9663 @opindex fstdarg-opt
9664 Optimize the prologue of variadic argument functions with respect to usage of
9665 those arguments.
9666
9667 @item -fsection-anchors
9668 @opindex fsection-anchors
9669 Try to reduce the number of symbolic address calculations by using
9670 shared ``anchor'' symbols to address nearby objects. This transformation
9671 can help to reduce the number of GOT entries and GOT accesses on some
9672 targets.
9673
9674 For example, the implementation of the following function @code{foo}:
9675
9676 @smallexample
9677 static int a, b, c;
9678 int foo (void) @{ return a + b + c; @}
9679 @end smallexample
9680
9681 @noindent
9682 usually calculates the addresses of all three variables, but if you
9683 compile it with @option{-fsection-anchors}, it accesses the variables
9684 from a common anchor point instead. The effect is similar to the
9685 following pseudocode (which isn't valid C):
9686
9687 @smallexample
9688 int foo (void)
9689 @{
9690 register int *xr = &x;
9691 return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
9692 @}
9693 @end smallexample
9694
9695 Not all targets support this option.
9696
9697 @item --param @var{name}=@var{value}
9698 @opindex param
9699 In some places, GCC uses various constants to control the amount of
9700 optimization that is done. For example, GCC does not inline functions
9701 that contain more than a certain number of instructions. You can
9702 control some of these constants on the command line using the
9703 @option{--param} option.
9704
9705 The names of specific parameters, and the meaning of the values, are
9706 tied to the internals of the compiler, and are subject to change
9707 without notice in future releases.
9708
9709 In each case, the @var{value} is an integer. The allowable choices for
9710 @var{name} are:
9711
9712 @table @gcctabopt
9713 @item predictable-branch-outcome
9714 When branch is predicted to be taken with probability lower than this threshold
9715 (in percent), then it is considered well predictable. The default is 10.
9716
9717 @item max-rtl-if-conversion-insns
9718 RTL if-conversion tries to remove conditional branches around a block and
9719 replace them with conditionally executed instructions. This parameter
9720 gives the maximum number of instructions in a block which should be
9721 considered for if-conversion. The default is 10, though the compiler will
9722 also use other heuristics to decide whether if-conversion is likely to be
9723 profitable.
9724
9725 @item max-rtl-if-conversion-predictable-cost
9726 @item max-rtl-if-conversion-unpredictable-cost
9727 RTL if-conversion will try to remove conditional branches around a block
9728 and replace them with conditionally executed instructions. These parameters
9729 give the maximum permissible cost for the sequence that would be generated
9730 by if-conversion depending on whether the branch is statically determined
9731 to be predictable or not. The units for this parameter are the same as
9732 those for the GCC internal seq_cost metric. The compiler will try to
9733 provide a reasonable default for this parameter using the BRANCH_COST
9734 target macro.
9735
9736 @item max-crossjump-edges
9737 The maximum number of incoming edges to consider for cross-jumping.
9738 The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
9739 the number of edges incoming to each block. Increasing values mean
9740 more aggressive optimization, making the compilation time increase with
9741 probably small improvement in executable size.
9742
9743 @item min-crossjump-insns
9744 The minimum number of instructions that must be matched at the end
9745 of two blocks before cross-jumping is performed on them. This
9746 value is ignored in the case where all instructions in the block being
9747 cross-jumped from are matched. The default value is 5.
9748
9749 @item max-grow-copy-bb-insns
9750 The maximum code size expansion factor when copying basic blocks
9751 instead of jumping. The expansion is relative to a jump instruction.
9752 The default value is 8.
9753
9754 @item max-goto-duplication-insns
9755 The maximum number of instructions to duplicate to a block that jumps
9756 to a computed goto. To avoid @math{O(N^2)} behavior in a number of
9757 passes, GCC factors computed gotos early in the compilation process,
9758 and unfactors them as late as possible. Only computed jumps at the
9759 end of a basic blocks with no more than max-goto-duplication-insns are
9760 unfactored. The default value is 8.
9761
9762 @item max-delay-slot-insn-search
9763 The maximum number of instructions to consider when looking for an
9764 instruction to fill a delay slot. If more than this arbitrary number of
9765 instructions are searched, the time savings from filling the delay slot
9766 are minimal, so stop searching. Increasing values mean more
9767 aggressive optimization, making the compilation time increase with probably
9768 small improvement in execution time.
9769
9770 @item max-delay-slot-live-search
9771 When trying to fill delay slots, the maximum number of instructions to
9772 consider when searching for a block with valid live register
9773 information. Increasing this arbitrarily chosen value means more
9774 aggressive optimization, increasing the compilation time. This parameter
9775 should be removed when the delay slot code is rewritten to maintain the
9776 control-flow graph.
9777
9778 @item max-gcse-memory
9779 The approximate maximum amount of memory that can be allocated in
9780 order to perform the global common subexpression elimination
9781 optimization. If more memory than specified is required, the
9782 optimization is not done.
9783
9784 @item max-gcse-insertion-ratio
9785 If the ratio of expression insertions to deletions is larger than this value
9786 for any expression, then RTL PRE inserts or removes the expression and thus
9787 leaves partially redundant computations in the instruction stream. The default value is 20.
9788
9789 @item max-pending-list-length
9790 The maximum number of pending dependencies scheduling allows
9791 before flushing the current state and starting over. Large functions
9792 with few branches or calls can create excessively large lists which
9793 needlessly consume memory and resources.
9794
9795 @item max-modulo-backtrack-attempts
9796 The maximum number of backtrack attempts the scheduler should make
9797 when modulo scheduling a loop. Larger values can exponentially increase
9798 compilation time.
9799
9800 @item max-inline-insns-single
9801 Several parameters control the tree inliner used in GCC@.
9802 This number sets the maximum number of instructions (counted in GCC's
9803 internal representation) in a single function that the tree inliner
9804 considers for inlining. This only affects functions declared
9805 inline and methods implemented in a class declaration (C++).
9806 The default value is 400.
9807
9808 @item max-inline-insns-auto
9809 When you use @option{-finline-functions} (included in @option{-O3}),
9810 a lot of functions that would otherwise not be considered for inlining
9811 by the compiler are investigated. To those functions, a different
9812 (more restrictive) limit compared to functions declared inline can
9813 be applied.
9814 The default value is 40.
9815
9816 @item inline-min-speedup
9817 When estimated performance improvement of caller + callee runtime exceeds this
9818 threshold (in percent), the function can be inlined regardless of the limit on
9819 @option{--param max-inline-insns-single} and @option{--param
9820 max-inline-insns-auto}.
9821
9822 @item large-function-insns
9823 The limit specifying really large functions. For functions larger than this
9824 limit after inlining, inlining is constrained by
9825 @option{--param large-function-growth}. This parameter is useful primarily
9826 to avoid extreme compilation time caused by non-linear algorithms used by the
9827 back end.
9828 The default value is 2700.
9829
9830 @item large-function-growth
9831 Specifies maximal growth of large function caused by inlining in percents.
9832 The default value is 100 which limits large function growth to 2.0 times
9833 the original size.
9834
9835 @item large-unit-insns
9836 The limit specifying large translation unit. Growth caused by inlining of
9837 units larger than this limit is limited by @option{--param inline-unit-growth}.
9838 For small units this might be too tight.
9839 For example, consider a unit consisting of function A
9840 that is inline and B that just calls A three times. If B is small relative to
9841 A, the growth of unit is 300\% and yet such inlining is very sane. For very
9842 large units consisting of small inlineable functions, however, the overall unit
9843 growth limit is needed to avoid exponential explosion of code size. Thus for
9844 smaller units, the size is increased to @option{--param large-unit-insns}
9845 before applying @option{--param inline-unit-growth}. The default is 10000.
9846
9847 @item inline-unit-growth
9848 Specifies maximal overall growth of the compilation unit caused by inlining.
9849 The default value is 20 which limits unit growth to 1.2 times the original
9850 size. Cold functions (either marked cold via an attribute or by profile
9851 feedback) are not accounted into the unit size.
9852
9853 @item ipcp-unit-growth
9854 Specifies maximal overall growth of the compilation unit caused by
9855 interprocedural constant propagation. The default value is 10 which limits
9856 unit growth to 1.1 times the original size.
9857
9858 @item large-stack-frame
9859 The limit specifying large stack frames. While inlining the algorithm is trying
9860 to not grow past this limit too much. The default value is 256 bytes.
9861
9862 @item large-stack-frame-growth
9863 Specifies maximal growth of large stack frames caused by inlining in percents.
9864 The default value is 1000 which limits large stack frame growth to 11 times
9865 the original size.
9866
9867 @item max-inline-insns-recursive
9868 @itemx max-inline-insns-recursive-auto
9869 Specifies the maximum number of instructions an out-of-line copy of a
9870 self-recursive inline
9871 function can grow into by performing recursive inlining.
9872
9873 @option{--param max-inline-insns-recursive} applies to functions
9874 declared inline.
9875 For functions not declared inline, recursive inlining
9876 happens only when @option{-finline-functions} (included in @option{-O3}) is
9877 enabled; @option{--param max-inline-insns-recursive-auto} applies instead. The
9878 default value is 450.
9879
9880 @item max-inline-recursive-depth
9881 @itemx max-inline-recursive-depth-auto
9882 Specifies the maximum recursion depth used for recursive inlining.
9883
9884 @option{--param max-inline-recursive-depth} applies to functions
9885 declared inline. For functions not declared inline, recursive inlining
9886 happens only when @option{-finline-functions} (included in @option{-O3}) is
9887 enabled; @option{--param max-inline-recursive-depth-auto} applies instead. The
9888 default value is 8.
9889
9890 @item min-inline-recursive-probability
9891 Recursive inlining is profitable only for function having deep recursion
9892 in average and can hurt for function having little recursion depth by
9893 increasing the prologue size or complexity of function body to other
9894 optimizers.
9895
9896 When profile feedback is available (see @option{-fprofile-generate}) the actual
9897 recursion depth can be guessed from the probability that function recurses
9898 via a given call expression. This parameter limits inlining only to call
9899 expressions whose probability exceeds the given threshold (in percents).
9900 The default value is 10.
9901
9902 @item early-inlining-insns
9903 Specify growth that the early inliner can make. In effect it increases
9904 the amount of inlining for code having a large abstraction penalty.
9905 The default value is 14.
9906
9907 @item max-early-inliner-iterations
9908 Limit of iterations of the early inliner. This basically bounds
9909 the number of nested indirect calls the early inliner can resolve.
9910 Deeper chains are still handled by late inlining.
9911
9912 @item comdat-sharing-probability
9913 Probability (in percent) that C++ inline function with comdat visibility
9914 are shared across multiple compilation units. The default value is 20.
9915
9916 @item profile-func-internal-id
9917 A parameter to control whether to use function internal id in profile
9918 database lookup. If the value is 0, the compiler uses an id that
9919 is based on function assembler name and filename, which makes old profile
9920 data more tolerant to source changes such as function reordering etc.
9921 The default value is 0.
9922
9923 @item min-vect-loop-bound
9924 The minimum number of iterations under which loops are not vectorized
9925 when @option{-ftree-vectorize} is used. The number of iterations after
9926 vectorization needs to be greater than the value specified by this option
9927 to allow vectorization. The default value is 0.
9928
9929 @item gcse-cost-distance-ratio
9930 Scaling factor in calculation of maximum distance an expression
9931 can be moved by GCSE optimizations. This is currently supported only in the
9932 code hoisting pass. The bigger the ratio, the more aggressive code hoisting
9933 is with simple expressions, i.e., the expressions that have cost
9934 less than @option{gcse-unrestricted-cost}. Specifying 0 disables
9935 hoisting of simple expressions. The default value is 10.
9936
9937 @item gcse-unrestricted-cost
9938 Cost, roughly measured as the cost of a single typical machine
9939 instruction, at which GCSE optimizations do not constrain
9940 the distance an expression can travel. This is currently
9941 supported only in the code hoisting pass. The lesser the cost,
9942 the more aggressive code hoisting is. Specifying 0
9943 allows all expressions to travel unrestricted distances.
9944 The default value is 3.
9945
9946 @item max-hoist-depth
9947 The depth of search in the dominator tree for expressions to hoist.
9948 This is used to avoid quadratic behavior in hoisting algorithm.
9949 The value of 0 does not limit on the search, but may slow down compilation
9950 of huge functions. The default value is 30.
9951
9952 @item max-tail-merge-comparisons
9953 The maximum amount of similar bbs to compare a bb with. This is used to
9954 avoid quadratic behavior in tree tail merging. The default value is 10.
9955
9956 @item max-tail-merge-iterations
9957 The maximum amount of iterations of the pass over the function. This is used to
9958 limit compilation time in tree tail merging. The default value is 2.
9959
9960 @item store-merging-allow-unaligned
9961 Allow the store merging pass to introduce unaligned stores if it is legal to
9962 do so. The default value is 1.
9963
9964 @item max-stores-to-merge
9965 The maximum number of stores to attempt to merge into wider stores in the store
9966 merging pass. The minimum value is 2 and the default is 64.
9967
9968 @item max-unrolled-insns
9969 The maximum number of instructions that a loop may have to be unrolled.
9970 If a loop is unrolled, this parameter also determines how many times
9971 the loop code is unrolled.
9972
9973 @item max-average-unrolled-insns
9974 The maximum number of instructions biased by probabilities of their execution
9975 that a loop may have to be unrolled. If a loop is unrolled,
9976 this parameter also determines how many times the loop code is unrolled.
9977
9978 @item max-unroll-times
9979 The maximum number of unrollings of a single loop.
9980
9981 @item max-peeled-insns
9982 The maximum number of instructions that a loop may have to be peeled.
9983 If a loop is peeled, this parameter also determines how many times
9984 the loop code is peeled.
9985
9986 @item max-peel-times
9987 The maximum number of peelings of a single loop.
9988
9989 @item max-peel-branches
9990 The maximum number of branches on the hot path through the peeled sequence.
9991
9992 @item max-completely-peeled-insns
9993 The maximum number of insns of a completely peeled loop.
9994
9995 @item max-completely-peel-times
9996 The maximum number of iterations of a loop to be suitable for complete peeling.
9997
9998 @item max-completely-peel-loop-nest-depth
9999 The maximum depth of a loop nest suitable for complete peeling.
10000
10001 @item max-unswitch-insns
10002 The maximum number of insns of an unswitched loop.
10003
10004 @item max-unswitch-level
10005 The maximum number of branches unswitched in a single loop.
10006
10007 @item max-loop-headers-insns
10008 The maximum number of insns in loop header duplicated by the copy loop headers
10009 pass.
10010
10011 @item lim-expensive
10012 The minimum cost of an expensive expression in the loop invariant motion.
10013
10014 @item iv-consider-all-candidates-bound
10015 Bound on number of candidates for induction variables, below which
10016 all candidates are considered for each use in induction variable
10017 optimizations. If there are more candidates than this,
10018 only the most relevant ones are considered to avoid quadratic time complexity.
10019
10020 @item iv-max-considered-uses
10021 The induction variable optimizations give up on loops that contain more
10022 induction variable uses.
10023
10024 @item iv-always-prune-cand-set-bound
10025 If the number of candidates in the set is smaller than this value,
10026 always try to remove unnecessary ivs from the set
10027 when adding a new one.
10028
10029 @item avg-loop-niter
10030 Average number of iterations of a loop.
10031
10032 @item dse-max-object-size
10033 Maximum size (in bytes) of objects tracked bytewise by dead store elimination.
10034 Larger values may result in larger compilation times.
10035
10036 @item scev-max-expr-size
10037 Bound on size of expressions used in the scalar evolutions analyzer.
10038 Large expressions slow the analyzer.
10039
10040 @item scev-max-expr-complexity
10041 Bound on the complexity of the expressions in the scalar evolutions analyzer.
10042 Complex expressions slow the analyzer.
10043
10044 @item max-tree-if-conversion-phi-args
10045 Maximum number of arguments in a PHI supported by TREE if conversion
10046 unless the loop is marked with simd pragma.
10047
10048 @item vect-max-version-for-alignment-checks
10049 The maximum number of run-time checks that can be performed when
10050 doing loop versioning for alignment in the vectorizer.
10051
10052 @item vect-max-version-for-alias-checks
10053 The maximum number of run-time checks that can be performed when
10054 doing loop versioning for alias in the vectorizer.
10055
10056 @item vect-max-peeling-for-alignment
10057 The maximum number of loop peels to enhance access alignment
10058 for vectorizer. Value -1 means no limit.
10059
10060 @item max-iterations-to-track
10061 The maximum number of iterations of a loop the brute-force algorithm
10062 for analysis of the number of iterations of the loop tries to evaluate.
10063
10064 @item hot-bb-count-ws-permille
10065 A basic block profile count is considered hot if it contributes to
10066 the given permillage (i.e. 0...1000) of the entire profiled execution.
10067
10068 @item hot-bb-frequency-fraction
10069 Select fraction of the entry block frequency of executions of basic block in
10070 function given basic block needs to have to be considered hot.
10071
10072 @item max-predicted-iterations
10073 The maximum number of loop iterations we predict statically. This is useful
10074 in cases where a function contains a single loop with known bound and
10075 another loop with unknown bound.
10076 The known number of iterations is predicted correctly, while
10077 the unknown number of iterations average to roughly 10. This means that the
10078 loop without bounds appears artificially cold relative to the other one.
10079
10080 @item builtin-expect-probability
10081 Control the probability of the expression having the specified value. This
10082 parameter takes a percentage (i.e. 0 ... 100) as input.
10083 The default probability of 90 is obtained empirically.
10084
10085 @item align-threshold
10086
10087 Select fraction of the maximal frequency of executions of a basic block in
10088 a function to align the basic block.
10089
10090 @item align-loop-iterations
10091
10092 A loop expected to iterate at least the selected number of iterations is
10093 aligned.
10094
10095 @item tracer-dynamic-coverage
10096 @itemx tracer-dynamic-coverage-feedback
10097
10098 This value is used to limit superblock formation once the given percentage of
10099 executed instructions is covered. This limits unnecessary code size
10100 expansion.
10101
10102 The @option{tracer-dynamic-coverage-feedback} parameter
10103 is used only when profile
10104 feedback is available. The real profiles (as opposed to statically estimated
10105 ones) are much less balanced allowing the threshold to be larger value.
10106
10107 @item tracer-max-code-growth
10108 Stop tail duplication once code growth has reached given percentage. This is
10109 a rather artificial limit, as most of the duplicates are eliminated later in
10110 cross jumping, so it may be set to much higher values than is the desired code
10111 growth.
10112
10113 @item tracer-min-branch-ratio
10114
10115 Stop reverse growth when the reverse probability of best edge is less than this
10116 threshold (in percent).
10117
10118 @item tracer-min-branch-probability
10119 @itemx tracer-min-branch-probability-feedback
10120
10121 Stop forward growth if the best edge has probability lower than this
10122 threshold.
10123
10124 Similarly to @option{tracer-dynamic-coverage} two parameters are
10125 provided. @option{tracer-min-branch-probability-feedback} is used for
10126 compilation with profile feedback and @option{tracer-min-branch-probability}
10127 compilation without. The value for compilation with profile feedback
10128 needs to be more conservative (higher) in order to make tracer
10129 effective.
10130
10131 @item max-cse-path-length
10132
10133 The maximum number of basic blocks on path that CSE considers.
10134 The default is 10.
10135
10136 @item max-cse-insns
10137 The maximum number of instructions CSE processes before flushing.
10138 The default is 1000.
10139
10140 @item ggc-min-expand
10141
10142 GCC uses a garbage collector to manage its own memory allocation. This
10143 parameter specifies the minimum percentage by which the garbage
10144 collector's heap should be allowed to expand between collections.
10145 Tuning this may improve compilation speed; it has no effect on code
10146 generation.
10147
10148 The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
10149 RAM >= 1GB@. If @code{getrlimit} is available, the notion of ``RAM'' is
10150 the smallest of actual RAM and @code{RLIMIT_DATA} or @code{RLIMIT_AS}. If
10151 GCC is not able to calculate RAM on a particular platform, the lower
10152 bound of 30% is used. Setting this parameter and
10153 @option{ggc-min-heapsize} to zero causes a full collection to occur at
10154 every opportunity. This is extremely slow, but can be useful for
10155 debugging.
10156
10157 @item ggc-min-heapsize
10158
10159 Minimum size of the garbage collector's heap before it begins bothering
10160 to collect garbage. The first collection occurs after the heap expands
10161 by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}. Again,
10162 tuning this may improve compilation speed, and has no effect on code
10163 generation.
10164
10165 The default is the smaller of RAM/8, RLIMIT_RSS, or a limit that
10166 tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
10167 with a lower bound of 4096 (four megabytes) and an upper bound of
10168 131072 (128 megabytes). If GCC is not able to calculate RAM on a
10169 particular platform, the lower bound is used. Setting this parameter
10170 very large effectively disables garbage collection. Setting this
10171 parameter and @option{ggc-min-expand} to zero causes a full collection
10172 to occur at every opportunity.
10173
10174 @item max-reload-search-insns
10175 The maximum number of instruction reload should look backward for equivalent
10176 register. Increasing values mean more aggressive optimization, making the
10177 compilation time increase with probably slightly better performance.
10178 The default value is 100.
10179
10180 @item max-cselib-memory-locations
10181 The maximum number of memory locations cselib should take into account.
10182 Increasing values mean more aggressive optimization, making the compilation time
10183 increase with probably slightly better performance. The default value is 500.
10184
10185 @item max-sched-ready-insns
10186 The maximum number of instructions ready to be issued the scheduler should
10187 consider at any given time during the first scheduling pass. Increasing
10188 values mean more thorough searches, making the compilation time increase
10189 with probably little benefit. The default value is 100.
10190
10191 @item max-sched-region-blocks
10192 The maximum number of blocks in a region to be considered for
10193 interblock scheduling. The default value is 10.
10194
10195 @item max-pipeline-region-blocks
10196 The maximum number of blocks in a region to be considered for
10197 pipelining in the selective scheduler. The default value is 15.
10198
10199 @item max-sched-region-insns
10200 The maximum number of insns in a region to be considered for
10201 interblock scheduling. The default value is 100.
10202
10203 @item max-pipeline-region-insns
10204 The maximum number of insns in a region to be considered for
10205 pipelining in the selective scheduler. The default value is 200.
10206
10207 @item min-spec-prob
10208 The minimum probability (in percents) of reaching a source block
10209 for interblock speculative scheduling. The default value is 40.
10210
10211 @item max-sched-extend-regions-iters
10212 The maximum number of iterations through CFG to extend regions.
10213 A value of 0 (the default) disables region extensions.
10214
10215 @item max-sched-insn-conflict-delay
10216 The maximum conflict delay for an insn to be considered for speculative motion.
10217 The default value is 3.
10218
10219 @item sched-spec-prob-cutoff
10220 The minimal probability of speculation success (in percents), so that
10221 speculative insns are scheduled.
10222 The default value is 40.
10223
10224 @item sched-state-edge-prob-cutoff
10225 The minimum probability an edge must have for the scheduler to save its
10226 state across it.
10227 The default value is 10.
10228
10229 @item sched-mem-true-dep-cost
10230 Minimal distance (in CPU cycles) between store and load targeting same
10231 memory locations. The default value is 1.
10232
10233 @item selsched-max-lookahead
10234 The maximum size of the lookahead window of selective scheduling. It is a
10235 depth of search for available instructions.
10236 The default value is 50.
10237
10238 @item selsched-max-sched-times
10239 The maximum number of times that an instruction is scheduled during
10240 selective scheduling. This is the limit on the number of iterations
10241 through which the instruction may be pipelined. The default value is 2.
10242
10243 @item selsched-insns-to-rename
10244 The maximum number of best instructions in the ready list that are considered
10245 for renaming in the selective scheduler. The default value is 2.
10246
10247 @item sms-min-sc
10248 The minimum value of stage count that swing modulo scheduler
10249 generates. The default value is 2.
10250
10251 @item max-last-value-rtl
10252 The maximum size measured as number of RTLs that can be recorded in an expression
10253 in combiner for a pseudo register as last known value of that register. The default
10254 is 10000.
10255
10256 @item max-combine-insns
10257 The maximum number of instructions the RTL combiner tries to combine.
10258 The default value is 2 at @option{-Og} and 4 otherwise.
10259
10260 @item integer-share-limit
10261 Small integer constants can use a shared data structure, reducing the
10262 compiler's memory usage and increasing its speed. This sets the maximum
10263 value of a shared integer constant. The default value is 256.
10264
10265 @item ssp-buffer-size
10266 The minimum size of buffers (i.e.@: arrays) that receive stack smashing
10267 protection when @option{-fstack-protection} is used.
10268
10269 @item min-size-for-stack-sharing
10270 The minimum size of variables taking part in stack slot sharing when not
10271 optimizing. The default value is 32.
10272
10273 @item max-jump-thread-duplication-stmts
10274 Maximum number of statements allowed in a block that needs to be
10275 duplicated when threading jumps.
10276
10277 @item max-fields-for-field-sensitive
10278 Maximum number of fields in a structure treated in
10279 a field sensitive manner during pointer analysis. The default is zero
10280 for @option{-O0} and @option{-O1},
10281 and 100 for @option{-Os}, @option{-O2}, and @option{-O3}.
10282
10283 @item prefetch-latency
10284 Estimate on average number of instructions that are executed before
10285 prefetch finishes. The distance prefetched ahead is proportional
10286 to this constant. Increasing this number may also lead to less
10287 streams being prefetched (see @option{simultaneous-prefetches}).
10288
10289 @item simultaneous-prefetches
10290 Maximum number of prefetches that can run at the same time.
10291
10292 @item l1-cache-line-size
10293 The size of cache line in L1 cache, in bytes.
10294
10295 @item l1-cache-size
10296 The size of L1 cache, in kilobytes.
10297
10298 @item l2-cache-size
10299 The size of L2 cache, in kilobytes.
10300
10301 @item min-insn-to-prefetch-ratio
10302 The minimum ratio between the number of instructions and the
10303 number of prefetches to enable prefetching in a loop.
10304
10305 @item prefetch-min-insn-to-mem-ratio
10306 The minimum ratio between the number of instructions and the
10307 number of memory references to enable prefetching in a loop.
10308
10309 @item use-canonical-types
10310 Whether the compiler should use the ``canonical'' type system. By
10311 default, this should always be 1, which uses a more efficient internal
10312 mechanism for comparing types in C++ and Objective-C++. However, if
10313 bugs in the canonical type system are causing compilation failures,
10314 set this value to 0 to disable canonical types.
10315
10316 @item switch-conversion-max-branch-ratio
10317 Switch initialization conversion refuses to create arrays that are
10318 bigger than @option{switch-conversion-max-branch-ratio} times the number of
10319 branches in the switch.
10320
10321 @item max-partial-antic-length
10322 Maximum length of the partial antic set computed during the tree
10323 partial redundancy elimination optimization (@option{-ftree-pre}) when
10324 optimizing at @option{-O3} and above. For some sorts of source code
10325 the enhanced partial redundancy elimination optimization can run away,
10326 consuming all of the memory available on the host machine. This
10327 parameter sets a limit on the length of the sets that are computed,
10328 which prevents the runaway behavior. Setting a value of 0 for
10329 this parameter allows an unlimited set length.
10330
10331 @item sccvn-max-scc-size
10332 Maximum size of a strongly connected component (SCC) during SCCVN
10333 processing. If this limit is hit, SCCVN processing for the whole
10334 function is not done and optimizations depending on it are
10335 disabled. The default maximum SCC size is 10000.
10336
10337 @item sccvn-max-alias-queries-per-access
10338 Maximum number of alias-oracle queries we perform when looking for
10339 redundancies for loads and stores. If this limit is hit the search
10340 is aborted and the load or store is not considered redundant. The
10341 number of queries is algorithmically limited to the number of
10342 stores on all paths from the load to the function entry.
10343 The default maximum number of queries is 1000.
10344
10345 @item ira-max-loops-num
10346 IRA uses regional register allocation by default. If a function
10347 contains more loops than the number given by this parameter, only at most
10348 the given number of the most frequently-executed loops form regions
10349 for regional register allocation. The default value of the
10350 parameter is 100.
10351
10352 @item ira-max-conflict-table-size
10353 Although IRA uses a sophisticated algorithm to compress the conflict
10354 table, the table can still require excessive amounts of memory for
10355 huge functions. If the conflict table for a function could be more
10356 than the size in MB given by this parameter, the register allocator
10357 instead uses a faster, simpler, and lower-quality
10358 algorithm that does not require building a pseudo-register conflict table.
10359 The default value of the parameter is 2000.
10360
10361 @item ira-loop-reserved-regs
10362 IRA can be used to evaluate more accurate register pressure in loops
10363 for decisions to move loop invariants (see @option{-O3}). The number
10364 of available registers reserved for some other purposes is given
10365 by this parameter. The default value of the parameter is 2, which is
10366 the minimal number of registers needed by typical instructions.
10367 This value is the best found from numerous experiments.
10368
10369 @item lra-inheritance-ebb-probability-cutoff
10370 LRA tries to reuse values reloaded in registers in subsequent insns.
10371 This optimization is called inheritance. EBB is used as a region to
10372 do this optimization. The parameter defines a minimal fall-through
10373 edge probability in percentage used to add BB to inheritance EBB in
10374 LRA. The default value of the parameter is 40. The value was chosen
10375 from numerous runs of SPEC2000 on x86-64.
10376
10377 @item loop-invariant-max-bbs-in-loop
10378 Loop invariant motion can be very expensive, both in compilation time and
10379 in amount of needed compile-time memory, with very large loops. Loops
10380 with more basic blocks than this parameter won't have loop invariant
10381 motion optimization performed on them. The default value of the
10382 parameter is 1000 for @option{-O1} and 10000 for @option{-O2} and above.
10383
10384 @item loop-max-datarefs-for-datadeps
10385 Building data dependencies is expensive for very large loops. This
10386 parameter limits the number of data references in loops that are
10387 considered for data dependence analysis. These large loops are no
10388 handled by the optimizations using loop data dependencies.
10389 The default value is 1000.
10390
10391 @item max-vartrack-size
10392 Sets a maximum number of hash table slots to use during variable
10393 tracking dataflow analysis of any function. If this limit is exceeded
10394 with variable tracking at assignments enabled, analysis for that
10395 function is retried without it, after removing all debug insns from
10396 the function. If the limit is exceeded even without debug insns, var
10397 tracking analysis is completely disabled for the function. Setting
10398 the parameter to zero makes it unlimited.
10399
10400 @item max-vartrack-expr-depth
10401 Sets a maximum number of recursion levels when attempting to map
10402 variable names or debug temporaries to value expressions. This trades
10403 compilation time for more complete debug information. If this is set too
10404 low, value expressions that are available and could be represented in
10405 debug information may end up not being used; setting this higher may
10406 enable the compiler to find more complex debug expressions, but compile
10407 time and memory use may grow. The default is 12.
10408
10409 @item min-nondebug-insn-uid
10410 Use uids starting at this parameter for nondebug insns. The range below
10411 the parameter is reserved exclusively for debug insns created by
10412 @option{-fvar-tracking-assignments}, but debug insns may get
10413 (non-overlapping) uids above it if the reserved range is exhausted.
10414
10415 @item ipa-sra-ptr-growth-factor
10416 IPA-SRA replaces a pointer to an aggregate with one or more new
10417 parameters only when their cumulative size is less or equal to
10418 @option{ipa-sra-ptr-growth-factor} times the size of the original
10419 pointer parameter.
10420
10421 @item sra-max-scalarization-size-Ospeed
10422 @item sra-max-scalarization-size-Osize
10423 The two Scalar Reduction of Aggregates passes (SRA and IPA-SRA) aim to
10424 replace scalar parts of aggregates with uses of independent scalar
10425 variables. These parameters control the maximum size, in storage units,
10426 of aggregate which is considered for replacement when compiling for
10427 speed
10428 (@option{sra-max-scalarization-size-Ospeed}) or size
10429 (@option{sra-max-scalarization-size-Osize}) respectively.
10430
10431 @item tm-max-aggregate-size
10432 When making copies of thread-local variables in a transaction, this
10433 parameter specifies the size in bytes after which variables are
10434 saved with the logging functions as opposed to save/restore code
10435 sequence pairs. This option only applies when using
10436 @option{-fgnu-tm}.
10437
10438 @item graphite-max-nb-scop-params
10439 To avoid exponential effects in the Graphite loop transforms, the
10440 number of parameters in a Static Control Part (SCoP) is bounded. The
10441 default value is 10 parameters. A variable whose value is unknown at
10442 compilation time and defined outside a SCoP is a parameter of the SCoP.
10443
10444 @item graphite-max-bbs-per-function
10445 To avoid exponential effects in the detection of SCoPs, the size of
10446 the functions analyzed by Graphite is bounded. The default value is
10447 100 basic blocks.
10448
10449 @item loop-block-tile-size
10450 Loop blocking or strip mining transforms, enabled with
10451 @option{-floop-block} or @option{-floop-strip-mine}, strip mine each
10452 loop in the loop nest by a given number of iterations. The strip
10453 length can be changed using the @option{loop-block-tile-size}
10454 parameter. The default value is 51 iterations.
10455
10456 @item loop-unroll-jam-size
10457 Specify the unroll factor for the @option{-floop-unroll-and-jam} option. The
10458 default value is 4.
10459
10460 @item loop-unroll-jam-depth
10461 Specify the dimension to be unrolled (counting from the most inner loop)
10462 for the @option{-floop-unroll-and-jam}. The default value is 2.
10463
10464 @item ipa-cp-value-list-size
10465 IPA-CP attempts to track all possible values and types passed to a function's
10466 parameter in order to propagate them and perform devirtualization.
10467 @option{ipa-cp-value-list-size} is the maximum number of values and types it
10468 stores per one formal parameter of a function.
10469
10470 @item ipa-cp-eval-threshold
10471 IPA-CP calculates its own score of cloning profitability heuristics
10472 and performs those cloning opportunities with scores that exceed
10473 @option{ipa-cp-eval-threshold}.
10474
10475 @item ipa-cp-recursion-penalty
10476 Percentage penalty the recursive functions will receive when they
10477 are evaluated for cloning.
10478
10479 @item ipa-cp-single-call-penalty
10480 Percentage penalty functions containing a single call to another
10481 function will receive when they are evaluated for cloning.
10482
10483
10484 @item ipa-max-agg-items
10485 IPA-CP is also capable to propagate a number of scalar values passed
10486 in an aggregate. @option{ipa-max-agg-items} controls the maximum
10487 number of such values per one parameter.
10488
10489 @item ipa-cp-loop-hint-bonus
10490 When IPA-CP determines that a cloning candidate would make the number
10491 of iterations of a loop known, it adds a bonus of
10492 @option{ipa-cp-loop-hint-bonus} to the profitability score of
10493 the candidate.
10494
10495 @item ipa-cp-array-index-hint-bonus
10496 When IPA-CP determines that a cloning candidate would make the index of
10497 an array access known, it adds a bonus of
10498 @option{ipa-cp-array-index-hint-bonus} to the profitability
10499 score of the candidate.
10500
10501 @item ipa-max-aa-steps
10502 During its analysis of function bodies, IPA-CP employs alias analysis
10503 in order to track values pointed to by function parameters. In order
10504 not spend too much time analyzing huge functions, it gives up and
10505 consider all memory clobbered after examining
10506 @option{ipa-max-aa-steps} statements modifying memory.
10507
10508 @item lto-partitions
10509 Specify desired number of partitions produced during WHOPR compilation.
10510 The number of partitions should exceed the number of CPUs used for compilation.
10511 The default value is 32.
10512
10513 @item lto-min-partition
10514 Size of minimal partition for WHOPR (in estimated instructions).
10515 This prevents expenses of splitting very small programs into too many
10516 partitions.
10517
10518 @item lto-max-partition
10519 Size of max partition for WHOPR (in estimated instructions).
10520 to provide an upper bound for individual size of partition.
10521 Meant to be used only with balanced partitioning.
10522
10523 @item cxx-max-namespaces-for-diagnostic-help
10524 The maximum number of namespaces to consult for suggestions when C++
10525 name lookup fails for an identifier. The default is 1000.
10526
10527 @item sink-frequency-threshold
10528 The maximum relative execution frequency (in percents) of the target block
10529 relative to a statement's original block to allow statement sinking of a
10530 statement. Larger numbers result in more aggressive statement sinking.
10531 The default value is 75. A small positive adjustment is applied for
10532 statements with memory operands as those are even more profitable so sink.
10533
10534 @item max-stores-to-sink
10535 The maximum number of conditional store pairs that can be sunk. Set to 0
10536 if either vectorization (@option{-ftree-vectorize}) or if-conversion
10537 (@option{-ftree-loop-if-convert}) is disabled. The default is 2.
10538
10539 @item allow-store-data-races
10540 Allow optimizers to introduce new data races on stores.
10541 Set to 1 to allow, otherwise to 0. This option is enabled by default
10542 at optimization level @option{-Ofast}.
10543
10544 @item case-values-threshold
10545 The smallest number of different values for which it is best to use a
10546 jump-table instead of a tree of conditional branches. If the value is
10547 0, use the default for the machine. The default is 0.
10548
10549 @item tree-reassoc-width
10550 Set the maximum number of instructions executed in parallel in
10551 reassociated tree. This parameter overrides target dependent
10552 heuristics used by default if has non zero value.
10553
10554 @item sched-pressure-algorithm
10555 Choose between the two available implementations of
10556 @option{-fsched-pressure}. Algorithm 1 is the original implementation
10557 and is the more likely to prevent instructions from being reordered.
10558 Algorithm 2 was designed to be a compromise between the relatively
10559 conservative approach taken by algorithm 1 and the rather aggressive
10560 approach taken by the default scheduler. It relies more heavily on
10561 having a regular register file and accurate register pressure classes.
10562 See @file{haifa-sched.c} in the GCC sources for more details.
10563
10564 The default choice depends on the target.
10565
10566 @item max-slsr-cand-scan
10567 Set the maximum number of existing candidates that are considered when
10568 seeking a basis for a new straight-line strength reduction candidate.
10569
10570 @item asan-globals
10571 Enable buffer overflow detection for global objects. This kind
10572 of protection is enabled by default if you are using
10573 @option{-fsanitize=address} option.
10574 To disable global objects protection use @option{--param asan-globals=0}.
10575
10576 @item asan-stack
10577 Enable buffer overflow detection for stack objects. This kind of
10578 protection is enabled by default when using @option{-fsanitize=address}.
10579 To disable stack protection use @option{--param asan-stack=0} option.
10580
10581 @item asan-instrument-reads
10582 Enable buffer overflow detection for memory reads. This kind of
10583 protection is enabled by default when using @option{-fsanitize=address}.
10584 To disable memory reads protection use
10585 @option{--param asan-instrument-reads=0}.
10586
10587 @item asan-instrument-writes
10588 Enable buffer overflow detection for memory writes. This kind of
10589 protection is enabled by default when using @option{-fsanitize=address}.
10590 To disable memory writes protection use
10591 @option{--param asan-instrument-writes=0} option.
10592
10593 @item asan-memintrin
10594 Enable detection for built-in functions. This kind of protection
10595 is enabled by default when using @option{-fsanitize=address}.
10596 To disable built-in functions protection use
10597 @option{--param asan-memintrin=0}.
10598
10599 @item asan-use-after-return
10600 Enable detection of use-after-return. This kind of protection
10601 is enabled by default when using the @option{-fsanitize=address} option.
10602 To disable it use @option{--param asan-use-after-return=0}.
10603
10604 Note: By default the check is disabled at run time. To enable it,
10605 add @code{detect_stack_use_after_return=1} to the environment variable
10606 @env{ASAN_OPTIONS}.
10607
10608 @item asan-instrumentation-with-call-threshold
10609 If number of memory accesses in function being instrumented
10610 is greater or equal to this number, use callbacks instead of inline checks.
10611 E.g. to disable inline code use
10612 @option{--param asan-instrumentation-with-call-threshold=0}.
10613
10614 @item use-after-scope-direct-emission-threshold
10615 If the size of a local variable in bytes is smaller or equal to this
10616 number, directly poison (or unpoison) shadow memory instead of using
10617 run-time callbacks. The default value is 256.
10618
10619 @item chkp-max-ctor-size
10620 Static constructors generated by Pointer Bounds Checker may become very
10621 large and significantly increase compile time at optimization level
10622 @option{-O1} and higher. This parameter is a maximum number of statements
10623 in a single generated constructor. Default value is 5000.
10624
10625 @item max-fsm-thread-path-insns
10626 Maximum number of instructions to copy when duplicating blocks on a
10627 finite state automaton jump thread path. The default is 100.
10628
10629 @item max-fsm-thread-length
10630 Maximum number of basic blocks on a finite state automaton jump thread
10631 path. The default is 10.
10632
10633 @item max-fsm-thread-paths
10634 Maximum number of new jump thread paths to create for a finite state
10635 automaton. The default is 50.
10636
10637 @item parloops-chunk-size
10638 Chunk size of omp schedule for loops parallelized by parloops. The default
10639 is 0.
10640
10641 @item parloops-schedule
10642 Schedule type of omp schedule for loops parallelized by parloops (static,
10643 dynamic, guided, auto, runtime). The default is static.
10644
10645 @item max-ssa-name-query-depth
10646 Maximum depth of recursion when querying properties of SSA names in things
10647 like fold routines. One level of recursion corresponds to following a
10648 use-def chain.
10649
10650 @item hsa-gen-debug-stores
10651 Enable emission of special debug stores within HSA kernels which are
10652 then read and reported by libgomp plugin. Generation of these stores
10653 is disabled by default, use @option{--param hsa-gen-debug-stores=1} to
10654 enable it.
10655
10656 @item max-speculative-devirt-maydefs
10657 The maximum number of may-defs we analyze when looking for a must-def
10658 specifying the dynamic type of an object that invokes a virtual call
10659 we may be able to devirtualize speculatively.
10660
10661 @item max-vrp-switch-assertions
10662 The maximum number of assertions to add along the default edge of a switch
10663 statement during VRP. The default is 10.
10664 @end table
10665 @end table
10666
10667 @node Instrumentation Options
10668 @section Program Instrumentation Options
10669 @cindex instrumentation options
10670 @cindex program instrumentation options
10671 @cindex run-time error checking options
10672 @cindex profiling options
10673 @cindex options, program instrumentation
10674 @cindex options, run-time error checking
10675 @cindex options, profiling
10676
10677 GCC supports a number of command-line options that control adding
10678 run-time instrumentation to the code it normally generates.
10679 For example, one purpose of instrumentation is collect profiling
10680 statistics for use in finding program hot spots, code coverage
10681 analysis, or profile-guided optimizations.
10682 Another class of program instrumentation is adding run-time checking
10683 to detect programming errors like invalid pointer
10684 dereferences or out-of-bounds array accesses, as well as deliberately
10685 hostile attacks such as stack smashing or C++ vtable hijacking.
10686 There is also a general hook which can be used to implement other
10687 forms of tracing or function-level instrumentation for debug or
10688 program analysis purposes.
10689
10690 @table @gcctabopt
10691 @cindex @command{prof}
10692 @item -p
10693 @opindex p
10694 Generate extra code to write profile information suitable for the
10695 analysis program @command{prof}. You must use this option when compiling
10696 the source files you want data about, and you must also use it when
10697 linking.
10698
10699 @cindex @command{gprof}
10700 @item -pg
10701 @opindex pg
10702 Generate extra code to write profile information suitable for the
10703 analysis program @command{gprof}. You must use this option when compiling
10704 the source files you want data about, and you must also use it when
10705 linking.
10706
10707 @item -fprofile-arcs
10708 @opindex fprofile-arcs
10709 Add code so that program flow @dfn{arcs} are instrumented. During
10710 execution the program records how many times each branch and call is
10711 executed and how many times it is taken or returns. On targets that support
10712 constructors with priority support, profiling properly handles constructors,
10713 destructors and C++ constructors (and destructors) of classes which are used
10714 as a type of a global variable.
10715
10716 When the compiled
10717 program exits it saves this data to a file called
10718 @file{@var{auxname}.gcda} for each source file. The data may be used for
10719 profile-directed optimizations (@option{-fbranch-probabilities}), or for
10720 test coverage analysis (@option{-ftest-coverage}). Each object file's
10721 @var{auxname} is generated from the name of the output file, if
10722 explicitly specified and it is not the final executable, otherwise it is
10723 the basename of the source file. In both cases any suffix is removed
10724 (e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or
10725 @file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}).
10726 @xref{Cross-profiling}.
10727
10728 @cindex @command{gcov}
10729 @item --coverage
10730 @opindex coverage
10731
10732 This option is used to compile and link code instrumented for coverage
10733 analysis. The option is a synonym for @option{-fprofile-arcs}
10734 @option{-ftest-coverage} (when compiling) and @option{-lgcov} (when
10735 linking). See the documentation for those options for more details.
10736
10737 @itemize
10738
10739 @item
10740 Compile the source files with @option{-fprofile-arcs} plus optimization
10741 and code generation options. For test coverage analysis, use the
10742 additional @option{-ftest-coverage} option. You do not need to profile
10743 every source file in a program.
10744
10745 @item
10746 Compile the source files additionally with @option{-fprofile-abs-path}
10747 to create absolute path names in the @file{.gcno} files. This allows
10748 @command{gcov} to find the correct sources in projects where compilations
10749 occur with different working directories.
10750
10751 @item
10752 Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
10753 (the latter implies the former).
10754
10755 @item
10756 Run the program on a representative workload to generate the arc profile
10757 information. This may be repeated any number of times. You can run
10758 concurrent instances of your program, and provided that the file system
10759 supports locking, the data files will be correctly updated. Also
10760 @code{fork} calls are detected and correctly handled (double counting
10761 will not happen).
10762
10763 @item
10764 For profile-directed optimizations, compile the source files again with
10765 the same optimization and code generation options plus
10766 @option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
10767 Control Optimization}).
10768
10769 @item
10770 For test coverage analysis, use @command{gcov} to produce human readable
10771 information from the @file{.gcno} and @file{.gcda} files. Refer to the
10772 @command{gcov} documentation for further information.
10773
10774 @end itemize
10775
10776 With @option{-fprofile-arcs}, for each function of your program GCC
10777 creates a program flow graph, then finds a spanning tree for the graph.
10778 Only arcs that are not on the spanning tree have to be instrumented: the
10779 compiler adds code to count the number of times that these arcs are
10780 executed. When an arc is the only exit or only entrance to a block, the
10781 instrumentation code can be added to the block; otherwise, a new basic
10782 block must be created to hold the instrumentation code.
10783
10784 @need 2000
10785 @item -ftest-coverage
10786 @opindex ftest-coverage
10787 Produce a notes file that the @command{gcov} code-coverage utility
10788 (@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
10789 show program coverage. Each source file's note file is called
10790 @file{@var{auxname}.gcno}. Refer to the @option{-fprofile-arcs} option
10791 above for a description of @var{auxname} and instructions on how to
10792 generate test coverage data. Coverage data matches the source files
10793 more closely if you do not optimize.
10794
10795 @item -fprofile-abs-path
10796 @opindex fprofile-abs-path
10797 Automatically convert relative source file names to absolute path names
10798 in the @file{.gcno} files. This allows @command{gcov} to find the correct
10799 sources in projects where compilations occur with different working
10800 directories.
10801
10802 @item -fprofile-dir=@var{path}
10803 @opindex fprofile-dir
10804
10805 Set the directory to search for the profile data files in to @var{path}.
10806 This option affects only the profile data generated by
10807 @option{-fprofile-generate}, @option{-ftest-coverage}, @option{-fprofile-arcs}
10808 and used by @option{-fprofile-use} and @option{-fbranch-probabilities}
10809 and its related options. Both absolute and relative paths can be used.
10810 By default, GCC uses the current directory as @var{path}, thus the
10811 profile data file appears in the same directory as the object file.
10812
10813 @item -fprofile-generate
10814 @itemx -fprofile-generate=@var{path}
10815 @opindex fprofile-generate
10816
10817 Enable options usually used for instrumenting application to produce
10818 profile useful for later recompilation with profile feedback based
10819 optimization. You must use @option{-fprofile-generate} both when
10820 compiling and when linking your program.
10821
10822 The following options are enabled: @option{-fprofile-arcs}, @option{-fprofile-values}, @option{-fvpt}.
10823
10824 If @var{path} is specified, GCC looks at the @var{path} to find
10825 the profile feedback data files. See @option{-fprofile-dir}.
10826
10827 To optimize the program based on the collected profile information, use
10828 @option{-fprofile-use}. @xref{Optimize Options}, for more information.
10829
10830 @item -fprofile-update=@var{method}
10831 @opindex fprofile-update
10832
10833 Alter the update method for an application instrumented for profile
10834 feedback based optimization. The @var{method} argument should be one of
10835 @samp{single}, @samp{atomic} or @samp{prefer-atomic}.
10836 The first one is useful for single-threaded applications,
10837 while the second one prevents profile corruption by emitting thread-safe code.
10838
10839 @strong{Warning:} When an application does not properly join all threads
10840 (or creates an detached thread), a profile file can be still corrupted.
10841
10842 Using @samp{prefer-atomic} would be transformed either to @samp{atomic},
10843 when supported by a target, or to @samp{single} otherwise. The GCC driver
10844 automatically selects @samp{prefer-atomic} when @option{-pthread}
10845 is present in the command line.
10846
10847 @item -fsanitize=address
10848 @opindex fsanitize=address
10849 Enable AddressSanitizer, a fast memory error detector.
10850 Memory access instructions are instrumented to detect
10851 out-of-bounds and use-after-free bugs.
10852 The option enables @option{-fsanitize-address-use-after-scope}.
10853 See @uref{https://github.com/google/sanitizers/wiki/AddressSanitizer} for
10854 more details. The run-time behavior can be influenced using the
10855 @env{ASAN_OPTIONS} environment variable. When set to @code{help=1},
10856 the available options are shown at startup of the instrumented program. See
10857 @url{https://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run-time-flags}
10858 for a list of supported options.
10859 The option cannot be combined with @option{-fsanitize=thread}
10860 and/or @option{-fcheck-pointer-bounds}.
10861
10862 @item -fsanitize=kernel-address
10863 @opindex fsanitize=kernel-address
10864 Enable AddressSanitizer for Linux kernel.
10865 See @uref{https://github.com/google/kasan/wiki} for more details.
10866 The option cannot be combined with @option{-fcheck-pointer-bounds}.
10867
10868 @item -fsanitize=thread
10869 @opindex fsanitize=thread
10870 Enable ThreadSanitizer, a fast data race detector.
10871 Memory access instructions are instrumented to detect
10872 data race bugs. See @uref{https://github.com/google/sanitizers/wiki#threadsanitizer} for more
10873 details. The run-time behavior can be influenced using the @env{TSAN_OPTIONS}
10874 environment variable; see
10875 @url{https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags} for a list of
10876 supported options.
10877 The option cannot be combined with @option{-fsanitize=address},
10878 @option{-fsanitize=leak} and/or @option{-fcheck-pointer-bounds}.
10879
10880 Note that sanitized atomic builtins cannot throw exceptions when
10881 operating on invalid memory addresses with non-call exceptions
10882 (@option{-fnon-call-exceptions}).
10883
10884 @item -fsanitize=leak
10885 @opindex fsanitize=leak
10886 Enable LeakSanitizer, a memory leak detector.
10887 This option only matters for linking of executables and
10888 the executable is linked against a library that overrides @code{malloc}
10889 and other allocator functions. See
10890 @uref{https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer} for more
10891 details. The run-time behavior can be influenced using the
10892 @env{LSAN_OPTIONS} environment variable.
10893 The option cannot be combined with @option{-fsanitize=thread}.
10894
10895 @item -fsanitize=undefined
10896 @opindex fsanitize=undefined
10897 Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector.
10898 Various computations are instrumented to detect undefined behavior
10899 at runtime. Current suboptions are:
10900
10901 @table @gcctabopt
10902
10903 @item -fsanitize=shift
10904 @opindex fsanitize=shift
10905 This option enables checking that the result of a shift operation is
10906 not undefined. Note that what exactly is considered undefined differs
10907 slightly between C and C++, as well as between ISO C90 and C99, etc.
10908 This option has two suboptions, @option{-fsanitize=shift-base} and
10909 @option{-fsanitize=shift-exponent}.
10910
10911 @item -fsanitize=shift-exponent
10912 @opindex fsanitize=shift-exponent
10913 This option enables checking that the second argument of a shift operation
10914 is not negative and is smaller than the precision of the promoted first
10915 argument.
10916
10917 @item -fsanitize=shift-base
10918 @opindex fsanitize=shift-base
10919 If the second argument of a shift operation is within range, check that the
10920 result of a shift operation is not undefined. Note that what exactly is
10921 considered undefined differs slightly between C and C++, as well as between
10922 ISO C90 and C99, etc.
10923
10924 @item -fsanitize=integer-divide-by-zero
10925 @opindex fsanitize=integer-divide-by-zero
10926 Detect integer division by zero as well as @code{INT_MIN / -1} division.
10927
10928 @item -fsanitize=unreachable
10929 @opindex fsanitize=unreachable
10930 With this option, the compiler turns the @code{__builtin_unreachable}
10931 call into a diagnostics message call instead. When reaching the
10932 @code{__builtin_unreachable} call, the behavior is undefined.
10933
10934 @item -fsanitize=vla-bound
10935 @opindex fsanitize=vla-bound
10936 This option instructs the compiler to check that the size of a variable
10937 length array is positive.
10938
10939 @item -fsanitize=null
10940 @opindex fsanitize=null
10941 This option enables pointer checking. Particularly, the application
10942 built with this option turned on will issue an error message when it
10943 tries to dereference a NULL pointer, or if a reference (possibly an
10944 rvalue reference) is bound to a NULL pointer, or if a method is invoked
10945 on an object pointed by a NULL pointer.
10946
10947 @item -fsanitize=return
10948 @opindex fsanitize=return
10949 This option enables return statement checking. Programs
10950 built with this option turned on will issue an error message
10951 when the end of a non-void function is reached without actually
10952 returning a value. This option works in C++ only.
10953
10954 @item -fsanitize=signed-integer-overflow
10955 @opindex fsanitize=signed-integer-overflow
10956 This option enables signed integer overflow checking. We check that
10957 the result of @code{+}, @code{*}, and both unary and binary @code{-}
10958 does not overflow in the signed arithmetics. Note, integer promotion
10959 rules must be taken into account. That is, the following is not an
10960 overflow:
10961 @smallexample
10962 signed char a = SCHAR_MAX;
10963 a++;
10964 @end smallexample
10965
10966 @item -fsanitize=bounds
10967 @opindex fsanitize=bounds
10968 This option enables instrumentation of array bounds. Various out of bounds
10969 accesses are detected. Flexible array members, flexible array member-like
10970 arrays, and initializers of variables with static storage are not instrumented.
10971 The option cannot be combined with @option{-fcheck-pointer-bounds}.
10972
10973 @item -fsanitize=bounds-strict
10974 @opindex fsanitize=bounds-strict
10975 This option enables strict instrumentation of array bounds. Most out of bounds
10976 accesses are detected, including flexible array members and flexible array
10977 member-like arrays. Initializers of variables with static storage are not
10978 instrumented. The option cannot be combined
10979 with @option{-fcheck-pointer-bounds}.
10980
10981 @item -fsanitize=alignment
10982 @opindex fsanitize=alignment
10983
10984 This option enables checking of alignment of pointers when they are
10985 dereferenced, or when a reference is bound to insufficiently aligned target,
10986 or when a method or constructor is invoked on insufficiently aligned object.
10987
10988 @item -fsanitize=object-size
10989 @opindex fsanitize=object-size
10990 This option enables instrumentation of memory references using the
10991 @code{__builtin_object_size} function. Various out of bounds pointer
10992 accesses are detected.
10993
10994 @item -fsanitize=float-divide-by-zero
10995 @opindex fsanitize=float-divide-by-zero
10996 Detect floating-point division by zero. Unlike other similar options,
10997 @option{-fsanitize=float-divide-by-zero} is not enabled by
10998 @option{-fsanitize=undefined}, since floating-point division by zero can
10999 be a legitimate way of obtaining infinities and NaNs.
11000
11001 @item -fsanitize=float-cast-overflow
11002 @opindex fsanitize=float-cast-overflow
11003 This option enables floating-point type to integer conversion checking.
11004 We check that the result of the conversion does not overflow.
11005 Unlike other similar options, @option{-fsanitize=float-cast-overflow} is
11006 not enabled by @option{-fsanitize=undefined}.
11007 This option does not work well with @code{FE_INVALID} exceptions enabled.
11008
11009 @item -fsanitize=nonnull-attribute
11010 @opindex fsanitize=nonnull-attribute
11011
11012 This option enables instrumentation of calls, checking whether null values
11013 are not passed to arguments marked as requiring a non-null value by the
11014 @code{nonnull} function attribute.
11015
11016 @item -fsanitize=returns-nonnull-attribute
11017 @opindex fsanitize=returns-nonnull-attribute
11018
11019 This option enables instrumentation of return statements in functions
11020 marked with @code{returns_nonnull} function attribute, to detect returning
11021 of null values from such functions.
11022
11023 @item -fsanitize=bool
11024 @opindex fsanitize=bool
11025
11026 This option enables instrumentation of loads from bool. If a value other
11027 than 0/1 is loaded, a run-time error is issued.
11028
11029 @item -fsanitize=enum
11030 @opindex fsanitize=enum
11031
11032 This option enables instrumentation of loads from an enum type. If
11033 a value outside the range of values for the enum type is loaded,
11034 a run-time error is issued.
11035
11036 @item -fsanitize=vptr
11037 @opindex fsanitize=vptr
11038
11039 This option enables instrumentation of C++ member function calls, member
11040 accesses and some conversions between pointers to base and derived classes,
11041 to verify the referenced object has the correct dynamic type.
11042
11043 @end table
11044
11045 While @option{-ftrapv} causes traps for signed overflows to be emitted,
11046 @option{-fsanitize=undefined} gives a diagnostic message.
11047 This currently works only for the C family of languages.
11048
11049 @item -fno-sanitize=all
11050 @opindex fno-sanitize=all
11051
11052 This option disables all previously enabled sanitizers.
11053 @option{-fsanitize=all} is not allowed, as some sanitizers cannot be used
11054 together.
11055
11056 @item -fasan-shadow-offset=@var{number}
11057 @opindex fasan-shadow-offset
11058 This option forces GCC to use custom shadow offset in AddressSanitizer checks.
11059 It is useful for experimenting with different shadow memory layouts in
11060 Kernel AddressSanitizer.
11061
11062 @item -fsanitize-sections=@var{s1},@var{s2},...
11063 @opindex fsanitize-sections
11064 Sanitize global variables in selected user-defined sections. @var{si} may
11065 contain wildcards.
11066
11067 @item -fsanitize-recover@r{[}=@var{opts}@r{]}
11068 @opindex fsanitize-recover
11069 @opindex fno-sanitize-recover
11070 @option{-fsanitize-recover=} controls error recovery mode for sanitizers
11071 mentioned in comma-separated list of @var{opts}. Enabling this option
11072 for a sanitizer component causes it to attempt to continue
11073 running the program as if no error happened. This means multiple
11074 runtime errors can be reported in a single program run, and the exit
11075 code of the program may indicate success even when errors
11076 have been reported. The @option{-fno-sanitize-recover=} option
11077 can be used to alter
11078 this behavior: only the first detected error is reported
11079 and program then exits with a non-zero exit code.
11080
11081 Currently this feature only works for @option{-fsanitize=undefined} (and its suboptions
11082 except for @option{-fsanitize=unreachable} and @option{-fsanitize=return}),
11083 @option{-fsanitize=float-cast-overflow}, @option{-fsanitize=float-divide-by-zero},
11084 @option{-fsanitize=bounds-strict},
11085 @option{-fsanitize=kernel-address} and @option{-fsanitize=address}.
11086 For these sanitizers error recovery is turned on by default,
11087 except @option{-fsanitize=address}, for which this feature is experimental.
11088 @option{-fsanitize-recover=all} and @option{-fno-sanitize-recover=all} is also
11089 accepted, the former enables recovery for all sanitizers that support it,
11090 the latter disables recovery for all sanitizers that support it.
11091
11092 Even if a recovery mode is turned on the compiler side, it needs to be also
11093 enabled on the runtime library side, otherwise the failures are still fatal.
11094 The runtime library defaults to @code{halt_on_error=0} for
11095 ThreadSanitizer and UndefinedBehaviorSanitizer, while default value for
11096 AddressSanitizer is @code{halt_on_error=1}. This can be overridden through
11097 setting the @code{halt_on_error} flag in the corresponding environment variable.
11098
11099 Syntax without an explicit @var{opts} parameter is deprecated. It is
11100 equivalent to specifying an @var{opts} list of:
11101
11102 @smallexample
11103 undefined,float-cast-overflow,float-divide-by-zero,bounds-strict
11104 @end smallexample
11105
11106 @item -fsanitize-address-use-after-scope
11107 @opindex fsanitize-address-use-after-scope
11108 Enable sanitization of local variables to detect use-after-scope bugs.
11109 The option sets @option{-fstack-reuse} to @samp{none}.
11110
11111 @item -fsanitize-undefined-trap-on-error
11112 @opindex fsanitize-undefined-trap-on-error
11113 The @option{-fsanitize-undefined-trap-on-error} option instructs the compiler to
11114 report undefined behavior using @code{__builtin_trap} rather than
11115 a @code{libubsan} library routine. The advantage of this is that the
11116 @code{libubsan} library is not needed and is not linked in, so this
11117 is usable even in freestanding environments.
11118
11119 @item -fsanitize-coverage=trace-pc
11120 @opindex fsanitize-coverage=trace-pc
11121 Enable coverage-guided fuzzing code instrumentation.
11122 Inserts a call to @code{__sanitizer_cov_trace_pc} into every basic block.
11123
11124 @item -fbounds-check
11125 @opindex fbounds-check
11126 For front ends that support it, generate additional code to check that
11127 indices used to access arrays are within the declared range. This is
11128 currently only supported by the Fortran front end, where this option
11129 defaults to false.
11130
11131 @item -fcheck-pointer-bounds
11132 @opindex fcheck-pointer-bounds
11133 @opindex fno-check-pointer-bounds
11134 @cindex Pointer Bounds Checker options
11135 Enable Pointer Bounds Checker instrumentation. Each memory reference
11136 is instrumented with checks of the pointer used for memory access against
11137 bounds associated with that pointer.
11138
11139 Currently there
11140 is only an implementation for Intel MPX available, thus x86 GNU/Linux target
11141 and @option{-mmpx} are required to enable this feature.
11142 MPX-based instrumentation requires
11143 a runtime library to enable MPX in hardware and handle bounds
11144 violation signals. By default when @option{-fcheck-pointer-bounds}
11145 and @option{-mmpx} options are used to link a program, the GCC driver
11146 links against the @file{libmpx} and @file{libmpxwrappers} libraries.
11147 Bounds checking on calls to dynamic libraries requires a linker
11148 with @option{-z bndplt} support; if GCC was configured with a linker
11149 without support for this option (including the Gold linker and older
11150 versions of ld), a warning is given if you link with @option{-mmpx}
11151 without also specifying @option{-static}, since the overall effectiveness
11152 of the bounds checking protection is reduced.
11153 See also @option{-static-libmpxwrappers}.
11154
11155 MPX-based instrumentation
11156 may be used for debugging and also may be included in production code
11157 to increase program security. Depending on usage, you may
11158 have different requirements for the runtime library. The current version
11159 of the MPX runtime library is more oriented for use as a debugging
11160 tool. MPX runtime library usage implies @option{-lpthread}. See
11161 also @option{-static-libmpx}. The runtime library behavior can be
11162 influenced using various @env{CHKP_RT_*} environment variables. See
11163 @uref{https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler}
11164 for more details.
11165
11166 Generated instrumentation may be controlled by various
11167 @option{-fchkp-*} options and by the @code{bnd_variable_size}
11168 structure field attribute (@pxref{Type Attributes}) and
11169 @code{bnd_legacy}, and @code{bnd_instrument} function attributes
11170 (@pxref{Function Attributes}). GCC also provides a number of built-in
11171 functions for controlling the Pointer Bounds Checker. @xref{Pointer
11172 Bounds Checker builtins}, for more information.
11173
11174 @item -fchkp-check-incomplete-type
11175 @opindex fchkp-check-incomplete-type
11176 @opindex fno-chkp-check-incomplete-type
11177 Generate pointer bounds checks for variables with incomplete type.
11178 Enabled by default.
11179
11180 @item -fchkp-narrow-bounds
11181 @opindex fchkp-narrow-bounds
11182 @opindex fno-chkp-narrow-bounds
11183 Controls bounds used by Pointer Bounds Checker for pointers to object
11184 fields. If narrowing is enabled then field bounds are used. Otherwise
11185 object bounds are used. See also @option{-fchkp-narrow-to-innermost-array}
11186 and @option{-fchkp-first-field-has-own-bounds}. Enabled by default.
11187
11188 @item -fchkp-first-field-has-own-bounds
11189 @opindex fchkp-first-field-has-own-bounds
11190 @opindex fno-chkp-first-field-has-own-bounds
11191 Forces Pointer Bounds Checker to use narrowed bounds for the address of the
11192 first field in the structure. By default a pointer to the first field has
11193 the same bounds as a pointer to the whole structure.
11194
11195 @item -fchkp-flexible-struct-trailing-arrays
11196 @opindex fchkp-flexible-struct-trailing-arrays
11197 @opindex fno-chkp-flexible-struct-trailing-arrays
11198 Forces Pointer Bounds Checker to treat all trailing arrays in structures as
11199 possibly flexible. By default only array fields with zero length or that are
11200 marked with attribute bnd_variable_size are treated as flexible.
11201
11202 @item -fchkp-narrow-to-innermost-array
11203 @opindex fchkp-narrow-to-innermost-array
11204 @opindex fno-chkp-narrow-to-innermost-array
11205 Forces Pointer Bounds Checker to use bounds of the innermost arrays in
11206 case of nested static array access. By default this option is disabled and
11207 bounds of the outermost array are used.
11208
11209 @item -fchkp-optimize
11210 @opindex fchkp-optimize
11211 @opindex fno-chkp-optimize
11212 Enables Pointer Bounds Checker optimizations. Enabled by default at
11213 optimization levels @option{-O}, @option{-O2}, @option{-O3}.
11214
11215 @item -fchkp-use-fast-string-functions
11216 @opindex fchkp-use-fast-string-functions
11217 @opindex fno-chkp-use-fast-string-functions
11218 Enables use of @code{*_nobnd} versions of string functions (not copying bounds)
11219 by Pointer Bounds Checker. Disabled by default.
11220
11221 @item -fchkp-use-nochk-string-functions
11222 @opindex fchkp-use-nochk-string-functions
11223 @opindex fno-chkp-use-nochk-string-functions
11224 Enables use of @code{*_nochk} versions of string functions (not checking bounds)
11225 by Pointer Bounds Checker. Disabled by default.
11226
11227 @item -fchkp-use-static-bounds
11228 @opindex fchkp-use-static-bounds
11229 @opindex fno-chkp-use-static-bounds
11230 Allow Pointer Bounds Checker to generate static bounds holding
11231 bounds of static variables. Enabled by default.
11232
11233 @item -fchkp-use-static-const-bounds
11234 @opindex fchkp-use-static-const-bounds
11235 @opindex fno-chkp-use-static-const-bounds
11236 Use statically-initialized bounds for constant bounds instead of
11237 generating them each time they are required. By default enabled when
11238 @option{-fchkp-use-static-bounds} is enabled.
11239
11240 @item -fchkp-treat-zero-dynamic-size-as-infinite
11241 @opindex fchkp-treat-zero-dynamic-size-as-infinite
11242 @opindex fno-chkp-treat-zero-dynamic-size-as-infinite
11243 With this option, objects with incomplete type whose
11244 dynamically-obtained size is zero are treated as having infinite size
11245 instead by Pointer Bounds
11246 Checker. This option may be helpful if a program is linked with a library
11247 missing size information for some symbols. Disabled by default.
11248
11249 @item -fchkp-check-read
11250 @opindex fchkp-check-read
11251 @opindex fno-chkp-check-read
11252 Instructs Pointer Bounds Checker to generate checks for all read
11253 accesses to memory. Enabled by default.
11254
11255 @item -fchkp-check-write
11256 @opindex fchkp-check-write
11257 @opindex fno-chkp-check-write
11258 Instructs Pointer Bounds Checker to generate checks for all write
11259 accesses to memory. Enabled by default.
11260
11261 @item -fchkp-store-bounds
11262 @opindex fchkp-store-bounds
11263 @opindex fno-chkp-store-bounds
11264 Instructs Pointer Bounds Checker to generate bounds stores for
11265 pointer writes. Enabled by default.
11266
11267 @item -fchkp-instrument-calls
11268 @opindex fchkp-instrument-calls
11269 @opindex fno-chkp-instrument-calls
11270 Instructs Pointer Bounds Checker to pass pointer bounds to calls.
11271 Enabled by default.
11272
11273 @item -fchkp-instrument-marked-only
11274 @opindex fchkp-instrument-marked-only
11275 @opindex fno-chkp-instrument-marked-only
11276 Instructs Pointer Bounds Checker to instrument only functions
11277 marked with the @code{bnd_instrument} attribute
11278 (@pxref{Function Attributes}). Disabled by default.
11279
11280 @item -fchkp-use-wrappers
11281 @opindex fchkp-use-wrappers
11282 @opindex fno-chkp-use-wrappers
11283 Allows Pointer Bounds Checker to replace calls to built-in functions
11284 with calls to wrapper functions. When @option{-fchkp-use-wrappers}
11285 is used to link a program, the GCC driver automatically links
11286 against @file{libmpxwrappers}. See also @option{-static-libmpxwrappers}.
11287 Enabled by default.
11288
11289 @item -fstack-protector
11290 @opindex fstack-protector
11291 Emit extra code to check for buffer overflows, such as stack smashing
11292 attacks. This is done by adding a guard variable to functions with
11293 vulnerable objects. This includes functions that call @code{alloca}, and
11294 functions with buffers larger than 8 bytes. The guards are initialized
11295 when a function is entered and then checked when the function exits.
11296 If a guard check fails, an error message is printed and the program exits.
11297
11298 @item -fstack-protector-all
11299 @opindex fstack-protector-all
11300 Like @option{-fstack-protector} except that all functions are protected.
11301
11302 @item -fstack-protector-strong
11303 @opindex fstack-protector-strong
11304 Like @option{-fstack-protector} but includes additional functions to
11305 be protected --- those that have local array definitions, or have
11306 references to local frame addresses.
11307
11308 @item -fstack-protector-explicit
11309 @opindex fstack-protector-explicit
11310 Like @option{-fstack-protector} but only protects those functions which
11311 have the @code{stack_protect} attribute.
11312
11313 @item -fstack-check
11314 @opindex fstack-check
11315 Generate code to verify that you do not go beyond the boundary of the
11316 stack. You should specify this flag if you are running in an
11317 environment with multiple threads, but you only rarely need to specify it in
11318 a single-threaded environment since stack overflow is automatically
11319 detected on nearly all systems if there is only one stack.
11320
11321 Note that this switch does not actually cause checking to be done; the
11322 operating system or the language runtime must do that. The switch causes
11323 generation of code to ensure that they see the stack being extended.
11324
11325 You can additionally specify a string parameter: @samp{no} means no
11326 checking, @samp{generic} means force the use of old-style checking,
11327 @samp{specific} means use the best checking method and is equivalent
11328 to bare @option{-fstack-check}.
11329
11330 Old-style checking is a generic mechanism that requires no specific
11331 target support in the compiler but comes with the following drawbacks:
11332
11333 @enumerate
11334 @item
11335 Modified allocation strategy for large objects: they are always
11336 allocated dynamically if their size exceeds a fixed threshold.
11337
11338 @item
11339 Fixed limit on the size of the static frame of functions: when it is
11340 topped by a particular function, stack checking is not reliable and
11341 a warning is issued by the compiler.
11342
11343 @item
11344 Inefficiency: because of both the modified allocation strategy and the
11345 generic implementation, code performance is hampered.
11346 @end enumerate
11347
11348 Note that old-style stack checking is also the fallback method for
11349 @samp{specific} if no target support has been added in the compiler.
11350
11351 @item -fstack-limit-register=@var{reg}
11352 @itemx -fstack-limit-symbol=@var{sym}
11353 @itemx -fno-stack-limit
11354 @opindex fstack-limit-register
11355 @opindex fstack-limit-symbol
11356 @opindex fno-stack-limit
11357 Generate code to ensure that the stack does not grow beyond a certain value,
11358 either the value of a register or the address of a symbol. If a larger
11359 stack is required, a signal is raised at run time. For most targets,
11360 the signal is raised before the stack overruns the boundary, so
11361 it is possible to catch the signal without taking special precautions.
11362
11363 For instance, if the stack starts at absolute address @samp{0x80000000}
11364 and grows downwards, you can use the flags
11365 @option{-fstack-limit-symbol=__stack_limit} and
11366 @option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit
11367 of 128KB@. Note that this may only work with the GNU linker.
11368
11369 You can locally override stack limit checking by using the
11370 @code{no_stack_limit} function attribute (@pxref{Function Attributes}).
11371
11372 @item -fsplit-stack
11373 @opindex fsplit-stack
11374 Generate code to automatically split the stack before it overflows.
11375 The resulting program has a discontiguous stack which can only
11376 overflow if the program is unable to allocate any more memory. This
11377 is most useful when running threaded programs, as it is no longer
11378 necessary to calculate a good stack size to use for each thread. This
11379 is currently only implemented for the x86 targets running
11380 GNU/Linux.
11381
11382 When code compiled with @option{-fsplit-stack} calls code compiled
11383 without @option{-fsplit-stack}, there may not be much stack space
11384 available for the latter code to run. If compiling all code,
11385 including library code, with @option{-fsplit-stack} is not an option,
11386 then the linker can fix up these calls so that the code compiled
11387 without @option{-fsplit-stack} always has a large stack. Support for
11388 this is implemented in the gold linker in GNU binutils release 2.21
11389 and later.
11390
11391 @item -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]}
11392 @opindex fvtable-verify
11393 This option is only available when compiling C++ code.
11394 It turns on (or off, if using @option{-fvtable-verify=none}) the security
11395 feature that verifies at run time, for every virtual call, that
11396 the vtable pointer through which the call is made is valid for the type of
11397 the object, and has not been corrupted or overwritten. If an invalid vtable
11398 pointer is detected at run time, an error is reported and execution of the
11399 program is immediately halted.
11400
11401 This option causes run-time data structures to be built at program startup,
11402 which are used for verifying the vtable pointers.
11403 The options @samp{std} and @samp{preinit}
11404 control the timing of when these data structures are built. In both cases the
11405 data structures are built before execution reaches @code{main}. Using
11406 @option{-fvtable-verify=std} causes the data structures to be built after
11407 shared libraries have been loaded and initialized.
11408 @option{-fvtable-verify=preinit} causes them to be built before shared
11409 libraries have been loaded and initialized.
11410
11411 If this option appears multiple times in the command line with different
11412 values specified, @samp{none} takes highest priority over both @samp{std} and
11413 @samp{preinit}; @samp{preinit} takes priority over @samp{std}.
11414
11415 @item -fvtv-debug
11416 @opindex fvtv-debug
11417 When used in conjunction with @option{-fvtable-verify=std} or
11418 @option{-fvtable-verify=preinit}, causes debug versions of the
11419 runtime functions for the vtable verification feature to be called.
11420 This flag also causes the compiler to log information about which
11421 vtable pointers it finds for each class.
11422 This information is written to a file named @file{vtv_set_ptr_data.log}
11423 in the directory named by the environment variable @env{VTV_LOGS_DIR}
11424 if that is defined or the current working directory otherwise.
11425
11426 Note: This feature @emph{appends} data to the log file. If you want a fresh log
11427 file, be sure to delete any existing one.
11428
11429 @item -fvtv-counts
11430 @opindex fvtv-counts
11431 This is a debugging flag. When used in conjunction with
11432 @option{-fvtable-verify=std} or @option{-fvtable-verify=preinit}, this
11433 causes the compiler to keep track of the total number of virtual calls
11434 it encounters and the number of verifications it inserts. It also
11435 counts the number of calls to certain run-time library functions
11436 that it inserts and logs this information for each compilation unit.
11437 The compiler writes this information to a file named
11438 @file{vtv_count_data.log} in the directory named by the environment
11439 variable @env{VTV_LOGS_DIR} if that is defined or the current working
11440 directory otherwise. It also counts the size of the vtable pointer sets
11441 for each class, and writes this information to @file{vtv_class_set_sizes.log}
11442 in the same directory.
11443
11444 Note: This feature @emph{appends} data to the log files. To get fresh log
11445 files, be sure to delete any existing ones.
11446
11447 @item -finstrument-functions
11448 @opindex finstrument-functions
11449 Generate instrumentation calls for entry and exit to functions. Just
11450 after function entry and just before function exit, the following
11451 profiling functions are called with the address of the current
11452 function and its call site. (On some platforms,
11453 @code{__builtin_return_address} does not work beyond the current
11454 function, so the call site information may not be available to the
11455 profiling functions otherwise.)
11456
11457 @smallexample
11458 void __cyg_profile_func_enter (void *this_fn,
11459 void *call_site);
11460 void __cyg_profile_func_exit (void *this_fn,
11461 void *call_site);
11462 @end smallexample
11463
11464 The first argument is the address of the start of the current function,
11465 which may be looked up exactly in the symbol table.
11466
11467 This instrumentation is also done for functions expanded inline in other
11468 functions. The profiling calls indicate where, conceptually, the
11469 inline function is entered and exited. This means that addressable
11470 versions of such functions must be available. If all your uses of a
11471 function are expanded inline, this may mean an additional expansion of
11472 code size. If you use @code{extern inline} in your C code, an
11473 addressable version of such functions must be provided. (This is
11474 normally the case anyway, but if you get lucky and the optimizer always
11475 expands the functions inline, you might have gotten away without
11476 providing static copies.)
11477
11478 A function may be given the attribute @code{no_instrument_function}, in
11479 which case this instrumentation is not done. This can be used, for
11480 example, for the profiling functions listed above, high-priority
11481 interrupt routines, and any functions from which the profiling functions
11482 cannot safely be called (perhaps signal handlers, if the profiling
11483 routines generate output or allocate memory).
11484
11485 @item -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}
11486 @opindex finstrument-functions-exclude-file-list
11487
11488 Set the list of functions that are excluded from instrumentation (see
11489 the description of @option{-finstrument-functions}). If the file that
11490 contains a function definition matches with one of @var{file}, then
11491 that function is not instrumented. The match is done on substrings:
11492 if the @var{file} parameter is a substring of the file name, it is
11493 considered to be a match.
11494
11495 For example:
11496
11497 @smallexample
11498 -finstrument-functions-exclude-file-list=/bits/stl,include/sys
11499 @end smallexample
11500
11501 @noindent
11502 excludes any inline function defined in files whose pathnames
11503 contain @file{/bits/stl} or @file{include/sys}.
11504
11505 If, for some reason, you want to include letter @samp{,} in one of
11506 @var{sym}, write @samp{\,}. For example,
11507 @option{-finstrument-functions-exclude-file-list='\,\,tmp'}
11508 (note the single quote surrounding the option).
11509
11510 @item -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{}
11511 @opindex finstrument-functions-exclude-function-list
11512
11513 This is similar to @option{-finstrument-functions-exclude-file-list},
11514 but this option sets the list of function names to be excluded from
11515 instrumentation. The function name to be matched is its user-visible
11516 name, such as @code{vector<int> blah(const vector<int> &)}, not the
11517 internal mangled name (e.g., @code{_Z4blahRSt6vectorIiSaIiEE}). The
11518 match is done on substrings: if the @var{sym} parameter is a substring
11519 of the function name, it is considered to be a match. For C99 and C++
11520 extended identifiers, the function name must be given in UTF-8, not
11521 using universal character names.
11522
11523 @end table
11524
11525
11526 @node Preprocessor Options
11527 @section Options Controlling the Preprocessor
11528 @cindex preprocessor options
11529 @cindex options, preprocessor
11530
11531 These options control the C preprocessor, which is run on each C source
11532 file before actual compilation.
11533
11534 If you use the @option{-E} option, nothing is done except preprocessing.
11535 Some of these options make sense only together with @option{-E} because
11536 they cause the preprocessor output to be unsuitable for actual
11537 compilation.
11538
11539 In addition to the options listed here, there are a number of options
11540 to control search paths for include files documented in
11541 @ref{Directory Options}.
11542 Options to control preprocessor diagnostics are listed in
11543 @ref{Warning Options}.
11544
11545 @table @gcctabopt
11546 @include cppopts.texi
11547
11548 @item -Wp,@var{option}
11549 @opindex Wp
11550 You can use @option{-Wp,@var{option}} to bypass the compiler driver
11551 and pass @var{option} directly through to the preprocessor. If
11552 @var{option} contains commas, it is split into multiple options at the
11553 commas. However, many options are modified, translated or interpreted
11554 by the compiler driver before being passed to the preprocessor, and
11555 @option{-Wp} forcibly bypasses this phase. The preprocessor's direct
11556 interface is undocumented and subject to change, so whenever possible
11557 you should avoid using @option{-Wp} and let the driver handle the
11558 options instead.
11559
11560 @item -Xpreprocessor @var{option}
11561 @opindex Xpreprocessor
11562 Pass @var{option} as an option to the preprocessor. You can use this to
11563 supply system-specific preprocessor options that GCC does not
11564 recognize.
11565
11566 If you want to pass an option that takes an argument, you must use
11567 @option{-Xpreprocessor} twice, once for the option and once for the argument.
11568
11569 @item -no-integrated-cpp
11570 @opindex no-integrated-cpp
11571 Perform preprocessing as a separate pass before compilation.
11572 By default, GCC performs preprocessing as an integrated part of
11573 input tokenization and parsing.
11574 If this option is provided, the appropriate language front end
11575 (@command{cc1}, @command{cc1plus}, or @command{cc1obj} for C, C++,
11576 and Objective-C, respectively) is instead invoked twice,
11577 once for preprocessing only and once for actual compilation
11578 of the preprocessed input.
11579 This option may be useful in conjunction with the @option{-B} or
11580 @option{-wrapper} options to specify an alternate preprocessor or
11581 perform additional processing of the program source between
11582 normal preprocessing and compilation.
11583
11584 @end table
11585
11586 @node Assembler Options
11587 @section Passing Options to the Assembler
11588
11589 @c prevent bad page break with this line
11590 You can pass options to the assembler.
11591
11592 @table @gcctabopt
11593 @item -Wa,@var{option}
11594 @opindex Wa
11595 Pass @var{option} as an option to the assembler. If @var{option}
11596 contains commas, it is split into multiple options at the commas.
11597
11598 @item -Xassembler @var{option}
11599 @opindex Xassembler
11600 Pass @var{option} as an option to the assembler. You can use this to
11601 supply system-specific assembler options that GCC does not
11602 recognize.
11603
11604 If you want to pass an option that takes an argument, you must use
11605 @option{-Xassembler} twice, once for the option and once for the argument.
11606
11607 @end table
11608
11609 @node Link Options
11610 @section Options for Linking
11611 @cindex link options
11612 @cindex options, linking
11613
11614 These options come into play when the compiler links object files into
11615 an executable output file. They are meaningless if the compiler is
11616 not doing a link step.
11617
11618 @table @gcctabopt
11619 @cindex file names
11620 @item @var{object-file-name}
11621 A file name that does not end in a special recognized suffix is
11622 considered to name an object file or library. (Object files are
11623 distinguished from libraries by the linker according to the file
11624 contents.) If linking is done, these object files are used as input
11625 to the linker.
11626
11627 @item -c
11628 @itemx -S
11629 @itemx -E
11630 @opindex c
11631 @opindex S
11632 @opindex E
11633 If any of these options is used, then the linker is not run, and
11634 object file names should not be used as arguments. @xref{Overall
11635 Options}.
11636
11637 @item -fuse-ld=bfd
11638 @opindex fuse-ld=bfd
11639 Use the @command{bfd} linker instead of the default linker.
11640
11641 @item -fuse-ld=gold
11642 @opindex fuse-ld=gold
11643 Use the @command{gold} linker instead of the default linker.
11644
11645 @cindex Libraries
11646 @item -l@var{library}
11647 @itemx -l @var{library}
11648 @opindex l
11649 Search the library named @var{library} when linking. (The second
11650 alternative with the library as a separate argument is only for
11651 POSIX compliance and is not recommended.)
11652
11653 It makes a difference where in the command you write this option; the
11654 linker searches and processes libraries and object files in the order they
11655 are specified. Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
11656 after file @file{foo.o} but before @file{bar.o}. If @file{bar.o} refers
11657 to functions in @samp{z}, those functions may not be loaded.
11658
11659 The linker searches a standard list of directories for the library,
11660 which is actually a file named @file{lib@var{library}.a}. The linker
11661 then uses this file as if it had been specified precisely by name.
11662
11663 The directories searched include several standard system directories
11664 plus any that you specify with @option{-L}.
11665
11666 Normally the files found this way are library files---archive files
11667 whose members are object files. The linker handles an archive file by
11668 scanning through it for members which define symbols that have so far
11669 been referenced but not defined. But if the file that is found is an
11670 ordinary object file, it is linked in the usual fashion. The only
11671 difference between using an @option{-l} option and specifying a file name
11672 is that @option{-l} surrounds @var{library} with @samp{lib} and @samp{.a}
11673 and searches several directories.
11674
11675 @item -lobjc
11676 @opindex lobjc
11677 You need this special case of the @option{-l} option in order to
11678 link an Objective-C or Objective-C++ program.
11679
11680 @item -nostartfiles
11681 @opindex nostartfiles
11682 Do not use the standard system startup files when linking.
11683 The standard system libraries are used normally, unless @option{-nostdlib}
11684 or @option{-nodefaultlibs} is used.
11685
11686 @item -nodefaultlibs
11687 @opindex nodefaultlibs
11688 Do not use the standard system libraries when linking.
11689 Only the libraries you specify are passed to the linker, and options
11690 specifying linkage of the system libraries, such as @option{-static-libgcc}
11691 or @option{-shared-libgcc}, are ignored.
11692 The standard startup files are used normally, unless @option{-nostartfiles}
11693 is used.
11694
11695 The compiler may generate calls to @code{memcmp},
11696 @code{memset}, @code{memcpy} and @code{memmove}.
11697 These entries are usually resolved by entries in
11698 libc. These entry points should be supplied through some other
11699 mechanism when this option is specified.
11700
11701 @item -nostdlib
11702 @opindex nostdlib
11703 Do not use the standard system startup files or libraries when linking.
11704 No startup files and only the libraries you specify are passed to
11705 the linker, and options specifying linkage of the system libraries, such as
11706 @option{-static-libgcc} or @option{-shared-libgcc}, are ignored.
11707
11708 The compiler may generate calls to @code{memcmp}, @code{memset},
11709 @code{memcpy} and @code{memmove}.
11710 These entries are usually resolved by entries in
11711 libc. These entry points should be supplied through some other
11712 mechanism when this option is specified.
11713
11714 @cindex @option{-lgcc}, use with @option{-nostdlib}
11715 @cindex @option{-nostdlib} and unresolved references
11716 @cindex unresolved references and @option{-nostdlib}
11717 @cindex @option{-lgcc}, use with @option{-nodefaultlibs}
11718 @cindex @option{-nodefaultlibs} and unresolved references
11719 @cindex unresolved references and @option{-nodefaultlibs}
11720 One of the standard libraries bypassed by @option{-nostdlib} and
11721 @option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
11722 which GCC uses to overcome shortcomings of particular machines, or special
11723 needs for some languages.
11724 (@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
11725 Collection (GCC) Internals},
11726 for more discussion of @file{libgcc.a}.)
11727 In most cases, you need @file{libgcc.a} even when you want to avoid
11728 other standard libraries. In other words, when you specify @option{-nostdlib}
11729 or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
11730 This ensures that you have no unresolved references to internal GCC
11731 library subroutines.
11732 (An example of such an internal subroutine is @code{__main}, used to ensure C++
11733 constructors are called; @pxref{Collect2,,@code{collect2}, gccint,
11734 GNU Compiler Collection (GCC) Internals}.)
11735
11736 @item -pie
11737 @opindex pie
11738 Produce a position independent executable on targets that support it.
11739 For predictable results, you must also specify the same set of options
11740 used for compilation (@option{-fpie}, @option{-fPIE},
11741 or model suboptions) when you specify this linker option.
11742
11743 @item -no-pie
11744 @opindex no-pie
11745 Don't produce a position independent executable.
11746
11747 @item -pthread
11748 @opindex pthread
11749 Link with the POSIX threads library. This option is supported on
11750 GNU/Linux targets, most other Unix derivatives, and also on
11751 x86 Cygwin and MinGW targets. On some targets this option also sets
11752 flags for the preprocessor, so it should be used consistently for both
11753 compilation and linking.
11754
11755 @item -rdynamic
11756 @opindex rdynamic
11757 Pass the flag @option{-export-dynamic} to the ELF linker, on targets
11758 that support it. This instructs the linker to add all symbols, not
11759 only used ones, to the dynamic symbol table. This option is needed
11760 for some uses of @code{dlopen} or to allow obtaining backtraces
11761 from within a program.
11762
11763 @item -s
11764 @opindex s
11765 Remove all symbol table and relocation information from the executable.
11766
11767 @item -static
11768 @opindex static
11769 On systems that support dynamic linking, this prevents linking with the shared
11770 libraries. On other systems, this option has no effect.
11771
11772 @item -shared
11773 @opindex shared
11774 Produce a shared object which can then be linked with other objects to
11775 form an executable. Not all systems support this option. For predictable
11776 results, you must also specify the same set of options used for compilation
11777 (@option{-fpic}, @option{-fPIC}, or model suboptions) when
11778 you specify this linker option.@footnote{On some systems, @samp{gcc -shared}
11779 needs to build supplementary stub code for constructors to work. On
11780 multi-libbed systems, @samp{gcc -shared} must select the correct support
11781 libraries to link against. Failing to supply the correct flags may lead
11782 to subtle defects. Supplying them in cases where they are not necessary
11783 is innocuous.}
11784
11785 @item -shared-libgcc
11786 @itemx -static-libgcc
11787 @opindex shared-libgcc
11788 @opindex static-libgcc
11789 On systems that provide @file{libgcc} as a shared library, these options
11790 force the use of either the shared or static version, respectively.
11791 If no shared version of @file{libgcc} was built when the compiler was
11792 configured, these options have no effect.
11793
11794 There are several situations in which an application should use the
11795 shared @file{libgcc} instead of the static version. The most common
11796 of these is when the application wishes to throw and catch exceptions
11797 across different shared libraries. In that case, each of the libraries
11798 as well as the application itself should use the shared @file{libgcc}.
11799
11800 Therefore, the G++ and driver automatically adds @option{-shared-libgcc}
11801 whenever you build a shared library or a main executable, because C++
11802 programs typically use exceptions, so this is the right thing to do.
11803
11804 If, instead, you use the GCC driver to create shared libraries, you may
11805 find that they are not always linked with the shared @file{libgcc}.
11806 If GCC finds, at its configuration time, that you have a non-GNU linker
11807 or a GNU linker that does not support option @option{--eh-frame-hdr},
11808 it links the shared version of @file{libgcc} into shared libraries
11809 by default. Otherwise, it takes advantage of the linker and optimizes
11810 away the linking with the shared version of @file{libgcc}, linking with
11811 the static version of libgcc by default. This allows exceptions to
11812 propagate through such shared libraries, without incurring relocation
11813 costs at library load time.
11814
11815 However, if a library or main executable is supposed to throw or catch
11816 exceptions, you must link it using the G++ driver, as appropriate
11817 for the languages used in the program, or using the option
11818 @option{-shared-libgcc}, such that it is linked with the shared
11819 @file{libgcc}.
11820
11821 @item -static-libasan
11822 @opindex static-libasan
11823 When the @option{-fsanitize=address} option is used to link a program,
11824 the GCC driver automatically links against @option{libasan}. If
11825 @file{libasan} is available as a shared library, and the @option{-static}
11826 option is not used, then this links against the shared version of
11827 @file{libasan}. The @option{-static-libasan} option directs the GCC
11828 driver to link @file{libasan} statically, without necessarily linking
11829 other libraries statically.
11830
11831 @item -static-libtsan
11832 @opindex static-libtsan
11833 When the @option{-fsanitize=thread} option is used to link a program,
11834 the GCC driver automatically links against @option{libtsan}. If
11835 @file{libtsan} is available as a shared library, and the @option{-static}
11836 option is not used, then this links against the shared version of
11837 @file{libtsan}. The @option{-static-libtsan} option directs the GCC
11838 driver to link @file{libtsan} statically, without necessarily linking
11839 other libraries statically.
11840
11841 @item -static-liblsan
11842 @opindex static-liblsan
11843 When the @option{-fsanitize=leak} option is used to link a program,
11844 the GCC driver automatically links against @option{liblsan}. If
11845 @file{liblsan} is available as a shared library, and the @option{-static}
11846 option is not used, then this links against the shared version of
11847 @file{liblsan}. The @option{-static-liblsan} option directs the GCC
11848 driver to link @file{liblsan} statically, without necessarily linking
11849 other libraries statically.
11850
11851 @item -static-libubsan
11852 @opindex static-libubsan
11853 When the @option{-fsanitize=undefined} option is used to link a program,
11854 the GCC driver automatically links against @option{libubsan}. If
11855 @file{libubsan} is available as a shared library, and the @option{-static}
11856 option is not used, then this links against the shared version of
11857 @file{libubsan}. The @option{-static-libubsan} option directs the GCC
11858 driver to link @file{libubsan} statically, without necessarily linking
11859 other libraries statically.
11860
11861 @item -static-libmpx
11862 @opindex static-libmpx
11863 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are
11864 used to link a program, the GCC driver automatically links against
11865 @file{libmpx}. If @file{libmpx} is available as a shared library,
11866 and the @option{-static} option is not used, then this links against
11867 the shared version of @file{libmpx}. The @option{-static-libmpx}
11868 option directs the GCC driver to link @file{libmpx} statically,
11869 without necessarily linking other libraries statically.
11870
11871 @item -static-libmpxwrappers
11872 @opindex static-libmpxwrappers
11873 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are used
11874 to link a program without also using @option{-fno-chkp-use-wrappers}, the
11875 GCC driver automatically links against @file{libmpxwrappers}. If
11876 @file{libmpxwrappers} is available as a shared library, and the
11877 @option{-static} option is not used, then this links against the shared
11878 version of @file{libmpxwrappers}. The @option{-static-libmpxwrappers}
11879 option directs the GCC driver to link @file{libmpxwrappers} statically,
11880 without necessarily linking other libraries statically.
11881
11882 @item -static-libstdc++
11883 @opindex static-libstdc++
11884 When the @command{g++} program is used to link a C++ program, it
11885 normally automatically links against @option{libstdc++}. If
11886 @file{libstdc++} is available as a shared library, and the
11887 @option{-static} option is not used, then this links against the
11888 shared version of @file{libstdc++}. That is normally fine. However, it
11889 is sometimes useful to freeze the version of @file{libstdc++} used by
11890 the program without going all the way to a fully static link. The
11891 @option{-static-libstdc++} option directs the @command{g++} driver to
11892 link @file{libstdc++} statically, without necessarily linking other
11893 libraries statically.
11894
11895 @item -symbolic
11896 @opindex symbolic
11897 Bind references to global symbols when building a shared object. Warn
11898 about any unresolved references (unless overridden by the link editor
11899 option @option{-Xlinker -z -Xlinker defs}). Only a few systems support
11900 this option.
11901
11902 @item -T @var{script}
11903 @opindex T
11904 @cindex linker script
11905 Use @var{script} as the linker script. This option is supported by most
11906 systems using the GNU linker. On some targets, such as bare-board
11907 targets without an operating system, the @option{-T} option may be required
11908 when linking to avoid references to undefined symbols.
11909
11910 @item -Xlinker @var{option}
11911 @opindex Xlinker
11912 Pass @var{option} as an option to the linker. You can use this to
11913 supply system-specific linker options that GCC does not recognize.
11914
11915 If you want to pass an option that takes a separate argument, you must use
11916 @option{-Xlinker} twice, once for the option and once for the argument.
11917 For example, to pass @option{-assert definitions}, you must write
11918 @option{-Xlinker -assert -Xlinker definitions}. It does not work to write
11919 @option{-Xlinker "-assert definitions"}, because this passes the entire
11920 string as a single argument, which is not what the linker expects.
11921
11922 When using the GNU linker, it is usually more convenient to pass
11923 arguments to linker options using the @option{@var{option}=@var{value}}
11924 syntax than as separate arguments. For example, you can specify
11925 @option{-Xlinker -Map=output.map} rather than
11926 @option{-Xlinker -Map -Xlinker output.map}. Other linkers may not support
11927 this syntax for command-line options.
11928
11929 @item -Wl,@var{option}
11930 @opindex Wl
11931 Pass @var{option} as an option to the linker. If @var{option} contains
11932 commas, it is split into multiple options at the commas. You can use this
11933 syntax to pass an argument to the option.
11934 For example, @option{-Wl,-Map,output.map} passes @option{-Map output.map} to the
11935 linker. When using the GNU linker, you can also get the same effect with
11936 @option{-Wl,-Map=output.map}.
11937
11938 @item -u @var{symbol}
11939 @opindex u
11940 Pretend the symbol @var{symbol} is undefined, to force linking of
11941 library modules to define it. You can use @option{-u} multiple times with
11942 different symbols to force loading of additional library modules.
11943
11944 @item -z @var{keyword}
11945 @opindex z
11946 @option{-z} is passed directly on to the linker along with the keyword
11947 @var{keyword}. See the section in the documentation of your linker for
11948 permitted values and their meanings.
11949 @end table
11950
11951 @node Directory Options
11952 @section Options for Directory Search
11953 @cindex directory options
11954 @cindex options, directory search
11955 @cindex search path
11956
11957 These options specify directories to search for header files, for
11958 libraries and for parts of the compiler:
11959
11960 @table @gcctabopt
11961 @include cppdiropts.texi
11962
11963 @item -iplugindir=@var{dir}
11964 @opindex iplugindir=
11965 Set the directory to search for plugins that are passed
11966 by @option{-fplugin=@var{name}} instead of
11967 @option{-fplugin=@var{path}/@var{name}.so}. This option is not meant
11968 to be used by the user, but only passed by the driver.
11969
11970 @item -L@var{dir}
11971 @opindex L
11972 Add directory @var{dir} to the list of directories to be searched
11973 for @option{-l}.
11974
11975 @item -B@var{prefix}
11976 @opindex B
11977 This option specifies where to find the executables, libraries,
11978 include files, and data files of the compiler itself.
11979
11980 The compiler driver program runs one or more of the subprograms
11981 @command{cpp}, @command{cc1}, @command{as} and @command{ld}. It tries
11982 @var{prefix} as a prefix for each program it tries to run, both with and
11983 without @samp{@var{machine}/@var{version}/} for the corresponding target
11984 machine and compiler version.
11985
11986 For each subprogram to be run, the compiler driver first tries the
11987 @option{-B} prefix, if any. If that name is not found, or if @option{-B}
11988 is not specified, the driver tries two standard prefixes,
11989 @file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}. If neither of
11990 those results in a file name that is found, the unmodified program
11991 name is searched for using the directories specified in your
11992 @env{PATH} environment variable.
11993
11994 The compiler checks to see if the path provided by @option{-B}
11995 refers to a directory, and if necessary it adds a directory
11996 separator character at the end of the path.
11997
11998 @option{-B} prefixes that effectively specify directory names also apply
11999 to libraries in the linker, because the compiler translates these
12000 options into @option{-L} options for the linker. They also apply to
12001 include files in the preprocessor, because the compiler translates these
12002 options into @option{-isystem} options for the preprocessor. In this case,
12003 the compiler appends @samp{include} to the prefix.
12004
12005 The runtime support file @file{libgcc.a} can also be searched for using
12006 the @option{-B} prefix, if needed. If it is not found there, the two
12007 standard prefixes above are tried, and that is all. The file is left
12008 out of the link if it is not found by those means.
12009
12010 Another way to specify a prefix much like the @option{-B} prefix is to use
12011 the environment variable @env{GCC_EXEC_PREFIX}. @xref{Environment
12012 Variables}.
12013
12014 As a special kludge, if the path provided by @option{-B} is
12015 @file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
12016 9, then it is replaced by @file{[dir/]include}. This is to help
12017 with boot-strapping the compiler.
12018
12019 @item -no-canonical-prefixes
12020 @opindex no-canonical-prefixes
12021 Do not expand any symbolic links, resolve references to @samp{/../}
12022 or @samp{/./}, or make the path absolute when generating a relative
12023 prefix.
12024
12025 @item --sysroot=@var{dir}
12026 @opindex sysroot
12027 Use @var{dir} as the logical root directory for headers and libraries.
12028 For example, if the compiler normally searches for headers in
12029 @file{/usr/include} and libraries in @file{/usr/lib}, it instead
12030 searches @file{@var{dir}/usr/include} and @file{@var{dir}/usr/lib}.
12031
12032 If you use both this option and the @option{-isysroot} option, then
12033 the @option{--sysroot} option applies to libraries, but the
12034 @option{-isysroot} option applies to header files.
12035
12036 The GNU linker (beginning with version 2.16) has the necessary support
12037 for this option. If your linker does not support this option, the
12038 header file aspect of @option{--sysroot} still works, but the
12039 library aspect does not.
12040
12041 @item --no-sysroot-suffix
12042 @opindex no-sysroot-suffix
12043 For some targets, a suffix is added to the root directory specified
12044 with @option{--sysroot}, depending on the other options used, so that
12045 headers may for example be found in
12046 @file{@var{dir}/@var{suffix}/usr/include} instead of
12047 @file{@var{dir}/usr/include}. This option disables the addition of
12048 such a suffix.
12049
12050 @end table
12051
12052 @node Code Gen Options
12053 @section Options for Code Generation Conventions
12054 @cindex code generation conventions
12055 @cindex options, code generation
12056 @cindex run-time options
12057
12058 These machine-independent options control the interface conventions
12059 used in code generation.
12060
12061 Most of them have both positive and negative forms; the negative form
12062 of @option{-ffoo} is @option{-fno-foo}. In the table below, only
12063 one of the forms is listed---the one that is not the default. You
12064 can figure out the other form by either removing @samp{no-} or adding
12065 it.
12066
12067 @table @gcctabopt
12068 @item -fstack-reuse=@var{reuse-level}
12069 @opindex fstack_reuse
12070 This option controls stack space reuse for user declared local/auto variables
12071 and compiler generated temporaries. @var{reuse_level} can be @samp{all},
12072 @samp{named_vars}, or @samp{none}. @samp{all} enables stack reuse for all
12073 local variables and temporaries, @samp{named_vars} enables the reuse only for
12074 user defined local variables with names, and @samp{none} disables stack reuse
12075 completely. The default value is @samp{all}. The option is needed when the
12076 program extends the lifetime of a scoped local variable or a compiler generated
12077 temporary beyond the end point defined by the language. When a lifetime of
12078 a variable ends, and if the variable lives in memory, the optimizing compiler
12079 has the freedom to reuse its stack space with other temporaries or scoped
12080 local variables whose live range does not overlap with it. Legacy code extending
12081 local lifetime is likely to break with the stack reuse optimization.
12082
12083 For example,
12084
12085 @smallexample
12086 int *p;
12087 @{
12088 int local1;
12089
12090 p = &local1;
12091 local1 = 10;
12092 ....
12093 @}
12094 @{
12095 int local2;
12096 local2 = 20;
12097 ...
12098 @}
12099
12100 if (*p == 10) // out of scope use of local1
12101 @{
12102
12103 @}
12104 @end smallexample
12105
12106 Another example:
12107 @smallexample
12108
12109 struct A
12110 @{
12111 A(int k) : i(k), j(k) @{ @}
12112 int i;
12113 int j;
12114 @};
12115
12116 A *ap;
12117
12118 void foo(const A& ar)
12119 @{
12120 ap = &ar;
12121 @}
12122
12123 void bar()
12124 @{
12125 foo(A(10)); // temp object's lifetime ends when foo returns
12126
12127 @{
12128 A a(20);
12129 ....
12130 @}
12131 ap->i+= 10; // ap references out of scope temp whose space
12132 // is reused with a. What is the value of ap->i?
12133 @}
12134
12135 @end smallexample
12136
12137 The lifetime of a compiler generated temporary is well defined by the C++
12138 standard. When a lifetime of a temporary ends, and if the temporary lives
12139 in memory, the optimizing compiler has the freedom to reuse its stack
12140 space with other temporaries or scoped local variables whose live range
12141 does not overlap with it. However some of the legacy code relies on
12142 the behavior of older compilers in which temporaries' stack space is
12143 not reused, the aggressive stack reuse can lead to runtime errors. This
12144 option is used to control the temporary stack reuse optimization.
12145
12146 @item -ftrapv
12147 @opindex ftrapv
12148 This option generates traps for signed overflow on addition, subtraction,
12149 multiplication operations.
12150 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
12151 @option{-ftrapv} @option{-fwrapv} on the command-line results in
12152 @option{-fwrapv} being effective. Note that only active options override, so
12153 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
12154 results in @option{-ftrapv} being effective.
12155
12156 @item -fwrapv
12157 @opindex fwrapv
12158 This option instructs the compiler to assume that signed arithmetic
12159 overflow of addition, subtraction and multiplication wraps around
12160 using twos-complement representation. This flag enables some optimizations
12161 and disables others.
12162 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
12163 @option{-ftrapv} @option{-fwrapv} on the command-line results in
12164 @option{-fwrapv} being effective. Note that only active options override, so
12165 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
12166 results in @option{-ftrapv} being effective.
12167
12168 @item -fexceptions
12169 @opindex fexceptions
12170 Enable exception handling. Generates extra code needed to propagate
12171 exceptions. For some targets, this implies GCC generates frame
12172 unwind information for all functions, which can produce significant data
12173 size overhead, although it does not affect execution. If you do not
12174 specify this option, GCC enables it by default for languages like
12175 C++ that normally require exception handling, and disables it for
12176 languages like C that do not normally require it. However, you may need
12177 to enable this option when compiling C code that needs to interoperate
12178 properly with exception handlers written in C++. You may also wish to
12179 disable this option if you are compiling older C++ programs that don't
12180 use exception handling.
12181
12182 @item -fnon-call-exceptions
12183 @opindex fnon-call-exceptions
12184 Generate code that allows trapping instructions to throw exceptions.
12185 Note that this requires platform-specific runtime support that does
12186 not exist everywhere. Moreover, it only allows @emph{trapping}
12187 instructions to throw exceptions, i.e.@: memory references or floating-point
12188 instructions. It does not allow exceptions to be thrown from
12189 arbitrary signal handlers such as @code{SIGALRM}.
12190
12191 @item -fdelete-dead-exceptions
12192 @opindex fdelete-dead-exceptions
12193 Consider that instructions that may throw exceptions but don't otherwise
12194 contribute to the execution of the program can be optimized away.
12195 This option is enabled by default for the Ada front end, as permitted by
12196 the Ada language specification.
12197 Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels.
12198
12199 @item -funwind-tables
12200 @opindex funwind-tables
12201 Similar to @option{-fexceptions}, except that it just generates any needed
12202 static data, but does not affect the generated code in any other way.
12203 You normally do not need to enable this option; instead, a language processor
12204 that needs this handling enables it on your behalf.
12205
12206 @item -fasynchronous-unwind-tables
12207 @opindex fasynchronous-unwind-tables
12208 Generate unwind table in DWARF format, if supported by target machine. The
12209 table is exact at each instruction boundary, so it can be used for stack
12210 unwinding from asynchronous events (such as debugger or garbage collector).
12211
12212 @item -fno-gnu-unique
12213 @opindex fno-gnu-unique
12214 On systems with recent GNU assembler and C library, the C++ compiler
12215 uses the @code{STB_GNU_UNIQUE} binding to make sure that definitions
12216 of template static data members and static local variables in inline
12217 functions are unique even in the presence of @code{RTLD_LOCAL}; this
12218 is necessary to avoid problems with a library used by two different
12219 @code{RTLD_LOCAL} plugins depending on a definition in one of them and
12220 therefore disagreeing with the other one about the binding of the
12221 symbol. But this causes @code{dlclose} to be ignored for affected
12222 DSOs; if your program relies on reinitialization of a DSO via
12223 @code{dlclose} and @code{dlopen}, you can use
12224 @option{-fno-gnu-unique}.
12225
12226 @item -fpcc-struct-return
12227 @opindex fpcc-struct-return
12228 Return ``short'' @code{struct} and @code{union} values in memory like
12229 longer ones, rather than in registers. This convention is less
12230 efficient, but it has the advantage of allowing intercallability between
12231 GCC-compiled files and files compiled with other compilers, particularly
12232 the Portable C Compiler (pcc).
12233
12234 The precise convention for returning structures in memory depends
12235 on the target configuration macros.
12236
12237 Short structures and unions are those whose size and alignment match
12238 that of some integer type.
12239
12240 @strong{Warning:} code compiled with the @option{-fpcc-struct-return}
12241 switch is not binary compatible with code compiled with the
12242 @option{-freg-struct-return} switch.
12243 Use it to conform to a non-default application binary interface.
12244
12245 @item -freg-struct-return
12246 @opindex freg-struct-return
12247 Return @code{struct} and @code{union} values in registers when possible.
12248 This is more efficient for small structures than
12249 @option{-fpcc-struct-return}.
12250
12251 If you specify neither @option{-fpcc-struct-return} nor
12252 @option{-freg-struct-return}, GCC defaults to whichever convention is
12253 standard for the target. If there is no standard convention, GCC
12254 defaults to @option{-fpcc-struct-return}, except on targets where GCC is
12255 the principal compiler. In those cases, we can choose the standard, and
12256 we chose the more efficient register return alternative.
12257
12258 @strong{Warning:} code compiled with the @option{-freg-struct-return}
12259 switch is not binary compatible with code compiled with the
12260 @option{-fpcc-struct-return} switch.
12261 Use it to conform to a non-default application binary interface.
12262
12263 @item -fshort-enums
12264 @opindex fshort-enums
12265 Allocate to an @code{enum} type only as many bytes as it needs for the
12266 declared range of possible values. Specifically, the @code{enum} type
12267 is equivalent to the smallest integer type that has enough room.
12268
12269 @strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate
12270 code that is not binary compatible with code generated without that switch.
12271 Use it to conform to a non-default application binary interface.
12272
12273 @item -fshort-wchar
12274 @opindex fshort-wchar
12275 Override the underlying type for @code{wchar_t} to be @code{short
12276 unsigned int} instead of the default for the target. This option is
12277 useful for building programs to run under WINE@.
12278
12279 @strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate
12280 code that is not binary compatible with code generated without that switch.
12281 Use it to conform to a non-default application binary interface.
12282
12283 @item -fno-common
12284 @opindex fno-common
12285 @cindex tentative definitions
12286 In C code, this option controls the placement of global variables
12287 defined without an initializer, known as @dfn{tentative definitions}
12288 in the C standard. Tentative definitions are distinct from declarations
12289 of a variable with the @code{extern} keyword, which do not allocate storage.
12290
12291 Unix C compilers have traditionally allocated storage for
12292 uninitialized global variables in a common block. This allows the
12293 linker to resolve all tentative definitions of the same variable
12294 in different compilation units to the same object, or to a non-tentative
12295 definition.
12296 This is the behavior specified by @option{-fcommon}, and is the default for
12297 GCC on most targets.
12298 On the other hand, this behavior is not required by ISO
12299 C, and on some targets may carry a speed or code size penalty on
12300 variable references.
12301
12302 The @option{-fno-common} option specifies that the compiler should instead
12303 place uninitialized global variables in the data section of the object file.
12304 This inhibits the merging of tentative definitions by the linker so
12305 you get a multiple-definition error if the same
12306 variable is defined in more than one compilation unit.
12307 Compiling with @option{-fno-common} is useful on targets for which
12308 it provides better performance, or if you wish to verify that the
12309 program will work on other systems that always treat uninitialized
12310 variable definitions this way.
12311
12312 @item -fno-ident
12313 @opindex fno-ident
12314 Ignore the @code{#ident} directive.
12315
12316 @item -finhibit-size-directive
12317 @opindex finhibit-size-directive
12318 Don't output a @code{.size} assembler directive, or anything else that
12319 would cause trouble if the function is split in the middle, and the
12320 two halves are placed at locations far apart in memory. This option is
12321 used when compiling @file{crtstuff.c}; you should not need to use it
12322 for anything else.
12323
12324 @item -fverbose-asm
12325 @opindex fverbose-asm
12326 Put extra commentary information in the generated assembly code to
12327 make it more readable. This option is generally only of use to those
12328 who actually need to read the generated assembly code (perhaps while
12329 debugging the compiler itself).
12330
12331 @option{-fno-verbose-asm}, the default, causes the
12332 extra information to be omitted and is useful when comparing two assembler
12333 files.
12334
12335 The added comments include:
12336
12337 @itemize @bullet
12338
12339 @item
12340 information on the compiler version and command-line options,
12341
12342 @item
12343 the source code lines associated with the assembly instructions,
12344 in the form FILENAME:LINENUMBER:CONTENT OF LINE,
12345
12346 @item
12347 hints on which high-level expressions correspond to
12348 the various assembly instruction operands.
12349
12350 @end itemize
12351
12352 For example, given this C source file:
12353
12354 @smallexample
12355 int test (int n)
12356 @{
12357 int i;
12358 int total = 0;
12359
12360 for (i = 0; i < n; i++)
12361 total += i * i;
12362
12363 return total;
12364 @}
12365 @end smallexample
12366
12367 compiling to (x86_64) assembly via @option{-S} and emitting the result
12368 direct to stdout via @option{-o} @option{-}
12369
12370 @smallexample
12371 gcc -S test.c -fverbose-asm -Os -o -
12372 @end smallexample
12373
12374 gives output similar to this:
12375
12376 @smallexample
12377 .file "test.c"
12378 # GNU C11 (GCC) version 7.0.0 20160809 (experimental) (x86_64-pc-linux-gnu)
12379 [...snip...]
12380 # options passed:
12381 [...snip...]
12382
12383 .text
12384 .globl test
12385 .type test, @@function
12386 test:
12387 .LFB0:
12388 .cfi_startproc
12389 # test.c:4: int total = 0;
12390 xorl %eax, %eax # <retval>
12391 # test.c:6: for (i = 0; i < n; i++)
12392 xorl %edx, %edx # i
12393 .L2:
12394 # test.c:6: for (i = 0; i < n; i++)
12395 cmpl %edi, %edx # n, i
12396 jge .L5 #,
12397 # test.c:7: total += i * i;
12398 movl %edx, %ecx # i, tmp92
12399 imull %edx, %ecx # i, tmp92
12400 # test.c:6: for (i = 0; i < n; i++)
12401 incl %edx # i
12402 # test.c:7: total += i * i;
12403 addl %ecx, %eax # tmp92, <retval>
12404 jmp .L2 #
12405 .L5:
12406 # test.c:10: @}
12407 ret
12408 .cfi_endproc
12409 .LFE0:
12410 .size test, .-test
12411 .ident "GCC: (GNU) 7.0.0 20160809 (experimental)"
12412 .section .note.GNU-stack,"",@@progbits
12413 @end smallexample
12414
12415 The comments are intended for humans rather than machines and hence the
12416 precise format of the comments is subject to change.
12417
12418 @item -frecord-gcc-switches
12419 @opindex frecord-gcc-switches
12420 This switch causes the command line used to invoke the
12421 compiler to be recorded into the object file that is being created.
12422 This switch is only implemented on some targets and the exact format
12423 of the recording is target and binary file format dependent, but it
12424 usually takes the form of a section containing ASCII text. This
12425 switch is related to the @option{-fverbose-asm} switch, but that
12426 switch only records information in the assembler output file as
12427 comments, so it never reaches the object file.
12428 See also @option{-grecord-gcc-switches} for another
12429 way of storing compiler options into the object file.
12430
12431 @item -fpic
12432 @opindex fpic
12433 @cindex global offset table
12434 @cindex PIC
12435 Generate position-independent code (PIC) suitable for use in a shared
12436 library, if supported for the target machine. Such code accesses all
12437 constant addresses through a global offset table (GOT)@. The dynamic
12438 loader resolves the GOT entries when the program starts (the dynamic
12439 loader is not part of GCC; it is part of the operating system). If
12440 the GOT size for the linked executable exceeds a machine-specific
12441 maximum size, you get an error message from the linker indicating that
12442 @option{-fpic} does not work; in that case, recompile with @option{-fPIC}
12443 instead. (These maximums are 8k on the SPARC, 28k on AArch64 and 32k
12444 on the m68k and RS/6000. The x86 has no such limit.)
12445
12446 Position-independent code requires special support, and therefore works
12447 only on certain machines. For the x86, GCC supports PIC for System V
12448 but not for the Sun 386i. Code generated for the IBM RS/6000 is always
12449 position-independent.
12450
12451 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
12452 are defined to 1.
12453
12454 @item -fPIC
12455 @opindex fPIC
12456 If supported for the target machine, emit position-independent code,
12457 suitable for dynamic linking and avoiding any limit on the size of the
12458 global offset table. This option makes a difference on AArch64, m68k,
12459 PowerPC and SPARC@.
12460
12461 Position-independent code requires special support, and therefore works
12462 only on certain machines.
12463
12464 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
12465 are defined to 2.
12466
12467 @item -fpie
12468 @itemx -fPIE
12469 @opindex fpie
12470 @opindex fPIE
12471 These options are similar to @option{-fpic} and @option{-fPIC}, but
12472 generated position independent code can be only linked into executables.
12473 Usually these options are used when @option{-pie} GCC option is
12474 used during linking.
12475
12476 @option{-fpie} and @option{-fPIE} both define the macros
12477 @code{__pie__} and @code{__PIE__}. The macros have the value 1
12478 for @option{-fpie} and 2 for @option{-fPIE}.
12479
12480 @item -fno-plt
12481 @opindex fno-plt
12482 Do not use the PLT for external function calls in position-independent code.
12483 Instead, load the callee address at call sites from the GOT and branch to it.
12484 This leads to more efficient code by eliminating PLT stubs and exposing
12485 GOT loads to optimizations. On architectures such as 32-bit x86 where
12486 PLT stubs expect the GOT pointer in a specific register, this gives more
12487 register allocation freedom to the compiler.
12488 Lazy binding requires use of the PLT;
12489 with @option{-fno-plt} all external symbols are resolved at load time.
12490
12491 Alternatively, the function attribute @code{noplt} can be used to avoid calls
12492 through the PLT for specific external functions.
12493
12494 In position-dependent code, a few targets also convert calls to
12495 functions that are marked to not use the PLT to use the GOT instead.
12496
12497 @item -fno-jump-tables
12498 @opindex fno-jump-tables
12499 Do not use jump tables for switch statements even where it would be
12500 more efficient than other code generation strategies. This option is
12501 of use in conjunction with @option{-fpic} or @option{-fPIC} for
12502 building code that forms part of a dynamic linker and cannot
12503 reference the address of a jump table. On some targets, jump tables
12504 do not require a GOT and this option is not needed.
12505
12506 @item -ffixed-@var{reg}
12507 @opindex ffixed
12508 Treat the register named @var{reg} as a fixed register; generated code
12509 should never refer to it (except perhaps as a stack pointer, frame
12510 pointer or in some other fixed role).
12511
12512 @var{reg} must be the name of a register. The register names accepted
12513 are machine-specific and are defined in the @code{REGISTER_NAMES}
12514 macro in the machine description macro file.
12515
12516 This flag does not have a negative form, because it specifies a
12517 three-way choice.
12518
12519 @item -fcall-used-@var{reg}
12520 @opindex fcall-used
12521 Treat the register named @var{reg} as an allocable register that is
12522 clobbered by function calls. It may be allocated for temporaries or
12523 variables that do not live across a call. Functions compiled this way
12524 do not save and restore the register @var{reg}.
12525
12526 It is an error to use this flag with the frame pointer or stack pointer.
12527 Use of this flag for other registers that have fixed pervasive roles in
12528 the machine's execution model produces disastrous results.
12529
12530 This flag does not have a negative form, because it specifies a
12531 three-way choice.
12532
12533 @item -fcall-saved-@var{reg}
12534 @opindex fcall-saved
12535 Treat the register named @var{reg} as an allocable register saved by
12536 functions. It may be allocated even for temporaries or variables that
12537 live across a call. Functions compiled this way save and restore
12538 the register @var{reg} if they use it.
12539
12540 It is an error to use this flag with the frame pointer or stack pointer.
12541 Use of this flag for other registers that have fixed pervasive roles in
12542 the machine's execution model produces disastrous results.
12543
12544 A different sort of disaster results from the use of this flag for
12545 a register in which function values may be returned.
12546
12547 This flag does not have a negative form, because it specifies a
12548 three-way choice.
12549
12550 @item -fpack-struct[=@var{n}]
12551 @opindex fpack-struct
12552 Without a value specified, pack all structure members together without
12553 holes. When a value is specified (which must be a small power of two), pack
12554 structure members according to this value, representing the maximum
12555 alignment (that is, objects with default alignment requirements larger than
12556 this are output potentially unaligned at the next fitting location.
12557
12558 @strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate
12559 code that is not binary compatible with code generated without that switch.
12560 Additionally, it makes the code suboptimal.
12561 Use it to conform to a non-default application binary interface.
12562
12563 @item -fleading-underscore
12564 @opindex fleading-underscore
12565 This option and its counterpart, @option{-fno-leading-underscore}, forcibly
12566 change the way C symbols are represented in the object file. One use
12567 is to help link with legacy assembly code.
12568
12569 @strong{Warning:} the @option{-fleading-underscore} switch causes GCC to
12570 generate code that is not binary compatible with code generated without that
12571 switch. Use it to conform to a non-default application binary interface.
12572 Not all targets provide complete support for this switch.
12573
12574 @item -ftls-model=@var{model}
12575 @opindex ftls-model
12576 Alter the thread-local storage model to be used (@pxref{Thread-Local}).
12577 The @var{model} argument should be one of @samp{global-dynamic},
12578 @samp{local-dynamic}, @samp{initial-exec} or @samp{local-exec}.
12579 Note that the choice is subject to optimization: the compiler may use
12580 a more efficient model for symbols not visible outside of the translation
12581 unit, or if @option{-fpic} is not given on the command line.
12582
12583 The default without @option{-fpic} is @samp{initial-exec}; with
12584 @option{-fpic} the default is @samp{global-dynamic}.
12585
12586 @item -ftrampolines
12587 @opindex ftrampolines
12588 For targets that normally need trampolines for nested functions, always
12589 generate them instead of using descriptors. Otherwise, for targets that
12590 do not need them, like for example HP-PA or IA-64, do nothing.
12591
12592 A trampoline is a small piece of code that is created at run time on the
12593 stack when the address of a nested function is taken, and is used to call
12594 the nested function indirectly. Therefore, it requires the stack to be
12595 made executable in order for the program to work properly.
12596
12597 @option{-fno-trampolines} is enabled by default on a language by language
12598 basis to let the compiler avoid generating them, if it computes that this
12599 is safe, and replace them with descriptors. Descriptors are made up of data
12600 only, but the generated code must be prepared to deal with them. As of this
12601 writing, @option{-fno-trampolines} is enabled by default only for Ada.
12602
12603 Moreover, code compiled with @option{-ftrampolines} and code compiled with
12604 @option{-fno-trampolines} are not binary compatible if nested functions are
12605 present. This option must therefore be used on a program-wide basis and be
12606 manipulated with extreme care.
12607
12608 @item -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]}
12609 @opindex fvisibility
12610 Set the default ELF image symbol visibility to the specified option---all
12611 symbols are marked with this unless overridden within the code.
12612 Using this feature can very substantially improve linking and
12613 load times of shared object libraries, produce more optimized
12614 code, provide near-perfect API export and prevent symbol clashes.
12615 It is @strong{strongly} recommended that you use this in any shared objects
12616 you distribute.
12617
12618 Despite the nomenclature, @samp{default} always means public; i.e.,
12619 available to be linked against from outside the shared object.
12620 @samp{protected} and @samp{internal} are pretty useless in real-world
12621 usage so the only other commonly used option is @samp{hidden}.
12622 The default if @option{-fvisibility} isn't specified is
12623 @samp{default}, i.e., make every symbol public.
12624
12625 A good explanation of the benefits offered by ensuring ELF
12626 symbols have the correct visibility is given by ``How To Write
12627 Shared Libraries'' by Ulrich Drepper (which can be found at
12628 @w{@uref{https://www.akkadia.org/drepper/}})---however a superior
12629 solution made possible by this option to marking things hidden when
12630 the default is public is to make the default hidden and mark things
12631 public. This is the norm with DLLs on Windows and with @option{-fvisibility=hidden}
12632 and @code{__attribute__ ((visibility("default")))} instead of
12633 @code{__declspec(dllexport)} you get almost identical semantics with
12634 identical syntax. This is a great boon to those working with
12635 cross-platform projects.
12636
12637 For those adding visibility support to existing code, you may find
12638 @code{#pragma GCC visibility} of use. This works by you enclosing
12639 the declarations you wish to set visibility for with (for example)
12640 @code{#pragma GCC visibility push(hidden)} and
12641 @code{#pragma GCC visibility pop}.
12642 Bear in mind that symbol visibility should be viewed @strong{as
12643 part of the API interface contract} and thus all new code should
12644 always specify visibility when it is not the default; i.e., declarations
12645 only for use within the local DSO should @strong{always} be marked explicitly
12646 as hidden as so to avoid PLT indirection overheads---making this
12647 abundantly clear also aids readability and self-documentation of the code.
12648 Note that due to ISO C++ specification requirements, @code{operator new} and
12649 @code{operator delete} must always be of default visibility.
12650
12651 Be aware that headers from outside your project, in particular system
12652 headers and headers from any other library you use, may not be
12653 expecting to be compiled with visibility other than the default. You
12654 may need to explicitly say @code{#pragma GCC visibility push(default)}
12655 before including any such headers.
12656
12657 @code{extern} declarations are not affected by @option{-fvisibility}, so
12658 a lot of code can be recompiled with @option{-fvisibility=hidden} with
12659 no modifications. However, this means that calls to @code{extern}
12660 functions with no explicit visibility use the PLT, so it is more
12661 effective to use @code{__attribute ((visibility))} and/or
12662 @code{#pragma GCC visibility} to tell the compiler which @code{extern}
12663 declarations should be treated as hidden.
12664
12665 Note that @option{-fvisibility} does affect C++ vague linkage
12666 entities. This means that, for instance, an exception class that is
12667 be thrown between DSOs must be explicitly marked with default
12668 visibility so that the @samp{type_info} nodes are unified between
12669 the DSOs.
12670
12671 An overview of these techniques, their benefits and how to use them
12672 is at @uref{http://gcc.gnu.org/@/wiki/@/Visibility}.
12673
12674 @item -fstrict-volatile-bitfields
12675 @opindex fstrict-volatile-bitfields
12676 This option should be used if accesses to volatile bit-fields (or other
12677 structure fields, although the compiler usually honors those types
12678 anyway) should use a single access of the width of the
12679 field's type, aligned to a natural alignment if possible. For
12680 example, targets with memory-mapped peripheral registers might require
12681 all such accesses to be 16 bits wide; with this flag you can
12682 declare all peripheral bit-fields as @code{unsigned short} (assuming short
12683 is 16 bits on these targets) to force GCC to use 16-bit accesses
12684 instead of, perhaps, a more efficient 32-bit access.
12685
12686 If this option is disabled, the compiler uses the most efficient
12687 instruction. In the previous example, that might be a 32-bit load
12688 instruction, even though that accesses bytes that do not contain
12689 any portion of the bit-field, or memory-mapped registers unrelated to
12690 the one being updated.
12691
12692 In some cases, such as when the @code{packed} attribute is applied to a
12693 structure field, it may not be possible to access the field with a single
12694 read or write that is correctly aligned for the target machine. In this
12695 case GCC falls back to generating multiple accesses rather than code that
12696 will fault or truncate the result at run time.
12697
12698 Note: Due to restrictions of the C/C++11 memory model, write accesses are
12699 not allowed to touch non bit-field members. It is therefore recommended
12700 to define all bits of the field's type as bit-field members.
12701
12702 The default value of this option is determined by the application binary
12703 interface for the target processor.
12704
12705 @item -fsync-libcalls
12706 @opindex fsync-libcalls
12707 This option controls whether any out-of-line instance of the @code{__sync}
12708 family of functions may be used to implement the C++11 @code{__atomic}
12709 family of functions.
12710
12711 The default value of this option is enabled, thus the only useful form
12712 of the option is @option{-fno-sync-libcalls}. This option is used in
12713 the implementation of the @file{libatomic} runtime library.
12714
12715 @end table
12716
12717 @node Developer Options
12718 @section GCC Developer Options
12719 @cindex developer options
12720 @cindex debugging GCC
12721 @cindex debug dump options
12722 @cindex dump options
12723 @cindex compilation statistics
12724
12725 This section describes command-line options that are primarily of
12726 interest to GCC developers, including options to support compiler
12727 testing and investigation of compiler bugs and compile-time
12728 performance problems. This includes options that produce debug dumps
12729 at various points in the compilation; that print statistics such as
12730 memory use and execution time; and that print information about GCC's
12731 configuration, such as where it searches for libraries. You should
12732 rarely need to use any of these options for ordinary compilation and
12733 linking tasks.
12734
12735 @table @gcctabopt
12736
12737 @item -d@var{letters}
12738 @itemx -fdump-rtl-@var{pass}
12739 @itemx -fdump-rtl-@var{pass}=@var{filename}
12740 @opindex d
12741 @opindex fdump-rtl-@var{pass}
12742 Says to make debugging dumps during compilation at times specified by
12743 @var{letters}. This is used for debugging the RTL-based passes of the
12744 compiler. The file names for most of the dumps are made by appending
12745 a pass number and a word to the @var{dumpname}, and the files are
12746 created in the directory of the output file. In case of
12747 @option{=@var{filename}} option, the dump is output on the given file
12748 instead of the pass numbered dump files. Note that the pass number is
12749 assigned as passes are registered into the pass manager. Most passes
12750 are registered in the order that they will execute and for these passes
12751 the number corresponds to the pass execution order. However, passes
12752 registered by plugins, passes specific to compilation targets, or
12753 passes that are otherwise registered after all the other passes are
12754 numbered higher than a pass named "final", even if they are executed
12755 earlier. @var{dumpname} is generated from the name of the output
12756 file if explicitly specified and not an executable, otherwise it is
12757 the basename of the source file.
12758
12759 Some @option{-d@var{letters}} switches have different meaning when
12760 @option{-E} is used for preprocessing. @xref{Preprocessor Options},
12761 for information about preprocessor-specific dump options.
12762
12763 Debug dumps can be enabled with a @option{-fdump-rtl} switch or some
12764 @option{-d} option @var{letters}. Here are the possible
12765 letters for use in @var{pass} and @var{letters}, and their meanings:
12766
12767 @table @gcctabopt
12768
12769 @item -fdump-rtl-alignments
12770 @opindex fdump-rtl-alignments
12771 Dump after branch alignments have been computed.
12772
12773 @item -fdump-rtl-asmcons
12774 @opindex fdump-rtl-asmcons
12775 Dump after fixing rtl statements that have unsatisfied in/out constraints.
12776
12777 @item -fdump-rtl-auto_inc_dec
12778 @opindex fdump-rtl-auto_inc_dec
12779 Dump after auto-inc-dec discovery. This pass is only run on
12780 architectures that have auto inc or auto dec instructions.
12781
12782 @item -fdump-rtl-barriers
12783 @opindex fdump-rtl-barriers
12784 Dump after cleaning up the barrier instructions.
12785
12786 @item -fdump-rtl-bbpart
12787 @opindex fdump-rtl-bbpart
12788 Dump after partitioning hot and cold basic blocks.
12789
12790 @item -fdump-rtl-bbro
12791 @opindex fdump-rtl-bbro
12792 Dump after block reordering.
12793
12794 @item -fdump-rtl-btl1
12795 @itemx -fdump-rtl-btl2
12796 @opindex fdump-rtl-btl2
12797 @opindex fdump-rtl-btl2
12798 @option{-fdump-rtl-btl1} and @option{-fdump-rtl-btl2} enable dumping
12799 after the two branch
12800 target load optimization passes.
12801
12802 @item -fdump-rtl-bypass
12803 @opindex fdump-rtl-bypass
12804 Dump after jump bypassing and control flow optimizations.
12805
12806 @item -fdump-rtl-combine
12807 @opindex fdump-rtl-combine
12808 Dump after the RTL instruction combination pass.
12809
12810 @item -fdump-rtl-compgotos
12811 @opindex fdump-rtl-compgotos
12812 Dump after duplicating the computed gotos.
12813
12814 @item -fdump-rtl-ce1
12815 @itemx -fdump-rtl-ce2
12816 @itemx -fdump-rtl-ce3
12817 @opindex fdump-rtl-ce1
12818 @opindex fdump-rtl-ce2
12819 @opindex fdump-rtl-ce3
12820 @option{-fdump-rtl-ce1}, @option{-fdump-rtl-ce2}, and
12821 @option{-fdump-rtl-ce3} enable dumping after the three
12822 if conversion passes.
12823
12824 @item -fdump-rtl-cprop_hardreg
12825 @opindex fdump-rtl-cprop_hardreg
12826 Dump after hard register copy propagation.
12827
12828 @item -fdump-rtl-csa
12829 @opindex fdump-rtl-csa
12830 Dump after combining stack adjustments.
12831
12832 @item -fdump-rtl-cse1
12833 @itemx -fdump-rtl-cse2
12834 @opindex fdump-rtl-cse1
12835 @opindex fdump-rtl-cse2
12836 @option{-fdump-rtl-cse1} and @option{-fdump-rtl-cse2} enable dumping after
12837 the two common subexpression elimination passes.
12838
12839 @item -fdump-rtl-dce
12840 @opindex fdump-rtl-dce
12841 Dump after the standalone dead code elimination passes.
12842
12843 @item -fdump-rtl-dbr
12844 @opindex fdump-rtl-dbr
12845 Dump after delayed branch scheduling.
12846
12847 @item -fdump-rtl-dce1
12848 @itemx -fdump-rtl-dce2
12849 @opindex fdump-rtl-dce1
12850 @opindex fdump-rtl-dce2
12851 @option{-fdump-rtl-dce1} and @option{-fdump-rtl-dce2} enable dumping after
12852 the two dead store elimination passes.
12853
12854 @item -fdump-rtl-eh
12855 @opindex fdump-rtl-eh
12856 Dump after finalization of EH handling code.
12857
12858 @item -fdump-rtl-eh_ranges
12859 @opindex fdump-rtl-eh_ranges
12860 Dump after conversion of EH handling range regions.
12861
12862 @item -fdump-rtl-expand
12863 @opindex fdump-rtl-expand
12864 Dump after RTL generation.
12865
12866 @item -fdump-rtl-fwprop1
12867 @itemx -fdump-rtl-fwprop2
12868 @opindex fdump-rtl-fwprop1
12869 @opindex fdump-rtl-fwprop2
12870 @option{-fdump-rtl-fwprop1} and @option{-fdump-rtl-fwprop2} enable
12871 dumping after the two forward propagation passes.
12872
12873 @item -fdump-rtl-gcse1
12874 @itemx -fdump-rtl-gcse2
12875 @opindex fdump-rtl-gcse1
12876 @opindex fdump-rtl-gcse2
12877 @option{-fdump-rtl-gcse1} and @option{-fdump-rtl-gcse2} enable dumping
12878 after global common subexpression elimination.
12879
12880 @item -fdump-rtl-init-regs
12881 @opindex fdump-rtl-init-regs
12882 Dump after the initialization of the registers.
12883
12884 @item -fdump-rtl-initvals
12885 @opindex fdump-rtl-initvals
12886 Dump after the computation of the initial value sets.
12887
12888 @item -fdump-rtl-into_cfglayout
12889 @opindex fdump-rtl-into_cfglayout
12890 Dump after converting to cfglayout mode.
12891
12892 @item -fdump-rtl-ira
12893 @opindex fdump-rtl-ira
12894 Dump after iterated register allocation.
12895
12896 @item -fdump-rtl-jump
12897 @opindex fdump-rtl-jump
12898 Dump after the second jump optimization.
12899
12900 @item -fdump-rtl-loop2
12901 @opindex fdump-rtl-loop2
12902 @option{-fdump-rtl-loop2} enables dumping after the rtl
12903 loop optimization passes.
12904
12905 @item -fdump-rtl-mach
12906 @opindex fdump-rtl-mach
12907 Dump after performing the machine dependent reorganization pass, if that
12908 pass exists.
12909
12910 @item -fdump-rtl-mode_sw
12911 @opindex fdump-rtl-mode_sw
12912 Dump after removing redundant mode switches.
12913
12914 @item -fdump-rtl-rnreg
12915 @opindex fdump-rtl-rnreg
12916 Dump after register renumbering.
12917
12918 @item -fdump-rtl-outof_cfglayout
12919 @opindex fdump-rtl-outof_cfglayout
12920 Dump after converting from cfglayout mode.
12921
12922 @item -fdump-rtl-peephole2
12923 @opindex fdump-rtl-peephole2
12924 Dump after the peephole pass.
12925
12926 @item -fdump-rtl-postreload
12927 @opindex fdump-rtl-postreload
12928 Dump after post-reload optimizations.
12929
12930 @item -fdump-rtl-pro_and_epilogue
12931 @opindex fdump-rtl-pro_and_epilogue
12932 Dump after generating the function prologues and epilogues.
12933
12934 @item -fdump-rtl-sched1
12935 @itemx -fdump-rtl-sched2
12936 @opindex fdump-rtl-sched1
12937 @opindex fdump-rtl-sched2
12938 @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2} enable dumping
12939 after the basic block scheduling passes.
12940
12941 @item -fdump-rtl-ree
12942 @opindex fdump-rtl-ree
12943 Dump after sign/zero extension elimination.
12944
12945 @item -fdump-rtl-seqabstr
12946 @opindex fdump-rtl-seqabstr
12947 Dump after common sequence discovery.
12948
12949 @item -fdump-rtl-shorten
12950 @opindex fdump-rtl-shorten
12951 Dump after shortening branches.
12952
12953 @item -fdump-rtl-sibling
12954 @opindex fdump-rtl-sibling
12955 Dump after sibling call optimizations.
12956
12957 @item -fdump-rtl-split1
12958 @itemx -fdump-rtl-split2
12959 @itemx -fdump-rtl-split3
12960 @itemx -fdump-rtl-split4
12961 @itemx -fdump-rtl-split5
12962 @opindex fdump-rtl-split1
12963 @opindex fdump-rtl-split2
12964 @opindex fdump-rtl-split3
12965 @opindex fdump-rtl-split4
12966 @opindex fdump-rtl-split5
12967 These options enable dumping after five rounds of
12968 instruction splitting.
12969
12970 @item -fdump-rtl-sms
12971 @opindex fdump-rtl-sms
12972 Dump after modulo scheduling. This pass is only run on some
12973 architectures.
12974
12975 @item -fdump-rtl-stack
12976 @opindex fdump-rtl-stack
12977 Dump after conversion from GCC's ``flat register file'' registers to the
12978 x87's stack-like registers. This pass is only run on x86 variants.
12979
12980 @item -fdump-rtl-subreg1
12981 @itemx -fdump-rtl-subreg2
12982 @opindex fdump-rtl-subreg1
12983 @opindex fdump-rtl-subreg2
12984 @option{-fdump-rtl-subreg1} and @option{-fdump-rtl-subreg2} enable dumping after
12985 the two subreg expansion passes.
12986
12987 @item -fdump-rtl-unshare
12988 @opindex fdump-rtl-unshare
12989 Dump after all rtl has been unshared.
12990
12991 @item -fdump-rtl-vartrack
12992 @opindex fdump-rtl-vartrack
12993 Dump after variable tracking.
12994
12995 @item -fdump-rtl-vregs
12996 @opindex fdump-rtl-vregs
12997 Dump after converting virtual registers to hard registers.
12998
12999 @item -fdump-rtl-web
13000 @opindex fdump-rtl-web
13001 Dump after live range splitting.
13002
13003 @item -fdump-rtl-regclass
13004 @itemx -fdump-rtl-subregs_of_mode_init
13005 @itemx -fdump-rtl-subregs_of_mode_finish
13006 @itemx -fdump-rtl-dfinit
13007 @itemx -fdump-rtl-dfinish
13008 @opindex fdump-rtl-regclass
13009 @opindex fdump-rtl-subregs_of_mode_init
13010 @opindex fdump-rtl-subregs_of_mode_finish
13011 @opindex fdump-rtl-dfinit
13012 @opindex fdump-rtl-dfinish
13013 These dumps are defined but always produce empty files.
13014
13015 @item -da
13016 @itemx -fdump-rtl-all
13017 @opindex da
13018 @opindex fdump-rtl-all
13019 Produce all the dumps listed above.
13020
13021 @item -dA
13022 @opindex dA
13023 Annotate the assembler output with miscellaneous debugging information.
13024
13025 @item -dD
13026 @opindex dD
13027 Dump all macro definitions, at the end of preprocessing, in addition to
13028 normal output.
13029
13030 @item -dH
13031 @opindex dH
13032 Produce a core dump whenever an error occurs.
13033
13034 @item -dp
13035 @opindex dp
13036 Annotate the assembler output with a comment indicating which
13037 pattern and alternative is used. The length of each instruction is
13038 also printed.
13039
13040 @item -dP
13041 @opindex dP
13042 Dump the RTL in the assembler output as a comment before each instruction.
13043 Also turns on @option{-dp} annotation.
13044
13045 @item -dx
13046 @opindex dx
13047 Just generate RTL for a function instead of compiling it. Usually used
13048 with @option{-fdump-rtl-expand}.
13049 @end table
13050
13051 @item -fdump-noaddr
13052 @opindex fdump-noaddr
13053 When doing debugging dumps, suppress address output. This makes it more
13054 feasible to use diff on debugging dumps for compiler invocations with
13055 different compiler binaries and/or different
13056 text / bss / data / heap / stack / dso start locations.
13057
13058 @item -freport-bug
13059 @opindex freport-bug
13060 Collect and dump debug information into a temporary file if an
13061 internal compiler error (ICE) occurs.
13062
13063 @item -fdump-unnumbered
13064 @opindex fdump-unnumbered
13065 When doing debugging dumps, suppress instruction numbers and address output.
13066 This makes it more feasible to use diff on debugging dumps for compiler
13067 invocations with different options, in particular with and without
13068 @option{-g}.
13069
13070 @item -fdump-unnumbered-links
13071 @opindex fdump-unnumbered-links
13072 When doing debugging dumps (see @option{-d} option above), suppress
13073 instruction numbers for the links to the previous and next instructions
13074 in a sequence.
13075
13076 @item -fdump-ipa-@var{switch}
13077 @opindex fdump-ipa
13078 Control the dumping at various stages of inter-procedural analysis
13079 language tree to a file. The file name is generated by appending a
13080 switch specific suffix to the source file name, and the file is created
13081 in the same directory as the output file. The following dumps are
13082 possible:
13083
13084 @table @samp
13085 @item all
13086 Enables all inter-procedural analysis dumps.
13087
13088 @item cgraph
13089 Dumps information about call-graph optimization, unused function removal,
13090 and inlining decisions.
13091
13092 @item inline
13093 Dump after function inlining.
13094
13095 @end table
13096
13097 @item -fdump-lang-all
13098 @itemx -fdump-lang-@var{switch}
13099 @itemx -fdump-lang-@var{switch}-@var{options}
13100 @itemx -fdump-lang-@var{switch}-@var{options}=@var{filename}
13101 @opindex fdump-lang-all
13102 @opindex fdump-lang
13103 Control the dumping of language-specific information. The @var{options}
13104 and @var{filename} portions behave as described in the
13105 @option{-fdump-tree} option. The following @var{switch} values are
13106 accepted:
13107
13108 @table @samp
13109 @item all
13110
13111 Enable all language-specific dumps.
13112
13113 @item class
13114 Dump class hierarchy information. Virtual table information is emitted
13115 unless '@option{slim}' is specified. This option is applicable to C++ only.
13116
13117 @item raw
13118 Dump the raw internal tree data. This option is applicable to C++ only.
13119
13120 @end table
13121
13122 @item -fdump-passes
13123 @opindex fdump-passes
13124 Print on @file{stderr} the list of optimization passes that are turned
13125 on and off by the current command-line options.
13126
13127 @item -fdump-statistics-@var{option}
13128 @opindex fdump-statistics
13129 Enable and control dumping of pass statistics in a separate file. The
13130 file name is generated by appending a suffix ending in
13131 @samp{.statistics} to the source file name, and the file is created in
13132 the same directory as the output file. If the @samp{-@var{option}}
13133 form is used, @samp{-stats} causes counters to be summed over the
13134 whole compilation unit while @samp{-details} dumps every event as
13135 the passes generate them. The default with no option is to sum
13136 counters for each function compiled.
13137
13138 @item -fdump-tree-all
13139 @itemx -fdump-tree-@var{switch}
13140 @itemx -fdump-tree-@var{switch}-@var{options}
13141 @itemx -fdump-tree-@var{switch}-@var{options}=@var{filename}
13142 @opindex fdump-tree-all
13143 @opindex fdump-tree
13144 Control the dumping at various stages of processing the intermediate
13145 language tree to a file. The file name is generated by appending a
13146 switch-specific suffix to the source file name, and the file is
13147 created in the same directory as the output file. In case of
13148 @option{=@var{filename}} option, the dump is output on the given file
13149 instead of the auto named dump files. If the @samp{-@var{options}}
13150 form is used, @var{options} is a list of @samp{-} separated options
13151 which control the details of the dump. Not all options are applicable
13152 to all dumps; those that are not meaningful are ignored. The
13153 following options are available
13154
13155 @table @samp
13156 @item address
13157 Print the address of each node. Usually this is not meaningful as it
13158 changes according to the environment and source file. Its primary use
13159 is for tying up a dump file with a debug environment.
13160 @item asmname
13161 If @code{DECL_ASSEMBLER_NAME} has been set for a given decl, use that
13162 in the dump instead of @code{DECL_NAME}. Its primary use is ease of
13163 use working backward from mangled names in the assembly file.
13164 @item slim
13165 When dumping front-end intermediate representations, inhibit dumping
13166 of members of a scope or body of a function merely because that scope
13167 has been reached. Only dump such items when they are directly reachable
13168 by some other path.
13169
13170 When dumping pretty-printed trees, this option inhibits dumping the
13171 bodies of control structures.
13172
13173 When dumping RTL, print the RTL in slim (condensed) form instead of
13174 the default LISP-like representation.
13175 @item raw
13176 Print a raw representation of the tree. By default, trees are
13177 pretty-printed into a C-like representation.
13178 @item details
13179 Enable more detailed dumps (not honored by every dump option). Also
13180 include information from the optimization passes.
13181 @item stats
13182 Enable dumping various statistics about the pass (not honored by every dump
13183 option).
13184 @item blocks
13185 Enable showing basic block boundaries (disabled in raw dumps).
13186 @item graph
13187 For each of the other indicated dump files (@option{-fdump-rtl-@var{pass}}),
13188 dump a representation of the control flow graph suitable for viewing with
13189 GraphViz to @file{@var{file}.@var{passid}.@var{pass}.dot}. Each function in
13190 the file is pretty-printed as a subgraph, so that GraphViz can render them
13191 all in a single plot.
13192
13193 This option currently only works for RTL dumps, and the RTL is always
13194 dumped in slim form.
13195 @item vops
13196 Enable showing virtual operands for every statement.
13197 @item lineno
13198 Enable showing line numbers for statements.
13199 @item uid
13200 Enable showing the unique ID (@code{DECL_UID}) for each variable.
13201 @item verbose
13202 Enable showing the tree dump for each statement.
13203 @item eh
13204 Enable showing the EH region number holding each statement.
13205 @item scev
13206 Enable showing scalar evolution analysis details.
13207 @item optimized
13208 Enable showing optimization information (only available in certain
13209 passes).
13210 @item missed
13211 Enable showing missed optimization information (only available in certain
13212 passes).
13213 @item note
13214 Enable other detailed optimization information (only available in
13215 certain passes).
13216 @item =@var{filename}
13217 Instead of an auto named dump file, output into the given file
13218 name. The file names @file{stdout} and @file{stderr} are treated
13219 specially and are considered already open standard streams. For
13220 example,
13221
13222 @smallexample
13223 gcc -O2 -ftree-vectorize -fdump-tree-vect-blocks=foo.dump
13224 -fdump-tree-pre=/dev/stderr file.c
13225 @end smallexample
13226
13227 outputs vectorizer dump into @file{foo.dump}, while the PRE dump is
13228 output on to @file{stderr}. If two conflicting dump filenames are
13229 given for the same pass, then the latter option overrides the earlier
13230 one.
13231
13232 @item all
13233 Turn on all options, except @option{raw}, @option{slim}, @option{verbose}
13234 and @option{lineno}.
13235
13236 @item optall
13237 Turn on all optimization options, i.e., @option{optimized},
13238 @option{missed}, and @option{note}.
13239 @end table
13240
13241 To determine what tree dumps are available or find the dump for a pass
13242 of interest follow the steps below.
13243
13244 @enumerate
13245 @item
13246 Invoke GCC with @option{-fdump-passes} and in the @file{stderr} output
13247 look for a code that corresponds to the pass you are interested in.
13248 For example, the codes @code{tree-evrp}, @code{tree-vrp1}, and
13249 @code{tree-vrp2} correspond to the three Value Range Propagation passes.
13250 The number at the end distinguishes distinct invocations of the same pass.
13251 @item
13252 To enable the creation of the dump file, append the pass code to
13253 the @option{-fdump-} option prefix and invoke GCC with it. For example,
13254 to enable the dump from the Early Value Range Propagation pass, invoke
13255 GCC with the @option{-fdump-tree-evrp} option. Optionally, you may
13256 specify the name of the dump file. If you don't specify one, GCC
13257 creates as described below.
13258 @item
13259 Find the pass dump in a file whose name is composed of three components
13260 separated by a period: the name of the source file GCC was invoked to
13261 compile, a numeric suffix indicating the pass number followed by the
13262 letter @samp{t} for tree passes (and the letter @samp{r} for RTL passes),
13263 and finally the pass code. For example, the Early VRP pass dump might
13264 be in a file named @file{myfile.c.038t.evrp} in the current working
13265 directory. Note that the numeric codes are not stable and may change
13266 from one version of GCC to another.
13267 @end enumerate
13268
13269 @item -fopt-info
13270 @itemx -fopt-info-@var{options}
13271 @itemx -fopt-info-@var{options}=@var{filename}
13272 @opindex fopt-info
13273 Controls optimization dumps from various optimization passes. If the
13274 @samp{-@var{options}} form is used, @var{options} is a list of
13275 @samp{-} separated option keywords to select the dump details and
13276 optimizations.
13277
13278 The @var{options} can be divided into two groups: options describing the
13279 verbosity of the dump, and options describing which optimizations
13280 should be included. The options from both the groups can be freely
13281 mixed as they are non-overlapping. However, in case of any conflicts,
13282 the later options override the earlier options on the command
13283 line.
13284
13285 The following options control the dump verbosity:
13286
13287 @table @samp
13288 @item optimized
13289 Print information when an optimization is successfully applied. It is
13290 up to a pass to decide which information is relevant. For example, the
13291 vectorizer passes print the source location of loops which are
13292 successfully vectorized.
13293 @item missed
13294 Print information about missed optimizations. Individual passes
13295 control which information to include in the output.
13296 @item note
13297 Print verbose information about optimizations, such as certain
13298 transformations, more detailed messages about decisions etc.
13299 @item all
13300 Print detailed optimization information. This includes
13301 @samp{optimized}, @samp{missed}, and @samp{note}.
13302 @end table
13303
13304 One or more of the following option keywords can be used to describe a
13305 group of optimizations:
13306
13307 @table @samp
13308 @item ipa
13309 Enable dumps from all interprocedural optimizations.
13310 @item loop
13311 Enable dumps from all loop optimizations.
13312 @item inline
13313 Enable dumps from all inlining optimizations.
13314 @item omp
13315 Enable dumps from all OMP (Offloading and Multi Processing) optimizations.
13316 @item vec
13317 Enable dumps from all vectorization optimizations.
13318 @item optall
13319 Enable dumps from all optimizations. This is a superset of
13320 the optimization groups listed above.
13321 @end table
13322
13323 If @var{options} is
13324 omitted, it defaults to @samp{optimized-optall}, which means to dump all
13325 info about successful optimizations from all the passes.
13326
13327 If the @var{filename} is provided, then the dumps from all the
13328 applicable optimizations are concatenated into the @var{filename}.
13329 Otherwise the dump is output onto @file{stderr}. Though multiple
13330 @option{-fopt-info} options are accepted, only one of them can include
13331 a @var{filename}. If other filenames are provided then all but the
13332 first such option are ignored.
13333
13334 Note that the output @var{filename} is overwritten
13335 in case of multiple translation units. If a combined output from
13336 multiple translation units is desired, @file{stderr} should be used
13337 instead.
13338
13339 In the following example, the optimization info is output to
13340 @file{stderr}:
13341
13342 @smallexample
13343 gcc -O3 -fopt-info
13344 @end smallexample
13345
13346 This example:
13347 @smallexample
13348 gcc -O3 -fopt-info-missed=missed.all
13349 @end smallexample
13350
13351 @noindent
13352 outputs missed optimization report from all the passes into
13353 @file{missed.all}, and this one:
13354
13355 @smallexample
13356 gcc -O2 -ftree-vectorize -fopt-info-vec-missed
13357 @end smallexample
13358
13359 @noindent
13360 prints information about missed optimization opportunities from
13361 vectorization passes on @file{stderr}.
13362 Note that @option{-fopt-info-vec-missed} is equivalent to
13363 @option{-fopt-info-missed-vec}. The order of the optimization group
13364 names and message types listed after @option{-fopt-info} does not matter.
13365
13366 As another example,
13367 @smallexample
13368 gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
13369 @end smallexample
13370
13371 @noindent
13372 outputs information about missed optimizations as well as
13373 optimized locations from all the inlining passes into
13374 @file{inline.txt}.
13375
13376 Finally, consider:
13377
13378 @smallexample
13379 gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
13380 @end smallexample
13381
13382 @noindent
13383 Here the two output filenames @file{vec.miss} and @file{loop.opt} are
13384 in conflict since only one output file is allowed. In this case, only
13385 the first option takes effect and the subsequent options are
13386 ignored. Thus only @file{vec.miss} is produced which contains
13387 dumps from the vectorizer about missed opportunities.
13388
13389 @item -fsched-verbose=@var{n}
13390 @opindex fsched-verbose
13391 On targets that use instruction scheduling, this option controls the
13392 amount of debugging output the scheduler prints to the dump files.
13393
13394 For @var{n} greater than zero, @option{-fsched-verbose} outputs the
13395 same information as @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2}.
13396 For @var{n} greater than one, it also output basic block probabilities,
13397 detailed ready list information and unit/insn info. For @var{n} greater
13398 than two, it includes RTL at abort point, control-flow and regions info.
13399 And for @var{n} over four, @option{-fsched-verbose} also includes
13400 dependence info.
13401
13402
13403
13404 @item -fenable-@var{kind}-@var{pass}
13405 @itemx -fdisable-@var{kind}-@var{pass}=@var{range-list}
13406 @opindex fdisable-
13407 @opindex fenable-
13408
13409 This is a set of options that are used to explicitly disable/enable
13410 optimization passes. These options are intended for use for debugging GCC.
13411 Compiler users should use regular options for enabling/disabling
13412 passes instead.
13413
13414 @table @gcctabopt
13415
13416 @item -fdisable-ipa-@var{pass}
13417 Disable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
13418 statically invoked in the compiler multiple times, the pass name should be
13419 appended with a sequential number starting from 1.
13420
13421 @item -fdisable-rtl-@var{pass}
13422 @itemx -fdisable-rtl-@var{pass}=@var{range-list}
13423 Disable RTL pass @var{pass}. @var{pass} is the pass name. If the same pass is
13424 statically invoked in the compiler multiple times, the pass name should be
13425 appended with a sequential number starting from 1. @var{range-list} is a
13426 comma-separated list of function ranges or assembler names. Each range is a number
13427 pair separated by a colon. The range is inclusive in both ends. If the range
13428 is trivial, the number pair can be simplified as a single number. If the
13429 function's call graph node's @var{uid} falls within one of the specified ranges,
13430 the @var{pass} is disabled for that function. The @var{uid} is shown in the
13431 function header of a dump file, and the pass names can be dumped by using
13432 option @option{-fdump-passes}.
13433
13434 @item -fdisable-tree-@var{pass}
13435 @itemx -fdisable-tree-@var{pass}=@var{range-list}
13436 Disable tree pass @var{pass}. See @option{-fdisable-rtl} for the description of
13437 option arguments.
13438
13439 @item -fenable-ipa-@var{pass}
13440 Enable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
13441 statically invoked in the compiler multiple times, the pass name should be
13442 appended with a sequential number starting from 1.
13443
13444 @item -fenable-rtl-@var{pass}
13445 @itemx -fenable-rtl-@var{pass}=@var{range-list}
13446 Enable RTL pass @var{pass}. See @option{-fdisable-rtl} for option argument
13447 description and examples.
13448
13449 @item -fenable-tree-@var{pass}
13450 @itemx -fenable-tree-@var{pass}=@var{range-list}
13451 Enable tree pass @var{pass}. See @option{-fdisable-rtl} for the description
13452 of option arguments.
13453
13454 @end table
13455
13456 Here are some examples showing uses of these options.
13457
13458 @smallexample
13459
13460 # disable ccp1 for all functions
13461 -fdisable-tree-ccp1
13462 # disable complete unroll for function whose cgraph node uid is 1
13463 -fenable-tree-cunroll=1
13464 # disable gcse2 for functions at the following ranges [1,1],
13465 # [300,400], and [400,1000]
13466 # disable gcse2 for functions foo and foo2
13467 -fdisable-rtl-gcse2=foo,foo2
13468 # disable early inlining
13469 -fdisable-tree-einline
13470 # disable ipa inlining
13471 -fdisable-ipa-inline
13472 # enable tree full unroll
13473 -fenable-tree-unroll
13474
13475 @end smallexample
13476
13477 @item -fchecking
13478 @itemx -fchecking=@var{n}
13479 @opindex fchecking
13480 @opindex fno-checking
13481 Enable internal consistency checking. The default depends on
13482 the compiler configuration. @option{-fchecking=2} enables further
13483 internal consistency checking that might affect code generation.
13484
13485 @item -frandom-seed=@var{string}
13486 @opindex frandom-seed
13487 This option provides a seed that GCC uses in place of
13488 random numbers in generating certain symbol names
13489 that have to be different in every compiled file. It is also used to
13490 place unique stamps in coverage data files and the object files that
13491 produce them. You can use the @option{-frandom-seed} option to produce
13492 reproducibly identical object files.
13493
13494 The @var{string} can either be a number (decimal, octal or hex) or an
13495 arbitrary string (in which case it's converted to a number by
13496 computing CRC32).
13497
13498 The @var{string} should be different for every file you compile.
13499
13500 @item -save-temps
13501 @itemx -save-temps=cwd
13502 @opindex save-temps
13503 Store the usual ``temporary'' intermediate files permanently; place them
13504 in the current directory and name them based on the source file. Thus,
13505 compiling @file{foo.c} with @option{-c -save-temps} produces files
13506 @file{foo.i} and @file{foo.s}, as well as @file{foo.o}. This creates a
13507 preprocessed @file{foo.i} output file even though the compiler now
13508 normally uses an integrated preprocessor.
13509
13510 When used in combination with the @option{-x} command-line option,
13511 @option{-save-temps} is sensible enough to avoid over writing an
13512 input source file with the same extension as an intermediate file.
13513 The corresponding intermediate file may be obtained by renaming the
13514 source file before using @option{-save-temps}.
13515
13516 If you invoke GCC in parallel, compiling several different source
13517 files that share a common base name in different subdirectories or the
13518 same source file compiled for multiple output destinations, it is
13519 likely that the different parallel compilers will interfere with each
13520 other, and overwrite the temporary files. For instance:
13521
13522 @smallexample
13523 gcc -save-temps -o outdir1/foo.o indir1/foo.c&
13524 gcc -save-temps -o outdir2/foo.o indir2/foo.c&
13525 @end smallexample
13526
13527 may result in @file{foo.i} and @file{foo.o} being written to
13528 simultaneously by both compilers.
13529
13530 @item -save-temps=obj
13531 @opindex save-temps=obj
13532 Store the usual ``temporary'' intermediate files permanently. If the
13533 @option{-o} option is used, the temporary files are based on the
13534 object file. If the @option{-o} option is not used, the
13535 @option{-save-temps=obj} switch behaves like @option{-save-temps}.
13536
13537 For example:
13538
13539 @smallexample
13540 gcc -save-temps=obj -c foo.c
13541 gcc -save-temps=obj -c bar.c -o dir/xbar.o
13542 gcc -save-temps=obj foobar.c -o dir2/yfoobar
13543 @end smallexample
13544
13545 @noindent
13546 creates @file{foo.i}, @file{foo.s}, @file{dir/xbar.i},
13547 @file{dir/xbar.s}, @file{dir2/yfoobar.i}, @file{dir2/yfoobar.s}, and
13548 @file{dir2/yfoobar.o}.
13549
13550 @item -time@r{[}=@var{file}@r{]}
13551 @opindex time
13552 Report the CPU time taken by each subprocess in the compilation
13553 sequence. For C source files, this is the compiler proper and assembler
13554 (plus the linker if linking is done).
13555
13556 Without the specification of an output file, the output looks like this:
13557
13558 @smallexample
13559 # cc1 0.12 0.01
13560 # as 0.00 0.01
13561 @end smallexample
13562
13563 The first number on each line is the ``user time'', that is time spent
13564 executing the program itself. The second number is ``system time'',
13565 time spent executing operating system routines on behalf of the program.
13566 Both numbers are in seconds.
13567
13568 With the specification of an output file, the output is appended to the
13569 named file, and it looks like this:
13570
13571 @smallexample
13572 0.12 0.01 cc1 @var{options}
13573 0.00 0.01 as @var{options}
13574 @end smallexample
13575
13576 The ``user time'' and the ``system time'' are moved before the program
13577 name, and the options passed to the program are displayed, so that one
13578 can later tell what file was being compiled, and with which options.
13579
13580 @item -fdump-final-insns@r{[}=@var{file}@r{]}
13581 @opindex fdump-final-insns
13582 Dump the final internal representation (RTL) to @var{file}. If the
13583 optional argument is omitted (or if @var{file} is @code{.}), the name
13584 of the dump file is determined by appending @code{.gkd} to the
13585 compilation output file name.
13586
13587 @item -fcompare-debug@r{[}=@var{opts}@r{]}
13588 @opindex fcompare-debug
13589 @opindex fno-compare-debug
13590 If no error occurs during compilation, run the compiler a second time,
13591 adding @var{opts} and @option{-fcompare-debug-second} to the arguments
13592 passed to the second compilation. Dump the final internal
13593 representation in both compilations, and print an error if they differ.
13594
13595 If the equal sign is omitted, the default @option{-gtoggle} is used.
13596
13597 The environment variable @env{GCC_COMPARE_DEBUG}, if defined, non-empty
13598 and nonzero, implicitly enables @option{-fcompare-debug}. If
13599 @env{GCC_COMPARE_DEBUG} is defined to a string starting with a dash,
13600 then it is used for @var{opts}, otherwise the default @option{-gtoggle}
13601 is used.
13602
13603 @option{-fcompare-debug=}, with the equal sign but without @var{opts},
13604 is equivalent to @option{-fno-compare-debug}, which disables the dumping
13605 of the final representation and the second compilation, preventing even
13606 @env{GCC_COMPARE_DEBUG} from taking effect.
13607
13608 To verify full coverage during @option{-fcompare-debug} testing, set
13609 @env{GCC_COMPARE_DEBUG} to say @option{-fcompare-debug-not-overridden},
13610 which GCC rejects as an invalid option in any actual compilation
13611 (rather than preprocessing, assembly or linking). To get just a
13612 warning, setting @env{GCC_COMPARE_DEBUG} to @samp{-w%n-fcompare-debug
13613 not overridden} will do.
13614
13615 @item -fcompare-debug-second
13616 @opindex fcompare-debug-second
13617 This option is implicitly passed to the compiler for the second
13618 compilation requested by @option{-fcompare-debug}, along with options to
13619 silence warnings, and omitting other options that would cause
13620 side-effect compiler outputs to files or to the standard output. Dump
13621 files and preserved temporary files are renamed so as to contain the
13622 @code{.gk} additional extension during the second compilation, to avoid
13623 overwriting those generated by the first.
13624
13625 When this option is passed to the compiler driver, it causes the
13626 @emph{first} compilation to be skipped, which makes it useful for little
13627 other than debugging the compiler proper.
13628
13629 @item -gtoggle
13630 @opindex gtoggle
13631 Turn off generation of debug info, if leaving out this option
13632 generates it, or turn it on at level 2 otherwise. The position of this
13633 argument in the command line does not matter; it takes effect after all
13634 other options are processed, and it does so only once, no matter how
13635 many times it is given. This is mainly intended to be used with
13636 @option{-fcompare-debug}.
13637
13638 @item -fvar-tracking-assignments-toggle
13639 @opindex fvar-tracking-assignments-toggle
13640 @opindex fno-var-tracking-assignments-toggle
13641 Toggle @option{-fvar-tracking-assignments}, in the same way that
13642 @option{-gtoggle} toggles @option{-g}.
13643
13644 @item -Q
13645 @opindex Q
13646 Makes the compiler print out each function name as it is compiled, and
13647 print some statistics about each pass when it finishes.
13648
13649 @item -ftime-report
13650 @opindex ftime-report
13651 Makes the compiler print some statistics about the time consumed by each
13652 pass when it finishes.
13653
13654 @item -ftime-report-details
13655 @opindex ftime-report-details
13656 Record the time consumed by infrastructure parts separately for each pass.
13657
13658 @item -fira-verbose=@var{n}
13659 @opindex fira-verbose
13660 Control the verbosity of the dump file for the integrated register allocator.
13661 The default value is 5. If the value @var{n} is greater or equal to 10,
13662 the dump output is sent to stderr using the same format as @var{n} minus 10.
13663
13664 @item -flto-report
13665 @opindex flto-report
13666 Prints a report with internal details on the workings of the link-time
13667 optimizer. The contents of this report vary from version to version.
13668 It is meant to be useful to GCC developers when processing object
13669 files in LTO mode (via @option{-flto}).
13670
13671 Disabled by default.
13672
13673 @item -flto-report-wpa
13674 @opindex flto-report-wpa
13675 Like @option{-flto-report}, but only print for the WPA phase of Link
13676 Time Optimization.
13677
13678 @item -fmem-report
13679 @opindex fmem-report
13680 Makes the compiler print some statistics about permanent memory
13681 allocation when it finishes.
13682
13683 @item -fmem-report-wpa
13684 @opindex fmem-report-wpa
13685 Makes the compiler print some statistics about permanent memory
13686 allocation for the WPA phase only.
13687
13688 @item -fpre-ipa-mem-report
13689 @opindex fpre-ipa-mem-report
13690 @item -fpost-ipa-mem-report
13691 @opindex fpost-ipa-mem-report
13692 Makes the compiler print some statistics about permanent memory
13693 allocation before or after interprocedural optimization.
13694
13695 @item -fprofile-report
13696 @opindex fprofile-report
13697 Makes the compiler print some statistics about consistency of the
13698 (estimated) profile and effect of individual passes.
13699
13700 @item -fstack-usage
13701 @opindex fstack-usage
13702 Makes the compiler output stack usage information for the program, on a
13703 per-function basis. The filename for the dump is made by appending
13704 @file{.su} to the @var{auxname}. @var{auxname} is generated from the name of
13705 the output file, if explicitly specified and it is not an executable,
13706 otherwise it is the basename of the source file. An entry is made up
13707 of three fields:
13708
13709 @itemize
13710 @item
13711 The name of the function.
13712 @item
13713 A number of bytes.
13714 @item
13715 One or more qualifiers: @code{static}, @code{dynamic}, @code{bounded}.
13716 @end itemize
13717
13718 The qualifier @code{static} means that the function manipulates the stack
13719 statically: a fixed number of bytes are allocated for the frame on function
13720 entry and released on function exit; no stack adjustments are otherwise made
13721 in the function. The second field is this fixed number of bytes.
13722
13723 The qualifier @code{dynamic} means that the function manipulates the stack
13724 dynamically: in addition to the static allocation described above, stack
13725 adjustments are made in the body of the function, for example to push/pop
13726 arguments around function calls. If the qualifier @code{bounded} is also
13727 present, the amount of these adjustments is bounded at compile time and
13728 the second field is an upper bound of the total amount of stack used by
13729 the function. If it is not present, the amount of these adjustments is
13730 not bounded at compile time and the second field only represents the
13731 bounded part.
13732
13733 @item -fstats
13734 @opindex fstats
13735 Emit statistics about front-end processing at the end of the compilation.
13736 This option is supported only by the C++ front end, and
13737 the information is generally only useful to the G++ development team.
13738
13739 @item -fdbg-cnt-list
13740 @opindex fdbg-cnt-list
13741 Print the name and the counter upper bound for all debug counters.
13742
13743
13744 @item -fdbg-cnt=@var{counter-value-list}
13745 @opindex fdbg-cnt
13746 Set the internal debug counter upper bound. @var{counter-value-list}
13747 is a comma-separated list of @var{name}:@var{value} pairs
13748 which sets the upper bound of each debug counter @var{name} to @var{value}.
13749 All debug counters have the initial upper bound of @code{UINT_MAX};
13750 thus @code{dbg_cnt} returns true always unless the upper bound
13751 is set by this option.
13752 For example, with @option{-fdbg-cnt=dce:10,tail_call:0},
13753 @code{dbg_cnt(dce)} returns true only for first 10 invocations.
13754
13755 @item -print-file-name=@var{library}
13756 @opindex print-file-name
13757 Print the full absolute name of the library file @var{library} that
13758 would be used when linking---and don't do anything else. With this
13759 option, GCC does not compile or link anything; it just prints the
13760 file name.
13761
13762 @item -print-multi-directory
13763 @opindex print-multi-directory
13764 Print the directory name corresponding to the multilib selected by any
13765 other switches present in the command line. This directory is supposed
13766 to exist in @env{GCC_EXEC_PREFIX}.
13767
13768 @item -print-multi-lib
13769 @opindex print-multi-lib
13770 Print the mapping from multilib directory names to compiler switches
13771 that enable them. The directory name is separated from the switches by
13772 @samp{;}, and each switch starts with an @samp{@@} instead of the
13773 @samp{-}, without spaces between multiple switches. This is supposed to
13774 ease shell processing.
13775
13776 @item -print-multi-os-directory
13777 @opindex print-multi-os-directory
13778 Print the path to OS libraries for the selected
13779 multilib, relative to some @file{lib} subdirectory. If OS libraries are
13780 present in the @file{lib} subdirectory and no multilibs are used, this is
13781 usually just @file{.}, if OS libraries are present in @file{lib@var{suffix}}
13782 sibling directories this prints e.g.@: @file{../lib64}, @file{../lib} or
13783 @file{../lib32}, or if OS libraries are present in @file{lib/@var{subdir}}
13784 subdirectories it prints e.g.@: @file{amd64}, @file{sparcv9} or @file{ev6}.
13785
13786 @item -print-multiarch
13787 @opindex print-multiarch
13788 Print the path to OS libraries for the selected multiarch,
13789 relative to some @file{lib} subdirectory.
13790
13791 @item -print-prog-name=@var{program}
13792 @opindex print-prog-name
13793 Like @option{-print-file-name}, but searches for a program such as @command{cpp}.
13794
13795 @item -print-libgcc-file-name
13796 @opindex print-libgcc-file-name
13797 Same as @option{-print-file-name=libgcc.a}.
13798
13799 This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
13800 but you do want to link with @file{libgcc.a}. You can do:
13801
13802 @smallexample
13803 gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
13804 @end smallexample
13805
13806 @item -print-search-dirs
13807 @opindex print-search-dirs
13808 Print the name of the configured installation directory and a list of
13809 program and library directories @command{gcc} searches---and don't do anything else.
13810
13811 This is useful when @command{gcc} prints the error message
13812 @samp{installation problem, cannot exec cpp0: No such file or directory}.
13813 To resolve this you either need to put @file{cpp0} and the other compiler
13814 components where @command{gcc} expects to find them, or you can set the environment
13815 variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
13816 Don't forget the trailing @samp{/}.
13817 @xref{Environment Variables}.
13818
13819 @item -print-sysroot
13820 @opindex print-sysroot
13821 Print the target sysroot directory that is used during
13822 compilation. This is the target sysroot specified either at configure
13823 time or using the @option{--sysroot} option, possibly with an extra
13824 suffix that depends on compilation options. If no target sysroot is
13825 specified, the option prints nothing.
13826
13827 @item -print-sysroot-headers-suffix
13828 @opindex print-sysroot-headers-suffix
13829 Print the suffix added to the target sysroot when searching for
13830 headers, or give an error if the compiler is not configured with such
13831 a suffix---and don't do anything else.
13832
13833 @item -dumpmachine
13834 @opindex dumpmachine
13835 Print the compiler's target machine (for example,
13836 @samp{i686-pc-linux-gnu})---and don't do anything else.
13837
13838 @item -dumpversion
13839 @opindex dumpversion
13840 Print the compiler version (for example, @code{3.0}, @code{6.3.0} or @code{7})---and don't do
13841 anything else. This is the compiler version used in filesystem paths,
13842 specs, can be depending on how the compiler has been configured just
13843 a single number (major version), two numbers separated by dot (major and
13844 minor version) or three numbers separated by dots (major, minor and patchlevel
13845 version).
13846
13847 @item -dumpfullversion
13848 @opindex dumpfullversion
13849 Print the full compiler version, always 3 numbers separated by dots,
13850 major, minor and patchlevel version.
13851
13852 @item -dumpspecs
13853 @opindex dumpspecs
13854 Print the compiler's built-in specs---and don't do anything else. (This
13855 is used when GCC itself is being built.) @xref{Spec Files}.
13856 @end table
13857
13858 @node Submodel Options
13859 @section Machine-Dependent Options
13860 @cindex submodel options
13861 @cindex specifying hardware config
13862 @cindex hardware models and configurations, specifying
13863 @cindex target-dependent options
13864 @cindex machine-dependent options
13865
13866 Each target machine supported by GCC can have its own options---for
13867 example, to allow you to compile for a particular processor variant or
13868 ABI, or to control optimizations specific to that machine. By
13869 convention, the names of machine-specific options start with
13870 @samp{-m}.
13871
13872 Some configurations of the compiler also support additional target-specific
13873 options, usually for compatibility with other compilers on the same
13874 platform.
13875
13876 @c This list is ordered alphanumerically by subsection name.
13877 @c It should be the same order and spelling as these options are listed
13878 @c in Machine Dependent Options
13879
13880 @menu
13881 * AArch64 Options::
13882 * Adapteva Epiphany Options::
13883 * ARC Options::
13884 * ARM Options::
13885 * AVR Options::
13886 * Blackfin Options::
13887 * C6X Options::
13888 * CRIS Options::
13889 * CR16 Options::
13890 * Darwin Options::
13891 * DEC Alpha Options::
13892 * FR30 Options::
13893 * FT32 Options::
13894 * FRV Options::
13895 * GNU/Linux Options::
13896 * H8/300 Options::
13897 * HPPA Options::
13898 * IA-64 Options::
13899 * LM32 Options::
13900 * M32C Options::
13901 * M32R/D Options::
13902 * M680x0 Options::
13903 * MCore Options::
13904 * MeP Options::
13905 * MicroBlaze Options::
13906 * MIPS Options::
13907 * MMIX Options::
13908 * MN10300 Options::
13909 * Moxie Options::
13910 * MSP430 Options::
13911 * NDS32 Options::
13912 * Nios II Options::
13913 * Nvidia PTX Options::
13914 * PDP-11 Options::
13915 * picoChip Options::
13916 * PowerPC Options::
13917 * RISC-V Options::
13918 * RL78 Options::
13919 * RS/6000 and PowerPC Options::
13920 * RX Options::
13921 * S/390 and zSeries Options::
13922 * Score Options::
13923 * SH Options::
13924 * Solaris 2 Options::
13925 * SPARC Options::
13926 * SPU Options::
13927 * System V Options::
13928 * TILE-Gx Options::
13929 * TILEPro Options::
13930 * V850 Options::
13931 * VAX Options::
13932 * Visium Options::
13933 * VMS Options::
13934 * VxWorks Options::
13935 * x86 Options::
13936 * x86 Windows Options::
13937 * Xstormy16 Options::
13938 * Xtensa Options::
13939 * zSeries Options::
13940 @end menu
13941
13942 @node AArch64 Options
13943 @subsection AArch64 Options
13944 @cindex AArch64 Options
13945
13946 These options are defined for AArch64 implementations:
13947
13948 @table @gcctabopt
13949
13950 @item -mabi=@var{name}
13951 @opindex mabi
13952 Generate code for the specified data model. Permissible values
13953 are @samp{ilp32} for SysV-like data model where int, long int and pointers
13954 are 32 bits, and @samp{lp64} for SysV-like data model where int is 32 bits,
13955 but long int and pointers are 64 bits.
13956
13957 The default depends on the specific target configuration. Note that
13958 the LP64 and ILP32 ABIs are not link-compatible; you must compile your
13959 entire program with the same ABI, and link with a compatible set of libraries.
13960
13961 @item -mbig-endian
13962 @opindex mbig-endian
13963 Generate big-endian code. This is the default when GCC is configured for an
13964 @samp{aarch64_be-*-*} target.
13965
13966 @item -mgeneral-regs-only
13967 @opindex mgeneral-regs-only
13968 Generate code which uses only the general-purpose registers. This will prevent
13969 the compiler from using floating-point and Advanced SIMD registers but will not
13970 impose any restrictions on the assembler.
13971
13972 @item -mlittle-endian
13973 @opindex mlittle-endian
13974 Generate little-endian code. This is the default when GCC is configured for an
13975 @samp{aarch64-*-*} but not an @samp{aarch64_be-*-*} target.
13976
13977 @item -mcmodel=tiny
13978 @opindex mcmodel=tiny
13979 Generate code for the tiny code model. The program and its statically defined
13980 symbols must be within 1MB of each other. Programs can be statically or
13981 dynamically linked.
13982
13983 @item -mcmodel=small
13984 @opindex mcmodel=small
13985 Generate code for the small code model. The program and its statically defined
13986 symbols must be within 4GB of each other. Programs can be statically or
13987 dynamically linked. This is the default code model.
13988
13989 @item -mcmodel=large
13990 @opindex mcmodel=large
13991 Generate code for the large code model. This makes no assumptions about
13992 addresses and sizes of sections. Programs can be statically linked only.
13993
13994 @item -mstrict-align
13995 @opindex mstrict-align
13996 Avoid generating memory accesses that may not be aligned on a natural object
13997 boundary as described in the architecture specification.
13998
13999 @item -momit-leaf-frame-pointer
14000 @itemx -mno-omit-leaf-frame-pointer
14001 @opindex momit-leaf-frame-pointer
14002 @opindex mno-omit-leaf-frame-pointer
14003 Omit or keep the frame pointer in leaf functions. The former behavior is the
14004 default.
14005
14006 @item -mtls-dialect=desc
14007 @opindex mtls-dialect=desc
14008 Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
14009 of TLS variables. This is the default.
14010
14011 @item -mtls-dialect=traditional
14012 @opindex mtls-dialect=traditional
14013 Use traditional TLS as the thread-local storage mechanism for dynamic accesses
14014 of TLS variables.
14015
14016 @item -mtls-size=@var{size}
14017 @opindex mtls-size
14018 Specify bit size of immediate TLS offsets. Valid values are 12, 24, 32, 48.
14019 This option requires binutils 2.26 or newer.
14020
14021 @item -mfix-cortex-a53-835769
14022 @itemx -mno-fix-cortex-a53-835769
14023 @opindex mfix-cortex-a53-835769
14024 @opindex mno-fix-cortex-a53-835769
14025 Enable or disable the workaround for the ARM Cortex-A53 erratum number 835769.
14026 This involves inserting a NOP instruction between memory instructions and
14027 64-bit integer multiply-accumulate instructions.
14028
14029 @item -mfix-cortex-a53-843419
14030 @itemx -mno-fix-cortex-a53-843419
14031 @opindex mfix-cortex-a53-843419
14032 @opindex mno-fix-cortex-a53-843419
14033 Enable or disable the workaround for the ARM Cortex-A53 erratum number 843419.
14034 This erratum workaround is made at link time and this will only pass the
14035 corresponding flag to the linker.
14036
14037 @item -mlow-precision-recip-sqrt
14038 @item -mno-low-precision-recip-sqrt
14039 @opindex mlow-precision-recip-sqrt
14040 @opindex mno-low-precision-recip-sqrt
14041 Enable or disable the reciprocal square root approximation.
14042 This option only has an effect if @option{-ffast-math} or
14043 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
14044 precision of reciprocal square root results to about 16 bits for
14045 single precision and to 32 bits for double precision.
14046
14047 @item -mlow-precision-sqrt
14048 @item -mno-low-precision-sqrt
14049 @opindex -mlow-precision-sqrt
14050 @opindex -mno-low-precision-sqrt
14051 Enable or disable the square root approximation.
14052 This option only has an effect if @option{-ffast-math} or
14053 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
14054 precision of square root results to about 16 bits for
14055 single precision and to 32 bits for double precision.
14056 If enabled, it implies @option{-mlow-precision-recip-sqrt}.
14057
14058 @item -mlow-precision-div
14059 @item -mno-low-precision-div
14060 @opindex -mlow-precision-div
14061 @opindex -mno-low-precision-div
14062 Enable or disable the division approximation.
14063 This option only has an effect if @option{-ffast-math} or
14064 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
14065 precision of division results to about 16 bits for
14066 single precision and to 32 bits for double precision.
14067
14068 @item -march=@var{name}
14069 @opindex march
14070 Specify the name of the target architecture and, optionally, one or
14071 more feature modifiers. This option has the form
14072 @option{-march=@var{arch}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}.
14073
14074 The permissible values for @var{arch} are @samp{armv8-a},
14075 @samp{armv8.1-a}, @samp{armv8.2-a}, @samp{armv8.3-a} or @var{native}.
14076
14077 The value @samp{armv8.3-a} implies @samp{armv8.2-a} and enables compiler
14078 support for the ARMv8.3-A architecture extensions.
14079
14080 The value @samp{armv8.2-a} implies @samp{armv8.1-a} and enables compiler
14081 support for the ARMv8.2-A architecture extensions.
14082
14083 The value @samp{armv8.1-a} implies @samp{armv8-a} and enables compiler
14084 support for the ARMv8.1-A architecture extension. In particular, it
14085 enables the @samp{+crc} and @samp{+lse} features.
14086
14087 The value @samp{native} is available on native AArch64 GNU/Linux and
14088 causes the compiler to pick the architecture of the host system. This
14089 option has no effect if the compiler is unable to recognize the
14090 architecture of the host system,
14091
14092 The permissible values for @var{feature} are listed in the sub-section
14093 on @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
14094 Feature Modifiers}. Where conflicting feature modifiers are
14095 specified, the right-most feature is used.
14096
14097 GCC uses @var{name} to determine what kind of instructions it can emit
14098 when generating assembly code. If @option{-march} is specified
14099 without either of @option{-mtune} or @option{-mcpu} also being
14100 specified, the code is tuned to perform well across a range of target
14101 processors implementing the target architecture.
14102
14103 @item -mtune=@var{name}
14104 @opindex mtune
14105 Specify the name of the target processor for which GCC should tune the
14106 performance of the code. Permissible values for this option are:
14107 @samp{generic}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55},
14108 @samp{cortex-a57}, @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75},
14109 @samp{exynos-m1}, @samp{falkor}, @samp{qdf24xx},
14110 @samp{xgene1}, @samp{vulcan}, @samp{thunderx},
14111 @samp{thunderxt88}, @samp{thunderxt88p1}, @samp{thunderxt81},
14112 @samp{thunderxt83}, @samp{thunderx2t99}, @samp{cortex-a57.cortex-a53},
14113 @samp{cortex-a72.cortex-a53}, @samp{cortex-a73.cortex-a35},
14114 @samp{cortex-a73.cortex-a53}, @samp{cortex-a75.cortex-a55},
14115 @samp{native}.
14116
14117 The values @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
14118 @samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53},
14119 @samp{cortex-a75.cortex-a55} specify that GCC should tune for a
14120 big.LITTLE system.
14121
14122 Additionally on native AArch64 GNU/Linux systems the value
14123 @samp{native} tunes performance to the host system. This option has no effect
14124 if the compiler is unable to recognize the processor of the host system.
14125
14126 Where none of @option{-mtune=}, @option{-mcpu=} or @option{-march=}
14127 are specified, the code is tuned to perform well across a range
14128 of target processors.
14129
14130 This option cannot be suffixed by feature modifiers.
14131
14132 @item -mcpu=@var{name}
14133 @opindex mcpu
14134 Specify the name of the target processor, optionally suffixed by one
14135 or more feature modifiers. This option has the form
14136 @option{-mcpu=@var{cpu}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where
14137 the permissible values for @var{cpu} are the same as those available
14138 for @option{-mtune}. The permissible values for @var{feature} are
14139 documented in the sub-section on
14140 @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
14141 Feature Modifiers}. Where conflicting feature modifiers are
14142 specified, the right-most feature is used.
14143
14144 GCC uses @var{name} to determine what kind of instructions it can emit when
14145 generating assembly code (as if by @option{-march}) and to determine
14146 the target processor for which to tune for performance (as if
14147 by @option{-mtune}). Where this option is used in conjunction
14148 with @option{-march} or @option{-mtune}, those options take precedence
14149 over the appropriate part of this option.
14150
14151 @item -moverride=@var{string}
14152 @opindex moverride
14153 Override tuning decisions made by the back-end in response to a
14154 @option{-mtune=} switch. The syntax, semantics, and accepted values
14155 for @var{string} in this option are not guaranteed to be consistent
14156 across releases.
14157
14158 This option is only intended to be useful when developing GCC.
14159
14160 @item -mpc-relative-literal-loads
14161 @opindex mpc-relative-literal-loads
14162 Enable PC-relative literal loads. With this option literal pools are
14163 accessed using a single instruction and emitted after each function. This
14164 limits the maximum size of functions to 1MB. This is enabled by default for
14165 @option{-mcmodel=tiny}.
14166
14167 @item -msign-return-address=@var{scope}
14168 @opindex msign-return-address
14169 Select the function scope on which return address signing will be applied.
14170 Permissible values are @samp{none}, which disables return address signing,
14171 @samp{non-leaf}, which enables pointer signing for functions which are not leaf
14172 functions, and @samp{all}, which enables pointer signing for all functions. The
14173 default value is @samp{none}.
14174
14175 @end table
14176
14177 @subsubsection @option{-march} and @option{-mcpu} Feature Modifiers
14178 @anchor{aarch64-feature-modifiers}
14179 @cindex @option{-march} feature modifiers
14180 @cindex @option{-mcpu} feature modifiers
14181 Feature modifiers used with @option{-march} and @option{-mcpu} can be any of
14182 the following and their inverses @option{no@var{feature}}:
14183
14184 @table @samp
14185 @item crc
14186 Enable CRC extension. This is on by default for
14187 @option{-march=armv8.1-a}.
14188 @item crypto
14189 Enable Crypto extension. This also enables Advanced SIMD and floating-point
14190 instructions.
14191 @item fp
14192 Enable floating-point instructions. This is on by default for all possible
14193 values for options @option{-march} and @option{-mcpu}.
14194 @item simd
14195 Enable Advanced SIMD instructions. This also enables floating-point
14196 instructions. This is on by default for all possible values for options
14197 @option{-march} and @option{-mcpu}.
14198 @item lse
14199 Enable Large System Extension instructions. This is on by default for
14200 @option{-march=armv8.1-a}.
14201 @item fp16
14202 Enable FP16 extension. This also enables floating-point instructions.
14203
14204 @end table
14205
14206 Feature @option{crypto} implies @option{simd}, which implies @option{fp}.
14207 Conversely, @option{nofp} implies @option{nosimd}, which implies
14208 @option{nocrypto}.
14209
14210 @node Adapteva Epiphany Options
14211 @subsection Adapteva Epiphany Options
14212
14213 These @samp{-m} options are defined for Adapteva Epiphany:
14214
14215 @table @gcctabopt
14216 @item -mhalf-reg-file
14217 @opindex mhalf-reg-file
14218 Don't allocate any register in the range @code{r32}@dots{}@code{r63}.
14219 That allows code to run on hardware variants that lack these registers.
14220
14221 @item -mprefer-short-insn-regs
14222 @opindex mprefer-short-insn-regs
14223 Preferentially allocate registers that allow short instruction generation.
14224 This can result in increased instruction count, so this may either reduce or
14225 increase overall code size.
14226
14227 @item -mbranch-cost=@var{num}
14228 @opindex mbranch-cost
14229 Set the cost of branches to roughly @var{num} ``simple'' instructions.
14230 This cost is only a heuristic and is not guaranteed to produce
14231 consistent results across releases.
14232
14233 @item -mcmove
14234 @opindex mcmove
14235 Enable the generation of conditional moves.
14236
14237 @item -mnops=@var{num}
14238 @opindex mnops
14239 Emit @var{num} NOPs before every other generated instruction.
14240
14241 @item -mno-soft-cmpsf
14242 @opindex mno-soft-cmpsf
14243 For single-precision floating-point comparisons, emit an @code{fsub} instruction
14244 and test the flags. This is faster than a software comparison, but can
14245 get incorrect results in the presence of NaNs, or when two different small
14246 numbers are compared such that their difference is calculated as zero.
14247 The default is @option{-msoft-cmpsf}, which uses slower, but IEEE-compliant,
14248 software comparisons.
14249
14250 @item -mstack-offset=@var{num}
14251 @opindex mstack-offset
14252 Set the offset between the top of the stack and the stack pointer.
14253 E.g., a value of 8 means that the eight bytes in the range @code{sp+0@dots{}sp+7}
14254 can be used by leaf functions without stack allocation.
14255 Values other than @samp{8} or @samp{16} are untested and unlikely to work.
14256 Note also that this option changes the ABI; compiling a program with a
14257 different stack offset than the libraries have been compiled with
14258 generally does not work.
14259 This option can be useful if you want to evaluate if a different stack
14260 offset would give you better code, but to actually use a different stack
14261 offset to build working programs, it is recommended to configure the
14262 toolchain with the appropriate @option{--with-stack-offset=@var{num}} option.
14263
14264 @item -mno-round-nearest
14265 @opindex mno-round-nearest
14266 Make the scheduler assume that the rounding mode has been set to
14267 truncating. The default is @option{-mround-nearest}.
14268
14269 @item -mlong-calls
14270 @opindex mlong-calls
14271 If not otherwise specified by an attribute, assume all calls might be beyond
14272 the offset range of the @code{b} / @code{bl} instructions, and therefore load the
14273 function address into a register before performing a (otherwise direct) call.
14274 This is the default.
14275
14276 @item -mshort-calls
14277 @opindex short-calls
14278 If not otherwise specified by an attribute, assume all direct calls are
14279 in the range of the @code{b} / @code{bl} instructions, so use these instructions
14280 for direct calls. The default is @option{-mlong-calls}.
14281
14282 @item -msmall16
14283 @opindex msmall16
14284 Assume addresses can be loaded as 16-bit unsigned values. This does not
14285 apply to function addresses for which @option{-mlong-calls} semantics
14286 are in effect.
14287
14288 @item -mfp-mode=@var{mode}
14289 @opindex mfp-mode
14290 Set the prevailing mode of the floating-point unit.
14291 This determines the floating-point mode that is provided and expected
14292 at function call and return time. Making this mode match the mode you
14293 predominantly need at function start can make your programs smaller and
14294 faster by avoiding unnecessary mode switches.
14295
14296 @var{mode} can be set to one the following values:
14297
14298 @table @samp
14299 @item caller
14300 Any mode at function entry is valid, and retained or restored when
14301 the function returns, and when it calls other functions.
14302 This mode is useful for compiling libraries or other compilation units
14303 you might want to incorporate into different programs with different
14304 prevailing FPU modes, and the convenience of being able to use a single
14305 object file outweighs the size and speed overhead for any extra
14306 mode switching that might be needed, compared with what would be needed
14307 with a more specific choice of prevailing FPU mode.
14308
14309 @item truncate
14310 This is the mode used for floating-point calculations with
14311 truncating (i.e.@: round towards zero) rounding mode. That includes
14312 conversion from floating point to integer.
14313
14314 @item round-nearest
14315 This is the mode used for floating-point calculations with
14316 round-to-nearest-or-even rounding mode.
14317
14318 @item int
14319 This is the mode used to perform integer calculations in the FPU, e.g.@:
14320 integer multiply, or integer multiply-and-accumulate.
14321 @end table
14322
14323 The default is @option{-mfp-mode=caller}
14324
14325 @item -mnosplit-lohi
14326 @itemx -mno-postinc
14327 @itemx -mno-postmodify
14328 @opindex mnosplit-lohi
14329 @opindex mno-postinc
14330 @opindex mno-postmodify
14331 Code generation tweaks that disable, respectively, splitting of 32-bit
14332 loads, generation of post-increment addresses, and generation of
14333 post-modify addresses. The defaults are @option{msplit-lohi},
14334 @option{-mpost-inc}, and @option{-mpost-modify}.
14335
14336 @item -mnovect-double
14337 @opindex mno-vect-double
14338 Change the preferred SIMD mode to SImode. The default is
14339 @option{-mvect-double}, which uses DImode as preferred SIMD mode.
14340
14341 @item -max-vect-align=@var{num}
14342 @opindex max-vect-align
14343 The maximum alignment for SIMD vector mode types.
14344 @var{num} may be 4 or 8. The default is 8.
14345 Note that this is an ABI change, even though many library function
14346 interfaces are unaffected if they don't use SIMD vector modes
14347 in places that affect size and/or alignment of relevant types.
14348
14349 @item -msplit-vecmove-early
14350 @opindex msplit-vecmove-early
14351 Split vector moves into single word moves before reload. In theory this
14352 can give better register allocation, but so far the reverse seems to be
14353 generally the case.
14354
14355 @item -m1reg-@var{reg}
14356 @opindex m1reg-
14357 Specify a register to hold the constant @minus{}1, which makes loading small negative
14358 constants and certain bitmasks faster.
14359 Allowable values for @var{reg} are @samp{r43} and @samp{r63},
14360 which specify use of that register as a fixed register,
14361 and @samp{none}, which means that no register is used for this
14362 purpose. The default is @option{-m1reg-none}.
14363
14364 @end table
14365
14366 @node ARC Options
14367 @subsection ARC Options
14368 @cindex ARC options
14369
14370 The following options control the architecture variant for which code
14371 is being compiled:
14372
14373 @c architecture variants
14374 @table @gcctabopt
14375
14376 @item -mbarrel-shifter
14377 @opindex mbarrel-shifter
14378 Generate instructions supported by barrel shifter. This is the default
14379 unless @option{-mcpu=ARC601} or @samp{-mcpu=ARCEM} is in effect.
14380
14381 @item -mcpu=@var{cpu}
14382 @opindex mcpu
14383 Set architecture type, register usage, and instruction scheduling
14384 parameters for @var{cpu}. There are also shortcut alias options
14385 available for backward compatibility and convenience. Supported
14386 values for @var{cpu} are
14387
14388 @table @samp
14389 @opindex mA6
14390 @opindex mARC600
14391 @item arc600
14392 Compile for ARC600. Aliases: @option{-mA6}, @option{-mARC600}.
14393
14394 @item arc601
14395 @opindex mARC601
14396 Compile for ARC601. Alias: @option{-mARC601}.
14397
14398 @item arc700
14399 @opindex mA7
14400 @opindex mARC700
14401 Compile for ARC700. Aliases: @option{-mA7}, @option{-mARC700}.
14402 This is the default when configured with @option{--with-cpu=arc700}@.
14403
14404 @item arcem
14405 Compile for ARC EM.
14406
14407 @item archs
14408 Compile for ARC HS.
14409
14410 @item em
14411 Compile for ARC EM CPU with no hardware extensions.
14412
14413 @item em4
14414 Compile for ARC EM4 CPU.
14415
14416 @item em4_dmips
14417 Compile for ARC EM4 DMIPS CPU.
14418
14419 @item em4_fpus
14420 Compile for ARC EM4 DMIPS CPU with the single-precision floating-point
14421 extension.
14422
14423 @item em4_fpuda
14424 Compile for ARC EM4 DMIPS CPU with single-precision floating-point and
14425 double assist instructions.
14426
14427 @item hs
14428 Compile for ARC HS CPU with no hardware extensions except the atomic
14429 instructions.
14430
14431 @item hs34
14432 Compile for ARC HS34 CPU.
14433
14434 @item hs38
14435 Compile for ARC HS38 CPU.
14436
14437 @item hs38_linux
14438 Compile for ARC HS38 CPU with all hardware extensions on.
14439
14440 @item arc600_norm
14441 Compile for ARC 600 CPU with @code{norm} instructions enabled.
14442
14443 @item arc600_mul32x16
14444 Compile for ARC 600 CPU with @code{norm} and 32x16-bit multiply
14445 instructions enabled.
14446
14447 @item arc600_mul64
14448 Compile for ARC 600 CPU with @code{norm} and @code{mul64}-family
14449 instructions enabled.
14450
14451 @item arc601_norm
14452 Compile for ARC 601 CPU with @code{norm} instructions enabled.
14453
14454 @item arc601_mul32x16
14455 Compile for ARC 601 CPU with @code{norm} and 32x16-bit multiply
14456 instructions enabled.
14457
14458 @item arc601_mul64
14459 Compile for ARC 601 CPU with @code{norm} and @code{mul64}-family
14460 instructions enabled.
14461
14462 @item nps400
14463 Compile for ARC 700 on NPS400 chip.
14464
14465 @end table
14466
14467 @item -mdpfp
14468 @opindex mdpfp
14469 @itemx -mdpfp-compact
14470 @opindex mdpfp-compact
14471 Generate double-precision FPX instructions, tuned for the compact
14472 implementation.
14473
14474 @item -mdpfp-fast
14475 @opindex mdpfp-fast
14476 Generate double-precision FPX instructions, tuned for the fast
14477 implementation.
14478
14479 @item -mno-dpfp-lrsr
14480 @opindex mno-dpfp-lrsr
14481 Disable @code{lr} and @code{sr} instructions from using FPX extension
14482 aux registers.
14483
14484 @item -mea
14485 @opindex mea
14486 Generate extended arithmetic instructions. Currently only
14487 @code{divaw}, @code{adds}, @code{subs}, and @code{sat16} are
14488 supported. This is always enabled for @option{-mcpu=ARC700}.
14489
14490 @item -mno-mpy
14491 @opindex mno-mpy
14492 Do not generate @code{mpy}-family instructions for ARC700. This option is
14493 deprecated.
14494
14495 @item -mmul32x16
14496 @opindex mmul32x16
14497 Generate 32x16-bit multiply and multiply-accumulate instructions.
14498
14499 @item -mmul64
14500 @opindex mmul64
14501 Generate @code{mul64} and @code{mulu64} instructions.
14502 Only valid for @option{-mcpu=ARC600}.
14503
14504 @item -mnorm
14505 @opindex mnorm
14506 Generate @code{norm} instructions. This is the default if @option{-mcpu=ARC700}
14507 is in effect.
14508
14509 @item -mspfp
14510 @opindex mspfp
14511 @itemx -mspfp-compact
14512 @opindex mspfp-compact
14513 Generate single-precision FPX instructions, tuned for the compact
14514 implementation.
14515
14516 @item -mspfp-fast
14517 @opindex mspfp-fast
14518 Generate single-precision FPX instructions, tuned for the fast
14519 implementation.
14520
14521 @item -msimd
14522 @opindex msimd
14523 Enable generation of ARC SIMD instructions via target-specific
14524 builtins. Only valid for @option{-mcpu=ARC700}.
14525
14526 @item -msoft-float
14527 @opindex msoft-float
14528 This option ignored; it is provided for compatibility purposes only.
14529 Software floating-point code is emitted by default, and this default
14530 can overridden by FPX options; @option{-mspfp}, @option{-mspfp-compact}, or
14531 @option{-mspfp-fast} for single precision, and @option{-mdpfp},
14532 @option{-mdpfp-compact}, or @option{-mdpfp-fast} for double precision.
14533
14534 @item -mswap
14535 @opindex mswap
14536 Generate @code{swap} instructions.
14537
14538 @item -matomic
14539 @opindex matomic
14540 This enables use of the locked load/store conditional extension to implement
14541 atomic memory built-in functions. Not available for ARC 6xx or ARC
14542 EM cores.
14543
14544 @item -mdiv-rem
14545 @opindex mdiv-rem
14546 Enable @code{div} and @code{rem} instructions for ARCv2 cores.
14547
14548 @item -mcode-density
14549 @opindex mcode-density
14550 Enable code density instructions for ARC EM.
14551 This option is on by default for ARC HS.
14552
14553 @item -mll64
14554 @opindex mll64
14555 Enable double load/store operations for ARC HS cores.
14556
14557 @item -mtp-regno=@var{regno}
14558 @opindex mtp-regno
14559 Specify thread pointer register number.
14560
14561 @item -mmpy-option=@var{multo}
14562 @opindex mmpy-option
14563 Compile ARCv2 code with a multiplier design option. You can specify
14564 the option using either a string or numeric value for @var{multo}.
14565 @samp{wlh1} is the default value. The recognized values are:
14566
14567 @table @samp
14568 @item 0
14569 @itemx none
14570 No multiplier available.
14571
14572 @item 1
14573 @itemx w
14574 16x16 multiplier, fully pipelined.
14575 The following instructions are enabled: @code{mpyw} and @code{mpyuw}.
14576
14577 @item 2
14578 @itemx wlh1
14579 32x32 multiplier, fully
14580 pipelined (1 stage). The following instructions are additionally
14581 enabled: @code{mpy}, @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
14582
14583 @item 3
14584 @itemx wlh2
14585 32x32 multiplier, fully pipelined
14586 (2 stages). The following instructions are additionally enabled: @code{mpy},
14587 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
14588
14589 @item 4
14590 @itemx wlh3
14591 Two 16x16 multipliers, blocking,
14592 sequential. The following instructions are additionally enabled: @code{mpy},
14593 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
14594
14595 @item 5
14596 @itemx wlh4
14597 One 16x16 multiplier, blocking,
14598 sequential. The following instructions are additionally enabled: @code{mpy},
14599 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
14600
14601 @item 6
14602 @itemx wlh5
14603 One 32x4 multiplier, blocking,
14604 sequential. The following instructions are additionally enabled: @code{mpy},
14605 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
14606
14607 @item 7
14608 @itemx plus_dmpy
14609 ARC HS SIMD support.
14610
14611 @item 8
14612 @itemx plus_macd
14613 ARC HS SIMD support.
14614
14615 @item 9
14616 @itemx plus_qmacw
14617 ARC HS SIMD support.
14618
14619 @end table
14620
14621 This option is only available for ARCv2 cores@.
14622
14623 @item -mfpu=@var{fpu}
14624 @opindex mfpu
14625 Enables support for specific floating-point hardware extensions for ARCv2
14626 cores. Supported values for @var{fpu} are:
14627
14628 @table @samp
14629
14630 @item fpus
14631 Enables support for single-precision floating-point hardware
14632 extensions@.
14633
14634 @item fpud
14635 Enables support for double-precision floating-point hardware
14636 extensions. The single-precision floating-point extension is also
14637 enabled. Not available for ARC EM@.
14638
14639 @item fpuda
14640 Enables support for double-precision floating-point hardware
14641 extensions using double-precision assist instructions. The single-precision
14642 floating-point extension is also enabled. This option is
14643 only available for ARC EM@.
14644
14645 @item fpuda_div
14646 Enables support for double-precision floating-point hardware
14647 extensions using double-precision assist instructions.
14648 The single-precision floating-point, square-root, and divide
14649 extensions are also enabled. This option is
14650 only available for ARC EM@.
14651
14652 @item fpuda_fma
14653 Enables support for double-precision floating-point hardware
14654 extensions using double-precision assist instructions.
14655 The single-precision floating-point and fused multiply and add
14656 hardware extensions are also enabled. This option is
14657 only available for ARC EM@.
14658
14659 @item fpuda_all
14660 Enables support for double-precision floating-point hardware
14661 extensions using double-precision assist instructions.
14662 All single-precision floating-point hardware extensions are also
14663 enabled. This option is only available for ARC EM@.
14664
14665 @item fpus_div
14666 Enables support for single-precision floating-point, square-root and divide
14667 hardware extensions@.
14668
14669 @item fpud_div
14670 Enables support for double-precision floating-point, square-root and divide
14671 hardware extensions. This option
14672 includes option @samp{fpus_div}. Not available for ARC EM@.
14673
14674 @item fpus_fma
14675 Enables support for single-precision floating-point and
14676 fused multiply and add hardware extensions@.
14677
14678 @item fpud_fma
14679 Enables support for double-precision floating-point and
14680 fused multiply and add hardware extensions. This option
14681 includes option @samp{fpus_fma}. Not available for ARC EM@.
14682
14683 @item fpus_all
14684 Enables support for all single-precision floating-point hardware
14685 extensions@.
14686
14687 @item fpud_all
14688 Enables support for all single- and double-precision floating-point
14689 hardware extensions. Not available for ARC EM@.
14690
14691 @end table
14692
14693 @item -mirq-ctrl-saved=@var{register-range}, @var{blink}, @var{lp_count}
14694 @opindex mirq-ctrl-saved
14695 Specifies general-purposes registers that the processor automatically
14696 saves/restores on interrupt entry and exit. @var{register-range} is
14697 specified as two registers separated by a dash. The register range
14698 always starts with @code{r0}, the upper limit is @code{fp} register.
14699 @var{blink} and @var{lp_count} are optional. This option is only
14700 valid for ARC EM and ARC HS cores.
14701
14702 @item -mrgf-banked-regs=@var{number}
14703 @opindex mrgf-banked-regs
14704 Specifies the number of registers replicated in second register bank
14705 on entry to fast interrupt. Fast interrupts are interrupts with the
14706 highest priority level P0. These interrupts save only PC and STATUS32
14707 registers to avoid memory transactions during interrupt entry and exit
14708 sequences. Use this option when you are using fast interrupts in an
14709 ARC V2 family processor. Permitted values are 4, 8, 16, and 32.
14710
14711 @end table
14712
14713 The following options are passed through to the assembler, and also
14714 define preprocessor macro symbols.
14715
14716 @c Flags used by the assembler, but for which we define preprocessor
14717 @c macro symbols as well.
14718 @table @gcctabopt
14719 @item -mdsp-packa
14720 @opindex mdsp-packa
14721 Passed down to the assembler to enable the DSP Pack A extensions.
14722 Also sets the preprocessor symbol @code{__Xdsp_packa}. This option is
14723 deprecated.
14724
14725 @item -mdvbf
14726 @opindex mdvbf
14727 Passed down to the assembler to enable the dual Viterbi butterfly
14728 extension. Also sets the preprocessor symbol @code{__Xdvbf}. This
14729 option is deprecated.
14730
14731 @c ARC700 4.10 extension instruction
14732 @item -mlock
14733 @opindex mlock
14734 Passed down to the assembler to enable the locked load/store
14735 conditional extension. Also sets the preprocessor symbol
14736 @code{__Xlock}.
14737
14738 @item -mmac-d16
14739 @opindex mmac-d16
14740 Passed down to the assembler. Also sets the preprocessor symbol
14741 @code{__Xxmac_d16}. This option is deprecated.
14742
14743 @item -mmac-24
14744 @opindex mmac-24
14745 Passed down to the assembler. Also sets the preprocessor symbol
14746 @code{__Xxmac_24}. This option is deprecated.
14747
14748 @c ARC700 4.10 extension instruction
14749 @item -mrtsc
14750 @opindex mrtsc
14751 Passed down to the assembler to enable the 64-bit time-stamp counter
14752 extension instruction. Also sets the preprocessor symbol
14753 @code{__Xrtsc}. This option is deprecated.
14754
14755 @c ARC700 4.10 extension instruction
14756 @item -mswape
14757 @opindex mswape
14758 Passed down to the assembler to enable the swap byte ordering
14759 extension instruction. Also sets the preprocessor symbol
14760 @code{__Xswape}.
14761
14762 @item -mtelephony
14763 @opindex mtelephony
14764 Passed down to the assembler to enable dual- and single-operand
14765 instructions for telephony. Also sets the preprocessor symbol
14766 @code{__Xtelephony}. This option is deprecated.
14767
14768 @item -mxy
14769 @opindex mxy
14770 Passed down to the assembler to enable the XY memory extension. Also
14771 sets the preprocessor symbol @code{__Xxy}.
14772
14773 @end table
14774
14775 The following options control how the assembly code is annotated:
14776
14777 @c Assembly annotation options
14778 @table @gcctabopt
14779 @item -misize
14780 @opindex misize
14781 Annotate assembler instructions with estimated addresses.
14782
14783 @item -mannotate-align
14784 @opindex mannotate-align
14785 Explain what alignment considerations lead to the decision to make an
14786 instruction short or long.
14787
14788 @end table
14789
14790 The following options are passed through to the linker:
14791
14792 @c options passed through to the linker
14793 @table @gcctabopt
14794 @item -marclinux
14795 @opindex marclinux
14796 Passed through to the linker, to specify use of the @code{arclinux} emulation.
14797 This option is enabled by default in tool chains built for
14798 @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets
14799 when profiling is not requested.
14800
14801 @item -marclinux_prof
14802 @opindex marclinux_prof
14803 Passed through to the linker, to specify use of the
14804 @code{arclinux_prof} emulation. This option is enabled by default in
14805 tool chains built for @w{@code{arc-linux-uclibc}} and
14806 @w{@code{arceb-linux-uclibc}} targets when profiling is requested.
14807
14808 @end table
14809
14810 The following options control the semantics of generated code:
14811
14812 @c semantically relevant code generation options
14813 @table @gcctabopt
14814 @item -mlong-calls
14815 @opindex mlong-calls
14816 Generate calls as register indirect calls, thus providing access
14817 to the full 32-bit address range.
14818
14819 @item -mmedium-calls
14820 @opindex mmedium-calls
14821 Don't use less than 25-bit addressing range for calls, which is the
14822 offset available for an unconditional branch-and-link
14823 instruction. Conditional execution of function calls is suppressed, to
14824 allow use of the 25-bit range, rather than the 21-bit range with
14825 conditional branch-and-link. This is the default for tool chains built
14826 for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets.
14827
14828 @item -mno-sdata
14829 @opindex mno-sdata
14830 Do not generate sdata references. This is the default for tool chains
14831 built for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}}
14832 targets.
14833
14834 @item -mvolatile-cache
14835 @opindex mvolatile-cache
14836 Use ordinarily cached memory accesses for volatile references. This is the
14837 default.
14838
14839 @item -mno-volatile-cache
14840 @opindex mno-volatile-cache
14841 Enable cache bypass for volatile references.
14842
14843 @end table
14844
14845 The following options fine tune code generation:
14846 @c code generation tuning options
14847 @table @gcctabopt
14848 @item -malign-call
14849 @opindex malign-call
14850 Do alignment optimizations for call instructions.
14851
14852 @item -mauto-modify-reg
14853 @opindex mauto-modify-reg
14854 Enable the use of pre/post modify with register displacement.
14855
14856 @item -mbbit-peephole
14857 @opindex mbbit-peephole
14858 Enable bbit peephole2.
14859
14860 @item -mno-brcc
14861 @opindex mno-brcc
14862 This option disables a target-specific pass in @file{arc_reorg} to
14863 generate compare-and-branch (@code{br@var{cc}}) instructions.
14864 It has no effect on
14865 generation of these instructions driven by the combiner pass.
14866
14867 @item -mcase-vector-pcrel
14868 @opindex mcase-vector-pcrel
14869 Use PC-relative switch case tables to enable case table shortening.
14870 This is the default for @option{-Os}.
14871
14872 @item -mcompact-casesi
14873 @opindex mcompact-casesi
14874 Enable compact @code{casesi} pattern. This is the default for @option{-Os},
14875 and only available for ARCv1 cores.
14876
14877 @item -mno-cond-exec
14878 @opindex mno-cond-exec
14879 Disable the ARCompact-specific pass to generate conditional
14880 execution instructions.
14881
14882 Due to delay slot scheduling and interactions between operand numbers,
14883 literal sizes, instruction lengths, and the support for conditional execution,
14884 the target-independent pass to generate conditional execution is often lacking,
14885 so the ARC port has kept a special pass around that tries to find more
14886 conditional execution generation opportunities after register allocation,
14887 branch shortening, and delay slot scheduling have been done. This pass
14888 generally, but not always, improves performance and code size, at the cost of
14889 extra compilation time, which is why there is an option to switch it off.
14890 If you have a problem with call instructions exceeding their allowable
14891 offset range because they are conditionalized, you should consider using
14892 @option{-mmedium-calls} instead.
14893
14894 @item -mearly-cbranchsi
14895 @opindex mearly-cbranchsi
14896 Enable pre-reload use of the @code{cbranchsi} pattern.
14897
14898 @item -mexpand-adddi
14899 @opindex mexpand-adddi
14900 Expand @code{adddi3} and @code{subdi3} at RTL generation time into
14901 @code{add.f}, @code{adc} etc.
14902
14903 @item -mindexed-loads
14904 @opindex mindexed-loads
14905 Enable the use of indexed loads. This can be problematic because some
14906 optimizers then assume that indexed stores exist, which is not
14907 the case.
14908
14909 @opindex mlra
14910 Enable Local Register Allocation. This is still experimental for ARC,
14911 so by default the compiler uses standard reload
14912 (i.e. @option{-mno-lra}).
14913
14914 @item -mlra-priority-none
14915 @opindex mlra-priority-none
14916 Don't indicate any priority for target registers.
14917
14918 @item -mlra-priority-compact
14919 @opindex mlra-priority-compact
14920 Indicate target register priority for r0..r3 / r12..r15.
14921
14922 @item -mlra-priority-noncompact
14923 @opindex mlra-priority-noncompact
14924 Reduce target register priority for r0..r3 / r12..r15.
14925
14926 @item -mno-millicode
14927 @opindex mno-millicode
14928 When optimizing for size (using @option{-Os}), prologues and epilogues
14929 that have to save or restore a large number of registers are often
14930 shortened by using call to a special function in libgcc; this is
14931 referred to as a @emph{millicode} call. As these calls can pose
14932 performance issues, and/or cause linking issues when linking in a
14933 nonstandard way, this option is provided to turn off millicode call
14934 generation.
14935
14936 @item -mmixed-code
14937 @opindex mmixed-code
14938 Tweak register allocation to help 16-bit instruction generation.
14939 This generally has the effect of decreasing the average instruction size
14940 while increasing the instruction count.
14941
14942 @item -mq-class
14943 @opindex mq-class
14944 Enable @samp{q} instruction alternatives.
14945 This is the default for @option{-Os}.
14946
14947 @item -mRcq
14948 @opindex mRcq
14949 Enable @samp{Rcq} constraint handling.
14950 Most short code generation depends on this.
14951 This is the default.
14952
14953 @item -mRcw
14954 @opindex mRcw
14955 Enable @samp{Rcw} constraint handling.
14956 Most ccfsm condexec mostly depends on this.
14957 This is the default.
14958
14959 @item -msize-level=@var{level}
14960 @opindex msize-level
14961 Fine-tune size optimization with regards to instruction lengths and alignment.
14962 The recognized values for @var{level} are:
14963 @table @samp
14964 @item 0
14965 No size optimization. This level is deprecated and treated like @samp{1}.
14966
14967 @item 1
14968 Short instructions are used opportunistically.
14969
14970 @item 2
14971 In addition, alignment of loops and of code after barriers are dropped.
14972
14973 @item 3
14974 In addition, optional data alignment is dropped, and the option @option{Os} is enabled.
14975
14976 @end table
14977
14978 This defaults to @samp{3} when @option{-Os} is in effect. Otherwise,
14979 the behavior when this is not set is equivalent to level @samp{1}.
14980
14981 @item -mtune=@var{cpu}
14982 @opindex mtune
14983 Set instruction scheduling parameters for @var{cpu}, overriding any implied
14984 by @option{-mcpu=}.
14985
14986 Supported values for @var{cpu} are
14987
14988 @table @samp
14989 @item ARC600
14990 Tune for ARC600 CPU.
14991
14992 @item ARC601
14993 Tune for ARC601 CPU.
14994
14995 @item ARC700
14996 Tune for ARC700 CPU with standard multiplier block.
14997
14998 @item ARC700-xmac
14999 Tune for ARC700 CPU with XMAC block.
15000
15001 @item ARC725D
15002 Tune for ARC725D CPU.
15003
15004 @item ARC750D
15005 Tune for ARC750D CPU.
15006
15007 @end table
15008
15009 @item -mmultcost=@var{num}
15010 @opindex mmultcost
15011 Cost to assume for a multiply instruction, with @samp{4} being equal to a
15012 normal instruction.
15013
15014 @item -munalign-prob-threshold=@var{probability}
15015 @opindex munalign-prob-threshold
15016 Set probability threshold for unaligning branches.
15017 When tuning for @samp{ARC700} and optimizing for speed, branches without
15018 filled delay slot are preferably emitted unaligned and long, unless
15019 profiling indicates that the probability for the branch to be taken
15020 is below @var{probability}. @xref{Cross-profiling}.
15021 The default is (REG_BR_PROB_BASE/2), i.e.@: 5000.
15022
15023 @end table
15024
15025 The following options are maintained for backward compatibility, but
15026 are now deprecated and will be removed in a future release:
15027
15028 @c Deprecated options
15029 @table @gcctabopt
15030
15031 @item -margonaut
15032 @opindex margonaut
15033 Obsolete FPX.
15034
15035 @item -mbig-endian
15036 @opindex mbig-endian
15037 @itemx -EB
15038 @opindex EB
15039 Compile code for big-endian targets. Use of these options is now
15040 deprecated. Big-endian code is supported by configuring GCC to build
15041 @w{@code{arceb-elf32}} and @w{@code{arceb-linux-uclibc}} targets,
15042 for which big endian is the default.
15043
15044 @item -mlittle-endian
15045 @opindex mlittle-endian
15046 @itemx -EL
15047 @opindex EL
15048 Compile code for little-endian targets. Use of these options is now
15049 deprecated. Little-endian code is supported by configuring GCC to build
15050 @w{@code{arc-elf32}} and @w{@code{arc-linux-uclibc}} targets,
15051 for which little endian is the default.
15052
15053 @item -mbarrel_shifter
15054 @opindex mbarrel_shifter
15055 Replaced by @option{-mbarrel-shifter}.
15056
15057 @item -mdpfp_compact
15058 @opindex mdpfp_compact
15059 Replaced by @option{-mdpfp-compact}.
15060
15061 @item -mdpfp_fast
15062 @opindex mdpfp_fast
15063 Replaced by @option{-mdpfp-fast}.
15064
15065 @item -mdsp_packa
15066 @opindex mdsp_packa
15067 Replaced by @option{-mdsp-packa}.
15068
15069 @item -mEA
15070 @opindex mEA
15071 Replaced by @option{-mea}.
15072
15073 @item -mmac_24
15074 @opindex mmac_24
15075 Replaced by @option{-mmac-24}.
15076
15077 @item -mmac_d16
15078 @opindex mmac_d16
15079 Replaced by @option{-mmac-d16}.
15080
15081 @item -mspfp_compact
15082 @opindex mspfp_compact
15083 Replaced by @option{-mspfp-compact}.
15084
15085 @item -mspfp_fast
15086 @opindex mspfp_fast
15087 Replaced by @option{-mspfp-fast}.
15088
15089 @item -mtune=@var{cpu}
15090 @opindex mtune
15091 Values @samp{arc600}, @samp{arc601}, @samp{arc700} and
15092 @samp{arc700-xmac} for @var{cpu} are replaced by @samp{ARC600},
15093 @samp{ARC601}, @samp{ARC700} and @samp{ARC700-xmac} respectively.
15094
15095 @item -multcost=@var{num}
15096 @opindex multcost
15097 Replaced by @option{-mmultcost}.
15098
15099 @end table
15100
15101 @node ARM Options
15102 @subsection ARM Options
15103 @cindex ARM options
15104
15105 These @samp{-m} options are defined for the ARM port:
15106
15107 @table @gcctabopt
15108 @item -mabi=@var{name}
15109 @opindex mabi
15110 Generate code for the specified ABI@. Permissible values are: @samp{apcs-gnu},
15111 @samp{atpcs}, @samp{aapcs}, @samp{aapcs-linux} and @samp{iwmmxt}.
15112
15113 @item -mapcs-frame
15114 @opindex mapcs-frame
15115 Generate a stack frame that is compliant with the ARM Procedure Call
15116 Standard for all functions, even if this is not strictly necessary for
15117 correct execution of the code. Specifying @option{-fomit-frame-pointer}
15118 with this option causes the stack frames not to be generated for
15119 leaf functions. The default is @option{-mno-apcs-frame}.
15120 This option is deprecated.
15121
15122 @item -mapcs
15123 @opindex mapcs
15124 This is a synonym for @option{-mapcs-frame} and is deprecated.
15125
15126 @ignore
15127 @c not currently implemented
15128 @item -mapcs-stack-check
15129 @opindex mapcs-stack-check
15130 Generate code to check the amount of stack space available upon entry to
15131 every function (that actually uses some stack space). If there is
15132 insufficient space available then either the function
15133 @code{__rt_stkovf_split_small} or @code{__rt_stkovf_split_big} is
15134 called, depending upon the amount of stack space required. The runtime
15135 system is required to provide these functions. The default is
15136 @option{-mno-apcs-stack-check}, since this produces smaller code.
15137
15138 @c not currently implemented
15139 @item -mapcs-reentrant
15140 @opindex mapcs-reentrant
15141 Generate reentrant, position-independent code. The default is
15142 @option{-mno-apcs-reentrant}.
15143 @end ignore
15144
15145 @item -mthumb-interwork
15146 @opindex mthumb-interwork
15147 Generate code that supports calling between the ARM and Thumb
15148 instruction sets. Without this option, on pre-v5 architectures, the
15149 two instruction sets cannot be reliably used inside one program. The
15150 default is @option{-mno-thumb-interwork}, since slightly larger code
15151 is generated when @option{-mthumb-interwork} is specified. In AAPCS
15152 configurations this option is meaningless.
15153
15154 @item -mno-sched-prolog
15155 @opindex mno-sched-prolog
15156 Prevent the reordering of instructions in the function prologue, or the
15157 merging of those instruction with the instructions in the function's
15158 body. This means that all functions start with a recognizable set
15159 of instructions (or in fact one of a choice from a small set of
15160 different function prologues), and this information can be used to
15161 locate the start of functions inside an executable piece of code. The
15162 default is @option{-msched-prolog}.
15163
15164 @item -mfloat-abi=@var{name}
15165 @opindex mfloat-abi
15166 Specifies which floating-point ABI to use. Permissible values
15167 are: @samp{soft}, @samp{softfp} and @samp{hard}.
15168
15169 Specifying @samp{soft} causes GCC to generate output containing
15170 library calls for floating-point operations.
15171 @samp{softfp} allows the generation of code using hardware floating-point
15172 instructions, but still uses the soft-float calling conventions.
15173 @samp{hard} allows generation of floating-point instructions
15174 and uses FPU-specific calling conventions.
15175
15176 The default depends on the specific target configuration. Note that
15177 the hard-float and soft-float ABIs are not link-compatible; you must
15178 compile your entire program with the same ABI, and link with a
15179 compatible set of libraries.
15180
15181 @item -mlittle-endian
15182 @opindex mlittle-endian
15183 Generate code for a processor running in little-endian mode. This is
15184 the default for all standard configurations.
15185
15186 @item -mbig-endian
15187 @opindex mbig-endian
15188 Generate code for a processor running in big-endian mode; the default is
15189 to compile code for a little-endian processor.
15190
15191 @item -march=@var{name@r{[}+extension@dots{}@r{]}}
15192 @opindex march
15193 This specifies the name of the target ARM architecture. GCC uses this
15194 name to determine what kind of instructions it can emit when generating
15195 assembly code. This option can be used in conjunction with or instead
15196 of the @option{-mcpu=} option.
15197
15198 Permissible names are:
15199 @samp{armv4t},
15200 @samp{armv5t}, @samp{armv5te},
15201 @samp{armv6}, @samp{armv6j}, @samp{armv6k}, @samp{armv6kz}, @samp{armv6t2},
15202 @samp{armv6z}, @samp{armv6zk},
15203 @samp{armv7}, @samp{armv7-a}, @samp{armv7ve},
15204 @samp{armv8-a}, @samp{armv8.1-a}, @samp{armv8.2-a},
15205 @samp{armv7-r},
15206 @samp{armv6-m}, @samp{armv6s-m},
15207 @samp{armv7-m}, @samp{armv7e-m},
15208 @samp{armv8-m.base}, @samp{armv8-m.main},
15209 @samp{iwmmxt} and @samp{iwmmxt2}.
15210
15211 Additionally, the following architectures, which lack support for the
15212 Thumb exection state, are recognized but support is deprecated:
15213 @samp{armv2}, @samp{armv2a}, @samp{armv3}, @samp{armv3m},
15214 @samp{armv4}, @samp{armv5} and @samp{armv5e}.
15215
15216 Many of the architectures support extensions. These can be added by
15217 appending @samp{+@var{extension}} to the architecture name. Extension
15218 options are processed in order and capabilities accumulate. An extension
15219 will also enable any necessary base extensions
15220 upon which it depends. For example, the @samp{+crypto} extension
15221 will always enable the @samp{+simd} extension. The exception to the
15222 additive construction is for extensions that are prefixed with
15223 @samp{+no@dots{}}: these extensions disable the specified option and
15224 any other extensions that may depend on the presence of that
15225 extension.
15226
15227 For example, @samp{-march=armv7-a+simd+nofp+vfpv4} is equivalent to
15228 writing @samp{-march=armv7-a+vfpv4} since the @samp{+simd} option is
15229 entirely disabled by the @samp{+nofp} option that follows it.
15230
15231 Most extension names are generically named, but have an effect that is
15232 dependent upon the architecture to which it is applied. For example,
15233 the @samp{+simd} option can be applied to both @samp{armv7-a} and
15234 @samp{armv8-a} architectures, but will enable the original ARMv7
15235 Advanced SIMD (Neon) extensions for @samp{armv7-a} and the ARMv8-a
15236 variant for @samp{armv8-a}.
15237
15238 The table below lists the supported extensions for each architecture.
15239 Architectures not mentioned do not support any extensions.
15240
15241 @table @samp
15242 @item armv5e
15243 @itemx armv5te
15244 @itemx armv6
15245 @itemx armv6j
15246 @itemx armv6k
15247 @itemx armv6kz
15248 @itemx armv6t2
15249 @itemx armv6z
15250 @itemx armv6zk
15251 @table @samp
15252 @item +fp
15253 The VFPv2 floating-point instructions. The extension @samp{+vfpv2} can be
15254 used as an alias for this extension.
15255
15256 @item +nofp
15257 Disable the floating-point instructions.
15258 @end table
15259
15260 @item armv7
15261 The common subset of the ARMv7-A, ARMv7-R and ARMv7-M architectures.
15262 @table @samp
15263 @item +fp
15264 The VFPv3 floating-point instructions, with 16 double-precision
15265 registers. The extension @samp{+vfpv3-d16} can be used as an alias
15266 for this extension. Note that floating-point is not supported by the
15267 base ARMv7-M architecture, but is compatible with both the ARMv7-A and
15268 ARMv7-R architectures.
15269
15270 @item +nofp
15271 Disable the floating-point instructions.
15272 @end table
15273
15274 @item armv7-a
15275 @table @samp
15276 @item +fp
15277 The VFPv3 floating-point instructions, with 16 double-precision
15278 registers. The extension @samp{+vfpv3-d16} can be used as an alias
15279 for this extension.
15280
15281 @item +simd
15282 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
15283 The extensions @samp{+neon} and @samp{+neon-vfpv3} can be used as aliases
15284 for this extension.
15285
15286 @item +vfpv3
15287 The VFPv3 floating-point instructions, with 32 double-precision
15288 registers.
15289
15290 @item +vfpv3-d16-fp16
15291 The VFPv3 floating-point instructions, with 16 double-precision
15292 registers and the half-precision floating-point conversion operations.
15293
15294 @item +vfpv3-fp16
15295 The VFPv3 floating-point instructions, with 32 double-precision
15296 registers and the half-precision floating-point conversion operations.
15297
15298 @item +vfpv4-d16
15299 The VFPv4 floating-point instructions, with 16 double-precision
15300 registers.
15301
15302 @item +vfpv4
15303 The VFPv4 floating-point instructions, with 32 double-precision
15304 registers.
15305
15306 @item +neon-fp16
15307 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
15308 the half-precision floating-point conversion operations.
15309
15310 @item +neon-vfpv4
15311 The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions.
15312
15313 @item +nosimd
15314 Disable the Advanced SIMD instructions (does not disable floating point).
15315
15316 @item +nofp
15317 Disable the floating-point and Advanced SIMD instructions.
15318 @end table
15319
15320 @item armv7ve
15321 The extended version of the ARMv7-A architecture with support for
15322 virtualization.
15323 @table @samp
15324 @item +fp
15325 The VFPv4 floating-point instructions, with 16 double-precision registers.
15326 The extension @samp{+vfpv4-d16} can be used as an alias for this extension.
15327
15328 @item +simd
15329 The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions. The
15330 extension @samp{+neon-vfpv4} can be used as an alias for this extension.
15331
15332 @item +vfpv3-d16
15333 The VFPv3 floating-point instructions, with 16 double-precision
15334 registers.
15335
15336 @item +vfpv3
15337 The VFPv3 floating-point instructions, with 32 double-precision
15338 registers.
15339
15340 @item +vfpv3-d16-fp16
15341 The VFPv3 floating-point instructions, with 16 double-precision
15342 registers and the half-precision floating-point conversion operations.
15343
15344 @item +vfpv3-fp16
15345 The VFPv3 floating-point instructions, with 32 double-precision
15346 registers and the half-precision floating-point conversion operations.
15347
15348 @item +vfpv4-d16
15349 The VFPv4 floating-point instructions, with 16 double-precision
15350 registers.
15351
15352 @item +vfpv4
15353 The VFPv4 floating-point instructions, with 32 double-precision
15354 registers.
15355
15356 @item +neon
15357 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
15358 The extension @samp{+neon-vfpv3} can be used as an alias for this extension.
15359
15360 @item +neon-fp16
15361 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
15362 the half-precision floating-point conversion operations.
15363
15364 @item +nosimd
15365 Disable the Advanced SIMD instructions (does not disable floating point).
15366
15367 @item +nofp
15368 Disable the floating-point and Advanced SIMD instructions.
15369 @end table
15370
15371 @item armv8-a
15372 @table @samp
15373 @item +crc
15374 The Cyclic Redundancy Check (CRC) instructions.
15375 @item +simd
15376 The ARMv8 Advanced SIMD and floating-point instructions.
15377 @item +crypto
15378 The cryptographic instructions.
15379 @item +nocrypto
15380 Disable the cryptographic isntructions.
15381 @item +nofp
15382 Disable the floating-point, Advanced SIMD and cryptographic instructions.
15383 @end table
15384
15385 @item armv8.1-a
15386 @table @samp
15387 @item +simd
15388 The ARMv8.1 Advanced SIMD and floating-point instructions.
15389
15390 @item +crypto
15391 The cryptographic instructions. This also enables the Advanced SIMD and
15392 floating-point instructions.
15393
15394 @item +nocrypto
15395 Disable the cryptographic isntructions.
15396
15397 @item +nofp
15398 Disable the floating-point, Advanced SIMD and cryptographic instructions.
15399 @end table
15400
15401 @item armv8.2-a
15402 @table @samp
15403 @item +fp16
15404 The half-precision floating-point data processing instructions.
15405 This also enables the Advanced SIMD and floating-point instructions.
15406
15407 @item +simd
15408 The ARMv8.1 Advanced SIMD and floating-point instructions.
15409
15410 @item +crypto
15411 The cryptographic instructions. This also enables the Advanced SIMD and
15412 floating-point instructions.
15413
15414 @item +nocrypto
15415 Disable the cryptographic extension.
15416
15417 @item +nofp
15418 Disable the floating-point, Advanced SIMD and cryptographic instructions.
15419 @end table
15420
15421 @item armv7-r
15422 @table @samp
15423 @item +fp.sp
15424 The single-precision VFPv3 floating-point instructions. The extension
15425 @samp{+vfpv3xd} can be used as an alias for this extension.
15426
15427 @item +fp
15428 The VFPv3 floating-point instructions with 16 double-precision registers.
15429 The extension +vfpv3-d16 can be used as an alias for this extension.
15430
15431 @item +nofp
15432 Disable the floating-point extension.
15433
15434 @item +idiv
15435 The ARM-state integer division instructions.
15436
15437 @item +noidiv
15438 Disable the ARM-state integer division extension.
15439 @end table
15440
15441 @item armv7e-m
15442 @table @samp
15443 @item +fp
15444 The single-precision VFPv4 floating-point instructions.
15445
15446 @item +fpv5
15447 The single-precision FPv5 floating-point instructions.
15448
15449 @item +fp.dp
15450 The single- and double-precision FPv5 floating-point instructions.
15451
15452 @item +nofp
15453 Disable the floating-point extensions.
15454 @end table
15455
15456 @item armv8-m.main
15457 @table @samp
15458 @item +dsp
15459 The DSP instructions.
15460
15461 @item +nodsp
15462 Disable the DSP extension.
15463
15464 @item +fp
15465 The single-precision floating-point instructions.
15466
15467 @item +fp.dp
15468 The single- and double-precision floating-point instructions.
15469
15470 @item +nofp
15471 Disable the floating-point extension.
15472
15473 @end table
15474
15475 @end table
15476
15477 @option{-march=native} causes the compiler to auto-detect the architecture
15478 of the build computer. At present, this feature is only supported on
15479 GNU/Linux, and not all architectures are recognized. If the auto-detect
15480 is unsuccessful the option has no effect.
15481
15482 @item -mtune=@var{name}
15483 @opindex mtune
15484 This option specifies the name of the target ARM processor for
15485 which GCC should tune the performance of the code.
15486 For some ARM implementations better performance can be obtained by using
15487 this option.
15488 Permissible names are: @samp{arm2}, @samp{arm250},
15489 @samp{arm3}, @samp{arm6}, @samp{arm60}, @samp{arm600}, @samp{arm610},
15490 @samp{arm620}, @samp{arm7}, @samp{arm7m}, @samp{arm7d}, @samp{arm7dm},
15491 @samp{arm7di}, @samp{arm7dmi}, @samp{arm70}, @samp{arm700},
15492 @samp{arm700i}, @samp{arm710}, @samp{arm710c}, @samp{arm7100},
15493 @samp{arm720},
15494 @samp{arm7500}, @samp{arm7500fe}, @samp{arm7tdmi}, @samp{arm7tdmi-s},
15495 @samp{arm710t}, @samp{arm720t}, @samp{arm740t},
15496 @samp{strongarm}, @samp{strongarm110}, @samp{strongarm1100},
15497 @samp{strongarm1110},
15498 @samp{arm8}, @samp{arm810}, @samp{arm9}, @samp{arm9e}, @samp{arm920},
15499 @samp{arm920t}, @samp{arm922t}, @samp{arm946e-s}, @samp{arm966e-s},
15500 @samp{arm968e-s}, @samp{arm926ej-s}, @samp{arm940t}, @samp{arm9tdmi},
15501 @samp{arm10tdmi}, @samp{arm1020t}, @samp{arm1026ej-s},
15502 @samp{arm10e}, @samp{arm1020e}, @samp{arm1022e},
15503 @samp{arm1136j-s}, @samp{arm1136jf-s}, @samp{mpcore}, @samp{mpcorenovfp},
15504 @samp{arm1156t2-s}, @samp{arm1156t2f-s}, @samp{arm1176jz-s}, @samp{arm1176jzf-s},
15505 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}, @samp{cortex-a8},
15506 @samp{cortex-a9}, @samp{cortex-a12}, @samp{cortex-a15}, @samp{cortex-a17},
15507 @samp{cortex-a32}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a57},
15508 @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-r4},
15509 @samp{cortex-r4f}, @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8},
15510 @samp{cortex-m33},
15511 @samp{cortex-m23},
15512 @samp{cortex-m7},
15513 @samp{cortex-m4},
15514 @samp{cortex-m3},
15515 @samp{cortex-m1},
15516 @samp{cortex-m0},
15517 @samp{cortex-m0plus},
15518 @samp{cortex-m1.small-multiply},
15519 @samp{cortex-m0.small-multiply},
15520 @samp{cortex-m0plus.small-multiply},
15521 @samp{exynos-m1},
15522 @samp{marvell-pj4},
15523 @samp{xscale}, @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312},
15524 @samp{fa526}, @samp{fa626},
15525 @samp{fa606te}, @samp{fa626te}, @samp{fmp626}, @samp{fa726te},
15526 @samp{xgene1}.
15527
15528 Additionally, this option can specify that GCC should tune the performance
15529 of the code for a big.LITTLE system. Permissible names are:
15530 @samp{cortex-a15.cortex-a7}, @samp{cortex-a17.cortex-a7},
15531 @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
15532 @samp{cortex-a72.cortex-a35}, @samp{cortex-a73.cortex-a53}.
15533
15534 @option{-mtune=generic-@var{arch}} specifies that GCC should tune the
15535 performance for a blend of processors within architecture @var{arch}.
15536 The aim is to generate code that run well on the current most popular
15537 processors, balancing between optimizations that benefit some CPUs in the
15538 range, and avoiding performance pitfalls of other CPUs. The effects of
15539 this option may change in future GCC versions as CPU models come and go.
15540
15541 @option{-mtune} permits the same extension options as @option{-mcpu}, but
15542 the extension options do not affect the tuning of the generated code.
15543
15544 @option{-mtune=native} causes the compiler to auto-detect the CPU
15545 of the build computer. At present, this feature is only supported on
15546 GNU/Linux, and not all architectures are recognized. If the auto-detect is
15547 unsuccessful the option has no effect.
15548
15549 @item -mcpu=@var{name@r{[}+extension@dots{}@r{]}}
15550 @opindex mcpu
15551 This specifies the name of the target ARM processor. GCC uses this name
15552 to derive the name of the target ARM architecture (as if specified
15553 by @option{-march}) and the ARM processor type for which to tune for
15554 performance (as if specified by @option{-mtune}). Where this option
15555 is used in conjunction with @option{-march} or @option{-mtune},
15556 those options take precedence over the appropriate part of this option.
15557
15558 Many of the supported CPUs implement optional architectural
15559 extensions. Where this is so the architectural extensions are
15560 normally enabled by default. If implementations that lack the
15561 extension exist, then the extension syntax can be used to disable
15562 those extensions that have been omitted. For floating-point and
15563 Advanced SIMD (Neon) instructions, the settings of the options
15564 @option{-mfloat-abi} and @option{-mfpu} must also be considered:
15565 floating-point and Advanced SIMD instructions will only be used if
15566 @option{-mfloat-abi} is not set to @samp{soft}; and any setting of
15567 @option{-mfpu} other than @samp{auto} will override the available
15568 floating-point and SIMD extension instructions.
15569
15570 For example, @samp{cortex-a9} can be found in three major
15571 configurations: integer only, with just a floating-point unit or with
15572 floating-point and Advanced SIMD. The default is to enable all the
15573 instructions, but the extensions @samp{+nosimd} and @samp{+nofp} can
15574 be used to disable just the SIMD or both the SIMD and floating-point
15575 instructions respectively.
15576
15577 Permissible names for this option are the same as those for
15578 @option{-mtune}.
15579
15580 The following extension options are common to the listed CPUs:
15581
15582 @table @samp
15583 @item +nofp
15584 Disables the floating-point instructions on @samp{arm9e},
15585 @samp{arm946e-s}, @samp{arm966e-s}, @samp{arm968e-s}, @samp{arm10e},
15586 @samp{arm1020e}, @samp{arm1022e}, @samp{arm926ej-s},
15587 @samp{arm1026ej-s}, @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8},
15588 @samp{cortex-m4}, @samp{cortex-m7} and @samp{cortex-m33}.
15589 Disables the floating-point and SIMD instructions on
15590 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7},
15591 @samp{cortex-a8}, @samp{cortex-a9}, @samp{cortex-a12},
15592 @samp{cortex-a15}, @samp{cortex-a17}, @samp{cortex-a15.cortex-a7},
15593 @samp{cortex-a17.cortex-a7}, @samp{cortex-a32}, @samp{cortex-a35}
15594 and @samp{cortex-a53}.
15595
15596 @item +nofp.dp
15597 Disables the double-precision component of the floating-point instructions
15598 on @samp{cortex-r5} and @samp{cortex-m7}.
15599
15600 @item +nosimd
15601 Disables the SIMD (but not floating-point) instructions on
15602 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}
15603 and @samp{cortex-a9}.
15604 @end table
15605
15606 Additionally the @samp{generic-armv7-a} pseudo target defaults to
15607 VFPv3 with 16 double-precision registers. It supports the following
15608 extension options: @samp{vfpv3-d16}, @samp{vfpv3},
15609 @samp{vfpv3-d16-fp16}, @samp{vfpv3-fp16}, @samp{vfpv4-d16},
15610 @samp{vfpv4}, @samp{neon}, @samp{neon-vfpv3}, @samp{neon-fp16},
15611 @samp{neon-vfpv4}. The meanings are the same as for the extensions to
15612 @option{-march=armv7-a}.
15613
15614 @option{-mcpu=generic-@var{arch}} is also permissible, and is
15615 equivalent to @option{-march=@var{arch} -mtune=generic-@var{arch}}.
15616 See @option{-mtune} for more information.
15617
15618 @option{-mcpu=native} causes the compiler to auto-detect the CPU
15619 of the build computer. At present, this feature is only supported on
15620 GNU/Linux, and not all architectures are recognized. If the auto-detect
15621 is unsuccessful the option has no effect.
15622
15623 @item -mfpu=@var{name}
15624 @opindex mfpu
15625 This specifies what floating-point hardware (or hardware emulation) is
15626 available on the target. Permissible names are: @samp{auto}, @samp{vfpv2},
15627 @samp{vfpv3},
15628 @samp{vfpv3-fp16}, @samp{vfpv3-d16}, @samp{vfpv3-d16-fp16}, @samp{vfpv3xd},
15629 @samp{vfpv3xd-fp16}, @samp{neon-vfpv3}, @samp{neon-fp16}, @samp{vfpv4},
15630 @samp{vfpv4-d16}, @samp{fpv4-sp-d16}, @samp{neon-vfpv4},
15631 @samp{fpv5-d16}, @samp{fpv5-sp-d16},
15632 @samp{fp-armv8}, @samp{neon-fp-armv8} and @samp{crypto-neon-fp-armv8}.
15633 Note that @samp{neon} is an alias for @samp{neon-vfpv3} and @samp{vfp}
15634 is an alias for @samp{vfpv2}.
15635
15636 The setting @samp{auto} is the default and is special. It causes the
15637 compiler to select the floating-point and Advanced SIMD instructions
15638 based on the settings of @option{-mcpu} and @option{-march}.
15639
15640 If the selected floating-point hardware includes the NEON extension
15641 (e.g. @option{-mfpu=neon}), note that floating-point
15642 operations are not generated by GCC's auto-vectorization pass unless
15643 @option{-funsafe-math-optimizations} is also specified. This is
15644 because NEON hardware does not fully implement the IEEE 754 standard for
15645 floating-point arithmetic (in particular denormal values are treated as
15646 zero), so the use of NEON instructions may lead to a loss of precision.
15647
15648 You can also set the fpu name at function level by using the @code{target("fpu=")} function attributes (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
15649
15650 @item -mfp16-format=@var{name}
15651 @opindex mfp16-format
15652 Specify the format of the @code{__fp16} half-precision floating-point type.
15653 Permissible names are @samp{none}, @samp{ieee}, and @samp{alternative};
15654 the default is @samp{none}, in which case the @code{__fp16} type is not
15655 defined. @xref{Half-Precision}, for more information.
15656
15657 @item -mstructure-size-boundary=@var{n}
15658 @opindex mstructure-size-boundary
15659 The sizes of all structures and unions are rounded up to a multiple
15660 of the number of bits set by this option. Permissible values are 8, 32
15661 and 64. The default value varies for different toolchains. For the COFF
15662 targeted toolchain the default value is 8. A value of 64 is only allowed
15663 if the underlying ABI supports it.
15664
15665 Specifying a larger number can produce faster, more efficient code, but
15666 can also increase the size of the program. Different values are potentially
15667 incompatible. Code compiled with one value cannot necessarily expect to
15668 work with code or libraries compiled with another value, if they exchange
15669 information using structures or unions.
15670
15671 @item -mabort-on-noreturn
15672 @opindex mabort-on-noreturn
15673 Generate a call to the function @code{abort} at the end of a
15674 @code{noreturn} function. It is executed if the function tries to
15675 return.
15676
15677 @item -mlong-calls
15678 @itemx -mno-long-calls
15679 @opindex mlong-calls
15680 @opindex mno-long-calls
15681 Tells the compiler to perform function calls by first loading the
15682 address of the function into a register and then performing a subroutine
15683 call on this register. This switch is needed if the target function
15684 lies outside of the 64-megabyte addressing range of the offset-based
15685 version of subroutine call instruction.
15686
15687 Even if this switch is enabled, not all function calls are turned
15688 into long calls. The heuristic is that static functions, functions
15689 that have the @code{short_call} attribute, functions that are inside
15690 the scope of a @code{#pragma no_long_calls} directive, and functions whose
15691 definitions have already been compiled within the current compilation
15692 unit are not turned into long calls. The exceptions to this rule are
15693 that weak function definitions, functions with the @code{long_call}
15694 attribute or the @code{section} attribute, and functions that are within
15695 the scope of a @code{#pragma long_calls} directive are always
15696 turned into long calls.
15697
15698 This feature is not enabled by default. Specifying
15699 @option{-mno-long-calls} restores the default behavior, as does
15700 placing the function calls within the scope of a @code{#pragma
15701 long_calls_off} directive. Note these switches have no effect on how
15702 the compiler generates code to handle function calls via function
15703 pointers.
15704
15705 @item -msingle-pic-base
15706 @opindex msingle-pic-base
15707 Treat the register used for PIC addressing as read-only, rather than
15708 loading it in the prologue for each function. The runtime system is
15709 responsible for initializing this register with an appropriate value
15710 before execution begins.
15711
15712 @item -mpic-register=@var{reg}
15713 @opindex mpic-register
15714 Specify the register to be used for PIC addressing.
15715 For standard PIC base case, the default is any suitable register
15716 determined by compiler. For single PIC base case, the default is
15717 @samp{R9} if target is EABI based or stack-checking is enabled,
15718 otherwise the default is @samp{R10}.
15719
15720 @item -mpic-data-is-text-relative
15721 @opindex mpic-data-is-text-relative
15722 Assume that the displacement between the text and data segments is fixed
15723 at static link time. This permits using PC-relative addressing
15724 operations to access data known to be in the data segment. For
15725 non-VxWorks RTP targets, this option is enabled by default. When
15726 disabled on such targets, it will enable @option{-msingle-pic-base} by
15727 default.
15728
15729 @item -mpoke-function-name
15730 @opindex mpoke-function-name
15731 Write the name of each function into the text section, directly
15732 preceding the function prologue. The generated code is similar to this:
15733
15734 @smallexample
15735 t0
15736 .ascii "arm_poke_function_name", 0
15737 .align
15738 t1
15739 .word 0xff000000 + (t1 - t0)
15740 arm_poke_function_name
15741 mov ip, sp
15742 stmfd sp!, @{fp, ip, lr, pc@}
15743 sub fp, ip, #4
15744 @end smallexample
15745
15746 When performing a stack backtrace, code can inspect the value of
15747 @code{pc} stored at @code{fp + 0}. If the trace function then looks at
15748 location @code{pc - 12} and the top 8 bits are set, then we know that
15749 there is a function name embedded immediately preceding this location
15750 and has length @code{((pc[-3]) & 0xff000000)}.
15751
15752 @item -mthumb
15753 @itemx -marm
15754 @opindex marm
15755 @opindex mthumb
15756
15757 Select between generating code that executes in ARM and Thumb
15758 states. The default for most configurations is to generate code
15759 that executes in ARM state, but the default can be changed by
15760 configuring GCC with the @option{--with-mode=}@var{state}
15761 configure option.
15762
15763 You can also override the ARM and Thumb mode for each function
15764 by using the @code{target("thumb")} and @code{target("arm")} function attributes
15765 (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
15766
15767 @item -mtpcs-frame
15768 @opindex mtpcs-frame
15769 Generate a stack frame that is compliant with the Thumb Procedure Call
15770 Standard for all non-leaf functions. (A leaf function is one that does
15771 not call any other functions.) The default is @option{-mno-tpcs-frame}.
15772
15773 @item -mtpcs-leaf-frame
15774 @opindex mtpcs-leaf-frame
15775 Generate a stack frame that is compliant with the Thumb Procedure Call
15776 Standard for all leaf functions. (A leaf function is one that does
15777 not call any other functions.) The default is @option{-mno-apcs-leaf-frame}.
15778
15779 @item -mcallee-super-interworking
15780 @opindex mcallee-super-interworking
15781 Gives all externally visible functions in the file being compiled an ARM
15782 instruction set header which switches to Thumb mode before executing the
15783 rest of the function. This allows these functions to be called from
15784 non-interworking code. This option is not valid in AAPCS configurations
15785 because interworking is enabled by default.
15786
15787 @item -mcaller-super-interworking
15788 @opindex mcaller-super-interworking
15789 Allows calls via function pointers (including virtual functions) to
15790 execute correctly regardless of whether the target code has been
15791 compiled for interworking or not. There is a small overhead in the cost
15792 of executing a function pointer if this option is enabled. This option
15793 is not valid in AAPCS configurations because interworking is enabled
15794 by default.
15795
15796 @item -mtp=@var{name}
15797 @opindex mtp
15798 Specify the access model for the thread local storage pointer. The valid
15799 models are @samp{soft}, which generates calls to @code{__aeabi_read_tp},
15800 @samp{cp15}, which fetches the thread pointer from @code{cp15} directly
15801 (supported in the arm6k architecture), and @samp{auto}, which uses the
15802 best available method for the selected processor. The default setting is
15803 @samp{auto}.
15804
15805 @item -mtls-dialect=@var{dialect}
15806 @opindex mtls-dialect
15807 Specify the dialect to use for accessing thread local storage. Two
15808 @var{dialect}s are supported---@samp{gnu} and @samp{gnu2}. The
15809 @samp{gnu} dialect selects the original GNU scheme for supporting
15810 local and global dynamic TLS models. The @samp{gnu2} dialect
15811 selects the GNU descriptor scheme, which provides better performance
15812 for shared libraries. The GNU descriptor scheme is compatible with
15813 the original scheme, but does require new assembler, linker and
15814 library support. Initial and local exec TLS models are unaffected by
15815 this option and always use the original scheme.
15816
15817 @item -mword-relocations
15818 @opindex mword-relocations
15819 Only generate absolute relocations on word-sized values (i.e. R_ARM_ABS32).
15820 This is enabled by default on targets (uClinux, SymbianOS) where the runtime
15821 loader imposes this restriction, and when @option{-fpic} or @option{-fPIC}
15822 is specified.
15823
15824 @item -mfix-cortex-m3-ldrd
15825 @opindex mfix-cortex-m3-ldrd
15826 Some Cortex-M3 cores can cause data corruption when @code{ldrd} instructions
15827 with overlapping destination and base registers are used. This option avoids
15828 generating these instructions. This option is enabled by default when
15829 @option{-mcpu=cortex-m3} is specified.
15830
15831 @item -munaligned-access
15832 @itemx -mno-unaligned-access
15833 @opindex munaligned-access
15834 @opindex mno-unaligned-access
15835 Enables (or disables) reading and writing of 16- and 32- bit values
15836 from addresses that are not 16- or 32- bit aligned. By default
15837 unaligned access is disabled for all pre-ARMv6, all ARMv6-M and for
15838 ARMv8-M Baseline architectures, and enabled for all other
15839 architectures. If unaligned access is not enabled then words in packed
15840 data structures are accessed a byte at a time.
15841
15842 The ARM attribute @code{Tag_CPU_unaligned_access} is set in the
15843 generated object file to either true or false, depending upon the
15844 setting of this option. If unaligned access is enabled then the
15845 preprocessor symbol @code{__ARM_FEATURE_UNALIGNED} is also
15846 defined.
15847
15848 @item -mneon-for-64bits
15849 @opindex mneon-for-64bits
15850 Enables using Neon to handle scalar 64-bits operations. This is
15851 disabled by default since the cost of moving data from core registers
15852 to Neon is high.
15853
15854 @item -mslow-flash-data
15855 @opindex mslow-flash-data
15856 Assume loading data from flash is slower than fetching instruction.
15857 Therefore literal load is minimized for better performance.
15858 This option is only supported when compiling for ARMv7 M-profile and
15859 off by default.
15860
15861 @item -masm-syntax-unified
15862 @opindex masm-syntax-unified
15863 Assume inline assembler is using unified asm syntax. The default is
15864 currently off which implies divided syntax. This option has no impact
15865 on Thumb2. However, this may change in future releases of GCC.
15866 Divided syntax should be considered deprecated.
15867
15868 @item -mrestrict-it
15869 @opindex mrestrict-it
15870 Restricts generation of IT blocks to conform to the rules of ARMv8.
15871 IT blocks can only contain a single 16-bit instruction from a select
15872 set of instructions. This option is on by default for ARMv8 Thumb mode.
15873
15874 @item -mprint-tune-info
15875 @opindex mprint-tune-info
15876 Print CPU tuning information as comment in assembler file. This is
15877 an option used only for regression testing of the compiler and not
15878 intended for ordinary use in compiling code. This option is disabled
15879 by default.
15880
15881 @item -mpure-code
15882 @opindex mpure-code
15883 Do not allow constant data to be placed in code sections.
15884 Additionally, when compiling for ELF object format give all text sections the
15885 ELF processor-specific section attribute @code{SHF_ARM_PURECODE}. This option
15886 is only available when generating non-pic code for M-profile targets with the
15887 MOVT instruction.
15888
15889 @item -mcmse
15890 @opindex mcmse
15891 Generate secure code as per the "ARMv8-M Security Extensions: Requirements on
15892 Development Tools Engineering Specification", which can be found on
15893 @url{http://infocenter.arm.com/help/topic/com.arm.doc.ecm0359818/ECM0359818_armv8m_security_extensions_reqs_on_dev_tools_1_0.pdf}.
15894 @end table
15895
15896 @node AVR Options
15897 @subsection AVR Options
15898 @cindex AVR Options
15899
15900 These options are defined for AVR implementations:
15901
15902 @table @gcctabopt
15903 @item -mmcu=@var{mcu}
15904 @opindex mmcu
15905 Specify Atmel AVR instruction set architectures (ISA) or MCU type.
15906
15907 The default for this option is@tie{}@samp{avr2}.
15908
15909 GCC supports the following AVR devices and ISAs:
15910
15911 @include avr-mmcu.texi
15912
15913 @item -mabsdata
15914 @opindex mabsdata
15915
15916 Assume that all data in static storage can be accessed by LDS / STS
15917 instructions. This option has only an effect on reduced Tiny devices like
15918 ATtiny40. See also the @code{absdata}
15919 @ref{AVR Variable Attributes,variable attribute}.
15920
15921 @item -maccumulate-args
15922 @opindex maccumulate-args
15923 Accumulate outgoing function arguments and acquire/release the needed
15924 stack space for outgoing function arguments once in function
15925 prologue/epilogue. Without this option, outgoing arguments are pushed
15926 before calling a function and popped afterwards.
15927
15928 Popping the arguments after the function call can be expensive on
15929 AVR so that accumulating the stack space might lead to smaller
15930 executables because arguments need not be removed from the
15931 stack after such a function call.
15932
15933 This option can lead to reduced code size for functions that perform
15934 several calls to functions that get their arguments on the stack like
15935 calls to printf-like functions.
15936
15937 @item -mbranch-cost=@var{cost}
15938 @opindex mbranch-cost
15939 Set the branch costs for conditional branch instructions to
15940 @var{cost}. Reasonable values for @var{cost} are small, non-negative
15941 integers. The default branch cost is 0.
15942
15943 @item -mcall-prologues
15944 @opindex mcall-prologues
15945 Functions prologues/epilogues are expanded as calls to appropriate
15946 subroutines. Code size is smaller.
15947
15948 @item -mint8
15949 @opindex mint8
15950 Assume @code{int} to be 8-bit integer. This affects the sizes of all types: a
15951 @code{char} is 1 byte, an @code{int} is 1 byte, a @code{long} is 2 bytes,
15952 and @code{long long} is 4 bytes. Please note that this option does not
15953 conform to the C standards, but it results in smaller code
15954 size.
15955
15956 @item -mn-flash=@var{num}
15957 @opindex mn-flash
15958 Assume that the flash memory has a size of
15959 @var{num} times 64@tie{}KiB.
15960
15961 @item -mno-interrupts
15962 @opindex mno-interrupts
15963 Generated code is not compatible with hardware interrupts.
15964 Code size is smaller.
15965
15966 @item -mrelax
15967 @opindex mrelax
15968 Try to replace @code{CALL} resp.@: @code{JMP} instruction by the shorter
15969 @code{RCALL} resp.@: @code{RJMP} instruction if applicable.
15970 Setting @option{-mrelax} just adds the @option{--mlink-relax} option to
15971 the assembler's command line and the @option{--relax} option to the
15972 linker's command line.
15973
15974 Jump relaxing is performed by the linker because jump offsets are not
15975 known before code is located. Therefore, the assembler code generated by the
15976 compiler is the same, but the instructions in the executable may
15977 differ from instructions in the assembler code.
15978
15979 Relaxing must be turned on if linker stubs are needed, see the
15980 section on @code{EIND} and linker stubs below.
15981
15982 @item -mrmw
15983 @opindex mrmw
15984 Assume that the device supports the Read-Modify-Write
15985 instructions @code{XCH}, @code{LAC}, @code{LAS} and @code{LAT}.
15986
15987 @item -mshort-calls
15988 @opindex mshort-calls
15989
15990 Assume that @code{RJMP} and @code{RCALL} can target the whole
15991 program memory.
15992
15993 This option is used internally for multilib selection. It is
15994 not an optimization option, and you don't need to set it by hand.
15995
15996 @item -msp8
15997 @opindex msp8
15998 Treat the stack pointer register as an 8-bit register,
15999 i.e.@: assume the high byte of the stack pointer is zero.
16000 In general, you don't need to set this option by hand.
16001
16002 This option is used internally by the compiler to select and
16003 build multilibs for architectures @code{avr2} and @code{avr25}.
16004 These architectures mix devices with and without @code{SPH}.
16005 For any setting other than @option{-mmcu=avr2} or @option{-mmcu=avr25}
16006 the compiler driver adds or removes this option from the compiler
16007 proper's command line, because the compiler then knows if the device
16008 or architecture has an 8-bit stack pointer and thus no @code{SPH}
16009 register or not.
16010
16011 @item -mstrict-X
16012 @opindex mstrict-X
16013 Use address register @code{X} in a way proposed by the hardware. This means
16014 that @code{X} is only used in indirect, post-increment or
16015 pre-decrement addressing.
16016
16017 Without this option, the @code{X} register may be used in the same way
16018 as @code{Y} or @code{Z} which then is emulated by additional
16019 instructions.
16020 For example, loading a value with @code{X+const} addressing with a
16021 small non-negative @code{const < 64} to a register @var{Rn} is
16022 performed as
16023
16024 @example
16025 adiw r26, const ; X += const
16026 ld @var{Rn}, X ; @var{Rn} = *X
16027 sbiw r26, const ; X -= const
16028 @end example
16029
16030 @item -mtiny-stack
16031 @opindex mtiny-stack
16032 Only change the lower 8@tie{}bits of the stack pointer.
16033
16034 @item -mfract-convert-truncate
16035 @opindex mfract-convert-truncate
16036 Allow to use truncation instead of rounding towards zero for fractional fixed-point types.
16037
16038 @item -nodevicelib
16039 @opindex nodevicelib
16040 Don't link against AVR-LibC's device specific library @code{lib<mcu>.a}.
16041
16042 @item -Waddr-space-convert
16043 @opindex Waddr-space-convert
16044 Warn about conversions between address spaces in the case where the
16045 resulting address space is not contained in the incoming address space.
16046
16047 @item -Wmisspelled-isr
16048 @opindex Wmisspelled-isr
16049 Warn if the ISR is misspelled, i.e. without __vector prefix.
16050 Enabled by default.
16051 @end table
16052
16053 @subsubsection @code{EIND} and Devices with More Than 128 Ki Bytes of Flash
16054 @cindex @code{EIND}
16055 Pointers in the implementation are 16@tie{}bits wide.
16056 The address of a function or label is represented as word address so
16057 that indirect jumps and calls can target any code address in the
16058 range of 64@tie{}Ki words.
16059
16060 In order to facilitate indirect jump on devices with more than 128@tie{}Ki
16061 bytes of program memory space, there is a special function register called
16062 @code{EIND} that serves as most significant part of the target address
16063 when @code{EICALL} or @code{EIJMP} instructions are used.
16064
16065 Indirect jumps and calls on these devices are handled as follows by
16066 the compiler and are subject to some limitations:
16067
16068 @itemize @bullet
16069
16070 @item
16071 The compiler never sets @code{EIND}.
16072
16073 @item
16074 The compiler uses @code{EIND} implicitly in @code{EICALL}/@code{EIJMP}
16075 instructions or might read @code{EIND} directly in order to emulate an
16076 indirect call/jump by means of a @code{RET} instruction.
16077
16078 @item
16079 The compiler assumes that @code{EIND} never changes during the startup
16080 code or during the application. In particular, @code{EIND} is not
16081 saved/restored in function or interrupt service routine
16082 prologue/epilogue.
16083
16084 @item
16085 For indirect calls to functions and computed goto, the linker
16086 generates @emph{stubs}. Stubs are jump pads sometimes also called
16087 @emph{trampolines}. Thus, the indirect call/jump jumps to such a stub.
16088 The stub contains a direct jump to the desired address.
16089
16090 @item
16091 Linker relaxation must be turned on so that the linker generates
16092 the stubs correctly in all situations. See the compiler option
16093 @option{-mrelax} and the linker option @option{--relax}.
16094 There are corner cases where the linker is supposed to generate stubs
16095 but aborts without relaxation and without a helpful error message.
16096
16097 @item
16098 The default linker script is arranged for code with @code{EIND = 0}.
16099 If code is supposed to work for a setup with @code{EIND != 0}, a custom
16100 linker script has to be used in order to place the sections whose
16101 name start with @code{.trampolines} into the segment where @code{EIND}
16102 points to.
16103
16104 @item
16105 The startup code from libgcc never sets @code{EIND}.
16106 Notice that startup code is a blend of code from libgcc and AVR-LibC.
16107 For the impact of AVR-LibC on @code{EIND}, see the
16108 @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC user manual}}.
16109
16110 @item
16111 It is legitimate for user-specific startup code to set up @code{EIND}
16112 early, for example by means of initialization code located in
16113 section @code{.init3}. Such code runs prior to general startup code
16114 that initializes RAM and calls constructors, but after the bit
16115 of startup code from AVR-LibC that sets @code{EIND} to the segment
16116 where the vector table is located.
16117 @example
16118 #include <avr/io.h>
16119
16120 static void
16121 __attribute__((section(".init3"),naked,used,no_instrument_function))
16122 init3_set_eind (void)
16123 @{
16124 __asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
16125 "out %i0,r24" :: "n" (&EIND) : "r24","memory");
16126 @}
16127 @end example
16128
16129 @noindent
16130 The @code{__trampolines_start} symbol is defined in the linker script.
16131
16132 @item
16133 Stubs are generated automatically by the linker if
16134 the following two conditions are met:
16135 @itemize @minus
16136
16137 @item The address of a label is taken by means of the @code{gs} modifier
16138 (short for @emph{generate stubs}) like so:
16139 @example
16140 LDI r24, lo8(gs(@var{func}))
16141 LDI r25, hi8(gs(@var{func}))
16142 @end example
16143 @item The final location of that label is in a code segment
16144 @emph{outside} the segment where the stubs are located.
16145 @end itemize
16146
16147 @item
16148 The compiler emits such @code{gs} modifiers for code labels in the
16149 following situations:
16150 @itemize @minus
16151 @item Taking address of a function or code label.
16152 @item Computed goto.
16153 @item If prologue-save function is used, see @option{-mcall-prologues}
16154 command-line option.
16155 @item Switch/case dispatch tables. If you do not want such dispatch
16156 tables you can specify the @option{-fno-jump-tables} command-line option.
16157 @item C and C++ constructors/destructors called during startup/shutdown.
16158 @item If the tools hit a @code{gs()} modifier explained above.
16159 @end itemize
16160
16161 @item
16162 Jumping to non-symbolic addresses like so is @emph{not} supported:
16163
16164 @example
16165 int main (void)
16166 @{
16167 /* Call function at word address 0x2 */
16168 return ((int(*)(void)) 0x2)();
16169 @}
16170 @end example
16171
16172 Instead, a stub has to be set up, i.e.@: the function has to be called
16173 through a symbol (@code{func_4} in the example):
16174
16175 @example
16176 int main (void)
16177 @{
16178 extern int func_4 (void);
16179
16180 /* Call function at byte address 0x4 */
16181 return func_4();
16182 @}
16183 @end example
16184
16185 and the application be linked with @option{-Wl,--defsym,func_4=0x4}.
16186 Alternatively, @code{func_4} can be defined in the linker script.
16187 @end itemize
16188
16189 @subsubsection Handling of the @code{RAMPD}, @code{RAMPX}, @code{RAMPY} and @code{RAMPZ} Special Function Registers
16190 @cindex @code{RAMPD}
16191 @cindex @code{RAMPX}
16192 @cindex @code{RAMPY}
16193 @cindex @code{RAMPZ}
16194 Some AVR devices support memories larger than the 64@tie{}KiB range
16195 that can be accessed with 16-bit pointers. To access memory locations
16196 outside this 64@tie{}KiB range, the content of a @code{RAMP}
16197 register is used as high part of the address:
16198 The @code{X}, @code{Y}, @code{Z} address register is concatenated
16199 with the @code{RAMPX}, @code{RAMPY}, @code{RAMPZ} special function
16200 register, respectively, to get a wide address. Similarly,
16201 @code{RAMPD} is used together with direct addressing.
16202
16203 @itemize
16204 @item
16205 The startup code initializes the @code{RAMP} special function
16206 registers with zero.
16207
16208 @item
16209 If a @ref{AVR Named Address Spaces,named address space} other than
16210 generic or @code{__flash} is used, then @code{RAMPZ} is set
16211 as needed before the operation.
16212
16213 @item
16214 If the device supports RAM larger than 64@tie{}KiB and the compiler
16215 needs to change @code{RAMPZ} to accomplish an operation, @code{RAMPZ}
16216 is reset to zero after the operation.
16217
16218 @item
16219 If the device comes with a specific @code{RAMP} register, the ISR
16220 prologue/epilogue saves/restores that SFR and initializes it with
16221 zero in case the ISR code might (implicitly) use it.
16222
16223 @item
16224 RAM larger than 64@tie{}KiB is not supported by GCC for AVR targets.
16225 If you use inline assembler to read from locations outside the
16226 16-bit address range and change one of the @code{RAMP} registers,
16227 you must reset it to zero after the access.
16228
16229 @end itemize
16230
16231 @subsubsection AVR Built-in Macros
16232
16233 GCC defines several built-in macros so that the user code can test
16234 for the presence or absence of features. Almost any of the following
16235 built-in macros are deduced from device capabilities and thus
16236 triggered by the @option{-mmcu=} command-line option.
16237
16238 For even more AVR-specific built-in macros see
16239 @ref{AVR Named Address Spaces} and @ref{AVR Built-in Functions}.
16240
16241 @table @code
16242
16243 @item __AVR_ARCH__
16244 Build-in macro that resolves to a decimal number that identifies the
16245 architecture and depends on the @option{-mmcu=@var{mcu}} option.
16246 Possible values are:
16247
16248 @code{2}, @code{25}, @code{3}, @code{31}, @code{35},
16249 @code{4}, @code{5}, @code{51}, @code{6}
16250
16251 for @var{mcu}=@code{avr2}, @code{avr25}, @code{avr3}, @code{avr31},
16252 @code{avr35}, @code{avr4}, @code{avr5}, @code{avr51}, @code{avr6},
16253
16254 respectively and
16255
16256 @code{100},
16257 @code{102}, @code{103}, @code{104},
16258 @code{105}, @code{106}, @code{107}
16259
16260 for @var{mcu}=@code{avrtiny},
16261 @code{avrxmega2}, @code{avrxmega3}, @code{avrxmega4},
16262 @code{avrxmega5}, @code{avrxmega6}, @code{avrxmega7}, respectively.
16263 If @var{mcu} specifies a device, this built-in macro is set
16264 accordingly. For example, with @option{-mmcu=atmega8} the macro is
16265 defined to @code{4}.
16266
16267 @item __AVR_@var{Device}__
16268 Setting @option{-mmcu=@var{device}} defines this built-in macro which reflects
16269 the device's name. For example, @option{-mmcu=atmega8} defines the
16270 built-in macro @code{__AVR_ATmega8__}, @option{-mmcu=attiny261a} defines
16271 @code{__AVR_ATtiny261A__}, etc.
16272
16273 The built-in macros' names follow
16274 the scheme @code{__AVR_@var{Device}__} where @var{Device} is
16275 the device name as from the AVR user manual. The difference between
16276 @var{Device} in the built-in macro and @var{device} in
16277 @option{-mmcu=@var{device}} is that the latter is always lowercase.
16278
16279 If @var{device} is not a device but only a core architecture like
16280 @samp{avr51}, this macro is not defined.
16281
16282 @item __AVR_DEVICE_NAME__
16283 Setting @option{-mmcu=@var{device}} defines this built-in macro to
16284 the device's name. For example, with @option{-mmcu=atmega8} the macro
16285 is defined to @code{atmega8}.
16286
16287 If @var{device} is not a device but only a core architecture like
16288 @samp{avr51}, this macro is not defined.
16289
16290 @item __AVR_XMEGA__
16291 The device / architecture belongs to the XMEGA family of devices.
16292
16293 @item __AVR_HAVE_ELPM__
16294 The device has the @code{ELPM} instruction.
16295
16296 @item __AVR_HAVE_ELPMX__
16297 The device has the @code{ELPM R@var{n},Z} and @code{ELPM
16298 R@var{n},Z+} instructions.
16299
16300 @item __AVR_HAVE_MOVW__
16301 The device has the @code{MOVW} instruction to perform 16-bit
16302 register-register moves.
16303
16304 @item __AVR_HAVE_LPMX__
16305 The device has the @code{LPM R@var{n},Z} and
16306 @code{LPM R@var{n},Z+} instructions.
16307
16308 @item __AVR_HAVE_MUL__
16309 The device has a hardware multiplier.
16310
16311 @item __AVR_HAVE_JMP_CALL__
16312 The device has the @code{JMP} and @code{CALL} instructions.
16313 This is the case for devices with more than 8@tie{}KiB of program
16314 memory.
16315
16316 @item __AVR_HAVE_EIJMP_EICALL__
16317 @itemx __AVR_3_BYTE_PC__
16318 The device has the @code{EIJMP} and @code{EICALL} instructions.
16319 This is the case for devices with more than 128@tie{}KiB of program memory.
16320 This also means that the program counter
16321 (PC) is 3@tie{}bytes wide.
16322
16323 @item __AVR_2_BYTE_PC__
16324 The program counter (PC) is 2@tie{}bytes wide. This is the case for devices
16325 with up to 128@tie{}KiB of program memory.
16326
16327 @item __AVR_HAVE_8BIT_SP__
16328 @itemx __AVR_HAVE_16BIT_SP__
16329 The stack pointer (SP) register is treated as 8-bit respectively
16330 16-bit register by the compiler.
16331 The definition of these macros is affected by @option{-mtiny-stack}.
16332
16333 @item __AVR_HAVE_SPH__
16334 @itemx __AVR_SP8__
16335 The device has the SPH (high part of stack pointer) special function
16336 register or has an 8-bit stack pointer, respectively.
16337 The definition of these macros is affected by @option{-mmcu=} and
16338 in the cases of @option{-mmcu=avr2} and @option{-mmcu=avr25} also
16339 by @option{-msp8}.
16340
16341 @item __AVR_HAVE_RAMPD__
16342 @itemx __AVR_HAVE_RAMPX__
16343 @itemx __AVR_HAVE_RAMPY__
16344 @itemx __AVR_HAVE_RAMPZ__
16345 The device has the @code{RAMPD}, @code{RAMPX}, @code{RAMPY},
16346 @code{RAMPZ} special function register, respectively.
16347
16348 @item __NO_INTERRUPTS__
16349 This macro reflects the @option{-mno-interrupts} command-line option.
16350
16351 @item __AVR_ERRATA_SKIP__
16352 @itemx __AVR_ERRATA_SKIP_JMP_CALL__
16353 Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit
16354 instructions because of a hardware erratum. Skip instructions are
16355 @code{SBRS}, @code{SBRC}, @code{SBIS}, @code{SBIC} and @code{CPSE}.
16356 The second macro is only defined if @code{__AVR_HAVE_JMP_CALL__} is also
16357 set.
16358
16359 @item __AVR_ISA_RMW__
16360 The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT).
16361
16362 @item __AVR_SFR_OFFSET__=@var{offset}
16363 Instructions that can address I/O special function registers directly
16364 like @code{IN}, @code{OUT}, @code{SBI}, etc.@: may use a different
16365 address as if addressed by an instruction to access RAM like @code{LD}
16366 or @code{STS}. This offset depends on the device architecture and has
16367 to be subtracted from the RAM address in order to get the
16368 respective I/O@tie{}address.
16369
16370 @item __AVR_SHORT_CALLS__
16371 The @option{-mshort-calls} command line option is set.
16372
16373 @item __AVR_PM_BASE_ADDRESS__=@var{addr}
16374 Some devices support reading from flash memory by means of @code{LD*}
16375 instructions. The flash memory is seen in the data address space
16376 at an offset of @code{__AVR_PM_BASE_ADDRESS__}. If this macro
16377 is not defined, this feature is not available. If defined,
16378 the address space is linear and there is no need to put
16379 @code{.rodata} into RAM. This is handled by the default linker
16380 description file, and is currently available for
16381 @code{avrtiny} and @code{avrxmega3}. Even more convenient,
16382 there is no need to use address spaces like @code{__flash} or
16383 features like attribute @code{progmem} and @code{pgm_read_*}.
16384
16385 @item __WITH_AVRLIBC__
16386 The compiler is configured to be used together with AVR-Libc.
16387 See the @option{--with-avrlibc} configure option.
16388
16389 @end table
16390
16391 @node Blackfin Options
16392 @subsection Blackfin Options
16393 @cindex Blackfin Options
16394
16395 @table @gcctabopt
16396 @item -mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]}
16397 @opindex mcpu=
16398 Specifies the name of the target Blackfin processor. Currently, @var{cpu}
16399 can be one of @samp{bf512}, @samp{bf514}, @samp{bf516}, @samp{bf518},
16400 @samp{bf522}, @samp{bf523}, @samp{bf524}, @samp{bf525}, @samp{bf526},
16401 @samp{bf527}, @samp{bf531}, @samp{bf532}, @samp{bf533},
16402 @samp{bf534}, @samp{bf536}, @samp{bf537}, @samp{bf538}, @samp{bf539},
16403 @samp{bf542}, @samp{bf544}, @samp{bf547}, @samp{bf548}, @samp{bf549},
16404 @samp{bf542m}, @samp{bf544m}, @samp{bf547m}, @samp{bf548m}, @samp{bf549m},
16405 @samp{bf561}, @samp{bf592}.
16406
16407 The optional @var{sirevision} specifies the silicon revision of the target
16408 Blackfin processor. Any workarounds available for the targeted silicon revision
16409 are enabled. If @var{sirevision} is @samp{none}, no workarounds are enabled.
16410 If @var{sirevision} is @samp{any}, all workarounds for the targeted processor
16411 are enabled. The @code{__SILICON_REVISION__} macro is defined to two
16412 hexadecimal digits representing the major and minor numbers in the silicon
16413 revision. If @var{sirevision} is @samp{none}, the @code{__SILICON_REVISION__}
16414 is not defined. If @var{sirevision} is @samp{any}, the
16415 @code{__SILICON_REVISION__} is defined to be @code{0xffff}.
16416 If this optional @var{sirevision} is not used, GCC assumes the latest known
16417 silicon revision of the targeted Blackfin processor.
16418
16419 GCC defines a preprocessor macro for the specified @var{cpu}.
16420 For the @samp{bfin-elf} toolchain, this option causes the hardware BSP
16421 provided by libgloss to be linked in if @option{-msim} is not given.
16422
16423 Without this option, @samp{bf532} is used as the processor by default.
16424
16425 Note that support for @samp{bf561} is incomplete. For @samp{bf561},
16426 only the preprocessor macro is defined.
16427
16428 @item -msim
16429 @opindex msim
16430 Specifies that the program will be run on the simulator. This causes
16431 the simulator BSP provided by libgloss to be linked in. This option
16432 has effect only for @samp{bfin-elf} toolchain.
16433 Certain other options, such as @option{-mid-shared-library} and
16434 @option{-mfdpic}, imply @option{-msim}.
16435
16436 @item -momit-leaf-frame-pointer
16437 @opindex momit-leaf-frame-pointer
16438 Don't keep the frame pointer in a register for leaf functions. This
16439 avoids the instructions to save, set up and restore frame pointers and
16440 makes an extra register available in leaf functions. The option
16441 @option{-fomit-frame-pointer} removes the frame pointer for all functions,
16442 which might make debugging harder.
16443
16444 @item -mspecld-anomaly
16445 @opindex mspecld-anomaly
16446 When enabled, the compiler ensures that the generated code does not
16447 contain speculative loads after jump instructions. If this option is used,
16448 @code{__WORKAROUND_SPECULATIVE_LOADS} is defined.
16449
16450 @item -mno-specld-anomaly
16451 @opindex mno-specld-anomaly
16452 Don't generate extra code to prevent speculative loads from occurring.
16453
16454 @item -mcsync-anomaly
16455 @opindex mcsync-anomaly
16456 When enabled, the compiler ensures that the generated code does not
16457 contain CSYNC or SSYNC instructions too soon after conditional branches.
16458 If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined.
16459
16460 @item -mno-csync-anomaly
16461 @opindex mno-csync-anomaly
16462 Don't generate extra code to prevent CSYNC or SSYNC instructions from
16463 occurring too soon after a conditional branch.
16464
16465 @item -mlow-64k
16466 @opindex mlow-64k
16467 When enabled, the compiler is free to take advantage of the knowledge that
16468 the entire program fits into the low 64k of memory.
16469
16470 @item -mno-low-64k
16471 @opindex mno-low-64k
16472 Assume that the program is arbitrarily large. This is the default.
16473
16474 @item -mstack-check-l1
16475 @opindex mstack-check-l1
16476 Do stack checking using information placed into L1 scratchpad memory by the
16477 uClinux kernel.
16478
16479 @item -mid-shared-library
16480 @opindex mid-shared-library
16481 Generate code that supports shared libraries via the library ID method.
16482 This allows for execute in place and shared libraries in an environment
16483 without virtual memory management. This option implies @option{-fPIC}.
16484 With a @samp{bfin-elf} target, this option implies @option{-msim}.
16485
16486 @item -mno-id-shared-library
16487 @opindex mno-id-shared-library
16488 Generate code that doesn't assume ID-based shared libraries are being used.
16489 This is the default.
16490
16491 @item -mleaf-id-shared-library
16492 @opindex mleaf-id-shared-library
16493 Generate code that supports shared libraries via the library ID method,
16494 but assumes that this library or executable won't link against any other
16495 ID shared libraries. That allows the compiler to use faster code for jumps
16496 and calls.
16497
16498 @item -mno-leaf-id-shared-library
16499 @opindex mno-leaf-id-shared-library
16500 Do not assume that the code being compiled won't link against any ID shared
16501 libraries. Slower code is generated for jump and call insns.
16502
16503 @item -mshared-library-id=n
16504 @opindex mshared-library-id
16505 Specifies the identification number of the ID-based shared library being
16506 compiled. Specifying a value of 0 generates more compact code; specifying
16507 other values forces the allocation of that number to the current
16508 library but is no more space- or time-efficient than omitting this option.
16509
16510 @item -msep-data
16511 @opindex msep-data
16512 Generate code that allows the data segment to be located in a different
16513 area of memory from the text segment. This allows for execute in place in
16514 an environment without virtual memory management by eliminating relocations
16515 against the text section.
16516
16517 @item -mno-sep-data
16518 @opindex mno-sep-data
16519 Generate code that assumes that the data segment follows the text segment.
16520 This is the default.
16521
16522 @item -mlong-calls
16523 @itemx -mno-long-calls
16524 @opindex mlong-calls
16525 @opindex mno-long-calls
16526 Tells the compiler to perform function calls by first loading the
16527 address of the function into a register and then performing a subroutine
16528 call on this register. This switch is needed if the target function
16529 lies outside of the 24-bit addressing range of the offset-based
16530 version of subroutine call instruction.
16531
16532 This feature is not enabled by default. Specifying
16533 @option{-mno-long-calls} restores the default behavior. Note these
16534 switches have no effect on how the compiler generates code to handle
16535 function calls via function pointers.
16536
16537 @item -mfast-fp
16538 @opindex mfast-fp
16539 Link with the fast floating-point library. This library relaxes some of
16540 the IEEE floating-point standard's rules for checking inputs against
16541 Not-a-Number (NAN), in the interest of performance.
16542
16543 @item -minline-plt
16544 @opindex minline-plt
16545 Enable inlining of PLT entries in function calls to functions that are
16546 not known to bind locally. It has no effect without @option{-mfdpic}.
16547
16548 @item -mmulticore
16549 @opindex mmulticore
16550 Build a standalone application for multicore Blackfin processors.
16551 This option causes proper start files and link scripts supporting
16552 multicore to be used, and defines the macro @code{__BFIN_MULTICORE}.
16553 It can only be used with @option{-mcpu=bf561@r{[}-@var{sirevision}@r{]}}.
16554
16555 This option can be used with @option{-mcorea} or @option{-mcoreb}, which
16556 selects the one-application-per-core programming model. Without
16557 @option{-mcorea} or @option{-mcoreb}, the single-application/dual-core
16558 programming model is used. In this model, the main function of Core B
16559 should be named as @code{coreb_main}.
16560
16561 If this option is not used, the single-core application programming
16562 model is used.
16563
16564 @item -mcorea
16565 @opindex mcorea
16566 Build a standalone application for Core A of BF561 when using
16567 the one-application-per-core programming model. Proper start files
16568 and link scripts are used to support Core A, and the macro
16569 @code{__BFIN_COREA} is defined.
16570 This option can only be used in conjunction with @option{-mmulticore}.
16571
16572 @item -mcoreb
16573 @opindex mcoreb
16574 Build a standalone application for Core B of BF561 when using
16575 the one-application-per-core programming model. Proper start files
16576 and link scripts are used to support Core B, and the macro
16577 @code{__BFIN_COREB} is defined. When this option is used, @code{coreb_main}
16578 should be used instead of @code{main}.
16579 This option can only be used in conjunction with @option{-mmulticore}.
16580
16581 @item -msdram
16582 @opindex msdram
16583 Build a standalone application for SDRAM. Proper start files and
16584 link scripts are used to put the application into SDRAM, and the macro
16585 @code{__BFIN_SDRAM} is defined.
16586 The loader should initialize SDRAM before loading the application.
16587
16588 @item -micplb
16589 @opindex micplb
16590 Assume that ICPLBs are enabled at run time. This has an effect on certain
16591 anomaly workarounds. For Linux targets, the default is to assume ICPLBs
16592 are enabled; for standalone applications the default is off.
16593 @end table
16594
16595 @node C6X Options
16596 @subsection C6X Options
16597 @cindex C6X Options
16598
16599 @table @gcctabopt
16600 @item -march=@var{name}
16601 @opindex march
16602 This specifies the name of the target architecture. GCC uses this
16603 name to determine what kind of instructions it can emit when generating
16604 assembly code. Permissible names are: @samp{c62x},
16605 @samp{c64x}, @samp{c64x+}, @samp{c67x}, @samp{c67x+}, @samp{c674x}.
16606
16607 @item -mbig-endian
16608 @opindex mbig-endian
16609 Generate code for a big-endian target.
16610
16611 @item -mlittle-endian
16612 @opindex mlittle-endian
16613 Generate code for a little-endian target. This is the default.
16614
16615 @item -msim
16616 @opindex msim
16617 Choose startup files and linker script suitable for the simulator.
16618
16619 @item -msdata=default
16620 @opindex msdata=default
16621 Put small global and static data in the @code{.neardata} section,
16622 which is pointed to by register @code{B14}. Put small uninitialized
16623 global and static data in the @code{.bss} section, which is adjacent
16624 to the @code{.neardata} section. Put small read-only data into the
16625 @code{.rodata} section. The corresponding sections used for large
16626 pieces of data are @code{.fardata}, @code{.far} and @code{.const}.
16627
16628 @item -msdata=all
16629 @opindex msdata=all
16630 Put all data, not just small objects, into the sections reserved for
16631 small data, and use addressing relative to the @code{B14} register to
16632 access them.
16633
16634 @item -msdata=none
16635 @opindex msdata=none
16636 Make no use of the sections reserved for small data, and use absolute
16637 addresses to access all data. Put all initialized global and static
16638 data in the @code{.fardata} section, and all uninitialized data in the
16639 @code{.far} section. Put all constant data into the @code{.const}
16640 section.
16641 @end table
16642
16643 @node CRIS Options
16644 @subsection CRIS Options
16645 @cindex CRIS Options
16646
16647 These options are defined specifically for the CRIS ports.
16648
16649 @table @gcctabopt
16650 @item -march=@var{architecture-type}
16651 @itemx -mcpu=@var{architecture-type}
16652 @opindex march
16653 @opindex mcpu
16654 Generate code for the specified architecture. The choices for
16655 @var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
16656 respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX@.
16657 Default is @samp{v0} except for cris-axis-linux-gnu, where the default is
16658 @samp{v10}.
16659
16660 @item -mtune=@var{architecture-type}
16661 @opindex mtune
16662 Tune to @var{architecture-type} everything applicable about the generated
16663 code, except for the ABI and the set of available instructions. The
16664 choices for @var{architecture-type} are the same as for
16665 @option{-march=@var{architecture-type}}.
16666
16667 @item -mmax-stack-frame=@var{n}
16668 @opindex mmax-stack-frame
16669 Warn when the stack frame of a function exceeds @var{n} bytes.
16670
16671 @item -metrax4
16672 @itemx -metrax100
16673 @opindex metrax4
16674 @opindex metrax100
16675 The options @option{-metrax4} and @option{-metrax100} are synonyms for
16676 @option{-march=v3} and @option{-march=v8} respectively.
16677
16678 @item -mmul-bug-workaround
16679 @itemx -mno-mul-bug-workaround
16680 @opindex mmul-bug-workaround
16681 @opindex mno-mul-bug-workaround
16682 Work around a bug in the @code{muls} and @code{mulu} instructions for CPU
16683 models where it applies. This option is active by default.
16684
16685 @item -mpdebug
16686 @opindex mpdebug
16687 Enable CRIS-specific verbose debug-related information in the assembly
16688 code. This option also has the effect of turning off the @samp{#NO_APP}
16689 formatted-code indicator to the assembler at the beginning of the
16690 assembly file.
16691
16692 @item -mcc-init
16693 @opindex mcc-init
16694 Do not use condition-code results from previous instruction; always emit
16695 compare and test instructions before use of condition codes.
16696
16697 @item -mno-side-effects
16698 @opindex mno-side-effects
16699 Do not emit instructions with side effects in addressing modes other than
16700 post-increment.
16701
16702 @item -mstack-align
16703 @itemx -mno-stack-align
16704 @itemx -mdata-align
16705 @itemx -mno-data-align
16706 @itemx -mconst-align
16707 @itemx -mno-const-align
16708 @opindex mstack-align
16709 @opindex mno-stack-align
16710 @opindex mdata-align
16711 @opindex mno-data-align
16712 @opindex mconst-align
16713 @opindex mno-const-align
16714 These options (@samp{no-} options) arrange (eliminate arrangements) for the
16715 stack frame, individual data and constants to be aligned for the maximum
16716 single data access size for the chosen CPU model. The default is to
16717 arrange for 32-bit alignment. ABI details such as structure layout are
16718 not affected by these options.
16719
16720 @item -m32-bit
16721 @itemx -m16-bit
16722 @itemx -m8-bit
16723 @opindex m32-bit
16724 @opindex m16-bit
16725 @opindex m8-bit
16726 Similar to the stack- data- and const-align options above, these options
16727 arrange for stack frame, writable data and constants to all be 32-bit,
16728 16-bit or 8-bit aligned. The default is 32-bit alignment.
16729
16730 @item -mno-prologue-epilogue
16731 @itemx -mprologue-epilogue
16732 @opindex mno-prologue-epilogue
16733 @opindex mprologue-epilogue
16734 With @option{-mno-prologue-epilogue}, the normal function prologue and
16735 epilogue which set up the stack frame are omitted and no return
16736 instructions or return sequences are generated in the code. Use this
16737 option only together with visual inspection of the compiled code: no
16738 warnings or errors are generated when call-saved registers must be saved,
16739 or storage for local variables needs to be allocated.
16740
16741 @item -mno-gotplt
16742 @itemx -mgotplt
16743 @opindex mno-gotplt
16744 @opindex mgotplt
16745 With @option{-fpic} and @option{-fPIC}, don't generate (do generate)
16746 instruction sequences that load addresses for functions from the PLT part
16747 of the GOT rather than (traditional on other architectures) calls to the
16748 PLT@. The default is @option{-mgotplt}.
16749
16750 @item -melf
16751 @opindex melf
16752 Legacy no-op option only recognized with the cris-axis-elf and
16753 cris-axis-linux-gnu targets.
16754
16755 @item -mlinux
16756 @opindex mlinux
16757 Legacy no-op option only recognized with the cris-axis-linux-gnu target.
16758
16759 @item -sim
16760 @opindex sim
16761 This option, recognized for the cris-axis-elf, arranges
16762 to link with input-output functions from a simulator library. Code,
16763 initialized data and zero-initialized data are allocated consecutively.
16764
16765 @item -sim2
16766 @opindex sim2
16767 Like @option{-sim}, but pass linker options to locate initialized data at
16768 0x40000000 and zero-initialized data at 0x80000000.
16769 @end table
16770
16771 @node CR16 Options
16772 @subsection CR16 Options
16773 @cindex CR16 Options
16774
16775 These options are defined specifically for the CR16 ports.
16776
16777 @table @gcctabopt
16778
16779 @item -mmac
16780 @opindex mmac
16781 Enable the use of multiply-accumulate instructions. Disabled by default.
16782
16783 @item -mcr16cplus
16784 @itemx -mcr16c
16785 @opindex mcr16cplus
16786 @opindex mcr16c
16787 Generate code for CR16C or CR16C+ architecture. CR16C+ architecture
16788 is default.
16789
16790 @item -msim
16791 @opindex msim
16792 Links the library libsim.a which is in compatible with simulator. Applicable
16793 to ELF compiler only.
16794
16795 @item -mint32
16796 @opindex mint32
16797 Choose integer type as 32-bit wide.
16798
16799 @item -mbit-ops
16800 @opindex mbit-ops
16801 Generates @code{sbit}/@code{cbit} instructions for bit manipulations.
16802
16803 @item -mdata-model=@var{model}
16804 @opindex mdata-model
16805 Choose a data model. The choices for @var{model} are @samp{near},
16806 @samp{far} or @samp{medium}. @samp{medium} is default.
16807 However, @samp{far} is not valid with @option{-mcr16c}, as the
16808 CR16C architecture does not support the far data model.
16809 @end table
16810
16811 @node Darwin Options
16812 @subsection Darwin Options
16813 @cindex Darwin options
16814
16815 These options are defined for all architectures running the Darwin operating
16816 system.
16817
16818 FSF GCC on Darwin does not create ``fat'' object files; it creates
16819 an object file for the single architecture that GCC was built to
16820 target. Apple's GCC on Darwin does create ``fat'' files if multiple
16821 @option{-arch} options are used; it does so by running the compiler or
16822 linker multiple times and joining the results together with
16823 @file{lipo}.
16824
16825 The subtype of the file created (like @samp{ppc7400} or @samp{ppc970} or
16826 @samp{i686}) is determined by the flags that specify the ISA
16827 that GCC is targeting, like @option{-mcpu} or @option{-march}. The
16828 @option{-force_cpusubtype_ALL} option can be used to override this.
16829
16830 The Darwin tools vary in their behavior when presented with an ISA
16831 mismatch. The assembler, @file{as}, only permits instructions to
16832 be used that are valid for the subtype of the file it is generating,
16833 so you cannot put 64-bit instructions in a @samp{ppc750} object file.
16834 The linker for shared libraries, @file{/usr/bin/libtool}, fails
16835 and prints an error if asked to create a shared library with a less
16836 restrictive subtype than its input files (for instance, trying to put
16837 a @samp{ppc970} object file in a @samp{ppc7400} library). The linker
16838 for executables, @command{ld}, quietly gives the executable the most
16839 restrictive subtype of any of its input files.
16840
16841 @table @gcctabopt
16842 @item -F@var{dir}
16843 @opindex F
16844 Add the framework directory @var{dir} to the head of the list of
16845 directories to be searched for header files. These directories are
16846 interleaved with those specified by @option{-I} options and are
16847 scanned in a left-to-right order.
16848
16849 A framework directory is a directory with frameworks in it. A
16850 framework is a directory with a @file{Headers} and/or
16851 @file{PrivateHeaders} directory contained directly in it that ends
16852 in @file{.framework}. The name of a framework is the name of this
16853 directory excluding the @file{.framework}. Headers associated with
16854 the framework are found in one of those two directories, with
16855 @file{Headers} being searched first. A subframework is a framework
16856 directory that is in a framework's @file{Frameworks} directory.
16857 Includes of subframework headers can only appear in a header of a
16858 framework that contains the subframework, or in a sibling subframework
16859 header. Two subframeworks are siblings if they occur in the same
16860 framework. A subframework should not have the same name as a
16861 framework; a warning is issued if this is violated. Currently a
16862 subframework cannot have subframeworks; in the future, the mechanism
16863 may be extended to support this. The standard frameworks can be found
16864 in @file{/System/Library/Frameworks} and
16865 @file{/Library/Frameworks}. An example include looks like
16866 @code{#include <Framework/header.h>}, where @file{Framework} denotes
16867 the name of the framework and @file{header.h} is found in the
16868 @file{PrivateHeaders} or @file{Headers} directory.
16869
16870 @item -iframework@var{dir}
16871 @opindex iframework
16872 Like @option{-F} except the directory is a treated as a system
16873 directory. The main difference between this @option{-iframework} and
16874 @option{-F} is that with @option{-iframework} the compiler does not
16875 warn about constructs contained within header files found via
16876 @var{dir}. This option is valid only for the C family of languages.
16877
16878 @item -gused
16879 @opindex gused
16880 Emit debugging information for symbols that are used. For stabs
16881 debugging format, this enables @option{-feliminate-unused-debug-symbols}.
16882 This is by default ON@.
16883
16884 @item -gfull
16885 @opindex gfull
16886 Emit debugging information for all symbols and types.
16887
16888 @item -mmacosx-version-min=@var{version}
16889 The earliest version of MacOS X that this executable will run on
16890 is @var{version}. Typical values of @var{version} include @code{10.1},
16891 @code{10.2}, and @code{10.3.9}.
16892
16893 If the compiler was built to use the system's headers by default,
16894 then the default for this option is the system version on which the
16895 compiler is running, otherwise the default is to make choices that
16896 are compatible with as many systems and code bases as possible.
16897
16898 @item -mkernel
16899 @opindex mkernel
16900 Enable kernel development mode. The @option{-mkernel} option sets
16901 @option{-static}, @option{-fno-common}, @option{-fno-use-cxa-atexit},
16902 @option{-fno-exceptions}, @option{-fno-non-call-exceptions},
16903 @option{-fapple-kext}, @option{-fno-weak} and @option{-fno-rtti} where
16904 applicable. This mode also sets @option{-mno-altivec},
16905 @option{-msoft-float}, @option{-fno-builtin} and
16906 @option{-mlong-branch} for PowerPC targets.
16907
16908 @item -mone-byte-bool
16909 @opindex mone-byte-bool
16910 Override the defaults for @code{bool} so that @code{sizeof(bool)==1}.
16911 By default @code{sizeof(bool)} is @code{4} when compiling for
16912 Darwin/PowerPC and @code{1} when compiling for Darwin/x86, so this
16913 option has no effect on x86.
16914
16915 @strong{Warning:} The @option{-mone-byte-bool} switch causes GCC
16916 to generate code that is not binary compatible with code generated
16917 without that switch. Using this switch may require recompiling all
16918 other modules in a program, including system libraries. Use this
16919 switch to conform to a non-default data model.
16920
16921 @item -mfix-and-continue
16922 @itemx -ffix-and-continue
16923 @itemx -findirect-data
16924 @opindex mfix-and-continue
16925 @opindex ffix-and-continue
16926 @opindex findirect-data
16927 Generate code suitable for fast turnaround development, such as to
16928 allow GDB to dynamically load @file{.o} files into already-running
16929 programs. @option{-findirect-data} and @option{-ffix-and-continue}
16930 are provided for backwards compatibility.
16931
16932 @item -all_load
16933 @opindex all_load
16934 Loads all members of static archive libraries.
16935 See man ld(1) for more information.
16936
16937 @item -arch_errors_fatal
16938 @opindex arch_errors_fatal
16939 Cause the errors having to do with files that have the wrong architecture
16940 to be fatal.
16941
16942 @item -bind_at_load
16943 @opindex bind_at_load
16944 Causes the output file to be marked such that the dynamic linker will
16945 bind all undefined references when the file is loaded or launched.
16946
16947 @item -bundle
16948 @opindex bundle
16949 Produce a Mach-o bundle format file.
16950 See man ld(1) for more information.
16951
16952 @item -bundle_loader @var{executable}
16953 @opindex bundle_loader
16954 This option specifies the @var{executable} that will load the build
16955 output file being linked. See man ld(1) for more information.
16956
16957 @item -dynamiclib
16958 @opindex dynamiclib
16959 When passed this option, GCC produces a dynamic library instead of
16960 an executable when linking, using the Darwin @file{libtool} command.
16961
16962 @item -force_cpusubtype_ALL
16963 @opindex force_cpusubtype_ALL
16964 This causes GCC's output file to have the @samp{ALL} subtype, instead of
16965 one controlled by the @option{-mcpu} or @option{-march} option.
16966
16967 @item -allowable_client @var{client_name}
16968 @itemx -client_name
16969 @itemx -compatibility_version
16970 @itemx -current_version
16971 @itemx -dead_strip
16972 @itemx -dependency-file
16973 @itemx -dylib_file
16974 @itemx -dylinker_install_name
16975 @itemx -dynamic
16976 @itemx -exported_symbols_list
16977 @itemx -filelist
16978 @need 800
16979 @itemx -flat_namespace
16980 @itemx -force_flat_namespace
16981 @itemx -headerpad_max_install_names
16982 @itemx -image_base
16983 @itemx -init
16984 @itemx -install_name
16985 @itemx -keep_private_externs
16986 @itemx -multi_module
16987 @itemx -multiply_defined
16988 @itemx -multiply_defined_unused
16989 @need 800
16990 @itemx -noall_load
16991 @itemx -no_dead_strip_inits_and_terms
16992 @itemx -nofixprebinding
16993 @itemx -nomultidefs
16994 @itemx -noprebind
16995 @itemx -noseglinkedit
16996 @itemx -pagezero_size
16997 @itemx -prebind
16998 @itemx -prebind_all_twolevel_modules
16999 @itemx -private_bundle
17000 @need 800
17001 @itemx -read_only_relocs
17002 @itemx -sectalign
17003 @itemx -sectobjectsymbols
17004 @itemx -whyload
17005 @itemx -seg1addr
17006 @itemx -sectcreate
17007 @itemx -sectobjectsymbols
17008 @itemx -sectorder
17009 @itemx -segaddr
17010 @itemx -segs_read_only_addr
17011 @need 800
17012 @itemx -segs_read_write_addr
17013 @itemx -seg_addr_table
17014 @itemx -seg_addr_table_filename
17015 @itemx -seglinkedit
17016 @itemx -segprot
17017 @itemx -segs_read_only_addr
17018 @itemx -segs_read_write_addr
17019 @itemx -single_module
17020 @itemx -static
17021 @itemx -sub_library
17022 @need 800
17023 @itemx -sub_umbrella
17024 @itemx -twolevel_namespace
17025 @itemx -umbrella
17026 @itemx -undefined
17027 @itemx -unexported_symbols_list
17028 @itemx -weak_reference_mismatches
17029 @itemx -whatsloaded
17030 @opindex allowable_client
17031 @opindex client_name
17032 @opindex compatibility_version
17033 @opindex current_version
17034 @opindex dead_strip
17035 @opindex dependency-file
17036 @opindex dylib_file
17037 @opindex dylinker_install_name
17038 @opindex dynamic
17039 @opindex exported_symbols_list
17040 @opindex filelist
17041 @opindex flat_namespace
17042 @opindex force_flat_namespace
17043 @opindex headerpad_max_install_names
17044 @opindex image_base
17045 @opindex init
17046 @opindex install_name
17047 @opindex keep_private_externs
17048 @opindex multi_module
17049 @opindex multiply_defined
17050 @opindex multiply_defined_unused
17051 @opindex noall_load
17052 @opindex no_dead_strip_inits_and_terms
17053 @opindex nofixprebinding
17054 @opindex nomultidefs
17055 @opindex noprebind
17056 @opindex noseglinkedit
17057 @opindex pagezero_size
17058 @opindex prebind
17059 @opindex prebind_all_twolevel_modules
17060 @opindex private_bundle
17061 @opindex read_only_relocs
17062 @opindex sectalign
17063 @opindex sectobjectsymbols
17064 @opindex whyload
17065 @opindex seg1addr
17066 @opindex sectcreate
17067 @opindex sectobjectsymbols
17068 @opindex sectorder
17069 @opindex segaddr
17070 @opindex segs_read_only_addr
17071 @opindex segs_read_write_addr
17072 @opindex seg_addr_table
17073 @opindex seg_addr_table_filename
17074 @opindex seglinkedit
17075 @opindex segprot
17076 @opindex segs_read_only_addr
17077 @opindex segs_read_write_addr
17078 @opindex single_module
17079 @opindex static
17080 @opindex sub_library
17081 @opindex sub_umbrella
17082 @opindex twolevel_namespace
17083 @opindex umbrella
17084 @opindex undefined
17085 @opindex unexported_symbols_list
17086 @opindex weak_reference_mismatches
17087 @opindex whatsloaded
17088 These options are passed to the Darwin linker. The Darwin linker man page
17089 describes them in detail.
17090 @end table
17091
17092 @node DEC Alpha Options
17093 @subsection DEC Alpha Options
17094
17095 These @samp{-m} options are defined for the DEC Alpha implementations:
17096
17097 @table @gcctabopt
17098 @item -mno-soft-float
17099 @itemx -msoft-float
17100 @opindex mno-soft-float
17101 @opindex msoft-float
17102 Use (do not use) the hardware floating-point instructions for
17103 floating-point operations. When @option{-msoft-float} is specified,
17104 functions in @file{libgcc.a} are used to perform floating-point
17105 operations. Unless they are replaced by routines that emulate the
17106 floating-point operations, or compiled in such a way as to call such
17107 emulations routines, these routines issue floating-point
17108 operations. If you are compiling for an Alpha without floating-point
17109 operations, you must ensure that the library is built so as not to call
17110 them.
17111
17112 Note that Alpha implementations without floating-point operations are
17113 required to have floating-point registers.
17114
17115 @item -mfp-reg
17116 @itemx -mno-fp-regs
17117 @opindex mfp-reg
17118 @opindex mno-fp-regs
17119 Generate code that uses (does not use) the floating-point register set.
17120 @option{-mno-fp-regs} implies @option{-msoft-float}. If the floating-point
17121 register set is not used, floating-point operands are passed in integer
17122 registers as if they were integers and floating-point results are passed
17123 in @code{$0} instead of @code{$f0}. This is a non-standard calling sequence,
17124 so any function with a floating-point argument or return value called by code
17125 compiled with @option{-mno-fp-regs} must also be compiled with that
17126 option.
17127
17128 A typical use of this option is building a kernel that does not use,
17129 and hence need not save and restore, any floating-point registers.
17130
17131 @item -mieee
17132 @opindex mieee
17133 The Alpha architecture implements floating-point hardware optimized for
17134 maximum performance. It is mostly compliant with the IEEE floating-point
17135 standard. However, for full compliance, software assistance is
17136 required. This option generates code fully IEEE-compliant code
17137 @emph{except} that the @var{inexact-flag} is not maintained (see below).
17138 If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
17139 defined during compilation. The resulting code is less efficient but is
17140 able to correctly support denormalized numbers and exceptional IEEE
17141 values such as not-a-number and plus/minus infinity. Other Alpha
17142 compilers call this option @option{-ieee_with_no_inexact}.
17143
17144 @item -mieee-with-inexact
17145 @opindex mieee-with-inexact
17146 This is like @option{-mieee} except the generated code also maintains
17147 the IEEE @var{inexact-flag}. Turning on this option causes the
17148 generated code to implement fully-compliant IEEE math. In addition to
17149 @code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
17150 macro. On some Alpha implementations the resulting code may execute
17151 significantly slower than the code generated by default. Since there is
17152 very little code that depends on the @var{inexact-flag}, you should
17153 normally not specify this option. Other Alpha compilers call this
17154 option @option{-ieee_with_inexact}.
17155
17156 @item -mfp-trap-mode=@var{trap-mode}
17157 @opindex mfp-trap-mode
17158 This option controls what floating-point related traps are enabled.
17159 Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
17160 The trap mode can be set to one of four values:
17161
17162 @table @samp
17163 @item n
17164 This is the default (normal) setting. The only traps that are enabled
17165 are the ones that cannot be disabled in software (e.g., division by zero
17166 trap).
17167
17168 @item u
17169 In addition to the traps enabled by @samp{n}, underflow traps are enabled
17170 as well.
17171
17172 @item su
17173 Like @samp{u}, but the instructions are marked to be safe for software
17174 completion (see Alpha architecture manual for details).
17175
17176 @item sui
17177 Like @samp{su}, but inexact traps are enabled as well.
17178 @end table
17179
17180 @item -mfp-rounding-mode=@var{rounding-mode}
17181 @opindex mfp-rounding-mode
17182 Selects the IEEE rounding mode. Other Alpha compilers call this option
17183 @option{-fprm @var{rounding-mode}}. The @var{rounding-mode} can be one
17184 of:
17185
17186 @table @samp
17187 @item n
17188 Normal IEEE rounding mode. Floating-point numbers are rounded towards
17189 the nearest machine number or towards the even machine number in case
17190 of a tie.
17191
17192 @item m
17193 Round towards minus infinity.
17194
17195 @item c
17196 Chopped rounding mode. Floating-point numbers are rounded towards zero.
17197
17198 @item d
17199 Dynamic rounding mode. A field in the floating-point control register
17200 (@var{fpcr}, see Alpha architecture reference manual) controls the
17201 rounding mode in effect. The C library initializes this register for
17202 rounding towards plus infinity. Thus, unless your program modifies the
17203 @var{fpcr}, @samp{d} corresponds to round towards plus infinity.
17204 @end table
17205
17206 @item -mtrap-precision=@var{trap-precision}
17207 @opindex mtrap-precision
17208 In the Alpha architecture, floating-point traps are imprecise. This
17209 means without software assistance it is impossible to recover from a
17210 floating trap and program execution normally needs to be terminated.
17211 GCC can generate code that can assist operating system trap handlers
17212 in determining the exact location that caused a floating-point trap.
17213 Depending on the requirements of an application, different levels of
17214 precisions can be selected:
17215
17216 @table @samp
17217 @item p
17218 Program precision. This option is the default and means a trap handler
17219 can only identify which program caused a floating-point exception.
17220
17221 @item f
17222 Function precision. The trap handler can determine the function that
17223 caused a floating-point exception.
17224
17225 @item i
17226 Instruction precision. The trap handler can determine the exact
17227 instruction that caused a floating-point exception.
17228 @end table
17229
17230 Other Alpha compilers provide the equivalent options called
17231 @option{-scope_safe} and @option{-resumption_safe}.
17232
17233 @item -mieee-conformant
17234 @opindex mieee-conformant
17235 This option marks the generated code as IEEE conformant. You must not
17236 use this option unless you also specify @option{-mtrap-precision=i} and either
17237 @option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}. Its only effect
17238 is to emit the line @samp{.eflag 48} in the function prologue of the
17239 generated assembly file.
17240
17241 @item -mbuild-constants
17242 @opindex mbuild-constants
17243 Normally GCC examines a 32- or 64-bit integer constant to
17244 see if it can construct it from smaller constants in two or three
17245 instructions. If it cannot, it outputs the constant as a literal and
17246 generates code to load it from the data segment at run time.
17247
17248 Use this option to require GCC to construct @emph{all} integer constants
17249 using code, even if it takes more instructions (the maximum is six).
17250
17251 You typically use this option to build a shared library dynamic
17252 loader. Itself a shared library, it must relocate itself in memory
17253 before it can find the variables and constants in its own data segment.
17254
17255 @item -mbwx
17256 @itemx -mno-bwx
17257 @itemx -mcix
17258 @itemx -mno-cix
17259 @itemx -mfix
17260 @itemx -mno-fix
17261 @itemx -mmax
17262 @itemx -mno-max
17263 @opindex mbwx
17264 @opindex mno-bwx
17265 @opindex mcix
17266 @opindex mno-cix
17267 @opindex mfix
17268 @opindex mno-fix
17269 @opindex mmax
17270 @opindex mno-max
17271 Indicate whether GCC should generate code to use the optional BWX,
17272 CIX, FIX and MAX instruction sets. The default is to use the instruction
17273 sets supported by the CPU type specified via @option{-mcpu=} option or that
17274 of the CPU on which GCC was built if none is specified.
17275
17276 @item -mfloat-vax
17277 @itemx -mfloat-ieee
17278 @opindex mfloat-vax
17279 @opindex mfloat-ieee
17280 Generate code that uses (does not use) VAX F and G floating-point
17281 arithmetic instead of IEEE single and double precision.
17282
17283 @item -mexplicit-relocs
17284 @itemx -mno-explicit-relocs
17285 @opindex mexplicit-relocs
17286 @opindex mno-explicit-relocs
17287 Older Alpha assemblers provided no way to generate symbol relocations
17288 except via assembler macros. Use of these macros does not allow
17289 optimal instruction scheduling. GNU binutils as of version 2.12
17290 supports a new syntax that allows the compiler to explicitly mark
17291 which relocations should apply to which instructions. This option
17292 is mostly useful for debugging, as GCC detects the capabilities of
17293 the assembler when it is built and sets the default accordingly.
17294
17295 @item -msmall-data
17296 @itemx -mlarge-data
17297 @opindex msmall-data
17298 @opindex mlarge-data
17299 When @option{-mexplicit-relocs} is in effect, static data is
17300 accessed via @dfn{gp-relative} relocations. When @option{-msmall-data}
17301 is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
17302 (the @code{.sdata} and @code{.sbss} sections) and are accessed via
17303 16-bit relocations off of the @code{$gp} register. This limits the
17304 size of the small data area to 64KB, but allows the variables to be
17305 directly accessed via a single instruction.
17306
17307 The default is @option{-mlarge-data}. With this option the data area
17308 is limited to just below 2GB@. Programs that require more than 2GB of
17309 data must use @code{malloc} or @code{mmap} to allocate the data in the
17310 heap instead of in the program's data segment.
17311
17312 When generating code for shared libraries, @option{-fpic} implies
17313 @option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.
17314
17315 @item -msmall-text
17316 @itemx -mlarge-text
17317 @opindex msmall-text
17318 @opindex mlarge-text
17319 When @option{-msmall-text} is used, the compiler assumes that the
17320 code of the entire program (or shared library) fits in 4MB, and is
17321 thus reachable with a branch instruction. When @option{-msmall-data}
17322 is used, the compiler can assume that all local symbols share the
17323 same @code{$gp} value, and thus reduce the number of instructions
17324 required for a function call from 4 to 1.
17325
17326 The default is @option{-mlarge-text}.
17327
17328 @item -mcpu=@var{cpu_type}
17329 @opindex mcpu
17330 Set the instruction set and instruction scheduling parameters for
17331 machine type @var{cpu_type}. You can specify either the @samp{EV}
17332 style name or the corresponding chip number. GCC supports scheduling
17333 parameters for the EV4, EV5 and EV6 family of processors and
17334 chooses the default values for the instruction set from the processor
17335 you specify. If you do not specify a processor type, GCC defaults
17336 to the processor on which the compiler was built.
17337
17338 Supported values for @var{cpu_type} are
17339
17340 @table @samp
17341 @item ev4
17342 @itemx ev45
17343 @itemx 21064
17344 Schedules as an EV4 and has no instruction set extensions.
17345
17346 @item ev5
17347 @itemx 21164
17348 Schedules as an EV5 and has no instruction set extensions.
17349
17350 @item ev56
17351 @itemx 21164a
17352 Schedules as an EV5 and supports the BWX extension.
17353
17354 @item pca56
17355 @itemx 21164pc
17356 @itemx 21164PC
17357 Schedules as an EV5 and supports the BWX and MAX extensions.
17358
17359 @item ev6
17360 @itemx 21264
17361 Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
17362
17363 @item ev67
17364 @itemx 21264a
17365 Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
17366 @end table
17367
17368 Native toolchains also support the value @samp{native},
17369 which selects the best architecture option for the host processor.
17370 @option{-mcpu=native} has no effect if GCC does not recognize
17371 the processor.
17372
17373 @item -mtune=@var{cpu_type}
17374 @opindex mtune
17375 Set only the instruction scheduling parameters for machine type
17376 @var{cpu_type}. The instruction set is not changed.
17377
17378 Native toolchains also support the value @samp{native},
17379 which selects the best architecture option for the host processor.
17380 @option{-mtune=native} has no effect if GCC does not recognize
17381 the processor.
17382
17383 @item -mmemory-latency=@var{time}
17384 @opindex mmemory-latency
17385 Sets the latency the scheduler should assume for typical memory
17386 references as seen by the application. This number is highly
17387 dependent on the memory access patterns used by the application
17388 and the size of the external cache on the machine.
17389
17390 Valid options for @var{time} are
17391
17392 @table @samp
17393 @item @var{number}
17394 A decimal number representing clock cycles.
17395
17396 @item L1
17397 @itemx L2
17398 @itemx L3
17399 @itemx main
17400 The compiler contains estimates of the number of clock cycles for
17401 ``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
17402 (also called Dcache, Scache, and Bcache), as well as to main memory.
17403 Note that L3 is only valid for EV5.
17404
17405 @end table
17406 @end table
17407
17408 @node FR30 Options
17409 @subsection FR30 Options
17410 @cindex FR30 Options
17411
17412 These options are defined specifically for the FR30 port.
17413
17414 @table @gcctabopt
17415
17416 @item -msmall-model
17417 @opindex msmall-model
17418 Use the small address space model. This can produce smaller code, but
17419 it does assume that all symbolic values and addresses fit into a
17420 20-bit range.
17421
17422 @item -mno-lsim
17423 @opindex mno-lsim
17424 Assume that runtime support has been provided and so there is no need
17425 to include the simulator library (@file{libsim.a}) on the linker
17426 command line.
17427
17428 @end table
17429
17430 @node FT32 Options
17431 @subsection FT32 Options
17432 @cindex FT32 Options
17433
17434 These options are defined specifically for the FT32 port.
17435
17436 @table @gcctabopt
17437
17438 @item -msim
17439 @opindex msim
17440 Specifies that the program will be run on the simulator. This causes
17441 an alternate runtime startup and library to be linked.
17442 You must not use this option when generating programs that will run on
17443 real hardware; you must provide your own runtime library for whatever
17444 I/O functions are needed.
17445
17446 @item -mlra
17447 @opindex mlra
17448 Enable Local Register Allocation. This is still experimental for FT32,
17449 so by default the compiler uses standard reload.
17450
17451 @item -mnodiv
17452 @opindex mnodiv
17453 Do not use div and mod instructions.
17454
17455 @end table
17456
17457 @node FRV Options
17458 @subsection FRV Options
17459 @cindex FRV Options
17460
17461 @table @gcctabopt
17462 @item -mgpr-32
17463 @opindex mgpr-32
17464
17465 Only use the first 32 general-purpose registers.
17466
17467 @item -mgpr-64
17468 @opindex mgpr-64
17469
17470 Use all 64 general-purpose registers.
17471
17472 @item -mfpr-32
17473 @opindex mfpr-32
17474
17475 Use only the first 32 floating-point registers.
17476
17477 @item -mfpr-64
17478 @opindex mfpr-64
17479
17480 Use all 64 floating-point registers.
17481
17482 @item -mhard-float
17483 @opindex mhard-float
17484
17485 Use hardware instructions for floating-point operations.
17486
17487 @item -msoft-float
17488 @opindex msoft-float
17489
17490 Use library routines for floating-point operations.
17491
17492 @item -malloc-cc
17493 @opindex malloc-cc
17494
17495 Dynamically allocate condition code registers.
17496
17497 @item -mfixed-cc
17498 @opindex mfixed-cc
17499
17500 Do not try to dynamically allocate condition code registers, only
17501 use @code{icc0} and @code{fcc0}.
17502
17503 @item -mdword
17504 @opindex mdword
17505
17506 Change ABI to use double word insns.
17507
17508 @item -mno-dword
17509 @opindex mno-dword
17510
17511 Do not use double word instructions.
17512
17513 @item -mdouble
17514 @opindex mdouble
17515
17516 Use floating-point double instructions.
17517
17518 @item -mno-double
17519 @opindex mno-double
17520
17521 Do not use floating-point double instructions.
17522
17523 @item -mmedia
17524 @opindex mmedia
17525
17526 Use media instructions.
17527
17528 @item -mno-media
17529 @opindex mno-media
17530
17531 Do not use media instructions.
17532
17533 @item -mmuladd
17534 @opindex mmuladd
17535
17536 Use multiply and add/subtract instructions.
17537
17538 @item -mno-muladd
17539 @opindex mno-muladd
17540
17541 Do not use multiply and add/subtract instructions.
17542
17543 @item -mfdpic
17544 @opindex mfdpic
17545
17546 Select the FDPIC ABI, which uses function descriptors to represent
17547 pointers to functions. Without any PIC/PIE-related options, it
17548 implies @option{-fPIE}. With @option{-fpic} or @option{-fpie}, it
17549 assumes GOT entries and small data are within a 12-bit range from the
17550 GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets
17551 are computed with 32 bits.
17552 With a @samp{bfin-elf} target, this option implies @option{-msim}.
17553
17554 @item -minline-plt
17555 @opindex minline-plt
17556
17557 Enable inlining of PLT entries in function calls to functions that are
17558 not known to bind locally. It has no effect without @option{-mfdpic}.
17559 It's enabled by default if optimizing for speed and compiling for
17560 shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an
17561 optimization option such as @option{-O3} or above is present in the
17562 command line.
17563
17564 @item -mTLS
17565 @opindex mTLS
17566
17567 Assume a large TLS segment when generating thread-local code.
17568
17569 @item -mtls
17570 @opindex mtls
17571
17572 Do not assume a large TLS segment when generating thread-local code.
17573
17574 @item -mgprel-ro
17575 @opindex mgprel-ro
17576
17577 Enable the use of @code{GPREL} relocations in the FDPIC ABI for data
17578 that is known to be in read-only sections. It's enabled by default,
17579 except for @option{-fpic} or @option{-fpie}: even though it may help
17580 make the global offset table smaller, it trades 1 instruction for 4.
17581 With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4,
17582 one of which may be shared by multiple symbols, and it avoids the need
17583 for a GOT entry for the referenced symbol, so it's more likely to be a
17584 win. If it is not, @option{-mno-gprel-ro} can be used to disable it.
17585
17586 @item -multilib-library-pic
17587 @opindex multilib-library-pic
17588
17589 Link with the (library, not FD) pic libraries. It's implied by
17590 @option{-mlibrary-pic}, as well as by @option{-fPIC} and
17591 @option{-fpic} without @option{-mfdpic}. You should never have to use
17592 it explicitly.
17593
17594 @item -mlinked-fp
17595 @opindex mlinked-fp
17596
17597 Follow the EABI requirement of always creating a frame pointer whenever
17598 a stack frame is allocated. This option is enabled by default and can
17599 be disabled with @option{-mno-linked-fp}.
17600
17601 @item -mlong-calls
17602 @opindex mlong-calls
17603
17604 Use indirect addressing to call functions outside the current
17605 compilation unit. This allows the functions to be placed anywhere
17606 within the 32-bit address space.
17607
17608 @item -malign-labels
17609 @opindex malign-labels
17610
17611 Try to align labels to an 8-byte boundary by inserting NOPs into the
17612 previous packet. This option only has an effect when VLIW packing
17613 is enabled. It doesn't create new packets; it merely adds NOPs to
17614 existing ones.
17615
17616 @item -mlibrary-pic
17617 @opindex mlibrary-pic
17618
17619 Generate position-independent EABI code.
17620
17621 @item -macc-4
17622 @opindex macc-4
17623
17624 Use only the first four media accumulator registers.
17625
17626 @item -macc-8
17627 @opindex macc-8
17628
17629 Use all eight media accumulator registers.
17630
17631 @item -mpack
17632 @opindex mpack
17633
17634 Pack VLIW instructions.
17635
17636 @item -mno-pack
17637 @opindex mno-pack
17638
17639 Do not pack VLIW instructions.
17640
17641 @item -mno-eflags
17642 @opindex mno-eflags
17643
17644 Do not mark ABI switches in e_flags.
17645
17646 @item -mcond-move
17647 @opindex mcond-move
17648
17649 Enable the use of conditional-move instructions (default).
17650
17651 This switch is mainly for debugging the compiler and will likely be removed
17652 in a future version.
17653
17654 @item -mno-cond-move
17655 @opindex mno-cond-move
17656
17657 Disable the use of conditional-move instructions.
17658
17659 This switch is mainly for debugging the compiler and will likely be removed
17660 in a future version.
17661
17662 @item -mscc
17663 @opindex mscc
17664
17665 Enable the use of conditional set instructions (default).
17666
17667 This switch is mainly for debugging the compiler and will likely be removed
17668 in a future version.
17669
17670 @item -mno-scc
17671 @opindex mno-scc
17672
17673 Disable the use of conditional set instructions.
17674
17675 This switch is mainly for debugging the compiler and will likely be removed
17676 in a future version.
17677
17678 @item -mcond-exec
17679 @opindex mcond-exec
17680
17681 Enable the use of conditional execution (default).
17682
17683 This switch is mainly for debugging the compiler and will likely be removed
17684 in a future version.
17685
17686 @item -mno-cond-exec
17687 @opindex mno-cond-exec
17688
17689 Disable the use of conditional execution.
17690
17691 This switch is mainly for debugging the compiler and will likely be removed
17692 in a future version.
17693
17694 @item -mvliw-branch
17695 @opindex mvliw-branch
17696
17697 Run a pass to pack branches into VLIW instructions (default).
17698
17699 This switch is mainly for debugging the compiler and will likely be removed
17700 in a future version.
17701
17702 @item -mno-vliw-branch
17703 @opindex mno-vliw-branch
17704
17705 Do not run a pass to pack branches into VLIW instructions.
17706
17707 This switch is mainly for debugging the compiler and will likely be removed
17708 in a future version.
17709
17710 @item -mmulti-cond-exec
17711 @opindex mmulti-cond-exec
17712
17713 Enable optimization of @code{&&} and @code{||} in conditional execution
17714 (default).
17715
17716 This switch is mainly for debugging the compiler and will likely be removed
17717 in a future version.
17718
17719 @item -mno-multi-cond-exec
17720 @opindex mno-multi-cond-exec
17721
17722 Disable optimization of @code{&&} and @code{||} in conditional execution.
17723
17724 This switch is mainly for debugging the compiler and will likely be removed
17725 in a future version.
17726
17727 @item -mnested-cond-exec
17728 @opindex mnested-cond-exec
17729
17730 Enable nested conditional execution optimizations (default).
17731
17732 This switch is mainly for debugging the compiler and will likely be removed
17733 in a future version.
17734
17735 @item -mno-nested-cond-exec
17736 @opindex mno-nested-cond-exec
17737
17738 Disable nested conditional execution optimizations.
17739
17740 This switch is mainly for debugging the compiler and will likely be removed
17741 in a future version.
17742
17743 @item -moptimize-membar
17744 @opindex moptimize-membar
17745
17746 This switch removes redundant @code{membar} instructions from the
17747 compiler-generated code. It is enabled by default.
17748
17749 @item -mno-optimize-membar
17750 @opindex mno-optimize-membar
17751
17752 This switch disables the automatic removal of redundant @code{membar}
17753 instructions from the generated code.
17754
17755 @item -mtomcat-stats
17756 @opindex mtomcat-stats
17757
17758 Cause gas to print out tomcat statistics.
17759
17760 @item -mcpu=@var{cpu}
17761 @opindex mcpu
17762
17763 Select the processor type for which to generate code. Possible values are
17764 @samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450},
17765 @samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}.
17766
17767 @end table
17768
17769 @node GNU/Linux Options
17770 @subsection GNU/Linux Options
17771
17772 These @samp{-m} options are defined for GNU/Linux targets:
17773
17774 @table @gcctabopt
17775 @item -mglibc
17776 @opindex mglibc
17777 Use the GNU C library. This is the default except
17778 on @samp{*-*-linux-*uclibc*}, @samp{*-*-linux-*musl*} and
17779 @samp{*-*-linux-*android*} targets.
17780
17781 @item -muclibc
17782 @opindex muclibc
17783 Use uClibc C library. This is the default on
17784 @samp{*-*-linux-*uclibc*} targets.
17785
17786 @item -mmusl
17787 @opindex mmusl
17788 Use the musl C library. This is the default on
17789 @samp{*-*-linux-*musl*} targets.
17790
17791 @item -mbionic
17792 @opindex mbionic
17793 Use Bionic C library. This is the default on
17794 @samp{*-*-linux-*android*} targets.
17795
17796 @item -mandroid
17797 @opindex mandroid
17798 Compile code compatible with Android platform. This is the default on
17799 @samp{*-*-linux-*android*} targets.
17800
17801 When compiling, this option enables @option{-mbionic}, @option{-fPIC},
17802 @option{-fno-exceptions} and @option{-fno-rtti} by default. When linking,
17803 this option makes the GCC driver pass Android-specific options to the linker.
17804 Finally, this option causes the preprocessor macro @code{__ANDROID__}
17805 to be defined.
17806
17807 @item -tno-android-cc
17808 @opindex tno-android-cc
17809 Disable compilation effects of @option{-mandroid}, i.e., do not enable
17810 @option{-mbionic}, @option{-fPIC}, @option{-fno-exceptions} and
17811 @option{-fno-rtti} by default.
17812
17813 @item -tno-android-ld
17814 @opindex tno-android-ld
17815 Disable linking effects of @option{-mandroid}, i.e., pass standard Linux
17816 linking options to the linker.
17817
17818 @end table
17819
17820 @node H8/300 Options
17821 @subsection H8/300 Options
17822
17823 These @samp{-m} options are defined for the H8/300 implementations:
17824
17825 @table @gcctabopt
17826 @item -mrelax
17827 @opindex mrelax
17828 Shorten some address references at link time, when possible; uses the
17829 linker option @option{-relax}. @xref{H8/300,, @code{ld} and the H8/300,
17830 ld, Using ld}, for a fuller description.
17831
17832 @item -mh
17833 @opindex mh
17834 Generate code for the H8/300H@.
17835
17836 @item -ms
17837 @opindex ms
17838 Generate code for the H8S@.
17839
17840 @item -mn
17841 @opindex mn
17842 Generate code for the H8S and H8/300H in the normal mode. This switch
17843 must be used either with @option{-mh} or @option{-ms}.
17844
17845 @item -ms2600
17846 @opindex ms2600
17847 Generate code for the H8S/2600. This switch must be used with @option{-ms}.
17848
17849 @item -mexr
17850 @opindex mexr
17851 Extended registers are stored on stack before execution of function
17852 with monitor attribute. Default option is @option{-mexr}.
17853 This option is valid only for H8S targets.
17854
17855 @item -mno-exr
17856 @opindex mno-exr
17857 Extended registers are not stored on stack before execution of function
17858 with monitor attribute. Default option is @option{-mno-exr}.
17859 This option is valid only for H8S targets.
17860
17861 @item -mint32
17862 @opindex mint32
17863 Make @code{int} data 32 bits by default.
17864
17865 @item -malign-300
17866 @opindex malign-300
17867 On the H8/300H and H8S, use the same alignment rules as for the H8/300.
17868 The default for the H8/300H and H8S is to align longs and floats on
17869 4-byte boundaries.
17870 @option{-malign-300} causes them to be aligned on 2-byte boundaries.
17871 This option has no effect on the H8/300.
17872 @end table
17873
17874 @node HPPA Options
17875 @subsection HPPA Options
17876 @cindex HPPA Options
17877
17878 These @samp{-m} options are defined for the HPPA family of computers:
17879
17880 @table @gcctabopt
17881 @item -march=@var{architecture-type}
17882 @opindex march
17883 Generate code for the specified architecture. The choices for
17884 @var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
17885 1.1, and @samp{2.0} for PA 2.0 processors. Refer to
17886 @file{/usr/lib/sched.models} on an HP-UX system to determine the proper
17887 architecture option for your machine. Code compiled for lower numbered
17888 architectures runs on higher numbered architectures, but not the
17889 other way around.
17890
17891 @item -mpa-risc-1-0
17892 @itemx -mpa-risc-1-1
17893 @itemx -mpa-risc-2-0
17894 @opindex mpa-risc-1-0
17895 @opindex mpa-risc-1-1
17896 @opindex mpa-risc-2-0
17897 Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively.
17898
17899 @item -mcaller-copies
17900 @opindex mcaller-copies
17901 The caller copies function arguments passed by hidden reference. This
17902 option should be used with care as it is not compatible with the default
17903 32-bit runtime. However, only aggregates larger than eight bytes are
17904 passed by hidden reference and the option provides better compatibility
17905 with OpenMP.
17906
17907 @item -mjump-in-delay
17908 @opindex mjump-in-delay
17909 This option is ignored and provided for compatibility purposes only.
17910
17911 @item -mdisable-fpregs
17912 @opindex mdisable-fpregs
17913 Prevent floating-point registers from being used in any manner. This is
17914 necessary for compiling kernels that perform lazy context switching of
17915 floating-point registers. If you use this option and attempt to perform
17916 floating-point operations, the compiler aborts.
17917
17918 @item -mdisable-indexing
17919 @opindex mdisable-indexing
17920 Prevent the compiler from using indexing address modes. This avoids some
17921 rather obscure problems when compiling MIG generated code under MACH@.
17922
17923 @item -mno-space-regs
17924 @opindex mno-space-regs
17925 Generate code that assumes the target has no space registers. This allows
17926 GCC to generate faster indirect calls and use unscaled index address modes.
17927
17928 Such code is suitable for level 0 PA systems and kernels.
17929
17930 @item -mfast-indirect-calls
17931 @opindex mfast-indirect-calls
17932 Generate code that assumes calls never cross space boundaries. This
17933 allows GCC to emit code that performs faster indirect calls.
17934
17935 This option does not work in the presence of shared libraries or nested
17936 functions.
17937
17938 @item -mfixed-range=@var{register-range}
17939 @opindex mfixed-range
17940 Generate code treating the given register range as fixed registers.
17941 A fixed register is one that the register allocator cannot use. This is
17942 useful when compiling kernel code. A register range is specified as
17943 two registers separated by a dash. Multiple register ranges can be
17944 specified separated by a comma.
17945
17946 @item -mlong-load-store
17947 @opindex mlong-load-store
17948 Generate 3-instruction load and store sequences as sometimes required by
17949 the HP-UX 10 linker. This is equivalent to the @samp{+k} option to
17950 the HP compilers.
17951
17952 @item -mportable-runtime
17953 @opindex mportable-runtime
17954 Use the portable calling conventions proposed by HP for ELF systems.
17955
17956 @item -mgas
17957 @opindex mgas
17958 Enable the use of assembler directives only GAS understands.
17959
17960 @item -mschedule=@var{cpu-type}
17961 @opindex mschedule
17962 Schedule code according to the constraints for the machine type
17963 @var{cpu-type}. The choices for @var{cpu-type} are @samp{700}
17964 @samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}. Refer
17965 to @file{/usr/lib/sched.models} on an HP-UX system to determine the
17966 proper scheduling option for your machine. The default scheduling is
17967 @samp{8000}.
17968
17969 @item -mlinker-opt
17970 @opindex mlinker-opt
17971 Enable the optimization pass in the HP-UX linker. Note this makes symbolic
17972 debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9
17973 linkers in which they give bogus error messages when linking some programs.
17974
17975 @item -msoft-float
17976 @opindex msoft-float
17977 Generate output containing library calls for floating point.
17978 @strong{Warning:} the requisite libraries are not available for all HPPA
17979 targets. Normally the facilities of the machine's usual C compiler are
17980 used, but this cannot be done directly in cross-compilation. You must make
17981 your own arrangements to provide suitable library functions for
17982 cross-compilation.
17983
17984 @option{-msoft-float} changes the calling convention in the output file;
17985 therefore, it is only useful if you compile @emph{all} of a program with
17986 this option. In particular, you need to compile @file{libgcc.a}, the
17987 library that comes with GCC, with @option{-msoft-float} in order for
17988 this to work.
17989
17990 @item -msio
17991 @opindex msio
17992 Generate the predefine, @code{_SIO}, for server IO@. The default is
17993 @option{-mwsio}. This generates the predefines, @code{__hp9000s700},
17994 @code{__hp9000s700__} and @code{_WSIO}, for workstation IO@. These
17995 options are available under HP-UX and HI-UX@.
17996
17997 @item -mgnu-ld
17998 @opindex mgnu-ld
17999 Use options specific to GNU @command{ld}.
18000 This passes @option{-shared} to @command{ld} when
18001 building a shared library. It is the default when GCC is configured,
18002 explicitly or implicitly, with the GNU linker. This option does not
18003 affect which @command{ld} is called; it only changes what parameters
18004 are passed to that @command{ld}.
18005 The @command{ld} that is called is determined by the
18006 @option{--with-ld} configure option, GCC's program search path, and
18007 finally by the user's @env{PATH}. The linker used by GCC can be printed
18008 using @samp{which `gcc -print-prog-name=ld`}. This option is only available
18009 on the 64-bit HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
18010
18011 @item -mhp-ld
18012 @opindex mhp-ld
18013 Use options specific to HP @command{ld}.
18014 This passes @option{-b} to @command{ld} when building
18015 a shared library and passes @option{+Accept TypeMismatch} to @command{ld} on all
18016 links. It is the default when GCC is configured, explicitly or
18017 implicitly, with the HP linker. This option does not affect
18018 which @command{ld} is called; it only changes what parameters are passed to that
18019 @command{ld}.
18020 The @command{ld} that is called is determined by the @option{--with-ld}
18021 configure option, GCC's program search path, and finally by the user's
18022 @env{PATH}. The linker used by GCC can be printed using @samp{which
18023 `gcc -print-prog-name=ld`}. This option is only available on the 64-bit
18024 HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
18025
18026 @item -mlong-calls
18027 @opindex mno-long-calls
18028 Generate code that uses long call sequences. This ensures that a call
18029 is always able to reach linker generated stubs. The default is to generate
18030 long calls only when the distance from the call site to the beginning
18031 of the function or translation unit, as the case may be, exceeds a
18032 predefined limit set by the branch type being used. The limits for
18033 normal calls are 7,600,000 and 240,000 bytes, respectively for the
18034 PA 2.0 and PA 1.X architectures. Sibcalls are always limited at
18035 240,000 bytes.
18036
18037 Distances are measured from the beginning of functions when using the
18038 @option{-ffunction-sections} option, or when using the @option{-mgas}
18039 and @option{-mno-portable-runtime} options together under HP-UX with
18040 the SOM linker.
18041
18042 It is normally not desirable to use this option as it degrades
18043 performance. However, it may be useful in large applications,
18044 particularly when partial linking is used to build the application.
18045
18046 The types of long calls used depends on the capabilities of the
18047 assembler and linker, and the type of code being generated. The
18048 impact on systems that support long absolute calls, and long pic
18049 symbol-difference or pc-relative calls should be relatively small.
18050 However, an indirect call is used on 32-bit ELF systems in pic code
18051 and it is quite long.
18052
18053 @item -munix=@var{unix-std}
18054 @opindex march
18055 Generate compiler predefines and select a startfile for the specified
18056 UNIX standard. The choices for @var{unix-std} are @samp{93}, @samp{95}
18057 and @samp{98}. @samp{93} is supported on all HP-UX versions. @samp{95}
18058 is available on HP-UX 10.10 and later. @samp{98} is available on HP-UX
18059 11.11 and later. The default values are @samp{93} for HP-UX 10.00,
18060 @samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11
18061 and later.
18062
18063 @option{-munix=93} provides the same predefines as GCC 3.3 and 3.4.
18064 @option{-munix=95} provides additional predefines for @code{XOPEN_UNIX}
18065 and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}.
18066 @option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX},
18067 @code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and
18068 @code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}.
18069
18070 It is @emph{important} to note that this option changes the interfaces
18071 for various library routines. It also affects the operational behavior
18072 of the C library. Thus, @emph{extreme} care is needed in using this
18073 option.
18074
18075 Library code that is intended to operate with more than one UNIX
18076 standard must test, set and restore the variable @code{__xpg4_extended_mask}
18077 as appropriate. Most GNU software doesn't provide this capability.
18078
18079 @item -nolibdld
18080 @opindex nolibdld
18081 Suppress the generation of link options to search libdld.sl when the
18082 @option{-static} option is specified on HP-UX 10 and later.
18083
18084 @item -static
18085 @opindex static
18086 The HP-UX implementation of setlocale in libc has a dependency on
18087 libdld.sl. There isn't an archive version of libdld.sl. Thus,
18088 when the @option{-static} option is specified, special link options
18089 are needed to resolve this dependency.
18090
18091 On HP-UX 10 and later, the GCC driver adds the necessary options to
18092 link with libdld.sl when the @option{-static} option is specified.
18093 This causes the resulting binary to be dynamic. On the 64-bit port,
18094 the linkers generate dynamic binaries by default in any case. The
18095 @option{-nolibdld} option can be used to prevent the GCC driver from
18096 adding these link options.
18097
18098 @item -threads
18099 @opindex threads
18100 Add support for multithreading with the @dfn{dce thread} library
18101 under HP-UX@. This option sets flags for both the preprocessor and
18102 linker.
18103 @end table
18104
18105 @node IA-64 Options
18106 @subsection IA-64 Options
18107 @cindex IA-64 Options
18108
18109 These are the @samp{-m} options defined for the Intel IA-64 architecture.
18110
18111 @table @gcctabopt
18112 @item -mbig-endian
18113 @opindex mbig-endian
18114 Generate code for a big-endian target. This is the default for HP-UX@.
18115
18116 @item -mlittle-endian
18117 @opindex mlittle-endian
18118 Generate code for a little-endian target. This is the default for AIX5
18119 and GNU/Linux.
18120
18121 @item -mgnu-as
18122 @itemx -mno-gnu-as
18123 @opindex mgnu-as
18124 @opindex mno-gnu-as
18125 Generate (or don't) code for the GNU assembler. This is the default.
18126 @c Also, this is the default if the configure option @option{--with-gnu-as}
18127 @c is used.
18128
18129 @item -mgnu-ld
18130 @itemx -mno-gnu-ld
18131 @opindex mgnu-ld
18132 @opindex mno-gnu-ld
18133 Generate (or don't) code for the GNU linker. This is the default.
18134 @c Also, this is the default if the configure option @option{--with-gnu-ld}
18135 @c is used.
18136
18137 @item -mno-pic
18138 @opindex mno-pic
18139 Generate code that does not use a global pointer register. The result
18140 is not position independent code, and violates the IA-64 ABI@.
18141
18142 @item -mvolatile-asm-stop
18143 @itemx -mno-volatile-asm-stop
18144 @opindex mvolatile-asm-stop
18145 @opindex mno-volatile-asm-stop
18146 Generate (or don't) a stop bit immediately before and after volatile asm
18147 statements.
18148
18149 @item -mregister-names
18150 @itemx -mno-register-names
18151 @opindex mregister-names
18152 @opindex mno-register-names
18153 Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for
18154 the stacked registers. This may make assembler output more readable.
18155
18156 @item -mno-sdata
18157 @itemx -msdata
18158 @opindex mno-sdata
18159 @opindex msdata
18160 Disable (or enable) optimizations that use the small data section. This may
18161 be useful for working around optimizer bugs.
18162
18163 @item -mconstant-gp
18164 @opindex mconstant-gp
18165 Generate code that uses a single constant global pointer value. This is
18166 useful when compiling kernel code.
18167
18168 @item -mauto-pic
18169 @opindex mauto-pic
18170 Generate code that is self-relocatable. This implies @option{-mconstant-gp}.
18171 This is useful when compiling firmware code.
18172
18173 @item -minline-float-divide-min-latency
18174 @opindex minline-float-divide-min-latency
18175 Generate code for inline divides of floating-point values
18176 using the minimum latency algorithm.
18177
18178 @item -minline-float-divide-max-throughput
18179 @opindex minline-float-divide-max-throughput
18180 Generate code for inline divides of floating-point values
18181 using the maximum throughput algorithm.
18182
18183 @item -mno-inline-float-divide
18184 @opindex mno-inline-float-divide
18185 Do not generate inline code for divides of floating-point values.
18186
18187 @item -minline-int-divide-min-latency
18188 @opindex minline-int-divide-min-latency
18189 Generate code for inline divides of integer values
18190 using the minimum latency algorithm.
18191
18192 @item -minline-int-divide-max-throughput
18193 @opindex minline-int-divide-max-throughput
18194 Generate code for inline divides of integer values
18195 using the maximum throughput algorithm.
18196
18197 @item -mno-inline-int-divide
18198 @opindex mno-inline-int-divide
18199 Do not generate inline code for divides of integer values.
18200
18201 @item -minline-sqrt-min-latency
18202 @opindex minline-sqrt-min-latency
18203 Generate code for inline square roots
18204 using the minimum latency algorithm.
18205
18206 @item -minline-sqrt-max-throughput
18207 @opindex minline-sqrt-max-throughput
18208 Generate code for inline square roots
18209 using the maximum throughput algorithm.
18210
18211 @item -mno-inline-sqrt
18212 @opindex mno-inline-sqrt
18213 Do not generate inline code for @code{sqrt}.
18214
18215 @item -mfused-madd
18216 @itemx -mno-fused-madd
18217 @opindex mfused-madd
18218 @opindex mno-fused-madd
18219 Do (don't) generate code that uses the fused multiply/add or multiply/subtract
18220 instructions. The default is to use these instructions.
18221
18222 @item -mno-dwarf2-asm
18223 @itemx -mdwarf2-asm
18224 @opindex mno-dwarf2-asm
18225 @opindex mdwarf2-asm
18226 Don't (or do) generate assembler code for the DWARF line number debugging
18227 info. This may be useful when not using the GNU assembler.
18228
18229 @item -mearly-stop-bits
18230 @itemx -mno-early-stop-bits
18231 @opindex mearly-stop-bits
18232 @opindex mno-early-stop-bits
18233 Allow stop bits to be placed earlier than immediately preceding the
18234 instruction that triggered the stop bit. This can improve instruction
18235 scheduling, but does not always do so.
18236
18237 @item -mfixed-range=@var{register-range}
18238 @opindex mfixed-range
18239 Generate code treating the given register range as fixed registers.
18240 A fixed register is one that the register allocator cannot use. This is
18241 useful when compiling kernel code. A register range is specified as
18242 two registers separated by a dash. Multiple register ranges can be
18243 specified separated by a comma.
18244
18245 @item -mtls-size=@var{tls-size}
18246 @opindex mtls-size
18247 Specify bit size of immediate TLS offsets. Valid values are 14, 22, and
18248 64.
18249
18250 @item -mtune=@var{cpu-type}
18251 @opindex mtune
18252 Tune the instruction scheduling for a particular CPU, Valid values are
18253 @samp{itanium}, @samp{itanium1}, @samp{merced}, @samp{itanium2},
18254 and @samp{mckinley}.
18255
18256 @item -milp32
18257 @itemx -mlp64
18258 @opindex milp32
18259 @opindex mlp64
18260 Generate code for a 32-bit or 64-bit environment.
18261 The 32-bit environment sets int, long and pointer to 32 bits.
18262 The 64-bit environment sets int to 32 bits and long and pointer
18263 to 64 bits. These are HP-UX specific flags.
18264
18265 @item -mno-sched-br-data-spec
18266 @itemx -msched-br-data-spec
18267 @opindex mno-sched-br-data-spec
18268 @opindex msched-br-data-spec
18269 (Dis/En)able data speculative scheduling before reload.
18270 This results in generation of @code{ld.a} instructions and
18271 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
18272 The default setting is disabled.
18273
18274 @item -msched-ar-data-spec
18275 @itemx -mno-sched-ar-data-spec
18276 @opindex msched-ar-data-spec
18277 @opindex mno-sched-ar-data-spec
18278 (En/Dis)able data speculative scheduling after reload.
18279 This results in generation of @code{ld.a} instructions and
18280 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
18281 The default setting is enabled.
18282
18283 @item -mno-sched-control-spec
18284 @itemx -msched-control-spec
18285 @opindex mno-sched-control-spec
18286 @opindex msched-control-spec
18287 (Dis/En)able control speculative scheduling. This feature is
18288 available only during region scheduling (i.e.@: before reload).
18289 This results in generation of the @code{ld.s} instructions and
18290 the corresponding check instructions @code{chk.s}.
18291 The default setting is disabled.
18292
18293 @item -msched-br-in-data-spec
18294 @itemx -mno-sched-br-in-data-spec
18295 @opindex msched-br-in-data-spec
18296 @opindex mno-sched-br-in-data-spec
18297 (En/Dis)able speculative scheduling of the instructions that
18298 are dependent on the data speculative loads before reload.
18299 This is effective only with @option{-msched-br-data-spec} enabled.
18300 The default setting is enabled.
18301
18302 @item -msched-ar-in-data-spec
18303 @itemx -mno-sched-ar-in-data-spec
18304 @opindex msched-ar-in-data-spec
18305 @opindex mno-sched-ar-in-data-spec
18306 (En/Dis)able speculative scheduling of the instructions that
18307 are dependent on the data speculative loads after reload.
18308 This is effective only with @option{-msched-ar-data-spec} enabled.
18309 The default setting is enabled.
18310
18311 @item -msched-in-control-spec
18312 @itemx -mno-sched-in-control-spec
18313 @opindex msched-in-control-spec
18314 @opindex mno-sched-in-control-spec
18315 (En/Dis)able speculative scheduling of the instructions that
18316 are dependent on the control speculative loads.
18317 This is effective only with @option{-msched-control-spec} enabled.
18318 The default setting is enabled.
18319
18320 @item -mno-sched-prefer-non-data-spec-insns
18321 @itemx -msched-prefer-non-data-spec-insns
18322 @opindex mno-sched-prefer-non-data-spec-insns
18323 @opindex msched-prefer-non-data-spec-insns
18324 If enabled, data-speculative instructions are chosen for schedule
18325 only if there are no other choices at the moment. This makes
18326 the use of the data speculation much more conservative.
18327 The default setting is disabled.
18328
18329 @item -mno-sched-prefer-non-control-spec-insns
18330 @itemx -msched-prefer-non-control-spec-insns
18331 @opindex mno-sched-prefer-non-control-spec-insns
18332 @opindex msched-prefer-non-control-spec-insns
18333 If enabled, control-speculative instructions are chosen for schedule
18334 only if there are no other choices at the moment. This makes
18335 the use of the control speculation much more conservative.
18336 The default setting is disabled.
18337
18338 @item -mno-sched-count-spec-in-critical-path
18339 @itemx -msched-count-spec-in-critical-path
18340 @opindex mno-sched-count-spec-in-critical-path
18341 @opindex msched-count-spec-in-critical-path
18342 If enabled, speculative dependencies are considered during
18343 computation of the instructions priorities. This makes the use of the
18344 speculation a bit more conservative.
18345 The default setting is disabled.
18346
18347 @item -msched-spec-ldc
18348 @opindex msched-spec-ldc
18349 Use a simple data speculation check. This option is on by default.
18350
18351 @item -msched-control-spec-ldc
18352 @opindex msched-spec-ldc
18353 Use a simple check for control speculation. This option is on by default.
18354
18355 @item -msched-stop-bits-after-every-cycle
18356 @opindex msched-stop-bits-after-every-cycle
18357 Place a stop bit after every cycle when scheduling. This option is on
18358 by default.
18359
18360 @item -msched-fp-mem-deps-zero-cost
18361 @opindex msched-fp-mem-deps-zero-cost
18362 Assume that floating-point stores and loads are not likely to cause a conflict
18363 when placed into the same instruction group. This option is disabled by
18364 default.
18365
18366 @item -msel-sched-dont-check-control-spec
18367 @opindex msel-sched-dont-check-control-spec
18368 Generate checks for control speculation in selective scheduling.
18369 This flag is disabled by default.
18370
18371 @item -msched-max-memory-insns=@var{max-insns}
18372 @opindex msched-max-memory-insns
18373 Limit on the number of memory insns per instruction group, giving lower
18374 priority to subsequent memory insns attempting to schedule in the same
18375 instruction group. Frequently useful to prevent cache bank conflicts.
18376 The default value is 1.
18377
18378 @item -msched-max-memory-insns-hard-limit
18379 @opindex msched-max-memory-insns-hard-limit
18380 Makes the limit specified by @option{msched-max-memory-insns} a hard limit,
18381 disallowing more than that number in an instruction group.
18382 Otherwise, the limit is ``soft'', meaning that non-memory operations
18383 are preferred when the limit is reached, but memory operations may still
18384 be scheduled.
18385
18386 @end table
18387
18388 @node LM32 Options
18389 @subsection LM32 Options
18390 @cindex LM32 options
18391
18392 These @option{-m} options are defined for the LatticeMico32 architecture:
18393
18394 @table @gcctabopt
18395 @item -mbarrel-shift-enabled
18396 @opindex mbarrel-shift-enabled
18397 Enable barrel-shift instructions.
18398
18399 @item -mdivide-enabled
18400 @opindex mdivide-enabled
18401 Enable divide and modulus instructions.
18402
18403 @item -mmultiply-enabled
18404 @opindex multiply-enabled
18405 Enable multiply instructions.
18406
18407 @item -msign-extend-enabled
18408 @opindex msign-extend-enabled
18409 Enable sign extend instructions.
18410
18411 @item -muser-enabled
18412 @opindex muser-enabled
18413 Enable user-defined instructions.
18414
18415 @end table
18416
18417 @node M32C Options
18418 @subsection M32C Options
18419 @cindex M32C options
18420
18421 @table @gcctabopt
18422 @item -mcpu=@var{name}
18423 @opindex mcpu=
18424 Select the CPU for which code is generated. @var{name} may be one of
18425 @samp{r8c} for the R8C/Tiny series, @samp{m16c} for the M16C (up to
18426 /60) series, @samp{m32cm} for the M16C/80 series, or @samp{m32c} for
18427 the M32C/80 series.
18428
18429 @item -msim
18430 @opindex msim
18431 Specifies that the program will be run on the simulator. This causes
18432 an alternate runtime library to be linked in which supports, for
18433 example, file I/O@. You must not use this option when generating
18434 programs that will run on real hardware; you must provide your own
18435 runtime library for whatever I/O functions are needed.
18436
18437 @item -memregs=@var{number}
18438 @opindex memregs=
18439 Specifies the number of memory-based pseudo-registers GCC uses
18440 during code generation. These pseudo-registers are used like real
18441 registers, so there is a tradeoff between GCC's ability to fit the
18442 code into available registers, and the performance penalty of using
18443 memory instead of registers. Note that all modules in a program must
18444 be compiled with the same value for this option. Because of that, you
18445 must not use this option with GCC's default runtime libraries.
18446
18447 @end table
18448
18449 @node M32R/D Options
18450 @subsection M32R/D Options
18451 @cindex M32R/D options
18452
18453 These @option{-m} options are defined for Renesas M32R/D architectures:
18454
18455 @table @gcctabopt
18456 @item -m32r2
18457 @opindex m32r2
18458 Generate code for the M32R/2@.
18459
18460 @item -m32rx
18461 @opindex m32rx
18462 Generate code for the M32R/X@.
18463
18464 @item -m32r
18465 @opindex m32r
18466 Generate code for the M32R@. This is the default.
18467
18468 @item -mmodel=small
18469 @opindex mmodel=small
18470 Assume all objects live in the lower 16MB of memory (so that their addresses
18471 can be loaded with the @code{ld24} instruction), and assume all subroutines
18472 are reachable with the @code{bl} instruction.
18473 This is the default.
18474
18475 The addressability of a particular object can be set with the
18476 @code{model} attribute.
18477
18478 @item -mmodel=medium
18479 @opindex mmodel=medium
18480 Assume objects may be anywhere in the 32-bit address space (the compiler
18481 generates @code{seth/add3} instructions to load their addresses), and
18482 assume all subroutines are reachable with the @code{bl} instruction.
18483
18484 @item -mmodel=large
18485 @opindex mmodel=large
18486 Assume objects may be anywhere in the 32-bit address space (the compiler
18487 generates @code{seth/add3} instructions to load their addresses), and
18488 assume subroutines may not be reachable with the @code{bl} instruction
18489 (the compiler generates the much slower @code{seth/add3/jl}
18490 instruction sequence).
18491
18492 @item -msdata=none
18493 @opindex msdata=none
18494 Disable use of the small data area. Variables are put into
18495 one of @code{.data}, @code{.bss}, or @code{.rodata} (unless the
18496 @code{section} attribute has been specified).
18497 This is the default.
18498
18499 The small data area consists of sections @code{.sdata} and @code{.sbss}.
18500 Objects may be explicitly put in the small data area with the
18501 @code{section} attribute using one of these sections.
18502
18503 @item -msdata=sdata
18504 @opindex msdata=sdata
18505 Put small global and static data in the small data area, but do not
18506 generate special code to reference them.
18507
18508 @item -msdata=use
18509 @opindex msdata=use
18510 Put small global and static data in the small data area, and generate
18511 special instructions to reference them.
18512
18513 @item -G @var{num}
18514 @opindex G
18515 @cindex smaller data references
18516 Put global and static objects less than or equal to @var{num} bytes
18517 into the small data or BSS sections instead of the normal data or BSS
18518 sections. The default value of @var{num} is 8.
18519 The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
18520 for this option to have any effect.
18521
18522 All modules should be compiled with the same @option{-G @var{num}} value.
18523 Compiling with different values of @var{num} may or may not work; if it
18524 doesn't the linker gives an error message---incorrect code is not
18525 generated.
18526
18527 @item -mdebug
18528 @opindex mdebug
18529 Makes the M32R-specific code in the compiler display some statistics
18530 that might help in debugging programs.
18531
18532 @item -malign-loops
18533 @opindex malign-loops
18534 Align all loops to a 32-byte boundary.
18535
18536 @item -mno-align-loops
18537 @opindex mno-align-loops
18538 Do not enforce a 32-byte alignment for loops. This is the default.
18539
18540 @item -missue-rate=@var{number}
18541 @opindex missue-rate=@var{number}
18542 Issue @var{number} instructions per cycle. @var{number} can only be 1
18543 or 2.
18544
18545 @item -mbranch-cost=@var{number}
18546 @opindex mbranch-cost=@var{number}
18547 @var{number} can only be 1 or 2. If it is 1 then branches are
18548 preferred over conditional code, if it is 2, then the opposite applies.
18549
18550 @item -mflush-trap=@var{number}
18551 @opindex mflush-trap=@var{number}
18552 Specifies the trap number to use to flush the cache. The default is
18553 12. Valid numbers are between 0 and 15 inclusive.
18554
18555 @item -mno-flush-trap
18556 @opindex mno-flush-trap
18557 Specifies that the cache cannot be flushed by using a trap.
18558
18559 @item -mflush-func=@var{name}
18560 @opindex mflush-func=@var{name}
18561 Specifies the name of the operating system function to call to flush
18562 the cache. The default is @samp{_flush_cache}, but a function call
18563 is only used if a trap is not available.
18564
18565 @item -mno-flush-func
18566 @opindex mno-flush-func
18567 Indicates that there is no OS function for flushing the cache.
18568
18569 @end table
18570
18571 @node M680x0 Options
18572 @subsection M680x0 Options
18573 @cindex M680x0 options
18574
18575 These are the @samp{-m} options defined for M680x0 and ColdFire processors.
18576 The default settings depend on which architecture was selected when
18577 the compiler was configured; the defaults for the most common choices
18578 are given below.
18579
18580 @table @gcctabopt
18581 @item -march=@var{arch}
18582 @opindex march
18583 Generate code for a specific M680x0 or ColdFire instruction set
18584 architecture. Permissible values of @var{arch} for M680x0
18585 architectures are: @samp{68000}, @samp{68010}, @samp{68020},
18586 @samp{68030}, @samp{68040}, @samp{68060} and @samp{cpu32}. ColdFire
18587 architectures are selected according to Freescale's ISA classification
18588 and the permissible values are: @samp{isaa}, @samp{isaaplus},
18589 @samp{isab} and @samp{isac}.
18590
18591 GCC defines a macro @code{__mcf@var{arch}__} whenever it is generating
18592 code for a ColdFire target. The @var{arch} in this macro is one of the
18593 @option{-march} arguments given above.
18594
18595 When used together, @option{-march} and @option{-mtune} select code
18596 that runs on a family of similar processors but that is optimized
18597 for a particular microarchitecture.
18598
18599 @item -mcpu=@var{cpu}
18600 @opindex mcpu
18601 Generate code for a specific M680x0 or ColdFire processor.
18602 The M680x0 @var{cpu}s are: @samp{68000}, @samp{68010}, @samp{68020},
18603 @samp{68030}, @samp{68040}, @samp{68060}, @samp{68302}, @samp{68332}
18604 and @samp{cpu32}. The ColdFire @var{cpu}s are given by the table
18605 below, which also classifies the CPUs into families:
18606
18607 @multitable @columnfractions 0.20 0.80
18608 @item @strong{Family} @tab @strong{@samp{-mcpu} arguments}
18609 @item @samp{51} @tab @samp{51} @samp{51ac} @samp{51ag} @samp{51cn} @samp{51em} @samp{51je} @samp{51jf} @samp{51jg} @samp{51jm} @samp{51mm} @samp{51qe} @samp{51qm}
18610 @item @samp{5206} @tab @samp{5202} @samp{5204} @samp{5206}
18611 @item @samp{5206e} @tab @samp{5206e}
18612 @item @samp{5208} @tab @samp{5207} @samp{5208}
18613 @item @samp{5211a} @tab @samp{5210a} @samp{5211a}
18614 @item @samp{5213} @tab @samp{5211} @samp{5212} @samp{5213}
18615 @item @samp{5216} @tab @samp{5214} @samp{5216}
18616 @item @samp{52235} @tab @samp{52230} @samp{52231} @samp{52232} @samp{52233} @samp{52234} @samp{52235}
18617 @item @samp{5225} @tab @samp{5224} @samp{5225}
18618 @item @samp{52259} @tab @samp{52252} @samp{52254} @samp{52255} @samp{52256} @samp{52258} @samp{52259}
18619 @item @samp{5235} @tab @samp{5232} @samp{5233} @samp{5234} @samp{5235} @samp{523x}
18620 @item @samp{5249} @tab @samp{5249}
18621 @item @samp{5250} @tab @samp{5250}
18622 @item @samp{5271} @tab @samp{5270} @samp{5271}
18623 @item @samp{5272} @tab @samp{5272}
18624 @item @samp{5275} @tab @samp{5274} @samp{5275}
18625 @item @samp{5282} @tab @samp{5280} @samp{5281} @samp{5282} @samp{528x}
18626 @item @samp{53017} @tab @samp{53011} @samp{53012} @samp{53013} @samp{53014} @samp{53015} @samp{53016} @samp{53017}
18627 @item @samp{5307} @tab @samp{5307}
18628 @item @samp{5329} @tab @samp{5327} @samp{5328} @samp{5329} @samp{532x}
18629 @item @samp{5373} @tab @samp{5372} @samp{5373} @samp{537x}
18630 @item @samp{5407} @tab @samp{5407}
18631 @item @samp{5475} @tab @samp{5470} @samp{5471} @samp{5472} @samp{5473} @samp{5474} @samp{5475} @samp{547x} @samp{5480} @samp{5481} @samp{5482} @samp{5483} @samp{5484} @samp{5485}
18632 @end multitable
18633
18634 @option{-mcpu=@var{cpu}} overrides @option{-march=@var{arch}} if
18635 @var{arch} is compatible with @var{cpu}. Other combinations of
18636 @option{-mcpu} and @option{-march} are rejected.
18637
18638 GCC defines the macro @code{__mcf_cpu_@var{cpu}} when ColdFire target
18639 @var{cpu} is selected. It also defines @code{__mcf_family_@var{family}},
18640 where the value of @var{family} is given by the table above.
18641
18642 @item -mtune=@var{tune}
18643 @opindex mtune
18644 Tune the code for a particular microarchitecture within the
18645 constraints set by @option{-march} and @option{-mcpu}.
18646 The M680x0 microarchitectures are: @samp{68000}, @samp{68010},
18647 @samp{68020}, @samp{68030}, @samp{68040}, @samp{68060}
18648 and @samp{cpu32}. The ColdFire microarchitectures
18649 are: @samp{cfv1}, @samp{cfv2}, @samp{cfv3}, @samp{cfv4} and @samp{cfv4e}.
18650
18651 You can also use @option{-mtune=68020-40} for code that needs
18652 to run relatively well on 68020, 68030 and 68040 targets.
18653 @option{-mtune=68020-60} is similar but includes 68060 targets
18654 as well. These two options select the same tuning decisions as
18655 @option{-m68020-40} and @option{-m68020-60} respectively.
18656
18657 GCC defines the macros @code{__mc@var{arch}} and @code{__mc@var{arch}__}
18658 when tuning for 680x0 architecture @var{arch}. It also defines
18659 @code{mc@var{arch}} unless either @option{-ansi} or a non-GNU @option{-std}
18660 option is used. If GCC is tuning for a range of architectures,
18661 as selected by @option{-mtune=68020-40} or @option{-mtune=68020-60},
18662 it defines the macros for every architecture in the range.
18663
18664 GCC also defines the macro @code{__m@var{uarch}__} when tuning for
18665 ColdFire microarchitecture @var{uarch}, where @var{uarch} is one
18666 of the arguments given above.
18667
18668 @item -m68000
18669 @itemx -mc68000
18670 @opindex m68000
18671 @opindex mc68000
18672 Generate output for a 68000. This is the default
18673 when the compiler is configured for 68000-based systems.
18674 It is equivalent to @option{-march=68000}.
18675
18676 Use this option for microcontrollers with a 68000 or EC000 core,
18677 including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
18678
18679 @item -m68010
18680 @opindex m68010
18681 Generate output for a 68010. This is the default
18682 when the compiler is configured for 68010-based systems.
18683 It is equivalent to @option{-march=68010}.
18684
18685 @item -m68020
18686 @itemx -mc68020
18687 @opindex m68020
18688 @opindex mc68020
18689 Generate output for a 68020. This is the default
18690 when the compiler is configured for 68020-based systems.
18691 It is equivalent to @option{-march=68020}.
18692
18693 @item -m68030
18694 @opindex m68030
18695 Generate output for a 68030. This is the default when the compiler is
18696 configured for 68030-based systems. It is equivalent to
18697 @option{-march=68030}.
18698
18699 @item -m68040
18700 @opindex m68040
18701 Generate output for a 68040. This is the default when the compiler is
18702 configured for 68040-based systems. It is equivalent to
18703 @option{-march=68040}.
18704
18705 This option inhibits the use of 68881/68882 instructions that have to be
18706 emulated by software on the 68040. Use this option if your 68040 does not
18707 have code to emulate those instructions.
18708
18709 @item -m68060
18710 @opindex m68060
18711 Generate output for a 68060. This is the default when the compiler is
18712 configured for 68060-based systems. It is equivalent to
18713 @option{-march=68060}.
18714
18715 This option inhibits the use of 68020 and 68881/68882 instructions that
18716 have to be emulated by software on the 68060. Use this option if your 68060
18717 does not have code to emulate those instructions.
18718
18719 @item -mcpu32
18720 @opindex mcpu32
18721 Generate output for a CPU32. This is the default
18722 when the compiler is configured for CPU32-based systems.
18723 It is equivalent to @option{-march=cpu32}.
18724
18725 Use this option for microcontrollers with a
18726 CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
18727 68336, 68340, 68341, 68349 and 68360.
18728
18729 @item -m5200
18730 @opindex m5200
18731 Generate output for a 520X ColdFire CPU@. This is the default
18732 when the compiler is configured for 520X-based systems.
18733 It is equivalent to @option{-mcpu=5206}, and is now deprecated
18734 in favor of that option.
18735
18736 Use this option for microcontroller with a 5200 core, including
18737 the MCF5202, MCF5203, MCF5204 and MCF5206.
18738
18739 @item -m5206e
18740 @opindex m5206e
18741 Generate output for a 5206e ColdFire CPU@. The option is now
18742 deprecated in favor of the equivalent @option{-mcpu=5206e}.
18743
18744 @item -m528x
18745 @opindex m528x
18746 Generate output for a member of the ColdFire 528X family.
18747 The option is now deprecated in favor of the equivalent
18748 @option{-mcpu=528x}.
18749
18750 @item -m5307
18751 @opindex m5307
18752 Generate output for a ColdFire 5307 CPU@. The option is now deprecated
18753 in favor of the equivalent @option{-mcpu=5307}.
18754
18755 @item -m5407
18756 @opindex m5407
18757 Generate output for a ColdFire 5407 CPU@. The option is now deprecated
18758 in favor of the equivalent @option{-mcpu=5407}.
18759
18760 @item -mcfv4e
18761 @opindex mcfv4e
18762 Generate output for a ColdFire V4e family CPU (e.g.@: 547x/548x).
18763 This includes use of hardware floating-point instructions.
18764 The option is equivalent to @option{-mcpu=547x}, and is now
18765 deprecated in favor of that option.
18766
18767 @item -m68020-40
18768 @opindex m68020-40
18769 Generate output for a 68040, without using any of the new instructions.
18770 This results in code that can run relatively efficiently on either a
18771 68020/68881 or a 68030 or a 68040. The generated code does use the
18772 68881 instructions that are emulated on the 68040.
18773
18774 The option is equivalent to @option{-march=68020} @option{-mtune=68020-40}.
18775
18776 @item -m68020-60
18777 @opindex m68020-60
18778 Generate output for a 68060, without using any of the new instructions.
18779 This results in code that can run relatively efficiently on either a
18780 68020/68881 or a 68030 or a 68040. The generated code does use the
18781 68881 instructions that are emulated on the 68060.
18782
18783 The option is equivalent to @option{-march=68020} @option{-mtune=68020-60}.
18784
18785 @item -mhard-float
18786 @itemx -m68881
18787 @opindex mhard-float
18788 @opindex m68881
18789 Generate floating-point instructions. This is the default for 68020
18790 and above, and for ColdFire devices that have an FPU@. It defines the
18791 macro @code{__HAVE_68881__} on M680x0 targets and @code{__mcffpu__}
18792 on ColdFire targets.
18793
18794 @item -msoft-float
18795 @opindex msoft-float
18796 Do not generate floating-point instructions; use library calls instead.
18797 This is the default for 68000, 68010, and 68832 targets. It is also
18798 the default for ColdFire devices that have no FPU.
18799
18800 @item -mdiv
18801 @itemx -mno-div
18802 @opindex mdiv
18803 @opindex mno-div
18804 Generate (do not generate) ColdFire hardware divide and remainder
18805 instructions. If @option{-march} is used without @option{-mcpu},
18806 the default is ``on'' for ColdFire architectures and ``off'' for M680x0
18807 architectures. Otherwise, the default is taken from the target CPU
18808 (either the default CPU, or the one specified by @option{-mcpu}). For
18809 example, the default is ``off'' for @option{-mcpu=5206} and ``on'' for
18810 @option{-mcpu=5206e}.
18811
18812 GCC defines the macro @code{__mcfhwdiv__} when this option is enabled.
18813
18814 @item -mshort
18815 @opindex mshort
18816 Consider type @code{int} to be 16 bits wide, like @code{short int}.
18817 Additionally, parameters passed on the stack are also aligned to a
18818 16-bit boundary even on targets whose API mandates promotion to 32-bit.
18819
18820 @item -mno-short
18821 @opindex mno-short
18822 Do not consider type @code{int} to be 16 bits wide. This is the default.
18823
18824 @item -mnobitfield
18825 @itemx -mno-bitfield
18826 @opindex mnobitfield
18827 @opindex mno-bitfield
18828 Do not use the bit-field instructions. The @option{-m68000}, @option{-mcpu32}
18829 and @option{-m5200} options imply @w{@option{-mnobitfield}}.
18830
18831 @item -mbitfield
18832 @opindex mbitfield
18833 Do use the bit-field instructions. The @option{-m68020} option implies
18834 @option{-mbitfield}. This is the default if you use a configuration
18835 designed for a 68020.
18836
18837 @item -mrtd
18838 @opindex mrtd
18839 Use a different function-calling convention, in which functions
18840 that take a fixed number of arguments return with the @code{rtd}
18841 instruction, which pops their arguments while returning. This
18842 saves one instruction in the caller since there is no need to pop
18843 the arguments there.
18844
18845 This calling convention is incompatible with the one normally
18846 used on Unix, so you cannot use it if you need to call libraries
18847 compiled with the Unix compiler.
18848
18849 Also, you must provide function prototypes for all functions that
18850 take variable numbers of arguments (including @code{printf});
18851 otherwise incorrect code is generated for calls to those
18852 functions.
18853
18854 In addition, seriously incorrect code results if you call a
18855 function with too many arguments. (Normally, extra arguments are
18856 harmlessly ignored.)
18857
18858 The @code{rtd} instruction is supported by the 68010, 68020, 68030,
18859 68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
18860
18861 @item -mno-rtd
18862 @opindex mno-rtd
18863 Do not use the calling conventions selected by @option{-mrtd}.
18864 This is the default.
18865
18866 @item -malign-int
18867 @itemx -mno-align-int
18868 @opindex malign-int
18869 @opindex mno-align-int
18870 Control whether GCC aligns @code{int}, @code{long}, @code{long long},
18871 @code{float}, @code{double}, and @code{long double} variables on a 32-bit
18872 boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
18873 Aligning variables on 32-bit boundaries produces code that runs somewhat
18874 faster on processors with 32-bit busses at the expense of more memory.
18875
18876 @strong{Warning:} if you use the @option{-malign-int} switch, GCC
18877 aligns structures containing the above types differently than
18878 most published application binary interface specifications for the m68k.
18879
18880 @item -mpcrel
18881 @opindex mpcrel
18882 Use the pc-relative addressing mode of the 68000 directly, instead of
18883 using a global offset table. At present, this option implies @option{-fpic},
18884 allowing at most a 16-bit offset for pc-relative addressing. @option{-fPIC} is
18885 not presently supported with @option{-mpcrel}, though this could be supported for
18886 68020 and higher processors.
18887
18888 @item -mno-strict-align
18889 @itemx -mstrict-align
18890 @opindex mno-strict-align
18891 @opindex mstrict-align
18892 Do not (do) assume that unaligned memory references are handled by
18893 the system.
18894
18895 @item -msep-data
18896 Generate code that allows the data segment to be located in a different
18897 area of memory from the text segment. This allows for execute-in-place in
18898 an environment without virtual memory management. This option implies
18899 @option{-fPIC}.
18900
18901 @item -mno-sep-data
18902 Generate code that assumes that the data segment follows the text segment.
18903 This is the default.
18904
18905 @item -mid-shared-library
18906 Generate code that supports shared libraries via the library ID method.
18907 This allows for execute-in-place and shared libraries in an environment
18908 without virtual memory management. This option implies @option{-fPIC}.
18909
18910 @item -mno-id-shared-library
18911 Generate code that doesn't assume ID-based shared libraries are being used.
18912 This is the default.
18913
18914 @item -mshared-library-id=n
18915 Specifies the identification number of the ID-based shared library being
18916 compiled. Specifying a value of 0 generates more compact code; specifying
18917 other values forces the allocation of that number to the current
18918 library, but is no more space- or time-efficient than omitting this option.
18919
18920 @item -mxgot
18921 @itemx -mno-xgot
18922 @opindex mxgot
18923 @opindex mno-xgot
18924 When generating position-independent code for ColdFire, generate code
18925 that works if the GOT has more than 8192 entries. This code is
18926 larger and slower than code generated without this option. On M680x0
18927 processors, this option is not needed; @option{-fPIC} suffices.
18928
18929 GCC normally uses a single instruction to load values from the GOT@.
18930 While this is relatively efficient, it only works if the GOT
18931 is smaller than about 64k. Anything larger causes the linker
18932 to report an error such as:
18933
18934 @cindex relocation truncated to fit (ColdFire)
18935 @smallexample
18936 relocation truncated to fit: R_68K_GOT16O foobar
18937 @end smallexample
18938
18939 If this happens, you should recompile your code with @option{-mxgot}.
18940 It should then work with very large GOTs. However, code generated with
18941 @option{-mxgot} is less efficient, since it takes 4 instructions to fetch
18942 the value of a global symbol.
18943
18944 Note that some linkers, including newer versions of the GNU linker,
18945 can create multiple GOTs and sort GOT entries. If you have such a linker,
18946 you should only need to use @option{-mxgot} when compiling a single
18947 object file that accesses more than 8192 GOT entries. Very few do.
18948
18949 These options have no effect unless GCC is generating
18950 position-independent code.
18951
18952 @item -mlong-jump-table-offsets
18953 @opindex mlong-jump-table-offsets
18954 Use 32-bit offsets in @code{switch} tables. The default is to use
18955 16-bit offsets.
18956
18957 @end table
18958
18959 @node MCore Options
18960 @subsection MCore Options
18961 @cindex MCore options
18962
18963 These are the @samp{-m} options defined for the Motorola M*Core
18964 processors.
18965
18966 @table @gcctabopt
18967
18968 @item -mhardlit
18969 @itemx -mno-hardlit
18970 @opindex mhardlit
18971 @opindex mno-hardlit
18972 Inline constants into the code stream if it can be done in two
18973 instructions or less.
18974
18975 @item -mdiv
18976 @itemx -mno-div
18977 @opindex mdiv
18978 @opindex mno-div
18979 Use the divide instruction. (Enabled by default).
18980
18981 @item -mrelax-immediate
18982 @itemx -mno-relax-immediate
18983 @opindex mrelax-immediate
18984 @opindex mno-relax-immediate
18985 Allow arbitrary-sized immediates in bit operations.
18986
18987 @item -mwide-bitfields
18988 @itemx -mno-wide-bitfields
18989 @opindex mwide-bitfields
18990 @opindex mno-wide-bitfields
18991 Always treat bit-fields as @code{int}-sized.
18992
18993 @item -m4byte-functions
18994 @itemx -mno-4byte-functions
18995 @opindex m4byte-functions
18996 @opindex mno-4byte-functions
18997 Force all functions to be aligned to a 4-byte boundary.
18998
18999 @item -mcallgraph-data
19000 @itemx -mno-callgraph-data
19001 @opindex mcallgraph-data
19002 @opindex mno-callgraph-data
19003 Emit callgraph information.
19004
19005 @item -mslow-bytes
19006 @itemx -mno-slow-bytes
19007 @opindex mslow-bytes
19008 @opindex mno-slow-bytes
19009 Prefer word access when reading byte quantities.
19010
19011 @item -mlittle-endian
19012 @itemx -mbig-endian
19013 @opindex mlittle-endian
19014 @opindex mbig-endian
19015 Generate code for a little-endian target.
19016
19017 @item -m210
19018 @itemx -m340
19019 @opindex m210
19020 @opindex m340
19021 Generate code for the 210 processor.
19022
19023 @item -mno-lsim
19024 @opindex mno-lsim
19025 Assume that runtime support has been provided and so omit the
19026 simulator library (@file{libsim.a)} from the linker command line.
19027
19028 @item -mstack-increment=@var{size}
19029 @opindex mstack-increment
19030 Set the maximum amount for a single stack increment operation. Large
19031 values can increase the speed of programs that contain functions
19032 that need a large amount of stack space, but they can also trigger a
19033 segmentation fault if the stack is extended too much. The default
19034 value is 0x1000.
19035
19036 @end table
19037
19038 @node MeP Options
19039 @subsection MeP Options
19040 @cindex MeP options
19041
19042 @table @gcctabopt
19043
19044 @item -mabsdiff
19045 @opindex mabsdiff
19046 Enables the @code{abs} instruction, which is the absolute difference
19047 between two registers.
19048
19049 @item -mall-opts
19050 @opindex mall-opts
19051 Enables all the optional instructions---average, multiply, divide, bit
19052 operations, leading zero, absolute difference, min/max, clip, and
19053 saturation.
19054
19055
19056 @item -maverage
19057 @opindex maverage
19058 Enables the @code{ave} instruction, which computes the average of two
19059 registers.
19060
19061 @item -mbased=@var{n}
19062 @opindex mbased=
19063 Variables of size @var{n} bytes or smaller are placed in the
19064 @code{.based} section by default. Based variables use the @code{$tp}
19065 register as a base register, and there is a 128-byte limit to the
19066 @code{.based} section.
19067
19068 @item -mbitops
19069 @opindex mbitops
19070 Enables the bit operation instructions---bit test (@code{btstm}), set
19071 (@code{bsetm}), clear (@code{bclrm}), invert (@code{bnotm}), and
19072 test-and-set (@code{tas}).
19073
19074 @item -mc=@var{name}
19075 @opindex mc=
19076 Selects which section constant data is placed in. @var{name} may
19077 be @samp{tiny}, @samp{near}, or @samp{far}.
19078
19079 @item -mclip
19080 @opindex mclip
19081 Enables the @code{clip} instruction. Note that @option{-mclip} is not
19082 useful unless you also provide @option{-mminmax}.
19083
19084 @item -mconfig=@var{name}
19085 @opindex mconfig=
19086 Selects one of the built-in core configurations. Each MeP chip has
19087 one or more modules in it; each module has a core CPU and a variety of
19088 coprocessors, optional instructions, and peripherals. The
19089 @code{MeP-Integrator} tool, not part of GCC, provides these
19090 configurations through this option; using this option is the same as
19091 using all the corresponding command-line options. The default
19092 configuration is @samp{default}.
19093
19094 @item -mcop
19095 @opindex mcop
19096 Enables the coprocessor instructions. By default, this is a 32-bit
19097 coprocessor. Note that the coprocessor is normally enabled via the
19098 @option{-mconfig=} option.
19099
19100 @item -mcop32
19101 @opindex mcop32
19102 Enables the 32-bit coprocessor's instructions.
19103
19104 @item -mcop64
19105 @opindex mcop64
19106 Enables the 64-bit coprocessor's instructions.
19107
19108 @item -mivc2
19109 @opindex mivc2
19110 Enables IVC2 scheduling. IVC2 is a 64-bit VLIW coprocessor.
19111
19112 @item -mdc
19113 @opindex mdc
19114 Causes constant variables to be placed in the @code{.near} section.
19115
19116 @item -mdiv
19117 @opindex mdiv
19118 Enables the @code{div} and @code{divu} instructions.
19119
19120 @item -meb
19121 @opindex meb
19122 Generate big-endian code.
19123
19124 @item -mel
19125 @opindex mel
19126 Generate little-endian code.
19127
19128 @item -mio-volatile
19129 @opindex mio-volatile
19130 Tells the compiler that any variable marked with the @code{io}
19131 attribute is to be considered volatile.
19132
19133 @item -ml
19134 @opindex ml
19135 Causes variables to be assigned to the @code{.far} section by default.
19136
19137 @item -mleadz
19138 @opindex mleadz
19139 Enables the @code{leadz} (leading zero) instruction.
19140
19141 @item -mm
19142 @opindex mm
19143 Causes variables to be assigned to the @code{.near} section by default.
19144
19145 @item -mminmax
19146 @opindex mminmax
19147 Enables the @code{min} and @code{max} instructions.
19148
19149 @item -mmult
19150 @opindex mmult
19151 Enables the multiplication and multiply-accumulate instructions.
19152
19153 @item -mno-opts
19154 @opindex mno-opts
19155 Disables all the optional instructions enabled by @option{-mall-opts}.
19156
19157 @item -mrepeat
19158 @opindex mrepeat
19159 Enables the @code{repeat} and @code{erepeat} instructions, used for
19160 low-overhead looping.
19161
19162 @item -ms
19163 @opindex ms
19164 Causes all variables to default to the @code{.tiny} section. Note
19165 that there is a 65536-byte limit to this section. Accesses to these
19166 variables use the @code{%gp} base register.
19167
19168 @item -msatur
19169 @opindex msatur
19170 Enables the saturation instructions. Note that the compiler does not
19171 currently generate these itself, but this option is included for
19172 compatibility with other tools, like @code{as}.
19173
19174 @item -msdram
19175 @opindex msdram
19176 Link the SDRAM-based runtime instead of the default ROM-based runtime.
19177
19178 @item -msim
19179 @opindex msim
19180 Link the simulator run-time libraries.
19181
19182 @item -msimnovec
19183 @opindex msimnovec
19184 Link the simulator runtime libraries, excluding built-in support
19185 for reset and exception vectors and tables.
19186
19187 @item -mtf
19188 @opindex mtf
19189 Causes all functions to default to the @code{.far} section. Without
19190 this option, functions default to the @code{.near} section.
19191
19192 @item -mtiny=@var{n}
19193 @opindex mtiny=
19194 Variables that are @var{n} bytes or smaller are allocated to the
19195 @code{.tiny} section. These variables use the @code{$gp} base
19196 register. The default for this option is 4, but note that there's a
19197 65536-byte limit to the @code{.tiny} section.
19198
19199 @end table
19200
19201 @node MicroBlaze Options
19202 @subsection MicroBlaze Options
19203 @cindex MicroBlaze Options
19204
19205 @table @gcctabopt
19206
19207 @item -msoft-float
19208 @opindex msoft-float
19209 Use software emulation for floating point (default).
19210
19211 @item -mhard-float
19212 @opindex mhard-float
19213 Use hardware floating-point instructions.
19214
19215 @item -mmemcpy
19216 @opindex mmemcpy
19217 Do not optimize block moves, use @code{memcpy}.
19218
19219 @item -mno-clearbss
19220 @opindex mno-clearbss
19221 This option is deprecated. Use @option{-fno-zero-initialized-in-bss} instead.
19222
19223 @item -mcpu=@var{cpu-type}
19224 @opindex mcpu=
19225 Use features of, and schedule code for, the given CPU.
19226 Supported values are in the format @samp{v@var{X}.@var{YY}.@var{Z}},
19227 where @var{X} is a major version, @var{YY} is the minor version, and
19228 @var{Z} is compatibility code. Example values are @samp{v3.00.a},
19229 @samp{v4.00.b}, @samp{v5.00.a}, @samp{v5.00.b}, @samp{v5.00.b}, @samp{v6.00.a}.
19230
19231 @item -mxl-soft-mul
19232 @opindex mxl-soft-mul
19233 Use software multiply emulation (default).
19234
19235 @item -mxl-soft-div
19236 @opindex mxl-soft-div
19237 Use software emulation for divides (default).
19238
19239 @item -mxl-barrel-shift
19240 @opindex mxl-barrel-shift
19241 Use the hardware barrel shifter.
19242
19243 @item -mxl-pattern-compare
19244 @opindex mxl-pattern-compare
19245 Use pattern compare instructions.
19246
19247 @item -msmall-divides
19248 @opindex msmall-divides
19249 Use table lookup optimization for small signed integer divisions.
19250
19251 @item -mxl-stack-check
19252 @opindex mxl-stack-check
19253 This option is deprecated. Use @option{-fstack-check} instead.
19254
19255 @item -mxl-gp-opt
19256 @opindex mxl-gp-opt
19257 Use GP-relative @code{.sdata}/@code{.sbss} sections.
19258
19259 @item -mxl-multiply-high
19260 @opindex mxl-multiply-high
19261 Use multiply high instructions for high part of 32x32 multiply.
19262
19263 @item -mxl-float-convert
19264 @opindex mxl-float-convert
19265 Use hardware floating-point conversion instructions.
19266
19267 @item -mxl-float-sqrt
19268 @opindex mxl-float-sqrt
19269 Use hardware floating-point square root instruction.
19270
19271 @item -mbig-endian
19272 @opindex mbig-endian
19273 Generate code for a big-endian target.
19274
19275 @item -mlittle-endian
19276 @opindex mlittle-endian
19277 Generate code for a little-endian target.
19278
19279 @item -mxl-reorder
19280 @opindex mxl-reorder
19281 Use reorder instructions (swap and byte reversed load/store).
19282
19283 @item -mxl-mode-@var{app-model}
19284 Select application model @var{app-model}. Valid models are
19285 @table @samp
19286 @item executable
19287 normal executable (default), uses startup code @file{crt0.o}.
19288
19289 @item xmdstub
19290 for use with Xilinx Microprocessor Debugger (XMD) based
19291 software intrusive debug agent called xmdstub. This uses startup file
19292 @file{crt1.o} and sets the start address of the program to 0x800.
19293
19294 @item bootstrap
19295 for applications that are loaded using a bootloader.
19296 This model uses startup file @file{crt2.o} which does not contain a processor
19297 reset vector handler. This is suitable for transferring control on a
19298 processor reset to the bootloader rather than the application.
19299
19300 @item novectors
19301 for applications that do not require any of the
19302 MicroBlaze vectors. This option may be useful for applications running
19303 within a monitoring application. This model uses @file{crt3.o} as a startup file.
19304 @end table
19305
19306 Option @option{-xl-mode-@var{app-model}} is a deprecated alias for
19307 @option{-mxl-mode-@var{app-model}}.
19308
19309 @end table
19310
19311 @node MIPS Options
19312 @subsection MIPS Options
19313 @cindex MIPS options
19314
19315 @table @gcctabopt
19316
19317 @item -EB
19318 @opindex EB
19319 Generate big-endian code.
19320
19321 @item -EL
19322 @opindex EL
19323 Generate little-endian code. This is the default for @samp{mips*el-*-*}
19324 configurations.
19325
19326 @item -march=@var{arch}
19327 @opindex march
19328 Generate code that runs on @var{arch}, which can be the name of a
19329 generic MIPS ISA, or the name of a particular processor.
19330 The ISA names are:
19331 @samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4},
19332 @samp{mips32}, @samp{mips32r2}, @samp{mips32r3}, @samp{mips32r5},
19333 @samp{mips32r6}, @samp{mips64}, @samp{mips64r2}, @samp{mips64r3},
19334 @samp{mips64r5} and @samp{mips64r6}.
19335 The processor names are:
19336 @samp{4kc}, @samp{4km}, @samp{4kp}, @samp{4ksc},
19337 @samp{4kec}, @samp{4kem}, @samp{4kep}, @samp{4ksd},
19338 @samp{5kc}, @samp{5kf},
19339 @samp{20kc},
19340 @samp{24kc}, @samp{24kf2_1}, @samp{24kf1_1},
19341 @samp{24kec}, @samp{24kef2_1}, @samp{24kef1_1},
19342 @samp{34kc}, @samp{34kf2_1}, @samp{34kf1_1}, @samp{34kn},
19343 @samp{74kc}, @samp{74kf2_1}, @samp{74kf1_1}, @samp{74kf3_2},
19344 @samp{1004kc}, @samp{1004kf2_1}, @samp{1004kf1_1},
19345 @samp{i6400},
19346 @samp{interaptiv},
19347 @samp{loongson2e}, @samp{loongson2f}, @samp{loongson3a},
19348 @samp{m4k},
19349 @samp{m14k}, @samp{m14kc}, @samp{m14ke}, @samp{m14kec},
19350 @samp{m5100}, @samp{m5101},
19351 @samp{octeon}, @samp{octeon+}, @samp{octeon2}, @samp{octeon3},
19352 @samp{orion},
19353 @samp{p5600},
19354 @samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400},
19355 @samp{r4600}, @samp{r4650}, @samp{r4700}, @samp{r6000}, @samp{r8000},
19356 @samp{rm7000}, @samp{rm9000},
19357 @samp{r10000}, @samp{r12000}, @samp{r14000}, @samp{r16000},
19358 @samp{sb1},
19359 @samp{sr71000},
19360 @samp{vr4100}, @samp{vr4111}, @samp{vr4120}, @samp{vr4130}, @samp{vr4300},
19361 @samp{vr5000}, @samp{vr5400}, @samp{vr5500},
19362 @samp{xlr} and @samp{xlp}.
19363 The special value @samp{from-abi} selects the
19364 most compatible architecture for the selected ABI (that is,
19365 @samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@.
19366
19367 The native Linux/GNU toolchain also supports the value @samp{native},
19368 which selects the best architecture option for the host processor.
19369 @option{-march=native} has no effect if GCC does not recognize
19370 the processor.
19371
19372 In processor names, a final @samp{000} can be abbreviated as @samp{k}
19373 (for example, @option{-march=r2k}). Prefixes are optional, and
19374 @samp{vr} may be written @samp{r}.
19375
19376 Names of the form @samp{@var{n}f2_1} refer to processors with
19377 FPUs clocked at half the rate of the core, names of the form
19378 @samp{@var{n}f1_1} refer to processors with FPUs clocked at the same
19379 rate as the core, and names of the form @samp{@var{n}f3_2} refer to
19380 processors with FPUs clocked a ratio of 3:2 with respect to the core.
19381 For compatibility reasons, @samp{@var{n}f} is accepted as a synonym
19382 for @samp{@var{n}f2_1} while @samp{@var{n}x} and @samp{@var{b}fx} are
19383 accepted as synonyms for @samp{@var{n}f1_1}.
19384
19385 GCC defines two macros based on the value of this option. The first
19386 is @code{_MIPS_ARCH}, which gives the name of target architecture, as
19387 a string. The second has the form @code{_MIPS_ARCH_@var{foo}},
19388 where @var{foo} is the capitalized value of @code{_MIPS_ARCH}@.
19389 For example, @option{-march=r2000} sets @code{_MIPS_ARCH}
19390 to @code{"r2000"} and defines the macro @code{_MIPS_ARCH_R2000}.
19391
19392 Note that the @code{_MIPS_ARCH} macro uses the processor names given
19393 above. In other words, it has the full prefix and does not
19394 abbreviate @samp{000} as @samp{k}. In the case of @samp{from-abi},
19395 the macro names the resolved architecture (either @code{"mips1"} or
19396 @code{"mips3"}). It names the default architecture when no
19397 @option{-march} option is given.
19398
19399 @item -mtune=@var{arch}
19400 @opindex mtune
19401 Optimize for @var{arch}. Among other things, this option controls
19402 the way instructions are scheduled, and the perceived cost of arithmetic
19403 operations. The list of @var{arch} values is the same as for
19404 @option{-march}.
19405
19406 When this option is not used, GCC optimizes for the processor
19407 specified by @option{-march}. By using @option{-march} and
19408 @option{-mtune} together, it is possible to generate code that
19409 runs on a family of processors, but optimize the code for one
19410 particular member of that family.
19411
19412 @option{-mtune} defines the macros @code{_MIPS_TUNE} and
19413 @code{_MIPS_TUNE_@var{foo}}, which work in the same way as the
19414 @option{-march} ones described above.
19415
19416 @item -mips1
19417 @opindex mips1
19418 Equivalent to @option{-march=mips1}.
19419
19420 @item -mips2
19421 @opindex mips2
19422 Equivalent to @option{-march=mips2}.
19423
19424 @item -mips3
19425 @opindex mips3
19426 Equivalent to @option{-march=mips3}.
19427
19428 @item -mips4
19429 @opindex mips4
19430 Equivalent to @option{-march=mips4}.
19431
19432 @item -mips32
19433 @opindex mips32
19434 Equivalent to @option{-march=mips32}.
19435
19436 @item -mips32r3
19437 @opindex mips32r3
19438 Equivalent to @option{-march=mips32r3}.
19439
19440 @item -mips32r5
19441 @opindex mips32r5
19442 Equivalent to @option{-march=mips32r5}.
19443
19444 @item -mips32r6
19445 @opindex mips32r6
19446 Equivalent to @option{-march=mips32r6}.
19447
19448 @item -mips64
19449 @opindex mips64
19450 Equivalent to @option{-march=mips64}.
19451
19452 @item -mips64r2
19453 @opindex mips64r2
19454 Equivalent to @option{-march=mips64r2}.
19455
19456 @item -mips64r3
19457 @opindex mips64r3
19458 Equivalent to @option{-march=mips64r3}.
19459
19460 @item -mips64r5
19461 @opindex mips64r5
19462 Equivalent to @option{-march=mips64r5}.
19463
19464 @item -mips64r6
19465 @opindex mips64r6
19466 Equivalent to @option{-march=mips64r6}.
19467
19468 @item -mips16
19469 @itemx -mno-mips16
19470 @opindex mips16
19471 @opindex mno-mips16
19472 Generate (do not generate) MIPS16 code. If GCC is targeting a
19473 MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE@.
19474
19475 MIPS16 code generation can also be controlled on a per-function basis
19476 by means of @code{mips16} and @code{nomips16} attributes.
19477 @xref{Function Attributes}, for more information.
19478
19479 @item -mflip-mips16
19480 @opindex mflip-mips16
19481 Generate MIPS16 code on alternating functions. This option is provided
19482 for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
19483 not intended for ordinary use in compiling user code.
19484
19485 @item -minterlink-compressed
19486 @item -mno-interlink-compressed
19487 @opindex minterlink-compressed
19488 @opindex mno-interlink-compressed
19489 Require (do not require) that code using the standard (uncompressed) MIPS ISA
19490 be link-compatible with MIPS16 and microMIPS code, and vice versa.
19491
19492 For example, code using the standard ISA encoding cannot jump directly
19493 to MIPS16 or microMIPS code; it must either use a call or an indirect jump.
19494 @option{-minterlink-compressed} therefore disables direct jumps unless GCC
19495 knows that the target of the jump is not compressed.
19496
19497 @item -minterlink-mips16
19498 @itemx -mno-interlink-mips16
19499 @opindex minterlink-mips16
19500 @opindex mno-interlink-mips16
19501 Aliases of @option{-minterlink-compressed} and
19502 @option{-mno-interlink-compressed}. These options predate the microMIPS ASE
19503 and are retained for backwards compatibility.
19504
19505 @item -mabi=32
19506 @itemx -mabi=o64
19507 @itemx -mabi=n32
19508 @itemx -mabi=64
19509 @itemx -mabi=eabi
19510 @opindex mabi=32
19511 @opindex mabi=o64
19512 @opindex mabi=n32
19513 @opindex mabi=64
19514 @opindex mabi=eabi
19515 Generate code for the given ABI@.
19516
19517 Note that the EABI has a 32-bit and a 64-bit variant. GCC normally
19518 generates 64-bit code when you select a 64-bit architecture, but you
19519 can use @option{-mgp32} to get 32-bit code instead.
19520
19521 For information about the O64 ABI, see
19522 @uref{http://gcc.gnu.org/@/projects/@/mipso64-abi.html}.
19523
19524 GCC supports a variant of the o32 ABI in which floating-point registers
19525 are 64 rather than 32 bits wide. You can select this combination with
19526 @option{-mabi=32} @option{-mfp64}. This ABI relies on the @code{mthc1}
19527 and @code{mfhc1} instructions and is therefore only supported for
19528 MIPS32R2, MIPS32R3 and MIPS32R5 processors.
19529
19530 The register assignments for arguments and return values remain the
19531 same, but each scalar value is passed in a single 64-bit register
19532 rather than a pair of 32-bit registers. For example, scalar
19533 floating-point values are returned in @samp{$f0} only, not a
19534 @samp{$f0}/@samp{$f1} pair. The set of call-saved registers also
19535 remains the same in that the even-numbered double-precision registers
19536 are saved.
19537
19538 Two additional variants of the o32 ABI are supported to enable
19539 a transition from 32-bit to 64-bit registers. These are FPXX
19540 (@option{-mfpxx}) and FP64A (@option{-mfp64} @option{-mno-odd-spreg}).
19541 The FPXX extension mandates that all code must execute correctly
19542 when run using 32-bit or 64-bit registers. The code can be interlinked
19543 with either FP32 or FP64, but not both.
19544 The FP64A extension is similar to the FP64 extension but forbids the
19545 use of odd-numbered single-precision registers. This can be used
19546 in conjunction with the @code{FRE} mode of FPUs in MIPS32R5
19547 processors and allows both FP32 and FP64A code to interlink and
19548 run in the same process without changing FPU modes.
19549
19550 @item -mabicalls
19551 @itemx -mno-abicalls
19552 @opindex mabicalls
19553 @opindex mno-abicalls
19554 Generate (do not generate) code that is suitable for SVR4-style
19555 dynamic objects. @option{-mabicalls} is the default for SVR4-based
19556 systems.
19557
19558 @item -mshared
19559 @itemx -mno-shared
19560 Generate (do not generate) code that is fully position-independent,
19561 and that can therefore be linked into shared libraries. This option
19562 only affects @option{-mabicalls}.
19563
19564 All @option{-mabicalls} code has traditionally been position-independent,
19565 regardless of options like @option{-fPIC} and @option{-fpic}. However,
19566 as an extension, the GNU toolchain allows executables to use absolute
19567 accesses for locally-binding symbols. It can also use shorter GP
19568 initialization sequences and generate direct calls to locally-defined
19569 functions. This mode is selected by @option{-mno-shared}.
19570
19571 @option{-mno-shared} depends on binutils 2.16 or higher and generates
19572 objects that can only be linked by the GNU linker. However, the option
19573 does not affect the ABI of the final executable; it only affects the ABI
19574 of relocatable objects. Using @option{-mno-shared} generally makes
19575 executables both smaller and quicker.
19576
19577 @option{-mshared} is the default.
19578
19579 @item -mplt
19580 @itemx -mno-plt
19581 @opindex mplt
19582 @opindex mno-plt
19583 Assume (do not assume) that the static and dynamic linkers
19584 support PLTs and copy relocations. This option only affects
19585 @option{-mno-shared -mabicalls}. For the n64 ABI, this option
19586 has no effect without @option{-msym32}.
19587
19588 You can make @option{-mplt} the default by configuring
19589 GCC with @option{--with-mips-plt}. The default is
19590 @option{-mno-plt} otherwise.
19591
19592 @item -mxgot
19593 @itemx -mno-xgot
19594 @opindex mxgot
19595 @opindex mno-xgot
19596 Lift (do not lift) the usual restrictions on the size of the global
19597 offset table.
19598
19599 GCC normally uses a single instruction to load values from the GOT@.
19600 While this is relatively efficient, it only works if the GOT
19601 is smaller than about 64k. Anything larger causes the linker
19602 to report an error such as:
19603
19604 @cindex relocation truncated to fit (MIPS)
19605 @smallexample
19606 relocation truncated to fit: R_MIPS_GOT16 foobar
19607 @end smallexample
19608
19609 If this happens, you should recompile your code with @option{-mxgot}.
19610 This works with very large GOTs, although the code is also
19611 less efficient, since it takes three instructions to fetch the
19612 value of a global symbol.
19613
19614 Note that some linkers can create multiple GOTs. If you have such a
19615 linker, you should only need to use @option{-mxgot} when a single object
19616 file accesses more than 64k's worth of GOT entries. Very few do.
19617
19618 These options have no effect unless GCC is generating position
19619 independent code.
19620
19621 @item -mgp32
19622 @opindex mgp32
19623 Assume that general-purpose registers are 32 bits wide.
19624
19625 @item -mgp64
19626 @opindex mgp64
19627 Assume that general-purpose registers are 64 bits wide.
19628
19629 @item -mfp32
19630 @opindex mfp32
19631 Assume that floating-point registers are 32 bits wide.
19632
19633 @item -mfp64
19634 @opindex mfp64
19635 Assume that floating-point registers are 64 bits wide.
19636
19637 @item -mfpxx
19638 @opindex mfpxx
19639 Do not assume the width of floating-point registers.
19640
19641 @item -mhard-float
19642 @opindex mhard-float
19643 Use floating-point coprocessor instructions.
19644
19645 @item -msoft-float
19646 @opindex msoft-float
19647 Do not use floating-point coprocessor instructions. Implement
19648 floating-point calculations using library calls instead.
19649
19650 @item -mno-float
19651 @opindex mno-float
19652 Equivalent to @option{-msoft-float}, but additionally asserts that the
19653 program being compiled does not perform any floating-point operations.
19654 This option is presently supported only by some bare-metal MIPS
19655 configurations, where it may select a special set of libraries
19656 that lack all floating-point support (including, for example, the
19657 floating-point @code{printf} formats).
19658 If code compiled with @option{-mno-float} accidentally contains
19659 floating-point operations, it is likely to suffer a link-time
19660 or run-time failure.
19661
19662 @item -msingle-float
19663 @opindex msingle-float
19664 Assume that the floating-point coprocessor only supports single-precision
19665 operations.
19666
19667 @item -mdouble-float
19668 @opindex mdouble-float
19669 Assume that the floating-point coprocessor supports double-precision
19670 operations. This is the default.
19671
19672 @item -modd-spreg
19673 @itemx -mno-odd-spreg
19674 @opindex modd-spreg
19675 @opindex mno-odd-spreg
19676 Enable the use of odd-numbered single-precision floating-point registers
19677 for the o32 ABI. This is the default for processors that are known to
19678 support these registers. When using the o32 FPXX ABI, @option{-mno-odd-spreg}
19679 is set by default.
19680
19681 @item -mabs=2008
19682 @itemx -mabs=legacy
19683 @opindex mabs=2008
19684 @opindex mabs=legacy
19685 These options control the treatment of the special not-a-number (NaN)
19686 IEEE 754 floating-point data with the @code{abs.@i{fmt}} and
19687 @code{neg.@i{fmt}} machine instructions.
19688
19689 By default or when @option{-mabs=legacy} is used the legacy
19690 treatment is selected. In this case these instructions are considered
19691 arithmetic and avoided where correct operation is required and the
19692 input operand might be a NaN. A longer sequence of instructions that
19693 manipulate the sign bit of floating-point datum manually is used
19694 instead unless the @option{-ffinite-math-only} option has also been
19695 specified.
19696
19697 The @option{-mabs=2008} option selects the IEEE 754-2008 treatment. In
19698 this case these instructions are considered non-arithmetic and therefore
19699 operating correctly in all cases, including in particular where the
19700 input operand is a NaN. These instructions are therefore always used
19701 for the respective operations.
19702
19703 @item -mnan=2008
19704 @itemx -mnan=legacy
19705 @opindex mnan=2008
19706 @opindex mnan=legacy
19707 These options control the encoding of the special not-a-number (NaN)
19708 IEEE 754 floating-point data.
19709
19710 The @option{-mnan=legacy} option selects the legacy encoding. In this
19711 case quiet NaNs (qNaNs) are denoted by the first bit of their trailing
19712 significand field being 0, whereas signaling NaNs (sNaNs) are denoted
19713 by the first bit of their trailing significand field being 1.
19714
19715 The @option{-mnan=2008} option selects the IEEE 754-2008 encoding. In
19716 this case qNaNs are denoted by the first bit of their trailing
19717 significand field being 1, whereas sNaNs are denoted by the first bit of
19718 their trailing significand field being 0.
19719
19720 The default is @option{-mnan=legacy} unless GCC has been configured with
19721 @option{--with-nan=2008}.
19722
19723 @item -mllsc
19724 @itemx -mno-llsc
19725 @opindex mllsc
19726 @opindex mno-llsc
19727 Use (do not use) @samp{ll}, @samp{sc}, and @samp{sync} instructions to
19728 implement atomic memory built-in functions. When neither option is
19729 specified, GCC uses the instructions if the target architecture
19730 supports them.
19731
19732 @option{-mllsc} is useful if the runtime environment can emulate the
19733 instructions and @option{-mno-llsc} can be useful when compiling for
19734 nonstandard ISAs. You can make either option the default by
19735 configuring GCC with @option{--with-llsc} and @option{--without-llsc}
19736 respectively. @option{--with-llsc} is the default for some
19737 configurations; see the installation documentation for details.
19738
19739 @item -mdsp
19740 @itemx -mno-dsp
19741 @opindex mdsp
19742 @opindex mno-dsp
19743 Use (do not use) revision 1 of the MIPS DSP ASE@.
19744 @xref{MIPS DSP Built-in Functions}. This option defines the
19745 preprocessor macro @code{__mips_dsp}. It also defines
19746 @code{__mips_dsp_rev} to 1.
19747
19748 @item -mdspr2
19749 @itemx -mno-dspr2
19750 @opindex mdspr2
19751 @opindex mno-dspr2
19752 Use (do not use) revision 2 of the MIPS DSP ASE@.
19753 @xref{MIPS DSP Built-in Functions}. This option defines the
19754 preprocessor macros @code{__mips_dsp} and @code{__mips_dspr2}.
19755 It also defines @code{__mips_dsp_rev} to 2.
19756
19757 @item -msmartmips
19758 @itemx -mno-smartmips
19759 @opindex msmartmips
19760 @opindex mno-smartmips
19761 Use (do not use) the MIPS SmartMIPS ASE.
19762
19763 @item -mpaired-single
19764 @itemx -mno-paired-single
19765 @opindex mpaired-single
19766 @opindex mno-paired-single
19767 Use (do not use) paired-single floating-point instructions.
19768 @xref{MIPS Paired-Single Support}. This option requires
19769 hardware floating-point support to be enabled.
19770
19771 @item -mdmx
19772 @itemx -mno-mdmx
19773 @opindex mdmx
19774 @opindex mno-mdmx
19775 Use (do not use) MIPS Digital Media Extension instructions.
19776 This option can only be used when generating 64-bit code and requires
19777 hardware floating-point support to be enabled.
19778
19779 @item -mips3d
19780 @itemx -mno-mips3d
19781 @opindex mips3d
19782 @opindex mno-mips3d
19783 Use (do not use) the MIPS-3D ASE@. @xref{MIPS-3D Built-in Functions}.
19784 The option @option{-mips3d} implies @option{-mpaired-single}.
19785
19786 @item -mmicromips
19787 @itemx -mno-micromips
19788 @opindex mmicromips
19789 @opindex mno-mmicromips
19790 Generate (do not generate) microMIPS code.
19791
19792 MicroMIPS code generation can also be controlled on a per-function basis
19793 by means of @code{micromips} and @code{nomicromips} attributes.
19794 @xref{Function Attributes}, for more information.
19795
19796 @item -mmt
19797 @itemx -mno-mt
19798 @opindex mmt
19799 @opindex mno-mt
19800 Use (do not use) MT Multithreading instructions.
19801
19802 @item -mmcu
19803 @itemx -mno-mcu
19804 @opindex mmcu
19805 @opindex mno-mcu
19806 Use (do not use) the MIPS MCU ASE instructions.
19807
19808 @item -meva
19809 @itemx -mno-eva
19810 @opindex meva
19811 @opindex mno-eva
19812 Use (do not use) the MIPS Enhanced Virtual Addressing instructions.
19813
19814 @item -mvirt
19815 @itemx -mno-virt
19816 @opindex mvirt
19817 @opindex mno-virt
19818 Use (do not use) the MIPS Virtualization (VZ) instructions.
19819
19820 @item -mxpa
19821 @itemx -mno-xpa
19822 @opindex mxpa
19823 @opindex mno-xpa
19824 Use (do not use) the MIPS eXtended Physical Address (XPA) instructions.
19825
19826 @item -mlong64
19827 @opindex mlong64
19828 Force @code{long} types to be 64 bits wide. See @option{-mlong32} for
19829 an explanation of the default and the way that the pointer size is
19830 determined.
19831
19832 @item -mlong32
19833 @opindex mlong32
19834 Force @code{long}, @code{int}, and pointer types to be 32 bits wide.
19835
19836 The default size of @code{int}s, @code{long}s and pointers depends on
19837 the ABI@. All the supported ABIs use 32-bit @code{int}s. The n64 ABI
19838 uses 64-bit @code{long}s, as does the 64-bit EABI; the others use
19839 32-bit @code{long}s. Pointers are the same size as @code{long}s,
19840 or the same size as integer registers, whichever is smaller.
19841
19842 @item -msym32
19843 @itemx -mno-sym32
19844 @opindex msym32
19845 @opindex mno-sym32
19846 Assume (do not assume) that all symbols have 32-bit values, regardless
19847 of the selected ABI@. This option is useful in combination with
19848 @option{-mabi=64} and @option{-mno-abicalls} because it allows GCC
19849 to generate shorter and faster references to symbolic addresses.
19850
19851 @item -G @var{num}
19852 @opindex G
19853 Put definitions of externally-visible data in a small data section
19854 if that data is no bigger than @var{num} bytes. GCC can then generate
19855 more efficient accesses to the data; see @option{-mgpopt} for details.
19856
19857 The default @option{-G} option depends on the configuration.
19858
19859 @item -mlocal-sdata
19860 @itemx -mno-local-sdata
19861 @opindex mlocal-sdata
19862 @opindex mno-local-sdata
19863 Extend (do not extend) the @option{-G} behavior to local data too,
19864 such as to static variables in C@. @option{-mlocal-sdata} is the
19865 default for all configurations.
19866
19867 If the linker complains that an application is using too much small data,
19868 you might want to try rebuilding the less performance-critical parts with
19869 @option{-mno-local-sdata}. You might also want to build large
19870 libraries with @option{-mno-local-sdata}, so that the libraries leave
19871 more room for the main program.
19872
19873 @item -mextern-sdata
19874 @itemx -mno-extern-sdata
19875 @opindex mextern-sdata
19876 @opindex mno-extern-sdata
19877 Assume (do not assume) that externally-defined data is in
19878 a small data section if the size of that data is within the @option{-G} limit.
19879 @option{-mextern-sdata} is the default for all configurations.
19880
19881 If you compile a module @var{Mod} with @option{-mextern-sdata} @option{-G
19882 @var{num}} @option{-mgpopt}, and @var{Mod} references a variable @var{Var}
19883 that is no bigger than @var{num} bytes, you must make sure that @var{Var}
19884 is placed in a small data section. If @var{Var} is defined by another
19885 module, you must either compile that module with a high-enough
19886 @option{-G} setting or attach a @code{section} attribute to @var{Var}'s
19887 definition. If @var{Var} is common, you must link the application
19888 with a high-enough @option{-G} setting.
19889
19890 The easiest way of satisfying these restrictions is to compile
19891 and link every module with the same @option{-G} option. However,
19892 you may wish to build a library that supports several different
19893 small data limits. You can do this by compiling the library with
19894 the highest supported @option{-G} setting and additionally using
19895 @option{-mno-extern-sdata} to stop the library from making assumptions
19896 about externally-defined data.
19897
19898 @item -mgpopt
19899 @itemx -mno-gpopt
19900 @opindex mgpopt
19901 @opindex mno-gpopt
19902 Use (do not use) GP-relative accesses for symbols that are known to be
19903 in a small data section; see @option{-G}, @option{-mlocal-sdata} and
19904 @option{-mextern-sdata}. @option{-mgpopt} is the default for all
19905 configurations.
19906
19907 @option{-mno-gpopt} is useful for cases where the @code{$gp} register
19908 might not hold the value of @code{_gp}. For example, if the code is
19909 part of a library that might be used in a boot monitor, programs that
19910 call boot monitor routines pass an unknown value in @code{$gp}.
19911 (In such situations, the boot monitor itself is usually compiled
19912 with @option{-G0}.)
19913
19914 @option{-mno-gpopt} implies @option{-mno-local-sdata} and
19915 @option{-mno-extern-sdata}.
19916
19917 @item -membedded-data
19918 @itemx -mno-embedded-data
19919 @opindex membedded-data
19920 @opindex mno-embedded-data
19921 Allocate variables to the read-only data section first if possible, then
19922 next in the small data section if possible, otherwise in data. This gives
19923 slightly slower code than the default, but reduces the amount of RAM required
19924 when executing, and thus may be preferred for some embedded systems.
19925
19926 @item -muninit-const-in-rodata
19927 @itemx -mno-uninit-const-in-rodata
19928 @opindex muninit-const-in-rodata
19929 @opindex mno-uninit-const-in-rodata
19930 Put uninitialized @code{const} variables in the read-only data section.
19931 This option is only meaningful in conjunction with @option{-membedded-data}.
19932
19933 @item -mcode-readable=@var{setting}
19934 @opindex mcode-readable
19935 Specify whether GCC may generate code that reads from executable sections.
19936 There are three possible settings:
19937
19938 @table @gcctabopt
19939 @item -mcode-readable=yes
19940 Instructions may freely access executable sections. This is the
19941 default setting.
19942
19943 @item -mcode-readable=pcrel
19944 MIPS16 PC-relative load instructions can access executable sections,
19945 but other instructions must not do so. This option is useful on 4KSc
19946 and 4KSd processors when the code TLBs have the Read Inhibit bit set.
19947 It is also useful on processors that can be configured to have a dual
19948 instruction/data SRAM interface and that, like the M4K, automatically
19949 redirect PC-relative loads to the instruction RAM.
19950
19951 @item -mcode-readable=no
19952 Instructions must not access executable sections. This option can be
19953 useful on targets that are configured to have a dual instruction/data
19954 SRAM interface but that (unlike the M4K) do not automatically redirect
19955 PC-relative loads to the instruction RAM.
19956 @end table
19957
19958 @item -msplit-addresses
19959 @itemx -mno-split-addresses
19960 @opindex msplit-addresses
19961 @opindex mno-split-addresses
19962 Enable (disable) use of the @code{%hi()} and @code{%lo()} assembler
19963 relocation operators. This option has been superseded by
19964 @option{-mexplicit-relocs} but is retained for backwards compatibility.
19965
19966 @item -mexplicit-relocs
19967 @itemx -mno-explicit-relocs
19968 @opindex mexplicit-relocs
19969 @opindex mno-explicit-relocs
19970 Use (do not use) assembler relocation operators when dealing with symbolic
19971 addresses. The alternative, selected by @option{-mno-explicit-relocs},
19972 is to use assembler macros instead.
19973
19974 @option{-mexplicit-relocs} is the default if GCC was configured
19975 to use an assembler that supports relocation operators.
19976
19977 @item -mcheck-zero-division
19978 @itemx -mno-check-zero-division
19979 @opindex mcheck-zero-division
19980 @opindex mno-check-zero-division
19981 Trap (do not trap) on integer division by zero.
19982
19983 The default is @option{-mcheck-zero-division}.
19984
19985 @item -mdivide-traps
19986 @itemx -mdivide-breaks
19987 @opindex mdivide-traps
19988 @opindex mdivide-breaks
19989 MIPS systems check for division by zero by generating either a
19990 conditional trap or a break instruction. Using traps results in
19991 smaller code, but is only supported on MIPS II and later. Also, some
19992 versions of the Linux kernel have a bug that prevents trap from
19993 generating the proper signal (@code{SIGFPE}). Use @option{-mdivide-traps} to
19994 allow conditional traps on architectures that support them and
19995 @option{-mdivide-breaks} to force the use of breaks.
19996
19997 The default is usually @option{-mdivide-traps}, but this can be
19998 overridden at configure time using @option{--with-divide=breaks}.
19999 Divide-by-zero checks can be completely disabled using
20000 @option{-mno-check-zero-division}.
20001
20002 @item -mload-store-pairs
20003 @itemx -mno-load-store-pairs
20004 @opindex mload-store-pairs
20005 @opindex mno-load-store-pairs
20006 Enable (disable) an optimization that pairs consecutive load or store
20007 instructions to enable load/store bonding. This option is enabled by
20008 default but only takes effect when the selected architecture is known
20009 to support bonding.
20010
20011 @item -mmemcpy
20012 @itemx -mno-memcpy
20013 @opindex mmemcpy
20014 @opindex mno-memcpy
20015 Force (do not force) the use of @code{memcpy} for non-trivial block
20016 moves. The default is @option{-mno-memcpy}, which allows GCC to inline
20017 most constant-sized copies.
20018
20019 @item -mlong-calls
20020 @itemx -mno-long-calls
20021 @opindex mlong-calls
20022 @opindex mno-long-calls
20023 Disable (do not disable) use of the @code{jal} instruction. Calling
20024 functions using @code{jal} is more efficient but requires the caller
20025 and callee to be in the same 256 megabyte segment.
20026
20027 This option has no effect on abicalls code. The default is
20028 @option{-mno-long-calls}.
20029
20030 @item -mmad
20031 @itemx -mno-mad
20032 @opindex mmad
20033 @opindex mno-mad
20034 Enable (disable) use of the @code{mad}, @code{madu} and @code{mul}
20035 instructions, as provided by the R4650 ISA@.
20036
20037 @item -mimadd
20038 @itemx -mno-imadd
20039 @opindex mimadd
20040 @opindex mno-imadd
20041 Enable (disable) use of the @code{madd} and @code{msub} integer
20042 instructions. The default is @option{-mimadd} on architectures
20043 that support @code{madd} and @code{msub} except for the 74k
20044 architecture where it was found to generate slower code.
20045
20046 @item -mfused-madd
20047 @itemx -mno-fused-madd
20048 @opindex mfused-madd
20049 @opindex mno-fused-madd
20050 Enable (disable) use of the floating-point multiply-accumulate
20051 instructions, when they are available. The default is
20052 @option{-mfused-madd}.
20053
20054 On the R8000 CPU when multiply-accumulate instructions are used,
20055 the intermediate product is calculated to infinite precision
20056 and is not subject to the FCSR Flush to Zero bit. This may be
20057 undesirable in some circumstances. On other processors the result
20058 is numerically identical to the equivalent computation using
20059 separate multiply, add, subtract and negate instructions.
20060
20061 @item -nocpp
20062 @opindex nocpp
20063 Tell the MIPS assembler to not run its preprocessor over user
20064 assembler files (with a @samp{.s} suffix) when assembling them.
20065
20066 @item -mfix-24k
20067 @item -mno-fix-24k
20068 @opindex mfix-24k
20069 @opindex mno-fix-24k
20070 Work around the 24K E48 (lost data on stores during refill) errata.
20071 The workarounds are implemented by the assembler rather than by GCC@.
20072
20073 @item -mfix-r4000
20074 @itemx -mno-fix-r4000
20075 @opindex mfix-r4000
20076 @opindex mno-fix-r4000
20077 Work around certain R4000 CPU errata:
20078 @itemize @minus
20079 @item
20080 A double-word or a variable shift may give an incorrect result if executed
20081 immediately after starting an integer division.
20082 @item
20083 A double-word or a variable shift may give an incorrect result if executed
20084 while an integer multiplication is in progress.
20085 @item
20086 An integer division may give an incorrect result if started in a delay slot
20087 of a taken branch or a jump.
20088 @end itemize
20089
20090 @item -mfix-r4400
20091 @itemx -mno-fix-r4400
20092 @opindex mfix-r4400
20093 @opindex mno-fix-r4400
20094 Work around certain R4400 CPU errata:
20095 @itemize @minus
20096 @item
20097 A double-word or a variable shift may give an incorrect result if executed
20098 immediately after starting an integer division.
20099 @end itemize
20100
20101 @item -mfix-r10000
20102 @itemx -mno-fix-r10000
20103 @opindex mfix-r10000
20104 @opindex mno-fix-r10000
20105 Work around certain R10000 errata:
20106 @itemize @minus
20107 @item
20108 @code{ll}/@code{sc} sequences may not behave atomically on revisions
20109 prior to 3.0. They may deadlock on revisions 2.6 and earlier.
20110 @end itemize
20111
20112 This option can only be used if the target architecture supports
20113 branch-likely instructions. @option{-mfix-r10000} is the default when
20114 @option{-march=r10000} is used; @option{-mno-fix-r10000} is the default
20115 otherwise.
20116
20117 @item -mfix-rm7000
20118 @itemx -mno-fix-rm7000
20119 @opindex mfix-rm7000
20120 Work around the RM7000 @code{dmult}/@code{dmultu} errata. The
20121 workarounds are implemented by the assembler rather than by GCC@.
20122
20123 @item -mfix-vr4120
20124 @itemx -mno-fix-vr4120
20125 @opindex mfix-vr4120
20126 Work around certain VR4120 errata:
20127 @itemize @minus
20128 @item
20129 @code{dmultu} does not always produce the correct result.
20130 @item
20131 @code{div} and @code{ddiv} do not always produce the correct result if one
20132 of the operands is negative.
20133 @end itemize
20134 The workarounds for the division errata rely on special functions in
20135 @file{libgcc.a}. At present, these functions are only provided by
20136 the @code{mips64vr*-elf} configurations.
20137
20138 Other VR4120 errata require a NOP to be inserted between certain pairs of
20139 instructions. These errata are handled by the assembler, not by GCC itself.
20140
20141 @item -mfix-vr4130
20142 @opindex mfix-vr4130
20143 Work around the VR4130 @code{mflo}/@code{mfhi} errata. The
20144 workarounds are implemented by the assembler rather than by GCC,
20145 although GCC avoids using @code{mflo} and @code{mfhi} if the
20146 VR4130 @code{macc}, @code{macchi}, @code{dmacc} and @code{dmacchi}
20147 instructions are available instead.
20148
20149 @item -mfix-sb1
20150 @itemx -mno-fix-sb1
20151 @opindex mfix-sb1
20152 Work around certain SB-1 CPU core errata.
20153 (This flag currently works around the SB-1 revision 2
20154 ``F1'' and ``F2'' floating-point errata.)
20155
20156 @item -mr10k-cache-barrier=@var{setting}
20157 @opindex mr10k-cache-barrier
20158 Specify whether GCC should insert cache barriers to avoid the
20159 side-effects of speculation on R10K processors.
20160
20161 In common with many processors, the R10K tries to predict the outcome
20162 of a conditional branch and speculatively executes instructions from
20163 the ``taken'' branch. It later aborts these instructions if the
20164 predicted outcome is wrong. However, on the R10K, even aborted
20165 instructions can have side effects.
20166
20167 This problem only affects kernel stores and, depending on the system,
20168 kernel loads. As an example, a speculatively-executed store may load
20169 the target memory into cache and mark the cache line as dirty, even if
20170 the store itself is later aborted. If a DMA operation writes to the
20171 same area of memory before the ``dirty'' line is flushed, the cached
20172 data overwrites the DMA-ed data. See the R10K processor manual
20173 for a full description, including other potential problems.
20174
20175 One workaround is to insert cache barrier instructions before every memory
20176 access that might be speculatively executed and that might have side
20177 effects even if aborted. @option{-mr10k-cache-barrier=@var{setting}}
20178 controls GCC's implementation of this workaround. It assumes that
20179 aborted accesses to any byte in the following regions does not have
20180 side effects:
20181
20182 @enumerate
20183 @item
20184 the memory occupied by the current function's stack frame;
20185
20186 @item
20187 the memory occupied by an incoming stack argument;
20188
20189 @item
20190 the memory occupied by an object with a link-time-constant address.
20191 @end enumerate
20192
20193 It is the kernel's responsibility to ensure that speculative
20194 accesses to these regions are indeed safe.
20195
20196 If the input program contains a function declaration such as:
20197
20198 @smallexample
20199 void foo (void);
20200 @end smallexample
20201
20202 then the implementation of @code{foo} must allow @code{j foo} and
20203 @code{jal foo} to be executed speculatively. GCC honors this
20204 restriction for functions it compiles itself. It expects non-GCC
20205 functions (such as hand-written assembly code) to do the same.
20206
20207 The option has three forms:
20208
20209 @table @gcctabopt
20210 @item -mr10k-cache-barrier=load-store
20211 Insert a cache barrier before a load or store that might be
20212 speculatively executed and that might have side effects even
20213 if aborted.
20214
20215 @item -mr10k-cache-barrier=store
20216 Insert a cache barrier before a store that might be speculatively
20217 executed and that might have side effects even if aborted.
20218
20219 @item -mr10k-cache-barrier=none
20220 Disable the insertion of cache barriers. This is the default setting.
20221 @end table
20222
20223 @item -mflush-func=@var{func}
20224 @itemx -mno-flush-func
20225 @opindex mflush-func
20226 Specifies the function to call to flush the I and D caches, or to not
20227 call any such function. If called, the function must take the same
20228 arguments as the common @code{_flush_func}, that is, the address of the
20229 memory range for which the cache is being flushed, the size of the
20230 memory range, and the number 3 (to flush both caches). The default
20231 depends on the target GCC was configured for, but commonly is either
20232 @code{_flush_func} or @code{__cpu_flush}.
20233
20234 @item mbranch-cost=@var{num}
20235 @opindex mbranch-cost
20236 Set the cost of branches to roughly @var{num} ``simple'' instructions.
20237 This cost is only a heuristic and is not guaranteed to produce
20238 consistent results across releases. A zero cost redundantly selects
20239 the default, which is based on the @option{-mtune} setting.
20240
20241 @item -mbranch-likely
20242 @itemx -mno-branch-likely
20243 @opindex mbranch-likely
20244 @opindex mno-branch-likely
20245 Enable or disable use of Branch Likely instructions, regardless of the
20246 default for the selected architecture. By default, Branch Likely
20247 instructions may be generated if they are supported by the selected
20248 architecture. An exception is for the MIPS32 and MIPS64 architectures
20249 and processors that implement those architectures; for those, Branch
20250 Likely instructions are not be generated by default because the MIPS32
20251 and MIPS64 architectures specifically deprecate their use.
20252
20253 @item -mcompact-branches=never
20254 @itemx -mcompact-branches=optimal
20255 @itemx -mcompact-branches=always
20256 @opindex mcompact-branches=never
20257 @opindex mcompact-branches=optimal
20258 @opindex mcompact-branches=always
20259 These options control which form of branches will be generated. The
20260 default is @option{-mcompact-branches=optimal}.
20261
20262 The @option{-mcompact-branches=never} option ensures that compact branch
20263 instructions will never be generated.
20264
20265 The @option{-mcompact-branches=always} option ensures that a compact
20266 branch instruction will be generated if available. If a compact branch
20267 instruction is not available, a delay slot form of the branch will be
20268 used instead.
20269
20270 This option is supported from MIPS Release 6 onwards.
20271
20272 The @option{-mcompact-branches=optimal} option will cause a delay slot
20273 branch to be used if one is available in the current ISA and the delay
20274 slot is successfully filled. If the delay slot is not filled, a compact
20275 branch will be chosen if one is available.
20276
20277 @item -mfp-exceptions
20278 @itemx -mno-fp-exceptions
20279 @opindex mfp-exceptions
20280 Specifies whether FP exceptions are enabled. This affects how
20281 FP instructions are scheduled for some processors.
20282 The default is that FP exceptions are
20283 enabled.
20284
20285 For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
20286 64-bit code, then we can use both FP pipes. Otherwise, we can only use one
20287 FP pipe.
20288
20289 @item -mvr4130-align
20290 @itemx -mno-vr4130-align
20291 @opindex mvr4130-align
20292 The VR4130 pipeline is two-way superscalar, but can only issue two
20293 instructions together if the first one is 8-byte aligned. When this
20294 option is enabled, GCC aligns pairs of instructions that it
20295 thinks should execute in parallel.
20296
20297 This option only has an effect when optimizing for the VR4130.
20298 It normally makes code faster, but at the expense of making it bigger.
20299 It is enabled by default at optimization level @option{-O3}.
20300
20301 @item -msynci
20302 @itemx -mno-synci
20303 @opindex msynci
20304 Enable (disable) generation of @code{synci} instructions on
20305 architectures that support it. The @code{synci} instructions (if
20306 enabled) are generated when @code{__builtin___clear_cache} is
20307 compiled.
20308
20309 This option defaults to @option{-mno-synci}, but the default can be
20310 overridden by configuring GCC with @option{--with-synci}.
20311
20312 When compiling code for single processor systems, it is generally safe
20313 to use @code{synci}. However, on many multi-core (SMP) systems, it
20314 does not invalidate the instruction caches on all cores and may lead
20315 to undefined behavior.
20316
20317 @item -mrelax-pic-calls
20318 @itemx -mno-relax-pic-calls
20319 @opindex mrelax-pic-calls
20320 Try to turn PIC calls that are normally dispatched via register
20321 @code{$25} into direct calls. This is only possible if the linker can
20322 resolve the destination at link time and if the destination is within
20323 range for a direct call.
20324
20325 @option{-mrelax-pic-calls} is the default if GCC was configured to use
20326 an assembler and a linker that support the @code{.reloc} assembly
20327 directive and @option{-mexplicit-relocs} is in effect. With
20328 @option{-mno-explicit-relocs}, this optimization can be performed by the
20329 assembler and the linker alone without help from the compiler.
20330
20331 @item -mmcount-ra-address
20332 @itemx -mno-mcount-ra-address
20333 @opindex mmcount-ra-address
20334 @opindex mno-mcount-ra-address
20335 Emit (do not emit) code that allows @code{_mcount} to modify the
20336 calling function's return address. When enabled, this option extends
20337 the usual @code{_mcount} interface with a new @var{ra-address}
20338 parameter, which has type @code{intptr_t *} and is passed in register
20339 @code{$12}. @code{_mcount} can then modify the return address by
20340 doing both of the following:
20341 @itemize
20342 @item
20343 Returning the new address in register @code{$31}.
20344 @item
20345 Storing the new address in @code{*@var{ra-address}},
20346 if @var{ra-address} is nonnull.
20347 @end itemize
20348
20349 The default is @option{-mno-mcount-ra-address}.
20350
20351 @item -mframe-header-opt
20352 @itemx -mno-frame-header-opt
20353 @opindex mframe-header-opt
20354 Enable (disable) frame header optimization in the o32 ABI. When using the
20355 o32 ABI, calling functions will allocate 16 bytes on the stack for the called
20356 function to write out register arguments. When enabled, this optimization
20357 will suppress the allocation of the frame header if it can be determined that
20358 it is unused.
20359
20360 This optimization is off by default at all optimization levels.
20361
20362 @item -mlxc1-sxc1
20363 @itemx -mno-lxc1-sxc1
20364 @opindex mlxc1-sxc1
20365 When applicable, enable (disable) the generation of @code{lwxc1},
20366 @code{swxc1}, @code{ldxc1}, @code{sdxc1} instructions. Enabled by default.
20367
20368 @item -mmadd4
20369 @itemx -mno-madd4
20370 @opindex mmadd4
20371 When applicable, enable (disable) the generation of 4-operand @code{madd.s},
20372 @code{madd.d} and related instructions. Enabled by default.
20373
20374 @end table
20375
20376 @node MMIX Options
20377 @subsection MMIX Options
20378 @cindex MMIX Options
20379
20380 These options are defined for the MMIX:
20381
20382 @table @gcctabopt
20383 @item -mlibfuncs
20384 @itemx -mno-libfuncs
20385 @opindex mlibfuncs
20386 @opindex mno-libfuncs
20387 Specify that intrinsic library functions are being compiled, passing all
20388 values in registers, no matter the size.
20389
20390 @item -mepsilon
20391 @itemx -mno-epsilon
20392 @opindex mepsilon
20393 @opindex mno-epsilon
20394 Generate floating-point comparison instructions that compare with respect
20395 to the @code{rE} epsilon register.
20396
20397 @item -mabi=mmixware
20398 @itemx -mabi=gnu
20399 @opindex mabi=mmixware
20400 @opindex mabi=gnu
20401 Generate code that passes function parameters and return values that (in
20402 the called function) are seen as registers @code{$0} and up, as opposed to
20403 the GNU ABI which uses global registers @code{$231} and up.
20404
20405 @item -mzero-extend
20406 @itemx -mno-zero-extend
20407 @opindex mzero-extend
20408 @opindex mno-zero-extend
20409 When reading data from memory in sizes shorter than 64 bits, use (do not
20410 use) zero-extending load instructions by default, rather than
20411 sign-extending ones.
20412
20413 @item -mknuthdiv
20414 @itemx -mno-knuthdiv
20415 @opindex mknuthdiv
20416 @opindex mno-knuthdiv
20417 Make the result of a division yielding a remainder have the same sign as
20418 the divisor. With the default, @option{-mno-knuthdiv}, the sign of the
20419 remainder follows the sign of the dividend. Both methods are
20420 arithmetically valid, the latter being almost exclusively used.
20421
20422 @item -mtoplevel-symbols
20423 @itemx -mno-toplevel-symbols
20424 @opindex mtoplevel-symbols
20425 @opindex mno-toplevel-symbols
20426 Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly
20427 code can be used with the @code{PREFIX} assembly directive.
20428
20429 @item -melf
20430 @opindex melf
20431 Generate an executable in the ELF format, rather than the default
20432 @samp{mmo} format used by the @command{mmix} simulator.
20433
20434 @item -mbranch-predict
20435 @itemx -mno-branch-predict
20436 @opindex mbranch-predict
20437 @opindex mno-branch-predict
20438 Use (do not use) the probable-branch instructions, when static branch
20439 prediction indicates a probable branch.
20440
20441 @item -mbase-addresses
20442 @itemx -mno-base-addresses
20443 @opindex mbase-addresses
20444 @opindex mno-base-addresses
20445 Generate (do not generate) code that uses @emph{base addresses}. Using a
20446 base address automatically generates a request (handled by the assembler
20447 and the linker) for a constant to be set up in a global register. The
20448 register is used for one or more base address requests within the range 0
20449 to 255 from the value held in the register. The generally leads to short
20450 and fast code, but the number of different data items that can be
20451 addressed is limited. This means that a program that uses lots of static
20452 data may require @option{-mno-base-addresses}.
20453
20454 @item -msingle-exit
20455 @itemx -mno-single-exit
20456 @opindex msingle-exit
20457 @opindex mno-single-exit
20458 Force (do not force) generated code to have a single exit point in each
20459 function.
20460 @end table
20461
20462 @node MN10300 Options
20463 @subsection MN10300 Options
20464 @cindex MN10300 options
20465
20466 These @option{-m} options are defined for Matsushita MN10300 architectures:
20467
20468 @table @gcctabopt
20469 @item -mmult-bug
20470 @opindex mmult-bug
20471 Generate code to avoid bugs in the multiply instructions for the MN10300
20472 processors. This is the default.
20473
20474 @item -mno-mult-bug
20475 @opindex mno-mult-bug
20476 Do not generate code to avoid bugs in the multiply instructions for the
20477 MN10300 processors.
20478
20479 @item -mam33
20480 @opindex mam33
20481 Generate code using features specific to the AM33 processor.
20482
20483 @item -mno-am33
20484 @opindex mno-am33
20485 Do not generate code using features specific to the AM33 processor. This
20486 is the default.
20487
20488 @item -mam33-2
20489 @opindex mam33-2
20490 Generate code using features specific to the AM33/2.0 processor.
20491
20492 @item -mam34
20493 @opindex mam34
20494 Generate code using features specific to the AM34 processor.
20495
20496 @item -mtune=@var{cpu-type}
20497 @opindex mtune
20498 Use the timing characteristics of the indicated CPU type when
20499 scheduling instructions. This does not change the targeted processor
20500 type. The CPU type must be one of @samp{mn10300}, @samp{am33},
20501 @samp{am33-2} or @samp{am34}.
20502
20503 @item -mreturn-pointer-on-d0
20504 @opindex mreturn-pointer-on-d0
20505 When generating a function that returns a pointer, return the pointer
20506 in both @code{a0} and @code{d0}. Otherwise, the pointer is returned
20507 only in @code{a0}, and attempts to call such functions without a prototype
20508 result in errors. Note that this option is on by default; use
20509 @option{-mno-return-pointer-on-d0} to disable it.
20510
20511 @item -mno-crt0
20512 @opindex mno-crt0
20513 Do not link in the C run-time initialization object file.
20514
20515 @item -mrelax
20516 @opindex mrelax
20517 Indicate to the linker that it should perform a relaxation optimization pass
20518 to shorten branches, calls and absolute memory addresses. This option only
20519 has an effect when used on the command line for the final link step.
20520
20521 This option makes symbolic debugging impossible.
20522
20523 @item -mliw
20524 @opindex mliw
20525 Allow the compiler to generate @emph{Long Instruction Word}
20526 instructions if the target is the @samp{AM33} or later. This is the
20527 default. This option defines the preprocessor macro @code{__LIW__}.
20528
20529 @item -mnoliw
20530 @opindex mnoliw
20531 Do not allow the compiler to generate @emph{Long Instruction Word}
20532 instructions. This option defines the preprocessor macro
20533 @code{__NO_LIW__}.
20534
20535 @item -msetlb
20536 @opindex msetlb
20537 Allow the compiler to generate the @emph{SETLB} and @emph{Lcc}
20538 instructions if the target is the @samp{AM33} or later. This is the
20539 default. This option defines the preprocessor macro @code{__SETLB__}.
20540
20541 @item -mnosetlb
20542 @opindex mnosetlb
20543 Do not allow the compiler to generate @emph{SETLB} or @emph{Lcc}
20544 instructions. This option defines the preprocessor macro
20545 @code{__NO_SETLB__}.
20546
20547 @end table
20548
20549 @node Moxie Options
20550 @subsection Moxie Options
20551 @cindex Moxie Options
20552
20553 @table @gcctabopt
20554
20555 @item -meb
20556 @opindex meb
20557 Generate big-endian code. This is the default for @samp{moxie-*-*}
20558 configurations.
20559
20560 @item -mel
20561 @opindex mel
20562 Generate little-endian code.
20563
20564 @item -mmul.x
20565 @opindex mmul.x
20566 Generate mul.x and umul.x instructions. This is the default for
20567 @samp{moxiebox-*-*} configurations.
20568
20569 @item -mno-crt0
20570 @opindex mno-crt0
20571 Do not link in the C run-time initialization object file.
20572
20573 @end table
20574
20575 @node MSP430 Options
20576 @subsection MSP430 Options
20577 @cindex MSP430 Options
20578
20579 These options are defined for the MSP430:
20580
20581 @table @gcctabopt
20582
20583 @item -masm-hex
20584 @opindex masm-hex
20585 Force assembly output to always use hex constants. Normally such
20586 constants are signed decimals, but this option is available for
20587 testsuite and/or aesthetic purposes.
20588
20589 @item -mmcu=
20590 @opindex mmcu=
20591 Select the MCU to target. This is used to create a C preprocessor
20592 symbol based upon the MCU name, converted to upper case and pre- and
20593 post-fixed with @samp{__}. This in turn is used by the
20594 @file{msp430.h} header file to select an MCU-specific supplementary
20595 header file.
20596
20597 The option also sets the ISA to use. If the MCU name is one that is
20598 known to only support the 430 ISA then that is selected, otherwise the
20599 430X ISA is selected. A generic MCU name of @samp{msp430} can also be
20600 used to select the 430 ISA. Similarly the generic @samp{msp430x} MCU
20601 name selects the 430X ISA.
20602
20603 In addition an MCU-specific linker script is added to the linker
20604 command line. The script's name is the name of the MCU with
20605 @file{.ld} appended. Thus specifying @option{-mmcu=xxx} on the @command{gcc}
20606 command line defines the C preprocessor symbol @code{__XXX__} and
20607 cause the linker to search for a script called @file{xxx.ld}.
20608
20609 This option is also passed on to the assembler.
20610
20611 @item -mwarn-mcu
20612 @itemx -mno-warn-mcu
20613 @opindex mwarn-mcu
20614 @opindex mno-warn-mcu
20615 This option enables or disables warnings about conflicts between the
20616 MCU name specified by the @option{-mmcu} option and the ISA set by the
20617 @option{-mcpu} option and/or the hardware multiply support set by the
20618 @option{-mhwmult} option. It also toggles warnings about unrecognized
20619 MCU names. This option is on by default.
20620
20621 @item -mcpu=
20622 @opindex mcpu=
20623 Specifies the ISA to use. Accepted values are @samp{msp430},
20624 @samp{msp430x} and @samp{msp430xv2}. This option is deprecated. The
20625 @option{-mmcu=} option should be used to select the ISA.
20626
20627 @item -msim
20628 @opindex msim
20629 Link to the simulator runtime libraries and linker script. Overrides
20630 any scripts that would be selected by the @option{-mmcu=} option.
20631
20632 @item -mlarge
20633 @opindex mlarge
20634 Use large-model addressing (20-bit pointers, 32-bit @code{size_t}).
20635
20636 @item -msmall
20637 @opindex msmall
20638 Use small-model addressing (16-bit pointers, 16-bit @code{size_t}).
20639
20640 @item -mrelax
20641 @opindex mrelax
20642 This option is passed to the assembler and linker, and allows the
20643 linker to perform certain optimizations that cannot be done until
20644 the final link.
20645
20646 @item mhwmult=
20647 @opindex mhwmult=
20648 Describes the type of hardware multiply supported by the target.
20649 Accepted values are @samp{none} for no hardware multiply, @samp{16bit}
20650 for the original 16-bit-only multiply supported by early MCUs.
20651 @samp{32bit} for the 16/32-bit multiply supported by later MCUs and
20652 @samp{f5series} for the 16/32-bit multiply supported by F5-series MCUs.
20653 A value of @samp{auto} can also be given. This tells GCC to deduce
20654 the hardware multiply support based upon the MCU name provided by the
20655 @option{-mmcu} option. If no @option{-mmcu} option is specified or if
20656 the MCU name is not recognized then no hardware multiply support is
20657 assumed. @code{auto} is the default setting.
20658
20659 Hardware multiplies are normally performed by calling a library
20660 routine. This saves space in the generated code. When compiling at
20661 @option{-O3} or higher however the hardware multiplier is invoked
20662 inline. This makes for bigger, but faster code.
20663
20664 The hardware multiply routines disable interrupts whilst running and
20665 restore the previous interrupt state when they finish. This makes
20666 them safe to use inside interrupt handlers as well as in normal code.
20667
20668 @item -minrt
20669 @opindex minrt
20670 Enable the use of a minimum runtime environment - no static
20671 initializers or constructors. This is intended for memory-constrained
20672 devices. The compiler includes special symbols in some objects
20673 that tell the linker and runtime which code fragments are required.
20674
20675 @item -mcode-region=
20676 @itemx -mdata-region=
20677 @opindex mcode-region
20678 @opindex mdata-region
20679 These options tell the compiler where to place functions and data that
20680 do not have one of the @code{lower}, @code{upper}, @code{either} or
20681 @code{section} attributes. Possible values are @code{lower},
20682 @code{upper}, @code{either} or @code{any}. The first three behave
20683 like the corresponding attribute. The fourth possible value -
20684 @code{any} - is the default. It leaves placement entirely up to the
20685 linker script and how it assigns the standard sections
20686 (@code{.text}, @code{.data}, etc) to the memory regions.
20687
20688 @item -msilicon-errata=
20689 @opindex msilicon-errata
20690 This option passes on a request to assembler to enable the fixes for
20691 the named silicon errata.
20692
20693 @item -msilicon-errata-warn=
20694 @opindex msilicon-errata-warn
20695 This option passes on a request to the assembler to enable warning
20696 messages when a silicon errata might need to be applied.
20697
20698 @end table
20699
20700 @node NDS32 Options
20701 @subsection NDS32 Options
20702 @cindex NDS32 Options
20703
20704 These options are defined for NDS32 implementations:
20705
20706 @table @gcctabopt
20707
20708 @item -mbig-endian
20709 @opindex mbig-endian
20710 Generate code in big-endian mode.
20711
20712 @item -mlittle-endian
20713 @opindex mlittle-endian
20714 Generate code in little-endian mode.
20715
20716 @item -mreduced-regs
20717 @opindex mreduced-regs
20718 Use reduced-set registers for register allocation.
20719
20720 @item -mfull-regs
20721 @opindex mfull-regs
20722 Use full-set registers for register allocation.
20723
20724 @item -mcmov
20725 @opindex mcmov
20726 Generate conditional move instructions.
20727
20728 @item -mno-cmov
20729 @opindex mno-cmov
20730 Do not generate conditional move instructions.
20731
20732 @item -mperf-ext
20733 @opindex mperf-ext
20734 Generate performance extension instructions.
20735
20736 @item -mno-perf-ext
20737 @opindex mno-perf-ext
20738 Do not generate performance extension instructions.
20739
20740 @item -mv3push
20741 @opindex mv3push
20742 Generate v3 push25/pop25 instructions.
20743
20744 @item -mno-v3push
20745 @opindex mno-v3push
20746 Do not generate v3 push25/pop25 instructions.
20747
20748 @item -m16-bit
20749 @opindex m16-bit
20750 Generate 16-bit instructions.
20751
20752 @item -mno-16-bit
20753 @opindex mno-16-bit
20754 Do not generate 16-bit instructions.
20755
20756 @item -misr-vector-size=@var{num}
20757 @opindex misr-vector-size
20758 Specify the size of each interrupt vector, which must be 4 or 16.
20759
20760 @item -mcache-block-size=@var{num}
20761 @opindex mcache-block-size
20762 Specify the size of each cache block,
20763 which must be a power of 2 between 4 and 512.
20764
20765 @item -march=@var{arch}
20766 @opindex march
20767 Specify the name of the target architecture.
20768
20769 @item -mcmodel=@var{code-model}
20770 @opindex mcmodel
20771 Set the code model to one of
20772 @table @asis
20773 @item @samp{small}
20774 All the data and read-only data segments must be within 512KB addressing space.
20775 The text segment must be within 16MB addressing space.
20776 @item @samp{medium}
20777 The data segment must be within 512KB while the read-only data segment can be
20778 within 4GB addressing space. The text segment should be still within 16MB
20779 addressing space.
20780 @item @samp{large}
20781 All the text and data segments can be within 4GB addressing space.
20782 @end table
20783
20784 @item -mctor-dtor
20785 @opindex mctor-dtor
20786 Enable constructor/destructor feature.
20787
20788 @item -mrelax
20789 @opindex mrelax
20790 Guide linker to relax instructions.
20791
20792 @end table
20793
20794 @node Nios II Options
20795 @subsection Nios II Options
20796 @cindex Nios II options
20797 @cindex Altera Nios II options
20798
20799 These are the options defined for the Altera Nios II processor.
20800
20801 @table @gcctabopt
20802
20803 @item -G @var{num}
20804 @opindex G
20805 @cindex smaller data references
20806 Put global and static objects less than or equal to @var{num} bytes
20807 into the small data or BSS sections instead of the normal data or BSS
20808 sections. The default value of @var{num} is 8.
20809
20810 @item -mgpopt=@var{option}
20811 @item -mgpopt
20812 @itemx -mno-gpopt
20813 @opindex mgpopt
20814 @opindex mno-gpopt
20815 Generate (do not generate) GP-relative accesses. The following
20816 @var{option} names are recognized:
20817
20818 @table @samp
20819
20820 @item none
20821 Do not generate GP-relative accesses.
20822
20823 @item local
20824 Generate GP-relative accesses for small data objects that are not
20825 external, weak, or uninitialized common symbols.
20826 Also use GP-relative addressing for objects that
20827 have been explicitly placed in a small data section via a @code{section}
20828 attribute.
20829
20830 @item global
20831 As for @samp{local}, but also generate GP-relative accesses for
20832 small data objects that are external, weak, or common. If you use this option,
20833 you must ensure that all parts of your program (including libraries) are
20834 compiled with the same @option{-G} setting.
20835
20836 @item data
20837 Generate GP-relative accesses for all data objects in the program. If you
20838 use this option, the entire data and BSS segments
20839 of your program must fit in 64K of memory and you must use an appropriate
20840 linker script to allocate them within the addressable range of the
20841 global pointer.
20842
20843 @item all
20844 Generate GP-relative addresses for function pointers as well as data
20845 pointers. If you use this option, the entire text, data, and BSS segments
20846 of your program must fit in 64K of memory and you must use an appropriate
20847 linker script to allocate them within the addressable range of the
20848 global pointer.
20849
20850 @end table
20851
20852 @option{-mgpopt} is equivalent to @option{-mgpopt=local}, and
20853 @option{-mno-gpopt} is equivalent to @option{-mgpopt=none}.
20854
20855 The default is @option{-mgpopt} except when @option{-fpic} or
20856 @option{-fPIC} is specified to generate position-independent code.
20857 Note that the Nios II ABI does not permit GP-relative accesses from
20858 shared libraries.
20859
20860 You may need to specify @option{-mno-gpopt} explicitly when building
20861 programs that include large amounts of small data, including large
20862 GOT data sections. In this case, the 16-bit offset for GP-relative
20863 addressing may not be large enough to allow access to the entire
20864 small data section.
20865
20866 @item -mel
20867 @itemx -meb
20868 @opindex mel
20869 @opindex meb
20870 Generate little-endian (default) or big-endian (experimental) code,
20871 respectively.
20872
20873 @item -march=@var{arch}
20874 @opindex march
20875 This specifies the name of the target Nios II architecture. GCC uses this
20876 name to determine what kind of instructions it can emit when generating
20877 assembly code. Permissible names are: @samp{r1}, @samp{r2}.
20878
20879 The preprocessor macro @code{__nios2_arch__} is available to programs,
20880 with value 1 or 2, indicating the targeted ISA level.
20881
20882 @item -mbypass-cache
20883 @itemx -mno-bypass-cache
20884 @opindex mno-bypass-cache
20885 @opindex mbypass-cache
20886 Force all load and store instructions to always bypass cache by
20887 using I/O variants of the instructions. The default is not to
20888 bypass the cache.
20889
20890 @item -mno-cache-volatile
20891 @itemx -mcache-volatile
20892 @opindex mcache-volatile
20893 @opindex mno-cache-volatile
20894 Volatile memory access bypass the cache using the I/O variants of
20895 the load and store instructions. The default is not to bypass the cache.
20896
20897 @item -mno-fast-sw-div
20898 @itemx -mfast-sw-div
20899 @opindex mno-fast-sw-div
20900 @opindex mfast-sw-div
20901 Do not use table-based fast divide for small numbers. The default
20902 is to use the fast divide at @option{-O3} and above.
20903
20904 @item -mno-hw-mul
20905 @itemx -mhw-mul
20906 @itemx -mno-hw-mulx
20907 @itemx -mhw-mulx
20908 @itemx -mno-hw-div
20909 @itemx -mhw-div
20910 @opindex mno-hw-mul
20911 @opindex mhw-mul
20912 @opindex mno-hw-mulx
20913 @opindex mhw-mulx
20914 @opindex mno-hw-div
20915 @opindex mhw-div
20916 Enable or disable emitting @code{mul}, @code{mulx} and @code{div} family of
20917 instructions by the compiler. The default is to emit @code{mul}
20918 and not emit @code{div} and @code{mulx}.
20919
20920 @item -mbmx
20921 @itemx -mno-bmx
20922 @itemx -mcdx
20923 @itemx -mno-cdx
20924 Enable or disable generation of Nios II R2 BMX (bit manipulation) and
20925 CDX (code density) instructions. Enabling these instructions also
20926 requires @option{-march=r2}. Since these instructions are optional
20927 extensions to the R2 architecture, the default is not to emit them.
20928
20929 @item -mcustom-@var{insn}=@var{N}
20930 @itemx -mno-custom-@var{insn}
20931 @opindex mcustom-@var{insn}
20932 @opindex mno-custom-@var{insn}
20933 Each @option{-mcustom-@var{insn}=@var{N}} option enables use of a
20934 custom instruction with encoding @var{N} when generating code that uses
20935 @var{insn}. For example, @option{-mcustom-fadds=253} generates custom
20936 instruction 253 for single-precision floating-point add operations instead
20937 of the default behavior of using a library call.
20938
20939 The following values of @var{insn} are supported. Except as otherwise
20940 noted, floating-point operations are expected to be implemented with
20941 normal IEEE 754 semantics and correspond directly to the C operators or the
20942 equivalent GCC built-in functions (@pxref{Other Builtins}).
20943
20944 Single-precision floating point:
20945 @table @asis
20946
20947 @item @samp{fadds}, @samp{fsubs}, @samp{fdivs}, @samp{fmuls}
20948 Binary arithmetic operations.
20949
20950 @item @samp{fnegs}
20951 Unary negation.
20952
20953 @item @samp{fabss}
20954 Unary absolute value.
20955
20956 @item @samp{fcmpeqs}, @samp{fcmpges}, @samp{fcmpgts}, @samp{fcmples}, @samp{fcmplts}, @samp{fcmpnes}
20957 Comparison operations.
20958
20959 @item @samp{fmins}, @samp{fmaxs}
20960 Floating-point minimum and maximum. These instructions are only
20961 generated if @option{-ffinite-math-only} is specified.
20962
20963 @item @samp{fsqrts}
20964 Unary square root operation.
20965
20966 @item @samp{fcoss}, @samp{fsins}, @samp{ftans}, @samp{fatans}, @samp{fexps}, @samp{flogs}
20967 Floating-point trigonometric and exponential functions. These instructions
20968 are only generated if @option{-funsafe-math-optimizations} is also specified.
20969
20970 @end table
20971
20972 Double-precision floating point:
20973 @table @asis
20974
20975 @item @samp{faddd}, @samp{fsubd}, @samp{fdivd}, @samp{fmuld}
20976 Binary arithmetic operations.
20977
20978 @item @samp{fnegd}
20979 Unary negation.
20980
20981 @item @samp{fabsd}
20982 Unary absolute value.
20983
20984 @item @samp{fcmpeqd}, @samp{fcmpged}, @samp{fcmpgtd}, @samp{fcmpled}, @samp{fcmpltd}, @samp{fcmpned}
20985 Comparison operations.
20986
20987 @item @samp{fmind}, @samp{fmaxd}
20988 Double-precision minimum and maximum. These instructions are only
20989 generated if @option{-ffinite-math-only} is specified.
20990
20991 @item @samp{fsqrtd}
20992 Unary square root operation.
20993
20994 @item @samp{fcosd}, @samp{fsind}, @samp{ftand}, @samp{fatand}, @samp{fexpd}, @samp{flogd}
20995 Double-precision trigonometric and exponential functions. These instructions
20996 are only generated if @option{-funsafe-math-optimizations} is also specified.
20997
20998 @end table
20999
21000 Conversions:
21001 @table @asis
21002 @item @samp{fextsd}
21003 Conversion from single precision to double precision.
21004
21005 @item @samp{ftruncds}
21006 Conversion from double precision to single precision.
21007
21008 @item @samp{fixsi}, @samp{fixsu}, @samp{fixdi}, @samp{fixdu}
21009 Conversion from floating point to signed or unsigned integer types, with
21010 truncation towards zero.
21011
21012 @item @samp{round}
21013 Conversion from single-precision floating point to signed integer,
21014 rounding to the nearest integer and ties away from zero.
21015 This corresponds to the @code{__builtin_lroundf} function when
21016 @option{-fno-math-errno} is used.
21017
21018 @item @samp{floatis}, @samp{floatus}, @samp{floatid}, @samp{floatud}
21019 Conversion from signed or unsigned integer types to floating-point types.
21020
21021 @end table
21022
21023 In addition, all of the following transfer instructions for internal
21024 registers X and Y must be provided to use any of the double-precision
21025 floating-point instructions. Custom instructions taking two
21026 double-precision source operands expect the first operand in the
21027 64-bit register X. The other operand (or only operand of a unary
21028 operation) is given to the custom arithmetic instruction with the
21029 least significant half in source register @var{src1} and the most
21030 significant half in @var{src2}. A custom instruction that returns a
21031 double-precision result returns the most significant 32 bits in the
21032 destination register and the other half in 32-bit register Y.
21033 GCC automatically generates the necessary code sequences to write
21034 register X and/or read register Y when double-precision floating-point
21035 instructions are used.
21036
21037 @table @asis
21038
21039 @item @samp{fwrx}
21040 Write @var{src1} into the least significant half of X and @var{src2} into
21041 the most significant half of X.
21042
21043 @item @samp{fwry}
21044 Write @var{src1} into Y.
21045
21046 @item @samp{frdxhi}, @samp{frdxlo}
21047 Read the most or least (respectively) significant half of X and store it in
21048 @var{dest}.
21049
21050 @item @samp{frdy}
21051 Read the value of Y and store it into @var{dest}.
21052 @end table
21053
21054 Note that you can gain more local control over generation of Nios II custom
21055 instructions by using the @code{target("custom-@var{insn}=@var{N}")}
21056 and @code{target("no-custom-@var{insn}")} function attributes
21057 (@pxref{Function Attributes})
21058 or pragmas (@pxref{Function Specific Option Pragmas}).
21059
21060 @item -mcustom-fpu-cfg=@var{name}
21061 @opindex mcustom-fpu-cfg
21062
21063 This option enables a predefined, named set of custom instruction encodings
21064 (see @option{-mcustom-@var{insn}} above).
21065 Currently, the following sets are defined:
21066
21067 @option{-mcustom-fpu-cfg=60-1} is equivalent to:
21068 @gccoptlist{-mcustom-fmuls=252 @gol
21069 -mcustom-fadds=253 @gol
21070 -mcustom-fsubs=254 @gol
21071 -fsingle-precision-constant}
21072
21073 @option{-mcustom-fpu-cfg=60-2} is equivalent to:
21074 @gccoptlist{-mcustom-fmuls=252 @gol
21075 -mcustom-fadds=253 @gol
21076 -mcustom-fsubs=254 @gol
21077 -mcustom-fdivs=255 @gol
21078 -fsingle-precision-constant}
21079
21080 @option{-mcustom-fpu-cfg=72-3} is equivalent to:
21081 @gccoptlist{-mcustom-floatus=243 @gol
21082 -mcustom-fixsi=244 @gol
21083 -mcustom-floatis=245 @gol
21084 -mcustom-fcmpgts=246 @gol
21085 -mcustom-fcmples=249 @gol
21086 -mcustom-fcmpeqs=250 @gol
21087 -mcustom-fcmpnes=251 @gol
21088 -mcustom-fmuls=252 @gol
21089 -mcustom-fadds=253 @gol
21090 -mcustom-fsubs=254 @gol
21091 -mcustom-fdivs=255 @gol
21092 -fsingle-precision-constant}
21093
21094 Custom instruction assignments given by individual
21095 @option{-mcustom-@var{insn}=} options override those given by
21096 @option{-mcustom-fpu-cfg=}, regardless of the
21097 order of the options on the command line.
21098
21099 Note that you can gain more local control over selection of a FPU
21100 configuration by using the @code{target("custom-fpu-cfg=@var{name}")}
21101 function attribute (@pxref{Function Attributes})
21102 or pragma (@pxref{Function Specific Option Pragmas}).
21103
21104 @end table
21105
21106 These additional @samp{-m} options are available for the Altera Nios II
21107 ELF (bare-metal) target:
21108
21109 @table @gcctabopt
21110
21111 @item -mhal
21112 @opindex mhal
21113 Link with HAL BSP. This suppresses linking with the GCC-provided C runtime
21114 startup and termination code, and is typically used in conjunction with
21115 @option{-msys-crt0=} to specify the location of the alternate startup code
21116 provided by the HAL BSP.
21117
21118 @item -msmallc
21119 @opindex msmallc
21120 Link with a limited version of the C library, @option{-lsmallc}, rather than
21121 Newlib.
21122
21123 @item -msys-crt0=@var{startfile}
21124 @opindex msys-crt0
21125 @var{startfile} is the file name of the startfile (crt0) to use
21126 when linking. This option is only useful in conjunction with @option{-mhal}.
21127
21128 @item -msys-lib=@var{systemlib}
21129 @opindex msys-lib
21130 @var{systemlib} is the library name of the library that provides
21131 low-level system calls required by the C library,
21132 e.g. @code{read} and @code{write}.
21133 This option is typically used to link with a library provided by a HAL BSP.
21134
21135 @end table
21136
21137 @node Nvidia PTX Options
21138 @subsection Nvidia PTX Options
21139 @cindex Nvidia PTX options
21140 @cindex nvptx options
21141
21142 These options are defined for Nvidia PTX:
21143
21144 @table @gcctabopt
21145
21146 @item -m32
21147 @itemx -m64
21148 @opindex m32
21149 @opindex m64
21150 Generate code for 32-bit or 64-bit ABI.
21151
21152 @item -mmainkernel
21153 @opindex mmainkernel
21154 Link in code for a __main kernel. This is for stand-alone instead of
21155 offloading execution.
21156
21157 @item -moptimize
21158 @opindex moptimize
21159 Apply partitioned execution optimizations. This is the default when any
21160 level of optimization is selected.
21161
21162 @item -msoft-stack
21163 @opindex msoft-stack
21164 Generate code that does not use @code{.local} memory
21165 directly for stack storage. Instead, a per-warp stack pointer is
21166 maintained explicitly. This enables variable-length stack allocation (with
21167 variable-length arrays or @code{alloca}), and when global memory is used for
21168 underlying storage, makes it possible to access automatic variables from other
21169 threads, or with atomic instructions. This code generation variant is used
21170 for OpenMP offloading, but the option is exposed on its own for the purpose
21171 of testing the compiler; to generate code suitable for linking into programs
21172 using OpenMP offloading, use option @option{-mgomp}.
21173
21174 @item -muniform-simt
21175 @opindex muniform-simt
21176 Switch to code generation variant that allows to execute all threads in each
21177 warp, while maintaining memory state and side effects as if only one thread
21178 in each warp was active outside of OpenMP SIMD regions. All atomic operations
21179 and calls to runtime (malloc, free, vprintf) are conditionally executed (iff
21180 current lane index equals the master lane index), and the register being
21181 assigned is copied via a shuffle instruction from the master lane. Outside of
21182 SIMD regions lane 0 is the master; inside, each thread sees itself as the
21183 master. Shared memory array @code{int __nvptx_uni[]} stores all-zeros or
21184 all-ones bitmasks for each warp, indicating current mode (0 outside of SIMD
21185 regions). Each thread can bitwise-and the bitmask at position @code{tid.y}
21186 with current lane index to compute the master lane index.
21187
21188 @item -mgomp
21189 @opindex mgomp
21190 Generate code for use in OpenMP offloading: enables @option{-msoft-stack} and
21191 @option{-muniform-simt} options, and selects corresponding multilib variant.
21192
21193 @end table
21194
21195 @node PDP-11 Options
21196 @subsection PDP-11 Options
21197 @cindex PDP-11 Options
21198
21199 These options are defined for the PDP-11:
21200
21201 @table @gcctabopt
21202 @item -mfpu
21203 @opindex mfpu
21204 Use hardware FPP floating point. This is the default. (FIS floating
21205 point on the PDP-11/40 is not supported.)
21206
21207 @item -msoft-float
21208 @opindex msoft-float
21209 Do not use hardware floating point.
21210
21211 @item -mac0
21212 @opindex mac0
21213 Return floating-point results in ac0 (fr0 in Unix assembler syntax).
21214
21215 @item -mno-ac0
21216 @opindex mno-ac0
21217 Return floating-point results in memory. This is the default.
21218
21219 @item -m40
21220 @opindex m40
21221 Generate code for a PDP-11/40.
21222
21223 @item -m45
21224 @opindex m45
21225 Generate code for a PDP-11/45. This is the default.
21226
21227 @item -m10
21228 @opindex m10
21229 Generate code for a PDP-11/10.
21230
21231 @item -mbcopy-builtin
21232 @opindex mbcopy-builtin
21233 Use inline @code{movmemhi} patterns for copying memory. This is the
21234 default.
21235
21236 @item -mbcopy
21237 @opindex mbcopy
21238 Do not use inline @code{movmemhi} patterns for copying memory.
21239
21240 @item -mint16
21241 @itemx -mno-int32
21242 @opindex mint16
21243 @opindex mno-int32
21244 Use 16-bit @code{int}. This is the default.
21245
21246 @item -mint32
21247 @itemx -mno-int16
21248 @opindex mint32
21249 @opindex mno-int16
21250 Use 32-bit @code{int}.
21251
21252 @item -mfloat64
21253 @itemx -mno-float32
21254 @opindex mfloat64
21255 @opindex mno-float32
21256 Use 64-bit @code{float}. This is the default.
21257
21258 @item -mfloat32
21259 @itemx -mno-float64
21260 @opindex mfloat32
21261 @opindex mno-float64
21262 Use 32-bit @code{float}.
21263
21264 @item -mabshi
21265 @opindex mabshi
21266 Use @code{abshi2} pattern. This is the default.
21267
21268 @item -mno-abshi
21269 @opindex mno-abshi
21270 Do not use @code{abshi2} pattern.
21271
21272 @item -mbranch-expensive
21273 @opindex mbranch-expensive
21274 Pretend that branches are expensive. This is for experimenting with
21275 code generation only.
21276
21277 @item -mbranch-cheap
21278 @opindex mbranch-cheap
21279 Do not pretend that branches are expensive. This is the default.
21280
21281 @item -munix-asm
21282 @opindex munix-asm
21283 Use Unix assembler syntax. This is the default when configured for
21284 @samp{pdp11-*-bsd}.
21285
21286 @item -mdec-asm
21287 @opindex mdec-asm
21288 Use DEC assembler syntax. This is the default when configured for any
21289 PDP-11 target other than @samp{pdp11-*-bsd}.
21290 @end table
21291
21292 @node picoChip Options
21293 @subsection picoChip Options
21294 @cindex picoChip options
21295
21296 These @samp{-m} options are defined for picoChip implementations:
21297
21298 @table @gcctabopt
21299
21300 @item -mae=@var{ae_type}
21301 @opindex mcpu
21302 Set the instruction set, register set, and instruction scheduling
21303 parameters for array element type @var{ae_type}. Supported values
21304 for @var{ae_type} are @samp{ANY}, @samp{MUL}, and @samp{MAC}.
21305
21306 @option{-mae=ANY} selects a completely generic AE type. Code
21307 generated with this option runs on any of the other AE types. The
21308 code is not as efficient as it would be if compiled for a specific
21309 AE type, and some types of operation (e.g., multiplication) do not
21310 work properly on all types of AE.
21311
21312 @option{-mae=MUL} selects a MUL AE type. This is the most useful AE type
21313 for compiled code, and is the default.
21314
21315 @option{-mae=MAC} selects a DSP-style MAC AE. Code compiled with this
21316 option may suffer from poor performance of byte (char) manipulation,
21317 since the DSP AE does not provide hardware support for byte load/stores.
21318
21319 @item -msymbol-as-address
21320 Enable the compiler to directly use a symbol name as an address in a
21321 load/store instruction, without first loading it into a
21322 register. Typically, the use of this option generates larger
21323 programs, which run faster than when the option isn't used. However, the
21324 results vary from program to program, so it is left as a user option,
21325 rather than being permanently enabled.
21326
21327 @item -mno-inefficient-warnings
21328 Disables warnings about the generation of inefficient code. These
21329 warnings can be generated, for example, when compiling code that
21330 performs byte-level memory operations on the MAC AE type. The MAC AE has
21331 no hardware support for byte-level memory operations, so all byte
21332 load/stores must be synthesized from word load/store operations. This is
21333 inefficient and a warning is generated to indicate
21334 that you should rewrite the code to avoid byte operations, or to target
21335 an AE type that has the necessary hardware support. This option disables
21336 these warnings.
21337
21338 @end table
21339
21340 @node PowerPC Options
21341 @subsection PowerPC Options
21342 @cindex PowerPC options
21343
21344 These are listed under @xref{RS/6000 and PowerPC Options}.
21345
21346 @node RISC-V Options
21347 @subsection RISC-V Options
21348 @cindex RISC-V Options
21349
21350 These command-line options are defined for RISC-V targets:
21351
21352 @table @gcctabopt
21353 @item -mbranch-cost=@var{n}
21354 @opindex mbranch-cost
21355 Set the cost of branches to roughly @var{n} instructions.
21356
21357 @item -mmemcpy
21358 @itemx -mno-memcpy
21359 @opindex mmemcpy
21360 Don't optimize block moves.
21361
21362 @item -mplt
21363 @itemx -mno-plt
21364 @opindex plt
21365 When generating PIC code, allow the use of PLTs. Ignored for non-PIC.
21366
21367 @item -mabi=@var{ABI-string}
21368 @opindex mabi
21369 Specify integer and floating-point calling convention. This defaults to the
21370 natural calling convention: e.g.@ LP64 for RV64I, ILP32 for RV32I, LP64D for
21371 RV64G.
21372
21373 @item -mfdiv
21374 @itemx -mno-fdiv
21375 @opindex mfdiv
21376 Use hardware floating-point divide and square root instructions. This requires
21377 the F or D extensions for floating-point registers.
21378
21379 @item -mdiv
21380 @itemx -mno-div
21381 @opindex mdiv
21382 Use hardware instructions for integer division. This requires the M extension.
21383
21384 @item -march=@var{ISA-string}
21385 @opindex march
21386 Generate code for given RISC-V ISA (e.g.@ @samp{rv64im}). ISA strings must be
21387 lower-case. Examples include @samp{rv64i}, @samp{rv32g}, and @samp{rv32imaf}.
21388
21389 @item -mtune=@var{processor-string}
21390 @opindex mtune
21391 Optimize the output for the given processor, specified by microarchitecture
21392 name.
21393
21394 @item -msmall-data-limit=@var{n}
21395 @opindex msmall-data-limit
21396 Put global and static data smaller than @var{n} bytes into a special section
21397 (on some targets).
21398
21399 @item -msave-restore
21400 @itemx -mno-save-restore
21401 @opindex msave-restore
21402 Use smaller but slower prologue and epilogue code.
21403
21404 @item -mstrict-align
21405 @itemx -mno-strict-align
21406 @opindex mstrict-align
21407 Do not generate unaligned memory accesses.
21408
21409 @item -mcmodel=@var{code-model}
21410 @opindex mcmodel
21411 Specify the code model.
21412
21413 @end table
21414
21415 @node RL78 Options
21416 @subsection RL78 Options
21417 @cindex RL78 Options
21418
21419 @table @gcctabopt
21420
21421 @item -msim
21422 @opindex msim
21423 Links in additional target libraries to support operation within a
21424 simulator.
21425
21426 @item -mmul=none
21427 @itemx -mmul=g10
21428 @itemx -mmul=g13
21429 @itemx -mmul=g14
21430 @itemx -mmul=rl78
21431 @opindex mmul
21432 Specifies the type of hardware multiplication and division support to
21433 be used. The simplest is @code{none}, which uses software for both
21434 multiplication and division. This is the default. The @code{g13}
21435 value is for the hardware multiply/divide peripheral found on the
21436 RL78/G13 (S2 core) targets. The @code{g14} value selects the use of
21437 the multiplication and division instructions supported by the RL78/G14
21438 (S3 core) parts. The value @code{rl78} is an alias for @code{g14} and
21439 the value @code{mg10} is an alias for @code{none}.
21440
21441 In addition a C preprocessor macro is defined, based upon the setting
21442 of this option. Possible values are: @code{__RL78_MUL_NONE__},
21443 @code{__RL78_MUL_G13__} or @code{__RL78_MUL_G14__}.
21444
21445 @item -mcpu=g10
21446 @itemx -mcpu=g13
21447 @itemx -mcpu=g14
21448 @itemx -mcpu=rl78
21449 @opindex mcpu
21450 Specifies the RL78 core to target. The default is the G14 core, also
21451 known as an S3 core or just RL78. The G13 or S2 core does not have
21452 multiply or divide instructions, instead it uses a hardware peripheral
21453 for these operations. The G10 or S1 core does not have register
21454 banks, so it uses a different calling convention.
21455
21456 If this option is set it also selects the type of hardware multiply
21457 support to use, unless this is overridden by an explicit
21458 @option{-mmul=none} option on the command line. Thus specifying
21459 @option{-mcpu=g13} enables the use of the G13 hardware multiply
21460 peripheral and specifying @option{-mcpu=g10} disables the use of
21461 hardware multiplications altogether.
21462
21463 Note, although the RL78/G14 core is the default target, specifying
21464 @option{-mcpu=g14} or @option{-mcpu=rl78} on the command line does
21465 change the behavior of the toolchain since it also enables G14
21466 hardware multiply support. If these options are not specified on the
21467 command line then software multiplication routines will be used even
21468 though the code targets the RL78 core. This is for backwards
21469 compatibility with older toolchains which did not have hardware
21470 multiply and divide support.
21471
21472 In addition a C preprocessor macro is defined, based upon the setting
21473 of this option. Possible values are: @code{__RL78_G10__},
21474 @code{__RL78_G13__} or @code{__RL78_G14__}.
21475
21476 @item -mg10
21477 @itemx -mg13
21478 @itemx -mg14
21479 @itemx -mrl78
21480 @opindex mg10
21481 @opindex mg13
21482 @opindex mg14
21483 @opindex mrl78
21484 These are aliases for the corresponding @option{-mcpu=} option. They
21485 are provided for backwards compatibility.
21486
21487 @item -mallregs
21488 @opindex mallregs
21489 Allow the compiler to use all of the available registers. By default
21490 registers @code{r24..r31} are reserved for use in interrupt handlers.
21491 With this option enabled these registers can be used in ordinary
21492 functions as well.
21493
21494 @item -m64bit-doubles
21495 @itemx -m32bit-doubles
21496 @opindex m64bit-doubles
21497 @opindex m32bit-doubles
21498 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
21499 or 32 bits (@option{-m32bit-doubles}) in size. The default is
21500 @option{-m32bit-doubles}.
21501
21502 @item -msave-mduc-in-interrupts
21503 @item -mno-save-mduc-in-interrupts
21504 @opindex msave-mduc-in-interrupts
21505 @opindex mno-save-mduc-in-interrupts
21506 Specifies that interrupt handler functions should preserve the
21507 MDUC registers. This is only necessary if normal code might use
21508 the MDUC registers, for example because it performs multiplication
21509 and division operations. The default is to ignore the MDUC registers
21510 as this makes the interrupt handlers faster. The target option -mg13
21511 needs to be passed for this to work as this feature is only available
21512 on the G13 target (S2 core). The MDUC registers will only be saved
21513 if the interrupt handler performs a multiplication or division
21514 operation or it calls another function.
21515
21516 @end table
21517
21518 @node RS/6000 and PowerPC Options
21519 @subsection IBM RS/6000 and PowerPC Options
21520 @cindex RS/6000 and PowerPC Options
21521 @cindex IBM RS/6000 and PowerPC Options
21522
21523 These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
21524 @table @gcctabopt
21525 @item -mpowerpc-gpopt
21526 @itemx -mno-powerpc-gpopt
21527 @itemx -mpowerpc-gfxopt
21528 @itemx -mno-powerpc-gfxopt
21529 @need 800
21530 @itemx -mpowerpc64
21531 @itemx -mno-powerpc64
21532 @itemx -mmfcrf
21533 @itemx -mno-mfcrf
21534 @itemx -mpopcntb
21535 @itemx -mno-popcntb
21536 @itemx -mpopcntd
21537 @itemx -mno-popcntd
21538 @itemx -mfprnd
21539 @itemx -mno-fprnd
21540 @need 800
21541 @itemx -mcmpb
21542 @itemx -mno-cmpb
21543 @itemx -mmfpgpr
21544 @itemx -mno-mfpgpr
21545 @itemx -mhard-dfp
21546 @itemx -mno-hard-dfp
21547 @opindex mpowerpc-gpopt
21548 @opindex mno-powerpc-gpopt
21549 @opindex mpowerpc-gfxopt
21550 @opindex mno-powerpc-gfxopt
21551 @opindex mpowerpc64
21552 @opindex mno-powerpc64
21553 @opindex mmfcrf
21554 @opindex mno-mfcrf
21555 @opindex mpopcntb
21556 @opindex mno-popcntb
21557 @opindex mpopcntd
21558 @opindex mno-popcntd
21559 @opindex mfprnd
21560 @opindex mno-fprnd
21561 @opindex mcmpb
21562 @opindex mno-cmpb
21563 @opindex mmfpgpr
21564 @opindex mno-mfpgpr
21565 @opindex mhard-dfp
21566 @opindex mno-hard-dfp
21567 You use these options to specify which instructions are available on the
21568 processor you are using. The default value of these options is
21569 determined when configuring GCC@. Specifying the
21570 @option{-mcpu=@var{cpu_type}} overrides the specification of these
21571 options. We recommend you use the @option{-mcpu=@var{cpu_type}} option
21572 rather than the options listed above.
21573
21574 Specifying @option{-mpowerpc-gpopt} allows
21575 GCC to use the optional PowerPC architecture instructions in the
21576 General Purpose group, including floating-point square root. Specifying
21577 @option{-mpowerpc-gfxopt} allows GCC to
21578 use the optional PowerPC architecture instructions in the Graphics
21579 group, including floating-point select.
21580
21581 The @option{-mmfcrf} option allows GCC to generate the move from
21582 condition register field instruction implemented on the POWER4
21583 processor and other processors that support the PowerPC V2.01
21584 architecture.
21585 The @option{-mpopcntb} option allows GCC to generate the popcount and
21586 double-precision FP reciprocal estimate instruction implemented on the
21587 POWER5 processor and other processors that support the PowerPC V2.02
21588 architecture.
21589 The @option{-mpopcntd} option allows GCC to generate the popcount
21590 instruction implemented on the POWER7 processor and other processors
21591 that support the PowerPC V2.06 architecture.
21592 The @option{-mfprnd} option allows GCC to generate the FP round to
21593 integer instructions implemented on the POWER5+ processor and other
21594 processors that support the PowerPC V2.03 architecture.
21595 The @option{-mcmpb} option allows GCC to generate the compare bytes
21596 instruction implemented on the POWER6 processor and other processors
21597 that support the PowerPC V2.05 architecture.
21598 The @option{-mmfpgpr} option allows GCC to generate the FP move to/from
21599 general-purpose register instructions implemented on the POWER6X
21600 processor and other processors that support the extended PowerPC V2.05
21601 architecture.
21602 The @option{-mhard-dfp} option allows GCC to generate the decimal
21603 floating-point instructions implemented on some POWER processors.
21604
21605 The @option{-mpowerpc64} option allows GCC to generate the additional
21606 64-bit instructions that are found in the full PowerPC64 architecture
21607 and to treat GPRs as 64-bit, doubleword quantities. GCC defaults to
21608 @option{-mno-powerpc64}.
21609
21610 @item -mcpu=@var{cpu_type}
21611 @opindex mcpu
21612 Set architecture type, register usage, and
21613 instruction scheduling parameters for machine type @var{cpu_type}.
21614 Supported values for @var{cpu_type} are @samp{401}, @samp{403},
21615 @samp{405}, @samp{405fp}, @samp{440}, @samp{440fp}, @samp{464}, @samp{464fp},
21616 @samp{476}, @samp{476fp}, @samp{505}, @samp{601}, @samp{602}, @samp{603},
21617 @samp{603e}, @samp{604}, @samp{604e}, @samp{620}, @samp{630}, @samp{740},
21618 @samp{7400}, @samp{7450}, @samp{750}, @samp{801}, @samp{821}, @samp{823},
21619 @samp{860}, @samp{970}, @samp{8540}, @samp{a2}, @samp{e300c2},
21620 @samp{e300c3}, @samp{e500mc}, @samp{e500mc64}, @samp{e5500},
21621 @samp{e6500}, @samp{ec603e}, @samp{G3}, @samp{G4}, @samp{G5},
21622 @samp{titan}, @samp{power3}, @samp{power4}, @samp{power5}, @samp{power5+},
21623 @samp{power6}, @samp{power6x}, @samp{power7}, @samp{power8},
21624 @samp{power9}, @samp{powerpc}, @samp{powerpc64}, @samp{powerpc64le},
21625 and @samp{rs64}.
21626
21627 @option{-mcpu=powerpc}, @option{-mcpu=powerpc64}, and
21628 @option{-mcpu=powerpc64le} specify pure 32-bit PowerPC (either
21629 endian), 64-bit big endian PowerPC and 64-bit little endian PowerPC
21630 architecture machine types, with an appropriate, generic processor
21631 model assumed for scheduling purposes.
21632
21633 The other options specify a specific processor. Code generated under
21634 those options runs best on that processor, and may not run at all on
21635 others.
21636
21637 The @option{-mcpu} options automatically enable or disable the
21638 following options:
21639
21640 @gccoptlist{-maltivec -mfprnd -mhard-float -mmfcrf -mmultiple @gol
21641 -mpopcntb -mpopcntd -mpowerpc64 @gol
21642 -mpowerpc-gpopt -mpowerpc-gfxopt -msingle-float -mdouble-float @gol
21643 -msimple-fpu -mstring -mmulhw -mdlmzb -mmfpgpr -mvsx @gol
21644 -mcrypto -mdirect-move -mhtm -mpower8-fusion -mpower8-vector @gol
21645 -mquad-memory -mquad-memory-atomic -mfloat128 -mfloat128-hardware}
21646
21647 The particular options set for any particular CPU varies between
21648 compiler versions, depending on what setting seems to produce optimal
21649 code for that CPU; it doesn't necessarily reflect the actual hardware's
21650 capabilities. If you wish to set an individual option to a particular
21651 value, you may specify it after the @option{-mcpu} option, like
21652 @option{-mcpu=970 -mno-altivec}.
21653
21654 On AIX, the @option{-maltivec} and @option{-mpowerpc64} options are
21655 not enabled or disabled by the @option{-mcpu} option at present because
21656 AIX does not have full support for these options. You may still
21657 enable or disable them individually if you're sure it'll work in your
21658 environment.
21659
21660 @item -mtune=@var{cpu_type}
21661 @opindex mtune
21662 Set the instruction scheduling parameters for machine type
21663 @var{cpu_type}, but do not set the architecture type or register usage,
21664 as @option{-mcpu=@var{cpu_type}} does. The same
21665 values for @var{cpu_type} are used for @option{-mtune} as for
21666 @option{-mcpu}. If both are specified, the code generated uses the
21667 architecture and registers set by @option{-mcpu}, but the
21668 scheduling parameters set by @option{-mtune}.
21669
21670 @item -mcmodel=small
21671 @opindex mcmodel=small
21672 Generate PowerPC64 code for the small model: The TOC is limited to
21673 64k.
21674
21675 @item -mcmodel=medium
21676 @opindex mcmodel=medium
21677 Generate PowerPC64 code for the medium model: The TOC and other static
21678 data may be up to a total of 4G in size. This is the default for 64-bit
21679 Linux.
21680
21681 @item -mcmodel=large
21682 @opindex mcmodel=large
21683 Generate PowerPC64 code for the large model: The TOC may be up to 4G
21684 in size. Other data and code is only limited by the 64-bit address
21685 space.
21686
21687 @item -maltivec
21688 @itemx -mno-altivec
21689 @opindex maltivec
21690 @opindex mno-altivec
21691 Generate code that uses (does not use) AltiVec instructions, and also
21692 enable the use of built-in functions that allow more direct access to
21693 the AltiVec instruction set. You may also need to set
21694 @option{-mabi=altivec} to adjust the current ABI with AltiVec ABI
21695 enhancements.
21696
21697 When @option{-maltivec} is used, rather than @option{-maltivec=le} or
21698 @option{-maltivec=be}, the element order for AltiVec intrinsics such
21699 as @code{vec_splat}, @code{vec_extract}, and @code{vec_insert}
21700 match array element order corresponding to the endianness of the
21701 target. That is, element zero identifies the leftmost element in a
21702 vector register when targeting a big-endian platform, and identifies
21703 the rightmost element in a vector register when targeting a
21704 little-endian platform.
21705
21706 @item -maltivec=be
21707 @opindex maltivec=be
21708 Generate AltiVec instructions using big-endian element order,
21709 regardless of whether the target is big- or little-endian. This is
21710 the default when targeting a big-endian platform.
21711
21712 The element order is used to interpret element numbers in AltiVec
21713 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
21714 @code{vec_insert}. By default, these match array element order
21715 corresponding to the endianness for the target.
21716
21717 @item -maltivec=le
21718 @opindex maltivec=le
21719 Generate AltiVec instructions using little-endian element order,
21720 regardless of whether the target is big- or little-endian. This is
21721 the default when targeting a little-endian platform. This option is
21722 currently ignored when targeting a big-endian platform.
21723
21724 The element order is used to interpret element numbers in AltiVec
21725 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
21726 @code{vec_insert}. By default, these match array element order
21727 corresponding to the endianness for the target.
21728
21729 @item -mvrsave
21730 @itemx -mno-vrsave
21731 @opindex mvrsave
21732 @opindex mno-vrsave
21733 Generate VRSAVE instructions when generating AltiVec code.
21734
21735 @item -msecure-plt
21736 @opindex msecure-plt
21737 Generate code that allows @command{ld} and @command{ld.so}
21738 to build executables and shared
21739 libraries with non-executable @code{.plt} and @code{.got} sections.
21740 This is a PowerPC
21741 32-bit SYSV ABI option.
21742
21743 @item -mbss-plt
21744 @opindex mbss-plt
21745 Generate code that uses a BSS @code{.plt} section that @command{ld.so}
21746 fills in, and
21747 requires @code{.plt} and @code{.got}
21748 sections that are both writable and executable.
21749 This is a PowerPC 32-bit SYSV ABI option.
21750
21751 @item -misel
21752 @itemx -mno-isel
21753 @opindex misel
21754 @opindex mno-isel
21755 This switch enables or disables the generation of ISEL instructions.
21756
21757 @item -misel=@var{yes/no}
21758 This switch has been deprecated. Use @option{-misel} and
21759 @option{-mno-isel} instead.
21760
21761 @item -mlra
21762 @opindex mlra
21763 Enable Local Register Allocation. By default the port uses LRA.
21764 (i.e. @option{-mno-lra}).
21765
21766 @item -mspe
21767 @itemx -mno-spe
21768 @opindex mspe
21769 @opindex mno-spe
21770 This switch enables or disables the generation of SPE simd
21771 instructions.
21772
21773 @item -mpaired
21774 @itemx -mno-paired
21775 @opindex mpaired
21776 @opindex mno-paired
21777 This switch enables or disables the generation of PAIRED simd
21778 instructions.
21779
21780 @item -mspe=@var{yes/no}
21781 This option has been deprecated. Use @option{-mspe} and
21782 @option{-mno-spe} instead.
21783
21784 @item -mvsx
21785 @itemx -mno-vsx
21786 @opindex mvsx
21787 @opindex mno-vsx
21788 Generate code that uses (does not use) vector/scalar (VSX)
21789 instructions, and also enable the use of built-in functions that allow
21790 more direct access to the VSX instruction set.
21791
21792 @item -mcrypto
21793 @itemx -mno-crypto
21794 @opindex mcrypto
21795 @opindex mno-crypto
21796 Enable the use (disable) of the built-in functions that allow direct
21797 access to the cryptographic instructions that were added in version
21798 2.07 of the PowerPC ISA.
21799
21800 @item -mdirect-move
21801 @itemx -mno-direct-move
21802 @opindex mdirect-move
21803 @opindex mno-direct-move
21804 Generate code that uses (does not use) the instructions to move data
21805 between the general purpose registers and the vector/scalar (VSX)
21806 registers that were added in version 2.07 of the PowerPC ISA.
21807
21808 @item -mhtm
21809 @itemx -mno-htm
21810 @opindex mhtm
21811 @opindex mno-htm
21812 Enable (disable) the use of the built-in functions that allow direct
21813 access to the Hardware Transactional Memory (HTM) instructions that
21814 were added in version 2.07 of the PowerPC ISA.
21815
21816 @item -mpower8-fusion
21817 @itemx -mno-power8-fusion
21818 @opindex mpower8-fusion
21819 @opindex mno-power8-fusion
21820 Generate code that keeps (does not keeps) some integer operations
21821 adjacent so that the instructions can be fused together on power8 and
21822 later processors.
21823
21824 @item -mpower8-vector
21825 @itemx -mno-power8-vector
21826 @opindex mpower8-vector
21827 @opindex mno-power8-vector
21828 Generate code that uses (does not use) the vector and scalar
21829 instructions that were added in version 2.07 of the PowerPC ISA. Also
21830 enable the use of built-in functions that allow more direct access to
21831 the vector instructions.
21832
21833 @item -mquad-memory
21834 @itemx -mno-quad-memory
21835 @opindex mquad-memory
21836 @opindex mno-quad-memory
21837 Generate code that uses (does not use) the non-atomic quad word memory
21838 instructions. The @option{-mquad-memory} option requires use of
21839 64-bit mode.
21840
21841 @item -mquad-memory-atomic
21842 @itemx -mno-quad-memory-atomic
21843 @opindex mquad-memory-atomic
21844 @opindex mno-quad-memory-atomic
21845 Generate code that uses (does not use) the atomic quad word memory
21846 instructions. The @option{-mquad-memory-atomic} option requires use of
21847 64-bit mode.
21848
21849 @item -mupper-regs-di
21850 @itemx -mno-upper-regs-di
21851 @opindex mupper-regs-di
21852 @opindex mno-upper-regs-di
21853 Generate code that uses (does not use) the scalar instructions that
21854 target all 64 registers in the vector/scalar floating point register
21855 set that were added in version 2.06 of the PowerPC ISA when processing
21856 integers. @option{-mupper-regs-di} is turned on by default if you use
21857 any of the @option{-mcpu=power7}, @option{-mcpu=power8},
21858 @option{-mcpu=power9}, or @option{-mvsx} options.
21859
21860 @item -mupper-regs-df
21861 @itemx -mno-upper-regs-df
21862 @opindex mupper-regs-df
21863 @opindex mno-upper-regs-df
21864 Generate code that uses (does not use) the scalar double precision
21865 instructions that target all 64 registers in the vector/scalar
21866 floating point register set that were added in version 2.06 of the
21867 PowerPC ISA. @option{-mupper-regs-df} is turned on by default if you
21868 use any of the @option{-mcpu=power7}, @option{-mcpu=power8},
21869 @option{-mcpu=power9}, or @option{-mvsx} options.
21870
21871 @item -mupper-regs-sf
21872 @itemx -mno-upper-regs-sf
21873 @opindex mupper-regs-sf
21874 @opindex mno-upper-regs-sf
21875 Generate code that uses (does not use) the scalar single precision
21876 instructions that target all 64 registers in the vector/scalar
21877 floating point register set that were added in version 2.07 of the
21878 PowerPC ISA. @option{-mupper-regs-sf} is turned on by default if you
21879 use either of the @option{-mcpu=power8}, @option{-mpower8-vector}, or
21880 @option{-mcpu=power9} options.
21881
21882 @item -mupper-regs
21883 @itemx -mno-upper-regs
21884 @opindex mupper-regs
21885 @opindex mno-upper-regs
21886 Generate code that uses (does not use) the scalar
21887 instructions that target all 64 registers in the vector/scalar
21888 floating point register set, depending on the model of the machine.
21889
21890 If the @option{-mno-upper-regs} option is used, it turns off both
21891 @option{-mupper-regs-sf} and @option{-mupper-regs-df} options.
21892
21893 @item -mfloat128
21894 @itemx -mno-float128
21895 @opindex mfloat128
21896 @opindex mno-float128
21897 Enable/disable the @var{__float128} keyword for IEEE 128-bit floating point
21898 and use either software emulation for IEEE 128-bit floating point or
21899 hardware instructions.
21900
21901 The VSX instruction set (@option{-mvsx}, @option{-mcpu=power7}, or
21902 @option{-mcpu=power8}) must be enabled to use the @option{-mfloat128}
21903 option. The @option{-mfloat128} option only works on PowerPC 64-bit
21904 Linux systems.
21905
21906 If you use the ISA 3.0 instruction set (@option{-mcpu=power9}), the
21907 @option{-mfloat128} option will also enable the generation of ISA 3.0
21908 IEEE 128-bit floating point instructions. Otherwise, IEEE 128-bit
21909 floating point will be done with software emulation.
21910
21911 @item -mfloat128-hardware
21912 @itemx -mno-float128-hardware
21913 @opindex mfloat128-hardware
21914 @opindex mno-float128-hardware
21915 Enable/disable using ISA 3.0 hardware instructions to support the
21916 @var{__float128} data type.
21917
21918 If you use @option{-mfloat128-hardware}, it will enable the option
21919 @option{-mfloat128} as well.
21920
21921 If you select ISA 3.0 instructions with @option{-mcpu=power9}, but do
21922 not use either @option{-mfloat128} or @option{-mfloat128-hardware},
21923 the IEEE 128-bit floating point support will not be enabled.
21924
21925 @item -mfloat-gprs=@var{yes/single/double/no}
21926 @itemx -mfloat-gprs
21927 @opindex mfloat-gprs
21928 This switch enables or disables the generation of floating-point
21929 operations on the general-purpose registers for architectures that
21930 support it.
21931
21932 The argument @samp{yes} or @samp{single} enables the use of
21933 single-precision floating-point operations.
21934
21935 The argument @samp{double} enables the use of single and
21936 double-precision floating-point operations.
21937
21938 The argument @samp{no} disables floating-point operations on the
21939 general-purpose registers.
21940
21941 This option is currently only available on the MPC854x.
21942
21943 @item -m32
21944 @itemx -m64
21945 @opindex m32
21946 @opindex m64
21947 Generate code for 32-bit or 64-bit environments of Darwin and SVR4
21948 targets (including GNU/Linux). The 32-bit environment sets int, long
21949 and pointer to 32 bits and generates code that runs on any PowerPC
21950 variant. The 64-bit environment sets int to 32 bits and long and
21951 pointer to 64 bits, and generates code for PowerPC64, as for
21952 @option{-mpowerpc64}.
21953
21954 @item -mfull-toc
21955 @itemx -mno-fp-in-toc
21956 @itemx -mno-sum-in-toc
21957 @itemx -mminimal-toc
21958 @opindex mfull-toc
21959 @opindex mno-fp-in-toc
21960 @opindex mno-sum-in-toc
21961 @opindex mminimal-toc
21962 Modify generation of the TOC (Table Of Contents), which is created for
21963 every executable file. The @option{-mfull-toc} option is selected by
21964 default. In that case, GCC allocates at least one TOC entry for
21965 each unique non-automatic variable reference in your program. GCC
21966 also places floating-point constants in the TOC@. However, only
21967 16,384 entries are available in the TOC@.
21968
21969 If you receive a linker error message that saying you have overflowed
21970 the available TOC space, you can reduce the amount of TOC space used
21971 with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
21972 @option{-mno-fp-in-toc} prevents GCC from putting floating-point
21973 constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
21974 generate code to calculate the sum of an address and a constant at
21975 run time instead of putting that sum into the TOC@. You may specify one
21976 or both of these options. Each causes GCC to produce very slightly
21977 slower and larger code at the expense of conserving TOC space.
21978
21979 If you still run out of space in the TOC even when you specify both of
21980 these options, specify @option{-mminimal-toc} instead. This option causes
21981 GCC to make only one TOC entry for every file. When you specify this
21982 option, GCC produces code that is slower and larger but which
21983 uses extremely little TOC space. You may wish to use this option
21984 only on files that contain less frequently-executed code.
21985
21986 @item -maix64
21987 @itemx -maix32
21988 @opindex maix64
21989 @opindex maix32
21990 Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
21991 @code{long} type, and the infrastructure needed to support them.
21992 Specifying @option{-maix64} implies @option{-mpowerpc64},
21993 while @option{-maix32} disables the 64-bit ABI and
21994 implies @option{-mno-powerpc64}. GCC defaults to @option{-maix32}.
21995
21996 @item -mxl-compat
21997 @itemx -mno-xl-compat
21998 @opindex mxl-compat
21999 @opindex mno-xl-compat
22000 Produce code that conforms more closely to IBM XL compiler semantics
22001 when using AIX-compatible ABI@. Pass floating-point arguments to
22002 prototyped functions beyond the register save area (RSA) on the stack
22003 in addition to argument FPRs. Do not assume that most significant
22004 double in 128-bit long double value is properly rounded when comparing
22005 values and converting to double. Use XL symbol names for long double
22006 support routines.
22007
22008 The AIX calling convention was extended but not initially documented to
22009 handle an obscure K&R C case of calling a function that takes the
22010 address of its arguments with fewer arguments than declared. IBM XL
22011 compilers access floating-point arguments that do not fit in the
22012 RSA from the stack when a subroutine is compiled without
22013 optimization. Because always storing floating-point arguments on the
22014 stack is inefficient and rarely needed, this option is not enabled by
22015 default and only is necessary when calling subroutines compiled by IBM
22016 XL compilers without optimization.
22017
22018 @item -mpe
22019 @opindex mpe
22020 Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@. Link an
22021 application written to use message passing with special startup code to
22022 enable the application to run. The system must have PE installed in the
22023 standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
22024 must be overridden with the @option{-specs=} option to specify the
22025 appropriate directory location. The Parallel Environment does not
22026 support threads, so the @option{-mpe} option and the @option{-pthread}
22027 option are incompatible.
22028
22029 @item -malign-natural
22030 @itemx -malign-power
22031 @opindex malign-natural
22032 @opindex malign-power
22033 On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
22034 @option{-malign-natural} overrides the ABI-defined alignment of larger
22035 types, such as floating-point doubles, on their natural size-based boundary.
22036 The option @option{-malign-power} instructs GCC to follow the ABI-specified
22037 alignment rules. GCC defaults to the standard alignment defined in the ABI@.
22038
22039 On 64-bit Darwin, natural alignment is the default, and @option{-malign-power}
22040 is not supported.
22041
22042 @item -msoft-float
22043 @itemx -mhard-float
22044 @opindex msoft-float
22045 @opindex mhard-float
22046 Generate code that does not use (uses) the floating-point register set.
22047 Software floating-point emulation is provided if you use the
22048 @option{-msoft-float} option, and pass the option to GCC when linking.
22049
22050 @item -msingle-float
22051 @itemx -mdouble-float
22052 @opindex msingle-float
22053 @opindex mdouble-float
22054 Generate code for single- or double-precision floating-point operations.
22055 @option{-mdouble-float} implies @option{-msingle-float}.
22056
22057 @item -msimple-fpu
22058 @opindex msimple-fpu
22059 Do not generate @code{sqrt} and @code{div} instructions for hardware
22060 floating-point unit.
22061
22062 @item -mfpu=@var{name}
22063 @opindex mfpu
22064 Specify type of floating-point unit. Valid values for @var{name} are
22065 @samp{sp_lite} (equivalent to @option{-msingle-float -msimple-fpu}),
22066 @samp{dp_lite} (equivalent to @option{-mdouble-float -msimple-fpu}),
22067 @samp{sp_full} (equivalent to @option{-msingle-float}),
22068 and @samp{dp_full} (equivalent to @option{-mdouble-float}).
22069
22070 @item -mxilinx-fpu
22071 @opindex mxilinx-fpu
22072 Perform optimizations for the floating-point unit on Xilinx PPC 405/440.
22073
22074 @item -mmultiple
22075 @itemx -mno-multiple
22076 @opindex mmultiple
22077 @opindex mno-multiple
22078 Generate code that uses (does not use) the load multiple word
22079 instructions and the store multiple word instructions. These
22080 instructions are generated by default on POWER systems, and not
22081 generated on PowerPC systems. Do not use @option{-mmultiple} on little-endian
22082 PowerPC systems, since those instructions do not work when the
22083 processor is in little-endian mode. The exceptions are PPC740 and
22084 PPC750 which permit these instructions in little-endian mode.
22085
22086 @item -mstring
22087 @itemx -mno-string
22088 @opindex mstring
22089 @opindex mno-string
22090 Generate code that uses (does not use) the load string instructions
22091 and the store string word instructions to save multiple registers and
22092 do small block moves. These instructions are generated by default on
22093 POWER systems, and not generated on PowerPC systems. Do not use
22094 @option{-mstring} on little-endian PowerPC systems, since those
22095 instructions do not work when the processor is in little-endian mode.
22096 The exceptions are PPC740 and PPC750 which permit these instructions
22097 in little-endian mode.
22098
22099 @item -mupdate
22100 @itemx -mno-update
22101 @opindex mupdate
22102 @opindex mno-update
22103 Generate code that uses (does not use) the load or store instructions
22104 that update the base register to the address of the calculated memory
22105 location. These instructions are generated by default. If you use
22106 @option{-mno-update}, there is a small window between the time that the
22107 stack pointer is updated and the address of the previous frame is
22108 stored, which means code that walks the stack frame across interrupts or
22109 signals may get corrupted data.
22110
22111 @item -mavoid-indexed-addresses
22112 @itemx -mno-avoid-indexed-addresses
22113 @opindex mavoid-indexed-addresses
22114 @opindex mno-avoid-indexed-addresses
22115 Generate code that tries to avoid (not avoid) the use of indexed load
22116 or store instructions. These instructions can incur a performance
22117 penalty on Power6 processors in certain situations, such as when
22118 stepping through large arrays that cross a 16M boundary. This option
22119 is enabled by default when targeting Power6 and disabled otherwise.
22120
22121 @item -mfused-madd
22122 @itemx -mno-fused-madd
22123 @opindex mfused-madd
22124 @opindex mno-fused-madd
22125 Generate code that uses (does not use) the floating-point multiply and
22126 accumulate instructions. These instructions are generated by default
22127 if hardware floating point is used. The machine-dependent
22128 @option{-mfused-madd} option is now mapped to the machine-independent
22129 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
22130 mapped to @option{-ffp-contract=off}.
22131
22132 @item -mmulhw
22133 @itemx -mno-mulhw
22134 @opindex mmulhw
22135 @opindex mno-mulhw
22136 Generate code that uses (does not use) the half-word multiply and
22137 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
22138 These instructions are generated by default when targeting those
22139 processors.
22140
22141 @item -mdlmzb
22142 @itemx -mno-dlmzb
22143 @opindex mdlmzb
22144 @opindex mno-dlmzb
22145 Generate code that uses (does not use) the string-search @samp{dlmzb}
22146 instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
22147 generated by default when targeting those processors.
22148
22149 @item -mno-bit-align
22150 @itemx -mbit-align
22151 @opindex mno-bit-align
22152 @opindex mbit-align
22153 On System V.4 and embedded PowerPC systems do not (do) force structures
22154 and unions that contain bit-fields to be aligned to the base type of the
22155 bit-field.
22156
22157 For example, by default a structure containing nothing but 8
22158 @code{unsigned} bit-fields of length 1 is aligned to a 4-byte
22159 boundary and has a size of 4 bytes. By using @option{-mno-bit-align},
22160 the structure is aligned to a 1-byte boundary and is 1 byte in
22161 size.
22162
22163 @item -mno-strict-align
22164 @itemx -mstrict-align
22165 @opindex mno-strict-align
22166 @opindex mstrict-align
22167 On System V.4 and embedded PowerPC systems do not (do) assume that
22168 unaligned memory references are handled by the system.
22169
22170 @item -mrelocatable
22171 @itemx -mno-relocatable
22172 @opindex mrelocatable
22173 @opindex mno-relocatable
22174 Generate code that allows (does not allow) a static executable to be
22175 relocated to a different address at run time. A simple embedded
22176 PowerPC system loader should relocate the entire contents of
22177 @code{.got2} and 4-byte locations listed in the @code{.fixup} section,
22178 a table of 32-bit addresses generated by this option. For this to
22179 work, all objects linked together must be compiled with
22180 @option{-mrelocatable} or @option{-mrelocatable-lib}.
22181 @option{-mrelocatable} code aligns the stack to an 8-byte boundary.
22182
22183 @item -mrelocatable-lib
22184 @itemx -mno-relocatable-lib
22185 @opindex mrelocatable-lib
22186 @opindex mno-relocatable-lib
22187 Like @option{-mrelocatable}, @option{-mrelocatable-lib} generates a
22188 @code{.fixup} section to allow static executables to be relocated at
22189 run time, but @option{-mrelocatable-lib} does not use the smaller stack
22190 alignment of @option{-mrelocatable}. Objects compiled with
22191 @option{-mrelocatable-lib} may be linked with objects compiled with
22192 any combination of the @option{-mrelocatable} options.
22193
22194 @item -mno-toc
22195 @itemx -mtoc
22196 @opindex mno-toc
22197 @opindex mtoc
22198 On System V.4 and embedded PowerPC systems do not (do) assume that
22199 register 2 contains a pointer to a global area pointing to the addresses
22200 used in the program.
22201
22202 @item -mlittle
22203 @itemx -mlittle-endian
22204 @opindex mlittle
22205 @opindex mlittle-endian
22206 On System V.4 and embedded PowerPC systems compile code for the
22207 processor in little-endian mode. The @option{-mlittle-endian} option is
22208 the same as @option{-mlittle}.
22209
22210 @item -mbig
22211 @itemx -mbig-endian
22212 @opindex mbig
22213 @opindex mbig-endian
22214 On System V.4 and embedded PowerPC systems compile code for the
22215 processor in big-endian mode. The @option{-mbig-endian} option is
22216 the same as @option{-mbig}.
22217
22218 @item -mdynamic-no-pic
22219 @opindex mdynamic-no-pic
22220 On Darwin and Mac OS X systems, compile code so that it is not
22221 relocatable, but that its external references are relocatable. The
22222 resulting code is suitable for applications, but not shared
22223 libraries.
22224
22225 @item -msingle-pic-base
22226 @opindex msingle-pic-base
22227 Treat the register used for PIC addressing as read-only, rather than
22228 loading it in the prologue for each function. The runtime system is
22229 responsible for initializing this register with an appropriate value
22230 before execution begins.
22231
22232 @item -mprioritize-restricted-insns=@var{priority}
22233 @opindex mprioritize-restricted-insns
22234 This option controls the priority that is assigned to
22235 dispatch-slot restricted instructions during the second scheduling
22236 pass. The argument @var{priority} takes the value @samp{0}, @samp{1},
22237 or @samp{2} to assign no, highest, or second-highest (respectively)
22238 priority to dispatch-slot restricted
22239 instructions.
22240
22241 @item -msched-costly-dep=@var{dependence_type}
22242 @opindex msched-costly-dep
22243 This option controls which dependences are considered costly
22244 by the target during instruction scheduling. The argument
22245 @var{dependence_type} takes one of the following values:
22246
22247 @table @asis
22248 @item @samp{no}
22249 No dependence is costly.
22250
22251 @item @samp{all}
22252 All dependences are costly.
22253
22254 @item @samp{true_store_to_load}
22255 A true dependence from store to load is costly.
22256
22257 @item @samp{store_to_load}
22258 Any dependence from store to load is costly.
22259
22260 @item @var{number}
22261 Any dependence for which the latency is greater than or equal to
22262 @var{number} is costly.
22263 @end table
22264
22265 @item -minsert-sched-nops=@var{scheme}
22266 @opindex minsert-sched-nops
22267 This option controls which NOP insertion scheme is used during
22268 the second scheduling pass. The argument @var{scheme} takes one of the
22269 following values:
22270
22271 @table @asis
22272 @item @samp{no}
22273 Don't insert NOPs.
22274
22275 @item @samp{pad}
22276 Pad with NOPs any dispatch group that has vacant issue slots,
22277 according to the scheduler's grouping.
22278
22279 @item @samp{regroup_exact}
22280 Insert NOPs to force costly dependent insns into
22281 separate groups. Insert exactly as many NOPs as needed to force an insn
22282 to a new group, according to the estimated processor grouping.
22283
22284 @item @var{number}
22285 Insert NOPs to force costly dependent insns into
22286 separate groups. Insert @var{number} NOPs to force an insn to a new group.
22287 @end table
22288
22289 @item -mcall-sysv
22290 @opindex mcall-sysv
22291 On System V.4 and embedded PowerPC systems compile code using calling
22292 conventions that adhere to the March 1995 draft of the System V
22293 Application Binary Interface, PowerPC processor supplement. This is the
22294 default unless you configured GCC using @samp{powerpc-*-eabiaix}.
22295
22296 @item -mcall-sysv-eabi
22297 @itemx -mcall-eabi
22298 @opindex mcall-sysv-eabi
22299 @opindex mcall-eabi
22300 Specify both @option{-mcall-sysv} and @option{-meabi} options.
22301
22302 @item -mcall-sysv-noeabi
22303 @opindex mcall-sysv-noeabi
22304 Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
22305
22306 @item -mcall-aixdesc
22307 @opindex m
22308 On System V.4 and embedded PowerPC systems compile code for the AIX
22309 operating system.
22310
22311 @item -mcall-linux
22312 @opindex mcall-linux
22313 On System V.4 and embedded PowerPC systems compile code for the
22314 Linux-based GNU system.
22315
22316 @item -mcall-freebsd
22317 @opindex mcall-freebsd
22318 On System V.4 and embedded PowerPC systems compile code for the
22319 FreeBSD operating system.
22320
22321 @item -mcall-netbsd
22322 @opindex mcall-netbsd
22323 On System V.4 and embedded PowerPC systems compile code for the
22324 NetBSD operating system.
22325
22326 @item -mcall-openbsd
22327 @opindex mcall-netbsd
22328 On System V.4 and embedded PowerPC systems compile code for the
22329 OpenBSD operating system.
22330
22331 @item -maix-struct-return
22332 @opindex maix-struct-return
22333 Return all structures in memory (as specified by the AIX ABI)@.
22334
22335 @item -msvr4-struct-return
22336 @opindex msvr4-struct-return
22337 Return structures smaller than 8 bytes in registers (as specified by the
22338 SVR4 ABI)@.
22339
22340 @item -mabi=@var{abi-type}
22341 @opindex mabi
22342 Extend the current ABI with a particular extension, or remove such extension.
22343 Valid values are @samp{altivec}, @samp{no-altivec}, @samp{spe},
22344 @samp{no-spe}, @samp{ibmlongdouble}, @samp{ieeelongdouble},
22345 @samp{elfv1}, @samp{elfv2}@.
22346
22347 @item -mabi=spe
22348 @opindex mabi=spe
22349 Extend the current ABI with SPE ABI extensions. This does not change
22350 the default ABI, instead it adds the SPE ABI extensions to the current
22351 ABI@.
22352
22353 @item -mabi=no-spe
22354 @opindex mabi=no-spe
22355 Disable Book-E SPE ABI extensions for the current ABI@.
22356
22357 @item -mabi=ibmlongdouble
22358 @opindex mabi=ibmlongdouble
22359 Change the current ABI to use IBM extended-precision long double.
22360 This is a PowerPC 32-bit SYSV ABI option.
22361
22362 @item -mabi=ieeelongdouble
22363 @opindex mabi=ieeelongdouble
22364 Change the current ABI to use IEEE extended-precision long double.
22365 This is a PowerPC 32-bit Linux ABI option.
22366
22367 @item -mabi=elfv1
22368 @opindex mabi=elfv1
22369 Change the current ABI to use the ELFv1 ABI.
22370 This is the default ABI for big-endian PowerPC 64-bit Linux.
22371 Overriding the default ABI requires special system support and is
22372 likely to fail in spectacular ways.
22373
22374 @item -mabi=elfv2
22375 @opindex mabi=elfv2
22376 Change the current ABI to use the ELFv2 ABI.
22377 This is the default ABI for little-endian PowerPC 64-bit Linux.
22378 Overriding the default ABI requires special system support and is
22379 likely to fail in spectacular ways.
22380
22381 @item -mgnu-attribute
22382 @itemx -mno-gnu-attribute
22383 @opindex mgnu-attribute
22384 @opindex mno-gnu-attribute
22385 Emit .gnu_attribute assembly directives to set tag/value pairs in a
22386 .gnu.attributes section that specify ABI variations in function
22387 parameters or return values.
22388
22389 @item -mprototype
22390 @itemx -mno-prototype
22391 @opindex mprototype
22392 @opindex mno-prototype
22393 On System V.4 and embedded PowerPC systems assume that all calls to
22394 variable argument functions are properly prototyped. Otherwise, the
22395 compiler must insert an instruction before every non-prototyped call to
22396 set or clear bit 6 of the condition code register (@code{CR}) to
22397 indicate whether floating-point values are passed in the floating-point
22398 registers in case the function takes variable arguments. With
22399 @option{-mprototype}, only calls to prototyped variable argument functions
22400 set or clear the bit.
22401
22402 @item -msim
22403 @opindex msim
22404 On embedded PowerPC systems, assume that the startup module is called
22405 @file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
22406 @file{libc.a}. This is the default for @samp{powerpc-*-eabisim}
22407 configurations.
22408
22409 @item -mmvme
22410 @opindex mmvme
22411 On embedded PowerPC systems, assume that the startup module is called
22412 @file{crt0.o} and the standard C libraries are @file{libmvme.a} and
22413 @file{libc.a}.
22414
22415 @item -mads
22416 @opindex mads
22417 On embedded PowerPC systems, assume that the startup module is called
22418 @file{crt0.o} and the standard C libraries are @file{libads.a} and
22419 @file{libc.a}.
22420
22421 @item -myellowknife
22422 @opindex myellowknife
22423 On embedded PowerPC systems, assume that the startup module is called
22424 @file{crt0.o} and the standard C libraries are @file{libyk.a} and
22425 @file{libc.a}.
22426
22427 @item -mvxworks
22428 @opindex mvxworks
22429 On System V.4 and embedded PowerPC systems, specify that you are
22430 compiling for a VxWorks system.
22431
22432 @item -memb
22433 @opindex memb
22434 On embedded PowerPC systems, set the @code{PPC_EMB} bit in the ELF flags
22435 header to indicate that @samp{eabi} extended relocations are used.
22436
22437 @item -meabi
22438 @itemx -mno-eabi
22439 @opindex meabi
22440 @opindex mno-eabi
22441 On System V.4 and embedded PowerPC systems do (do not) adhere to the
22442 Embedded Applications Binary Interface (EABI), which is a set of
22443 modifications to the System V.4 specifications. Selecting @option{-meabi}
22444 means that the stack is aligned to an 8-byte boundary, a function
22445 @code{__eabi} is called from @code{main} to set up the EABI
22446 environment, and the @option{-msdata} option can use both @code{r2} and
22447 @code{r13} to point to two separate small data areas. Selecting
22448 @option{-mno-eabi} means that the stack is aligned to a 16-byte boundary,
22449 no EABI initialization function is called from @code{main}, and the
22450 @option{-msdata} option only uses @code{r13} to point to a single
22451 small data area. The @option{-meabi} option is on by default if you
22452 configured GCC using one of the @samp{powerpc*-*-eabi*} options.
22453
22454 @item -msdata=eabi
22455 @opindex msdata=eabi
22456 On System V.4 and embedded PowerPC systems, put small initialized
22457 @code{const} global and static data in the @code{.sdata2} section, which
22458 is pointed to by register @code{r2}. Put small initialized
22459 non-@code{const} global and static data in the @code{.sdata} section,
22460 which is pointed to by register @code{r13}. Put small uninitialized
22461 global and static data in the @code{.sbss} section, which is adjacent to
22462 the @code{.sdata} section. The @option{-msdata=eabi} option is
22463 incompatible with the @option{-mrelocatable} option. The
22464 @option{-msdata=eabi} option also sets the @option{-memb} option.
22465
22466 @item -msdata=sysv
22467 @opindex msdata=sysv
22468 On System V.4 and embedded PowerPC systems, put small global and static
22469 data in the @code{.sdata} section, which is pointed to by register
22470 @code{r13}. Put small uninitialized global and static data in the
22471 @code{.sbss} section, which is adjacent to the @code{.sdata} section.
22472 The @option{-msdata=sysv} option is incompatible with the
22473 @option{-mrelocatable} option.
22474
22475 @item -msdata=default
22476 @itemx -msdata
22477 @opindex msdata=default
22478 @opindex msdata
22479 On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
22480 compile code the same as @option{-msdata=eabi}, otherwise compile code the
22481 same as @option{-msdata=sysv}.
22482
22483 @item -msdata=data
22484 @opindex msdata=data
22485 On System V.4 and embedded PowerPC systems, put small global
22486 data in the @code{.sdata} section. Put small uninitialized global
22487 data in the @code{.sbss} section. Do not use register @code{r13}
22488 to address small data however. This is the default behavior unless
22489 other @option{-msdata} options are used.
22490
22491 @item -msdata=none
22492 @itemx -mno-sdata
22493 @opindex msdata=none
22494 @opindex mno-sdata
22495 On embedded PowerPC systems, put all initialized global and static data
22496 in the @code{.data} section, and all uninitialized data in the
22497 @code{.bss} section.
22498
22499 @item -mblock-move-inline-limit=@var{num}
22500 @opindex mblock-move-inline-limit
22501 Inline all block moves (such as calls to @code{memcpy} or structure
22502 copies) less than or equal to @var{num} bytes. The minimum value for
22503 @var{num} is 32 bytes on 32-bit targets and 64 bytes on 64-bit
22504 targets. The default value is target-specific.
22505
22506 @item -G @var{num}
22507 @opindex G
22508 @cindex smaller data references (PowerPC)
22509 @cindex .sdata/.sdata2 references (PowerPC)
22510 On embedded PowerPC systems, put global and static items less than or
22511 equal to @var{num} bytes into the small data or BSS sections instead of
22512 the normal data or BSS section. By default, @var{num} is 8. The
22513 @option{-G @var{num}} switch is also passed to the linker.
22514 All modules should be compiled with the same @option{-G @var{num}} value.
22515
22516 @item -mregnames
22517 @itemx -mno-regnames
22518 @opindex mregnames
22519 @opindex mno-regnames
22520 On System V.4 and embedded PowerPC systems do (do not) emit register
22521 names in the assembly language output using symbolic forms.
22522
22523 @item -mlongcall
22524 @itemx -mno-longcall
22525 @opindex mlongcall
22526 @opindex mno-longcall
22527 By default assume that all calls are far away so that a longer and more
22528 expensive calling sequence is required. This is required for calls
22529 farther than 32 megabytes (33,554,432 bytes) from the current location.
22530 A short call is generated if the compiler knows
22531 the call cannot be that far away. This setting can be overridden by
22532 the @code{shortcall} function attribute, or by @code{#pragma
22533 longcall(0)}.
22534
22535 Some linkers are capable of detecting out-of-range calls and generating
22536 glue code on the fly. On these systems, long calls are unnecessary and
22537 generate slower code. As of this writing, the AIX linker can do this,
22538 as can the GNU linker for PowerPC/64. It is planned to add this feature
22539 to the GNU linker for 32-bit PowerPC systems as well.
22540
22541 On Darwin/PPC systems, @code{#pragma longcall} generates @code{jbsr
22542 callee, L42}, plus a @dfn{branch island} (glue code). The two target
22543 addresses represent the callee and the branch island. The
22544 Darwin/PPC linker prefers the first address and generates a @code{bl
22545 callee} if the PPC @code{bl} instruction reaches the callee directly;
22546 otherwise, the linker generates @code{bl L42} to call the branch
22547 island. The branch island is appended to the body of the
22548 calling function; it computes the full 32-bit address of the callee
22549 and jumps to it.
22550
22551 On Mach-O (Darwin) systems, this option directs the compiler emit to
22552 the glue for every direct call, and the Darwin linker decides whether
22553 to use or discard it.
22554
22555 In the future, GCC may ignore all longcall specifications
22556 when the linker is known to generate glue.
22557
22558 @item -mtls-markers
22559 @itemx -mno-tls-markers
22560 @opindex mtls-markers
22561 @opindex mno-tls-markers
22562 Mark (do not mark) calls to @code{__tls_get_addr} with a relocation
22563 specifying the function argument. The relocation allows the linker to
22564 reliably associate function call with argument setup instructions for
22565 TLS optimization, which in turn allows GCC to better schedule the
22566 sequence.
22567
22568 @item -mrecip
22569 @itemx -mno-recip
22570 @opindex mrecip
22571 This option enables use of the reciprocal estimate and
22572 reciprocal square root estimate instructions with additional
22573 Newton-Raphson steps to increase precision instead of doing a divide or
22574 square root and divide for floating-point arguments. You should use
22575 the @option{-ffast-math} option when using @option{-mrecip} (or at
22576 least @option{-funsafe-math-optimizations},
22577 @option{-ffinite-math-only}, @option{-freciprocal-math} and
22578 @option{-fno-trapping-math}). Note that while the throughput of the
22579 sequence is generally higher than the throughput of the non-reciprocal
22580 instruction, the precision of the sequence can be decreased by up to 2
22581 ulp (i.e.@: the inverse of 1.0 equals 0.99999994) for reciprocal square
22582 roots.
22583
22584 @item -mrecip=@var{opt}
22585 @opindex mrecip=opt
22586 This option controls which reciprocal estimate instructions
22587 may be used. @var{opt} is a comma-separated list of options, which may
22588 be preceded by a @code{!} to invert the option:
22589
22590 @table @samp
22591
22592 @item all
22593 Enable all estimate instructions.
22594
22595 @item default
22596 Enable the default instructions, equivalent to @option{-mrecip}.
22597
22598 @item none
22599 Disable all estimate instructions, equivalent to @option{-mno-recip}.
22600
22601 @item div
22602 Enable the reciprocal approximation instructions for both
22603 single and double precision.
22604
22605 @item divf
22606 Enable the single-precision reciprocal approximation instructions.
22607
22608 @item divd
22609 Enable the double-precision reciprocal approximation instructions.
22610
22611 @item rsqrt
22612 Enable the reciprocal square root approximation instructions for both
22613 single and double precision.
22614
22615 @item rsqrtf
22616 Enable the single-precision reciprocal square root approximation instructions.
22617
22618 @item rsqrtd
22619 Enable the double-precision reciprocal square root approximation instructions.
22620
22621 @end table
22622
22623 So, for example, @option{-mrecip=all,!rsqrtd} enables
22624 all of the reciprocal estimate instructions, except for the
22625 @code{FRSQRTE}, @code{XSRSQRTEDP}, and @code{XVRSQRTEDP} instructions
22626 which handle the double-precision reciprocal square root calculations.
22627
22628 @item -mrecip-precision
22629 @itemx -mno-recip-precision
22630 @opindex mrecip-precision
22631 Assume (do not assume) that the reciprocal estimate instructions
22632 provide higher-precision estimates than is mandated by the PowerPC
22633 ABI. Selecting @option{-mcpu=power6}, @option{-mcpu=power7} or
22634 @option{-mcpu=power8} automatically selects @option{-mrecip-precision}.
22635 The double-precision square root estimate instructions are not generated by
22636 default on low-precision machines, since they do not provide an
22637 estimate that converges after three steps.
22638
22639 @item -mveclibabi=@var{type}
22640 @opindex mveclibabi
22641 Specifies the ABI type to use for vectorizing intrinsics using an
22642 external library. The only type supported at present is @samp{mass},
22643 which specifies to use IBM's Mathematical Acceleration Subsystem
22644 (MASS) libraries for vectorizing intrinsics using external libraries.
22645 GCC currently emits calls to @code{acosd2}, @code{acosf4},
22646 @code{acoshd2}, @code{acoshf4}, @code{asind2}, @code{asinf4},
22647 @code{asinhd2}, @code{asinhf4}, @code{atan2d2}, @code{atan2f4},
22648 @code{atand2}, @code{atanf4}, @code{atanhd2}, @code{atanhf4},
22649 @code{cbrtd2}, @code{cbrtf4}, @code{cosd2}, @code{cosf4},
22650 @code{coshd2}, @code{coshf4}, @code{erfcd2}, @code{erfcf4},
22651 @code{erfd2}, @code{erff4}, @code{exp2d2}, @code{exp2f4},
22652 @code{expd2}, @code{expf4}, @code{expm1d2}, @code{expm1f4},
22653 @code{hypotd2}, @code{hypotf4}, @code{lgammad2}, @code{lgammaf4},
22654 @code{log10d2}, @code{log10f4}, @code{log1pd2}, @code{log1pf4},
22655 @code{log2d2}, @code{log2f4}, @code{logd2}, @code{logf4},
22656 @code{powd2}, @code{powf4}, @code{sind2}, @code{sinf4}, @code{sinhd2},
22657 @code{sinhf4}, @code{sqrtd2}, @code{sqrtf4}, @code{tand2},
22658 @code{tanf4}, @code{tanhd2}, and @code{tanhf4} when generating code
22659 for power7. Both @option{-ftree-vectorize} and
22660 @option{-funsafe-math-optimizations} must also be enabled. The MASS
22661 libraries must be specified at link time.
22662
22663 @item -mfriz
22664 @itemx -mno-friz
22665 @opindex mfriz
22666 Generate (do not generate) the @code{friz} instruction when the
22667 @option{-funsafe-math-optimizations} option is used to optimize
22668 rounding of floating-point values to 64-bit integer and back to floating
22669 point. The @code{friz} instruction does not return the same value if
22670 the floating-point number is too large to fit in an integer.
22671
22672 @item -mpointers-to-nested-functions
22673 @itemx -mno-pointers-to-nested-functions
22674 @opindex mpointers-to-nested-functions
22675 Generate (do not generate) code to load up the static chain register
22676 (@code{r11}) when calling through a pointer on AIX and 64-bit Linux
22677 systems where a function pointer points to a 3-word descriptor giving
22678 the function address, TOC value to be loaded in register @code{r2}, and
22679 static chain value to be loaded in register @code{r11}. The
22680 @option{-mpointers-to-nested-functions} is on by default. You cannot
22681 call through pointers to nested functions or pointers
22682 to functions compiled in other languages that use the static chain if
22683 you use @option{-mno-pointers-to-nested-functions}.
22684
22685 @item -msave-toc-indirect
22686 @itemx -mno-save-toc-indirect
22687 @opindex msave-toc-indirect
22688 Generate (do not generate) code to save the TOC value in the reserved
22689 stack location in the function prologue if the function calls through
22690 a pointer on AIX and 64-bit Linux systems. If the TOC value is not
22691 saved in the prologue, it is saved just before the call through the
22692 pointer. The @option{-mno-save-toc-indirect} option is the default.
22693
22694 @item -mcompat-align-parm
22695 @itemx -mno-compat-align-parm
22696 @opindex mcompat-align-parm
22697 Generate (do not generate) code to pass structure parameters with a
22698 maximum alignment of 64 bits, for compatibility with older versions
22699 of GCC.
22700
22701 Older versions of GCC (prior to 4.9.0) incorrectly did not align a
22702 structure parameter on a 128-bit boundary when that structure contained
22703 a member requiring 128-bit alignment. This is corrected in more
22704 recent versions of GCC. This option may be used to generate code
22705 that is compatible with functions compiled with older versions of
22706 GCC.
22707
22708 The @option{-mno-compat-align-parm} option is the default.
22709
22710 @item -mstack-protector-guard=@var{guard}
22711 @itemx -mstack-protector-guard-reg=@var{reg}
22712 @itemx -mstack-protector-guard-offset=@var{offset}
22713 @opindex mstack-protector-guard
22714 @opindex mstack-protector-guard-reg
22715 @opindex mstack-protector-guard-offset
22716 Generate stack protection code using canary at @var{guard}. Supported
22717 locations are @samp{global} for global canary or @samp{tls} for per-thread
22718 canary in the TLS block (the default with GNU libc version 2.4 or later).
22719
22720 With the latter choice the options
22721 @option{-mstack-protector-guard-reg=@var{reg}} and
22722 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
22723 which register to use as base register for reading the canary, and from what
22724 offset from that base register. The default for those is as specified in the
22725 relevant ABI.
22726 @end table
22727
22728 @node RX Options
22729 @subsection RX Options
22730 @cindex RX Options
22731
22732 These command-line options are defined for RX targets:
22733
22734 @table @gcctabopt
22735 @item -m64bit-doubles
22736 @itemx -m32bit-doubles
22737 @opindex m64bit-doubles
22738 @opindex m32bit-doubles
22739 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
22740 or 32 bits (@option{-m32bit-doubles}) in size. The default is
22741 @option{-m32bit-doubles}. @emph{Note} RX floating-point hardware only
22742 works on 32-bit values, which is why the default is
22743 @option{-m32bit-doubles}.
22744
22745 @item -fpu
22746 @itemx -nofpu
22747 @opindex fpu
22748 @opindex nofpu
22749 Enables (@option{-fpu}) or disables (@option{-nofpu}) the use of RX
22750 floating-point hardware. The default is enabled for the RX600
22751 series and disabled for the RX200 series.
22752
22753 Floating-point instructions are only generated for 32-bit floating-point
22754 values, however, so the FPU hardware is not used for doubles if the
22755 @option{-m64bit-doubles} option is used.
22756
22757 @emph{Note} If the @option{-fpu} option is enabled then
22758 @option{-funsafe-math-optimizations} is also enabled automatically.
22759 This is because the RX FPU instructions are themselves unsafe.
22760
22761 @item -mcpu=@var{name}
22762 @opindex mcpu
22763 Selects the type of RX CPU to be targeted. Currently three types are
22764 supported, the generic @samp{RX600} and @samp{RX200} series hardware and
22765 the specific @samp{RX610} CPU. The default is @samp{RX600}.
22766
22767 The only difference between @samp{RX600} and @samp{RX610} is that the
22768 @samp{RX610} does not support the @code{MVTIPL} instruction.
22769
22770 The @samp{RX200} series does not have a hardware floating-point unit
22771 and so @option{-nofpu} is enabled by default when this type is
22772 selected.
22773
22774 @item -mbig-endian-data
22775 @itemx -mlittle-endian-data
22776 @opindex mbig-endian-data
22777 @opindex mlittle-endian-data
22778 Store data (but not code) in the big-endian format. The default is
22779 @option{-mlittle-endian-data}, i.e.@: to store data in the little-endian
22780 format.
22781
22782 @item -msmall-data-limit=@var{N}
22783 @opindex msmall-data-limit
22784 Specifies the maximum size in bytes of global and static variables
22785 which can be placed into the small data area. Using the small data
22786 area can lead to smaller and faster code, but the size of area is
22787 limited and it is up to the programmer to ensure that the area does
22788 not overflow. Also when the small data area is used one of the RX's
22789 registers (usually @code{r13}) is reserved for use pointing to this
22790 area, so it is no longer available for use by the compiler. This
22791 could result in slower and/or larger code if variables are pushed onto
22792 the stack instead of being held in this register.
22793
22794 Note, common variables (variables that have not been initialized) and
22795 constants are not placed into the small data area as they are assigned
22796 to other sections in the output executable.
22797
22798 The default value is zero, which disables this feature. Note, this
22799 feature is not enabled by default with higher optimization levels
22800 (@option{-O2} etc) because of the potentially detrimental effects of
22801 reserving a register. It is up to the programmer to experiment and
22802 discover whether this feature is of benefit to their program. See the
22803 description of the @option{-mpid} option for a description of how the
22804 actual register to hold the small data area pointer is chosen.
22805
22806 @item -msim
22807 @itemx -mno-sim
22808 @opindex msim
22809 @opindex mno-sim
22810 Use the simulator runtime. The default is to use the libgloss
22811 board-specific runtime.
22812
22813 @item -mas100-syntax
22814 @itemx -mno-as100-syntax
22815 @opindex mas100-syntax
22816 @opindex mno-as100-syntax
22817 When generating assembler output use a syntax that is compatible with
22818 Renesas's AS100 assembler. This syntax can also be handled by the GAS
22819 assembler, but it has some restrictions so it is not generated by default.
22820
22821 @item -mmax-constant-size=@var{N}
22822 @opindex mmax-constant-size
22823 Specifies the maximum size, in bytes, of a constant that can be used as
22824 an operand in a RX instruction. Although the RX instruction set does
22825 allow constants of up to 4 bytes in length to be used in instructions,
22826 a longer value equates to a longer instruction. Thus in some
22827 circumstances it can be beneficial to restrict the size of constants
22828 that are used in instructions. Constants that are too big are instead
22829 placed into a constant pool and referenced via register indirection.
22830
22831 The value @var{N} can be between 0 and 4. A value of 0 (the default)
22832 or 4 means that constants of any size are allowed.
22833
22834 @item -mrelax
22835 @opindex mrelax
22836 Enable linker relaxation. Linker relaxation is a process whereby the
22837 linker attempts to reduce the size of a program by finding shorter
22838 versions of various instructions. Disabled by default.
22839
22840 @item -mint-register=@var{N}
22841 @opindex mint-register
22842 Specify the number of registers to reserve for fast interrupt handler
22843 functions. The value @var{N} can be between 0 and 4. A value of 1
22844 means that register @code{r13} is reserved for the exclusive use
22845 of fast interrupt handlers. A value of 2 reserves @code{r13} and
22846 @code{r12}. A value of 3 reserves @code{r13}, @code{r12} and
22847 @code{r11}, and a value of 4 reserves @code{r13} through @code{r10}.
22848 A value of 0, the default, does not reserve any registers.
22849
22850 @item -msave-acc-in-interrupts
22851 @opindex msave-acc-in-interrupts
22852 Specifies that interrupt handler functions should preserve the
22853 accumulator register. This is only necessary if normal code might use
22854 the accumulator register, for example because it performs 64-bit
22855 multiplications. The default is to ignore the accumulator as this
22856 makes the interrupt handlers faster.
22857
22858 @item -mpid
22859 @itemx -mno-pid
22860 @opindex mpid
22861 @opindex mno-pid
22862 Enables the generation of position independent data. When enabled any
22863 access to constant data is done via an offset from a base address
22864 held in a register. This allows the location of constant data to be
22865 determined at run time without requiring the executable to be
22866 relocated, which is a benefit to embedded applications with tight
22867 memory constraints. Data that can be modified is not affected by this
22868 option.
22869
22870 Note, using this feature reserves a register, usually @code{r13}, for
22871 the constant data base address. This can result in slower and/or
22872 larger code, especially in complicated functions.
22873
22874 The actual register chosen to hold the constant data base address
22875 depends upon whether the @option{-msmall-data-limit} and/or the
22876 @option{-mint-register} command-line options are enabled. Starting
22877 with register @code{r13} and proceeding downwards, registers are
22878 allocated first to satisfy the requirements of @option{-mint-register},
22879 then @option{-mpid} and finally @option{-msmall-data-limit}. Thus it
22880 is possible for the small data area register to be @code{r8} if both
22881 @option{-mint-register=4} and @option{-mpid} are specified on the
22882 command line.
22883
22884 By default this feature is not enabled. The default can be restored
22885 via the @option{-mno-pid} command-line option.
22886
22887 @item -mno-warn-multiple-fast-interrupts
22888 @itemx -mwarn-multiple-fast-interrupts
22889 @opindex mno-warn-multiple-fast-interrupts
22890 @opindex mwarn-multiple-fast-interrupts
22891 Prevents GCC from issuing a warning message if it finds more than one
22892 fast interrupt handler when it is compiling a file. The default is to
22893 issue a warning for each extra fast interrupt handler found, as the RX
22894 only supports one such interrupt.
22895
22896 @item -mallow-string-insns
22897 @itemx -mno-allow-string-insns
22898 @opindex mallow-string-insns
22899 @opindex mno-allow-string-insns
22900 Enables or disables the use of the string manipulation instructions
22901 @code{SMOVF}, @code{SCMPU}, @code{SMOVB}, @code{SMOVU}, @code{SUNTIL}
22902 @code{SWHILE} and also the @code{RMPA} instruction. These
22903 instructions may prefetch data, which is not safe to do if accessing
22904 an I/O register. (See section 12.2.7 of the RX62N Group User's Manual
22905 for more information).
22906
22907 The default is to allow these instructions, but it is not possible for
22908 GCC to reliably detect all circumstances where a string instruction
22909 might be used to access an I/O register, so their use cannot be
22910 disabled automatically. Instead it is reliant upon the programmer to
22911 use the @option{-mno-allow-string-insns} option if their program
22912 accesses I/O space.
22913
22914 When the instructions are enabled GCC defines the C preprocessor
22915 symbol @code{__RX_ALLOW_STRING_INSNS__}, otherwise it defines the
22916 symbol @code{__RX_DISALLOW_STRING_INSNS__}.
22917
22918 @item -mjsr
22919 @itemx -mno-jsr
22920 @opindex mjsr
22921 @opindex mno-jsr
22922 Use only (or not only) @code{JSR} instructions to access functions.
22923 This option can be used when code size exceeds the range of @code{BSR}
22924 instructions. Note that @option{-mno-jsr} does not mean to not use
22925 @code{JSR} but instead means that any type of branch may be used.
22926 @end table
22927
22928 @emph{Note:} The generic GCC command-line option @option{-ffixed-@var{reg}}
22929 has special significance to the RX port when used with the
22930 @code{interrupt} function attribute. This attribute indicates a
22931 function intended to process fast interrupts. GCC ensures
22932 that it only uses the registers @code{r10}, @code{r11}, @code{r12}
22933 and/or @code{r13} and only provided that the normal use of the
22934 corresponding registers have been restricted via the
22935 @option{-ffixed-@var{reg}} or @option{-mint-register} command-line
22936 options.
22937
22938 @node S/390 and zSeries Options
22939 @subsection S/390 and zSeries Options
22940 @cindex S/390 and zSeries Options
22941
22942 These are the @samp{-m} options defined for the S/390 and zSeries architecture.
22943
22944 @table @gcctabopt
22945 @item -mhard-float
22946 @itemx -msoft-float
22947 @opindex mhard-float
22948 @opindex msoft-float
22949 Use (do not use) the hardware floating-point instructions and registers
22950 for floating-point operations. When @option{-msoft-float} is specified,
22951 functions in @file{libgcc.a} are used to perform floating-point
22952 operations. When @option{-mhard-float} is specified, the compiler
22953 generates IEEE floating-point instructions. This is the default.
22954
22955 @item -mhard-dfp
22956 @itemx -mno-hard-dfp
22957 @opindex mhard-dfp
22958 @opindex mno-hard-dfp
22959 Use (do not use) the hardware decimal-floating-point instructions for
22960 decimal-floating-point operations. When @option{-mno-hard-dfp} is
22961 specified, functions in @file{libgcc.a} are used to perform
22962 decimal-floating-point operations. When @option{-mhard-dfp} is
22963 specified, the compiler generates decimal-floating-point hardware
22964 instructions. This is the default for @option{-march=z9-ec} or higher.
22965
22966 @item -mlong-double-64
22967 @itemx -mlong-double-128
22968 @opindex mlong-double-64
22969 @opindex mlong-double-128
22970 These switches control the size of @code{long double} type. A size
22971 of 64 bits makes the @code{long double} type equivalent to the @code{double}
22972 type. This is the default.
22973
22974 @item -mbackchain
22975 @itemx -mno-backchain
22976 @opindex mbackchain
22977 @opindex mno-backchain
22978 Store (do not store) the address of the caller's frame as backchain pointer
22979 into the callee's stack frame.
22980 A backchain may be needed to allow debugging using tools that do not understand
22981 DWARF call frame information.
22982 When @option{-mno-packed-stack} is in effect, the backchain pointer is stored
22983 at the bottom of the stack frame; when @option{-mpacked-stack} is in effect,
22984 the backchain is placed into the topmost word of the 96/160 byte register
22985 save area.
22986
22987 In general, code compiled with @option{-mbackchain} is call-compatible with
22988 code compiled with @option{-mmo-backchain}; however, use of the backchain
22989 for debugging purposes usually requires that the whole binary is built with
22990 @option{-mbackchain}. Note that the combination of @option{-mbackchain},
22991 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
22992 to build a linux kernel use @option{-msoft-float}.
22993
22994 The default is to not maintain the backchain.
22995
22996 @item -mpacked-stack
22997 @itemx -mno-packed-stack
22998 @opindex mpacked-stack
22999 @opindex mno-packed-stack
23000 Use (do not use) the packed stack layout. When @option{-mno-packed-stack} is
23001 specified, the compiler uses the all fields of the 96/160 byte register save
23002 area only for their default purpose; unused fields still take up stack space.
23003 When @option{-mpacked-stack} is specified, register save slots are densely
23004 packed at the top of the register save area; unused space is reused for other
23005 purposes, allowing for more efficient use of the available stack space.
23006 However, when @option{-mbackchain} is also in effect, the topmost word of
23007 the save area is always used to store the backchain, and the return address
23008 register is always saved two words below the backchain.
23009
23010 As long as the stack frame backchain is not used, code generated with
23011 @option{-mpacked-stack} is call-compatible with code generated with
23012 @option{-mno-packed-stack}. Note that some non-FSF releases of GCC 2.95 for
23013 S/390 or zSeries generated code that uses the stack frame backchain at run
23014 time, not just for debugging purposes. Such code is not call-compatible
23015 with code compiled with @option{-mpacked-stack}. Also, note that the
23016 combination of @option{-mbackchain},
23017 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
23018 to build a linux kernel use @option{-msoft-float}.
23019
23020 The default is to not use the packed stack layout.
23021
23022 @item -msmall-exec
23023 @itemx -mno-small-exec
23024 @opindex msmall-exec
23025 @opindex mno-small-exec
23026 Generate (or do not generate) code using the @code{bras} instruction
23027 to do subroutine calls.
23028 This only works reliably if the total executable size does not
23029 exceed 64k. The default is to use the @code{basr} instruction instead,
23030 which does not have this limitation.
23031
23032 @item -m64
23033 @itemx -m31
23034 @opindex m64
23035 @opindex m31
23036 When @option{-m31} is specified, generate code compliant to the
23037 GNU/Linux for S/390 ABI@. When @option{-m64} is specified, generate
23038 code compliant to the GNU/Linux for zSeries ABI@. This allows GCC in
23039 particular to generate 64-bit instructions. For the @samp{s390}
23040 targets, the default is @option{-m31}, while the @samp{s390x}
23041 targets default to @option{-m64}.
23042
23043 @item -mzarch
23044 @itemx -mesa
23045 @opindex mzarch
23046 @opindex mesa
23047 When @option{-mzarch} is specified, generate code using the
23048 instructions available on z/Architecture.
23049 When @option{-mesa} is specified, generate code using the
23050 instructions available on ESA/390. Note that @option{-mesa} is
23051 not possible with @option{-m64}.
23052 When generating code compliant to the GNU/Linux for S/390 ABI,
23053 the default is @option{-mesa}. When generating code compliant
23054 to the GNU/Linux for zSeries ABI, the default is @option{-mzarch}.
23055
23056 @item -mhtm
23057 @itemx -mno-htm
23058 @opindex mhtm
23059 @opindex mno-htm
23060 The @option{-mhtm} option enables a set of builtins making use of
23061 instructions available with the transactional execution facility
23062 introduced with the IBM zEnterprise EC12 machine generation
23063 @ref{S/390 System z Built-in Functions}.
23064 @option{-mhtm} is enabled by default when using @option{-march=zEC12}.
23065
23066 @item -mvx
23067 @itemx -mno-vx
23068 @opindex mvx
23069 @opindex mno-vx
23070 When @option{-mvx} is specified, generate code using the instructions
23071 available with the vector extension facility introduced with the IBM
23072 z13 machine generation.
23073 This option changes the ABI for some vector type values with regard to
23074 alignment and calling conventions. In case vector type values are
23075 being used in an ABI-relevant context a GAS @samp{.gnu_attribute}
23076 command will be added to mark the resulting binary with the ABI used.
23077 @option{-mvx} is enabled by default when using @option{-march=z13}.
23078
23079 @item -mzvector
23080 @itemx -mno-zvector
23081 @opindex mzvector
23082 @opindex mno-zvector
23083 The @option{-mzvector} option enables vector language extensions and
23084 builtins using instructions available with the vector extension
23085 facility introduced with the IBM z13 machine generation.
23086 This option adds support for @samp{vector} to be used as a keyword to
23087 define vector type variables and arguments. @samp{vector} is only
23088 available when GNU extensions are enabled. It will not be expanded
23089 when requesting strict standard compliance e.g. with @option{-std=c99}.
23090 In addition to the GCC low-level builtins @option{-mzvector} enables
23091 a set of builtins added for compatibility with AltiVec-style
23092 implementations like Power and Cell. In order to make use of these
23093 builtins the header file @file{vecintrin.h} needs to be included.
23094 @option{-mzvector} is disabled by default.
23095
23096 @item -mmvcle
23097 @itemx -mno-mvcle
23098 @opindex mmvcle
23099 @opindex mno-mvcle
23100 Generate (or do not generate) code using the @code{mvcle} instruction
23101 to perform block moves. When @option{-mno-mvcle} is specified,
23102 use a @code{mvc} loop instead. This is the default unless optimizing for
23103 size.
23104
23105 @item -mdebug
23106 @itemx -mno-debug
23107 @opindex mdebug
23108 @opindex mno-debug
23109 Print (or do not print) additional debug information when compiling.
23110 The default is to not print debug information.
23111
23112 @item -march=@var{cpu-type}
23113 @opindex march
23114 Generate code that runs on @var{cpu-type}, which is the name of a
23115 system representing a certain processor type. Possible values for
23116 @var{cpu-type} are @samp{z900}/@samp{arch5}, @samp{z990}/@samp{arch6},
23117 @samp{z9-109}, @samp{z9-ec}/@samp{arch7}, @samp{z10}/@samp{arch8},
23118 @samp{z196}/@samp{arch9}, @samp{zEC12}, @samp{z13}/@samp{arch11}, and
23119 @samp{native}.
23120
23121 The default is @option{-march=z900}. @samp{g5}/@samp{arch3} and
23122 @samp{g6} are deprecated and will be removed with future releases.
23123
23124 Specifying @samp{native} as cpu type can be used to select the best
23125 architecture option for the host processor.
23126 @option{-march=native} has no effect if GCC does not recognize the
23127 processor.
23128
23129 @item -mtune=@var{cpu-type}
23130 @opindex mtune
23131 Tune to @var{cpu-type} everything applicable about the generated code,
23132 except for the ABI and the set of available instructions.
23133 The list of @var{cpu-type} values is the same as for @option{-march}.
23134 The default is the value used for @option{-march}.
23135
23136 @item -mtpf-trace
23137 @itemx -mno-tpf-trace
23138 @opindex mtpf-trace
23139 @opindex mno-tpf-trace
23140 Generate code that adds (does not add) in TPF OS specific branches to trace
23141 routines in the operating system. This option is off by default, even
23142 when compiling for the TPF OS@.
23143
23144 @item -mfused-madd
23145 @itemx -mno-fused-madd
23146 @opindex mfused-madd
23147 @opindex mno-fused-madd
23148 Generate code that uses (does not use) the floating-point multiply and
23149 accumulate instructions. These instructions are generated by default if
23150 hardware floating point is used.
23151
23152 @item -mwarn-framesize=@var{framesize}
23153 @opindex mwarn-framesize
23154 Emit a warning if the current function exceeds the given frame size. Because
23155 this is a compile-time check it doesn't need to be a real problem when the program
23156 runs. It is intended to identify functions that most probably cause
23157 a stack overflow. It is useful to be used in an environment with limited stack
23158 size e.g.@: the linux kernel.
23159
23160 @item -mwarn-dynamicstack
23161 @opindex mwarn-dynamicstack
23162 Emit a warning if the function calls @code{alloca} or uses dynamically-sized
23163 arrays. This is generally a bad idea with a limited stack size.
23164
23165 @item -mstack-guard=@var{stack-guard}
23166 @itemx -mstack-size=@var{stack-size}
23167 @opindex mstack-guard
23168 @opindex mstack-size
23169 If these options are provided the S/390 back end emits additional instructions in
23170 the function prologue that trigger a trap if the stack size is @var{stack-guard}
23171 bytes above the @var{stack-size} (remember that the stack on S/390 grows downward).
23172 If the @var{stack-guard} option is omitted the smallest power of 2 larger than
23173 the frame size of the compiled function is chosen.
23174 These options are intended to be used to help debugging stack overflow problems.
23175 The additionally emitted code causes only little overhead and hence can also be
23176 used in production-like systems without greater performance degradation. The given
23177 values have to be exact powers of 2 and @var{stack-size} has to be greater than
23178 @var{stack-guard} without exceeding 64k.
23179 In order to be efficient the extra code makes the assumption that the stack starts
23180 at an address aligned to the value given by @var{stack-size}.
23181 The @var{stack-guard} option can only be used in conjunction with @var{stack-size}.
23182
23183 @item -mhotpatch=@var{pre-halfwords},@var{post-halfwords}
23184 @opindex mhotpatch
23185 If the hotpatch option is enabled, a ``hot-patching'' function
23186 prologue is generated for all functions in the compilation unit.
23187 The funtion label is prepended with the given number of two-byte
23188 NOP instructions (@var{pre-halfwords}, maximum 1000000). After
23189 the label, 2 * @var{post-halfwords} bytes are appended, using the
23190 largest NOP like instructions the architecture allows (maximum
23191 1000000).
23192
23193 If both arguments are zero, hotpatching is disabled.
23194
23195 This option can be overridden for individual functions with the
23196 @code{hotpatch} attribute.
23197 @end table
23198
23199 @node Score Options
23200 @subsection Score Options
23201 @cindex Score Options
23202
23203 These options are defined for Score implementations:
23204
23205 @table @gcctabopt
23206 @item -meb
23207 @opindex meb
23208 Compile code for big-endian mode. This is the default.
23209
23210 @item -mel
23211 @opindex mel
23212 Compile code for little-endian mode.
23213
23214 @item -mnhwloop
23215 @opindex mnhwloop
23216 Disable generation of @code{bcnz} instructions.
23217
23218 @item -muls
23219 @opindex muls
23220 Enable generation of unaligned load and store instructions.
23221
23222 @item -mmac
23223 @opindex mmac
23224 Enable the use of multiply-accumulate instructions. Disabled by default.
23225
23226 @item -mscore5
23227 @opindex mscore5
23228 Specify the SCORE5 as the target architecture.
23229
23230 @item -mscore5u
23231 @opindex mscore5u
23232 Specify the SCORE5U of the target architecture.
23233
23234 @item -mscore7
23235 @opindex mscore7
23236 Specify the SCORE7 as the target architecture. This is the default.
23237
23238 @item -mscore7d
23239 @opindex mscore7d
23240 Specify the SCORE7D as the target architecture.
23241 @end table
23242
23243 @node SH Options
23244 @subsection SH Options
23245
23246 These @samp{-m} options are defined for the SH implementations:
23247
23248 @table @gcctabopt
23249 @item -m1
23250 @opindex m1
23251 Generate code for the SH1.
23252
23253 @item -m2
23254 @opindex m2
23255 Generate code for the SH2.
23256
23257 @item -m2e
23258 Generate code for the SH2e.
23259
23260 @item -m2a-nofpu
23261 @opindex m2a-nofpu
23262 Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
23263 that the floating-point unit is not used.
23264
23265 @item -m2a-single-only
23266 @opindex m2a-single-only
23267 Generate code for the SH2a-FPU, in such a way that no double-precision
23268 floating-point operations are used.
23269
23270 @item -m2a-single
23271 @opindex m2a-single
23272 Generate code for the SH2a-FPU assuming the floating-point unit is in
23273 single-precision mode by default.
23274
23275 @item -m2a
23276 @opindex m2a
23277 Generate code for the SH2a-FPU assuming the floating-point unit is in
23278 double-precision mode by default.
23279
23280 @item -m3
23281 @opindex m3
23282 Generate code for the SH3.
23283
23284 @item -m3e
23285 @opindex m3e
23286 Generate code for the SH3e.
23287
23288 @item -m4-nofpu
23289 @opindex m4-nofpu
23290 Generate code for the SH4 without a floating-point unit.
23291
23292 @item -m4-single-only
23293 @opindex m4-single-only
23294 Generate code for the SH4 with a floating-point unit that only
23295 supports single-precision arithmetic.
23296
23297 @item -m4-single
23298 @opindex m4-single
23299 Generate code for the SH4 assuming the floating-point unit is in
23300 single-precision mode by default.
23301
23302 @item -m4
23303 @opindex m4
23304 Generate code for the SH4.
23305
23306 @item -m4-100
23307 @opindex m4-100
23308 Generate code for SH4-100.
23309
23310 @item -m4-100-nofpu
23311 @opindex m4-100-nofpu
23312 Generate code for SH4-100 in such a way that the
23313 floating-point unit is not used.
23314
23315 @item -m4-100-single
23316 @opindex m4-100-single
23317 Generate code for SH4-100 assuming the floating-point unit is in
23318 single-precision mode by default.
23319
23320 @item -m4-100-single-only
23321 @opindex m4-100-single-only
23322 Generate code for SH4-100 in such a way that no double-precision
23323 floating-point operations are used.
23324
23325 @item -m4-200
23326 @opindex m4-200
23327 Generate code for SH4-200.
23328
23329 @item -m4-200-nofpu
23330 @opindex m4-200-nofpu
23331 Generate code for SH4-200 without in such a way that the
23332 floating-point unit is not used.
23333
23334 @item -m4-200-single
23335 @opindex m4-200-single
23336 Generate code for SH4-200 assuming the floating-point unit is in
23337 single-precision mode by default.
23338
23339 @item -m4-200-single-only
23340 @opindex m4-200-single-only
23341 Generate code for SH4-200 in such a way that no double-precision
23342 floating-point operations are used.
23343
23344 @item -m4-300
23345 @opindex m4-300
23346 Generate code for SH4-300.
23347
23348 @item -m4-300-nofpu
23349 @opindex m4-300-nofpu
23350 Generate code for SH4-300 without in such a way that the
23351 floating-point unit is not used.
23352
23353 @item -m4-300-single
23354 @opindex m4-300-single
23355 Generate code for SH4-300 in such a way that no double-precision
23356 floating-point operations are used.
23357
23358 @item -m4-300-single-only
23359 @opindex m4-300-single-only
23360 Generate code for SH4-300 in such a way that no double-precision
23361 floating-point operations are used.
23362
23363 @item -m4-340
23364 @opindex m4-340
23365 Generate code for SH4-340 (no MMU, no FPU).
23366
23367 @item -m4-500
23368 @opindex m4-500
23369 Generate code for SH4-500 (no FPU). Passes @option{-isa=sh4-nofpu} to the
23370 assembler.
23371
23372 @item -m4a-nofpu
23373 @opindex m4a-nofpu
23374 Generate code for the SH4al-dsp, or for a SH4a in such a way that the
23375 floating-point unit is not used.
23376
23377 @item -m4a-single-only
23378 @opindex m4a-single-only
23379 Generate code for the SH4a, in such a way that no double-precision
23380 floating-point operations are used.
23381
23382 @item -m4a-single
23383 @opindex m4a-single
23384 Generate code for the SH4a assuming the floating-point unit is in
23385 single-precision mode by default.
23386
23387 @item -m4a
23388 @opindex m4a
23389 Generate code for the SH4a.
23390
23391 @item -m4al
23392 @opindex m4al
23393 Same as @option{-m4a-nofpu}, except that it implicitly passes
23394 @option{-dsp} to the assembler. GCC doesn't generate any DSP
23395 instructions at the moment.
23396
23397 @item -mb
23398 @opindex mb
23399 Compile code for the processor in big-endian mode.
23400
23401 @item -ml
23402 @opindex ml
23403 Compile code for the processor in little-endian mode.
23404
23405 @item -mdalign
23406 @opindex mdalign
23407 Align doubles at 64-bit boundaries. Note that this changes the calling
23408 conventions, and thus some functions from the standard C library do
23409 not work unless you recompile it first with @option{-mdalign}.
23410
23411 @item -mrelax
23412 @opindex mrelax
23413 Shorten some address references at link time, when possible; uses the
23414 linker option @option{-relax}.
23415
23416 @item -mbigtable
23417 @opindex mbigtable
23418 Use 32-bit offsets in @code{switch} tables. The default is to use
23419 16-bit offsets.
23420
23421 @item -mbitops
23422 @opindex mbitops
23423 Enable the use of bit manipulation instructions on SH2A.
23424
23425 @item -mfmovd
23426 @opindex mfmovd
23427 Enable the use of the instruction @code{fmovd}. Check @option{-mdalign} for
23428 alignment constraints.
23429
23430 @item -mrenesas
23431 @opindex mrenesas
23432 Comply with the calling conventions defined by Renesas.
23433
23434 @item -mno-renesas
23435 @opindex mno-renesas
23436 Comply with the calling conventions defined for GCC before the Renesas
23437 conventions were available. This option is the default for all
23438 targets of the SH toolchain.
23439
23440 @item -mnomacsave
23441 @opindex mnomacsave
23442 Mark the @code{MAC} register as call-clobbered, even if
23443 @option{-mrenesas} is given.
23444
23445 @item -mieee
23446 @itemx -mno-ieee
23447 @opindex mieee
23448 @opindex mno-ieee
23449 Control the IEEE compliance of floating-point comparisons, which affects the
23450 handling of cases where the result of a comparison is unordered. By default
23451 @option{-mieee} is implicitly enabled. If @option{-ffinite-math-only} is
23452 enabled @option{-mno-ieee} is implicitly set, which results in faster
23453 floating-point greater-equal and less-equal comparisons. The implicit settings
23454 can be overridden by specifying either @option{-mieee} or @option{-mno-ieee}.
23455
23456 @item -minline-ic_invalidate
23457 @opindex minline-ic_invalidate
23458 Inline code to invalidate instruction cache entries after setting up
23459 nested function trampolines.
23460 This option has no effect if @option{-musermode} is in effect and the selected
23461 code generation option (e.g. @option{-m4}) does not allow the use of the @code{icbi}
23462 instruction.
23463 If the selected code generation option does not allow the use of the @code{icbi}
23464 instruction, and @option{-musermode} is not in effect, the inlined code
23465 manipulates the instruction cache address array directly with an associative
23466 write. This not only requires privileged mode at run time, but it also
23467 fails if the cache line had been mapped via the TLB and has become unmapped.
23468
23469 @item -misize
23470 @opindex misize
23471 Dump instruction size and location in the assembly code.
23472
23473 @item -mpadstruct
23474 @opindex mpadstruct
23475 This option is deprecated. It pads structures to multiple of 4 bytes,
23476 which is incompatible with the SH ABI@.
23477
23478 @item -matomic-model=@var{model}
23479 @opindex matomic-model=@var{model}
23480 Sets the model of atomic operations and additional parameters as a comma
23481 separated list. For details on the atomic built-in functions see
23482 @ref{__atomic Builtins}. The following models and parameters are supported:
23483
23484 @table @samp
23485
23486 @item none
23487 Disable compiler generated atomic sequences and emit library calls for atomic
23488 operations. This is the default if the target is not @code{sh*-*-linux*}.
23489
23490 @item soft-gusa
23491 Generate GNU/Linux compatible gUSA software atomic sequences for the atomic
23492 built-in functions. The generated atomic sequences require additional support
23493 from the interrupt/exception handling code of the system and are only suitable
23494 for SH3* and SH4* single-core systems. This option is enabled by default when
23495 the target is @code{sh*-*-linux*} and SH3* or SH4*. When the target is SH4A,
23496 this option also partially utilizes the hardware atomic instructions
23497 @code{movli.l} and @code{movco.l} to create more efficient code, unless
23498 @samp{strict} is specified.
23499
23500 @item soft-tcb
23501 Generate software atomic sequences that use a variable in the thread control
23502 block. This is a variation of the gUSA sequences which can also be used on
23503 SH1* and SH2* targets. The generated atomic sequences require additional
23504 support from the interrupt/exception handling code of the system and are only
23505 suitable for single-core systems. When using this model, the @samp{gbr-offset=}
23506 parameter has to be specified as well.
23507
23508 @item soft-imask
23509 Generate software atomic sequences that temporarily disable interrupts by
23510 setting @code{SR.IMASK = 1111}. This model works only when the program runs
23511 in privileged mode and is only suitable for single-core systems. Additional
23512 support from the interrupt/exception handling code of the system is not
23513 required. This model is enabled by default when the target is
23514 @code{sh*-*-linux*} and SH1* or SH2*.
23515
23516 @item hard-llcs
23517 Generate hardware atomic sequences using the @code{movli.l} and @code{movco.l}
23518 instructions only. This is only available on SH4A and is suitable for
23519 multi-core systems. Since the hardware instructions support only 32 bit atomic
23520 variables access to 8 or 16 bit variables is emulated with 32 bit accesses.
23521 Code compiled with this option is also compatible with other software
23522 atomic model interrupt/exception handling systems if executed on an SH4A
23523 system. Additional support from the interrupt/exception handling code of the
23524 system is not required for this model.
23525
23526 @item gbr-offset=
23527 This parameter specifies the offset in bytes of the variable in the thread
23528 control block structure that should be used by the generated atomic sequences
23529 when the @samp{soft-tcb} model has been selected. For other models this
23530 parameter is ignored. The specified value must be an integer multiple of four
23531 and in the range 0-1020.
23532
23533 @item strict
23534 This parameter prevents mixed usage of multiple atomic models, even if they
23535 are compatible, and makes the compiler generate atomic sequences of the
23536 specified model only.
23537
23538 @end table
23539
23540 @item -mtas
23541 @opindex mtas
23542 Generate the @code{tas.b} opcode for @code{__atomic_test_and_set}.
23543 Notice that depending on the particular hardware and software configuration
23544 this can degrade overall performance due to the operand cache line flushes
23545 that are implied by the @code{tas.b} instruction. On multi-core SH4A
23546 processors the @code{tas.b} instruction must be used with caution since it
23547 can result in data corruption for certain cache configurations.
23548
23549 @item -mprefergot
23550 @opindex mprefergot
23551 When generating position-independent code, emit function calls using
23552 the Global Offset Table instead of the Procedure Linkage Table.
23553
23554 @item -musermode
23555 @itemx -mno-usermode
23556 @opindex musermode
23557 @opindex mno-usermode
23558 Don't allow (allow) the compiler generating privileged mode code. Specifying
23559 @option{-musermode} also implies @option{-mno-inline-ic_invalidate} if the
23560 inlined code would not work in user mode. @option{-musermode} is the default
23561 when the target is @code{sh*-*-linux*}. If the target is SH1* or SH2*
23562 @option{-musermode} has no effect, since there is no user mode.
23563
23564 @item -multcost=@var{number}
23565 @opindex multcost=@var{number}
23566 Set the cost to assume for a multiply insn.
23567
23568 @item -mdiv=@var{strategy}
23569 @opindex mdiv=@var{strategy}
23570 Set the division strategy to be used for integer division operations.
23571 @var{strategy} can be one of:
23572
23573 @table @samp
23574
23575 @item call-div1
23576 Calls a library function that uses the single-step division instruction
23577 @code{div1} to perform the operation. Division by zero calculates an
23578 unspecified result and does not trap. This is the default except for SH4,
23579 SH2A and SHcompact.
23580
23581 @item call-fp
23582 Calls a library function that performs the operation in double precision
23583 floating point. Division by zero causes a floating-point exception. This is
23584 the default for SHcompact with FPU. Specifying this for targets that do not
23585 have a double precision FPU defaults to @code{call-div1}.
23586
23587 @item call-table
23588 Calls a library function that uses a lookup table for small divisors and
23589 the @code{div1} instruction with case distinction for larger divisors. Division
23590 by zero calculates an unspecified result and does not trap. This is the default
23591 for SH4. Specifying this for targets that do not have dynamic shift
23592 instructions defaults to @code{call-div1}.
23593
23594 @end table
23595
23596 When a division strategy has not been specified the default strategy is
23597 selected based on the current target. For SH2A the default strategy is to
23598 use the @code{divs} and @code{divu} instructions instead of library function
23599 calls.
23600
23601 @item -maccumulate-outgoing-args
23602 @opindex maccumulate-outgoing-args
23603 Reserve space once for outgoing arguments in the function prologue rather
23604 than around each call. Generally beneficial for performance and size. Also
23605 needed for unwinding to avoid changing the stack frame around conditional code.
23606
23607 @item -mdivsi3_libfunc=@var{name}
23608 @opindex mdivsi3_libfunc=@var{name}
23609 Set the name of the library function used for 32-bit signed division to
23610 @var{name}.
23611 This only affects the name used in the @samp{call} division strategies, and
23612 the compiler still expects the same sets of input/output/clobbered registers as
23613 if this option were not present.
23614
23615 @item -mfixed-range=@var{register-range}
23616 @opindex mfixed-range
23617 Generate code treating the given register range as fixed registers.
23618 A fixed register is one that the register allocator can not use. This is
23619 useful when compiling kernel code. A register range is specified as
23620 two registers separated by a dash. Multiple register ranges can be
23621 specified separated by a comma.
23622
23623 @item -mbranch-cost=@var{num}
23624 @opindex mbranch-cost=@var{num}
23625 Assume @var{num} to be the cost for a branch instruction. Higher numbers
23626 make the compiler try to generate more branch-free code if possible.
23627 If not specified the value is selected depending on the processor type that
23628 is being compiled for.
23629
23630 @item -mzdcbranch
23631 @itemx -mno-zdcbranch
23632 @opindex mzdcbranch
23633 @opindex mno-zdcbranch
23634 Assume (do not assume) that zero displacement conditional branch instructions
23635 @code{bt} and @code{bf} are fast. If @option{-mzdcbranch} is specified, the
23636 compiler prefers zero displacement branch code sequences. This is
23637 enabled by default when generating code for SH4 and SH4A. It can be explicitly
23638 disabled by specifying @option{-mno-zdcbranch}.
23639
23640 @item -mcbranch-force-delay-slot
23641 @opindex mcbranch-force-delay-slot
23642 Force the usage of delay slots for conditional branches, which stuffs the delay
23643 slot with a @code{nop} if a suitable instruction cannot be found. By default
23644 this option is disabled. It can be enabled to work around hardware bugs as
23645 found in the original SH7055.
23646
23647 @item -mfused-madd
23648 @itemx -mno-fused-madd
23649 @opindex mfused-madd
23650 @opindex mno-fused-madd
23651 Generate code that uses (does not use) the floating-point multiply and
23652 accumulate instructions. These instructions are generated by default
23653 if hardware floating point is used. The machine-dependent
23654 @option{-mfused-madd} option is now mapped to the machine-independent
23655 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
23656 mapped to @option{-ffp-contract=off}.
23657
23658 @item -mfsca
23659 @itemx -mno-fsca
23660 @opindex mfsca
23661 @opindex mno-fsca
23662 Allow or disallow the compiler to emit the @code{fsca} instruction for sine
23663 and cosine approximations. The option @option{-mfsca} must be used in
23664 combination with @option{-funsafe-math-optimizations}. It is enabled by default
23665 when generating code for SH4A. Using @option{-mno-fsca} disables sine and cosine
23666 approximations even if @option{-funsafe-math-optimizations} is in effect.
23667
23668 @item -mfsrra
23669 @itemx -mno-fsrra
23670 @opindex mfsrra
23671 @opindex mno-fsrra
23672 Allow or disallow the compiler to emit the @code{fsrra} instruction for
23673 reciprocal square root approximations. The option @option{-mfsrra} must be used
23674 in combination with @option{-funsafe-math-optimizations} and
23675 @option{-ffinite-math-only}. It is enabled by default when generating code for
23676 SH4A. Using @option{-mno-fsrra} disables reciprocal square root approximations
23677 even if @option{-funsafe-math-optimizations} and @option{-ffinite-math-only} are
23678 in effect.
23679
23680 @item -mpretend-cmove
23681 @opindex mpretend-cmove
23682 Prefer zero-displacement conditional branches for conditional move instruction
23683 patterns. This can result in faster code on the SH4 processor.
23684
23685 @item -mfdpic
23686 @opindex fdpic
23687 Generate code using the FDPIC ABI.
23688
23689 @end table
23690
23691 @node Solaris 2 Options
23692 @subsection Solaris 2 Options
23693 @cindex Solaris 2 options
23694
23695 These @samp{-m} options are supported on Solaris 2:
23696
23697 @table @gcctabopt
23698 @item -mclear-hwcap
23699 @opindex mclear-hwcap
23700 @option{-mclear-hwcap} tells the compiler to remove the hardware
23701 capabilities generated by the Solaris assembler. This is only necessary
23702 when object files use ISA extensions not supported by the current
23703 machine, but check at runtime whether or not to use them.
23704
23705 @item -mimpure-text
23706 @opindex mimpure-text
23707 @option{-mimpure-text}, used in addition to @option{-shared}, tells
23708 the compiler to not pass @option{-z text} to the linker when linking a
23709 shared object. Using this option, you can link position-dependent
23710 code into a shared object.
23711
23712 @option{-mimpure-text} suppresses the ``relocations remain against
23713 allocatable but non-writable sections'' linker error message.
23714 However, the necessary relocations trigger copy-on-write, and the
23715 shared object is not actually shared across processes. Instead of
23716 using @option{-mimpure-text}, you should compile all source code with
23717 @option{-fpic} or @option{-fPIC}.
23718
23719 @end table
23720
23721 These switches are supported in addition to the above on Solaris 2:
23722
23723 @table @gcctabopt
23724 @item -pthreads
23725 @opindex pthreads
23726 This is a synonym for @option{-pthread}.
23727 @end table
23728
23729 @node SPARC Options
23730 @subsection SPARC Options
23731 @cindex SPARC options
23732
23733 These @samp{-m} options are supported on the SPARC:
23734
23735 @table @gcctabopt
23736 @item -mno-app-regs
23737 @itemx -mapp-regs
23738 @opindex mno-app-regs
23739 @opindex mapp-regs
23740 Specify @option{-mapp-regs} to generate output using the global registers
23741 2 through 4, which the SPARC SVR4 ABI reserves for applications. Like the
23742 global register 1, each global register 2 through 4 is then treated as an
23743 allocable register that is clobbered by function calls. This is the default.
23744
23745 To be fully SVR4 ABI-compliant at the cost of some performance loss,
23746 specify @option{-mno-app-regs}. You should compile libraries and system
23747 software with this option.
23748
23749 @item -mflat
23750 @itemx -mno-flat
23751 @opindex mflat
23752 @opindex mno-flat
23753 With @option{-mflat}, the compiler does not generate save/restore instructions
23754 and uses a ``flat'' or single register window model. This model is compatible
23755 with the regular register window model. The local registers and the input
23756 registers (0--5) are still treated as ``call-saved'' registers and are
23757 saved on the stack as needed.
23758
23759 With @option{-mno-flat} (the default), the compiler generates save/restore
23760 instructions (except for leaf functions). This is the normal operating mode.
23761
23762 @item -mfpu
23763 @itemx -mhard-float
23764 @opindex mfpu
23765 @opindex mhard-float
23766 Generate output containing floating-point instructions. This is the
23767 default.
23768
23769 @item -mno-fpu
23770 @itemx -msoft-float
23771 @opindex mno-fpu
23772 @opindex msoft-float
23773 Generate output containing library calls for floating point.
23774 @strong{Warning:} the requisite libraries are not available for all SPARC
23775 targets. Normally the facilities of the machine's usual C compiler are
23776 used, but this cannot be done directly in cross-compilation. You must make
23777 your own arrangements to provide suitable library functions for
23778 cross-compilation. The embedded targets @samp{sparc-*-aout} and
23779 @samp{sparclite-*-*} do provide software floating-point support.
23780
23781 @option{-msoft-float} changes the calling convention in the output file;
23782 therefore, it is only useful if you compile @emph{all} of a program with
23783 this option. In particular, you need to compile @file{libgcc.a}, the
23784 library that comes with GCC, with @option{-msoft-float} in order for
23785 this to work.
23786
23787 @item -mhard-quad-float
23788 @opindex mhard-quad-float
23789 Generate output containing quad-word (long double) floating-point
23790 instructions.
23791
23792 @item -msoft-quad-float
23793 @opindex msoft-quad-float
23794 Generate output containing library calls for quad-word (long double)
23795 floating-point instructions. The functions called are those specified
23796 in the SPARC ABI@. This is the default.
23797
23798 As of this writing, there are no SPARC implementations that have hardware
23799 support for the quad-word floating-point instructions. They all invoke
23800 a trap handler for one of these instructions, and then the trap handler
23801 emulates the effect of the instruction. Because of the trap handler overhead,
23802 this is much slower than calling the ABI library routines. Thus the
23803 @option{-msoft-quad-float} option is the default.
23804
23805 @item -mno-unaligned-doubles
23806 @itemx -munaligned-doubles
23807 @opindex mno-unaligned-doubles
23808 @opindex munaligned-doubles
23809 Assume that doubles have 8-byte alignment. This is the default.
23810
23811 With @option{-munaligned-doubles}, GCC assumes that doubles have 8-byte
23812 alignment only if they are contained in another type, or if they have an
23813 absolute address. Otherwise, it assumes they have 4-byte alignment.
23814 Specifying this option avoids some rare compatibility problems with code
23815 generated by other compilers. It is not the default because it results
23816 in a performance loss, especially for floating-point code.
23817
23818 @item -muser-mode
23819 @itemx -mno-user-mode
23820 @opindex muser-mode
23821 @opindex mno-user-mode
23822 Do not generate code that can only run in supervisor mode. This is relevant
23823 only for the @code{casa} instruction emitted for the LEON3 processor. This
23824 is the default.
23825
23826 @item -mfaster-structs
23827 @itemx -mno-faster-structs
23828 @opindex mfaster-structs
23829 @opindex mno-faster-structs
23830 With @option{-mfaster-structs}, the compiler assumes that structures
23831 should have 8-byte alignment. This enables the use of pairs of
23832 @code{ldd} and @code{std} instructions for copies in structure
23833 assignment, in place of twice as many @code{ld} and @code{st} pairs.
23834 However, the use of this changed alignment directly violates the SPARC
23835 ABI@. Thus, it's intended only for use on targets where the developer
23836 acknowledges that their resulting code is not directly in line with
23837 the rules of the ABI@.
23838
23839 @item -mstd-struct-return
23840 @itemx -mno-std-struct-return
23841 @opindex mstd-struct-return
23842 @opindex mno-std-struct-return
23843 With @option{-mstd-struct-return}, the compiler generates checking code
23844 in functions returning structures or unions to detect size mismatches
23845 between the two sides of function calls, as per the 32-bit ABI@.
23846
23847 The default is @option{-mno-std-struct-return}. This option has no effect
23848 in 64-bit mode.
23849
23850 @item -mlra
23851 @itemx -mno-lra
23852 @opindex mlra
23853 @opindex mno-lra
23854 Enable Local Register Allocation. This is the default for SPARC since GCC 7
23855 so @option{-mno-lra} needs to be passed to get old Reload.
23856
23857 @item -mcpu=@var{cpu_type}
23858 @opindex mcpu
23859 Set the instruction set, register set, and instruction scheduling parameters
23860 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
23861 @samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{hypersparc},
23862 @samp{leon}, @samp{leon3}, @samp{leon3v7}, @samp{sparclite}, @samp{f930},
23863 @samp{f934}, @samp{sparclite86x}, @samp{sparclet}, @samp{tsc701}, @samp{v9},
23864 @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
23865 @samp{niagara3}, @samp{niagara4} and @samp{niagara7}.
23866
23867 Native Solaris and GNU/Linux toolchains also support the value @samp{native},
23868 which selects the best architecture option for the host processor.
23869 @option{-mcpu=native} has no effect if GCC does not recognize
23870 the processor.
23871
23872 Default instruction scheduling parameters are used for values that select
23873 an architecture and not an implementation. These are @samp{v7}, @samp{v8},
23874 @samp{sparclite}, @samp{sparclet}, @samp{v9}.
23875
23876 Here is a list of each supported architecture and their supported
23877 implementations.
23878
23879 @table @asis
23880 @item v7
23881 cypress, leon3v7
23882
23883 @item v8
23884 supersparc, hypersparc, leon, leon3
23885
23886 @item sparclite
23887 f930, f934, sparclite86x
23888
23889 @item sparclet
23890 tsc701
23891
23892 @item v9
23893 ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4, niagara7
23894 @end table
23895
23896 By default (unless configured otherwise), GCC generates code for the V7
23897 variant of the SPARC architecture. With @option{-mcpu=cypress}, the compiler
23898 additionally optimizes it for the Cypress CY7C602 chip, as used in the
23899 SPARCStation/SPARCServer 3xx series. This is also appropriate for the older
23900 SPARCStation 1, 2, IPX etc.
23901
23902 With @option{-mcpu=v8}, GCC generates code for the V8 variant of the SPARC
23903 architecture. The only difference from V7 code is that the compiler emits
23904 the integer multiply and integer divide instructions which exist in SPARC-V8
23905 but not in SPARC-V7. With @option{-mcpu=supersparc}, the compiler additionally
23906 optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
23907 2000 series.
23908
23909 With @option{-mcpu=sparclite}, GCC generates code for the SPARClite variant of
23910 the SPARC architecture. This adds the integer multiply, integer divide step
23911 and scan (@code{ffs}) instructions which exist in SPARClite but not in SPARC-V7.
23912 With @option{-mcpu=f930}, the compiler additionally optimizes it for the
23913 Fujitsu MB86930 chip, which is the original SPARClite, with no FPU@. With
23914 @option{-mcpu=f934}, the compiler additionally optimizes it for the Fujitsu
23915 MB86934 chip, which is the more recent SPARClite with FPU@.
23916
23917 With @option{-mcpu=sparclet}, GCC generates code for the SPARClet variant of
23918 the SPARC architecture. This adds the integer multiply, multiply/accumulate,
23919 integer divide step and scan (@code{ffs}) instructions which exist in SPARClet
23920 but not in SPARC-V7. With @option{-mcpu=tsc701}, the compiler additionally
23921 optimizes it for the TEMIC SPARClet chip.
23922
23923 With @option{-mcpu=v9}, GCC generates code for the V9 variant of the SPARC
23924 architecture. This adds 64-bit integer and floating-point move instructions,
23925 3 additional floating-point condition code registers and conditional move
23926 instructions. With @option{-mcpu=ultrasparc}, the compiler additionally
23927 optimizes it for the Sun UltraSPARC I/II/IIi chips. With
23928 @option{-mcpu=ultrasparc3}, the compiler additionally optimizes it for the
23929 Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips. With
23930 @option{-mcpu=niagara}, the compiler additionally optimizes it for
23931 Sun UltraSPARC T1 chips. With @option{-mcpu=niagara2}, the compiler
23932 additionally optimizes it for Sun UltraSPARC T2 chips. With
23933 @option{-mcpu=niagara3}, the compiler additionally optimizes it for Sun
23934 UltraSPARC T3 chips. With @option{-mcpu=niagara4}, the compiler
23935 additionally optimizes it for Sun UltraSPARC T4 chips. With
23936 @option{-mcpu=niagara7}, the compiler additionally optimizes it for
23937 Oracle SPARC M7 chips.
23938
23939 @item -mtune=@var{cpu_type}
23940 @opindex mtune
23941 Set the instruction scheduling parameters for machine type
23942 @var{cpu_type}, but do not set the instruction set or register set that the
23943 option @option{-mcpu=@var{cpu_type}} does.
23944
23945 The same values for @option{-mcpu=@var{cpu_type}} can be used for
23946 @option{-mtune=@var{cpu_type}}, but the only useful values are those
23947 that select a particular CPU implementation. Those are
23948 @samp{cypress}, @samp{supersparc}, @samp{hypersparc}, @samp{leon},
23949 @samp{leon3}, @samp{leon3v7}, @samp{f930}, @samp{f934},
23950 @samp{sparclite86x}, @samp{tsc701}, @samp{ultrasparc},
23951 @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2}, @samp{niagara3},
23952 @samp{niagara4} and @samp{niagara7}. With native Solaris and
23953 GNU/Linux toolchains, @samp{native} can also be used.
23954
23955 @item -mv8plus
23956 @itemx -mno-v8plus
23957 @opindex mv8plus
23958 @opindex mno-v8plus
23959 With @option{-mv8plus}, GCC generates code for the SPARC-V8+ ABI@. The
23960 difference from the V8 ABI is that the global and out registers are
23961 considered 64 bits wide. This is enabled by default on Solaris in 32-bit
23962 mode for all SPARC-V9 processors.
23963
23964 @item -mvis
23965 @itemx -mno-vis
23966 @opindex mvis
23967 @opindex mno-vis
23968 With @option{-mvis}, GCC generates code that takes advantage of the UltraSPARC
23969 Visual Instruction Set extensions. The default is @option{-mno-vis}.
23970
23971 @item -mvis2
23972 @itemx -mno-vis2
23973 @opindex mvis2
23974 @opindex mno-vis2
23975 With @option{-mvis2}, GCC generates code that takes advantage of
23976 version 2.0 of the UltraSPARC Visual Instruction Set extensions. The
23977 default is @option{-mvis2} when targeting a cpu that supports such
23978 instructions, such as UltraSPARC-III and later. Setting @option{-mvis2}
23979 also sets @option{-mvis}.
23980
23981 @item -mvis3
23982 @itemx -mno-vis3
23983 @opindex mvis3
23984 @opindex mno-vis3
23985 With @option{-mvis3}, GCC generates code that takes advantage of
23986 version 3.0 of the UltraSPARC Visual Instruction Set extensions. The
23987 default is @option{-mvis3} when targeting a cpu that supports such
23988 instructions, such as niagara-3 and later. Setting @option{-mvis3}
23989 also sets @option{-mvis2} and @option{-mvis}.
23990
23991 @item -mvis4
23992 @itemx -mno-vis4
23993 @opindex mvis4
23994 @opindex mno-vis4
23995 With @option{-mvis4}, GCC generates code that takes advantage of
23996 version 4.0 of the UltraSPARC Visual Instruction Set extensions. The
23997 default is @option{-mvis4} when targeting a cpu that supports such
23998 instructions, such as niagara-7 and later. Setting @option{-mvis4}
23999 also sets @option{-mvis3}, @option{-mvis2} and @option{-mvis}.
24000
24001 @item -mcbcond
24002 @itemx -mno-cbcond
24003 @opindex mcbcond
24004 @opindex mno-cbcond
24005 With @option{-mcbcond}, GCC generates code that takes advantage of the UltraSPARC
24006 Compare-and-Branch-on-Condition instructions. The default is @option{-mcbcond}
24007 when targeting a CPU that supports such instructions, such as Niagara-4 and
24008 later.
24009
24010 @item -mfmaf
24011 @itemx -mno-fmaf
24012 @opindex mfmaf
24013 @opindex mno-fmaf
24014 With @option{-mfmaf}, GCC generates code that takes advantage of the UltraSPARC
24015 Fused Multiply-Add Floating-point instructions. The default is @option{-mfmaf}
24016 when targeting a CPU that supports such instructions, such as Niagara-3 and
24017 later.
24018
24019 @item -mpopc
24020 @itemx -mno-popc
24021 @opindex mpopc
24022 @opindex mno-popc
24023 With @option{-mpopc}, GCC generates code that takes advantage of the UltraSPARC
24024 Population Count instruction. The default is @option{-mpopc}
24025 when targeting a CPU that supports such an instruction, such as Niagara-2 and
24026 later.
24027
24028 @item -msubxc
24029 @itemx -mno-subxc
24030 @opindex msubxc
24031 @opindex mno-subxc
24032 With @option{-msubxc}, GCC generates code that takes advantage of the UltraSPARC
24033 Subtract-Extended-with-Carry instruction. The default is @option{-msubxc}
24034 when targeting a CPU that supports such an instruction, such as Niagara-7 and
24035 later.
24036
24037 @item -mfix-at697f
24038 @opindex mfix-at697f
24039 Enable the documented workaround for the single erratum of the Atmel AT697F
24040 processor (which corresponds to erratum #13 of the AT697E processor).
24041
24042 @item -mfix-ut699
24043 @opindex mfix-ut699
24044 Enable the documented workarounds for the floating-point errata and the data
24045 cache nullify errata of the UT699 processor.
24046 @end table
24047
24048 These @samp{-m} options are supported in addition to the above
24049 on SPARC-V9 processors in 64-bit environments:
24050
24051 @table @gcctabopt
24052 @item -m32
24053 @itemx -m64
24054 @opindex m32
24055 @opindex m64
24056 Generate code for a 32-bit or 64-bit environment.
24057 The 32-bit environment sets int, long and pointer to 32 bits.
24058 The 64-bit environment sets int to 32 bits and long and pointer
24059 to 64 bits.
24060
24061 @item -mcmodel=@var{which}
24062 @opindex mcmodel
24063 Set the code model to one of
24064
24065 @table @samp
24066 @item medlow
24067 The Medium/Low code model: 64-bit addresses, programs
24068 must be linked in the low 32 bits of memory. Programs can be statically
24069 or dynamically linked.
24070
24071 @item medmid
24072 The Medium/Middle code model: 64-bit addresses, programs
24073 must be linked in the low 44 bits of memory, the text and data segments must
24074 be less than 2GB in size and the data segment must be located within 2GB of
24075 the text segment.
24076
24077 @item medany
24078 The Medium/Anywhere code model: 64-bit addresses, programs
24079 may be linked anywhere in memory, the text and data segments must be less
24080 than 2GB in size and the data segment must be located within 2GB of the
24081 text segment.
24082
24083 @item embmedany
24084 The Medium/Anywhere code model for embedded systems:
24085 64-bit addresses, the text and data segments must be less than 2GB in
24086 size, both starting anywhere in memory (determined at link time). The
24087 global register %g4 points to the base of the data segment. Programs
24088 are statically linked and PIC is not supported.
24089 @end table
24090
24091 @item -mmemory-model=@var{mem-model}
24092 @opindex mmemory-model
24093 Set the memory model in force on the processor to one of
24094
24095 @table @samp
24096 @item default
24097 The default memory model for the processor and operating system.
24098
24099 @item rmo
24100 Relaxed Memory Order
24101
24102 @item pso
24103 Partial Store Order
24104
24105 @item tso
24106 Total Store Order
24107
24108 @item sc
24109 Sequential Consistency
24110 @end table
24111
24112 These memory models are formally defined in Appendix D of the SPARC-V9
24113 architecture manual, as set in the processor's @code{PSTATE.MM} field.
24114
24115 @item -mstack-bias
24116 @itemx -mno-stack-bias
24117 @opindex mstack-bias
24118 @opindex mno-stack-bias
24119 With @option{-mstack-bias}, GCC assumes that the stack pointer, and
24120 frame pointer if present, are offset by @minus{}2047 which must be added back
24121 when making stack frame references. This is the default in 64-bit mode.
24122 Otherwise, assume no such offset is present.
24123 @end table
24124
24125 @node SPU Options
24126 @subsection SPU Options
24127 @cindex SPU options
24128
24129 These @samp{-m} options are supported on the SPU:
24130
24131 @table @gcctabopt
24132 @item -mwarn-reloc
24133 @itemx -merror-reloc
24134 @opindex mwarn-reloc
24135 @opindex merror-reloc
24136
24137 The loader for SPU does not handle dynamic relocations. By default, GCC
24138 gives an error when it generates code that requires a dynamic
24139 relocation. @option{-mno-error-reloc} disables the error,
24140 @option{-mwarn-reloc} generates a warning instead.
24141
24142 @item -msafe-dma
24143 @itemx -munsafe-dma
24144 @opindex msafe-dma
24145 @opindex munsafe-dma
24146
24147 Instructions that initiate or test completion of DMA must not be
24148 reordered with respect to loads and stores of the memory that is being
24149 accessed.
24150 With @option{-munsafe-dma} you must use the @code{volatile} keyword to protect
24151 memory accesses, but that can lead to inefficient code in places where the
24152 memory is known to not change. Rather than mark the memory as volatile,
24153 you can use @option{-msafe-dma} to tell the compiler to treat
24154 the DMA instructions as potentially affecting all memory.
24155
24156 @item -mbranch-hints
24157 @opindex mbranch-hints
24158
24159 By default, GCC generates a branch hint instruction to avoid
24160 pipeline stalls for always-taken or probably-taken branches. A hint
24161 is not generated closer than 8 instructions away from its branch.
24162 There is little reason to disable them, except for debugging purposes,
24163 or to make an object a little bit smaller.
24164
24165 @item -msmall-mem
24166 @itemx -mlarge-mem
24167 @opindex msmall-mem
24168 @opindex mlarge-mem
24169
24170 By default, GCC generates code assuming that addresses are never larger
24171 than 18 bits. With @option{-mlarge-mem} code is generated that assumes
24172 a full 32-bit address.
24173
24174 @item -mstdmain
24175 @opindex mstdmain
24176
24177 By default, GCC links against startup code that assumes the SPU-style
24178 main function interface (which has an unconventional parameter list).
24179 With @option{-mstdmain}, GCC links your program against startup
24180 code that assumes a C99-style interface to @code{main}, including a
24181 local copy of @code{argv} strings.
24182
24183 @item -mfixed-range=@var{register-range}
24184 @opindex mfixed-range
24185 Generate code treating the given register range as fixed registers.
24186 A fixed register is one that the register allocator cannot use. This is
24187 useful when compiling kernel code. A register range is specified as
24188 two registers separated by a dash. Multiple register ranges can be
24189 specified separated by a comma.
24190
24191 @item -mea32
24192 @itemx -mea64
24193 @opindex mea32
24194 @opindex mea64
24195 Compile code assuming that pointers to the PPU address space accessed
24196 via the @code{__ea} named address space qualifier are either 32 or 64
24197 bits wide. The default is 32 bits. As this is an ABI-changing option,
24198 all object code in an executable must be compiled with the same setting.
24199
24200 @item -maddress-space-conversion
24201 @itemx -mno-address-space-conversion
24202 @opindex maddress-space-conversion
24203 @opindex mno-address-space-conversion
24204 Allow/disallow treating the @code{__ea} address space as superset
24205 of the generic address space. This enables explicit type casts
24206 between @code{__ea} and generic pointer as well as implicit
24207 conversions of generic pointers to @code{__ea} pointers. The
24208 default is to allow address space pointer conversions.
24209
24210 @item -mcache-size=@var{cache-size}
24211 @opindex mcache-size
24212 This option controls the version of libgcc that the compiler links to an
24213 executable and selects a software-managed cache for accessing variables
24214 in the @code{__ea} address space with a particular cache size. Possible
24215 options for @var{cache-size} are @samp{8}, @samp{16}, @samp{32}, @samp{64}
24216 and @samp{128}. The default cache size is 64KB.
24217
24218 @item -matomic-updates
24219 @itemx -mno-atomic-updates
24220 @opindex matomic-updates
24221 @opindex mno-atomic-updates
24222 This option controls the version of libgcc that the compiler links to an
24223 executable and selects whether atomic updates to the software-managed
24224 cache of PPU-side variables are used. If you use atomic updates, changes
24225 to a PPU variable from SPU code using the @code{__ea} named address space
24226 qualifier do not interfere with changes to other PPU variables residing
24227 in the same cache line from PPU code. If you do not use atomic updates,
24228 such interference may occur; however, writing back cache lines is
24229 more efficient. The default behavior is to use atomic updates.
24230
24231 @item -mdual-nops
24232 @itemx -mdual-nops=@var{n}
24233 @opindex mdual-nops
24234 By default, GCC inserts NOPs to increase dual issue when it expects
24235 it to increase performance. @var{n} can be a value from 0 to 10. A
24236 smaller @var{n} inserts fewer NOPs. 10 is the default, 0 is the
24237 same as @option{-mno-dual-nops}. Disabled with @option{-Os}.
24238
24239 @item -mhint-max-nops=@var{n}
24240 @opindex mhint-max-nops
24241 Maximum number of NOPs to insert for a branch hint. A branch hint must
24242 be at least 8 instructions away from the branch it is affecting. GCC
24243 inserts up to @var{n} NOPs to enforce this, otherwise it does not
24244 generate the branch hint.
24245
24246 @item -mhint-max-distance=@var{n}
24247 @opindex mhint-max-distance
24248 The encoding of the branch hint instruction limits the hint to be within
24249 256 instructions of the branch it is affecting. By default, GCC makes
24250 sure it is within 125.
24251
24252 @item -msafe-hints
24253 @opindex msafe-hints
24254 Work around a hardware bug that causes the SPU to stall indefinitely.
24255 By default, GCC inserts the @code{hbrp} instruction to make sure
24256 this stall won't happen.
24257
24258 @end table
24259
24260 @node System V Options
24261 @subsection Options for System V
24262
24263 These additional options are available on System V Release 4 for
24264 compatibility with other compilers on those systems:
24265
24266 @table @gcctabopt
24267 @item -G
24268 @opindex G
24269 Create a shared object.
24270 It is recommended that @option{-symbolic} or @option{-shared} be used instead.
24271
24272 @item -Qy
24273 @opindex Qy
24274 Identify the versions of each tool used by the compiler, in a
24275 @code{.ident} assembler directive in the output.
24276
24277 @item -Qn
24278 @opindex Qn
24279 Refrain from adding @code{.ident} directives to the output file (this is
24280 the default).
24281
24282 @item -YP,@var{dirs}
24283 @opindex YP
24284 Search the directories @var{dirs}, and no others, for libraries
24285 specified with @option{-l}.
24286
24287 @item -Ym,@var{dir}
24288 @opindex Ym
24289 Look in the directory @var{dir} to find the M4 preprocessor.
24290 The assembler uses this option.
24291 @c This is supposed to go with a -Yd for predefined M4 macro files, but
24292 @c the generic assembler that comes with Solaris takes just -Ym.
24293 @end table
24294
24295 @node TILE-Gx Options
24296 @subsection TILE-Gx Options
24297 @cindex TILE-Gx options
24298
24299 These @samp{-m} options are supported on the TILE-Gx:
24300
24301 @table @gcctabopt
24302 @item -mcmodel=small
24303 @opindex mcmodel=small
24304 Generate code for the small model. The distance for direct calls is
24305 limited to 500M in either direction. PC-relative addresses are 32
24306 bits. Absolute addresses support the full address range.
24307
24308 @item -mcmodel=large
24309 @opindex mcmodel=large
24310 Generate code for the large model. There is no limitation on call
24311 distance, pc-relative addresses, or absolute addresses.
24312
24313 @item -mcpu=@var{name}
24314 @opindex mcpu
24315 Selects the type of CPU to be targeted. Currently the only supported
24316 type is @samp{tilegx}.
24317
24318 @item -m32
24319 @itemx -m64
24320 @opindex m32
24321 @opindex m64
24322 Generate code for a 32-bit or 64-bit environment. The 32-bit
24323 environment sets int, long, and pointer to 32 bits. The 64-bit
24324 environment sets int to 32 bits and long and pointer to 64 bits.
24325
24326 @item -mbig-endian
24327 @itemx -mlittle-endian
24328 @opindex mbig-endian
24329 @opindex mlittle-endian
24330 Generate code in big/little endian mode, respectively.
24331 @end table
24332
24333 @node TILEPro Options
24334 @subsection TILEPro Options
24335 @cindex TILEPro options
24336
24337 These @samp{-m} options are supported on the TILEPro:
24338
24339 @table @gcctabopt
24340 @item -mcpu=@var{name}
24341 @opindex mcpu
24342 Selects the type of CPU to be targeted. Currently the only supported
24343 type is @samp{tilepro}.
24344
24345 @item -m32
24346 @opindex m32
24347 Generate code for a 32-bit environment, which sets int, long, and
24348 pointer to 32 bits. This is the only supported behavior so the flag
24349 is essentially ignored.
24350 @end table
24351
24352 @node V850 Options
24353 @subsection V850 Options
24354 @cindex V850 Options
24355
24356 These @samp{-m} options are defined for V850 implementations:
24357
24358 @table @gcctabopt
24359 @item -mlong-calls
24360 @itemx -mno-long-calls
24361 @opindex mlong-calls
24362 @opindex mno-long-calls
24363 Treat all calls as being far away (near). If calls are assumed to be
24364 far away, the compiler always loads the function's address into a
24365 register, and calls indirect through the pointer.
24366
24367 @item -mno-ep
24368 @itemx -mep
24369 @opindex mno-ep
24370 @opindex mep
24371 Do not optimize (do optimize) basic blocks that use the same index
24372 pointer 4 or more times to copy pointer into the @code{ep} register, and
24373 use the shorter @code{sld} and @code{sst} instructions. The @option{-mep}
24374 option is on by default if you optimize.
24375
24376 @item -mno-prolog-function
24377 @itemx -mprolog-function
24378 @opindex mno-prolog-function
24379 @opindex mprolog-function
24380 Do not use (do use) external functions to save and restore registers
24381 at the prologue and epilogue of a function. The external functions
24382 are slower, but use less code space if more than one function saves
24383 the same number of registers. The @option{-mprolog-function} option
24384 is on by default if you optimize.
24385
24386 @item -mspace
24387 @opindex mspace
24388 Try to make the code as small as possible. At present, this just turns
24389 on the @option{-mep} and @option{-mprolog-function} options.
24390
24391 @item -mtda=@var{n}
24392 @opindex mtda
24393 Put static or global variables whose size is @var{n} bytes or less into
24394 the tiny data area that register @code{ep} points to. The tiny data
24395 area can hold up to 256 bytes in total (128 bytes for byte references).
24396
24397 @item -msda=@var{n}
24398 @opindex msda
24399 Put static or global variables whose size is @var{n} bytes or less into
24400 the small data area that register @code{gp} points to. The small data
24401 area can hold up to 64 kilobytes.
24402
24403 @item -mzda=@var{n}
24404 @opindex mzda
24405 Put static or global variables whose size is @var{n} bytes or less into
24406 the first 32 kilobytes of memory.
24407
24408 @item -mv850
24409 @opindex mv850
24410 Specify that the target processor is the V850.
24411
24412 @item -mv850e3v5
24413 @opindex mv850e3v5
24414 Specify that the target processor is the V850E3V5. The preprocessor
24415 constant @code{__v850e3v5__} is defined if this option is used.
24416
24417 @item -mv850e2v4
24418 @opindex mv850e2v4
24419 Specify that the target processor is the V850E3V5. This is an alias for
24420 the @option{-mv850e3v5} option.
24421
24422 @item -mv850e2v3
24423 @opindex mv850e2v3
24424 Specify that the target processor is the V850E2V3. The preprocessor
24425 constant @code{__v850e2v3__} is defined if this option is used.
24426
24427 @item -mv850e2
24428 @opindex mv850e2
24429 Specify that the target processor is the V850E2. The preprocessor
24430 constant @code{__v850e2__} is defined if this option is used.
24431
24432 @item -mv850e1
24433 @opindex mv850e1
24434 Specify that the target processor is the V850E1. The preprocessor
24435 constants @code{__v850e1__} and @code{__v850e__} are defined if
24436 this option is used.
24437
24438 @item -mv850es
24439 @opindex mv850es
24440 Specify that the target processor is the V850ES. This is an alias for
24441 the @option{-mv850e1} option.
24442
24443 @item -mv850e
24444 @opindex mv850e
24445 Specify that the target processor is the V850E@. The preprocessor
24446 constant @code{__v850e__} is defined if this option is used.
24447
24448 If neither @option{-mv850} nor @option{-mv850e} nor @option{-mv850e1}
24449 nor @option{-mv850e2} nor @option{-mv850e2v3} nor @option{-mv850e3v5}
24450 are defined then a default target processor is chosen and the
24451 relevant @samp{__v850*__} preprocessor constant is defined.
24452
24453 The preprocessor constants @code{__v850} and @code{__v851__} are always
24454 defined, regardless of which processor variant is the target.
24455
24456 @item -mdisable-callt
24457 @itemx -mno-disable-callt
24458 @opindex mdisable-callt
24459 @opindex mno-disable-callt
24460 This option suppresses generation of the @code{CALLT} instruction for the
24461 v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850
24462 architecture.
24463
24464 This option is enabled by default when the RH850 ABI is
24465 in use (see @option{-mrh850-abi}), and disabled by default when the
24466 GCC ABI is in use. If @code{CALLT} instructions are being generated
24467 then the C preprocessor symbol @code{__V850_CALLT__} is defined.
24468
24469 @item -mrelax
24470 @itemx -mno-relax
24471 @opindex mrelax
24472 @opindex mno-relax
24473 Pass on (or do not pass on) the @option{-mrelax} command-line option
24474 to the assembler.
24475
24476 @item -mlong-jumps
24477 @itemx -mno-long-jumps
24478 @opindex mlong-jumps
24479 @opindex mno-long-jumps
24480 Disable (or re-enable) the generation of PC-relative jump instructions.
24481
24482 @item -msoft-float
24483 @itemx -mhard-float
24484 @opindex msoft-float
24485 @opindex mhard-float
24486 Disable (or re-enable) the generation of hardware floating point
24487 instructions. This option is only significant when the target
24488 architecture is @samp{V850E2V3} or higher. If hardware floating point
24489 instructions are being generated then the C preprocessor symbol
24490 @code{__FPU_OK__} is defined, otherwise the symbol
24491 @code{__NO_FPU__} is defined.
24492
24493 @item -mloop
24494 @opindex mloop
24495 Enables the use of the e3v5 LOOP instruction. The use of this
24496 instruction is not enabled by default when the e3v5 architecture is
24497 selected because its use is still experimental.
24498
24499 @item -mrh850-abi
24500 @itemx -mghs
24501 @opindex mrh850-abi
24502 @opindex mghs
24503 Enables support for the RH850 version of the V850 ABI. This is the
24504 default. With this version of the ABI the following rules apply:
24505
24506 @itemize
24507 @item
24508 Integer sized structures and unions are returned via a memory pointer
24509 rather than a register.
24510
24511 @item
24512 Large structures and unions (more than 8 bytes in size) are passed by
24513 value.
24514
24515 @item
24516 Functions are aligned to 16-bit boundaries.
24517
24518 @item
24519 The @option{-m8byte-align} command-line option is supported.
24520
24521 @item
24522 The @option{-mdisable-callt} command-line option is enabled by
24523 default. The @option{-mno-disable-callt} command-line option is not
24524 supported.
24525 @end itemize
24526
24527 When this version of the ABI is enabled the C preprocessor symbol
24528 @code{__V850_RH850_ABI__} is defined.
24529
24530 @item -mgcc-abi
24531 @opindex mgcc-abi
24532 Enables support for the old GCC version of the V850 ABI. With this
24533 version of the ABI the following rules apply:
24534
24535 @itemize
24536 @item
24537 Integer sized structures and unions are returned in register @code{r10}.
24538
24539 @item
24540 Large structures and unions (more than 8 bytes in size) are passed by
24541 reference.
24542
24543 @item
24544 Functions are aligned to 32-bit boundaries, unless optimizing for
24545 size.
24546
24547 @item
24548 The @option{-m8byte-align} command-line option is not supported.
24549
24550 @item
24551 The @option{-mdisable-callt} command-line option is supported but not
24552 enabled by default.
24553 @end itemize
24554
24555 When this version of the ABI is enabled the C preprocessor symbol
24556 @code{__V850_GCC_ABI__} is defined.
24557
24558 @item -m8byte-align
24559 @itemx -mno-8byte-align
24560 @opindex m8byte-align
24561 @opindex mno-8byte-align
24562 Enables support for @code{double} and @code{long long} types to be
24563 aligned on 8-byte boundaries. The default is to restrict the
24564 alignment of all objects to at most 4-bytes. When
24565 @option{-m8byte-align} is in effect the C preprocessor symbol
24566 @code{__V850_8BYTE_ALIGN__} is defined.
24567
24568 @item -mbig-switch
24569 @opindex mbig-switch
24570 Generate code suitable for big switch tables. Use this option only if
24571 the assembler/linker complain about out of range branches within a switch
24572 table.
24573
24574 @item -mapp-regs
24575 @opindex mapp-regs
24576 This option causes r2 and r5 to be used in the code generated by
24577 the compiler. This setting is the default.
24578
24579 @item -mno-app-regs
24580 @opindex mno-app-regs
24581 This option causes r2 and r5 to be treated as fixed registers.
24582
24583 @end table
24584
24585 @node VAX Options
24586 @subsection VAX Options
24587 @cindex VAX options
24588
24589 These @samp{-m} options are defined for the VAX:
24590
24591 @table @gcctabopt
24592 @item -munix
24593 @opindex munix
24594 Do not output certain jump instructions (@code{aobleq} and so on)
24595 that the Unix assembler for the VAX cannot handle across long
24596 ranges.
24597
24598 @item -mgnu
24599 @opindex mgnu
24600 Do output those jump instructions, on the assumption that the
24601 GNU assembler is being used.
24602
24603 @item -mg
24604 @opindex mg
24605 Output code for G-format floating-point numbers instead of D-format.
24606 @end table
24607
24608 @node Visium Options
24609 @subsection Visium Options
24610 @cindex Visium options
24611
24612 @table @gcctabopt
24613
24614 @item -mdebug
24615 @opindex mdebug
24616 A program which performs file I/O and is destined to run on an MCM target
24617 should be linked with this option. It causes the libraries libc.a and
24618 libdebug.a to be linked. The program should be run on the target under
24619 the control of the GDB remote debugging stub.
24620
24621 @item -msim
24622 @opindex msim
24623 A program which performs file I/O and is destined to run on the simulator
24624 should be linked with option. This causes libraries libc.a and libsim.a to
24625 be linked.
24626
24627 @item -mfpu
24628 @itemx -mhard-float
24629 @opindex mfpu
24630 @opindex mhard-float
24631 Generate code containing floating-point instructions. This is the
24632 default.
24633
24634 @item -mno-fpu
24635 @itemx -msoft-float
24636 @opindex mno-fpu
24637 @opindex msoft-float
24638 Generate code containing library calls for floating-point.
24639
24640 @option{-msoft-float} changes the calling convention in the output file;
24641 therefore, it is only useful if you compile @emph{all} of a program with
24642 this option. In particular, you need to compile @file{libgcc.a}, the
24643 library that comes with GCC, with @option{-msoft-float} in order for
24644 this to work.
24645
24646 @item -mcpu=@var{cpu_type}
24647 @opindex mcpu
24648 Set the instruction set, register set, and instruction scheduling parameters
24649 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
24650 @samp{mcm}, @samp{gr5} and @samp{gr6}.
24651
24652 @samp{mcm} is a synonym of @samp{gr5} present for backward compatibility.
24653
24654 By default (unless configured otherwise), GCC generates code for the GR5
24655 variant of the Visium architecture.
24656
24657 With @option{-mcpu=gr6}, GCC generates code for the GR6 variant of the Visium
24658 architecture. The only difference from GR5 code is that the compiler will
24659 generate block move instructions.
24660
24661 @item -mtune=@var{cpu_type}
24662 @opindex mtune
24663 Set the instruction scheduling parameters for machine type @var{cpu_type},
24664 but do not set the instruction set or register set that the option
24665 @option{-mcpu=@var{cpu_type}} would.
24666
24667 @item -msv-mode
24668 @opindex msv-mode
24669 Generate code for the supervisor mode, where there are no restrictions on
24670 the access to general registers. This is the default.
24671
24672 @item -muser-mode
24673 @opindex muser-mode
24674 Generate code for the user mode, where the access to some general registers
24675 is forbidden: on the GR5, registers r24 to r31 cannot be accessed in this
24676 mode; on the GR6, only registers r29 to r31 are affected.
24677 @end table
24678
24679 @node VMS Options
24680 @subsection VMS Options
24681
24682 These @samp{-m} options are defined for the VMS implementations:
24683
24684 @table @gcctabopt
24685 @item -mvms-return-codes
24686 @opindex mvms-return-codes
24687 Return VMS condition codes from @code{main}. The default is to return POSIX-style
24688 condition (e.g.@ error) codes.
24689
24690 @item -mdebug-main=@var{prefix}
24691 @opindex mdebug-main=@var{prefix}
24692 Flag the first routine whose name starts with @var{prefix} as the main
24693 routine for the debugger.
24694
24695 @item -mmalloc64
24696 @opindex mmalloc64
24697 Default to 64-bit memory allocation routines.
24698
24699 @item -mpointer-size=@var{size}
24700 @opindex mpointer-size=@var{size}
24701 Set the default size of pointers. Possible options for @var{size} are
24702 @samp{32} or @samp{short} for 32 bit pointers, @samp{64} or @samp{long}
24703 for 64 bit pointers, and @samp{no} for supporting only 32 bit pointers.
24704 The later option disables @code{pragma pointer_size}.
24705 @end table
24706
24707 @node VxWorks Options
24708 @subsection VxWorks Options
24709 @cindex VxWorks Options
24710
24711 The options in this section are defined for all VxWorks targets.
24712 Options specific to the target hardware are listed with the other
24713 options for that target.
24714
24715 @table @gcctabopt
24716 @item -mrtp
24717 @opindex mrtp
24718 GCC can generate code for both VxWorks kernels and real time processes
24719 (RTPs). This option switches from the former to the latter. It also
24720 defines the preprocessor macro @code{__RTP__}.
24721
24722 @item -non-static
24723 @opindex non-static
24724 Link an RTP executable against shared libraries rather than static
24725 libraries. The options @option{-static} and @option{-shared} can
24726 also be used for RTPs (@pxref{Link Options}); @option{-static}
24727 is the default.
24728
24729 @item -Bstatic
24730 @itemx -Bdynamic
24731 @opindex Bstatic
24732 @opindex Bdynamic
24733 These options are passed down to the linker. They are defined for
24734 compatibility with Diab.
24735
24736 @item -Xbind-lazy
24737 @opindex Xbind-lazy
24738 Enable lazy binding of function calls. This option is equivalent to
24739 @option{-Wl,-z,now} and is defined for compatibility with Diab.
24740
24741 @item -Xbind-now
24742 @opindex Xbind-now
24743 Disable lazy binding of function calls. This option is the default and
24744 is defined for compatibility with Diab.
24745 @end table
24746
24747 @node x86 Options
24748 @subsection x86 Options
24749 @cindex x86 Options
24750
24751 These @samp{-m} options are defined for the x86 family of computers.
24752
24753 @table @gcctabopt
24754
24755 @item -march=@var{cpu-type}
24756 @opindex march
24757 Generate instructions for the machine type @var{cpu-type}. In contrast to
24758 @option{-mtune=@var{cpu-type}}, which merely tunes the generated code
24759 for the specified @var{cpu-type}, @option{-march=@var{cpu-type}} allows GCC
24760 to generate code that may not run at all on processors other than the one
24761 indicated. Specifying @option{-march=@var{cpu-type}} implies
24762 @option{-mtune=@var{cpu-type}}.
24763
24764 The choices for @var{cpu-type} are:
24765
24766 @table @samp
24767 @item native
24768 This selects the CPU to generate code for at compilation time by determining
24769 the processor type of the compiling machine. Using @option{-march=native}
24770 enables all instruction subsets supported by the local machine (hence
24771 the result might not run on different machines). Using @option{-mtune=native}
24772 produces code optimized for the local machine under the constraints
24773 of the selected instruction set.
24774
24775 @item i386
24776 Original Intel i386 CPU@.
24777
24778 @item i486
24779 Intel i486 CPU@. (No scheduling is implemented for this chip.)
24780
24781 @item i586
24782 @itemx pentium
24783 Intel Pentium CPU with no MMX support.
24784
24785 @item lakemont
24786 Intel Lakemont MCU, based on Intel Pentium CPU.
24787
24788 @item pentium-mmx
24789 Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support.
24790
24791 @item pentiumpro
24792 Intel Pentium Pro CPU@.
24793
24794 @item i686
24795 When used with @option{-march}, the Pentium Pro
24796 instruction set is used, so the code runs on all i686 family chips.
24797 When used with @option{-mtune}, it has the same meaning as @samp{generic}.
24798
24799 @item pentium2
24800 Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set
24801 support.
24802
24803 @item pentium3
24804 @itemx pentium3m
24805 Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction
24806 set support.
24807
24808 @item pentium-m
24809 Intel Pentium M; low-power version of Intel Pentium III CPU
24810 with MMX, SSE and SSE2 instruction set support. Used by Centrino notebooks.
24811
24812 @item pentium4
24813 @itemx pentium4m
24814 Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support.
24815
24816 @item prescott
24817 Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction
24818 set support.
24819
24820 @item nocona
24821 Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE,
24822 SSE2 and SSE3 instruction set support.
24823
24824 @item core2
24825 Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
24826 instruction set support.
24827
24828 @item nehalem
24829 Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
24830 SSE4.1, SSE4.2 and POPCNT instruction set support.
24831
24832 @item westmere
24833 Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
24834 SSE4.1, SSE4.2, POPCNT, AES and PCLMUL instruction set support.
24835
24836 @item sandybridge
24837 Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
24838 SSE4.1, SSE4.2, POPCNT, AVX, AES and PCLMUL instruction set support.
24839
24840 @item ivybridge
24841 Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
24842 SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C
24843 instruction set support.
24844
24845 @item haswell
24846 Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
24847 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
24848 BMI, BMI2 and F16C instruction set support.
24849
24850 @item broadwell
24851 Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
24852 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
24853 BMI, BMI2, F16C, RDSEED, ADCX and PREFETCHW instruction set support.
24854
24855 @item skylake
24856 Intel Skylake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
24857 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
24858 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC and
24859 XSAVES instruction set support.
24860
24861 @item bonnell
24862 Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3
24863 instruction set support.
24864
24865 @item silvermont
24866 Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
24867 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL and RDRND instruction set support.
24868
24869 @item knl
24870 Intel Knight's Landing CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
24871 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
24872 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER and
24873 AVX512CD instruction set support.
24874
24875 @item skylake-avx512
24876 Intel Skylake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
24877 SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
24878 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,
24879 AVX512VL, AVX512BW, AVX512DQ and AVX512CD instruction set support.
24880
24881 @item k6
24882 AMD K6 CPU with MMX instruction set support.
24883
24884 @item k6-2
24885 @itemx k6-3
24886 Improved versions of AMD K6 CPU with MMX and 3DNow!@: instruction set support.
24887
24888 @item athlon
24889 @itemx athlon-tbird
24890 AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow!@: and SSE prefetch instructions
24891 support.
24892
24893 @item athlon-4
24894 @itemx athlon-xp
24895 @itemx athlon-mp
24896 Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow!@: and full SSE
24897 instruction set support.
24898
24899 @item k8
24900 @itemx opteron
24901 @itemx athlon64
24902 @itemx athlon-fx
24903 Processors based on the AMD K8 core with x86-64 instruction set support,
24904 including the AMD Opteron, Athlon 64, and Athlon 64 FX processors.
24905 (This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow!@: and 64-bit
24906 instruction set extensions.)
24907
24908 @item k8-sse3
24909 @itemx opteron-sse3
24910 @itemx athlon64-sse3
24911 Improved versions of AMD K8 cores with SSE3 instruction set support.
24912
24913 @item amdfam10
24914 @itemx barcelona
24915 CPUs based on AMD Family 10h cores with x86-64 instruction set support. (This
24916 supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit
24917 instruction set extensions.)
24918
24919 @item bdver1
24920 CPUs based on AMD Family 15h cores with x86-64 instruction set support. (This
24921 supersets FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
24922 SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)
24923 @item bdver2
24924 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
24925 supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX,
24926 SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set
24927 extensions.)
24928 @item bdver3
24929 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
24930 supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES,
24931 PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and
24932 64-bit instruction set extensions.
24933 @item bdver4
24934 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
24935 supersets BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP,
24936 AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,
24937 SSE4.2, ABM and 64-bit instruction set extensions.
24938
24939 @item znver1
24940 AMD Family 17h core based CPUs with x86-64 instruction set support. (This
24941 supersets BMI, BMI2, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED, MWAITX,
24942 SHA, CLZERO, AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3,
24943 SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, and 64-bit
24944 instruction set extensions.
24945
24946 @item btver1
24947 CPUs based on AMD Family 14h cores with x86-64 instruction set support. (This
24948 supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit
24949 instruction set extensions.)
24950
24951 @item btver2
24952 CPUs based on AMD Family 16h cores with x86-64 instruction set support. This
24953 includes MOVBE, F16C, BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16, ABM,
24954 SSE4A, SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set extensions.
24955
24956 @item winchip-c6
24957 IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction
24958 set support.
24959
24960 @item winchip2
24961 IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and 3DNow!@:
24962 instruction set support.
24963
24964 @item c3
24965 VIA C3 CPU with MMX and 3DNow!@: instruction set support.
24966 (No scheduling is implemented for this chip.)
24967
24968 @item c3-2
24969 VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support.
24970 (No scheduling is implemented for this chip.)
24971
24972 @item c7
24973 VIA C7 (Esther) CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
24974 (No scheduling is implemented for this chip.)
24975
24976 @item samuel-2
24977 VIA Eden Samuel 2 CPU with MMX and 3DNow!@: instruction set support.
24978 (No scheduling is implemented for this chip.)
24979
24980 @item nehemiah
24981 VIA Eden Nehemiah CPU with MMX and SSE instruction set support.
24982 (No scheduling is implemented for this chip.)
24983
24984 @item esther
24985 VIA Eden Esther CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
24986 (No scheduling is implemented for this chip.)
24987
24988 @item eden-x2
24989 VIA Eden X2 CPU with x86-64, MMX, SSE, SSE2 and SSE3 instruction set support.
24990 (No scheduling is implemented for this chip.)
24991
24992 @item eden-x4
24993 VIA Eden X4 CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
24994 AVX and AVX2 instruction set support.
24995 (No scheduling is implemented for this chip.)
24996
24997 @item nano
24998 Generic VIA Nano CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
24999 instruction set support.
25000 (No scheduling is implemented for this chip.)
25001
25002 @item nano-1000
25003 VIA Nano 1xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
25004 instruction set support.
25005 (No scheduling is implemented for this chip.)
25006
25007 @item nano-2000
25008 VIA Nano 2xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
25009 instruction set support.
25010 (No scheduling is implemented for this chip.)
25011
25012 @item nano-3000
25013 VIA Nano 3xxx CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
25014 instruction set support.
25015 (No scheduling is implemented for this chip.)
25016
25017 @item nano-x2
25018 VIA Nano Dual Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
25019 instruction set support.
25020 (No scheduling is implemented for this chip.)
25021
25022 @item nano-x4
25023 VIA Nano Quad Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
25024 instruction set support.
25025 (No scheduling is implemented for this chip.)
25026
25027 @item geode
25028 AMD Geode embedded processor with MMX and 3DNow!@: instruction set support.
25029 @end table
25030
25031 @item -mtune=@var{cpu-type}
25032 @opindex mtune
25033 Tune to @var{cpu-type} everything applicable about the generated code, except
25034 for the ABI and the set of available instructions.
25035 While picking a specific @var{cpu-type} schedules things appropriately
25036 for that particular chip, the compiler does not generate any code that
25037 cannot run on the default machine type unless you use a
25038 @option{-march=@var{cpu-type}} option.
25039 For example, if GCC is configured for i686-pc-linux-gnu
25040 then @option{-mtune=pentium4} generates code that is tuned for Pentium 4
25041 but still runs on i686 machines.
25042
25043 The choices for @var{cpu-type} are the same as for @option{-march}.
25044 In addition, @option{-mtune} supports 2 extra choices for @var{cpu-type}:
25045
25046 @table @samp
25047 @item generic
25048 Produce code optimized for the most common IA32/@/AMD64/@/EM64T processors.
25049 If you know the CPU on which your code will run, then you should use
25050 the corresponding @option{-mtune} or @option{-march} option instead of
25051 @option{-mtune=generic}. But, if you do not know exactly what CPU users
25052 of your application will have, then you should use this option.
25053
25054 As new processors are deployed in the marketplace, the behavior of this
25055 option will change. Therefore, if you upgrade to a newer version of
25056 GCC, code generation controlled by this option will change to reflect
25057 the processors
25058 that are most common at the time that version of GCC is released.
25059
25060 There is no @option{-march=generic} option because @option{-march}
25061 indicates the instruction set the compiler can use, and there is no
25062 generic instruction set applicable to all processors. In contrast,
25063 @option{-mtune} indicates the processor (or, in this case, collection of
25064 processors) for which the code is optimized.
25065
25066 @item intel
25067 Produce code optimized for the most current Intel processors, which are
25068 Haswell and Silvermont for this version of GCC. If you know the CPU
25069 on which your code will run, then you should use the corresponding
25070 @option{-mtune} or @option{-march} option instead of @option{-mtune=intel}.
25071 But, if you want your application performs better on both Haswell and
25072 Silvermont, then you should use this option.
25073
25074 As new Intel processors are deployed in the marketplace, the behavior of
25075 this option will change. Therefore, if you upgrade to a newer version of
25076 GCC, code generation controlled by this option will change to reflect
25077 the most current Intel processors at the time that version of GCC is
25078 released.
25079
25080 There is no @option{-march=intel} option because @option{-march} indicates
25081 the instruction set the compiler can use, and there is no common
25082 instruction set applicable to all processors. In contrast,
25083 @option{-mtune} indicates the processor (or, in this case, collection of
25084 processors) for which the code is optimized.
25085 @end table
25086
25087 @item -mcpu=@var{cpu-type}
25088 @opindex mcpu
25089 A deprecated synonym for @option{-mtune}.
25090
25091 @item -mfpmath=@var{unit}
25092 @opindex mfpmath
25093 Generate floating-point arithmetic for selected unit @var{unit}. The choices
25094 for @var{unit} are:
25095
25096 @table @samp
25097 @item 387
25098 Use the standard 387 floating-point coprocessor present on the majority of chips and
25099 emulated otherwise. Code compiled with this option runs almost everywhere.
25100 The temporary results are computed in 80-bit precision instead of the precision
25101 specified by the type, resulting in slightly different results compared to most
25102 of other chips. See @option{-ffloat-store} for more detailed description.
25103
25104 This is the default choice for non-Darwin x86-32 targets.
25105
25106 @item sse
25107 Use scalar floating-point instructions present in the SSE instruction set.
25108 This instruction set is supported by Pentium III and newer chips,
25109 and in the AMD line
25110 by Athlon-4, Athlon XP and Athlon MP chips. The earlier version of the SSE
25111 instruction set supports only single-precision arithmetic, thus the double and
25112 extended-precision arithmetic are still done using 387. A later version, present
25113 only in Pentium 4 and AMD x86-64 chips, supports double-precision
25114 arithmetic too.
25115
25116 For the x86-32 compiler, you must use @option{-march=@var{cpu-type}}, @option{-msse}
25117 or @option{-msse2} switches to enable SSE extensions and make this option
25118 effective. For the x86-64 compiler, these extensions are enabled by default.
25119
25120 The resulting code should be considerably faster in the majority of cases and avoid
25121 the numerical instability problems of 387 code, but may break some existing
25122 code that expects temporaries to be 80 bits.
25123
25124 This is the default choice for the x86-64 compiler, Darwin x86-32 targets,
25125 and the default choice for x86-32 targets with the SSE2 instruction set
25126 when @option{-ffast-math} is enabled.
25127
25128 @item sse,387
25129 @itemx sse+387
25130 @itemx both
25131 Attempt to utilize both instruction sets at once. This effectively doubles the
25132 amount of available registers, and on chips with separate execution units for
25133 387 and SSE the execution resources too. Use this option with care, as it is
25134 still experimental, because the GCC register allocator does not model separate
25135 functional units well, resulting in unstable performance.
25136 @end table
25137
25138 @item -masm=@var{dialect}
25139 @opindex masm=@var{dialect}
25140 Output assembly instructions using selected @var{dialect}. Also affects
25141 which dialect is used for basic @code{asm} (@pxref{Basic Asm}) and
25142 extended @code{asm} (@pxref{Extended Asm}). Supported choices (in dialect
25143 order) are @samp{att} or @samp{intel}. The default is @samp{att}. Darwin does
25144 not support @samp{intel}.
25145
25146 @item -mieee-fp
25147 @itemx -mno-ieee-fp
25148 @opindex mieee-fp
25149 @opindex mno-ieee-fp
25150 Control whether or not the compiler uses IEEE floating-point
25151 comparisons. These correctly handle the case where the result of a
25152 comparison is unordered.
25153
25154 @item -m80387
25155 @item -mhard-float
25156 @opindex 80387
25157 @opindex mhard-float
25158 Generate output containing 80387 instructions for floating point.
25159
25160 @item -mno-80387
25161 @item -msoft-float
25162 @opindex no-80387
25163 @opindex msoft-float
25164 Generate output containing library calls for floating point.
25165
25166 @strong{Warning:} the requisite libraries are not part of GCC@.
25167 Normally the facilities of the machine's usual C compiler are used, but
25168 this cannot be done directly in cross-compilation. You must make your
25169 own arrangements to provide suitable library functions for
25170 cross-compilation.
25171
25172 On machines where a function returns floating-point results in the 80387
25173 register stack, some floating-point opcodes may be emitted even if
25174 @option{-msoft-float} is used.
25175
25176 @item -mno-fp-ret-in-387
25177 @opindex mno-fp-ret-in-387
25178 Do not use the FPU registers for return values of functions.
25179
25180 The usual calling convention has functions return values of types
25181 @code{float} and @code{double} in an FPU register, even if there
25182 is no FPU@. The idea is that the operating system should emulate
25183 an FPU@.
25184
25185 The option @option{-mno-fp-ret-in-387} causes such values to be returned
25186 in ordinary CPU registers instead.
25187
25188 @item -mno-fancy-math-387
25189 @opindex mno-fancy-math-387
25190 Some 387 emulators do not support the @code{sin}, @code{cos} and
25191 @code{sqrt} instructions for the 387. Specify this option to avoid
25192 generating those instructions. This option is the default on
25193 OpenBSD and NetBSD@. This option is overridden when @option{-march}
25194 indicates that the target CPU always has an FPU and so the
25195 instruction does not need emulation. These
25196 instructions are not generated unless you also use the
25197 @option{-funsafe-math-optimizations} switch.
25198
25199 @item -malign-double
25200 @itemx -mno-align-double
25201 @opindex malign-double
25202 @opindex mno-align-double
25203 Control whether GCC aligns @code{double}, @code{long double}, and
25204 @code{long long} variables on a two-word boundary or a one-word
25205 boundary. Aligning @code{double} variables on a two-word boundary
25206 produces code that runs somewhat faster on a Pentium at the
25207 expense of more memory.
25208
25209 On x86-64, @option{-malign-double} is enabled by default.
25210
25211 @strong{Warning:} if you use the @option{-malign-double} switch,
25212 structures containing the above types are aligned differently than
25213 the published application binary interface specifications for the x86-32
25214 and are not binary compatible with structures in code compiled
25215 without that switch.
25216
25217 @item -m96bit-long-double
25218 @itemx -m128bit-long-double
25219 @opindex m96bit-long-double
25220 @opindex m128bit-long-double
25221 These switches control the size of @code{long double} type. The x86-32
25222 application binary interface specifies the size to be 96 bits,
25223 so @option{-m96bit-long-double} is the default in 32-bit mode.
25224
25225 Modern architectures (Pentium and newer) prefer @code{long double}
25226 to be aligned to an 8- or 16-byte boundary. In arrays or structures
25227 conforming to the ABI, this is not possible. So specifying
25228 @option{-m128bit-long-double} aligns @code{long double}
25229 to a 16-byte boundary by padding the @code{long double} with an additional
25230 32-bit zero.
25231
25232 In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as
25233 its ABI specifies that @code{long double} is aligned on 16-byte boundary.
25234
25235 Notice that neither of these options enable any extra precision over the x87
25236 standard of 80 bits for a @code{long double}.
25237
25238 @strong{Warning:} if you override the default value for your target ABI, this
25239 changes the size of
25240 structures and arrays containing @code{long double} variables,
25241 as well as modifying the function calling convention for functions taking
25242 @code{long double}. Hence they are not binary-compatible
25243 with code compiled without that switch.
25244
25245 @item -mlong-double-64
25246 @itemx -mlong-double-80
25247 @itemx -mlong-double-128
25248 @opindex mlong-double-64
25249 @opindex mlong-double-80
25250 @opindex mlong-double-128
25251 These switches control the size of @code{long double} type. A size
25252 of 64 bits makes the @code{long double} type equivalent to the @code{double}
25253 type. This is the default for 32-bit Bionic C library. A size
25254 of 128 bits makes the @code{long double} type equivalent to the
25255 @code{__float128} type. This is the default for 64-bit Bionic C library.
25256
25257 @strong{Warning:} if you override the default value for your target ABI, this
25258 changes the size of
25259 structures and arrays containing @code{long double} variables,
25260 as well as modifying the function calling convention for functions taking
25261 @code{long double}. Hence they are not binary-compatible
25262 with code compiled without that switch.
25263
25264 @item -malign-data=@var{type}
25265 @opindex malign-data
25266 Control how GCC aligns variables. Supported values for @var{type} are
25267 @samp{compat} uses increased alignment value compatible uses GCC 4.8
25268 and earlier, @samp{abi} uses alignment value as specified by the
25269 psABI, and @samp{cacheline} uses increased alignment value to match
25270 the cache line size. @samp{compat} is the default.
25271
25272 @item -mlarge-data-threshold=@var{threshold}
25273 @opindex mlarge-data-threshold
25274 When @option{-mcmodel=medium} is specified, data objects larger than
25275 @var{threshold} are placed in the large data section. This value must be the
25276 same across all objects linked into the binary, and defaults to 65535.
25277
25278 @item -mrtd
25279 @opindex mrtd
25280 Use a different function-calling convention, in which functions that
25281 take a fixed number of arguments return with the @code{ret @var{num}}
25282 instruction, which pops their arguments while returning. This saves one
25283 instruction in the caller since there is no need to pop the arguments
25284 there.
25285
25286 You can specify that an individual function is called with this calling
25287 sequence with the function attribute @code{stdcall}. You can also
25288 override the @option{-mrtd} option by using the function attribute
25289 @code{cdecl}. @xref{Function Attributes}.
25290
25291 @strong{Warning:} this calling convention is incompatible with the one
25292 normally used on Unix, so you cannot use it if you need to call
25293 libraries compiled with the Unix compiler.
25294
25295 Also, you must provide function prototypes for all functions that
25296 take variable numbers of arguments (including @code{printf});
25297 otherwise incorrect code is generated for calls to those
25298 functions.
25299
25300 In addition, seriously incorrect code results if you call a
25301 function with too many arguments. (Normally, extra arguments are
25302 harmlessly ignored.)
25303
25304 @item -mregparm=@var{num}
25305 @opindex mregparm
25306 Control how many registers are used to pass integer arguments. By
25307 default, no registers are used to pass arguments, and at most 3
25308 registers can be used. You can control this behavior for a specific
25309 function by using the function attribute @code{regparm}.
25310 @xref{Function Attributes}.
25311
25312 @strong{Warning:} if you use this switch, and
25313 @var{num} is nonzero, then you must build all modules with the same
25314 value, including any libraries. This includes the system libraries and
25315 startup modules.
25316
25317 @item -msseregparm
25318 @opindex msseregparm
25319 Use SSE register passing conventions for float and double arguments
25320 and return values. You can control this behavior for a specific
25321 function by using the function attribute @code{sseregparm}.
25322 @xref{Function Attributes}.
25323
25324 @strong{Warning:} if you use this switch then you must build all
25325 modules with the same value, including any libraries. This includes
25326 the system libraries and startup modules.
25327
25328 @item -mvect8-ret-in-mem
25329 @opindex mvect8-ret-in-mem
25330 Return 8-byte vectors in memory instead of MMX registers. This is the
25331 default on Solaris@tie{}8 and 9 and VxWorks to match the ABI of the Sun
25332 Studio compilers until version 12. Later compiler versions (starting
25333 with Studio 12 Update@tie{}1) follow the ABI used by other x86 targets, which
25334 is the default on Solaris@tie{}10 and later. @emph{Only} use this option if
25335 you need to remain compatible with existing code produced by those
25336 previous compiler versions or older versions of GCC@.
25337
25338 @item -mpc32
25339 @itemx -mpc64
25340 @itemx -mpc80
25341 @opindex mpc32
25342 @opindex mpc64
25343 @opindex mpc80
25344
25345 Set 80387 floating-point precision to 32, 64 or 80 bits. When @option{-mpc32}
25346 is specified, the significands of results of floating-point operations are
25347 rounded to 24 bits (single precision); @option{-mpc64} rounds the
25348 significands of results of floating-point operations to 53 bits (double
25349 precision) and @option{-mpc80} rounds the significands of results of
25350 floating-point operations to 64 bits (extended double precision), which is
25351 the default. When this option is used, floating-point operations in higher
25352 precisions are not available to the programmer without setting the FPU
25353 control word explicitly.
25354
25355 Setting the rounding of floating-point operations to less than the default
25356 80 bits can speed some programs by 2% or more. Note that some mathematical
25357 libraries assume that extended-precision (80-bit) floating-point operations
25358 are enabled by default; routines in such libraries could suffer significant
25359 loss of accuracy, typically through so-called ``catastrophic cancellation'',
25360 when this option is used to set the precision to less than extended precision.
25361
25362 @item -mstackrealign
25363 @opindex mstackrealign
25364 Realign the stack at entry. On the x86, the @option{-mstackrealign}
25365 option generates an alternate prologue and epilogue that realigns the
25366 run-time stack if necessary. This supports mixing legacy codes that keep
25367 4-byte stack alignment with modern codes that keep 16-byte stack alignment for
25368 SSE compatibility. See also the attribute @code{force_align_arg_pointer},
25369 applicable to individual functions.
25370
25371 @item -mpreferred-stack-boundary=@var{num}
25372 @opindex mpreferred-stack-boundary
25373 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
25374 byte boundary. If @option{-mpreferred-stack-boundary} is not specified,
25375 the default is 4 (16 bytes or 128 bits).
25376
25377 @strong{Warning:} When generating code for the x86-64 architecture with
25378 SSE extensions disabled, @option{-mpreferred-stack-boundary=3} can be
25379 used to keep the stack boundary aligned to 8 byte boundary. Since
25380 x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and
25381 intended to be used in controlled environment where stack space is
25382 important limitation. This option leads to wrong code when functions
25383 compiled with 16 byte stack alignment (such as functions from a standard
25384 library) are called with misaligned stack. In this case, SSE
25385 instructions may lead to misaligned memory access traps. In addition,
25386 variable arguments are handled incorrectly for 16 byte aligned
25387 objects (including x87 long double and __int128), leading to wrong
25388 results. You must build all modules with
25389 @option{-mpreferred-stack-boundary=3}, including any libraries. This
25390 includes the system libraries and startup modules.
25391
25392 @item -mincoming-stack-boundary=@var{num}
25393 @opindex mincoming-stack-boundary
25394 Assume the incoming stack is aligned to a 2 raised to @var{num} byte
25395 boundary. If @option{-mincoming-stack-boundary} is not specified,
25396 the one specified by @option{-mpreferred-stack-boundary} is used.
25397
25398 On Pentium and Pentium Pro, @code{double} and @code{long double} values
25399 should be aligned to an 8-byte boundary (see @option{-malign-double}) or
25400 suffer significant run time performance penalties. On Pentium III, the
25401 Streaming SIMD Extension (SSE) data type @code{__m128} may not work
25402 properly if it is not 16-byte aligned.
25403
25404 To ensure proper alignment of this values on the stack, the stack boundary
25405 must be as aligned as that required by any value stored on the stack.
25406 Further, every function must be generated such that it keeps the stack
25407 aligned. Thus calling a function compiled with a higher preferred
25408 stack boundary from a function compiled with a lower preferred stack
25409 boundary most likely misaligns the stack. It is recommended that
25410 libraries that use callbacks always use the default setting.
25411
25412 This extra alignment does consume extra stack space, and generally
25413 increases code size. Code that is sensitive to stack space usage, such
25414 as embedded systems and operating system kernels, may want to reduce the
25415 preferred alignment to @option{-mpreferred-stack-boundary=2}.
25416
25417 @need 200
25418 @item -mmmx
25419 @opindex mmmx
25420 @need 200
25421 @itemx -msse
25422 @opindex msse
25423 @need 200
25424 @itemx -msse2
25425 @opindex msse2
25426 @need 200
25427 @itemx -msse3
25428 @opindex msse3
25429 @need 200
25430 @itemx -mssse3
25431 @opindex mssse3
25432 @need 200
25433 @itemx -msse4
25434 @opindex msse4
25435 @need 200
25436 @itemx -msse4a
25437 @opindex msse4a
25438 @need 200
25439 @itemx -msse4.1
25440 @opindex msse4.1
25441 @need 200
25442 @itemx -msse4.2
25443 @opindex msse4.2
25444 @need 200
25445 @itemx -mavx
25446 @opindex mavx
25447 @need 200
25448 @itemx -mavx2
25449 @opindex mavx2
25450 @need 200
25451 @itemx -mavx512f
25452 @opindex mavx512f
25453 @need 200
25454 @itemx -mavx512pf
25455 @opindex mavx512pf
25456 @need 200
25457 @itemx -mavx512er
25458 @opindex mavx512er
25459 @need 200
25460 @itemx -mavx512cd
25461 @opindex mavx512cd
25462 @need 200
25463 @itemx -mavx512vl
25464 @opindex mavx512vl
25465 @need 200
25466 @itemx -mavx512bw
25467 @opindex mavx512bw
25468 @need 200
25469 @itemx -mavx512dq
25470 @opindex mavx512dq
25471 @need 200
25472 @itemx -mavx512ifma
25473 @opindex mavx512ifma
25474 @need 200
25475 @itemx -mavx512vbmi
25476 @opindex mavx512vbmi
25477 @need 200
25478 @itemx -msha
25479 @opindex msha
25480 @need 200
25481 @itemx -maes
25482 @opindex maes
25483 @need 200
25484 @itemx -mpclmul
25485 @opindex mpclmul
25486 @need 200
25487 @itemx -mclfushopt
25488 @opindex mclfushopt
25489 @need 200
25490 @itemx -mfsgsbase
25491 @opindex mfsgsbase
25492 @need 200
25493 @itemx -mrdrnd
25494 @opindex mrdrnd
25495 @need 200
25496 @itemx -mf16c
25497 @opindex mf16c
25498 @need 200
25499 @itemx -mfma
25500 @opindex mfma
25501 @need 200
25502 @itemx -mfma4
25503 @opindex mfma4
25504 @need 200
25505 @itemx -mprefetchwt1
25506 @opindex mprefetchwt1
25507 @need 200
25508 @itemx -mxop
25509 @opindex mxop
25510 @need 200
25511 @itemx -mlwp
25512 @opindex mlwp
25513 @need 200
25514 @itemx -m3dnow
25515 @opindex m3dnow
25516 @need 200
25517 @itemx -m3dnowa
25518 @opindex m3dnowa
25519 @need 200
25520 @itemx -mpopcnt
25521 @opindex mpopcnt
25522 @need 200
25523 @itemx -mabm
25524 @opindex mabm
25525 @need 200
25526 @itemx -mbmi
25527 @opindex mbmi
25528 @need 200
25529 @itemx -mbmi2
25530 @need 200
25531 @itemx -mlzcnt
25532 @opindex mlzcnt
25533 @need 200
25534 @itemx -mfxsr
25535 @opindex mfxsr
25536 @need 200
25537 @itemx -mxsave
25538 @opindex mxsave
25539 @need 200
25540 @itemx -mxsaveopt
25541 @opindex mxsaveopt
25542 @need 200
25543 @itemx -mxsavec
25544 @opindex mxsavec
25545 @need 200
25546 @itemx -mxsaves
25547 @opindex mxsaves
25548 @need 200
25549 @itemx -mrtm
25550 @opindex mrtm
25551 @need 200
25552 @itemx -mtbm
25553 @opindex mtbm
25554 @need 200
25555 @itemx -mmpx
25556 @opindex mmpx
25557 @need 200
25558 @itemx -mmwaitx
25559 @opindex mmwaitx
25560 @need 200
25561 @itemx -mclzero
25562 @opindex mclzero
25563 @itemx -mpku
25564 @opindex mpku
25565 These switches enable the use of instructions in the MMX, SSE,
25566 SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AVX512F, AVX512PF, AVX512ER, AVX512CD,
25567 SHA, AES, PCLMUL, FSGSBASE, RDRND, F16C, FMA, SSE4A, FMA4, XOP, LWP, ABM,
25568 AVX512VL, AVX512BW, AVX512DQ, AVX512IFMA AVX512VBMI, BMI, BMI2, FXSR,
25569 XSAVE, XSAVEOPT, LZCNT, RTM, MPX, MWAITX, PKU, 3DNow!@: or enhanced 3DNow!@:
25570 extended instruction sets. Each has a corresponding @option{-mno-} option
25571 to disable use of these instructions.
25572
25573 These extensions are also available as built-in functions: see
25574 @ref{x86 Built-in Functions}, for details of the functions enabled and
25575 disabled by these switches.
25576
25577 To generate SSE/SSE2 instructions automatically from floating-point
25578 code (as opposed to 387 instructions), see @option{-mfpmath=sse}.
25579
25580 GCC depresses SSEx instructions when @option{-mavx} is used. Instead, it
25581 generates new AVX instructions or AVX equivalence for all SSEx instructions
25582 when needed.
25583
25584 These options enable GCC to use these extended instructions in
25585 generated code, even without @option{-mfpmath=sse}. Applications that
25586 perform run-time CPU detection must compile separate files for each
25587 supported architecture, using the appropriate flags. In particular,
25588 the file containing the CPU detection code should be compiled without
25589 these options.
25590
25591 @item -mdump-tune-features
25592 @opindex mdump-tune-features
25593 This option instructs GCC to dump the names of the x86 performance
25594 tuning features and default settings. The names can be used in
25595 @option{-mtune-ctrl=@var{feature-list}}.
25596
25597 @item -mtune-ctrl=@var{feature-list}
25598 @opindex mtune-ctrl=@var{feature-list}
25599 This option is used to do fine grain control of x86 code generation features.
25600 @var{feature-list} is a comma separated list of @var{feature} names. See also
25601 @option{-mdump-tune-features}. When specified, the @var{feature} is turned
25602 on if it is not preceded with @samp{^}, otherwise, it is turned off.
25603 @option{-mtune-ctrl=@var{feature-list}} is intended to be used by GCC
25604 developers. Using it may lead to code paths not covered by testing and can
25605 potentially result in compiler ICEs or runtime errors.
25606
25607 @item -mno-default
25608 @opindex mno-default
25609 This option instructs GCC to turn off all tunable features. See also
25610 @option{-mtune-ctrl=@var{feature-list}} and @option{-mdump-tune-features}.
25611
25612 @item -mcld
25613 @opindex mcld
25614 This option instructs GCC to emit a @code{cld} instruction in the prologue
25615 of functions that use string instructions. String instructions depend on
25616 the DF flag to select between autoincrement or autodecrement mode. While the
25617 ABI specifies the DF flag to be cleared on function entry, some operating
25618 systems violate this specification by not clearing the DF flag in their
25619 exception dispatchers. The exception handler can be invoked with the DF flag
25620 set, which leads to wrong direction mode when string instructions are used.
25621 This option can be enabled by default on 32-bit x86 targets by configuring
25622 GCC with the @option{--enable-cld} configure option. Generation of @code{cld}
25623 instructions can be suppressed with the @option{-mno-cld} compiler option
25624 in this case.
25625
25626 @item -mvzeroupper
25627 @opindex mvzeroupper
25628 This option instructs GCC to emit a @code{vzeroupper} instruction
25629 before a transfer of control flow out of the function to minimize
25630 the AVX to SSE transition penalty as well as remove unnecessary @code{zeroupper}
25631 intrinsics.
25632
25633 @item -mprefer-avx128
25634 @opindex mprefer-avx128
25635 This option instructs GCC to use 128-bit AVX instructions instead of
25636 256-bit AVX instructions in the auto-vectorizer.
25637
25638 @item -mcx16
25639 @opindex mcx16
25640 This option enables GCC to generate @code{CMPXCHG16B} instructions in 64-bit
25641 code to implement compare-and-exchange operations on 16-byte aligned 128-bit
25642 objects. This is useful for atomic updates of data structures exceeding one
25643 machine word in size. The compiler uses this instruction to implement
25644 @ref{__sync Builtins}. However, for @ref{__atomic Builtins} operating on
25645 128-bit integers, a library call is always used.
25646
25647 @item -msahf
25648 @opindex msahf
25649 This option enables generation of @code{SAHF} instructions in 64-bit code.
25650 Early Intel Pentium 4 CPUs with Intel 64 support,
25651 prior to the introduction of Pentium 4 G1 step in December 2005,
25652 lacked the @code{LAHF} and @code{SAHF} instructions
25653 which are supported by AMD64.
25654 These are load and store instructions, respectively, for certain status flags.
25655 In 64-bit mode, the @code{SAHF} instruction is used to optimize @code{fmod},
25656 @code{drem}, and @code{remainder} built-in functions;
25657 see @ref{Other Builtins} for details.
25658
25659 @item -mmovbe
25660 @opindex mmovbe
25661 This option enables use of the @code{movbe} instruction to implement
25662 @code{__builtin_bswap32} and @code{__builtin_bswap64}.
25663
25664 @item -mcrc32
25665 @opindex mcrc32
25666 This option enables built-in functions @code{__builtin_ia32_crc32qi},
25667 @code{__builtin_ia32_crc32hi}, @code{__builtin_ia32_crc32si} and
25668 @code{__builtin_ia32_crc32di} to generate the @code{crc32} machine instruction.
25669
25670 @item -mrecip
25671 @opindex mrecip
25672 This option enables use of @code{RCPSS} and @code{RSQRTSS} instructions
25673 (and their vectorized variants @code{RCPPS} and @code{RSQRTPS})
25674 with an additional Newton-Raphson step
25675 to increase precision instead of @code{DIVSS} and @code{SQRTSS}
25676 (and their vectorized
25677 variants) for single-precision floating-point arguments. These instructions
25678 are generated only when @option{-funsafe-math-optimizations} is enabled
25679 together with @option{-ffinite-math-only} and @option{-fno-trapping-math}.
25680 Note that while the throughput of the sequence is higher than the throughput
25681 of the non-reciprocal instruction, the precision of the sequence can be
25682 decreased by up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994).
25683
25684 Note that GCC implements @code{1.0f/sqrtf(@var{x})} in terms of @code{RSQRTSS}
25685 (or @code{RSQRTPS}) already with @option{-ffast-math} (or the above option
25686 combination), and doesn't need @option{-mrecip}.
25687
25688 Also note that GCC emits the above sequence with additional Newton-Raphson step
25689 for vectorized single-float division and vectorized @code{sqrtf(@var{x})}
25690 already with @option{-ffast-math} (or the above option combination), and
25691 doesn't need @option{-mrecip}.
25692
25693 @item -mrecip=@var{opt}
25694 @opindex mrecip=opt
25695 This option controls which reciprocal estimate instructions
25696 may be used. @var{opt} is a comma-separated list of options, which may
25697 be preceded by a @samp{!} to invert the option:
25698
25699 @table @samp
25700 @item all
25701 Enable all estimate instructions.
25702
25703 @item default
25704 Enable the default instructions, equivalent to @option{-mrecip}.
25705
25706 @item none
25707 Disable all estimate instructions, equivalent to @option{-mno-recip}.
25708
25709 @item div
25710 Enable the approximation for scalar division.
25711
25712 @item vec-div
25713 Enable the approximation for vectorized division.
25714
25715 @item sqrt
25716 Enable the approximation for scalar square root.
25717
25718 @item vec-sqrt
25719 Enable the approximation for vectorized square root.
25720 @end table
25721
25722 So, for example, @option{-mrecip=all,!sqrt} enables
25723 all of the reciprocal approximations, except for square root.
25724
25725 @item -mveclibabi=@var{type}
25726 @opindex mveclibabi
25727 Specifies the ABI type to use for vectorizing intrinsics using an
25728 external library. Supported values for @var{type} are @samp{svml}
25729 for the Intel short
25730 vector math library and @samp{acml} for the AMD math core library.
25731 To use this option, both @option{-ftree-vectorize} and
25732 @option{-funsafe-math-optimizations} have to be enabled, and an SVML or ACML
25733 ABI-compatible library must be specified at link time.
25734
25735 GCC currently emits calls to @code{vmldExp2},
25736 @code{vmldLn2}, @code{vmldLog102}, @code{vmldLog102}, @code{vmldPow2},
25737 @code{vmldTanh2}, @code{vmldTan2}, @code{vmldAtan2}, @code{vmldAtanh2},
25738 @code{vmldCbrt2}, @code{vmldSinh2}, @code{vmldSin2}, @code{vmldAsinh2},
25739 @code{vmldAsin2}, @code{vmldCosh2}, @code{vmldCos2}, @code{vmldAcosh2},
25740 @code{vmldAcos2}, @code{vmlsExp4}, @code{vmlsLn4}, @code{vmlsLog104},
25741 @code{vmlsLog104}, @code{vmlsPow4}, @code{vmlsTanh4}, @code{vmlsTan4},
25742 @code{vmlsAtan4}, @code{vmlsAtanh4}, @code{vmlsCbrt4}, @code{vmlsSinh4},
25743 @code{vmlsSin4}, @code{vmlsAsinh4}, @code{vmlsAsin4}, @code{vmlsCosh4},
25744 @code{vmlsCos4}, @code{vmlsAcosh4} and @code{vmlsAcos4} for corresponding
25745 function type when @option{-mveclibabi=svml} is used, and @code{__vrd2_sin},
25746 @code{__vrd2_cos}, @code{__vrd2_exp}, @code{__vrd2_log}, @code{__vrd2_log2},
25747 @code{__vrd2_log10}, @code{__vrs4_sinf}, @code{__vrs4_cosf},
25748 @code{__vrs4_expf}, @code{__vrs4_logf}, @code{__vrs4_log2f},
25749 @code{__vrs4_log10f} and @code{__vrs4_powf} for the corresponding function type
25750 when @option{-mveclibabi=acml} is used.
25751
25752 @item -mabi=@var{name}
25753 @opindex mabi
25754 Generate code for the specified calling convention. Permissible values
25755 are @samp{sysv} for the ABI used on GNU/Linux and other systems, and
25756 @samp{ms} for the Microsoft ABI. The default is to use the Microsoft
25757 ABI when targeting Microsoft Windows and the SysV ABI on all other systems.
25758 You can control this behavior for specific functions by
25759 using the function attributes @code{ms_abi} and @code{sysv_abi}.
25760 @xref{Function Attributes}.
25761
25762 @item -mcall-ms2sysv-xlogues
25763 @opindex mcall-ms2sysv-xlogues
25764 @opindex mno-call-ms2sysv-xlogues
25765 Due to differences in 64-bit ABIs, any Microsoft ABI function that calls a
25766 System V ABI function must consider RSI, RDI and XMM6-15 as clobbered. By
25767 default, the code for saving and restoring these registers is emitted inline,
25768 resulting in fairly lengthy prologues and epilogues. Using
25769 @option{-mcall-ms2sysv-xlogues} emits prologues and epilogues that
25770 use stubs in the static portion of libgcc to perform these saves and restores,
25771 thus reducing function size at the cost of a few extra instructions.
25772
25773 @item -mtls-dialect=@var{type}
25774 @opindex mtls-dialect
25775 Generate code to access thread-local storage using the @samp{gnu} or
25776 @samp{gnu2} conventions. @samp{gnu} is the conservative default;
25777 @samp{gnu2} is more efficient, but it may add compile- and run-time
25778 requirements that cannot be satisfied on all systems.
25779
25780 @item -mpush-args
25781 @itemx -mno-push-args
25782 @opindex mpush-args
25783 @opindex mno-push-args
25784 Use PUSH operations to store outgoing parameters. This method is shorter
25785 and usually equally fast as method using SUB/MOV operations and is enabled
25786 by default. In some cases disabling it may improve performance because of
25787 improved scheduling and reduced dependencies.
25788
25789 @item -maccumulate-outgoing-args
25790 @opindex maccumulate-outgoing-args
25791 If enabled, the maximum amount of space required for outgoing arguments is
25792 computed in the function prologue. This is faster on most modern CPUs
25793 because of reduced dependencies, improved scheduling and reduced stack usage
25794 when the preferred stack boundary is not equal to 2. The drawback is a notable
25795 increase in code size. This switch implies @option{-mno-push-args}.
25796
25797 @item -mthreads
25798 @opindex mthreads
25799 Support thread-safe exception handling on MinGW. Programs that rely
25800 on thread-safe exception handling must compile and link all code with the
25801 @option{-mthreads} option. When compiling, @option{-mthreads} defines
25802 @option{-D_MT}; when linking, it links in a special thread helper library
25803 @option{-lmingwthrd} which cleans up per-thread exception-handling data.
25804
25805 @item -mms-bitfields
25806 @itemx -mno-ms-bitfields
25807 @opindex mms-bitfields
25808 @opindex mno-ms-bitfields
25809
25810 Enable/disable bit-field layout compatible with the native Microsoft
25811 Windows compiler.
25812
25813 If @code{packed} is used on a structure, or if bit-fields are used,
25814 it may be that the Microsoft ABI lays out the structure differently
25815 than the way GCC normally does. Particularly when moving packed
25816 data between functions compiled with GCC and the native Microsoft compiler
25817 (either via function call or as data in a file), it may be necessary to access
25818 either format.
25819
25820 This option is enabled by default for Microsoft Windows
25821 targets. This behavior can also be controlled locally by use of variable
25822 or type attributes. For more information, see @ref{x86 Variable Attributes}
25823 and @ref{x86 Type Attributes}.
25824
25825 The Microsoft structure layout algorithm is fairly simple with the exception
25826 of the bit-field packing.
25827 The padding and alignment of members of structures and whether a bit-field
25828 can straddle a storage-unit boundary are determine by these rules:
25829
25830 @enumerate
25831 @item Structure members are stored sequentially in the order in which they are
25832 declared: the first member has the lowest memory address and the last member
25833 the highest.
25834
25835 @item Every data object has an alignment requirement. The alignment requirement
25836 for all data except structures, unions, and arrays is either the size of the
25837 object or the current packing size (specified with either the
25838 @code{aligned} attribute or the @code{pack} pragma),
25839 whichever is less. For structures, unions, and arrays,
25840 the alignment requirement is the largest alignment requirement of its members.
25841 Every object is allocated an offset so that:
25842
25843 @smallexample
25844 offset % alignment_requirement == 0
25845 @end smallexample
25846
25847 @item Adjacent bit-fields are packed into the same 1-, 2-, or 4-byte allocation
25848 unit if the integral types are the same size and if the next bit-field fits
25849 into the current allocation unit without crossing the boundary imposed by the
25850 common alignment requirements of the bit-fields.
25851 @end enumerate
25852
25853 MSVC interprets zero-length bit-fields in the following ways:
25854
25855 @enumerate
25856 @item If a zero-length bit-field is inserted between two bit-fields that
25857 are normally coalesced, the bit-fields are not coalesced.
25858
25859 For example:
25860
25861 @smallexample
25862 struct
25863 @{
25864 unsigned long bf_1 : 12;
25865 unsigned long : 0;
25866 unsigned long bf_2 : 12;
25867 @} t1;
25868 @end smallexample
25869
25870 @noindent
25871 The size of @code{t1} is 8 bytes with the zero-length bit-field. If the
25872 zero-length bit-field were removed, @code{t1}'s size would be 4 bytes.
25873
25874 @item If a zero-length bit-field is inserted after a bit-field, @code{foo}, and the
25875 alignment of the zero-length bit-field is greater than the member that follows it,
25876 @code{bar}, @code{bar} is aligned as the type of the zero-length bit-field.
25877
25878 For example:
25879
25880 @smallexample
25881 struct
25882 @{
25883 char foo : 4;
25884 short : 0;
25885 char bar;
25886 @} t2;
25887
25888 struct
25889 @{
25890 char foo : 4;
25891 short : 0;
25892 double bar;
25893 @} t3;
25894 @end smallexample
25895
25896 @noindent
25897 For @code{t2}, @code{bar} is placed at offset 2, rather than offset 1.
25898 Accordingly, the size of @code{t2} is 4. For @code{t3}, the zero-length
25899 bit-field does not affect the alignment of @code{bar} or, as a result, the size
25900 of the structure.
25901
25902 Taking this into account, it is important to note the following:
25903
25904 @enumerate
25905 @item If a zero-length bit-field follows a normal bit-field, the type of the
25906 zero-length bit-field may affect the alignment of the structure as whole. For
25907 example, @code{t2} has a size of 4 bytes, since the zero-length bit-field follows a
25908 normal bit-field, and is of type short.
25909
25910 @item Even if a zero-length bit-field is not followed by a normal bit-field, it may
25911 still affect the alignment of the structure:
25912
25913 @smallexample
25914 struct
25915 @{
25916 char foo : 6;
25917 long : 0;
25918 @} t4;
25919 @end smallexample
25920
25921 @noindent
25922 Here, @code{t4} takes up 4 bytes.
25923 @end enumerate
25924
25925 @item Zero-length bit-fields following non-bit-field members are ignored:
25926
25927 @smallexample
25928 struct
25929 @{
25930 char foo;
25931 long : 0;
25932 char bar;
25933 @} t5;
25934 @end smallexample
25935
25936 @noindent
25937 Here, @code{t5} takes up 2 bytes.
25938 @end enumerate
25939
25940
25941 @item -mno-align-stringops
25942 @opindex mno-align-stringops
25943 Do not align the destination of inlined string operations. This switch reduces
25944 code size and improves performance in case the destination is already aligned,
25945 but GCC doesn't know about it.
25946
25947 @item -minline-all-stringops
25948 @opindex minline-all-stringops
25949 By default GCC inlines string operations only when the destination is
25950 known to be aligned to least a 4-byte boundary.
25951 This enables more inlining and increases code
25952 size, but may improve performance of code that depends on fast
25953 @code{memcpy}, @code{strlen},
25954 and @code{memset} for short lengths.
25955
25956 @item -minline-stringops-dynamically
25957 @opindex minline-stringops-dynamically
25958 For string operations of unknown size, use run-time checks with
25959 inline code for small blocks and a library call for large blocks.
25960
25961 @item -mstringop-strategy=@var{alg}
25962 @opindex mstringop-strategy=@var{alg}
25963 Override the internal decision heuristic for the particular algorithm to use
25964 for inlining string operations. The allowed values for @var{alg} are:
25965
25966 @table @samp
25967 @item rep_byte
25968 @itemx rep_4byte
25969 @itemx rep_8byte
25970 Expand using i386 @code{rep} prefix of the specified size.
25971
25972 @item byte_loop
25973 @itemx loop
25974 @itemx unrolled_loop
25975 Expand into an inline loop.
25976
25977 @item libcall
25978 Always use a library call.
25979 @end table
25980
25981 @item -mmemcpy-strategy=@var{strategy}
25982 @opindex mmemcpy-strategy=@var{strategy}
25983 Override the internal decision heuristic to decide if @code{__builtin_memcpy}
25984 should be inlined and what inline algorithm to use when the expected size
25985 of the copy operation is known. @var{strategy}
25986 is a comma-separated list of @var{alg}:@var{max_size}:@var{dest_align} triplets.
25987 @var{alg} is specified in @option{-mstringop-strategy}, @var{max_size} specifies
25988 the max byte size with which inline algorithm @var{alg} is allowed. For the last
25989 triplet, the @var{max_size} must be @code{-1}. The @var{max_size} of the triplets
25990 in the list must be specified in increasing order. The minimal byte size for
25991 @var{alg} is @code{0} for the first triplet and @code{@var{max_size} + 1} of the
25992 preceding range.
25993
25994 @item -mmemset-strategy=@var{strategy}
25995 @opindex mmemset-strategy=@var{strategy}
25996 The option is similar to @option{-mmemcpy-strategy=} except that it is to control
25997 @code{__builtin_memset} expansion.
25998
25999 @item -momit-leaf-frame-pointer
26000 @opindex momit-leaf-frame-pointer
26001 Don't keep the frame pointer in a register for leaf functions. This
26002 avoids the instructions to save, set up, and restore frame pointers and
26003 makes an extra register available in leaf functions. The option
26004 @option{-fomit-leaf-frame-pointer} removes the frame pointer for leaf functions,
26005 which might make debugging harder.
26006
26007 @item -mtls-direct-seg-refs
26008 @itemx -mno-tls-direct-seg-refs
26009 @opindex mtls-direct-seg-refs
26010 Controls whether TLS variables may be accessed with offsets from the
26011 TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
26012 or whether the thread base pointer must be added. Whether or not this
26013 is valid depends on the operating system, and whether it maps the
26014 segment to cover the entire TLS area.
26015
26016 For systems that use the GNU C Library, the default is on.
26017
26018 @item -msse2avx
26019 @itemx -mno-sse2avx
26020 @opindex msse2avx
26021 Specify that the assembler should encode SSE instructions with VEX
26022 prefix. The option @option{-mavx} turns this on by default.
26023
26024 @item -mfentry
26025 @itemx -mno-fentry
26026 @opindex mfentry
26027 If profiling is active (@option{-pg}), put the profiling
26028 counter call before the prologue.
26029 Note: On x86 architectures the attribute @code{ms_hook_prologue}
26030 isn't possible at the moment for @option{-mfentry} and @option{-pg}.
26031
26032 @item -mrecord-mcount
26033 @itemx -mno-record-mcount
26034 @opindex mrecord-mcount
26035 If profiling is active (@option{-pg}), generate a __mcount_loc section
26036 that contains pointers to each profiling call. This is useful for
26037 automatically patching and out calls.
26038
26039 @item -mnop-mcount
26040 @itemx -mno-nop-mcount
26041 @opindex mnop-mcount
26042 If profiling is active (@option{-pg}), generate the calls to
26043 the profiling functions as NOPs. This is useful when they
26044 should be patched in later dynamically. This is likely only
26045 useful together with @option{-mrecord-mcount}.
26046
26047 @item -mskip-rax-setup
26048 @itemx -mno-skip-rax-setup
26049 @opindex mskip-rax-setup
26050 When generating code for the x86-64 architecture with SSE extensions
26051 disabled, @option{-mskip-rax-setup} can be used to skip setting up RAX
26052 register when there are no variable arguments passed in vector registers.
26053
26054 @strong{Warning:} Since RAX register is used to avoid unnecessarily
26055 saving vector registers on stack when passing variable arguments, the
26056 impacts of this option are callees may waste some stack space,
26057 misbehave or jump to a random location. GCC 4.4 or newer don't have
26058 those issues, regardless the RAX register value.
26059
26060 @item -m8bit-idiv
26061 @itemx -mno-8bit-idiv
26062 @opindex m8bit-idiv
26063 On some processors, like Intel Atom, 8-bit unsigned integer divide is
26064 much faster than 32-bit/64-bit integer divide. This option generates a
26065 run-time check. If both dividend and divisor are within range of 0
26066 to 255, 8-bit unsigned integer divide is used instead of
26067 32-bit/64-bit integer divide.
26068
26069 @item -mavx256-split-unaligned-load
26070 @itemx -mavx256-split-unaligned-store
26071 @opindex mavx256-split-unaligned-load
26072 @opindex mavx256-split-unaligned-store
26073 Split 32-byte AVX unaligned load and store.
26074
26075 @item -mstack-protector-guard=@var{guard}
26076 @opindex mstack-protector-guard=@var{guard}
26077 Generate stack protection code using canary at @var{guard}. Supported
26078 locations are @samp{global} for global canary or @samp{tls} for per-thread
26079 canary in the TLS block (the default). This option has effect only when
26080 @option{-fstack-protector} or @option{-fstack-protector-all} is specified.
26081
26082 @item -mmitigate-rop
26083 @opindex mmitigate-rop
26084 Try to avoid generating code sequences that contain unintended return
26085 opcodes, to mitigate against certain forms of attack. At the moment,
26086 this option is limited in what it can do and should not be relied
26087 on to provide serious protection.
26088
26089 @item -mgeneral-regs-only
26090 @opindex mgeneral-regs-only
26091 Generate code that uses only the general-purpose registers. This
26092 prevents the compiler from using floating-point, vector, mask and bound
26093 registers.
26094
26095 @end table
26096
26097 These @samp{-m} switches are supported in addition to the above
26098 on x86-64 processors in 64-bit environments.
26099
26100 @table @gcctabopt
26101 @item -m32
26102 @itemx -m64
26103 @itemx -mx32
26104 @itemx -m16
26105 @itemx -miamcu
26106 @opindex m32
26107 @opindex m64
26108 @opindex mx32
26109 @opindex m16
26110 @opindex miamcu
26111 Generate code for a 16-bit, 32-bit or 64-bit environment.
26112 The @option{-m32} option sets @code{int}, @code{long}, and pointer types
26113 to 32 bits, and
26114 generates code that runs on any i386 system.
26115
26116 The @option{-m64} option sets @code{int} to 32 bits and @code{long} and pointer
26117 types to 64 bits, and generates code for the x86-64 architecture.
26118 For Darwin only the @option{-m64} option also turns off the @option{-fno-pic}
26119 and @option{-mdynamic-no-pic} options.
26120
26121 The @option{-mx32} option sets @code{int}, @code{long}, and pointer types
26122 to 32 bits, and
26123 generates code for the x86-64 architecture.
26124
26125 The @option{-m16} option is the same as @option{-m32}, except for that
26126 it outputs the @code{.code16gcc} assembly directive at the beginning of
26127 the assembly output so that the binary can run in 16-bit mode.
26128
26129 The @option{-miamcu} option generates code which conforms to Intel MCU
26130 psABI. It requires the @option{-m32} option to be turned on.
26131
26132 @item -mno-red-zone
26133 @opindex mno-red-zone
26134 Do not use a so-called ``red zone'' for x86-64 code. The red zone is mandated
26135 by the x86-64 ABI; it is a 128-byte area beyond the location of the
26136 stack pointer that is not modified by signal or interrupt handlers
26137 and therefore can be used for temporary data without adjusting the stack
26138 pointer. The flag @option{-mno-red-zone} disables this red zone.
26139
26140 @item -mcmodel=small
26141 @opindex mcmodel=small
26142 Generate code for the small code model: the program and its symbols must
26143 be linked in the lower 2 GB of the address space. Pointers are 64 bits.
26144 Programs can be statically or dynamically linked. This is the default
26145 code model.
26146
26147 @item -mcmodel=kernel
26148 @opindex mcmodel=kernel
26149 Generate code for the kernel code model. The kernel runs in the
26150 negative 2 GB of the address space.
26151 This model has to be used for Linux kernel code.
26152
26153 @item -mcmodel=medium
26154 @opindex mcmodel=medium
26155 Generate code for the medium model: the program is linked in the lower 2
26156 GB of the address space. Small symbols are also placed there. Symbols
26157 with sizes larger than @option{-mlarge-data-threshold} are put into
26158 large data or BSS sections and can be located above 2GB. Programs can
26159 be statically or dynamically linked.
26160
26161 @item -mcmodel=large
26162 @opindex mcmodel=large
26163 Generate code for the large model. This model makes no assumptions
26164 about addresses and sizes of sections.
26165
26166 @item -maddress-mode=long
26167 @opindex maddress-mode=long
26168 Generate code for long address mode. This is only supported for 64-bit
26169 and x32 environments. It is the default address mode for 64-bit
26170 environments.
26171
26172 @item -maddress-mode=short
26173 @opindex maddress-mode=short
26174 Generate code for short address mode. This is only supported for 32-bit
26175 and x32 environments. It is the default address mode for 32-bit and
26176 x32 environments.
26177 @end table
26178
26179 @node x86 Windows Options
26180 @subsection x86 Windows Options
26181 @cindex x86 Windows Options
26182 @cindex Windows Options for x86
26183
26184 These additional options are available for Microsoft Windows targets:
26185
26186 @table @gcctabopt
26187 @item -mconsole
26188 @opindex mconsole
26189 This option
26190 specifies that a console application is to be generated, by
26191 instructing the linker to set the PE header subsystem type
26192 required for console applications.
26193 This option is available for Cygwin and MinGW targets and is
26194 enabled by default on those targets.
26195
26196 @item -mdll
26197 @opindex mdll
26198 This option is available for Cygwin and MinGW targets. It
26199 specifies that a DLL---a dynamic link library---is to be
26200 generated, enabling the selection of the required runtime
26201 startup object and entry point.
26202
26203 @item -mnop-fun-dllimport
26204 @opindex mnop-fun-dllimport
26205 This option is available for Cygwin and MinGW targets. It
26206 specifies that the @code{dllimport} attribute should be ignored.
26207
26208 @item -mthread
26209 @opindex mthread
26210 This option is available for MinGW targets. It specifies
26211 that MinGW-specific thread support is to be used.
26212
26213 @item -municode
26214 @opindex municode
26215 This option is available for MinGW-w64 targets. It causes
26216 the @code{UNICODE} preprocessor macro to be predefined, and
26217 chooses Unicode-capable runtime startup code.
26218
26219 @item -mwin32
26220 @opindex mwin32
26221 This option is available for Cygwin and MinGW targets. It
26222 specifies that the typical Microsoft Windows predefined macros are to
26223 be set in the pre-processor, but does not influence the choice
26224 of runtime library/startup code.
26225
26226 @item -mwindows
26227 @opindex mwindows
26228 This option is available for Cygwin and MinGW targets. It
26229 specifies that a GUI application is to be generated by
26230 instructing the linker to set the PE header subsystem type
26231 appropriately.
26232
26233 @item -fno-set-stack-executable
26234 @opindex fno-set-stack-executable
26235 This option is available for MinGW targets. It specifies that
26236 the executable flag for the stack used by nested functions isn't
26237 set. This is necessary for binaries running in kernel mode of
26238 Microsoft Windows, as there the User32 API, which is used to set executable
26239 privileges, isn't available.
26240
26241 @item -fwritable-relocated-rdata
26242 @opindex fno-writable-relocated-rdata
26243 This option is available for MinGW and Cygwin targets. It specifies
26244 that relocated-data in read-only section is put into the @code{.data}
26245 section. This is a necessary for older runtimes not supporting
26246 modification of @code{.rdata} sections for pseudo-relocation.
26247
26248 @item -mpe-aligned-commons
26249 @opindex mpe-aligned-commons
26250 This option is available for Cygwin and MinGW targets. It
26251 specifies that the GNU extension to the PE file format that
26252 permits the correct alignment of COMMON variables should be
26253 used when generating code. It is enabled by default if
26254 GCC detects that the target assembler found during configuration
26255 supports the feature.
26256 @end table
26257
26258 See also under @ref{x86 Options} for standard options.
26259
26260 @node Xstormy16 Options
26261 @subsection Xstormy16 Options
26262 @cindex Xstormy16 Options
26263
26264 These options are defined for Xstormy16:
26265
26266 @table @gcctabopt
26267 @item -msim
26268 @opindex msim
26269 Choose startup files and linker script suitable for the simulator.
26270 @end table
26271
26272 @node Xtensa Options
26273 @subsection Xtensa Options
26274 @cindex Xtensa Options
26275
26276 These options are supported for Xtensa targets:
26277
26278 @table @gcctabopt
26279 @item -mconst16
26280 @itemx -mno-const16
26281 @opindex mconst16
26282 @opindex mno-const16
26283 Enable or disable use of @code{CONST16} instructions for loading
26284 constant values. The @code{CONST16} instruction is currently not a
26285 standard option from Tensilica. When enabled, @code{CONST16}
26286 instructions are always used in place of the standard @code{L32R}
26287 instructions. The use of @code{CONST16} is enabled by default only if
26288 the @code{L32R} instruction is not available.
26289
26290 @item -mfused-madd
26291 @itemx -mno-fused-madd
26292 @opindex mfused-madd
26293 @opindex mno-fused-madd
26294 Enable or disable use of fused multiply/add and multiply/subtract
26295 instructions in the floating-point option. This has no effect if the
26296 floating-point option is not also enabled. Disabling fused multiply/add
26297 and multiply/subtract instructions forces the compiler to use separate
26298 instructions for the multiply and add/subtract operations. This may be
26299 desirable in some cases where strict IEEE 754-compliant results are
26300 required: the fused multiply add/subtract instructions do not round the
26301 intermediate result, thereby producing results with @emph{more} bits of
26302 precision than specified by the IEEE standard. Disabling fused multiply
26303 add/subtract instructions also ensures that the program output is not
26304 sensitive to the compiler's ability to combine multiply and add/subtract
26305 operations.
26306
26307 @item -mserialize-volatile
26308 @itemx -mno-serialize-volatile
26309 @opindex mserialize-volatile
26310 @opindex mno-serialize-volatile
26311 When this option is enabled, GCC inserts @code{MEMW} instructions before
26312 @code{volatile} memory references to guarantee sequential consistency.
26313 The default is @option{-mserialize-volatile}. Use
26314 @option{-mno-serialize-volatile} to omit the @code{MEMW} instructions.
26315
26316 @item -mforce-no-pic
26317 @opindex mforce-no-pic
26318 For targets, like GNU/Linux, where all user-mode Xtensa code must be
26319 position-independent code (PIC), this option disables PIC for compiling
26320 kernel code.
26321
26322 @item -mtext-section-literals
26323 @itemx -mno-text-section-literals
26324 @opindex mtext-section-literals
26325 @opindex mno-text-section-literals
26326 These options control the treatment of literal pools. The default is
26327 @option{-mno-text-section-literals}, which places literals in a separate
26328 section in the output file. This allows the literal pool to be placed
26329 in a data RAM/ROM, and it also allows the linker to combine literal
26330 pools from separate object files to remove redundant literals and
26331 improve code size. With @option{-mtext-section-literals}, the literals
26332 are interspersed in the text section in order to keep them as close as
26333 possible to their references. This may be necessary for large assembly
26334 files. Literals for each function are placed right before that function.
26335
26336 @item -mauto-litpools
26337 @itemx -mno-auto-litpools
26338 @opindex mauto-litpools
26339 @opindex mno-auto-litpools
26340 These options control the treatment of literal pools. The default is
26341 @option{-mno-auto-litpools}, which places literals in a separate
26342 section in the output file unless @option{-mtext-section-literals} is
26343 used. With @option{-mauto-litpools} the literals are interspersed in
26344 the text section by the assembler. Compiler does not produce explicit
26345 @code{.literal} directives and loads literals into registers with
26346 @code{MOVI} instructions instead of @code{L32R} to let the assembler
26347 do relaxation and place literals as necessary. This option allows
26348 assembler to create several literal pools per function and assemble
26349 very big functions, which may not be possible with
26350 @option{-mtext-section-literals}.
26351
26352 @item -mtarget-align
26353 @itemx -mno-target-align
26354 @opindex mtarget-align
26355 @opindex mno-target-align
26356 When this option is enabled, GCC instructs the assembler to
26357 automatically align instructions to reduce branch penalties at the
26358 expense of some code density. The assembler attempts to widen density
26359 instructions to align branch targets and the instructions following call
26360 instructions. If there are not enough preceding safe density
26361 instructions to align a target, no widening is performed. The
26362 default is @option{-mtarget-align}. These options do not affect the
26363 treatment of auto-aligned instructions like @code{LOOP}, which the
26364 assembler always aligns, either by widening density instructions or
26365 by inserting NOP instructions.
26366
26367 @item -mlongcalls
26368 @itemx -mno-longcalls
26369 @opindex mlongcalls
26370 @opindex mno-longcalls
26371 When this option is enabled, GCC instructs the assembler to translate
26372 direct calls to indirect calls unless it can determine that the target
26373 of a direct call is in the range allowed by the call instruction. This
26374 translation typically occurs for calls to functions in other source
26375 files. Specifically, the assembler translates a direct @code{CALL}
26376 instruction into an @code{L32R} followed by a @code{CALLX} instruction.
26377 The default is @option{-mno-longcalls}. This option should be used in
26378 programs where the call target can potentially be out of range. This
26379 option is implemented in the assembler, not the compiler, so the
26380 assembly code generated by GCC still shows direct call
26381 instructions---look at the disassembled object code to see the actual
26382 instructions. Note that the assembler uses an indirect call for
26383 every cross-file call, not just those that really are out of range.
26384 @end table
26385
26386 @node zSeries Options
26387 @subsection zSeries Options
26388 @cindex zSeries options
26389
26390 These are listed under @xref{S/390 and zSeries Options}.
26391
26392
26393 @c man end
26394
26395 @node Spec Files
26396 @section Specifying Subprocesses and the Switches to Pass to Them
26397 @cindex Spec Files
26398
26399 @command{gcc} is a driver program. It performs its job by invoking a
26400 sequence of other programs to do the work of compiling, assembling and
26401 linking. GCC interprets its command-line parameters and uses these to
26402 deduce which programs it should invoke, and which command-line options
26403 it ought to place on their command lines. This behavior is controlled
26404 by @dfn{spec strings}. In most cases there is one spec string for each
26405 program that GCC can invoke, but a few programs have multiple spec
26406 strings to control their behavior. The spec strings built into GCC can
26407 be overridden by using the @option{-specs=} command-line switch to specify
26408 a spec file.
26409
26410 @dfn{Spec files} are plain-text files that are used to construct spec
26411 strings. They consist of a sequence of directives separated by blank
26412 lines. The type of directive is determined by the first non-whitespace
26413 character on the line, which can be one of the following:
26414
26415 @table @code
26416 @item %@var{command}
26417 Issues a @var{command} to the spec file processor. The commands that can
26418 appear here are:
26419
26420 @table @code
26421 @item %include <@var{file}>
26422 @cindex @code{%include}
26423 Search for @var{file} and insert its text at the current point in the
26424 specs file.
26425
26426 @item %include_noerr <@var{file}>
26427 @cindex @code{%include_noerr}
26428 Just like @samp{%include}, but do not generate an error message if the include
26429 file cannot be found.
26430
26431 @item %rename @var{old_name} @var{new_name}
26432 @cindex @code{%rename}
26433 Rename the spec string @var{old_name} to @var{new_name}.
26434
26435 @end table
26436
26437 @item *[@var{spec_name}]:
26438 This tells the compiler to create, override or delete the named spec
26439 string. All lines after this directive up to the next directive or
26440 blank line are considered to be the text for the spec string. If this
26441 results in an empty string then the spec is deleted. (Or, if the
26442 spec did not exist, then nothing happens.) Otherwise, if the spec
26443 does not currently exist a new spec is created. If the spec does
26444 exist then its contents are overridden by the text of this
26445 directive, unless the first character of that text is the @samp{+}
26446 character, in which case the text is appended to the spec.
26447
26448 @item [@var{suffix}]:
26449 Creates a new @samp{[@var{suffix}] spec} pair. All lines after this directive
26450 and up to the next directive or blank line are considered to make up the
26451 spec string for the indicated suffix. When the compiler encounters an
26452 input file with the named suffix, it processes the spec string in
26453 order to work out how to compile that file. For example:
26454
26455 @smallexample
26456 .ZZ:
26457 z-compile -input %i
26458 @end smallexample
26459
26460 This says that any input file whose name ends in @samp{.ZZ} should be
26461 passed to the program @samp{z-compile}, which should be invoked with the
26462 command-line switch @option{-input} and with the result of performing the
26463 @samp{%i} substitution. (See below.)
26464
26465 As an alternative to providing a spec string, the text following a
26466 suffix directive can be one of the following:
26467
26468 @table @code
26469 @item @@@var{language}
26470 This says that the suffix is an alias for a known @var{language}. This is
26471 similar to using the @option{-x} command-line switch to GCC to specify a
26472 language explicitly. For example:
26473
26474 @smallexample
26475 .ZZ:
26476 @@c++
26477 @end smallexample
26478
26479 Says that .ZZ files are, in fact, C++ source files.
26480
26481 @item #@var{name}
26482 This causes an error messages saying:
26483
26484 @smallexample
26485 @var{name} compiler not installed on this system.
26486 @end smallexample
26487 @end table
26488
26489 GCC already has an extensive list of suffixes built into it.
26490 This directive adds an entry to the end of the list of suffixes, but
26491 since the list is searched from the end backwards, it is effectively
26492 possible to override earlier entries using this technique.
26493
26494 @end table
26495
26496 GCC has the following spec strings built into it. Spec files can
26497 override these strings or create their own. Note that individual
26498 targets can also add their own spec strings to this list.
26499
26500 @smallexample
26501 asm Options to pass to the assembler
26502 asm_final Options to pass to the assembler post-processor
26503 cpp Options to pass to the C preprocessor
26504 cc1 Options to pass to the C compiler
26505 cc1plus Options to pass to the C++ compiler
26506 endfile Object files to include at the end of the link
26507 link Options to pass to the linker
26508 lib Libraries to include on the command line to the linker
26509 libgcc Decides which GCC support library to pass to the linker
26510 linker Sets the name of the linker
26511 predefines Defines to be passed to the C preprocessor
26512 signed_char Defines to pass to CPP to say whether @code{char} is signed
26513 by default
26514 startfile Object files to include at the start of the link
26515 @end smallexample
26516
26517 Here is a small example of a spec file:
26518
26519 @smallexample
26520 %rename lib old_lib
26521
26522 *lib:
26523 --start-group -lgcc -lc -leval1 --end-group %(old_lib)
26524 @end smallexample
26525
26526 This example renames the spec called @samp{lib} to @samp{old_lib} and
26527 then overrides the previous definition of @samp{lib} with a new one.
26528 The new definition adds in some extra command-line options before
26529 including the text of the old definition.
26530
26531 @dfn{Spec strings} are a list of command-line options to be passed to their
26532 corresponding program. In addition, the spec strings can contain
26533 @samp{%}-prefixed sequences to substitute variable text or to
26534 conditionally insert text into the command line. Using these constructs
26535 it is possible to generate quite complex command lines.
26536
26537 Here is a table of all defined @samp{%}-sequences for spec
26538 strings. Note that spaces are not generated automatically around the
26539 results of expanding these sequences. Therefore you can concatenate them
26540 together or combine them with constant text in a single argument.
26541
26542 @table @code
26543 @item %%
26544 Substitute one @samp{%} into the program name or argument.
26545
26546 @item %i
26547 Substitute the name of the input file being processed.
26548
26549 @item %b
26550 Substitute the basename of the input file being processed.
26551 This is the substring up to (and not including) the last period
26552 and not including the directory.
26553
26554 @item %B
26555 This is the same as @samp{%b}, but include the file suffix (text after
26556 the last period).
26557
26558 @item %d
26559 Marks the argument containing or following the @samp{%d} as a
26560 temporary file name, so that that file is deleted if GCC exits
26561 successfully. Unlike @samp{%g}, this contributes no text to the
26562 argument.
26563
26564 @item %g@var{suffix}
26565 Substitute a file name that has suffix @var{suffix} and is chosen
26566 once per compilation, and mark the argument in the same way as
26567 @samp{%d}. To reduce exposure to denial-of-service attacks, the file
26568 name is now chosen in a way that is hard to predict even when previously
26569 chosen file names are known. For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
26570 might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}. @var{suffix} matches
26571 the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
26572 treated exactly as if @samp{%O} had been preprocessed. Previously, @samp{%g}
26573 was simply substituted with a file name chosen once per compilation,
26574 without regard to any appended suffix (which was therefore treated
26575 just like ordinary text), making such attacks more likely to succeed.
26576
26577 @item %u@var{suffix}
26578 Like @samp{%g}, but generates a new temporary file name
26579 each time it appears instead of once per compilation.
26580
26581 @item %U@var{suffix}
26582 Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
26583 new one if there is no such last file name. In the absence of any
26584 @samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
26585 the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s}
26586 involves the generation of two distinct file names, one
26587 for each @samp{%g.s} and another for each @samp{%U.s}. Previously, @samp{%U} was
26588 simply substituted with a file name chosen for the previous @samp{%u},
26589 without regard to any appended suffix.
26590
26591 @item %j@var{suffix}
26592 Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
26593 writable, and if @option{-save-temps} is not used;
26594 otherwise, substitute the name
26595 of a temporary file, just like @samp{%u}. This temporary file is not
26596 meant for communication between processes, but rather as a junk
26597 disposal mechanism.
26598
26599 @item %|@var{suffix}
26600 @itemx %m@var{suffix}
26601 Like @samp{%g}, except if @option{-pipe} is in effect. In that case
26602 @samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
26603 all. These are the two most common ways to instruct a program that it
26604 should read from standard input or write to standard output. If you
26605 need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
26606 construct: see for example @file{f/lang-specs.h}.
26607
26608 @item %.@var{SUFFIX}
26609 Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args
26610 when it is subsequently output with @samp{%*}. @var{SUFFIX} is
26611 terminated by the next space or %.
26612
26613 @item %w
26614 Marks the argument containing or following the @samp{%w} as the
26615 designated output file of this compilation. This puts the argument
26616 into the sequence of arguments that @samp{%o} substitutes.
26617
26618 @item %o
26619 Substitutes the names of all the output files, with spaces
26620 automatically placed around them. You should write spaces
26621 around the @samp{%o} as well or the results are undefined.
26622 @samp{%o} is for use in the specs for running the linker.
26623 Input files whose names have no recognized suffix are not compiled
26624 at all, but they are included among the output files, so they are
26625 linked.
26626
26627 @item %O
26628 Substitutes the suffix for object files. Note that this is
26629 handled specially when it immediately follows @samp{%g, %u, or %U},
26630 because of the need for those to form complete file names. The
26631 handling is such that @samp{%O} is treated exactly as if it had already
26632 been substituted, except that @samp{%g, %u, and %U} do not currently
26633 support additional @var{suffix} characters following @samp{%O} as they do
26634 following, for example, @samp{.o}.
26635
26636 @item %p
26637 Substitutes the standard macro predefinitions for the
26638 current target machine. Use this when running @command{cpp}.
26639
26640 @item %P
26641 Like @samp{%p}, but puts @samp{__} before and after the name of each
26642 predefined macro, except for macros that start with @samp{__} or with
26643 @samp{_@var{L}}, where @var{L} is an uppercase letter. This is for ISO
26644 C@.
26645
26646 @item %I
26647 Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
26648 @option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}),
26649 @option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
26650 and @option{-imultilib} as necessary.
26651
26652 @item %s
26653 Current argument is the name of a library or startup file of some sort.
26654 Search for that file in a standard list of directories and substitute
26655 the full name found. The current working directory is included in the
26656 list of directories scanned.
26657
26658 @item %T
26659 Current argument is the name of a linker script. Search for that file
26660 in the current list of directories to scan for libraries. If the file
26661 is located insert a @option{--script} option into the command line
26662 followed by the full path name found. If the file is not found then
26663 generate an error message. Note: the current working directory is not
26664 searched.
26665
26666 @item %e@var{str}
26667 Print @var{str} as an error message. @var{str} is terminated by a newline.
26668 Use this when inconsistent options are detected.
26669
26670 @item %(@var{name})
26671 Substitute the contents of spec string @var{name} at this point.
26672
26673 @item %x@{@var{option}@}
26674 Accumulate an option for @samp{%X}.
26675
26676 @item %X
26677 Output the accumulated linker options specified by @option{-Wl} or a @samp{%x}
26678 spec string.
26679
26680 @item %Y
26681 Output the accumulated assembler options specified by @option{-Wa}.
26682
26683 @item %Z
26684 Output the accumulated preprocessor options specified by @option{-Wp}.
26685
26686 @item %a
26687 Process the @code{asm} spec. This is used to compute the
26688 switches to be passed to the assembler.
26689
26690 @item %A
26691 Process the @code{asm_final} spec. This is a spec string for
26692 passing switches to an assembler post-processor, if such a program is
26693 needed.
26694
26695 @item %l
26696 Process the @code{link} spec. This is the spec for computing the
26697 command line passed to the linker. Typically it makes use of the
26698 @samp{%L %G %S %D and %E} sequences.
26699
26700 @item %D
26701 Dump out a @option{-L} option for each directory that GCC believes might
26702 contain startup files. If the target supports multilibs then the
26703 current multilib directory is prepended to each of these paths.
26704
26705 @item %L
26706 Process the @code{lib} spec. This is a spec string for deciding which
26707 libraries are included on the command line to the linker.
26708
26709 @item %G
26710 Process the @code{libgcc} spec. This is a spec string for deciding
26711 which GCC support library is included on the command line to the linker.
26712
26713 @item %S
26714 Process the @code{startfile} spec. This is a spec for deciding which
26715 object files are the first ones passed to the linker. Typically
26716 this might be a file named @file{crt0.o}.
26717
26718 @item %E
26719 Process the @code{endfile} spec. This is a spec string that specifies
26720 the last object files that are passed to the linker.
26721
26722 @item %C
26723 Process the @code{cpp} spec. This is used to construct the arguments
26724 to be passed to the C preprocessor.
26725
26726 @item %1
26727 Process the @code{cc1} spec. This is used to construct the options to be
26728 passed to the actual C compiler (@command{cc1}).
26729
26730 @item %2
26731 Process the @code{cc1plus} spec. This is used to construct the options to be
26732 passed to the actual C++ compiler (@command{cc1plus}).
26733
26734 @item %*
26735 Substitute the variable part of a matched option. See below.
26736 Note that each comma in the substituted string is replaced by
26737 a single space.
26738
26739 @item %<S
26740 Remove all occurrences of @code{-S} from the command line. Note---this
26741 command is position dependent. @samp{%} commands in the spec string
26742 before this one see @code{-S}, @samp{%} commands in the spec string
26743 after this one do not.
26744
26745 @item %:@var{function}(@var{args})
26746 Call the named function @var{function}, passing it @var{args}.
26747 @var{args} is first processed as a nested spec string, then split
26748 into an argument vector in the usual fashion. The function returns
26749 a string which is processed as if it had appeared literally as part
26750 of the current spec.
26751
26752 The following built-in spec functions are provided:
26753
26754 @table @code
26755 @item @code{getenv}
26756 The @code{getenv} spec function takes two arguments: an environment
26757 variable name and a string. If the environment variable is not
26758 defined, a fatal error is issued. Otherwise, the return value is the
26759 value of the environment variable concatenated with the string. For
26760 example, if @env{TOPDIR} is defined as @file{/path/to/top}, then:
26761
26762 @smallexample
26763 %:getenv(TOPDIR /include)
26764 @end smallexample
26765
26766 expands to @file{/path/to/top/include}.
26767
26768 @item @code{if-exists}
26769 The @code{if-exists} spec function takes one argument, an absolute
26770 pathname to a file. If the file exists, @code{if-exists} returns the
26771 pathname. Here is a small example of its usage:
26772
26773 @smallexample
26774 *startfile:
26775 crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
26776 @end smallexample
26777
26778 @item @code{if-exists-else}
26779 The @code{if-exists-else} spec function is similar to the @code{if-exists}
26780 spec function, except that it takes two arguments. The first argument is
26781 an absolute pathname to a file. If the file exists, @code{if-exists-else}
26782 returns the pathname. If it does not exist, it returns the second argument.
26783 This way, @code{if-exists-else} can be used to select one file or another,
26784 based on the existence of the first. Here is a small example of its usage:
26785
26786 @smallexample
26787 *startfile:
26788 crt0%O%s %:if-exists(crti%O%s) \
26789 %:if-exists-else(crtbeginT%O%s crtbegin%O%s)
26790 @end smallexample
26791
26792 @item @code{replace-outfile}
26793 The @code{replace-outfile} spec function takes two arguments. It looks for the
26794 first argument in the outfiles array and replaces it with the second argument. Here
26795 is a small example of its usage:
26796
26797 @smallexample
26798 %@{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)@}
26799 @end smallexample
26800
26801 @item @code{remove-outfile}
26802 The @code{remove-outfile} spec function takes one argument. It looks for the
26803 first argument in the outfiles array and removes it. Here is a small example
26804 its usage:
26805
26806 @smallexample
26807 %:remove-outfile(-lm)
26808 @end smallexample
26809
26810 @item @code{pass-through-libs}
26811 The @code{pass-through-libs} spec function takes any number of arguments. It
26812 finds any @option{-l} options and any non-options ending in @file{.a} (which it
26813 assumes are the names of linker input library archive files) and returns a
26814 result containing all the found arguments each prepended by
26815 @option{-plugin-opt=-pass-through=} and joined by spaces. This list is
26816 intended to be passed to the LTO linker plugin.
26817
26818 @smallexample
26819 %:pass-through-libs(%G %L %G)
26820 @end smallexample
26821
26822 @item @code{print-asm-header}
26823 The @code{print-asm-header} function takes no arguments and simply
26824 prints a banner like:
26825
26826 @smallexample
26827 Assembler options
26828 =================
26829
26830 Use "-Wa,OPTION" to pass "OPTION" to the assembler.
26831 @end smallexample
26832
26833 It is used to separate compiler options from assembler options
26834 in the @option{--target-help} output.
26835 @end table
26836
26837 @item %@{S@}
26838 Substitutes the @code{-S} switch, if that switch is given to GCC@.
26839 If that switch is not specified, this substitutes nothing. Note that
26840 the leading dash is omitted when specifying this option, and it is
26841 automatically inserted if the substitution is performed. Thus the spec
26842 string @samp{%@{foo@}} matches the command-line option @option{-foo}
26843 and outputs the command-line option @option{-foo}.
26844
26845 @item %W@{S@}
26846 Like %@{@code{S}@} but mark last argument supplied within as a file to be
26847 deleted on failure.
26848
26849 @item %@{S*@}
26850 Substitutes all the switches specified to GCC whose names start
26851 with @code{-S}, but which also take an argument. This is used for
26852 switches like @option{-o}, @option{-D}, @option{-I}, etc.
26853 GCC considers @option{-o foo} as being
26854 one switch whose name starts with @samp{o}. %@{o*@} substitutes this
26855 text, including the space. Thus two arguments are generated.
26856
26857 @item %@{S*&T*@}
26858 Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options
26859 (the order of @code{S} and @code{T} in the spec is not significant).
26860 There can be any number of ampersand-separated variables; for each the
26861 wild card is optional. Useful for CPP as @samp{%@{D*&U*&A*@}}.
26862
26863 @item %@{S:X@}
26864 Substitutes @code{X}, if the @option{-S} switch is given to GCC@.
26865
26866 @item %@{!S:X@}
26867 Substitutes @code{X}, if the @option{-S} switch is @emph{not} given to GCC@.
26868
26869 @item %@{S*:X@}
26870 Substitutes @code{X} if one or more switches whose names start with
26871 @code{-S} are specified to GCC@. Normally @code{X} is substituted only
26872 once, no matter how many such switches appeared. However, if @code{%*}
26873 appears somewhere in @code{X}, then @code{X} is substituted once
26874 for each matching switch, with the @code{%*} replaced by the part of
26875 that switch matching the @code{*}.
26876
26877 If @code{%*} appears as the last part of a spec sequence then a space
26878 is added after the end of the last substitution. If there is more
26879 text in the sequence, however, then a space is not generated. This
26880 allows the @code{%*} substitution to be used as part of a larger
26881 string. For example, a spec string like this:
26882
26883 @smallexample
26884 %@{mcu=*:--script=%*/memory.ld@}
26885 @end smallexample
26886
26887 @noindent
26888 when matching an option like @option{-mcu=newchip} produces:
26889
26890 @smallexample
26891 --script=newchip/memory.ld
26892 @end smallexample
26893
26894 @item %@{.S:X@}
26895 Substitutes @code{X}, if processing a file with suffix @code{S}.
26896
26897 @item %@{!.S:X@}
26898 Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}.
26899
26900 @item %@{,S:X@}
26901 Substitutes @code{X}, if processing a file for language @code{S}.
26902
26903 @item %@{!,S:X@}
26904 Substitutes @code{X}, if not processing a file for language @code{S}.
26905
26906 @item %@{S|P:X@}
26907 Substitutes @code{X} if either @code{-S} or @code{-P} is given to
26908 GCC@. This may be combined with @samp{!}, @samp{.}, @samp{,}, and
26909 @code{*} sequences as well, although they have a stronger binding than
26910 the @samp{|}. If @code{%*} appears in @code{X}, all of the
26911 alternatives must be starred, and only the first matching alternative
26912 is substituted.
26913
26914 For example, a spec string like this:
26915
26916 @smallexample
26917 %@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
26918 @end smallexample
26919
26920 @noindent
26921 outputs the following command-line options from the following input
26922 command-line options:
26923
26924 @smallexample
26925 fred.c -foo -baz
26926 jim.d -bar -boggle
26927 -d fred.c -foo -baz -boggle
26928 -d jim.d -bar -baz -boggle
26929 @end smallexample
26930
26931 @item %@{S:X; T:Y; :D@}
26932
26933 If @code{S} is given to GCC, substitutes @code{X}; else if @code{T} is
26934 given to GCC, substitutes @code{Y}; else substitutes @code{D}. There can
26935 be as many clauses as you need. This may be combined with @code{.},
26936 @code{,}, @code{!}, @code{|}, and @code{*} as needed.
26937
26938
26939 @end table
26940
26941 The switch matching text @code{S} in a @samp{%@{S@}}, @samp{%@{S:X@}}
26942 or similar construct can use a backslash to ignore the special meaning
26943 of the character following it, thus allowing literal matching of a
26944 character that is otherwise specially treated. For example,
26945 @samp{%@{std=iso9899\:1999:X@}} substitutes @code{X} if the
26946 @option{-std=iso9899:1999} option is given.
26947
26948 The conditional text @code{X} in a @samp{%@{S:X@}} or similar
26949 construct may contain other nested @samp{%} constructs or spaces, or
26950 even newlines. They are processed as usual, as described above.
26951 Trailing white space in @code{X} is ignored. White space may also
26952 appear anywhere on the left side of the colon in these constructs,
26953 except between @code{.} or @code{*} and the corresponding word.
26954
26955 The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
26956 handled specifically in these constructs. If another value of
26957 @option{-O} or the negated form of a @option{-f}, @option{-m}, or
26958 @option{-W} switch is found later in the command line, the earlier
26959 switch value is ignored, except with @{@code{S}*@} where @code{S} is
26960 just one letter, which passes all matching options.
26961
26962 The character @samp{|} at the beginning of the predicate text is used to
26963 indicate that a command should be piped to the following command, but
26964 only if @option{-pipe} is specified.
26965
26966 It is built into GCC which switches take arguments and which do not.
26967 (You might think it would be useful to generalize this to allow each
26968 compiler's spec to say which switches take arguments. But this cannot
26969 be done in a consistent fashion. GCC cannot even decide which input
26970 files have been specified without knowing which switches take arguments,
26971 and it must know which input files to compile in order to tell which
26972 compilers to run).
26973
26974 GCC also knows implicitly that arguments starting in @option{-l} are to be
26975 treated as compiler output files, and passed to the linker in their
26976 proper position among the other output files.
26977
26978 @node Environment Variables
26979 @section Environment Variables Affecting GCC
26980 @cindex environment variables
26981
26982 @c man begin ENVIRONMENT
26983 This section describes several environment variables that affect how GCC
26984 operates. Some of them work by specifying directories or prefixes to use
26985 when searching for various kinds of files. Some are used to specify other
26986 aspects of the compilation environment.
26987
26988 Note that you can also specify places to search using options such as
26989 @option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}). These
26990 take precedence over places specified using environment variables, which
26991 in turn take precedence over those specified by the configuration of GCC@.
26992 @xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint,
26993 GNU Compiler Collection (GCC) Internals}.
26994
26995 @table @env
26996 @item LANG
26997 @itemx LC_CTYPE
26998 @c @itemx LC_COLLATE
26999 @itemx LC_MESSAGES
27000 @c @itemx LC_MONETARY
27001 @c @itemx LC_NUMERIC
27002 @c @itemx LC_TIME
27003 @itemx LC_ALL
27004 @findex LANG
27005 @findex LC_CTYPE
27006 @c @findex LC_COLLATE
27007 @findex LC_MESSAGES
27008 @c @findex LC_MONETARY
27009 @c @findex LC_NUMERIC
27010 @c @findex LC_TIME
27011 @findex LC_ALL
27012 @cindex locale
27013 These environment variables control the way that GCC uses
27014 localization information which allows GCC to work with different
27015 national conventions. GCC inspects the locale categories
27016 @env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do
27017 so. These locale categories can be set to any value supported by your
27018 installation. A typical value is @samp{en_GB.UTF-8} for English in the United
27019 Kingdom encoded in UTF-8.
27020
27021 The @env{LC_CTYPE} environment variable specifies character
27022 classification. GCC uses it to determine the character boundaries in
27023 a string; this is needed for some multibyte encodings that contain quote
27024 and escape characters that are otherwise interpreted as a string
27025 end or escape.
27026
27027 The @env{LC_MESSAGES} environment variable specifies the language to
27028 use in diagnostic messages.
27029
27030 If the @env{LC_ALL} environment variable is set, it overrides the value
27031 of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE}
27032 and @env{LC_MESSAGES} default to the value of the @env{LANG}
27033 environment variable. If none of these variables are set, GCC
27034 defaults to traditional C English behavior.
27035
27036 @item TMPDIR
27037 @findex TMPDIR
27038 If @env{TMPDIR} is set, it specifies the directory to use for temporary
27039 files. GCC uses temporary files to hold the output of one stage of
27040 compilation which is to be used as input to the next stage: for example,
27041 the output of the preprocessor, which is the input to the compiler
27042 proper.
27043
27044 @item GCC_COMPARE_DEBUG
27045 @findex GCC_COMPARE_DEBUG
27046 Setting @env{GCC_COMPARE_DEBUG} is nearly equivalent to passing
27047 @option{-fcompare-debug} to the compiler driver. See the documentation
27048 of this option for more details.
27049
27050 @item GCC_EXEC_PREFIX
27051 @findex GCC_EXEC_PREFIX
27052 If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
27053 names of the subprograms executed by the compiler. No slash is added
27054 when this prefix is combined with the name of a subprogram, but you can
27055 specify a prefix that ends with a slash if you wish.
27056
27057 If @env{GCC_EXEC_PREFIX} is not set, GCC attempts to figure out
27058 an appropriate prefix to use based on the pathname it is invoked with.
27059
27060 If GCC cannot find the subprogram using the specified prefix, it
27061 tries looking in the usual places for the subprogram.
27062
27063 The default value of @env{GCC_EXEC_PREFIX} is
27064 @file{@var{prefix}/lib/gcc/} where @var{prefix} is the prefix to
27065 the installed compiler. In many cases @var{prefix} is the value
27066 of @code{prefix} when you ran the @file{configure} script.
27067
27068 Other prefixes specified with @option{-B} take precedence over this prefix.
27069
27070 This prefix is also used for finding files such as @file{crt0.o} that are
27071 used for linking.
27072
27073 In addition, the prefix is used in an unusual way in finding the
27074 directories to search for header files. For each of the standard
27075 directories whose name normally begins with @samp{/usr/local/lib/gcc}
27076 (more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries
27077 replacing that beginning with the specified prefix to produce an
27078 alternate directory name. Thus, with @option{-Bfoo/}, GCC searches
27079 @file{foo/bar} just before it searches the standard directory
27080 @file{/usr/local/lib/bar}.
27081 If a standard directory begins with the configured
27082 @var{prefix} then the value of @var{prefix} is replaced by
27083 @env{GCC_EXEC_PREFIX} when looking for header files.
27084
27085 @item COMPILER_PATH
27086 @findex COMPILER_PATH
27087 The value of @env{COMPILER_PATH} is a colon-separated list of
27088 directories, much like @env{PATH}. GCC tries the directories thus
27089 specified when searching for subprograms, if it cannot find the
27090 subprograms using @env{GCC_EXEC_PREFIX}.
27091
27092 @item LIBRARY_PATH
27093 @findex LIBRARY_PATH
27094 The value of @env{LIBRARY_PATH} is a colon-separated list of
27095 directories, much like @env{PATH}. When configured as a native compiler,
27096 GCC tries the directories thus specified when searching for special
27097 linker files, if it cannot find them using @env{GCC_EXEC_PREFIX}. Linking
27098 using GCC also uses these directories when searching for ordinary
27099 libraries for the @option{-l} option (but directories specified with
27100 @option{-L} come first).
27101
27102 @item LANG
27103 @findex LANG
27104 @cindex locale definition
27105 This variable is used to pass locale information to the compiler. One way in
27106 which this information is used is to determine the character set to be used
27107 when character literals, string literals and comments are parsed in C and C++.
27108 When the compiler is configured to allow multibyte characters,
27109 the following values for @env{LANG} are recognized:
27110
27111 @table @samp
27112 @item C-JIS
27113 Recognize JIS characters.
27114 @item C-SJIS
27115 Recognize SJIS characters.
27116 @item C-EUCJP
27117 Recognize EUCJP characters.
27118 @end table
27119
27120 If @env{LANG} is not defined, or if it has some other value, then the
27121 compiler uses @code{mblen} and @code{mbtowc} as defined by the default locale to
27122 recognize and translate multibyte characters.
27123 @end table
27124
27125 @noindent
27126 Some additional environment variables affect the behavior of the
27127 preprocessor.
27128
27129 @include cppenv.texi
27130
27131 @c man end
27132
27133 @node Precompiled Headers
27134 @section Using Precompiled Headers
27135 @cindex precompiled headers
27136 @cindex speed of compilation
27137
27138 Often large projects have many header files that are included in every
27139 source file. The time the compiler takes to process these header files
27140 over and over again can account for nearly all of the time required to
27141 build the project. To make builds faster, GCC allows you to
27142 @dfn{precompile} a header file.
27143
27144 To create a precompiled header file, simply compile it as you would any
27145 other file, if necessary using the @option{-x} option to make the driver
27146 treat it as a C or C++ header file. You may want to use a
27147 tool like @command{make} to keep the precompiled header up-to-date when
27148 the headers it contains change.
27149
27150 A precompiled header file is searched for when @code{#include} is
27151 seen in the compilation. As it searches for the included file
27152 (@pxref{Search Path,,Search Path,cpp,The C Preprocessor}) the
27153 compiler looks for a precompiled header in each directory just before it
27154 looks for the include file in that directory. The name searched for is
27155 the name specified in the @code{#include} with @samp{.gch} appended. If
27156 the precompiled header file cannot be used, it is ignored.
27157
27158 For instance, if you have @code{#include "all.h"}, and you have
27159 @file{all.h.gch} in the same directory as @file{all.h}, then the
27160 precompiled header file is used if possible, and the original
27161 header is used otherwise.
27162
27163 Alternatively, you might decide to put the precompiled header file in a
27164 directory and use @option{-I} to ensure that directory is searched
27165 before (or instead of) the directory containing the original header.
27166 Then, if you want to check that the precompiled header file is always
27167 used, you can put a file of the same name as the original header in this
27168 directory containing an @code{#error} command.
27169
27170 This also works with @option{-include}. So yet another way to use
27171 precompiled headers, good for projects not designed with precompiled
27172 header files in mind, is to simply take most of the header files used by
27173 a project, include them from another header file, precompile that header
27174 file, and @option{-include} the precompiled header. If the header files
27175 have guards against multiple inclusion, they are skipped because
27176 they've already been included (in the precompiled header).
27177
27178 If you need to precompile the same header file for different
27179 languages, targets, or compiler options, you can instead make a
27180 @emph{directory} named like @file{all.h.gch}, and put each precompiled
27181 header in the directory, perhaps using @option{-o}. It doesn't matter
27182 what you call the files in the directory; every precompiled header in
27183 the directory is considered. The first precompiled header
27184 encountered in the directory that is valid for this compilation is
27185 used; they're searched in no particular order.
27186
27187 There are many other possibilities, limited only by your imagination,
27188 good sense, and the constraints of your build system.
27189
27190 A precompiled header file can be used only when these conditions apply:
27191
27192 @itemize
27193 @item
27194 Only one precompiled header can be used in a particular compilation.
27195
27196 @item
27197 A precompiled header cannot be used once the first C token is seen. You
27198 can have preprocessor directives before a precompiled header; you cannot
27199 include a precompiled header from inside another header.
27200
27201 @item
27202 The precompiled header file must be produced for the same language as
27203 the current compilation. You cannot use a C precompiled header for a C++
27204 compilation.
27205
27206 @item
27207 The precompiled header file must have been produced by the same compiler
27208 binary as the current compilation is using.
27209
27210 @item
27211 Any macros defined before the precompiled header is included must
27212 either be defined in the same way as when the precompiled header was
27213 generated, or must not affect the precompiled header, which usually
27214 means that they don't appear in the precompiled header at all.
27215
27216 The @option{-D} option is one way to define a macro before a
27217 precompiled header is included; using a @code{#define} can also do it.
27218 There are also some options that define macros implicitly, like
27219 @option{-O} and @option{-Wdeprecated}; the same rule applies to macros
27220 defined this way.
27221
27222 @item If debugging information is output when using the precompiled
27223 header, using @option{-g} or similar, the same kind of debugging information
27224 must have been output when building the precompiled header. However,
27225 a precompiled header built using @option{-g} can be used in a compilation
27226 when no debugging information is being output.
27227
27228 @item The same @option{-m} options must generally be used when building
27229 and using the precompiled header. @xref{Submodel Options},
27230 for any cases where this rule is relaxed.
27231
27232 @item Each of the following options must be the same when building and using
27233 the precompiled header:
27234
27235 @gccoptlist{-fexceptions}
27236
27237 @item
27238 Some other command-line options starting with @option{-f},
27239 @option{-p}, or @option{-O} must be defined in the same way as when
27240 the precompiled header was generated. At present, it's not clear
27241 which options are safe to change and which are not; the safest choice
27242 is to use exactly the same options when generating and using the
27243 precompiled header. The following are known to be safe:
27244
27245 @gccoptlist{-fmessage-length= -fpreprocessed -fsched-interblock @gol
27246 -fsched-spec -fsched-spec-load -fsched-spec-load-dangerous @gol
27247 -fsched-verbose=@var{number} -fschedule-insns -fvisibility= @gol
27248 -pedantic-errors}
27249
27250 @end itemize
27251
27252 For all of these except the last, the compiler automatically
27253 ignores the precompiled header if the conditions aren't met. If you
27254 find an option combination that doesn't work and doesn't cause the
27255 precompiled header to be ignored, please consider filing a bug report,
27256 see @ref{Bugs}.
27257
27258 If you do use differing options when generating and using the
27259 precompiled header, the actual behavior is a mixture of the
27260 behavior for the options. For instance, if you use @option{-g} to
27261 generate the precompiled header but not when using it, you may or may
27262 not get debugging information for routines in the precompiled header.