]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/doc/invoke.texi
Documentation: Clean up AArch64 options.
[thirdparty/gcc.git] / gcc / doc / invoke.texi
1 @c Copyright (C) 1988-2017 Free Software Foundation, Inc.
2 @c This is part of the GCC manual.
3 @c For copying conditions, see the file gcc.texi.
4
5 @ignore
6 @c man begin INCLUDE
7 @include gcc-vers.texi
8 @c man end
9
10 @c man begin COPYRIGHT
11 Copyright @copyright{} 1988-2017 Free Software Foundation, Inc.
12
13 Permission is granted to copy, distribute and/or modify this document
14 under the terms of the GNU Free Documentation License, Version 1.3 or
15 any later version published by the Free Software Foundation; with the
16 Invariant Sections being ``GNU General Public License'' and ``Funding
17 Free Software'', the Front-Cover texts being (a) (see below), and with
18 the Back-Cover Texts being (b) (see below). A copy of the license is
19 included in the gfdl(7) man page.
20
21 (a) The FSF's Front-Cover Text is:
22
23 A GNU Manual
24
25 (b) The FSF's Back-Cover Text is:
26
27 You have freedom to copy and modify this GNU Manual, like GNU
28 software. Copies published by the Free Software Foundation raise
29 funds for GNU development.
30 @c man end
31 @c Set file name and title for the man page.
32 @setfilename gcc
33 @settitle GNU project C and C++ compiler
34 @c man begin SYNOPSIS
35 gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}]
36 [@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
37 [@option{-W}@var{warn}@dots{}] [@option{-Wpedantic}]
38 [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
39 [@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
40 [@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
41 [@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{}
42
43 Only the most useful options are listed here; see below for the
44 remainder. @command{g++} accepts mostly the same options as @command{gcc}.
45 @c man end
46 @c man begin SEEALSO
47 gpl(7), gfdl(7), fsf-funding(7),
48 cpp(1), gcov(1), as(1), ld(1), gdb(1), adb(1), dbx(1), sdb(1)
49 and the Info entries for @file{gcc}, @file{cpp}, @file{as},
50 @file{ld}, @file{binutils} and @file{gdb}.
51 @c man end
52 @c man begin BUGS
53 For instructions on reporting bugs, see
54 @w{@value{BUGURL}}.
55 @c man end
56 @c man begin AUTHOR
57 See the Info entry for @command{gcc}, or
58 @w{@uref{http://gcc.gnu.org/onlinedocs/gcc/Contributors.html}},
59 for contributors to GCC@.
60 @c man end
61 @end ignore
62
63 @node Invoking GCC
64 @chapter GCC Command Options
65 @cindex GCC command options
66 @cindex command options
67 @cindex options, GCC command
68
69 @c man begin DESCRIPTION
70 When you invoke GCC, it normally does preprocessing, compilation,
71 assembly and linking. The ``overall options'' allow you to stop this
72 process at an intermediate stage. For example, the @option{-c} option
73 says not to run the linker. Then the output consists of object files
74 output by the assembler.
75 @xref{Overall Options,,Options Controlling the Kind of Output}.
76
77 Other options are passed on to one or more stages of processing. Some options
78 control the preprocessor and others the compiler itself. Yet other
79 options control the assembler and linker; most of these are not
80 documented here, since you rarely need to use any of them.
81
82 @cindex C compilation options
83 Most of the command-line options that you can use with GCC are useful
84 for C programs; when an option is only useful with another language
85 (usually C++), the explanation says so explicitly. If the description
86 for a particular option does not mention a source language, you can use
87 that option with all supported languages.
88
89 @cindex cross compiling
90 @cindex specifying machine version
91 @cindex specifying compiler version and target machine
92 @cindex compiler version, specifying
93 @cindex target machine, specifying
94 The usual way to run GCC is to run the executable called @command{gcc}, or
95 @command{@var{machine}-gcc} when cross-compiling, or
96 @command{@var{machine}-gcc-@var{version}} to run a specific version of GCC.
97 When you compile C++ programs, you should invoke GCC as @command{g++}
98 instead. @xref{Invoking G++,,Compiling C++ Programs},
99 for information about the differences in behavior between @command{gcc}
100 and @code{g++} when compiling C++ programs.
101
102 @cindex grouping options
103 @cindex options, grouping
104 The @command{gcc} program accepts options and file names as operands. Many
105 options have multi-letter names; therefore multiple single-letter options
106 may @emph{not} be grouped: @option{-dv} is very different from @w{@samp{-d
107 -v}}.
108
109 @cindex order of options
110 @cindex options, order
111 You can mix options and other arguments. For the most part, the order
112 you use doesn't matter. Order does matter when you use several
113 options of the same kind; for example, if you specify @option{-L} more
114 than once, the directories are searched in the order specified. Also,
115 the placement of the @option{-l} option is significant.
116
117 Many options have long names starting with @samp{-f} or with
118 @samp{-W}---for example,
119 @option{-fmove-loop-invariants}, @option{-Wformat} and so on. Most of
120 these have both positive and negative forms; the negative form of
121 @option{-ffoo} is @option{-fno-foo}. This manual documents
122 only one of these two forms, whichever one is not the default.
123
124 @c man end
125
126 @xref{Option Index}, for an index to GCC's options.
127
128 @menu
129 * Option Summary:: Brief list of all options, without explanations.
130 * Overall Options:: Controlling the kind of output:
131 an executable, object files, assembler files,
132 or preprocessed source.
133 * Invoking G++:: Compiling C++ programs.
134 * C Dialect Options:: Controlling the variant of C language compiled.
135 * C++ Dialect Options:: Variations on C++.
136 * Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
137 and Objective-C++.
138 * Diagnostic Message Formatting Options:: Controlling how diagnostics should
139 be formatted.
140 * Warning Options:: How picky should the compiler be?
141 * Debugging Options:: Producing debuggable code.
142 * Optimize Options:: How much optimization?
143 * Instrumentation Options:: Enabling profiling and extra run-time error checking.
144 * Preprocessor Options:: Controlling header files and macro definitions.
145 Also, getting dependency information for Make.
146 * Assembler Options:: Passing options to the assembler.
147 * Link Options:: Specifying libraries and so on.
148 * Directory Options:: Where to find header files and libraries.
149 Where to find the compiler executable files.
150 * Code Gen Options:: Specifying conventions for function calls, data layout
151 and register usage.
152 * Developer Options:: Printing GCC configuration info, statistics, and
153 debugging dumps.
154 * Submodel Options:: Target-specific options, such as compiling for a
155 specific processor variant.
156 * Spec Files:: How to pass switches to sub-processes.
157 * Environment Variables:: Env vars that affect GCC.
158 * Precompiled Headers:: Compiling a header once, and using it many times.
159 @end menu
160
161 @c man begin OPTIONS
162
163 @node Option Summary
164 @section Option Summary
165
166 Here is a summary of all the options, grouped by type. Explanations are
167 in the following sections.
168
169 @table @emph
170 @item Overall Options
171 @xref{Overall Options,,Options Controlling the Kind of Output}.
172 @gccoptlist{-c -S -E -o @var{file} -x @var{language} @gol
173 -v -### --help@r{[}=@var{class}@r{[},@dots{}@r{]]} --target-help --version @gol
174 -pass-exit-codes -pipe -specs=@var{file} -wrapper @gol
175 @@@var{file} -fplugin=@var{file} -fplugin-arg-@var{name}=@var{arg} @gol
176 -fdump-ada-spec@r{[}-slim@r{]} -fada-spec-parent=@var{unit} -fdump-go-spec=@var{file}}
177
178 @item C Language Options
179 @xref{C Dialect Options,,Options Controlling C Dialect}.
180 @gccoptlist{-ansi -std=@var{standard} -fgnu89-inline @gol
181 -fpermitted-flt-eval-methods=@var{standard} @gol
182 -aux-info @var{filename} -fallow-parameterless-variadic-functions @gol
183 -fno-asm -fno-builtin -fno-builtin-@var{function} -fgimple@gol
184 -fhosted -ffreestanding -fopenacc -fopenmp -fopenmp-simd @gol
185 -fms-extensions -fplan9-extensions -fsso-struct=@var{endianness} @gol
186 -fallow-single-precision -fcond-mismatch -flax-vector-conversions @gol
187 -fsigned-bitfields -fsigned-char @gol
188 -funsigned-bitfields -funsigned-char}
189
190 @item C++ Language Options
191 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
192 @gccoptlist{-fabi-version=@var{n} -fno-access-control @gol
193 -faligned-new=@var{n} -fargs-in-order=@var{n} -fcheck-new @gol
194 -fconstexpr-depth=@var{n} -fconstexpr-loop-limit=@var{n} @gol
195 -ffriend-injection @gol
196 -fno-elide-constructors @gol
197 -fno-enforce-eh-specs @gol
198 -ffor-scope -fno-for-scope -fno-gnu-keywords @gol
199 -fno-implicit-templates @gol
200 -fno-implicit-inline-templates @gol
201 -fno-implement-inlines -fms-extensions @gol
202 -fnew-inheriting-ctors @gol
203 -fnew-ttp-matching @gol
204 -fno-nonansi-builtins -fnothrow-opt -fno-operator-names @gol
205 -fno-optional-diags -fpermissive @gol
206 -fno-pretty-templates @gol
207 -frepo -fno-rtti -fsized-deallocation @gol
208 -ftemplate-backtrace-limit=@var{n} @gol
209 -ftemplate-depth=@var{n} @gol
210 -fno-threadsafe-statics -fuse-cxa-atexit @gol
211 -fno-weak -nostdinc++ @gol
212 -fvisibility-inlines-hidden @gol
213 -fvisibility-ms-compat @gol
214 -fext-numeric-literals @gol
215 -Wabi=@var{n} -Wabi-tag -Wconversion-null -Wctor-dtor-privacy @gol
216 -Wdelete-non-virtual-dtor -Wliteral-suffix -Wmultiple-inheritance @gol
217 -Wnamespaces -Wnarrowing @gol
218 -Wnoexcept -Wnoexcept-type -Wclass-memaccess @gol
219 -Wnon-virtual-dtor -Wreorder -Wregister @gol
220 -Weffc++ -Wstrict-null-sentinel -Wtemplates @gol
221 -Wno-non-template-friend -Wold-style-cast @gol
222 -Woverloaded-virtual -Wno-pmf-conversions @gol
223 -Wsign-promo -Wvirtual-inheritance}
224
225 @item Objective-C and Objective-C++ Language Options
226 @xref{Objective-C and Objective-C++ Dialect Options,,Options Controlling
227 Objective-C and Objective-C++ Dialects}.
228 @gccoptlist{-fconstant-string-class=@var{class-name} @gol
229 -fgnu-runtime -fnext-runtime @gol
230 -fno-nil-receivers @gol
231 -fobjc-abi-version=@var{n} @gol
232 -fobjc-call-cxx-cdtors @gol
233 -fobjc-direct-dispatch @gol
234 -fobjc-exceptions @gol
235 -fobjc-gc @gol
236 -fobjc-nilcheck @gol
237 -fobjc-std=objc1 @gol
238 -fno-local-ivars @gol
239 -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]} @gol
240 -freplace-objc-classes @gol
241 -fzero-link @gol
242 -gen-decls @gol
243 -Wassign-intercept @gol
244 -Wno-protocol -Wselector @gol
245 -Wstrict-selector-match @gol
246 -Wundeclared-selector}
247
248 @item Diagnostic Message Formatting Options
249 @xref{Diagnostic Message Formatting Options,,Options to Control Diagnostic Messages Formatting}.
250 @gccoptlist{-fmessage-length=@var{n} @gol
251 -fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]} @gol
252 -fdiagnostics-color=@r{[}auto@r{|}never@r{|}always@r{]} @gol
253 -fno-diagnostics-show-option -fno-diagnostics-show-caret @gol
254 -fdiagnostics-parseable-fixits -fdiagnostics-generate-patch @gol
255 -fdiagnostics-show-template-tree -fno-elide-type @gol
256 -fno-show-column}
257
258 @item Warning Options
259 @xref{Warning Options,,Options to Request or Suppress Warnings}.
260 @gccoptlist{-fsyntax-only -fmax-errors=@var{n} -Wpedantic @gol
261 -pedantic-errors @gol
262 -w -Wextra -Wall -Waddress -Waggregate-return @gol
263 -Walloc-zero -Walloc-size-larger-than=@var{n}
264 -Walloca -Walloca-larger-than=@var{n} @gol
265 -Wno-aggressive-loop-optimizations -Warray-bounds -Warray-bounds=@var{n} @gol
266 -Wno-attributes -Wbool-compare -Wbool-operation @gol
267 -Wno-builtin-declaration-mismatch @gol
268 -Wno-builtin-macro-redefined -Wc90-c99-compat -Wc99-c11-compat @gol
269 -Wc++-compat -Wc++11-compat -Wc++14-compat -Wcast-align -Wcast-qual @gol
270 -Wchar-subscripts -Wchkp -Wcatch-value -Wcatch-value=@var{n} @gol
271 -Wclobbered -Wcomment -Wconditionally-supported @gol
272 -Wconversion -Wcoverage-mismatch -Wno-cpp -Wdangling-else -Wdate-time @gol
273 -Wdelete-incomplete @gol
274 -Wno-deprecated -Wno-deprecated-declarations -Wno-designated-init @gol
275 -Wdisabled-optimization @gol
276 -Wno-discarded-qualifiers -Wno-discarded-array-qualifiers @gol
277 -Wno-div-by-zero -Wdouble-promotion @gol
278 -Wduplicated-branches -Wduplicated-cond @gol
279 -Wempty-body -Wenum-compare -Wno-endif-labels -Wexpansion-to-defined @gol
280 -Werror -Werror=* -Wextra-semi -Wfatal-errors @gol
281 -Wfloat-equal -Wformat -Wformat=2 @gol
282 -Wno-format-contains-nul -Wno-format-extra-args @gol
283 -Wformat-nonliteral -Wformat-overflow=@var{n} @gol
284 -Wformat-security -Wformat-signedness -Wformat-truncation=@var{n} @gol
285 -Wformat-y2k -Wframe-address @gol
286 -Wframe-larger-than=@var{len} -Wno-free-nonheap-object -Wjump-misses-init @gol
287 -Wignored-qualifiers -Wignored-attributes -Wincompatible-pointer-types @gol
288 -Wimplicit -Wimplicit-fallthrough -Wimplicit-fallthrough=@var{n} @gol
289 -Wimplicit-function-declaration -Wimplicit-int @gol
290 -Winit-self -Winline -Wno-int-conversion -Wint-in-bool-context @gol
291 -Wno-int-to-pointer-cast -Winvalid-memory-model -Wno-invalid-offsetof @gol
292 -Winvalid-pch -Wlarger-than=@var{len} @gol
293 -Wlogical-op -Wlogical-not-parentheses -Wlong-long @gol
294 -Wmain -Wmaybe-uninitialized -Wmemset-elt-size -Wmemset-transposed-args @gol
295 -Wmisleading-indentation -Wmissing-braces @gol
296 -Wmissing-field-initializers -Wmissing-include-dirs @gol
297 -Wno-multichar -Wmultistatement-macros -Wnonnull -Wnonnull-compare @gol
298 -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]} @gol
299 -Wnull-dereference -Wodr -Wno-overflow -Wopenmp-simd @gol
300 -Woverride-init-side-effects -Woverlength-strings @gol
301 -Wpacked -Wpacked-bitfield-compat -Wpadded @gol
302 -Wparentheses -Wno-pedantic-ms-format @gol
303 -Wplacement-new -Wplacement-new=@var{n} @gol
304 -Wpointer-arith -Wpointer-compare -Wno-pointer-to-int-cast @gol
305 -Wno-pragmas -Wredundant-decls -Wrestrict -Wno-return-local-addr @gol
306 -Wreturn-type -Wsequence-point -Wshadow -Wno-shadow-ivar @gol
307 -Wshadow=global, -Wshadow=local, -Wshadow=compatible-local @gol
308 -Wshift-overflow -Wshift-overflow=@var{n} @gol
309 -Wshift-count-negative -Wshift-count-overflow -Wshift-negative-value @gol
310 -Wsign-compare -Wsign-conversion -Wfloat-conversion @gol
311 -Wno-scalar-storage-order -Wsizeof-pointer-div @gol
312 -Wsizeof-pointer-memaccess -Wsizeof-array-argument @gol
313 -Wstack-protector -Wstack-usage=@var{len} -Wstrict-aliasing @gol
314 -Wstrict-aliasing=n -Wstrict-overflow -Wstrict-overflow=@var{n} @gol
315 -Wstringop-overflow=@var{n} @gol
316 -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{]} @gol
317 -Wsuggest-final-types @gol -Wsuggest-final-methods -Wsuggest-override @gol
318 -Wmissing-format-attribute -Wsubobject-linkage @gol
319 -Wswitch -Wswitch-bool -Wswitch-default -Wswitch-enum @gol
320 -Wswitch-unreachable -Wsync-nand @gol
321 -Wsystem-headers -Wtautological-compare -Wtrampolines -Wtrigraphs @gol
322 -Wtype-limits -Wundef @gol
323 -Wuninitialized -Wunknown-pragmas -Wunsafe-loop-optimizations @gol
324 -Wunsuffixed-float-constants -Wunused -Wunused-function @gol
325 -Wunused-label -Wunused-local-typedefs -Wunused-macros @gol
326 -Wunused-parameter -Wno-unused-result @gol
327 -Wunused-value -Wunused-variable @gol
328 -Wunused-const-variable -Wunused-const-variable=@var{n} @gol
329 -Wunused-but-set-parameter -Wunused-but-set-variable @gol
330 -Wuseless-cast -Wvariadic-macros -Wvector-operation-performance @gol
331 -Wvla -Wvla-larger-than=@var{n} -Wvolatile-register-var -Wwrite-strings @gol
332 -Wzero-as-null-pointer-constant -Whsa}
333
334 @item C and Objective-C-only Warning Options
335 @gccoptlist{-Wbad-function-cast -Wmissing-declarations @gol
336 -Wmissing-parameter-type -Wmissing-prototypes -Wnested-externs @gol
337 -Wold-style-declaration -Wold-style-definition @gol
338 -Wstrict-prototypes -Wtraditional -Wtraditional-conversion @gol
339 -Wdeclaration-after-statement -Wpointer-sign}
340
341 @item Debugging Options
342 @xref{Debugging Options,,Options for Debugging Your Program}.
343 @gccoptlist{-g -g@var{level} -gcoff -gdwarf -gdwarf-@var{version} @gol
344 -ggdb -grecord-gcc-switches -gno-record-gcc-switches @gol
345 -gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf @gol
346 -gcolumn-info -gno-column-info @gol
347 -gvms -gxcoff -gxcoff+ -gz@r{[}=@var{type}@r{]} @gol
348 -fdebug-prefix-map=@var{old}=@var{new} -fdebug-types-section @gol
349 -feliminate-dwarf2-dups -fno-eliminate-unused-debug-types @gol
350 -femit-struct-debug-baseonly -femit-struct-debug-reduced @gol
351 -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]} @gol
352 -feliminate-unused-debug-symbols -femit-class-debug-always @gol
353 -fno-merge-debug-strings -fno-dwarf2-cfi-asm @gol
354 -fvar-tracking -fvar-tracking-assignments}
355
356 @item Optimization Options
357 @xref{Optimize Options,,Options that Control Optimization}.
358 @gccoptlist{-faggressive-loop-optimizations -falign-functions[=@var{n}] @gol
359 -falign-jumps[=@var{n}] @gol
360 -falign-labels[=@var{n}] -falign-loops[=@var{n}] @gol
361 -fassociative-math -fauto-profile -fauto-profile[=@var{path}] @gol
362 -fauto-inc-dec -fbranch-probabilities @gol
363 -fbranch-target-load-optimize -fbranch-target-load-optimize2 @gol
364 -fbtr-bb-exclusive -fcaller-saves @gol
365 -fcombine-stack-adjustments -fconserve-stack @gol
366 -fcompare-elim -fcprop-registers -fcrossjumping @gol
367 -fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules @gol
368 -fcx-limited-range @gol
369 -fdata-sections -fdce -fdelayed-branch @gol
370 -fdelete-null-pointer-checks -fdevirtualize -fdevirtualize-speculatively @gol
371 -fdevirtualize-at-ltrans -fdse @gol
372 -fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects @gol
373 -ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=@var{style} @gol
374 -fforward-propagate -ffp-contract=@var{style} -ffunction-sections @gol
375 -fgcse -fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity @gol
376 -fgcse-sm -fhoist-adjacent-loads -fif-conversion @gol
377 -fif-conversion2 -findirect-inlining @gol
378 -finline-functions -finline-functions-called-once -finline-limit=@var{n} @gol
379 -finline-small-functions -fipa-cp -fipa-cp-clone @gol
380 -fipa-bit-cp -fipa-vrp @gol
381 -fipa-pta -fipa-profile -fipa-pure-const -fipa-reference -fipa-icf @gol
382 -fira-algorithm=@var{algorithm} @gol
383 -fira-region=@var{region} -fira-hoist-pressure @gol
384 -fira-loop-pressure -fno-ira-share-save-slots @gol
385 -fno-ira-share-spill-slots @gol
386 -fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute @gol
387 -fivopts -fkeep-inline-functions -fkeep-static-functions @gol
388 -fkeep-static-consts -flimit-function-alignment -flive-range-shrinkage @gol
389 -floop-block -floop-interchange -floop-strip-mine @gol
390 -floop-unroll-and-jam -floop-nest-optimize @gol
391 -floop-parallelize-all -flra-remat -flto -flto-compression-level @gol
392 -flto-partition=@var{alg} -fmerge-all-constants @gol
393 -fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves @gol
394 -fmove-loop-invariants -fno-branch-count-reg @gol
395 -fno-defer-pop -fno-fp-int-builtin-inexact -fno-function-cse @gol
396 -fno-guess-branch-probability -fno-inline -fno-math-errno -fno-peephole @gol
397 -fno-peephole2 -fno-printf-return-value -fno-sched-interblock @gol
398 -fno-sched-spec -fno-signed-zeros @gol
399 -fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss @gol
400 -fomit-frame-pointer -foptimize-sibling-calls @gol
401 -fpartial-inlining -fpeel-loops -fpredictive-commoning @gol
402 -fprefetch-loop-arrays @gol
403 -fprofile-correction @gol
404 -fprofile-use -fprofile-use=@var{path} -fprofile-values @gol
405 -fprofile-reorder-functions @gol
406 -freciprocal-math -free -frename-registers -freorder-blocks @gol
407 -freorder-blocks-algorithm=@var{algorithm} @gol
408 -freorder-blocks-and-partition -freorder-functions @gol
409 -frerun-cse-after-loop -freschedule-modulo-scheduled-loops @gol
410 -frounding-math -fsched2-use-superblocks -fsched-pressure @gol
411 -fsched-spec-load -fsched-spec-load-dangerous @gol
412 -fsched-stalled-insns-dep[=@var{n}] -fsched-stalled-insns[=@var{n}] @gol
413 -fsched-group-heuristic -fsched-critical-path-heuristic @gol
414 -fsched-spec-insn-heuristic -fsched-rank-heuristic @gol
415 -fsched-last-insn-heuristic -fsched-dep-count-heuristic @gol
416 -fschedule-fusion @gol
417 -fschedule-insns -fschedule-insns2 -fsection-anchors @gol
418 -fselective-scheduling -fselective-scheduling2 @gol
419 -fsel-sched-pipelining -fsel-sched-pipelining-outer-loops @gol
420 -fsemantic-interposition -fshrink-wrap -fshrink-wrap-separate @gol
421 -fsignaling-nans @gol
422 -fsingle-precision-constant -fsplit-ivs-in-unroller -fsplit-loops@gol
423 -fsplit-paths @gol
424 -fsplit-wide-types -fssa-backprop -fssa-phiopt @gol
425 -fstdarg-opt -fstore-merging -fstrict-aliasing @gol
426 -fthread-jumps -ftracer -ftree-bit-ccp @gol
427 -ftree-builtin-call-dce -ftree-ccp -ftree-ch @gol
428 -ftree-coalesce-vars -ftree-copy-prop -ftree-dce -ftree-dominator-opts @gol
429 -ftree-dse -ftree-forwprop -ftree-fre -fcode-hoisting @gol
430 -ftree-loop-if-convert -ftree-loop-im @gol
431 -ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns @gol
432 -ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize @gol
433 -ftree-loop-vectorize @gol
434 -ftree-parallelize-loops=@var{n} -ftree-pre -ftree-partial-pre -ftree-pta @gol
435 -ftree-reassoc -ftree-sink -ftree-slsr -ftree-sra @gol
436 -ftree-switch-conversion -ftree-tail-merge @gol
437 -ftree-ter -ftree-vectorize -ftree-vrp -funconstrained-commons @gol
438 -funit-at-a-time -funroll-all-loops -funroll-loops @gol
439 -funsafe-math-optimizations -funswitch-loops @gol
440 -fipa-ra -fvariable-expansion-in-unroller -fvect-cost-model -fvpt @gol
441 -fweb -fwhole-program -fwpa -fuse-linker-plugin @gol
442 --param @var{name}=@var{value}
443 -O -O0 -O1 -O2 -O3 -Os -Ofast -Og}
444
445 @item Program Instrumentation Options
446 @xref{Instrumentation Options,,Program Instrumentation Options}.
447 @gccoptlist{-p -pg -fprofile-arcs --coverage -ftest-coverage @gol
448 -fprofile-abs-path @gol
449 -fprofile-dir=@var{path} -fprofile-generate -fprofile-generate=@var{path} @gol
450 -fsanitize=@var{style} -fsanitize-recover -fsanitize-recover=@var{style} @gol
451 -fasan-shadow-offset=@var{number} -fsanitize-sections=@var{s1},@var{s2},... @gol
452 -fsanitize-undefined-trap-on-error -fbounds-check @gol
453 -fcheck-pointer-bounds -fchkp-check-incomplete-type @gol
454 -fchkp-first-field-has-own-bounds -fchkp-narrow-bounds @gol
455 -fchkp-narrow-to-innermost-array -fchkp-optimize @gol
456 -fchkp-use-fast-string-functions -fchkp-use-nochk-string-functions @gol
457 -fchkp-use-static-bounds -fchkp-use-static-const-bounds @gol
458 -fchkp-treat-zero-dynamic-size-as-infinite -fchkp-check-read @gol
459 -fchkp-check-read -fchkp-check-write -fchkp-store-bounds @gol
460 -fchkp-instrument-calls -fchkp-instrument-marked-only @gol
461 -fchkp-use-wrappers -fchkp-flexible-struct-trailing-arrays@gol
462 -fstack-protector -fstack-protector-all -fstack-protector-strong @gol
463 -fstack-protector-explicit -fstack-check @gol
464 -fstack-limit-register=@var{reg} -fstack-limit-symbol=@var{sym} @gol
465 -fno-stack-limit -fsplit-stack @gol
466 -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]} @gol
467 -fvtv-counts -fvtv-debug @gol
468 -finstrument-functions @gol
469 -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{} @gol
470 -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}}
471
472 @item Preprocessor Options
473 @xref{Preprocessor Options,,Options Controlling the Preprocessor}.
474 @gccoptlist{-A@var{question}=@var{answer} @gol
475 -A-@var{question}@r{[}=@var{answer}@r{]} @gol
476 -C -CC -D@var{macro}@r{[}=@var{defn}@r{]} @gol
477 -dD -dI -dM -dN -dU @gol
478 -fdebug-cpp -fdirectives-only -fdollars-in-identifiers @gol
479 -fexec-charset=@var{charset} -fextended-identifiers @gol
480 -finput-charset=@var{charset} -fno-canonical-system-headers @gol
481 -fpch-deps -fpch-preprocess -fpreprocessed @gol
482 -ftabstop=@var{width} -ftrack-macro-expansion @gol
483 -fwide-exec-charset=@var{charset} -fworking-directory @gol
484 -H -imacros @var{file} -include @var{file} @gol
485 -M -MD -MF -MG -MM -MMD -MP -MQ -MT @gol
486 -no-integrated-cpp -P -pthread -remap @gol
487 -traditional -traditional-cpp -trigraphs @gol
488 -U@var{macro} -undef @gol
489 -Wp,@var{option} -Xpreprocessor @var{option}}
490
491 @item Assembler Options
492 @xref{Assembler Options,,Passing Options to the Assembler}.
493 @gccoptlist{-Wa,@var{option} -Xassembler @var{option}}
494
495 @item Linker Options
496 @xref{Link Options,,Options for Linking}.
497 @gccoptlist{@var{object-file-name} -fuse-ld=@var{linker} -l@var{library} @gol
498 -nostartfiles -nodefaultlibs -nostdlib -pie -pthread -rdynamic @gol
499 -s -static -static-libgcc -static-libstdc++ @gol
500 -static-libasan -static-libtsan -static-liblsan -static-libubsan @gol
501 -static-libmpx -static-libmpxwrappers @gol
502 -shared -shared-libgcc -symbolic @gol
503 -T @var{script} -Wl,@var{option} -Xlinker @var{option} @gol
504 -u @var{symbol} -z @var{keyword}}
505
506 @item Directory Options
507 @xref{Directory Options,,Options for Directory Search}.
508 @gccoptlist{-B@var{prefix} -I@var{dir} -I- @gol
509 -idirafter @var{dir} @gol
510 -imacros @var{file} -imultilib @var{dir} @gol
511 -iplugindir=@var{dir} -iprefix @var{file} @gol
512 -iquote @var{dir} -isysroot @var{dir} -isystem @var{dir} @gol
513 -iwithprefix @var{dir} -iwithprefixbefore @var{dir} @gol
514 -L@var{dir} -no-canonical-prefixes --no-sysroot-suffix @gol
515 -nostdinc -nostdinc++ --sysroot=@var{dir}}
516
517 @item Code Generation Options
518 @xref{Code Gen Options,,Options for Code Generation Conventions}.
519 @gccoptlist{-fcall-saved-@var{reg} -fcall-used-@var{reg} @gol
520 -ffixed-@var{reg} -fexceptions @gol
521 -fnon-call-exceptions -fdelete-dead-exceptions -funwind-tables @gol
522 -fasynchronous-unwind-tables @gol
523 -fno-gnu-unique @gol
524 -finhibit-size-directive -fno-common -fno-ident @gol
525 -fpcc-struct-return -fpic -fPIC -fpie -fPIE -fno-plt @gol
526 -fno-jump-tables @gol
527 -frecord-gcc-switches @gol
528 -freg-struct-return -fshort-enums -fshort-wchar @gol
529 -fverbose-asm -fpack-struct[=@var{n}] @gol
530 -fleading-underscore -ftls-model=@var{model} @gol
531 -fstack-reuse=@var{reuse_level} @gol
532 -ftrampolines -ftrapv -fwrapv @gol
533 -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]} @gol
534 -fstrict-volatile-bitfields -fsync-libcalls}
535
536 @item Developer Options
537 @xref{Developer Options,,GCC Developer Options}.
538 @gccoptlist{-d@var{letters} -dumpspecs -dumpmachine -dumpversion @gol
539 -dumpfullversion -fchecking -fchecking=@var{n} -fdbg-cnt-list @gol
540 -fdbg-cnt=@var{counter-value-list} @gol
541 -fdisable-ipa-@var{pass_name} @gol
542 -fdisable-rtl-@var{pass_name} @gol
543 -fdisable-rtl-@var{pass-name}=@var{range-list} @gol
544 -fdisable-tree-@var{pass_name} @gol
545 -fdisable-tree-@var{pass-name}=@var{range-list} @gol
546 -fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links @gol
547 -fdump-class-hierarchy@r{[}-@var{n}@r{]} @gol
548 -fdump-final-insns@r{[}=@var{file}@r{]}
549 -fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline @gol
550 -fdump-lang-all @gol
551 -fdump-lang-@var{switch} @gol
552 -fdump-lang-@var{switch}-@var{options} @gol
553 -fdump-lang-@var{switch}-@var{options}=@var{filename} @gol
554 -fdump-passes @gol
555 -fdump-rtl-@var{pass} -fdump-rtl-@var{pass}=@var{filename} @gol
556 -fdump-statistics @gol
557 -fdump-tree-all @gol
558 -fdump-tree-@var{switch} @gol
559 -fdump-tree-@var{switch}-@var{options} @gol
560 -fdump-tree-@var{switch}-@var{options}=@var{filename} @gol
561 -fcompare-debug@r{[}=@var{opts}@r{]} -fcompare-debug-second @gol
562 -fenable-@var{kind}-@var{pass} @gol
563 -fenable-@var{kind}-@var{pass}=@var{range-list} @gol
564 -fira-verbose=@var{n} @gol
565 -flto-report -flto-report-wpa -fmem-report-wpa @gol
566 -fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report @gol
567 -fopt-info -fopt-info-@var{options}@r{[}=@var{file}@r{]} @gol
568 -fprofile-report @gol
569 -frandom-seed=@var{string} -fsched-verbose=@var{n} @gol
570 -fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose @gol
571 -fstats -fstack-usage -ftime-report -ftime-report-details @gol
572 -fvar-tracking-assignments-toggle -gtoggle @gol
573 -print-file-name=@var{library} -print-libgcc-file-name @gol
574 -print-multi-directory -print-multi-lib -print-multi-os-directory @gol
575 -print-prog-name=@var{program} -print-search-dirs -Q @gol
576 -print-sysroot -print-sysroot-headers-suffix @gol
577 -save-temps -save-temps=cwd -save-temps=obj -time@r{[}=@var{file}@r{]}}
578
579 @item Machine-Dependent Options
580 @xref{Submodel Options,,Machine-Dependent Options}.
581 @c This list is ordered alphanumerically by subsection name.
582 @c Try and put the significant identifier (CPU or system) first,
583 @c so users have a clue at guessing where the ones they want will be.
584
585 @emph{AArch64 Options}
586 @gccoptlist{-mabi=@var{name} -mbig-endian -mlittle-endian @gol
587 -mgeneral-regs-only @gol
588 -mcmodel=tiny -mcmodel=small -mcmodel=large @gol
589 -mstrict-align @gol
590 -momit-leaf-frame-pointer @gol
591 -mtls-dialect=desc -mtls-dialect=traditional @gol
592 -mtls-size=@var{size} @gol
593 -mfix-cortex-a53-835769 -mfix-cortex-a53-843419 @gol
594 -mlow-precision-recip-sqrt -mlow-precision-sqrt -mlow-precision-div @gol
595 -mpc-relative-literal-loads @gol
596 -msign-return-address=@var{scope} @gol
597 -march=@var{name} -mcpu=@var{name} -mtune=@var{name} -moverride=@var{string}}
598
599 @emph{Adapteva Epiphany Options}
600 @gccoptlist{-mhalf-reg-file -mprefer-short-insn-regs @gol
601 -mbranch-cost=@var{num} -mcmove -mnops=@var{num} -msoft-cmpsf @gol
602 -msplit-lohi -mpost-inc -mpost-modify -mstack-offset=@var{num} @gol
603 -mround-nearest -mlong-calls -mshort-calls -msmall16 @gol
604 -mfp-mode=@var{mode} -mvect-double -max-vect-align=@var{num} @gol
605 -msplit-vecmove-early -m1reg-@var{reg}}
606
607 @emph{ARC Options}
608 @gccoptlist{-mbarrel-shifter @gol
609 -mcpu=@var{cpu} -mA6 -mARC600 -mA7 -mARC700 @gol
610 -mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr @gol
611 -mea -mno-mpy -mmul32x16 -mmul64 -matomic @gol
612 -mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float -mswap @gol
613 -mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape @gol
614 -mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof @gol
615 -mlong-calls -mmedium-calls -msdata -mirq-ctrl-saved @gol
616 -mrgf-banked-regs @gol
617 -mvolatile-cache -mtp-regno=@var{regno} @gol
618 -malign-call -mauto-modify-reg -mbbit-peephole -mno-brcc @gol
619 -mcase-vector-pcrel -mcompact-casesi -mno-cond-exec -mearly-cbranchsi @gol
620 -mexpand-adddi -mindexed-loads -mlra -mlra-priority-none @gol
621 -mlra-priority-compact mlra-priority-noncompact -mno-millicode @gol
622 -mmixed-code -mq-class -mRcq -mRcw -msize-level=@var{level} @gol
623 -mtune=@var{cpu} -mmultcost=@var{num} @gol
624 -munalign-prob-threshold=@var{probability} -mmpy-option=@var{multo} @gol
625 -mdiv-rem -mcode-density -mll64 -mfpu=@var{fpu}}
626
627 @emph{ARM Options}
628 @gccoptlist{-mapcs-frame -mno-apcs-frame @gol
629 -mabi=@var{name} @gol
630 -mapcs-stack-check -mno-apcs-stack-check @gol
631 -mapcs-reentrant -mno-apcs-reentrant @gol
632 -msched-prolog -mno-sched-prolog @gol
633 -mlittle-endian -mbig-endian @gol
634 -mfloat-abi=@var{name} @gol
635 -mfp16-format=@var{name}
636 -mthumb-interwork -mno-thumb-interwork @gol
637 -mcpu=@var{name} -march=@var{name} -mfpu=@var{name} @gol
638 -mtune=@var{name} -mprint-tune-info @gol
639 -mstructure-size-boundary=@var{n} @gol
640 -mabort-on-noreturn @gol
641 -mlong-calls -mno-long-calls @gol
642 -msingle-pic-base -mno-single-pic-base @gol
643 -mpic-register=@var{reg} @gol
644 -mnop-fun-dllimport @gol
645 -mpoke-function-name @gol
646 -mthumb -marm @gol
647 -mtpcs-frame -mtpcs-leaf-frame @gol
648 -mcaller-super-interworking -mcallee-super-interworking @gol
649 -mtp=@var{name} -mtls-dialect=@var{dialect} @gol
650 -mword-relocations @gol
651 -mfix-cortex-m3-ldrd @gol
652 -munaligned-access @gol
653 -mneon-for-64bits @gol
654 -mslow-flash-data @gol
655 -masm-syntax-unified @gol
656 -mrestrict-it @gol
657 -mpure-code @gol
658 -mcmse}
659
660 @emph{AVR Options}
661 @gccoptlist{-mmcu=@var{mcu} -mabsdata -maccumulate-args @gol
662 -mbranch-cost=@var{cost} @gol
663 -mcall-prologues -mint8 -mn_flash=@var{size} -mno-interrupts @gol
664 -mrelax -mrmw -mstrict-X -mtiny-stack -mfract-convert-truncate @gol
665 -mshort-calls -nodevicelib @gol
666 -Waddr-space-convert -Wmisspelled-isr}
667
668 @emph{Blackfin Options}
669 @gccoptlist{-mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]} @gol
670 -msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer @gol
671 -mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly @gol
672 -mlow-64k -mno-low64k -mstack-check-l1 -mid-shared-library @gol
673 -mno-id-shared-library -mshared-library-id=@var{n} @gol
674 -mleaf-id-shared-library -mno-leaf-id-shared-library @gol
675 -msep-data -mno-sep-data -mlong-calls -mno-long-calls @gol
676 -mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram @gol
677 -micplb}
678
679 @emph{C6X Options}
680 @gccoptlist{-mbig-endian -mlittle-endian -march=@var{cpu} @gol
681 -msim -msdata=@var{sdata-type}}
682
683 @emph{CRIS Options}
684 @gccoptlist{-mcpu=@var{cpu} -march=@var{cpu} -mtune=@var{cpu} @gol
685 -mmax-stack-frame=@var{n} -melinux-stacksize=@var{n} @gol
686 -metrax4 -metrax100 -mpdebug -mcc-init -mno-side-effects @gol
687 -mstack-align -mdata-align -mconst-align @gol
688 -m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt @gol
689 -melf -maout -melinux -mlinux -sim -sim2 @gol
690 -mmul-bug-workaround -mno-mul-bug-workaround}
691
692 @emph{CR16 Options}
693 @gccoptlist{-mmac @gol
694 -mcr16cplus -mcr16c @gol
695 -msim -mint32 -mbit-ops
696 -mdata-model=@var{model}}
697
698 @emph{Darwin Options}
699 @gccoptlist{-all_load -allowable_client -arch -arch_errors_fatal @gol
700 -arch_only -bind_at_load -bundle -bundle_loader @gol
701 -client_name -compatibility_version -current_version @gol
702 -dead_strip @gol
703 -dependency-file -dylib_file -dylinker_install_name @gol
704 -dynamic -dynamiclib -exported_symbols_list @gol
705 -filelist -flat_namespace -force_cpusubtype_ALL @gol
706 -force_flat_namespace -headerpad_max_install_names @gol
707 -iframework @gol
708 -image_base -init -install_name -keep_private_externs @gol
709 -multi_module -multiply_defined -multiply_defined_unused @gol
710 -noall_load -no_dead_strip_inits_and_terms @gol
711 -nofixprebinding -nomultidefs -noprebind -noseglinkedit @gol
712 -pagezero_size -prebind -prebind_all_twolevel_modules @gol
713 -private_bundle -read_only_relocs -sectalign @gol
714 -sectobjectsymbols -whyload -seg1addr @gol
715 -sectcreate -sectobjectsymbols -sectorder @gol
716 -segaddr -segs_read_only_addr -segs_read_write_addr @gol
717 -seg_addr_table -seg_addr_table_filename -seglinkedit @gol
718 -segprot -segs_read_only_addr -segs_read_write_addr @gol
719 -single_module -static -sub_library -sub_umbrella @gol
720 -twolevel_namespace -umbrella -undefined @gol
721 -unexported_symbols_list -weak_reference_mismatches @gol
722 -whatsloaded -F -gused -gfull -mmacosx-version-min=@var{version} @gol
723 -mkernel -mone-byte-bool}
724
725 @emph{DEC Alpha Options}
726 @gccoptlist{-mno-fp-regs -msoft-float @gol
727 -mieee -mieee-with-inexact -mieee-conformant @gol
728 -mfp-trap-mode=@var{mode} -mfp-rounding-mode=@var{mode} @gol
729 -mtrap-precision=@var{mode} -mbuild-constants @gol
730 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} @gol
731 -mbwx -mmax -mfix -mcix @gol
732 -mfloat-vax -mfloat-ieee @gol
733 -mexplicit-relocs -msmall-data -mlarge-data @gol
734 -msmall-text -mlarge-text @gol
735 -mmemory-latency=@var{time}}
736
737 @emph{FR30 Options}
738 @gccoptlist{-msmall-model -mno-lsim}
739
740 @emph{FT32 Options}
741 @gccoptlist{-msim -mlra -mnodiv}
742
743 @emph{FRV Options}
744 @gccoptlist{-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64 @gol
745 -mhard-float -msoft-float @gol
746 -malloc-cc -mfixed-cc -mdword -mno-dword @gol
747 -mdouble -mno-double @gol
748 -mmedia -mno-media -mmuladd -mno-muladd @gol
749 -mfdpic -minline-plt -mgprel-ro -multilib-library-pic @gol
750 -mlinked-fp -mlong-calls -malign-labels @gol
751 -mlibrary-pic -macc-4 -macc-8 @gol
752 -mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move @gol
753 -moptimize-membar -mno-optimize-membar @gol
754 -mscc -mno-scc -mcond-exec -mno-cond-exec @gol
755 -mvliw-branch -mno-vliw-branch @gol
756 -mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec @gol
757 -mno-nested-cond-exec -mtomcat-stats @gol
758 -mTLS -mtls @gol
759 -mcpu=@var{cpu}}
760
761 @emph{GNU/Linux Options}
762 @gccoptlist{-mglibc -muclibc -mmusl -mbionic -mandroid @gol
763 -tno-android-cc -tno-android-ld}
764
765 @emph{H8/300 Options}
766 @gccoptlist{-mrelax -mh -ms -mn -mexr -mno-exr -mint32 -malign-300}
767
768 @emph{HPPA Options}
769 @gccoptlist{-march=@var{architecture-type} @gol
770 -mcaller-copies -mdisable-fpregs -mdisable-indexing @gol
771 -mfast-indirect-calls -mgas -mgnu-ld -mhp-ld @gol
772 -mfixed-range=@var{register-range} @gol
773 -mjump-in-delay -mlinker-opt -mlong-calls @gol
774 -mlong-load-store -mno-disable-fpregs @gol
775 -mno-disable-indexing -mno-fast-indirect-calls -mno-gas @gol
776 -mno-jump-in-delay -mno-long-load-store @gol
777 -mno-portable-runtime -mno-soft-float @gol
778 -mno-space-regs -msoft-float -mpa-risc-1-0 @gol
779 -mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime @gol
780 -mschedule=@var{cpu-type} -mspace-regs -msio -mwsio @gol
781 -munix=@var{unix-std} -nolibdld -static -threads}
782
783 @emph{IA-64 Options}
784 @gccoptlist{-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic @gol
785 -mvolatile-asm-stop -mregister-names -msdata -mno-sdata @gol
786 -mconstant-gp -mauto-pic -mfused-madd @gol
787 -minline-float-divide-min-latency @gol
788 -minline-float-divide-max-throughput @gol
789 -mno-inline-float-divide @gol
790 -minline-int-divide-min-latency @gol
791 -minline-int-divide-max-throughput @gol
792 -mno-inline-int-divide @gol
793 -minline-sqrt-min-latency -minline-sqrt-max-throughput @gol
794 -mno-inline-sqrt @gol
795 -mdwarf2-asm -mearly-stop-bits @gol
796 -mfixed-range=@var{register-range} -mtls-size=@var{tls-size} @gol
797 -mtune=@var{cpu-type} -milp32 -mlp64 @gol
798 -msched-br-data-spec -msched-ar-data-spec -msched-control-spec @gol
799 -msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec @gol
800 -msched-spec-ldc -msched-spec-control-ldc @gol
801 -msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns @gol
802 -msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path @gol
803 -msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost @gol
804 -msched-max-memory-insns-hard-limit -msched-max-memory-insns=@var{max-insns}}
805
806 @emph{LM32 Options}
807 @gccoptlist{-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled @gol
808 -msign-extend-enabled -muser-enabled}
809
810 @emph{M32R/D Options}
811 @gccoptlist{-m32r2 -m32rx -m32r @gol
812 -mdebug @gol
813 -malign-loops -mno-align-loops @gol
814 -missue-rate=@var{number} @gol
815 -mbranch-cost=@var{number} @gol
816 -mmodel=@var{code-size-model-type} @gol
817 -msdata=@var{sdata-type} @gol
818 -mno-flush-func -mflush-func=@var{name} @gol
819 -mno-flush-trap -mflush-trap=@var{number} @gol
820 -G @var{num}}
821
822 @emph{M32C Options}
823 @gccoptlist{-mcpu=@var{cpu} -msim -memregs=@var{number}}
824
825 @emph{M680x0 Options}
826 @gccoptlist{-march=@var{arch} -mcpu=@var{cpu} -mtune=@var{tune} @gol
827 -m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040 @gol
828 -m68060 -mcpu32 -m5200 -m5206e -m528x -m5307 -m5407 @gol
829 -mcfv4e -mbitfield -mno-bitfield -mc68000 -mc68020 @gol
830 -mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort @gol
831 -mno-short -mhard-float -m68881 -msoft-float -mpcrel @gol
832 -malign-int -mstrict-align -msep-data -mno-sep-data @gol
833 -mshared-library-id=n -mid-shared-library -mno-id-shared-library @gol
834 -mxgot -mno-xgot -mlong-jump-table-offsets}
835
836 @emph{MCore Options}
837 @gccoptlist{-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates @gol
838 -mno-relax-immediates -mwide-bitfields -mno-wide-bitfields @gol
839 -m4byte-functions -mno-4byte-functions -mcallgraph-data @gol
840 -mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim @gol
841 -mlittle-endian -mbig-endian -m210 -m340 -mstack-increment}
842
843 @emph{MeP Options}
844 @gccoptlist{-mabsdiff -mall-opts -maverage -mbased=@var{n} -mbitops @gol
845 -mc=@var{n} -mclip -mconfig=@var{name} -mcop -mcop32 -mcop64 -mivc2 @gol
846 -mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax @gol
847 -mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf @gol
848 -mtiny=@var{n}}
849
850 @emph{MicroBlaze Options}
851 @gccoptlist{-msoft-float -mhard-float -msmall-divides -mcpu=@var{cpu} @gol
852 -mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift @gol
853 -mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss @gol
854 -mxl-multiply-high -mxl-float-convert -mxl-float-sqrt @gol
855 -mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-@var{app-model}}
856
857 @emph{MIPS Options}
858 @gccoptlist{-EL -EB -march=@var{arch} -mtune=@var{arch} @gol
859 -mips1 -mips2 -mips3 -mips4 -mips32 -mips32r2 -mips32r3 -mips32r5 @gol
860 -mips32r6 -mips64 -mips64r2 -mips64r3 -mips64r5 -mips64r6 @gol
861 -mips16 -mno-mips16 -mflip-mips16 @gol
862 -minterlink-compressed -mno-interlink-compressed @gol
863 -minterlink-mips16 -mno-interlink-mips16 @gol
864 -mabi=@var{abi} -mabicalls -mno-abicalls @gol
865 -mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot @gol
866 -mgp32 -mgp64 -mfp32 -mfpxx -mfp64 -mhard-float -msoft-float @gol
867 -mno-float -msingle-float -mdouble-float @gol
868 -modd-spreg -mno-odd-spreg @gol
869 -mabs=@var{mode} -mnan=@var{encoding} @gol
870 -mdsp -mno-dsp -mdspr2 -mno-dspr2 @gol
871 -mmcu -mmno-mcu @gol
872 -meva -mno-eva @gol
873 -mvirt -mno-virt @gol
874 -mxpa -mno-xpa @gol
875 -mmicromips -mno-micromips @gol
876 -mmsa -mno-msa @gol
877 -mfpu=@var{fpu-type} @gol
878 -msmartmips -mno-smartmips @gol
879 -mpaired-single -mno-paired-single -mdmx -mno-mdmx @gol
880 -mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc @gol
881 -mlong64 -mlong32 -msym32 -mno-sym32 @gol
882 -G@var{num} -mlocal-sdata -mno-local-sdata @gol
883 -mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt @gol
884 -membedded-data -mno-embedded-data @gol
885 -muninit-const-in-rodata -mno-uninit-const-in-rodata @gol
886 -mcode-readable=@var{setting} @gol
887 -msplit-addresses -mno-split-addresses @gol
888 -mexplicit-relocs -mno-explicit-relocs @gol
889 -mcheck-zero-division -mno-check-zero-division @gol
890 -mdivide-traps -mdivide-breaks @gol
891 -mload-store-pairs -mno-load-store-pairs @gol
892 -mmemcpy -mno-memcpy -mlong-calls -mno-long-calls @gol
893 -mmad -mno-mad -mimadd -mno-imadd -mfused-madd -mno-fused-madd -nocpp @gol
894 -mfix-24k -mno-fix-24k @gol
895 -mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400 @gol
896 -mfix-r10000 -mno-fix-r10000 -mfix-rm7000 -mno-fix-rm7000 @gol
897 -mfix-vr4120 -mno-fix-vr4120 @gol
898 -mfix-vr4130 -mno-fix-vr4130 -mfix-sb1 -mno-fix-sb1 @gol
899 -mflush-func=@var{func} -mno-flush-func @gol
900 -mbranch-cost=@var{num} -mbranch-likely -mno-branch-likely @gol
901 -mcompact-branches=@var{policy} @gol
902 -mfp-exceptions -mno-fp-exceptions @gol
903 -mvr4130-align -mno-vr4130-align -msynci -mno-synci @gol
904 -mlxc1-sxc1 -mno-lxc1-sxc1 -mmadd4 -mno-madd4 @gol
905 -mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address @gol
906 -mframe-header-opt -mno-frame-header-opt}
907
908 @emph{MMIX Options}
909 @gccoptlist{-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu @gol
910 -mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols @gol
911 -melf -mbranch-predict -mno-branch-predict -mbase-addresses @gol
912 -mno-base-addresses -msingle-exit -mno-single-exit}
913
914 @emph{MN10300 Options}
915 @gccoptlist{-mmult-bug -mno-mult-bug @gol
916 -mno-am33 -mam33 -mam33-2 -mam34 @gol
917 -mtune=@var{cpu-type} @gol
918 -mreturn-pointer-on-d0 @gol
919 -mno-crt0 -mrelax -mliw -msetlb}
920
921 @emph{Moxie Options}
922 @gccoptlist{-meb -mel -mmul.x -mno-crt0}
923
924 @emph{MSP430 Options}
925 @gccoptlist{-msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax @gol
926 -mwarn-mcu @gol
927 -mcode-region= -mdata-region= @gol
928 -msilicon-errata= -msilicon-errata-warn= @gol
929 -mhwmult= -minrt}
930
931 @emph{NDS32 Options}
932 @gccoptlist{-mbig-endian -mlittle-endian @gol
933 -mreduced-regs -mfull-regs @gol
934 -mcmov -mno-cmov @gol
935 -mperf-ext -mno-perf-ext @gol
936 -mv3push -mno-v3push @gol
937 -m16bit -mno-16bit @gol
938 -misr-vector-size=@var{num} @gol
939 -mcache-block-size=@var{num} @gol
940 -march=@var{arch} @gol
941 -mcmodel=@var{code-model} @gol
942 -mctor-dtor -mrelax}
943
944 @emph{Nios II Options}
945 @gccoptlist{-G @var{num} -mgpopt=@var{option} -mgpopt -mno-gpopt @gol
946 -mel -meb @gol
947 -mno-bypass-cache -mbypass-cache @gol
948 -mno-cache-volatile -mcache-volatile @gol
949 -mno-fast-sw-div -mfast-sw-div @gol
950 -mhw-mul -mno-hw-mul -mhw-mulx -mno-hw-mulx -mno-hw-div -mhw-div @gol
951 -mcustom-@var{insn}=@var{N} -mno-custom-@var{insn} @gol
952 -mcustom-fpu-cfg=@var{name} @gol
953 -mhal -msmallc -msys-crt0=@var{name} -msys-lib=@var{name} @gol
954 -march=@var{arch} -mbmx -mno-bmx -mcdx -mno-cdx}
955
956 @emph{Nvidia PTX Options}
957 @gccoptlist{-m32 -m64 -mmainkernel -moptimize}
958
959 @emph{PDP-11 Options}
960 @gccoptlist{-mfpu -msoft-float -mac0 -mno-ac0 -m40 -m45 -m10 @gol
961 -mbcopy -mbcopy-builtin -mint32 -mno-int16 @gol
962 -mint16 -mno-int32 -mfloat32 -mno-float64 @gol
963 -mfloat64 -mno-float32 -mabshi -mno-abshi @gol
964 -mbranch-expensive -mbranch-cheap @gol
965 -munix-asm -mdec-asm}
966
967 @emph{picoChip Options}
968 @gccoptlist{-mae=@var{ae_type} -mvliw-lookahead=@var{N} @gol
969 -msymbol-as-address -mno-inefficient-warnings}
970
971 @emph{PowerPC Options}
972 See RS/6000 and PowerPC Options.
973
974 @emph{RISC-V Options}
975 @gccoptlist{-mbranch-cost=@var{N-instruction} @gol
976 -mmemcpy -mno-memcpy @gol
977 -mplt -mno-plt @gol
978 -mabi=@var{ABI-string} @gol
979 -mfdiv -mno-fdiv @gol
980 -mdiv -mno-div @gol
981 -march=@var{ISA-string} @gol
982 -mtune=@var{processor-string} @gol
983 -msmall-data-limit=@var{N-bytes} @gol
984 -msave-restore -mno-save-restore @gol
985 -mstrict-align -mno-strict-align @gol
986 -mcmodel=@var{code-model} @gol
987 -mexplicit-relocs -mno-explicit-relocs @gol}
988
989 @emph{RL78 Options}
990 @gccoptlist{-msim -mmul=none -mmul=g13 -mmul=g14 -mallregs @gol
991 -mcpu=g10 -mcpu=g13 -mcpu=g14 -mg10 -mg13 -mg14 @gol
992 -m64bit-doubles -m32bit-doubles -msave-mduc-in-interrupts}
993
994 @emph{RS/6000 and PowerPC Options}
995 @gccoptlist{-mcpu=@var{cpu-type} @gol
996 -mtune=@var{cpu-type} @gol
997 -mcmodel=@var{code-model} @gol
998 -mpowerpc64 @gol
999 -maltivec -mno-altivec @gol
1000 -mpowerpc-gpopt -mno-powerpc-gpopt @gol
1001 -mpowerpc-gfxopt -mno-powerpc-gfxopt @gol
1002 -mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mpopcntd -mno-popcntd @gol
1003 -mfprnd -mno-fprnd @gol
1004 -mcmpb -mno-cmpb -mmfpgpr -mno-mfpgpr -mhard-dfp -mno-hard-dfp @gol
1005 -mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc @gol
1006 -m64 -m32 -mxl-compat -mno-xl-compat -mpe @gol
1007 -malign-power -malign-natural @gol
1008 -msoft-float -mhard-float -mmultiple -mno-multiple @gol
1009 -msingle-float -mdouble-float -msimple-fpu @gol
1010 -mstring -mno-string -mupdate -mno-update @gol
1011 -mavoid-indexed-addresses -mno-avoid-indexed-addresses @gol
1012 -mfused-madd -mno-fused-madd -mbit-align -mno-bit-align @gol
1013 -mstrict-align -mno-strict-align -mrelocatable @gol
1014 -mno-relocatable -mrelocatable-lib -mno-relocatable-lib @gol
1015 -mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian @gol
1016 -mdynamic-no-pic -maltivec -mswdiv -msingle-pic-base @gol
1017 -mprioritize-restricted-insns=@var{priority} @gol
1018 -msched-costly-dep=@var{dependence_type} @gol
1019 -minsert-sched-nops=@var{scheme} @gol
1020 -mcall-sysv -mcall-netbsd @gol
1021 -maix-struct-return -msvr4-struct-return @gol
1022 -mabi=@var{abi-type} -msecure-plt -mbss-plt @gol
1023 -mblock-move-inline-limit=@var{num} @gol
1024 -misel -mno-isel @gol
1025 -misel=yes -misel=no @gol
1026 -mspe -mno-spe @gol
1027 -mspe=yes -mspe=no @gol
1028 -mpaired @gol
1029 -mvrsave -mno-vrsave @gol
1030 -mmulhw -mno-mulhw @gol
1031 -mdlmzb -mno-dlmzb @gol
1032 -mfloat-gprs=yes -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double @gol
1033 -mprototype -mno-prototype @gol
1034 -msim -mmvme -mads -myellowknife -memb -msdata @gol
1035 -msdata=@var{opt} -mvxworks -G @var{num} @gol
1036 -mrecip -mrecip=@var{opt} -mno-recip -mrecip-precision @gol
1037 -mno-recip-precision @gol
1038 -mveclibabi=@var{type} -mfriz -mno-friz @gol
1039 -mpointers-to-nested-functions -mno-pointers-to-nested-functions @gol
1040 -msave-toc-indirect -mno-save-toc-indirect @gol
1041 -mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector @gol
1042 -mcrypto -mno-crypto -mhtm -mno-htm -mdirect-move -mno-direct-move @gol
1043 -mquad-memory -mno-quad-memory @gol
1044 -mquad-memory-atomic -mno-quad-memory-atomic @gol
1045 -mcompat-align-parm -mno-compat-align-parm @gol
1046 -mupper-regs-df -mno-upper-regs-df -mupper-regs-sf -mno-upper-regs-sf @gol
1047 -mupper-regs-di -mno-upper-regs-di @gol
1048 -mupper-regs -mno-upper-regs @gol
1049 -mfloat128 -mno-float128 -mfloat128-hardware -mno-float128-hardware @gol
1050 -mgnu-attribute -mno-gnu-attribute @gol
1051 -mstack-protector-guard=@var{guard} -mstack-protector-guard-reg=@var{reg} @gol
1052 -mstack-protector-guard-offset=@var{offset} @gol
1053 -mlra -mno-lra}
1054
1055 @emph{RX Options}
1056 @gccoptlist{-m64bit-doubles -m32bit-doubles -fpu -nofpu@gol
1057 -mcpu=@gol
1058 -mbig-endian-data -mlittle-endian-data @gol
1059 -msmall-data @gol
1060 -msim -mno-sim@gol
1061 -mas100-syntax -mno-as100-syntax@gol
1062 -mrelax@gol
1063 -mmax-constant-size=@gol
1064 -mint-register=@gol
1065 -mpid@gol
1066 -mallow-string-insns -mno-allow-string-insns@gol
1067 -mjsr@gol
1068 -mno-warn-multiple-fast-interrupts@gol
1069 -msave-acc-in-interrupts}
1070
1071 @emph{S/390 and zSeries Options}
1072 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
1073 -mhard-float -msoft-float -mhard-dfp -mno-hard-dfp @gol
1074 -mlong-double-64 -mlong-double-128 @gol
1075 -mbackchain -mno-backchain -mpacked-stack -mno-packed-stack @gol
1076 -msmall-exec -mno-small-exec -mmvcle -mno-mvcle @gol
1077 -m64 -m31 -mdebug -mno-debug -mesa -mzarch @gol
1078 -mhtm -mvx -mzvector @gol
1079 -mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd @gol
1080 -mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard @gol
1081 -mhotpatch=@var{halfwords},@var{halfwords}}
1082
1083 @emph{Score Options}
1084 @gccoptlist{-meb -mel @gol
1085 -mnhwloop @gol
1086 -muls @gol
1087 -mmac @gol
1088 -mscore5 -mscore5u -mscore7 -mscore7d}
1089
1090 @emph{SH Options}
1091 @gccoptlist{-m1 -m2 -m2e @gol
1092 -m2a-nofpu -m2a-single-only -m2a-single -m2a @gol
1093 -m3 -m3e @gol
1094 -m4-nofpu -m4-single-only -m4-single -m4 @gol
1095 -m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al @gol
1096 -mb -ml -mdalign -mrelax @gol
1097 -mbigtable -mfmovd -mrenesas -mno-renesas -mnomacsave @gol
1098 -mieee -mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct @gol
1099 -mprefergot -musermode -multcost=@var{number} -mdiv=@var{strategy} @gol
1100 -mdivsi3_libfunc=@var{name} -mfixed-range=@var{register-range} @gol
1101 -maccumulate-outgoing-args @gol
1102 -matomic-model=@var{atomic-model} @gol
1103 -mbranch-cost=@var{num} -mzdcbranch -mno-zdcbranch @gol
1104 -mcbranch-force-delay-slot @gol
1105 -mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra @gol
1106 -mpretend-cmove -mtas}
1107
1108 @emph{Solaris 2 Options}
1109 @gccoptlist{-mclear-hwcap -mno-clear-hwcap -mimpure-text -mno-impure-text @gol
1110 -pthreads}
1111
1112 @emph{SPARC Options}
1113 @gccoptlist{-mcpu=@var{cpu-type} @gol
1114 -mtune=@var{cpu-type} @gol
1115 -mcmodel=@var{code-model} @gol
1116 -mmemory-model=@var{mem-model} @gol
1117 -m32 -m64 -mapp-regs -mno-app-regs @gol
1118 -mfaster-structs -mno-faster-structs -mflat -mno-flat @gol
1119 -mfpu -mno-fpu -mhard-float -msoft-float @gol
1120 -mhard-quad-float -msoft-quad-float @gol
1121 -mstack-bias -mno-stack-bias @gol
1122 -mstd-struct-return -mno-std-struct-return @gol
1123 -munaligned-doubles -mno-unaligned-doubles @gol
1124 -muser-mode -mno-user-mode @gol
1125 -mv8plus -mno-v8plus -mvis -mno-vis @gol
1126 -mvis2 -mno-vis2 -mvis3 -mno-vis3 @gol
1127 -mcbcond -mno-cbcond -mfmaf -mno-fmaf @gol
1128 -mpopc -mno-popc -msubxc -mno-subxc@gol
1129 -mfix-at697f -mfix-ut699 @gol
1130 -mlra -mno-lra}
1131
1132 @emph{SPU Options}
1133 @gccoptlist{-mwarn-reloc -merror-reloc @gol
1134 -msafe-dma -munsafe-dma @gol
1135 -mbranch-hints @gol
1136 -msmall-mem -mlarge-mem -mstdmain @gol
1137 -mfixed-range=@var{register-range} @gol
1138 -mea32 -mea64 @gol
1139 -maddress-space-conversion -mno-address-space-conversion @gol
1140 -mcache-size=@var{cache-size} @gol
1141 -matomic-updates -mno-atomic-updates}
1142
1143 @emph{System V Options}
1144 @gccoptlist{-Qy -Qn -YP,@var{paths} -Ym,@var{dir}}
1145
1146 @emph{TILE-Gx Options}
1147 @gccoptlist{-mcpu=CPU -m32 -m64 -mbig-endian -mlittle-endian @gol
1148 -mcmodel=@var{code-model}}
1149
1150 @emph{TILEPro Options}
1151 @gccoptlist{-mcpu=@var{cpu} -m32}
1152
1153 @emph{V850 Options}
1154 @gccoptlist{-mlong-calls -mno-long-calls -mep -mno-ep @gol
1155 -mprolog-function -mno-prolog-function -mspace @gol
1156 -mtda=@var{n} -msda=@var{n} -mzda=@var{n} @gol
1157 -mapp-regs -mno-app-regs @gol
1158 -mdisable-callt -mno-disable-callt @gol
1159 -mv850e2v3 -mv850e2 -mv850e1 -mv850es @gol
1160 -mv850e -mv850 -mv850e3v5 @gol
1161 -mloop @gol
1162 -mrelax @gol
1163 -mlong-jumps @gol
1164 -msoft-float @gol
1165 -mhard-float @gol
1166 -mgcc-abi @gol
1167 -mrh850-abi @gol
1168 -mbig-switch}
1169
1170 @emph{VAX Options}
1171 @gccoptlist{-mg -mgnu -munix}
1172
1173 @emph{Visium Options}
1174 @gccoptlist{-mdebug -msim -mfpu -mno-fpu -mhard-float -msoft-float @gol
1175 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} -msv-mode -muser-mode}
1176
1177 @emph{VMS Options}
1178 @gccoptlist{-mvms-return-codes -mdebug-main=@var{prefix} -mmalloc64 @gol
1179 -mpointer-size=@var{size}}
1180
1181 @emph{VxWorks Options}
1182 @gccoptlist{-mrtp -non-static -Bstatic -Bdynamic @gol
1183 -Xbind-lazy -Xbind-now}
1184
1185 @emph{x86 Options}
1186 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
1187 -mtune-ctrl=@var{feature-list} -mdump-tune-features -mno-default @gol
1188 -mfpmath=@var{unit} @gol
1189 -masm=@var{dialect} -mno-fancy-math-387 @gol
1190 -mno-fp-ret-in-387 -m80387 -mhard-float -msoft-float @gol
1191 -mno-wide-multiply -mrtd -malign-double @gol
1192 -mpreferred-stack-boundary=@var{num} @gol
1193 -mincoming-stack-boundary=@var{num} @gol
1194 -mcld -mcx16 -msahf -mmovbe -mcrc32 @gol
1195 -mrecip -mrecip=@var{opt} @gol
1196 -mvzeroupper -mprefer-avx128 @gol
1197 -mmmx -msse -msse2 -msse3 -mssse3 -msse4.1 -msse4.2 -msse4 -mavx @gol
1198 -mavx2 -mavx512f -mavx512pf -mavx512er -mavx512cd -mavx512vl @gol
1199 -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi -msha -maes @gol
1200 -mpclmul -mfsgsbase -mrdrnd -mf16c -mfma @gol
1201 -mprefetchwt1 -mclflushopt -mxsavec -mxsaves @gol
1202 -msse4a -m3dnow -m3dnowa -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop @gol
1203 -mlzcnt -mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm -mlwp -mmpx @gol
1204 -mmwaitx -mclzero -mpku -mthreads @gol
1205 -mms-bitfields -mno-align-stringops -minline-all-stringops @gol
1206 -minline-stringops-dynamically -mstringop-strategy=@var{alg} @gol
1207 -mmemcpy-strategy=@var{strategy} -mmemset-strategy=@var{strategy} @gol
1208 -mpush-args -maccumulate-outgoing-args -m128bit-long-double @gol
1209 -m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128 @gol
1210 -mregparm=@var{num} -msseregparm @gol
1211 -mveclibabi=@var{type} -mvect8-ret-in-mem @gol
1212 -mpc32 -mpc64 -mpc80 -mstackrealign @gol
1213 -momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs @gol
1214 -mcmodel=@var{code-model} -mabi=@var{name} -maddress-mode=@var{mode} @gol
1215 -m32 -m64 -mx32 -m16 -miamcu -mlarge-data-threshold=@var{num} @gol
1216 -msse2avx -mfentry -mrecord-mcount -mnop-mcount -m8bit-idiv @gol
1217 -mavx256-split-unaligned-load -mavx256-split-unaligned-store @gol
1218 -malign-data=@var{type} -mstack-protector-guard=@var{guard} @gol
1219 -mmitigate-rop -mgeneral-regs-only -mcall-ms2sysv-xlogues}
1220
1221 @emph{x86 Windows Options}
1222 @gccoptlist{-mconsole -mcygwin -mno-cygwin -mdll @gol
1223 -mnop-fun-dllimport -mthread @gol
1224 -municode -mwin32 -mwindows -fno-set-stack-executable}
1225
1226 @emph{Xstormy16 Options}
1227 @gccoptlist{-msim}
1228
1229 @emph{Xtensa Options}
1230 @gccoptlist{-mconst16 -mno-const16 @gol
1231 -mfused-madd -mno-fused-madd @gol
1232 -mforce-no-pic @gol
1233 -mserialize-volatile -mno-serialize-volatile @gol
1234 -mtext-section-literals -mno-text-section-literals @gol
1235 -mauto-litpools -mno-auto-litpools @gol
1236 -mtarget-align -mno-target-align @gol
1237 -mlongcalls -mno-longcalls}
1238
1239 @emph{zSeries Options}
1240 See S/390 and zSeries Options.
1241 @end table
1242
1243
1244 @node Overall Options
1245 @section Options Controlling the Kind of Output
1246
1247 Compilation can involve up to four stages: preprocessing, compilation
1248 proper, assembly and linking, always in that order. GCC is capable of
1249 preprocessing and compiling several files either into several
1250 assembler input files, or into one assembler input file; then each
1251 assembler input file produces an object file, and linking combines all
1252 the object files (those newly compiled, and those specified as input)
1253 into an executable file.
1254
1255 @cindex file name suffix
1256 For any given input file, the file name suffix determines what kind of
1257 compilation is done:
1258
1259 @table @gcctabopt
1260 @item @var{file}.c
1261 C source code that must be preprocessed.
1262
1263 @item @var{file}.i
1264 C source code that should not be preprocessed.
1265
1266 @item @var{file}.ii
1267 C++ source code that should not be preprocessed.
1268
1269 @item @var{file}.m
1270 Objective-C source code. Note that you must link with the @file{libobjc}
1271 library to make an Objective-C program work.
1272
1273 @item @var{file}.mi
1274 Objective-C source code that should not be preprocessed.
1275
1276 @item @var{file}.mm
1277 @itemx @var{file}.M
1278 Objective-C++ source code. Note that you must link with the @file{libobjc}
1279 library to make an Objective-C++ program work. Note that @samp{.M} refers
1280 to a literal capital M@.
1281
1282 @item @var{file}.mii
1283 Objective-C++ source code that should not be preprocessed.
1284
1285 @item @var{file}.h
1286 C, C++, Objective-C or Objective-C++ header file to be turned into a
1287 precompiled header (default), or C, C++ header file to be turned into an
1288 Ada spec (via the @option{-fdump-ada-spec} switch).
1289
1290 @item @var{file}.cc
1291 @itemx @var{file}.cp
1292 @itemx @var{file}.cxx
1293 @itemx @var{file}.cpp
1294 @itemx @var{file}.CPP
1295 @itemx @var{file}.c++
1296 @itemx @var{file}.C
1297 C++ source code that must be preprocessed. Note that in @samp{.cxx},
1298 the last two letters must both be literally @samp{x}. Likewise,
1299 @samp{.C} refers to a literal capital C@.
1300
1301 @item @var{file}.mm
1302 @itemx @var{file}.M
1303 Objective-C++ source code that must be preprocessed.
1304
1305 @item @var{file}.mii
1306 Objective-C++ source code that should not be preprocessed.
1307
1308 @item @var{file}.hh
1309 @itemx @var{file}.H
1310 @itemx @var{file}.hp
1311 @itemx @var{file}.hxx
1312 @itemx @var{file}.hpp
1313 @itemx @var{file}.HPP
1314 @itemx @var{file}.h++
1315 @itemx @var{file}.tcc
1316 C++ header file to be turned into a precompiled header or Ada spec.
1317
1318 @item @var{file}.f
1319 @itemx @var{file}.for
1320 @itemx @var{file}.ftn
1321 Fixed form Fortran source code that should not be preprocessed.
1322
1323 @item @var{file}.F
1324 @itemx @var{file}.FOR
1325 @itemx @var{file}.fpp
1326 @itemx @var{file}.FPP
1327 @itemx @var{file}.FTN
1328 Fixed form Fortran source code that must be preprocessed (with the traditional
1329 preprocessor).
1330
1331 @item @var{file}.f90
1332 @itemx @var{file}.f95
1333 @itemx @var{file}.f03
1334 @itemx @var{file}.f08
1335 Free form Fortran source code that should not be preprocessed.
1336
1337 @item @var{file}.F90
1338 @itemx @var{file}.F95
1339 @itemx @var{file}.F03
1340 @itemx @var{file}.F08
1341 Free form Fortran source code that must be preprocessed (with the
1342 traditional preprocessor).
1343
1344 @item @var{file}.go
1345 Go source code.
1346
1347 @item @var{file}.brig
1348 BRIG files (binary representation of HSAIL).
1349
1350 @item @var{file}.ads
1351 Ada source code file that contains a library unit declaration (a
1352 declaration of a package, subprogram, or generic, or a generic
1353 instantiation), or a library unit renaming declaration (a package,
1354 generic, or subprogram renaming declaration). Such files are also
1355 called @dfn{specs}.
1356
1357 @item @var{file}.adb
1358 Ada source code file containing a library unit body (a subprogram or
1359 package body). Such files are also called @dfn{bodies}.
1360
1361 @c GCC also knows about some suffixes for languages not yet included:
1362 @c Pascal:
1363 @c @var{file}.p
1364 @c @var{file}.pas
1365 @c Ratfor:
1366 @c @var{file}.r
1367
1368 @item @var{file}.s
1369 Assembler code.
1370
1371 @item @var{file}.S
1372 @itemx @var{file}.sx
1373 Assembler code that must be preprocessed.
1374
1375 @item @var{other}
1376 An object file to be fed straight into linking.
1377 Any file name with no recognized suffix is treated this way.
1378 @end table
1379
1380 @opindex x
1381 You can specify the input language explicitly with the @option{-x} option:
1382
1383 @table @gcctabopt
1384 @item -x @var{language}
1385 Specify explicitly the @var{language} for the following input files
1386 (rather than letting the compiler choose a default based on the file
1387 name suffix). This option applies to all following input files until
1388 the next @option{-x} option. Possible values for @var{language} are:
1389 @smallexample
1390 c c-header cpp-output
1391 c++ c++-header c++-cpp-output
1392 objective-c objective-c-header objective-c-cpp-output
1393 objective-c++ objective-c++-header objective-c++-cpp-output
1394 assembler assembler-with-cpp
1395 ada
1396 f77 f77-cpp-input f95 f95-cpp-input
1397 go
1398 brig
1399 @end smallexample
1400
1401 @item -x none
1402 Turn off any specification of a language, so that subsequent files are
1403 handled according to their file name suffixes (as they are if @option{-x}
1404 has not been used at all).
1405 @end table
1406
1407 If you only want some of the stages of compilation, you can use
1408 @option{-x} (or filename suffixes) to tell @command{gcc} where to start, and
1409 one of the options @option{-c}, @option{-S}, or @option{-E} to say where
1410 @command{gcc} is to stop. Note that some combinations (for example,
1411 @samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all.
1412
1413 @table @gcctabopt
1414 @item -c
1415 @opindex c
1416 Compile or assemble the source files, but do not link. The linking
1417 stage simply is not done. The ultimate output is in the form of an
1418 object file for each source file.
1419
1420 By default, the object file name for a source file is made by replacing
1421 the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
1422
1423 Unrecognized input files, not requiring compilation or assembly, are
1424 ignored.
1425
1426 @item -S
1427 @opindex S
1428 Stop after the stage of compilation proper; do not assemble. The output
1429 is in the form of an assembler code file for each non-assembler input
1430 file specified.
1431
1432 By default, the assembler file name for a source file is made by
1433 replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
1434
1435 Input files that don't require compilation are ignored.
1436
1437 @item -E
1438 @opindex E
1439 Stop after the preprocessing stage; do not run the compiler proper. The
1440 output is in the form of preprocessed source code, which is sent to the
1441 standard output.
1442
1443 Input files that don't require preprocessing are ignored.
1444
1445 @cindex output file option
1446 @item -o @var{file}
1447 @opindex o
1448 Place output in file @var{file}. This applies to whatever
1449 sort of output is being produced, whether it be an executable file,
1450 an object file, an assembler file or preprocessed C code.
1451
1452 If @option{-o} is not specified, the default is to put an executable
1453 file in @file{a.out}, the object file for
1454 @file{@var{source}.@var{suffix}} in @file{@var{source}.o}, its
1455 assembler file in @file{@var{source}.s}, a precompiled header file in
1456 @file{@var{source}.@var{suffix}.gch}, and all preprocessed C source on
1457 standard output.
1458
1459 @item -v
1460 @opindex v
1461 Print (on standard error output) the commands executed to run the stages
1462 of compilation. Also print the version number of the compiler driver
1463 program and of the preprocessor and the compiler proper.
1464
1465 @item -###
1466 @opindex ###
1467 Like @option{-v} except the commands are not executed and arguments
1468 are quoted unless they contain only alphanumeric characters or @code{./-_}.
1469 This is useful for shell scripts to capture the driver-generated command lines.
1470
1471 @item --help
1472 @opindex help
1473 Print (on the standard output) a description of the command-line options
1474 understood by @command{gcc}. If the @option{-v} option is also specified
1475 then @option{--help} is also passed on to the various processes
1476 invoked by @command{gcc}, so that they can display the command-line options
1477 they accept. If the @option{-Wextra} option has also been specified
1478 (prior to the @option{--help} option), then command-line options that
1479 have no documentation associated with them are also displayed.
1480
1481 @item --target-help
1482 @opindex target-help
1483 Print (on the standard output) a description of target-specific command-line
1484 options for each tool. For some targets extra target-specific
1485 information may also be printed.
1486
1487 @item --help=@{@var{class}@r{|[}^@r{]}@var{qualifier}@}@r{[},@dots{}@r{]}
1488 Print (on the standard output) a description of the command-line
1489 options understood by the compiler that fit into all specified classes
1490 and qualifiers. These are the supported classes:
1491
1492 @table @asis
1493 @item @samp{optimizers}
1494 Display all of the optimization options supported by the
1495 compiler.
1496
1497 @item @samp{warnings}
1498 Display all of the options controlling warning messages
1499 produced by the compiler.
1500
1501 @item @samp{target}
1502 Display target-specific options. Unlike the
1503 @option{--target-help} option however, target-specific options of the
1504 linker and assembler are not displayed. This is because those
1505 tools do not currently support the extended @option{--help=} syntax.
1506
1507 @item @samp{params}
1508 Display the values recognized by the @option{--param}
1509 option.
1510
1511 @item @var{language}
1512 Display the options supported for @var{language}, where
1513 @var{language} is the name of one of the languages supported in this
1514 version of GCC@.
1515
1516 @item @samp{common}
1517 Display the options that are common to all languages.
1518 @end table
1519
1520 These are the supported qualifiers:
1521
1522 @table @asis
1523 @item @samp{undocumented}
1524 Display only those options that are undocumented.
1525
1526 @item @samp{joined}
1527 Display options taking an argument that appears after an equal
1528 sign in the same continuous piece of text, such as:
1529 @samp{--help=target}.
1530
1531 @item @samp{separate}
1532 Display options taking an argument that appears as a separate word
1533 following the original option, such as: @samp{-o output-file}.
1534 @end table
1535
1536 Thus for example to display all the undocumented target-specific
1537 switches supported by the compiler, use:
1538
1539 @smallexample
1540 --help=target,undocumented
1541 @end smallexample
1542
1543 The sense of a qualifier can be inverted by prefixing it with the
1544 @samp{^} character, so for example to display all binary warning
1545 options (i.e., ones that are either on or off and that do not take an
1546 argument) that have a description, use:
1547
1548 @smallexample
1549 --help=warnings,^joined,^undocumented
1550 @end smallexample
1551
1552 The argument to @option{--help=} should not consist solely of inverted
1553 qualifiers.
1554
1555 Combining several classes is possible, although this usually
1556 restricts the output so much that there is nothing to display. One
1557 case where it does work, however, is when one of the classes is
1558 @var{target}. For example, to display all the target-specific
1559 optimization options, use:
1560
1561 @smallexample
1562 --help=target,optimizers
1563 @end smallexample
1564
1565 The @option{--help=} option can be repeated on the command line. Each
1566 successive use displays its requested class of options, skipping
1567 those that have already been displayed.
1568
1569 If the @option{-Q} option appears on the command line before the
1570 @option{--help=} option, then the descriptive text displayed by
1571 @option{--help=} is changed. Instead of describing the displayed
1572 options, an indication is given as to whether the option is enabled,
1573 disabled or set to a specific value (assuming that the compiler
1574 knows this at the point where the @option{--help=} option is used).
1575
1576 Here is a truncated example from the ARM port of @command{gcc}:
1577
1578 @smallexample
1579 % gcc -Q -mabi=2 --help=target -c
1580 The following options are target specific:
1581 -mabi= 2
1582 -mabort-on-noreturn [disabled]
1583 -mapcs [disabled]
1584 @end smallexample
1585
1586 The output is sensitive to the effects of previous command-line
1587 options, so for example it is possible to find out which optimizations
1588 are enabled at @option{-O2} by using:
1589
1590 @smallexample
1591 -Q -O2 --help=optimizers
1592 @end smallexample
1593
1594 Alternatively you can discover which binary optimizations are enabled
1595 by @option{-O3} by using:
1596
1597 @smallexample
1598 gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
1599 gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
1600 diff /tmp/O2-opts /tmp/O3-opts | grep enabled
1601 @end smallexample
1602
1603 @item --version
1604 @opindex version
1605 Display the version number and copyrights of the invoked GCC@.
1606
1607 @item -pass-exit-codes
1608 @opindex pass-exit-codes
1609 Normally the @command{gcc} program exits with the code of 1 if any
1610 phase of the compiler returns a non-success return code. If you specify
1611 @option{-pass-exit-codes}, the @command{gcc} program instead returns with
1612 the numerically highest error produced by any phase returning an error
1613 indication. The C, C++, and Fortran front ends return 4 if an internal
1614 compiler error is encountered.
1615
1616 @item -pipe
1617 @opindex pipe
1618 Use pipes rather than temporary files for communication between the
1619 various stages of compilation. This fails to work on some systems where
1620 the assembler is unable to read from a pipe; but the GNU assembler has
1621 no trouble.
1622
1623 @item -specs=@var{file}
1624 @opindex specs
1625 Process @var{file} after the compiler reads in the standard @file{specs}
1626 file, in order to override the defaults which the @command{gcc} driver
1627 program uses when determining what switches to pass to @command{cc1},
1628 @command{cc1plus}, @command{as}, @command{ld}, etc. More than one
1629 @option{-specs=@var{file}} can be specified on the command line, and they
1630 are processed in order, from left to right. @xref{Spec Files}, for
1631 information about the format of the @var{file}.
1632
1633 @item -wrapper
1634 @opindex wrapper
1635 Invoke all subcommands under a wrapper program. The name of the
1636 wrapper program and its parameters are passed as a comma separated
1637 list.
1638
1639 @smallexample
1640 gcc -c t.c -wrapper gdb,--args
1641 @end smallexample
1642
1643 @noindent
1644 This invokes all subprograms of @command{gcc} under
1645 @samp{gdb --args}, thus the invocation of @command{cc1} is
1646 @samp{gdb --args cc1 @dots{}}.
1647
1648 @item -fplugin=@var{name}.so
1649 @opindex fplugin
1650 Load the plugin code in file @var{name}.so, assumed to be a
1651 shared object to be dlopen'd by the compiler. The base name of
1652 the shared object file is used to identify the plugin for the
1653 purposes of argument parsing (See
1654 @option{-fplugin-arg-@var{name}-@var{key}=@var{value}} below).
1655 Each plugin should define the callback functions specified in the
1656 Plugins API.
1657
1658 @item -fplugin-arg-@var{name}-@var{key}=@var{value}
1659 @opindex fplugin-arg
1660 Define an argument called @var{key} with a value of @var{value}
1661 for the plugin called @var{name}.
1662
1663 @item -fdump-ada-spec@r{[}-slim@r{]}
1664 @opindex fdump-ada-spec
1665 For C and C++ source and include files, generate corresponding Ada specs.
1666 @xref{Generating Ada Bindings for C and C++ headers,,, gnat_ugn,
1667 GNAT User's Guide}, which provides detailed documentation on this feature.
1668
1669 @item -fada-spec-parent=@var{unit}
1670 @opindex fada-spec-parent
1671 In conjunction with @option{-fdump-ada-spec@r{[}-slim@r{]}} above, generate
1672 Ada specs as child units of parent @var{unit}.
1673
1674 @item -fdump-go-spec=@var{file}
1675 @opindex fdump-go-spec
1676 For input files in any language, generate corresponding Go
1677 declarations in @var{file}. This generates Go @code{const},
1678 @code{type}, @code{var}, and @code{func} declarations which may be a
1679 useful way to start writing a Go interface to code written in some
1680 other language.
1681
1682 @include @value{srcdir}/../libiberty/at-file.texi
1683 @end table
1684
1685 @node Invoking G++
1686 @section Compiling C++ Programs
1687
1688 @cindex suffixes for C++ source
1689 @cindex C++ source file suffixes
1690 C++ source files conventionally use one of the suffixes @samp{.C},
1691 @samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or
1692 @samp{.cxx}; C++ header files often use @samp{.hh}, @samp{.hpp},
1693 @samp{.H}, or (for shared template code) @samp{.tcc}; and
1694 preprocessed C++ files use the suffix @samp{.ii}. GCC recognizes
1695 files with these names and compiles them as C++ programs even if you
1696 call the compiler the same way as for compiling C programs (usually
1697 with the name @command{gcc}).
1698
1699 @findex g++
1700 @findex c++
1701 However, the use of @command{gcc} does not add the C++ library.
1702 @command{g++} is a program that calls GCC and automatically specifies linking
1703 against the C++ library. It treats @samp{.c},
1704 @samp{.h} and @samp{.i} files as C++ source files instead of C source
1705 files unless @option{-x} is used. This program is also useful when
1706 precompiling a C header file with a @samp{.h} extension for use in C++
1707 compilations. On many systems, @command{g++} is also installed with
1708 the name @command{c++}.
1709
1710 @cindex invoking @command{g++}
1711 When you compile C++ programs, you may specify many of the same
1712 command-line options that you use for compiling programs in any
1713 language; or command-line options meaningful for C and related
1714 languages; or options that are meaningful only for C++ programs.
1715 @xref{C Dialect Options,,Options Controlling C Dialect}, for
1716 explanations of options for languages related to C@.
1717 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
1718 explanations of options that are meaningful only for C++ programs.
1719
1720 @node C Dialect Options
1721 @section Options Controlling C Dialect
1722 @cindex dialect options
1723 @cindex language dialect options
1724 @cindex options, dialect
1725
1726 The following options control the dialect of C (or languages derived
1727 from C, such as C++, Objective-C and Objective-C++) that the compiler
1728 accepts:
1729
1730 @table @gcctabopt
1731 @cindex ANSI support
1732 @cindex ISO support
1733 @item -ansi
1734 @opindex ansi
1735 In C mode, this is equivalent to @option{-std=c90}. In C++ mode, it is
1736 equivalent to @option{-std=c++98}.
1737
1738 This turns off certain features of GCC that are incompatible with ISO
1739 C90 (when compiling C code), or of standard C++ (when compiling C++ code),
1740 such as the @code{asm} and @code{typeof} keywords, and
1741 predefined macros such as @code{unix} and @code{vax} that identify the
1742 type of system you are using. It also enables the undesirable and
1743 rarely used ISO trigraph feature. For the C compiler,
1744 it disables recognition of C++ style @samp{//} comments as well as
1745 the @code{inline} keyword.
1746
1747 The alternate keywords @code{__asm__}, @code{__extension__},
1748 @code{__inline__} and @code{__typeof__} continue to work despite
1749 @option{-ansi}. You would not want to use them in an ISO C program, of
1750 course, but it is useful to put them in header files that might be included
1751 in compilations done with @option{-ansi}. Alternate predefined macros
1752 such as @code{__unix__} and @code{__vax__} are also available, with or
1753 without @option{-ansi}.
1754
1755 The @option{-ansi} option does not cause non-ISO programs to be
1756 rejected gratuitously. For that, @option{-Wpedantic} is required in
1757 addition to @option{-ansi}. @xref{Warning Options}.
1758
1759 The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi}
1760 option is used. Some header files may notice this macro and refrain
1761 from declaring certain functions or defining certain macros that the
1762 ISO standard doesn't call for; this is to avoid interfering with any
1763 programs that might use these names for other things.
1764
1765 Functions that are normally built in but do not have semantics
1766 defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in
1767 functions when @option{-ansi} is used. @xref{Other Builtins,,Other
1768 built-in functions provided by GCC}, for details of the functions
1769 affected.
1770
1771 @item -std=
1772 @opindex std
1773 Determine the language standard. @xref{Standards,,Language Standards
1774 Supported by GCC}, for details of these standard versions. This option
1775 is currently only supported when compiling C or C++.
1776
1777 The compiler can accept several base standards, such as @samp{c90} or
1778 @samp{c++98}, and GNU dialects of those standards, such as
1779 @samp{gnu90} or @samp{gnu++98}. When a base standard is specified, the
1780 compiler accepts all programs following that standard plus those
1781 using GNU extensions that do not contradict it. For example,
1782 @option{-std=c90} turns off certain features of GCC that are
1783 incompatible with ISO C90, such as the @code{asm} and @code{typeof}
1784 keywords, but not other GNU extensions that do not have a meaning in
1785 ISO C90, such as omitting the middle term of a @code{?:}
1786 expression. On the other hand, when a GNU dialect of a standard is
1787 specified, all features supported by the compiler are enabled, even when
1788 those features change the meaning of the base standard. As a result, some
1789 strict-conforming programs may be rejected. The particular standard
1790 is used by @option{-Wpedantic} to identify which features are GNU
1791 extensions given that version of the standard. For example
1792 @option{-std=gnu90 -Wpedantic} warns about C++ style @samp{//}
1793 comments, while @option{-std=gnu99 -Wpedantic} does not.
1794
1795 A value for this option must be provided; possible values are
1796
1797 @table @samp
1798 @item c90
1799 @itemx c89
1800 @itemx iso9899:1990
1801 Support all ISO C90 programs (certain GNU extensions that conflict
1802 with ISO C90 are disabled). Same as @option{-ansi} for C code.
1803
1804 @item iso9899:199409
1805 ISO C90 as modified in amendment 1.
1806
1807 @item c99
1808 @itemx c9x
1809 @itemx iso9899:1999
1810 @itemx iso9899:199x
1811 ISO C99. This standard is substantially completely supported, modulo
1812 bugs and floating-point issues
1813 (mainly but not entirely relating to optional C99 features from
1814 Annexes F and G). See
1815 @w{@uref{http://gcc.gnu.org/c99status.html}} for more information. The
1816 names @samp{c9x} and @samp{iso9899:199x} are deprecated.
1817
1818 @item c11
1819 @itemx c1x
1820 @itemx iso9899:2011
1821 ISO C11, the 2011 revision of the ISO C standard. This standard is
1822 substantially completely supported, modulo bugs, floating-point issues
1823 (mainly but not entirely relating to optional C11 features from
1824 Annexes F and G) and the optional Annexes K (Bounds-checking
1825 interfaces) and L (Analyzability). The name @samp{c1x} is deprecated.
1826
1827 @item gnu90
1828 @itemx gnu89
1829 GNU dialect of ISO C90 (including some C99 features).
1830
1831 @item gnu99
1832 @itemx gnu9x
1833 GNU dialect of ISO C99. The name @samp{gnu9x} is deprecated.
1834
1835 @item gnu11
1836 @itemx gnu1x
1837 GNU dialect of ISO C11. This is the default for C code.
1838 The name @samp{gnu1x} is deprecated.
1839
1840 @item c++98
1841 @itemx c++03
1842 The 1998 ISO C++ standard plus the 2003 technical corrigendum and some
1843 additional defect reports. Same as @option{-ansi} for C++ code.
1844
1845 @item gnu++98
1846 @itemx gnu++03
1847 GNU dialect of @option{-std=c++98}.
1848
1849 @item c++11
1850 @itemx c++0x
1851 The 2011 ISO C++ standard plus amendments.
1852 The name @samp{c++0x} is deprecated.
1853
1854 @item gnu++11
1855 @itemx gnu++0x
1856 GNU dialect of @option{-std=c++11}.
1857 The name @samp{gnu++0x} is deprecated.
1858
1859 @item c++14
1860 @itemx c++1y
1861 The 2014 ISO C++ standard plus amendments.
1862 The name @samp{c++1y} is deprecated.
1863
1864 @item gnu++14
1865 @itemx gnu++1y
1866 GNU dialect of @option{-std=c++14}.
1867 This is the default for C++ code.
1868 The name @samp{gnu++1y} is deprecated.
1869
1870 @item c++1z
1871 The next revision of the ISO C++ standard, tentatively planned for
1872 2017. Support is highly experimental, and will almost certainly
1873 change in incompatible ways in future releases.
1874
1875 @item gnu++1z
1876 GNU dialect of @option{-std=c++1z}. Support is highly experimental,
1877 and will almost certainly change in incompatible ways in future
1878 releases.
1879 @end table
1880
1881 @item -fgnu89-inline
1882 @opindex fgnu89-inline
1883 The option @option{-fgnu89-inline} tells GCC to use the traditional
1884 GNU semantics for @code{inline} functions when in C99 mode.
1885 @xref{Inline,,An Inline Function is As Fast As a Macro}.
1886 Using this option is roughly equivalent to adding the
1887 @code{gnu_inline} function attribute to all inline functions
1888 (@pxref{Function Attributes}).
1889
1890 The option @option{-fno-gnu89-inline} explicitly tells GCC to use the
1891 C99 semantics for @code{inline} when in C99 or gnu99 mode (i.e., it
1892 specifies the default behavior).
1893 This option is not supported in @option{-std=c90} or
1894 @option{-std=gnu90} mode.
1895
1896 The preprocessor macros @code{__GNUC_GNU_INLINE__} and
1897 @code{__GNUC_STDC_INLINE__} may be used to check which semantics are
1898 in effect for @code{inline} functions. @xref{Common Predefined
1899 Macros,,,cpp,The C Preprocessor}.
1900
1901 @item -fpermitted-flt-eval-methods=@var{style}
1902 @opindex fpermitted-flt-eval-methods
1903 @opindex fpermitted-flt-eval-methods=c11
1904 @opindex fpermitted-flt-eval-methods=ts-18661-3
1905 ISO/IEC TS 18661-3 defines new permissible values for
1906 @code{FLT_EVAL_METHOD} that indicate that operations and constants with
1907 a semantic type that is an interchange or extended format should be
1908 evaluated to the precision and range of that type. These new values are
1909 a superset of those permitted under C99/C11, which does not specify the
1910 meaning of other positive values of @code{FLT_EVAL_METHOD}. As such, code
1911 conforming to C11 may not have been written expecting the possibility of
1912 the new values.
1913
1914 @option{-fpermitted-flt-eval-methods} specifies whether the compiler
1915 should allow only the values of @code{FLT_EVAL_METHOD} specified in C99/C11,
1916 or the extended set of values specified in ISO/IEC TS 18661-3.
1917
1918 @var{style} is either @code{c11} or @code{ts-18661-3} as appropriate.
1919
1920 The default when in a standards compliant mode (@option{-std=c11} or similar)
1921 is @option{-fpermitted-flt-eval-methods=c11}. The default when in a GNU
1922 dialect (@option{-std=gnu11} or similar) is
1923 @option{-fpermitted-flt-eval-methods=ts-18661-3}.
1924
1925 @item -aux-info @var{filename}
1926 @opindex aux-info
1927 Output to the given filename prototyped declarations for all functions
1928 declared and/or defined in a translation unit, including those in header
1929 files. This option is silently ignored in any language other than C@.
1930
1931 Besides declarations, the file indicates, in comments, the origin of
1932 each declaration (source file and line), whether the declaration was
1933 implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or
1934 @samp{O} for old, respectively, in the first character after the line
1935 number and the colon), and whether it came from a declaration or a
1936 definition (@samp{C} or @samp{F}, respectively, in the following
1937 character). In the case of function definitions, a K&R-style list of
1938 arguments followed by their declarations is also provided, inside
1939 comments, after the declaration.
1940
1941 @item -fallow-parameterless-variadic-functions
1942 @opindex fallow-parameterless-variadic-functions
1943 Accept variadic functions without named parameters.
1944
1945 Although it is possible to define such a function, this is not very
1946 useful as it is not possible to read the arguments. This is only
1947 supported for C as this construct is allowed by C++.
1948
1949 @item -fno-asm
1950 @opindex fno-asm
1951 Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
1952 keyword, so that code can use these words as identifiers. You can use
1953 the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
1954 instead. @option{-ansi} implies @option{-fno-asm}.
1955
1956 In C++, this switch only affects the @code{typeof} keyword, since
1957 @code{asm} and @code{inline} are standard keywords. You may want to
1958 use the @option{-fno-gnu-keywords} flag instead, which has the same
1959 effect. In C99 mode (@option{-std=c99} or @option{-std=gnu99}), this
1960 switch only affects the @code{asm} and @code{typeof} keywords, since
1961 @code{inline} is a standard keyword in ISO C99.
1962
1963 @item -fno-builtin
1964 @itemx -fno-builtin-@var{function}
1965 @opindex fno-builtin
1966 @cindex built-in functions
1967 Don't recognize built-in functions that do not begin with
1968 @samp{__builtin_} as prefix. @xref{Other Builtins,,Other built-in
1969 functions provided by GCC}, for details of the functions affected,
1970 including those which are not built-in functions when @option{-ansi} or
1971 @option{-std} options for strict ISO C conformance are used because they
1972 do not have an ISO standard meaning.
1973
1974 GCC normally generates special code to handle certain built-in functions
1975 more efficiently; for instance, calls to @code{alloca} may become single
1976 instructions which adjust the stack directly, and calls to @code{memcpy}
1977 may become inline copy loops. The resulting code is often both smaller
1978 and faster, but since the function calls no longer appear as such, you
1979 cannot set a breakpoint on those calls, nor can you change the behavior
1980 of the functions by linking with a different library. In addition,
1981 when a function is recognized as a built-in function, GCC may use
1982 information about that function to warn about problems with calls to
1983 that function, or to generate more efficient code, even if the
1984 resulting code still contains calls to that function. For example,
1985 warnings are given with @option{-Wformat} for bad calls to
1986 @code{printf} when @code{printf} is built in and @code{strlen} is
1987 known not to modify global memory.
1988
1989 With the @option{-fno-builtin-@var{function}} option
1990 only the built-in function @var{function} is
1991 disabled. @var{function} must not begin with @samp{__builtin_}. If a
1992 function is named that is not built-in in this version of GCC, this
1993 option is ignored. There is no corresponding
1994 @option{-fbuiltin-@var{function}} option; if you wish to enable
1995 built-in functions selectively when using @option{-fno-builtin} or
1996 @option{-ffreestanding}, you may define macros such as:
1997
1998 @smallexample
1999 #define abs(n) __builtin_abs ((n))
2000 #define strcpy(d, s) __builtin_strcpy ((d), (s))
2001 @end smallexample
2002
2003 @item -fgimple
2004 @opindex fgimple
2005
2006 Enable parsing of function definitions marked with @code{__GIMPLE}.
2007 This is an experimental feature that allows unit testing of GIMPLE
2008 passes.
2009
2010 @item -fhosted
2011 @opindex fhosted
2012 @cindex hosted environment
2013
2014 Assert that compilation targets a hosted environment. This implies
2015 @option{-fbuiltin}. A hosted environment is one in which the
2016 entire standard library is available, and in which @code{main} has a return
2017 type of @code{int}. Examples are nearly everything except a kernel.
2018 This is equivalent to @option{-fno-freestanding}.
2019
2020 @item -ffreestanding
2021 @opindex ffreestanding
2022 @cindex hosted environment
2023
2024 Assert that compilation targets a freestanding environment. This
2025 implies @option{-fno-builtin}. A freestanding environment
2026 is one in which the standard library may not exist, and program startup may
2027 not necessarily be at @code{main}. The most obvious example is an OS kernel.
2028 This is equivalent to @option{-fno-hosted}.
2029
2030 @xref{Standards,,Language Standards Supported by GCC}, for details of
2031 freestanding and hosted environments.
2032
2033 @item -fopenacc
2034 @opindex fopenacc
2035 @cindex OpenACC accelerator programming
2036 Enable handling of OpenACC directives @code{#pragma acc} in C/C++ and
2037 @code{!$acc} in Fortran. When @option{-fopenacc} is specified, the
2038 compiler generates accelerated code according to the OpenACC Application
2039 Programming Interface v2.0 @w{@uref{http://www.openacc.org/}}. This option
2040 implies @option{-pthread}, and thus is only supported on targets that
2041 have support for @option{-pthread}.
2042
2043 @item -fopenacc-dim=@var{geom}
2044 @opindex fopenacc-dim
2045 @cindex OpenACC accelerator programming
2046 Specify default compute dimensions for parallel offload regions that do
2047 not explicitly specify. The @var{geom} value is a triple of
2048 ':'-separated sizes, in order 'gang', 'worker' and, 'vector'. A size
2049 can be omitted, to use a target-specific default value.
2050
2051 @item -fopenmp
2052 @opindex fopenmp
2053 @cindex OpenMP parallel
2054 Enable handling of OpenMP directives @code{#pragma omp} in C/C++ and
2055 @code{!$omp} in Fortran. When @option{-fopenmp} is specified, the
2056 compiler generates parallel code according to the OpenMP Application
2057 Program Interface v4.5 @w{@uref{http://www.openmp.org/}}. This option
2058 implies @option{-pthread}, and thus is only supported on targets that
2059 have support for @option{-pthread}. @option{-fopenmp} implies
2060 @option{-fopenmp-simd}.
2061
2062 @item -fopenmp-simd
2063 @opindex fopenmp-simd
2064 @cindex OpenMP SIMD
2065 @cindex SIMD
2066 Enable handling of OpenMP's SIMD directives with @code{#pragma omp}
2067 in C/C++ and @code{!$omp} in Fortran. Other OpenMP directives
2068 are ignored.
2069
2070 @item -fcilkplus
2071 @opindex fcilkplus
2072 @cindex Enable Cilk Plus
2073 Enable the usage of Cilk Plus language extension features for C/C++.
2074 When the option @option{-fcilkplus} is specified, enable the usage of
2075 the Cilk Plus Language extension features for C/C++. The present
2076 implementation follows ABI version 1.2. This is an experimental
2077 feature that is only partially complete, and whose interface may
2078 change in future versions of GCC as the official specification
2079 changes. Currently, all features but @code{_Cilk_for} have been
2080 implemented.
2081
2082 @item -fgnu-tm
2083 @opindex fgnu-tm
2084 When the option @option{-fgnu-tm} is specified, the compiler
2085 generates code for the Linux variant of Intel's current Transactional
2086 Memory ABI specification document (Revision 1.1, May 6 2009). This is
2087 an experimental feature whose interface may change in future versions
2088 of GCC, as the official specification changes. Please note that not
2089 all architectures are supported for this feature.
2090
2091 For more information on GCC's support for transactional memory,
2092 @xref{Enabling libitm,,The GNU Transactional Memory Library,libitm,GNU
2093 Transactional Memory Library}.
2094
2095 Note that the transactional memory feature is not supported with
2096 non-call exceptions (@option{-fnon-call-exceptions}).
2097
2098 @item -fms-extensions
2099 @opindex fms-extensions
2100 Accept some non-standard constructs used in Microsoft header files.
2101
2102 In C++ code, this allows member names in structures to be similar
2103 to previous types declarations.
2104
2105 @smallexample
2106 typedef int UOW;
2107 struct ABC @{
2108 UOW UOW;
2109 @};
2110 @end smallexample
2111
2112 Some cases of unnamed fields in structures and unions are only
2113 accepted with this option. @xref{Unnamed Fields,,Unnamed struct/union
2114 fields within structs/unions}, for details.
2115
2116 Note that this option is off for all targets but x86
2117 targets using ms-abi.
2118
2119 @item -fplan9-extensions
2120 @opindex fplan9-extensions
2121 Accept some non-standard constructs used in Plan 9 code.
2122
2123 This enables @option{-fms-extensions}, permits passing pointers to
2124 structures with anonymous fields to functions that expect pointers to
2125 elements of the type of the field, and permits referring to anonymous
2126 fields declared using a typedef. @xref{Unnamed Fields,,Unnamed
2127 struct/union fields within structs/unions}, for details. This is only
2128 supported for C, not C++.
2129
2130 @item -fcond-mismatch
2131 @opindex fcond-mismatch
2132 Allow conditional expressions with mismatched types in the second and
2133 third arguments. The value of such an expression is void. This option
2134 is not supported for C++.
2135
2136 @item -flax-vector-conversions
2137 @opindex flax-vector-conversions
2138 Allow implicit conversions between vectors with differing numbers of
2139 elements and/or incompatible element types. This option should not be
2140 used for new code.
2141
2142 @item -funsigned-char
2143 @opindex funsigned-char
2144 Let the type @code{char} be unsigned, like @code{unsigned char}.
2145
2146 Each kind of machine has a default for what @code{char} should
2147 be. It is either like @code{unsigned char} by default or like
2148 @code{signed char} by default.
2149
2150 Ideally, a portable program should always use @code{signed char} or
2151 @code{unsigned char} when it depends on the signedness of an object.
2152 But many programs have been written to use plain @code{char} and
2153 expect it to be signed, or expect it to be unsigned, depending on the
2154 machines they were written for. This option, and its inverse, let you
2155 make such a program work with the opposite default.
2156
2157 The type @code{char} is always a distinct type from each of
2158 @code{signed char} or @code{unsigned char}, even though its behavior
2159 is always just like one of those two.
2160
2161 @item -fsigned-char
2162 @opindex fsigned-char
2163 Let the type @code{char} be signed, like @code{signed char}.
2164
2165 Note that this is equivalent to @option{-fno-unsigned-char}, which is
2166 the negative form of @option{-funsigned-char}. Likewise, the option
2167 @option{-fno-signed-char} is equivalent to @option{-funsigned-char}.
2168
2169 @item -fsigned-bitfields
2170 @itemx -funsigned-bitfields
2171 @itemx -fno-signed-bitfields
2172 @itemx -fno-unsigned-bitfields
2173 @opindex fsigned-bitfields
2174 @opindex funsigned-bitfields
2175 @opindex fno-signed-bitfields
2176 @opindex fno-unsigned-bitfields
2177 These options control whether a bit-field is signed or unsigned, when the
2178 declaration does not use either @code{signed} or @code{unsigned}. By
2179 default, such a bit-field is signed, because this is consistent: the
2180 basic integer types such as @code{int} are signed types.
2181
2182 @item -fsso-struct=@var{endianness}
2183 @opindex fsso-struct
2184 Set the default scalar storage order of structures and unions to the
2185 specified endianness. The accepted values are @samp{big-endian},
2186 @samp{little-endian} and @samp{native} for the native endianness of
2187 the target (the default). This option is not supported for C++.
2188
2189 @strong{Warning:} the @option{-fsso-struct} switch causes GCC to generate
2190 code that is not binary compatible with code generated without it if the
2191 specified endianness is not the native endianness of the target.
2192 @end table
2193
2194 @node C++ Dialect Options
2195 @section Options Controlling C++ Dialect
2196
2197 @cindex compiler options, C++
2198 @cindex C++ options, command-line
2199 @cindex options, C++
2200 This section describes the command-line options that are only meaningful
2201 for C++ programs. You can also use most of the GNU compiler options
2202 regardless of what language your program is in. For example, you
2203 might compile a file @file{firstClass.C} like this:
2204
2205 @smallexample
2206 g++ -g -fstrict-enums -O -c firstClass.C
2207 @end smallexample
2208
2209 @noindent
2210 In this example, only @option{-fstrict-enums} is an option meant
2211 only for C++ programs; you can use the other options with any
2212 language supported by GCC@.
2213
2214 Some options for compiling C programs, such as @option{-std}, are also
2215 relevant for C++ programs.
2216 @xref{C Dialect Options,,Options Controlling C Dialect}.
2217
2218 Here is a list of options that are @emph{only} for compiling C++ programs:
2219
2220 @table @gcctabopt
2221
2222 @item -fabi-version=@var{n}
2223 @opindex fabi-version
2224 Use version @var{n} of the C++ ABI@. The default is version 0.
2225
2226 Version 0 refers to the version conforming most closely to
2227 the C++ ABI specification. Therefore, the ABI obtained using version 0
2228 will change in different versions of G++ as ABI bugs are fixed.
2229
2230 Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.
2231
2232 Version 2 is the version of the C++ ABI that first appeared in G++
2233 3.4, and was the default through G++ 4.9.
2234
2235 Version 3 corrects an error in mangling a constant address as a
2236 template argument.
2237
2238 Version 4, which first appeared in G++ 4.5, implements a standard
2239 mangling for vector types.
2240
2241 Version 5, which first appeared in G++ 4.6, corrects the mangling of
2242 attribute const/volatile on function pointer types, decltype of a
2243 plain decl, and use of a function parameter in the declaration of
2244 another parameter.
2245
2246 Version 6, which first appeared in G++ 4.7, corrects the promotion
2247 behavior of C++11 scoped enums and the mangling of template argument
2248 packs, const/static_cast, prefix ++ and --, and a class scope function
2249 used as a template argument.
2250
2251 Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a
2252 builtin type and corrects the mangling of lambdas in default argument
2253 scope.
2254
2255 Version 8, which first appeared in G++ 4.9, corrects the substitution
2256 behavior of function types with function-cv-qualifiers.
2257
2258 Version 9, which first appeared in G++ 5.2, corrects the alignment of
2259 @code{nullptr_t}.
2260
2261 Version 10, which first appeared in G++ 6.1, adds mangling of
2262 attributes that affect type identity, such as ia32 calling convention
2263 attributes (e.g. @samp{stdcall}).
2264
2265 Version 11, which first appeared in G++ 7, corrects the mangling of
2266 sizeof... expressions and operator names. For multiple entities with
2267 the same name within a function, that are declared in different scopes,
2268 the mangling now changes starting with the twelfth occurrence. It also
2269 implies @option{-fnew-inheriting-ctors}.
2270
2271 See also @option{-Wabi}.
2272
2273 @item -fabi-compat-version=@var{n}
2274 @opindex fabi-compat-version
2275 On targets that support strong aliases, G++
2276 works around mangling changes by creating an alias with the correct
2277 mangled name when defining a symbol with an incorrect mangled name.
2278 This switch specifies which ABI version to use for the alias.
2279
2280 With @option{-fabi-version=0} (the default), this defaults to 8 (GCC 5
2281 compatibility). If another ABI version is explicitly selected, this
2282 defaults to 0. For compatibility with GCC versions 3.2 through 4.9,
2283 use @option{-fabi-compat-version=2}.
2284
2285 If this option is not provided but @option{-Wabi=@var{n}} is, that
2286 version is used for compatibility aliases. If this option is provided
2287 along with @option{-Wabi} (without the version), the version from this
2288 option is used for the warning.
2289
2290 @item -fno-access-control
2291 @opindex fno-access-control
2292 Turn off all access checking. This switch is mainly useful for working
2293 around bugs in the access control code.
2294
2295 @item -faligned-new
2296 @opindex faligned-new
2297 Enable support for C++17 @code{new} of types that require more
2298 alignment than @code{void* ::operator new(std::size_t)} provides. A
2299 numeric argument such as @code{-faligned-new=32} can be used to
2300 specify how much alignment (in bytes) is provided by that function,
2301 but few users will need to override the default of
2302 @code{alignof(std::max_align_t)}.
2303
2304 This flag is enabled by default for @option{-std=c++1z}.
2305
2306 @item -fcheck-new
2307 @opindex fcheck-new
2308 Check that the pointer returned by @code{operator new} is non-null
2309 before attempting to modify the storage allocated. This check is
2310 normally unnecessary because the C++ standard specifies that
2311 @code{operator new} only returns @code{0} if it is declared
2312 @code{throw()}, in which case the compiler always checks the
2313 return value even without this option. In all other cases, when
2314 @code{operator new} has a non-empty exception specification, memory
2315 exhaustion is signalled by throwing @code{std::bad_alloc}. See also
2316 @samp{new (nothrow)}.
2317
2318 @item -fconcepts
2319 @opindex fconcepts
2320 Enable support for the C++ Extensions for Concepts Technical
2321 Specification, ISO 19217 (2015), which allows code like
2322
2323 @smallexample
2324 template <class T> concept bool Addable = requires (T t) @{ t + t; @};
2325 template <Addable T> T add (T a, T b) @{ return a + b; @}
2326 @end smallexample
2327
2328 @item -fconstexpr-depth=@var{n}
2329 @opindex fconstexpr-depth
2330 Set the maximum nested evaluation depth for C++11 constexpr functions
2331 to @var{n}. A limit is needed to detect endless recursion during
2332 constant expression evaluation. The minimum specified by the standard
2333 is 512.
2334
2335 @item -fconstexpr-loop-limit=@var{n}
2336 @opindex fconstexpr-loop-limit
2337 Set the maximum number of iterations for a loop in C++14 constexpr functions
2338 to @var{n}. A limit is needed to detect infinite loops during
2339 constant expression evaluation. The default is 262144 (1<<18).
2340
2341 @item -fdeduce-init-list
2342 @opindex fdeduce-init-list
2343 Enable deduction of a template type parameter as
2344 @code{std::initializer_list} from a brace-enclosed initializer list, i.e.@:
2345
2346 @smallexample
2347 template <class T> auto forward(T t) -> decltype (realfn (t))
2348 @{
2349 return realfn (t);
2350 @}
2351
2352 void f()
2353 @{
2354 forward(@{1,2@}); // call forward<std::initializer_list<int>>
2355 @}
2356 @end smallexample
2357
2358 This deduction was implemented as a possible extension to the
2359 originally proposed semantics for the C++11 standard, but was not part
2360 of the final standard, so it is disabled by default. This option is
2361 deprecated, and may be removed in a future version of G++.
2362
2363 @item -ffriend-injection
2364 @opindex ffriend-injection
2365 Inject friend functions into the enclosing namespace, so that they are
2366 visible outside the scope of the class in which they are declared.
2367 Friend functions were documented to work this way in the old Annotated
2368 C++ Reference Manual.
2369 However, in ISO C++ a friend function that is not declared
2370 in an enclosing scope can only be found using argument dependent
2371 lookup. GCC defaults to the standard behavior.
2372
2373 This option is for compatibility, and may be removed in a future
2374 release of G++.
2375
2376 @item -fno-elide-constructors
2377 @opindex fno-elide-constructors
2378 The C++ standard allows an implementation to omit creating a temporary
2379 that is only used to initialize another object of the same type.
2380 Specifying this option disables that optimization, and forces G++ to
2381 call the copy constructor in all cases. This option also causes G++
2382 to call trivial member functions which otherwise would be expanded inline.
2383
2384 In C++17, the compiler is required to omit these temporaries, but this
2385 option still affects trivial member functions.
2386
2387 @item -fno-enforce-eh-specs
2388 @opindex fno-enforce-eh-specs
2389 Don't generate code to check for violation of exception specifications
2390 at run time. This option violates the C++ standard, but may be useful
2391 for reducing code size in production builds, much like defining
2392 @code{NDEBUG}. This does not give user code permission to throw
2393 exceptions in violation of the exception specifications; the compiler
2394 still optimizes based on the specifications, so throwing an
2395 unexpected exception results in undefined behavior at run time.
2396
2397 @item -fextern-tls-init
2398 @itemx -fno-extern-tls-init
2399 @opindex fextern-tls-init
2400 @opindex fno-extern-tls-init
2401 The C++11 and OpenMP standards allow @code{thread_local} and
2402 @code{threadprivate} variables to have dynamic (runtime)
2403 initialization. To support this, any use of such a variable goes
2404 through a wrapper function that performs any necessary initialization.
2405 When the use and definition of the variable are in the same
2406 translation unit, this overhead can be optimized away, but when the
2407 use is in a different translation unit there is significant overhead
2408 even if the variable doesn't actually need dynamic initialization. If
2409 the programmer can be sure that no use of the variable in a
2410 non-defining TU needs to trigger dynamic initialization (either
2411 because the variable is statically initialized, or a use of the
2412 variable in the defining TU will be executed before any uses in
2413 another TU), they can avoid this overhead with the
2414 @option{-fno-extern-tls-init} option.
2415
2416 On targets that support symbol aliases, the default is
2417 @option{-fextern-tls-init}. On targets that do not support symbol
2418 aliases, the default is @option{-fno-extern-tls-init}.
2419
2420 @item -ffor-scope
2421 @itemx -fno-for-scope
2422 @opindex ffor-scope
2423 @opindex fno-for-scope
2424 If @option{-ffor-scope} is specified, the scope of variables declared in
2425 a @i{for-init-statement} is limited to the @code{for} loop itself,
2426 as specified by the C++ standard.
2427 If @option{-fno-for-scope} is specified, the scope of variables declared in
2428 a @i{for-init-statement} extends to the end of the enclosing scope,
2429 as was the case in old versions of G++, and other (traditional)
2430 implementations of C++.
2431
2432 If neither flag is given, the default is to follow the standard,
2433 but to allow and give a warning for old-style code that would
2434 otherwise be invalid, or have different behavior.
2435
2436 @item -fno-gnu-keywords
2437 @opindex fno-gnu-keywords
2438 Do not recognize @code{typeof} as a keyword, so that code can use this
2439 word as an identifier. You can use the keyword @code{__typeof__} instead.
2440 This option is implied by the strict ISO C++ dialects: @option{-ansi},
2441 @option{-std=c++98}, @option{-std=c++11}, etc.
2442
2443 @item -fno-implicit-templates
2444 @opindex fno-implicit-templates
2445 Never emit code for non-inline templates that are instantiated
2446 implicitly (i.e.@: by use); only emit code for explicit instantiations.
2447 @xref{Template Instantiation}, for more information.
2448
2449 @item -fno-implicit-inline-templates
2450 @opindex fno-implicit-inline-templates
2451 Don't emit code for implicit instantiations of inline templates, either.
2452 The default is to handle inlines differently so that compiles with and
2453 without optimization need the same set of explicit instantiations.
2454
2455 @item -fno-implement-inlines
2456 @opindex fno-implement-inlines
2457 To save space, do not emit out-of-line copies of inline functions
2458 controlled by @code{#pragma implementation}. This causes linker
2459 errors if these functions are not inlined everywhere they are called.
2460
2461 @item -fms-extensions
2462 @opindex fms-extensions
2463 Disable Wpedantic warnings about constructs used in MFC, such as implicit
2464 int and getting a pointer to member function via non-standard syntax.
2465
2466 @item -fnew-inheriting-ctors
2467 @opindex fnew-inheriting-ctors
2468 Enable the P0136 adjustment to the semantics of C++11 constructor
2469 inheritance. This is part of C++17 but also considered to be a Defect
2470 Report against C++11 and C++14. This flag is enabled by default
2471 unless @option{-fabi-version=10} or lower is specified.
2472
2473 @item -fnew-ttp-matching
2474 @opindex fnew-ttp-matching
2475 Enable the P0522 resolution to Core issue 150, template template
2476 parameters and default arguments: this allows a template with default
2477 template arguments as an argument for a template template parameter
2478 with fewer template parameters. This flag is enabled by default for
2479 @option{-std=c++1z}.
2480
2481 @item -fno-nonansi-builtins
2482 @opindex fno-nonansi-builtins
2483 Disable built-in declarations of functions that are not mandated by
2484 ANSI/ISO C@. These include @code{ffs}, @code{alloca}, @code{_exit},
2485 @code{index}, @code{bzero}, @code{conjf}, and other related functions.
2486
2487 @item -fnothrow-opt
2488 @opindex fnothrow-opt
2489 Treat a @code{throw()} exception specification as if it were a
2490 @code{noexcept} specification to reduce or eliminate the text size
2491 overhead relative to a function with no exception specification. If
2492 the function has local variables of types with non-trivial
2493 destructors, the exception specification actually makes the
2494 function smaller because the EH cleanups for those variables can be
2495 optimized away. The semantic effect is that an exception thrown out of
2496 a function with such an exception specification results in a call
2497 to @code{terminate} rather than @code{unexpected}.
2498
2499 @item -fno-operator-names
2500 @opindex fno-operator-names
2501 Do not treat the operator name keywords @code{and}, @code{bitand},
2502 @code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
2503 synonyms as keywords.
2504
2505 @item -fno-optional-diags
2506 @opindex fno-optional-diags
2507 Disable diagnostics that the standard says a compiler does not need to
2508 issue. Currently, the only such diagnostic issued by G++ is the one for
2509 a name having multiple meanings within a class.
2510
2511 @item -fpermissive
2512 @opindex fpermissive
2513 Downgrade some diagnostics about nonconformant code from errors to
2514 warnings. Thus, using @option{-fpermissive} allows some
2515 nonconforming code to compile.
2516
2517 @item -fno-pretty-templates
2518 @opindex fno-pretty-templates
2519 When an error message refers to a specialization of a function
2520 template, the compiler normally prints the signature of the
2521 template followed by the template arguments and any typedefs or
2522 typenames in the signature (e.g. @code{void f(T) [with T = int]}
2523 rather than @code{void f(int)}) so that it's clear which template is
2524 involved. When an error message refers to a specialization of a class
2525 template, the compiler omits any template arguments that match
2526 the default template arguments for that template. If either of these
2527 behaviors make it harder to understand the error message rather than
2528 easier, you can use @option{-fno-pretty-templates} to disable them.
2529
2530 @item -frepo
2531 @opindex frepo
2532 Enable automatic template instantiation at link time. This option also
2533 implies @option{-fno-implicit-templates}. @xref{Template
2534 Instantiation}, for more information.
2535
2536 @item -fno-rtti
2537 @opindex fno-rtti
2538 Disable generation of information about every class with virtual
2539 functions for use by the C++ run-time type identification features
2540 (@code{dynamic_cast} and @code{typeid}). If you don't use those parts
2541 of the language, you can save some space by using this flag. Note that
2542 exception handling uses the same information, but G++ generates it as
2543 needed. The @code{dynamic_cast} operator can still be used for casts that
2544 do not require run-time type information, i.e.@: casts to @code{void *} or to
2545 unambiguous base classes.
2546
2547 @item -fsized-deallocation
2548 @opindex fsized-deallocation
2549 Enable the built-in global declarations
2550 @smallexample
2551 void operator delete (void *, std::size_t) noexcept;
2552 void operator delete[] (void *, std::size_t) noexcept;
2553 @end smallexample
2554 as introduced in C++14. This is useful for user-defined replacement
2555 deallocation functions that, for example, use the size of the object
2556 to make deallocation faster. Enabled by default under
2557 @option{-std=c++14} and above. The flag @option{-Wsized-deallocation}
2558 warns about places that might want to add a definition.
2559
2560 @item -fstrict-enums
2561 @opindex fstrict-enums
2562 Allow the compiler to optimize using the assumption that a value of
2563 enumerated type can only be one of the values of the enumeration (as
2564 defined in the C++ standard; basically, a value that can be
2565 represented in the minimum number of bits needed to represent all the
2566 enumerators). This assumption may not be valid if the program uses a
2567 cast to convert an arbitrary integer value to the enumerated type.
2568
2569 @item -fstrong-eval-order
2570 @opindex fstrong-eval-order
2571 Evaluate member access, array subscripting, and shift expressions in
2572 left-to-right order, and evaluate assignment in right-to-left order,
2573 as adopted for C++17. Enabled by default with @option{-std=c++1z}.
2574 @option{-fstrong-eval-order=some} enables just the ordering of member
2575 access and shift expressions, and is the default without
2576 @option{-std=c++1z}.
2577
2578 @item -ftemplate-backtrace-limit=@var{n}
2579 @opindex ftemplate-backtrace-limit
2580 Set the maximum number of template instantiation notes for a single
2581 warning or error to @var{n}. The default value is 10.
2582
2583 @item -ftemplate-depth=@var{n}
2584 @opindex ftemplate-depth
2585 Set the maximum instantiation depth for template classes to @var{n}.
2586 A limit on the template instantiation depth is needed to detect
2587 endless recursions during template class instantiation. ANSI/ISO C++
2588 conforming programs must not rely on a maximum depth greater than 17
2589 (changed to 1024 in C++11). The default value is 900, as the compiler
2590 can run out of stack space before hitting 1024 in some situations.
2591
2592 @item -fno-threadsafe-statics
2593 @opindex fno-threadsafe-statics
2594 Do not emit the extra code to use the routines specified in the C++
2595 ABI for thread-safe initialization of local statics. You can use this
2596 option to reduce code size slightly in code that doesn't need to be
2597 thread-safe.
2598
2599 @item -fuse-cxa-atexit
2600 @opindex fuse-cxa-atexit
2601 Register destructors for objects with static storage duration with the
2602 @code{__cxa_atexit} function rather than the @code{atexit} function.
2603 This option is required for fully standards-compliant handling of static
2604 destructors, but only works if your C library supports
2605 @code{__cxa_atexit}.
2606
2607 @item -fno-use-cxa-get-exception-ptr
2608 @opindex fno-use-cxa-get-exception-ptr
2609 Don't use the @code{__cxa_get_exception_ptr} runtime routine. This
2610 causes @code{std::uncaught_exception} to be incorrect, but is necessary
2611 if the runtime routine is not available.
2612
2613 @item -fvisibility-inlines-hidden
2614 @opindex fvisibility-inlines-hidden
2615 This switch declares that the user does not attempt to compare
2616 pointers to inline functions or methods where the addresses of the two functions
2617 are taken in different shared objects.
2618
2619 The effect of this is that GCC may, effectively, mark inline methods with
2620 @code{__attribute__ ((visibility ("hidden")))} so that they do not
2621 appear in the export table of a DSO and do not require a PLT indirection
2622 when used within the DSO@. Enabling this option can have a dramatic effect
2623 on load and link times of a DSO as it massively reduces the size of the
2624 dynamic export table when the library makes heavy use of templates.
2625
2626 The behavior of this switch is not quite the same as marking the
2627 methods as hidden directly, because it does not affect static variables
2628 local to the function or cause the compiler to deduce that
2629 the function is defined in only one shared object.
2630
2631 You may mark a method as having a visibility explicitly to negate the
2632 effect of the switch for that method. For example, if you do want to
2633 compare pointers to a particular inline method, you might mark it as
2634 having default visibility. Marking the enclosing class with explicit
2635 visibility has no effect.
2636
2637 Explicitly instantiated inline methods are unaffected by this option
2638 as their linkage might otherwise cross a shared library boundary.
2639 @xref{Template Instantiation}.
2640
2641 @item -fvisibility-ms-compat
2642 @opindex fvisibility-ms-compat
2643 This flag attempts to use visibility settings to make GCC's C++
2644 linkage model compatible with that of Microsoft Visual Studio.
2645
2646 The flag makes these changes to GCC's linkage model:
2647
2648 @enumerate
2649 @item
2650 It sets the default visibility to @code{hidden}, like
2651 @option{-fvisibility=hidden}.
2652
2653 @item
2654 Types, but not their members, are not hidden by default.
2655
2656 @item
2657 The One Definition Rule is relaxed for types without explicit
2658 visibility specifications that are defined in more than one
2659 shared object: those declarations are permitted if they are
2660 permitted when this option is not used.
2661 @end enumerate
2662
2663 In new code it is better to use @option{-fvisibility=hidden} and
2664 export those classes that are intended to be externally visible.
2665 Unfortunately it is possible for code to rely, perhaps accidentally,
2666 on the Visual Studio behavior.
2667
2668 Among the consequences of these changes are that static data members
2669 of the same type with the same name but defined in different shared
2670 objects are different, so changing one does not change the other;
2671 and that pointers to function members defined in different shared
2672 objects may not compare equal. When this flag is given, it is a
2673 violation of the ODR to define types with the same name differently.
2674
2675 @item -fno-weak
2676 @opindex fno-weak
2677 Do not use weak symbol support, even if it is provided by the linker.
2678 By default, G++ uses weak symbols if they are available. This
2679 option exists only for testing, and should not be used by end-users;
2680 it results in inferior code and has no benefits. This option may
2681 be removed in a future release of G++.
2682
2683 @item -nostdinc++
2684 @opindex nostdinc++
2685 Do not search for header files in the standard directories specific to
2686 C++, but do still search the other standard directories. (This option
2687 is used when building the C++ library.)
2688 @end table
2689
2690 In addition, these optimization, warning, and code generation options
2691 have meanings only for C++ programs:
2692
2693 @table @gcctabopt
2694 @item -Wabi @r{(C, Objective-C, C++ and Objective-C++ only)}
2695 @opindex Wabi
2696 @opindex Wno-abi
2697 Warn when G++ it generates code that is probably not compatible with
2698 the vendor-neutral C++ ABI@. Since G++ now defaults to updating the
2699 ABI with each major release, normally @option{-Wabi} will warn only if
2700 there is a check added later in a release series for an ABI issue
2701 discovered since the initial release. @option{-Wabi} will warn about
2702 more things if an older ABI version is selected (with
2703 @option{-fabi-version=@var{n}}).
2704
2705 @option{-Wabi} can also be used with an explicit version number to
2706 warn about compatibility with a particular @option{-fabi-version}
2707 level, e.g. @option{-Wabi=2} to warn about changes relative to
2708 @option{-fabi-version=2}.
2709
2710 If an explicit version number is provided and
2711 @option{-fabi-compat-version} is not specified, the version number
2712 from this option is used for compatibility aliases. If no explicit
2713 version number is provided with this option, but
2714 @option{-fabi-compat-version} is specified, that version number is
2715 used for ABI warnings.
2716
2717 Although an effort has been made to warn about
2718 all such cases, there are probably some cases that are not warned about,
2719 even though G++ is generating incompatible code. There may also be
2720 cases where warnings are emitted even though the code that is generated
2721 is compatible.
2722
2723 You should rewrite your code to avoid these warnings if you are
2724 concerned about the fact that code generated by G++ may not be binary
2725 compatible with code generated by other compilers.
2726
2727 Known incompatibilities in @option{-fabi-version=2} (which was the
2728 default from GCC 3.4 to 4.9) include:
2729
2730 @itemize @bullet
2731
2732 @item
2733 A template with a non-type template parameter of reference type was
2734 mangled incorrectly:
2735 @smallexample
2736 extern int N;
2737 template <int &> struct S @{@};
2738 void n (S<N>) @{2@}
2739 @end smallexample
2740
2741 This was fixed in @option{-fabi-version=3}.
2742
2743 @item
2744 SIMD vector types declared using @code{__attribute ((vector_size))} were
2745 mangled in a non-standard way that does not allow for overloading of
2746 functions taking vectors of different sizes.
2747
2748 The mangling was changed in @option{-fabi-version=4}.
2749
2750 @item
2751 @code{__attribute ((const))} and @code{noreturn} were mangled as type
2752 qualifiers, and @code{decltype} of a plain declaration was folded away.
2753
2754 These mangling issues were fixed in @option{-fabi-version=5}.
2755
2756 @item
2757 Scoped enumerators passed as arguments to a variadic function are
2758 promoted like unscoped enumerators, causing @code{va_arg} to complain.
2759 On most targets this does not actually affect the parameter passing
2760 ABI, as there is no way to pass an argument smaller than @code{int}.
2761
2762 Also, the ABI changed the mangling of template argument packs,
2763 @code{const_cast}, @code{static_cast}, prefix increment/decrement, and
2764 a class scope function used as a template argument.
2765
2766 These issues were corrected in @option{-fabi-version=6}.
2767
2768 @item
2769 Lambdas in default argument scope were mangled incorrectly, and the
2770 ABI changed the mangling of @code{nullptr_t}.
2771
2772 These issues were corrected in @option{-fabi-version=7}.
2773
2774 @item
2775 When mangling a function type with function-cv-qualifiers, the
2776 un-qualified function type was incorrectly treated as a substitution
2777 candidate.
2778
2779 This was fixed in @option{-fabi-version=8}, the default for GCC 5.1.
2780
2781 @item
2782 @code{decltype(nullptr)} incorrectly had an alignment of 1, leading to
2783 unaligned accesses. Note that this did not affect the ABI of a
2784 function with a @code{nullptr_t} parameter, as parameters have a
2785 minimum alignment.
2786
2787 This was fixed in @option{-fabi-version=9}, the default for GCC 5.2.
2788
2789 @item
2790 Target-specific attributes that affect the identity of a type, such as
2791 ia32 calling conventions on a function type (stdcall, regparm, etc.),
2792 did not affect the mangled name, leading to name collisions when
2793 function pointers were used as template arguments.
2794
2795 This was fixed in @option{-fabi-version=10}, the default for GCC 6.1.
2796
2797 @end itemize
2798
2799 It also warns about psABI-related changes. The known psABI changes at this
2800 point include:
2801
2802 @itemize @bullet
2803
2804 @item
2805 For SysV/x86-64, unions with @code{long double} members are
2806 passed in memory as specified in psABI. For example:
2807
2808 @smallexample
2809 union U @{
2810 long double ld;
2811 int i;
2812 @};
2813 @end smallexample
2814
2815 @noindent
2816 @code{union U} is always passed in memory.
2817
2818 @end itemize
2819
2820 @item -Wabi-tag @r{(C++ and Objective-C++ only)}
2821 @opindex Wabi-tag
2822 @opindex -Wabi-tag
2823 Warn when a type with an ABI tag is used in a context that does not
2824 have that ABI tag. See @ref{C++ Attributes} for more information
2825 about ABI tags.
2826
2827 @item -Wctor-dtor-privacy @r{(C++ and Objective-C++ only)}
2828 @opindex Wctor-dtor-privacy
2829 @opindex Wno-ctor-dtor-privacy
2830 Warn when a class seems unusable because all the constructors or
2831 destructors in that class are private, and it has neither friends nor
2832 public static member functions. Also warn if there are no non-private
2833 methods, and there's at least one private member function that isn't
2834 a constructor or destructor.
2835
2836 @item -Wdelete-non-virtual-dtor @r{(C++ and Objective-C++ only)}
2837 @opindex Wdelete-non-virtual-dtor
2838 @opindex Wno-delete-non-virtual-dtor
2839 Warn when @code{delete} is used to destroy an instance of a class that
2840 has virtual functions and non-virtual destructor. It is unsafe to delete
2841 an instance of a derived class through a pointer to a base class if the
2842 base class does not have a virtual destructor. This warning is enabled
2843 by @option{-Wall}.
2844
2845 @item -Wliteral-suffix @r{(C++ and Objective-C++ only)}
2846 @opindex Wliteral-suffix
2847 @opindex Wno-literal-suffix
2848 Warn when a string or character literal is followed by a ud-suffix which does
2849 not begin with an underscore. As a conforming extension, GCC treats such
2850 suffixes as separate preprocessing tokens in order to maintain backwards
2851 compatibility with code that uses formatting macros from @code{<inttypes.h>}.
2852 For example:
2853
2854 @smallexample
2855 #define __STDC_FORMAT_MACROS
2856 #include <inttypes.h>
2857 #include <stdio.h>
2858
2859 int main() @{
2860 int64_t i64 = 123;
2861 printf("My int64: %" PRId64"\n", i64);
2862 @}
2863 @end smallexample
2864
2865 In this case, @code{PRId64} is treated as a separate preprocessing token.
2866
2867 Additionally, warn when a user-defined literal operator is declared with
2868 a literal suffix identifier that doesn't begin with an underscore. Literal
2869 suffix identifiers that don't begin with an underscore are reserved for
2870 future standardization.
2871
2872 This warning is enabled by default.
2873
2874 @item -Wlto-type-mismatch
2875 @opindex Wlto-type-mismatch
2876 @opindex Wno-lto-type-mismatch
2877
2878 During the link-time optimization warn about type mismatches in
2879 global declarations from different compilation units.
2880 Requires @option{-flto} to be enabled. Enabled by default.
2881
2882 @item -Wno-narrowing @r{(C++ and Objective-C++ only)}
2883 @opindex Wnarrowing
2884 @opindex Wno-narrowing
2885 For C++11 and later standards, narrowing conversions are diagnosed by default,
2886 as required by the standard. A narrowing conversion from a constant produces
2887 an error, and a narrowing conversion from a non-constant produces a warning,
2888 but @option{-Wno-narrowing} suppresses the diagnostic.
2889 Note that this does not affect the meaning of well-formed code;
2890 narrowing conversions are still considered ill-formed in SFINAE contexts.
2891
2892 With @option{-Wnarrowing} in C++98, warn when a narrowing
2893 conversion prohibited by C++11 occurs within
2894 @samp{@{ @}}, e.g.
2895
2896 @smallexample
2897 int i = @{ 2.2 @}; // error: narrowing from double to int
2898 @end smallexample
2899
2900 This flag is included in @option{-Wall} and @option{-Wc++11-compat}.
2901
2902 @item -Wnoexcept @r{(C++ and Objective-C++ only)}
2903 @opindex Wnoexcept
2904 @opindex Wno-noexcept
2905 Warn when a noexcept-expression evaluates to false because of a call
2906 to a function that does not have a non-throwing exception
2907 specification (i.e. @code{throw()} or @code{noexcept}) but is known by
2908 the compiler to never throw an exception.
2909
2910 @item -Wnoexcept-type @r{(C++ and Objective-C++ only)}
2911 @opindex Wnoexcept-type
2912 @opindex Wno-noexcept-type
2913 Warn if the C++1z feature making @code{noexcept} part of a function
2914 type changes the mangled name of a symbol relative to C++14. Enabled
2915 by @option{-Wabi} and @option{-Wc++1z-compat}.
2916
2917 @smallexample
2918 template <class T> void f(T t) @{ t(); @};
2919 void g() noexcept;
2920 void h() @{ f(g); @} // in C++14 calls f<void(*)()>, in C++1z calls f<void(*)()noexcept>
2921 @end smallexample
2922
2923 @item -Wclass-memaccess @r{(C++ and Objective-C++ only)}
2924 @opindex Wclass-memaccess
2925 Warn when the destination of a call to a raw memory function such as
2926 @code{memset} or @code{memcpy} is an object of class type writing into which
2927 might bypass the class non-trivial or deleted constructor or copy assignment,
2928 violate const-correctness or encapsulation, or corrupt the virtual table.
2929 Modifying the representation of such objects may violate invariants maintained
2930 by member functions of the class. For example, the call to @code{memset}
2931 below is undefined becase it modifies a non-trivial class object and is,
2932 therefore, diagnosed. The safe way to either initialize or clear the storage
2933 of objects of such types is by using the appropriate constructor or assignment
2934 operator, if one is available.
2935 @smallexample
2936 std::string str = "abc";
2937 memset (&str, 0, 3);
2938 @end smallexample
2939 The @option{-Wclass-memaccess} option is enabled by @option{-Wall}.
2940
2941 @item -Wnon-virtual-dtor @r{(C++ and Objective-C++ only)}
2942 @opindex Wnon-virtual-dtor
2943 @opindex Wno-non-virtual-dtor
2944 Warn when a class has virtual functions and an accessible non-virtual
2945 destructor itself or in an accessible polymorphic base class, in which
2946 case it is possible but unsafe to delete an instance of a derived
2947 class through a pointer to the class itself or base class. This
2948 warning is automatically enabled if @option{-Weffc++} is specified.
2949
2950 @item -Wregister @r{(C++ and Objective-C++ only)}
2951 @opindex Wregister
2952 @opindex Wno-register
2953 Warn on uses of the @code{register} storage class specifier, except
2954 when it is part of the GNU @ref{Explicit Register Variables} extension.
2955 The use of the @code{register} keyword as storage class specifier has
2956 been deprecated in C++11 and removed in C++17.
2957 Enabled by default with @option{-std=c++1z}.
2958
2959 @item -Wreorder @r{(C++ and Objective-C++ only)}
2960 @opindex Wreorder
2961 @opindex Wno-reorder
2962 @cindex reordering, warning
2963 @cindex warning for reordering of member initializers
2964 Warn when the order of member initializers given in the code does not
2965 match the order in which they must be executed. For instance:
2966
2967 @smallexample
2968 struct A @{
2969 int i;
2970 int j;
2971 A(): j (0), i (1) @{ @}
2972 @};
2973 @end smallexample
2974
2975 @noindent
2976 The compiler rearranges the member initializers for @code{i}
2977 and @code{j} to match the declaration order of the members, emitting
2978 a warning to that effect. This warning is enabled by @option{-Wall}.
2979
2980 @item -fext-numeric-literals @r{(C++ and Objective-C++ only)}
2981 @opindex fext-numeric-literals
2982 @opindex fno-ext-numeric-literals
2983 Accept imaginary, fixed-point, or machine-defined
2984 literal number suffixes as GNU extensions.
2985 When this option is turned off these suffixes are treated
2986 as C++11 user-defined literal numeric suffixes.
2987 This is on by default for all pre-C++11 dialects and all GNU dialects:
2988 @option{-std=c++98}, @option{-std=gnu++98}, @option{-std=gnu++11},
2989 @option{-std=gnu++14}.
2990 This option is off by default
2991 for ISO C++11 onwards (@option{-std=c++11}, ...).
2992 @end table
2993
2994 The following @option{-W@dots{}} options are not affected by @option{-Wall}.
2995
2996 @table @gcctabopt
2997 @item -Weffc++ @r{(C++ and Objective-C++ only)}
2998 @opindex Weffc++
2999 @opindex Wno-effc++
3000 Warn about violations of the following style guidelines from Scott Meyers'
3001 @cite{Effective C++} series of books:
3002
3003 @itemize @bullet
3004 @item
3005 Define a copy constructor and an assignment operator for classes
3006 with dynamically-allocated memory.
3007
3008 @item
3009 Prefer initialization to assignment in constructors.
3010
3011 @item
3012 Have @code{operator=} return a reference to @code{*this}.
3013
3014 @item
3015 Don't try to return a reference when you must return an object.
3016
3017 @item
3018 Distinguish between prefix and postfix forms of increment and
3019 decrement operators.
3020
3021 @item
3022 Never overload @code{&&}, @code{||}, or @code{,}.
3023
3024 @end itemize
3025
3026 This option also enables @option{-Wnon-virtual-dtor}, which is also
3027 one of the effective C++ recommendations. However, the check is
3028 extended to warn about the lack of virtual destructor in accessible
3029 non-polymorphic bases classes too.
3030
3031 When selecting this option, be aware that the standard library
3032 headers do not obey all of these guidelines; use @samp{grep -v}
3033 to filter out those warnings.
3034
3035 @item -Wstrict-null-sentinel @r{(C++ and Objective-C++ only)}
3036 @opindex Wstrict-null-sentinel
3037 @opindex Wno-strict-null-sentinel
3038 Warn about the use of an uncasted @code{NULL} as sentinel. When
3039 compiling only with GCC this is a valid sentinel, as @code{NULL} is defined
3040 to @code{__null}. Although it is a null pointer constant rather than a
3041 null pointer, it is guaranteed to be of the same size as a pointer.
3042 But this use is not portable across different compilers.
3043
3044 @item -Wno-non-template-friend @r{(C++ and Objective-C++ only)}
3045 @opindex Wno-non-template-friend
3046 @opindex Wnon-template-friend
3047 Disable warnings when non-template friend functions are declared
3048 within a template. In very old versions of GCC that predate implementation
3049 of the ISO standard, declarations such as
3050 @samp{friend int foo(int)}, where the name of the friend is an unqualified-id,
3051 could be interpreted as a particular specialization of a template
3052 function; the warning exists to diagnose compatibility problems,
3053 and is enabled by default.
3054
3055 @item -Wold-style-cast @r{(C++ and Objective-C++ only)}
3056 @opindex Wold-style-cast
3057 @opindex Wno-old-style-cast
3058 Warn if an old-style (C-style) cast to a non-void type is used within
3059 a C++ program. The new-style casts (@code{dynamic_cast},
3060 @code{static_cast}, @code{reinterpret_cast}, and @code{const_cast}) are
3061 less vulnerable to unintended effects and much easier to search for.
3062
3063 @item -Woverloaded-virtual @r{(C++ and Objective-C++ only)}
3064 @opindex Woverloaded-virtual
3065 @opindex Wno-overloaded-virtual
3066 @cindex overloaded virtual function, warning
3067 @cindex warning for overloaded virtual function
3068 Warn when a function declaration hides virtual functions from a
3069 base class. For example, in:
3070
3071 @smallexample
3072 struct A @{
3073 virtual void f();
3074 @};
3075
3076 struct B: public A @{
3077 void f(int);
3078 @};
3079 @end smallexample
3080
3081 the @code{A} class version of @code{f} is hidden in @code{B}, and code
3082 like:
3083
3084 @smallexample
3085 B* b;
3086 b->f();
3087 @end smallexample
3088
3089 @noindent
3090 fails to compile.
3091
3092 @item -Wno-pmf-conversions @r{(C++ and Objective-C++ only)}
3093 @opindex Wno-pmf-conversions
3094 @opindex Wpmf-conversions
3095 Disable the diagnostic for converting a bound pointer to member function
3096 to a plain pointer.
3097
3098 @item -Wsign-promo @r{(C++ and Objective-C++ only)}
3099 @opindex Wsign-promo
3100 @opindex Wno-sign-promo
3101 Warn when overload resolution chooses a promotion from unsigned or
3102 enumerated type to a signed type, over a conversion to an unsigned type of
3103 the same size. Previous versions of G++ tried to preserve
3104 unsignedness, but the standard mandates the current behavior.
3105
3106 @item -Wtemplates @r{(C++ and Objective-C++ only)}
3107 @opindex Wtemplates
3108 Warn when a primary template declaration is encountered. Some coding
3109 rules disallow templates, and this may be used to enforce that rule.
3110 The warning is inactive inside a system header file, such as the STL, so
3111 one can still use the STL. One may also instantiate or specialize
3112 templates.
3113
3114 @item -Wmultiple-inheritance @r{(C++ and Objective-C++ only)}
3115 @opindex Wmultiple-inheritance
3116 Warn when a class is defined with multiple direct base classes. Some
3117 coding rules disallow multiple inheritance, and this may be used to
3118 enforce that rule. The warning is inactive inside a system header file,
3119 such as the STL, so one can still use the STL. One may also define
3120 classes that indirectly use multiple inheritance.
3121
3122 @item -Wvirtual-inheritance
3123 @opindex Wvirtual-inheritance
3124 Warn when a class is defined with a virtual direct base class. Some
3125 coding rules disallow multiple inheritance, and this may be used to
3126 enforce that rule. The warning is inactive inside a system header file,
3127 such as the STL, so one can still use the STL. One may also define
3128 classes that indirectly use virtual inheritance.
3129
3130 @item -Wnamespaces
3131 @opindex Wnamespaces
3132 Warn when a namespace definition is opened. Some coding rules disallow
3133 namespaces, and this may be used to enforce that rule. The warning is
3134 inactive inside a system header file, such as the STL, so one can still
3135 use the STL. One may also use using directives and qualified names.
3136
3137 @item -Wno-terminate @r{(C++ and Objective-C++ only)}
3138 @opindex Wterminate
3139 @opindex Wno-terminate
3140 Disable the warning about a throw-expression that will immediately
3141 result in a call to @code{terminate}.
3142 @end table
3143
3144 @node Objective-C and Objective-C++ Dialect Options
3145 @section Options Controlling Objective-C and Objective-C++ Dialects
3146
3147 @cindex compiler options, Objective-C and Objective-C++
3148 @cindex Objective-C and Objective-C++ options, command-line
3149 @cindex options, Objective-C and Objective-C++
3150 (NOTE: This manual does not describe the Objective-C and Objective-C++
3151 languages themselves. @xref{Standards,,Language Standards
3152 Supported by GCC}, for references.)
3153
3154 This section describes the command-line options that are only meaningful
3155 for Objective-C and Objective-C++ programs. You can also use most of
3156 the language-independent GNU compiler options.
3157 For example, you might compile a file @file{some_class.m} like this:
3158
3159 @smallexample
3160 gcc -g -fgnu-runtime -O -c some_class.m
3161 @end smallexample
3162
3163 @noindent
3164 In this example, @option{-fgnu-runtime} is an option meant only for
3165 Objective-C and Objective-C++ programs; you can use the other options with
3166 any language supported by GCC@.
3167
3168 Note that since Objective-C is an extension of the C language, Objective-C
3169 compilations may also use options specific to the C front-end (e.g.,
3170 @option{-Wtraditional}). Similarly, Objective-C++ compilations may use
3171 C++-specific options (e.g., @option{-Wabi}).
3172
3173 Here is a list of options that are @emph{only} for compiling Objective-C
3174 and Objective-C++ programs:
3175
3176 @table @gcctabopt
3177 @item -fconstant-string-class=@var{class-name}
3178 @opindex fconstant-string-class
3179 Use @var{class-name} as the name of the class to instantiate for each
3180 literal string specified with the syntax @code{@@"@dots{}"}. The default
3181 class name is @code{NXConstantString} if the GNU runtime is being used, and
3182 @code{NSConstantString} if the NeXT runtime is being used (see below). The
3183 @option{-fconstant-cfstrings} option, if also present, overrides the
3184 @option{-fconstant-string-class} setting and cause @code{@@"@dots{}"} literals
3185 to be laid out as constant CoreFoundation strings.
3186
3187 @item -fgnu-runtime
3188 @opindex fgnu-runtime
3189 Generate object code compatible with the standard GNU Objective-C
3190 runtime. This is the default for most types of systems.
3191
3192 @item -fnext-runtime
3193 @opindex fnext-runtime
3194 Generate output compatible with the NeXT runtime. This is the default
3195 for NeXT-based systems, including Darwin and Mac OS X@. The macro
3196 @code{__NEXT_RUNTIME__} is predefined if (and only if) this option is
3197 used.
3198
3199 @item -fno-nil-receivers
3200 @opindex fno-nil-receivers
3201 Assume that all Objective-C message dispatches (@code{[receiver
3202 message:arg]}) in this translation unit ensure that the receiver is
3203 not @code{nil}. This allows for more efficient entry points in the
3204 runtime to be used. This option is only available in conjunction with
3205 the NeXT runtime and ABI version 0 or 1.
3206
3207 @item -fobjc-abi-version=@var{n}
3208 @opindex fobjc-abi-version
3209 Use version @var{n} of the Objective-C ABI for the selected runtime.
3210 This option is currently supported only for the NeXT runtime. In that
3211 case, Version 0 is the traditional (32-bit) ABI without support for
3212 properties and other Objective-C 2.0 additions. Version 1 is the
3213 traditional (32-bit) ABI with support for properties and other
3214 Objective-C 2.0 additions. Version 2 is the modern (64-bit) ABI. If
3215 nothing is specified, the default is Version 0 on 32-bit target
3216 machines, and Version 2 on 64-bit target machines.
3217
3218 @item -fobjc-call-cxx-cdtors
3219 @opindex fobjc-call-cxx-cdtors
3220 For each Objective-C class, check if any of its instance variables is a
3221 C++ object with a non-trivial default constructor. If so, synthesize a
3222 special @code{- (id) .cxx_construct} instance method which runs
3223 non-trivial default constructors on any such instance variables, in order,
3224 and then return @code{self}. Similarly, check if any instance variable
3225 is a C++ object with a non-trivial destructor, and if so, synthesize a
3226 special @code{- (void) .cxx_destruct} method which runs
3227 all such default destructors, in reverse order.
3228
3229 The @code{- (id) .cxx_construct} and @code{- (void) .cxx_destruct}
3230 methods thusly generated only operate on instance variables
3231 declared in the current Objective-C class, and not those inherited
3232 from superclasses. It is the responsibility of the Objective-C
3233 runtime to invoke all such methods in an object's inheritance
3234 hierarchy. The @code{- (id) .cxx_construct} methods are invoked
3235 by the runtime immediately after a new object instance is allocated;
3236 the @code{- (void) .cxx_destruct} methods are invoked immediately
3237 before the runtime deallocates an object instance.
3238
3239 As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
3240 support for invoking the @code{- (id) .cxx_construct} and
3241 @code{- (void) .cxx_destruct} methods.
3242
3243 @item -fobjc-direct-dispatch
3244 @opindex fobjc-direct-dispatch
3245 Allow fast jumps to the message dispatcher. On Darwin this is
3246 accomplished via the comm page.
3247
3248 @item -fobjc-exceptions
3249 @opindex fobjc-exceptions
3250 Enable syntactic support for structured exception handling in
3251 Objective-C, similar to what is offered by C++. This option
3252 is required to use the Objective-C keywords @code{@@try},
3253 @code{@@throw}, @code{@@catch}, @code{@@finally} and
3254 @code{@@synchronized}. This option is available with both the GNU
3255 runtime and the NeXT runtime (but not available in conjunction with
3256 the NeXT runtime on Mac OS X 10.2 and earlier).
3257
3258 @item -fobjc-gc
3259 @opindex fobjc-gc
3260 Enable garbage collection (GC) in Objective-C and Objective-C++
3261 programs. This option is only available with the NeXT runtime; the
3262 GNU runtime has a different garbage collection implementation that
3263 does not require special compiler flags.
3264
3265 @item -fobjc-nilcheck
3266 @opindex fobjc-nilcheck
3267 For the NeXT runtime with version 2 of the ABI, check for a nil
3268 receiver in method invocations before doing the actual method call.
3269 This is the default and can be disabled using
3270 @option{-fno-objc-nilcheck}. Class methods and super calls are never
3271 checked for nil in this way no matter what this flag is set to.
3272 Currently this flag does nothing when the GNU runtime, or an older
3273 version of the NeXT runtime ABI, is used.
3274
3275 @item -fobjc-std=objc1
3276 @opindex fobjc-std
3277 Conform to the language syntax of Objective-C 1.0, the language
3278 recognized by GCC 4.0. This only affects the Objective-C additions to
3279 the C/C++ language; it does not affect conformance to C/C++ standards,
3280 which is controlled by the separate C/C++ dialect option flags. When
3281 this option is used with the Objective-C or Objective-C++ compiler,
3282 any Objective-C syntax that is not recognized by GCC 4.0 is rejected.
3283 This is useful if you need to make sure that your Objective-C code can
3284 be compiled with older versions of GCC@.
3285
3286 @item -freplace-objc-classes
3287 @opindex freplace-objc-classes
3288 Emit a special marker instructing @command{ld(1)} not to statically link in
3289 the resulting object file, and allow @command{dyld(1)} to load it in at
3290 run time instead. This is used in conjunction with the Fix-and-Continue
3291 debugging mode, where the object file in question may be recompiled and
3292 dynamically reloaded in the course of program execution, without the need
3293 to restart the program itself. Currently, Fix-and-Continue functionality
3294 is only available in conjunction with the NeXT runtime on Mac OS X 10.3
3295 and later.
3296
3297 @item -fzero-link
3298 @opindex fzero-link
3299 When compiling for the NeXT runtime, the compiler ordinarily replaces calls
3300 to @code{objc_getClass("@dots{}")} (when the name of the class is known at
3301 compile time) with static class references that get initialized at load time,
3302 which improves run-time performance. Specifying the @option{-fzero-link} flag
3303 suppresses this behavior and causes calls to @code{objc_getClass("@dots{}")}
3304 to be retained. This is useful in Zero-Link debugging mode, since it allows
3305 for individual class implementations to be modified during program execution.
3306 The GNU runtime currently always retains calls to @code{objc_get_class("@dots{}")}
3307 regardless of command-line options.
3308
3309 @item -fno-local-ivars
3310 @opindex fno-local-ivars
3311 @opindex flocal-ivars
3312 By default instance variables in Objective-C can be accessed as if
3313 they were local variables from within the methods of the class they're
3314 declared in. This can lead to shadowing between instance variables
3315 and other variables declared either locally inside a class method or
3316 globally with the same name. Specifying the @option{-fno-local-ivars}
3317 flag disables this behavior thus avoiding variable shadowing issues.
3318
3319 @item -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]}
3320 @opindex fivar-visibility
3321 Set the default instance variable visibility to the specified option
3322 so that instance variables declared outside the scope of any access
3323 modifier directives default to the specified visibility.
3324
3325 @item -gen-decls
3326 @opindex gen-decls
3327 Dump interface declarations for all classes seen in the source file to a
3328 file named @file{@var{sourcename}.decl}.
3329
3330 @item -Wassign-intercept @r{(Objective-C and Objective-C++ only)}
3331 @opindex Wassign-intercept
3332 @opindex Wno-assign-intercept
3333 Warn whenever an Objective-C assignment is being intercepted by the
3334 garbage collector.
3335
3336 @item -Wno-protocol @r{(Objective-C and Objective-C++ only)}
3337 @opindex Wno-protocol
3338 @opindex Wprotocol
3339 If a class is declared to implement a protocol, a warning is issued for
3340 every method in the protocol that is not implemented by the class. The
3341 default behavior is to issue a warning for every method not explicitly
3342 implemented in the class, even if a method implementation is inherited
3343 from the superclass. If you use the @option{-Wno-protocol} option, then
3344 methods inherited from the superclass are considered to be implemented,
3345 and no warning is issued for them.
3346
3347 @item -Wselector @r{(Objective-C and Objective-C++ only)}
3348 @opindex Wselector
3349 @opindex Wno-selector
3350 Warn if multiple methods of different types for the same selector are
3351 found during compilation. The check is performed on the list of methods
3352 in the final stage of compilation. Additionally, a check is performed
3353 for each selector appearing in a @code{@@selector(@dots{})}
3354 expression, and a corresponding method for that selector has been found
3355 during compilation. Because these checks scan the method table only at
3356 the end of compilation, these warnings are not produced if the final
3357 stage of compilation is not reached, for example because an error is
3358 found during compilation, or because the @option{-fsyntax-only} option is
3359 being used.
3360
3361 @item -Wstrict-selector-match @r{(Objective-C and Objective-C++ only)}
3362 @opindex Wstrict-selector-match
3363 @opindex Wno-strict-selector-match
3364 Warn if multiple methods with differing argument and/or return types are
3365 found for a given selector when attempting to send a message using this
3366 selector to a receiver of type @code{id} or @code{Class}. When this flag
3367 is off (which is the default behavior), the compiler omits such warnings
3368 if any differences found are confined to types that share the same size
3369 and alignment.
3370
3371 @item -Wundeclared-selector @r{(Objective-C and Objective-C++ only)}
3372 @opindex Wundeclared-selector
3373 @opindex Wno-undeclared-selector
3374 Warn if a @code{@@selector(@dots{})} expression referring to an
3375 undeclared selector is found. A selector is considered undeclared if no
3376 method with that name has been declared before the
3377 @code{@@selector(@dots{})} expression, either explicitly in an
3378 @code{@@interface} or @code{@@protocol} declaration, or implicitly in
3379 an @code{@@implementation} section. This option always performs its
3380 checks as soon as a @code{@@selector(@dots{})} expression is found,
3381 while @option{-Wselector} only performs its checks in the final stage of
3382 compilation. This also enforces the coding style convention
3383 that methods and selectors must be declared before being used.
3384
3385 @item -print-objc-runtime-info
3386 @opindex print-objc-runtime-info
3387 Generate C header describing the largest structure that is passed by
3388 value, if any.
3389
3390 @end table
3391
3392 @node Diagnostic Message Formatting Options
3393 @section Options to Control Diagnostic Messages Formatting
3394 @cindex options to control diagnostics formatting
3395 @cindex diagnostic messages
3396 @cindex message formatting
3397
3398 Traditionally, diagnostic messages have been formatted irrespective of
3399 the output device's aspect (e.g.@: its width, @dots{}). You can use the
3400 options described below
3401 to control the formatting algorithm for diagnostic messages,
3402 e.g.@: how many characters per line, how often source location
3403 information should be reported. Note that some language front ends may not
3404 honor these options.
3405
3406 @table @gcctabopt
3407 @item -fmessage-length=@var{n}
3408 @opindex fmessage-length
3409 Try to format error messages so that they fit on lines of about
3410 @var{n} characters. If @var{n} is zero, then no line-wrapping is
3411 done; each error message appears on a single line. This is the
3412 default for all front ends.
3413
3414 @item -fdiagnostics-show-location=once
3415 @opindex fdiagnostics-show-location
3416 Only meaningful in line-wrapping mode. Instructs the diagnostic messages
3417 reporter to emit source location information @emph{once}; that is, in
3418 case the message is too long to fit on a single physical line and has to
3419 be wrapped, the source location won't be emitted (as prefix) again,
3420 over and over, in subsequent continuation lines. This is the default
3421 behavior.
3422
3423 @item -fdiagnostics-show-location=every-line
3424 Only meaningful in line-wrapping mode. Instructs the diagnostic
3425 messages reporter to emit the same source location information (as
3426 prefix) for physical lines that result from the process of breaking
3427 a message which is too long to fit on a single line.
3428
3429 @item -fdiagnostics-color[=@var{WHEN}]
3430 @itemx -fno-diagnostics-color
3431 @opindex fdiagnostics-color
3432 @cindex highlight, color
3433 @vindex GCC_COLORS @r{environment variable}
3434 Use color in diagnostics. @var{WHEN} is @samp{never}, @samp{always},
3435 or @samp{auto}. The default depends on how the compiler has been configured,
3436 it can be any of the above @var{WHEN} options or also @samp{never}
3437 if @env{GCC_COLORS} environment variable isn't present in the environment,
3438 and @samp{auto} otherwise.
3439 @samp{auto} means to use color only when the standard error is a terminal.
3440 The forms @option{-fdiagnostics-color} and @option{-fno-diagnostics-color} are
3441 aliases for @option{-fdiagnostics-color=always} and
3442 @option{-fdiagnostics-color=never}, respectively.
3443
3444 The colors are defined by the environment variable @env{GCC_COLORS}.
3445 Its value is a colon-separated list of capabilities and Select Graphic
3446 Rendition (SGR) substrings. SGR commands are interpreted by the
3447 terminal or terminal emulator. (See the section in the documentation
3448 of your text terminal for permitted values and their meanings as
3449 character attributes.) These substring values are integers in decimal
3450 representation and can be concatenated with semicolons.
3451 Common values to concatenate include
3452 @samp{1} for bold,
3453 @samp{4} for underline,
3454 @samp{5} for blink,
3455 @samp{7} for inverse,
3456 @samp{39} for default foreground color,
3457 @samp{30} to @samp{37} for foreground colors,
3458 @samp{90} to @samp{97} for 16-color mode foreground colors,
3459 @samp{38;5;0} to @samp{38;5;255}
3460 for 88-color and 256-color modes foreground colors,
3461 @samp{49} for default background color,
3462 @samp{40} to @samp{47} for background colors,
3463 @samp{100} to @samp{107} for 16-color mode background colors,
3464 and @samp{48;5;0} to @samp{48;5;255}
3465 for 88-color and 256-color modes background colors.
3466
3467 The default @env{GCC_COLORS} is
3468 @smallexample
3469 error=01;31:warning=01;35:note=01;36:range1=32:range2=34:locus=01:\
3470 quote=01:fixit-insert=32:fixit-delete=31:\
3471 diff-filename=01:diff-hunk=32:diff-delete=31:diff-insert=32:\
3472 type-diff=01;32
3473 @end smallexample
3474 @noindent
3475 where @samp{01;31} is bold red, @samp{01;35} is bold magenta,
3476 @samp{01;36} is bold cyan, @samp{32} is green, @samp{34} is blue,
3477 @samp{01} is bold, and @samp{31} is red.
3478 Setting @env{GCC_COLORS} to the empty string disables colors.
3479 Supported capabilities are as follows.
3480
3481 @table @code
3482 @item error=
3483 @vindex error GCC_COLORS @r{capability}
3484 SGR substring for error: markers.
3485
3486 @item warning=
3487 @vindex warning GCC_COLORS @r{capability}
3488 SGR substring for warning: markers.
3489
3490 @item note=
3491 @vindex note GCC_COLORS @r{capability}
3492 SGR substring for note: markers.
3493
3494 @item range1=
3495 @vindex range1 GCC_COLORS @r{capability}
3496 SGR substring for first additional range.
3497
3498 @item range2=
3499 @vindex range2 GCC_COLORS @r{capability}
3500 SGR substring for second additional range.
3501
3502 @item locus=
3503 @vindex locus GCC_COLORS @r{capability}
3504 SGR substring for location information, @samp{file:line} or
3505 @samp{file:line:column} etc.
3506
3507 @item quote=
3508 @vindex quote GCC_COLORS @r{capability}
3509 SGR substring for information printed within quotes.
3510
3511 @item fixit-insert=
3512 @vindex fixit-insert GCC_COLORS @r{capability}
3513 SGR substring for fix-it hints suggesting text to
3514 be inserted or replaced.
3515
3516 @item fixit-delete=
3517 @vindex fixit-delete GCC_COLORS @r{capability}
3518 SGR substring for fix-it hints suggesting text to
3519 be deleted.
3520
3521 @item diff-filename=
3522 @vindex diff-filename GCC_COLORS @r{capability}
3523 SGR substring for filename headers within generated patches.
3524
3525 @item diff-hunk=
3526 @vindex diff-hunk GCC_COLORS @r{capability}
3527 SGR substring for the starts of hunks within generated patches.
3528
3529 @item diff-delete=
3530 @vindex diff-delete GCC_COLORS @r{capability}
3531 SGR substring for deleted lines within generated patches.
3532
3533 @item diff-insert=
3534 @vindex diff-insert GCC_COLORS @r{capability}
3535 SGR substring for inserted lines within generated patches.
3536
3537 @item type-diff=
3538 @vindex type-diff GCC_COLORS @r{capability}
3539 SGR substring for highlighting mismatching types within template
3540 arguments in the C++ frontend.
3541 @end table
3542
3543 @item -fno-diagnostics-show-option
3544 @opindex fno-diagnostics-show-option
3545 @opindex fdiagnostics-show-option
3546 By default, each diagnostic emitted includes text indicating the
3547 command-line option that directly controls the diagnostic (if such an
3548 option is known to the diagnostic machinery). Specifying the
3549 @option{-fno-diagnostics-show-option} flag suppresses that behavior.
3550
3551 @item -fno-diagnostics-show-caret
3552 @opindex fno-diagnostics-show-caret
3553 @opindex fdiagnostics-show-caret
3554 By default, each diagnostic emitted includes the original source line
3555 and a caret @samp{^} indicating the column. This option suppresses this
3556 information. The source line is truncated to @var{n} characters, if
3557 the @option{-fmessage-length=n} option is given. When the output is done
3558 to the terminal, the width is limited to the width given by the
3559 @env{COLUMNS} environment variable or, if not set, to the terminal width.
3560
3561 @item -fdiagnostics-parseable-fixits
3562 @opindex fdiagnostics-parseable-fixits
3563 Emit fix-it hints in a machine-parseable format, suitable for consumption
3564 by IDEs. For each fix-it, a line will be printed after the relevant
3565 diagnostic, starting with the string ``fix-it:''. For example:
3566
3567 @smallexample
3568 fix-it:"test.c":@{45:3-45:21@}:"gtk_widget_show_all"
3569 @end smallexample
3570
3571 The location is expressed as a half-open range, expressed as a count of
3572 bytes, starting at byte 1 for the initial column. In the above example,
3573 bytes 3 through 20 of line 45 of ``test.c'' are to be replaced with the
3574 given string:
3575
3576 @smallexample
3577 00000000011111111112222222222
3578 12345678901234567890123456789
3579 gtk_widget_showall (dlg);
3580 ^^^^^^^^^^^^^^^^^^
3581 gtk_widget_show_all
3582 @end smallexample
3583
3584 The filename and replacement string escape backslash as ``\\", tab as ``\t'',
3585 newline as ``\n'', double quotes as ``\"'', non-printable characters as octal
3586 (e.g. vertical tab as ``\013'').
3587
3588 An empty replacement string indicates that the given range is to be removed.
3589 An empty range (e.g. ``45:3-45:3'') indicates that the string is to
3590 be inserted at the given position.
3591
3592 @item -fdiagnostics-generate-patch
3593 @opindex fdiagnostics-generate-patch
3594 Print fix-it hints to stderr in unified diff format, after any diagnostics
3595 are printed. For example:
3596
3597 @smallexample
3598 --- test.c
3599 +++ test.c
3600 @@ -42,5 +42,5 @@
3601
3602 void show_cb(GtkDialog *dlg)
3603 @{
3604 - gtk_widget_showall(dlg);
3605 + gtk_widget_show_all(dlg);
3606 @}
3607
3608 @end smallexample
3609
3610 The diff may or may not be colorized, following the same rules
3611 as for diagnostics (see @option{-fdiagnostics-color}).
3612
3613 @item -fdiagnostics-show-template-tree
3614 @opindex fdiagnostics-show-template-tree
3615
3616 In the C++ frontend, when printing diagnostics showing mismatching
3617 template types, such as:
3618
3619 @smallexample
3620 could not convert 'std::map<int, std::vector<double> >()'
3621 from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
3622 @end smallexample
3623
3624 the @option{-fdiagnostics-show-template-tree} flag enables printing a
3625 tree-like structure showing the common and differing parts of the types,
3626 such as:
3627
3628 @smallexample
3629 map<
3630 [...],
3631 vector<
3632 [double != float]>>
3633 @end smallexample
3634
3635 The parts that differ are highlighted with color (``double'' and
3636 ``float'' in this case).
3637
3638 @item -fno-elide-type
3639 @opindex fno-elide-type
3640 @opindex felide-type
3641 By default when the C++ frontend prints diagnostics showing mismatching
3642 template types, common parts of the types are printed as ``[...]'' to
3643 simplify the error message. For example:
3644
3645 @smallexample
3646 could not convert 'std::map<int, std::vector<double> >()'
3647 from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
3648 @end smallexample
3649
3650 Specifying the @option{-fno-elide-type} flag suppresses that behavior.
3651 This flag also affects the output of the
3652 @option{-fdiagnostics-show-template-tree} flag.
3653
3654 @item -fno-show-column
3655 @opindex fno-show-column
3656 Do not print column numbers in diagnostics. This may be necessary if
3657 diagnostics are being scanned by a program that does not understand the
3658 column numbers, such as @command{dejagnu}.
3659
3660 @end table
3661
3662 @node Warning Options
3663 @section Options to Request or Suppress Warnings
3664 @cindex options to control warnings
3665 @cindex warning messages
3666 @cindex messages, warning
3667 @cindex suppressing warnings
3668
3669 Warnings are diagnostic messages that report constructions that
3670 are not inherently erroneous but that are risky or suggest there
3671 may have been an error.
3672
3673 The following language-independent options do not enable specific
3674 warnings but control the kinds of diagnostics produced by GCC@.
3675
3676 @table @gcctabopt
3677 @cindex syntax checking
3678 @item -fsyntax-only
3679 @opindex fsyntax-only
3680 Check the code for syntax errors, but don't do anything beyond that.
3681
3682 @item -fmax-errors=@var{n}
3683 @opindex fmax-errors
3684 Limits the maximum number of error messages to @var{n}, at which point
3685 GCC bails out rather than attempting to continue processing the source
3686 code. If @var{n} is 0 (the default), there is no limit on the number
3687 of error messages produced. If @option{-Wfatal-errors} is also
3688 specified, then @option{-Wfatal-errors} takes precedence over this
3689 option.
3690
3691 @item -w
3692 @opindex w
3693 Inhibit all warning messages.
3694
3695 @item -Werror
3696 @opindex Werror
3697 @opindex Wno-error
3698 Make all warnings into errors.
3699
3700 @item -Werror=
3701 @opindex Werror=
3702 @opindex Wno-error=
3703 Make the specified warning into an error. The specifier for a warning
3704 is appended; for example @option{-Werror=switch} turns the warnings
3705 controlled by @option{-Wswitch} into errors. This switch takes a
3706 negative form, to be used to negate @option{-Werror} for specific
3707 warnings; for example @option{-Wno-error=switch} makes
3708 @option{-Wswitch} warnings not be errors, even when @option{-Werror}
3709 is in effect.
3710
3711 The warning message for each controllable warning includes the
3712 option that controls the warning. That option can then be used with
3713 @option{-Werror=} and @option{-Wno-error=} as described above.
3714 (Printing of the option in the warning message can be disabled using the
3715 @option{-fno-diagnostics-show-option} flag.)
3716
3717 Note that specifying @option{-Werror=}@var{foo} automatically implies
3718 @option{-W}@var{foo}. However, @option{-Wno-error=}@var{foo} does not
3719 imply anything.
3720
3721 @item -Wfatal-errors
3722 @opindex Wfatal-errors
3723 @opindex Wno-fatal-errors
3724 This option causes the compiler to abort compilation on the first error
3725 occurred rather than trying to keep going and printing further error
3726 messages.
3727
3728 @end table
3729
3730 You can request many specific warnings with options beginning with
3731 @samp{-W}, for example @option{-Wimplicit} to request warnings on
3732 implicit declarations. Each of these specific warning options also
3733 has a negative form beginning @samp{-Wno-} to turn off warnings; for
3734 example, @option{-Wno-implicit}. This manual lists only one of the
3735 two forms, whichever is not the default. For further
3736 language-specific options also refer to @ref{C++ Dialect Options} and
3737 @ref{Objective-C and Objective-C++ Dialect Options}.
3738
3739 Some options, such as @option{-Wall} and @option{-Wextra}, turn on other
3740 options, such as @option{-Wunused}, which may turn on further options,
3741 such as @option{-Wunused-value}. The combined effect of positive and
3742 negative forms is that more specific options have priority over less
3743 specific ones, independently of their position in the command-line. For
3744 options of the same specificity, the last one takes effect. Options
3745 enabled or disabled via pragmas (@pxref{Diagnostic Pragmas}) take effect
3746 as if they appeared at the end of the command-line.
3747
3748 When an unrecognized warning option is requested (e.g.,
3749 @option{-Wunknown-warning}), GCC emits a diagnostic stating
3750 that the option is not recognized. However, if the @option{-Wno-} form
3751 is used, the behavior is slightly different: no diagnostic is
3752 produced for @option{-Wno-unknown-warning} unless other diagnostics
3753 are being produced. This allows the use of new @option{-Wno-} options
3754 with old compilers, but if something goes wrong, the compiler
3755 warns that an unrecognized option is present.
3756
3757 @table @gcctabopt
3758 @item -Wpedantic
3759 @itemx -pedantic
3760 @opindex pedantic
3761 @opindex Wpedantic
3762 Issue all the warnings demanded by strict ISO C and ISO C++;
3763 reject all programs that use forbidden extensions, and some other
3764 programs that do not follow ISO C and ISO C++. For ISO C, follows the
3765 version of the ISO C standard specified by any @option{-std} option used.
3766
3767 Valid ISO C and ISO C++ programs should compile properly with or without
3768 this option (though a rare few require @option{-ansi} or a
3769 @option{-std} option specifying the required version of ISO C)@. However,
3770 without this option, certain GNU extensions and traditional C and C++
3771 features are supported as well. With this option, they are rejected.
3772
3773 @option{-Wpedantic} does not cause warning messages for use of the
3774 alternate keywords whose names begin and end with @samp{__}. Pedantic
3775 warnings are also disabled in the expression that follows
3776 @code{__extension__}. However, only system header files should use
3777 these escape routes; application programs should avoid them.
3778 @xref{Alternate Keywords}.
3779
3780 Some users try to use @option{-Wpedantic} to check programs for strict ISO
3781 C conformance. They soon find that it does not do quite what they want:
3782 it finds some non-ISO practices, but not all---only those for which
3783 ISO C @emph{requires} a diagnostic, and some others for which
3784 diagnostics have been added.
3785
3786 A feature to report any failure to conform to ISO C might be useful in
3787 some instances, but would require considerable additional work and would
3788 be quite different from @option{-Wpedantic}. We don't have plans to
3789 support such a feature in the near future.
3790
3791 Where the standard specified with @option{-std} represents a GNU
3792 extended dialect of C, such as @samp{gnu90} or @samp{gnu99}, there is a
3793 corresponding @dfn{base standard}, the version of ISO C on which the GNU
3794 extended dialect is based. Warnings from @option{-Wpedantic} are given
3795 where they are required by the base standard. (It does not make sense
3796 for such warnings to be given only for features not in the specified GNU
3797 C dialect, since by definition the GNU dialects of C include all
3798 features the compiler supports with the given option, and there would be
3799 nothing to warn about.)
3800
3801 @item -pedantic-errors
3802 @opindex pedantic-errors
3803 Give an error whenever the @dfn{base standard} (see @option{-Wpedantic})
3804 requires a diagnostic, in some cases where there is undefined behavior
3805 at compile-time and in some other cases that do not prevent compilation
3806 of programs that are valid according to the standard. This is not
3807 equivalent to @option{-Werror=pedantic}, since there are errors enabled
3808 by this option and not enabled by the latter and vice versa.
3809
3810 @item -Wall
3811 @opindex Wall
3812 @opindex Wno-all
3813 This enables all the warnings about constructions that some users
3814 consider questionable, and that are easy to avoid (or modify to
3815 prevent the warning), even in conjunction with macros. This also
3816 enables some language-specific warnings described in @ref{C++ Dialect
3817 Options} and @ref{Objective-C and Objective-C++ Dialect Options}.
3818
3819 @option{-Wall} turns on the following warning flags:
3820
3821 @gccoptlist{-Waddress @gol
3822 -Warray-bounds=1 @r{(only with} @option{-O2}@r{)} @gol
3823 -Wbool-compare @gol
3824 -Wbool-operation @gol
3825 -Wc++11-compat -Wc++14-compat @gol
3826 -Wcatch-value @r{(C++ and Objective-C++ only)} @gol
3827 -Wchar-subscripts @gol
3828 -Wcomment @gol
3829 -Wduplicate-decl-specifier @r{(C and Objective-C only)} @gol
3830 -Wenum-compare @r{(in C/ObjC; this is on by default in C++)} @gol
3831 -Wformat @gol
3832 -Wint-in-bool-context @gol
3833 -Wimplicit @r{(C and Objective-C only)} @gol
3834 -Wimplicit-int @r{(C and Objective-C only)} @gol
3835 -Wimplicit-function-declaration @r{(C and Objective-C only)} @gol
3836 -Winit-self @r{(only for C++)} @gol
3837 -Wlogical-not-parentheses @gol
3838 -Wmain @r{(only for C/ObjC and unless} @option{-ffreestanding}@r{)} @gol
3839 -Wmaybe-uninitialized @gol
3840 -Wmemset-elt-size @gol
3841 -Wmemset-transposed-args @gol
3842 -Wmisleading-indentation @r{(only for C/C++)} @gol
3843 -Wmissing-braces @r{(only for C/ObjC)} @gol
3844 -Wmultistatement-macros @gol
3845 -Wnarrowing @r{(only for C++)} @gol
3846 -Wnonnull @gol
3847 -Wnonnull-compare @gol
3848 -Wopenmp-simd @gol
3849 -Wparentheses @gol
3850 -Wpointer-sign @gol
3851 -Wreorder @gol
3852 -Wreturn-type @gol
3853 -Wsequence-point @gol
3854 -Wsign-compare @r{(only in C++)} @gol
3855 -Wsizeof-pointer-div @gol
3856 -Wsizeof-pointer-memaccess @gol
3857 -Wstrict-aliasing @gol
3858 -Wstrict-overflow=1 @gol
3859 -Wswitch @gol
3860 -Wtautological-compare @gol
3861 -Wtrigraphs @gol
3862 -Wuninitialized @gol
3863 -Wunknown-pragmas @gol
3864 -Wunused-function @gol
3865 -Wunused-label @gol
3866 -Wunused-value @gol
3867 -Wunused-variable @gol
3868 -Wvolatile-register-var @gol
3869 }
3870
3871 Note that some warning flags are not implied by @option{-Wall}. Some of
3872 them warn about constructions that users generally do not consider
3873 questionable, but which occasionally you might wish to check for;
3874 others warn about constructions that are necessary or hard to avoid in
3875 some cases, and there is no simple way to modify the code to suppress
3876 the warning. Some of them are enabled by @option{-Wextra} but many of
3877 them must be enabled individually.
3878
3879 @item -Wextra
3880 @opindex W
3881 @opindex Wextra
3882 @opindex Wno-extra
3883 This enables some extra warning flags that are not enabled by
3884 @option{-Wall}. (This option used to be called @option{-W}. The older
3885 name is still supported, but the newer name is more descriptive.)
3886
3887 @gccoptlist{-Wclobbered @gol
3888 -Wempty-body @gol
3889 -Wignored-qualifiers @gol
3890 -Wimplicit-fallthrough=3 @gol
3891 -Wmissing-field-initializers @gol
3892 -Wmissing-parameter-type @r{(C only)} @gol
3893 -Wold-style-declaration @r{(C only)} @gol
3894 -Woverride-init @gol
3895 -Wsign-compare @r{(C only)} @gol
3896 -Wtype-limits @gol
3897 -Wuninitialized @gol
3898 -Wshift-negative-value @r{(in C++03 and in C99 and newer)} @gol
3899 -Wunused-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
3900 -Wunused-but-set-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
3901 }
3902
3903 The option @option{-Wextra} also prints warning messages for the
3904 following cases:
3905
3906 @itemize @bullet
3907
3908 @item
3909 A pointer is compared against integer zero with @code{<}, @code{<=},
3910 @code{>}, or @code{>=}.
3911
3912 @item
3913 (C++ only) An enumerator and a non-enumerator both appear in a
3914 conditional expression.
3915
3916 @item
3917 (C++ only) Ambiguous virtual bases.
3918
3919 @item
3920 (C++ only) Subscripting an array that has been declared @code{register}.
3921
3922 @item
3923 (C++ only) Taking the address of a variable that has been declared
3924 @code{register}.
3925
3926 @item
3927 (C++ only) A base class is not initialized in the copy constructor
3928 of a derived class.
3929
3930 @end itemize
3931
3932 @item -Wchar-subscripts
3933 @opindex Wchar-subscripts
3934 @opindex Wno-char-subscripts
3935 Warn if an array subscript has type @code{char}. This is a common cause
3936 of error, as programmers often forget that this type is signed on some
3937 machines.
3938 This warning is enabled by @option{-Wall}.
3939
3940 @item -Wchkp
3941 @opindex Wchkp
3942 Warn about an invalid memory access that is found by Pointer Bounds Checker
3943 (@option{-fcheck-pointer-bounds}).
3944
3945 @item -Wno-coverage-mismatch
3946 @opindex Wno-coverage-mismatch
3947 Warn if feedback profiles do not match when using the
3948 @option{-fprofile-use} option.
3949 If a source file is changed between compiling with @option{-fprofile-gen} and
3950 with @option{-fprofile-use}, the files with the profile feedback can fail
3951 to match the source file and GCC cannot use the profile feedback
3952 information. By default, this warning is enabled and is treated as an
3953 error. @option{-Wno-coverage-mismatch} can be used to disable the
3954 warning or @option{-Wno-error=coverage-mismatch} can be used to
3955 disable the error. Disabling the error for this warning can result in
3956 poorly optimized code and is useful only in the
3957 case of very minor changes such as bug fixes to an existing code-base.
3958 Completely disabling the warning is not recommended.
3959
3960 @item -Wno-cpp
3961 @r{(C, Objective-C, C++, Objective-C++ and Fortran only)}
3962
3963 Suppress warning messages emitted by @code{#warning} directives.
3964
3965 @item -Wdouble-promotion @r{(C, C++, Objective-C and Objective-C++ only)}
3966 @opindex Wdouble-promotion
3967 @opindex Wno-double-promotion
3968 Give a warning when a value of type @code{float} is implicitly
3969 promoted to @code{double}. CPUs with a 32-bit ``single-precision''
3970 floating-point unit implement @code{float} in hardware, but emulate
3971 @code{double} in software. On such a machine, doing computations
3972 using @code{double} values is much more expensive because of the
3973 overhead required for software emulation.
3974
3975 It is easy to accidentally do computations with @code{double} because
3976 floating-point literals are implicitly of type @code{double}. For
3977 example, in:
3978 @smallexample
3979 @group
3980 float area(float radius)
3981 @{
3982 return 3.14159 * radius * radius;
3983 @}
3984 @end group
3985 @end smallexample
3986 the compiler performs the entire computation with @code{double}
3987 because the floating-point literal is a @code{double}.
3988
3989 @item -Wduplicate-decl-specifier @r{(C and Objective-C only)}
3990 @opindex Wduplicate-decl-specifier
3991 @opindex Wno-duplicate-decl-specifier
3992 Warn if a declaration has duplicate @code{const}, @code{volatile},
3993 @code{restrict} or @code{_Atomic} specifier. This warning is enabled by
3994 @option{-Wall}.
3995
3996 @item -Wformat
3997 @itemx -Wformat=@var{n}
3998 @opindex Wformat
3999 @opindex Wno-format
4000 @opindex ffreestanding
4001 @opindex fno-builtin
4002 @opindex Wformat=
4003 Check calls to @code{printf} and @code{scanf}, etc., to make sure that
4004 the arguments supplied have types appropriate to the format string
4005 specified, and that the conversions specified in the format string make
4006 sense. This includes standard functions, and others specified by format
4007 attributes (@pxref{Function Attributes}), in the @code{printf},
4008 @code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
4009 not in the C standard) families (or other target-specific families).
4010 Which functions are checked without format attributes having been
4011 specified depends on the standard version selected, and such checks of
4012 functions without the attribute specified are disabled by
4013 @option{-ffreestanding} or @option{-fno-builtin}.
4014
4015 The formats are checked against the format features supported by GNU
4016 libc version 2.2. These include all ISO C90 and C99 features, as well
4017 as features from the Single Unix Specification and some BSD and GNU
4018 extensions. Other library implementations may not support all these
4019 features; GCC does not support warning about features that go beyond a
4020 particular library's limitations. However, if @option{-Wpedantic} is used
4021 with @option{-Wformat}, warnings are given about format features not
4022 in the selected standard version (but not for @code{strfmon} formats,
4023 since those are not in any version of the C standard). @xref{C Dialect
4024 Options,,Options Controlling C Dialect}.
4025
4026 @table @gcctabopt
4027 @item -Wformat=1
4028 @itemx -Wformat
4029 @opindex Wformat
4030 @opindex Wformat=1
4031 Option @option{-Wformat} is equivalent to @option{-Wformat=1}, and
4032 @option{-Wno-format} is equivalent to @option{-Wformat=0}. Since
4033 @option{-Wformat} also checks for null format arguments for several
4034 functions, @option{-Wformat} also implies @option{-Wnonnull}. Some
4035 aspects of this level of format checking can be disabled by the
4036 options: @option{-Wno-format-contains-nul},
4037 @option{-Wno-format-extra-args}, and @option{-Wno-format-zero-length}.
4038 @option{-Wformat} is enabled by @option{-Wall}.
4039
4040 @item -Wno-format-contains-nul
4041 @opindex Wno-format-contains-nul
4042 @opindex Wformat-contains-nul
4043 If @option{-Wformat} is specified, do not warn about format strings that
4044 contain NUL bytes.
4045
4046 @item -Wno-format-extra-args
4047 @opindex Wno-format-extra-args
4048 @opindex Wformat-extra-args
4049 If @option{-Wformat} is specified, do not warn about excess arguments to a
4050 @code{printf} or @code{scanf} format function. The C standard specifies
4051 that such arguments are ignored.
4052
4053 Where the unused arguments lie between used arguments that are
4054 specified with @samp{$} operand number specifications, normally
4055 warnings are still given, since the implementation could not know what
4056 type to pass to @code{va_arg} to skip the unused arguments. However,
4057 in the case of @code{scanf} formats, this option suppresses the
4058 warning if the unused arguments are all pointers, since the Single
4059 Unix Specification says that such unused arguments are allowed.
4060
4061 @item -Wformat-overflow
4062 @itemx -Wformat-overflow=@var{level}
4063 @opindex Wformat-overflow
4064 @opindex Wno-format-overflow
4065 Warn about calls to formatted input/output functions such as @code{sprintf}
4066 and @code{vsprintf} that might overflow the destination buffer. When the
4067 exact number of bytes written by a format directive cannot be determined
4068 at compile-time it is estimated based on heuristics that depend on the
4069 @var{level} argument and on optimization. While enabling optimization
4070 will in most cases improve the accuracy of the warning, it may also
4071 result in false positives.
4072
4073 @table @gcctabopt
4074 @item -Wformat-overflow
4075 @item -Wformat-overflow=1
4076 @opindex Wformat-overflow
4077 @opindex Wno-format-overflow
4078 Level @var{1} of @option{-Wformat-overflow} enabled by @option{-Wformat}
4079 employs a conservative approach that warns only about calls that most
4080 likely overflow the buffer. At this level, numeric arguments to format
4081 directives with unknown values are assumed to have the value of one, and
4082 strings of unknown length to be empty. Numeric arguments that are known
4083 to be bounded to a subrange of their type, or string arguments whose output
4084 is bounded either by their directive's precision or by a finite set of
4085 string literals, are assumed to take on the value within the range that
4086 results in the most bytes on output. For example, the call to @code{sprintf}
4087 below is diagnosed because even with both @var{a} and @var{b} equal to zero,
4088 the terminating NUL character (@code{'\0'}) appended by the function
4089 to the destination buffer will be written past its end. Increasing
4090 the size of the buffer by a single byte is sufficient to avoid the
4091 warning, though it may not be sufficient to avoid the overflow.
4092
4093 @smallexample
4094 void f (int a, int b)
4095 @{
4096 char buf [12];
4097 sprintf (buf, "a = %i, b = %i\n", a, b);
4098 @}
4099 @end smallexample
4100
4101 @item -Wformat-overflow=2
4102 Level @var{2} warns also about calls that might overflow the destination
4103 buffer given an argument of sufficient length or magnitude. At level
4104 @var{2}, unknown numeric arguments are assumed to have the minimum
4105 representable value for signed types with a precision greater than 1, and
4106 the maximum representable value otherwise. Unknown string arguments whose
4107 length cannot be assumed to be bounded either by the directive's precision,
4108 or by a finite set of string literals they may evaluate to, or the character
4109 array they may point to, are assumed to be 1 character long.
4110
4111 At level @var{2}, the call in the example above is again diagnosed, but
4112 this time because with @var{a} equal to a 32-bit @code{INT_MIN} the first
4113 @code{%i} directive will write some of its digits beyond the end of
4114 the destination buffer. To make the call safe regardless of the values
4115 of the two variables, the size of the destination buffer must be increased
4116 to at least 34 bytes. GCC includes the minimum size of the buffer in
4117 an informational note following the warning.
4118
4119 An alternative to increasing the size of the destination buffer is to
4120 constrain the range of formatted values. The maximum length of string
4121 arguments can be bounded by specifying the precision in the format
4122 directive. When numeric arguments of format directives can be assumed
4123 to be bounded by less than the precision of their type, choosing
4124 an appropriate length modifier to the format specifier will reduce
4125 the required buffer size. For example, if @var{a} and @var{b} in the
4126 example above can be assumed to be within the precision of
4127 the @code{short int} type then using either the @code{%hi} format
4128 directive or casting the argument to @code{short} reduces the maximum
4129 required size of the buffer to 24 bytes.
4130
4131 @smallexample
4132 void f (int a, int b)
4133 @{
4134 char buf [23];
4135 sprintf (buf, "a = %hi, b = %i\n", a, (short)b);
4136 @}
4137 @end smallexample
4138 @end table
4139
4140 @item -Wno-format-zero-length
4141 @opindex Wno-format-zero-length
4142 @opindex Wformat-zero-length
4143 If @option{-Wformat} is specified, do not warn about zero-length formats.
4144 The C standard specifies that zero-length formats are allowed.
4145
4146
4147 @item -Wformat=2
4148 @opindex Wformat=2
4149 Enable @option{-Wformat} plus additional format checks. Currently
4150 equivalent to @option{-Wformat -Wformat-nonliteral -Wformat-security
4151 -Wformat-y2k}.
4152
4153 @item -Wformat-nonliteral
4154 @opindex Wformat-nonliteral
4155 @opindex Wno-format-nonliteral
4156 If @option{-Wformat} is specified, also warn if the format string is not a
4157 string literal and so cannot be checked, unless the format function
4158 takes its format arguments as a @code{va_list}.
4159
4160 @item -Wformat-security
4161 @opindex Wformat-security
4162 @opindex Wno-format-security
4163 If @option{-Wformat} is specified, also warn about uses of format
4164 functions that represent possible security problems. At present, this
4165 warns about calls to @code{printf} and @code{scanf} functions where the
4166 format string is not a string literal and there are no format arguments,
4167 as in @code{printf (foo);}. This may be a security hole if the format
4168 string came from untrusted input and contains @samp{%n}. (This is
4169 currently a subset of what @option{-Wformat-nonliteral} warns about, but
4170 in future warnings may be added to @option{-Wformat-security} that are not
4171 included in @option{-Wformat-nonliteral}.)
4172
4173 @item -Wformat-signedness
4174 @opindex Wformat-signedness
4175 @opindex Wno-format-signedness
4176 If @option{-Wformat} is specified, also warn if the format string
4177 requires an unsigned argument and the argument is signed and vice versa.
4178
4179 @item -Wformat-truncation
4180 @itemx -Wformat-truncation=@var{level}
4181 @opindex Wformat-truncation
4182 @opindex Wno-format-truncation
4183 Warn about calls to formatted input/output functions such as @code{snprintf}
4184 and @code{vsnprintf} that might result in output truncation. When the exact
4185 number of bytes written by a format directive cannot be determined at
4186 compile-time it is estimated based on heuristics that depend on
4187 the @var{level} argument and on optimization. While enabling optimization
4188 will in most cases improve the accuracy of the warning, it may also result
4189 in false positives. Except as noted otherwise, the option uses the same
4190 logic @option{-Wformat-overflow}.
4191
4192 @table @gcctabopt
4193 @item -Wformat-truncation
4194 @item -Wformat-truncation=1
4195 @opindex Wformat-truncation
4196 @opindex Wno-format-overflow
4197 Level @var{1} of @option{-Wformat-truncation} enabled by @option{-Wformat}
4198 employs a conservative approach that warns only about calls to bounded
4199 functions whose return value is unused and that will most likely result
4200 in output truncation.
4201
4202 @item -Wformat-truncation=2
4203 Level @var{2} warns also about calls to bounded functions whose return
4204 value is used and that might result in truncation given an argument of
4205 sufficient length or magnitude.
4206 @end table
4207
4208 @item -Wformat-y2k
4209 @opindex Wformat-y2k
4210 @opindex Wno-format-y2k
4211 If @option{-Wformat} is specified, also warn about @code{strftime}
4212 formats that may yield only a two-digit year.
4213 @end table
4214
4215 @item -Wnonnull
4216 @opindex Wnonnull
4217 @opindex Wno-nonnull
4218 Warn about passing a null pointer for arguments marked as
4219 requiring a non-null value by the @code{nonnull} function attribute.
4220
4221 @option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}. It
4222 can be disabled with the @option{-Wno-nonnull} option.
4223
4224 @item -Wnonnull-compare
4225 @opindex Wnonnull-compare
4226 @opindex Wno-nonnull-compare
4227 Warn when comparing an argument marked with the @code{nonnull}
4228 function attribute against null inside the function.
4229
4230 @option{-Wnonnull-compare} is included in @option{-Wall}. It
4231 can be disabled with the @option{-Wno-nonnull-compare} option.
4232
4233 @item -Wnull-dereference
4234 @opindex Wnull-dereference
4235 @opindex Wno-null-dereference
4236 Warn if the compiler detects paths that trigger erroneous or
4237 undefined behavior due to dereferencing a null pointer. This option
4238 is only active when @option{-fdelete-null-pointer-checks} is active,
4239 which is enabled by optimizations in most targets. The precision of
4240 the warnings depends on the optimization options used.
4241
4242 @item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)}
4243 @opindex Winit-self
4244 @opindex Wno-init-self
4245 Warn about uninitialized variables that are initialized with themselves.
4246 Note this option can only be used with the @option{-Wuninitialized} option.
4247
4248 For example, GCC warns about @code{i} being uninitialized in the
4249 following snippet only when @option{-Winit-self} has been specified:
4250 @smallexample
4251 @group
4252 int f()
4253 @{
4254 int i = i;
4255 return i;
4256 @}
4257 @end group
4258 @end smallexample
4259
4260 This warning is enabled by @option{-Wall} in C++.
4261
4262 @item -Wimplicit-int @r{(C and Objective-C only)}
4263 @opindex Wimplicit-int
4264 @opindex Wno-implicit-int
4265 Warn when a declaration does not specify a type.
4266 This warning is enabled by @option{-Wall}.
4267
4268 @item -Wimplicit-function-declaration @r{(C and Objective-C only)}
4269 @opindex Wimplicit-function-declaration
4270 @opindex Wno-implicit-function-declaration
4271 Give a warning whenever a function is used before being declared. In
4272 C99 mode (@option{-std=c99} or @option{-std=gnu99}), this warning is
4273 enabled by default and it is made into an error by
4274 @option{-pedantic-errors}. This warning is also enabled by
4275 @option{-Wall}.
4276
4277 @item -Wimplicit @r{(C and Objective-C only)}
4278 @opindex Wimplicit
4279 @opindex Wno-implicit
4280 Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
4281 This warning is enabled by @option{-Wall}.
4282
4283 @item -Wimplicit-fallthrough
4284 @opindex Wimplicit-fallthrough
4285 @opindex Wno-implicit-fallthrough
4286 @option{-Wimplicit-fallthrough} is the same as @option{-Wimplicit-fallthrough=3}
4287 and @option{-Wno-implicit-fallthrough} is the same as
4288 @option{-Wimplicit-fallthrough=0}.
4289
4290 @item -Wimplicit-fallthrough=@var{n}
4291 @opindex Wimplicit-fallthrough=
4292 Warn when a switch case falls through. For example:
4293
4294 @smallexample
4295 @group
4296 switch (cond)
4297 @{
4298 case 1:
4299 a = 1;
4300 break;
4301 case 2:
4302 a = 2;
4303 case 3:
4304 a = 3;
4305 break;
4306 @}
4307 @end group
4308 @end smallexample
4309
4310 This warning does not warn when the last statement of a case cannot
4311 fall through, e.g. when there is a return statement or a call to function
4312 declared with the noreturn attribute. @option{-Wimplicit-fallthrough=}
4313 also takes into account control flow statements, such as ifs, and only
4314 warns when appropriate. E.g.@:
4315
4316 @smallexample
4317 @group
4318 switch (cond)
4319 @{
4320 case 1:
4321 if (i > 3) @{
4322 bar (5);
4323 break;
4324 @} else if (i < 1) @{
4325 bar (0);
4326 @} else
4327 return;
4328 default:
4329 @dots{}
4330 @}
4331 @end group
4332 @end smallexample
4333
4334 Since there are occasions where a switch case fall through is desirable,
4335 GCC provides an attribute, @code{__attribute__ ((fallthrough))}, that is
4336 to be used along with a null statement to suppress this warning that
4337 would normally occur:
4338
4339 @smallexample
4340 @group
4341 switch (cond)
4342 @{
4343 case 1:
4344 bar (0);
4345 __attribute__ ((fallthrough));
4346 default:
4347 @dots{}
4348 @}
4349 @end group
4350 @end smallexample
4351
4352 C++17 provides a standard way to suppress the @option{-Wimplicit-fallthrough}
4353 warning using @code{[[fallthrough]];} instead of the GNU attribute. In C++11
4354 or C++14 users can use @code{[[gnu::fallthrough]];}, which is a GNU extension.
4355 Instead of these attributes, it is also possible to add a fallthrough comment
4356 to silence the warning. The whole body of the C or C++ style comment should
4357 match the given regular expressions listed below. The option argument @var{n}
4358 specifies what kind of comments are accepted:
4359
4360 @itemize @bullet
4361
4362 @item @option{-Wimplicit-fallthrough=0} disables the warning altogether.
4363
4364 @item @option{-Wimplicit-fallthrough=1} matches @code{.*} regular
4365 expression, any comment is used as fallthrough comment.
4366
4367 @item @option{-Wimplicit-fallthrough=2} case insensitively matches
4368 @code{.*falls?[ \t-]*thr(ough|u).*} regular expression.
4369
4370 @item @option{-Wimplicit-fallthrough=3} case sensitively matches one of the
4371 following regular expressions:
4372
4373 @itemize @bullet
4374
4375 @item @code{-fallthrough}
4376
4377 @item @code{@@fallthrough@@}
4378
4379 @item @code{lint -fallthrough[ \t]*}
4380
4381 @item @code{[ \t.!]*(ELSE,? |INTENTIONAL(LY)? )?@*FALL(S | |-)?THR(OUGH|U)[ \t.!]*(-[^\n\r]*)?}
4382
4383 @item @code{[ \t.!]*(Else,? |Intentional(ly)? )?@*Fall((s | |-)[Tt]|t)hr(ough|u)[ \t.!]*(-[^\n\r]*)?}
4384
4385 @item @code{[ \t.!]*([Ee]lse,? |[Ii]ntentional(ly)? )?@*fall(s | |-)?thr(ough|u)[ \t.!]*(-[^\n\r]*)?}
4386
4387 @end itemize
4388
4389 @item @option{-Wimplicit-fallthrough=4} case sensitively matches one of the
4390 following regular expressions:
4391
4392 @itemize @bullet
4393
4394 @item @code{-fallthrough}
4395
4396 @item @code{@@fallthrough@@}
4397
4398 @item @code{lint -fallthrough[ \t]*}
4399
4400 @item @code{[ \t]*FALLTHR(OUGH|U)[ \t]*}
4401
4402 @end itemize
4403
4404 @item @option{-Wimplicit-fallthrough=5} doesn't recognize any comments as
4405 fallthrough comments, only attributes disable the warning.
4406
4407 @end itemize
4408
4409 The comment needs to be followed after optional whitespace and other comments
4410 by @code{case} or @code{default} keywords or by a user label that precedes some
4411 @code{case} or @code{default} label.
4412
4413 @smallexample
4414 @group
4415 switch (cond)
4416 @{
4417 case 1:
4418 bar (0);
4419 /* FALLTHRU */
4420 default:
4421 @dots{}
4422 @}
4423 @end group
4424 @end smallexample
4425
4426 The @option{-Wimplicit-fallthrough=3} warning is enabled by @option{-Wextra}.
4427
4428 @item -Wignored-qualifiers @r{(C and C++ only)}
4429 @opindex Wignored-qualifiers
4430 @opindex Wno-ignored-qualifiers
4431 Warn if the return type of a function has a type qualifier
4432 such as @code{const}. For ISO C such a type qualifier has no effect,
4433 since the value returned by a function is not an lvalue.
4434 For C++, the warning is only emitted for scalar types or @code{void}.
4435 ISO C prohibits qualified @code{void} return types on function
4436 definitions, so such return types always receive a warning
4437 even without this option.
4438
4439 This warning is also enabled by @option{-Wextra}.
4440
4441 @item -Wignored-attributes @r{(C and C++ only)}
4442 @opindex Wignored-attributes
4443 @opindex Wno-ignored-attributes
4444 Warn when an attribute is ignored. This is different from the
4445 @option{-Wattributes} option in that it warns whenever the compiler decides
4446 to drop an attribute, not that the attribute is either unknown, used in a
4447 wrong place, etc. This warning is enabled by default.
4448
4449 @item -Wmain
4450 @opindex Wmain
4451 @opindex Wno-main
4452 Warn if the type of @code{main} is suspicious. @code{main} should be
4453 a function with external linkage, returning int, taking either zero
4454 arguments, two, or three arguments of appropriate types. This warning
4455 is enabled by default in C++ and is enabled by either @option{-Wall}
4456 or @option{-Wpedantic}.
4457
4458 @item -Wmisleading-indentation @r{(C and C++ only)}
4459 @opindex Wmisleading-indentation
4460 @opindex Wno-misleading-indentation
4461 Warn when the indentation of the code does not reflect the block structure.
4462 Specifically, a warning is issued for @code{if}, @code{else}, @code{while}, and
4463 @code{for} clauses with a guarded statement that does not use braces,
4464 followed by an unguarded statement with the same indentation.
4465
4466 In the following example, the call to ``bar'' is misleadingly indented as
4467 if it were guarded by the ``if'' conditional.
4468
4469 @smallexample
4470 if (some_condition ())
4471 foo ();
4472 bar (); /* Gotcha: this is not guarded by the "if". */
4473 @end smallexample
4474
4475 In the case of mixed tabs and spaces, the warning uses the
4476 @option{-ftabstop=} option to determine if the statements line up
4477 (defaulting to 8).
4478
4479 The warning is not issued for code involving multiline preprocessor logic
4480 such as the following example.
4481
4482 @smallexample
4483 if (flagA)
4484 foo (0);
4485 #if SOME_CONDITION_THAT_DOES_NOT_HOLD
4486 if (flagB)
4487 #endif
4488 foo (1);
4489 @end smallexample
4490
4491 The warning is not issued after a @code{#line} directive, since this
4492 typically indicates autogenerated code, and no assumptions can be made
4493 about the layout of the file that the directive references.
4494
4495 This warning is enabled by @option{-Wall} in C and C++.
4496
4497 @item -Wmissing-braces
4498 @opindex Wmissing-braces
4499 @opindex Wno-missing-braces
4500 Warn if an aggregate or union initializer is not fully bracketed. In
4501 the following example, the initializer for @code{a} is not fully
4502 bracketed, but that for @code{b} is fully bracketed. This warning is
4503 enabled by @option{-Wall} in C.
4504
4505 @smallexample
4506 int a[2][2] = @{ 0, 1, 2, 3 @};
4507 int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
4508 @end smallexample
4509
4510 This warning is enabled by @option{-Wall}.
4511
4512 @item -Wmissing-include-dirs @r{(C, C++, Objective-C and Objective-C++ only)}
4513 @opindex Wmissing-include-dirs
4514 @opindex Wno-missing-include-dirs
4515 Warn if a user-supplied include directory does not exist.
4516
4517 @item -Wmultistatement-macros
4518 @opindex Wmultistatement-macros
4519 @opindex Wno-multistatement-macros
4520 Warn about unsafe multiple statement macros that appear to be guarded
4521 by a clause such as @code{if}, @code{else}, @code{for}, @code{switch}, or
4522 @code{while}, in which only the first statement is actually guarded after
4523 the macro is expanded.
4524
4525 For example:
4526
4527 @smallexample
4528 #define DOIT x++; y++
4529 if (c)
4530 DOIT;
4531 @end smallexample
4532
4533 will increment @code{y} unconditionally, not just when @code{c} holds.
4534 The can usually be fixed by wrapping the macro in a do-while loop:
4535 @smallexample
4536 #define DOIT do @{ x++; y++; @} while (0)
4537 if (c)
4538 DOIT;
4539 @end smallexample
4540
4541 This warning is enabled by @option{-Wall} in C and C++.
4542
4543 @item -Wparentheses
4544 @opindex Wparentheses
4545 @opindex Wno-parentheses
4546 Warn if parentheses are omitted in certain contexts, such
4547 as when there is an assignment in a context where a truth value
4548 is expected, or when operators are nested whose precedence people
4549 often get confused about.
4550
4551 Also warn if a comparison like @code{x<=y<=z} appears; this is
4552 equivalent to @code{(x<=y ? 1 : 0) <= z}, which is a different
4553 interpretation from that of ordinary mathematical notation.
4554
4555 Also warn for dangerous uses of the GNU extension to
4556 @code{?:} with omitted middle operand. When the condition
4557 in the @code{?}: operator is a boolean expression, the omitted value is
4558 always 1. Often programmers expect it to be a value computed
4559 inside the conditional expression instead.
4560
4561 This warning is enabled by @option{-Wall}.
4562
4563 @item -Wsequence-point
4564 @opindex Wsequence-point
4565 @opindex Wno-sequence-point
4566 Warn about code that may have undefined semantics because of violations
4567 of sequence point rules in the C and C++ standards.
4568
4569 The C and C++ standards define the order in which expressions in a C/C++
4570 program are evaluated in terms of @dfn{sequence points}, which represent
4571 a partial ordering between the execution of parts of the program: those
4572 executed before the sequence point, and those executed after it. These
4573 occur after the evaluation of a full expression (one which is not part
4574 of a larger expression), after the evaluation of the first operand of a
4575 @code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
4576 function is called (but after the evaluation of its arguments and the
4577 expression denoting the called function), and in certain other places.
4578 Other than as expressed by the sequence point rules, the order of
4579 evaluation of subexpressions of an expression is not specified. All
4580 these rules describe only a partial order rather than a total order,
4581 since, for example, if two functions are called within one expression
4582 with no sequence point between them, the order in which the functions
4583 are called is not specified. However, the standards committee have
4584 ruled that function calls do not overlap.
4585
4586 It is not specified when between sequence points modifications to the
4587 values of objects take effect. Programs whose behavior depends on this
4588 have undefined behavior; the C and C++ standards specify that ``Between
4589 the previous and next sequence point an object shall have its stored
4590 value modified at most once by the evaluation of an expression.
4591 Furthermore, the prior value shall be read only to determine the value
4592 to be stored.''. If a program breaks these rules, the results on any
4593 particular implementation are entirely unpredictable.
4594
4595 Examples of code with undefined behavior are @code{a = a++;}, @code{a[n]
4596 = b[n++]} and @code{a[i++] = i;}. Some more complicated cases are not
4597 diagnosed by this option, and it may give an occasional false positive
4598 result, but in general it has been found fairly effective at detecting
4599 this sort of problem in programs.
4600
4601 The C++17 standard will define the order of evaluation of operands in
4602 more cases: in particular it requires that the right-hand side of an
4603 assignment be evaluated before the left-hand side, so the above
4604 examples are no longer undefined. But this warning will still warn
4605 about them, to help people avoid writing code that is undefined in C
4606 and earlier revisions of C++.
4607
4608 The standard is worded confusingly, therefore there is some debate
4609 over the precise meaning of the sequence point rules in subtle cases.
4610 Links to discussions of the problem, including proposed formal
4611 definitions, may be found on the GCC readings page, at
4612 @uref{http://gcc.gnu.org/@/readings.html}.
4613
4614 This warning is enabled by @option{-Wall} for C and C++.
4615
4616 @item -Wno-return-local-addr
4617 @opindex Wno-return-local-addr
4618 @opindex Wreturn-local-addr
4619 Do not warn about returning a pointer (or in C++, a reference) to a
4620 variable that goes out of scope after the function returns.
4621
4622 @item -Wreturn-type
4623 @opindex Wreturn-type
4624 @opindex Wno-return-type
4625 Warn whenever a function is defined with a return type that defaults
4626 to @code{int}. Also warn about any @code{return} statement with no
4627 return value in a function whose return type is not @code{void}
4628 (falling off the end of the function body is considered returning
4629 without a value).
4630
4631 For C only, warn about a @code{return} statement with an expression in a
4632 function whose return type is @code{void}, unless the expression type is
4633 also @code{void}. As a GNU extension, the latter case is accepted
4634 without a warning unless @option{-Wpedantic} is used.
4635
4636 For C++, a function without return type always produces a diagnostic
4637 message, even when @option{-Wno-return-type} is specified. The only
4638 exceptions are @code{main} and functions defined in system headers.
4639
4640 This warning is enabled by @option{-Wall}.
4641
4642 @item -Wshift-count-negative
4643 @opindex Wshift-count-negative
4644 @opindex Wno-shift-count-negative
4645 Warn if shift count is negative. This warning is enabled by default.
4646
4647 @item -Wshift-count-overflow
4648 @opindex Wshift-count-overflow
4649 @opindex Wno-shift-count-overflow
4650 Warn if shift count >= width of type. This warning is enabled by default.
4651
4652 @item -Wshift-negative-value
4653 @opindex Wshift-negative-value
4654 @opindex Wno-shift-negative-value
4655 Warn if left shifting a negative value. This warning is enabled by
4656 @option{-Wextra} in C99 and C++11 modes (and newer).
4657
4658 @item -Wshift-overflow
4659 @itemx -Wshift-overflow=@var{n}
4660 @opindex Wshift-overflow
4661 @opindex Wno-shift-overflow
4662 Warn about left shift overflows. This warning is enabled by
4663 default in C99 and C++11 modes (and newer).
4664
4665 @table @gcctabopt
4666 @item -Wshift-overflow=1
4667 This is the warning level of @option{-Wshift-overflow} and is enabled
4668 by default in C99 and C++11 modes (and newer). This warning level does
4669 not warn about left-shifting 1 into the sign bit. (However, in C, such
4670 an overflow is still rejected in contexts where an integer constant expression
4671 is required.)
4672
4673 @item -Wshift-overflow=2
4674 This warning level also warns about left-shifting 1 into the sign bit,
4675 unless C++14 mode is active.
4676 @end table
4677
4678 @item -Wswitch
4679 @opindex Wswitch
4680 @opindex Wno-switch
4681 Warn whenever a @code{switch} statement has an index of enumerated type
4682 and lacks a @code{case} for one or more of the named codes of that
4683 enumeration. (The presence of a @code{default} label prevents this
4684 warning.) @code{case} labels outside the enumeration range also
4685 provoke warnings when this option is used (even if there is a
4686 @code{default} label).
4687 This warning is enabled by @option{-Wall}.
4688
4689 @item -Wswitch-default
4690 @opindex Wswitch-default
4691 @opindex Wno-switch-default
4692 Warn whenever a @code{switch} statement does not have a @code{default}
4693 case.
4694
4695 @item -Wswitch-enum
4696 @opindex Wswitch-enum
4697 @opindex Wno-switch-enum
4698 Warn whenever a @code{switch} statement has an index of enumerated type
4699 and lacks a @code{case} for one or more of the named codes of that
4700 enumeration. @code{case} labels outside the enumeration range also
4701 provoke warnings when this option is used. The only difference
4702 between @option{-Wswitch} and this option is that this option gives a
4703 warning about an omitted enumeration code even if there is a
4704 @code{default} label.
4705
4706 @item -Wswitch-bool
4707 @opindex Wswitch-bool
4708 @opindex Wno-switch-bool
4709 Warn whenever a @code{switch} statement has an index of boolean type
4710 and the case values are outside the range of a boolean type.
4711 It is possible to suppress this warning by casting the controlling
4712 expression to a type other than @code{bool}. For example:
4713 @smallexample
4714 @group
4715 switch ((int) (a == 4))
4716 @{
4717 @dots{}
4718 @}
4719 @end group
4720 @end smallexample
4721 This warning is enabled by default for C and C++ programs.
4722
4723 @item -Wswitch-unreachable
4724 @opindex Wswitch-unreachable
4725 @opindex Wno-switch-unreachable
4726 Warn whenever a @code{switch} statement contains statements between the
4727 controlling expression and the first case label, which will never be
4728 executed. For example:
4729 @smallexample
4730 @group
4731 switch (cond)
4732 @{
4733 i = 15;
4734 @dots{}
4735 case 5:
4736 @dots{}
4737 @}
4738 @end group
4739 @end smallexample
4740 @option{-Wswitch-unreachable} does not warn if the statement between the
4741 controlling expression and the first case label is just a declaration:
4742 @smallexample
4743 @group
4744 switch (cond)
4745 @{
4746 int i;
4747 @dots{}
4748 case 5:
4749 i = 5;
4750 @dots{}
4751 @}
4752 @end group
4753 @end smallexample
4754 This warning is enabled by default for C and C++ programs.
4755
4756 @item -Wsync-nand @r{(C and C++ only)}
4757 @opindex Wsync-nand
4758 @opindex Wno-sync-nand
4759 Warn when @code{__sync_fetch_and_nand} and @code{__sync_nand_and_fetch}
4760 built-in functions are used. These functions changed semantics in GCC 4.4.
4761
4762 @item -Wunused-but-set-parameter
4763 @opindex Wunused-but-set-parameter
4764 @opindex Wno-unused-but-set-parameter
4765 Warn whenever a function parameter is assigned to, but otherwise unused
4766 (aside from its declaration).
4767
4768 To suppress this warning use the @code{unused} attribute
4769 (@pxref{Variable Attributes}).
4770
4771 This warning is also enabled by @option{-Wunused} together with
4772 @option{-Wextra}.
4773
4774 @item -Wunused-but-set-variable
4775 @opindex Wunused-but-set-variable
4776 @opindex Wno-unused-but-set-variable
4777 Warn whenever a local variable is assigned to, but otherwise unused
4778 (aside from its declaration).
4779 This warning is enabled by @option{-Wall}.
4780
4781 To suppress this warning use the @code{unused} attribute
4782 (@pxref{Variable Attributes}).
4783
4784 This warning is also enabled by @option{-Wunused}, which is enabled
4785 by @option{-Wall}.
4786
4787 @item -Wunused-function
4788 @opindex Wunused-function
4789 @opindex Wno-unused-function
4790 Warn whenever a static function is declared but not defined or a
4791 non-inline static function is unused.
4792 This warning is enabled by @option{-Wall}.
4793
4794 @item -Wunused-label
4795 @opindex Wunused-label
4796 @opindex Wno-unused-label
4797 Warn whenever a label is declared but not used.
4798 This warning is enabled by @option{-Wall}.
4799
4800 To suppress this warning use the @code{unused} attribute
4801 (@pxref{Variable Attributes}).
4802
4803 @item -Wunused-local-typedefs @r{(C, Objective-C, C++ and Objective-C++ only)}
4804 @opindex Wunused-local-typedefs
4805 Warn when a typedef locally defined in a function is not used.
4806 This warning is enabled by @option{-Wall}.
4807
4808 @item -Wunused-parameter
4809 @opindex Wunused-parameter
4810 @opindex Wno-unused-parameter
4811 Warn whenever a function parameter is unused aside from its declaration.
4812
4813 To suppress this warning use the @code{unused} attribute
4814 (@pxref{Variable Attributes}).
4815
4816 @item -Wno-unused-result
4817 @opindex Wunused-result
4818 @opindex Wno-unused-result
4819 Do not warn if a caller of a function marked with attribute
4820 @code{warn_unused_result} (@pxref{Function Attributes}) does not use
4821 its return value. The default is @option{-Wunused-result}.
4822
4823 @item -Wunused-variable
4824 @opindex Wunused-variable
4825 @opindex Wno-unused-variable
4826 Warn whenever a local or static variable is unused aside from its
4827 declaration. This option implies @option{-Wunused-const-variable=1} for C,
4828 but not for C++. This warning is enabled by @option{-Wall}.
4829
4830 To suppress this warning use the @code{unused} attribute
4831 (@pxref{Variable Attributes}).
4832
4833 @item -Wunused-const-variable
4834 @itemx -Wunused-const-variable=@var{n}
4835 @opindex Wunused-const-variable
4836 @opindex Wno-unused-const-variable
4837 Warn whenever a constant static variable is unused aside from its declaration.
4838 @option{-Wunused-const-variable=1} is enabled by @option{-Wunused-variable}
4839 for C, but not for C++. In C this declares variable storage, but in C++ this
4840 is not an error since const variables take the place of @code{#define}s.
4841
4842 To suppress this warning use the @code{unused} attribute
4843 (@pxref{Variable Attributes}).
4844
4845 @table @gcctabopt
4846 @item -Wunused-const-variable=1
4847 This is the warning level that is enabled by @option{-Wunused-variable} for
4848 C. It warns only about unused static const variables defined in the main
4849 compilation unit, but not about static const variables declared in any
4850 header included.
4851
4852 @item -Wunused-const-variable=2
4853 This warning level also warns for unused constant static variables in
4854 headers (excluding system headers). This is the warning level of
4855 @option{-Wunused-const-variable} and must be explicitly requested since
4856 in C++ this isn't an error and in C it might be harder to clean up all
4857 headers included.
4858 @end table
4859
4860 @item -Wunused-value
4861 @opindex Wunused-value
4862 @opindex Wno-unused-value
4863 Warn whenever a statement computes a result that is explicitly not
4864 used. To suppress this warning cast the unused expression to
4865 @code{void}. This includes an expression-statement or the left-hand
4866 side of a comma expression that contains no side effects. For example,
4867 an expression such as @code{x[i,j]} causes a warning, while
4868 @code{x[(void)i,j]} does not.
4869
4870 This warning is enabled by @option{-Wall}.
4871
4872 @item -Wunused
4873 @opindex Wunused
4874 @opindex Wno-unused
4875 All the above @option{-Wunused} options combined.
4876
4877 In order to get a warning about an unused function parameter, you must
4878 either specify @option{-Wextra -Wunused} (note that @option{-Wall} implies
4879 @option{-Wunused}), or separately specify @option{-Wunused-parameter}.
4880
4881 @item -Wuninitialized
4882 @opindex Wuninitialized
4883 @opindex Wno-uninitialized
4884 Warn if an automatic variable is used without first being initialized
4885 or if a variable may be clobbered by a @code{setjmp} call. In C++,
4886 warn if a non-static reference or non-static @code{const} member
4887 appears in a class without constructors.
4888
4889 If you want to warn about code that uses the uninitialized value of the
4890 variable in its own initializer, use the @option{-Winit-self} option.
4891
4892 These warnings occur for individual uninitialized or clobbered
4893 elements of structure, union or array variables as well as for
4894 variables that are uninitialized or clobbered as a whole. They do
4895 not occur for variables or elements declared @code{volatile}. Because
4896 these warnings depend on optimization, the exact variables or elements
4897 for which there are warnings depends on the precise optimization
4898 options and version of GCC used.
4899
4900 Note that there may be no warning about a variable that is used only
4901 to compute a value that itself is never used, because such
4902 computations may be deleted by data flow analysis before the warnings
4903 are printed.
4904
4905 @item -Winvalid-memory-model
4906 @opindex Winvalid-memory-model
4907 @opindex Wno-invalid-memory-model
4908 Warn for invocations of @ref{__atomic Builtins}, @ref{__sync Builtins},
4909 and the C11 atomic generic functions with a memory consistency argument
4910 that is either invalid for the operation or outside the range of values
4911 of the @code{memory_order} enumeration. For example, since the
4912 @code{__atomic_store} and @code{__atomic_store_n} built-ins are only
4913 defined for the relaxed, release, and sequentially consistent memory
4914 orders the following code is diagnosed:
4915
4916 @smallexample
4917 void store (int *i)
4918 @{
4919 __atomic_store_n (i, 0, memory_order_consume);
4920 @}
4921 @end smallexample
4922
4923 @option{-Winvalid-memory-model} is enabled by default.
4924
4925 @item -Wmaybe-uninitialized
4926 @opindex Wmaybe-uninitialized
4927 @opindex Wno-maybe-uninitialized
4928 For an automatic variable, if there exists a path from the function
4929 entry to a use of the variable that is initialized, but there exist
4930 some other paths for which the variable is not initialized, the compiler
4931 emits a warning if it cannot prove the uninitialized paths are not
4932 executed at run time. These warnings are made optional because GCC is
4933 not smart enough to see all the reasons why the code might be correct
4934 in spite of appearing to have an error. Here is one example of how
4935 this can happen:
4936
4937 @smallexample
4938 @group
4939 @{
4940 int x;
4941 switch (y)
4942 @{
4943 case 1: x = 1;
4944 break;
4945 case 2: x = 4;
4946 break;
4947 case 3: x = 5;
4948 @}
4949 foo (x);
4950 @}
4951 @end group
4952 @end smallexample
4953
4954 @noindent
4955 If the value of @code{y} is always 1, 2 or 3, then @code{x} is
4956 always initialized, but GCC doesn't know this. To suppress the
4957 warning, you need to provide a default case with assert(0) or
4958 similar code.
4959
4960 @cindex @code{longjmp} warnings
4961 This option also warns when a non-volatile automatic variable might be
4962 changed by a call to @code{longjmp}. These warnings as well are possible
4963 only in optimizing compilation.
4964
4965 The compiler sees only the calls to @code{setjmp}. It cannot know
4966 where @code{longjmp} will be called; in fact, a signal handler could
4967 call it at any point in the code. As a result, you may get a warning
4968 even when there is in fact no problem because @code{longjmp} cannot
4969 in fact be called at the place that would cause a problem.
4970
4971 Some spurious warnings can be avoided if you declare all the functions
4972 you use that never return as @code{noreturn}. @xref{Function
4973 Attributes}.
4974
4975 This warning is enabled by @option{-Wall} or @option{-Wextra}.
4976
4977 @item -Wunknown-pragmas
4978 @opindex Wunknown-pragmas
4979 @opindex Wno-unknown-pragmas
4980 @cindex warning for unknown pragmas
4981 @cindex unknown pragmas, warning
4982 @cindex pragmas, warning of unknown
4983 Warn when a @code{#pragma} directive is encountered that is not understood by
4984 GCC@. If this command-line option is used, warnings are even issued
4985 for unknown pragmas in system header files. This is not the case if
4986 the warnings are only enabled by the @option{-Wall} command-line option.
4987
4988 @item -Wno-pragmas
4989 @opindex Wno-pragmas
4990 @opindex Wpragmas
4991 Do not warn about misuses of pragmas, such as incorrect parameters,
4992 invalid syntax, or conflicts between pragmas. See also
4993 @option{-Wunknown-pragmas}.
4994
4995 @item -Wstrict-aliasing
4996 @opindex Wstrict-aliasing
4997 @opindex Wno-strict-aliasing
4998 This option is only active when @option{-fstrict-aliasing} is active.
4999 It warns about code that might break the strict aliasing rules that the
5000 compiler is using for optimization. The warning does not catch all
5001 cases, but does attempt to catch the more common pitfalls. It is
5002 included in @option{-Wall}.
5003 It is equivalent to @option{-Wstrict-aliasing=3}
5004
5005 @item -Wstrict-aliasing=n
5006 @opindex Wstrict-aliasing=n
5007 This option is only active when @option{-fstrict-aliasing} is active.
5008 It warns about code that might break the strict aliasing rules that the
5009 compiler is using for optimization.
5010 Higher levels correspond to higher accuracy (fewer false positives).
5011 Higher levels also correspond to more effort, similar to the way @option{-O}
5012 works.
5013 @option{-Wstrict-aliasing} is equivalent to @option{-Wstrict-aliasing=3}.
5014
5015 Level 1: Most aggressive, quick, least accurate.
5016 Possibly useful when higher levels
5017 do not warn but @option{-fstrict-aliasing} still breaks the code, as it has very few
5018 false negatives. However, it has many false positives.
5019 Warns for all pointer conversions between possibly incompatible types,
5020 even if never dereferenced. Runs in the front end only.
5021
5022 Level 2: Aggressive, quick, not too precise.
5023 May still have many false positives (not as many as level 1 though),
5024 and few false negatives (but possibly more than level 1).
5025 Unlike level 1, it only warns when an address is taken. Warns about
5026 incomplete types. Runs in the front end only.
5027
5028 Level 3 (default for @option{-Wstrict-aliasing}):
5029 Should have very few false positives and few false
5030 negatives. Slightly slower than levels 1 or 2 when optimization is enabled.
5031 Takes care of the common pun+dereference pattern in the front end:
5032 @code{*(int*)&some_float}.
5033 If optimization is enabled, it also runs in the back end, where it deals
5034 with multiple statement cases using flow-sensitive points-to information.
5035 Only warns when the converted pointer is dereferenced.
5036 Does not warn about incomplete types.
5037
5038 @item -Wstrict-overflow
5039 @itemx -Wstrict-overflow=@var{n}
5040 @opindex Wstrict-overflow
5041 @opindex Wno-strict-overflow
5042 This option is only active when signed overflow is undefined.
5043 It warns about cases where the compiler optimizes based on the
5044 assumption that signed overflow does not occur. Note that it does not
5045 warn about all cases where the code might overflow: it only warns
5046 about cases where the compiler implements some optimization. Thus
5047 this warning depends on the optimization level.
5048
5049 An optimization that assumes that signed overflow does not occur is
5050 perfectly safe if the values of the variables involved are such that
5051 overflow never does, in fact, occur. Therefore this warning can
5052 easily give a false positive: a warning about code that is not
5053 actually a problem. To help focus on important issues, several
5054 warning levels are defined. No warnings are issued for the use of
5055 undefined signed overflow when estimating how many iterations a loop
5056 requires, in particular when determining whether a loop will be
5057 executed at all.
5058
5059 @table @gcctabopt
5060 @item -Wstrict-overflow=1
5061 Warn about cases that are both questionable and easy to avoid. For
5062 example the compiler simplifies
5063 @code{x + 1 > x} to @code{1}. This level of
5064 @option{-Wstrict-overflow} is enabled by @option{-Wall}; higher levels
5065 are not, and must be explicitly requested.
5066
5067 @item -Wstrict-overflow=2
5068 Also warn about other cases where a comparison is simplified to a
5069 constant. For example: @code{abs (x) >= 0}. This can only be
5070 simplified when signed integer overflow is undefined, because
5071 @code{abs (INT_MIN)} overflows to @code{INT_MIN}, which is less than
5072 zero. @option{-Wstrict-overflow} (with no level) is the same as
5073 @option{-Wstrict-overflow=2}.
5074
5075 @item -Wstrict-overflow=3
5076 Also warn about other cases where a comparison is simplified. For
5077 example: @code{x + 1 > 1} is simplified to @code{x > 0}.
5078
5079 @item -Wstrict-overflow=4
5080 Also warn about other simplifications not covered by the above cases.
5081 For example: @code{(x * 10) / 5} is simplified to @code{x * 2}.
5082
5083 @item -Wstrict-overflow=5
5084 Also warn about cases where the compiler reduces the magnitude of a
5085 constant involved in a comparison. For example: @code{x + 2 > y} is
5086 simplified to @code{x + 1 >= y}. This is reported only at the
5087 highest warning level because this simplification applies to many
5088 comparisons, so this warning level gives a very large number of
5089 false positives.
5090 @end table
5091
5092 @item -Wstringop-overflow
5093 @itemx -Wstringop-overflow=@var{type}
5094 @opindex Wstringop-overflow
5095 @opindex Wno-stringop-overflow
5096 Warn for calls to string manipulation functions such as @code{memcpy} and
5097 @code{strcpy} that are determined to overflow the destination buffer. The
5098 optional argument is one greater than the type of Object Size Checking to
5099 perform to determine the size of the destination. @xref{Object Size Checking}.
5100 The argument is meaningful only for functions that operate on character arrays
5101 but not for raw memory functions like @code{memcpy} which always make use
5102 of Object Size type-0. The option also warns for calls that specify a size
5103 in excess of the largest possible object or at most @code{SIZE_MAX / 2} bytes.
5104 The option produces the best results with optimization enabled but can detect
5105 a small subset of simple buffer overflows even without optimization in
5106 calls to the GCC built-in functions like @code{__builtin_memcpy} that
5107 correspond to the standard functions. In any case, the option warns about
5108 just a subset of buffer overflows detected by the corresponding overflow
5109 checking built-ins. For example, the option will issue a warning for
5110 the @code{strcpy} call below because it copies at least 5 characters
5111 (the string @code{"blue"} including the terminating NUL) into the buffer
5112 of size 4.
5113
5114 @smallexample
5115 enum Color @{ blue, purple, yellow @};
5116 const char* f (enum Color clr)
5117 @{
5118 static char buf [4];
5119 const char *str;
5120 switch (clr)
5121 @{
5122 case blue: str = "blue"; break;
5123 case purple: str = "purple"; break;
5124 case yellow: str = "yellow"; break;
5125 @}
5126
5127 return strcpy (buf, str); // warning here
5128 @}
5129 @end smallexample
5130
5131 Option @option{-Wstringop-overflow=2} is enabled by default.
5132
5133 @table @gcctabopt
5134 @item -Wstringop-overflow
5135 @item -Wstringop-overflow=1
5136 @opindex Wstringop-overflow
5137 @opindex Wno-stringop-overflow
5138 The @option{-Wstringop-overflow=1} option uses type-zero Object Size Checking
5139 to determine the sizes of destination objects. This is the default setting
5140 of the option. At this setting the option will not warn for writes past
5141 the end of subobjects of larger objects accessed by pointers unless the
5142 size of the largest surrounding object is known. When the destination may
5143 be one of several objects it is assumed to be the largest one of them. On
5144 Linux systems, when optimization is enabled at this setting the option warns
5145 for the same code as when the @code{_FORTIFY_SOURCE} macro is defined to
5146 a non-zero value.
5147
5148 @item -Wstringop-overflow=2
5149 The @option{-Wstringop-overflow=2} option uses type-one Object Size Checking
5150 to determine the sizes of destination objects. At this setting the option
5151 will warn about overflows when writing to members of the largest complete
5152 objects whose exact size is known. It will, however, not warn for excessive
5153 writes to the same members of unknown objects referenced by pointers since
5154 they may point to arrays containing unknown numbers of elements.
5155
5156 @item -Wstringop-overflow=3
5157 The @option{-Wstringop-overflow=3} option uses type-two Object Size Checking
5158 to determine the sizes of destination objects. At this setting the option
5159 warns about overflowing the smallest object or data member. This is the
5160 most restrictive setting of the option that may result in warnings for safe
5161 code.
5162
5163 @item -Wstringop-overflow=4
5164 The @option{-Wstringop-overflow=4} option uses type-three Object Size Checking
5165 to determine the sizes of destination objects. At this setting the option
5166 will warn about overflowing any data members, and when the destination is
5167 one of several objects it uses the size of the largest of them to decide
5168 whether to issue a warning. Similarly to @option{-Wstringop-overflow=3} this
5169 setting of the option may result in warnings for benign code.
5170 @end table
5171
5172 @item -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{]}
5173 @opindex Wsuggest-attribute=
5174 @opindex Wno-suggest-attribute=
5175 Warn for cases where adding an attribute may be beneficial. The
5176 attributes currently supported are listed below.
5177
5178 @table @gcctabopt
5179 @item -Wsuggest-attribute=pure
5180 @itemx -Wsuggest-attribute=const
5181 @itemx -Wsuggest-attribute=noreturn
5182 @opindex Wsuggest-attribute=pure
5183 @opindex Wno-suggest-attribute=pure
5184 @opindex Wsuggest-attribute=const
5185 @opindex Wno-suggest-attribute=const
5186 @opindex Wsuggest-attribute=noreturn
5187 @opindex Wno-suggest-attribute=noreturn
5188
5189 Warn about functions that might be candidates for attributes
5190 @code{pure}, @code{const} or @code{noreturn}. The compiler only warns for
5191 functions visible in other compilation units or (in the case of @code{pure} and
5192 @code{const}) if it cannot prove that the function returns normally. A function
5193 returns normally if it doesn't contain an infinite loop or return abnormally
5194 by throwing, calling @code{abort} or trapping. This analysis requires option
5195 @option{-fipa-pure-const}, which is enabled by default at @option{-O} and
5196 higher. Higher optimization levels improve the accuracy of the analysis.
5197
5198 @item -Wsuggest-attribute=format
5199 @itemx -Wmissing-format-attribute
5200 @opindex Wsuggest-attribute=format
5201 @opindex Wmissing-format-attribute
5202 @opindex Wno-suggest-attribute=format
5203 @opindex Wno-missing-format-attribute
5204 @opindex Wformat
5205 @opindex Wno-format
5206
5207 Warn about function pointers that might be candidates for @code{format}
5208 attributes. Note these are only possible candidates, not absolute ones.
5209 GCC guesses that function pointers with @code{format} attributes that
5210 are used in assignment, initialization, parameter passing or return
5211 statements should have a corresponding @code{format} attribute in the
5212 resulting type. I.e.@: the left-hand side of the assignment or
5213 initialization, the type of the parameter variable, or the return type
5214 of the containing function respectively should also have a @code{format}
5215 attribute to avoid the warning.
5216
5217 GCC also warns about function definitions that might be
5218 candidates for @code{format} attributes. Again, these are only
5219 possible candidates. GCC guesses that @code{format} attributes
5220 might be appropriate for any function that calls a function like
5221 @code{vprintf} or @code{vscanf}, but this might not always be the
5222 case, and some functions for which @code{format} attributes are
5223 appropriate may not be detected.
5224 @end table
5225
5226 @item -Wsuggest-final-types
5227 @opindex Wno-suggest-final-types
5228 @opindex Wsuggest-final-types
5229 Warn about types with virtual methods where code quality would be improved
5230 if the type were declared with the C++11 @code{final} specifier,
5231 or, if possible,
5232 declared in an anonymous namespace. This allows GCC to more aggressively
5233 devirtualize the polymorphic calls. This warning is more effective with link
5234 time optimization, where the information about the class hierarchy graph is
5235 more complete.
5236
5237 @item -Wsuggest-final-methods
5238 @opindex Wno-suggest-final-methods
5239 @opindex Wsuggest-final-methods
5240 Warn about virtual methods where code quality would be improved if the method
5241 were declared with the C++11 @code{final} specifier,
5242 or, if possible, its type were
5243 declared in an anonymous namespace or with the @code{final} specifier.
5244 This warning is
5245 more effective with link-time optimization, where the information about the
5246 class hierarchy graph is more complete. It is recommended to first consider
5247 suggestions of @option{-Wsuggest-final-types} and then rebuild with new
5248 annotations.
5249
5250 @item -Wsuggest-override
5251 Warn about overriding virtual functions that are not marked with the override
5252 keyword.
5253
5254 @item -Walloc-zero
5255 @opindex Wno-alloc-zero
5256 @opindex Walloc-zero
5257 Warn about calls to allocation functions decorated with attribute
5258 @code{alloc_size} that specify zero bytes, including those to the built-in
5259 forms of the functions @code{aligned_alloc}, @code{alloca}, @code{calloc},
5260 @code{malloc}, and @code{realloc}. Because the behavior of these functions
5261 when called with a zero size differs among implementations (and in the case
5262 of @code{realloc} has been deprecated) relying on it may result in subtle
5263 portability bugs and should be avoided.
5264
5265 @item -Walloc-size-larger-than=@var{n}
5266 Warn about calls to functions decorated with attribute @code{alloc_size}
5267 that attempt to allocate objects larger than the specified number of bytes,
5268 or where the result of the size computation in an integer type with infinite
5269 precision would exceed @code{SIZE_MAX / 2}. The option argument @var{n}
5270 may end in one of the standard suffixes designating a multiple of bytes
5271 such as @code{kB} and @code{KiB} for kilobyte and kibibyte, respectively,
5272 @code{MB} and @code{MiB} for megabyte and mebibyte, and so on.
5273 @xref{Function Attributes}.
5274
5275 @item -Walloca
5276 @opindex Wno-alloca
5277 @opindex Walloca
5278 This option warns on all uses of @code{alloca} in the source.
5279
5280 @item -Walloca-larger-than=@var{n}
5281 This option warns on calls to @code{alloca} that are not bounded by a
5282 controlling predicate limiting its argument of integer type to at most
5283 @var{n} bytes, or calls to @code{alloca} where the bound is unknown.
5284 Arguments of non-integer types are considered unbounded even if they
5285 appear to be constrained to the expected range.
5286
5287 For example, a bounded case of @code{alloca} could be:
5288
5289 @smallexample
5290 void func (size_t n)
5291 @{
5292 void *p;
5293 if (n <= 1000)
5294 p = alloca (n);
5295 else
5296 p = malloc (n);
5297 f (p);
5298 @}
5299 @end smallexample
5300
5301 In the above example, passing @code{-Walloca-larger-than=1000} would not
5302 issue a warning because the call to @code{alloca} is known to be at most
5303 1000 bytes. However, if @code{-Walloca-larger-than=500} were passed,
5304 the compiler would emit a warning.
5305
5306 Unbounded uses, on the other hand, are uses of @code{alloca} with no
5307 controlling predicate constraining its integer argument. For example:
5308
5309 @smallexample
5310 void func ()
5311 @{
5312 void *p = alloca (n);
5313 f (p);
5314 @}
5315 @end smallexample
5316
5317 If @code{-Walloca-larger-than=500} were passed, the above would trigger
5318 a warning, but this time because of the lack of bounds checking.
5319
5320 Note, that even seemingly correct code involving signed integers could
5321 cause a warning:
5322
5323 @smallexample
5324 void func (signed int n)
5325 @{
5326 if (n < 500)
5327 @{
5328 p = alloca (n);
5329 f (p);
5330 @}
5331 @}
5332 @end smallexample
5333
5334 In the above example, @var{n} could be negative, causing a larger than
5335 expected argument to be implicitly cast into the @code{alloca} call.
5336
5337 This option also warns when @code{alloca} is used in a loop.
5338
5339 This warning is not enabled by @option{-Wall}, and is only active when
5340 @option{-ftree-vrp} is active (default for @option{-O2} and above).
5341
5342 See also @option{-Wvla-larger-than=@var{n}}.
5343
5344 @item -Warray-bounds
5345 @itemx -Warray-bounds=@var{n}
5346 @opindex Wno-array-bounds
5347 @opindex Warray-bounds
5348 This option is only active when @option{-ftree-vrp} is active
5349 (default for @option{-O2} and above). It warns about subscripts to arrays
5350 that are always out of bounds. This warning is enabled by @option{-Wall}.
5351
5352 @table @gcctabopt
5353 @item -Warray-bounds=1
5354 This is the warning level of @option{-Warray-bounds} and is enabled
5355 by @option{-Wall}; higher levels are not, and must be explicitly requested.
5356
5357 @item -Warray-bounds=2
5358 This warning level also warns about out of bounds access for
5359 arrays at the end of a struct and for arrays accessed through
5360 pointers. This warning level may give a larger number of
5361 false positives and is deactivated by default.
5362 @end table
5363
5364 @item -Wbool-compare
5365 @opindex Wno-bool-compare
5366 @opindex Wbool-compare
5367 Warn about boolean expression compared with an integer value different from
5368 @code{true}/@code{false}. For instance, the following comparison is
5369 always false:
5370 @smallexample
5371 int n = 5;
5372 @dots{}
5373 if ((n > 1) == 2) @{ @dots{} @}
5374 @end smallexample
5375 This warning is enabled by @option{-Wall}.
5376
5377 @item -Wbool-operation
5378 @opindex Wno-bool-operation
5379 @opindex Wbool-operation
5380 Warn about suspicious operations on expressions of a boolean type. For
5381 instance, bitwise negation of a boolean is very likely a bug in the program.
5382 For C, this warning also warns about incrementing or decrementing a boolean,
5383 which rarely makes sense. (In C++, decrementing a boolean is always invalid.
5384 Incrementing a boolean is invalid in C++1z, and deprecated otherwise.)
5385
5386 This warning is enabled by @option{-Wall}.
5387
5388 @item -Wduplicated-branches
5389 @opindex Wno-duplicated-branches
5390 @opindex Wduplicated-branches
5391 Warn when an if-else has identical branches. This warning detects cases like
5392 @smallexample
5393 if (p != NULL)
5394 return 0;
5395 else
5396 return 0;
5397 @end smallexample
5398 It doesn't warn when both branches contain just a null statement. This warning
5399 also warn for conditional operators:
5400 @smallexample
5401 int i = x ? *p : *p;
5402 @end smallexample
5403
5404 @item -Wduplicated-cond
5405 @opindex Wno-duplicated-cond
5406 @opindex Wduplicated-cond
5407 Warn about duplicated conditions in an if-else-if chain. For instance,
5408 warn for the following code:
5409 @smallexample
5410 if (p->q != NULL) @{ @dots{} @}
5411 else if (p->q != NULL) @{ @dots{} @}
5412 @end smallexample
5413
5414 @item -Wframe-address
5415 @opindex Wno-frame-address
5416 @opindex Wframe-address
5417 Warn when the @samp{__builtin_frame_address} or @samp{__builtin_return_address}
5418 is called with an argument greater than 0. Such calls may return indeterminate
5419 values or crash the program. The warning is included in @option{-Wall}.
5420
5421 @item -Wno-discarded-qualifiers @r{(C and Objective-C only)}
5422 @opindex Wno-discarded-qualifiers
5423 @opindex Wdiscarded-qualifiers
5424 Do not warn if type qualifiers on pointers are being discarded.
5425 Typically, the compiler warns if a @code{const char *} variable is
5426 passed to a function that takes a @code{char *} parameter. This option
5427 can be used to suppress such a warning.
5428
5429 @item -Wno-discarded-array-qualifiers @r{(C and Objective-C only)}
5430 @opindex Wno-discarded-array-qualifiers
5431 @opindex Wdiscarded-array-qualifiers
5432 Do not warn if type qualifiers on arrays which are pointer targets
5433 are being discarded. Typically, the compiler warns if a
5434 @code{const int (*)[]} variable is passed to a function that
5435 takes a @code{int (*)[]} parameter. This option can be used to
5436 suppress such a warning.
5437
5438 @item -Wno-incompatible-pointer-types @r{(C and Objective-C only)}
5439 @opindex Wno-incompatible-pointer-types
5440 @opindex Wincompatible-pointer-types
5441 Do not warn when there is a conversion between pointers that have incompatible
5442 types. This warning is for cases not covered by @option{-Wno-pointer-sign},
5443 which warns for pointer argument passing or assignment with different
5444 signedness.
5445
5446 @item -Wno-int-conversion @r{(C and Objective-C only)}
5447 @opindex Wno-int-conversion
5448 @opindex Wint-conversion
5449 Do not warn about incompatible integer to pointer and pointer to integer
5450 conversions. This warning is about implicit conversions; for explicit
5451 conversions the warnings @option{-Wno-int-to-pointer-cast} and
5452 @option{-Wno-pointer-to-int-cast} may be used.
5453
5454 @item -Wno-div-by-zero
5455 @opindex Wno-div-by-zero
5456 @opindex Wdiv-by-zero
5457 Do not warn about compile-time integer division by zero. Floating-point
5458 division by zero is not warned about, as it can be a legitimate way of
5459 obtaining infinities and NaNs.
5460
5461 @item -Wsystem-headers
5462 @opindex Wsystem-headers
5463 @opindex Wno-system-headers
5464 @cindex warnings from system headers
5465 @cindex system headers, warnings from
5466 Print warning messages for constructs found in system header files.
5467 Warnings from system headers are normally suppressed, on the assumption
5468 that they usually do not indicate real problems and would only make the
5469 compiler output harder to read. Using this command-line option tells
5470 GCC to emit warnings from system headers as if they occurred in user
5471 code. However, note that using @option{-Wall} in conjunction with this
5472 option does @emph{not} warn about unknown pragmas in system
5473 headers---for that, @option{-Wunknown-pragmas} must also be used.
5474
5475 @item -Wtautological-compare
5476 @opindex Wtautological-compare
5477 @opindex Wno-tautological-compare
5478 Warn if a self-comparison always evaluates to true or false. This
5479 warning detects various mistakes such as:
5480 @smallexample
5481 int i = 1;
5482 @dots{}
5483 if (i > i) @{ @dots{} @}
5484 @end smallexample
5485 This warning is enabled by @option{-Wall}.
5486
5487 @item -Wtrampolines
5488 @opindex Wtrampolines
5489 @opindex Wno-trampolines
5490 Warn about trampolines generated for pointers to nested functions.
5491 A trampoline is a small piece of data or code that is created at run
5492 time on the stack when the address of a nested function is taken, and is
5493 used to call the nested function indirectly. For some targets, it is
5494 made up of data only and thus requires no special treatment. But, for
5495 most targets, it is made up of code and thus requires the stack to be
5496 made executable in order for the program to work properly.
5497
5498 @item -Wfloat-equal
5499 @opindex Wfloat-equal
5500 @opindex Wno-float-equal
5501 Warn if floating-point values are used in equality comparisons.
5502
5503 The idea behind this is that sometimes it is convenient (for the
5504 programmer) to consider floating-point values as approximations to
5505 infinitely precise real numbers. If you are doing this, then you need
5506 to compute (by analyzing the code, or in some other way) the maximum or
5507 likely maximum error that the computation introduces, and allow for it
5508 when performing comparisons (and when producing output, but that's a
5509 different problem). In particular, instead of testing for equality, you
5510 should check to see whether the two values have ranges that overlap; and
5511 this is done with the relational operators, so equality comparisons are
5512 probably mistaken.
5513
5514 @item -Wtraditional @r{(C and Objective-C only)}
5515 @opindex Wtraditional
5516 @opindex Wno-traditional
5517 Warn about certain constructs that behave differently in traditional and
5518 ISO C@. Also warn about ISO C constructs that have no traditional C
5519 equivalent, and/or problematic constructs that should be avoided.
5520
5521 @itemize @bullet
5522 @item
5523 Macro parameters that appear within string literals in the macro body.
5524 In traditional C macro replacement takes place within string literals,
5525 but in ISO C it does not.
5526
5527 @item
5528 In traditional C, some preprocessor directives did not exist.
5529 Traditional preprocessors only considered a line to be a directive
5530 if the @samp{#} appeared in column 1 on the line. Therefore
5531 @option{-Wtraditional} warns about directives that traditional C
5532 understands but ignores because the @samp{#} does not appear as the
5533 first character on the line. It also suggests you hide directives like
5534 @code{#pragma} not understood by traditional C by indenting them. Some
5535 traditional implementations do not recognize @code{#elif}, so this option
5536 suggests avoiding it altogether.
5537
5538 @item
5539 A function-like macro that appears without arguments.
5540
5541 @item
5542 The unary plus operator.
5543
5544 @item
5545 The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating-point
5546 constant suffixes. (Traditional C does support the @samp{L} suffix on integer
5547 constants.) Note, these suffixes appear in macros defined in the system
5548 headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}.
5549 Use of these macros in user code might normally lead to spurious
5550 warnings, however GCC's integrated preprocessor has enough context to
5551 avoid warning in these cases.
5552
5553 @item
5554 A function declared external in one block and then used after the end of
5555 the block.
5556
5557 @item
5558 A @code{switch} statement has an operand of type @code{long}.
5559
5560 @item
5561 A non-@code{static} function declaration follows a @code{static} one.
5562 This construct is not accepted by some traditional C compilers.
5563
5564 @item
5565 The ISO type of an integer constant has a different width or
5566 signedness from its traditional type. This warning is only issued if
5567 the base of the constant is ten. I.e.@: hexadecimal or octal values, which
5568 typically represent bit patterns, are not warned about.
5569
5570 @item
5571 Usage of ISO string concatenation is detected.
5572
5573 @item
5574 Initialization of automatic aggregates.
5575
5576 @item
5577 Identifier conflicts with labels. Traditional C lacks a separate
5578 namespace for labels.
5579
5580 @item
5581 Initialization of unions. If the initializer is zero, the warning is
5582 omitted. This is done under the assumption that the zero initializer in
5583 user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
5584 initializer warnings and relies on default initialization to zero in the
5585 traditional C case.
5586
5587 @item
5588 Conversions by prototypes between fixed/floating-point values and vice
5589 versa. The absence of these prototypes when compiling with traditional
5590 C causes serious problems. This is a subset of the possible
5591 conversion warnings; for the full set use @option{-Wtraditional-conversion}.
5592
5593 @item
5594 Use of ISO C style function definitions. This warning intentionally is
5595 @emph{not} issued for prototype declarations or variadic functions
5596 because these ISO C features appear in your code when using
5597 libiberty's traditional C compatibility macros, @code{PARAMS} and
5598 @code{VPARAMS}. This warning is also bypassed for nested functions
5599 because that feature is already a GCC extension and thus not relevant to
5600 traditional C compatibility.
5601 @end itemize
5602
5603 @item -Wtraditional-conversion @r{(C and Objective-C only)}
5604 @opindex Wtraditional-conversion
5605 @opindex Wno-traditional-conversion
5606 Warn if a prototype causes a type conversion that is different from what
5607 would happen to the same argument in the absence of a prototype. This
5608 includes conversions of fixed point to floating and vice versa, and
5609 conversions changing the width or signedness of a fixed-point argument
5610 except when the same as the default promotion.
5611
5612 @item -Wdeclaration-after-statement @r{(C and Objective-C only)}
5613 @opindex Wdeclaration-after-statement
5614 @opindex Wno-declaration-after-statement
5615 Warn when a declaration is found after a statement in a block. This
5616 construct, known from C++, was introduced with ISO C99 and is by default
5617 allowed in GCC@. It is not supported by ISO C90. @xref{Mixed Declarations}.
5618
5619 @item -Wshadow
5620 @opindex Wshadow
5621 @opindex Wno-shadow
5622 Warn whenever a local variable or type declaration shadows another
5623 variable, parameter, type, class member (in C++), or instance variable
5624 (in Objective-C) or whenever a built-in function is shadowed. Note
5625 that in C++, the compiler warns if a local variable shadows an
5626 explicit typedef, but not if it shadows a struct/class/enum.
5627 Same as @option{-Wshadow=global}.
5628
5629 @item -Wno-shadow-ivar @r{(Objective-C only)}
5630 @opindex Wno-shadow-ivar
5631 @opindex Wshadow-ivar
5632 Do not warn whenever a local variable shadows an instance variable in an
5633 Objective-C method.
5634
5635 @item -Wshadow=global
5636 @opindex Wshadow=local
5637 The default for @option{-Wshadow}. Warns for any (global) shadowing.
5638
5639 @item -Wshadow=local
5640 @opindex Wshadow=local
5641 Warn when a local variable shadows another local variable or parameter.
5642 This warning is enabled by @option{-Wshadow=global}.
5643
5644 @item -Wshadow=compatible-local
5645 @opindex Wshadow=compatible-local
5646 Warn when a local variable shadows another local variable or parameter
5647 whose type is compatible with that of the shadowing variable. In C++,
5648 type compatibility here means the type of the shadowing variable can be
5649 converted to that of the shadowed variable. The creation of this flag
5650 (in addition to @option{-Wshadow=local}) is based on the idea that when
5651 a local variable shadows another one of incompatible type, it is most
5652 likely intentional, not a bug or typo, as shown in the following example:
5653
5654 @smallexample
5655 @group
5656 for (SomeIterator i = SomeObj.begin(); i != SomeObj.end(); ++i)
5657 @{
5658 for (int i = 0; i < N; ++i)
5659 @{
5660 ...
5661 @}
5662 ...
5663 @}
5664 @end group
5665 @end smallexample
5666
5667 Since the two variable @code{i} in the example above have incompatible types,
5668 enabling only @option{-Wshadow=compatible-local} will not emit a warning.
5669 Because their types are incompatible, if a programmer accidentally uses one
5670 in place of the other, type checking will catch that and emit an error or
5671 warning. So not warning (about shadowing) in this case will not lead to
5672 undetected bugs. Use of this flag instead of @option{-Wshadow=local} can
5673 possibly reduce the number of warnings triggered by intentional shadowing.
5674
5675 This warning is enabled by @option{-Wshadow=local}.
5676
5677 @item -Wlarger-than=@var{len}
5678 @opindex Wlarger-than=@var{len}
5679 @opindex Wlarger-than-@var{len}
5680 Warn whenever an object of larger than @var{len} bytes is defined.
5681
5682 @item -Wframe-larger-than=@var{len}
5683 @opindex Wframe-larger-than
5684 Warn if the size of a function frame is larger than @var{len} bytes.
5685 The computation done to determine the stack frame size is approximate
5686 and not conservative.
5687 The actual requirements may be somewhat greater than @var{len}
5688 even if you do not get a warning. In addition, any space allocated
5689 via @code{alloca}, variable-length arrays, or related constructs
5690 is not included by the compiler when determining
5691 whether or not to issue a warning.
5692
5693 @item -Wno-free-nonheap-object
5694 @opindex Wno-free-nonheap-object
5695 @opindex Wfree-nonheap-object
5696 Do not warn when attempting to free an object that was not allocated
5697 on the heap.
5698
5699 @item -Wstack-usage=@var{len}
5700 @opindex Wstack-usage
5701 Warn if the stack usage of a function might be larger than @var{len} bytes.
5702 The computation done to determine the stack usage is conservative.
5703 Any space allocated via @code{alloca}, variable-length arrays, or related
5704 constructs is included by the compiler when determining whether or not to
5705 issue a warning.
5706
5707 The message is in keeping with the output of @option{-fstack-usage}.
5708
5709 @itemize
5710 @item
5711 If the stack usage is fully static but exceeds the specified amount, it's:
5712
5713 @smallexample
5714 warning: stack usage is 1120 bytes
5715 @end smallexample
5716 @item
5717 If the stack usage is (partly) dynamic but bounded, it's:
5718
5719 @smallexample
5720 warning: stack usage might be 1648 bytes
5721 @end smallexample
5722 @item
5723 If the stack usage is (partly) dynamic and not bounded, it's:
5724
5725 @smallexample
5726 warning: stack usage might be unbounded
5727 @end smallexample
5728 @end itemize
5729
5730 @item -Wunsafe-loop-optimizations
5731 @opindex Wunsafe-loop-optimizations
5732 @opindex Wno-unsafe-loop-optimizations
5733 Warn if the loop cannot be optimized because the compiler cannot
5734 assume anything on the bounds of the loop indices. With
5735 @option{-funsafe-loop-optimizations} warn if the compiler makes
5736 such assumptions.
5737
5738 @item -Wno-pedantic-ms-format @r{(MinGW targets only)}
5739 @opindex Wno-pedantic-ms-format
5740 @opindex Wpedantic-ms-format
5741 When used in combination with @option{-Wformat}
5742 and @option{-pedantic} without GNU extensions, this option
5743 disables the warnings about non-ISO @code{printf} / @code{scanf} format
5744 width specifiers @code{I32}, @code{I64}, and @code{I} used on Windows targets,
5745 which depend on the MS runtime.
5746
5747 @item -Waligned-new
5748 @opindex Waligned-new
5749 @opindex Wno-aligned-new
5750 Warn about a new-expression of a type that requires greater alignment
5751 than the @code{alignof(std::max_align_t)} but uses an allocation
5752 function without an explicit alignment parameter. This option is
5753 enabled by @option{-Wall}.
5754
5755 Normally this only warns about global allocation functions, but
5756 @option{-Waligned-new=all} also warns about class member allocation
5757 functions.
5758
5759 @item -Wplacement-new
5760 @itemx -Wplacement-new=@var{n}
5761 @opindex Wplacement-new
5762 @opindex Wno-placement-new
5763 Warn about placement new expressions with undefined behavior, such as
5764 constructing an object in a buffer that is smaller than the type of
5765 the object. For example, the placement new expression below is diagnosed
5766 because it attempts to construct an array of 64 integers in a buffer only
5767 64 bytes large.
5768 @smallexample
5769 char buf [64];
5770 new (buf) int[64];
5771 @end smallexample
5772 This warning is enabled by default.
5773
5774 @table @gcctabopt
5775 @item -Wplacement-new=1
5776 This is the default warning level of @option{-Wplacement-new}. At this
5777 level the warning is not issued for some strictly undefined constructs that
5778 GCC allows as extensions for compatibility with legacy code. For example,
5779 the following @code{new} expression is not diagnosed at this level even
5780 though it has undefined behavior according to the C++ standard because
5781 it writes past the end of the one-element array.
5782 @smallexample
5783 struct S @{ int n, a[1]; @};
5784 S *s = (S *)malloc (sizeof *s + 31 * sizeof s->a[0]);
5785 new (s->a)int [32]();
5786 @end smallexample
5787
5788 @item -Wplacement-new=2
5789 At this level, in addition to diagnosing all the same constructs as at level
5790 1, a diagnostic is also issued for placement new expressions that construct
5791 an object in the last member of structure whose type is an array of a single
5792 element and whose size is less than the size of the object being constructed.
5793 While the previous example would be diagnosed, the following construct makes
5794 use of the flexible member array extension to avoid the warning at level 2.
5795 @smallexample
5796 struct S @{ int n, a[]; @};
5797 S *s = (S *)malloc (sizeof *s + 32 * sizeof s->a[0]);
5798 new (s->a)int [32]();
5799 @end smallexample
5800
5801 @end table
5802
5803 @item -Wpointer-arith
5804 @opindex Wpointer-arith
5805 @opindex Wno-pointer-arith
5806 Warn about anything that depends on the ``size of'' a function type or
5807 of @code{void}. GNU C assigns these types a size of 1, for
5808 convenience in calculations with @code{void *} pointers and pointers
5809 to functions. In C++, warn also when an arithmetic operation involves
5810 @code{NULL}. This warning is also enabled by @option{-Wpedantic}.
5811
5812 @item -Wpointer-compare
5813 @opindex Wpointer-compare
5814 @opindex Wno-pointer-compare
5815 Warn if a pointer is compared with a zero character constant. This usually
5816 means that the pointer was meant to be dereferenced. For example:
5817
5818 @smallexample
5819 const char *p = foo ();
5820 if (p == '\0')
5821 return 42;
5822 @end smallexample
5823
5824 Note that the code above is invalid in C++11.
5825
5826 This warning is enabled by default.
5827
5828 @item -Wtype-limits
5829 @opindex Wtype-limits
5830 @opindex Wno-type-limits
5831 Warn if a comparison is always true or always false due to the limited
5832 range of the data type, but do not warn for constant expressions. For
5833 example, warn if an unsigned variable is compared against zero with
5834 @code{<} or @code{>=}. This warning is also enabled by
5835 @option{-Wextra}.
5836
5837 @include cppwarnopts.texi
5838
5839 @item -Wbad-function-cast @r{(C and Objective-C only)}
5840 @opindex Wbad-function-cast
5841 @opindex Wno-bad-function-cast
5842 Warn when a function call is cast to a non-matching type.
5843 For example, warn if a call to a function returning an integer type
5844 is cast to a pointer type.
5845
5846 @item -Wc90-c99-compat @r{(C and Objective-C only)}
5847 @opindex Wc90-c99-compat
5848 @opindex Wno-c90-c99-compat
5849 Warn about features not present in ISO C90, but present in ISO C99.
5850 For instance, warn about use of variable length arrays, @code{long long}
5851 type, @code{bool} type, compound literals, designated initializers, and so
5852 on. This option is independent of the standards mode. Warnings are disabled
5853 in the expression that follows @code{__extension__}.
5854
5855 @item -Wc99-c11-compat @r{(C and Objective-C only)}
5856 @opindex Wc99-c11-compat
5857 @opindex Wno-c99-c11-compat
5858 Warn about features not present in ISO C99, but present in ISO C11.
5859 For instance, warn about use of anonymous structures and unions,
5860 @code{_Atomic} type qualifier, @code{_Thread_local} storage-class specifier,
5861 @code{_Alignas} specifier, @code{Alignof} operator, @code{_Generic} keyword,
5862 and so on. This option is independent of the standards mode. Warnings are
5863 disabled in the expression that follows @code{__extension__}.
5864
5865 @item -Wc++-compat @r{(C and Objective-C only)}
5866 @opindex Wc++-compat
5867 Warn about ISO C constructs that are outside of the common subset of
5868 ISO C and ISO C++, e.g.@: request for implicit conversion from
5869 @code{void *} to a pointer to non-@code{void} type.
5870
5871 @item -Wc++11-compat @r{(C++ and Objective-C++ only)}
5872 @opindex Wc++11-compat
5873 Warn about C++ constructs whose meaning differs between ISO C++ 1998
5874 and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords
5875 in ISO C++ 2011. This warning turns on @option{-Wnarrowing} and is
5876 enabled by @option{-Wall}.
5877
5878 @item -Wc++14-compat @r{(C++ and Objective-C++ only)}
5879 @opindex Wc++14-compat
5880 Warn about C++ constructs whose meaning differs between ISO C++ 2011
5881 and ISO C++ 2014. This warning is enabled by @option{-Wall}.
5882
5883 @item -Wc++1z-compat @r{(C++ and Objective-C++ only)}
5884 @opindex Wc++1z-compat
5885 Warn about C++ constructs whose meaning differs between ISO C++ 2014
5886 and the forthoming ISO C++ 2017(?). This warning is enabled by @option{-Wall}.
5887
5888 @item -Wcast-qual
5889 @opindex Wcast-qual
5890 @opindex Wno-cast-qual
5891 Warn whenever a pointer is cast so as to remove a type qualifier from
5892 the target type. For example, warn if a @code{const char *} is cast
5893 to an ordinary @code{char *}.
5894
5895 Also warn when making a cast that introduces a type qualifier in an
5896 unsafe way. For example, casting @code{char **} to @code{const char **}
5897 is unsafe, as in this example:
5898
5899 @smallexample
5900 /* p is char ** value. */
5901 const char **q = (const char **) p;
5902 /* Assignment of readonly string to const char * is OK. */
5903 *q = "string";
5904 /* Now char** pointer points to read-only memory. */
5905 **p = 'b';
5906 @end smallexample
5907
5908 @item -Wcast-align
5909 @opindex Wcast-align
5910 @opindex Wno-cast-align
5911 Warn whenever a pointer is cast such that the required alignment of the
5912 target is increased. For example, warn if a @code{char *} is cast to
5913 an @code{int *} on machines where integers can only be accessed at
5914 two- or four-byte boundaries.
5915
5916 @item -Wwrite-strings
5917 @opindex Wwrite-strings
5918 @opindex Wno-write-strings
5919 When compiling C, give string constants the type @code{const
5920 char[@var{length}]} so that copying the address of one into a
5921 non-@code{const} @code{char *} pointer produces a warning. These
5922 warnings help you find at compile time code that can try to write
5923 into a string constant, but only if you have been very careful about
5924 using @code{const} in declarations and prototypes. Otherwise, it is
5925 just a nuisance. This is why we did not make @option{-Wall} request
5926 these warnings.
5927
5928 When compiling C++, warn about the deprecated conversion from string
5929 literals to @code{char *}. This warning is enabled by default for C++
5930 programs.
5931
5932 @item -Wcatch-value
5933 @itemx -Wcatch-value=@var{n} @r{(C++ and Objective-C++ only)}
5934 @opindex Wcatch-value
5935 @opindex Wno-catch-value
5936 Warn about catch handlers that do not catch via reference.
5937 With @option{-Wcatch-value=1} (or @option{-Wcatch-value} for short)
5938 warn about polymorphic class types that are caught by value.
5939 With @option{-Wcatch-value=2} warn about all class types that are caught
5940 by value. With @option{-Wcatch-value=3} warn about all types that are
5941 not caught by reference. @option{-Wcatch-value} is enabled by @option{-Wall}.
5942
5943 @item -Wclobbered
5944 @opindex Wclobbered
5945 @opindex Wno-clobbered
5946 Warn for variables that might be changed by @code{longjmp} or
5947 @code{vfork}. This warning is also enabled by @option{-Wextra}.
5948
5949 @item -Wconditionally-supported @r{(C++ and Objective-C++ only)}
5950 @opindex Wconditionally-supported
5951 @opindex Wno-conditionally-supported
5952 Warn for conditionally-supported (C++11 [intro.defs]) constructs.
5953
5954 @item -Wconversion
5955 @opindex Wconversion
5956 @opindex Wno-conversion
5957 Warn for implicit conversions that may alter a value. This includes
5958 conversions between real and integer, like @code{abs (x)} when
5959 @code{x} is @code{double}; conversions between signed and unsigned,
5960 like @code{unsigned ui = -1}; and conversions to smaller types, like
5961 @code{sqrtf (M_PI)}. Do not warn for explicit casts like @code{abs
5962 ((int) x)} and @code{ui = (unsigned) -1}, or if the value is not
5963 changed by the conversion like in @code{abs (2.0)}. Warnings about
5964 conversions between signed and unsigned integers can be disabled by
5965 using @option{-Wno-sign-conversion}.
5966
5967 For C++, also warn for confusing overload resolution for user-defined
5968 conversions; and conversions that never use a type conversion
5969 operator: conversions to @code{void}, the same type, a base class or a
5970 reference to them. Warnings about conversions between signed and
5971 unsigned integers are disabled by default in C++ unless
5972 @option{-Wsign-conversion} is explicitly enabled.
5973
5974 @item -Wno-conversion-null @r{(C++ and Objective-C++ only)}
5975 @opindex Wconversion-null
5976 @opindex Wno-conversion-null
5977 Do not warn for conversions between @code{NULL} and non-pointer
5978 types. @option{-Wconversion-null} is enabled by default.
5979
5980 @item -Wzero-as-null-pointer-constant @r{(C++ and Objective-C++ only)}
5981 @opindex Wzero-as-null-pointer-constant
5982 @opindex Wno-zero-as-null-pointer-constant
5983 Warn when a literal @samp{0} is used as null pointer constant. This can
5984 be useful to facilitate the conversion to @code{nullptr} in C++11.
5985
5986 @item -Wsubobject-linkage @r{(C++ and Objective-C++ only)}
5987 @opindex Wsubobject-linkage
5988 @opindex Wno-subobject-linkage
5989 Warn if a class type has a base or a field whose type uses the anonymous
5990 namespace or depends on a type with no linkage. If a type A depends on
5991 a type B with no or internal linkage, defining it in multiple
5992 translation units would be an ODR violation because the meaning of B
5993 is different in each translation unit. If A only appears in a single
5994 translation unit, the best way to silence the warning is to give it
5995 internal linkage by putting it in an anonymous namespace as well. The
5996 compiler doesn't give this warning for types defined in the main .C
5997 file, as those are unlikely to have multiple definitions.
5998 @option{-Wsubobject-linkage} is enabled by default.
5999
6000 @item -Wdangling-else
6001 @opindex Wdangling-else
6002 @opindex Wno-dangling-else
6003 Warn about constructions where there may be confusion to which
6004 @code{if} statement an @code{else} branch belongs. Here is an example of
6005 such a case:
6006
6007 @smallexample
6008 @group
6009 @{
6010 if (a)
6011 if (b)
6012 foo ();
6013 else
6014 bar ();
6015 @}
6016 @end group
6017 @end smallexample
6018
6019 In C/C++, every @code{else} branch belongs to the innermost possible
6020 @code{if} statement, which in this example is @code{if (b)}. This is
6021 often not what the programmer expected, as illustrated in the above
6022 example by indentation the programmer chose. When there is the
6023 potential for this confusion, GCC issues a warning when this flag
6024 is specified. To eliminate the warning, add explicit braces around
6025 the innermost @code{if} statement so there is no way the @code{else}
6026 can belong to the enclosing @code{if}. The resulting code
6027 looks like this:
6028
6029 @smallexample
6030 @group
6031 @{
6032 if (a)
6033 @{
6034 if (b)
6035 foo ();
6036 else
6037 bar ();
6038 @}
6039 @}
6040 @end group
6041 @end smallexample
6042
6043 This warning is enabled by @option{-Wparentheses}.
6044
6045 @item -Wdate-time
6046 @opindex Wdate-time
6047 @opindex Wno-date-time
6048 Warn when macros @code{__TIME__}, @code{__DATE__} or @code{__TIMESTAMP__}
6049 are encountered as they might prevent bit-wise-identical reproducible
6050 compilations.
6051
6052 @item -Wdelete-incomplete @r{(C++ and Objective-C++ only)}
6053 @opindex Wdelete-incomplete
6054 @opindex Wno-delete-incomplete
6055 Warn when deleting a pointer to incomplete type, which may cause
6056 undefined behavior at runtime. This warning is enabled by default.
6057
6058 @item -Wuseless-cast @r{(C++ and Objective-C++ only)}
6059 @opindex Wuseless-cast
6060 @opindex Wno-useless-cast
6061 Warn when an expression is casted to its own type.
6062
6063 @item -Wempty-body
6064 @opindex Wempty-body
6065 @opindex Wno-empty-body
6066 Warn if an empty body occurs in an @code{if}, @code{else} or @code{do
6067 while} statement. This warning is also enabled by @option{-Wextra}.
6068
6069 @item -Wenum-compare
6070 @opindex Wenum-compare
6071 @opindex Wno-enum-compare
6072 Warn about a comparison between values of different enumerated types.
6073 In C++ enumerated type mismatches in conditional expressions are also
6074 diagnosed and the warning is enabled by default. In C this warning is
6075 enabled by @option{-Wall}.
6076
6077 @item -Wextra-semi @r{(C++, Objective-C++ only)}
6078 @opindex Wextra-semi
6079 @opindex Wno-extra-semi
6080 Warn about redundant semicolon after in-class function definition.
6081
6082 @item -Wjump-misses-init @r{(C, Objective-C only)}
6083 @opindex Wjump-misses-init
6084 @opindex Wno-jump-misses-init
6085 Warn if a @code{goto} statement or a @code{switch} statement jumps
6086 forward across the initialization of a variable, or jumps backward to a
6087 label after the variable has been initialized. This only warns about
6088 variables that are initialized when they are declared. This warning is
6089 only supported for C and Objective-C; in C++ this sort of branch is an
6090 error in any case.
6091
6092 @option{-Wjump-misses-init} is included in @option{-Wc++-compat}. It
6093 can be disabled with the @option{-Wno-jump-misses-init} option.
6094
6095 @item -Wsign-compare
6096 @opindex Wsign-compare
6097 @opindex Wno-sign-compare
6098 @cindex warning for comparison of signed and unsigned values
6099 @cindex comparison of signed and unsigned values, warning
6100 @cindex signed and unsigned values, comparison warning
6101 Warn when a comparison between signed and unsigned values could produce
6102 an incorrect result when the signed value is converted to unsigned.
6103 In C++, this warning is also enabled by @option{-Wall}. In C, it is
6104 also enabled by @option{-Wextra}.
6105
6106 @item -Wsign-conversion
6107 @opindex Wsign-conversion
6108 @opindex Wno-sign-conversion
6109 Warn for implicit conversions that may change the sign of an integer
6110 value, like assigning a signed integer expression to an unsigned
6111 integer variable. An explicit cast silences the warning. In C, this
6112 option is enabled also by @option{-Wconversion}.
6113
6114 @item -Wfloat-conversion
6115 @opindex Wfloat-conversion
6116 @opindex Wno-float-conversion
6117 Warn for implicit conversions that reduce the precision of a real value.
6118 This includes conversions from real to integer, and from higher precision
6119 real to lower precision real values. This option is also enabled by
6120 @option{-Wconversion}.
6121
6122 @item -Wno-scalar-storage-order
6123 @opindex -Wno-scalar-storage-order
6124 @opindex -Wscalar-storage-order
6125 Do not warn on suspicious constructs involving reverse scalar storage order.
6126
6127 @item -Wsized-deallocation @r{(C++ and Objective-C++ only)}
6128 @opindex Wsized-deallocation
6129 @opindex Wno-sized-deallocation
6130 Warn about a definition of an unsized deallocation function
6131 @smallexample
6132 void operator delete (void *) noexcept;
6133 void operator delete[] (void *) noexcept;
6134 @end smallexample
6135 without a definition of the corresponding sized deallocation function
6136 @smallexample
6137 void operator delete (void *, std::size_t) noexcept;
6138 void operator delete[] (void *, std::size_t) noexcept;
6139 @end smallexample
6140 or vice versa. Enabled by @option{-Wextra} along with
6141 @option{-fsized-deallocation}.
6142
6143 @item -Wsizeof-pointer-div
6144 @opindex Wsizeof-pointer-div
6145 @opindex Wno-sizeof-pointer-div
6146 Warn for suspicious divisions of two sizeof expressions that divide
6147 the pointer size by the element size, which is the usual way to compute
6148 the array size but won't work out correctly with pointers. This warning
6149 warns e.g.@: about @code{sizeof (ptr) / sizeof (ptr[0])} if @code{ptr} is
6150 not an array, but a pointer. This warning is enabled by @option{-Wall}.
6151
6152 @item -Wsizeof-pointer-memaccess
6153 @opindex Wsizeof-pointer-memaccess
6154 @opindex Wno-sizeof-pointer-memaccess
6155 Warn for suspicious length parameters to certain string and memory built-in
6156 functions if the argument uses @code{sizeof}. This warning warns e.g.@:
6157 about @code{memset (ptr, 0, sizeof (ptr));} if @code{ptr} is not an array,
6158 but a pointer, and suggests a possible fix, or about
6159 @code{memcpy (&foo, ptr, sizeof (&foo));}. This warning is enabled by
6160 @option{-Wall}.
6161
6162 @item -Wsizeof-array-argument
6163 @opindex Wsizeof-array-argument
6164 @opindex Wno-sizeof-array-argument
6165 Warn when the @code{sizeof} operator is applied to a parameter that is
6166 declared as an array in a function definition. This warning is enabled by
6167 default for C and C++ programs.
6168
6169 @item -Wmemset-elt-size
6170 @opindex Wmemset-elt-size
6171 @opindex Wno-memset-elt-size
6172 Warn for suspicious calls to the @code{memset} built-in function, if the
6173 first argument references an array, and the third argument is a number
6174 equal to the number of elements, but not equal to the size of the array
6175 in memory. This indicates that the user has omitted a multiplication by
6176 the element size. This warning is enabled by @option{-Wall}.
6177
6178 @item -Wmemset-transposed-args
6179 @opindex Wmemset-transposed-args
6180 @opindex Wno-memset-transposed-args
6181 Warn for suspicious calls to the @code{memset} built-in function, if the
6182 second argument is not zero and the third argument is zero. This warns e.g.@
6183 about @code{memset (buf, sizeof buf, 0)} where most probably
6184 @code{memset (buf, 0, sizeof buf)} was meant instead. The diagnostics
6185 is only emitted if the third argument is literal zero. If it is some
6186 expression that is folded to zero, a cast of zero to some type, etc.,
6187 it is far less likely that the user has mistakenly exchanged the arguments
6188 and no warning is emitted. This warning is enabled by @option{-Wall}.
6189
6190 @item -Waddress
6191 @opindex Waddress
6192 @opindex Wno-address
6193 Warn about suspicious uses of memory addresses. These include using
6194 the address of a function in a conditional expression, such as
6195 @code{void func(void); if (func)}, and comparisons against the memory
6196 address of a string literal, such as @code{if (x == "abc")}. Such
6197 uses typically indicate a programmer error: the address of a function
6198 always evaluates to true, so their use in a conditional usually
6199 indicate that the programmer forgot the parentheses in a function
6200 call; and comparisons against string literals result in unspecified
6201 behavior and are not portable in C, so they usually indicate that the
6202 programmer intended to use @code{strcmp}. This warning is enabled by
6203 @option{-Wall}.
6204
6205 @item -Wlogical-op
6206 @opindex Wlogical-op
6207 @opindex Wno-logical-op
6208 Warn about suspicious uses of logical operators in expressions.
6209 This includes using logical operators in contexts where a
6210 bit-wise operator is likely to be expected. Also warns when
6211 the operands of a logical operator are the same:
6212 @smallexample
6213 extern int a;
6214 if (a < 0 && a < 0) @{ @dots{} @}
6215 @end smallexample
6216
6217 @item -Wlogical-not-parentheses
6218 @opindex Wlogical-not-parentheses
6219 @opindex Wno-logical-not-parentheses
6220 Warn about logical not used on the left hand side operand of a comparison.
6221 This option does not warn if the right operand is considered to be a boolean
6222 expression. Its purpose is to detect suspicious code like the following:
6223 @smallexample
6224 int a;
6225 @dots{}
6226 if (!a > 1) @{ @dots{} @}
6227 @end smallexample
6228
6229 It is possible to suppress the warning by wrapping the LHS into
6230 parentheses:
6231 @smallexample
6232 if ((!a) > 1) @{ @dots{} @}
6233 @end smallexample
6234
6235 This warning is enabled by @option{-Wall}.
6236
6237 @item -Waggregate-return
6238 @opindex Waggregate-return
6239 @opindex Wno-aggregate-return
6240 Warn if any functions that return structures or unions are defined or
6241 called. (In languages where you can return an array, this also elicits
6242 a warning.)
6243
6244 @item -Wno-aggressive-loop-optimizations
6245 @opindex Wno-aggressive-loop-optimizations
6246 @opindex Waggressive-loop-optimizations
6247 Warn if in a loop with constant number of iterations the compiler detects
6248 undefined behavior in some statement during one or more of the iterations.
6249
6250 @item -Wno-attributes
6251 @opindex Wno-attributes
6252 @opindex Wattributes
6253 Do not warn if an unexpected @code{__attribute__} is used, such as
6254 unrecognized attributes, function attributes applied to variables,
6255 etc. This does not stop errors for incorrect use of supported
6256 attributes.
6257
6258 @item -Wno-builtin-declaration-mismatch
6259 @opindex Wno-builtin-declaration-mismatch
6260 @opindex Wbuiltin-declaration-mismatch
6261 Warn if a built-in function is declared with the wrong signature.
6262 This warning is enabled by default.
6263
6264 @item -Wno-builtin-macro-redefined
6265 @opindex Wno-builtin-macro-redefined
6266 @opindex Wbuiltin-macro-redefined
6267 Do not warn if certain built-in macros are redefined. This suppresses
6268 warnings for redefinition of @code{__TIMESTAMP__}, @code{__TIME__},
6269 @code{__DATE__}, @code{__FILE__}, and @code{__BASE_FILE__}.
6270
6271 @item -Wstrict-prototypes @r{(C and Objective-C only)}
6272 @opindex Wstrict-prototypes
6273 @opindex Wno-strict-prototypes
6274 Warn if a function is declared or defined without specifying the
6275 argument types. (An old-style function definition is permitted without
6276 a warning if preceded by a declaration that specifies the argument
6277 types.)
6278
6279 @item -Wold-style-declaration @r{(C and Objective-C only)}
6280 @opindex Wold-style-declaration
6281 @opindex Wno-old-style-declaration
6282 Warn for obsolescent usages, according to the C Standard, in a
6283 declaration. For example, warn if storage-class specifiers like
6284 @code{static} are not the first things in a declaration. This warning
6285 is also enabled by @option{-Wextra}.
6286
6287 @item -Wold-style-definition @r{(C and Objective-C only)}
6288 @opindex Wold-style-definition
6289 @opindex Wno-old-style-definition
6290 Warn if an old-style function definition is used. A warning is given
6291 even if there is a previous prototype.
6292
6293 @item -Wmissing-parameter-type @r{(C and Objective-C only)}
6294 @opindex Wmissing-parameter-type
6295 @opindex Wno-missing-parameter-type
6296 A function parameter is declared without a type specifier in K&R-style
6297 functions:
6298
6299 @smallexample
6300 void foo(bar) @{ @}
6301 @end smallexample
6302
6303 This warning is also enabled by @option{-Wextra}.
6304
6305 @item -Wmissing-prototypes @r{(C and Objective-C only)}
6306 @opindex Wmissing-prototypes
6307 @opindex Wno-missing-prototypes
6308 Warn if a global function is defined without a previous prototype
6309 declaration. This warning is issued even if the definition itself
6310 provides a prototype. Use this option to detect global functions
6311 that do not have a matching prototype declaration in a header file.
6312 This option is not valid for C++ because all function declarations
6313 provide prototypes and a non-matching declaration declares an
6314 overload rather than conflict with an earlier declaration.
6315 Use @option{-Wmissing-declarations} to detect missing declarations in C++.
6316
6317 @item -Wmissing-declarations
6318 @opindex Wmissing-declarations
6319 @opindex Wno-missing-declarations
6320 Warn if a global function is defined without a previous declaration.
6321 Do so even if the definition itself provides a prototype.
6322 Use this option to detect global functions that are not declared in
6323 header files. In C, no warnings are issued for functions with previous
6324 non-prototype declarations; use @option{-Wmissing-prototypes} to detect
6325 missing prototypes. In C++, no warnings are issued for function templates,
6326 or for inline functions, or for functions in anonymous namespaces.
6327
6328 @item -Wmissing-field-initializers
6329 @opindex Wmissing-field-initializers
6330 @opindex Wno-missing-field-initializers
6331 @opindex W
6332 @opindex Wextra
6333 @opindex Wno-extra
6334 Warn if a structure's initializer has some fields missing. For
6335 example, the following code causes such a warning, because
6336 @code{x.h} is implicitly zero:
6337
6338 @smallexample
6339 struct s @{ int f, g, h; @};
6340 struct s x = @{ 3, 4 @};
6341 @end smallexample
6342
6343 This option does not warn about designated initializers, so the following
6344 modification does not trigger a warning:
6345
6346 @smallexample
6347 struct s @{ int f, g, h; @};
6348 struct s x = @{ .f = 3, .g = 4 @};
6349 @end smallexample
6350
6351 In C this option does not warn about the universal zero initializer
6352 @samp{@{ 0 @}}:
6353
6354 @smallexample
6355 struct s @{ int f, g, h; @};
6356 struct s x = @{ 0 @};
6357 @end smallexample
6358
6359 Likewise, in C++ this option does not warn about the empty @{ @}
6360 initializer, for example:
6361
6362 @smallexample
6363 struct s @{ int f, g, h; @};
6364 s x = @{ @};
6365 @end smallexample
6366
6367 This warning is included in @option{-Wextra}. To get other @option{-Wextra}
6368 warnings without this one, use @option{-Wextra -Wno-missing-field-initializers}.
6369
6370 @item -Wno-multichar
6371 @opindex Wno-multichar
6372 @opindex Wmultichar
6373 Do not warn if a multicharacter constant (@samp{'FOOF'}) is used.
6374 Usually they indicate a typo in the user's code, as they have
6375 implementation-defined values, and should not be used in portable code.
6376
6377 @item -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]}
6378 @opindex Wnormalized=
6379 @opindex Wnormalized
6380 @opindex Wno-normalized
6381 @cindex NFC
6382 @cindex NFKC
6383 @cindex character set, input normalization
6384 In ISO C and ISO C++, two identifiers are different if they are
6385 different sequences of characters. However, sometimes when characters
6386 outside the basic ASCII character set are used, you can have two
6387 different character sequences that look the same. To avoid confusion,
6388 the ISO 10646 standard sets out some @dfn{normalization rules} which
6389 when applied ensure that two sequences that look the same are turned into
6390 the same sequence. GCC can warn you if you are using identifiers that
6391 have not been normalized; this option controls that warning.
6392
6393 There are four levels of warning supported by GCC@. The default is
6394 @option{-Wnormalized=nfc}, which warns about any identifier that is
6395 not in the ISO 10646 ``C'' normalized form, @dfn{NFC}. NFC is the
6396 recommended form for most uses. It is equivalent to
6397 @option{-Wnormalized}.
6398
6399 Unfortunately, there are some characters allowed in identifiers by
6400 ISO C and ISO C++ that, when turned into NFC, are not allowed in
6401 identifiers. That is, there's no way to use these symbols in portable
6402 ISO C or C++ and have all your identifiers in NFC@.
6403 @option{-Wnormalized=id} suppresses the warning for these characters.
6404 It is hoped that future versions of the standards involved will correct
6405 this, which is why this option is not the default.
6406
6407 You can switch the warning off for all characters by writing
6408 @option{-Wnormalized=none} or @option{-Wno-normalized}. You should
6409 only do this if you are using some other normalization scheme (like
6410 ``D''), because otherwise you can easily create bugs that are
6411 literally impossible to see.
6412
6413 Some characters in ISO 10646 have distinct meanings but look identical
6414 in some fonts or display methodologies, especially once formatting has
6415 been applied. For instance @code{\u207F}, ``SUPERSCRIPT LATIN SMALL
6416 LETTER N'', displays just like a regular @code{n} that has been
6417 placed in a superscript. ISO 10646 defines the @dfn{NFKC}
6418 normalization scheme to convert all these into a standard form as
6419 well, and GCC warns if your code is not in NFKC if you use
6420 @option{-Wnormalized=nfkc}. This warning is comparable to warning
6421 about every identifier that contains the letter O because it might be
6422 confused with the digit 0, and so is not the default, but may be
6423 useful as a local coding convention if the programming environment
6424 cannot be fixed to display these characters distinctly.
6425
6426 @item -Wno-deprecated
6427 @opindex Wno-deprecated
6428 @opindex Wdeprecated
6429 Do not warn about usage of deprecated features. @xref{Deprecated Features}.
6430
6431 @item -Wno-deprecated-declarations
6432 @opindex Wno-deprecated-declarations
6433 @opindex Wdeprecated-declarations
6434 Do not warn about uses of functions (@pxref{Function Attributes}),
6435 variables (@pxref{Variable Attributes}), and types (@pxref{Type
6436 Attributes}) marked as deprecated by using the @code{deprecated}
6437 attribute.
6438
6439 @item -Wno-overflow
6440 @opindex Wno-overflow
6441 @opindex Woverflow
6442 Do not warn about compile-time overflow in constant expressions.
6443
6444 @item -Wno-odr
6445 @opindex Wno-odr
6446 @opindex Wodr
6447 Warn about One Definition Rule violations during link-time optimization.
6448 Requires @option{-flto-odr-type-merging} to be enabled. Enabled by default.
6449
6450 @item -Wopenmp-simd
6451 @opindex Wopenm-simd
6452 Warn if the vectorizer cost model overrides the OpenMP or the Cilk Plus
6453 simd directive set by user. The @option{-fsimd-cost-model=unlimited}
6454 option can be used to relax the cost model.
6455
6456 @item -Woverride-init @r{(C and Objective-C only)}
6457 @opindex Woverride-init
6458 @opindex Wno-override-init
6459 @opindex W
6460 @opindex Wextra
6461 @opindex Wno-extra
6462 Warn if an initialized field without side effects is overridden when
6463 using designated initializers (@pxref{Designated Inits, , Designated
6464 Initializers}).
6465
6466 This warning is included in @option{-Wextra}. To get other
6467 @option{-Wextra} warnings without this one, use @option{-Wextra
6468 -Wno-override-init}.
6469
6470 @item -Woverride-init-side-effects @r{(C and Objective-C only)}
6471 @opindex Woverride-init-side-effects
6472 @opindex Wno-override-init-side-effects
6473 Warn if an initialized field with side effects is overridden when
6474 using designated initializers (@pxref{Designated Inits, , Designated
6475 Initializers}). This warning is enabled by default.
6476
6477 @item -Wpacked
6478 @opindex Wpacked
6479 @opindex Wno-packed
6480 Warn if a structure is given the packed attribute, but the packed
6481 attribute has no effect on the layout or size of the structure.
6482 Such structures may be mis-aligned for little benefit. For
6483 instance, in this code, the variable @code{f.x} in @code{struct bar}
6484 is misaligned even though @code{struct bar} does not itself
6485 have the packed attribute:
6486
6487 @smallexample
6488 @group
6489 struct foo @{
6490 int x;
6491 char a, b, c, d;
6492 @} __attribute__((packed));
6493 struct bar @{
6494 char z;
6495 struct foo f;
6496 @};
6497 @end group
6498 @end smallexample
6499
6500 @item -Wpacked-bitfield-compat
6501 @opindex Wpacked-bitfield-compat
6502 @opindex Wno-packed-bitfield-compat
6503 The 4.1, 4.2 and 4.3 series of GCC ignore the @code{packed} attribute
6504 on bit-fields of type @code{char}. This has been fixed in GCC 4.4 but
6505 the change can lead to differences in the structure layout. GCC
6506 informs you when the offset of such a field has changed in GCC 4.4.
6507 For example there is no longer a 4-bit padding between field @code{a}
6508 and @code{b} in this structure:
6509
6510 @smallexample
6511 struct foo
6512 @{
6513 char a:4;
6514 char b:8;
6515 @} __attribute__ ((packed));
6516 @end smallexample
6517
6518 This warning is enabled by default. Use
6519 @option{-Wno-packed-bitfield-compat} to disable this warning.
6520
6521 @item -Wpadded
6522 @opindex Wpadded
6523 @opindex Wno-padded
6524 Warn if padding is included in a structure, either to align an element
6525 of the structure or to align the whole structure. Sometimes when this
6526 happens it is possible to rearrange the fields of the structure to
6527 reduce the padding and so make the structure smaller.
6528
6529 @item -Wredundant-decls
6530 @opindex Wredundant-decls
6531 @opindex Wno-redundant-decls
6532 Warn if anything is declared more than once in the same scope, even in
6533 cases where multiple declaration is valid and changes nothing.
6534
6535 @item -Wrestrict
6536 @opindex Wrestrict
6537 @opindex Wno-restrict
6538 Warn when an argument passed to a restrict-qualified parameter
6539 aliases with another argument.
6540
6541 @item -Wnested-externs @r{(C and Objective-C only)}
6542 @opindex Wnested-externs
6543 @opindex Wno-nested-externs
6544 Warn if an @code{extern} declaration is encountered within a function.
6545
6546 @item -Wno-inherited-variadic-ctor
6547 @opindex Winherited-variadic-ctor
6548 @opindex Wno-inherited-variadic-ctor
6549 Suppress warnings about use of C++11 inheriting constructors when the
6550 base class inherited from has a C variadic constructor; the warning is
6551 on by default because the ellipsis is not inherited.
6552
6553 @item -Winline
6554 @opindex Winline
6555 @opindex Wno-inline
6556 Warn if a function that is declared as inline cannot be inlined.
6557 Even with this option, the compiler does not warn about failures to
6558 inline functions declared in system headers.
6559
6560 The compiler uses a variety of heuristics to determine whether or not
6561 to inline a function. For example, the compiler takes into account
6562 the size of the function being inlined and the amount of inlining
6563 that has already been done in the current function. Therefore,
6564 seemingly insignificant changes in the source program can cause the
6565 warnings produced by @option{-Winline} to appear or disappear.
6566
6567 @item -Wno-invalid-offsetof @r{(C++ and Objective-C++ only)}
6568 @opindex Wno-invalid-offsetof
6569 @opindex Winvalid-offsetof
6570 Suppress warnings from applying the @code{offsetof} macro to a non-POD
6571 type. According to the 2014 ISO C++ standard, applying @code{offsetof}
6572 to a non-standard-layout type is undefined. In existing C++ implementations,
6573 however, @code{offsetof} typically gives meaningful results.
6574 This flag is for users who are aware that they are
6575 writing nonportable code and who have deliberately chosen to ignore the
6576 warning about it.
6577
6578 The restrictions on @code{offsetof} may be relaxed in a future version
6579 of the C++ standard.
6580
6581 @item -Wint-in-bool-context
6582 @opindex Wint-in-bool-context
6583 @opindex Wno-int-in-bool-context
6584 Warn for suspicious use of integer values where boolean values are expected,
6585 such as conditional expressions (?:) using non-boolean integer constants in
6586 boolean context, like @code{if (a <= b ? 2 : 3)}. Or left shifting of signed
6587 integers in boolean context, like @code{for (a = 0; 1 << a; a++);}. Likewise
6588 for all kinds of multiplications regardless of the data type.
6589 This warning is enabled by @option{-Wall}.
6590
6591 @item -Wno-int-to-pointer-cast
6592 @opindex Wno-int-to-pointer-cast
6593 @opindex Wint-to-pointer-cast
6594 Suppress warnings from casts to pointer type of an integer of a
6595 different size. In C++, casting to a pointer type of smaller size is
6596 an error. @option{Wint-to-pointer-cast} is enabled by default.
6597
6598
6599 @item -Wno-pointer-to-int-cast @r{(C and Objective-C only)}
6600 @opindex Wno-pointer-to-int-cast
6601 @opindex Wpointer-to-int-cast
6602 Suppress warnings from casts from a pointer to an integer type of a
6603 different size.
6604
6605 @item -Winvalid-pch
6606 @opindex Winvalid-pch
6607 @opindex Wno-invalid-pch
6608 Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
6609 the search path but cannot be used.
6610
6611 @item -Wlong-long
6612 @opindex Wlong-long
6613 @opindex Wno-long-long
6614 Warn if @code{long long} type is used. This is enabled by either
6615 @option{-Wpedantic} or @option{-Wtraditional} in ISO C90 and C++98
6616 modes. To inhibit the warning messages, use @option{-Wno-long-long}.
6617
6618 @item -Wvariadic-macros
6619 @opindex Wvariadic-macros
6620 @opindex Wno-variadic-macros
6621 Warn if variadic macros are used in ISO C90 mode, or if the GNU
6622 alternate syntax is used in ISO C99 mode. This is enabled by either
6623 @option{-Wpedantic} or @option{-Wtraditional}. To inhibit the warning
6624 messages, use @option{-Wno-variadic-macros}.
6625
6626 @item -Wvarargs
6627 @opindex Wvarargs
6628 @opindex Wno-varargs
6629 Warn upon questionable usage of the macros used to handle variable
6630 arguments like @code{va_start}. This is default. To inhibit the
6631 warning messages, use @option{-Wno-varargs}.
6632
6633 @item -Wvector-operation-performance
6634 @opindex Wvector-operation-performance
6635 @opindex Wno-vector-operation-performance
6636 Warn if vector operation is not implemented via SIMD capabilities of the
6637 architecture. Mainly useful for the performance tuning.
6638 Vector operation can be implemented @code{piecewise}, which means that the
6639 scalar operation is performed on every vector element;
6640 @code{in parallel}, which means that the vector operation is implemented
6641 using scalars of wider type, which normally is more performance efficient;
6642 and @code{as a single scalar}, which means that vector fits into a
6643 scalar type.
6644
6645 @item -Wno-virtual-move-assign
6646 @opindex Wvirtual-move-assign
6647 @opindex Wno-virtual-move-assign
6648 Suppress warnings about inheriting from a virtual base with a
6649 non-trivial C++11 move assignment operator. This is dangerous because
6650 if the virtual base is reachable along more than one path, it is
6651 moved multiple times, which can mean both objects end up in the
6652 moved-from state. If the move assignment operator is written to avoid
6653 moving from a moved-from object, this warning can be disabled.
6654
6655 @item -Wvla
6656 @opindex Wvla
6657 @opindex Wno-vla
6658 Warn if a variable-length array is used in the code.
6659 @option{-Wno-vla} prevents the @option{-Wpedantic} warning of
6660 the variable-length array.
6661
6662 @item -Wvla-larger-than=@var{n}
6663 If this option is used, the compiler will warn on uses of
6664 variable-length arrays where the size is either unbounded, or bounded
6665 by an argument that can be larger than @var{n} bytes. This is similar
6666 to how @option{-Walloca-larger-than=@var{n}} works, but with
6667 variable-length arrays.
6668
6669 Note that GCC may optimize small variable-length arrays of a known
6670 value into plain arrays, so this warning may not get triggered for
6671 such arrays.
6672
6673 This warning is not enabled by @option{-Wall}, and is only active when
6674 @option{-ftree-vrp} is active (default for @option{-O2} and above).
6675
6676 See also @option{-Walloca-larger-than=@var{n}}.
6677
6678 @item -Wvolatile-register-var
6679 @opindex Wvolatile-register-var
6680 @opindex Wno-volatile-register-var
6681 Warn if a register variable is declared volatile. The volatile
6682 modifier does not inhibit all optimizations that may eliminate reads
6683 and/or writes to register variables. This warning is enabled by
6684 @option{-Wall}.
6685
6686 @item -Wdisabled-optimization
6687 @opindex Wdisabled-optimization
6688 @opindex Wno-disabled-optimization
6689 Warn if a requested optimization pass is disabled. This warning does
6690 not generally indicate that there is anything wrong with your code; it
6691 merely indicates that GCC's optimizers are unable to handle the code
6692 effectively. Often, the problem is that your code is too big or too
6693 complex; GCC refuses to optimize programs when the optimization
6694 itself is likely to take inordinate amounts of time.
6695
6696 @item -Wpointer-sign @r{(C and Objective-C only)}
6697 @opindex Wpointer-sign
6698 @opindex Wno-pointer-sign
6699 Warn for pointer argument passing or assignment with different signedness.
6700 This option is only supported for C and Objective-C@. It is implied by
6701 @option{-Wall} and by @option{-Wpedantic}, which can be disabled with
6702 @option{-Wno-pointer-sign}.
6703
6704 @item -Wstack-protector
6705 @opindex Wstack-protector
6706 @opindex Wno-stack-protector
6707 This option is only active when @option{-fstack-protector} is active. It
6708 warns about functions that are not protected against stack smashing.
6709
6710 @item -Woverlength-strings
6711 @opindex Woverlength-strings
6712 @opindex Wno-overlength-strings
6713 Warn about string constants that are longer than the ``minimum
6714 maximum'' length specified in the C standard. Modern compilers
6715 generally allow string constants that are much longer than the
6716 standard's minimum limit, but very portable programs should avoid
6717 using longer strings.
6718
6719 The limit applies @emph{after} string constant concatenation, and does
6720 not count the trailing NUL@. In C90, the limit was 509 characters; in
6721 C99, it was raised to 4095. C++98 does not specify a normative
6722 minimum maximum, so we do not diagnose overlength strings in C++@.
6723
6724 This option is implied by @option{-Wpedantic}, and can be disabled with
6725 @option{-Wno-overlength-strings}.
6726
6727 @item -Wunsuffixed-float-constants @r{(C and Objective-C only)}
6728 @opindex Wunsuffixed-float-constants
6729
6730 Issue a warning for any floating constant that does not have
6731 a suffix. When used together with @option{-Wsystem-headers} it
6732 warns about such constants in system header files. This can be useful
6733 when preparing code to use with the @code{FLOAT_CONST_DECIMAL64} pragma
6734 from the decimal floating-point extension to C99.
6735
6736 @item -Wno-designated-init @r{(C and Objective-C only)}
6737 Suppress warnings when a positional initializer is used to initialize
6738 a structure that has been marked with the @code{designated_init}
6739 attribute.
6740
6741 @item -Whsa
6742 Issue a warning when HSAIL cannot be emitted for the compiled function or
6743 OpenMP construct.
6744
6745 @end table
6746
6747 @node Debugging Options
6748 @section Options for Debugging Your Program
6749 @cindex options, debugging
6750 @cindex debugging information options
6751
6752 To tell GCC to emit extra information for use by a debugger, in almost
6753 all cases you need only to add @option{-g} to your other options.
6754
6755 GCC allows you to use @option{-g} with
6756 @option{-O}. The shortcuts taken by optimized code may occasionally
6757 be surprising: some variables you declared may not exist
6758 at all; flow of control may briefly move where you did not expect it;
6759 some statements may not be executed because they compute constant
6760 results or their values are already at hand; some statements may
6761 execute in different places because they have been moved out of loops.
6762 Nevertheless it is possible to debug optimized output. This makes
6763 it reasonable to use the optimizer for programs that might have bugs.
6764
6765 If you are not using some other optimization option, consider
6766 using @option{-Og} (@pxref{Optimize Options}) with @option{-g}.
6767 With no @option{-O} option at all, some compiler passes that collect
6768 information useful for debugging do not run at all, so that
6769 @option{-Og} may result in a better debugging experience.
6770
6771 @table @gcctabopt
6772 @item -g
6773 @opindex g
6774 Produce debugging information in the operating system's native format
6775 (stabs, COFF, XCOFF, or DWARF)@. GDB can work with this debugging
6776 information.
6777
6778 On most systems that use stabs format, @option{-g} enables use of extra
6779 debugging information that only GDB can use; this extra information
6780 makes debugging work better in GDB but probably makes other debuggers
6781 crash or
6782 refuse to read the program. If you want to control for certain whether
6783 to generate the extra information, use @option{-gstabs+}, @option{-gstabs},
6784 @option{-gxcoff+}, @option{-gxcoff}, or @option{-gvms} (see below).
6785
6786 @item -ggdb
6787 @opindex ggdb
6788 Produce debugging information for use by GDB@. This means to use the
6789 most expressive format available (DWARF, stabs, or the native format
6790 if neither of those are supported), including GDB extensions if at all
6791 possible.
6792
6793 @item -gdwarf
6794 @itemx -gdwarf-@var{version}
6795 @opindex gdwarf
6796 Produce debugging information in DWARF format (if that is supported).
6797 The value of @var{version} may be either 2, 3, 4 or 5; the default version
6798 for most targets is 4. DWARF Version 5 is only experimental.
6799
6800 Note that with DWARF Version 2, some ports require and always
6801 use some non-conflicting DWARF 3 extensions in the unwind tables.
6802
6803 Version 4 may require GDB 7.0 and @option{-fvar-tracking-assignments}
6804 for maximum benefit.
6805
6806 GCC no longer supports DWARF Version 1, which is substantially
6807 different than Version 2 and later. For historical reasons, some
6808 other DWARF-related options (including @option{-feliminate-dwarf2-dups}
6809 and @option{-fno-dwarf2-cfi-asm}) retain a reference to DWARF Version 2
6810 in their names, but apply to all currently-supported versions of DWARF.
6811
6812 @item -gstabs
6813 @opindex gstabs
6814 Produce debugging information in stabs format (if that is supported),
6815 without GDB extensions. This is the format used by DBX on most BSD
6816 systems. On MIPS, Alpha and System V Release 4 systems this option
6817 produces stabs debugging output that is not understood by DBX or SDB@.
6818 On System V Release 4 systems this option requires the GNU assembler.
6819
6820 @item -gstabs+
6821 @opindex gstabs+
6822 Produce debugging information in stabs format (if that is supported),
6823 using GNU extensions understood only by the GNU debugger (GDB)@. The
6824 use of these extensions is likely to make other debuggers crash or
6825 refuse to read the program.
6826
6827 @item -gcoff
6828 @opindex gcoff
6829 Produce debugging information in COFF format (if that is supported).
6830 This is the format used by SDB on most System V systems prior to
6831 System V Release 4.
6832
6833 @item -gxcoff
6834 @opindex gxcoff
6835 Produce debugging information in XCOFF format (if that is supported).
6836 This is the format used by the DBX debugger on IBM RS/6000 systems.
6837
6838 @item -gxcoff+
6839 @opindex gxcoff+
6840 Produce debugging information in XCOFF format (if that is supported),
6841 using GNU extensions understood only by the GNU debugger (GDB)@. The
6842 use of these extensions is likely to make other debuggers crash or
6843 refuse to read the program, and may cause assemblers other than the GNU
6844 assembler (GAS) to fail with an error.
6845
6846 @item -gvms
6847 @opindex gvms
6848 Produce debugging information in Alpha/VMS debug format (if that is
6849 supported). This is the format used by DEBUG on Alpha/VMS systems.
6850
6851 @item -g@var{level}
6852 @itemx -ggdb@var{level}
6853 @itemx -gstabs@var{level}
6854 @itemx -gcoff@var{level}
6855 @itemx -gxcoff@var{level}
6856 @itemx -gvms@var{level}
6857 Request debugging information and also use @var{level} to specify how
6858 much information. The default level is 2.
6859
6860 Level 0 produces no debug information at all. Thus, @option{-g0} negates
6861 @option{-g}.
6862
6863 Level 1 produces minimal information, enough for making backtraces in
6864 parts of the program that you don't plan to debug. This includes
6865 descriptions of functions and external variables, and line number
6866 tables, but no information about local variables.
6867
6868 Level 3 includes extra information, such as all the macro definitions
6869 present in the program. Some debuggers support macro expansion when
6870 you use @option{-g3}.
6871
6872 @option{-gdwarf} does not accept a concatenated debug level, to avoid
6873 confusion with @option{-gdwarf-@var{level}}.
6874 Instead use an additional @option{-g@var{level}} option to change the
6875 debug level for DWARF.
6876
6877 @item -feliminate-unused-debug-symbols
6878 @opindex feliminate-unused-debug-symbols
6879 Produce debugging information in stabs format (if that is supported),
6880 for only symbols that are actually used.
6881
6882 @item -femit-class-debug-always
6883 @opindex femit-class-debug-always
6884 Instead of emitting debugging information for a C++ class in only one
6885 object file, emit it in all object files using the class. This option
6886 should be used only with debuggers that are unable to handle the way GCC
6887 normally emits debugging information for classes because using this
6888 option increases the size of debugging information by as much as a
6889 factor of two.
6890
6891 @item -fno-merge-debug-strings
6892 @opindex fmerge-debug-strings
6893 @opindex fno-merge-debug-strings
6894 Direct the linker to not merge together strings in the debugging
6895 information that are identical in different object files. Merging is
6896 not supported by all assemblers or linkers. Merging decreases the size
6897 of the debug information in the output file at the cost of increasing
6898 link processing time. Merging is enabled by default.
6899
6900 @item -fdebug-prefix-map=@var{old}=@var{new}
6901 @opindex fdebug-prefix-map
6902 When compiling files in directory @file{@var{old}}, record debugging
6903 information describing them as in @file{@var{new}} instead.
6904
6905 @item -fvar-tracking
6906 @opindex fvar-tracking
6907 Run variable tracking pass. It computes where variables are stored at each
6908 position in code. Better debugging information is then generated
6909 (if the debugging information format supports this information).
6910
6911 It is enabled by default when compiling with optimization (@option{-Os},
6912 @option{-O}, @option{-O2}, @dots{}), debugging information (@option{-g}) and
6913 the debug info format supports it.
6914
6915 @item -fvar-tracking-assignments
6916 @opindex fvar-tracking-assignments
6917 @opindex fno-var-tracking-assignments
6918 Annotate assignments to user variables early in the compilation and
6919 attempt to carry the annotations over throughout the compilation all the
6920 way to the end, in an attempt to improve debug information while
6921 optimizing. Use of @option{-gdwarf-4} is recommended along with it.
6922
6923 It can be enabled even if var-tracking is disabled, in which case
6924 annotations are created and maintained, but discarded at the end.
6925 By default, this flag is enabled together with @option{-fvar-tracking},
6926 except when selective scheduling is enabled.
6927
6928 @item -gsplit-dwarf
6929 @opindex gsplit-dwarf
6930 Separate as much DWARF debugging information as possible into a
6931 separate output file with the extension @file{.dwo}. This option allows
6932 the build system to avoid linking files with debug information. To
6933 be useful, this option requires a debugger capable of reading @file{.dwo}
6934 files.
6935
6936 @item -gpubnames
6937 @opindex gpubnames
6938 Generate DWARF @code{.debug_pubnames} and @code{.debug_pubtypes} sections.
6939
6940 @item -ggnu-pubnames
6941 @opindex ggnu-pubnames
6942 Generate @code{.debug_pubnames} and @code{.debug_pubtypes} sections in a format
6943 suitable for conversion into a GDB@ index. This option is only useful
6944 with a linker that can produce GDB@ index version 7.
6945
6946 @item -fdebug-types-section
6947 @opindex fdebug-types-section
6948 @opindex fno-debug-types-section
6949 When using DWARF Version 4 or higher, type DIEs can be put into
6950 their own @code{.debug_types} section instead of making them part of the
6951 @code{.debug_info} section. It is more efficient to put them in a separate
6952 comdat sections since the linker can then remove duplicates.
6953 But not all DWARF consumers support @code{.debug_types} sections yet
6954 and on some objects @code{.debug_types} produces larger instead of smaller
6955 debugging information.
6956
6957 @item -grecord-gcc-switches
6958 @item -gno-record-gcc-switches
6959 @opindex grecord-gcc-switches
6960 @opindex gno-record-gcc-switches
6961 This switch causes the command-line options used to invoke the
6962 compiler that may affect code generation to be appended to the
6963 DW_AT_producer attribute in DWARF debugging information. The options
6964 are concatenated with spaces separating them from each other and from
6965 the compiler version.
6966 It is enabled by default.
6967 See also @option{-frecord-gcc-switches} for another
6968 way of storing compiler options into the object file.
6969
6970 @item -gstrict-dwarf
6971 @opindex gstrict-dwarf
6972 Disallow using extensions of later DWARF standard version than selected
6973 with @option{-gdwarf-@var{version}}. On most targets using non-conflicting
6974 DWARF extensions from later standard versions is allowed.
6975
6976 @item -gno-strict-dwarf
6977 @opindex gno-strict-dwarf
6978 Allow using extensions of later DWARF standard version than selected with
6979 @option{-gdwarf-@var{version}}.
6980
6981 @item -gcolumn-info
6982 @item -gno-column-info
6983 @opindex gcolumn-info
6984 @opindex gno-column-info
6985 Emit location column information into DWARF debugging information, rather
6986 than just file and line.
6987 This option is disabled by default.
6988
6989 @item -gz@r{[}=@var{type}@r{]}
6990 @opindex gz
6991 Produce compressed debug sections in DWARF format, if that is supported.
6992 If @var{type} is not given, the default type depends on the capabilities
6993 of the assembler and linker used. @var{type} may be one of
6994 @samp{none} (don't compress debug sections), @samp{zlib} (use zlib
6995 compression in ELF gABI format), or @samp{zlib-gnu} (use zlib
6996 compression in traditional GNU format). If the linker doesn't support
6997 writing compressed debug sections, the option is rejected. Otherwise,
6998 if the assembler does not support them, @option{-gz} is silently ignored
6999 when producing object files.
7000
7001 @item -feliminate-dwarf2-dups
7002 @opindex feliminate-dwarf2-dups
7003 Compress DWARF debugging information by eliminating duplicated
7004 information about each symbol. This option only makes sense when
7005 generating DWARF debugging information.
7006
7007 @item -femit-struct-debug-baseonly
7008 @opindex femit-struct-debug-baseonly
7009 Emit debug information for struct-like types
7010 only when the base name of the compilation source file
7011 matches the base name of file in which the struct is defined.
7012
7013 This option substantially reduces the size of debugging information,
7014 but at significant potential loss in type information to the debugger.
7015 See @option{-femit-struct-debug-reduced} for a less aggressive option.
7016 See @option{-femit-struct-debug-detailed} for more detailed control.
7017
7018 This option works only with DWARF debug output.
7019
7020 @item -femit-struct-debug-reduced
7021 @opindex femit-struct-debug-reduced
7022 Emit debug information for struct-like types
7023 only when the base name of the compilation source file
7024 matches the base name of file in which the type is defined,
7025 unless the struct is a template or defined in a system header.
7026
7027 This option significantly reduces the size of debugging information,
7028 with some potential loss in type information to the debugger.
7029 See @option{-femit-struct-debug-baseonly} for a more aggressive option.
7030 See @option{-femit-struct-debug-detailed} for more detailed control.
7031
7032 This option works only with DWARF debug output.
7033
7034 @item -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]}
7035 @opindex femit-struct-debug-detailed
7036 Specify the struct-like types
7037 for which the compiler generates debug information.
7038 The intent is to reduce duplicate struct debug information
7039 between different object files within the same program.
7040
7041 This option is a detailed version of
7042 @option{-femit-struct-debug-reduced} and @option{-femit-struct-debug-baseonly},
7043 which serves for most needs.
7044
7045 A specification has the syntax@*
7046 [@samp{dir:}|@samp{ind:}][@samp{ord:}|@samp{gen:}](@samp{any}|@samp{sys}|@samp{base}|@samp{none})
7047
7048 The optional first word limits the specification to
7049 structs that are used directly (@samp{dir:}) or used indirectly (@samp{ind:}).
7050 A struct type is used directly when it is the type of a variable, member.
7051 Indirect uses arise through pointers to structs.
7052 That is, when use of an incomplete struct is valid, the use is indirect.
7053 An example is
7054 @samp{struct one direct; struct two * indirect;}.
7055
7056 The optional second word limits the specification to
7057 ordinary structs (@samp{ord:}) or generic structs (@samp{gen:}).
7058 Generic structs are a bit complicated to explain.
7059 For C++, these are non-explicit specializations of template classes,
7060 or non-template classes within the above.
7061 Other programming languages have generics,
7062 but @option{-femit-struct-debug-detailed} does not yet implement them.
7063
7064 The third word specifies the source files for those
7065 structs for which the compiler should emit debug information.
7066 The values @samp{none} and @samp{any} have the normal meaning.
7067 The value @samp{base} means that
7068 the base of name of the file in which the type declaration appears
7069 must match the base of the name of the main compilation file.
7070 In practice, this means that when compiling @file{foo.c}, debug information
7071 is generated for types declared in that file and @file{foo.h},
7072 but not other header files.
7073 The value @samp{sys} means those types satisfying @samp{base}
7074 or declared in system or compiler headers.
7075
7076 You may need to experiment to determine the best settings for your application.
7077
7078 The default is @option{-femit-struct-debug-detailed=all}.
7079
7080 This option works only with DWARF debug output.
7081
7082 @item -fno-dwarf2-cfi-asm
7083 @opindex fdwarf2-cfi-asm
7084 @opindex fno-dwarf2-cfi-asm
7085 Emit DWARF unwind info as compiler generated @code{.eh_frame} section
7086 instead of using GAS @code{.cfi_*} directives.
7087
7088 @item -fno-eliminate-unused-debug-types
7089 @opindex feliminate-unused-debug-types
7090 @opindex fno-eliminate-unused-debug-types
7091 Normally, when producing DWARF output, GCC avoids producing debug symbol
7092 output for types that are nowhere used in the source file being compiled.
7093 Sometimes it is useful to have GCC emit debugging
7094 information for all types declared in a compilation
7095 unit, regardless of whether or not they are actually used
7096 in that compilation unit, for example
7097 if, in the debugger, you want to cast a value to a type that is
7098 not actually used in your program (but is declared). More often,
7099 however, this results in a significant amount of wasted space.
7100 @end table
7101
7102 @node Optimize Options
7103 @section Options That Control Optimization
7104 @cindex optimize options
7105 @cindex options, optimization
7106
7107 These options control various sorts of optimizations.
7108
7109 Without any optimization option, the compiler's goal is to reduce the
7110 cost of compilation and to make debugging produce the expected
7111 results. Statements are independent: if you stop the program with a
7112 breakpoint between statements, you can then assign a new value to any
7113 variable or change the program counter to any other statement in the
7114 function and get exactly the results you expect from the source
7115 code.
7116
7117 Turning on optimization flags makes the compiler attempt to improve
7118 the performance and/or code size at the expense of compilation time
7119 and possibly the ability to debug the program.
7120
7121 The compiler performs optimization based on the knowledge it has of the
7122 program. Compiling multiple files at once to a single output file mode allows
7123 the compiler to use information gained from all of the files when compiling
7124 each of them.
7125
7126 Not all optimizations are controlled directly by a flag. Only
7127 optimizations that have a flag are listed in this section.
7128
7129 Most optimizations are only enabled if an @option{-O} level is set on
7130 the command line. Otherwise they are disabled, even if individual
7131 optimization flags are specified.
7132
7133 Depending on the target and how GCC was configured, a slightly different
7134 set of optimizations may be enabled at each @option{-O} level than
7135 those listed here. You can invoke GCC with @option{-Q --help=optimizers}
7136 to find out the exact set of optimizations that are enabled at each level.
7137 @xref{Overall Options}, for examples.
7138
7139 @table @gcctabopt
7140 @item -O
7141 @itemx -O1
7142 @opindex O
7143 @opindex O1
7144 Optimize. Optimizing compilation takes somewhat more time, and a lot
7145 more memory for a large function.
7146
7147 With @option{-O}, the compiler tries to reduce code size and execution
7148 time, without performing any optimizations that take a great deal of
7149 compilation time.
7150
7151 @option{-O} turns on the following optimization flags:
7152 @gccoptlist{
7153 -fauto-inc-dec @gol
7154 -fbranch-count-reg @gol
7155 -fcombine-stack-adjustments @gol
7156 -fcompare-elim @gol
7157 -fcprop-registers @gol
7158 -fdce @gol
7159 -fdefer-pop @gol
7160 -fdelayed-branch @gol
7161 -fdse @gol
7162 -fforward-propagate @gol
7163 -fguess-branch-probability @gol
7164 -fif-conversion2 @gol
7165 -fif-conversion @gol
7166 -finline-functions-called-once @gol
7167 -fipa-pure-const @gol
7168 -fipa-profile @gol
7169 -fipa-reference @gol
7170 -fmerge-constants @gol
7171 -fmove-loop-invariants @gol
7172 -freorder-blocks @gol
7173 -fshrink-wrap @gol
7174 -fshrink-wrap-separate @gol
7175 -fsplit-wide-types @gol
7176 -fssa-backprop @gol
7177 -fssa-phiopt @gol
7178 -ftree-bit-ccp @gol
7179 -ftree-ccp @gol
7180 -ftree-ch @gol
7181 -ftree-coalesce-vars @gol
7182 -ftree-copy-prop @gol
7183 -ftree-dce @gol
7184 -ftree-dominator-opts @gol
7185 -ftree-dse @gol
7186 -ftree-forwprop @gol
7187 -ftree-fre @gol
7188 -ftree-phiprop @gol
7189 -ftree-sink @gol
7190 -ftree-slsr @gol
7191 -ftree-sra @gol
7192 -ftree-pta @gol
7193 -ftree-ter @gol
7194 -funit-at-a-time}
7195
7196 @option{-O} also turns on @option{-fomit-frame-pointer} on machines
7197 where doing so does not interfere with debugging.
7198
7199 @item -O2
7200 @opindex O2
7201 Optimize even more. GCC performs nearly all supported optimizations
7202 that do not involve a space-speed tradeoff.
7203 As compared to @option{-O}, this option increases both compilation time
7204 and the performance of the generated code.
7205
7206 @option{-O2} turns on all optimization flags specified by @option{-O}. It
7207 also turns on the following optimization flags:
7208 @gccoptlist{-fthread-jumps @gol
7209 -falign-functions -falign-jumps @gol
7210 -falign-loops -falign-labels @gol
7211 -fcaller-saves @gol
7212 -fcrossjumping @gol
7213 -fcse-follow-jumps -fcse-skip-blocks @gol
7214 -fdelete-null-pointer-checks @gol
7215 -fdevirtualize -fdevirtualize-speculatively @gol
7216 -fexpensive-optimizations @gol
7217 -fgcse -fgcse-lm @gol
7218 -fhoist-adjacent-loads @gol
7219 -finline-small-functions @gol
7220 -findirect-inlining @gol
7221 -fipa-cp @gol
7222 -fipa-bit-cp @gol
7223 -fipa-vrp @gol
7224 -fipa-sra @gol
7225 -fipa-icf @gol
7226 -fisolate-erroneous-paths-dereference @gol
7227 -flra-remat @gol
7228 -foptimize-sibling-calls @gol
7229 -foptimize-strlen @gol
7230 -fpartial-inlining @gol
7231 -fpeephole2 @gol
7232 -freorder-blocks-algorithm=stc @gol
7233 -freorder-blocks-and-partition -freorder-functions @gol
7234 -frerun-cse-after-loop @gol
7235 -fsched-interblock -fsched-spec @gol
7236 -fschedule-insns -fschedule-insns2 @gol
7237 -fstore-merging @gol
7238 -fstrict-aliasing @gol
7239 -ftree-builtin-call-dce @gol
7240 -ftree-switch-conversion -ftree-tail-merge @gol
7241 -fcode-hoisting @gol
7242 -ftree-pre @gol
7243 -ftree-vrp @gol
7244 -fipa-ra}
7245
7246 Please note the warning under @option{-fgcse} about
7247 invoking @option{-O2} on programs that use computed gotos.
7248
7249 @item -O3
7250 @opindex O3
7251 Optimize yet more. @option{-O3} turns on all optimizations specified
7252 by @option{-O2} and also turns on the @option{-finline-functions},
7253 @option{-funswitch-loops}, @option{-fpredictive-commoning},
7254 @option{-fgcse-after-reload}, @option{-ftree-loop-vectorize},
7255 @option{-ftree-loop-distribute-patterns}, @option{-fsplit-paths}
7256 @option{-ftree-slp-vectorize}, @option{-fvect-cost-model},
7257 @option{-ftree-partial-pre}, @option{-fpeel-loops}
7258 and @option{-fipa-cp-clone} options.
7259
7260 @item -O0
7261 @opindex O0
7262 Reduce compilation time and make debugging produce the expected
7263 results. This is the default.
7264
7265 @item -Os
7266 @opindex Os
7267 Optimize for size. @option{-Os} enables all @option{-O2} optimizations that
7268 do not typically increase code size. It also performs further
7269 optimizations designed to reduce code size.
7270
7271 @option{-Os} disables the following optimization flags:
7272 @gccoptlist{-falign-functions -falign-jumps -falign-loops @gol
7273 -falign-labels -freorder-blocks -freorder-blocks-algorithm=stc @gol
7274 -freorder-blocks-and-partition -fprefetch-loop-arrays}
7275
7276 @item -Ofast
7277 @opindex Ofast
7278 Disregard strict standards compliance. @option{-Ofast} enables all
7279 @option{-O3} optimizations. It also enables optimizations that are not
7280 valid for all standard-compliant programs.
7281 It turns on @option{-ffast-math} and the Fortran-specific
7282 @option{-fno-protect-parens} and @option{-fstack-arrays}.
7283
7284 @item -Og
7285 @opindex Og
7286 Optimize debugging experience. @option{-Og} enables optimizations
7287 that do not interfere with debugging. It should be the optimization
7288 level of choice for the standard edit-compile-debug cycle, offering
7289 a reasonable level of optimization while maintaining fast compilation
7290 and a good debugging experience.
7291 @end table
7292
7293 If you use multiple @option{-O} options, with or without level numbers,
7294 the last such option is the one that is effective.
7295
7296 Options of the form @option{-f@var{flag}} specify machine-independent
7297 flags. Most flags have both positive and negative forms; the negative
7298 form of @option{-ffoo} is @option{-fno-foo}. In the table
7299 below, only one of the forms is listed---the one you typically
7300 use. You can figure out the other form by either removing @samp{no-}
7301 or adding it.
7302
7303 The following options control specific optimizations. They are either
7304 activated by @option{-O} options or are related to ones that are. You
7305 can use the following flags in the rare cases when ``fine-tuning'' of
7306 optimizations to be performed is desired.
7307
7308 @table @gcctabopt
7309 @item -fno-defer-pop
7310 @opindex fno-defer-pop
7311 Always pop the arguments to each function call as soon as that function
7312 returns. For machines that must pop arguments after a function call,
7313 the compiler normally lets arguments accumulate on the stack for several
7314 function calls and pops them all at once.
7315
7316 Disabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7317
7318 @item -fforward-propagate
7319 @opindex fforward-propagate
7320 Perform a forward propagation pass on RTL@. The pass tries to combine two
7321 instructions and checks if the result can be simplified. If loop unrolling
7322 is active, two passes are performed and the second is scheduled after
7323 loop unrolling.
7324
7325 This option is enabled by default at optimization levels @option{-O},
7326 @option{-O2}, @option{-O3}, @option{-Os}.
7327
7328 @item -ffp-contract=@var{style}
7329 @opindex ffp-contract
7330 @option{-ffp-contract=off} disables floating-point expression contraction.
7331 @option{-ffp-contract=fast} enables floating-point expression contraction
7332 such as forming of fused multiply-add operations if the target has
7333 native support for them.
7334 @option{-ffp-contract=on} enables floating-point expression contraction
7335 if allowed by the language standard. This is currently not implemented
7336 and treated equal to @option{-ffp-contract=off}.
7337
7338 The default is @option{-ffp-contract=fast}.
7339
7340 @item -fomit-frame-pointer
7341 @opindex fomit-frame-pointer
7342 Don't keep the frame pointer in a register for functions that
7343 don't need one. This avoids the instructions to save, set up and
7344 restore frame pointers; it also makes an extra register available
7345 in many functions. @strong{It also makes debugging impossible on
7346 some machines.}
7347
7348 On some machines, such as the VAX, this flag has no effect, because
7349 the standard calling sequence automatically handles the frame pointer
7350 and nothing is saved by pretending it doesn't exist. The
7351 machine-description macro @code{FRAME_POINTER_REQUIRED} controls
7352 whether a target machine supports this flag. @xref{Registers,,Register
7353 Usage, gccint, GNU Compiler Collection (GCC) Internals}.
7354
7355 The default setting (when not optimizing for
7356 size) for 32-bit GNU/Linux x86 and 32-bit Darwin x86 targets is
7357 @option{-fomit-frame-pointer}. You can configure GCC with the
7358 @option{--enable-frame-pointer} configure option to change the default.
7359
7360 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7361
7362 @item -foptimize-sibling-calls
7363 @opindex foptimize-sibling-calls
7364 Optimize sibling and tail recursive calls.
7365
7366 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7367
7368 @item -foptimize-strlen
7369 @opindex foptimize-strlen
7370 Optimize various standard C string functions (e.g. @code{strlen},
7371 @code{strchr} or @code{strcpy}) and
7372 their @code{_FORTIFY_SOURCE} counterparts into faster alternatives.
7373
7374 Enabled at levels @option{-O2}, @option{-O3}.
7375
7376 @item -fno-inline
7377 @opindex fno-inline
7378 Do not expand any functions inline apart from those marked with
7379 the @code{always_inline} attribute. This is the default when not
7380 optimizing.
7381
7382 Single functions can be exempted from inlining by marking them
7383 with the @code{noinline} attribute.
7384
7385 @item -finline-small-functions
7386 @opindex finline-small-functions
7387 Integrate functions into their callers when their body is smaller than expected
7388 function call code (so overall size of program gets smaller). The compiler
7389 heuristically decides which functions are simple enough to be worth integrating
7390 in this way. This inlining applies to all functions, even those not declared
7391 inline.
7392
7393 Enabled at level @option{-O2}.
7394
7395 @item -findirect-inlining
7396 @opindex findirect-inlining
7397 Inline also indirect calls that are discovered to be known at compile
7398 time thanks to previous inlining. This option has any effect only
7399 when inlining itself is turned on by the @option{-finline-functions}
7400 or @option{-finline-small-functions} options.
7401
7402 Enabled at level @option{-O2}.
7403
7404 @item -finline-functions
7405 @opindex finline-functions
7406 Consider all functions for inlining, even if they are not declared inline.
7407 The compiler heuristically decides which functions are worth integrating
7408 in this way.
7409
7410 If all calls to a given function are integrated, and the function is
7411 declared @code{static}, then the function is normally not output as
7412 assembler code in its own right.
7413
7414 Enabled at level @option{-O3}.
7415
7416 @item -finline-functions-called-once
7417 @opindex finline-functions-called-once
7418 Consider all @code{static} functions called once for inlining into their
7419 caller even if they are not marked @code{inline}. If a call to a given
7420 function is integrated, then the function is not output as assembler code
7421 in its own right.
7422
7423 Enabled at levels @option{-O1}, @option{-O2}, @option{-O3} and @option{-Os}.
7424
7425 @item -fearly-inlining
7426 @opindex fearly-inlining
7427 Inline functions marked by @code{always_inline} and functions whose body seems
7428 smaller than the function call overhead early before doing
7429 @option{-fprofile-generate} instrumentation and real inlining pass. Doing so
7430 makes profiling significantly cheaper and usually inlining faster on programs
7431 having large chains of nested wrapper functions.
7432
7433 Enabled by default.
7434
7435 @item -fipa-sra
7436 @opindex fipa-sra
7437 Perform interprocedural scalar replacement of aggregates, removal of
7438 unused parameters and replacement of parameters passed by reference
7439 by parameters passed by value.
7440
7441 Enabled at levels @option{-O2}, @option{-O3} and @option{-Os}.
7442
7443 @item -finline-limit=@var{n}
7444 @opindex finline-limit
7445 By default, GCC limits the size of functions that can be inlined. This flag
7446 allows coarse control of this limit. @var{n} is the size of functions that
7447 can be inlined in number of pseudo instructions.
7448
7449 Inlining is actually controlled by a number of parameters, which may be
7450 specified individually by using @option{--param @var{name}=@var{value}}.
7451 The @option{-finline-limit=@var{n}} option sets some of these parameters
7452 as follows:
7453
7454 @table @gcctabopt
7455 @item max-inline-insns-single
7456 is set to @var{n}/2.
7457 @item max-inline-insns-auto
7458 is set to @var{n}/2.
7459 @end table
7460
7461 See below for a documentation of the individual
7462 parameters controlling inlining and for the defaults of these parameters.
7463
7464 @emph{Note:} there may be no value to @option{-finline-limit} that results
7465 in default behavior.
7466
7467 @emph{Note:} pseudo instruction represents, in this particular context, an
7468 abstract measurement of function's size. In no way does it represent a count
7469 of assembly instructions and as such its exact meaning might change from one
7470 release to an another.
7471
7472 @item -fno-keep-inline-dllexport
7473 @opindex fno-keep-inline-dllexport
7474 This is a more fine-grained version of @option{-fkeep-inline-functions},
7475 which applies only to functions that are declared using the @code{dllexport}
7476 attribute or declspec. @xref{Function Attributes,,Declaring Attributes of
7477 Functions}.
7478
7479 @item -fkeep-inline-functions
7480 @opindex fkeep-inline-functions
7481 In C, emit @code{static} functions that are declared @code{inline}
7482 into the object file, even if the function has been inlined into all
7483 of its callers. This switch does not affect functions using the
7484 @code{extern inline} extension in GNU C90@. In C++, emit any and all
7485 inline functions into the object file.
7486
7487 @item -fkeep-static-functions
7488 @opindex fkeep-static-functions
7489 Emit @code{static} functions into the object file, even if the function
7490 is never used.
7491
7492 @item -fkeep-static-consts
7493 @opindex fkeep-static-consts
7494 Emit variables declared @code{static const} when optimization isn't turned
7495 on, even if the variables aren't referenced.
7496
7497 GCC enables this option by default. If you want to force the compiler to
7498 check if a variable is referenced, regardless of whether or not
7499 optimization is turned on, use the @option{-fno-keep-static-consts} option.
7500
7501 @item -fmerge-constants
7502 @opindex fmerge-constants
7503 Attempt to merge identical constants (string constants and floating-point
7504 constants) across compilation units.
7505
7506 This option is the default for optimized compilation if the assembler and
7507 linker support it. Use @option{-fno-merge-constants} to inhibit this
7508 behavior.
7509
7510 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7511
7512 @item -fmerge-all-constants
7513 @opindex fmerge-all-constants
7514 Attempt to merge identical constants and identical variables.
7515
7516 This option implies @option{-fmerge-constants}. In addition to
7517 @option{-fmerge-constants} this considers e.g.@: even constant initialized
7518 arrays or initialized constant variables with integral or floating-point
7519 types. Languages like C or C++ require each variable, including multiple
7520 instances of the same variable in recursive calls, to have distinct locations,
7521 so using this option results in non-conforming
7522 behavior.
7523
7524 @item -fmodulo-sched
7525 @opindex fmodulo-sched
7526 Perform swing modulo scheduling immediately before the first scheduling
7527 pass. This pass looks at innermost loops and reorders their
7528 instructions by overlapping different iterations.
7529
7530 @item -fmodulo-sched-allow-regmoves
7531 @opindex fmodulo-sched-allow-regmoves
7532 Perform more aggressive SMS-based modulo scheduling with register moves
7533 allowed. By setting this flag certain anti-dependences edges are
7534 deleted, which triggers the generation of reg-moves based on the
7535 life-range analysis. This option is effective only with
7536 @option{-fmodulo-sched} enabled.
7537
7538 @item -fno-branch-count-reg
7539 @opindex fno-branch-count-reg
7540 Avoid running a pass scanning for opportunities to use ``decrement and
7541 branch'' instructions on a count register instead of generating sequences
7542 of instructions that decrement a register, compare it against zero, and
7543 then branch based upon the result. This option is only meaningful on
7544 architectures that support such instructions, which include x86, PowerPC,
7545 IA-64 and S/390. Note that the @option{-fno-branch-count-reg} option
7546 doesn't remove the decrement and branch instructions from the generated
7547 instruction stream introduced by other optimization passes.
7548
7549 Enabled by default at @option{-O1} and higher.
7550
7551 The default is @option{-fbranch-count-reg}.
7552
7553 @item -fno-function-cse
7554 @opindex fno-function-cse
7555 Do not put function addresses in registers; make each instruction that
7556 calls a constant function contain the function's address explicitly.
7557
7558 This option results in less efficient code, but some strange hacks
7559 that alter the assembler output may be confused by the optimizations
7560 performed when this option is not used.
7561
7562 The default is @option{-ffunction-cse}
7563
7564 @item -fno-zero-initialized-in-bss
7565 @opindex fno-zero-initialized-in-bss
7566 If the target supports a BSS section, GCC by default puts variables that
7567 are initialized to zero into BSS@. This can save space in the resulting
7568 code.
7569
7570 This option turns off this behavior because some programs explicitly
7571 rely on variables going to the data section---e.g., so that the
7572 resulting executable can find the beginning of that section and/or make
7573 assumptions based on that.
7574
7575 The default is @option{-fzero-initialized-in-bss}.
7576
7577 @item -fthread-jumps
7578 @opindex fthread-jumps
7579 Perform optimizations that check to see if a jump branches to a
7580 location where another comparison subsumed by the first is found. If
7581 so, the first branch is redirected to either the destination of the
7582 second branch or a point immediately following it, depending on whether
7583 the condition is known to be true or false.
7584
7585 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7586
7587 @item -fsplit-wide-types
7588 @opindex fsplit-wide-types
7589 When using a type that occupies multiple registers, such as @code{long
7590 long} on a 32-bit system, split the registers apart and allocate them
7591 independently. This normally generates better code for those types,
7592 but may make debugging more difficult.
7593
7594 Enabled at levels @option{-O}, @option{-O2}, @option{-O3},
7595 @option{-Os}.
7596
7597 @item -fcse-follow-jumps
7598 @opindex fcse-follow-jumps
7599 In common subexpression elimination (CSE), scan through jump instructions
7600 when the target of the jump is not reached by any other path. For
7601 example, when CSE encounters an @code{if} statement with an
7602 @code{else} clause, CSE follows the jump when the condition
7603 tested is false.
7604
7605 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7606
7607 @item -fcse-skip-blocks
7608 @opindex fcse-skip-blocks
7609 This is similar to @option{-fcse-follow-jumps}, but causes CSE to
7610 follow jumps that conditionally skip over blocks. When CSE
7611 encounters a simple @code{if} statement with no else clause,
7612 @option{-fcse-skip-blocks} causes CSE to follow the jump around the
7613 body of the @code{if}.
7614
7615 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7616
7617 @item -frerun-cse-after-loop
7618 @opindex frerun-cse-after-loop
7619 Re-run common subexpression elimination after loop optimizations are
7620 performed.
7621
7622 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7623
7624 @item -fgcse
7625 @opindex fgcse
7626 Perform a global common subexpression elimination pass.
7627 This pass also performs global constant and copy propagation.
7628
7629 @emph{Note:} When compiling a program using computed gotos, a GCC
7630 extension, you may get better run-time performance if you disable
7631 the global common subexpression elimination pass by adding
7632 @option{-fno-gcse} to the command line.
7633
7634 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7635
7636 @item -fgcse-lm
7637 @opindex fgcse-lm
7638 When @option{-fgcse-lm} is enabled, global common subexpression elimination
7639 attempts to move loads that are only killed by stores into themselves. This
7640 allows a loop containing a load/store sequence to be changed to a load outside
7641 the loop, and a copy/store within the loop.
7642
7643 Enabled by default when @option{-fgcse} is enabled.
7644
7645 @item -fgcse-sm
7646 @opindex fgcse-sm
7647 When @option{-fgcse-sm} is enabled, a store motion pass is run after
7648 global common subexpression elimination. This pass attempts to move
7649 stores out of loops. When used in conjunction with @option{-fgcse-lm},
7650 loops containing a load/store sequence can be changed to a load before
7651 the loop and a store after the loop.
7652
7653 Not enabled at any optimization level.
7654
7655 @item -fgcse-las
7656 @opindex fgcse-las
7657 When @option{-fgcse-las} is enabled, the global common subexpression
7658 elimination pass eliminates redundant loads that come after stores to the
7659 same memory location (both partial and full redundancies).
7660
7661 Not enabled at any optimization level.
7662
7663 @item -fgcse-after-reload
7664 @opindex fgcse-after-reload
7665 When @option{-fgcse-after-reload} is enabled, a redundant load elimination
7666 pass is performed after reload. The purpose of this pass is to clean up
7667 redundant spilling.
7668
7669 @item -faggressive-loop-optimizations
7670 @opindex faggressive-loop-optimizations
7671 This option tells the loop optimizer to use language constraints to
7672 derive bounds for the number of iterations of a loop. This assumes that
7673 loop code does not invoke undefined behavior by for example causing signed
7674 integer overflows or out-of-bound array accesses. The bounds for the
7675 number of iterations of a loop are used to guide loop unrolling and peeling
7676 and loop exit test optimizations.
7677 This option is enabled by default.
7678
7679 @item -funconstrained-commons
7680 @opindex funconstrained-commons
7681 This option tells the compiler that variables declared in common blocks
7682 (e.g. Fortran) may later be overridden with longer trailing arrays. This
7683 prevents certain optimizations that depend on knowing the array bounds.
7684
7685 @item -fcrossjumping
7686 @opindex fcrossjumping
7687 Perform cross-jumping transformation.
7688 This transformation unifies equivalent code and saves code size. The
7689 resulting code may or may not perform better than without cross-jumping.
7690
7691 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7692
7693 @item -fauto-inc-dec
7694 @opindex fauto-inc-dec
7695 Combine increments or decrements of addresses with memory accesses.
7696 This pass is always skipped on architectures that do not have
7697 instructions to support this. Enabled by default at @option{-O} and
7698 higher on architectures that support this.
7699
7700 @item -fdce
7701 @opindex fdce
7702 Perform dead code elimination (DCE) on RTL@.
7703 Enabled by default at @option{-O} and higher.
7704
7705 @item -fdse
7706 @opindex fdse
7707 Perform dead store elimination (DSE) on RTL@.
7708 Enabled by default at @option{-O} and higher.
7709
7710 @item -fif-conversion
7711 @opindex fif-conversion
7712 Attempt to transform conditional jumps into branch-less equivalents. This
7713 includes use of conditional moves, min, max, set flags and abs instructions, and
7714 some tricks doable by standard arithmetics. The use of conditional execution
7715 on chips where it is available is controlled by @option{-fif-conversion2}.
7716
7717 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7718
7719 @item -fif-conversion2
7720 @opindex fif-conversion2
7721 Use conditional execution (where available) to transform conditional jumps into
7722 branch-less equivalents.
7723
7724 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7725
7726 @item -fdeclone-ctor-dtor
7727 @opindex fdeclone-ctor-dtor
7728 The C++ ABI requires multiple entry points for constructors and
7729 destructors: one for a base subobject, one for a complete object, and
7730 one for a virtual destructor that calls operator delete afterwards.
7731 For a hierarchy with virtual bases, the base and complete variants are
7732 clones, which means two copies of the function. With this option, the
7733 base and complete variants are changed to be thunks that call a common
7734 implementation.
7735
7736 Enabled by @option{-Os}.
7737
7738 @item -fdelete-null-pointer-checks
7739 @opindex fdelete-null-pointer-checks
7740 Assume that programs cannot safely dereference null pointers, and that
7741 no code or data element resides at address zero.
7742 This option enables simple constant
7743 folding optimizations at all optimization levels. In addition, other
7744 optimization passes in GCC use this flag to control global dataflow
7745 analyses that eliminate useless checks for null pointers; these assume
7746 that a memory access to address zero always results in a trap, so
7747 that if a pointer is checked after it has already been dereferenced,
7748 it cannot be null.
7749
7750 Note however that in some environments this assumption is not true.
7751 Use @option{-fno-delete-null-pointer-checks} to disable this optimization
7752 for programs that depend on that behavior.
7753
7754 This option is enabled by default on most targets. On Nios II ELF, it
7755 defaults to off. On AVR and CR16, this option is completely disabled.
7756
7757 Passes that use the dataflow information
7758 are enabled independently at different optimization levels.
7759
7760 @item -fdevirtualize
7761 @opindex fdevirtualize
7762 Attempt to convert calls to virtual functions to direct calls. This
7763 is done both within a procedure and interprocedurally as part of
7764 indirect inlining (@option{-findirect-inlining}) and interprocedural constant
7765 propagation (@option{-fipa-cp}).
7766 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7767
7768 @item -fdevirtualize-speculatively
7769 @opindex fdevirtualize-speculatively
7770 Attempt to convert calls to virtual functions to speculative direct calls.
7771 Based on the analysis of the type inheritance graph, determine for a given call
7772 the set of likely targets. If the set is small, preferably of size 1, change
7773 the call into a conditional deciding between direct and indirect calls. The
7774 speculative calls enable more optimizations, such as inlining. When they seem
7775 useless after further optimization, they are converted back into original form.
7776
7777 @item -fdevirtualize-at-ltrans
7778 @opindex fdevirtualize-at-ltrans
7779 Stream extra information needed for aggressive devirtualization when running
7780 the link-time optimizer in local transformation mode.
7781 This option enables more devirtualization but
7782 significantly increases the size of streamed data. For this reason it is
7783 disabled by default.
7784
7785 @item -fexpensive-optimizations
7786 @opindex fexpensive-optimizations
7787 Perform a number of minor optimizations that are relatively expensive.
7788
7789 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7790
7791 @item -free
7792 @opindex free
7793 Attempt to remove redundant extension instructions. This is especially
7794 helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit
7795 registers after writing to their lower 32-bit half.
7796
7797 Enabled for Alpha, AArch64 and x86 at levels @option{-O2},
7798 @option{-O3}, @option{-Os}.
7799
7800 @item -fno-lifetime-dse
7801 @opindex fno-lifetime-dse
7802 In C++ the value of an object is only affected by changes within its
7803 lifetime: when the constructor begins, the object has an indeterminate
7804 value, and any changes during the lifetime of the object are dead when
7805 the object is destroyed. Normally dead store elimination will take
7806 advantage of this; if your code relies on the value of the object
7807 storage persisting beyond the lifetime of the object, you can use this
7808 flag to disable this optimization. To preserve stores before the
7809 constructor starts (e.g. because your operator new clears the object
7810 storage) but still treat the object as dead after the destructor you,
7811 can use @option{-flifetime-dse=1}. The default behavior can be
7812 explicitly selected with @option{-flifetime-dse=2}.
7813 @option{-flifetime-dse=0} is equivalent to @option{-fno-lifetime-dse}.
7814
7815 @item -flive-range-shrinkage
7816 @opindex flive-range-shrinkage
7817 Attempt to decrease register pressure through register live range
7818 shrinkage. This is helpful for fast processors with small or moderate
7819 size register sets.
7820
7821 @item -fira-algorithm=@var{algorithm}
7822 @opindex fira-algorithm
7823 Use the specified coloring algorithm for the integrated register
7824 allocator. The @var{algorithm} argument can be @samp{priority}, which
7825 specifies Chow's priority coloring, or @samp{CB}, which specifies
7826 Chaitin-Briggs coloring. Chaitin-Briggs coloring is not implemented
7827 for all architectures, but for those targets that do support it, it is
7828 the default because it generates better code.
7829
7830 @item -fira-region=@var{region}
7831 @opindex fira-region
7832 Use specified regions for the integrated register allocator. The
7833 @var{region} argument should be one of the following:
7834
7835 @table @samp
7836
7837 @item all
7838 Use all loops as register allocation regions.
7839 This can give the best results for machines with a small and/or
7840 irregular register set.
7841
7842 @item mixed
7843 Use all loops except for loops with small register pressure
7844 as the regions. This value usually gives
7845 the best results in most cases and for most architectures,
7846 and is enabled by default when compiling with optimization for speed
7847 (@option{-O}, @option{-O2}, @dots{}).
7848
7849 @item one
7850 Use all functions as a single region.
7851 This typically results in the smallest code size, and is enabled by default for
7852 @option{-Os} or @option{-O0}.
7853
7854 @end table
7855
7856 @item -fira-hoist-pressure
7857 @opindex fira-hoist-pressure
7858 Use IRA to evaluate register pressure in the code hoisting pass for
7859 decisions to hoist expressions. This option usually results in smaller
7860 code, but it can slow the compiler down.
7861
7862 This option is enabled at level @option{-Os} for all targets.
7863
7864 @item -fira-loop-pressure
7865 @opindex fira-loop-pressure
7866 Use IRA to evaluate register pressure in loops for decisions to move
7867 loop invariants. This option usually results in generation
7868 of faster and smaller code on machines with large register files (>= 32
7869 registers), but it can slow the compiler down.
7870
7871 This option is enabled at level @option{-O3} for some targets.
7872
7873 @item -fno-ira-share-save-slots
7874 @opindex fno-ira-share-save-slots
7875 Disable sharing of stack slots used for saving call-used hard
7876 registers living through a call. Each hard register gets a
7877 separate stack slot, and as a result function stack frames are
7878 larger.
7879
7880 @item -fno-ira-share-spill-slots
7881 @opindex fno-ira-share-spill-slots
7882 Disable sharing of stack slots allocated for pseudo-registers. Each
7883 pseudo-register that does not get a hard register gets a separate
7884 stack slot, and as a result function stack frames are larger.
7885
7886 @item -flra-remat
7887 @opindex flra-remat
7888 Enable CFG-sensitive rematerialization in LRA. Instead of loading
7889 values of spilled pseudos, LRA tries to rematerialize (recalculate)
7890 values if it is profitable.
7891
7892 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7893
7894 @item -fdelayed-branch
7895 @opindex fdelayed-branch
7896 If supported for the target machine, attempt to reorder instructions
7897 to exploit instruction slots available after delayed branch
7898 instructions.
7899
7900 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7901
7902 @item -fschedule-insns
7903 @opindex fschedule-insns
7904 If supported for the target machine, attempt to reorder instructions to
7905 eliminate execution stalls due to required data being unavailable. This
7906 helps machines that have slow floating point or memory load instructions
7907 by allowing other instructions to be issued until the result of the load
7908 or floating-point instruction is required.
7909
7910 Enabled at levels @option{-O2}, @option{-O3}.
7911
7912 @item -fschedule-insns2
7913 @opindex fschedule-insns2
7914 Similar to @option{-fschedule-insns}, but requests an additional pass of
7915 instruction scheduling after register allocation has been done. This is
7916 especially useful on machines with a relatively small number of
7917 registers and where memory load instructions take more than one cycle.
7918
7919 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7920
7921 @item -fno-sched-interblock
7922 @opindex fno-sched-interblock
7923 Don't schedule instructions across basic blocks. This is normally
7924 enabled by default when scheduling before register allocation, i.e.@:
7925 with @option{-fschedule-insns} or at @option{-O2} or higher.
7926
7927 @item -fno-sched-spec
7928 @opindex fno-sched-spec
7929 Don't allow speculative motion of non-load instructions. This is normally
7930 enabled by default when scheduling before register allocation, i.e.@:
7931 with @option{-fschedule-insns} or at @option{-O2} or higher.
7932
7933 @item -fsched-pressure
7934 @opindex fsched-pressure
7935 Enable register pressure sensitive insn scheduling before register
7936 allocation. This only makes sense when scheduling before register
7937 allocation is enabled, i.e.@: with @option{-fschedule-insns} or at
7938 @option{-O2} or higher. Usage of this option can improve the
7939 generated code and decrease its size by preventing register pressure
7940 increase above the number of available hard registers and subsequent
7941 spills in register allocation.
7942
7943 @item -fsched-spec-load
7944 @opindex fsched-spec-load
7945 Allow speculative motion of some load instructions. This only makes
7946 sense when scheduling before register allocation, i.e.@: with
7947 @option{-fschedule-insns} or at @option{-O2} or higher.
7948
7949 @item -fsched-spec-load-dangerous
7950 @opindex fsched-spec-load-dangerous
7951 Allow speculative motion of more load instructions. This only makes
7952 sense when scheduling before register allocation, i.e.@: with
7953 @option{-fschedule-insns} or at @option{-O2} or higher.
7954
7955 @item -fsched-stalled-insns
7956 @itemx -fsched-stalled-insns=@var{n}
7957 @opindex fsched-stalled-insns
7958 Define how many insns (if any) can be moved prematurely from the queue
7959 of stalled insns into the ready list during the second scheduling pass.
7960 @option{-fno-sched-stalled-insns} means that no insns are moved
7961 prematurely, @option{-fsched-stalled-insns=0} means there is no limit
7962 on how many queued insns can be moved prematurely.
7963 @option{-fsched-stalled-insns} without a value is equivalent to
7964 @option{-fsched-stalled-insns=1}.
7965
7966 @item -fsched-stalled-insns-dep
7967 @itemx -fsched-stalled-insns-dep=@var{n}
7968 @opindex fsched-stalled-insns-dep
7969 Define how many insn groups (cycles) are examined for a dependency
7970 on a stalled insn that is a candidate for premature removal from the queue
7971 of stalled insns. This has an effect only during the second scheduling pass,
7972 and only if @option{-fsched-stalled-insns} is used.
7973 @option{-fno-sched-stalled-insns-dep} is equivalent to
7974 @option{-fsched-stalled-insns-dep=0}.
7975 @option{-fsched-stalled-insns-dep} without a value is equivalent to
7976 @option{-fsched-stalled-insns-dep=1}.
7977
7978 @item -fsched2-use-superblocks
7979 @opindex fsched2-use-superblocks
7980 When scheduling after register allocation, use superblock scheduling.
7981 This allows motion across basic block boundaries,
7982 resulting in faster schedules. This option is experimental, as not all machine
7983 descriptions used by GCC model the CPU closely enough to avoid unreliable
7984 results from the algorithm.
7985
7986 This only makes sense when scheduling after register allocation, i.e.@: with
7987 @option{-fschedule-insns2} or at @option{-O2} or higher.
7988
7989 @item -fsched-group-heuristic
7990 @opindex fsched-group-heuristic
7991 Enable the group heuristic in the scheduler. This heuristic favors
7992 the instruction that belongs to a schedule group. This is enabled
7993 by default when scheduling is enabled, i.e.@: with @option{-fschedule-insns}
7994 or @option{-fschedule-insns2} or at @option{-O2} or higher.
7995
7996 @item -fsched-critical-path-heuristic
7997 @opindex fsched-critical-path-heuristic
7998 Enable the critical-path heuristic in the scheduler. This heuristic favors
7999 instructions on the critical path. This is enabled by default when
8000 scheduling is enabled, i.e.@: with @option{-fschedule-insns}
8001 or @option{-fschedule-insns2} or at @option{-O2} or higher.
8002
8003 @item -fsched-spec-insn-heuristic
8004 @opindex fsched-spec-insn-heuristic
8005 Enable the speculative instruction heuristic in the scheduler. This
8006 heuristic favors speculative instructions with greater dependency weakness.
8007 This is enabled by default when scheduling is enabled, i.e.@:
8008 with @option{-fschedule-insns} or @option{-fschedule-insns2}
8009 or at @option{-O2} or higher.
8010
8011 @item -fsched-rank-heuristic
8012 @opindex fsched-rank-heuristic
8013 Enable the rank heuristic in the scheduler. This heuristic favors
8014 the instruction belonging to a basic block with greater size or frequency.
8015 This is enabled by default when scheduling is enabled, i.e.@:
8016 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8017 at @option{-O2} or higher.
8018
8019 @item -fsched-last-insn-heuristic
8020 @opindex fsched-last-insn-heuristic
8021 Enable the last-instruction heuristic in the scheduler. This heuristic
8022 favors the instruction that is less dependent on the last instruction
8023 scheduled. This is enabled by default when scheduling is enabled,
8024 i.e.@: with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8025 at @option{-O2} or higher.
8026
8027 @item -fsched-dep-count-heuristic
8028 @opindex fsched-dep-count-heuristic
8029 Enable the dependent-count heuristic in the scheduler. This heuristic
8030 favors the instruction that has more instructions depending on it.
8031 This is enabled by default when scheduling is enabled, i.e.@:
8032 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8033 at @option{-O2} or higher.
8034
8035 @item -freschedule-modulo-scheduled-loops
8036 @opindex freschedule-modulo-scheduled-loops
8037 Modulo scheduling is performed before traditional scheduling. If a loop
8038 is modulo scheduled, later scheduling passes may change its schedule.
8039 Use this option to control that behavior.
8040
8041 @item -fselective-scheduling
8042 @opindex fselective-scheduling
8043 Schedule instructions using selective scheduling algorithm. Selective
8044 scheduling runs instead of the first scheduler pass.
8045
8046 @item -fselective-scheduling2
8047 @opindex fselective-scheduling2
8048 Schedule instructions using selective scheduling algorithm. Selective
8049 scheduling runs instead of the second scheduler pass.
8050
8051 @item -fsel-sched-pipelining
8052 @opindex fsel-sched-pipelining
8053 Enable software pipelining of innermost loops during selective scheduling.
8054 This option has no effect unless one of @option{-fselective-scheduling} or
8055 @option{-fselective-scheduling2} is turned on.
8056
8057 @item -fsel-sched-pipelining-outer-loops
8058 @opindex fsel-sched-pipelining-outer-loops
8059 When pipelining loops during selective scheduling, also pipeline outer loops.
8060 This option has no effect unless @option{-fsel-sched-pipelining} is turned on.
8061
8062 @item -fsemantic-interposition
8063 @opindex fsemantic-interposition
8064 Some object formats, like ELF, allow interposing of symbols by the
8065 dynamic linker.
8066 This means that for symbols exported from the DSO, the compiler cannot perform
8067 interprocedural propagation, inlining and other optimizations in anticipation
8068 that the function or variable in question may change. While this feature is
8069 useful, for example, to rewrite memory allocation functions by a debugging
8070 implementation, it is expensive in the terms of code quality.
8071 With @option{-fno-semantic-interposition} the compiler assumes that
8072 if interposition happens for functions the overwriting function will have
8073 precisely the same semantics (and side effects).
8074 Similarly if interposition happens
8075 for variables, the constructor of the variable will be the same. The flag
8076 has no effect for functions explicitly declared inline
8077 (where it is never allowed for interposition to change semantics)
8078 and for symbols explicitly declared weak.
8079
8080 @item -fshrink-wrap
8081 @opindex fshrink-wrap
8082 Emit function prologues only before parts of the function that need it,
8083 rather than at the top of the function. This flag is enabled by default at
8084 @option{-O} and higher.
8085
8086 @item -fshrink-wrap-separate
8087 @opindex fshrink-wrap-separate
8088 Shrink-wrap separate parts of the prologue and epilogue separately, so that
8089 those parts are only executed when needed.
8090 This option is on by default, but has no effect unless @option{-fshrink-wrap}
8091 is also turned on and the target supports this.
8092
8093 @item -fcaller-saves
8094 @opindex fcaller-saves
8095 Enable allocation of values to registers that are clobbered by
8096 function calls, by emitting extra instructions to save and restore the
8097 registers around such calls. Such allocation is done only when it
8098 seems to result in better code.
8099
8100 This option is always enabled by default on certain machines, usually
8101 those which have no call-preserved registers to use instead.
8102
8103 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8104
8105 @item -fcombine-stack-adjustments
8106 @opindex fcombine-stack-adjustments
8107 Tracks stack adjustments (pushes and pops) and stack memory references
8108 and then tries to find ways to combine them.
8109
8110 Enabled by default at @option{-O1} and higher.
8111
8112 @item -fipa-ra
8113 @opindex fipa-ra
8114 Use caller save registers for allocation if those registers are not used by
8115 any called function. In that case it is not necessary to save and restore
8116 them around calls. This is only possible if called functions are part of
8117 same compilation unit as current function and they are compiled before it.
8118
8119 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}, however the option
8120 is disabled if generated code will be instrumented for profiling
8121 (@option{-p}, or @option{-pg}) or if callee's register usage cannot be known
8122 exactly (this happens on targets that do not expose prologues
8123 and epilogues in RTL).
8124
8125 @item -fconserve-stack
8126 @opindex fconserve-stack
8127 Attempt to minimize stack usage. The compiler attempts to use less
8128 stack space, even if that makes the program slower. This option
8129 implies setting the @option{large-stack-frame} parameter to 100
8130 and the @option{large-stack-frame-growth} parameter to 400.
8131
8132 @item -ftree-reassoc
8133 @opindex ftree-reassoc
8134 Perform reassociation on trees. This flag is enabled by default
8135 at @option{-O} and higher.
8136
8137 @item -fcode-hoisting
8138 @opindex fcode-hoisting
8139 Perform code hoisting. Code hoisting tries to move the
8140 evaluation of expressions executed on all paths to the function exit
8141 as early as possible. This is especially useful as a code size
8142 optimization, but it often helps for code speed as well.
8143 This flag is enabled by default at @option{-O2} and higher.
8144
8145 @item -ftree-pre
8146 @opindex ftree-pre
8147 Perform partial redundancy elimination (PRE) on trees. This flag is
8148 enabled by default at @option{-O2} and @option{-O3}.
8149
8150 @item -ftree-partial-pre
8151 @opindex ftree-partial-pre
8152 Make partial redundancy elimination (PRE) more aggressive. This flag is
8153 enabled by default at @option{-O3}.
8154
8155 @item -ftree-forwprop
8156 @opindex ftree-forwprop
8157 Perform forward propagation on trees. This flag is enabled by default
8158 at @option{-O} and higher.
8159
8160 @item -ftree-fre
8161 @opindex ftree-fre
8162 Perform full redundancy elimination (FRE) on trees. The difference
8163 between FRE and PRE is that FRE only considers expressions
8164 that are computed on all paths leading to the redundant computation.
8165 This analysis is faster than PRE, though it exposes fewer redundancies.
8166 This flag is enabled by default at @option{-O} and higher.
8167
8168 @item -ftree-phiprop
8169 @opindex ftree-phiprop
8170 Perform hoisting of loads from conditional pointers on trees. This
8171 pass is enabled by default at @option{-O} and higher.
8172
8173 @item -fhoist-adjacent-loads
8174 @opindex fhoist-adjacent-loads
8175 Speculatively hoist loads from both branches of an if-then-else if the
8176 loads are from adjacent locations in the same structure and the target
8177 architecture has a conditional move instruction. This flag is enabled
8178 by default at @option{-O2} and higher.
8179
8180 @item -ftree-copy-prop
8181 @opindex ftree-copy-prop
8182 Perform copy propagation on trees. This pass eliminates unnecessary
8183 copy operations. This flag is enabled by default at @option{-O} and
8184 higher.
8185
8186 @item -fipa-pure-const
8187 @opindex fipa-pure-const
8188 Discover which functions are pure or constant.
8189 Enabled by default at @option{-O} and higher.
8190
8191 @item -fipa-reference
8192 @opindex fipa-reference
8193 Discover which static variables do not escape the
8194 compilation unit.
8195 Enabled by default at @option{-O} and higher.
8196
8197 @item -fipa-pta
8198 @opindex fipa-pta
8199 Perform interprocedural pointer analysis and interprocedural modification
8200 and reference analysis. This option can cause excessive memory and
8201 compile-time usage on large compilation units. It is not enabled by
8202 default at any optimization level.
8203
8204 @item -fipa-profile
8205 @opindex fipa-profile
8206 Perform interprocedural profile propagation. The functions called only from
8207 cold functions are marked as cold. Also functions executed once (such as
8208 @code{cold}, @code{noreturn}, static constructors or destructors) are identified. Cold
8209 functions and loop less parts of functions executed once are then optimized for
8210 size.
8211 Enabled by default at @option{-O} and higher.
8212
8213 @item -fipa-cp
8214 @opindex fipa-cp
8215 Perform interprocedural constant propagation.
8216 This optimization analyzes the program to determine when values passed
8217 to functions are constants and then optimizes accordingly.
8218 This optimization can substantially increase performance
8219 if the application has constants passed to functions.
8220 This flag is enabled by default at @option{-O2}, @option{-Os} and @option{-O3}.
8221
8222 @item -fipa-cp-clone
8223 @opindex fipa-cp-clone
8224 Perform function cloning to make interprocedural constant propagation stronger.
8225 When enabled, interprocedural constant propagation performs function cloning
8226 when externally visible function can be called with constant arguments.
8227 Because this optimization can create multiple copies of functions,
8228 it may significantly increase code size
8229 (see @option{--param ipcp-unit-growth=@var{value}}).
8230 This flag is enabled by default at @option{-O3}.
8231
8232 @item -fipa-bit-cp
8233 @opindex -fipa-bit-cp
8234 When enabled, perform interprocedural bitwise constant
8235 propagation. This flag is enabled by default at @option{-O2}. It
8236 requires that @option{-fipa-cp} is enabled.
8237
8238 @item -fipa-vrp
8239 @opindex -fipa-vrp
8240 When enabled, perform interprocedural propagation of value
8241 ranges. This flag is enabled by default at @option{-O2}. It requires
8242 that @option{-fipa-cp} is enabled.
8243
8244 @item -fipa-icf
8245 @opindex fipa-icf
8246 Perform Identical Code Folding for functions and read-only variables.
8247 The optimization reduces code size and may disturb unwind stacks by replacing
8248 a function by equivalent one with a different name. The optimization works
8249 more effectively with link-time optimization enabled.
8250
8251 Nevertheless the behavior is similar to Gold Linker ICF optimization, GCC ICF
8252 works on different levels and thus the optimizations are not same - there are
8253 equivalences that are found only by GCC and equivalences found only by Gold.
8254
8255 This flag is enabled by default at @option{-O2} and @option{-Os}.
8256
8257 @item -fisolate-erroneous-paths-dereference
8258 @opindex fisolate-erroneous-paths-dereference
8259 Detect paths that trigger erroneous or undefined behavior due to
8260 dereferencing a null pointer. Isolate those paths from the main control
8261 flow and turn the statement with erroneous or undefined behavior into a trap.
8262 This flag is enabled by default at @option{-O2} and higher and depends on
8263 @option{-fdelete-null-pointer-checks} also being enabled.
8264
8265 @item -fisolate-erroneous-paths-attribute
8266 @opindex fisolate-erroneous-paths-attribute
8267 Detect paths that trigger erroneous or undefined behavior due a null value
8268 being used in a way forbidden by a @code{returns_nonnull} or @code{nonnull}
8269 attribute. Isolate those paths from the main control flow and turn the
8270 statement with erroneous or undefined behavior into a trap. This is not
8271 currently enabled, but may be enabled by @option{-O2} in the future.
8272
8273 @item -ftree-sink
8274 @opindex ftree-sink
8275 Perform forward store motion on trees. This flag is
8276 enabled by default at @option{-O} and higher.
8277
8278 @item -ftree-bit-ccp
8279 @opindex ftree-bit-ccp
8280 Perform sparse conditional bit constant propagation on trees and propagate
8281 pointer alignment information.
8282 This pass only operates on local scalar variables and is enabled by default
8283 at @option{-O} and higher. It requires that @option{-ftree-ccp} is enabled.
8284
8285 @item -ftree-ccp
8286 @opindex ftree-ccp
8287 Perform sparse conditional constant propagation (CCP) on trees. This
8288 pass only operates on local scalar variables and is enabled by default
8289 at @option{-O} and higher.
8290
8291 @item -fssa-backprop
8292 @opindex fssa-backprop
8293 Propagate information about uses of a value up the definition chain
8294 in order to simplify the definitions. For example, this pass strips
8295 sign operations if the sign of a value never matters. The flag is
8296 enabled by default at @option{-O} and higher.
8297
8298 @item -fssa-phiopt
8299 @opindex fssa-phiopt
8300 Perform pattern matching on SSA PHI nodes to optimize conditional
8301 code. This pass is enabled by default at @option{-O} and higher.
8302
8303 @item -ftree-switch-conversion
8304 @opindex ftree-switch-conversion
8305 Perform conversion of simple initializations in a switch to
8306 initializations from a scalar array. This flag is enabled by default
8307 at @option{-O2} and higher.
8308
8309 @item -ftree-tail-merge
8310 @opindex ftree-tail-merge
8311 Look for identical code sequences. When found, replace one with a jump to the
8312 other. This optimization is known as tail merging or cross jumping. This flag
8313 is enabled by default at @option{-O2} and higher. The compilation time
8314 in this pass can
8315 be limited using @option{max-tail-merge-comparisons} parameter and
8316 @option{max-tail-merge-iterations} parameter.
8317
8318 @item -ftree-dce
8319 @opindex ftree-dce
8320 Perform dead code elimination (DCE) on trees. This flag is enabled by
8321 default at @option{-O} and higher.
8322
8323 @item -ftree-builtin-call-dce
8324 @opindex ftree-builtin-call-dce
8325 Perform conditional dead code elimination (DCE) for calls to built-in functions
8326 that may set @code{errno} but are otherwise side-effect free. This flag is
8327 enabled by default at @option{-O2} and higher if @option{-Os} is not also
8328 specified.
8329
8330 @item -ftree-dominator-opts
8331 @opindex ftree-dominator-opts
8332 Perform a variety of simple scalar cleanups (constant/copy
8333 propagation, redundancy elimination, range propagation and expression
8334 simplification) based on a dominator tree traversal. This also
8335 performs jump threading (to reduce jumps to jumps). This flag is
8336 enabled by default at @option{-O} and higher.
8337
8338 @item -ftree-dse
8339 @opindex ftree-dse
8340 Perform dead store elimination (DSE) on trees. A dead store is a store into
8341 a memory location that is later overwritten by another store without
8342 any intervening loads. In this case the earlier store can be deleted. This
8343 flag is enabled by default at @option{-O} and higher.
8344
8345 @item -ftree-ch
8346 @opindex ftree-ch
8347 Perform loop header copying on trees. This is beneficial since it increases
8348 effectiveness of code motion optimizations. It also saves one jump. This flag
8349 is enabled by default at @option{-O} and higher. It is not enabled
8350 for @option{-Os}, since it usually increases code size.
8351
8352 @item -ftree-loop-optimize
8353 @opindex ftree-loop-optimize
8354 Perform loop optimizations on trees. This flag is enabled by default
8355 at @option{-O} and higher.
8356
8357 @item -ftree-loop-linear
8358 @itemx -floop-interchange
8359 @itemx -floop-strip-mine
8360 @itemx -floop-block
8361 @itemx -floop-unroll-and-jam
8362 @opindex ftree-loop-linear
8363 @opindex floop-interchange
8364 @opindex floop-strip-mine
8365 @opindex floop-block
8366 @opindex floop-unroll-and-jam
8367 Perform loop nest optimizations. Same as
8368 @option{-floop-nest-optimize}. To use this code transformation, GCC has
8369 to be configured with @option{--with-isl} to enable the Graphite loop
8370 transformation infrastructure.
8371
8372 @item -fgraphite-identity
8373 @opindex fgraphite-identity
8374 Enable the identity transformation for graphite. For every SCoP we generate
8375 the polyhedral representation and transform it back to gimple. Using
8376 @option{-fgraphite-identity} we can check the costs or benefits of the
8377 GIMPLE -> GRAPHITE -> GIMPLE transformation. Some minimal optimizations
8378 are also performed by the code generator isl, like index splitting and
8379 dead code elimination in loops.
8380
8381 @item -floop-nest-optimize
8382 @opindex floop-nest-optimize
8383 Enable the isl based loop nest optimizer. This is a generic loop nest
8384 optimizer based on the Pluto optimization algorithms. It calculates a loop
8385 structure optimized for data-locality and parallelism. This option
8386 is experimental.
8387
8388 @item -floop-parallelize-all
8389 @opindex floop-parallelize-all
8390 Use the Graphite data dependence analysis to identify loops that can
8391 be parallelized. Parallelize all the loops that can be analyzed to
8392 not contain loop carried dependences without checking that it is
8393 profitable to parallelize the loops.
8394
8395 @item -ftree-coalesce-vars
8396 @opindex ftree-coalesce-vars
8397 While transforming the program out of the SSA representation, attempt to
8398 reduce copying by coalescing versions of different user-defined
8399 variables, instead of just compiler temporaries. This may severely
8400 limit the ability to debug an optimized program compiled with
8401 @option{-fno-var-tracking-assignments}. In the negated form, this flag
8402 prevents SSA coalescing of user variables. This option is enabled by
8403 default if optimization is enabled, and it does very little otherwise.
8404
8405 @item -ftree-loop-if-convert
8406 @opindex ftree-loop-if-convert
8407 Attempt to transform conditional jumps in the innermost loops to
8408 branch-less equivalents. The intent is to remove control-flow from
8409 the innermost loops in order to improve the ability of the
8410 vectorization pass to handle these loops. This is enabled by default
8411 if vectorization is enabled.
8412
8413 @item -ftree-loop-distribution
8414 @opindex ftree-loop-distribution
8415 Perform loop distribution. This flag can improve cache performance on
8416 big loop bodies and allow further loop optimizations, like
8417 parallelization or vectorization, to take place. For example, the loop
8418 @smallexample
8419 DO I = 1, N
8420 A(I) = B(I) + C
8421 D(I) = E(I) * F
8422 ENDDO
8423 @end smallexample
8424 is transformed to
8425 @smallexample
8426 DO I = 1, N
8427 A(I) = B(I) + C
8428 ENDDO
8429 DO I = 1, N
8430 D(I) = E(I) * F
8431 ENDDO
8432 @end smallexample
8433
8434 @item -ftree-loop-distribute-patterns
8435 @opindex ftree-loop-distribute-patterns
8436 Perform loop distribution of patterns that can be code generated with
8437 calls to a library. This flag is enabled by default at @option{-O3}.
8438
8439 This pass distributes the initialization loops and generates a call to
8440 memset zero. For example, the loop
8441 @smallexample
8442 DO I = 1, N
8443 A(I) = 0
8444 B(I) = A(I) + I
8445 ENDDO
8446 @end smallexample
8447 is transformed to
8448 @smallexample
8449 DO I = 1, N
8450 A(I) = 0
8451 ENDDO
8452 DO I = 1, N
8453 B(I) = A(I) + I
8454 ENDDO
8455 @end smallexample
8456 and the initialization loop is transformed into a call to memset zero.
8457
8458 @item -ftree-loop-im
8459 @opindex ftree-loop-im
8460 Perform loop invariant motion on trees. This pass moves only invariants that
8461 are hard to handle at RTL level (function calls, operations that expand to
8462 nontrivial sequences of insns). With @option{-funswitch-loops} it also moves
8463 operands of conditions that are invariant out of the loop, so that we can use
8464 just trivial invariantness analysis in loop unswitching. The pass also includes
8465 store motion.
8466
8467 @item -ftree-loop-ivcanon
8468 @opindex ftree-loop-ivcanon
8469 Create a canonical counter for number of iterations in loops for which
8470 determining number of iterations requires complicated analysis. Later
8471 optimizations then may determine the number easily. Useful especially
8472 in connection with unrolling.
8473
8474 @item -fivopts
8475 @opindex fivopts
8476 Perform induction variable optimizations (strength reduction, induction
8477 variable merging and induction variable elimination) on trees.
8478
8479 @item -ftree-parallelize-loops=n
8480 @opindex ftree-parallelize-loops
8481 Parallelize loops, i.e., split their iteration space to run in n threads.
8482 This is only possible for loops whose iterations are independent
8483 and can be arbitrarily reordered. The optimization is only
8484 profitable on multiprocessor machines, for loops that are CPU-intensive,
8485 rather than constrained e.g.@: by memory bandwidth. This option
8486 implies @option{-pthread}, and thus is only supported on targets
8487 that have support for @option{-pthread}.
8488
8489 @item -ftree-pta
8490 @opindex ftree-pta
8491 Perform function-local points-to analysis on trees. This flag is
8492 enabled by default at @option{-O} and higher.
8493
8494 @item -ftree-sra
8495 @opindex ftree-sra
8496 Perform scalar replacement of aggregates. This pass replaces structure
8497 references with scalars to prevent committing structures to memory too
8498 early. This flag is enabled by default at @option{-O} and higher.
8499
8500 @item -fstore-merging
8501 @opindex fstore-merging
8502 Perform merging of narrow stores to consecutive memory addresses. This pass
8503 merges contiguous stores of immediate values narrower than a word into fewer
8504 wider stores to reduce the number of instructions. This is enabled by default
8505 at @option{-O2} and higher as well as @option{-Os}.
8506
8507 @item -ftree-ter
8508 @opindex ftree-ter
8509 Perform temporary expression replacement during the SSA->normal phase. Single
8510 use/single def temporaries are replaced at their use location with their
8511 defining expression. This results in non-GIMPLE code, but gives the expanders
8512 much more complex trees to work on resulting in better RTL generation. This is
8513 enabled by default at @option{-O} and higher.
8514
8515 @item -ftree-slsr
8516 @opindex ftree-slsr
8517 Perform straight-line strength reduction on trees. This recognizes related
8518 expressions involving multiplications and replaces them by less expensive
8519 calculations when possible. This is enabled by default at @option{-O} and
8520 higher.
8521
8522 @item -ftree-vectorize
8523 @opindex ftree-vectorize
8524 Perform vectorization on trees. This flag enables @option{-ftree-loop-vectorize}
8525 and @option{-ftree-slp-vectorize} if not explicitly specified.
8526
8527 @item -ftree-loop-vectorize
8528 @opindex ftree-loop-vectorize
8529 Perform loop vectorization on trees. This flag is enabled by default at
8530 @option{-O3} and when @option{-ftree-vectorize} is enabled.
8531
8532 @item -ftree-slp-vectorize
8533 @opindex ftree-slp-vectorize
8534 Perform basic block vectorization on trees. This flag is enabled by default at
8535 @option{-O3} and when @option{-ftree-vectorize} is enabled.
8536
8537 @item -fvect-cost-model=@var{model}
8538 @opindex fvect-cost-model
8539 Alter the cost model used for vectorization. The @var{model} argument
8540 should be one of @samp{unlimited}, @samp{dynamic} or @samp{cheap}.
8541 With the @samp{unlimited} model the vectorized code-path is assumed
8542 to be profitable while with the @samp{dynamic} model a runtime check
8543 guards the vectorized code-path to enable it only for iteration
8544 counts that will likely execute faster than when executing the original
8545 scalar loop. The @samp{cheap} model disables vectorization of
8546 loops where doing so would be cost prohibitive for example due to
8547 required runtime checks for data dependence or alignment but otherwise
8548 is equal to the @samp{dynamic} model.
8549 The default cost model depends on other optimization flags and is
8550 either @samp{dynamic} or @samp{cheap}.
8551
8552 @item -fsimd-cost-model=@var{model}
8553 @opindex fsimd-cost-model
8554 Alter the cost model used for vectorization of loops marked with the OpenMP
8555 or Cilk Plus simd directive. The @var{model} argument should be one of
8556 @samp{unlimited}, @samp{dynamic}, @samp{cheap}. All values of @var{model}
8557 have the same meaning as described in @option{-fvect-cost-model} and by
8558 default a cost model defined with @option{-fvect-cost-model} is used.
8559
8560 @item -ftree-vrp
8561 @opindex ftree-vrp
8562 Perform Value Range Propagation on trees. This is similar to the
8563 constant propagation pass, but instead of values, ranges of values are
8564 propagated. This allows the optimizers to remove unnecessary range
8565 checks like array bound checks and null pointer checks. This is
8566 enabled by default at @option{-O2} and higher. Null pointer check
8567 elimination is only done if @option{-fdelete-null-pointer-checks} is
8568 enabled.
8569
8570 @item -fsplit-paths
8571 @opindex fsplit-paths
8572 Split paths leading to loop backedges. This can improve dead code
8573 elimination and common subexpression elimination. This is enabled by
8574 default at @option{-O2} and above.
8575
8576 @item -fsplit-ivs-in-unroller
8577 @opindex fsplit-ivs-in-unroller
8578 Enables expression of values of induction variables in later iterations
8579 of the unrolled loop using the value in the first iteration. This breaks
8580 long dependency chains, thus improving efficiency of the scheduling passes.
8581
8582 A combination of @option{-fweb} and CSE is often sufficient to obtain the
8583 same effect. However, that is not reliable in cases where the loop body
8584 is more complicated than a single basic block. It also does not work at all
8585 on some architectures due to restrictions in the CSE pass.
8586
8587 This optimization is enabled by default.
8588
8589 @item -fvariable-expansion-in-unroller
8590 @opindex fvariable-expansion-in-unroller
8591 With this option, the compiler creates multiple copies of some
8592 local variables when unrolling a loop, which can result in superior code.
8593
8594 @item -fpartial-inlining
8595 @opindex fpartial-inlining
8596 Inline parts of functions. This option has any effect only
8597 when inlining itself is turned on by the @option{-finline-functions}
8598 or @option{-finline-small-functions} options.
8599
8600 Enabled at level @option{-O2}.
8601
8602 @item -fpredictive-commoning
8603 @opindex fpredictive-commoning
8604 Perform predictive commoning optimization, i.e., reusing computations
8605 (especially memory loads and stores) performed in previous
8606 iterations of loops.
8607
8608 This option is enabled at level @option{-O3}.
8609
8610 @item -fprefetch-loop-arrays
8611 @opindex fprefetch-loop-arrays
8612 If supported by the target machine, generate instructions to prefetch
8613 memory to improve the performance of loops that access large arrays.
8614
8615 This option may generate better or worse code; results are highly
8616 dependent on the structure of loops within the source code.
8617
8618 Disabled at level @option{-Os}.
8619
8620 @item -fno-printf-return-value
8621 @opindex fno-printf-return-value
8622 Do not substitute constants for known return value of formatted output
8623 functions such as @code{sprintf}, @code{snprintf}, @code{vsprintf}, and
8624 @code{vsnprintf} (but not @code{printf} of @code{fprintf}). This
8625 transformation allows GCC to optimize or even eliminate branches based
8626 on the known return value of these functions called with arguments that
8627 are either constant, or whose values are known to be in a range that
8628 makes determining the exact return value possible. For example, when
8629 @option{-fprintf-return-value} is in effect, both the branch and the
8630 body of the @code{if} statement (but not the call to @code{snprint})
8631 can be optimized away when @code{i} is a 32-bit or smaller integer
8632 because the return value is guaranteed to be at most 8.
8633
8634 @smallexample
8635 char buf[9];
8636 if (snprintf (buf, "%08x", i) >= sizeof buf)
8637 @dots{}
8638 @end smallexample
8639
8640 The @option{-fprintf-return-value} option relies on other optimizations
8641 and yields best results with @option{-O2}. It works in tandem with the
8642 @option{-Wformat-overflow} and @option{-Wformat-truncation} options.
8643 The @option{-fprintf-return-value} option is enabled by default.
8644
8645 @item -fno-peephole
8646 @itemx -fno-peephole2
8647 @opindex fno-peephole
8648 @opindex fno-peephole2
8649 Disable any machine-specific peephole optimizations. The difference
8650 between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
8651 are implemented in the compiler; some targets use one, some use the
8652 other, a few use both.
8653
8654 @option{-fpeephole} is enabled by default.
8655 @option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8656
8657 @item -fno-guess-branch-probability
8658 @opindex fno-guess-branch-probability
8659 Do not guess branch probabilities using heuristics.
8660
8661 GCC uses heuristics to guess branch probabilities if they are
8662 not provided by profiling feedback (@option{-fprofile-arcs}). These
8663 heuristics are based on the control flow graph. If some branch probabilities
8664 are specified by @code{__builtin_expect}, then the heuristics are
8665 used to guess branch probabilities for the rest of the control flow graph,
8666 taking the @code{__builtin_expect} info into account. The interactions
8667 between the heuristics and @code{__builtin_expect} can be complex, and in
8668 some cases, it may be useful to disable the heuristics so that the effects
8669 of @code{__builtin_expect} are easier to understand.
8670
8671 The default is @option{-fguess-branch-probability} at levels
8672 @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8673
8674 @item -freorder-blocks
8675 @opindex freorder-blocks
8676 Reorder basic blocks in the compiled function in order to reduce number of
8677 taken branches and improve code locality.
8678
8679 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8680
8681 @item -freorder-blocks-algorithm=@var{algorithm}
8682 @opindex freorder-blocks-algorithm
8683 Use the specified algorithm for basic block reordering. The
8684 @var{algorithm} argument can be @samp{simple}, which does not increase
8685 code size (except sometimes due to secondary effects like alignment),
8686 or @samp{stc}, the ``software trace cache'' algorithm, which tries to
8687 put all often executed code together, minimizing the number of branches
8688 executed by making extra copies of code.
8689
8690 The default is @samp{simple} at levels @option{-O}, @option{-Os}, and
8691 @samp{stc} at levels @option{-O2}, @option{-O3}.
8692
8693 @item -freorder-blocks-and-partition
8694 @opindex freorder-blocks-and-partition
8695 In addition to reordering basic blocks in the compiled function, in order
8696 to reduce number of taken branches, partitions hot and cold basic blocks
8697 into separate sections of the assembly and @file{.o} files, to improve
8698 paging and cache locality performance.
8699
8700 This optimization is automatically turned off in the presence of
8701 exception handling or unwind tables (on targets using setjump/longjump or target specific scheme), for linkonce sections, for functions with a user-defined
8702 section attribute and on any architecture that does not support named
8703 sections. When @option{-fsplit-stack} is used this option is not
8704 enabled by default (to avoid linker errors), but may be enabled
8705 explicitly (if using a working linker).
8706
8707 Enabled for x86 at levels @option{-O2}, @option{-O3}.
8708
8709 @item -freorder-functions
8710 @opindex freorder-functions
8711 Reorder functions in the object file in order to
8712 improve code locality. This is implemented by using special
8713 subsections @code{.text.hot} for most frequently executed functions and
8714 @code{.text.unlikely} for unlikely executed functions. Reordering is done by
8715 the linker so object file format must support named sections and linker must
8716 place them in a reasonable way.
8717
8718 Also profile feedback must be available to make this option effective. See
8719 @option{-fprofile-arcs} for details.
8720
8721 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8722
8723 @item -fstrict-aliasing
8724 @opindex fstrict-aliasing
8725 Allow the compiler to assume the strictest aliasing rules applicable to
8726 the language being compiled. For C (and C++), this activates
8727 optimizations based on the type of expressions. In particular, an
8728 object of one type is assumed never to reside at the same address as an
8729 object of a different type, unless the types are almost the same. For
8730 example, an @code{unsigned int} can alias an @code{int}, but not a
8731 @code{void*} or a @code{double}. A character type may alias any other
8732 type.
8733
8734 @anchor{Type-punning}Pay special attention to code like this:
8735 @smallexample
8736 union a_union @{
8737 int i;
8738 double d;
8739 @};
8740
8741 int f() @{
8742 union a_union t;
8743 t.d = 3.0;
8744 return t.i;
8745 @}
8746 @end smallexample
8747 The practice of reading from a different union member than the one most
8748 recently written to (called ``type-punning'') is common. Even with
8749 @option{-fstrict-aliasing}, type-punning is allowed, provided the memory
8750 is accessed through the union type. So, the code above works as
8751 expected. @xref{Structures unions enumerations and bit-fields
8752 implementation}. However, this code might not:
8753 @smallexample
8754 int f() @{
8755 union a_union t;
8756 int* ip;
8757 t.d = 3.0;
8758 ip = &t.i;
8759 return *ip;
8760 @}
8761 @end smallexample
8762
8763 Similarly, access by taking the address, casting the resulting pointer
8764 and dereferencing the result has undefined behavior, even if the cast
8765 uses a union type, e.g.:
8766 @smallexample
8767 int f() @{
8768 double d = 3.0;
8769 return ((union a_union *) &d)->i;
8770 @}
8771 @end smallexample
8772
8773 The @option{-fstrict-aliasing} option is enabled at levels
8774 @option{-O2}, @option{-O3}, @option{-Os}.
8775
8776 @item -falign-functions
8777 @itemx -falign-functions=@var{n}
8778 @opindex falign-functions
8779 Align the start of functions to the next power-of-two greater than
8780 @var{n}, skipping up to @var{n} bytes. For instance,
8781 @option{-falign-functions=32} aligns functions to the next 32-byte
8782 boundary, but @option{-falign-functions=24} aligns to the next
8783 32-byte boundary only if this can be done by skipping 23 bytes or less.
8784
8785 @option{-fno-align-functions} and @option{-falign-functions=1} are
8786 equivalent and mean that functions are not aligned.
8787
8788 Some assemblers only support this flag when @var{n} is a power of two;
8789 in that case, it is rounded up.
8790
8791 If @var{n} is not specified or is zero, use a machine-dependent default.
8792
8793 Enabled at levels @option{-O2}, @option{-O3}.
8794
8795 @item -flimit-function-alignment
8796 If this option is enabled, the compiler tries to avoid unnecessarily
8797 overaligning functions. It attempts to instruct the assembler to align
8798 by the amount specified by @option{-falign-functions}, but not to
8799 skip more bytes than the size of the function.
8800
8801 @item -falign-labels
8802 @itemx -falign-labels=@var{n}
8803 @opindex falign-labels
8804 Align all branch targets to a power-of-two boundary, skipping up to
8805 @var{n} bytes like @option{-falign-functions}. This option can easily
8806 make code slower, because it must insert dummy operations for when the
8807 branch target is reached in the usual flow of the code.
8808
8809 @option{-fno-align-labels} and @option{-falign-labels=1} are
8810 equivalent and mean that labels are not aligned.
8811
8812 If @option{-falign-loops} or @option{-falign-jumps} are applicable and
8813 are greater than this value, then their values are used instead.
8814
8815 If @var{n} is not specified or is zero, use a machine-dependent default
8816 which is very likely to be @samp{1}, meaning no alignment.
8817
8818 Enabled at levels @option{-O2}, @option{-O3}.
8819
8820 @item -falign-loops
8821 @itemx -falign-loops=@var{n}
8822 @opindex falign-loops
8823 Align loops to a power-of-two boundary, skipping up to @var{n} bytes
8824 like @option{-falign-functions}. If the loops are
8825 executed many times, this makes up for any execution of the dummy
8826 operations.
8827
8828 @option{-fno-align-loops} and @option{-falign-loops=1} are
8829 equivalent and mean that loops are not aligned.
8830
8831 If @var{n} is not specified or is zero, use a machine-dependent default.
8832
8833 Enabled at levels @option{-O2}, @option{-O3}.
8834
8835 @item -falign-jumps
8836 @itemx -falign-jumps=@var{n}
8837 @opindex falign-jumps
8838 Align branch targets to a power-of-two boundary, for branch targets
8839 where the targets can only be reached by jumping, skipping up to @var{n}
8840 bytes like @option{-falign-functions}. In this case, no dummy operations
8841 need be executed.
8842
8843 @option{-fno-align-jumps} and @option{-falign-jumps=1} are
8844 equivalent and mean that loops are not aligned.
8845
8846 If @var{n} is not specified or is zero, use a machine-dependent default.
8847
8848 Enabled at levels @option{-O2}, @option{-O3}.
8849
8850 @item -funit-at-a-time
8851 @opindex funit-at-a-time
8852 This option is left for compatibility reasons. @option{-funit-at-a-time}
8853 has no effect, while @option{-fno-unit-at-a-time} implies
8854 @option{-fno-toplevel-reorder} and @option{-fno-section-anchors}.
8855
8856 Enabled by default.
8857
8858 @item -fno-toplevel-reorder
8859 @opindex fno-toplevel-reorder
8860 Do not reorder top-level functions, variables, and @code{asm}
8861 statements. Output them in the same order that they appear in the
8862 input file. When this option is used, unreferenced static variables
8863 are not removed. This option is intended to support existing code
8864 that relies on a particular ordering. For new code, it is better to
8865 use attributes when possible.
8866
8867 Enabled at level @option{-O0}. When disabled explicitly, it also implies
8868 @option{-fno-section-anchors}, which is otherwise enabled at @option{-O0} on some
8869 targets.
8870
8871 @item -fweb
8872 @opindex fweb
8873 Constructs webs as commonly used for register allocation purposes and assign
8874 each web individual pseudo register. This allows the register allocation pass
8875 to operate on pseudos directly, but also strengthens several other optimization
8876 passes, such as CSE, loop optimizer and trivial dead code remover. It can,
8877 however, make debugging impossible, since variables no longer stay in a
8878 ``home register''.
8879
8880 Enabled by default with @option{-funroll-loops}.
8881
8882 @item -fwhole-program
8883 @opindex fwhole-program
8884 Assume that the current compilation unit represents the whole program being
8885 compiled. All public functions and variables with the exception of @code{main}
8886 and those merged by attribute @code{externally_visible} become static functions
8887 and in effect are optimized more aggressively by interprocedural optimizers.
8888
8889 This option should not be used in combination with @option{-flto}.
8890 Instead relying on a linker plugin should provide safer and more precise
8891 information.
8892
8893 @item -flto[=@var{n}]
8894 @opindex flto
8895 This option runs the standard link-time optimizer. When invoked
8896 with source code, it generates GIMPLE (one of GCC's internal
8897 representations) and writes it to special ELF sections in the object
8898 file. When the object files are linked together, all the function
8899 bodies are read from these ELF sections and instantiated as if they
8900 had been part of the same translation unit.
8901
8902 To use the link-time optimizer, @option{-flto} and optimization
8903 options should be specified at compile time and during the final link.
8904 It is recommended that you compile all the files participating in the
8905 same link with the same options and also specify those options at
8906 link time.
8907 For example:
8908
8909 @smallexample
8910 gcc -c -O2 -flto foo.c
8911 gcc -c -O2 -flto bar.c
8912 gcc -o myprog -flto -O2 foo.o bar.o
8913 @end smallexample
8914
8915 The first two invocations to GCC save a bytecode representation
8916 of GIMPLE into special ELF sections inside @file{foo.o} and
8917 @file{bar.o}. The final invocation reads the GIMPLE bytecode from
8918 @file{foo.o} and @file{bar.o}, merges the two files into a single
8919 internal image, and compiles the result as usual. Since both
8920 @file{foo.o} and @file{bar.o} are merged into a single image, this
8921 causes all the interprocedural analyses and optimizations in GCC to
8922 work across the two files as if they were a single one. This means,
8923 for example, that the inliner is able to inline functions in
8924 @file{bar.o} into functions in @file{foo.o} and vice-versa.
8925
8926 Another (simpler) way to enable link-time optimization is:
8927
8928 @smallexample
8929 gcc -o myprog -flto -O2 foo.c bar.c
8930 @end smallexample
8931
8932 The above generates bytecode for @file{foo.c} and @file{bar.c},
8933 merges them together into a single GIMPLE representation and optimizes
8934 them as usual to produce @file{myprog}.
8935
8936 The only important thing to keep in mind is that to enable link-time
8937 optimizations you need to use the GCC driver to perform the link step.
8938 GCC then automatically performs link-time optimization if any of the
8939 objects involved were compiled with the @option{-flto} command-line option.
8940 You generally
8941 should specify the optimization options to be used for link-time
8942 optimization though GCC tries to be clever at guessing an
8943 optimization level to use from the options used at compile time
8944 if you fail to specify one at link time. You can always override
8945 the automatic decision to do link-time optimization
8946 by passing @option{-fno-lto} to the link command.
8947
8948 To make whole program optimization effective, it is necessary to make
8949 certain whole program assumptions. The compiler needs to know
8950 what functions and variables can be accessed by libraries and runtime
8951 outside of the link-time optimized unit. When supported by the linker,
8952 the linker plugin (see @option{-fuse-linker-plugin}) passes information
8953 to the compiler about used and externally visible symbols. When
8954 the linker plugin is not available, @option{-fwhole-program} should be
8955 used to allow the compiler to make these assumptions, which leads
8956 to more aggressive optimization decisions.
8957
8958 When @option{-fuse-linker-plugin} is not enabled, when a file is
8959 compiled with @option{-flto}, the generated object file is larger than
8960 a regular object file because it contains GIMPLE bytecodes and the usual
8961 final code (see @option{-ffat-lto-objects}. This means that
8962 object files with LTO information can be linked as normal object
8963 files; if @option{-fno-lto} is passed to the linker, no
8964 interprocedural optimizations are applied. Note that when
8965 @option{-fno-fat-lto-objects} is enabled the compile stage is faster
8966 but you cannot perform a regular, non-LTO link on them.
8967
8968 Additionally, the optimization flags used to compile individual files
8969 are not necessarily related to those used at link time. For instance,
8970
8971 @smallexample
8972 gcc -c -O0 -ffat-lto-objects -flto foo.c
8973 gcc -c -O0 -ffat-lto-objects -flto bar.c
8974 gcc -o myprog -O3 foo.o bar.o
8975 @end smallexample
8976
8977 This produces individual object files with unoptimized assembler
8978 code, but the resulting binary @file{myprog} is optimized at
8979 @option{-O3}. If, instead, the final binary is generated with
8980 @option{-fno-lto}, then @file{myprog} is not optimized.
8981
8982 When producing the final binary, GCC only
8983 applies link-time optimizations to those files that contain bytecode.
8984 Therefore, you can mix and match object files and libraries with
8985 GIMPLE bytecodes and final object code. GCC automatically selects
8986 which files to optimize in LTO mode and which files to link without
8987 further processing.
8988
8989 There are some code generation flags preserved by GCC when
8990 generating bytecodes, as they need to be used during the final link
8991 stage. Generally options specified at link time override those
8992 specified at compile time.
8993
8994 If you do not specify an optimization level option @option{-O} at
8995 link time, then GCC uses the highest optimization level
8996 used when compiling the object files.
8997
8998 Currently, the following options and their settings are taken from
8999 the first object file that explicitly specifies them:
9000 @option{-fPIC}, @option{-fpic}, @option{-fpie}, @option{-fcommon},
9001 @option{-fexceptions}, @option{-fnon-call-exceptions}, @option{-fgnu-tm}
9002 and all the @option{-m} target flags.
9003
9004 Certain ABI-changing flags are required to match in all compilation units,
9005 and trying to override this at link time with a conflicting value
9006 is ignored. This includes options such as @option{-freg-struct-return}
9007 and @option{-fpcc-struct-return}.
9008
9009 Other options such as @option{-ffp-contract}, @option{-fno-strict-overflow},
9010 @option{-fwrapv}, @option{-fno-trapv} or @option{-fno-strict-aliasing}
9011 are passed through to the link stage and merged conservatively for
9012 conflicting translation units. Specifically
9013 @option{-fno-strict-overflow}, @option{-fwrapv} and @option{-fno-trapv} take
9014 precedence; and for example @option{-ffp-contract=off} takes precedence
9015 over @option{-ffp-contract=fast}. You can override them at link time.
9016
9017 If LTO encounters objects with C linkage declared with incompatible
9018 types in separate translation units to be linked together (undefined
9019 behavior according to ISO C99 6.2.7), a non-fatal diagnostic may be
9020 issued. The behavior is still undefined at run time. Similar
9021 diagnostics may be raised for other languages.
9022
9023 Another feature of LTO is that it is possible to apply interprocedural
9024 optimizations on files written in different languages:
9025
9026 @smallexample
9027 gcc -c -flto foo.c
9028 g++ -c -flto bar.cc
9029 gfortran -c -flto baz.f90
9030 g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
9031 @end smallexample
9032
9033 Notice that the final link is done with @command{g++} to get the C++
9034 runtime libraries and @option{-lgfortran} is added to get the Fortran
9035 runtime libraries. In general, when mixing languages in LTO mode, you
9036 should use the same link command options as when mixing languages in a
9037 regular (non-LTO) compilation.
9038
9039 If object files containing GIMPLE bytecode are stored in a library archive, say
9040 @file{libfoo.a}, it is possible to extract and use them in an LTO link if you
9041 are using a linker with plugin support. To create static libraries suitable
9042 for LTO, use @command{gcc-ar} and @command{gcc-ranlib} instead of @command{ar}
9043 and @command{ranlib};
9044 to show the symbols of object files with GIMPLE bytecode, use
9045 @command{gcc-nm}. Those commands require that @command{ar}, @command{ranlib}
9046 and @command{nm} have been compiled with plugin support. At link time, use the the
9047 flag @option{-fuse-linker-plugin} to ensure that the library participates in
9048 the LTO optimization process:
9049
9050 @smallexample
9051 gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
9052 @end smallexample
9053
9054 With the linker plugin enabled, the linker extracts the needed
9055 GIMPLE files from @file{libfoo.a} and passes them on to the running GCC
9056 to make them part of the aggregated GIMPLE image to be optimized.
9057
9058 If you are not using a linker with plugin support and/or do not
9059 enable the linker plugin, then the objects inside @file{libfoo.a}
9060 are extracted and linked as usual, but they do not participate
9061 in the LTO optimization process. In order to make a static library suitable
9062 for both LTO optimization and usual linkage, compile its object files with
9063 @option{-flto} @option{-ffat-lto-objects}.
9064
9065 Link-time optimizations do not require the presence of the whole program to
9066 operate. If the program does not require any symbols to be exported, it is
9067 possible to combine @option{-flto} and @option{-fwhole-program} to allow
9068 the interprocedural optimizers to use more aggressive assumptions which may
9069 lead to improved optimization opportunities.
9070 Use of @option{-fwhole-program} is not needed when linker plugin is
9071 active (see @option{-fuse-linker-plugin}).
9072
9073 The current implementation of LTO makes no
9074 attempt to generate bytecode that is portable between different
9075 types of hosts. The bytecode files are versioned and there is a
9076 strict version check, so bytecode files generated in one version of
9077 GCC do not work with an older or newer version of GCC.
9078
9079 Link-time optimization does not work well with generation of debugging
9080 information. Combining @option{-flto} with
9081 @option{-g} is currently experimental and expected to produce unexpected
9082 results.
9083
9084 If you specify the optional @var{n}, the optimization and code
9085 generation done at link time is executed in parallel using @var{n}
9086 parallel jobs by utilizing an installed @command{make} program. The
9087 environment variable @env{MAKE} may be used to override the program
9088 used. The default value for @var{n} is 1.
9089
9090 You can also specify @option{-flto=jobserver} to use GNU make's
9091 job server mode to determine the number of parallel jobs. This
9092 is useful when the Makefile calling GCC is already executing in parallel.
9093 You must prepend a @samp{+} to the command recipe in the parent Makefile
9094 for this to work. This option likely only works if @env{MAKE} is
9095 GNU make.
9096
9097 @item -flto-partition=@var{alg}
9098 @opindex flto-partition
9099 Specify the partitioning algorithm used by the link-time optimizer.
9100 The value is either @samp{1to1} to specify a partitioning mirroring
9101 the original source files or @samp{balanced} to specify partitioning
9102 into equally sized chunks (whenever possible) or @samp{max} to create
9103 new partition for every symbol where possible. Specifying @samp{none}
9104 as an algorithm disables partitioning and streaming completely.
9105 The default value is @samp{balanced}. While @samp{1to1} can be used
9106 as an workaround for various code ordering issues, the @samp{max}
9107 partitioning is intended for internal testing only.
9108 The value @samp{one} specifies that exactly one partition should be
9109 used while the value @samp{none} bypasses partitioning and executes
9110 the link-time optimization step directly from the WPA phase.
9111
9112 @item -flto-odr-type-merging
9113 @opindex flto-odr-type-merging
9114 Enable streaming of mangled types names of C++ types and their unification
9115 at link time. This increases size of LTO object files, but enables
9116 diagnostics about One Definition Rule violations.
9117
9118 @item -flto-compression-level=@var{n}
9119 @opindex flto-compression-level
9120 This option specifies the level of compression used for intermediate
9121 language written to LTO object files, and is only meaningful in
9122 conjunction with LTO mode (@option{-flto}). Valid
9123 values are 0 (no compression) to 9 (maximum compression). Values
9124 outside this range are clamped to either 0 or 9. If the option is not
9125 given, a default balanced compression setting is used.
9126
9127 @item -fuse-linker-plugin
9128 @opindex fuse-linker-plugin
9129 Enables the use of a linker plugin during link-time optimization. This
9130 option relies on plugin support in the linker, which is available in gold
9131 or in GNU ld 2.21 or newer.
9132
9133 This option enables the extraction of object files with GIMPLE bytecode out
9134 of library archives. This improves the quality of optimization by exposing
9135 more code to the link-time optimizer. This information specifies what
9136 symbols can be accessed externally (by non-LTO object or during dynamic
9137 linking). Resulting code quality improvements on binaries (and shared
9138 libraries that use hidden visibility) are similar to @option{-fwhole-program}.
9139 See @option{-flto} for a description of the effect of this flag and how to
9140 use it.
9141
9142 This option is enabled by default when LTO support in GCC is enabled
9143 and GCC was configured for use with
9144 a linker supporting plugins (GNU ld 2.21 or newer or gold).
9145
9146 @item -ffat-lto-objects
9147 @opindex ffat-lto-objects
9148 Fat LTO objects are object files that contain both the intermediate language
9149 and the object code. This makes them usable for both LTO linking and normal
9150 linking. This option is effective only when compiling with @option{-flto}
9151 and is ignored at link time.
9152
9153 @option{-fno-fat-lto-objects} improves compilation time over plain LTO, but
9154 requires the complete toolchain to be aware of LTO. It requires a linker with
9155 linker plugin support for basic functionality. Additionally,
9156 @command{nm}, @command{ar} and @command{ranlib}
9157 need to support linker plugins to allow a full-featured build environment
9158 (capable of building static libraries etc). GCC provides the @command{gcc-ar},
9159 @command{gcc-nm}, @command{gcc-ranlib} wrappers to pass the right options
9160 to these tools. With non fat LTO makefiles need to be modified to use them.
9161
9162 The default is @option{-fno-fat-lto-objects} on targets with linker plugin
9163 support.
9164
9165 @item -fcompare-elim
9166 @opindex fcompare-elim
9167 After register allocation and post-register allocation instruction splitting,
9168 identify arithmetic instructions that compute processor flags similar to a
9169 comparison operation based on that arithmetic. If possible, eliminate the
9170 explicit comparison operation.
9171
9172 This pass only applies to certain targets that cannot explicitly represent
9173 the comparison operation before register allocation is complete.
9174
9175 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9176
9177 @item -fcprop-registers
9178 @opindex fcprop-registers
9179 After register allocation and post-register allocation instruction splitting,
9180 perform a copy-propagation pass to try to reduce scheduling dependencies
9181 and occasionally eliminate the copy.
9182
9183 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9184
9185 @item -fprofile-correction
9186 @opindex fprofile-correction
9187 Profiles collected using an instrumented binary for multi-threaded programs may
9188 be inconsistent due to missed counter updates. When this option is specified,
9189 GCC uses heuristics to correct or smooth out such inconsistencies. By
9190 default, GCC emits an error message when an inconsistent profile is detected.
9191
9192 @item -fprofile-use
9193 @itemx -fprofile-use=@var{path}
9194 @opindex fprofile-use
9195 Enable profile feedback-directed optimizations,
9196 and the following optimizations
9197 which are generally profitable only with profile feedback available:
9198 @option{-fbranch-probabilities}, @option{-fvpt},
9199 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer},
9200 @option{-ftree-vectorize}, and @option{ftree-loop-distribute-patterns}.
9201
9202 Before you can use this option, you must first generate profiling information.
9203 @xref{Instrumentation Options}, for information about the
9204 @option{-fprofile-generate} option.
9205
9206 By default, GCC emits an error message if the feedback profiles do not
9207 match the source code. This error can be turned into a warning by using
9208 @option{-Wcoverage-mismatch}. Note this may result in poorly optimized
9209 code.
9210
9211 If @var{path} is specified, GCC looks at the @var{path} to find
9212 the profile feedback data files. See @option{-fprofile-dir}.
9213
9214 @item -fauto-profile
9215 @itemx -fauto-profile=@var{path}
9216 @opindex fauto-profile
9217 Enable sampling-based feedback-directed optimizations,
9218 and the following optimizations
9219 which are generally profitable only with profile feedback available:
9220 @option{-fbranch-probabilities}, @option{-fvpt},
9221 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer},
9222 @option{-ftree-vectorize},
9223 @option{-finline-functions}, @option{-fipa-cp}, @option{-fipa-cp-clone},
9224 @option{-fpredictive-commoning}, @option{-funswitch-loops},
9225 @option{-fgcse-after-reload}, and @option{-ftree-loop-distribute-patterns}.
9226
9227 @var{path} is the name of a file containing AutoFDO profile information.
9228 If omitted, it defaults to @file{fbdata.afdo} in the current directory.
9229
9230 Producing an AutoFDO profile data file requires running your program
9231 with the @command{perf} utility on a supported GNU/Linux target system.
9232 For more information, see @uref{https://perf.wiki.kernel.org/}.
9233
9234 E.g.
9235 @smallexample
9236 perf record -e br_inst_retired:near_taken -b -o perf.data \
9237 -- your_program
9238 @end smallexample
9239
9240 Then use the @command{create_gcov} tool to convert the raw profile data
9241 to a format that can be used by GCC.@ You must also supply the
9242 unstripped binary for your program to this tool.
9243 See @uref{https://github.com/google/autofdo}.
9244
9245 E.g.
9246 @smallexample
9247 create_gcov --binary=your_program.unstripped --profile=perf.data \
9248 --gcov=profile.afdo
9249 @end smallexample
9250 @end table
9251
9252 The following options control compiler behavior regarding floating-point
9253 arithmetic. These options trade off between speed and
9254 correctness. All must be specifically enabled.
9255
9256 @table @gcctabopt
9257 @item -ffloat-store
9258 @opindex ffloat-store
9259 Do not store floating-point variables in registers, and inhibit other
9260 options that might change whether a floating-point value is taken from a
9261 register or memory.
9262
9263 @cindex floating-point precision
9264 This option prevents undesirable excess precision on machines such as
9265 the 68000 where the floating registers (of the 68881) keep more
9266 precision than a @code{double} is supposed to have. Similarly for the
9267 x86 architecture. For most programs, the excess precision does only
9268 good, but a few programs rely on the precise definition of IEEE floating
9269 point. Use @option{-ffloat-store} for such programs, after modifying
9270 them to store all pertinent intermediate computations into variables.
9271
9272 @item -fexcess-precision=@var{style}
9273 @opindex fexcess-precision
9274 This option allows further control over excess precision on machines
9275 where floating-point operations occur in a format with more precision or
9276 range than the IEEE standard and interchange floating-point types. By
9277 default, @option{-fexcess-precision=fast} is in effect; this means that
9278 operations may be carried out in a wider precision than the types specified
9279 in the source if that would result in faster code, and it is unpredictable
9280 when rounding to the types specified in the source code takes place.
9281 When compiling C, if @option{-fexcess-precision=standard} is specified then
9282 excess precision follows the rules specified in ISO C99; in particular,
9283 both casts and assignments cause values to be rounded to their
9284 semantic types (whereas @option{-ffloat-store} only affects
9285 assignments). This option is enabled by default for C if a strict
9286 conformance option such as @option{-std=c99} is used.
9287 @option{-ffast-math} enables @option{-fexcess-precision=fast} by default
9288 regardless of whether a strict conformance option is used.
9289
9290 @opindex mfpmath
9291 @option{-fexcess-precision=standard} is not implemented for languages
9292 other than C. On the x86, it has no effect if @option{-mfpmath=sse}
9293 or @option{-mfpmath=sse+387} is specified; in the former case, IEEE
9294 semantics apply without excess precision, and in the latter, rounding
9295 is unpredictable.
9296
9297 @item -ffast-math
9298 @opindex ffast-math
9299 Sets the options @option{-fno-math-errno}, @option{-funsafe-math-optimizations},
9300 @option{-ffinite-math-only}, @option{-fno-rounding-math},
9301 @option{-fno-signaling-nans}, @option{-fcx-limited-range} and
9302 @option{-fexcess-precision=fast}.
9303
9304 This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.
9305
9306 This option is not turned on by any @option{-O} option besides
9307 @option{-Ofast} since it can result in incorrect output for programs
9308 that depend on an exact implementation of IEEE or ISO rules/specifications
9309 for math functions. It may, however, yield faster code for programs
9310 that do not require the guarantees of these specifications.
9311
9312 @item -fno-math-errno
9313 @opindex fno-math-errno
9314 Do not set @code{errno} after calling math functions that are executed
9315 with a single instruction, e.g., @code{sqrt}. A program that relies on
9316 IEEE exceptions for math error handling may want to use this flag
9317 for speed while maintaining IEEE arithmetic compatibility.
9318
9319 This option is not turned on by any @option{-O} option since
9320 it can result in incorrect output for programs that depend on
9321 an exact implementation of IEEE or ISO rules/specifications for
9322 math functions. It may, however, yield faster code for programs
9323 that do not require the guarantees of these specifications.
9324
9325 The default is @option{-fmath-errno}.
9326
9327 On Darwin systems, the math library never sets @code{errno}. There is
9328 therefore no reason for the compiler to consider the possibility that
9329 it might, and @option{-fno-math-errno} is the default.
9330
9331 @item -funsafe-math-optimizations
9332 @opindex funsafe-math-optimizations
9333
9334 Allow optimizations for floating-point arithmetic that (a) assume
9335 that arguments and results are valid and (b) may violate IEEE or
9336 ANSI standards. When used at link time, it may include libraries
9337 or startup files that change the default FPU control word or other
9338 similar optimizations.
9339
9340 This option is not turned on by any @option{-O} option since
9341 it can result in incorrect output for programs that depend on
9342 an exact implementation of IEEE or ISO rules/specifications for
9343 math functions. It may, however, yield faster code for programs
9344 that do not require the guarantees of these specifications.
9345 Enables @option{-fno-signed-zeros}, @option{-fno-trapping-math},
9346 @option{-fassociative-math} and @option{-freciprocal-math}.
9347
9348 The default is @option{-fno-unsafe-math-optimizations}.
9349
9350 @item -fassociative-math
9351 @opindex fassociative-math
9352
9353 Allow re-association of operands in series of floating-point operations.
9354 This violates the ISO C and C++ language standard by possibly changing
9355 computation result. NOTE: re-ordering may change the sign of zero as
9356 well as ignore NaNs and inhibit or create underflow or overflow (and
9357 thus cannot be used on code that relies on rounding behavior like
9358 @code{(x + 2**52) - 2**52}. May also reorder floating-point comparisons
9359 and thus may not be used when ordered comparisons are required.
9360 This option requires that both @option{-fno-signed-zeros} and
9361 @option{-fno-trapping-math} be in effect. Moreover, it doesn't make
9362 much sense with @option{-frounding-math}. For Fortran the option
9363 is automatically enabled when both @option{-fno-signed-zeros} and
9364 @option{-fno-trapping-math} are in effect.
9365
9366 The default is @option{-fno-associative-math}.
9367
9368 @item -freciprocal-math
9369 @opindex freciprocal-math
9370
9371 Allow the reciprocal of a value to be used instead of dividing by
9372 the value if this enables optimizations. For example @code{x / y}
9373 can be replaced with @code{x * (1/y)}, which is useful if @code{(1/y)}
9374 is subject to common subexpression elimination. Note that this loses
9375 precision and increases the number of flops operating on the value.
9376
9377 The default is @option{-fno-reciprocal-math}.
9378
9379 @item -ffinite-math-only
9380 @opindex ffinite-math-only
9381 Allow optimizations for floating-point arithmetic that assume
9382 that arguments and results are not NaNs or +-Infs.
9383
9384 This option is not turned on by any @option{-O} option since
9385 it can result in incorrect output for programs that depend on
9386 an exact implementation of IEEE or ISO rules/specifications for
9387 math functions. It may, however, yield faster code for programs
9388 that do not require the guarantees of these specifications.
9389
9390 The default is @option{-fno-finite-math-only}.
9391
9392 @item -fno-signed-zeros
9393 @opindex fno-signed-zeros
9394 Allow optimizations for floating-point arithmetic that ignore the
9395 signedness of zero. IEEE arithmetic specifies the behavior of
9396 distinct +0.0 and @minus{}0.0 values, which then prohibits simplification
9397 of expressions such as x+0.0 or 0.0*x (even with @option{-ffinite-math-only}).
9398 This option implies that the sign of a zero result isn't significant.
9399
9400 The default is @option{-fsigned-zeros}.
9401
9402 @item -fno-trapping-math
9403 @opindex fno-trapping-math
9404 Compile code assuming that floating-point operations cannot generate
9405 user-visible traps. These traps include division by zero, overflow,
9406 underflow, inexact result and invalid operation. This option requires
9407 that @option{-fno-signaling-nans} be in effect. Setting this option may
9408 allow faster code if one relies on ``non-stop'' IEEE arithmetic, for example.
9409
9410 This option should never be turned on by any @option{-O} option since
9411 it can result in incorrect output for programs that depend on
9412 an exact implementation of IEEE or ISO rules/specifications for
9413 math functions.
9414
9415 The default is @option{-ftrapping-math}.
9416
9417 @item -frounding-math
9418 @opindex frounding-math
9419 Disable transformations and optimizations that assume default floating-point
9420 rounding behavior. This is round-to-zero for all floating point
9421 to integer conversions, and round-to-nearest for all other arithmetic
9422 truncations. This option should be specified for programs that change
9423 the FP rounding mode dynamically, or that may be executed with a
9424 non-default rounding mode. This option disables constant folding of
9425 floating-point expressions at compile time (which may be affected by
9426 rounding mode) and arithmetic transformations that are unsafe in the
9427 presence of sign-dependent rounding modes.
9428
9429 The default is @option{-fno-rounding-math}.
9430
9431 This option is experimental and does not currently guarantee to
9432 disable all GCC optimizations that are affected by rounding mode.
9433 Future versions of GCC may provide finer control of this setting
9434 using C99's @code{FENV_ACCESS} pragma. This command-line option
9435 will be used to specify the default state for @code{FENV_ACCESS}.
9436
9437 @item -fsignaling-nans
9438 @opindex fsignaling-nans
9439 Compile code assuming that IEEE signaling NaNs may generate user-visible
9440 traps during floating-point operations. Setting this option disables
9441 optimizations that may change the number of exceptions visible with
9442 signaling NaNs. This option implies @option{-ftrapping-math}.
9443
9444 This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
9445 be defined.
9446
9447 The default is @option{-fno-signaling-nans}.
9448
9449 This option is experimental and does not currently guarantee to
9450 disable all GCC optimizations that affect signaling NaN behavior.
9451
9452 @item -fno-fp-int-builtin-inexact
9453 @opindex fno-fp-int-builtin-inexact
9454 Do not allow the built-in functions @code{ceil}, @code{floor},
9455 @code{round} and @code{trunc}, and their @code{float} and @code{long
9456 double} variants, to generate code that raises the ``inexact''
9457 floating-point exception for noninteger arguments. ISO C99 and C11
9458 allow these functions to raise the ``inexact'' exception, but ISO/IEC
9459 TS 18661-1:2014, the C bindings to IEEE 754-2008, does not allow these
9460 functions to do so.
9461
9462 The default is @option{-ffp-int-builtin-inexact}, allowing the
9463 exception to be raised. This option does nothing unless
9464 @option{-ftrapping-math} is in effect.
9465
9466 Even if @option{-fno-fp-int-builtin-inexact} is used, if the functions
9467 generate a call to a library function then the ``inexact'' exception
9468 may be raised if the library implementation does not follow TS 18661.
9469
9470 @item -fsingle-precision-constant
9471 @opindex fsingle-precision-constant
9472 Treat floating-point constants as single precision instead of
9473 implicitly converting them to double-precision constants.
9474
9475 @item -fcx-limited-range
9476 @opindex fcx-limited-range
9477 When enabled, this option states that a range reduction step is not
9478 needed when performing complex division. Also, there is no checking
9479 whether the result of a complex multiplication or division is @code{NaN
9480 + I*NaN}, with an attempt to rescue the situation in that case. The
9481 default is @option{-fno-cx-limited-range}, but is enabled by
9482 @option{-ffast-math}.
9483
9484 This option controls the default setting of the ISO C99
9485 @code{CX_LIMITED_RANGE} pragma. Nevertheless, the option applies to
9486 all languages.
9487
9488 @item -fcx-fortran-rules
9489 @opindex fcx-fortran-rules
9490 Complex multiplication and division follow Fortran rules. Range
9491 reduction is done as part of complex division, but there is no checking
9492 whether the result of a complex multiplication or division is @code{NaN
9493 + I*NaN}, with an attempt to rescue the situation in that case.
9494
9495 The default is @option{-fno-cx-fortran-rules}.
9496
9497 @end table
9498
9499 The following options control optimizations that may improve
9500 performance, but are not enabled by any @option{-O} options. This
9501 section includes experimental options that may produce broken code.
9502
9503 @table @gcctabopt
9504 @item -fbranch-probabilities
9505 @opindex fbranch-probabilities
9506 After running a program compiled with @option{-fprofile-arcs}
9507 (@pxref{Instrumentation Options}),
9508 you can compile it a second time using
9509 @option{-fbranch-probabilities}, to improve optimizations based on
9510 the number of times each branch was taken. When a program
9511 compiled with @option{-fprofile-arcs} exits, it saves arc execution
9512 counts to a file called @file{@var{sourcename}.gcda} for each source
9513 file. The information in this data file is very dependent on the
9514 structure of the generated code, so you must use the same source code
9515 and the same optimization options for both compilations.
9516
9517 With @option{-fbranch-probabilities}, GCC puts a
9518 @samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
9519 These can be used to improve optimization. Currently, they are only
9520 used in one place: in @file{reorg.c}, instead of guessing which path a
9521 branch is most likely to take, the @samp{REG_BR_PROB} values are used to
9522 exactly determine which path is taken more often.
9523
9524 @item -fprofile-values
9525 @opindex fprofile-values
9526 If combined with @option{-fprofile-arcs}, it adds code so that some
9527 data about values of expressions in the program is gathered.
9528
9529 With @option{-fbranch-probabilities}, it reads back the data gathered
9530 from profiling values of expressions for usage in optimizations.
9531
9532 Enabled with @option{-fprofile-generate} and @option{-fprofile-use}.
9533
9534 @item -fprofile-reorder-functions
9535 @opindex fprofile-reorder-functions
9536 Function reordering based on profile instrumentation collects
9537 first time of execution of a function and orders these functions
9538 in ascending order.
9539
9540 Enabled with @option{-fprofile-use}.
9541
9542 @item -fvpt
9543 @opindex fvpt
9544 If combined with @option{-fprofile-arcs}, this option instructs the compiler
9545 to add code to gather information about values of expressions.
9546
9547 With @option{-fbranch-probabilities}, it reads back the data gathered
9548 and actually performs the optimizations based on them.
9549 Currently the optimizations include specialization of division operations
9550 using the knowledge about the value of the denominator.
9551
9552 @item -frename-registers
9553 @opindex frename-registers
9554 Attempt to avoid false dependencies in scheduled code by making use
9555 of registers left over after register allocation. This optimization
9556 most benefits processors with lots of registers. Depending on the
9557 debug information format adopted by the target, however, it can
9558 make debugging impossible, since variables no longer stay in
9559 a ``home register''.
9560
9561 Enabled by default with @option{-funroll-loops}.
9562
9563 @item -fschedule-fusion
9564 @opindex fschedule-fusion
9565 Performs a target dependent pass over the instruction stream to schedule
9566 instructions of same type together because target machine can execute them
9567 more efficiently if they are adjacent to each other in the instruction flow.
9568
9569 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9570
9571 @item -ftracer
9572 @opindex ftracer
9573 Perform tail duplication to enlarge superblock size. This transformation
9574 simplifies the control flow of the function allowing other optimizations to do
9575 a better job.
9576
9577 Enabled with @option{-fprofile-use}.
9578
9579 @item -funroll-loops
9580 @opindex funroll-loops
9581 Unroll loops whose number of iterations can be determined at compile time or
9582 upon entry to the loop. @option{-funroll-loops} implies
9583 @option{-frerun-cse-after-loop}, @option{-fweb} and @option{-frename-registers}.
9584 It also turns on complete loop peeling (i.e.@: complete removal of loops with
9585 a small constant number of iterations). This option makes code larger, and may
9586 or may not make it run faster.
9587
9588 Enabled with @option{-fprofile-use}.
9589
9590 @item -funroll-all-loops
9591 @opindex funroll-all-loops
9592 Unroll all loops, even if their number of iterations is uncertain when
9593 the loop is entered. This usually makes programs run more slowly.
9594 @option{-funroll-all-loops} implies the same options as
9595 @option{-funroll-loops}.
9596
9597 @item -fpeel-loops
9598 @opindex fpeel-loops
9599 Peels loops for which there is enough information that they do not
9600 roll much (from profile feedback or static analysis). It also turns on
9601 complete loop peeling (i.e.@: complete removal of loops with small constant
9602 number of iterations).
9603
9604 Enabled with @option{-O3} and/or @option{-fprofile-use}.
9605
9606 @item -fmove-loop-invariants
9607 @opindex fmove-loop-invariants
9608 Enables the loop invariant motion pass in the RTL loop optimizer. Enabled
9609 at level @option{-O1}
9610
9611 @item -fsplit-loops
9612 @opindex fsplit-loops
9613 Split a loop into two if it contains a condition that's always true
9614 for one side of the iteration space and false for the other.
9615
9616 @item -funswitch-loops
9617 @opindex funswitch-loops
9618 Move branches with loop invariant conditions out of the loop, with duplicates
9619 of the loop on both branches (modified according to result of the condition).
9620
9621 @item -ffunction-sections
9622 @itemx -fdata-sections
9623 @opindex ffunction-sections
9624 @opindex fdata-sections
9625 Place each function or data item into its own section in the output
9626 file if the target supports arbitrary sections. The name of the
9627 function or the name of the data item determines the section's name
9628 in the output file.
9629
9630 Use these options on systems where the linker can perform optimizations
9631 to improve locality of reference in the instruction space. Most systems
9632 using the ELF object format and SPARC processors running Solaris 2 have
9633 linkers with such optimizations. AIX may have these optimizations in
9634 the future.
9635
9636 Only use these options when there are significant benefits from doing
9637 so. When you specify these options, the assembler and linker
9638 create larger object and executable files and are also slower.
9639 You cannot use @command{gprof} on all systems if you
9640 specify this option, and you may have problems with debugging if
9641 you specify both this option and @option{-g}.
9642
9643 @item -fbranch-target-load-optimize
9644 @opindex fbranch-target-load-optimize
9645 Perform branch target register load optimization before prologue / epilogue
9646 threading.
9647 The use of target registers can typically be exposed only during reload,
9648 thus hoisting loads out of loops and doing inter-block scheduling needs
9649 a separate optimization pass.
9650
9651 @item -fbranch-target-load-optimize2
9652 @opindex fbranch-target-load-optimize2
9653 Perform branch target register load optimization after prologue / epilogue
9654 threading.
9655
9656 @item -fbtr-bb-exclusive
9657 @opindex fbtr-bb-exclusive
9658 When performing branch target register load optimization, don't reuse
9659 branch target registers within any basic block.
9660
9661 @item -fstdarg-opt
9662 @opindex fstdarg-opt
9663 Optimize the prologue of variadic argument functions with respect to usage of
9664 those arguments.
9665
9666 @item -fsection-anchors
9667 @opindex fsection-anchors
9668 Try to reduce the number of symbolic address calculations by using
9669 shared ``anchor'' symbols to address nearby objects. This transformation
9670 can help to reduce the number of GOT entries and GOT accesses on some
9671 targets.
9672
9673 For example, the implementation of the following function @code{foo}:
9674
9675 @smallexample
9676 static int a, b, c;
9677 int foo (void) @{ return a + b + c; @}
9678 @end smallexample
9679
9680 @noindent
9681 usually calculates the addresses of all three variables, but if you
9682 compile it with @option{-fsection-anchors}, it accesses the variables
9683 from a common anchor point instead. The effect is similar to the
9684 following pseudocode (which isn't valid C):
9685
9686 @smallexample
9687 int foo (void)
9688 @{
9689 register int *xr = &x;
9690 return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
9691 @}
9692 @end smallexample
9693
9694 Not all targets support this option.
9695
9696 @item --param @var{name}=@var{value}
9697 @opindex param
9698 In some places, GCC uses various constants to control the amount of
9699 optimization that is done. For example, GCC does not inline functions
9700 that contain more than a certain number of instructions. You can
9701 control some of these constants on the command line using the
9702 @option{--param} option.
9703
9704 The names of specific parameters, and the meaning of the values, are
9705 tied to the internals of the compiler, and are subject to change
9706 without notice in future releases.
9707
9708 In each case, the @var{value} is an integer. The allowable choices for
9709 @var{name} are:
9710
9711 @table @gcctabopt
9712 @item predictable-branch-outcome
9713 When branch is predicted to be taken with probability lower than this threshold
9714 (in percent), then it is considered well predictable. The default is 10.
9715
9716 @item max-rtl-if-conversion-insns
9717 RTL if-conversion tries to remove conditional branches around a block and
9718 replace them with conditionally executed instructions. This parameter
9719 gives the maximum number of instructions in a block which should be
9720 considered for if-conversion. The default is 10, though the compiler will
9721 also use other heuristics to decide whether if-conversion is likely to be
9722 profitable.
9723
9724 @item max-rtl-if-conversion-predictable-cost
9725 @item max-rtl-if-conversion-unpredictable-cost
9726 RTL if-conversion will try to remove conditional branches around a block
9727 and replace them with conditionally executed instructions. These parameters
9728 give the maximum permissible cost for the sequence that would be generated
9729 by if-conversion depending on whether the branch is statically determined
9730 to be predictable or not. The units for this parameter are the same as
9731 those for the GCC internal seq_cost metric. The compiler will try to
9732 provide a reasonable default for this parameter using the BRANCH_COST
9733 target macro.
9734
9735 @item max-crossjump-edges
9736 The maximum number of incoming edges to consider for cross-jumping.
9737 The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
9738 the number of edges incoming to each block. Increasing values mean
9739 more aggressive optimization, making the compilation time increase with
9740 probably small improvement in executable size.
9741
9742 @item min-crossjump-insns
9743 The minimum number of instructions that must be matched at the end
9744 of two blocks before cross-jumping is performed on them. This
9745 value is ignored in the case where all instructions in the block being
9746 cross-jumped from are matched. The default value is 5.
9747
9748 @item max-grow-copy-bb-insns
9749 The maximum code size expansion factor when copying basic blocks
9750 instead of jumping. The expansion is relative to a jump instruction.
9751 The default value is 8.
9752
9753 @item max-goto-duplication-insns
9754 The maximum number of instructions to duplicate to a block that jumps
9755 to a computed goto. To avoid @math{O(N^2)} behavior in a number of
9756 passes, GCC factors computed gotos early in the compilation process,
9757 and unfactors them as late as possible. Only computed jumps at the
9758 end of a basic blocks with no more than max-goto-duplication-insns are
9759 unfactored. The default value is 8.
9760
9761 @item max-delay-slot-insn-search
9762 The maximum number of instructions to consider when looking for an
9763 instruction to fill a delay slot. If more than this arbitrary number of
9764 instructions are searched, the time savings from filling the delay slot
9765 are minimal, so stop searching. Increasing values mean more
9766 aggressive optimization, making the compilation time increase with probably
9767 small improvement in execution time.
9768
9769 @item max-delay-slot-live-search
9770 When trying to fill delay slots, the maximum number of instructions to
9771 consider when searching for a block with valid live register
9772 information. Increasing this arbitrarily chosen value means more
9773 aggressive optimization, increasing the compilation time. This parameter
9774 should be removed when the delay slot code is rewritten to maintain the
9775 control-flow graph.
9776
9777 @item max-gcse-memory
9778 The approximate maximum amount of memory that can be allocated in
9779 order to perform the global common subexpression elimination
9780 optimization. If more memory than specified is required, the
9781 optimization is not done.
9782
9783 @item max-gcse-insertion-ratio
9784 If the ratio of expression insertions to deletions is larger than this value
9785 for any expression, then RTL PRE inserts or removes the expression and thus
9786 leaves partially redundant computations in the instruction stream. The default value is 20.
9787
9788 @item max-pending-list-length
9789 The maximum number of pending dependencies scheduling allows
9790 before flushing the current state and starting over. Large functions
9791 with few branches or calls can create excessively large lists which
9792 needlessly consume memory and resources.
9793
9794 @item max-modulo-backtrack-attempts
9795 The maximum number of backtrack attempts the scheduler should make
9796 when modulo scheduling a loop. Larger values can exponentially increase
9797 compilation time.
9798
9799 @item max-inline-insns-single
9800 Several parameters control the tree inliner used in GCC@.
9801 This number sets the maximum number of instructions (counted in GCC's
9802 internal representation) in a single function that the tree inliner
9803 considers for inlining. This only affects functions declared
9804 inline and methods implemented in a class declaration (C++).
9805 The default value is 400.
9806
9807 @item max-inline-insns-auto
9808 When you use @option{-finline-functions} (included in @option{-O3}),
9809 a lot of functions that would otherwise not be considered for inlining
9810 by the compiler are investigated. To those functions, a different
9811 (more restrictive) limit compared to functions declared inline can
9812 be applied.
9813 The default value is 40.
9814
9815 @item inline-min-speedup
9816 When estimated performance improvement of caller + callee runtime exceeds this
9817 threshold (in percent), the function can be inlined regardless of the limit on
9818 @option{--param max-inline-insns-single} and @option{--param
9819 max-inline-insns-auto}.
9820
9821 @item large-function-insns
9822 The limit specifying really large functions. For functions larger than this
9823 limit after inlining, inlining is constrained by
9824 @option{--param large-function-growth}. This parameter is useful primarily
9825 to avoid extreme compilation time caused by non-linear algorithms used by the
9826 back end.
9827 The default value is 2700.
9828
9829 @item large-function-growth
9830 Specifies maximal growth of large function caused by inlining in percents.
9831 The default value is 100 which limits large function growth to 2.0 times
9832 the original size.
9833
9834 @item large-unit-insns
9835 The limit specifying large translation unit. Growth caused by inlining of
9836 units larger than this limit is limited by @option{--param inline-unit-growth}.
9837 For small units this might be too tight.
9838 For example, consider a unit consisting of function A
9839 that is inline and B that just calls A three times. If B is small relative to
9840 A, the growth of unit is 300\% and yet such inlining is very sane. For very
9841 large units consisting of small inlineable functions, however, the overall unit
9842 growth limit is needed to avoid exponential explosion of code size. Thus for
9843 smaller units, the size is increased to @option{--param large-unit-insns}
9844 before applying @option{--param inline-unit-growth}. The default is 10000.
9845
9846 @item inline-unit-growth
9847 Specifies maximal overall growth of the compilation unit caused by inlining.
9848 The default value is 20 which limits unit growth to 1.2 times the original
9849 size. Cold functions (either marked cold via an attribute or by profile
9850 feedback) are not accounted into the unit size.
9851
9852 @item ipcp-unit-growth
9853 Specifies maximal overall growth of the compilation unit caused by
9854 interprocedural constant propagation. The default value is 10 which limits
9855 unit growth to 1.1 times the original size.
9856
9857 @item large-stack-frame
9858 The limit specifying large stack frames. While inlining the algorithm is trying
9859 to not grow past this limit too much. The default value is 256 bytes.
9860
9861 @item large-stack-frame-growth
9862 Specifies maximal growth of large stack frames caused by inlining in percents.
9863 The default value is 1000 which limits large stack frame growth to 11 times
9864 the original size.
9865
9866 @item max-inline-insns-recursive
9867 @itemx max-inline-insns-recursive-auto
9868 Specifies the maximum number of instructions an out-of-line copy of a
9869 self-recursive inline
9870 function can grow into by performing recursive inlining.
9871
9872 @option{--param max-inline-insns-recursive} applies to functions
9873 declared inline.
9874 For functions not declared inline, recursive inlining
9875 happens only when @option{-finline-functions} (included in @option{-O3}) is
9876 enabled; @option{--param max-inline-insns-recursive-auto} applies instead. The
9877 default value is 450.
9878
9879 @item max-inline-recursive-depth
9880 @itemx max-inline-recursive-depth-auto
9881 Specifies the maximum recursion depth used for recursive inlining.
9882
9883 @option{--param max-inline-recursive-depth} applies to functions
9884 declared inline. For functions not declared inline, recursive inlining
9885 happens only when @option{-finline-functions} (included in @option{-O3}) is
9886 enabled; @option{--param max-inline-recursive-depth-auto} applies instead. The
9887 default value is 8.
9888
9889 @item min-inline-recursive-probability
9890 Recursive inlining is profitable only for function having deep recursion
9891 in average and can hurt for function having little recursion depth by
9892 increasing the prologue size or complexity of function body to other
9893 optimizers.
9894
9895 When profile feedback is available (see @option{-fprofile-generate}) the actual
9896 recursion depth can be guessed from the probability that function recurses
9897 via a given call expression. This parameter limits inlining only to call
9898 expressions whose probability exceeds the given threshold (in percents).
9899 The default value is 10.
9900
9901 @item early-inlining-insns
9902 Specify growth that the early inliner can make. In effect it increases
9903 the amount of inlining for code having a large abstraction penalty.
9904 The default value is 14.
9905
9906 @item max-early-inliner-iterations
9907 Limit of iterations of the early inliner. This basically bounds
9908 the number of nested indirect calls the early inliner can resolve.
9909 Deeper chains are still handled by late inlining.
9910
9911 @item comdat-sharing-probability
9912 Probability (in percent) that C++ inline function with comdat visibility
9913 are shared across multiple compilation units. The default value is 20.
9914
9915 @item profile-func-internal-id
9916 A parameter to control whether to use function internal id in profile
9917 database lookup. If the value is 0, the compiler uses an id that
9918 is based on function assembler name and filename, which makes old profile
9919 data more tolerant to source changes such as function reordering etc.
9920 The default value is 0.
9921
9922 @item min-vect-loop-bound
9923 The minimum number of iterations under which loops are not vectorized
9924 when @option{-ftree-vectorize} is used. The number of iterations after
9925 vectorization needs to be greater than the value specified by this option
9926 to allow vectorization. The default value is 0.
9927
9928 @item gcse-cost-distance-ratio
9929 Scaling factor in calculation of maximum distance an expression
9930 can be moved by GCSE optimizations. This is currently supported only in the
9931 code hoisting pass. The bigger the ratio, the more aggressive code hoisting
9932 is with simple expressions, i.e., the expressions that have cost
9933 less than @option{gcse-unrestricted-cost}. Specifying 0 disables
9934 hoisting of simple expressions. The default value is 10.
9935
9936 @item gcse-unrestricted-cost
9937 Cost, roughly measured as the cost of a single typical machine
9938 instruction, at which GCSE optimizations do not constrain
9939 the distance an expression can travel. This is currently
9940 supported only in the code hoisting pass. The lesser the cost,
9941 the more aggressive code hoisting is. Specifying 0
9942 allows all expressions to travel unrestricted distances.
9943 The default value is 3.
9944
9945 @item max-hoist-depth
9946 The depth of search in the dominator tree for expressions to hoist.
9947 This is used to avoid quadratic behavior in hoisting algorithm.
9948 The value of 0 does not limit on the search, but may slow down compilation
9949 of huge functions. The default value is 30.
9950
9951 @item max-tail-merge-comparisons
9952 The maximum amount of similar bbs to compare a bb with. This is used to
9953 avoid quadratic behavior in tree tail merging. The default value is 10.
9954
9955 @item max-tail-merge-iterations
9956 The maximum amount of iterations of the pass over the function. This is used to
9957 limit compilation time in tree tail merging. The default value is 2.
9958
9959 @item store-merging-allow-unaligned
9960 Allow the store merging pass to introduce unaligned stores if it is legal to
9961 do so. The default value is 1.
9962
9963 @item max-stores-to-merge
9964 The maximum number of stores to attempt to merge into wider stores in the store
9965 merging pass. The minimum value is 2 and the default is 64.
9966
9967 @item max-unrolled-insns
9968 The maximum number of instructions that a loop may have to be unrolled.
9969 If a loop is unrolled, this parameter also determines how many times
9970 the loop code is unrolled.
9971
9972 @item max-average-unrolled-insns
9973 The maximum number of instructions biased by probabilities of their execution
9974 that a loop may have to be unrolled. If a loop is unrolled,
9975 this parameter also determines how many times the loop code is unrolled.
9976
9977 @item max-unroll-times
9978 The maximum number of unrollings of a single loop.
9979
9980 @item max-peeled-insns
9981 The maximum number of instructions that a loop may have to be peeled.
9982 If a loop is peeled, this parameter also determines how many times
9983 the loop code is peeled.
9984
9985 @item max-peel-times
9986 The maximum number of peelings of a single loop.
9987
9988 @item max-peel-branches
9989 The maximum number of branches on the hot path through the peeled sequence.
9990
9991 @item max-completely-peeled-insns
9992 The maximum number of insns of a completely peeled loop.
9993
9994 @item max-completely-peel-times
9995 The maximum number of iterations of a loop to be suitable for complete peeling.
9996
9997 @item max-completely-peel-loop-nest-depth
9998 The maximum depth of a loop nest suitable for complete peeling.
9999
10000 @item max-unswitch-insns
10001 The maximum number of insns of an unswitched loop.
10002
10003 @item max-unswitch-level
10004 The maximum number of branches unswitched in a single loop.
10005
10006 @item max-loop-headers-insns
10007 The maximum number of insns in loop header duplicated by the copy loop headers
10008 pass.
10009
10010 @item lim-expensive
10011 The minimum cost of an expensive expression in the loop invariant motion.
10012
10013 @item iv-consider-all-candidates-bound
10014 Bound on number of candidates for induction variables, below which
10015 all candidates are considered for each use in induction variable
10016 optimizations. If there are more candidates than this,
10017 only the most relevant ones are considered to avoid quadratic time complexity.
10018
10019 @item iv-max-considered-uses
10020 The induction variable optimizations give up on loops that contain more
10021 induction variable uses.
10022
10023 @item iv-always-prune-cand-set-bound
10024 If the number of candidates in the set is smaller than this value,
10025 always try to remove unnecessary ivs from the set
10026 when adding a new one.
10027
10028 @item avg-loop-niter
10029 Average number of iterations of a loop.
10030
10031 @item dse-max-object-size
10032 Maximum size (in bytes) of objects tracked bytewise by dead store elimination.
10033 Larger values may result in larger compilation times.
10034
10035 @item scev-max-expr-size
10036 Bound on size of expressions used in the scalar evolutions analyzer.
10037 Large expressions slow the analyzer.
10038
10039 @item scev-max-expr-complexity
10040 Bound on the complexity of the expressions in the scalar evolutions analyzer.
10041 Complex expressions slow the analyzer.
10042
10043 @item max-tree-if-conversion-phi-args
10044 Maximum number of arguments in a PHI supported by TREE if conversion
10045 unless the loop is marked with simd pragma.
10046
10047 @item vect-max-version-for-alignment-checks
10048 The maximum number of run-time checks that can be performed when
10049 doing loop versioning for alignment in the vectorizer.
10050
10051 @item vect-max-version-for-alias-checks
10052 The maximum number of run-time checks that can be performed when
10053 doing loop versioning for alias in the vectorizer.
10054
10055 @item vect-max-peeling-for-alignment
10056 The maximum number of loop peels to enhance access alignment
10057 for vectorizer. Value -1 means no limit.
10058
10059 @item max-iterations-to-track
10060 The maximum number of iterations of a loop the brute-force algorithm
10061 for analysis of the number of iterations of the loop tries to evaluate.
10062
10063 @item hot-bb-count-ws-permille
10064 A basic block profile count is considered hot if it contributes to
10065 the given permillage (i.e. 0...1000) of the entire profiled execution.
10066
10067 @item hot-bb-frequency-fraction
10068 Select fraction of the entry block frequency of executions of basic block in
10069 function given basic block needs to have to be considered hot.
10070
10071 @item max-predicted-iterations
10072 The maximum number of loop iterations we predict statically. This is useful
10073 in cases where a function contains a single loop with known bound and
10074 another loop with unknown bound.
10075 The known number of iterations is predicted correctly, while
10076 the unknown number of iterations average to roughly 10. This means that the
10077 loop without bounds appears artificially cold relative to the other one.
10078
10079 @item builtin-expect-probability
10080 Control the probability of the expression having the specified value. This
10081 parameter takes a percentage (i.e. 0 ... 100) as input.
10082 The default probability of 90 is obtained empirically.
10083
10084 @item align-threshold
10085
10086 Select fraction of the maximal frequency of executions of a basic block in
10087 a function to align the basic block.
10088
10089 @item align-loop-iterations
10090
10091 A loop expected to iterate at least the selected number of iterations is
10092 aligned.
10093
10094 @item tracer-dynamic-coverage
10095 @itemx tracer-dynamic-coverage-feedback
10096
10097 This value is used to limit superblock formation once the given percentage of
10098 executed instructions is covered. This limits unnecessary code size
10099 expansion.
10100
10101 The @option{tracer-dynamic-coverage-feedback} parameter
10102 is used only when profile
10103 feedback is available. The real profiles (as opposed to statically estimated
10104 ones) are much less balanced allowing the threshold to be larger value.
10105
10106 @item tracer-max-code-growth
10107 Stop tail duplication once code growth has reached given percentage. This is
10108 a rather artificial limit, as most of the duplicates are eliminated later in
10109 cross jumping, so it may be set to much higher values than is the desired code
10110 growth.
10111
10112 @item tracer-min-branch-ratio
10113
10114 Stop reverse growth when the reverse probability of best edge is less than this
10115 threshold (in percent).
10116
10117 @item tracer-min-branch-probability
10118 @itemx tracer-min-branch-probability-feedback
10119
10120 Stop forward growth if the best edge has probability lower than this
10121 threshold.
10122
10123 Similarly to @option{tracer-dynamic-coverage} two parameters are
10124 provided. @option{tracer-min-branch-probability-feedback} is used for
10125 compilation with profile feedback and @option{tracer-min-branch-probability}
10126 compilation without. The value for compilation with profile feedback
10127 needs to be more conservative (higher) in order to make tracer
10128 effective.
10129
10130 @item max-cse-path-length
10131
10132 The maximum number of basic blocks on path that CSE considers.
10133 The default is 10.
10134
10135 @item max-cse-insns
10136 The maximum number of instructions CSE processes before flushing.
10137 The default is 1000.
10138
10139 @item ggc-min-expand
10140
10141 GCC uses a garbage collector to manage its own memory allocation. This
10142 parameter specifies the minimum percentage by which the garbage
10143 collector's heap should be allowed to expand between collections.
10144 Tuning this may improve compilation speed; it has no effect on code
10145 generation.
10146
10147 The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
10148 RAM >= 1GB@. If @code{getrlimit} is available, the notion of ``RAM'' is
10149 the smallest of actual RAM and @code{RLIMIT_DATA} or @code{RLIMIT_AS}. If
10150 GCC is not able to calculate RAM on a particular platform, the lower
10151 bound of 30% is used. Setting this parameter and
10152 @option{ggc-min-heapsize} to zero causes a full collection to occur at
10153 every opportunity. This is extremely slow, but can be useful for
10154 debugging.
10155
10156 @item ggc-min-heapsize
10157
10158 Minimum size of the garbage collector's heap before it begins bothering
10159 to collect garbage. The first collection occurs after the heap expands
10160 by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}. Again,
10161 tuning this may improve compilation speed, and has no effect on code
10162 generation.
10163
10164 The default is the smaller of RAM/8, RLIMIT_RSS, or a limit that
10165 tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
10166 with a lower bound of 4096 (four megabytes) and an upper bound of
10167 131072 (128 megabytes). If GCC is not able to calculate RAM on a
10168 particular platform, the lower bound is used. Setting this parameter
10169 very large effectively disables garbage collection. Setting this
10170 parameter and @option{ggc-min-expand} to zero causes a full collection
10171 to occur at every opportunity.
10172
10173 @item max-reload-search-insns
10174 The maximum number of instruction reload should look backward for equivalent
10175 register. Increasing values mean more aggressive optimization, making the
10176 compilation time increase with probably slightly better performance.
10177 The default value is 100.
10178
10179 @item max-cselib-memory-locations
10180 The maximum number of memory locations cselib should take into account.
10181 Increasing values mean more aggressive optimization, making the compilation time
10182 increase with probably slightly better performance. The default value is 500.
10183
10184 @item max-sched-ready-insns
10185 The maximum number of instructions ready to be issued the scheduler should
10186 consider at any given time during the first scheduling pass. Increasing
10187 values mean more thorough searches, making the compilation time increase
10188 with probably little benefit. The default value is 100.
10189
10190 @item max-sched-region-blocks
10191 The maximum number of blocks in a region to be considered for
10192 interblock scheduling. The default value is 10.
10193
10194 @item max-pipeline-region-blocks
10195 The maximum number of blocks in a region to be considered for
10196 pipelining in the selective scheduler. The default value is 15.
10197
10198 @item max-sched-region-insns
10199 The maximum number of insns in a region to be considered for
10200 interblock scheduling. The default value is 100.
10201
10202 @item max-pipeline-region-insns
10203 The maximum number of insns in a region to be considered for
10204 pipelining in the selective scheduler. The default value is 200.
10205
10206 @item min-spec-prob
10207 The minimum probability (in percents) of reaching a source block
10208 for interblock speculative scheduling. The default value is 40.
10209
10210 @item max-sched-extend-regions-iters
10211 The maximum number of iterations through CFG to extend regions.
10212 A value of 0 (the default) disables region extensions.
10213
10214 @item max-sched-insn-conflict-delay
10215 The maximum conflict delay for an insn to be considered for speculative motion.
10216 The default value is 3.
10217
10218 @item sched-spec-prob-cutoff
10219 The minimal probability of speculation success (in percents), so that
10220 speculative insns are scheduled.
10221 The default value is 40.
10222
10223 @item sched-state-edge-prob-cutoff
10224 The minimum probability an edge must have for the scheduler to save its
10225 state across it.
10226 The default value is 10.
10227
10228 @item sched-mem-true-dep-cost
10229 Minimal distance (in CPU cycles) between store and load targeting same
10230 memory locations. The default value is 1.
10231
10232 @item selsched-max-lookahead
10233 The maximum size of the lookahead window of selective scheduling. It is a
10234 depth of search for available instructions.
10235 The default value is 50.
10236
10237 @item selsched-max-sched-times
10238 The maximum number of times that an instruction is scheduled during
10239 selective scheduling. This is the limit on the number of iterations
10240 through which the instruction may be pipelined. The default value is 2.
10241
10242 @item selsched-insns-to-rename
10243 The maximum number of best instructions in the ready list that are considered
10244 for renaming in the selective scheduler. The default value is 2.
10245
10246 @item sms-min-sc
10247 The minimum value of stage count that swing modulo scheduler
10248 generates. The default value is 2.
10249
10250 @item max-last-value-rtl
10251 The maximum size measured as number of RTLs that can be recorded in an expression
10252 in combiner for a pseudo register as last known value of that register. The default
10253 is 10000.
10254
10255 @item max-combine-insns
10256 The maximum number of instructions the RTL combiner tries to combine.
10257 The default value is 2 at @option{-Og} and 4 otherwise.
10258
10259 @item integer-share-limit
10260 Small integer constants can use a shared data structure, reducing the
10261 compiler's memory usage and increasing its speed. This sets the maximum
10262 value of a shared integer constant. The default value is 256.
10263
10264 @item ssp-buffer-size
10265 The minimum size of buffers (i.e.@: arrays) that receive stack smashing
10266 protection when @option{-fstack-protection} is used.
10267
10268 @item min-size-for-stack-sharing
10269 The minimum size of variables taking part in stack slot sharing when not
10270 optimizing. The default value is 32.
10271
10272 @item max-jump-thread-duplication-stmts
10273 Maximum number of statements allowed in a block that needs to be
10274 duplicated when threading jumps.
10275
10276 @item max-fields-for-field-sensitive
10277 Maximum number of fields in a structure treated in
10278 a field sensitive manner during pointer analysis. The default is zero
10279 for @option{-O0} and @option{-O1},
10280 and 100 for @option{-Os}, @option{-O2}, and @option{-O3}.
10281
10282 @item prefetch-latency
10283 Estimate on average number of instructions that are executed before
10284 prefetch finishes. The distance prefetched ahead is proportional
10285 to this constant. Increasing this number may also lead to less
10286 streams being prefetched (see @option{simultaneous-prefetches}).
10287
10288 @item simultaneous-prefetches
10289 Maximum number of prefetches that can run at the same time.
10290
10291 @item l1-cache-line-size
10292 The size of cache line in L1 cache, in bytes.
10293
10294 @item l1-cache-size
10295 The size of L1 cache, in kilobytes.
10296
10297 @item l2-cache-size
10298 The size of L2 cache, in kilobytes.
10299
10300 @item min-insn-to-prefetch-ratio
10301 The minimum ratio between the number of instructions and the
10302 number of prefetches to enable prefetching in a loop.
10303
10304 @item prefetch-min-insn-to-mem-ratio
10305 The minimum ratio between the number of instructions and the
10306 number of memory references to enable prefetching in a loop.
10307
10308 @item use-canonical-types
10309 Whether the compiler should use the ``canonical'' type system. By
10310 default, this should always be 1, which uses a more efficient internal
10311 mechanism for comparing types in C++ and Objective-C++. However, if
10312 bugs in the canonical type system are causing compilation failures,
10313 set this value to 0 to disable canonical types.
10314
10315 @item switch-conversion-max-branch-ratio
10316 Switch initialization conversion refuses to create arrays that are
10317 bigger than @option{switch-conversion-max-branch-ratio} times the number of
10318 branches in the switch.
10319
10320 @item max-partial-antic-length
10321 Maximum length of the partial antic set computed during the tree
10322 partial redundancy elimination optimization (@option{-ftree-pre}) when
10323 optimizing at @option{-O3} and above. For some sorts of source code
10324 the enhanced partial redundancy elimination optimization can run away,
10325 consuming all of the memory available on the host machine. This
10326 parameter sets a limit on the length of the sets that are computed,
10327 which prevents the runaway behavior. Setting a value of 0 for
10328 this parameter allows an unlimited set length.
10329
10330 @item sccvn-max-scc-size
10331 Maximum size of a strongly connected component (SCC) during SCCVN
10332 processing. If this limit is hit, SCCVN processing for the whole
10333 function is not done and optimizations depending on it are
10334 disabled. The default maximum SCC size is 10000.
10335
10336 @item sccvn-max-alias-queries-per-access
10337 Maximum number of alias-oracle queries we perform when looking for
10338 redundancies for loads and stores. If this limit is hit the search
10339 is aborted and the load or store is not considered redundant. The
10340 number of queries is algorithmically limited to the number of
10341 stores on all paths from the load to the function entry.
10342 The default maximum number of queries is 1000.
10343
10344 @item ira-max-loops-num
10345 IRA uses regional register allocation by default. If a function
10346 contains more loops than the number given by this parameter, only at most
10347 the given number of the most frequently-executed loops form regions
10348 for regional register allocation. The default value of the
10349 parameter is 100.
10350
10351 @item ira-max-conflict-table-size
10352 Although IRA uses a sophisticated algorithm to compress the conflict
10353 table, the table can still require excessive amounts of memory for
10354 huge functions. If the conflict table for a function could be more
10355 than the size in MB given by this parameter, the register allocator
10356 instead uses a faster, simpler, and lower-quality
10357 algorithm that does not require building a pseudo-register conflict table.
10358 The default value of the parameter is 2000.
10359
10360 @item ira-loop-reserved-regs
10361 IRA can be used to evaluate more accurate register pressure in loops
10362 for decisions to move loop invariants (see @option{-O3}). The number
10363 of available registers reserved for some other purposes is given
10364 by this parameter. The default value of the parameter is 2, which is
10365 the minimal number of registers needed by typical instructions.
10366 This value is the best found from numerous experiments.
10367
10368 @item lra-inheritance-ebb-probability-cutoff
10369 LRA tries to reuse values reloaded in registers in subsequent insns.
10370 This optimization is called inheritance. EBB is used as a region to
10371 do this optimization. The parameter defines a minimal fall-through
10372 edge probability in percentage used to add BB to inheritance EBB in
10373 LRA. The default value of the parameter is 40. The value was chosen
10374 from numerous runs of SPEC2000 on x86-64.
10375
10376 @item loop-invariant-max-bbs-in-loop
10377 Loop invariant motion can be very expensive, both in compilation time and
10378 in amount of needed compile-time memory, with very large loops. Loops
10379 with more basic blocks than this parameter won't have loop invariant
10380 motion optimization performed on them. The default value of the
10381 parameter is 1000 for @option{-O1} and 10000 for @option{-O2} and above.
10382
10383 @item loop-max-datarefs-for-datadeps
10384 Building data dependencies is expensive for very large loops. This
10385 parameter limits the number of data references in loops that are
10386 considered for data dependence analysis. These large loops are no
10387 handled by the optimizations using loop data dependencies.
10388 The default value is 1000.
10389
10390 @item max-vartrack-size
10391 Sets a maximum number of hash table slots to use during variable
10392 tracking dataflow analysis of any function. If this limit is exceeded
10393 with variable tracking at assignments enabled, analysis for that
10394 function is retried without it, after removing all debug insns from
10395 the function. If the limit is exceeded even without debug insns, var
10396 tracking analysis is completely disabled for the function. Setting
10397 the parameter to zero makes it unlimited.
10398
10399 @item max-vartrack-expr-depth
10400 Sets a maximum number of recursion levels when attempting to map
10401 variable names or debug temporaries to value expressions. This trades
10402 compilation time for more complete debug information. If this is set too
10403 low, value expressions that are available and could be represented in
10404 debug information may end up not being used; setting this higher may
10405 enable the compiler to find more complex debug expressions, but compile
10406 time and memory use may grow. The default is 12.
10407
10408 @item min-nondebug-insn-uid
10409 Use uids starting at this parameter for nondebug insns. The range below
10410 the parameter is reserved exclusively for debug insns created by
10411 @option{-fvar-tracking-assignments}, but debug insns may get
10412 (non-overlapping) uids above it if the reserved range is exhausted.
10413
10414 @item ipa-sra-ptr-growth-factor
10415 IPA-SRA replaces a pointer to an aggregate with one or more new
10416 parameters only when their cumulative size is less or equal to
10417 @option{ipa-sra-ptr-growth-factor} times the size of the original
10418 pointer parameter.
10419
10420 @item sra-max-scalarization-size-Ospeed
10421 @item sra-max-scalarization-size-Osize
10422 The two Scalar Reduction of Aggregates passes (SRA and IPA-SRA) aim to
10423 replace scalar parts of aggregates with uses of independent scalar
10424 variables. These parameters control the maximum size, in storage units,
10425 of aggregate which is considered for replacement when compiling for
10426 speed
10427 (@option{sra-max-scalarization-size-Ospeed}) or size
10428 (@option{sra-max-scalarization-size-Osize}) respectively.
10429
10430 @item tm-max-aggregate-size
10431 When making copies of thread-local variables in a transaction, this
10432 parameter specifies the size in bytes after which variables are
10433 saved with the logging functions as opposed to save/restore code
10434 sequence pairs. This option only applies when using
10435 @option{-fgnu-tm}.
10436
10437 @item graphite-max-nb-scop-params
10438 To avoid exponential effects in the Graphite loop transforms, the
10439 number of parameters in a Static Control Part (SCoP) is bounded. The
10440 default value is 10 parameters. A variable whose value is unknown at
10441 compilation time and defined outside a SCoP is a parameter of the SCoP.
10442
10443 @item graphite-max-bbs-per-function
10444 To avoid exponential effects in the detection of SCoPs, the size of
10445 the functions analyzed by Graphite is bounded. The default value is
10446 100 basic blocks.
10447
10448 @item loop-block-tile-size
10449 Loop blocking or strip mining transforms, enabled with
10450 @option{-floop-block} or @option{-floop-strip-mine}, strip mine each
10451 loop in the loop nest by a given number of iterations. The strip
10452 length can be changed using the @option{loop-block-tile-size}
10453 parameter. The default value is 51 iterations.
10454
10455 @item loop-unroll-jam-size
10456 Specify the unroll factor for the @option{-floop-unroll-and-jam} option. The
10457 default value is 4.
10458
10459 @item loop-unroll-jam-depth
10460 Specify the dimension to be unrolled (counting from the most inner loop)
10461 for the @option{-floop-unroll-and-jam}. The default value is 2.
10462
10463 @item ipa-cp-value-list-size
10464 IPA-CP attempts to track all possible values and types passed to a function's
10465 parameter in order to propagate them and perform devirtualization.
10466 @option{ipa-cp-value-list-size} is the maximum number of values and types it
10467 stores per one formal parameter of a function.
10468
10469 @item ipa-cp-eval-threshold
10470 IPA-CP calculates its own score of cloning profitability heuristics
10471 and performs those cloning opportunities with scores that exceed
10472 @option{ipa-cp-eval-threshold}.
10473
10474 @item ipa-cp-recursion-penalty
10475 Percentage penalty the recursive functions will receive when they
10476 are evaluated for cloning.
10477
10478 @item ipa-cp-single-call-penalty
10479 Percentage penalty functions containing a single call to another
10480 function will receive when they are evaluated for cloning.
10481
10482
10483 @item ipa-max-agg-items
10484 IPA-CP is also capable to propagate a number of scalar values passed
10485 in an aggregate. @option{ipa-max-agg-items} controls the maximum
10486 number of such values per one parameter.
10487
10488 @item ipa-cp-loop-hint-bonus
10489 When IPA-CP determines that a cloning candidate would make the number
10490 of iterations of a loop known, it adds a bonus of
10491 @option{ipa-cp-loop-hint-bonus} to the profitability score of
10492 the candidate.
10493
10494 @item ipa-cp-array-index-hint-bonus
10495 When IPA-CP determines that a cloning candidate would make the index of
10496 an array access known, it adds a bonus of
10497 @option{ipa-cp-array-index-hint-bonus} to the profitability
10498 score of the candidate.
10499
10500 @item ipa-max-aa-steps
10501 During its analysis of function bodies, IPA-CP employs alias analysis
10502 in order to track values pointed to by function parameters. In order
10503 not spend too much time analyzing huge functions, it gives up and
10504 consider all memory clobbered after examining
10505 @option{ipa-max-aa-steps} statements modifying memory.
10506
10507 @item lto-partitions
10508 Specify desired number of partitions produced during WHOPR compilation.
10509 The number of partitions should exceed the number of CPUs used for compilation.
10510 The default value is 32.
10511
10512 @item lto-min-partition
10513 Size of minimal partition for WHOPR (in estimated instructions).
10514 This prevents expenses of splitting very small programs into too many
10515 partitions.
10516
10517 @item lto-max-partition
10518 Size of max partition for WHOPR (in estimated instructions).
10519 to provide an upper bound for individual size of partition.
10520 Meant to be used only with balanced partitioning.
10521
10522 @item cxx-max-namespaces-for-diagnostic-help
10523 The maximum number of namespaces to consult for suggestions when C++
10524 name lookup fails for an identifier. The default is 1000.
10525
10526 @item sink-frequency-threshold
10527 The maximum relative execution frequency (in percents) of the target block
10528 relative to a statement's original block to allow statement sinking of a
10529 statement. Larger numbers result in more aggressive statement sinking.
10530 The default value is 75. A small positive adjustment is applied for
10531 statements with memory operands as those are even more profitable so sink.
10532
10533 @item max-stores-to-sink
10534 The maximum number of conditional store pairs that can be sunk. Set to 0
10535 if either vectorization (@option{-ftree-vectorize}) or if-conversion
10536 (@option{-ftree-loop-if-convert}) is disabled. The default is 2.
10537
10538 @item allow-store-data-races
10539 Allow optimizers to introduce new data races on stores.
10540 Set to 1 to allow, otherwise to 0. This option is enabled by default
10541 at optimization level @option{-Ofast}.
10542
10543 @item case-values-threshold
10544 The smallest number of different values for which it is best to use a
10545 jump-table instead of a tree of conditional branches. If the value is
10546 0, use the default for the machine. The default is 0.
10547
10548 @item tree-reassoc-width
10549 Set the maximum number of instructions executed in parallel in
10550 reassociated tree. This parameter overrides target dependent
10551 heuristics used by default if has non zero value.
10552
10553 @item sched-pressure-algorithm
10554 Choose between the two available implementations of
10555 @option{-fsched-pressure}. Algorithm 1 is the original implementation
10556 and is the more likely to prevent instructions from being reordered.
10557 Algorithm 2 was designed to be a compromise between the relatively
10558 conservative approach taken by algorithm 1 and the rather aggressive
10559 approach taken by the default scheduler. It relies more heavily on
10560 having a regular register file and accurate register pressure classes.
10561 See @file{haifa-sched.c} in the GCC sources for more details.
10562
10563 The default choice depends on the target.
10564
10565 @item max-slsr-cand-scan
10566 Set the maximum number of existing candidates that are considered when
10567 seeking a basis for a new straight-line strength reduction candidate.
10568
10569 @item asan-globals
10570 Enable buffer overflow detection for global objects. This kind
10571 of protection is enabled by default if you are using
10572 @option{-fsanitize=address} option.
10573 To disable global objects protection use @option{--param asan-globals=0}.
10574
10575 @item asan-stack
10576 Enable buffer overflow detection for stack objects. This kind of
10577 protection is enabled by default when using @option{-fsanitize=address}.
10578 To disable stack protection use @option{--param asan-stack=0} option.
10579
10580 @item asan-instrument-reads
10581 Enable buffer overflow detection for memory reads. This kind of
10582 protection is enabled by default when using @option{-fsanitize=address}.
10583 To disable memory reads protection use
10584 @option{--param asan-instrument-reads=0}.
10585
10586 @item asan-instrument-writes
10587 Enable buffer overflow detection for memory writes. This kind of
10588 protection is enabled by default when using @option{-fsanitize=address}.
10589 To disable memory writes protection use
10590 @option{--param asan-instrument-writes=0} option.
10591
10592 @item asan-memintrin
10593 Enable detection for built-in functions. This kind of protection
10594 is enabled by default when using @option{-fsanitize=address}.
10595 To disable built-in functions protection use
10596 @option{--param asan-memintrin=0}.
10597
10598 @item asan-use-after-return
10599 Enable detection of use-after-return. This kind of protection
10600 is enabled by default when using the @option{-fsanitize=address} option.
10601 To disable it use @option{--param asan-use-after-return=0}.
10602
10603 Note: By default the check is disabled at run time. To enable it,
10604 add @code{detect_stack_use_after_return=1} to the environment variable
10605 @env{ASAN_OPTIONS}.
10606
10607 @item asan-instrumentation-with-call-threshold
10608 If number of memory accesses in function being instrumented
10609 is greater or equal to this number, use callbacks instead of inline checks.
10610 E.g. to disable inline code use
10611 @option{--param asan-instrumentation-with-call-threshold=0}.
10612
10613 @item use-after-scope-direct-emission-threshold
10614 If the size of a local variable in bytes is smaller or equal to this
10615 number, directly poison (or unpoison) shadow memory instead of using
10616 run-time callbacks. The default value is 256.
10617
10618 @item chkp-max-ctor-size
10619 Static constructors generated by Pointer Bounds Checker may become very
10620 large and significantly increase compile time at optimization level
10621 @option{-O1} and higher. This parameter is a maximum number of statements
10622 in a single generated constructor. Default value is 5000.
10623
10624 @item max-fsm-thread-path-insns
10625 Maximum number of instructions to copy when duplicating blocks on a
10626 finite state automaton jump thread path. The default is 100.
10627
10628 @item max-fsm-thread-length
10629 Maximum number of basic blocks on a finite state automaton jump thread
10630 path. The default is 10.
10631
10632 @item max-fsm-thread-paths
10633 Maximum number of new jump thread paths to create for a finite state
10634 automaton. The default is 50.
10635
10636 @item parloops-chunk-size
10637 Chunk size of omp schedule for loops parallelized by parloops. The default
10638 is 0.
10639
10640 @item parloops-schedule
10641 Schedule type of omp schedule for loops parallelized by parloops (static,
10642 dynamic, guided, auto, runtime). The default is static.
10643
10644 @item max-ssa-name-query-depth
10645 Maximum depth of recursion when querying properties of SSA names in things
10646 like fold routines. One level of recursion corresponds to following a
10647 use-def chain.
10648
10649 @item hsa-gen-debug-stores
10650 Enable emission of special debug stores within HSA kernels which are
10651 then read and reported by libgomp plugin. Generation of these stores
10652 is disabled by default, use @option{--param hsa-gen-debug-stores=1} to
10653 enable it.
10654
10655 @item max-speculative-devirt-maydefs
10656 The maximum number of may-defs we analyze when looking for a must-def
10657 specifying the dynamic type of an object that invokes a virtual call
10658 we may be able to devirtualize speculatively.
10659
10660 @item max-vrp-switch-assertions
10661 The maximum number of assertions to add along the default edge of a switch
10662 statement during VRP. The default is 10.
10663 @end table
10664 @end table
10665
10666 @node Instrumentation Options
10667 @section Program Instrumentation Options
10668 @cindex instrumentation options
10669 @cindex program instrumentation options
10670 @cindex run-time error checking options
10671 @cindex profiling options
10672 @cindex options, program instrumentation
10673 @cindex options, run-time error checking
10674 @cindex options, profiling
10675
10676 GCC supports a number of command-line options that control adding
10677 run-time instrumentation to the code it normally generates.
10678 For example, one purpose of instrumentation is collect profiling
10679 statistics for use in finding program hot spots, code coverage
10680 analysis, or profile-guided optimizations.
10681 Another class of program instrumentation is adding run-time checking
10682 to detect programming errors like invalid pointer
10683 dereferences or out-of-bounds array accesses, as well as deliberately
10684 hostile attacks such as stack smashing or C++ vtable hijacking.
10685 There is also a general hook which can be used to implement other
10686 forms of tracing or function-level instrumentation for debug or
10687 program analysis purposes.
10688
10689 @table @gcctabopt
10690 @cindex @command{prof}
10691 @item -p
10692 @opindex p
10693 Generate extra code to write profile information suitable for the
10694 analysis program @command{prof}. You must use this option when compiling
10695 the source files you want data about, and you must also use it when
10696 linking.
10697
10698 @cindex @command{gprof}
10699 @item -pg
10700 @opindex pg
10701 Generate extra code to write profile information suitable for the
10702 analysis program @command{gprof}. You must use this option when compiling
10703 the source files you want data about, and you must also use it when
10704 linking.
10705
10706 @item -fprofile-arcs
10707 @opindex fprofile-arcs
10708 Add code so that program flow @dfn{arcs} are instrumented. During
10709 execution the program records how many times each branch and call is
10710 executed and how many times it is taken or returns. On targets that support
10711 constructors with priority support, profiling properly handles constructors,
10712 destructors and C++ constructors (and destructors) of classes which are used
10713 as a type of a global variable.
10714
10715 When the compiled
10716 program exits it saves this data to a file called
10717 @file{@var{auxname}.gcda} for each source file. The data may be used for
10718 profile-directed optimizations (@option{-fbranch-probabilities}), or for
10719 test coverage analysis (@option{-ftest-coverage}). Each object file's
10720 @var{auxname} is generated from the name of the output file, if
10721 explicitly specified and it is not the final executable, otherwise it is
10722 the basename of the source file. In both cases any suffix is removed
10723 (e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or
10724 @file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}).
10725 @xref{Cross-profiling}.
10726
10727 @cindex @command{gcov}
10728 @item --coverage
10729 @opindex coverage
10730
10731 This option is used to compile and link code instrumented for coverage
10732 analysis. The option is a synonym for @option{-fprofile-arcs}
10733 @option{-ftest-coverage} (when compiling) and @option{-lgcov} (when
10734 linking). See the documentation for those options for more details.
10735
10736 @itemize
10737
10738 @item
10739 Compile the source files with @option{-fprofile-arcs} plus optimization
10740 and code generation options. For test coverage analysis, use the
10741 additional @option{-ftest-coverage} option. You do not need to profile
10742 every source file in a program.
10743
10744 @item
10745 Compile the source files additionally with @option{-fprofile-abs-path}
10746 to create absolute path names in the @file{.gcno} files. This allows
10747 @command{gcov} to find the correct sources in projects where compilations
10748 occur with different working directories.
10749
10750 @item
10751 Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
10752 (the latter implies the former).
10753
10754 @item
10755 Run the program on a representative workload to generate the arc profile
10756 information. This may be repeated any number of times. You can run
10757 concurrent instances of your program, and provided that the file system
10758 supports locking, the data files will be correctly updated. Also
10759 @code{fork} calls are detected and correctly handled (double counting
10760 will not happen).
10761
10762 @item
10763 For profile-directed optimizations, compile the source files again with
10764 the same optimization and code generation options plus
10765 @option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
10766 Control Optimization}).
10767
10768 @item
10769 For test coverage analysis, use @command{gcov} to produce human readable
10770 information from the @file{.gcno} and @file{.gcda} files. Refer to the
10771 @command{gcov} documentation for further information.
10772
10773 @end itemize
10774
10775 With @option{-fprofile-arcs}, for each function of your program GCC
10776 creates a program flow graph, then finds a spanning tree for the graph.
10777 Only arcs that are not on the spanning tree have to be instrumented: the
10778 compiler adds code to count the number of times that these arcs are
10779 executed. When an arc is the only exit or only entrance to a block, the
10780 instrumentation code can be added to the block; otherwise, a new basic
10781 block must be created to hold the instrumentation code.
10782
10783 @need 2000
10784 @item -ftest-coverage
10785 @opindex ftest-coverage
10786 Produce a notes file that the @command{gcov} code-coverage utility
10787 (@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
10788 show program coverage. Each source file's note file is called
10789 @file{@var{auxname}.gcno}. Refer to the @option{-fprofile-arcs} option
10790 above for a description of @var{auxname} and instructions on how to
10791 generate test coverage data. Coverage data matches the source files
10792 more closely if you do not optimize.
10793
10794 @item -fprofile-abs-path
10795 @opindex fprofile-abs-path
10796 Automatically convert relative source file names to absolute path names
10797 in the @file{.gcno} files. This allows @command{gcov} to find the correct
10798 sources in projects where compilations occur with different working
10799 directories.
10800
10801 @item -fprofile-dir=@var{path}
10802 @opindex fprofile-dir
10803
10804 Set the directory to search for the profile data files in to @var{path}.
10805 This option affects only the profile data generated by
10806 @option{-fprofile-generate}, @option{-ftest-coverage}, @option{-fprofile-arcs}
10807 and used by @option{-fprofile-use} and @option{-fbranch-probabilities}
10808 and its related options. Both absolute and relative paths can be used.
10809 By default, GCC uses the current directory as @var{path}, thus the
10810 profile data file appears in the same directory as the object file.
10811
10812 @item -fprofile-generate
10813 @itemx -fprofile-generate=@var{path}
10814 @opindex fprofile-generate
10815
10816 Enable options usually used for instrumenting application to produce
10817 profile useful for later recompilation with profile feedback based
10818 optimization. You must use @option{-fprofile-generate} both when
10819 compiling and when linking your program.
10820
10821 The following options are enabled: @option{-fprofile-arcs}, @option{-fprofile-values}, @option{-fvpt}.
10822
10823 If @var{path} is specified, GCC looks at the @var{path} to find
10824 the profile feedback data files. See @option{-fprofile-dir}.
10825
10826 To optimize the program based on the collected profile information, use
10827 @option{-fprofile-use}. @xref{Optimize Options}, for more information.
10828
10829 @item -fprofile-update=@var{method}
10830 @opindex fprofile-update
10831
10832 Alter the update method for an application instrumented for profile
10833 feedback based optimization. The @var{method} argument should be one of
10834 @samp{single}, @samp{atomic} or @samp{prefer-atomic}.
10835 The first one is useful for single-threaded applications,
10836 while the second one prevents profile corruption by emitting thread-safe code.
10837
10838 @strong{Warning:} When an application does not properly join all threads
10839 (or creates an detached thread), a profile file can be still corrupted.
10840
10841 Using @samp{prefer-atomic} would be transformed either to @samp{atomic},
10842 when supported by a target, or to @samp{single} otherwise. The GCC driver
10843 automatically selects @samp{prefer-atomic} when @option{-pthread}
10844 is present in the command line.
10845
10846 @item -fsanitize=address
10847 @opindex fsanitize=address
10848 Enable AddressSanitizer, a fast memory error detector.
10849 Memory access instructions are instrumented to detect
10850 out-of-bounds and use-after-free bugs.
10851 The option enables @option{-fsanitize-address-use-after-scope}.
10852 See @uref{https://github.com/google/sanitizers/wiki/AddressSanitizer} for
10853 more details. The run-time behavior can be influenced using the
10854 @env{ASAN_OPTIONS} environment variable. When set to @code{help=1},
10855 the available options are shown at startup of the instrumented program. See
10856 @url{https://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run-time-flags}
10857 for a list of supported options.
10858 The option cannot be combined with @option{-fsanitize=thread}
10859 and/or @option{-fcheck-pointer-bounds}.
10860
10861 @item -fsanitize=kernel-address
10862 @opindex fsanitize=kernel-address
10863 Enable AddressSanitizer for Linux kernel.
10864 See @uref{https://github.com/google/kasan/wiki} for more details.
10865 The option cannot be combined with @option{-fcheck-pointer-bounds}.
10866
10867 @item -fsanitize=thread
10868 @opindex fsanitize=thread
10869 Enable ThreadSanitizer, a fast data race detector.
10870 Memory access instructions are instrumented to detect
10871 data race bugs. See @uref{https://github.com/google/sanitizers/wiki#threadsanitizer} for more
10872 details. The run-time behavior can be influenced using the @env{TSAN_OPTIONS}
10873 environment variable; see
10874 @url{https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags} for a list of
10875 supported options.
10876 The option cannot be combined with @option{-fsanitize=address},
10877 @option{-fsanitize=leak} and/or @option{-fcheck-pointer-bounds}.
10878
10879 Note that sanitized atomic builtins cannot throw exceptions when
10880 operating on invalid memory addresses with non-call exceptions
10881 (@option{-fnon-call-exceptions}).
10882
10883 @item -fsanitize=leak
10884 @opindex fsanitize=leak
10885 Enable LeakSanitizer, a memory leak detector.
10886 This option only matters for linking of executables and
10887 the executable is linked against a library that overrides @code{malloc}
10888 and other allocator functions. See
10889 @uref{https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer} for more
10890 details. The run-time behavior can be influenced using the
10891 @env{LSAN_OPTIONS} environment variable.
10892 The option cannot be combined with @option{-fsanitize=thread}.
10893
10894 @item -fsanitize=undefined
10895 @opindex fsanitize=undefined
10896 Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector.
10897 Various computations are instrumented to detect undefined behavior
10898 at runtime. Current suboptions are:
10899
10900 @table @gcctabopt
10901
10902 @item -fsanitize=shift
10903 @opindex fsanitize=shift
10904 This option enables checking that the result of a shift operation is
10905 not undefined. Note that what exactly is considered undefined differs
10906 slightly between C and C++, as well as between ISO C90 and C99, etc.
10907 This option has two suboptions, @option{-fsanitize=shift-base} and
10908 @option{-fsanitize=shift-exponent}.
10909
10910 @item -fsanitize=shift-exponent
10911 @opindex fsanitize=shift-exponent
10912 This option enables checking that the second argument of a shift operation
10913 is not negative and is smaller than the precision of the promoted first
10914 argument.
10915
10916 @item -fsanitize=shift-base
10917 @opindex fsanitize=shift-base
10918 If the second argument of a shift operation is within range, check that the
10919 result of a shift operation is not undefined. Note that what exactly is
10920 considered undefined differs slightly between C and C++, as well as between
10921 ISO C90 and C99, etc.
10922
10923 @item -fsanitize=integer-divide-by-zero
10924 @opindex fsanitize=integer-divide-by-zero
10925 Detect integer division by zero as well as @code{INT_MIN / -1} division.
10926
10927 @item -fsanitize=unreachable
10928 @opindex fsanitize=unreachable
10929 With this option, the compiler turns the @code{__builtin_unreachable}
10930 call into a diagnostics message call instead. When reaching the
10931 @code{__builtin_unreachable} call, the behavior is undefined.
10932
10933 @item -fsanitize=vla-bound
10934 @opindex fsanitize=vla-bound
10935 This option instructs the compiler to check that the size of a variable
10936 length array is positive.
10937
10938 @item -fsanitize=null
10939 @opindex fsanitize=null
10940 This option enables pointer checking. Particularly, the application
10941 built with this option turned on will issue an error message when it
10942 tries to dereference a NULL pointer, or if a reference (possibly an
10943 rvalue reference) is bound to a NULL pointer, or if a method is invoked
10944 on an object pointed by a NULL pointer.
10945
10946 @item -fsanitize=return
10947 @opindex fsanitize=return
10948 This option enables return statement checking. Programs
10949 built with this option turned on will issue an error message
10950 when the end of a non-void function is reached without actually
10951 returning a value. This option works in C++ only.
10952
10953 @item -fsanitize=signed-integer-overflow
10954 @opindex fsanitize=signed-integer-overflow
10955 This option enables signed integer overflow checking. We check that
10956 the result of @code{+}, @code{*}, and both unary and binary @code{-}
10957 does not overflow in the signed arithmetics. Note, integer promotion
10958 rules must be taken into account. That is, the following is not an
10959 overflow:
10960 @smallexample
10961 signed char a = SCHAR_MAX;
10962 a++;
10963 @end smallexample
10964
10965 @item -fsanitize=bounds
10966 @opindex fsanitize=bounds
10967 This option enables instrumentation of array bounds. Various out of bounds
10968 accesses are detected. Flexible array members, flexible array member-like
10969 arrays, and initializers of variables with static storage are not instrumented.
10970 The option cannot be combined with @option{-fcheck-pointer-bounds}.
10971
10972 @item -fsanitize=bounds-strict
10973 @opindex fsanitize=bounds-strict
10974 This option enables strict instrumentation of array bounds. Most out of bounds
10975 accesses are detected, including flexible array members and flexible array
10976 member-like arrays. Initializers of variables with static storage are not
10977 instrumented. The option cannot be combined
10978 with @option{-fcheck-pointer-bounds}.
10979
10980 @item -fsanitize=alignment
10981 @opindex fsanitize=alignment
10982
10983 This option enables checking of alignment of pointers when they are
10984 dereferenced, or when a reference is bound to insufficiently aligned target,
10985 or when a method or constructor is invoked on insufficiently aligned object.
10986
10987 @item -fsanitize=object-size
10988 @opindex fsanitize=object-size
10989 This option enables instrumentation of memory references using the
10990 @code{__builtin_object_size} function. Various out of bounds pointer
10991 accesses are detected.
10992
10993 @item -fsanitize=float-divide-by-zero
10994 @opindex fsanitize=float-divide-by-zero
10995 Detect floating-point division by zero. Unlike other similar options,
10996 @option{-fsanitize=float-divide-by-zero} is not enabled by
10997 @option{-fsanitize=undefined}, since floating-point division by zero can
10998 be a legitimate way of obtaining infinities and NaNs.
10999
11000 @item -fsanitize=float-cast-overflow
11001 @opindex fsanitize=float-cast-overflow
11002 This option enables floating-point type to integer conversion checking.
11003 We check that the result of the conversion does not overflow.
11004 Unlike other similar options, @option{-fsanitize=float-cast-overflow} is
11005 not enabled by @option{-fsanitize=undefined}.
11006 This option does not work well with @code{FE_INVALID} exceptions enabled.
11007
11008 @item -fsanitize=nonnull-attribute
11009 @opindex fsanitize=nonnull-attribute
11010
11011 This option enables instrumentation of calls, checking whether null values
11012 are not passed to arguments marked as requiring a non-null value by the
11013 @code{nonnull} function attribute.
11014
11015 @item -fsanitize=returns-nonnull-attribute
11016 @opindex fsanitize=returns-nonnull-attribute
11017
11018 This option enables instrumentation of return statements in functions
11019 marked with @code{returns_nonnull} function attribute, to detect returning
11020 of null values from such functions.
11021
11022 @item -fsanitize=bool
11023 @opindex fsanitize=bool
11024
11025 This option enables instrumentation of loads from bool. If a value other
11026 than 0/1 is loaded, a run-time error is issued.
11027
11028 @item -fsanitize=enum
11029 @opindex fsanitize=enum
11030
11031 This option enables instrumentation of loads from an enum type. If
11032 a value outside the range of values for the enum type is loaded,
11033 a run-time error is issued.
11034
11035 @item -fsanitize=vptr
11036 @opindex fsanitize=vptr
11037
11038 This option enables instrumentation of C++ member function calls, member
11039 accesses and some conversions between pointers to base and derived classes,
11040 to verify the referenced object has the correct dynamic type.
11041
11042 @end table
11043
11044 While @option{-ftrapv} causes traps for signed overflows to be emitted,
11045 @option{-fsanitize=undefined} gives a diagnostic message.
11046 This currently works only for the C family of languages.
11047
11048 @item -fno-sanitize=all
11049 @opindex fno-sanitize=all
11050
11051 This option disables all previously enabled sanitizers.
11052 @option{-fsanitize=all} is not allowed, as some sanitizers cannot be used
11053 together.
11054
11055 @item -fasan-shadow-offset=@var{number}
11056 @opindex fasan-shadow-offset
11057 This option forces GCC to use custom shadow offset in AddressSanitizer checks.
11058 It is useful for experimenting with different shadow memory layouts in
11059 Kernel AddressSanitizer.
11060
11061 @item -fsanitize-sections=@var{s1},@var{s2},...
11062 @opindex fsanitize-sections
11063 Sanitize global variables in selected user-defined sections. @var{si} may
11064 contain wildcards.
11065
11066 @item -fsanitize-recover@r{[}=@var{opts}@r{]}
11067 @opindex fsanitize-recover
11068 @opindex fno-sanitize-recover
11069 @option{-fsanitize-recover=} controls error recovery mode for sanitizers
11070 mentioned in comma-separated list of @var{opts}. Enabling this option
11071 for a sanitizer component causes it to attempt to continue
11072 running the program as if no error happened. This means multiple
11073 runtime errors can be reported in a single program run, and the exit
11074 code of the program may indicate success even when errors
11075 have been reported. The @option{-fno-sanitize-recover=} option
11076 can be used to alter
11077 this behavior: only the first detected error is reported
11078 and program then exits with a non-zero exit code.
11079
11080 Currently this feature only works for @option{-fsanitize=undefined} (and its suboptions
11081 except for @option{-fsanitize=unreachable} and @option{-fsanitize=return}),
11082 @option{-fsanitize=float-cast-overflow}, @option{-fsanitize=float-divide-by-zero},
11083 @option{-fsanitize=bounds-strict},
11084 @option{-fsanitize=kernel-address} and @option{-fsanitize=address}.
11085 For these sanitizers error recovery is turned on by default,
11086 except @option{-fsanitize=address}, for which this feature is experimental.
11087 @option{-fsanitize-recover=all} and @option{-fno-sanitize-recover=all} is also
11088 accepted, the former enables recovery for all sanitizers that support it,
11089 the latter disables recovery for all sanitizers that support it.
11090
11091 Even if a recovery mode is turned on the compiler side, it needs to be also
11092 enabled on the runtime library side, otherwise the failures are still fatal.
11093 The runtime library defaults to @code{halt_on_error=0} for
11094 ThreadSanitizer and UndefinedBehaviorSanitizer, while default value for
11095 AddressSanitizer is @code{halt_on_error=1}. This can be overridden through
11096 setting the @code{halt_on_error} flag in the corresponding environment variable.
11097
11098 Syntax without an explicit @var{opts} parameter is deprecated. It is
11099 equivalent to specifying an @var{opts} list of:
11100
11101 @smallexample
11102 undefined,float-cast-overflow,float-divide-by-zero,bounds-strict
11103 @end smallexample
11104
11105 @item -fsanitize-address-use-after-scope
11106 @opindex fsanitize-address-use-after-scope
11107 Enable sanitization of local variables to detect use-after-scope bugs.
11108 The option sets @option{-fstack-reuse} to @samp{none}.
11109
11110 @item -fsanitize-undefined-trap-on-error
11111 @opindex fsanitize-undefined-trap-on-error
11112 The @option{-fsanitize-undefined-trap-on-error} option instructs the compiler to
11113 report undefined behavior using @code{__builtin_trap} rather than
11114 a @code{libubsan} library routine. The advantage of this is that the
11115 @code{libubsan} library is not needed and is not linked in, so this
11116 is usable even in freestanding environments.
11117
11118 @item -fsanitize-coverage=trace-pc
11119 @opindex fsanitize-coverage=trace-pc
11120 Enable coverage-guided fuzzing code instrumentation.
11121 Inserts a call to @code{__sanitizer_cov_trace_pc} into every basic block.
11122
11123 @item -fbounds-check
11124 @opindex fbounds-check
11125 For front ends that support it, generate additional code to check that
11126 indices used to access arrays are within the declared range. This is
11127 currently only supported by the Fortran front end, where this option
11128 defaults to false.
11129
11130 @item -fcheck-pointer-bounds
11131 @opindex fcheck-pointer-bounds
11132 @opindex fno-check-pointer-bounds
11133 @cindex Pointer Bounds Checker options
11134 Enable Pointer Bounds Checker instrumentation. Each memory reference
11135 is instrumented with checks of the pointer used for memory access against
11136 bounds associated with that pointer.
11137
11138 Currently there
11139 is only an implementation for Intel MPX available, thus x86 GNU/Linux target
11140 and @option{-mmpx} are required to enable this feature.
11141 MPX-based instrumentation requires
11142 a runtime library to enable MPX in hardware and handle bounds
11143 violation signals. By default when @option{-fcheck-pointer-bounds}
11144 and @option{-mmpx} options are used to link a program, the GCC driver
11145 links against the @file{libmpx} and @file{libmpxwrappers} libraries.
11146 Bounds checking on calls to dynamic libraries requires a linker
11147 with @option{-z bndplt} support; if GCC was configured with a linker
11148 without support for this option (including the Gold linker and older
11149 versions of ld), a warning is given if you link with @option{-mmpx}
11150 without also specifying @option{-static}, since the overall effectiveness
11151 of the bounds checking protection is reduced.
11152 See also @option{-static-libmpxwrappers}.
11153
11154 MPX-based instrumentation
11155 may be used for debugging and also may be included in production code
11156 to increase program security. Depending on usage, you may
11157 have different requirements for the runtime library. The current version
11158 of the MPX runtime library is more oriented for use as a debugging
11159 tool. MPX runtime library usage implies @option{-lpthread}. See
11160 also @option{-static-libmpx}. The runtime library behavior can be
11161 influenced using various @env{CHKP_RT_*} environment variables. See
11162 @uref{https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler}
11163 for more details.
11164
11165 Generated instrumentation may be controlled by various
11166 @option{-fchkp-*} options and by the @code{bnd_variable_size}
11167 structure field attribute (@pxref{Type Attributes}) and
11168 @code{bnd_legacy}, and @code{bnd_instrument} function attributes
11169 (@pxref{Function Attributes}). GCC also provides a number of built-in
11170 functions for controlling the Pointer Bounds Checker. @xref{Pointer
11171 Bounds Checker builtins}, for more information.
11172
11173 @item -fchkp-check-incomplete-type
11174 @opindex fchkp-check-incomplete-type
11175 @opindex fno-chkp-check-incomplete-type
11176 Generate pointer bounds checks for variables with incomplete type.
11177 Enabled by default.
11178
11179 @item -fchkp-narrow-bounds
11180 @opindex fchkp-narrow-bounds
11181 @opindex fno-chkp-narrow-bounds
11182 Controls bounds used by Pointer Bounds Checker for pointers to object
11183 fields. If narrowing is enabled then field bounds are used. Otherwise
11184 object bounds are used. See also @option{-fchkp-narrow-to-innermost-array}
11185 and @option{-fchkp-first-field-has-own-bounds}. Enabled by default.
11186
11187 @item -fchkp-first-field-has-own-bounds
11188 @opindex fchkp-first-field-has-own-bounds
11189 @opindex fno-chkp-first-field-has-own-bounds
11190 Forces Pointer Bounds Checker to use narrowed bounds for the address of the
11191 first field in the structure. By default a pointer to the first field has
11192 the same bounds as a pointer to the whole structure.
11193
11194 @item -fchkp-flexible-struct-trailing-arrays
11195 @opindex fchkp-flexible-struct-trailing-arrays
11196 @opindex fno-chkp-flexible-struct-trailing-arrays
11197 Forces Pointer Bounds Checker to treat all trailing arrays in structures as
11198 possibly flexible. By default only array fields with zero length or that are
11199 marked with attribute bnd_variable_size are treated as flexible.
11200
11201 @item -fchkp-narrow-to-innermost-array
11202 @opindex fchkp-narrow-to-innermost-array
11203 @opindex fno-chkp-narrow-to-innermost-array
11204 Forces Pointer Bounds Checker to use bounds of the innermost arrays in
11205 case of nested static array access. By default this option is disabled and
11206 bounds of the outermost array are used.
11207
11208 @item -fchkp-optimize
11209 @opindex fchkp-optimize
11210 @opindex fno-chkp-optimize
11211 Enables Pointer Bounds Checker optimizations. Enabled by default at
11212 optimization levels @option{-O}, @option{-O2}, @option{-O3}.
11213
11214 @item -fchkp-use-fast-string-functions
11215 @opindex fchkp-use-fast-string-functions
11216 @opindex fno-chkp-use-fast-string-functions
11217 Enables use of @code{*_nobnd} versions of string functions (not copying bounds)
11218 by Pointer Bounds Checker. Disabled by default.
11219
11220 @item -fchkp-use-nochk-string-functions
11221 @opindex fchkp-use-nochk-string-functions
11222 @opindex fno-chkp-use-nochk-string-functions
11223 Enables use of @code{*_nochk} versions of string functions (not checking bounds)
11224 by Pointer Bounds Checker. Disabled by default.
11225
11226 @item -fchkp-use-static-bounds
11227 @opindex fchkp-use-static-bounds
11228 @opindex fno-chkp-use-static-bounds
11229 Allow Pointer Bounds Checker to generate static bounds holding
11230 bounds of static variables. Enabled by default.
11231
11232 @item -fchkp-use-static-const-bounds
11233 @opindex fchkp-use-static-const-bounds
11234 @opindex fno-chkp-use-static-const-bounds
11235 Use statically-initialized bounds for constant bounds instead of
11236 generating them each time they are required. By default enabled when
11237 @option{-fchkp-use-static-bounds} is enabled.
11238
11239 @item -fchkp-treat-zero-dynamic-size-as-infinite
11240 @opindex fchkp-treat-zero-dynamic-size-as-infinite
11241 @opindex fno-chkp-treat-zero-dynamic-size-as-infinite
11242 With this option, objects with incomplete type whose
11243 dynamically-obtained size is zero are treated as having infinite size
11244 instead by Pointer Bounds
11245 Checker. This option may be helpful if a program is linked with a library
11246 missing size information for some symbols. Disabled by default.
11247
11248 @item -fchkp-check-read
11249 @opindex fchkp-check-read
11250 @opindex fno-chkp-check-read
11251 Instructs Pointer Bounds Checker to generate checks for all read
11252 accesses to memory. Enabled by default.
11253
11254 @item -fchkp-check-write
11255 @opindex fchkp-check-write
11256 @opindex fno-chkp-check-write
11257 Instructs Pointer Bounds Checker to generate checks for all write
11258 accesses to memory. Enabled by default.
11259
11260 @item -fchkp-store-bounds
11261 @opindex fchkp-store-bounds
11262 @opindex fno-chkp-store-bounds
11263 Instructs Pointer Bounds Checker to generate bounds stores for
11264 pointer writes. Enabled by default.
11265
11266 @item -fchkp-instrument-calls
11267 @opindex fchkp-instrument-calls
11268 @opindex fno-chkp-instrument-calls
11269 Instructs Pointer Bounds Checker to pass pointer bounds to calls.
11270 Enabled by default.
11271
11272 @item -fchkp-instrument-marked-only
11273 @opindex fchkp-instrument-marked-only
11274 @opindex fno-chkp-instrument-marked-only
11275 Instructs Pointer Bounds Checker to instrument only functions
11276 marked with the @code{bnd_instrument} attribute
11277 (@pxref{Function Attributes}). Disabled by default.
11278
11279 @item -fchkp-use-wrappers
11280 @opindex fchkp-use-wrappers
11281 @opindex fno-chkp-use-wrappers
11282 Allows Pointer Bounds Checker to replace calls to built-in functions
11283 with calls to wrapper functions. When @option{-fchkp-use-wrappers}
11284 is used to link a program, the GCC driver automatically links
11285 against @file{libmpxwrappers}. See also @option{-static-libmpxwrappers}.
11286 Enabled by default.
11287
11288 @item -fstack-protector
11289 @opindex fstack-protector
11290 Emit extra code to check for buffer overflows, such as stack smashing
11291 attacks. This is done by adding a guard variable to functions with
11292 vulnerable objects. This includes functions that call @code{alloca}, and
11293 functions with buffers larger than 8 bytes. The guards are initialized
11294 when a function is entered and then checked when the function exits.
11295 If a guard check fails, an error message is printed and the program exits.
11296
11297 @item -fstack-protector-all
11298 @opindex fstack-protector-all
11299 Like @option{-fstack-protector} except that all functions are protected.
11300
11301 @item -fstack-protector-strong
11302 @opindex fstack-protector-strong
11303 Like @option{-fstack-protector} but includes additional functions to
11304 be protected --- those that have local array definitions, or have
11305 references to local frame addresses.
11306
11307 @item -fstack-protector-explicit
11308 @opindex fstack-protector-explicit
11309 Like @option{-fstack-protector} but only protects those functions which
11310 have the @code{stack_protect} attribute.
11311
11312 @item -fstack-check
11313 @opindex fstack-check
11314 Generate code to verify that you do not go beyond the boundary of the
11315 stack. You should specify this flag if you are running in an
11316 environment with multiple threads, but you only rarely need to specify it in
11317 a single-threaded environment since stack overflow is automatically
11318 detected on nearly all systems if there is only one stack.
11319
11320 Note that this switch does not actually cause checking to be done; the
11321 operating system or the language runtime must do that. The switch causes
11322 generation of code to ensure that they see the stack being extended.
11323
11324 You can additionally specify a string parameter: @samp{no} means no
11325 checking, @samp{generic} means force the use of old-style checking,
11326 @samp{specific} means use the best checking method and is equivalent
11327 to bare @option{-fstack-check}.
11328
11329 Old-style checking is a generic mechanism that requires no specific
11330 target support in the compiler but comes with the following drawbacks:
11331
11332 @enumerate
11333 @item
11334 Modified allocation strategy for large objects: they are always
11335 allocated dynamically if their size exceeds a fixed threshold.
11336
11337 @item
11338 Fixed limit on the size of the static frame of functions: when it is
11339 topped by a particular function, stack checking is not reliable and
11340 a warning is issued by the compiler.
11341
11342 @item
11343 Inefficiency: because of both the modified allocation strategy and the
11344 generic implementation, code performance is hampered.
11345 @end enumerate
11346
11347 Note that old-style stack checking is also the fallback method for
11348 @samp{specific} if no target support has been added in the compiler.
11349
11350 @item -fstack-limit-register=@var{reg}
11351 @itemx -fstack-limit-symbol=@var{sym}
11352 @itemx -fno-stack-limit
11353 @opindex fstack-limit-register
11354 @opindex fstack-limit-symbol
11355 @opindex fno-stack-limit
11356 Generate code to ensure that the stack does not grow beyond a certain value,
11357 either the value of a register or the address of a symbol. If a larger
11358 stack is required, a signal is raised at run time. For most targets,
11359 the signal is raised before the stack overruns the boundary, so
11360 it is possible to catch the signal without taking special precautions.
11361
11362 For instance, if the stack starts at absolute address @samp{0x80000000}
11363 and grows downwards, you can use the flags
11364 @option{-fstack-limit-symbol=__stack_limit} and
11365 @option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit
11366 of 128KB@. Note that this may only work with the GNU linker.
11367
11368 You can locally override stack limit checking by using the
11369 @code{no_stack_limit} function attribute (@pxref{Function Attributes}).
11370
11371 @item -fsplit-stack
11372 @opindex fsplit-stack
11373 Generate code to automatically split the stack before it overflows.
11374 The resulting program has a discontiguous stack which can only
11375 overflow if the program is unable to allocate any more memory. This
11376 is most useful when running threaded programs, as it is no longer
11377 necessary to calculate a good stack size to use for each thread. This
11378 is currently only implemented for the x86 targets running
11379 GNU/Linux.
11380
11381 When code compiled with @option{-fsplit-stack} calls code compiled
11382 without @option{-fsplit-stack}, there may not be much stack space
11383 available for the latter code to run. If compiling all code,
11384 including library code, with @option{-fsplit-stack} is not an option,
11385 then the linker can fix up these calls so that the code compiled
11386 without @option{-fsplit-stack} always has a large stack. Support for
11387 this is implemented in the gold linker in GNU binutils release 2.21
11388 and later.
11389
11390 @item -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]}
11391 @opindex fvtable-verify
11392 This option is only available when compiling C++ code.
11393 It turns on (or off, if using @option{-fvtable-verify=none}) the security
11394 feature that verifies at run time, for every virtual call, that
11395 the vtable pointer through which the call is made is valid for the type of
11396 the object, and has not been corrupted or overwritten. If an invalid vtable
11397 pointer is detected at run time, an error is reported and execution of the
11398 program is immediately halted.
11399
11400 This option causes run-time data structures to be built at program startup,
11401 which are used for verifying the vtable pointers.
11402 The options @samp{std} and @samp{preinit}
11403 control the timing of when these data structures are built. In both cases the
11404 data structures are built before execution reaches @code{main}. Using
11405 @option{-fvtable-verify=std} causes the data structures to be built after
11406 shared libraries have been loaded and initialized.
11407 @option{-fvtable-verify=preinit} causes them to be built before shared
11408 libraries have been loaded and initialized.
11409
11410 If this option appears multiple times in the command line with different
11411 values specified, @samp{none} takes highest priority over both @samp{std} and
11412 @samp{preinit}; @samp{preinit} takes priority over @samp{std}.
11413
11414 @item -fvtv-debug
11415 @opindex fvtv-debug
11416 When used in conjunction with @option{-fvtable-verify=std} or
11417 @option{-fvtable-verify=preinit}, causes debug versions of the
11418 runtime functions for the vtable verification feature to be called.
11419 This flag also causes the compiler to log information about which
11420 vtable pointers it finds for each class.
11421 This information is written to a file named @file{vtv_set_ptr_data.log}
11422 in the directory named by the environment variable @env{VTV_LOGS_DIR}
11423 if that is defined or the current working directory otherwise.
11424
11425 Note: This feature @emph{appends} data to the log file. If you want a fresh log
11426 file, be sure to delete any existing one.
11427
11428 @item -fvtv-counts
11429 @opindex fvtv-counts
11430 This is a debugging flag. When used in conjunction with
11431 @option{-fvtable-verify=std} or @option{-fvtable-verify=preinit}, this
11432 causes the compiler to keep track of the total number of virtual calls
11433 it encounters and the number of verifications it inserts. It also
11434 counts the number of calls to certain run-time library functions
11435 that it inserts and logs this information for each compilation unit.
11436 The compiler writes this information to a file named
11437 @file{vtv_count_data.log} in the directory named by the environment
11438 variable @env{VTV_LOGS_DIR} if that is defined or the current working
11439 directory otherwise. It also counts the size of the vtable pointer sets
11440 for each class, and writes this information to @file{vtv_class_set_sizes.log}
11441 in the same directory.
11442
11443 Note: This feature @emph{appends} data to the log files. To get fresh log
11444 files, be sure to delete any existing ones.
11445
11446 @item -finstrument-functions
11447 @opindex finstrument-functions
11448 Generate instrumentation calls for entry and exit to functions. Just
11449 after function entry and just before function exit, the following
11450 profiling functions are called with the address of the current
11451 function and its call site. (On some platforms,
11452 @code{__builtin_return_address} does not work beyond the current
11453 function, so the call site information may not be available to the
11454 profiling functions otherwise.)
11455
11456 @smallexample
11457 void __cyg_profile_func_enter (void *this_fn,
11458 void *call_site);
11459 void __cyg_profile_func_exit (void *this_fn,
11460 void *call_site);
11461 @end smallexample
11462
11463 The first argument is the address of the start of the current function,
11464 which may be looked up exactly in the symbol table.
11465
11466 This instrumentation is also done for functions expanded inline in other
11467 functions. The profiling calls indicate where, conceptually, the
11468 inline function is entered and exited. This means that addressable
11469 versions of such functions must be available. If all your uses of a
11470 function are expanded inline, this may mean an additional expansion of
11471 code size. If you use @code{extern inline} in your C code, an
11472 addressable version of such functions must be provided. (This is
11473 normally the case anyway, but if you get lucky and the optimizer always
11474 expands the functions inline, you might have gotten away without
11475 providing static copies.)
11476
11477 A function may be given the attribute @code{no_instrument_function}, in
11478 which case this instrumentation is not done. This can be used, for
11479 example, for the profiling functions listed above, high-priority
11480 interrupt routines, and any functions from which the profiling functions
11481 cannot safely be called (perhaps signal handlers, if the profiling
11482 routines generate output or allocate memory).
11483
11484 @item -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}
11485 @opindex finstrument-functions-exclude-file-list
11486
11487 Set the list of functions that are excluded from instrumentation (see
11488 the description of @option{-finstrument-functions}). If the file that
11489 contains a function definition matches with one of @var{file}, then
11490 that function is not instrumented. The match is done on substrings:
11491 if the @var{file} parameter is a substring of the file name, it is
11492 considered to be a match.
11493
11494 For example:
11495
11496 @smallexample
11497 -finstrument-functions-exclude-file-list=/bits/stl,include/sys
11498 @end smallexample
11499
11500 @noindent
11501 excludes any inline function defined in files whose pathnames
11502 contain @file{/bits/stl} or @file{include/sys}.
11503
11504 If, for some reason, you want to include letter @samp{,} in one of
11505 @var{sym}, write @samp{\,}. For example,
11506 @option{-finstrument-functions-exclude-file-list='\,\,tmp'}
11507 (note the single quote surrounding the option).
11508
11509 @item -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{}
11510 @opindex finstrument-functions-exclude-function-list
11511
11512 This is similar to @option{-finstrument-functions-exclude-file-list},
11513 but this option sets the list of function names to be excluded from
11514 instrumentation. The function name to be matched is its user-visible
11515 name, such as @code{vector<int> blah(const vector<int> &)}, not the
11516 internal mangled name (e.g., @code{_Z4blahRSt6vectorIiSaIiEE}). The
11517 match is done on substrings: if the @var{sym} parameter is a substring
11518 of the function name, it is considered to be a match. For C99 and C++
11519 extended identifiers, the function name must be given in UTF-8, not
11520 using universal character names.
11521
11522 @end table
11523
11524
11525 @node Preprocessor Options
11526 @section Options Controlling the Preprocessor
11527 @cindex preprocessor options
11528 @cindex options, preprocessor
11529
11530 These options control the C preprocessor, which is run on each C source
11531 file before actual compilation.
11532
11533 If you use the @option{-E} option, nothing is done except preprocessing.
11534 Some of these options make sense only together with @option{-E} because
11535 they cause the preprocessor output to be unsuitable for actual
11536 compilation.
11537
11538 In addition to the options listed here, there are a number of options
11539 to control search paths for include files documented in
11540 @ref{Directory Options}.
11541 Options to control preprocessor diagnostics are listed in
11542 @ref{Warning Options}.
11543
11544 @table @gcctabopt
11545 @include cppopts.texi
11546
11547 @item -Wp,@var{option}
11548 @opindex Wp
11549 You can use @option{-Wp,@var{option}} to bypass the compiler driver
11550 and pass @var{option} directly through to the preprocessor. If
11551 @var{option} contains commas, it is split into multiple options at the
11552 commas. However, many options are modified, translated or interpreted
11553 by the compiler driver before being passed to the preprocessor, and
11554 @option{-Wp} forcibly bypasses this phase. The preprocessor's direct
11555 interface is undocumented and subject to change, so whenever possible
11556 you should avoid using @option{-Wp} and let the driver handle the
11557 options instead.
11558
11559 @item -Xpreprocessor @var{option}
11560 @opindex Xpreprocessor
11561 Pass @var{option} as an option to the preprocessor. You can use this to
11562 supply system-specific preprocessor options that GCC does not
11563 recognize.
11564
11565 If you want to pass an option that takes an argument, you must use
11566 @option{-Xpreprocessor} twice, once for the option and once for the argument.
11567
11568 @item -no-integrated-cpp
11569 @opindex no-integrated-cpp
11570 Perform preprocessing as a separate pass before compilation.
11571 By default, GCC performs preprocessing as an integrated part of
11572 input tokenization and parsing.
11573 If this option is provided, the appropriate language front end
11574 (@command{cc1}, @command{cc1plus}, or @command{cc1obj} for C, C++,
11575 and Objective-C, respectively) is instead invoked twice,
11576 once for preprocessing only and once for actual compilation
11577 of the preprocessed input.
11578 This option may be useful in conjunction with the @option{-B} or
11579 @option{-wrapper} options to specify an alternate preprocessor or
11580 perform additional processing of the program source between
11581 normal preprocessing and compilation.
11582
11583 @end table
11584
11585 @node Assembler Options
11586 @section Passing Options to the Assembler
11587
11588 @c prevent bad page break with this line
11589 You can pass options to the assembler.
11590
11591 @table @gcctabopt
11592 @item -Wa,@var{option}
11593 @opindex Wa
11594 Pass @var{option} as an option to the assembler. If @var{option}
11595 contains commas, it is split into multiple options at the commas.
11596
11597 @item -Xassembler @var{option}
11598 @opindex Xassembler
11599 Pass @var{option} as an option to the assembler. You can use this to
11600 supply system-specific assembler options that GCC does not
11601 recognize.
11602
11603 If you want to pass an option that takes an argument, you must use
11604 @option{-Xassembler} twice, once for the option and once for the argument.
11605
11606 @end table
11607
11608 @node Link Options
11609 @section Options for Linking
11610 @cindex link options
11611 @cindex options, linking
11612
11613 These options come into play when the compiler links object files into
11614 an executable output file. They are meaningless if the compiler is
11615 not doing a link step.
11616
11617 @table @gcctabopt
11618 @cindex file names
11619 @item @var{object-file-name}
11620 A file name that does not end in a special recognized suffix is
11621 considered to name an object file or library. (Object files are
11622 distinguished from libraries by the linker according to the file
11623 contents.) If linking is done, these object files are used as input
11624 to the linker.
11625
11626 @item -c
11627 @itemx -S
11628 @itemx -E
11629 @opindex c
11630 @opindex S
11631 @opindex E
11632 If any of these options is used, then the linker is not run, and
11633 object file names should not be used as arguments. @xref{Overall
11634 Options}.
11635
11636 @item -fuse-ld=bfd
11637 @opindex fuse-ld=bfd
11638 Use the @command{bfd} linker instead of the default linker.
11639
11640 @item -fuse-ld=gold
11641 @opindex fuse-ld=gold
11642 Use the @command{gold} linker instead of the default linker.
11643
11644 @cindex Libraries
11645 @item -l@var{library}
11646 @itemx -l @var{library}
11647 @opindex l
11648 Search the library named @var{library} when linking. (The second
11649 alternative with the library as a separate argument is only for
11650 POSIX compliance and is not recommended.)
11651
11652 It makes a difference where in the command you write this option; the
11653 linker searches and processes libraries and object files in the order they
11654 are specified. Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
11655 after file @file{foo.o} but before @file{bar.o}. If @file{bar.o} refers
11656 to functions in @samp{z}, those functions may not be loaded.
11657
11658 The linker searches a standard list of directories for the library,
11659 which is actually a file named @file{lib@var{library}.a}. The linker
11660 then uses this file as if it had been specified precisely by name.
11661
11662 The directories searched include several standard system directories
11663 plus any that you specify with @option{-L}.
11664
11665 Normally the files found this way are library files---archive files
11666 whose members are object files. The linker handles an archive file by
11667 scanning through it for members which define symbols that have so far
11668 been referenced but not defined. But if the file that is found is an
11669 ordinary object file, it is linked in the usual fashion. The only
11670 difference between using an @option{-l} option and specifying a file name
11671 is that @option{-l} surrounds @var{library} with @samp{lib} and @samp{.a}
11672 and searches several directories.
11673
11674 @item -lobjc
11675 @opindex lobjc
11676 You need this special case of the @option{-l} option in order to
11677 link an Objective-C or Objective-C++ program.
11678
11679 @item -nostartfiles
11680 @opindex nostartfiles
11681 Do not use the standard system startup files when linking.
11682 The standard system libraries are used normally, unless @option{-nostdlib}
11683 or @option{-nodefaultlibs} is used.
11684
11685 @item -nodefaultlibs
11686 @opindex nodefaultlibs
11687 Do not use the standard system libraries when linking.
11688 Only the libraries you specify are passed to the linker, and options
11689 specifying linkage of the system libraries, such as @option{-static-libgcc}
11690 or @option{-shared-libgcc}, are ignored.
11691 The standard startup files are used normally, unless @option{-nostartfiles}
11692 is used.
11693
11694 The compiler may generate calls to @code{memcmp},
11695 @code{memset}, @code{memcpy} and @code{memmove}.
11696 These entries are usually resolved by entries in
11697 libc. These entry points should be supplied through some other
11698 mechanism when this option is specified.
11699
11700 @item -nostdlib
11701 @opindex nostdlib
11702 Do not use the standard system startup files or libraries when linking.
11703 No startup files and only the libraries you specify are passed to
11704 the linker, and options specifying linkage of the system libraries, such as
11705 @option{-static-libgcc} or @option{-shared-libgcc}, are ignored.
11706
11707 The compiler may generate calls to @code{memcmp}, @code{memset},
11708 @code{memcpy} and @code{memmove}.
11709 These entries are usually resolved by entries in
11710 libc. These entry points should be supplied through some other
11711 mechanism when this option is specified.
11712
11713 @cindex @option{-lgcc}, use with @option{-nostdlib}
11714 @cindex @option{-nostdlib} and unresolved references
11715 @cindex unresolved references and @option{-nostdlib}
11716 @cindex @option{-lgcc}, use with @option{-nodefaultlibs}
11717 @cindex @option{-nodefaultlibs} and unresolved references
11718 @cindex unresolved references and @option{-nodefaultlibs}
11719 One of the standard libraries bypassed by @option{-nostdlib} and
11720 @option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
11721 which GCC uses to overcome shortcomings of particular machines, or special
11722 needs for some languages.
11723 (@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
11724 Collection (GCC) Internals},
11725 for more discussion of @file{libgcc.a}.)
11726 In most cases, you need @file{libgcc.a} even when you want to avoid
11727 other standard libraries. In other words, when you specify @option{-nostdlib}
11728 or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
11729 This ensures that you have no unresolved references to internal GCC
11730 library subroutines.
11731 (An example of such an internal subroutine is @code{__main}, used to ensure C++
11732 constructors are called; @pxref{Collect2,,@code{collect2}, gccint,
11733 GNU Compiler Collection (GCC) Internals}.)
11734
11735 @item -pie
11736 @opindex pie
11737 Produce a position independent executable on targets that support it.
11738 For predictable results, you must also specify the same set of options
11739 used for compilation (@option{-fpie}, @option{-fPIE},
11740 or model suboptions) when you specify this linker option.
11741
11742 @item -no-pie
11743 @opindex no-pie
11744 Don't produce a position independent executable.
11745
11746 @item -pthread
11747 @opindex pthread
11748 Link with the POSIX threads library. This option is supported on
11749 GNU/Linux targets, most other Unix derivatives, and also on
11750 x86 Cygwin and MinGW targets. On some targets this option also sets
11751 flags for the preprocessor, so it should be used consistently for both
11752 compilation and linking.
11753
11754 @item -rdynamic
11755 @opindex rdynamic
11756 Pass the flag @option{-export-dynamic} to the ELF linker, on targets
11757 that support it. This instructs the linker to add all symbols, not
11758 only used ones, to the dynamic symbol table. This option is needed
11759 for some uses of @code{dlopen} or to allow obtaining backtraces
11760 from within a program.
11761
11762 @item -s
11763 @opindex s
11764 Remove all symbol table and relocation information from the executable.
11765
11766 @item -static
11767 @opindex static
11768 On systems that support dynamic linking, this prevents linking with the shared
11769 libraries. On other systems, this option has no effect.
11770
11771 @item -shared
11772 @opindex shared
11773 Produce a shared object which can then be linked with other objects to
11774 form an executable. Not all systems support this option. For predictable
11775 results, you must also specify the same set of options used for compilation
11776 (@option{-fpic}, @option{-fPIC}, or model suboptions) when
11777 you specify this linker option.@footnote{On some systems, @samp{gcc -shared}
11778 needs to build supplementary stub code for constructors to work. On
11779 multi-libbed systems, @samp{gcc -shared} must select the correct support
11780 libraries to link against. Failing to supply the correct flags may lead
11781 to subtle defects. Supplying them in cases where they are not necessary
11782 is innocuous.}
11783
11784 @item -shared-libgcc
11785 @itemx -static-libgcc
11786 @opindex shared-libgcc
11787 @opindex static-libgcc
11788 On systems that provide @file{libgcc} as a shared library, these options
11789 force the use of either the shared or static version, respectively.
11790 If no shared version of @file{libgcc} was built when the compiler was
11791 configured, these options have no effect.
11792
11793 There are several situations in which an application should use the
11794 shared @file{libgcc} instead of the static version. The most common
11795 of these is when the application wishes to throw and catch exceptions
11796 across different shared libraries. In that case, each of the libraries
11797 as well as the application itself should use the shared @file{libgcc}.
11798
11799 Therefore, the G++ and driver automatically adds @option{-shared-libgcc}
11800 whenever you build a shared library or a main executable, because C++
11801 programs typically use exceptions, so this is the right thing to do.
11802
11803 If, instead, you use the GCC driver to create shared libraries, you may
11804 find that they are not always linked with the shared @file{libgcc}.
11805 If GCC finds, at its configuration time, that you have a non-GNU linker
11806 or a GNU linker that does not support option @option{--eh-frame-hdr},
11807 it links the shared version of @file{libgcc} into shared libraries
11808 by default. Otherwise, it takes advantage of the linker and optimizes
11809 away the linking with the shared version of @file{libgcc}, linking with
11810 the static version of libgcc by default. This allows exceptions to
11811 propagate through such shared libraries, without incurring relocation
11812 costs at library load time.
11813
11814 However, if a library or main executable is supposed to throw or catch
11815 exceptions, you must link it using the G++ driver, as appropriate
11816 for the languages used in the program, or using the option
11817 @option{-shared-libgcc}, such that it is linked with the shared
11818 @file{libgcc}.
11819
11820 @item -static-libasan
11821 @opindex static-libasan
11822 When the @option{-fsanitize=address} option is used to link a program,
11823 the GCC driver automatically links against @option{libasan}. If
11824 @file{libasan} is available as a shared library, and the @option{-static}
11825 option is not used, then this links against the shared version of
11826 @file{libasan}. The @option{-static-libasan} option directs the GCC
11827 driver to link @file{libasan} statically, without necessarily linking
11828 other libraries statically.
11829
11830 @item -static-libtsan
11831 @opindex static-libtsan
11832 When the @option{-fsanitize=thread} option is used to link a program,
11833 the GCC driver automatically links against @option{libtsan}. If
11834 @file{libtsan} is available as a shared library, and the @option{-static}
11835 option is not used, then this links against the shared version of
11836 @file{libtsan}. The @option{-static-libtsan} option directs the GCC
11837 driver to link @file{libtsan} statically, without necessarily linking
11838 other libraries statically.
11839
11840 @item -static-liblsan
11841 @opindex static-liblsan
11842 When the @option{-fsanitize=leak} option is used to link a program,
11843 the GCC driver automatically links against @option{liblsan}. If
11844 @file{liblsan} is available as a shared library, and the @option{-static}
11845 option is not used, then this links against the shared version of
11846 @file{liblsan}. The @option{-static-liblsan} option directs the GCC
11847 driver to link @file{liblsan} statically, without necessarily linking
11848 other libraries statically.
11849
11850 @item -static-libubsan
11851 @opindex static-libubsan
11852 When the @option{-fsanitize=undefined} option is used to link a program,
11853 the GCC driver automatically links against @option{libubsan}. If
11854 @file{libubsan} is available as a shared library, and the @option{-static}
11855 option is not used, then this links against the shared version of
11856 @file{libubsan}. The @option{-static-libubsan} option directs the GCC
11857 driver to link @file{libubsan} statically, without necessarily linking
11858 other libraries statically.
11859
11860 @item -static-libmpx
11861 @opindex static-libmpx
11862 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are
11863 used to link a program, the GCC driver automatically links against
11864 @file{libmpx}. If @file{libmpx} is available as a shared library,
11865 and the @option{-static} option is not used, then this links against
11866 the shared version of @file{libmpx}. The @option{-static-libmpx}
11867 option directs the GCC driver to link @file{libmpx} statically,
11868 without necessarily linking other libraries statically.
11869
11870 @item -static-libmpxwrappers
11871 @opindex static-libmpxwrappers
11872 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are used
11873 to link a program without also using @option{-fno-chkp-use-wrappers}, the
11874 GCC driver automatically links against @file{libmpxwrappers}. If
11875 @file{libmpxwrappers} is available as a shared library, and the
11876 @option{-static} option is not used, then this links against the shared
11877 version of @file{libmpxwrappers}. The @option{-static-libmpxwrappers}
11878 option directs the GCC driver to link @file{libmpxwrappers} statically,
11879 without necessarily linking other libraries statically.
11880
11881 @item -static-libstdc++
11882 @opindex static-libstdc++
11883 When the @command{g++} program is used to link a C++ program, it
11884 normally automatically links against @option{libstdc++}. If
11885 @file{libstdc++} is available as a shared library, and the
11886 @option{-static} option is not used, then this links against the
11887 shared version of @file{libstdc++}. That is normally fine. However, it
11888 is sometimes useful to freeze the version of @file{libstdc++} used by
11889 the program without going all the way to a fully static link. The
11890 @option{-static-libstdc++} option directs the @command{g++} driver to
11891 link @file{libstdc++} statically, without necessarily linking other
11892 libraries statically.
11893
11894 @item -symbolic
11895 @opindex symbolic
11896 Bind references to global symbols when building a shared object. Warn
11897 about any unresolved references (unless overridden by the link editor
11898 option @option{-Xlinker -z -Xlinker defs}). Only a few systems support
11899 this option.
11900
11901 @item -T @var{script}
11902 @opindex T
11903 @cindex linker script
11904 Use @var{script} as the linker script. This option is supported by most
11905 systems using the GNU linker. On some targets, such as bare-board
11906 targets without an operating system, the @option{-T} option may be required
11907 when linking to avoid references to undefined symbols.
11908
11909 @item -Xlinker @var{option}
11910 @opindex Xlinker
11911 Pass @var{option} as an option to the linker. You can use this to
11912 supply system-specific linker options that GCC does not recognize.
11913
11914 If you want to pass an option that takes a separate argument, you must use
11915 @option{-Xlinker} twice, once for the option and once for the argument.
11916 For example, to pass @option{-assert definitions}, you must write
11917 @option{-Xlinker -assert -Xlinker definitions}. It does not work to write
11918 @option{-Xlinker "-assert definitions"}, because this passes the entire
11919 string as a single argument, which is not what the linker expects.
11920
11921 When using the GNU linker, it is usually more convenient to pass
11922 arguments to linker options using the @option{@var{option}=@var{value}}
11923 syntax than as separate arguments. For example, you can specify
11924 @option{-Xlinker -Map=output.map} rather than
11925 @option{-Xlinker -Map -Xlinker output.map}. Other linkers may not support
11926 this syntax for command-line options.
11927
11928 @item -Wl,@var{option}
11929 @opindex Wl
11930 Pass @var{option} as an option to the linker. If @var{option} contains
11931 commas, it is split into multiple options at the commas. You can use this
11932 syntax to pass an argument to the option.
11933 For example, @option{-Wl,-Map,output.map} passes @option{-Map output.map} to the
11934 linker. When using the GNU linker, you can also get the same effect with
11935 @option{-Wl,-Map=output.map}.
11936
11937 @item -u @var{symbol}
11938 @opindex u
11939 Pretend the symbol @var{symbol} is undefined, to force linking of
11940 library modules to define it. You can use @option{-u} multiple times with
11941 different symbols to force loading of additional library modules.
11942
11943 @item -z @var{keyword}
11944 @opindex z
11945 @option{-z} is passed directly on to the linker along with the keyword
11946 @var{keyword}. See the section in the documentation of your linker for
11947 permitted values and their meanings.
11948 @end table
11949
11950 @node Directory Options
11951 @section Options for Directory Search
11952 @cindex directory options
11953 @cindex options, directory search
11954 @cindex search path
11955
11956 These options specify directories to search for header files, for
11957 libraries and for parts of the compiler:
11958
11959 @table @gcctabopt
11960 @include cppdiropts.texi
11961
11962 @item -iplugindir=@var{dir}
11963 @opindex iplugindir=
11964 Set the directory to search for plugins that are passed
11965 by @option{-fplugin=@var{name}} instead of
11966 @option{-fplugin=@var{path}/@var{name}.so}. This option is not meant
11967 to be used by the user, but only passed by the driver.
11968
11969 @item -L@var{dir}
11970 @opindex L
11971 Add directory @var{dir} to the list of directories to be searched
11972 for @option{-l}.
11973
11974 @item -B@var{prefix}
11975 @opindex B
11976 This option specifies where to find the executables, libraries,
11977 include files, and data files of the compiler itself.
11978
11979 The compiler driver program runs one or more of the subprograms
11980 @command{cpp}, @command{cc1}, @command{as} and @command{ld}. It tries
11981 @var{prefix} as a prefix for each program it tries to run, both with and
11982 without @samp{@var{machine}/@var{version}/} for the corresponding target
11983 machine and compiler version.
11984
11985 For each subprogram to be run, the compiler driver first tries the
11986 @option{-B} prefix, if any. If that name is not found, or if @option{-B}
11987 is not specified, the driver tries two standard prefixes,
11988 @file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}. If neither of
11989 those results in a file name that is found, the unmodified program
11990 name is searched for using the directories specified in your
11991 @env{PATH} environment variable.
11992
11993 The compiler checks to see if the path provided by @option{-B}
11994 refers to a directory, and if necessary it adds a directory
11995 separator character at the end of the path.
11996
11997 @option{-B} prefixes that effectively specify directory names also apply
11998 to libraries in the linker, because the compiler translates these
11999 options into @option{-L} options for the linker. They also apply to
12000 include files in the preprocessor, because the compiler translates these
12001 options into @option{-isystem} options for the preprocessor. In this case,
12002 the compiler appends @samp{include} to the prefix.
12003
12004 The runtime support file @file{libgcc.a} can also be searched for using
12005 the @option{-B} prefix, if needed. If it is not found there, the two
12006 standard prefixes above are tried, and that is all. The file is left
12007 out of the link if it is not found by those means.
12008
12009 Another way to specify a prefix much like the @option{-B} prefix is to use
12010 the environment variable @env{GCC_EXEC_PREFIX}. @xref{Environment
12011 Variables}.
12012
12013 As a special kludge, if the path provided by @option{-B} is
12014 @file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
12015 9, then it is replaced by @file{[dir/]include}. This is to help
12016 with boot-strapping the compiler.
12017
12018 @item -no-canonical-prefixes
12019 @opindex no-canonical-prefixes
12020 Do not expand any symbolic links, resolve references to @samp{/../}
12021 or @samp{/./}, or make the path absolute when generating a relative
12022 prefix.
12023
12024 @item --sysroot=@var{dir}
12025 @opindex sysroot
12026 Use @var{dir} as the logical root directory for headers and libraries.
12027 For example, if the compiler normally searches for headers in
12028 @file{/usr/include} and libraries in @file{/usr/lib}, it instead
12029 searches @file{@var{dir}/usr/include} and @file{@var{dir}/usr/lib}.
12030
12031 If you use both this option and the @option{-isysroot} option, then
12032 the @option{--sysroot} option applies to libraries, but the
12033 @option{-isysroot} option applies to header files.
12034
12035 The GNU linker (beginning with version 2.16) has the necessary support
12036 for this option. If your linker does not support this option, the
12037 header file aspect of @option{--sysroot} still works, but the
12038 library aspect does not.
12039
12040 @item --no-sysroot-suffix
12041 @opindex no-sysroot-suffix
12042 For some targets, a suffix is added to the root directory specified
12043 with @option{--sysroot}, depending on the other options used, so that
12044 headers may for example be found in
12045 @file{@var{dir}/@var{suffix}/usr/include} instead of
12046 @file{@var{dir}/usr/include}. This option disables the addition of
12047 such a suffix.
12048
12049 @end table
12050
12051 @node Code Gen Options
12052 @section Options for Code Generation Conventions
12053 @cindex code generation conventions
12054 @cindex options, code generation
12055 @cindex run-time options
12056
12057 These machine-independent options control the interface conventions
12058 used in code generation.
12059
12060 Most of them have both positive and negative forms; the negative form
12061 of @option{-ffoo} is @option{-fno-foo}. In the table below, only
12062 one of the forms is listed---the one that is not the default. You
12063 can figure out the other form by either removing @samp{no-} or adding
12064 it.
12065
12066 @table @gcctabopt
12067 @item -fstack-reuse=@var{reuse-level}
12068 @opindex fstack_reuse
12069 This option controls stack space reuse for user declared local/auto variables
12070 and compiler generated temporaries. @var{reuse_level} can be @samp{all},
12071 @samp{named_vars}, or @samp{none}. @samp{all} enables stack reuse for all
12072 local variables and temporaries, @samp{named_vars} enables the reuse only for
12073 user defined local variables with names, and @samp{none} disables stack reuse
12074 completely. The default value is @samp{all}. The option is needed when the
12075 program extends the lifetime of a scoped local variable or a compiler generated
12076 temporary beyond the end point defined by the language. When a lifetime of
12077 a variable ends, and if the variable lives in memory, the optimizing compiler
12078 has the freedom to reuse its stack space with other temporaries or scoped
12079 local variables whose live range does not overlap with it. Legacy code extending
12080 local lifetime is likely to break with the stack reuse optimization.
12081
12082 For example,
12083
12084 @smallexample
12085 int *p;
12086 @{
12087 int local1;
12088
12089 p = &local1;
12090 local1 = 10;
12091 ....
12092 @}
12093 @{
12094 int local2;
12095 local2 = 20;
12096 ...
12097 @}
12098
12099 if (*p == 10) // out of scope use of local1
12100 @{
12101
12102 @}
12103 @end smallexample
12104
12105 Another example:
12106 @smallexample
12107
12108 struct A
12109 @{
12110 A(int k) : i(k), j(k) @{ @}
12111 int i;
12112 int j;
12113 @};
12114
12115 A *ap;
12116
12117 void foo(const A& ar)
12118 @{
12119 ap = &ar;
12120 @}
12121
12122 void bar()
12123 @{
12124 foo(A(10)); // temp object's lifetime ends when foo returns
12125
12126 @{
12127 A a(20);
12128 ....
12129 @}
12130 ap->i+= 10; // ap references out of scope temp whose space
12131 // is reused with a. What is the value of ap->i?
12132 @}
12133
12134 @end smallexample
12135
12136 The lifetime of a compiler generated temporary is well defined by the C++
12137 standard. When a lifetime of a temporary ends, and if the temporary lives
12138 in memory, the optimizing compiler has the freedom to reuse its stack
12139 space with other temporaries or scoped local variables whose live range
12140 does not overlap with it. However some of the legacy code relies on
12141 the behavior of older compilers in which temporaries' stack space is
12142 not reused, the aggressive stack reuse can lead to runtime errors. This
12143 option is used to control the temporary stack reuse optimization.
12144
12145 @item -ftrapv
12146 @opindex ftrapv
12147 This option generates traps for signed overflow on addition, subtraction,
12148 multiplication operations.
12149 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
12150 @option{-ftrapv} @option{-fwrapv} on the command-line results in
12151 @option{-fwrapv} being effective. Note that only active options override, so
12152 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
12153 results in @option{-ftrapv} being effective.
12154
12155 @item -fwrapv
12156 @opindex fwrapv
12157 This option instructs the compiler to assume that signed arithmetic
12158 overflow of addition, subtraction and multiplication wraps around
12159 using twos-complement representation. This flag enables some optimizations
12160 and disables others.
12161 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
12162 @option{-ftrapv} @option{-fwrapv} on the command-line results in
12163 @option{-fwrapv} being effective. Note that only active options override, so
12164 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
12165 results in @option{-ftrapv} being effective.
12166
12167 @item -fexceptions
12168 @opindex fexceptions
12169 Enable exception handling. Generates extra code needed to propagate
12170 exceptions. For some targets, this implies GCC generates frame
12171 unwind information for all functions, which can produce significant data
12172 size overhead, although it does not affect execution. If you do not
12173 specify this option, GCC enables it by default for languages like
12174 C++ that normally require exception handling, and disables it for
12175 languages like C that do not normally require it. However, you may need
12176 to enable this option when compiling C code that needs to interoperate
12177 properly with exception handlers written in C++. You may also wish to
12178 disable this option if you are compiling older C++ programs that don't
12179 use exception handling.
12180
12181 @item -fnon-call-exceptions
12182 @opindex fnon-call-exceptions
12183 Generate code that allows trapping instructions to throw exceptions.
12184 Note that this requires platform-specific runtime support that does
12185 not exist everywhere. Moreover, it only allows @emph{trapping}
12186 instructions to throw exceptions, i.e.@: memory references or floating-point
12187 instructions. It does not allow exceptions to be thrown from
12188 arbitrary signal handlers such as @code{SIGALRM}.
12189
12190 @item -fdelete-dead-exceptions
12191 @opindex fdelete-dead-exceptions
12192 Consider that instructions that may throw exceptions but don't otherwise
12193 contribute to the execution of the program can be optimized away.
12194 This option is enabled by default for the Ada front end, as permitted by
12195 the Ada language specification.
12196 Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels.
12197
12198 @item -funwind-tables
12199 @opindex funwind-tables
12200 Similar to @option{-fexceptions}, except that it just generates any needed
12201 static data, but does not affect the generated code in any other way.
12202 You normally do not need to enable this option; instead, a language processor
12203 that needs this handling enables it on your behalf.
12204
12205 @item -fasynchronous-unwind-tables
12206 @opindex fasynchronous-unwind-tables
12207 Generate unwind table in DWARF format, if supported by target machine. The
12208 table is exact at each instruction boundary, so it can be used for stack
12209 unwinding from asynchronous events (such as debugger or garbage collector).
12210
12211 @item -fno-gnu-unique
12212 @opindex fno-gnu-unique
12213 On systems with recent GNU assembler and C library, the C++ compiler
12214 uses the @code{STB_GNU_UNIQUE} binding to make sure that definitions
12215 of template static data members and static local variables in inline
12216 functions are unique even in the presence of @code{RTLD_LOCAL}; this
12217 is necessary to avoid problems with a library used by two different
12218 @code{RTLD_LOCAL} plugins depending on a definition in one of them and
12219 therefore disagreeing with the other one about the binding of the
12220 symbol. But this causes @code{dlclose} to be ignored for affected
12221 DSOs; if your program relies on reinitialization of a DSO via
12222 @code{dlclose} and @code{dlopen}, you can use
12223 @option{-fno-gnu-unique}.
12224
12225 @item -fpcc-struct-return
12226 @opindex fpcc-struct-return
12227 Return ``short'' @code{struct} and @code{union} values in memory like
12228 longer ones, rather than in registers. This convention is less
12229 efficient, but it has the advantage of allowing intercallability between
12230 GCC-compiled files and files compiled with other compilers, particularly
12231 the Portable C Compiler (pcc).
12232
12233 The precise convention for returning structures in memory depends
12234 on the target configuration macros.
12235
12236 Short structures and unions are those whose size and alignment match
12237 that of some integer type.
12238
12239 @strong{Warning:} code compiled with the @option{-fpcc-struct-return}
12240 switch is not binary compatible with code compiled with the
12241 @option{-freg-struct-return} switch.
12242 Use it to conform to a non-default application binary interface.
12243
12244 @item -freg-struct-return
12245 @opindex freg-struct-return
12246 Return @code{struct} and @code{union} values in registers when possible.
12247 This is more efficient for small structures than
12248 @option{-fpcc-struct-return}.
12249
12250 If you specify neither @option{-fpcc-struct-return} nor
12251 @option{-freg-struct-return}, GCC defaults to whichever convention is
12252 standard for the target. If there is no standard convention, GCC
12253 defaults to @option{-fpcc-struct-return}, except on targets where GCC is
12254 the principal compiler. In those cases, we can choose the standard, and
12255 we chose the more efficient register return alternative.
12256
12257 @strong{Warning:} code compiled with the @option{-freg-struct-return}
12258 switch is not binary compatible with code compiled with the
12259 @option{-fpcc-struct-return} switch.
12260 Use it to conform to a non-default application binary interface.
12261
12262 @item -fshort-enums
12263 @opindex fshort-enums
12264 Allocate to an @code{enum} type only as many bytes as it needs for the
12265 declared range of possible values. Specifically, the @code{enum} type
12266 is equivalent to the smallest integer type that has enough room.
12267
12268 @strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate
12269 code that is not binary compatible with code generated without that switch.
12270 Use it to conform to a non-default application binary interface.
12271
12272 @item -fshort-wchar
12273 @opindex fshort-wchar
12274 Override the underlying type for @code{wchar_t} to be @code{short
12275 unsigned int} instead of the default for the target. This option is
12276 useful for building programs to run under WINE@.
12277
12278 @strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate
12279 code that is not binary compatible with code generated without that switch.
12280 Use it to conform to a non-default application binary interface.
12281
12282 @item -fno-common
12283 @opindex fno-common
12284 @cindex tentative definitions
12285 In C code, this option controls the placement of global variables
12286 defined without an initializer, known as @dfn{tentative definitions}
12287 in the C standard. Tentative definitions are distinct from declarations
12288 of a variable with the @code{extern} keyword, which do not allocate storage.
12289
12290 Unix C compilers have traditionally allocated storage for
12291 uninitialized global variables in a common block. This allows the
12292 linker to resolve all tentative definitions of the same variable
12293 in different compilation units to the same object, or to a non-tentative
12294 definition.
12295 This is the behavior specified by @option{-fcommon}, and is the default for
12296 GCC on most targets.
12297 On the other hand, this behavior is not required by ISO
12298 C, and on some targets may carry a speed or code size penalty on
12299 variable references.
12300
12301 The @option{-fno-common} option specifies that the compiler should instead
12302 place uninitialized global variables in the data section of the object file.
12303 This inhibits the merging of tentative definitions by the linker so
12304 you get a multiple-definition error if the same
12305 variable is defined in more than one compilation unit.
12306 Compiling with @option{-fno-common} is useful on targets for which
12307 it provides better performance, or if you wish to verify that the
12308 program will work on other systems that always treat uninitialized
12309 variable definitions this way.
12310
12311 @item -fno-ident
12312 @opindex fno-ident
12313 Ignore the @code{#ident} directive.
12314
12315 @item -finhibit-size-directive
12316 @opindex finhibit-size-directive
12317 Don't output a @code{.size} assembler directive, or anything else that
12318 would cause trouble if the function is split in the middle, and the
12319 two halves are placed at locations far apart in memory. This option is
12320 used when compiling @file{crtstuff.c}; you should not need to use it
12321 for anything else.
12322
12323 @item -fverbose-asm
12324 @opindex fverbose-asm
12325 Put extra commentary information in the generated assembly code to
12326 make it more readable. This option is generally only of use to those
12327 who actually need to read the generated assembly code (perhaps while
12328 debugging the compiler itself).
12329
12330 @option{-fno-verbose-asm}, the default, causes the
12331 extra information to be omitted and is useful when comparing two assembler
12332 files.
12333
12334 The added comments include:
12335
12336 @itemize @bullet
12337
12338 @item
12339 information on the compiler version and command-line options,
12340
12341 @item
12342 the source code lines associated with the assembly instructions,
12343 in the form FILENAME:LINENUMBER:CONTENT OF LINE,
12344
12345 @item
12346 hints on which high-level expressions correspond to
12347 the various assembly instruction operands.
12348
12349 @end itemize
12350
12351 For example, given this C source file:
12352
12353 @smallexample
12354 int test (int n)
12355 @{
12356 int i;
12357 int total = 0;
12358
12359 for (i = 0; i < n; i++)
12360 total += i * i;
12361
12362 return total;
12363 @}
12364 @end smallexample
12365
12366 compiling to (x86_64) assembly via @option{-S} and emitting the result
12367 direct to stdout via @option{-o} @option{-}
12368
12369 @smallexample
12370 gcc -S test.c -fverbose-asm -Os -o -
12371 @end smallexample
12372
12373 gives output similar to this:
12374
12375 @smallexample
12376 .file "test.c"
12377 # GNU C11 (GCC) version 7.0.0 20160809 (experimental) (x86_64-pc-linux-gnu)
12378 [...snip...]
12379 # options passed:
12380 [...snip...]
12381
12382 .text
12383 .globl test
12384 .type test, @@function
12385 test:
12386 .LFB0:
12387 .cfi_startproc
12388 # test.c:4: int total = 0;
12389 xorl %eax, %eax # <retval>
12390 # test.c:6: for (i = 0; i < n; i++)
12391 xorl %edx, %edx # i
12392 .L2:
12393 # test.c:6: for (i = 0; i < n; i++)
12394 cmpl %edi, %edx # n, i
12395 jge .L5 #,
12396 # test.c:7: total += i * i;
12397 movl %edx, %ecx # i, tmp92
12398 imull %edx, %ecx # i, tmp92
12399 # test.c:6: for (i = 0; i < n; i++)
12400 incl %edx # i
12401 # test.c:7: total += i * i;
12402 addl %ecx, %eax # tmp92, <retval>
12403 jmp .L2 #
12404 .L5:
12405 # test.c:10: @}
12406 ret
12407 .cfi_endproc
12408 .LFE0:
12409 .size test, .-test
12410 .ident "GCC: (GNU) 7.0.0 20160809 (experimental)"
12411 .section .note.GNU-stack,"",@@progbits
12412 @end smallexample
12413
12414 The comments are intended for humans rather than machines and hence the
12415 precise format of the comments is subject to change.
12416
12417 @item -frecord-gcc-switches
12418 @opindex frecord-gcc-switches
12419 This switch causes the command line used to invoke the
12420 compiler to be recorded into the object file that is being created.
12421 This switch is only implemented on some targets and the exact format
12422 of the recording is target and binary file format dependent, but it
12423 usually takes the form of a section containing ASCII text. This
12424 switch is related to the @option{-fverbose-asm} switch, but that
12425 switch only records information in the assembler output file as
12426 comments, so it never reaches the object file.
12427 See also @option{-grecord-gcc-switches} for another
12428 way of storing compiler options into the object file.
12429
12430 @item -fpic
12431 @opindex fpic
12432 @cindex global offset table
12433 @cindex PIC
12434 Generate position-independent code (PIC) suitable for use in a shared
12435 library, if supported for the target machine. Such code accesses all
12436 constant addresses through a global offset table (GOT)@. The dynamic
12437 loader resolves the GOT entries when the program starts (the dynamic
12438 loader is not part of GCC; it is part of the operating system). If
12439 the GOT size for the linked executable exceeds a machine-specific
12440 maximum size, you get an error message from the linker indicating that
12441 @option{-fpic} does not work; in that case, recompile with @option{-fPIC}
12442 instead. (These maximums are 8k on the SPARC, 28k on AArch64 and 32k
12443 on the m68k and RS/6000. The x86 has no such limit.)
12444
12445 Position-independent code requires special support, and therefore works
12446 only on certain machines. For the x86, GCC supports PIC for System V
12447 but not for the Sun 386i. Code generated for the IBM RS/6000 is always
12448 position-independent.
12449
12450 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
12451 are defined to 1.
12452
12453 @item -fPIC
12454 @opindex fPIC
12455 If supported for the target machine, emit position-independent code,
12456 suitable for dynamic linking and avoiding any limit on the size of the
12457 global offset table. This option makes a difference on AArch64, m68k,
12458 PowerPC and SPARC@.
12459
12460 Position-independent code requires special support, and therefore works
12461 only on certain machines.
12462
12463 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
12464 are defined to 2.
12465
12466 @item -fpie
12467 @itemx -fPIE
12468 @opindex fpie
12469 @opindex fPIE
12470 These options are similar to @option{-fpic} and @option{-fPIC}, but
12471 generated position independent code can be only linked into executables.
12472 Usually these options are used when @option{-pie} GCC option is
12473 used during linking.
12474
12475 @option{-fpie} and @option{-fPIE} both define the macros
12476 @code{__pie__} and @code{__PIE__}. The macros have the value 1
12477 for @option{-fpie} and 2 for @option{-fPIE}.
12478
12479 @item -fno-plt
12480 @opindex fno-plt
12481 Do not use the PLT for external function calls in position-independent code.
12482 Instead, load the callee address at call sites from the GOT and branch to it.
12483 This leads to more efficient code by eliminating PLT stubs and exposing
12484 GOT loads to optimizations. On architectures such as 32-bit x86 where
12485 PLT stubs expect the GOT pointer in a specific register, this gives more
12486 register allocation freedom to the compiler.
12487 Lazy binding requires use of the PLT;
12488 with @option{-fno-plt} all external symbols are resolved at load time.
12489
12490 Alternatively, the function attribute @code{noplt} can be used to avoid calls
12491 through the PLT for specific external functions.
12492
12493 In position-dependent code, a few targets also convert calls to
12494 functions that are marked to not use the PLT to use the GOT instead.
12495
12496 @item -fno-jump-tables
12497 @opindex fno-jump-tables
12498 Do not use jump tables for switch statements even where it would be
12499 more efficient than other code generation strategies. This option is
12500 of use in conjunction with @option{-fpic} or @option{-fPIC} for
12501 building code that forms part of a dynamic linker and cannot
12502 reference the address of a jump table. On some targets, jump tables
12503 do not require a GOT and this option is not needed.
12504
12505 @item -ffixed-@var{reg}
12506 @opindex ffixed
12507 Treat the register named @var{reg} as a fixed register; generated code
12508 should never refer to it (except perhaps as a stack pointer, frame
12509 pointer or in some other fixed role).
12510
12511 @var{reg} must be the name of a register. The register names accepted
12512 are machine-specific and are defined in the @code{REGISTER_NAMES}
12513 macro in the machine description macro file.
12514
12515 This flag does not have a negative form, because it specifies a
12516 three-way choice.
12517
12518 @item -fcall-used-@var{reg}
12519 @opindex fcall-used
12520 Treat the register named @var{reg} as an allocable register that is
12521 clobbered by function calls. It may be allocated for temporaries or
12522 variables that do not live across a call. Functions compiled this way
12523 do not save and restore the register @var{reg}.
12524
12525 It is an error to use this flag with the frame pointer or stack pointer.
12526 Use of this flag for other registers that have fixed pervasive roles in
12527 the machine's execution model produces disastrous results.
12528
12529 This flag does not have a negative form, because it specifies a
12530 three-way choice.
12531
12532 @item -fcall-saved-@var{reg}
12533 @opindex fcall-saved
12534 Treat the register named @var{reg} as an allocable register saved by
12535 functions. It may be allocated even for temporaries or variables that
12536 live across a call. Functions compiled this way save and restore
12537 the register @var{reg} if they use it.
12538
12539 It is an error to use this flag with the frame pointer or stack pointer.
12540 Use of this flag for other registers that have fixed pervasive roles in
12541 the machine's execution model produces disastrous results.
12542
12543 A different sort of disaster results from the use of this flag for
12544 a register in which function values may be returned.
12545
12546 This flag does not have a negative form, because it specifies a
12547 three-way choice.
12548
12549 @item -fpack-struct[=@var{n}]
12550 @opindex fpack-struct
12551 Without a value specified, pack all structure members together without
12552 holes. When a value is specified (which must be a small power of two), pack
12553 structure members according to this value, representing the maximum
12554 alignment (that is, objects with default alignment requirements larger than
12555 this are output potentially unaligned at the next fitting location.
12556
12557 @strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate
12558 code that is not binary compatible with code generated without that switch.
12559 Additionally, it makes the code suboptimal.
12560 Use it to conform to a non-default application binary interface.
12561
12562 @item -fleading-underscore
12563 @opindex fleading-underscore
12564 This option and its counterpart, @option{-fno-leading-underscore}, forcibly
12565 change the way C symbols are represented in the object file. One use
12566 is to help link with legacy assembly code.
12567
12568 @strong{Warning:} the @option{-fleading-underscore} switch causes GCC to
12569 generate code that is not binary compatible with code generated without that
12570 switch. Use it to conform to a non-default application binary interface.
12571 Not all targets provide complete support for this switch.
12572
12573 @item -ftls-model=@var{model}
12574 @opindex ftls-model
12575 Alter the thread-local storage model to be used (@pxref{Thread-Local}).
12576 The @var{model} argument should be one of @samp{global-dynamic},
12577 @samp{local-dynamic}, @samp{initial-exec} or @samp{local-exec}.
12578 Note that the choice is subject to optimization: the compiler may use
12579 a more efficient model for symbols not visible outside of the translation
12580 unit, or if @option{-fpic} is not given on the command line.
12581
12582 The default without @option{-fpic} is @samp{initial-exec}; with
12583 @option{-fpic} the default is @samp{global-dynamic}.
12584
12585 @item -ftrampolines
12586 @opindex ftrampolines
12587 For targets that normally need trampolines for nested functions, always
12588 generate them instead of using descriptors. Otherwise, for targets that
12589 do not need them, like for example HP-PA or IA-64, do nothing.
12590
12591 A trampoline is a small piece of code that is created at run time on the
12592 stack when the address of a nested function is taken, and is used to call
12593 the nested function indirectly. Therefore, it requires the stack to be
12594 made executable in order for the program to work properly.
12595
12596 @option{-fno-trampolines} is enabled by default on a language by language
12597 basis to let the compiler avoid generating them, if it computes that this
12598 is safe, and replace them with descriptors. Descriptors are made up of data
12599 only, but the generated code must be prepared to deal with them. As of this
12600 writing, @option{-fno-trampolines} is enabled by default only for Ada.
12601
12602 Moreover, code compiled with @option{-ftrampolines} and code compiled with
12603 @option{-fno-trampolines} are not binary compatible if nested functions are
12604 present. This option must therefore be used on a program-wide basis and be
12605 manipulated with extreme care.
12606
12607 @item -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]}
12608 @opindex fvisibility
12609 Set the default ELF image symbol visibility to the specified option---all
12610 symbols are marked with this unless overridden within the code.
12611 Using this feature can very substantially improve linking and
12612 load times of shared object libraries, produce more optimized
12613 code, provide near-perfect API export and prevent symbol clashes.
12614 It is @strong{strongly} recommended that you use this in any shared objects
12615 you distribute.
12616
12617 Despite the nomenclature, @samp{default} always means public; i.e.,
12618 available to be linked against from outside the shared object.
12619 @samp{protected} and @samp{internal} are pretty useless in real-world
12620 usage so the only other commonly used option is @samp{hidden}.
12621 The default if @option{-fvisibility} isn't specified is
12622 @samp{default}, i.e., make every symbol public.
12623
12624 A good explanation of the benefits offered by ensuring ELF
12625 symbols have the correct visibility is given by ``How To Write
12626 Shared Libraries'' by Ulrich Drepper (which can be found at
12627 @w{@uref{https://www.akkadia.org/drepper/}})---however a superior
12628 solution made possible by this option to marking things hidden when
12629 the default is public is to make the default hidden and mark things
12630 public. This is the norm with DLLs on Windows and with @option{-fvisibility=hidden}
12631 and @code{__attribute__ ((visibility("default")))} instead of
12632 @code{__declspec(dllexport)} you get almost identical semantics with
12633 identical syntax. This is a great boon to those working with
12634 cross-platform projects.
12635
12636 For those adding visibility support to existing code, you may find
12637 @code{#pragma GCC visibility} of use. This works by you enclosing
12638 the declarations you wish to set visibility for with (for example)
12639 @code{#pragma GCC visibility push(hidden)} and
12640 @code{#pragma GCC visibility pop}.
12641 Bear in mind that symbol visibility should be viewed @strong{as
12642 part of the API interface contract} and thus all new code should
12643 always specify visibility when it is not the default; i.e., declarations
12644 only for use within the local DSO should @strong{always} be marked explicitly
12645 as hidden as so to avoid PLT indirection overheads---making this
12646 abundantly clear also aids readability and self-documentation of the code.
12647 Note that due to ISO C++ specification requirements, @code{operator new} and
12648 @code{operator delete} must always be of default visibility.
12649
12650 Be aware that headers from outside your project, in particular system
12651 headers and headers from any other library you use, may not be
12652 expecting to be compiled with visibility other than the default. You
12653 may need to explicitly say @code{#pragma GCC visibility push(default)}
12654 before including any such headers.
12655
12656 @code{extern} declarations are not affected by @option{-fvisibility}, so
12657 a lot of code can be recompiled with @option{-fvisibility=hidden} with
12658 no modifications. However, this means that calls to @code{extern}
12659 functions with no explicit visibility use the PLT, so it is more
12660 effective to use @code{__attribute ((visibility))} and/or
12661 @code{#pragma GCC visibility} to tell the compiler which @code{extern}
12662 declarations should be treated as hidden.
12663
12664 Note that @option{-fvisibility} does affect C++ vague linkage
12665 entities. This means that, for instance, an exception class that is
12666 be thrown between DSOs must be explicitly marked with default
12667 visibility so that the @samp{type_info} nodes are unified between
12668 the DSOs.
12669
12670 An overview of these techniques, their benefits and how to use them
12671 is at @uref{http://gcc.gnu.org/@/wiki/@/Visibility}.
12672
12673 @item -fstrict-volatile-bitfields
12674 @opindex fstrict-volatile-bitfields
12675 This option should be used if accesses to volatile bit-fields (or other
12676 structure fields, although the compiler usually honors those types
12677 anyway) should use a single access of the width of the
12678 field's type, aligned to a natural alignment if possible. For
12679 example, targets with memory-mapped peripheral registers might require
12680 all such accesses to be 16 bits wide; with this flag you can
12681 declare all peripheral bit-fields as @code{unsigned short} (assuming short
12682 is 16 bits on these targets) to force GCC to use 16-bit accesses
12683 instead of, perhaps, a more efficient 32-bit access.
12684
12685 If this option is disabled, the compiler uses the most efficient
12686 instruction. In the previous example, that might be a 32-bit load
12687 instruction, even though that accesses bytes that do not contain
12688 any portion of the bit-field, or memory-mapped registers unrelated to
12689 the one being updated.
12690
12691 In some cases, such as when the @code{packed} attribute is applied to a
12692 structure field, it may not be possible to access the field with a single
12693 read or write that is correctly aligned for the target machine. In this
12694 case GCC falls back to generating multiple accesses rather than code that
12695 will fault or truncate the result at run time.
12696
12697 Note: Due to restrictions of the C/C++11 memory model, write accesses are
12698 not allowed to touch non bit-field members. It is therefore recommended
12699 to define all bits of the field's type as bit-field members.
12700
12701 The default value of this option is determined by the application binary
12702 interface for the target processor.
12703
12704 @item -fsync-libcalls
12705 @opindex fsync-libcalls
12706 This option controls whether any out-of-line instance of the @code{__sync}
12707 family of functions may be used to implement the C++11 @code{__atomic}
12708 family of functions.
12709
12710 The default value of this option is enabled, thus the only useful form
12711 of the option is @option{-fno-sync-libcalls}. This option is used in
12712 the implementation of the @file{libatomic} runtime library.
12713
12714 @end table
12715
12716 @node Developer Options
12717 @section GCC Developer Options
12718 @cindex developer options
12719 @cindex debugging GCC
12720 @cindex debug dump options
12721 @cindex dump options
12722 @cindex compilation statistics
12723
12724 This section describes command-line options that are primarily of
12725 interest to GCC developers, including options to support compiler
12726 testing and investigation of compiler bugs and compile-time
12727 performance problems. This includes options that produce debug dumps
12728 at various points in the compilation; that print statistics such as
12729 memory use and execution time; and that print information about GCC's
12730 configuration, such as where it searches for libraries. You should
12731 rarely need to use any of these options for ordinary compilation and
12732 linking tasks.
12733
12734 @table @gcctabopt
12735
12736 @item -d@var{letters}
12737 @itemx -fdump-rtl-@var{pass}
12738 @itemx -fdump-rtl-@var{pass}=@var{filename}
12739 @opindex d
12740 @opindex fdump-rtl-@var{pass}
12741 Says to make debugging dumps during compilation at times specified by
12742 @var{letters}. This is used for debugging the RTL-based passes of the
12743 compiler. The file names for most of the dumps are made by appending
12744 a pass number and a word to the @var{dumpname}, and the files are
12745 created in the directory of the output file. In case of
12746 @option{=@var{filename}} option, the dump is output on the given file
12747 instead of the pass numbered dump files. Note that the pass number is
12748 assigned as passes are registered into the pass manager. Most passes
12749 are registered in the order that they will execute and for these passes
12750 the number corresponds to the pass execution order. However, passes
12751 registered by plugins, passes specific to compilation targets, or
12752 passes that are otherwise registered after all the other passes are
12753 numbered higher than a pass named "final", even if they are executed
12754 earlier. @var{dumpname} is generated from the name of the output
12755 file if explicitly specified and not an executable, otherwise it is
12756 the basename of the source file.
12757
12758 Some @option{-d@var{letters}} switches have different meaning when
12759 @option{-E} is used for preprocessing. @xref{Preprocessor Options},
12760 for information about preprocessor-specific dump options.
12761
12762 Debug dumps can be enabled with a @option{-fdump-rtl} switch or some
12763 @option{-d} option @var{letters}. Here are the possible
12764 letters for use in @var{pass} and @var{letters}, and their meanings:
12765
12766 @table @gcctabopt
12767
12768 @item -fdump-rtl-alignments
12769 @opindex fdump-rtl-alignments
12770 Dump after branch alignments have been computed.
12771
12772 @item -fdump-rtl-asmcons
12773 @opindex fdump-rtl-asmcons
12774 Dump after fixing rtl statements that have unsatisfied in/out constraints.
12775
12776 @item -fdump-rtl-auto_inc_dec
12777 @opindex fdump-rtl-auto_inc_dec
12778 Dump after auto-inc-dec discovery. This pass is only run on
12779 architectures that have auto inc or auto dec instructions.
12780
12781 @item -fdump-rtl-barriers
12782 @opindex fdump-rtl-barriers
12783 Dump after cleaning up the barrier instructions.
12784
12785 @item -fdump-rtl-bbpart
12786 @opindex fdump-rtl-bbpart
12787 Dump after partitioning hot and cold basic blocks.
12788
12789 @item -fdump-rtl-bbro
12790 @opindex fdump-rtl-bbro
12791 Dump after block reordering.
12792
12793 @item -fdump-rtl-btl1
12794 @itemx -fdump-rtl-btl2
12795 @opindex fdump-rtl-btl2
12796 @opindex fdump-rtl-btl2
12797 @option{-fdump-rtl-btl1} and @option{-fdump-rtl-btl2} enable dumping
12798 after the two branch
12799 target load optimization passes.
12800
12801 @item -fdump-rtl-bypass
12802 @opindex fdump-rtl-bypass
12803 Dump after jump bypassing and control flow optimizations.
12804
12805 @item -fdump-rtl-combine
12806 @opindex fdump-rtl-combine
12807 Dump after the RTL instruction combination pass.
12808
12809 @item -fdump-rtl-compgotos
12810 @opindex fdump-rtl-compgotos
12811 Dump after duplicating the computed gotos.
12812
12813 @item -fdump-rtl-ce1
12814 @itemx -fdump-rtl-ce2
12815 @itemx -fdump-rtl-ce3
12816 @opindex fdump-rtl-ce1
12817 @opindex fdump-rtl-ce2
12818 @opindex fdump-rtl-ce3
12819 @option{-fdump-rtl-ce1}, @option{-fdump-rtl-ce2}, and
12820 @option{-fdump-rtl-ce3} enable dumping after the three
12821 if conversion passes.
12822
12823 @item -fdump-rtl-cprop_hardreg
12824 @opindex fdump-rtl-cprop_hardreg
12825 Dump after hard register copy propagation.
12826
12827 @item -fdump-rtl-csa
12828 @opindex fdump-rtl-csa
12829 Dump after combining stack adjustments.
12830
12831 @item -fdump-rtl-cse1
12832 @itemx -fdump-rtl-cse2
12833 @opindex fdump-rtl-cse1
12834 @opindex fdump-rtl-cse2
12835 @option{-fdump-rtl-cse1} and @option{-fdump-rtl-cse2} enable dumping after
12836 the two common subexpression elimination passes.
12837
12838 @item -fdump-rtl-dce
12839 @opindex fdump-rtl-dce
12840 Dump after the standalone dead code elimination passes.
12841
12842 @item -fdump-rtl-dbr
12843 @opindex fdump-rtl-dbr
12844 Dump after delayed branch scheduling.
12845
12846 @item -fdump-rtl-dce1
12847 @itemx -fdump-rtl-dce2
12848 @opindex fdump-rtl-dce1
12849 @opindex fdump-rtl-dce2
12850 @option{-fdump-rtl-dce1} and @option{-fdump-rtl-dce2} enable dumping after
12851 the two dead store elimination passes.
12852
12853 @item -fdump-rtl-eh
12854 @opindex fdump-rtl-eh
12855 Dump after finalization of EH handling code.
12856
12857 @item -fdump-rtl-eh_ranges
12858 @opindex fdump-rtl-eh_ranges
12859 Dump after conversion of EH handling range regions.
12860
12861 @item -fdump-rtl-expand
12862 @opindex fdump-rtl-expand
12863 Dump after RTL generation.
12864
12865 @item -fdump-rtl-fwprop1
12866 @itemx -fdump-rtl-fwprop2
12867 @opindex fdump-rtl-fwprop1
12868 @opindex fdump-rtl-fwprop2
12869 @option{-fdump-rtl-fwprop1} and @option{-fdump-rtl-fwprop2} enable
12870 dumping after the two forward propagation passes.
12871
12872 @item -fdump-rtl-gcse1
12873 @itemx -fdump-rtl-gcse2
12874 @opindex fdump-rtl-gcse1
12875 @opindex fdump-rtl-gcse2
12876 @option{-fdump-rtl-gcse1} and @option{-fdump-rtl-gcse2} enable dumping
12877 after global common subexpression elimination.
12878
12879 @item -fdump-rtl-init-regs
12880 @opindex fdump-rtl-init-regs
12881 Dump after the initialization of the registers.
12882
12883 @item -fdump-rtl-initvals
12884 @opindex fdump-rtl-initvals
12885 Dump after the computation of the initial value sets.
12886
12887 @item -fdump-rtl-into_cfglayout
12888 @opindex fdump-rtl-into_cfglayout
12889 Dump after converting to cfglayout mode.
12890
12891 @item -fdump-rtl-ira
12892 @opindex fdump-rtl-ira
12893 Dump after iterated register allocation.
12894
12895 @item -fdump-rtl-jump
12896 @opindex fdump-rtl-jump
12897 Dump after the second jump optimization.
12898
12899 @item -fdump-rtl-loop2
12900 @opindex fdump-rtl-loop2
12901 @option{-fdump-rtl-loop2} enables dumping after the rtl
12902 loop optimization passes.
12903
12904 @item -fdump-rtl-mach
12905 @opindex fdump-rtl-mach
12906 Dump after performing the machine dependent reorganization pass, if that
12907 pass exists.
12908
12909 @item -fdump-rtl-mode_sw
12910 @opindex fdump-rtl-mode_sw
12911 Dump after removing redundant mode switches.
12912
12913 @item -fdump-rtl-rnreg
12914 @opindex fdump-rtl-rnreg
12915 Dump after register renumbering.
12916
12917 @item -fdump-rtl-outof_cfglayout
12918 @opindex fdump-rtl-outof_cfglayout
12919 Dump after converting from cfglayout mode.
12920
12921 @item -fdump-rtl-peephole2
12922 @opindex fdump-rtl-peephole2
12923 Dump after the peephole pass.
12924
12925 @item -fdump-rtl-postreload
12926 @opindex fdump-rtl-postreload
12927 Dump after post-reload optimizations.
12928
12929 @item -fdump-rtl-pro_and_epilogue
12930 @opindex fdump-rtl-pro_and_epilogue
12931 Dump after generating the function prologues and epilogues.
12932
12933 @item -fdump-rtl-sched1
12934 @itemx -fdump-rtl-sched2
12935 @opindex fdump-rtl-sched1
12936 @opindex fdump-rtl-sched2
12937 @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2} enable dumping
12938 after the basic block scheduling passes.
12939
12940 @item -fdump-rtl-ree
12941 @opindex fdump-rtl-ree
12942 Dump after sign/zero extension elimination.
12943
12944 @item -fdump-rtl-seqabstr
12945 @opindex fdump-rtl-seqabstr
12946 Dump after common sequence discovery.
12947
12948 @item -fdump-rtl-shorten
12949 @opindex fdump-rtl-shorten
12950 Dump after shortening branches.
12951
12952 @item -fdump-rtl-sibling
12953 @opindex fdump-rtl-sibling
12954 Dump after sibling call optimizations.
12955
12956 @item -fdump-rtl-split1
12957 @itemx -fdump-rtl-split2
12958 @itemx -fdump-rtl-split3
12959 @itemx -fdump-rtl-split4
12960 @itemx -fdump-rtl-split5
12961 @opindex fdump-rtl-split1
12962 @opindex fdump-rtl-split2
12963 @opindex fdump-rtl-split3
12964 @opindex fdump-rtl-split4
12965 @opindex fdump-rtl-split5
12966 These options enable dumping after five rounds of
12967 instruction splitting.
12968
12969 @item -fdump-rtl-sms
12970 @opindex fdump-rtl-sms
12971 Dump after modulo scheduling. This pass is only run on some
12972 architectures.
12973
12974 @item -fdump-rtl-stack
12975 @opindex fdump-rtl-stack
12976 Dump after conversion from GCC's ``flat register file'' registers to the
12977 x87's stack-like registers. This pass is only run on x86 variants.
12978
12979 @item -fdump-rtl-subreg1
12980 @itemx -fdump-rtl-subreg2
12981 @opindex fdump-rtl-subreg1
12982 @opindex fdump-rtl-subreg2
12983 @option{-fdump-rtl-subreg1} and @option{-fdump-rtl-subreg2} enable dumping after
12984 the two subreg expansion passes.
12985
12986 @item -fdump-rtl-unshare
12987 @opindex fdump-rtl-unshare
12988 Dump after all rtl has been unshared.
12989
12990 @item -fdump-rtl-vartrack
12991 @opindex fdump-rtl-vartrack
12992 Dump after variable tracking.
12993
12994 @item -fdump-rtl-vregs
12995 @opindex fdump-rtl-vregs
12996 Dump after converting virtual registers to hard registers.
12997
12998 @item -fdump-rtl-web
12999 @opindex fdump-rtl-web
13000 Dump after live range splitting.
13001
13002 @item -fdump-rtl-regclass
13003 @itemx -fdump-rtl-subregs_of_mode_init
13004 @itemx -fdump-rtl-subregs_of_mode_finish
13005 @itemx -fdump-rtl-dfinit
13006 @itemx -fdump-rtl-dfinish
13007 @opindex fdump-rtl-regclass
13008 @opindex fdump-rtl-subregs_of_mode_init
13009 @opindex fdump-rtl-subregs_of_mode_finish
13010 @opindex fdump-rtl-dfinit
13011 @opindex fdump-rtl-dfinish
13012 These dumps are defined but always produce empty files.
13013
13014 @item -da
13015 @itemx -fdump-rtl-all
13016 @opindex da
13017 @opindex fdump-rtl-all
13018 Produce all the dumps listed above.
13019
13020 @item -dA
13021 @opindex dA
13022 Annotate the assembler output with miscellaneous debugging information.
13023
13024 @item -dD
13025 @opindex dD
13026 Dump all macro definitions, at the end of preprocessing, in addition to
13027 normal output.
13028
13029 @item -dH
13030 @opindex dH
13031 Produce a core dump whenever an error occurs.
13032
13033 @item -dp
13034 @opindex dp
13035 Annotate the assembler output with a comment indicating which
13036 pattern and alternative is used. The length of each instruction is
13037 also printed.
13038
13039 @item -dP
13040 @opindex dP
13041 Dump the RTL in the assembler output as a comment before each instruction.
13042 Also turns on @option{-dp} annotation.
13043
13044 @item -dx
13045 @opindex dx
13046 Just generate RTL for a function instead of compiling it. Usually used
13047 with @option{-fdump-rtl-expand}.
13048 @end table
13049
13050 @item -fdump-noaddr
13051 @opindex fdump-noaddr
13052 When doing debugging dumps, suppress address output. This makes it more
13053 feasible to use diff on debugging dumps for compiler invocations with
13054 different compiler binaries and/or different
13055 text / bss / data / heap / stack / dso start locations.
13056
13057 @item -freport-bug
13058 @opindex freport-bug
13059 Collect and dump debug information into a temporary file if an
13060 internal compiler error (ICE) occurs.
13061
13062 @item -fdump-unnumbered
13063 @opindex fdump-unnumbered
13064 When doing debugging dumps, suppress instruction numbers and address output.
13065 This makes it more feasible to use diff on debugging dumps for compiler
13066 invocations with different options, in particular with and without
13067 @option{-g}.
13068
13069 @item -fdump-unnumbered-links
13070 @opindex fdump-unnumbered-links
13071 When doing debugging dumps (see @option{-d} option above), suppress
13072 instruction numbers for the links to the previous and next instructions
13073 in a sequence.
13074
13075 @item -fdump-ipa-@var{switch}
13076 @opindex fdump-ipa
13077 Control the dumping at various stages of inter-procedural analysis
13078 language tree to a file. The file name is generated by appending a
13079 switch specific suffix to the source file name, and the file is created
13080 in the same directory as the output file. The following dumps are
13081 possible:
13082
13083 @table @samp
13084 @item all
13085 Enables all inter-procedural analysis dumps.
13086
13087 @item cgraph
13088 Dumps information about call-graph optimization, unused function removal,
13089 and inlining decisions.
13090
13091 @item inline
13092 Dump after function inlining.
13093
13094 @end table
13095
13096 @item -fdump-lang-all
13097 @itemx -fdump-lang-@var{switch}
13098 @itemx -fdump-lang-@var{switch}-@var{options}
13099 @itemx -fdump-lang-@var{switch}-@var{options}=@var{filename}
13100 @opindex fdump-lang-all
13101 @opindex fdump-lang
13102 Control the dumping of language-specific information. The @var{options}
13103 and @var{filename} portions behave as described in the
13104 @option{-fdump-tree} option. The following @var{switch} values are
13105 accepted:
13106
13107 @table @samp
13108 @item all
13109
13110 Enable all language-specific dumps.
13111
13112 @item class
13113 Dump class hierarchy information. Virtual table information is emitted
13114 unless '@option{slim}' is specified. This option is applicable to C++ only.
13115
13116 @item raw
13117 Dump the raw internal tree data. This option is applicable to C++ only.
13118
13119 @end table
13120
13121 @item -fdump-passes
13122 @opindex fdump-passes
13123 Print on @file{stderr} the list of optimization passes that are turned
13124 on and off by the current command-line options.
13125
13126 @item -fdump-statistics-@var{option}
13127 @opindex fdump-statistics
13128 Enable and control dumping of pass statistics in a separate file. The
13129 file name is generated by appending a suffix ending in
13130 @samp{.statistics} to the source file name, and the file is created in
13131 the same directory as the output file. If the @samp{-@var{option}}
13132 form is used, @samp{-stats} causes counters to be summed over the
13133 whole compilation unit while @samp{-details} dumps every event as
13134 the passes generate them. The default with no option is to sum
13135 counters for each function compiled.
13136
13137 @item -fdump-tree-all
13138 @itemx -fdump-tree-@var{switch}
13139 @itemx -fdump-tree-@var{switch}-@var{options}
13140 @itemx -fdump-tree-@var{switch}-@var{options}=@var{filename}
13141 @opindex fdump-tree-all
13142 @opindex fdump-tree
13143 Control the dumping at various stages of processing the intermediate
13144 language tree to a file. The file name is generated by appending a
13145 switch-specific suffix to the source file name, and the file is
13146 created in the same directory as the output file. In case of
13147 @option{=@var{filename}} option, the dump is output on the given file
13148 instead of the auto named dump files. If the @samp{-@var{options}}
13149 form is used, @var{options} is a list of @samp{-} separated options
13150 which control the details of the dump. Not all options are applicable
13151 to all dumps; those that are not meaningful are ignored. The
13152 following options are available
13153
13154 @table @samp
13155 @item address
13156 Print the address of each node. Usually this is not meaningful as it
13157 changes according to the environment and source file. Its primary use
13158 is for tying up a dump file with a debug environment.
13159 @item asmname
13160 If @code{DECL_ASSEMBLER_NAME} has been set for a given decl, use that
13161 in the dump instead of @code{DECL_NAME}. Its primary use is ease of
13162 use working backward from mangled names in the assembly file.
13163 @item slim
13164 When dumping front-end intermediate representations, inhibit dumping
13165 of members of a scope or body of a function merely because that scope
13166 has been reached. Only dump such items when they are directly reachable
13167 by some other path.
13168
13169 When dumping pretty-printed trees, this option inhibits dumping the
13170 bodies of control structures.
13171
13172 When dumping RTL, print the RTL in slim (condensed) form instead of
13173 the default LISP-like representation.
13174 @item raw
13175 Print a raw representation of the tree. By default, trees are
13176 pretty-printed into a C-like representation.
13177 @item details
13178 Enable more detailed dumps (not honored by every dump option). Also
13179 include information from the optimization passes.
13180 @item stats
13181 Enable dumping various statistics about the pass (not honored by every dump
13182 option).
13183 @item blocks
13184 Enable showing basic block boundaries (disabled in raw dumps).
13185 @item graph
13186 For each of the other indicated dump files (@option{-fdump-rtl-@var{pass}}),
13187 dump a representation of the control flow graph suitable for viewing with
13188 GraphViz to @file{@var{file}.@var{passid}.@var{pass}.dot}. Each function in
13189 the file is pretty-printed as a subgraph, so that GraphViz can render them
13190 all in a single plot.
13191
13192 This option currently only works for RTL dumps, and the RTL is always
13193 dumped in slim form.
13194 @item vops
13195 Enable showing virtual operands for every statement.
13196 @item lineno
13197 Enable showing line numbers for statements.
13198 @item uid
13199 Enable showing the unique ID (@code{DECL_UID}) for each variable.
13200 @item verbose
13201 Enable showing the tree dump for each statement.
13202 @item eh
13203 Enable showing the EH region number holding each statement.
13204 @item scev
13205 Enable showing scalar evolution analysis details.
13206 @item optimized
13207 Enable showing optimization information (only available in certain
13208 passes).
13209 @item missed
13210 Enable showing missed optimization information (only available in certain
13211 passes).
13212 @item note
13213 Enable other detailed optimization information (only available in
13214 certain passes).
13215 @item =@var{filename}
13216 Instead of an auto named dump file, output into the given file
13217 name. The file names @file{stdout} and @file{stderr} are treated
13218 specially and are considered already open standard streams. For
13219 example,
13220
13221 @smallexample
13222 gcc -O2 -ftree-vectorize -fdump-tree-vect-blocks=foo.dump
13223 -fdump-tree-pre=/dev/stderr file.c
13224 @end smallexample
13225
13226 outputs vectorizer dump into @file{foo.dump}, while the PRE dump is
13227 output on to @file{stderr}. If two conflicting dump filenames are
13228 given for the same pass, then the latter option overrides the earlier
13229 one.
13230
13231 @item all
13232 Turn on all options, except @option{raw}, @option{slim}, @option{verbose}
13233 and @option{lineno}.
13234
13235 @item optall
13236 Turn on all optimization options, i.e., @option{optimized},
13237 @option{missed}, and @option{note}.
13238 @end table
13239
13240 To determine what tree dumps are available or find the dump for a pass
13241 of interest follow the steps below.
13242
13243 @enumerate
13244 @item
13245 Invoke GCC with @option{-fdump-passes} and in the @file{stderr} output
13246 look for a code that corresponds to the pass you are interested in.
13247 For example, the codes @code{tree-evrp}, @code{tree-vrp1}, and
13248 @code{tree-vrp2} correspond to the three Value Range Propagation passes.
13249 The number at the end distinguishes distinct invocations of the same pass.
13250 @item
13251 To enable the creation of the dump file, append the pass code to
13252 the @option{-fdump-} option prefix and invoke GCC with it. For example,
13253 to enable the dump from the Early Value Range Propagation pass, invoke
13254 GCC with the @option{-fdump-tree-evrp} option. Optionally, you may
13255 specify the name of the dump file. If you don't specify one, GCC
13256 creates as described below.
13257 @item
13258 Find the pass dump in a file whose name is composed of three components
13259 separated by a period: the name of the source file GCC was invoked to
13260 compile, a numeric suffix indicating the pass number followed by the
13261 letter @samp{t} for tree passes (and the letter @samp{r} for RTL passes),
13262 and finally the pass code. For example, the Early VRP pass dump might
13263 be in a file named @file{myfile.c.038t.evrp} in the current working
13264 directory. Note that the numeric codes are not stable and may change
13265 from one version of GCC to another.
13266 @end enumerate
13267
13268 @item -fopt-info
13269 @itemx -fopt-info-@var{options}
13270 @itemx -fopt-info-@var{options}=@var{filename}
13271 @opindex fopt-info
13272 Controls optimization dumps from various optimization passes. If the
13273 @samp{-@var{options}} form is used, @var{options} is a list of
13274 @samp{-} separated option keywords to select the dump details and
13275 optimizations.
13276
13277 The @var{options} can be divided into two groups: options describing the
13278 verbosity of the dump, and options describing which optimizations
13279 should be included. The options from both the groups can be freely
13280 mixed as they are non-overlapping. However, in case of any conflicts,
13281 the later options override the earlier options on the command
13282 line.
13283
13284 The following options control the dump verbosity:
13285
13286 @table @samp
13287 @item optimized
13288 Print information when an optimization is successfully applied. It is
13289 up to a pass to decide which information is relevant. For example, the
13290 vectorizer passes print the source location of loops which are
13291 successfully vectorized.
13292 @item missed
13293 Print information about missed optimizations. Individual passes
13294 control which information to include in the output.
13295 @item note
13296 Print verbose information about optimizations, such as certain
13297 transformations, more detailed messages about decisions etc.
13298 @item all
13299 Print detailed optimization information. This includes
13300 @samp{optimized}, @samp{missed}, and @samp{note}.
13301 @end table
13302
13303 One or more of the following option keywords can be used to describe a
13304 group of optimizations:
13305
13306 @table @samp
13307 @item ipa
13308 Enable dumps from all interprocedural optimizations.
13309 @item loop
13310 Enable dumps from all loop optimizations.
13311 @item inline
13312 Enable dumps from all inlining optimizations.
13313 @item omp
13314 Enable dumps from all OMP (Offloading and Multi Processing) optimizations.
13315 @item vec
13316 Enable dumps from all vectorization optimizations.
13317 @item optall
13318 Enable dumps from all optimizations. This is a superset of
13319 the optimization groups listed above.
13320 @end table
13321
13322 If @var{options} is
13323 omitted, it defaults to @samp{optimized-optall}, which means to dump all
13324 info about successful optimizations from all the passes.
13325
13326 If the @var{filename} is provided, then the dumps from all the
13327 applicable optimizations are concatenated into the @var{filename}.
13328 Otherwise the dump is output onto @file{stderr}. Though multiple
13329 @option{-fopt-info} options are accepted, only one of them can include
13330 a @var{filename}. If other filenames are provided then all but the
13331 first such option are ignored.
13332
13333 Note that the output @var{filename} is overwritten
13334 in case of multiple translation units. If a combined output from
13335 multiple translation units is desired, @file{stderr} should be used
13336 instead.
13337
13338 In the following example, the optimization info is output to
13339 @file{stderr}:
13340
13341 @smallexample
13342 gcc -O3 -fopt-info
13343 @end smallexample
13344
13345 This example:
13346 @smallexample
13347 gcc -O3 -fopt-info-missed=missed.all
13348 @end smallexample
13349
13350 @noindent
13351 outputs missed optimization report from all the passes into
13352 @file{missed.all}, and this one:
13353
13354 @smallexample
13355 gcc -O2 -ftree-vectorize -fopt-info-vec-missed
13356 @end smallexample
13357
13358 @noindent
13359 prints information about missed optimization opportunities from
13360 vectorization passes on @file{stderr}.
13361 Note that @option{-fopt-info-vec-missed} is equivalent to
13362 @option{-fopt-info-missed-vec}. The order of the optimization group
13363 names and message types listed after @option{-fopt-info} does not matter.
13364
13365 As another example,
13366 @smallexample
13367 gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
13368 @end smallexample
13369
13370 @noindent
13371 outputs information about missed optimizations as well as
13372 optimized locations from all the inlining passes into
13373 @file{inline.txt}.
13374
13375 Finally, consider:
13376
13377 @smallexample
13378 gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
13379 @end smallexample
13380
13381 @noindent
13382 Here the two output filenames @file{vec.miss} and @file{loop.opt} are
13383 in conflict since only one output file is allowed. In this case, only
13384 the first option takes effect and the subsequent options are
13385 ignored. Thus only @file{vec.miss} is produced which contains
13386 dumps from the vectorizer about missed opportunities.
13387
13388 @item -fsched-verbose=@var{n}
13389 @opindex fsched-verbose
13390 On targets that use instruction scheduling, this option controls the
13391 amount of debugging output the scheduler prints to the dump files.
13392
13393 For @var{n} greater than zero, @option{-fsched-verbose} outputs the
13394 same information as @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2}.
13395 For @var{n} greater than one, it also output basic block probabilities,
13396 detailed ready list information and unit/insn info. For @var{n} greater
13397 than two, it includes RTL at abort point, control-flow and regions info.
13398 And for @var{n} over four, @option{-fsched-verbose} also includes
13399 dependence info.
13400
13401
13402
13403 @item -fenable-@var{kind}-@var{pass}
13404 @itemx -fdisable-@var{kind}-@var{pass}=@var{range-list}
13405 @opindex fdisable-
13406 @opindex fenable-
13407
13408 This is a set of options that are used to explicitly disable/enable
13409 optimization passes. These options are intended for use for debugging GCC.
13410 Compiler users should use regular options for enabling/disabling
13411 passes instead.
13412
13413 @table @gcctabopt
13414
13415 @item -fdisable-ipa-@var{pass}
13416 Disable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
13417 statically invoked in the compiler multiple times, the pass name should be
13418 appended with a sequential number starting from 1.
13419
13420 @item -fdisable-rtl-@var{pass}
13421 @itemx -fdisable-rtl-@var{pass}=@var{range-list}
13422 Disable RTL pass @var{pass}. @var{pass} is the pass name. If the same pass is
13423 statically invoked in the compiler multiple times, the pass name should be
13424 appended with a sequential number starting from 1. @var{range-list} is a
13425 comma-separated list of function ranges or assembler names. Each range is a number
13426 pair separated by a colon. The range is inclusive in both ends. If the range
13427 is trivial, the number pair can be simplified as a single number. If the
13428 function's call graph node's @var{uid} falls within one of the specified ranges,
13429 the @var{pass} is disabled for that function. The @var{uid} is shown in the
13430 function header of a dump file, and the pass names can be dumped by using
13431 option @option{-fdump-passes}.
13432
13433 @item -fdisable-tree-@var{pass}
13434 @itemx -fdisable-tree-@var{pass}=@var{range-list}
13435 Disable tree pass @var{pass}. See @option{-fdisable-rtl} for the description of
13436 option arguments.
13437
13438 @item -fenable-ipa-@var{pass}
13439 Enable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
13440 statically invoked in the compiler multiple times, the pass name should be
13441 appended with a sequential number starting from 1.
13442
13443 @item -fenable-rtl-@var{pass}
13444 @itemx -fenable-rtl-@var{pass}=@var{range-list}
13445 Enable RTL pass @var{pass}. See @option{-fdisable-rtl} for option argument
13446 description and examples.
13447
13448 @item -fenable-tree-@var{pass}
13449 @itemx -fenable-tree-@var{pass}=@var{range-list}
13450 Enable tree pass @var{pass}. See @option{-fdisable-rtl} for the description
13451 of option arguments.
13452
13453 @end table
13454
13455 Here are some examples showing uses of these options.
13456
13457 @smallexample
13458
13459 # disable ccp1 for all functions
13460 -fdisable-tree-ccp1
13461 # disable complete unroll for function whose cgraph node uid is 1
13462 -fenable-tree-cunroll=1
13463 # disable gcse2 for functions at the following ranges [1,1],
13464 # [300,400], and [400,1000]
13465 # disable gcse2 for functions foo and foo2
13466 -fdisable-rtl-gcse2=foo,foo2
13467 # disable early inlining
13468 -fdisable-tree-einline
13469 # disable ipa inlining
13470 -fdisable-ipa-inline
13471 # enable tree full unroll
13472 -fenable-tree-unroll
13473
13474 @end smallexample
13475
13476 @item -fchecking
13477 @itemx -fchecking=@var{n}
13478 @opindex fchecking
13479 @opindex fno-checking
13480 Enable internal consistency checking. The default depends on
13481 the compiler configuration. @option{-fchecking=2} enables further
13482 internal consistency checking that might affect code generation.
13483
13484 @item -frandom-seed=@var{string}
13485 @opindex frandom-seed
13486 This option provides a seed that GCC uses in place of
13487 random numbers in generating certain symbol names
13488 that have to be different in every compiled file. It is also used to
13489 place unique stamps in coverage data files and the object files that
13490 produce them. You can use the @option{-frandom-seed} option to produce
13491 reproducibly identical object files.
13492
13493 The @var{string} can either be a number (decimal, octal or hex) or an
13494 arbitrary string (in which case it's converted to a number by
13495 computing CRC32).
13496
13497 The @var{string} should be different for every file you compile.
13498
13499 @item -save-temps
13500 @itemx -save-temps=cwd
13501 @opindex save-temps
13502 Store the usual ``temporary'' intermediate files permanently; place them
13503 in the current directory and name them based on the source file. Thus,
13504 compiling @file{foo.c} with @option{-c -save-temps} produces files
13505 @file{foo.i} and @file{foo.s}, as well as @file{foo.o}. This creates a
13506 preprocessed @file{foo.i} output file even though the compiler now
13507 normally uses an integrated preprocessor.
13508
13509 When used in combination with the @option{-x} command-line option,
13510 @option{-save-temps} is sensible enough to avoid over writing an
13511 input source file with the same extension as an intermediate file.
13512 The corresponding intermediate file may be obtained by renaming the
13513 source file before using @option{-save-temps}.
13514
13515 If you invoke GCC in parallel, compiling several different source
13516 files that share a common base name in different subdirectories or the
13517 same source file compiled for multiple output destinations, it is
13518 likely that the different parallel compilers will interfere with each
13519 other, and overwrite the temporary files. For instance:
13520
13521 @smallexample
13522 gcc -save-temps -o outdir1/foo.o indir1/foo.c&
13523 gcc -save-temps -o outdir2/foo.o indir2/foo.c&
13524 @end smallexample
13525
13526 may result in @file{foo.i} and @file{foo.o} being written to
13527 simultaneously by both compilers.
13528
13529 @item -save-temps=obj
13530 @opindex save-temps=obj
13531 Store the usual ``temporary'' intermediate files permanently. If the
13532 @option{-o} option is used, the temporary files are based on the
13533 object file. If the @option{-o} option is not used, the
13534 @option{-save-temps=obj} switch behaves like @option{-save-temps}.
13535
13536 For example:
13537
13538 @smallexample
13539 gcc -save-temps=obj -c foo.c
13540 gcc -save-temps=obj -c bar.c -o dir/xbar.o
13541 gcc -save-temps=obj foobar.c -o dir2/yfoobar
13542 @end smallexample
13543
13544 @noindent
13545 creates @file{foo.i}, @file{foo.s}, @file{dir/xbar.i},
13546 @file{dir/xbar.s}, @file{dir2/yfoobar.i}, @file{dir2/yfoobar.s}, and
13547 @file{dir2/yfoobar.o}.
13548
13549 @item -time@r{[}=@var{file}@r{]}
13550 @opindex time
13551 Report the CPU time taken by each subprocess in the compilation
13552 sequence. For C source files, this is the compiler proper and assembler
13553 (plus the linker if linking is done).
13554
13555 Without the specification of an output file, the output looks like this:
13556
13557 @smallexample
13558 # cc1 0.12 0.01
13559 # as 0.00 0.01
13560 @end smallexample
13561
13562 The first number on each line is the ``user time'', that is time spent
13563 executing the program itself. The second number is ``system time'',
13564 time spent executing operating system routines on behalf of the program.
13565 Both numbers are in seconds.
13566
13567 With the specification of an output file, the output is appended to the
13568 named file, and it looks like this:
13569
13570 @smallexample
13571 0.12 0.01 cc1 @var{options}
13572 0.00 0.01 as @var{options}
13573 @end smallexample
13574
13575 The ``user time'' and the ``system time'' are moved before the program
13576 name, and the options passed to the program are displayed, so that one
13577 can later tell what file was being compiled, and with which options.
13578
13579 @item -fdump-final-insns@r{[}=@var{file}@r{]}
13580 @opindex fdump-final-insns
13581 Dump the final internal representation (RTL) to @var{file}. If the
13582 optional argument is omitted (or if @var{file} is @code{.}), the name
13583 of the dump file is determined by appending @code{.gkd} to the
13584 compilation output file name.
13585
13586 @item -fcompare-debug@r{[}=@var{opts}@r{]}
13587 @opindex fcompare-debug
13588 @opindex fno-compare-debug
13589 If no error occurs during compilation, run the compiler a second time,
13590 adding @var{opts} and @option{-fcompare-debug-second} to the arguments
13591 passed to the second compilation. Dump the final internal
13592 representation in both compilations, and print an error if they differ.
13593
13594 If the equal sign is omitted, the default @option{-gtoggle} is used.
13595
13596 The environment variable @env{GCC_COMPARE_DEBUG}, if defined, non-empty
13597 and nonzero, implicitly enables @option{-fcompare-debug}. If
13598 @env{GCC_COMPARE_DEBUG} is defined to a string starting with a dash,
13599 then it is used for @var{opts}, otherwise the default @option{-gtoggle}
13600 is used.
13601
13602 @option{-fcompare-debug=}, with the equal sign but without @var{opts},
13603 is equivalent to @option{-fno-compare-debug}, which disables the dumping
13604 of the final representation and the second compilation, preventing even
13605 @env{GCC_COMPARE_DEBUG} from taking effect.
13606
13607 To verify full coverage during @option{-fcompare-debug} testing, set
13608 @env{GCC_COMPARE_DEBUG} to say @option{-fcompare-debug-not-overridden},
13609 which GCC rejects as an invalid option in any actual compilation
13610 (rather than preprocessing, assembly or linking). To get just a
13611 warning, setting @env{GCC_COMPARE_DEBUG} to @samp{-w%n-fcompare-debug
13612 not overridden} will do.
13613
13614 @item -fcompare-debug-second
13615 @opindex fcompare-debug-second
13616 This option is implicitly passed to the compiler for the second
13617 compilation requested by @option{-fcompare-debug}, along with options to
13618 silence warnings, and omitting other options that would cause
13619 side-effect compiler outputs to files or to the standard output. Dump
13620 files and preserved temporary files are renamed so as to contain the
13621 @code{.gk} additional extension during the second compilation, to avoid
13622 overwriting those generated by the first.
13623
13624 When this option is passed to the compiler driver, it causes the
13625 @emph{first} compilation to be skipped, which makes it useful for little
13626 other than debugging the compiler proper.
13627
13628 @item -gtoggle
13629 @opindex gtoggle
13630 Turn off generation of debug info, if leaving out this option
13631 generates it, or turn it on at level 2 otherwise. The position of this
13632 argument in the command line does not matter; it takes effect after all
13633 other options are processed, and it does so only once, no matter how
13634 many times it is given. This is mainly intended to be used with
13635 @option{-fcompare-debug}.
13636
13637 @item -fvar-tracking-assignments-toggle
13638 @opindex fvar-tracking-assignments-toggle
13639 @opindex fno-var-tracking-assignments-toggle
13640 Toggle @option{-fvar-tracking-assignments}, in the same way that
13641 @option{-gtoggle} toggles @option{-g}.
13642
13643 @item -Q
13644 @opindex Q
13645 Makes the compiler print out each function name as it is compiled, and
13646 print some statistics about each pass when it finishes.
13647
13648 @item -ftime-report
13649 @opindex ftime-report
13650 Makes the compiler print some statistics about the time consumed by each
13651 pass when it finishes.
13652
13653 @item -ftime-report-details
13654 @opindex ftime-report-details
13655 Record the time consumed by infrastructure parts separately for each pass.
13656
13657 @item -fira-verbose=@var{n}
13658 @opindex fira-verbose
13659 Control the verbosity of the dump file for the integrated register allocator.
13660 The default value is 5. If the value @var{n} is greater or equal to 10,
13661 the dump output is sent to stderr using the same format as @var{n} minus 10.
13662
13663 @item -flto-report
13664 @opindex flto-report
13665 Prints a report with internal details on the workings of the link-time
13666 optimizer. The contents of this report vary from version to version.
13667 It is meant to be useful to GCC developers when processing object
13668 files in LTO mode (via @option{-flto}).
13669
13670 Disabled by default.
13671
13672 @item -flto-report-wpa
13673 @opindex flto-report-wpa
13674 Like @option{-flto-report}, but only print for the WPA phase of Link
13675 Time Optimization.
13676
13677 @item -fmem-report
13678 @opindex fmem-report
13679 Makes the compiler print some statistics about permanent memory
13680 allocation when it finishes.
13681
13682 @item -fmem-report-wpa
13683 @opindex fmem-report-wpa
13684 Makes the compiler print some statistics about permanent memory
13685 allocation for the WPA phase only.
13686
13687 @item -fpre-ipa-mem-report
13688 @opindex fpre-ipa-mem-report
13689 @item -fpost-ipa-mem-report
13690 @opindex fpost-ipa-mem-report
13691 Makes the compiler print some statistics about permanent memory
13692 allocation before or after interprocedural optimization.
13693
13694 @item -fprofile-report
13695 @opindex fprofile-report
13696 Makes the compiler print some statistics about consistency of the
13697 (estimated) profile and effect of individual passes.
13698
13699 @item -fstack-usage
13700 @opindex fstack-usage
13701 Makes the compiler output stack usage information for the program, on a
13702 per-function basis. The filename for the dump is made by appending
13703 @file{.su} to the @var{auxname}. @var{auxname} is generated from the name of
13704 the output file, if explicitly specified and it is not an executable,
13705 otherwise it is the basename of the source file. An entry is made up
13706 of three fields:
13707
13708 @itemize
13709 @item
13710 The name of the function.
13711 @item
13712 A number of bytes.
13713 @item
13714 One or more qualifiers: @code{static}, @code{dynamic}, @code{bounded}.
13715 @end itemize
13716
13717 The qualifier @code{static} means that the function manipulates the stack
13718 statically: a fixed number of bytes are allocated for the frame on function
13719 entry and released on function exit; no stack adjustments are otherwise made
13720 in the function. The second field is this fixed number of bytes.
13721
13722 The qualifier @code{dynamic} means that the function manipulates the stack
13723 dynamically: in addition to the static allocation described above, stack
13724 adjustments are made in the body of the function, for example to push/pop
13725 arguments around function calls. If the qualifier @code{bounded} is also
13726 present, the amount of these adjustments is bounded at compile time and
13727 the second field is an upper bound of the total amount of stack used by
13728 the function. If it is not present, the amount of these adjustments is
13729 not bounded at compile time and the second field only represents the
13730 bounded part.
13731
13732 @item -fstats
13733 @opindex fstats
13734 Emit statistics about front-end processing at the end of the compilation.
13735 This option is supported only by the C++ front end, and
13736 the information is generally only useful to the G++ development team.
13737
13738 @item -fdbg-cnt-list
13739 @opindex fdbg-cnt-list
13740 Print the name and the counter upper bound for all debug counters.
13741
13742
13743 @item -fdbg-cnt=@var{counter-value-list}
13744 @opindex fdbg-cnt
13745 Set the internal debug counter upper bound. @var{counter-value-list}
13746 is a comma-separated list of @var{name}:@var{value} pairs
13747 which sets the upper bound of each debug counter @var{name} to @var{value}.
13748 All debug counters have the initial upper bound of @code{UINT_MAX};
13749 thus @code{dbg_cnt} returns true always unless the upper bound
13750 is set by this option.
13751 For example, with @option{-fdbg-cnt=dce:10,tail_call:0},
13752 @code{dbg_cnt(dce)} returns true only for first 10 invocations.
13753
13754 @item -print-file-name=@var{library}
13755 @opindex print-file-name
13756 Print the full absolute name of the library file @var{library} that
13757 would be used when linking---and don't do anything else. With this
13758 option, GCC does not compile or link anything; it just prints the
13759 file name.
13760
13761 @item -print-multi-directory
13762 @opindex print-multi-directory
13763 Print the directory name corresponding to the multilib selected by any
13764 other switches present in the command line. This directory is supposed
13765 to exist in @env{GCC_EXEC_PREFIX}.
13766
13767 @item -print-multi-lib
13768 @opindex print-multi-lib
13769 Print the mapping from multilib directory names to compiler switches
13770 that enable them. The directory name is separated from the switches by
13771 @samp{;}, and each switch starts with an @samp{@@} instead of the
13772 @samp{-}, without spaces between multiple switches. This is supposed to
13773 ease shell processing.
13774
13775 @item -print-multi-os-directory
13776 @opindex print-multi-os-directory
13777 Print the path to OS libraries for the selected
13778 multilib, relative to some @file{lib} subdirectory. If OS libraries are
13779 present in the @file{lib} subdirectory and no multilibs are used, this is
13780 usually just @file{.}, if OS libraries are present in @file{lib@var{suffix}}
13781 sibling directories this prints e.g.@: @file{../lib64}, @file{../lib} or
13782 @file{../lib32}, or if OS libraries are present in @file{lib/@var{subdir}}
13783 subdirectories it prints e.g.@: @file{amd64}, @file{sparcv9} or @file{ev6}.
13784
13785 @item -print-multiarch
13786 @opindex print-multiarch
13787 Print the path to OS libraries for the selected multiarch,
13788 relative to some @file{lib} subdirectory.
13789
13790 @item -print-prog-name=@var{program}
13791 @opindex print-prog-name
13792 Like @option{-print-file-name}, but searches for a program such as @command{cpp}.
13793
13794 @item -print-libgcc-file-name
13795 @opindex print-libgcc-file-name
13796 Same as @option{-print-file-name=libgcc.a}.
13797
13798 This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
13799 but you do want to link with @file{libgcc.a}. You can do:
13800
13801 @smallexample
13802 gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
13803 @end smallexample
13804
13805 @item -print-search-dirs
13806 @opindex print-search-dirs
13807 Print the name of the configured installation directory and a list of
13808 program and library directories @command{gcc} searches---and don't do anything else.
13809
13810 This is useful when @command{gcc} prints the error message
13811 @samp{installation problem, cannot exec cpp0: No such file or directory}.
13812 To resolve this you either need to put @file{cpp0} and the other compiler
13813 components where @command{gcc} expects to find them, or you can set the environment
13814 variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
13815 Don't forget the trailing @samp{/}.
13816 @xref{Environment Variables}.
13817
13818 @item -print-sysroot
13819 @opindex print-sysroot
13820 Print the target sysroot directory that is used during
13821 compilation. This is the target sysroot specified either at configure
13822 time or using the @option{--sysroot} option, possibly with an extra
13823 suffix that depends on compilation options. If no target sysroot is
13824 specified, the option prints nothing.
13825
13826 @item -print-sysroot-headers-suffix
13827 @opindex print-sysroot-headers-suffix
13828 Print the suffix added to the target sysroot when searching for
13829 headers, or give an error if the compiler is not configured with such
13830 a suffix---and don't do anything else.
13831
13832 @item -dumpmachine
13833 @opindex dumpmachine
13834 Print the compiler's target machine (for example,
13835 @samp{i686-pc-linux-gnu})---and don't do anything else.
13836
13837 @item -dumpversion
13838 @opindex dumpversion
13839 Print the compiler version (for example, @code{3.0}, @code{6.3.0} or @code{7})---and don't do
13840 anything else. This is the compiler version used in filesystem paths,
13841 specs, can be depending on how the compiler has been configured just
13842 a single number (major version), two numbers separated by dot (major and
13843 minor version) or three numbers separated by dots (major, minor and patchlevel
13844 version).
13845
13846 @item -dumpfullversion
13847 @opindex dumpfullversion
13848 Print the full compiler version, always 3 numbers separated by dots,
13849 major, minor and patchlevel version.
13850
13851 @item -dumpspecs
13852 @opindex dumpspecs
13853 Print the compiler's built-in specs---and don't do anything else. (This
13854 is used when GCC itself is being built.) @xref{Spec Files}.
13855 @end table
13856
13857 @node Submodel Options
13858 @section Machine-Dependent Options
13859 @cindex submodel options
13860 @cindex specifying hardware config
13861 @cindex hardware models and configurations, specifying
13862 @cindex target-dependent options
13863 @cindex machine-dependent options
13864
13865 Each target machine supported by GCC can have its own options---for
13866 example, to allow you to compile for a particular processor variant or
13867 ABI, or to control optimizations specific to that machine. By
13868 convention, the names of machine-specific options start with
13869 @samp{-m}.
13870
13871 Some configurations of the compiler also support additional target-specific
13872 options, usually for compatibility with other compilers on the same
13873 platform.
13874
13875 @c This list is ordered alphanumerically by subsection name.
13876 @c It should be the same order and spelling as these options are listed
13877 @c in Machine Dependent Options
13878
13879 @menu
13880 * AArch64 Options::
13881 * Adapteva Epiphany Options::
13882 * ARC Options::
13883 * ARM Options::
13884 * AVR Options::
13885 * Blackfin Options::
13886 * C6X Options::
13887 * CRIS Options::
13888 * CR16 Options::
13889 * Darwin Options::
13890 * DEC Alpha Options::
13891 * FR30 Options::
13892 * FT32 Options::
13893 * FRV Options::
13894 * GNU/Linux Options::
13895 * H8/300 Options::
13896 * HPPA Options::
13897 * IA-64 Options::
13898 * LM32 Options::
13899 * M32C Options::
13900 * M32R/D Options::
13901 * M680x0 Options::
13902 * MCore Options::
13903 * MeP Options::
13904 * MicroBlaze Options::
13905 * MIPS Options::
13906 * MMIX Options::
13907 * MN10300 Options::
13908 * Moxie Options::
13909 * MSP430 Options::
13910 * NDS32 Options::
13911 * Nios II Options::
13912 * Nvidia PTX Options::
13913 * PDP-11 Options::
13914 * picoChip Options::
13915 * PowerPC Options::
13916 * RISC-V Options::
13917 * RL78 Options::
13918 * RS/6000 and PowerPC Options::
13919 * RX Options::
13920 * S/390 and zSeries Options::
13921 * Score Options::
13922 * SH Options::
13923 * Solaris 2 Options::
13924 * SPARC Options::
13925 * SPU Options::
13926 * System V Options::
13927 * TILE-Gx Options::
13928 * TILEPro Options::
13929 * V850 Options::
13930 * VAX Options::
13931 * Visium Options::
13932 * VMS Options::
13933 * VxWorks Options::
13934 * x86 Options::
13935 * x86 Windows Options::
13936 * Xstormy16 Options::
13937 * Xtensa Options::
13938 * zSeries Options::
13939 @end menu
13940
13941 @node AArch64 Options
13942 @subsection AArch64 Options
13943 @cindex AArch64 Options
13944
13945 These options are defined for AArch64 implementations:
13946
13947 @table @gcctabopt
13948
13949 @item -mabi=@var{name}
13950 @opindex mabi
13951 Generate code for the specified data model. Permissible values
13952 are @samp{ilp32} for SysV-like data model where int, long int and pointers
13953 are 32 bits, and @samp{lp64} for SysV-like data model where int is 32 bits,
13954 but long int and pointers are 64 bits.
13955
13956 The default depends on the specific target configuration. Note that
13957 the LP64 and ILP32 ABIs are not link-compatible; you must compile your
13958 entire program with the same ABI, and link with a compatible set of libraries.
13959
13960 @item -mbig-endian
13961 @opindex mbig-endian
13962 Generate big-endian code. This is the default when GCC is configured for an
13963 @samp{aarch64_be-*-*} target.
13964
13965 @item -mgeneral-regs-only
13966 @opindex mgeneral-regs-only
13967 Generate code which uses only the general-purpose registers. This will prevent
13968 the compiler from using floating-point and Advanced SIMD registers but will not
13969 impose any restrictions on the assembler.
13970
13971 @item -mlittle-endian
13972 @opindex mlittle-endian
13973 Generate little-endian code. This is the default when GCC is configured for an
13974 @samp{aarch64-*-*} but not an @samp{aarch64_be-*-*} target.
13975
13976 @item -mcmodel=tiny
13977 @opindex mcmodel=tiny
13978 Generate code for the tiny code model. The program and its statically defined
13979 symbols must be within 1MB of each other. Programs can be statically or
13980 dynamically linked.
13981
13982 @item -mcmodel=small
13983 @opindex mcmodel=small
13984 Generate code for the small code model. The program and its statically defined
13985 symbols must be within 4GB of each other. Programs can be statically or
13986 dynamically linked. This is the default code model.
13987
13988 @item -mcmodel=large
13989 @opindex mcmodel=large
13990 Generate code for the large code model. This makes no assumptions about
13991 addresses and sizes of sections. Programs can be statically linked only.
13992
13993 @item -mstrict-align
13994 @opindex mstrict-align
13995 Avoid generating memory accesses that may not be aligned on a natural object
13996 boundary as described in the architecture specification.
13997
13998 @item -momit-leaf-frame-pointer
13999 @itemx -mno-omit-leaf-frame-pointer
14000 @opindex momit-leaf-frame-pointer
14001 @opindex mno-omit-leaf-frame-pointer
14002 Omit or keep the frame pointer in leaf functions. The former behavior is the
14003 default.
14004
14005 @item -mtls-dialect=desc
14006 @opindex mtls-dialect=desc
14007 Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
14008 of TLS variables. This is the default.
14009
14010 @item -mtls-dialect=traditional
14011 @opindex mtls-dialect=traditional
14012 Use traditional TLS as the thread-local storage mechanism for dynamic accesses
14013 of TLS variables.
14014
14015 @item -mtls-size=@var{size}
14016 @opindex mtls-size
14017 Specify bit size of immediate TLS offsets. Valid values are 12, 24, 32, 48.
14018 This option requires binutils 2.26 or newer.
14019
14020 @item -mfix-cortex-a53-835769
14021 @itemx -mno-fix-cortex-a53-835769
14022 @opindex mfix-cortex-a53-835769
14023 @opindex mno-fix-cortex-a53-835769
14024 Enable or disable the workaround for the ARM Cortex-A53 erratum number 835769.
14025 This involves inserting a NOP instruction between memory instructions and
14026 64-bit integer multiply-accumulate instructions.
14027
14028 @item -mfix-cortex-a53-843419
14029 @itemx -mno-fix-cortex-a53-843419
14030 @opindex mfix-cortex-a53-843419
14031 @opindex mno-fix-cortex-a53-843419
14032 Enable or disable the workaround for the ARM Cortex-A53 erratum number 843419.
14033 This erratum workaround is made at link time and this will only pass the
14034 corresponding flag to the linker.
14035
14036 @item -mlow-precision-recip-sqrt
14037 @item -mno-low-precision-recip-sqrt
14038 @opindex mlow-precision-recip-sqrt
14039 @opindex mno-low-precision-recip-sqrt
14040 Enable or disable the reciprocal square root approximation.
14041 This option only has an effect if @option{-ffast-math} or
14042 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
14043 precision of reciprocal square root results to about 16 bits for
14044 single precision and to 32 bits for double precision.
14045
14046 @item -mlow-precision-sqrt
14047 @item -mno-low-precision-sqrt
14048 @opindex -mlow-precision-sqrt
14049 @opindex -mno-low-precision-sqrt
14050 Enable or disable the square root approximation.
14051 This option only has an effect if @option{-ffast-math} or
14052 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
14053 precision of square root results to about 16 bits for
14054 single precision and to 32 bits for double precision.
14055 If enabled, it implies @option{-mlow-precision-recip-sqrt}.
14056
14057 @item -mlow-precision-div
14058 @item -mno-low-precision-div
14059 @opindex -mlow-precision-div
14060 @opindex -mno-low-precision-div
14061 Enable or disable the division approximation.
14062 This option only has an effect if @option{-ffast-math} or
14063 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
14064 precision of division results to about 16 bits for
14065 single precision and to 32 bits for double precision.
14066
14067 @item -march=@var{name}
14068 @opindex march
14069 Specify the name of the target architecture and, optionally, one or
14070 more feature modifiers. This option has the form
14071 @option{-march=@var{arch}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}.
14072
14073 The permissible values for @var{arch} are @samp{armv8-a},
14074 @samp{armv8.1-a}, @samp{armv8.2-a}, @samp{armv8.3-a} or @var{native}.
14075
14076 The value @samp{armv8.3-a} implies @samp{armv8.2-a} and enables compiler
14077 support for the ARMv8.3-A architecture extensions.
14078
14079 The value @samp{armv8.2-a} implies @samp{armv8.1-a} and enables compiler
14080 support for the ARMv8.2-A architecture extensions.
14081
14082 The value @samp{armv8.1-a} implies @samp{armv8-a} and enables compiler
14083 support for the ARMv8.1-A architecture extension. In particular, it
14084 enables the @samp{+crc} and @samp{+lse} features.
14085
14086 The value @samp{native} is available on native AArch64 GNU/Linux and
14087 causes the compiler to pick the architecture of the host system. This
14088 option has no effect if the compiler is unable to recognize the
14089 architecture of the host system,
14090
14091 The permissible values for @var{feature} are listed in the sub-section
14092 on @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
14093 Feature Modifiers}. Where conflicting feature modifiers are
14094 specified, the right-most feature is used.
14095
14096 GCC uses @var{name} to determine what kind of instructions it can emit
14097 when generating assembly code. If @option{-march} is specified
14098 without either of @option{-mtune} or @option{-mcpu} also being
14099 specified, the code is tuned to perform well across a range of target
14100 processors implementing the target architecture.
14101
14102 @item -mtune=@var{name}
14103 @opindex mtune
14104 Specify the name of the target processor for which GCC should tune the
14105 performance of the code. Permissible values for this option are:
14106 @samp{generic}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55},
14107 @samp{cortex-a57}, @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75},
14108 @samp{exynos-m1}, @samp{falkor}, @samp{qdf24xx},
14109 @samp{xgene1}, @samp{vulcan}, @samp{thunderx},
14110 @samp{thunderxt88}, @samp{thunderxt88p1}, @samp{thunderxt81},
14111 @samp{thunderxt83}, @samp{thunderx2t99}, @samp{cortex-a57.cortex-a53},
14112 @samp{cortex-a72.cortex-a53}, @samp{cortex-a73.cortex-a35},
14113 @samp{cortex-a73.cortex-a53}, @samp{cortex-a75.cortex-a55},
14114 @samp{native}.
14115
14116 The values @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
14117 @samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53},
14118 @samp{cortex-a75.cortex-a55} specify that GCC should tune for a
14119 big.LITTLE system.
14120
14121 Additionally on native AArch64 GNU/Linux systems the value
14122 @samp{native} tunes performance to the host system. This option has no effect
14123 if the compiler is unable to recognize the processor of the host system.
14124
14125 Where none of @option{-mtune=}, @option{-mcpu=} or @option{-march=}
14126 are specified, the code is tuned to perform well across a range
14127 of target processors.
14128
14129 This option cannot be suffixed by feature modifiers.
14130
14131 @item -mcpu=@var{name}
14132 @opindex mcpu
14133 Specify the name of the target processor, optionally suffixed by one
14134 or more feature modifiers. This option has the form
14135 @option{-mcpu=@var{cpu}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where
14136 the permissible values for @var{cpu} are the same as those available
14137 for @option{-mtune}. The permissible values for @var{feature} are
14138 documented in the sub-section on
14139 @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
14140 Feature Modifiers}. Where conflicting feature modifiers are
14141 specified, the right-most feature is used.
14142
14143 GCC uses @var{name} to determine what kind of instructions it can emit when
14144 generating assembly code (as if by @option{-march}) and to determine
14145 the target processor for which to tune for performance (as if
14146 by @option{-mtune}). Where this option is used in conjunction
14147 with @option{-march} or @option{-mtune}, those options take precedence
14148 over the appropriate part of this option.
14149
14150 @item -moverride=@var{string}
14151 @opindex moverride
14152 Override tuning decisions made by the back-end in response to a
14153 @option{-mtune=} switch. The syntax, semantics, and accepted values
14154 for @var{string} in this option are not guaranteed to be consistent
14155 across releases.
14156
14157 This option is only intended to be useful when developing GCC.
14158
14159 @item -mpc-relative-literal-loads
14160 @itemx -mno-pc-relative-literal-loads
14161 @opindex mpc-relative-literal-loads
14162 @opindex mno-pc-relative-literal-loads
14163 Enable or disable PC-relative literal loads. With this option literal pools are
14164 accessed using a single instruction and emitted after each function. This
14165 limits the maximum size of functions to 1MB. This is enabled by default for
14166 @option{-mcmodel=tiny}.
14167
14168 @item -msign-return-address=@var{scope}
14169 @opindex msign-return-address
14170 Select the function scope on which return address signing will be applied.
14171 Permissible values are @samp{none}, which disables return address signing,
14172 @samp{non-leaf}, which enables pointer signing for functions which are not leaf
14173 functions, and @samp{all}, which enables pointer signing for all functions. The
14174 default value is @samp{none}.
14175
14176 @end table
14177
14178 @subsubsection @option{-march} and @option{-mcpu} Feature Modifiers
14179 @anchor{aarch64-feature-modifiers}
14180 @cindex @option{-march} feature modifiers
14181 @cindex @option{-mcpu} feature modifiers
14182 Feature modifiers used with @option{-march} and @option{-mcpu} can be any of
14183 the following and their inverses @option{no@var{feature}}:
14184
14185 @table @samp
14186 @item crc
14187 Enable CRC extension. This is on by default for
14188 @option{-march=armv8.1-a}.
14189 @item crypto
14190 Enable Crypto extension. This also enables Advanced SIMD and floating-point
14191 instructions.
14192 @item fp
14193 Enable floating-point instructions. This is on by default for all possible
14194 values for options @option{-march} and @option{-mcpu}.
14195 @item simd
14196 Enable Advanced SIMD instructions. This also enables floating-point
14197 instructions. This is on by default for all possible values for options
14198 @option{-march} and @option{-mcpu}.
14199 @item lse
14200 Enable Large System Extension instructions. This is on by default for
14201 @option{-march=armv8.1-a}.
14202 @item fp16
14203 Enable FP16 extension. This also enables floating-point instructions.
14204
14205 @end table
14206
14207 Feature @option{crypto} implies @option{simd}, which implies @option{fp}.
14208 Conversely, @option{nofp} implies @option{nosimd}, which implies
14209 @option{nocrypto}.
14210
14211 @node Adapteva Epiphany Options
14212 @subsection Adapteva Epiphany Options
14213
14214 These @samp{-m} options are defined for Adapteva Epiphany:
14215
14216 @table @gcctabopt
14217 @item -mhalf-reg-file
14218 @opindex mhalf-reg-file
14219 Don't allocate any register in the range @code{r32}@dots{}@code{r63}.
14220 That allows code to run on hardware variants that lack these registers.
14221
14222 @item -mprefer-short-insn-regs
14223 @opindex mprefer-short-insn-regs
14224 Preferentially allocate registers that allow short instruction generation.
14225 This can result in increased instruction count, so this may either reduce or
14226 increase overall code size.
14227
14228 @item -mbranch-cost=@var{num}
14229 @opindex mbranch-cost
14230 Set the cost of branches to roughly @var{num} ``simple'' instructions.
14231 This cost is only a heuristic and is not guaranteed to produce
14232 consistent results across releases.
14233
14234 @item -mcmove
14235 @opindex mcmove
14236 Enable the generation of conditional moves.
14237
14238 @item -mnops=@var{num}
14239 @opindex mnops
14240 Emit @var{num} NOPs before every other generated instruction.
14241
14242 @item -mno-soft-cmpsf
14243 @opindex mno-soft-cmpsf
14244 For single-precision floating-point comparisons, emit an @code{fsub} instruction
14245 and test the flags. This is faster than a software comparison, but can
14246 get incorrect results in the presence of NaNs, or when two different small
14247 numbers are compared such that their difference is calculated as zero.
14248 The default is @option{-msoft-cmpsf}, which uses slower, but IEEE-compliant,
14249 software comparisons.
14250
14251 @item -mstack-offset=@var{num}
14252 @opindex mstack-offset
14253 Set the offset between the top of the stack and the stack pointer.
14254 E.g., a value of 8 means that the eight bytes in the range @code{sp+0@dots{}sp+7}
14255 can be used by leaf functions without stack allocation.
14256 Values other than @samp{8} or @samp{16} are untested and unlikely to work.
14257 Note also that this option changes the ABI; compiling a program with a
14258 different stack offset than the libraries have been compiled with
14259 generally does not work.
14260 This option can be useful if you want to evaluate if a different stack
14261 offset would give you better code, but to actually use a different stack
14262 offset to build working programs, it is recommended to configure the
14263 toolchain with the appropriate @option{--with-stack-offset=@var{num}} option.
14264
14265 @item -mno-round-nearest
14266 @opindex mno-round-nearest
14267 Make the scheduler assume that the rounding mode has been set to
14268 truncating. The default is @option{-mround-nearest}.
14269
14270 @item -mlong-calls
14271 @opindex mlong-calls
14272 If not otherwise specified by an attribute, assume all calls might be beyond
14273 the offset range of the @code{b} / @code{bl} instructions, and therefore load the
14274 function address into a register before performing a (otherwise direct) call.
14275 This is the default.
14276
14277 @item -mshort-calls
14278 @opindex short-calls
14279 If not otherwise specified by an attribute, assume all direct calls are
14280 in the range of the @code{b} / @code{bl} instructions, so use these instructions
14281 for direct calls. The default is @option{-mlong-calls}.
14282
14283 @item -msmall16
14284 @opindex msmall16
14285 Assume addresses can be loaded as 16-bit unsigned values. This does not
14286 apply to function addresses for which @option{-mlong-calls} semantics
14287 are in effect.
14288
14289 @item -mfp-mode=@var{mode}
14290 @opindex mfp-mode
14291 Set the prevailing mode of the floating-point unit.
14292 This determines the floating-point mode that is provided and expected
14293 at function call and return time. Making this mode match the mode you
14294 predominantly need at function start can make your programs smaller and
14295 faster by avoiding unnecessary mode switches.
14296
14297 @var{mode} can be set to one the following values:
14298
14299 @table @samp
14300 @item caller
14301 Any mode at function entry is valid, and retained or restored when
14302 the function returns, and when it calls other functions.
14303 This mode is useful for compiling libraries or other compilation units
14304 you might want to incorporate into different programs with different
14305 prevailing FPU modes, and the convenience of being able to use a single
14306 object file outweighs the size and speed overhead for any extra
14307 mode switching that might be needed, compared with what would be needed
14308 with a more specific choice of prevailing FPU mode.
14309
14310 @item truncate
14311 This is the mode used for floating-point calculations with
14312 truncating (i.e.@: round towards zero) rounding mode. That includes
14313 conversion from floating point to integer.
14314
14315 @item round-nearest
14316 This is the mode used for floating-point calculations with
14317 round-to-nearest-or-even rounding mode.
14318
14319 @item int
14320 This is the mode used to perform integer calculations in the FPU, e.g.@:
14321 integer multiply, or integer multiply-and-accumulate.
14322 @end table
14323
14324 The default is @option{-mfp-mode=caller}
14325
14326 @item -mnosplit-lohi
14327 @itemx -mno-postinc
14328 @itemx -mno-postmodify
14329 @opindex mnosplit-lohi
14330 @opindex mno-postinc
14331 @opindex mno-postmodify
14332 Code generation tweaks that disable, respectively, splitting of 32-bit
14333 loads, generation of post-increment addresses, and generation of
14334 post-modify addresses. The defaults are @option{msplit-lohi},
14335 @option{-mpost-inc}, and @option{-mpost-modify}.
14336
14337 @item -mnovect-double
14338 @opindex mno-vect-double
14339 Change the preferred SIMD mode to SImode. The default is
14340 @option{-mvect-double}, which uses DImode as preferred SIMD mode.
14341
14342 @item -max-vect-align=@var{num}
14343 @opindex max-vect-align
14344 The maximum alignment for SIMD vector mode types.
14345 @var{num} may be 4 or 8. The default is 8.
14346 Note that this is an ABI change, even though many library function
14347 interfaces are unaffected if they don't use SIMD vector modes
14348 in places that affect size and/or alignment of relevant types.
14349
14350 @item -msplit-vecmove-early
14351 @opindex msplit-vecmove-early
14352 Split vector moves into single word moves before reload. In theory this
14353 can give better register allocation, but so far the reverse seems to be
14354 generally the case.
14355
14356 @item -m1reg-@var{reg}
14357 @opindex m1reg-
14358 Specify a register to hold the constant @minus{}1, which makes loading small negative
14359 constants and certain bitmasks faster.
14360 Allowable values for @var{reg} are @samp{r43} and @samp{r63},
14361 which specify use of that register as a fixed register,
14362 and @samp{none}, which means that no register is used for this
14363 purpose. The default is @option{-m1reg-none}.
14364
14365 @end table
14366
14367 @node ARC Options
14368 @subsection ARC Options
14369 @cindex ARC options
14370
14371 The following options control the architecture variant for which code
14372 is being compiled:
14373
14374 @c architecture variants
14375 @table @gcctabopt
14376
14377 @item -mbarrel-shifter
14378 @opindex mbarrel-shifter
14379 Generate instructions supported by barrel shifter. This is the default
14380 unless @option{-mcpu=ARC601} or @samp{-mcpu=ARCEM} is in effect.
14381
14382 @item -mcpu=@var{cpu}
14383 @opindex mcpu
14384 Set architecture type, register usage, and instruction scheduling
14385 parameters for @var{cpu}. There are also shortcut alias options
14386 available for backward compatibility and convenience. Supported
14387 values for @var{cpu} are
14388
14389 @table @samp
14390 @opindex mA6
14391 @opindex mARC600
14392 @item arc600
14393 Compile for ARC600. Aliases: @option{-mA6}, @option{-mARC600}.
14394
14395 @item arc601
14396 @opindex mARC601
14397 Compile for ARC601. Alias: @option{-mARC601}.
14398
14399 @item arc700
14400 @opindex mA7
14401 @opindex mARC700
14402 Compile for ARC700. Aliases: @option{-mA7}, @option{-mARC700}.
14403 This is the default when configured with @option{--with-cpu=arc700}@.
14404
14405 @item arcem
14406 Compile for ARC EM.
14407
14408 @item archs
14409 Compile for ARC HS.
14410
14411 @item em
14412 Compile for ARC EM CPU with no hardware extensions.
14413
14414 @item em4
14415 Compile for ARC EM4 CPU.
14416
14417 @item em4_dmips
14418 Compile for ARC EM4 DMIPS CPU.
14419
14420 @item em4_fpus
14421 Compile for ARC EM4 DMIPS CPU with the single-precision floating-point
14422 extension.
14423
14424 @item em4_fpuda
14425 Compile for ARC EM4 DMIPS CPU with single-precision floating-point and
14426 double assist instructions.
14427
14428 @item hs
14429 Compile for ARC HS CPU with no hardware extensions except the atomic
14430 instructions.
14431
14432 @item hs34
14433 Compile for ARC HS34 CPU.
14434
14435 @item hs38
14436 Compile for ARC HS38 CPU.
14437
14438 @item hs38_linux
14439 Compile for ARC HS38 CPU with all hardware extensions on.
14440
14441 @item arc600_norm
14442 Compile for ARC 600 CPU with @code{norm} instructions enabled.
14443
14444 @item arc600_mul32x16
14445 Compile for ARC 600 CPU with @code{norm} and 32x16-bit multiply
14446 instructions enabled.
14447
14448 @item arc600_mul64
14449 Compile for ARC 600 CPU with @code{norm} and @code{mul64}-family
14450 instructions enabled.
14451
14452 @item arc601_norm
14453 Compile for ARC 601 CPU with @code{norm} instructions enabled.
14454
14455 @item arc601_mul32x16
14456 Compile for ARC 601 CPU with @code{norm} and 32x16-bit multiply
14457 instructions enabled.
14458
14459 @item arc601_mul64
14460 Compile for ARC 601 CPU with @code{norm} and @code{mul64}-family
14461 instructions enabled.
14462
14463 @item nps400
14464 Compile for ARC 700 on NPS400 chip.
14465
14466 @end table
14467
14468 @item -mdpfp
14469 @opindex mdpfp
14470 @itemx -mdpfp-compact
14471 @opindex mdpfp-compact
14472 Generate double-precision FPX instructions, tuned for the compact
14473 implementation.
14474
14475 @item -mdpfp-fast
14476 @opindex mdpfp-fast
14477 Generate double-precision FPX instructions, tuned for the fast
14478 implementation.
14479
14480 @item -mno-dpfp-lrsr
14481 @opindex mno-dpfp-lrsr
14482 Disable @code{lr} and @code{sr} instructions from using FPX extension
14483 aux registers.
14484
14485 @item -mea
14486 @opindex mea
14487 Generate extended arithmetic instructions. Currently only
14488 @code{divaw}, @code{adds}, @code{subs}, and @code{sat16} are
14489 supported. This is always enabled for @option{-mcpu=ARC700}.
14490
14491 @item -mno-mpy
14492 @opindex mno-mpy
14493 Do not generate @code{mpy}-family instructions for ARC700. This option is
14494 deprecated.
14495
14496 @item -mmul32x16
14497 @opindex mmul32x16
14498 Generate 32x16-bit multiply and multiply-accumulate instructions.
14499
14500 @item -mmul64
14501 @opindex mmul64
14502 Generate @code{mul64} and @code{mulu64} instructions.
14503 Only valid for @option{-mcpu=ARC600}.
14504
14505 @item -mnorm
14506 @opindex mnorm
14507 Generate @code{norm} instructions. This is the default if @option{-mcpu=ARC700}
14508 is in effect.
14509
14510 @item -mspfp
14511 @opindex mspfp
14512 @itemx -mspfp-compact
14513 @opindex mspfp-compact
14514 Generate single-precision FPX instructions, tuned for the compact
14515 implementation.
14516
14517 @item -mspfp-fast
14518 @opindex mspfp-fast
14519 Generate single-precision FPX instructions, tuned for the fast
14520 implementation.
14521
14522 @item -msimd
14523 @opindex msimd
14524 Enable generation of ARC SIMD instructions via target-specific
14525 builtins. Only valid for @option{-mcpu=ARC700}.
14526
14527 @item -msoft-float
14528 @opindex msoft-float
14529 This option ignored; it is provided for compatibility purposes only.
14530 Software floating-point code is emitted by default, and this default
14531 can overridden by FPX options; @option{-mspfp}, @option{-mspfp-compact}, or
14532 @option{-mspfp-fast} for single precision, and @option{-mdpfp},
14533 @option{-mdpfp-compact}, or @option{-mdpfp-fast} for double precision.
14534
14535 @item -mswap
14536 @opindex mswap
14537 Generate @code{swap} instructions.
14538
14539 @item -matomic
14540 @opindex matomic
14541 This enables use of the locked load/store conditional extension to implement
14542 atomic memory built-in functions. Not available for ARC 6xx or ARC
14543 EM cores.
14544
14545 @item -mdiv-rem
14546 @opindex mdiv-rem
14547 Enable @code{div} and @code{rem} instructions for ARCv2 cores.
14548
14549 @item -mcode-density
14550 @opindex mcode-density
14551 Enable code density instructions for ARC EM.
14552 This option is on by default for ARC HS.
14553
14554 @item -mll64
14555 @opindex mll64
14556 Enable double load/store operations for ARC HS cores.
14557
14558 @item -mtp-regno=@var{regno}
14559 @opindex mtp-regno
14560 Specify thread pointer register number.
14561
14562 @item -mmpy-option=@var{multo}
14563 @opindex mmpy-option
14564 Compile ARCv2 code with a multiplier design option. You can specify
14565 the option using either a string or numeric value for @var{multo}.
14566 @samp{wlh1} is the default value. The recognized values are:
14567
14568 @table @samp
14569 @item 0
14570 @itemx none
14571 No multiplier available.
14572
14573 @item 1
14574 @itemx w
14575 16x16 multiplier, fully pipelined.
14576 The following instructions are enabled: @code{mpyw} and @code{mpyuw}.
14577
14578 @item 2
14579 @itemx wlh1
14580 32x32 multiplier, fully
14581 pipelined (1 stage). The following instructions are additionally
14582 enabled: @code{mpy}, @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
14583
14584 @item 3
14585 @itemx wlh2
14586 32x32 multiplier, fully pipelined
14587 (2 stages). The following instructions are additionally enabled: @code{mpy},
14588 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
14589
14590 @item 4
14591 @itemx wlh3
14592 Two 16x16 multipliers, blocking,
14593 sequential. The following instructions are additionally enabled: @code{mpy},
14594 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
14595
14596 @item 5
14597 @itemx wlh4
14598 One 16x16 multiplier, blocking,
14599 sequential. The following instructions are additionally enabled: @code{mpy},
14600 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
14601
14602 @item 6
14603 @itemx wlh5
14604 One 32x4 multiplier, blocking,
14605 sequential. The following instructions are additionally enabled: @code{mpy},
14606 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
14607
14608 @item 7
14609 @itemx plus_dmpy
14610 ARC HS SIMD support.
14611
14612 @item 8
14613 @itemx plus_macd
14614 ARC HS SIMD support.
14615
14616 @item 9
14617 @itemx plus_qmacw
14618 ARC HS SIMD support.
14619
14620 @end table
14621
14622 This option is only available for ARCv2 cores@.
14623
14624 @item -mfpu=@var{fpu}
14625 @opindex mfpu
14626 Enables support for specific floating-point hardware extensions for ARCv2
14627 cores. Supported values for @var{fpu} are:
14628
14629 @table @samp
14630
14631 @item fpus
14632 Enables support for single-precision floating-point hardware
14633 extensions@.
14634
14635 @item fpud
14636 Enables support for double-precision floating-point hardware
14637 extensions. The single-precision floating-point extension is also
14638 enabled. Not available for ARC EM@.
14639
14640 @item fpuda
14641 Enables support for double-precision floating-point hardware
14642 extensions using double-precision assist instructions. The single-precision
14643 floating-point extension is also enabled. This option is
14644 only available for ARC EM@.
14645
14646 @item fpuda_div
14647 Enables support for double-precision floating-point hardware
14648 extensions using double-precision assist instructions.
14649 The single-precision floating-point, square-root, and divide
14650 extensions are also enabled. This option is
14651 only available for ARC EM@.
14652
14653 @item fpuda_fma
14654 Enables support for double-precision floating-point hardware
14655 extensions using double-precision assist instructions.
14656 The single-precision floating-point and fused multiply and add
14657 hardware extensions are also enabled. This option is
14658 only available for ARC EM@.
14659
14660 @item fpuda_all
14661 Enables support for double-precision floating-point hardware
14662 extensions using double-precision assist instructions.
14663 All single-precision floating-point hardware extensions are also
14664 enabled. This option is only available for ARC EM@.
14665
14666 @item fpus_div
14667 Enables support for single-precision floating-point, square-root and divide
14668 hardware extensions@.
14669
14670 @item fpud_div
14671 Enables support for double-precision floating-point, square-root and divide
14672 hardware extensions. This option
14673 includes option @samp{fpus_div}. Not available for ARC EM@.
14674
14675 @item fpus_fma
14676 Enables support for single-precision floating-point and
14677 fused multiply and add hardware extensions@.
14678
14679 @item fpud_fma
14680 Enables support for double-precision floating-point and
14681 fused multiply and add hardware extensions. This option
14682 includes option @samp{fpus_fma}. Not available for ARC EM@.
14683
14684 @item fpus_all
14685 Enables support for all single-precision floating-point hardware
14686 extensions@.
14687
14688 @item fpud_all
14689 Enables support for all single- and double-precision floating-point
14690 hardware extensions. Not available for ARC EM@.
14691
14692 @end table
14693
14694 @item -mirq-ctrl-saved=@var{register-range}, @var{blink}, @var{lp_count}
14695 @opindex mirq-ctrl-saved
14696 Specifies general-purposes registers that the processor automatically
14697 saves/restores on interrupt entry and exit. @var{register-range} is
14698 specified as two registers separated by a dash. The register range
14699 always starts with @code{r0}, the upper limit is @code{fp} register.
14700 @var{blink} and @var{lp_count} are optional. This option is only
14701 valid for ARC EM and ARC HS cores.
14702
14703 @item -mrgf-banked-regs=@var{number}
14704 @opindex mrgf-banked-regs
14705 Specifies the number of registers replicated in second register bank
14706 on entry to fast interrupt. Fast interrupts are interrupts with the
14707 highest priority level P0. These interrupts save only PC and STATUS32
14708 registers to avoid memory transactions during interrupt entry and exit
14709 sequences. Use this option when you are using fast interrupts in an
14710 ARC V2 family processor. Permitted values are 4, 8, 16, and 32.
14711
14712 @end table
14713
14714 The following options are passed through to the assembler, and also
14715 define preprocessor macro symbols.
14716
14717 @c Flags used by the assembler, but for which we define preprocessor
14718 @c macro symbols as well.
14719 @table @gcctabopt
14720 @item -mdsp-packa
14721 @opindex mdsp-packa
14722 Passed down to the assembler to enable the DSP Pack A extensions.
14723 Also sets the preprocessor symbol @code{__Xdsp_packa}. This option is
14724 deprecated.
14725
14726 @item -mdvbf
14727 @opindex mdvbf
14728 Passed down to the assembler to enable the dual Viterbi butterfly
14729 extension. Also sets the preprocessor symbol @code{__Xdvbf}. This
14730 option is deprecated.
14731
14732 @c ARC700 4.10 extension instruction
14733 @item -mlock
14734 @opindex mlock
14735 Passed down to the assembler to enable the locked load/store
14736 conditional extension. Also sets the preprocessor symbol
14737 @code{__Xlock}.
14738
14739 @item -mmac-d16
14740 @opindex mmac-d16
14741 Passed down to the assembler. Also sets the preprocessor symbol
14742 @code{__Xxmac_d16}. This option is deprecated.
14743
14744 @item -mmac-24
14745 @opindex mmac-24
14746 Passed down to the assembler. Also sets the preprocessor symbol
14747 @code{__Xxmac_24}. This option is deprecated.
14748
14749 @c ARC700 4.10 extension instruction
14750 @item -mrtsc
14751 @opindex mrtsc
14752 Passed down to the assembler to enable the 64-bit time-stamp counter
14753 extension instruction. Also sets the preprocessor symbol
14754 @code{__Xrtsc}. This option is deprecated.
14755
14756 @c ARC700 4.10 extension instruction
14757 @item -mswape
14758 @opindex mswape
14759 Passed down to the assembler to enable the swap byte ordering
14760 extension instruction. Also sets the preprocessor symbol
14761 @code{__Xswape}.
14762
14763 @item -mtelephony
14764 @opindex mtelephony
14765 Passed down to the assembler to enable dual- and single-operand
14766 instructions for telephony. Also sets the preprocessor symbol
14767 @code{__Xtelephony}. This option is deprecated.
14768
14769 @item -mxy
14770 @opindex mxy
14771 Passed down to the assembler to enable the XY memory extension. Also
14772 sets the preprocessor symbol @code{__Xxy}.
14773
14774 @end table
14775
14776 The following options control how the assembly code is annotated:
14777
14778 @c Assembly annotation options
14779 @table @gcctabopt
14780 @item -misize
14781 @opindex misize
14782 Annotate assembler instructions with estimated addresses.
14783
14784 @item -mannotate-align
14785 @opindex mannotate-align
14786 Explain what alignment considerations lead to the decision to make an
14787 instruction short or long.
14788
14789 @end table
14790
14791 The following options are passed through to the linker:
14792
14793 @c options passed through to the linker
14794 @table @gcctabopt
14795 @item -marclinux
14796 @opindex marclinux
14797 Passed through to the linker, to specify use of the @code{arclinux} emulation.
14798 This option is enabled by default in tool chains built for
14799 @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets
14800 when profiling is not requested.
14801
14802 @item -marclinux_prof
14803 @opindex marclinux_prof
14804 Passed through to the linker, to specify use of the
14805 @code{arclinux_prof} emulation. This option is enabled by default in
14806 tool chains built for @w{@code{arc-linux-uclibc}} and
14807 @w{@code{arceb-linux-uclibc}} targets when profiling is requested.
14808
14809 @end table
14810
14811 The following options control the semantics of generated code:
14812
14813 @c semantically relevant code generation options
14814 @table @gcctabopt
14815 @item -mlong-calls
14816 @opindex mlong-calls
14817 Generate calls as register indirect calls, thus providing access
14818 to the full 32-bit address range.
14819
14820 @item -mmedium-calls
14821 @opindex mmedium-calls
14822 Don't use less than 25-bit addressing range for calls, which is the
14823 offset available for an unconditional branch-and-link
14824 instruction. Conditional execution of function calls is suppressed, to
14825 allow use of the 25-bit range, rather than the 21-bit range with
14826 conditional branch-and-link. This is the default for tool chains built
14827 for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets.
14828
14829 @item -mno-sdata
14830 @opindex mno-sdata
14831 Do not generate sdata references. This is the default for tool chains
14832 built for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}}
14833 targets.
14834
14835 @item -mvolatile-cache
14836 @opindex mvolatile-cache
14837 Use ordinarily cached memory accesses for volatile references. This is the
14838 default.
14839
14840 @item -mno-volatile-cache
14841 @opindex mno-volatile-cache
14842 Enable cache bypass for volatile references.
14843
14844 @end table
14845
14846 The following options fine tune code generation:
14847 @c code generation tuning options
14848 @table @gcctabopt
14849 @item -malign-call
14850 @opindex malign-call
14851 Do alignment optimizations for call instructions.
14852
14853 @item -mauto-modify-reg
14854 @opindex mauto-modify-reg
14855 Enable the use of pre/post modify with register displacement.
14856
14857 @item -mbbit-peephole
14858 @opindex mbbit-peephole
14859 Enable bbit peephole2.
14860
14861 @item -mno-brcc
14862 @opindex mno-brcc
14863 This option disables a target-specific pass in @file{arc_reorg} to
14864 generate compare-and-branch (@code{br@var{cc}}) instructions.
14865 It has no effect on
14866 generation of these instructions driven by the combiner pass.
14867
14868 @item -mcase-vector-pcrel
14869 @opindex mcase-vector-pcrel
14870 Use PC-relative switch case tables to enable case table shortening.
14871 This is the default for @option{-Os}.
14872
14873 @item -mcompact-casesi
14874 @opindex mcompact-casesi
14875 Enable compact @code{casesi} pattern. This is the default for @option{-Os},
14876 and only available for ARCv1 cores.
14877
14878 @item -mno-cond-exec
14879 @opindex mno-cond-exec
14880 Disable the ARCompact-specific pass to generate conditional
14881 execution instructions.
14882
14883 Due to delay slot scheduling and interactions between operand numbers,
14884 literal sizes, instruction lengths, and the support for conditional execution,
14885 the target-independent pass to generate conditional execution is often lacking,
14886 so the ARC port has kept a special pass around that tries to find more
14887 conditional execution generation opportunities after register allocation,
14888 branch shortening, and delay slot scheduling have been done. This pass
14889 generally, but not always, improves performance and code size, at the cost of
14890 extra compilation time, which is why there is an option to switch it off.
14891 If you have a problem with call instructions exceeding their allowable
14892 offset range because they are conditionalized, you should consider using
14893 @option{-mmedium-calls} instead.
14894
14895 @item -mearly-cbranchsi
14896 @opindex mearly-cbranchsi
14897 Enable pre-reload use of the @code{cbranchsi} pattern.
14898
14899 @item -mexpand-adddi
14900 @opindex mexpand-adddi
14901 Expand @code{adddi3} and @code{subdi3} at RTL generation time into
14902 @code{add.f}, @code{adc} etc.
14903
14904 @item -mindexed-loads
14905 @opindex mindexed-loads
14906 Enable the use of indexed loads. This can be problematic because some
14907 optimizers then assume that indexed stores exist, which is not
14908 the case.
14909
14910 @opindex mlra
14911 Enable Local Register Allocation. This is still experimental for ARC,
14912 so by default the compiler uses standard reload
14913 (i.e. @option{-mno-lra}).
14914
14915 @item -mlra-priority-none
14916 @opindex mlra-priority-none
14917 Don't indicate any priority for target registers.
14918
14919 @item -mlra-priority-compact
14920 @opindex mlra-priority-compact
14921 Indicate target register priority for r0..r3 / r12..r15.
14922
14923 @item -mlra-priority-noncompact
14924 @opindex mlra-priority-noncompact
14925 Reduce target register priority for r0..r3 / r12..r15.
14926
14927 @item -mno-millicode
14928 @opindex mno-millicode
14929 When optimizing for size (using @option{-Os}), prologues and epilogues
14930 that have to save or restore a large number of registers are often
14931 shortened by using call to a special function in libgcc; this is
14932 referred to as a @emph{millicode} call. As these calls can pose
14933 performance issues, and/or cause linking issues when linking in a
14934 nonstandard way, this option is provided to turn off millicode call
14935 generation.
14936
14937 @item -mmixed-code
14938 @opindex mmixed-code
14939 Tweak register allocation to help 16-bit instruction generation.
14940 This generally has the effect of decreasing the average instruction size
14941 while increasing the instruction count.
14942
14943 @item -mq-class
14944 @opindex mq-class
14945 Enable @samp{q} instruction alternatives.
14946 This is the default for @option{-Os}.
14947
14948 @item -mRcq
14949 @opindex mRcq
14950 Enable @samp{Rcq} constraint handling.
14951 Most short code generation depends on this.
14952 This is the default.
14953
14954 @item -mRcw
14955 @opindex mRcw
14956 Enable @samp{Rcw} constraint handling.
14957 Most ccfsm condexec mostly depends on this.
14958 This is the default.
14959
14960 @item -msize-level=@var{level}
14961 @opindex msize-level
14962 Fine-tune size optimization with regards to instruction lengths and alignment.
14963 The recognized values for @var{level} are:
14964 @table @samp
14965 @item 0
14966 No size optimization. This level is deprecated and treated like @samp{1}.
14967
14968 @item 1
14969 Short instructions are used opportunistically.
14970
14971 @item 2
14972 In addition, alignment of loops and of code after barriers are dropped.
14973
14974 @item 3
14975 In addition, optional data alignment is dropped, and the option @option{Os} is enabled.
14976
14977 @end table
14978
14979 This defaults to @samp{3} when @option{-Os} is in effect. Otherwise,
14980 the behavior when this is not set is equivalent to level @samp{1}.
14981
14982 @item -mtune=@var{cpu}
14983 @opindex mtune
14984 Set instruction scheduling parameters for @var{cpu}, overriding any implied
14985 by @option{-mcpu=}.
14986
14987 Supported values for @var{cpu} are
14988
14989 @table @samp
14990 @item ARC600
14991 Tune for ARC600 CPU.
14992
14993 @item ARC601
14994 Tune for ARC601 CPU.
14995
14996 @item ARC700
14997 Tune for ARC700 CPU with standard multiplier block.
14998
14999 @item ARC700-xmac
15000 Tune for ARC700 CPU with XMAC block.
15001
15002 @item ARC725D
15003 Tune for ARC725D CPU.
15004
15005 @item ARC750D
15006 Tune for ARC750D CPU.
15007
15008 @end table
15009
15010 @item -mmultcost=@var{num}
15011 @opindex mmultcost
15012 Cost to assume for a multiply instruction, with @samp{4} being equal to a
15013 normal instruction.
15014
15015 @item -munalign-prob-threshold=@var{probability}
15016 @opindex munalign-prob-threshold
15017 Set probability threshold for unaligning branches.
15018 When tuning for @samp{ARC700} and optimizing for speed, branches without
15019 filled delay slot are preferably emitted unaligned and long, unless
15020 profiling indicates that the probability for the branch to be taken
15021 is below @var{probability}. @xref{Cross-profiling}.
15022 The default is (REG_BR_PROB_BASE/2), i.e.@: 5000.
15023
15024 @end table
15025
15026 The following options are maintained for backward compatibility, but
15027 are now deprecated and will be removed in a future release:
15028
15029 @c Deprecated options
15030 @table @gcctabopt
15031
15032 @item -margonaut
15033 @opindex margonaut
15034 Obsolete FPX.
15035
15036 @item -mbig-endian
15037 @opindex mbig-endian
15038 @itemx -EB
15039 @opindex EB
15040 Compile code for big-endian targets. Use of these options is now
15041 deprecated. Big-endian code is supported by configuring GCC to build
15042 @w{@code{arceb-elf32}} and @w{@code{arceb-linux-uclibc}} targets,
15043 for which big endian is the default.
15044
15045 @item -mlittle-endian
15046 @opindex mlittle-endian
15047 @itemx -EL
15048 @opindex EL
15049 Compile code for little-endian targets. Use of these options is now
15050 deprecated. Little-endian code is supported by configuring GCC to build
15051 @w{@code{arc-elf32}} and @w{@code{arc-linux-uclibc}} targets,
15052 for which little endian is the default.
15053
15054 @item -mbarrel_shifter
15055 @opindex mbarrel_shifter
15056 Replaced by @option{-mbarrel-shifter}.
15057
15058 @item -mdpfp_compact
15059 @opindex mdpfp_compact
15060 Replaced by @option{-mdpfp-compact}.
15061
15062 @item -mdpfp_fast
15063 @opindex mdpfp_fast
15064 Replaced by @option{-mdpfp-fast}.
15065
15066 @item -mdsp_packa
15067 @opindex mdsp_packa
15068 Replaced by @option{-mdsp-packa}.
15069
15070 @item -mEA
15071 @opindex mEA
15072 Replaced by @option{-mea}.
15073
15074 @item -mmac_24
15075 @opindex mmac_24
15076 Replaced by @option{-mmac-24}.
15077
15078 @item -mmac_d16
15079 @opindex mmac_d16
15080 Replaced by @option{-mmac-d16}.
15081
15082 @item -mspfp_compact
15083 @opindex mspfp_compact
15084 Replaced by @option{-mspfp-compact}.
15085
15086 @item -mspfp_fast
15087 @opindex mspfp_fast
15088 Replaced by @option{-mspfp-fast}.
15089
15090 @item -mtune=@var{cpu}
15091 @opindex mtune
15092 Values @samp{arc600}, @samp{arc601}, @samp{arc700} and
15093 @samp{arc700-xmac} for @var{cpu} are replaced by @samp{ARC600},
15094 @samp{ARC601}, @samp{ARC700} and @samp{ARC700-xmac} respectively.
15095
15096 @item -multcost=@var{num}
15097 @opindex multcost
15098 Replaced by @option{-mmultcost}.
15099
15100 @end table
15101
15102 @node ARM Options
15103 @subsection ARM Options
15104 @cindex ARM options
15105
15106 These @samp{-m} options are defined for the ARM port:
15107
15108 @table @gcctabopt
15109 @item -mabi=@var{name}
15110 @opindex mabi
15111 Generate code for the specified ABI@. Permissible values are: @samp{apcs-gnu},
15112 @samp{atpcs}, @samp{aapcs}, @samp{aapcs-linux} and @samp{iwmmxt}.
15113
15114 @item -mapcs-frame
15115 @opindex mapcs-frame
15116 Generate a stack frame that is compliant with the ARM Procedure Call
15117 Standard for all functions, even if this is not strictly necessary for
15118 correct execution of the code. Specifying @option{-fomit-frame-pointer}
15119 with this option causes the stack frames not to be generated for
15120 leaf functions. The default is @option{-mno-apcs-frame}.
15121 This option is deprecated.
15122
15123 @item -mapcs
15124 @opindex mapcs
15125 This is a synonym for @option{-mapcs-frame} and is deprecated.
15126
15127 @ignore
15128 @c not currently implemented
15129 @item -mapcs-stack-check
15130 @opindex mapcs-stack-check
15131 Generate code to check the amount of stack space available upon entry to
15132 every function (that actually uses some stack space). If there is
15133 insufficient space available then either the function
15134 @code{__rt_stkovf_split_small} or @code{__rt_stkovf_split_big} is
15135 called, depending upon the amount of stack space required. The runtime
15136 system is required to provide these functions. The default is
15137 @option{-mno-apcs-stack-check}, since this produces smaller code.
15138
15139 @c not currently implemented
15140 @item -mapcs-reentrant
15141 @opindex mapcs-reentrant
15142 Generate reentrant, position-independent code. The default is
15143 @option{-mno-apcs-reentrant}.
15144 @end ignore
15145
15146 @item -mthumb-interwork
15147 @opindex mthumb-interwork
15148 Generate code that supports calling between the ARM and Thumb
15149 instruction sets. Without this option, on pre-v5 architectures, the
15150 two instruction sets cannot be reliably used inside one program. The
15151 default is @option{-mno-thumb-interwork}, since slightly larger code
15152 is generated when @option{-mthumb-interwork} is specified. In AAPCS
15153 configurations this option is meaningless.
15154
15155 @item -mno-sched-prolog
15156 @opindex mno-sched-prolog
15157 Prevent the reordering of instructions in the function prologue, or the
15158 merging of those instruction with the instructions in the function's
15159 body. This means that all functions start with a recognizable set
15160 of instructions (or in fact one of a choice from a small set of
15161 different function prologues), and this information can be used to
15162 locate the start of functions inside an executable piece of code. The
15163 default is @option{-msched-prolog}.
15164
15165 @item -mfloat-abi=@var{name}
15166 @opindex mfloat-abi
15167 Specifies which floating-point ABI to use. Permissible values
15168 are: @samp{soft}, @samp{softfp} and @samp{hard}.
15169
15170 Specifying @samp{soft} causes GCC to generate output containing
15171 library calls for floating-point operations.
15172 @samp{softfp} allows the generation of code using hardware floating-point
15173 instructions, but still uses the soft-float calling conventions.
15174 @samp{hard} allows generation of floating-point instructions
15175 and uses FPU-specific calling conventions.
15176
15177 The default depends on the specific target configuration. Note that
15178 the hard-float and soft-float ABIs are not link-compatible; you must
15179 compile your entire program with the same ABI, and link with a
15180 compatible set of libraries.
15181
15182 @item -mlittle-endian
15183 @opindex mlittle-endian
15184 Generate code for a processor running in little-endian mode. This is
15185 the default for all standard configurations.
15186
15187 @item -mbig-endian
15188 @opindex mbig-endian
15189 Generate code for a processor running in big-endian mode; the default is
15190 to compile code for a little-endian processor.
15191
15192 @item -march=@var{name@r{[}+extension@dots{}@r{]}}
15193 @opindex march
15194 This specifies the name of the target ARM architecture. GCC uses this
15195 name to determine what kind of instructions it can emit when generating
15196 assembly code. This option can be used in conjunction with or instead
15197 of the @option{-mcpu=} option.
15198
15199 Permissible names are:
15200 @samp{armv4t},
15201 @samp{armv5t}, @samp{armv5te},
15202 @samp{armv6}, @samp{armv6j}, @samp{armv6k}, @samp{armv6kz}, @samp{armv6t2},
15203 @samp{armv6z}, @samp{armv6zk},
15204 @samp{armv7}, @samp{armv7-a}, @samp{armv7ve},
15205 @samp{armv8-a}, @samp{armv8.1-a}, @samp{armv8.2-a},
15206 @samp{armv7-r},
15207 @samp{armv6-m}, @samp{armv6s-m},
15208 @samp{armv7-m}, @samp{armv7e-m},
15209 @samp{armv8-m.base}, @samp{armv8-m.main},
15210 @samp{iwmmxt} and @samp{iwmmxt2}.
15211
15212 Additionally, the following architectures, which lack support for the
15213 Thumb exection state, are recognized but support is deprecated:
15214 @samp{armv2}, @samp{armv2a}, @samp{armv3}, @samp{armv3m},
15215 @samp{armv4}, @samp{armv5} and @samp{armv5e}.
15216
15217 Many of the architectures support extensions. These can be added by
15218 appending @samp{+@var{extension}} to the architecture name. Extension
15219 options are processed in order and capabilities accumulate. An extension
15220 will also enable any necessary base extensions
15221 upon which it depends. For example, the @samp{+crypto} extension
15222 will always enable the @samp{+simd} extension. The exception to the
15223 additive construction is for extensions that are prefixed with
15224 @samp{+no@dots{}}: these extensions disable the specified option and
15225 any other extensions that may depend on the presence of that
15226 extension.
15227
15228 For example, @samp{-march=armv7-a+simd+nofp+vfpv4} is equivalent to
15229 writing @samp{-march=armv7-a+vfpv4} since the @samp{+simd} option is
15230 entirely disabled by the @samp{+nofp} option that follows it.
15231
15232 Most extension names are generically named, but have an effect that is
15233 dependent upon the architecture to which it is applied. For example,
15234 the @samp{+simd} option can be applied to both @samp{armv7-a} and
15235 @samp{armv8-a} architectures, but will enable the original ARMv7
15236 Advanced SIMD (Neon) extensions for @samp{armv7-a} and the ARMv8-a
15237 variant for @samp{armv8-a}.
15238
15239 The table below lists the supported extensions for each architecture.
15240 Architectures not mentioned do not support any extensions.
15241
15242 @table @samp
15243 @item armv5e
15244 @itemx armv5te
15245 @itemx armv6
15246 @itemx armv6j
15247 @itemx armv6k
15248 @itemx armv6kz
15249 @itemx armv6t2
15250 @itemx armv6z
15251 @itemx armv6zk
15252 @table @samp
15253 @item +fp
15254 The VFPv2 floating-point instructions. The extension @samp{+vfpv2} can be
15255 used as an alias for this extension.
15256
15257 @item +nofp
15258 Disable the floating-point instructions.
15259 @end table
15260
15261 @item armv7
15262 The common subset of the ARMv7-A, ARMv7-R and ARMv7-M architectures.
15263 @table @samp
15264 @item +fp
15265 The VFPv3 floating-point instructions, with 16 double-precision
15266 registers. The extension @samp{+vfpv3-d16} can be used as an alias
15267 for this extension. Note that floating-point is not supported by the
15268 base ARMv7-M architecture, but is compatible with both the ARMv7-A and
15269 ARMv7-R architectures.
15270
15271 @item +nofp
15272 Disable the floating-point instructions.
15273 @end table
15274
15275 @item armv7-a
15276 @table @samp
15277 @item +fp
15278 The VFPv3 floating-point instructions, with 16 double-precision
15279 registers. The extension @samp{+vfpv3-d16} can be used as an alias
15280 for this extension.
15281
15282 @item +simd
15283 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
15284 The extensions @samp{+neon} and @samp{+neon-vfpv3} can be used as aliases
15285 for this extension.
15286
15287 @item +vfpv3
15288 The VFPv3 floating-point instructions, with 32 double-precision
15289 registers.
15290
15291 @item +vfpv3-d16-fp16
15292 The VFPv3 floating-point instructions, with 16 double-precision
15293 registers and the half-precision floating-point conversion operations.
15294
15295 @item +vfpv3-fp16
15296 The VFPv3 floating-point instructions, with 32 double-precision
15297 registers and the half-precision floating-point conversion operations.
15298
15299 @item +vfpv4-d16
15300 The VFPv4 floating-point instructions, with 16 double-precision
15301 registers.
15302
15303 @item +vfpv4
15304 The VFPv4 floating-point instructions, with 32 double-precision
15305 registers.
15306
15307 @item +neon-fp16
15308 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
15309 the half-precision floating-point conversion operations.
15310
15311 @item +neon-vfpv4
15312 The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions.
15313
15314 @item +nosimd
15315 Disable the Advanced SIMD instructions (does not disable floating point).
15316
15317 @item +nofp
15318 Disable the floating-point and Advanced SIMD instructions.
15319 @end table
15320
15321 @item armv7ve
15322 The extended version of the ARMv7-A architecture with support for
15323 virtualization.
15324 @table @samp
15325 @item +fp
15326 The VFPv4 floating-point instructions, with 16 double-precision registers.
15327 The extension @samp{+vfpv4-d16} can be used as an alias for this extension.
15328
15329 @item +simd
15330 The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions. The
15331 extension @samp{+neon-vfpv4} can be used as an alias for this extension.
15332
15333 @item +vfpv3-d16
15334 The VFPv3 floating-point instructions, with 16 double-precision
15335 registers.
15336
15337 @item +vfpv3
15338 The VFPv3 floating-point instructions, with 32 double-precision
15339 registers.
15340
15341 @item +vfpv3-d16-fp16
15342 The VFPv3 floating-point instructions, with 16 double-precision
15343 registers and the half-precision floating-point conversion operations.
15344
15345 @item +vfpv3-fp16
15346 The VFPv3 floating-point instructions, with 32 double-precision
15347 registers and the half-precision floating-point conversion operations.
15348
15349 @item +vfpv4-d16
15350 The VFPv4 floating-point instructions, with 16 double-precision
15351 registers.
15352
15353 @item +vfpv4
15354 The VFPv4 floating-point instructions, with 32 double-precision
15355 registers.
15356
15357 @item +neon
15358 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
15359 The extension @samp{+neon-vfpv3} can be used as an alias for this extension.
15360
15361 @item +neon-fp16
15362 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
15363 the half-precision floating-point conversion operations.
15364
15365 @item +nosimd
15366 Disable the Advanced SIMD instructions (does not disable floating point).
15367
15368 @item +nofp
15369 Disable the floating-point and Advanced SIMD instructions.
15370 @end table
15371
15372 @item armv8-a
15373 @table @samp
15374 @item +crc
15375 The Cyclic Redundancy Check (CRC) instructions.
15376 @item +simd
15377 The ARMv8 Advanced SIMD and floating-point instructions.
15378 @item +crypto
15379 The cryptographic instructions.
15380 @item +nocrypto
15381 Disable the cryptographic isntructions.
15382 @item +nofp
15383 Disable the floating-point, Advanced SIMD and cryptographic instructions.
15384 @end table
15385
15386 @item armv8.1-a
15387 @table @samp
15388 @item +simd
15389 The ARMv8.1 Advanced SIMD and floating-point instructions.
15390
15391 @item +crypto
15392 The cryptographic instructions. This also enables the Advanced SIMD and
15393 floating-point instructions.
15394
15395 @item +nocrypto
15396 Disable the cryptographic isntructions.
15397
15398 @item +nofp
15399 Disable the floating-point, Advanced SIMD and cryptographic instructions.
15400 @end table
15401
15402 @item armv8.2-a
15403 @table @samp
15404 @item +fp16
15405 The half-precision floating-point data processing instructions.
15406 This also enables the Advanced SIMD and floating-point instructions.
15407
15408 @item +simd
15409 The ARMv8.1 Advanced SIMD and floating-point instructions.
15410
15411 @item +crypto
15412 The cryptographic instructions. This also enables the Advanced SIMD and
15413 floating-point instructions.
15414
15415 @item +nocrypto
15416 Disable the cryptographic extension.
15417
15418 @item +nofp
15419 Disable the floating-point, Advanced SIMD and cryptographic instructions.
15420 @end table
15421
15422 @item armv7-r
15423 @table @samp
15424 @item +fp.sp
15425 The single-precision VFPv3 floating-point instructions. The extension
15426 @samp{+vfpv3xd} can be used as an alias for this extension.
15427
15428 @item +fp
15429 The VFPv3 floating-point instructions with 16 double-precision registers.
15430 The extension +vfpv3-d16 can be used as an alias for this extension.
15431
15432 @item +nofp
15433 Disable the floating-point extension.
15434
15435 @item +idiv
15436 The ARM-state integer division instructions.
15437
15438 @item +noidiv
15439 Disable the ARM-state integer division extension.
15440 @end table
15441
15442 @item armv7e-m
15443 @table @samp
15444 @item +fp
15445 The single-precision VFPv4 floating-point instructions.
15446
15447 @item +fpv5
15448 The single-precision FPv5 floating-point instructions.
15449
15450 @item +fp.dp
15451 The single- and double-precision FPv5 floating-point instructions.
15452
15453 @item +nofp
15454 Disable the floating-point extensions.
15455 @end table
15456
15457 @item armv8-m.main
15458 @table @samp
15459 @item +dsp
15460 The DSP instructions.
15461
15462 @item +nodsp
15463 Disable the DSP extension.
15464
15465 @item +fp
15466 The single-precision floating-point instructions.
15467
15468 @item +fp.dp
15469 The single- and double-precision floating-point instructions.
15470
15471 @item +nofp
15472 Disable the floating-point extension.
15473
15474 @end table
15475
15476 @end table
15477
15478 @option{-march=native} causes the compiler to auto-detect the architecture
15479 of the build computer. At present, this feature is only supported on
15480 GNU/Linux, and not all architectures are recognized. If the auto-detect
15481 is unsuccessful the option has no effect.
15482
15483 @item -mtune=@var{name}
15484 @opindex mtune
15485 This option specifies the name of the target ARM processor for
15486 which GCC should tune the performance of the code.
15487 For some ARM implementations better performance can be obtained by using
15488 this option.
15489 Permissible names are: @samp{arm2}, @samp{arm250},
15490 @samp{arm3}, @samp{arm6}, @samp{arm60}, @samp{arm600}, @samp{arm610},
15491 @samp{arm620}, @samp{arm7}, @samp{arm7m}, @samp{arm7d}, @samp{arm7dm},
15492 @samp{arm7di}, @samp{arm7dmi}, @samp{arm70}, @samp{arm700},
15493 @samp{arm700i}, @samp{arm710}, @samp{arm710c}, @samp{arm7100},
15494 @samp{arm720},
15495 @samp{arm7500}, @samp{arm7500fe}, @samp{arm7tdmi}, @samp{arm7tdmi-s},
15496 @samp{arm710t}, @samp{arm720t}, @samp{arm740t},
15497 @samp{strongarm}, @samp{strongarm110}, @samp{strongarm1100},
15498 @samp{strongarm1110},
15499 @samp{arm8}, @samp{arm810}, @samp{arm9}, @samp{arm9e}, @samp{arm920},
15500 @samp{arm920t}, @samp{arm922t}, @samp{arm946e-s}, @samp{arm966e-s},
15501 @samp{arm968e-s}, @samp{arm926ej-s}, @samp{arm940t}, @samp{arm9tdmi},
15502 @samp{arm10tdmi}, @samp{arm1020t}, @samp{arm1026ej-s},
15503 @samp{arm10e}, @samp{arm1020e}, @samp{arm1022e},
15504 @samp{arm1136j-s}, @samp{arm1136jf-s}, @samp{mpcore}, @samp{mpcorenovfp},
15505 @samp{arm1156t2-s}, @samp{arm1156t2f-s}, @samp{arm1176jz-s}, @samp{arm1176jzf-s},
15506 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}, @samp{cortex-a8},
15507 @samp{cortex-a9}, @samp{cortex-a12}, @samp{cortex-a15}, @samp{cortex-a17},
15508 @samp{cortex-a32}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a57},
15509 @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-r4},
15510 @samp{cortex-r4f}, @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8},
15511 @samp{cortex-m33},
15512 @samp{cortex-m23},
15513 @samp{cortex-m7},
15514 @samp{cortex-m4},
15515 @samp{cortex-m3},
15516 @samp{cortex-m1},
15517 @samp{cortex-m0},
15518 @samp{cortex-m0plus},
15519 @samp{cortex-m1.small-multiply},
15520 @samp{cortex-m0.small-multiply},
15521 @samp{cortex-m0plus.small-multiply},
15522 @samp{exynos-m1},
15523 @samp{marvell-pj4},
15524 @samp{xscale}, @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312},
15525 @samp{fa526}, @samp{fa626},
15526 @samp{fa606te}, @samp{fa626te}, @samp{fmp626}, @samp{fa726te},
15527 @samp{xgene1}.
15528
15529 Additionally, this option can specify that GCC should tune the performance
15530 of the code for a big.LITTLE system. Permissible names are:
15531 @samp{cortex-a15.cortex-a7}, @samp{cortex-a17.cortex-a7},
15532 @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
15533 @samp{cortex-a72.cortex-a35}, @samp{cortex-a73.cortex-a53}.
15534
15535 @option{-mtune=generic-@var{arch}} specifies that GCC should tune the
15536 performance for a blend of processors within architecture @var{arch}.
15537 The aim is to generate code that run well on the current most popular
15538 processors, balancing between optimizations that benefit some CPUs in the
15539 range, and avoiding performance pitfalls of other CPUs. The effects of
15540 this option may change in future GCC versions as CPU models come and go.
15541
15542 @option{-mtune} permits the same extension options as @option{-mcpu}, but
15543 the extension options do not affect the tuning of the generated code.
15544
15545 @option{-mtune=native} causes the compiler to auto-detect the CPU
15546 of the build computer. At present, this feature is only supported on
15547 GNU/Linux, and not all architectures are recognized. If the auto-detect is
15548 unsuccessful the option has no effect.
15549
15550 @item -mcpu=@var{name@r{[}+extension@dots{}@r{]}}
15551 @opindex mcpu
15552 This specifies the name of the target ARM processor. GCC uses this name
15553 to derive the name of the target ARM architecture (as if specified
15554 by @option{-march}) and the ARM processor type for which to tune for
15555 performance (as if specified by @option{-mtune}). Where this option
15556 is used in conjunction with @option{-march} or @option{-mtune},
15557 those options take precedence over the appropriate part of this option.
15558
15559 Many of the supported CPUs implement optional architectural
15560 extensions. Where this is so the architectural extensions are
15561 normally enabled by default. If implementations that lack the
15562 extension exist, then the extension syntax can be used to disable
15563 those extensions that have been omitted. For floating-point and
15564 Advanced SIMD (Neon) instructions, the settings of the options
15565 @option{-mfloat-abi} and @option{-mfpu} must also be considered:
15566 floating-point and Advanced SIMD instructions will only be used if
15567 @option{-mfloat-abi} is not set to @samp{soft}; and any setting of
15568 @option{-mfpu} other than @samp{auto} will override the available
15569 floating-point and SIMD extension instructions.
15570
15571 For example, @samp{cortex-a9} can be found in three major
15572 configurations: integer only, with just a floating-point unit or with
15573 floating-point and Advanced SIMD. The default is to enable all the
15574 instructions, but the extensions @samp{+nosimd} and @samp{+nofp} can
15575 be used to disable just the SIMD or both the SIMD and floating-point
15576 instructions respectively.
15577
15578 Permissible names for this option are the same as those for
15579 @option{-mtune}.
15580
15581 The following extension options are common to the listed CPUs:
15582
15583 @table @samp
15584 @item +nofp
15585 Disables the floating-point instructions on @samp{arm9e},
15586 @samp{arm946e-s}, @samp{arm966e-s}, @samp{arm968e-s}, @samp{arm10e},
15587 @samp{arm1020e}, @samp{arm1022e}, @samp{arm926ej-s},
15588 @samp{arm1026ej-s}, @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8},
15589 @samp{cortex-m4}, @samp{cortex-m7} and @samp{cortex-m33}.
15590 Disables the floating-point and SIMD instructions on
15591 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7},
15592 @samp{cortex-a8}, @samp{cortex-a9}, @samp{cortex-a12},
15593 @samp{cortex-a15}, @samp{cortex-a17}, @samp{cortex-a15.cortex-a7},
15594 @samp{cortex-a17.cortex-a7}, @samp{cortex-a32}, @samp{cortex-a35}
15595 and @samp{cortex-a53}.
15596
15597 @item +nofp.dp
15598 Disables the double-precision component of the floating-point instructions
15599 on @samp{cortex-r5} and @samp{cortex-m7}.
15600
15601 @item +nosimd
15602 Disables the SIMD (but not floating-point) instructions on
15603 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}
15604 and @samp{cortex-a9}.
15605 @end table
15606
15607 Additionally the @samp{generic-armv7-a} pseudo target defaults to
15608 VFPv3 with 16 double-precision registers. It supports the following
15609 extension options: @samp{vfpv3-d16}, @samp{vfpv3},
15610 @samp{vfpv3-d16-fp16}, @samp{vfpv3-fp16}, @samp{vfpv4-d16},
15611 @samp{vfpv4}, @samp{neon}, @samp{neon-vfpv3}, @samp{neon-fp16},
15612 @samp{neon-vfpv4}. The meanings are the same as for the extensions to
15613 @option{-march=armv7-a}.
15614
15615 @option{-mcpu=generic-@var{arch}} is also permissible, and is
15616 equivalent to @option{-march=@var{arch} -mtune=generic-@var{arch}}.
15617 See @option{-mtune} for more information.
15618
15619 @option{-mcpu=native} causes the compiler to auto-detect the CPU
15620 of the build computer. At present, this feature is only supported on
15621 GNU/Linux, and not all architectures are recognized. If the auto-detect
15622 is unsuccessful the option has no effect.
15623
15624 @item -mfpu=@var{name}
15625 @opindex mfpu
15626 This specifies what floating-point hardware (or hardware emulation) is
15627 available on the target. Permissible names are: @samp{auto}, @samp{vfpv2},
15628 @samp{vfpv3},
15629 @samp{vfpv3-fp16}, @samp{vfpv3-d16}, @samp{vfpv3-d16-fp16}, @samp{vfpv3xd},
15630 @samp{vfpv3xd-fp16}, @samp{neon-vfpv3}, @samp{neon-fp16}, @samp{vfpv4},
15631 @samp{vfpv4-d16}, @samp{fpv4-sp-d16}, @samp{neon-vfpv4},
15632 @samp{fpv5-d16}, @samp{fpv5-sp-d16},
15633 @samp{fp-armv8}, @samp{neon-fp-armv8} and @samp{crypto-neon-fp-armv8}.
15634 Note that @samp{neon} is an alias for @samp{neon-vfpv3} and @samp{vfp}
15635 is an alias for @samp{vfpv2}.
15636
15637 The setting @samp{auto} is the default and is special. It causes the
15638 compiler to select the floating-point and Advanced SIMD instructions
15639 based on the settings of @option{-mcpu} and @option{-march}.
15640
15641 If the selected floating-point hardware includes the NEON extension
15642 (e.g. @option{-mfpu=neon}), note that floating-point
15643 operations are not generated by GCC's auto-vectorization pass unless
15644 @option{-funsafe-math-optimizations} is also specified. This is
15645 because NEON hardware does not fully implement the IEEE 754 standard for
15646 floating-point arithmetic (in particular denormal values are treated as
15647 zero), so the use of NEON instructions may lead to a loss of precision.
15648
15649 You can also set the fpu name at function level by using the @code{target("fpu=")} function attributes (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
15650
15651 @item -mfp16-format=@var{name}
15652 @opindex mfp16-format
15653 Specify the format of the @code{__fp16} half-precision floating-point type.
15654 Permissible names are @samp{none}, @samp{ieee}, and @samp{alternative};
15655 the default is @samp{none}, in which case the @code{__fp16} type is not
15656 defined. @xref{Half-Precision}, for more information.
15657
15658 @item -mstructure-size-boundary=@var{n}
15659 @opindex mstructure-size-boundary
15660 The sizes of all structures and unions are rounded up to a multiple
15661 of the number of bits set by this option. Permissible values are 8, 32
15662 and 64. The default value varies for different toolchains. For the COFF
15663 targeted toolchain the default value is 8. A value of 64 is only allowed
15664 if the underlying ABI supports it.
15665
15666 Specifying a larger number can produce faster, more efficient code, but
15667 can also increase the size of the program. Different values are potentially
15668 incompatible. Code compiled with one value cannot necessarily expect to
15669 work with code or libraries compiled with another value, if they exchange
15670 information using structures or unions.
15671
15672 @item -mabort-on-noreturn
15673 @opindex mabort-on-noreturn
15674 Generate a call to the function @code{abort} at the end of a
15675 @code{noreturn} function. It is executed if the function tries to
15676 return.
15677
15678 @item -mlong-calls
15679 @itemx -mno-long-calls
15680 @opindex mlong-calls
15681 @opindex mno-long-calls
15682 Tells the compiler to perform function calls by first loading the
15683 address of the function into a register and then performing a subroutine
15684 call on this register. This switch is needed if the target function
15685 lies outside of the 64-megabyte addressing range of the offset-based
15686 version of subroutine call instruction.
15687
15688 Even if this switch is enabled, not all function calls are turned
15689 into long calls. The heuristic is that static functions, functions
15690 that have the @code{short_call} attribute, functions that are inside
15691 the scope of a @code{#pragma no_long_calls} directive, and functions whose
15692 definitions have already been compiled within the current compilation
15693 unit are not turned into long calls. The exceptions to this rule are
15694 that weak function definitions, functions with the @code{long_call}
15695 attribute or the @code{section} attribute, and functions that are within
15696 the scope of a @code{#pragma long_calls} directive are always
15697 turned into long calls.
15698
15699 This feature is not enabled by default. Specifying
15700 @option{-mno-long-calls} restores the default behavior, as does
15701 placing the function calls within the scope of a @code{#pragma
15702 long_calls_off} directive. Note these switches have no effect on how
15703 the compiler generates code to handle function calls via function
15704 pointers.
15705
15706 @item -msingle-pic-base
15707 @opindex msingle-pic-base
15708 Treat the register used for PIC addressing as read-only, rather than
15709 loading it in the prologue for each function. The runtime system is
15710 responsible for initializing this register with an appropriate value
15711 before execution begins.
15712
15713 @item -mpic-register=@var{reg}
15714 @opindex mpic-register
15715 Specify the register to be used for PIC addressing.
15716 For standard PIC base case, the default is any suitable register
15717 determined by compiler. For single PIC base case, the default is
15718 @samp{R9} if target is EABI based or stack-checking is enabled,
15719 otherwise the default is @samp{R10}.
15720
15721 @item -mpic-data-is-text-relative
15722 @opindex mpic-data-is-text-relative
15723 Assume that the displacement between the text and data segments is fixed
15724 at static link time. This permits using PC-relative addressing
15725 operations to access data known to be in the data segment. For
15726 non-VxWorks RTP targets, this option is enabled by default. When
15727 disabled on such targets, it will enable @option{-msingle-pic-base} by
15728 default.
15729
15730 @item -mpoke-function-name
15731 @opindex mpoke-function-name
15732 Write the name of each function into the text section, directly
15733 preceding the function prologue. The generated code is similar to this:
15734
15735 @smallexample
15736 t0
15737 .ascii "arm_poke_function_name", 0
15738 .align
15739 t1
15740 .word 0xff000000 + (t1 - t0)
15741 arm_poke_function_name
15742 mov ip, sp
15743 stmfd sp!, @{fp, ip, lr, pc@}
15744 sub fp, ip, #4
15745 @end smallexample
15746
15747 When performing a stack backtrace, code can inspect the value of
15748 @code{pc} stored at @code{fp + 0}. If the trace function then looks at
15749 location @code{pc - 12} and the top 8 bits are set, then we know that
15750 there is a function name embedded immediately preceding this location
15751 and has length @code{((pc[-3]) & 0xff000000)}.
15752
15753 @item -mthumb
15754 @itemx -marm
15755 @opindex marm
15756 @opindex mthumb
15757
15758 Select between generating code that executes in ARM and Thumb
15759 states. The default for most configurations is to generate code
15760 that executes in ARM state, but the default can be changed by
15761 configuring GCC with the @option{--with-mode=}@var{state}
15762 configure option.
15763
15764 You can also override the ARM and Thumb mode for each function
15765 by using the @code{target("thumb")} and @code{target("arm")} function attributes
15766 (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
15767
15768 @item -mtpcs-frame
15769 @opindex mtpcs-frame
15770 Generate a stack frame that is compliant with the Thumb Procedure Call
15771 Standard for all non-leaf functions. (A leaf function is one that does
15772 not call any other functions.) The default is @option{-mno-tpcs-frame}.
15773
15774 @item -mtpcs-leaf-frame
15775 @opindex mtpcs-leaf-frame
15776 Generate a stack frame that is compliant with the Thumb Procedure Call
15777 Standard for all leaf functions. (A leaf function is one that does
15778 not call any other functions.) The default is @option{-mno-apcs-leaf-frame}.
15779
15780 @item -mcallee-super-interworking
15781 @opindex mcallee-super-interworking
15782 Gives all externally visible functions in the file being compiled an ARM
15783 instruction set header which switches to Thumb mode before executing the
15784 rest of the function. This allows these functions to be called from
15785 non-interworking code. This option is not valid in AAPCS configurations
15786 because interworking is enabled by default.
15787
15788 @item -mcaller-super-interworking
15789 @opindex mcaller-super-interworking
15790 Allows calls via function pointers (including virtual functions) to
15791 execute correctly regardless of whether the target code has been
15792 compiled for interworking or not. There is a small overhead in the cost
15793 of executing a function pointer if this option is enabled. This option
15794 is not valid in AAPCS configurations because interworking is enabled
15795 by default.
15796
15797 @item -mtp=@var{name}
15798 @opindex mtp
15799 Specify the access model for the thread local storage pointer. The valid
15800 models are @samp{soft}, which generates calls to @code{__aeabi_read_tp},
15801 @samp{cp15}, which fetches the thread pointer from @code{cp15} directly
15802 (supported in the arm6k architecture), and @samp{auto}, which uses the
15803 best available method for the selected processor. The default setting is
15804 @samp{auto}.
15805
15806 @item -mtls-dialect=@var{dialect}
15807 @opindex mtls-dialect
15808 Specify the dialect to use for accessing thread local storage. Two
15809 @var{dialect}s are supported---@samp{gnu} and @samp{gnu2}. The
15810 @samp{gnu} dialect selects the original GNU scheme for supporting
15811 local and global dynamic TLS models. The @samp{gnu2} dialect
15812 selects the GNU descriptor scheme, which provides better performance
15813 for shared libraries. The GNU descriptor scheme is compatible with
15814 the original scheme, but does require new assembler, linker and
15815 library support. Initial and local exec TLS models are unaffected by
15816 this option and always use the original scheme.
15817
15818 @item -mword-relocations
15819 @opindex mword-relocations
15820 Only generate absolute relocations on word-sized values (i.e. R_ARM_ABS32).
15821 This is enabled by default on targets (uClinux, SymbianOS) where the runtime
15822 loader imposes this restriction, and when @option{-fpic} or @option{-fPIC}
15823 is specified.
15824
15825 @item -mfix-cortex-m3-ldrd
15826 @opindex mfix-cortex-m3-ldrd
15827 Some Cortex-M3 cores can cause data corruption when @code{ldrd} instructions
15828 with overlapping destination and base registers are used. This option avoids
15829 generating these instructions. This option is enabled by default when
15830 @option{-mcpu=cortex-m3} is specified.
15831
15832 @item -munaligned-access
15833 @itemx -mno-unaligned-access
15834 @opindex munaligned-access
15835 @opindex mno-unaligned-access
15836 Enables (or disables) reading and writing of 16- and 32- bit values
15837 from addresses that are not 16- or 32- bit aligned. By default
15838 unaligned access is disabled for all pre-ARMv6, all ARMv6-M and for
15839 ARMv8-M Baseline architectures, and enabled for all other
15840 architectures. If unaligned access is not enabled then words in packed
15841 data structures are accessed a byte at a time.
15842
15843 The ARM attribute @code{Tag_CPU_unaligned_access} is set in the
15844 generated object file to either true or false, depending upon the
15845 setting of this option. If unaligned access is enabled then the
15846 preprocessor symbol @code{__ARM_FEATURE_UNALIGNED} is also
15847 defined.
15848
15849 @item -mneon-for-64bits
15850 @opindex mneon-for-64bits
15851 Enables using Neon to handle scalar 64-bits operations. This is
15852 disabled by default since the cost of moving data from core registers
15853 to Neon is high.
15854
15855 @item -mslow-flash-data
15856 @opindex mslow-flash-data
15857 Assume loading data from flash is slower than fetching instruction.
15858 Therefore literal load is minimized for better performance.
15859 This option is only supported when compiling for ARMv7 M-profile and
15860 off by default.
15861
15862 @item -masm-syntax-unified
15863 @opindex masm-syntax-unified
15864 Assume inline assembler is using unified asm syntax. The default is
15865 currently off which implies divided syntax. This option has no impact
15866 on Thumb2. However, this may change in future releases of GCC.
15867 Divided syntax should be considered deprecated.
15868
15869 @item -mrestrict-it
15870 @opindex mrestrict-it
15871 Restricts generation of IT blocks to conform to the rules of ARMv8.
15872 IT blocks can only contain a single 16-bit instruction from a select
15873 set of instructions. This option is on by default for ARMv8 Thumb mode.
15874
15875 @item -mprint-tune-info
15876 @opindex mprint-tune-info
15877 Print CPU tuning information as comment in assembler file. This is
15878 an option used only for regression testing of the compiler and not
15879 intended for ordinary use in compiling code. This option is disabled
15880 by default.
15881
15882 @item -mpure-code
15883 @opindex mpure-code
15884 Do not allow constant data to be placed in code sections.
15885 Additionally, when compiling for ELF object format give all text sections the
15886 ELF processor-specific section attribute @code{SHF_ARM_PURECODE}. This option
15887 is only available when generating non-pic code for M-profile targets with the
15888 MOVT instruction.
15889
15890 @item -mcmse
15891 @opindex mcmse
15892 Generate secure code as per the "ARMv8-M Security Extensions: Requirements on
15893 Development Tools Engineering Specification", which can be found on
15894 @url{http://infocenter.arm.com/help/topic/com.arm.doc.ecm0359818/ECM0359818_armv8m_security_extensions_reqs_on_dev_tools_1_0.pdf}.
15895 @end table
15896
15897 @node AVR Options
15898 @subsection AVR Options
15899 @cindex AVR Options
15900
15901 These options are defined for AVR implementations:
15902
15903 @table @gcctabopt
15904 @item -mmcu=@var{mcu}
15905 @opindex mmcu
15906 Specify Atmel AVR instruction set architectures (ISA) or MCU type.
15907
15908 The default for this option is@tie{}@samp{avr2}.
15909
15910 GCC supports the following AVR devices and ISAs:
15911
15912 @include avr-mmcu.texi
15913
15914 @item -mabsdata
15915 @opindex mabsdata
15916
15917 Assume that all data in static storage can be accessed by LDS / STS
15918 instructions. This option has only an effect on reduced Tiny devices like
15919 ATtiny40. See also the @code{absdata}
15920 @ref{AVR Variable Attributes,variable attribute}.
15921
15922 @item -maccumulate-args
15923 @opindex maccumulate-args
15924 Accumulate outgoing function arguments and acquire/release the needed
15925 stack space for outgoing function arguments once in function
15926 prologue/epilogue. Without this option, outgoing arguments are pushed
15927 before calling a function and popped afterwards.
15928
15929 Popping the arguments after the function call can be expensive on
15930 AVR so that accumulating the stack space might lead to smaller
15931 executables because arguments need not be removed from the
15932 stack after such a function call.
15933
15934 This option can lead to reduced code size for functions that perform
15935 several calls to functions that get their arguments on the stack like
15936 calls to printf-like functions.
15937
15938 @item -mbranch-cost=@var{cost}
15939 @opindex mbranch-cost
15940 Set the branch costs for conditional branch instructions to
15941 @var{cost}. Reasonable values for @var{cost} are small, non-negative
15942 integers. The default branch cost is 0.
15943
15944 @item -mcall-prologues
15945 @opindex mcall-prologues
15946 Functions prologues/epilogues are expanded as calls to appropriate
15947 subroutines. Code size is smaller.
15948
15949 @item -mint8
15950 @opindex mint8
15951 Assume @code{int} to be 8-bit integer. This affects the sizes of all types: a
15952 @code{char} is 1 byte, an @code{int} is 1 byte, a @code{long} is 2 bytes,
15953 and @code{long long} is 4 bytes. Please note that this option does not
15954 conform to the C standards, but it results in smaller code
15955 size.
15956
15957 @item -mn-flash=@var{num}
15958 @opindex mn-flash
15959 Assume that the flash memory has a size of
15960 @var{num} times 64@tie{}KiB.
15961
15962 @item -mno-interrupts
15963 @opindex mno-interrupts
15964 Generated code is not compatible with hardware interrupts.
15965 Code size is smaller.
15966
15967 @item -mrelax
15968 @opindex mrelax
15969 Try to replace @code{CALL} resp.@: @code{JMP} instruction by the shorter
15970 @code{RCALL} resp.@: @code{RJMP} instruction if applicable.
15971 Setting @option{-mrelax} just adds the @option{--mlink-relax} option to
15972 the assembler's command line and the @option{--relax} option to the
15973 linker's command line.
15974
15975 Jump relaxing is performed by the linker because jump offsets are not
15976 known before code is located. Therefore, the assembler code generated by the
15977 compiler is the same, but the instructions in the executable may
15978 differ from instructions in the assembler code.
15979
15980 Relaxing must be turned on if linker stubs are needed, see the
15981 section on @code{EIND} and linker stubs below.
15982
15983 @item -mrmw
15984 @opindex mrmw
15985 Assume that the device supports the Read-Modify-Write
15986 instructions @code{XCH}, @code{LAC}, @code{LAS} and @code{LAT}.
15987
15988 @item -mshort-calls
15989 @opindex mshort-calls
15990
15991 Assume that @code{RJMP} and @code{RCALL} can target the whole
15992 program memory.
15993
15994 This option is used internally for multilib selection. It is
15995 not an optimization option, and you don't need to set it by hand.
15996
15997 @item -msp8
15998 @opindex msp8
15999 Treat the stack pointer register as an 8-bit register,
16000 i.e.@: assume the high byte of the stack pointer is zero.
16001 In general, you don't need to set this option by hand.
16002
16003 This option is used internally by the compiler to select and
16004 build multilibs for architectures @code{avr2} and @code{avr25}.
16005 These architectures mix devices with and without @code{SPH}.
16006 For any setting other than @option{-mmcu=avr2} or @option{-mmcu=avr25}
16007 the compiler driver adds or removes this option from the compiler
16008 proper's command line, because the compiler then knows if the device
16009 or architecture has an 8-bit stack pointer and thus no @code{SPH}
16010 register or not.
16011
16012 @item -mstrict-X
16013 @opindex mstrict-X
16014 Use address register @code{X} in a way proposed by the hardware. This means
16015 that @code{X} is only used in indirect, post-increment or
16016 pre-decrement addressing.
16017
16018 Without this option, the @code{X} register may be used in the same way
16019 as @code{Y} or @code{Z} which then is emulated by additional
16020 instructions.
16021 For example, loading a value with @code{X+const} addressing with a
16022 small non-negative @code{const < 64} to a register @var{Rn} is
16023 performed as
16024
16025 @example
16026 adiw r26, const ; X += const
16027 ld @var{Rn}, X ; @var{Rn} = *X
16028 sbiw r26, const ; X -= const
16029 @end example
16030
16031 @item -mtiny-stack
16032 @opindex mtiny-stack
16033 Only change the lower 8@tie{}bits of the stack pointer.
16034
16035 @item -mfract-convert-truncate
16036 @opindex mfract-convert-truncate
16037 Allow to use truncation instead of rounding towards zero for fractional fixed-point types.
16038
16039 @item -nodevicelib
16040 @opindex nodevicelib
16041 Don't link against AVR-LibC's device specific library @code{lib<mcu>.a}.
16042
16043 @item -Waddr-space-convert
16044 @opindex Waddr-space-convert
16045 Warn about conversions between address spaces in the case where the
16046 resulting address space is not contained in the incoming address space.
16047
16048 @item -Wmisspelled-isr
16049 @opindex Wmisspelled-isr
16050 Warn if the ISR is misspelled, i.e. without __vector prefix.
16051 Enabled by default.
16052 @end table
16053
16054 @subsubsection @code{EIND} and Devices with More Than 128 Ki Bytes of Flash
16055 @cindex @code{EIND}
16056 Pointers in the implementation are 16@tie{}bits wide.
16057 The address of a function or label is represented as word address so
16058 that indirect jumps and calls can target any code address in the
16059 range of 64@tie{}Ki words.
16060
16061 In order to facilitate indirect jump on devices with more than 128@tie{}Ki
16062 bytes of program memory space, there is a special function register called
16063 @code{EIND} that serves as most significant part of the target address
16064 when @code{EICALL} or @code{EIJMP} instructions are used.
16065
16066 Indirect jumps and calls on these devices are handled as follows by
16067 the compiler and are subject to some limitations:
16068
16069 @itemize @bullet
16070
16071 @item
16072 The compiler never sets @code{EIND}.
16073
16074 @item
16075 The compiler uses @code{EIND} implicitly in @code{EICALL}/@code{EIJMP}
16076 instructions or might read @code{EIND} directly in order to emulate an
16077 indirect call/jump by means of a @code{RET} instruction.
16078
16079 @item
16080 The compiler assumes that @code{EIND} never changes during the startup
16081 code or during the application. In particular, @code{EIND} is not
16082 saved/restored in function or interrupt service routine
16083 prologue/epilogue.
16084
16085 @item
16086 For indirect calls to functions and computed goto, the linker
16087 generates @emph{stubs}. Stubs are jump pads sometimes also called
16088 @emph{trampolines}. Thus, the indirect call/jump jumps to such a stub.
16089 The stub contains a direct jump to the desired address.
16090
16091 @item
16092 Linker relaxation must be turned on so that the linker generates
16093 the stubs correctly in all situations. See the compiler option
16094 @option{-mrelax} and the linker option @option{--relax}.
16095 There are corner cases where the linker is supposed to generate stubs
16096 but aborts without relaxation and without a helpful error message.
16097
16098 @item
16099 The default linker script is arranged for code with @code{EIND = 0}.
16100 If code is supposed to work for a setup with @code{EIND != 0}, a custom
16101 linker script has to be used in order to place the sections whose
16102 name start with @code{.trampolines} into the segment where @code{EIND}
16103 points to.
16104
16105 @item
16106 The startup code from libgcc never sets @code{EIND}.
16107 Notice that startup code is a blend of code from libgcc and AVR-LibC.
16108 For the impact of AVR-LibC on @code{EIND}, see the
16109 @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC user manual}}.
16110
16111 @item
16112 It is legitimate for user-specific startup code to set up @code{EIND}
16113 early, for example by means of initialization code located in
16114 section @code{.init3}. Such code runs prior to general startup code
16115 that initializes RAM and calls constructors, but after the bit
16116 of startup code from AVR-LibC that sets @code{EIND} to the segment
16117 where the vector table is located.
16118 @example
16119 #include <avr/io.h>
16120
16121 static void
16122 __attribute__((section(".init3"),naked,used,no_instrument_function))
16123 init3_set_eind (void)
16124 @{
16125 __asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
16126 "out %i0,r24" :: "n" (&EIND) : "r24","memory");
16127 @}
16128 @end example
16129
16130 @noindent
16131 The @code{__trampolines_start} symbol is defined in the linker script.
16132
16133 @item
16134 Stubs are generated automatically by the linker if
16135 the following two conditions are met:
16136 @itemize @minus
16137
16138 @item The address of a label is taken by means of the @code{gs} modifier
16139 (short for @emph{generate stubs}) like so:
16140 @example
16141 LDI r24, lo8(gs(@var{func}))
16142 LDI r25, hi8(gs(@var{func}))
16143 @end example
16144 @item The final location of that label is in a code segment
16145 @emph{outside} the segment where the stubs are located.
16146 @end itemize
16147
16148 @item
16149 The compiler emits such @code{gs} modifiers for code labels in the
16150 following situations:
16151 @itemize @minus
16152 @item Taking address of a function or code label.
16153 @item Computed goto.
16154 @item If prologue-save function is used, see @option{-mcall-prologues}
16155 command-line option.
16156 @item Switch/case dispatch tables. If you do not want such dispatch
16157 tables you can specify the @option{-fno-jump-tables} command-line option.
16158 @item C and C++ constructors/destructors called during startup/shutdown.
16159 @item If the tools hit a @code{gs()} modifier explained above.
16160 @end itemize
16161
16162 @item
16163 Jumping to non-symbolic addresses like so is @emph{not} supported:
16164
16165 @example
16166 int main (void)
16167 @{
16168 /* Call function at word address 0x2 */
16169 return ((int(*)(void)) 0x2)();
16170 @}
16171 @end example
16172
16173 Instead, a stub has to be set up, i.e.@: the function has to be called
16174 through a symbol (@code{func_4} in the example):
16175
16176 @example
16177 int main (void)
16178 @{
16179 extern int func_4 (void);
16180
16181 /* Call function at byte address 0x4 */
16182 return func_4();
16183 @}
16184 @end example
16185
16186 and the application be linked with @option{-Wl,--defsym,func_4=0x4}.
16187 Alternatively, @code{func_4} can be defined in the linker script.
16188 @end itemize
16189
16190 @subsubsection Handling of the @code{RAMPD}, @code{RAMPX}, @code{RAMPY} and @code{RAMPZ} Special Function Registers
16191 @cindex @code{RAMPD}
16192 @cindex @code{RAMPX}
16193 @cindex @code{RAMPY}
16194 @cindex @code{RAMPZ}
16195 Some AVR devices support memories larger than the 64@tie{}KiB range
16196 that can be accessed with 16-bit pointers. To access memory locations
16197 outside this 64@tie{}KiB range, the content of a @code{RAMP}
16198 register is used as high part of the address:
16199 The @code{X}, @code{Y}, @code{Z} address register is concatenated
16200 with the @code{RAMPX}, @code{RAMPY}, @code{RAMPZ} special function
16201 register, respectively, to get a wide address. Similarly,
16202 @code{RAMPD} is used together with direct addressing.
16203
16204 @itemize
16205 @item
16206 The startup code initializes the @code{RAMP} special function
16207 registers with zero.
16208
16209 @item
16210 If a @ref{AVR Named Address Spaces,named address space} other than
16211 generic or @code{__flash} is used, then @code{RAMPZ} is set
16212 as needed before the operation.
16213
16214 @item
16215 If the device supports RAM larger than 64@tie{}KiB and the compiler
16216 needs to change @code{RAMPZ} to accomplish an operation, @code{RAMPZ}
16217 is reset to zero after the operation.
16218
16219 @item
16220 If the device comes with a specific @code{RAMP} register, the ISR
16221 prologue/epilogue saves/restores that SFR and initializes it with
16222 zero in case the ISR code might (implicitly) use it.
16223
16224 @item
16225 RAM larger than 64@tie{}KiB is not supported by GCC for AVR targets.
16226 If you use inline assembler to read from locations outside the
16227 16-bit address range and change one of the @code{RAMP} registers,
16228 you must reset it to zero after the access.
16229
16230 @end itemize
16231
16232 @subsubsection AVR Built-in Macros
16233
16234 GCC defines several built-in macros so that the user code can test
16235 for the presence or absence of features. Almost any of the following
16236 built-in macros are deduced from device capabilities and thus
16237 triggered by the @option{-mmcu=} command-line option.
16238
16239 For even more AVR-specific built-in macros see
16240 @ref{AVR Named Address Spaces} and @ref{AVR Built-in Functions}.
16241
16242 @table @code
16243
16244 @item __AVR_ARCH__
16245 Build-in macro that resolves to a decimal number that identifies the
16246 architecture and depends on the @option{-mmcu=@var{mcu}} option.
16247 Possible values are:
16248
16249 @code{2}, @code{25}, @code{3}, @code{31}, @code{35},
16250 @code{4}, @code{5}, @code{51}, @code{6}
16251
16252 for @var{mcu}=@code{avr2}, @code{avr25}, @code{avr3}, @code{avr31},
16253 @code{avr35}, @code{avr4}, @code{avr5}, @code{avr51}, @code{avr6},
16254
16255 respectively and
16256
16257 @code{100},
16258 @code{102}, @code{103}, @code{104},
16259 @code{105}, @code{106}, @code{107}
16260
16261 for @var{mcu}=@code{avrtiny},
16262 @code{avrxmega2}, @code{avrxmega3}, @code{avrxmega4},
16263 @code{avrxmega5}, @code{avrxmega6}, @code{avrxmega7}, respectively.
16264 If @var{mcu} specifies a device, this built-in macro is set
16265 accordingly. For example, with @option{-mmcu=atmega8} the macro is
16266 defined to @code{4}.
16267
16268 @item __AVR_@var{Device}__
16269 Setting @option{-mmcu=@var{device}} defines this built-in macro which reflects
16270 the device's name. For example, @option{-mmcu=atmega8} defines the
16271 built-in macro @code{__AVR_ATmega8__}, @option{-mmcu=attiny261a} defines
16272 @code{__AVR_ATtiny261A__}, etc.
16273
16274 The built-in macros' names follow
16275 the scheme @code{__AVR_@var{Device}__} where @var{Device} is
16276 the device name as from the AVR user manual. The difference between
16277 @var{Device} in the built-in macro and @var{device} in
16278 @option{-mmcu=@var{device}} is that the latter is always lowercase.
16279
16280 If @var{device} is not a device but only a core architecture like
16281 @samp{avr51}, this macro is not defined.
16282
16283 @item __AVR_DEVICE_NAME__
16284 Setting @option{-mmcu=@var{device}} defines this built-in macro to
16285 the device's name. For example, with @option{-mmcu=atmega8} the macro
16286 is defined to @code{atmega8}.
16287
16288 If @var{device} is not a device but only a core architecture like
16289 @samp{avr51}, this macro is not defined.
16290
16291 @item __AVR_XMEGA__
16292 The device / architecture belongs to the XMEGA family of devices.
16293
16294 @item __AVR_HAVE_ELPM__
16295 The device has the @code{ELPM} instruction.
16296
16297 @item __AVR_HAVE_ELPMX__
16298 The device has the @code{ELPM R@var{n},Z} and @code{ELPM
16299 R@var{n},Z+} instructions.
16300
16301 @item __AVR_HAVE_MOVW__
16302 The device has the @code{MOVW} instruction to perform 16-bit
16303 register-register moves.
16304
16305 @item __AVR_HAVE_LPMX__
16306 The device has the @code{LPM R@var{n},Z} and
16307 @code{LPM R@var{n},Z+} instructions.
16308
16309 @item __AVR_HAVE_MUL__
16310 The device has a hardware multiplier.
16311
16312 @item __AVR_HAVE_JMP_CALL__
16313 The device has the @code{JMP} and @code{CALL} instructions.
16314 This is the case for devices with more than 8@tie{}KiB of program
16315 memory.
16316
16317 @item __AVR_HAVE_EIJMP_EICALL__
16318 @itemx __AVR_3_BYTE_PC__
16319 The device has the @code{EIJMP} and @code{EICALL} instructions.
16320 This is the case for devices with more than 128@tie{}KiB of program memory.
16321 This also means that the program counter
16322 (PC) is 3@tie{}bytes wide.
16323
16324 @item __AVR_2_BYTE_PC__
16325 The program counter (PC) is 2@tie{}bytes wide. This is the case for devices
16326 with up to 128@tie{}KiB of program memory.
16327
16328 @item __AVR_HAVE_8BIT_SP__
16329 @itemx __AVR_HAVE_16BIT_SP__
16330 The stack pointer (SP) register is treated as 8-bit respectively
16331 16-bit register by the compiler.
16332 The definition of these macros is affected by @option{-mtiny-stack}.
16333
16334 @item __AVR_HAVE_SPH__
16335 @itemx __AVR_SP8__
16336 The device has the SPH (high part of stack pointer) special function
16337 register or has an 8-bit stack pointer, respectively.
16338 The definition of these macros is affected by @option{-mmcu=} and
16339 in the cases of @option{-mmcu=avr2} and @option{-mmcu=avr25} also
16340 by @option{-msp8}.
16341
16342 @item __AVR_HAVE_RAMPD__
16343 @itemx __AVR_HAVE_RAMPX__
16344 @itemx __AVR_HAVE_RAMPY__
16345 @itemx __AVR_HAVE_RAMPZ__
16346 The device has the @code{RAMPD}, @code{RAMPX}, @code{RAMPY},
16347 @code{RAMPZ} special function register, respectively.
16348
16349 @item __NO_INTERRUPTS__
16350 This macro reflects the @option{-mno-interrupts} command-line option.
16351
16352 @item __AVR_ERRATA_SKIP__
16353 @itemx __AVR_ERRATA_SKIP_JMP_CALL__
16354 Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit
16355 instructions because of a hardware erratum. Skip instructions are
16356 @code{SBRS}, @code{SBRC}, @code{SBIS}, @code{SBIC} and @code{CPSE}.
16357 The second macro is only defined if @code{__AVR_HAVE_JMP_CALL__} is also
16358 set.
16359
16360 @item __AVR_ISA_RMW__
16361 The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT).
16362
16363 @item __AVR_SFR_OFFSET__=@var{offset}
16364 Instructions that can address I/O special function registers directly
16365 like @code{IN}, @code{OUT}, @code{SBI}, etc.@: may use a different
16366 address as if addressed by an instruction to access RAM like @code{LD}
16367 or @code{STS}. This offset depends on the device architecture and has
16368 to be subtracted from the RAM address in order to get the
16369 respective I/O@tie{}address.
16370
16371 @item __AVR_SHORT_CALLS__
16372 The @option{-mshort-calls} command line option is set.
16373
16374 @item __AVR_PM_BASE_ADDRESS__=@var{addr}
16375 Some devices support reading from flash memory by means of @code{LD*}
16376 instructions. The flash memory is seen in the data address space
16377 at an offset of @code{__AVR_PM_BASE_ADDRESS__}. If this macro
16378 is not defined, this feature is not available. If defined,
16379 the address space is linear and there is no need to put
16380 @code{.rodata} into RAM. This is handled by the default linker
16381 description file, and is currently available for
16382 @code{avrtiny} and @code{avrxmega3}. Even more convenient,
16383 there is no need to use address spaces like @code{__flash} or
16384 features like attribute @code{progmem} and @code{pgm_read_*}.
16385
16386 @item __WITH_AVRLIBC__
16387 The compiler is configured to be used together with AVR-Libc.
16388 See the @option{--with-avrlibc} configure option.
16389
16390 @end table
16391
16392 @node Blackfin Options
16393 @subsection Blackfin Options
16394 @cindex Blackfin Options
16395
16396 @table @gcctabopt
16397 @item -mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]}
16398 @opindex mcpu=
16399 Specifies the name of the target Blackfin processor. Currently, @var{cpu}
16400 can be one of @samp{bf512}, @samp{bf514}, @samp{bf516}, @samp{bf518},
16401 @samp{bf522}, @samp{bf523}, @samp{bf524}, @samp{bf525}, @samp{bf526},
16402 @samp{bf527}, @samp{bf531}, @samp{bf532}, @samp{bf533},
16403 @samp{bf534}, @samp{bf536}, @samp{bf537}, @samp{bf538}, @samp{bf539},
16404 @samp{bf542}, @samp{bf544}, @samp{bf547}, @samp{bf548}, @samp{bf549},
16405 @samp{bf542m}, @samp{bf544m}, @samp{bf547m}, @samp{bf548m}, @samp{bf549m},
16406 @samp{bf561}, @samp{bf592}.
16407
16408 The optional @var{sirevision} specifies the silicon revision of the target
16409 Blackfin processor. Any workarounds available for the targeted silicon revision
16410 are enabled. If @var{sirevision} is @samp{none}, no workarounds are enabled.
16411 If @var{sirevision} is @samp{any}, all workarounds for the targeted processor
16412 are enabled. The @code{__SILICON_REVISION__} macro is defined to two
16413 hexadecimal digits representing the major and minor numbers in the silicon
16414 revision. If @var{sirevision} is @samp{none}, the @code{__SILICON_REVISION__}
16415 is not defined. If @var{sirevision} is @samp{any}, the
16416 @code{__SILICON_REVISION__} is defined to be @code{0xffff}.
16417 If this optional @var{sirevision} is not used, GCC assumes the latest known
16418 silicon revision of the targeted Blackfin processor.
16419
16420 GCC defines a preprocessor macro for the specified @var{cpu}.
16421 For the @samp{bfin-elf} toolchain, this option causes the hardware BSP
16422 provided by libgloss to be linked in if @option{-msim} is not given.
16423
16424 Without this option, @samp{bf532} is used as the processor by default.
16425
16426 Note that support for @samp{bf561} is incomplete. For @samp{bf561},
16427 only the preprocessor macro is defined.
16428
16429 @item -msim
16430 @opindex msim
16431 Specifies that the program will be run on the simulator. This causes
16432 the simulator BSP provided by libgloss to be linked in. This option
16433 has effect only for @samp{bfin-elf} toolchain.
16434 Certain other options, such as @option{-mid-shared-library} and
16435 @option{-mfdpic}, imply @option{-msim}.
16436
16437 @item -momit-leaf-frame-pointer
16438 @opindex momit-leaf-frame-pointer
16439 Don't keep the frame pointer in a register for leaf functions. This
16440 avoids the instructions to save, set up and restore frame pointers and
16441 makes an extra register available in leaf functions. The option
16442 @option{-fomit-frame-pointer} removes the frame pointer for all functions,
16443 which might make debugging harder.
16444
16445 @item -mspecld-anomaly
16446 @opindex mspecld-anomaly
16447 When enabled, the compiler ensures that the generated code does not
16448 contain speculative loads after jump instructions. If this option is used,
16449 @code{__WORKAROUND_SPECULATIVE_LOADS} is defined.
16450
16451 @item -mno-specld-anomaly
16452 @opindex mno-specld-anomaly
16453 Don't generate extra code to prevent speculative loads from occurring.
16454
16455 @item -mcsync-anomaly
16456 @opindex mcsync-anomaly
16457 When enabled, the compiler ensures that the generated code does not
16458 contain CSYNC or SSYNC instructions too soon after conditional branches.
16459 If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined.
16460
16461 @item -mno-csync-anomaly
16462 @opindex mno-csync-anomaly
16463 Don't generate extra code to prevent CSYNC or SSYNC instructions from
16464 occurring too soon after a conditional branch.
16465
16466 @item -mlow-64k
16467 @opindex mlow-64k
16468 When enabled, the compiler is free to take advantage of the knowledge that
16469 the entire program fits into the low 64k of memory.
16470
16471 @item -mno-low-64k
16472 @opindex mno-low-64k
16473 Assume that the program is arbitrarily large. This is the default.
16474
16475 @item -mstack-check-l1
16476 @opindex mstack-check-l1
16477 Do stack checking using information placed into L1 scratchpad memory by the
16478 uClinux kernel.
16479
16480 @item -mid-shared-library
16481 @opindex mid-shared-library
16482 Generate code that supports shared libraries via the library ID method.
16483 This allows for execute in place and shared libraries in an environment
16484 without virtual memory management. This option implies @option{-fPIC}.
16485 With a @samp{bfin-elf} target, this option implies @option{-msim}.
16486
16487 @item -mno-id-shared-library
16488 @opindex mno-id-shared-library
16489 Generate code that doesn't assume ID-based shared libraries are being used.
16490 This is the default.
16491
16492 @item -mleaf-id-shared-library
16493 @opindex mleaf-id-shared-library
16494 Generate code that supports shared libraries via the library ID method,
16495 but assumes that this library or executable won't link against any other
16496 ID shared libraries. That allows the compiler to use faster code for jumps
16497 and calls.
16498
16499 @item -mno-leaf-id-shared-library
16500 @opindex mno-leaf-id-shared-library
16501 Do not assume that the code being compiled won't link against any ID shared
16502 libraries. Slower code is generated for jump and call insns.
16503
16504 @item -mshared-library-id=n
16505 @opindex mshared-library-id
16506 Specifies the identification number of the ID-based shared library being
16507 compiled. Specifying a value of 0 generates more compact code; specifying
16508 other values forces the allocation of that number to the current
16509 library but is no more space- or time-efficient than omitting this option.
16510
16511 @item -msep-data
16512 @opindex msep-data
16513 Generate code that allows the data segment to be located in a different
16514 area of memory from the text segment. This allows for execute in place in
16515 an environment without virtual memory management by eliminating relocations
16516 against the text section.
16517
16518 @item -mno-sep-data
16519 @opindex mno-sep-data
16520 Generate code that assumes that the data segment follows the text segment.
16521 This is the default.
16522
16523 @item -mlong-calls
16524 @itemx -mno-long-calls
16525 @opindex mlong-calls
16526 @opindex mno-long-calls
16527 Tells the compiler to perform function calls by first loading the
16528 address of the function into a register and then performing a subroutine
16529 call on this register. This switch is needed if the target function
16530 lies outside of the 24-bit addressing range of the offset-based
16531 version of subroutine call instruction.
16532
16533 This feature is not enabled by default. Specifying
16534 @option{-mno-long-calls} restores the default behavior. Note these
16535 switches have no effect on how the compiler generates code to handle
16536 function calls via function pointers.
16537
16538 @item -mfast-fp
16539 @opindex mfast-fp
16540 Link with the fast floating-point library. This library relaxes some of
16541 the IEEE floating-point standard's rules for checking inputs against
16542 Not-a-Number (NAN), in the interest of performance.
16543
16544 @item -minline-plt
16545 @opindex minline-plt
16546 Enable inlining of PLT entries in function calls to functions that are
16547 not known to bind locally. It has no effect without @option{-mfdpic}.
16548
16549 @item -mmulticore
16550 @opindex mmulticore
16551 Build a standalone application for multicore Blackfin processors.
16552 This option causes proper start files and link scripts supporting
16553 multicore to be used, and defines the macro @code{__BFIN_MULTICORE}.
16554 It can only be used with @option{-mcpu=bf561@r{[}-@var{sirevision}@r{]}}.
16555
16556 This option can be used with @option{-mcorea} or @option{-mcoreb}, which
16557 selects the one-application-per-core programming model. Without
16558 @option{-mcorea} or @option{-mcoreb}, the single-application/dual-core
16559 programming model is used. In this model, the main function of Core B
16560 should be named as @code{coreb_main}.
16561
16562 If this option is not used, the single-core application programming
16563 model is used.
16564
16565 @item -mcorea
16566 @opindex mcorea
16567 Build a standalone application for Core A of BF561 when using
16568 the one-application-per-core programming model. Proper start files
16569 and link scripts are used to support Core A, and the macro
16570 @code{__BFIN_COREA} is defined.
16571 This option can only be used in conjunction with @option{-mmulticore}.
16572
16573 @item -mcoreb
16574 @opindex mcoreb
16575 Build a standalone application for Core B of BF561 when using
16576 the one-application-per-core programming model. Proper start files
16577 and link scripts are used to support Core B, and the macro
16578 @code{__BFIN_COREB} is defined. When this option is used, @code{coreb_main}
16579 should be used instead of @code{main}.
16580 This option can only be used in conjunction with @option{-mmulticore}.
16581
16582 @item -msdram
16583 @opindex msdram
16584 Build a standalone application for SDRAM. Proper start files and
16585 link scripts are used to put the application into SDRAM, and the macro
16586 @code{__BFIN_SDRAM} is defined.
16587 The loader should initialize SDRAM before loading the application.
16588
16589 @item -micplb
16590 @opindex micplb
16591 Assume that ICPLBs are enabled at run time. This has an effect on certain
16592 anomaly workarounds. For Linux targets, the default is to assume ICPLBs
16593 are enabled; for standalone applications the default is off.
16594 @end table
16595
16596 @node C6X Options
16597 @subsection C6X Options
16598 @cindex C6X Options
16599
16600 @table @gcctabopt
16601 @item -march=@var{name}
16602 @opindex march
16603 This specifies the name of the target architecture. GCC uses this
16604 name to determine what kind of instructions it can emit when generating
16605 assembly code. Permissible names are: @samp{c62x},
16606 @samp{c64x}, @samp{c64x+}, @samp{c67x}, @samp{c67x+}, @samp{c674x}.
16607
16608 @item -mbig-endian
16609 @opindex mbig-endian
16610 Generate code for a big-endian target.
16611
16612 @item -mlittle-endian
16613 @opindex mlittle-endian
16614 Generate code for a little-endian target. This is the default.
16615
16616 @item -msim
16617 @opindex msim
16618 Choose startup files and linker script suitable for the simulator.
16619
16620 @item -msdata=default
16621 @opindex msdata=default
16622 Put small global and static data in the @code{.neardata} section,
16623 which is pointed to by register @code{B14}. Put small uninitialized
16624 global and static data in the @code{.bss} section, which is adjacent
16625 to the @code{.neardata} section. Put small read-only data into the
16626 @code{.rodata} section. The corresponding sections used for large
16627 pieces of data are @code{.fardata}, @code{.far} and @code{.const}.
16628
16629 @item -msdata=all
16630 @opindex msdata=all
16631 Put all data, not just small objects, into the sections reserved for
16632 small data, and use addressing relative to the @code{B14} register to
16633 access them.
16634
16635 @item -msdata=none
16636 @opindex msdata=none
16637 Make no use of the sections reserved for small data, and use absolute
16638 addresses to access all data. Put all initialized global and static
16639 data in the @code{.fardata} section, and all uninitialized data in the
16640 @code{.far} section. Put all constant data into the @code{.const}
16641 section.
16642 @end table
16643
16644 @node CRIS Options
16645 @subsection CRIS Options
16646 @cindex CRIS Options
16647
16648 These options are defined specifically for the CRIS ports.
16649
16650 @table @gcctabopt
16651 @item -march=@var{architecture-type}
16652 @itemx -mcpu=@var{architecture-type}
16653 @opindex march
16654 @opindex mcpu
16655 Generate code for the specified architecture. The choices for
16656 @var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
16657 respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX@.
16658 Default is @samp{v0} except for cris-axis-linux-gnu, where the default is
16659 @samp{v10}.
16660
16661 @item -mtune=@var{architecture-type}
16662 @opindex mtune
16663 Tune to @var{architecture-type} everything applicable about the generated
16664 code, except for the ABI and the set of available instructions. The
16665 choices for @var{architecture-type} are the same as for
16666 @option{-march=@var{architecture-type}}.
16667
16668 @item -mmax-stack-frame=@var{n}
16669 @opindex mmax-stack-frame
16670 Warn when the stack frame of a function exceeds @var{n} bytes.
16671
16672 @item -metrax4
16673 @itemx -metrax100
16674 @opindex metrax4
16675 @opindex metrax100
16676 The options @option{-metrax4} and @option{-metrax100} are synonyms for
16677 @option{-march=v3} and @option{-march=v8} respectively.
16678
16679 @item -mmul-bug-workaround
16680 @itemx -mno-mul-bug-workaround
16681 @opindex mmul-bug-workaround
16682 @opindex mno-mul-bug-workaround
16683 Work around a bug in the @code{muls} and @code{mulu} instructions for CPU
16684 models where it applies. This option is active by default.
16685
16686 @item -mpdebug
16687 @opindex mpdebug
16688 Enable CRIS-specific verbose debug-related information in the assembly
16689 code. This option also has the effect of turning off the @samp{#NO_APP}
16690 formatted-code indicator to the assembler at the beginning of the
16691 assembly file.
16692
16693 @item -mcc-init
16694 @opindex mcc-init
16695 Do not use condition-code results from previous instruction; always emit
16696 compare and test instructions before use of condition codes.
16697
16698 @item -mno-side-effects
16699 @opindex mno-side-effects
16700 Do not emit instructions with side effects in addressing modes other than
16701 post-increment.
16702
16703 @item -mstack-align
16704 @itemx -mno-stack-align
16705 @itemx -mdata-align
16706 @itemx -mno-data-align
16707 @itemx -mconst-align
16708 @itemx -mno-const-align
16709 @opindex mstack-align
16710 @opindex mno-stack-align
16711 @opindex mdata-align
16712 @opindex mno-data-align
16713 @opindex mconst-align
16714 @opindex mno-const-align
16715 These options (@samp{no-} options) arrange (eliminate arrangements) for the
16716 stack frame, individual data and constants to be aligned for the maximum
16717 single data access size for the chosen CPU model. The default is to
16718 arrange for 32-bit alignment. ABI details such as structure layout are
16719 not affected by these options.
16720
16721 @item -m32-bit
16722 @itemx -m16-bit
16723 @itemx -m8-bit
16724 @opindex m32-bit
16725 @opindex m16-bit
16726 @opindex m8-bit
16727 Similar to the stack- data- and const-align options above, these options
16728 arrange for stack frame, writable data and constants to all be 32-bit,
16729 16-bit or 8-bit aligned. The default is 32-bit alignment.
16730
16731 @item -mno-prologue-epilogue
16732 @itemx -mprologue-epilogue
16733 @opindex mno-prologue-epilogue
16734 @opindex mprologue-epilogue
16735 With @option{-mno-prologue-epilogue}, the normal function prologue and
16736 epilogue which set up the stack frame are omitted and no return
16737 instructions or return sequences are generated in the code. Use this
16738 option only together with visual inspection of the compiled code: no
16739 warnings or errors are generated when call-saved registers must be saved,
16740 or storage for local variables needs to be allocated.
16741
16742 @item -mno-gotplt
16743 @itemx -mgotplt
16744 @opindex mno-gotplt
16745 @opindex mgotplt
16746 With @option{-fpic} and @option{-fPIC}, don't generate (do generate)
16747 instruction sequences that load addresses for functions from the PLT part
16748 of the GOT rather than (traditional on other architectures) calls to the
16749 PLT@. The default is @option{-mgotplt}.
16750
16751 @item -melf
16752 @opindex melf
16753 Legacy no-op option only recognized with the cris-axis-elf and
16754 cris-axis-linux-gnu targets.
16755
16756 @item -mlinux
16757 @opindex mlinux
16758 Legacy no-op option only recognized with the cris-axis-linux-gnu target.
16759
16760 @item -sim
16761 @opindex sim
16762 This option, recognized for the cris-axis-elf, arranges
16763 to link with input-output functions from a simulator library. Code,
16764 initialized data and zero-initialized data are allocated consecutively.
16765
16766 @item -sim2
16767 @opindex sim2
16768 Like @option{-sim}, but pass linker options to locate initialized data at
16769 0x40000000 and zero-initialized data at 0x80000000.
16770 @end table
16771
16772 @node CR16 Options
16773 @subsection CR16 Options
16774 @cindex CR16 Options
16775
16776 These options are defined specifically for the CR16 ports.
16777
16778 @table @gcctabopt
16779
16780 @item -mmac
16781 @opindex mmac
16782 Enable the use of multiply-accumulate instructions. Disabled by default.
16783
16784 @item -mcr16cplus
16785 @itemx -mcr16c
16786 @opindex mcr16cplus
16787 @opindex mcr16c
16788 Generate code for CR16C or CR16C+ architecture. CR16C+ architecture
16789 is default.
16790
16791 @item -msim
16792 @opindex msim
16793 Links the library libsim.a which is in compatible with simulator. Applicable
16794 to ELF compiler only.
16795
16796 @item -mint32
16797 @opindex mint32
16798 Choose integer type as 32-bit wide.
16799
16800 @item -mbit-ops
16801 @opindex mbit-ops
16802 Generates @code{sbit}/@code{cbit} instructions for bit manipulations.
16803
16804 @item -mdata-model=@var{model}
16805 @opindex mdata-model
16806 Choose a data model. The choices for @var{model} are @samp{near},
16807 @samp{far} or @samp{medium}. @samp{medium} is default.
16808 However, @samp{far} is not valid with @option{-mcr16c}, as the
16809 CR16C architecture does not support the far data model.
16810 @end table
16811
16812 @node Darwin Options
16813 @subsection Darwin Options
16814 @cindex Darwin options
16815
16816 These options are defined for all architectures running the Darwin operating
16817 system.
16818
16819 FSF GCC on Darwin does not create ``fat'' object files; it creates
16820 an object file for the single architecture that GCC was built to
16821 target. Apple's GCC on Darwin does create ``fat'' files if multiple
16822 @option{-arch} options are used; it does so by running the compiler or
16823 linker multiple times and joining the results together with
16824 @file{lipo}.
16825
16826 The subtype of the file created (like @samp{ppc7400} or @samp{ppc970} or
16827 @samp{i686}) is determined by the flags that specify the ISA
16828 that GCC is targeting, like @option{-mcpu} or @option{-march}. The
16829 @option{-force_cpusubtype_ALL} option can be used to override this.
16830
16831 The Darwin tools vary in their behavior when presented with an ISA
16832 mismatch. The assembler, @file{as}, only permits instructions to
16833 be used that are valid for the subtype of the file it is generating,
16834 so you cannot put 64-bit instructions in a @samp{ppc750} object file.
16835 The linker for shared libraries, @file{/usr/bin/libtool}, fails
16836 and prints an error if asked to create a shared library with a less
16837 restrictive subtype than its input files (for instance, trying to put
16838 a @samp{ppc970} object file in a @samp{ppc7400} library). The linker
16839 for executables, @command{ld}, quietly gives the executable the most
16840 restrictive subtype of any of its input files.
16841
16842 @table @gcctabopt
16843 @item -F@var{dir}
16844 @opindex F
16845 Add the framework directory @var{dir} to the head of the list of
16846 directories to be searched for header files. These directories are
16847 interleaved with those specified by @option{-I} options and are
16848 scanned in a left-to-right order.
16849
16850 A framework directory is a directory with frameworks in it. A
16851 framework is a directory with a @file{Headers} and/or
16852 @file{PrivateHeaders} directory contained directly in it that ends
16853 in @file{.framework}. The name of a framework is the name of this
16854 directory excluding the @file{.framework}. Headers associated with
16855 the framework are found in one of those two directories, with
16856 @file{Headers} being searched first. A subframework is a framework
16857 directory that is in a framework's @file{Frameworks} directory.
16858 Includes of subframework headers can only appear in a header of a
16859 framework that contains the subframework, or in a sibling subframework
16860 header. Two subframeworks are siblings if they occur in the same
16861 framework. A subframework should not have the same name as a
16862 framework; a warning is issued if this is violated. Currently a
16863 subframework cannot have subframeworks; in the future, the mechanism
16864 may be extended to support this. The standard frameworks can be found
16865 in @file{/System/Library/Frameworks} and
16866 @file{/Library/Frameworks}. An example include looks like
16867 @code{#include <Framework/header.h>}, where @file{Framework} denotes
16868 the name of the framework and @file{header.h} is found in the
16869 @file{PrivateHeaders} or @file{Headers} directory.
16870
16871 @item -iframework@var{dir}
16872 @opindex iframework
16873 Like @option{-F} except the directory is a treated as a system
16874 directory. The main difference between this @option{-iframework} and
16875 @option{-F} is that with @option{-iframework} the compiler does not
16876 warn about constructs contained within header files found via
16877 @var{dir}. This option is valid only for the C family of languages.
16878
16879 @item -gused
16880 @opindex gused
16881 Emit debugging information for symbols that are used. For stabs
16882 debugging format, this enables @option{-feliminate-unused-debug-symbols}.
16883 This is by default ON@.
16884
16885 @item -gfull
16886 @opindex gfull
16887 Emit debugging information for all symbols and types.
16888
16889 @item -mmacosx-version-min=@var{version}
16890 The earliest version of MacOS X that this executable will run on
16891 is @var{version}. Typical values of @var{version} include @code{10.1},
16892 @code{10.2}, and @code{10.3.9}.
16893
16894 If the compiler was built to use the system's headers by default,
16895 then the default for this option is the system version on which the
16896 compiler is running, otherwise the default is to make choices that
16897 are compatible with as many systems and code bases as possible.
16898
16899 @item -mkernel
16900 @opindex mkernel
16901 Enable kernel development mode. The @option{-mkernel} option sets
16902 @option{-static}, @option{-fno-common}, @option{-fno-use-cxa-atexit},
16903 @option{-fno-exceptions}, @option{-fno-non-call-exceptions},
16904 @option{-fapple-kext}, @option{-fno-weak} and @option{-fno-rtti} where
16905 applicable. This mode also sets @option{-mno-altivec},
16906 @option{-msoft-float}, @option{-fno-builtin} and
16907 @option{-mlong-branch} for PowerPC targets.
16908
16909 @item -mone-byte-bool
16910 @opindex mone-byte-bool
16911 Override the defaults for @code{bool} so that @code{sizeof(bool)==1}.
16912 By default @code{sizeof(bool)} is @code{4} when compiling for
16913 Darwin/PowerPC and @code{1} when compiling for Darwin/x86, so this
16914 option has no effect on x86.
16915
16916 @strong{Warning:} The @option{-mone-byte-bool} switch causes GCC
16917 to generate code that is not binary compatible with code generated
16918 without that switch. Using this switch may require recompiling all
16919 other modules in a program, including system libraries. Use this
16920 switch to conform to a non-default data model.
16921
16922 @item -mfix-and-continue
16923 @itemx -ffix-and-continue
16924 @itemx -findirect-data
16925 @opindex mfix-and-continue
16926 @opindex ffix-and-continue
16927 @opindex findirect-data
16928 Generate code suitable for fast turnaround development, such as to
16929 allow GDB to dynamically load @file{.o} files into already-running
16930 programs. @option{-findirect-data} and @option{-ffix-and-continue}
16931 are provided for backwards compatibility.
16932
16933 @item -all_load
16934 @opindex all_load
16935 Loads all members of static archive libraries.
16936 See man ld(1) for more information.
16937
16938 @item -arch_errors_fatal
16939 @opindex arch_errors_fatal
16940 Cause the errors having to do with files that have the wrong architecture
16941 to be fatal.
16942
16943 @item -bind_at_load
16944 @opindex bind_at_load
16945 Causes the output file to be marked such that the dynamic linker will
16946 bind all undefined references when the file is loaded or launched.
16947
16948 @item -bundle
16949 @opindex bundle
16950 Produce a Mach-o bundle format file.
16951 See man ld(1) for more information.
16952
16953 @item -bundle_loader @var{executable}
16954 @opindex bundle_loader
16955 This option specifies the @var{executable} that will load the build
16956 output file being linked. See man ld(1) for more information.
16957
16958 @item -dynamiclib
16959 @opindex dynamiclib
16960 When passed this option, GCC produces a dynamic library instead of
16961 an executable when linking, using the Darwin @file{libtool} command.
16962
16963 @item -force_cpusubtype_ALL
16964 @opindex force_cpusubtype_ALL
16965 This causes GCC's output file to have the @samp{ALL} subtype, instead of
16966 one controlled by the @option{-mcpu} or @option{-march} option.
16967
16968 @item -allowable_client @var{client_name}
16969 @itemx -client_name
16970 @itemx -compatibility_version
16971 @itemx -current_version
16972 @itemx -dead_strip
16973 @itemx -dependency-file
16974 @itemx -dylib_file
16975 @itemx -dylinker_install_name
16976 @itemx -dynamic
16977 @itemx -exported_symbols_list
16978 @itemx -filelist
16979 @need 800
16980 @itemx -flat_namespace
16981 @itemx -force_flat_namespace
16982 @itemx -headerpad_max_install_names
16983 @itemx -image_base
16984 @itemx -init
16985 @itemx -install_name
16986 @itemx -keep_private_externs
16987 @itemx -multi_module
16988 @itemx -multiply_defined
16989 @itemx -multiply_defined_unused
16990 @need 800
16991 @itemx -noall_load
16992 @itemx -no_dead_strip_inits_and_terms
16993 @itemx -nofixprebinding
16994 @itemx -nomultidefs
16995 @itemx -noprebind
16996 @itemx -noseglinkedit
16997 @itemx -pagezero_size
16998 @itemx -prebind
16999 @itemx -prebind_all_twolevel_modules
17000 @itemx -private_bundle
17001 @need 800
17002 @itemx -read_only_relocs
17003 @itemx -sectalign
17004 @itemx -sectobjectsymbols
17005 @itemx -whyload
17006 @itemx -seg1addr
17007 @itemx -sectcreate
17008 @itemx -sectobjectsymbols
17009 @itemx -sectorder
17010 @itemx -segaddr
17011 @itemx -segs_read_only_addr
17012 @need 800
17013 @itemx -segs_read_write_addr
17014 @itemx -seg_addr_table
17015 @itemx -seg_addr_table_filename
17016 @itemx -seglinkedit
17017 @itemx -segprot
17018 @itemx -segs_read_only_addr
17019 @itemx -segs_read_write_addr
17020 @itemx -single_module
17021 @itemx -static
17022 @itemx -sub_library
17023 @need 800
17024 @itemx -sub_umbrella
17025 @itemx -twolevel_namespace
17026 @itemx -umbrella
17027 @itemx -undefined
17028 @itemx -unexported_symbols_list
17029 @itemx -weak_reference_mismatches
17030 @itemx -whatsloaded
17031 @opindex allowable_client
17032 @opindex client_name
17033 @opindex compatibility_version
17034 @opindex current_version
17035 @opindex dead_strip
17036 @opindex dependency-file
17037 @opindex dylib_file
17038 @opindex dylinker_install_name
17039 @opindex dynamic
17040 @opindex exported_symbols_list
17041 @opindex filelist
17042 @opindex flat_namespace
17043 @opindex force_flat_namespace
17044 @opindex headerpad_max_install_names
17045 @opindex image_base
17046 @opindex init
17047 @opindex install_name
17048 @opindex keep_private_externs
17049 @opindex multi_module
17050 @opindex multiply_defined
17051 @opindex multiply_defined_unused
17052 @opindex noall_load
17053 @opindex no_dead_strip_inits_and_terms
17054 @opindex nofixprebinding
17055 @opindex nomultidefs
17056 @opindex noprebind
17057 @opindex noseglinkedit
17058 @opindex pagezero_size
17059 @opindex prebind
17060 @opindex prebind_all_twolevel_modules
17061 @opindex private_bundle
17062 @opindex read_only_relocs
17063 @opindex sectalign
17064 @opindex sectobjectsymbols
17065 @opindex whyload
17066 @opindex seg1addr
17067 @opindex sectcreate
17068 @opindex sectobjectsymbols
17069 @opindex sectorder
17070 @opindex segaddr
17071 @opindex segs_read_only_addr
17072 @opindex segs_read_write_addr
17073 @opindex seg_addr_table
17074 @opindex seg_addr_table_filename
17075 @opindex seglinkedit
17076 @opindex segprot
17077 @opindex segs_read_only_addr
17078 @opindex segs_read_write_addr
17079 @opindex single_module
17080 @opindex static
17081 @opindex sub_library
17082 @opindex sub_umbrella
17083 @opindex twolevel_namespace
17084 @opindex umbrella
17085 @opindex undefined
17086 @opindex unexported_symbols_list
17087 @opindex weak_reference_mismatches
17088 @opindex whatsloaded
17089 These options are passed to the Darwin linker. The Darwin linker man page
17090 describes them in detail.
17091 @end table
17092
17093 @node DEC Alpha Options
17094 @subsection DEC Alpha Options
17095
17096 These @samp{-m} options are defined for the DEC Alpha implementations:
17097
17098 @table @gcctabopt
17099 @item -mno-soft-float
17100 @itemx -msoft-float
17101 @opindex mno-soft-float
17102 @opindex msoft-float
17103 Use (do not use) the hardware floating-point instructions for
17104 floating-point operations. When @option{-msoft-float} is specified,
17105 functions in @file{libgcc.a} are used to perform floating-point
17106 operations. Unless they are replaced by routines that emulate the
17107 floating-point operations, or compiled in such a way as to call such
17108 emulations routines, these routines issue floating-point
17109 operations. If you are compiling for an Alpha without floating-point
17110 operations, you must ensure that the library is built so as not to call
17111 them.
17112
17113 Note that Alpha implementations without floating-point operations are
17114 required to have floating-point registers.
17115
17116 @item -mfp-reg
17117 @itemx -mno-fp-regs
17118 @opindex mfp-reg
17119 @opindex mno-fp-regs
17120 Generate code that uses (does not use) the floating-point register set.
17121 @option{-mno-fp-regs} implies @option{-msoft-float}. If the floating-point
17122 register set is not used, floating-point operands are passed in integer
17123 registers as if they were integers and floating-point results are passed
17124 in @code{$0} instead of @code{$f0}. This is a non-standard calling sequence,
17125 so any function with a floating-point argument or return value called by code
17126 compiled with @option{-mno-fp-regs} must also be compiled with that
17127 option.
17128
17129 A typical use of this option is building a kernel that does not use,
17130 and hence need not save and restore, any floating-point registers.
17131
17132 @item -mieee
17133 @opindex mieee
17134 The Alpha architecture implements floating-point hardware optimized for
17135 maximum performance. It is mostly compliant with the IEEE floating-point
17136 standard. However, for full compliance, software assistance is
17137 required. This option generates code fully IEEE-compliant code
17138 @emph{except} that the @var{inexact-flag} is not maintained (see below).
17139 If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
17140 defined during compilation. The resulting code is less efficient but is
17141 able to correctly support denormalized numbers and exceptional IEEE
17142 values such as not-a-number and plus/minus infinity. Other Alpha
17143 compilers call this option @option{-ieee_with_no_inexact}.
17144
17145 @item -mieee-with-inexact
17146 @opindex mieee-with-inexact
17147 This is like @option{-mieee} except the generated code also maintains
17148 the IEEE @var{inexact-flag}. Turning on this option causes the
17149 generated code to implement fully-compliant IEEE math. In addition to
17150 @code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
17151 macro. On some Alpha implementations the resulting code may execute
17152 significantly slower than the code generated by default. Since there is
17153 very little code that depends on the @var{inexact-flag}, you should
17154 normally not specify this option. Other Alpha compilers call this
17155 option @option{-ieee_with_inexact}.
17156
17157 @item -mfp-trap-mode=@var{trap-mode}
17158 @opindex mfp-trap-mode
17159 This option controls what floating-point related traps are enabled.
17160 Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
17161 The trap mode can be set to one of four values:
17162
17163 @table @samp
17164 @item n
17165 This is the default (normal) setting. The only traps that are enabled
17166 are the ones that cannot be disabled in software (e.g., division by zero
17167 trap).
17168
17169 @item u
17170 In addition to the traps enabled by @samp{n}, underflow traps are enabled
17171 as well.
17172
17173 @item su
17174 Like @samp{u}, but the instructions are marked to be safe for software
17175 completion (see Alpha architecture manual for details).
17176
17177 @item sui
17178 Like @samp{su}, but inexact traps are enabled as well.
17179 @end table
17180
17181 @item -mfp-rounding-mode=@var{rounding-mode}
17182 @opindex mfp-rounding-mode
17183 Selects the IEEE rounding mode. Other Alpha compilers call this option
17184 @option{-fprm @var{rounding-mode}}. The @var{rounding-mode} can be one
17185 of:
17186
17187 @table @samp
17188 @item n
17189 Normal IEEE rounding mode. Floating-point numbers are rounded towards
17190 the nearest machine number or towards the even machine number in case
17191 of a tie.
17192
17193 @item m
17194 Round towards minus infinity.
17195
17196 @item c
17197 Chopped rounding mode. Floating-point numbers are rounded towards zero.
17198
17199 @item d
17200 Dynamic rounding mode. A field in the floating-point control register
17201 (@var{fpcr}, see Alpha architecture reference manual) controls the
17202 rounding mode in effect. The C library initializes this register for
17203 rounding towards plus infinity. Thus, unless your program modifies the
17204 @var{fpcr}, @samp{d} corresponds to round towards plus infinity.
17205 @end table
17206
17207 @item -mtrap-precision=@var{trap-precision}
17208 @opindex mtrap-precision
17209 In the Alpha architecture, floating-point traps are imprecise. This
17210 means without software assistance it is impossible to recover from a
17211 floating trap and program execution normally needs to be terminated.
17212 GCC can generate code that can assist operating system trap handlers
17213 in determining the exact location that caused a floating-point trap.
17214 Depending on the requirements of an application, different levels of
17215 precisions can be selected:
17216
17217 @table @samp
17218 @item p
17219 Program precision. This option is the default and means a trap handler
17220 can only identify which program caused a floating-point exception.
17221
17222 @item f
17223 Function precision. The trap handler can determine the function that
17224 caused a floating-point exception.
17225
17226 @item i
17227 Instruction precision. The trap handler can determine the exact
17228 instruction that caused a floating-point exception.
17229 @end table
17230
17231 Other Alpha compilers provide the equivalent options called
17232 @option{-scope_safe} and @option{-resumption_safe}.
17233
17234 @item -mieee-conformant
17235 @opindex mieee-conformant
17236 This option marks the generated code as IEEE conformant. You must not
17237 use this option unless you also specify @option{-mtrap-precision=i} and either
17238 @option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}. Its only effect
17239 is to emit the line @samp{.eflag 48} in the function prologue of the
17240 generated assembly file.
17241
17242 @item -mbuild-constants
17243 @opindex mbuild-constants
17244 Normally GCC examines a 32- or 64-bit integer constant to
17245 see if it can construct it from smaller constants in two or three
17246 instructions. If it cannot, it outputs the constant as a literal and
17247 generates code to load it from the data segment at run time.
17248
17249 Use this option to require GCC to construct @emph{all} integer constants
17250 using code, even if it takes more instructions (the maximum is six).
17251
17252 You typically use this option to build a shared library dynamic
17253 loader. Itself a shared library, it must relocate itself in memory
17254 before it can find the variables and constants in its own data segment.
17255
17256 @item -mbwx
17257 @itemx -mno-bwx
17258 @itemx -mcix
17259 @itemx -mno-cix
17260 @itemx -mfix
17261 @itemx -mno-fix
17262 @itemx -mmax
17263 @itemx -mno-max
17264 @opindex mbwx
17265 @opindex mno-bwx
17266 @opindex mcix
17267 @opindex mno-cix
17268 @opindex mfix
17269 @opindex mno-fix
17270 @opindex mmax
17271 @opindex mno-max
17272 Indicate whether GCC should generate code to use the optional BWX,
17273 CIX, FIX and MAX instruction sets. The default is to use the instruction
17274 sets supported by the CPU type specified via @option{-mcpu=} option or that
17275 of the CPU on which GCC was built if none is specified.
17276
17277 @item -mfloat-vax
17278 @itemx -mfloat-ieee
17279 @opindex mfloat-vax
17280 @opindex mfloat-ieee
17281 Generate code that uses (does not use) VAX F and G floating-point
17282 arithmetic instead of IEEE single and double precision.
17283
17284 @item -mexplicit-relocs
17285 @itemx -mno-explicit-relocs
17286 @opindex mexplicit-relocs
17287 @opindex mno-explicit-relocs
17288 Older Alpha assemblers provided no way to generate symbol relocations
17289 except via assembler macros. Use of these macros does not allow
17290 optimal instruction scheduling. GNU binutils as of version 2.12
17291 supports a new syntax that allows the compiler to explicitly mark
17292 which relocations should apply to which instructions. This option
17293 is mostly useful for debugging, as GCC detects the capabilities of
17294 the assembler when it is built and sets the default accordingly.
17295
17296 @item -msmall-data
17297 @itemx -mlarge-data
17298 @opindex msmall-data
17299 @opindex mlarge-data
17300 When @option{-mexplicit-relocs} is in effect, static data is
17301 accessed via @dfn{gp-relative} relocations. When @option{-msmall-data}
17302 is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
17303 (the @code{.sdata} and @code{.sbss} sections) and are accessed via
17304 16-bit relocations off of the @code{$gp} register. This limits the
17305 size of the small data area to 64KB, but allows the variables to be
17306 directly accessed via a single instruction.
17307
17308 The default is @option{-mlarge-data}. With this option the data area
17309 is limited to just below 2GB@. Programs that require more than 2GB of
17310 data must use @code{malloc} or @code{mmap} to allocate the data in the
17311 heap instead of in the program's data segment.
17312
17313 When generating code for shared libraries, @option{-fpic} implies
17314 @option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.
17315
17316 @item -msmall-text
17317 @itemx -mlarge-text
17318 @opindex msmall-text
17319 @opindex mlarge-text
17320 When @option{-msmall-text} is used, the compiler assumes that the
17321 code of the entire program (or shared library) fits in 4MB, and is
17322 thus reachable with a branch instruction. When @option{-msmall-data}
17323 is used, the compiler can assume that all local symbols share the
17324 same @code{$gp} value, and thus reduce the number of instructions
17325 required for a function call from 4 to 1.
17326
17327 The default is @option{-mlarge-text}.
17328
17329 @item -mcpu=@var{cpu_type}
17330 @opindex mcpu
17331 Set the instruction set and instruction scheduling parameters for
17332 machine type @var{cpu_type}. You can specify either the @samp{EV}
17333 style name or the corresponding chip number. GCC supports scheduling
17334 parameters for the EV4, EV5 and EV6 family of processors and
17335 chooses the default values for the instruction set from the processor
17336 you specify. If you do not specify a processor type, GCC defaults
17337 to the processor on which the compiler was built.
17338
17339 Supported values for @var{cpu_type} are
17340
17341 @table @samp
17342 @item ev4
17343 @itemx ev45
17344 @itemx 21064
17345 Schedules as an EV4 and has no instruction set extensions.
17346
17347 @item ev5
17348 @itemx 21164
17349 Schedules as an EV5 and has no instruction set extensions.
17350
17351 @item ev56
17352 @itemx 21164a
17353 Schedules as an EV5 and supports the BWX extension.
17354
17355 @item pca56
17356 @itemx 21164pc
17357 @itemx 21164PC
17358 Schedules as an EV5 and supports the BWX and MAX extensions.
17359
17360 @item ev6
17361 @itemx 21264
17362 Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
17363
17364 @item ev67
17365 @itemx 21264a
17366 Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
17367 @end table
17368
17369 Native toolchains also support the value @samp{native},
17370 which selects the best architecture option for the host processor.
17371 @option{-mcpu=native} has no effect if GCC does not recognize
17372 the processor.
17373
17374 @item -mtune=@var{cpu_type}
17375 @opindex mtune
17376 Set only the instruction scheduling parameters for machine type
17377 @var{cpu_type}. The instruction set is not changed.
17378
17379 Native toolchains also support the value @samp{native},
17380 which selects the best architecture option for the host processor.
17381 @option{-mtune=native} has no effect if GCC does not recognize
17382 the processor.
17383
17384 @item -mmemory-latency=@var{time}
17385 @opindex mmemory-latency
17386 Sets the latency the scheduler should assume for typical memory
17387 references as seen by the application. This number is highly
17388 dependent on the memory access patterns used by the application
17389 and the size of the external cache on the machine.
17390
17391 Valid options for @var{time} are
17392
17393 @table @samp
17394 @item @var{number}
17395 A decimal number representing clock cycles.
17396
17397 @item L1
17398 @itemx L2
17399 @itemx L3
17400 @itemx main
17401 The compiler contains estimates of the number of clock cycles for
17402 ``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
17403 (also called Dcache, Scache, and Bcache), as well as to main memory.
17404 Note that L3 is only valid for EV5.
17405
17406 @end table
17407 @end table
17408
17409 @node FR30 Options
17410 @subsection FR30 Options
17411 @cindex FR30 Options
17412
17413 These options are defined specifically for the FR30 port.
17414
17415 @table @gcctabopt
17416
17417 @item -msmall-model
17418 @opindex msmall-model
17419 Use the small address space model. This can produce smaller code, but
17420 it does assume that all symbolic values and addresses fit into a
17421 20-bit range.
17422
17423 @item -mno-lsim
17424 @opindex mno-lsim
17425 Assume that runtime support has been provided and so there is no need
17426 to include the simulator library (@file{libsim.a}) on the linker
17427 command line.
17428
17429 @end table
17430
17431 @node FT32 Options
17432 @subsection FT32 Options
17433 @cindex FT32 Options
17434
17435 These options are defined specifically for the FT32 port.
17436
17437 @table @gcctabopt
17438
17439 @item -msim
17440 @opindex msim
17441 Specifies that the program will be run on the simulator. This causes
17442 an alternate runtime startup and library to be linked.
17443 You must not use this option when generating programs that will run on
17444 real hardware; you must provide your own runtime library for whatever
17445 I/O functions are needed.
17446
17447 @item -mlra
17448 @opindex mlra
17449 Enable Local Register Allocation. This is still experimental for FT32,
17450 so by default the compiler uses standard reload.
17451
17452 @item -mnodiv
17453 @opindex mnodiv
17454 Do not use div and mod instructions.
17455
17456 @end table
17457
17458 @node FRV Options
17459 @subsection FRV Options
17460 @cindex FRV Options
17461
17462 @table @gcctabopt
17463 @item -mgpr-32
17464 @opindex mgpr-32
17465
17466 Only use the first 32 general-purpose registers.
17467
17468 @item -mgpr-64
17469 @opindex mgpr-64
17470
17471 Use all 64 general-purpose registers.
17472
17473 @item -mfpr-32
17474 @opindex mfpr-32
17475
17476 Use only the first 32 floating-point registers.
17477
17478 @item -mfpr-64
17479 @opindex mfpr-64
17480
17481 Use all 64 floating-point registers.
17482
17483 @item -mhard-float
17484 @opindex mhard-float
17485
17486 Use hardware instructions for floating-point operations.
17487
17488 @item -msoft-float
17489 @opindex msoft-float
17490
17491 Use library routines for floating-point operations.
17492
17493 @item -malloc-cc
17494 @opindex malloc-cc
17495
17496 Dynamically allocate condition code registers.
17497
17498 @item -mfixed-cc
17499 @opindex mfixed-cc
17500
17501 Do not try to dynamically allocate condition code registers, only
17502 use @code{icc0} and @code{fcc0}.
17503
17504 @item -mdword
17505 @opindex mdword
17506
17507 Change ABI to use double word insns.
17508
17509 @item -mno-dword
17510 @opindex mno-dword
17511
17512 Do not use double word instructions.
17513
17514 @item -mdouble
17515 @opindex mdouble
17516
17517 Use floating-point double instructions.
17518
17519 @item -mno-double
17520 @opindex mno-double
17521
17522 Do not use floating-point double instructions.
17523
17524 @item -mmedia
17525 @opindex mmedia
17526
17527 Use media instructions.
17528
17529 @item -mno-media
17530 @opindex mno-media
17531
17532 Do not use media instructions.
17533
17534 @item -mmuladd
17535 @opindex mmuladd
17536
17537 Use multiply and add/subtract instructions.
17538
17539 @item -mno-muladd
17540 @opindex mno-muladd
17541
17542 Do not use multiply and add/subtract instructions.
17543
17544 @item -mfdpic
17545 @opindex mfdpic
17546
17547 Select the FDPIC ABI, which uses function descriptors to represent
17548 pointers to functions. Without any PIC/PIE-related options, it
17549 implies @option{-fPIE}. With @option{-fpic} or @option{-fpie}, it
17550 assumes GOT entries and small data are within a 12-bit range from the
17551 GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets
17552 are computed with 32 bits.
17553 With a @samp{bfin-elf} target, this option implies @option{-msim}.
17554
17555 @item -minline-plt
17556 @opindex minline-plt
17557
17558 Enable inlining of PLT entries in function calls to functions that are
17559 not known to bind locally. It has no effect without @option{-mfdpic}.
17560 It's enabled by default if optimizing for speed and compiling for
17561 shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an
17562 optimization option such as @option{-O3} or above is present in the
17563 command line.
17564
17565 @item -mTLS
17566 @opindex mTLS
17567
17568 Assume a large TLS segment when generating thread-local code.
17569
17570 @item -mtls
17571 @opindex mtls
17572
17573 Do not assume a large TLS segment when generating thread-local code.
17574
17575 @item -mgprel-ro
17576 @opindex mgprel-ro
17577
17578 Enable the use of @code{GPREL} relocations in the FDPIC ABI for data
17579 that is known to be in read-only sections. It's enabled by default,
17580 except for @option{-fpic} or @option{-fpie}: even though it may help
17581 make the global offset table smaller, it trades 1 instruction for 4.
17582 With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4,
17583 one of which may be shared by multiple symbols, and it avoids the need
17584 for a GOT entry for the referenced symbol, so it's more likely to be a
17585 win. If it is not, @option{-mno-gprel-ro} can be used to disable it.
17586
17587 @item -multilib-library-pic
17588 @opindex multilib-library-pic
17589
17590 Link with the (library, not FD) pic libraries. It's implied by
17591 @option{-mlibrary-pic}, as well as by @option{-fPIC} and
17592 @option{-fpic} without @option{-mfdpic}. You should never have to use
17593 it explicitly.
17594
17595 @item -mlinked-fp
17596 @opindex mlinked-fp
17597
17598 Follow the EABI requirement of always creating a frame pointer whenever
17599 a stack frame is allocated. This option is enabled by default and can
17600 be disabled with @option{-mno-linked-fp}.
17601
17602 @item -mlong-calls
17603 @opindex mlong-calls
17604
17605 Use indirect addressing to call functions outside the current
17606 compilation unit. This allows the functions to be placed anywhere
17607 within the 32-bit address space.
17608
17609 @item -malign-labels
17610 @opindex malign-labels
17611
17612 Try to align labels to an 8-byte boundary by inserting NOPs into the
17613 previous packet. This option only has an effect when VLIW packing
17614 is enabled. It doesn't create new packets; it merely adds NOPs to
17615 existing ones.
17616
17617 @item -mlibrary-pic
17618 @opindex mlibrary-pic
17619
17620 Generate position-independent EABI code.
17621
17622 @item -macc-4
17623 @opindex macc-4
17624
17625 Use only the first four media accumulator registers.
17626
17627 @item -macc-8
17628 @opindex macc-8
17629
17630 Use all eight media accumulator registers.
17631
17632 @item -mpack
17633 @opindex mpack
17634
17635 Pack VLIW instructions.
17636
17637 @item -mno-pack
17638 @opindex mno-pack
17639
17640 Do not pack VLIW instructions.
17641
17642 @item -mno-eflags
17643 @opindex mno-eflags
17644
17645 Do not mark ABI switches in e_flags.
17646
17647 @item -mcond-move
17648 @opindex mcond-move
17649
17650 Enable the use of conditional-move instructions (default).
17651
17652 This switch is mainly for debugging the compiler and will likely be removed
17653 in a future version.
17654
17655 @item -mno-cond-move
17656 @opindex mno-cond-move
17657
17658 Disable the use of conditional-move instructions.
17659
17660 This switch is mainly for debugging the compiler and will likely be removed
17661 in a future version.
17662
17663 @item -mscc
17664 @opindex mscc
17665
17666 Enable the use of conditional set instructions (default).
17667
17668 This switch is mainly for debugging the compiler and will likely be removed
17669 in a future version.
17670
17671 @item -mno-scc
17672 @opindex mno-scc
17673
17674 Disable the use of conditional set instructions.
17675
17676 This switch is mainly for debugging the compiler and will likely be removed
17677 in a future version.
17678
17679 @item -mcond-exec
17680 @opindex mcond-exec
17681
17682 Enable the use of conditional execution (default).
17683
17684 This switch is mainly for debugging the compiler and will likely be removed
17685 in a future version.
17686
17687 @item -mno-cond-exec
17688 @opindex mno-cond-exec
17689
17690 Disable the use of conditional execution.
17691
17692 This switch is mainly for debugging the compiler and will likely be removed
17693 in a future version.
17694
17695 @item -mvliw-branch
17696 @opindex mvliw-branch
17697
17698 Run a pass to pack branches into VLIW instructions (default).
17699
17700 This switch is mainly for debugging the compiler and will likely be removed
17701 in a future version.
17702
17703 @item -mno-vliw-branch
17704 @opindex mno-vliw-branch
17705
17706 Do not run a pass to pack branches into VLIW instructions.
17707
17708 This switch is mainly for debugging the compiler and will likely be removed
17709 in a future version.
17710
17711 @item -mmulti-cond-exec
17712 @opindex mmulti-cond-exec
17713
17714 Enable optimization of @code{&&} and @code{||} in conditional execution
17715 (default).
17716
17717 This switch is mainly for debugging the compiler and will likely be removed
17718 in a future version.
17719
17720 @item -mno-multi-cond-exec
17721 @opindex mno-multi-cond-exec
17722
17723 Disable optimization of @code{&&} and @code{||} in conditional execution.
17724
17725 This switch is mainly for debugging the compiler and will likely be removed
17726 in a future version.
17727
17728 @item -mnested-cond-exec
17729 @opindex mnested-cond-exec
17730
17731 Enable nested conditional execution optimizations (default).
17732
17733 This switch is mainly for debugging the compiler and will likely be removed
17734 in a future version.
17735
17736 @item -mno-nested-cond-exec
17737 @opindex mno-nested-cond-exec
17738
17739 Disable nested conditional execution optimizations.
17740
17741 This switch is mainly for debugging the compiler and will likely be removed
17742 in a future version.
17743
17744 @item -moptimize-membar
17745 @opindex moptimize-membar
17746
17747 This switch removes redundant @code{membar} instructions from the
17748 compiler-generated code. It is enabled by default.
17749
17750 @item -mno-optimize-membar
17751 @opindex mno-optimize-membar
17752
17753 This switch disables the automatic removal of redundant @code{membar}
17754 instructions from the generated code.
17755
17756 @item -mtomcat-stats
17757 @opindex mtomcat-stats
17758
17759 Cause gas to print out tomcat statistics.
17760
17761 @item -mcpu=@var{cpu}
17762 @opindex mcpu
17763
17764 Select the processor type for which to generate code. Possible values are
17765 @samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450},
17766 @samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}.
17767
17768 @end table
17769
17770 @node GNU/Linux Options
17771 @subsection GNU/Linux Options
17772
17773 These @samp{-m} options are defined for GNU/Linux targets:
17774
17775 @table @gcctabopt
17776 @item -mglibc
17777 @opindex mglibc
17778 Use the GNU C library. This is the default except
17779 on @samp{*-*-linux-*uclibc*}, @samp{*-*-linux-*musl*} and
17780 @samp{*-*-linux-*android*} targets.
17781
17782 @item -muclibc
17783 @opindex muclibc
17784 Use uClibc C library. This is the default on
17785 @samp{*-*-linux-*uclibc*} targets.
17786
17787 @item -mmusl
17788 @opindex mmusl
17789 Use the musl C library. This is the default on
17790 @samp{*-*-linux-*musl*} targets.
17791
17792 @item -mbionic
17793 @opindex mbionic
17794 Use Bionic C library. This is the default on
17795 @samp{*-*-linux-*android*} targets.
17796
17797 @item -mandroid
17798 @opindex mandroid
17799 Compile code compatible with Android platform. This is the default on
17800 @samp{*-*-linux-*android*} targets.
17801
17802 When compiling, this option enables @option{-mbionic}, @option{-fPIC},
17803 @option{-fno-exceptions} and @option{-fno-rtti} by default. When linking,
17804 this option makes the GCC driver pass Android-specific options to the linker.
17805 Finally, this option causes the preprocessor macro @code{__ANDROID__}
17806 to be defined.
17807
17808 @item -tno-android-cc
17809 @opindex tno-android-cc
17810 Disable compilation effects of @option{-mandroid}, i.e., do not enable
17811 @option{-mbionic}, @option{-fPIC}, @option{-fno-exceptions} and
17812 @option{-fno-rtti} by default.
17813
17814 @item -tno-android-ld
17815 @opindex tno-android-ld
17816 Disable linking effects of @option{-mandroid}, i.e., pass standard Linux
17817 linking options to the linker.
17818
17819 @end table
17820
17821 @node H8/300 Options
17822 @subsection H8/300 Options
17823
17824 These @samp{-m} options are defined for the H8/300 implementations:
17825
17826 @table @gcctabopt
17827 @item -mrelax
17828 @opindex mrelax
17829 Shorten some address references at link time, when possible; uses the
17830 linker option @option{-relax}. @xref{H8/300,, @code{ld} and the H8/300,
17831 ld, Using ld}, for a fuller description.
17832
17833 @item -mh
17834 @opindex mh
17835 Generate code for the H8/300H@.
17836
17837 @item -ms
17838 @opindex ms
17839 Generate code for the H8S@.
17840
17841 @item -mn
17842 @opindex mn
17843 Generate code for the H8S and H8/300H in the normal mode. This switch
17844 must be used either with @option{-mh} or @option{-ms}.
17845
17846 @item -ms2600
17847 @opindex ms2600
17848 Generate code for the H8S/2600. This switch must be used with @option{-ms}.
17849
17850 @item -mexr
17851 @opindex mexr
17852 Extended registers are stored on stack before execution of function
17853 with monitor attribute. Default option is @option{-mexr}.
17854 This option is valid only for H8S targets.
17855
17856 @item -mno-exr
17857 @opindex mno-exr
17858 Extended registers are not stored on stack before execution of function
17859 with monitor attribute. Default option is @option{-mno-exr}.
17860 This option is valid only for H8S targets.
17861
17862 @item -mint32
17863 @opindex mint32
17864 Make @code{int} data 32 bits by default.
17865
17866 @item -malign-300
17867 @opindex malign-300
17868 On the H8/300H and H8S, use the same alignment rules as for the H8/300.
17869 The default for the H8/300H and H8S is to align longs and floats on
17870 4-byte boundaries.
17871 @option{-malign-300} causes them to be aligned on 2-byte boundaries.
17872 This option has no effect on the H8/300.
17873 @end table
17874
17875 @node HPPA Options
17876 @subsection HPPA Options
17877 @cindex HPPA Options
17878
17879 These @samp{-m} options are defined for the HPPA family of computers:
17880
17881 @table @gcctabopt
17882 @item -march=@var{architecture-type}
17883 @opindex march
17884 Generate code for the specified architecture. The choices for
17885 @var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
17886 1.1, and @samp{2.0} for PA 2.0 processors. Refer to
17887 @file{/usr/lib/sched.models} on an HP-UX system to determine the proper
17888 architecture option for your machine. Code compiled for lower numbered
17889 architectures runs on higher numbered architectures, but not the
17890 other way around.
17891
17892 @item -mpa-risc-1-0
17893 @itemx -mpa-risc-1-1
17894 @itemx -mpa-risc-2-0
17895 @opindex mpa-risc-1-0
17896 @opindex mpa-risc-1-1
17897 @opindex mpa-risc-2-0
17898 Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively.
17899
17900 @item -mcaller-copies
17901 @opindex mcaller-copies
17902 The caller copies function arguments passed by hidden reference. This
17903 option should be used with care as it is not compatible with the default
17904 32-bit runtime. However, only aggregates larger than eight bytes are
17905 passed by hidden reference and the option provides better compatibility
17906 with OpenMP.
17907
17908 @item -mjump-in-delay
17909 @opindex mjump-in-delay
17910 This option is ignored and provided for compatibility purposes only.
17911
17912 @item -mdisable-fpregs
17913 @opindex mdisable-fpregs
17914 Prevent floating-point registers from being used in any manner. This is
17915 necessary for compiling kernels that perform lazy context switching of
17916 floating-point registers. If you use this option and attempt to perform
17917 floating-point operations, the compiler aborts.
17918
17919 @item -mdisable-indexing
17920 @opindex mdisable-indexing
17921 Prevent the compiler from using indexing address modes. This avoids some
17922 rather obscure problems when compiling MIG generated code under MACH@.
17923
17924 @item -mno-space-regs
17925 @opindex mno-space-regs
17926 Generate code that assumes the target has no space registers. This allows
17927 GCC to generate faster indirect calls and use unscaled index address modes.
17928
17929 Such code is suitable for level 0 PA systems and kernels.
17930
17931 @item -mfast-indirect-calls
17932 @opindex mfast-indirect-calls
17933 Generate code that assumes calls never cross space boundaries. This
17934 allows GCC to emit code that performs faster indirect calls.
17935
17936 This option does not work in the presence of shared libraries or nested
17937 functions.
17938
17939 @item -mfixed-range=@var{register-range}
17940 @opindex mfixed-range
17941 Generate code treating the given register range as fixed registers.
17942 A fixed register is one that the register allocator cannot use. This is
17943 useful when compiling kernel code. A register range is specified as
17944 two registers separated by a dash. Multiple register ranges can be
17945 specified separated by a comma.
17946
17947 @item -mlong-load-store
17948 @opindex mlong-load-store
17949 Generate 3-instruction load and store sequences as sometimes required by
17950 the HP-UX 10 linker. This is equivalent to the @samp{+k} option to
17951 the HP compilers.
17952
17953 @item -mportable-runtime
17954 @opindex mportable-runtime
17955 Use the portable calling conventions proposed by HP for ELF systems.
17956
17957 @item -mgas
17958 @opindex mgas
17959 Enable the use of assembler directives only GAS understands.
17960
17961 @item -mschedule=@var{cpu-type}
17962 @opindex mschedule
17963 Schedule code according to the constraints for the machine type
17964 @var{cpu-type}. The choices for @var{cpu-type} are @samp{700}
17965 @samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}. Refer
17966 to @file{/usr/lib/sched.models} on an HP-UX system to determine the
17967 proper scheduling option for your machine. The default scheduling is
17968 @samp{8000}.
17969
17970 @item -mlinker-opt
17971 @opindex mlinker-opt
17972 Enable the optimization pass in the HP-UX linker. Note this makes symbolic
17973 debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9
17974 linkers in which they give bogus error messages when linking some programs.
17975
17976 @item -msoft-float
17977 @opindex msoft-float
17978 Generate output containing library calls for floating point.
17979 @strong{Warning:} the requisite libraries are not available for all HPPA
17980 targets. Normally the facilities of the machine's usual C compiler are
17981 used, but this cannot be done directly in cross-compilation. You must make
17982 your own arrangements to provide suitable library functions for
17983 cross-compilation.
17984
17985 @option{-msoft-float} changes the calling convention in the output file;
17986 therefore, it is only useful if you compile @emph{all} of a program with
17987 this option. In particular, you need to compile @file{libgcc.a}, the
17988 library that comes with GCC, with @option{-msoft-float} in order for
17989 this to work.
17990
17991 @item -msio
17992 @opindex msio
17993 Generate the predefine, @code{_SIO}, for server IO@. The default is
17994 @option{-mwsio}. This generates the predefines, @code{__hp9000s700},
17995 @code{__hp9000s700__} and @code{_WSIO}, for workstation IO@. These
17996 options are available under HP-UX and HI-UX@.
17997
17998 @item -mgnu-ld
17999 @opindex mgnu-ld
18000 Use options specific to GNU @command{ld}.
18001 This passes @option{-shared} to @command{ld} when
18002 building a shared library. It is the default when GCC is configured,
18003 explicitly or implicitly, with the GNU linker. This option does not
18004 affect which @command{ld} is called; it only changes what parameters
18005 are passed to that @command{ld}.
18006 The @command{ld} that is called is determined by the
18007 @option{--with-ld} configure option, GCC's program search path, and
18008 finally by the user's @env{PATH}. The linker used by GCC can be printed
18009 using @samp{which `gcc -print-prog-name=ld`}. This option is only available
18010 on the 64-bit HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
18011
18012 @item -mhp-ld
18013 @opindex mhp-ld
18014 Use options specific to HP @command{ld}.
18015 This passes @option{-b} to @command{ld} when building
18016 a shared library and passes @option{+Accept TypeMismatch} to @command{ld} on all
18017 links. It is the default when GCC is configured, explicitly or
18018 implicitly, with the HP linker. This option does not affect
18019 which @command{ld} is called; it only changes what parameters are passed to that
18020 @command{ld}.
18021 The @command{ld} that is called is determined by the @option{--with-ld}
18022 configure option, GCC's program search path, and finally by the user's
18023 @env{PATH}. The linker used by GCC can be printed using @samp{which
18024 `gcc -print-prog-name=ld`}. This option is only available on the 64-bit
18025 HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
18026
18027 @item -mlong-calls
18028 @opindex mno-long-calls
18029 Generate code that uses long call sequences. This ensures that a call
18030 is always able to reach linker generated stubs. The default is to generate
18031 long calls only when the distance from the call site to the beginning
18032 of the function or translation unit, as the case may be, exceeds a
18033 predefined limit set by the branch type being used. The limits for
18034 normal calls are 7,600,000 and 240,000 bytes, respectively for the
18035 PA 2.0 and PA 1.X architectures. Sibcalls are always limited at
18036 240,000 bytes.
18037
18038 Distances are measured from the beginning of functions when using the
18039 @option{-ffunction-sections} option, or when using the @option{-mgas}
18040 and @option{-mno-portable-runtime} options together under HP-UX with
18041 the SOM linker.
18042
18043 It is normally not desirable to use this option as it degrades
18044 performance. However, it may be useful in large applications,
18045 particularly when partial linking is used to build the application.
18046
18047 The types of long calls used depends on the capabilities of the
18048 assembler and linker, and the type of code being generated. The
18049 impact on systems that support long absolute calls, and long pic
18050 symbol-difference or pc-relative calls should be relatively small.
18051 However, an indirect call is used on 32-bit ELF systems in pic code
18052 and it is quite long.
18053
18054 @item -munix=@var{unix-std}
18055 @opindex march
18056 Generate compiler predefines and select a startfile for the specified
18057 UNIX standard. The choices for @var{unix-std} are @samp{93}, @samp{95}
18058 and @samp{98}. @samp{93} is supported on all HP-UX versions. @samp{95}
18059 is available on HP-UX 10.10 and later. @samp{98} is available on HP-UX
18060 11.11 and later. The default values are @samp{93} for HP-UX 10.00,
18061 @samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11
18062 and later.
18063
18064 @option{-munix=93} provides the same predefines as GCC 3.3 and 3.4.
18065 @option{-munix=95} provides additional predefines for @code{XOPEN_UNIX}
18066 and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}.
18067 @option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX},
18068 @code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and
18069 @code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}.
18070
18071 It is @emph{important} to note that this option changes the interfaces
18072 for various library routines. It also affects the operational behavior
18073 of the C library. Thus, @emph{extreme} care is needed in using this
18074 option.
18075
18076 Library code that is intended to operate with more than one UNIX
18077 standard must test, set and restore the variable @code{__xpg4_extended_mask}
18078 as appropriate. Most GNU software doesn't provide this capability.
18079
18080 @item -nolibdld
18081 @opindex nolibdld
18082 Suppress the generation of link options to search libdld.sl when the
18083 @option{-static} option is specified on HP-UX 10 and later.
18084
18085 @item -static
18086 @opindex static
18087 The HP-UX implementation of setlocale in libc has a dependency on
18088 libdld.sl. There isn't an archive version of libdld.sl. Thus,
18089 when the @option{-static} option is specified, special link options
18090 are needed to resolve this dependency.
18091
18092 On HP-UX 10 and later, the GCC driver adds the necessary options to
18093 link with libdld.sl when the @option{-static} option is specified.
18094 This causes the resulting binary to be dynamic. On the 64-bit port,
18095 the linkers generate dynamic binaries by default in any case. The
18096 @option{-nolibdld} option can be used to prevent the GCC driver from
18097 adding these link options.
18098
18099 @item -threads
18100 @opindex threads
18101 Add support for multithreading with the @dfn{dce thread} library
18102 under HP-UX@. This option sets flags for both the preprocessor and
18103 linker.
18104 @end table
18105
18106 @node IA-64 Options
18107 @subsection IA-64 Options
18108 @cindex IA-64 Options
18109
18110 These are the @samp{-m} options defined for the Intel IA-64 architecture.
18111
18112 @table @gcctabopt
18113 @item -mbig-endian
18114 @opindex mbig-endian
18115 Generate code for a big-endian target. This is the default for HP-UX@.
18116
18117 @item -mlittle-endian
18118 @opindex mlittle-endian
18119 Generate code for a little-endian target. This is the default for AIX5
18120 and GNU/Linux.
18121
18122 @item -mgnu-as
18123 @itemx -mno-gnu-as
18124 @opindex mgnu-as
18125 @opindex mno-gnu-as
18126 Generate (or don't) code for the GNU assembler. This is the default.
18127 @c Also, this is the default if the configure option @option{--with-gnu-as}
18128 @c is used.
18129
18130 @item -mgnu-ld
18131 @itemx -mno-gnu-ld
18132 @opindex mgnu-ld
18133 @opindex mno-gnu-ld
18134 Generate (or don't) code for the GNU linker. This is the default.
18135 @c Also, this is the default if the configure option @option{--with-gnu-ld}
18136 @c is used.
18137
18138 @item -mno-pic
18139 @opindex mno-pic
18140 Generate code that does not use a global pointer register. The result
18141 is not position independent code, and violates the IA-64 ABI@.
18142
18143 @item -mvolatile-asm-stop
18144 @itemx -mno-volatile-asm-stop
18145 @opindex mvolatile-asm-stop
18146 @opindex mno-volatile-asm-stop
18147 Generate (or don't) a stop bit immediately before and after volatile asm
18148 statements.
18149
18150 @item -mregister-names
18151 @itemx -mno-register-names
18152 @opindex mregister-names
18153 @opindex mno-register-names
18154 Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for
18155 the stacked registers. This may make assembler output more readable.
18156
18157 @item -mno-sdata
18158 @itemx -msdata
18159 @opindex mno-sdata
18160 @opindex msdata
18161 Disable (or enable) optimizations that use the small data section. This may
18162 be useful for working around optimizer bugs.
18163
18164 @item -mconstant-gp
18165 @opindex mconstant-gp
18166 Generate code that uses a single constant global pointer value. This is
18167 useful when compiling kernel code.
18168
18169 @item -mauto-pic
18170 @opindex mauto-pic
18171 Generate code that is self-relocatable. This implies @option{-mconstant-gp}.
18172 This is useful when compiling firmware code.
18173
18174 @item -minline-float-divide-min-latency
18175 @opindex minline-float-divide-min-latency
18176 Generate code for inline divides of floating-point values
18177 using the minimum latency algorithm.
18178
18179 @item -minline-float-divide-max-throughput
18180 @opindex minline-float-divide-max-throughput
18181 Generate code for inline divides of floating-point values
18182 using the maximum throughput algorithm.
18183
18184 @item -mno-inline-float-divide
18185 @opindex mno-inline-float-divide
18186 Do not generate inline code for divides of floating-point values.
18187
18188 @item -minline-int-divide-min-latency
18189 @opindex minline-int-divide-min-latency
18190 Generate code for inline divides of integer values
18191 using the minimum latency algorithm.
18192
18193 @item -minline-int-divide-max-throughput
18194 @opindex minline-int-divide-max-throughput
18195 Generate code for inline divides of integer values
18196 using the maximum throughput algorithm.
18197
18198 @item -mno-inline-int-divide
18199 @opindex mno-inline-int-divide
18200 Do not generate inline code for divides of integer values.
18201
18202 @item -minline-sqrt-min-latency
18203 @opindex minline-sqrt-min-latency
18204 Generate code for inline square roots
18205 using the minimum latency algorithm.
18206
18207 @item -minline-sqrt-max-throughput
18208 @opindex minline-sqrt-max-throughput
18209 Generate code for inline square roots
18210 using the maximum throughput algorithm.
18211
18212 @item -mno-inline-sqrt
18213 @opindex mno-inline-sqrt
18214 Do not generate inline code for @code{sqrt}.
18215
18216 @item -mfused-madd
18217 @itemx -mno-fused-madd
18218 @opindex mfused-madd
18219 @opindex mno-fused-madd
18220 Do (don't) generate code that uses the fused multiply/add or multiply/subtract
18221 instructions. The default is to use these instructions.
18222
18223 @item -mno-dwarf2-asm
18224 @itemx -mdwarf2-asm
18225 @opindex mno-dwarf2-asm
18226 @opindex mdwarf2-asm
18227 Don't (or do) generate assembler code for the DWARF line number debugging
18228 info. This may be useful when not using the GNU assembler.
18229
18230 @item -mearly-stop-bits
18231 @itemx -mno-early-stop-bits
18232 @opindex mearly-stop-bits
18233 @opindex mno-early-stop-bits
18234 Allow stop bits to be placed earlier than immediately preceding the
18235 instruction that triggered the stop bit. This can improve instruction
18236 scheduling, but does not always do so.
18237
18238 @item -mfixed-range=@var{register-range}
18239 @opindex mfixed-range
18240 Generate code treating the given register range as fixed registers.
18241 A fixed register is one that the register allocator cannot use. This is
18242 useful when compiling kernel code. A register range is specified as
18243 two registers separated by a dash. Multiple register ranges can be
18244 specified separated by a comma.
18245
18246 @item -mtls-size=@var{tls-size}
18247 @opindex mtls-size
18248 Specify bit size of immediate TLS offsets. Valid values are 14, 22, and
18249 64.
18250
18251 @item -mtune=@var{cpu-type}
18252 @opindex mtune
18253 Tune the instruction scheduling for a particular CPU, Valid values are
18254 @samp{itanium}, @samp{itanium1}, @samp{merced}, @samp{itanium2},
18255 and @samp{mckinley}.
18256
18257 @item -milp32
18258 @itemx -mlp64
18259 @opindex milp32
18260 @opindex mlp64
18261 Generate code for a 32-bit or 64-bit environment.
18262 The 32-bit environment sets int, long and pointer to 32 bits.
18263 The 64-bit environment sets int to 32 bits and long and pointer
18264 to 64 bits. These are HP-UX specific flags.
18265
18266 @item -mno-sched-br-data-spec
18267 @itemx -msched-br-data-spec
18268 @opindex mno-sched-br-data-spec
18269 @opindex msched-br-data-spec
18270 (Dis/En)able data speculative scheduling before reload.
18271 This results in generation of @code{ld.a} instructions and
18272 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
18273 The default setting is disabled.
18274
18275 @item -msched-ar-data-spec
18276 @itemx -mno-sched-ar-data-spec
18277 @opindex msched-ar-data-spec
18278 @opindex mno-sched-ar-data-spec
18279 (En/Dis)able data speculative scheduling after reload.
18280 This results in generation of @code{ld.a} instructions and
18281 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
18282 The default setting is enabled.
18283
18284 @item -mno-sched-control-spec
18285 @itemx -msched-control-spec
18286 @opindex mno-sched-control-spec
18287 @opindex msched-control-spec
18288 (Dis/En)able control speculative scheduling. This feature is
18289 available only during region scheduling (i.e.@: before reload).
18290 This results in generation of the @code{ld.s} instructions and
18291 the corresponding check instructions @code{chk.s}.
18292 The default setting is disabled.
18293
18294 @item -msched-br-in-data-spec
18295 @itemx -mno-sched-br-in-data-spec
18296 @opindex msched-br-in-data-spec
18297 @opindex mno-sched-br-in-data-spec
18298 (En/Dis)able speculative scheduling of the instructions that
18299 are dependent on the data speculative loads before reload.
18300 This is effective only with @option{-msched-br-data-spec} enabled.
18301 The default setting is enabled.
18302
18303 @item -msched-ar-in-data-spec
18304 @itemx -mno-sched-ar-in-data-spec
18305 @opindex msched-ar-in-data-spec
18306 @opindex mno-sched-ar-in-data-spec
18307 (En/Dis)able speculative scheduling of the instructions that
18308 are dependent on the data speculative loads after reload.
18309 This is effective only with @option{-msched-ar-data-spec} enabled.
18310 The default setting is enabled.
18311
18312 @item -msched-in-control-spec
18313 @itemx -mno-sched-in-control-spec
18314 @opindex msched-in-control-spec
18315 @opindex mno-sched-in-control-spec
18316 (En/Dis)able speculative scheduling of the instructions that
18317 are dependent on the control speculative loads.
18318 This is effective only with @option{-msched-control-spec} enabled.
18319 The default setting is enabled.
18320
18321 @item -mno-sched-prefer-non-data-spec-insns
18322 @itemx -msched-prefer-non-data-spec-insns
18323 @opindex mno-sched-prefer-non-data-spec-insns
18324 @opindex msched-prefer-non-data-spec-insns
18325 If enabled, data-speculative instructions are chosen for schedule
18326 only if there are no other choices at the moment. This makes
18327 the use of the data speculation much more conservative.
18328 The default setting is disabled.
18329
18330 @item -mno-sched-prefer-non-control-spec-insns
18331 @itemx -msched-prefer-non-control-spec-insns
18332 @opindex mno-sched-prefer-non-control-spec-insns
18333 @opindex msched-prefer-non-control-spec-insns
18334 If enabled, control-speculative instructions are chosen for schedule
18335 only if there are no other choices at the moment. This makes
18336 the use of the control speculation much more conservative.
18337 The default setting is disabled.
18338
18339 @item -mno-sched-count-spec-in-critical-path
18340 @itemx -msched-count-spec-in-critical-path
18341 @opindex mno-sched-count-spec-in-critical-path
18342 @opindex msched-count-spec-in-critical-path
18343 If enabled, speculative dependencies are considered during
18344 computation of the instructions priorities. This makes the use of the
18345 speculation a bit more conservative.
18346 The default setting is disabled.
18347
18348 @item -msched-spec-ldc
18349 @opindex msched-spec-ldc
18350 Use a simple data speculation check. This option is on by default.
18351
18352 @item -msched-control-spec-ldc
18353 @opindex msched-spec-ldc
18354 Use a simple check for control speculation. This option is on by default.
18355
18356 @item -msched-stop-bits-after-every-cycle
18357 @opindex msched-stop-bits-after-every-cycle
18358 Place a stop bit after every cycle when scheduling. This option is on
18359 by default.
18360
18361 @item -msched-fp-mem-deps-zero-cost
18362 @opindex msched-fp-mem-deps-zero-cost
18363 Assume that floating-point stores and loads are not likely to cause a conflict
18364 when placed into the same instruction group. This option is disabled by
18365 default.
18366
18367 @item -msel-sched-dont-check-control-spec
18368 @opindex msel-sched-dont-check-control-spec
18369 Generate checks for control speculation in selective scheduling.
18370 This flag is disabled by default.
18371
18372 @item -msched-max-memory-insns=@var{max-insns}
18373 @opindex msched-max-memory-insns
18374 Limit on the number of memory insns per instruction group, giving lower
18375 priority to subsequent memory insns attempting to schedule in the same
18376 instruction group. Frequently useful to prevent cache bank conflicts.
18377 The default value is 1.
18378
18379 @item -msched-max-memory-insns-hard-limit
18380 @opindex msched-max-memory-insns-hard-limit
18381 Makes the limit specified by @option{msched-max-memory-insns} a hard limit,
18382 disallowing more than that number in an instruction group.
18383 Otherwise, the limit is ``soft'', meaning that non-memory operations
18384 are preferred when the limit is reached, but memory operations may still
18385 be scheduled.
18386
18387 @end table
18388
18389 @node LM32 Options
18390 @subsection LM32 Options
18391 @cindex LM32 options
18392
18393 These @option{-m} options are defined for the LatticeMico32 architecture:
18394
18395 @table @gcctabopt
18396 @item -mbarrel-shift-enabled
18397 @opindex mbarrel-shift-enabled
18398 Enable barrel-shift instructions.
18399
18400 @item -mdivide-enabled
18401 @opindex mdivide-enabled
18402 Enable divide and modulus instructions.
18403
18404 @item -mmultiply-enabled
18405 @opindex multiply-enabled
18406 Enable multiply instructions.
18407
18408 @item -msign-extend-enabled
18409 @opindex msign-extend-enabled
18410 Enable sign extend instructions.
18411
18412 @item -muser-enabled
18413 @opindex muser-enabled
18414 Enable user-defined instructions.
18415
18416 @end table
18417
18418 @node M32C Options
18419 @subsection M32C Options
18420 @cindex M32C options
18421
18422 @table @gcctabopt
18423 @item -mcpu=@var{name}
18424 @opindex mcpu=
18425 Select the CPU for which code is generated. @var{name} may be one of
18426 @samp{r8c} for the R8C/Tiny series, @samp{m16c} for the M16C (up to
18427 /60) series, @samp{m32cm} for the M16C/80 series, or @samp{m32c} for
18428 the M32C/80 series.
18429
18430 @item -msim
18431 @opindex msim
18432 Specifies that the program will be run on the simulator. This causes
18433 an alternate runtime library to be linked in which supports, for
18434 example, file I/O@. You must not use this option when generating
18435 programs that will run on real hardware; you must provide your own
18436 runtime library for whatever I/O functions are needed.
18437
18438 @item -memregs=@var{number}
18439 @opindex memregs=
18440 Specifies the number of memory-based pseudo-registers GCC uses
18441 during code generation. These pseudo-registers are used like real
18442 registers, so there is a tradeoff between GCC's ability to fit the
18443 code into available registers, and the performance penalty of using
18444 memory instead of registers. Note that all modules in a program must
18445 be compiled with the same value for this option. Because of that, you
18446 must not use this option with GCC's default runtime libraries.
18447
18448 @end table
18449
18450 @node M32R/D Options
18451 @subsection M32R/D Options
18452 @cindex M32R/D options
18453
18454 These @option{-m} options are defined for Renesas M32R/D architectures:
18455
18456 @table @gcctabopt
18457 @item -m32r2
18458 @opindex m32r2
18459 Generate code for the M32R/2@.
18460
18461 @item -m32rx
18462 @opindex m32rx
18463 Generate code for the M32R/X@.
18464
18465 @item -m32r
18466 @opindex m32r
18467 Generate code for the M32R@. This is the default.
18468
18469 @item -mmodel=small
18470 @opindex mmodel=small
18471 Assume all objects live in the lower 16MB of memory (so that their addresses
18472 can be loaded with the @code{ld24} instruction), and assume all subroutines
18473 are reachable with the @code{bl} instruction.
18474 This is the default.
18475
18476 The addressability of a particular object can be set with the
18477 @code{model} attribute.
18478
18479 @item -mmodel=medium
18480 @opindex mmodel=medium
18481 Assume objects may be anywhere in the 32-bit address space (the compiler
18482 generates @code{seth/add3} instructions to load their addresses), and
18483 assume all subroutines are reachable with the @code{bl} instruction.
18484
18485 @item -mmodel=large
18486 @opindex mmodel=large
18487 Assume objects may be anywhere in the 32-bit address space (the compiler
18488 generates @code{seth/add3} instructions to load their addresses), and
18489 assume subroutines may not be reachable with the @code{bl} instruction
18490 (the compiler generates the much slower @code{seth/add3/jl}
18491 instruction sequence).
18492
18493 @item -msdata=none
18494 @opindex msdata=none
18495 Disable use of the small data area. Variables are put into
18496 one of @code{.data}, @code{.bss}, or @code{.rodata} (unless the
18497 @code{section} attribute has been specified).
18498 This is the default.
18499
18500 The small data area consists of sections @code{.sdata} and @code{.sbss}.
18501 Objects may be explicitly put in the small data area with the
18502 @code{section} attribute using one of these sections.
18503
18504 @item -msdata=sdata
18505 @opindex msdata=sdata
18506 Put small global and static data in the small data area, but do not
18507 generate special code to reference them.
18508
18509 @item -msdata=use
18510 @opindex msdata=use
18511 Put small global and static data in the small data area, and generate
18512 special instructions to reference them.
18513
18514 @item -G @var{num}
18515 @opindex G
18516 @cindex smaller data references
18517 Put global and static objects less than or equal to @var{num} bytes
18518 into the small data or BSS sections instead of the normal data or BSS
18519 sections. The default value of @var{num} is 8.
18520 The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
18521 for this option to have any effect.
18522
18523 All modules should be compiled with the same @option{-G @var{num}} value.
18524 Compiling with different values of @var{num} may or may not work; if it
18525 doesn't the linker gives an error message---incorrect code is not
18526 generated.
18527
18528 @item -mdebug
18529 @opindex mdebug
18530 Makes the M32R-specific code in the compiler display some statistics
18531 that might help in debugging programs.
18532
18533 @item -malign-loops
18534 @opindex malign-loops
18535 Align all loops to a 32-byte boundary.
18536
18537 @item -mno-align-loops
18538 @opindex mno-align-loops
18539 Do not enforce a 32-byte alignment for loops. This is the default.
18540
18541 @item -missue-rate=@var{number}
18542 @opindex missue-rate=@var{number}
18543 Issue @var{number} instructions per cycle. @var{number} can only be 1
18544 or 2.
18545
18546 @item -mbranch-cost=@var{number}
18547 @opindex mbranch-cost=@var{number}
18548 @var{number} can only be 1 or 2. If it is 1 then branches are
18549 preferred over conditional code, if it is 2, then the opposite applies.
18550
18551 @item -mflush-trap=@var{number}
18552 @opindex mflush-trap=@var{number}
18553 Specifies the trap number to use to flush the cache. The default is
18554 12. Valid numbers are between 0 and 15 inclusive.
18555
18556 @item -mno-flush-trap
18557 @opindex mno-flush-trap
18558 Specifies that the cache cannot be flushed by using a trap.
18559
18560 @item -mflush-func=@var{name}
18561 @opindex mflush-func=@var{name}
18562 Specifies the name of the operating system function to call to flush
18563 the cache. The default is @samp{_flush_cache}, but a function call
18564 is only used if a trap is not available.
18565
18566 @item -mno-flush-func
18567 @opindex mno-flush-func
18568 Indicates that there is no OS function for flushing the cache.
18569
18570 @end table
18571
18572 @node M680x0 Options
18573 @subsection M680x0 Options
18574 @cindex M680x0 options
18575
18576 These are the @samp{-m} options defined for M680x0 and ColdFire processors.
18577 The default settings depend on which architecture was selected when
18578 the compiler was configured; the defaults for the most common choices
18579 are given below.
18580
18581 @table @gcctabopt
18582 @item -march=@var{arch}
18583 @opindex march
18584 Generate code for a specific M680x0 or ColdFire instruction set
18585 architecture. Permissible values of @var{arch} for M680x0
18586 architectures are: @samp{68000}, @samp{68010}, @samp{68020},
18587 @samp{68030}, @samp{68040}, @samp{68060} and @samp{cpu32}. ColdFire
18588 architectures are selected according to Freescale's ISA classification
18589 and the permissible values are: @samp{isaa}, @samp{isaaplus},
18590 @samp{isab} and @samp{isac}.
18591
18592 GCC defines a macro @code{__mcf@var{arch}__} whenever it is generating
18593 code for a ColdFire target. The @var{arch} in this macro is one of the
18594 @option{-march} arguments given above.
18595
18596 When used together, @option{-march} and @option{-mtune} select code
18597 that runs on a family of similar processors but that is optimized
18598 for a particular microarchitecture.
18599
18600 @item -mcpu=@var{cpu}
18601 @opindex mcpu
18602 Generate code for a specific M680x0 or ColdFire processor.
18603 The M680x0 @var{cpu}s are: @samp{68000}, @samp{68010}, @samp{68020},
18604 @samp{68030}, @samp{68040}, @samp{68060}, @samp{68302}, @samp{68332}
18605 and @samp{cpu32}. The ColdFire @var{cpu}s are given by the table
18606 below, which also classifies the CPUs into families:
18607
18608 @multitable @columnfractions 0.20 0.80
18609 @item @strong{Family} @tab @strong{@samp{-mcpu} arguments}
18610 @item @samp{51} @tab @samp{51} @samp{51ac} @samp{51ag} @samp{51cn} @samp{51em} @samp{51je} @samp{51jf} @samp{51jg} @samp{51jm} @samp{51mm} @samp{51qe} @samp{51qm}
18611 @item @samp{5206} @tab @samp{5202} @samp{5204} @samp{5206}
18612 @item @samp{5206e} @tab @samp{5206e}
18613 @item @samp{5208} @tab @samp{5207} @samp{5208}
18614 @item @samp{5211a} @tab @samp{5210a} @samp{5211a}
18615 @item @samp{5213} @tab @samp{5211} @samp{5212} @samp{5213}
18616 @item @samp{5216} @tab @samp{5214} @samp{5216}
18617 @item @samp{52235} @tab @samp{52230} @samp{52231} @samp{52232} @samp{52233} @samp{52234} @samp{52235}
18618 @item @samp{5225} @tab @samp{5224} @samp{5225}
18619 @item @samp{52259} @tab @samp{52252} @samp{52254} @samp{52255} @samp{52256} @samp{52258} @samp{52259}
18620 @item @samp{5235} @tab @samp{5232} @samp{5233} @samp{5234} @samp{5235} @samp{523x}
18621 @item @samp{5249} @tab @samp{5249}
18622 @item @samp{5250} @tab @samp{5250}
18623 @item @samp{5271} @tab @samp{5270} @samp{5271}
18624 @item @samp{5272} @tab @samp{5272}
18625 @item @samp{5275} @tab @samp{5274} @samp{5275}
18626 @item @samp{5282} @tab @samp{5280} @samp{5281} @samp{5282} @samp{528x}
18627 @item @samp{53017} @tab @samp{53011} @samp{53012} @samp{53013} @samp{53014} @samp{53015} @samp{53016} @samp{53017}
18628 @item @samp{5307} @tab @samp{5307}
18629 @item @samp{5329} @tab @samp{5327} @samp{5328} @samp{5329} @samp{532x}
18630 @item @samp{5373} @tab @samp{5372} @samp{5373} @samp{537x}
18631 @item @samp{5407} @tab @samp{5407}
18632 @item @samp{5475} @tab @samp{5470} @samp{5471} @samp{5472} @samp{5473} @samp{5474} @samp{5475} @samp{547x} @samp{5480} @samp{5481} @samp{5482} @samp{5483} @samp{5484} @samp{5485}
18633 @end multitable
18634
18635 @option{-mcpu=@var{cpu}} overrides @option{-march=@var{arch}} if
18636 @var{arch} is compatible with @var{cpu}. Other combinations of
18637 @option{-mcpu} and @option{-march} are rejected.
18638
18639 GCC defines the macro @code{__mcf_cpu_@var{cpu}} when ColdFire target
18640 @var{cpu} is selected. It also defines @code{__mcf_family_@var{family}},
18641 where the value of @var{family} is given by the table above.
18642
18643 @item -mtune=@var{tune}
18644 @opindex mtune
18645 Tune the code for a particular microarchitecture within the
18646 constraints set by @option{-march} and @option{-mcpu}.
18647 The M680x0 microarchitectures are: @samp{68000}, @samp{68010},
18648 @samp{68020}, @samp{68030}, @samp{68040}, @samp{68060}
18649 and @samp{cpu32}. The ColdFire microarchitectures
18650 are: @samp{cfv1}, @samp{cfv2}, @samp{cfv3}, @samp{cfv4} and @samp{cfv4e}.
18651
18652 You can also use @option{-mtune=68020-40} for code that needs
18653 to run relatively well on 68020, 68030 and 68040 targets.
18654 @option{-mtune=68020-60} is similar but includes 68060 targets
18655 as well. These two options select the same tuning decisions as
18656 @option{-m68020-40} and @option{-m68020-60} respectively.
18657
18658 GCC defines the macros @code{__mc@var{arch}} and @code{__mc@var{arch}__}
18659 when tuning for 680x0 architecture @var{arch}. It also defines
18660 @code{mc@var{arch}} unless either @option{-ansi} or a non-GNU @option{-std}
18661 option is used. If GCC is tuning for a range of architectures,
18662 as selected by @option{-mtune=68020-40} or @option{-mtune=68020-60},
18663 it defines the macros for every architecture in the range.
18664
18665 GCC also defines the macro @code{__m@var{uarch}__} when tuning for
18666 ColdFire microarchitecture @var{uarch}, where @var{uarch} is one
18667 of the arguments given above.
18668
18669 @item -m68000
18670 @itemx -mc68000
18671 @opindex m68000
18672 @opindex mc68000
18673 Generate output for a 68000. This is the default
18674 when the compiler is configured for 68000-based systems.
18675 It is equivalent to @option{-march=68000}.
18676
18677 Use this option for microcontrollers with a 68000 or EC000 core,
18678 including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
18679
18680 @item -m68010
18681 @opindex m68010
18682 Generate output for a 68010. This is the default
18683 when the compiler is configured for 68010-based systems.
18684 It is equivalent to @option{-march=68010}.
18685
18686 @item -m68020
18687 @itemx -mc68020
18688 @opindex m68020
18689 @opindex mc68020
18690 Generate output for a 68020. This is the default
18691 when the compiler is configured for 68020-based systems.
18692 It is equivalent to @option{-march=68020}.
18693
18694 @item -m68030
18695 @opindex m68030
18696 Generate output for a 68030. This is the default when the compiler is
18697 configured for 68030-based systems. It is equivalent to
18698 @option{-march=68030}.
18699
18700 @item -m68040
18701 @opindex m68040
18702 Generate output for a 68040. This is the default when the compiler is
18703 configured for 68040-based systems. It is equivalent to
18704 @option{-march=68040}.
18705
18706 This option inhibits the use of 68881/68882 instructions that have to be
18707 emulated by software on the 68040. Use this option if your 68040 does not
18708 have code to emulate those instructions.
18709
18710 @item -m68060
18711 @opindex m68060
18712 Generate output for a 68060. This is the default when the compiler is
18713 configured for 68060-based systems. It is equivalent to
18714 @option{-march=68060}.
18715
18716 This option inhibits the use of 68020 and 68881/68882 instructions that
18717 have to be emulated by software on the 68060. Use this option if your 68060
18718 does not have code to emulate those instructions.
18719
18720 @item -mcpu32
18721 @opindex mcpu32
18722 Generate output for a CPU32. This is the default
18723 when the compiler is configured for CPU32-based systems.
18724 It is equivalent to @option{-march=cpu32}.
18725
18726 Use this option for microcontrollers with a
18727 CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
18728 68336, 68340, 68341, 68349 and 68360.
18729
18730 @item -m5200
18731 @opindex m5200
18732 Generate output for a 520X ColdFire CPU@. This is the default
18733 when the compiler is configured for 520X-based systems.
18734 It is equivalent to @option{-mcpu=5206}, and is now deprecated
18735 in favor of that option.
18736
18737 Use this option for microcontroller with a 5200 core, including
18738 the MCF5202, MCF5203, MCF5204 and MCF5206.
18739
18740 @item -m5206e
18741 @opindex m5206e
18742 Generate output for a 5206e ColdFire CPU@. The option is now
18743 deprecated in favor of the equivalent @option{-mcpu=5206e}.
18744
18745 @item -m528x
18746 @opindex m528x
18747 Generate output for a member of the ColdFire 528X family.
18748 The option is now deprecated in favor of the equivalent
18749 @option{-mcpu=528x}.
18750
18751 @item -m5307
18752 @opindex m5307
18753 Generate output for a ColdFire 5307 CPU@. The option is now deprecated
18754 in favor of the equivalent @option{-mcpu=5307}.
18755
18756 @item -m5407
18757 @opindex m5407
18758 Generate output for a ColdFire 5407 CPU@. The option is now deprecated
18759 in favor of the equivalent @option{-mcpu=5407}.
18760
18761 @item -mcfv4e
18762 @opindex mcfv4e
18763 Generate output for a ColdFire V4e family CPU (e.g.@: 547x/548x).
18764 This includes use of hardware floating-point instructions.
18765 The option is equivalent to @option{-mcpu=547x}, and is now
18766 deprecated in favor of that option.
18767
18768 @item -m68020-40
18769 @opindex m68020-40
18770 Generate output for a 68040, without using any of the new instructions.
18771 This results in code that can run relatively efficiently on either a
18772 68020/68881 or a 68030 or a 68040. The generated code does use the
18773 68881 instructions that are emulated on the 68040.
18774
18775 The option is equivalent to @option{-march=68020} @option{-mtune=68020-40}.
18776
18777 @item -m68020-60
18778 @opindex m68020-60
18779 Generate output for a 68060, without using any of the new instructions.
18780 This results in code that can run relatively efficiently on either a
18781 68020/68881 or a 68030 or a 68040. The generated code does use the
18782 68881 instructions that are emulated on the 68060.
18783
18784 The option is equivalent to @option{-march=68020} @option{-mtune=68020-60}.
18785
18786 @item -mhard-float
18787 @itemx -m68881
18788 @opindex mhard-float
18789 @opindex m68881
18790 Generate floating-point instructions. This is the default for 68020
18791 and above, and for ColdFire devices that have an FPU@. It defines the
18792 macro @code{__HAVE_68881__} on M680x0 targets and @code{__mcffpu__}
18793 on ColdFire targets.
18794
18795 @item -msoft-float
18796 @opindex msoft-float
18797 Do not generate floating-point instructions; use library calls instead.
18798 This is the default for 68000, 68010, and 68832 targets. It is also
18799 the default for ColdFire devices that have no FPU.
18800
18801 @item -mdiv
18802 @itemx -mno-div
18803 @opindex mdiv
18804 @opindex mno-div
18805 Generate (do not generate) ColdFire hardware divide and remainder
18806 instructions. If @option{-march} is used without @option{-mcpu},
18807 the default is ``on'' for ColdFire architectures and ``off'' for M680x0
18808 architectures. Otherwise, the default is taken from the target CPU
18809 (either the default CPU, or the one specified by @option{-mcpu}). For
18810 example, the default is ``off'' for @option{-mcpu=5206} and ``on'' for
18811 @option{-mcpu=5206e}.
18812
18813 GCC defines the macro @code{__mcfhwdiv__} when this option is enabled.
18814
18815 @item -mshort
18816 @opindex mshort
18817 Consider type @code{int} to be 16 bits wide, like @code{short int}.
18818 Additionally, parameters passed on the stack are also aligned to a
18819 16-bit boundary even on targets whose API mandates promotion to 32-bit.
18820
18821 @item -mno-short
18822 @opindex mno-short
18823 Do not consider type @code{int} to be 16 bits wide. This is the default.
18824
18825 @item -mnobitfield
18826 @itemx -mno-bitfield
18827 @opindex mnobitfield
18828 @opindex mno-bitfield
18829 Do not use the bit-field instructions. The @option{-m68000}, @option{-mcpu32}
18830 and @option{-m5200} options imply @w{@option{-mnobitfield}}.
18831
18832 @item -mbitfield
18833 @opindex mbitfield
18834 Do use the bit-field instructions. The @option{-m68020} option implies
18835 @option{-mbitfield}. This is the default if you use a configuration
18836 designed for a 68020.
18837
18838 @item -mrtd
18839 @opindex mrtd
18840 Use a different function-calling convention, in which functions
18841 that take a fixed number of arguments return with the @code{rtd}
18842 instruction, which pops their arguments while returning. This
18843 saves one instruction in the caller since there is no need to pop
18844 the arguments there.
18845
18846 This calling convention is incompatible with the one normally
18847 used on Unix, so you cannot use it if you need to call libraries
18848 compiled with the Unix compiler.
18849
18850 Also, you must provide function prototypes for all functions that
18851 take variable numbers of arguments (including @code{printf});
18852 otherwise incorrect code is generated for calls to those
18853 functions.
18854
18855 In addition, seriously incorrect code results if you call a
18856 function with too many arguments. (Normally, extra arguments are
18857 harmlessly ignored.)
18858
18859 The @code{rtd} instruction is supported by the 68010, 68020, 68030,
18860 68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
18861
18862 @item -mno-rtd
18863 @opindex mno-rtd
18864 Do not use the calling conventions selected by @option{-mrtd}.
18865 This is the default.
18866
18867 @item -malign-int
18868 @itemx -mno-align-int
18869 @opindex malign-int
18870 @opindex mno-align-int
18871 Control whether GCC aligns @code{int}, @code{long}, @code{long long},
18872 @code{float}, @code{double}, and @code{long double} variables on a 32-bit
18873 boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
18874 Aligning variables on 32-bit boundaries produces code that runs somewhat
18875 faster on processors with 32-bit busses at the expense of more memory.
18876
18877 @strong{Warning:} if you use the @option{-malign-int} switch, GCC
18878 aligns structures containing the above types differently than
18879 most published application binary interface specifications for the m68k.
18880
18881 @item -mpcrel
18882 @opindex mpcrel
18883 Use the pc-relative addressing mode of the 68000 directly, instead of
18884 using a global offset table. At present, this option implies @option{-fpic},
18885 allowing at most a 16-bit offset for pc-relative addressing. @option{-fPIC} is
18886 not presently supported with @option{-mpcrel}, though this could be supported for
18887 68020 and higher processors.
18888
18889 @item -mno-strict-align
18890 @itemx -mstrict-align
18891 @opindex mno-strict-align
18892 @opindex mstrict-align
18893 Do not (do) assume that unaligned memory references are handled by
18894 the system.
18895
18896 @item -msep-data
18897 Generate code that allows the data segment to be located in a different
18898 area of memory from the text segment. This allows for execute-in-place in
18899 an environment without virtual memory management. This option implies
18900 @option{-fPIC}.
18901
18902 @item -mno-sep-data
18903 Generate code that assumes that the data segment follows the text segment.
18904 This is the default.
18905
18906 @item -mid-shared-library
18907 Generate code that supports shared libraries via the library ID method.
18908 This allows for execute-in-place and shared libraries in an environment
18909 without virtual memory management. This option implies @option{-fPIC}.
18910
18911 @item -mno-id-shared-library
18912 Generate code that doesn't assume ID-based shared libraries are being used.
18913 This is the default.
18914
18915 @item -mshared-library-id=n
18916 Specifies the identification number of the ID-based shared library being
18917 compiled. Specifying a value of 0 generates more compact code; specifying
18918 other values forces the allocation of that number to the current
18919 library, but is no more space- or time-efficient than omitting this option.
18920
18921 @item -mxgot
18922 @itemx -mno-xgot
18923 @opindex mxgot
18924 @opindex mno-xgot
18925 When generating position-independent code for ColdFire, generate code
18926 that works if the GOT has more than 8192 entries. This code is
18927 larger and slower than code generated without this option. On M680x0
18928 processors, this option is not needed; @option{-fPIC} suffices.
18929
18930 GCC normally uses a single instruction to load values from the GOT@.
18931 While this is relatively efficient, it only works if the GOT
18932 is smaller than about 64k. Anything larger causes the linker
18933 to report an error such as:
18934
18935 @cindex relocation truncated to fit (ColdFire)
18936 @smallexample
18937 relocation truncated to fit: R_68K_GOT16O foobar
18938 @end smallexample
18939
18940 If this happens, you should recompile your code with @option{-mxgot}.
18941 It should then work with very large GOTs. However, code generated with
18942 @option{-mxgot} is less efficient, since it takes 4 instructions to fetch
18943 the value of a global symbol.
18944
18945 Note that some linkers, including newer versions of the GNU linker,
18946 can create multiple GOTs and sort GOT entries. If you have such a linker,
18947 you should only need to use @option{-mxgot} when compiling a single
18948 object file that accesses more than 8192 GOT entries. Very few do.
18949
18950 These options have no effect unless GCC is generating
18951 position-independent code.
18952
18953 @item -mlong-jump-table-offsets
18954 @opindex mlong-jump-table-offsets
18955 Use 32-bit offsets in @code{switch} tables. The default is to use
18956 16-bit offsets.
18957
18958 @end table
18959
18960 @node MCore Options
18961 @subsection MCore Options
18962 @cindex MCore options
18963
18964 These are the @samp{-m} options defined for the Motorola M*Core
18965 processors.
18966
18967 @table @gcctabopt
18968
18969 @item -mhardlit
18970 @itemx -mno-hardlit
18971 @opindex mhardlit
18972 @opindex mno-hardlit
18973 Inline constants into the code stream if it can be done in two
18974 instructions or less.
18975
18976 @item -mdiv
18977 @itemx -mno-div
18978 @opindex mdiv
18979 @opindex mno-div
18980 Use the divide instruction. (Enabled by default).
18981
18982 @item -mrelax-immediate
18983 @itemx -mno-relax-immediate
18984 @opindex mrelax-immediate
18985 @opindex mno-relax-immediate
18986 Allow arbitrary-sized immediates in bit operations.
18987
18988 @item -mwide-bitfields
18989 @itemx -mno-wide-bitfields
18990 @opindex mwide-bitfields
18991 @opindex mno-wide-bitfields
18992 Always treat bit-fields as @code{int}-sized.
18993
18994 @item -m4byte-functions
18995 @itemx -mno-4byte-functions
18996 @opindex m4byte-functions
18997 @opindex mno-4byte-functions
18998 Force all functions to be aligned to a 4-byte boundary.
18999
19000 @item -mcallgraph-data
19001 @itemx -mno-callgraph-data
19002 @opindex mcallgraph-data
19003 @opindex mno-callgraph-data
19004 Emit callgraph information.
19005
19006 @item -mslow-bytes
19007 @itemx -mno-slow-bytes
19008 @opindex mslow-bytes
19009 @opindex mno-slow-bytes
19010 Prefer word access when reading byte quantities.
19011
19012 @item -mlittle-endian
19013 @itemx -mbig-endian
19014 @opindex mlittle-endian
19015 @opindex mbig-endian
19016 Generate code for a little-endian target.
19017
19018 @item -m210
19019 @itemx -m340
19020 @opindex m210
19021 @opindex m340
19022 Generate code for the 210 processor.
19023
19024 @item -mno-lsim
19025 @opindex mno-lsim
19026 Assume that runtime support has been provided and so omit the
19027 simulator library (@file{libsim.a)} from the linker command line.
19028
19029 @item -mstack-increment=@var{size}
19030 @opindex mstack-increment
19031 Set the maximum amount for a single stack increment operation. Large
19032 values can increase the speed of programs that contain functions
19033 that need a large amount of stack space, but they can also trigger a
19034 segmentation fault if the stack is extended too much. The default
19035 value is 0x1000.
19036
19037 @end table
19038
19039 @node MeP Options
19040 @subsection MeP Options
19041 @cindex MeP options
19042
19043 @table @gcctabopt
19044
19045 @item -mabsdiff
19046 @opindex mabsdiff
19047 Enables the @code{abs} instruction, which is the absolute difference
19048 between two registers.
19049
19050 @item -mall-opts
19051 @opindex mall-opts
19052 Enables all the optional instructions---average, multiply, divide, bit
19053 operations, leading zero, absolute difference, min/max, clip, and
19054 saturation.
19055
19056
19057 @item -maverage
19058 @opindex maverage
19059 Enables the @code{ave} instruction, which computes the average of two
19060 registers.
19061
19062 @item -mbased=@var{n}
19063 @opindex mbased=
19064 Variables of size @var{n} bytes or smaller are placed in the
19065 @code{.based} section by default. Based variables use the @code{$tp}
19066 register as a base register, and there is a 128-byte limit to the
19067 @code{.based} section.
19068
19069 @item -mbitops
19070 @opindex mbitops
19071 Enables the bit operation instructions---bit test (@code{btstm}), set
19072 (@code{bsetm}), clear (@code{bclrm}), invert (@code{bnotm}), and
19073 test-and-set (@code{tas}).
19074
19075 @item -mc=@var{name}
19076 @opindex mc=
19077 Selects which section constant data is placed in. @var{name} may
19078 be @samp{tiny}, @samp{near}, or @samp{far}.
19079
19080 @item -mclip
19081 @opindex mclip
19082 Enables the @code{clip} instruction. Note that @option{-mclip} is not
19083 useful unless you also provide @option{-mminmax}.
19084
19085 @item -mconfig=@var{name}
19086 @opindex mconfig=
19087 Selects one of the built-in core configurations. Each MeP chip has
19088 one or more modules in it; each module has a core CPU and a variety of
19089 coprocessors, optional instructions, and peripherals. The
19090 @code{MeP-Integrator} tool, not part of GCC, provides these
19091 configurations through this option; using this option is the same as
19092 using all the corresponding command-line options. The default
19093 configuration is @samp{default}.
19094
19095 @item -mcop
19096 @opindex mcop
19097 Enables the coprocessor instructions. By default, this is a 32-bit
19098 coprocessor. Note that the coprocessor is normally enabled via the
19099 @option{-mconfig=} option.
19100
19101 @item -mcop32
19102 @opindex mcop32
19103 Enables the 32-bit coprocessor's instructions.
19104
19105 @item -mcop64
19106 @opindex mcop64
19107 Enables the 64-bit coprocessor's instructions.
19108
19109 @item -mivc2
19110 @opindex mivc2
19111 Enables IVC2 scheduling. IVC2 is a 64-bit VLIW coprocessor.
19112
19113 @item -mdc
19114 @opindex mdc
19115 Causes constant variables to be placed in the @code{.near} section.
19116
19117 @item -mdiv
19118 @opindex mdiv
19119 Enables the @code{div} and @code{divu} instructions.
19120
19121 @item -meb
19122 @opindex meb
19123 Generate big-endian code.
19124
19125 @item -mel
19126 @opindex mel
19127 Generate little-endian code.
19128
19129 @item -mio-volatile
19130 @opindex mio-volatile
19131 Tells the compiler that any variable marked with the @code{io}
19132 attribute is to be considered volatile.
19133
19134 @item -ml
19135 @opindex ml
19136 Causes variables to be assigned to the @code{.far} section by default.
19137
19138 @item -mleadz
19139 @opindex mleadz
19140 Enables the @code{leadz} (leading zero) instruction.
19141
19142 @item -mm
19143 @opindex mm
19144 Causes variables to be assigned to the @code{.near} section by default.
19145
19146 @item -mminmax
19147 @opindex mminmax
19148 Enables the @code{min} and @code{max} instructions.
19149
19150 @item -mmult
19151 @opindex mmult
19152 Enables the multiplication and multiply-accumulate instructions.
19153
19154 @item -mno-opts
19155 @opindex mno-opts
19156 Disables all the optional instructions enabled by @option{-mall-opts}.
19157
19158 @item -mrepeat
19159 @opindex mrepeat
19160 Enables the @code{repeat} and @code{erepeat} instructions, used for
19161 low-overhead looping.
19162
19163 @item -ms
19164 @opindex ms
19165 Causes all variables to default to the @code{.tiny} section. Note
19166 that there is a 65536-byte limit to this section. Accesses to these
19167 variables use the @code{%gp} base register.
19168
19169 @item -msatur
19170 @opindex msatur
19171 Enables the saturation instructions. Note that the compiler does not
19172 currently generate these itself, but this option is included for
19173 compatibility with other tools, like @code{as}.
19174
19175 @item -msdram
19176 @opindex msdram
19177 Link the SDRAM-based runtime instead of the default ROM-based runtime.
19178
19179 @item -msim
19180 @opindex msim
19181 Link the simulator run-time libraries.
19182
19183 @item -msimnovec
19184 @opindex msimnovec
19185 Link the simulator runtime libraries, excluding built-in support
19186 for reset and exception vectors and tables.
19187
19188 @item -mtf
19189 @opindex mtf
19190 Causes all functions to default to the @code{.far} section. Without
19191 this option, functions default to the @code{.near} section.
19192
19193 @item -mtiny=@var{n}
19194 @opindex mtiny=
19195 Variables that are @var{n} bytes or smaller are allocated to the
19196 @code{.tiny} section. These variables use the @code{$gp} base
19197 register. The default for this option is 4, but note that there's a
19198 65536-byte limit to the @code{.tiny} section.
19199
19200 @end table
19201
19202 @node MicroBlaze Options
19203 @subsection MicroBlaze Options
19204 @cindex MicroBlaze Options
19205
19206 @table @gcctabopt
19207
19208 @item -msoft-float
19209 @opindex msoft-float
19210 Use software emulation for floating point (default).
19211
19212 @item -mhard-float
19213 @opindex mhard-float
19214 Use hardware floating-point instructions.
19215
19216 @item -mmemcpy
19217 @opindex mmemcpy
19218 Do not optimize block moves, use @code{memcpy}.
19219
19220 @item -mno-clearbss
19221 @opindex mno-clearbss
19222 This option is deprecated. Use @option{-fno-zero-initialized-in-bss} instead.
19223
19224 @item -mcpu=@var{cpu-type}
19225 @opindex mcpu=
19226 Use features of, and schedule code for, the given CPU.
19227 Supported values are in the format @samp{v@var{X}.@var{YY}.@var{Z}},
19228 where @var{X} is a major version, @var{YY} is the minor version, and
19229 @var{Z} is compatibility code. Example values are @samp{v3.00.a},
19230 @samp{v4.00.b}, @samp{v5.00.a}, @samp{v5.00.b}, @samp{v5.00.b}, @samp{v6.00.a}.
19231
19232 @item -mxl-soft-mul
19233 @opindex mxl-soft-mul
19234 Use software multiply emulation (default).
19235
19236 @item -mxl-soft-div
19237 @opindex mxl-soft-div
19238 Use software emulation for divides (default).
19239
19240 @item -mxl-barrel-shift
19241 @opindex mxl-barrel-shift
19242 Use the hardware barrel shifter.
19243
19244 @item -mxl-pattern-compare
19245 @opindex mxl-pattern-compare
19246 Use pattern compare instructions.
19247
19248 @item -msmall-divides
19249 @opindex msmall-divides
19250 Use table lookup optimization for small signed integer divisions.
19251
19252 @item -mxl-stack-check
19253 @opindex mxl-stack-check
19254 This option is deprecated. Use @option{-fstack-check} instead.
19255
19256 @item -mxl-gp-opt
19257 @opindex mxl-gp-opt
19258 Use GP-relative @code{.sdata}/@code{.sbss} sections.
19259
19260 @item -mxl-multiply-high
19261 @opindex mxl-multiply-high
19262 Use multiply high instructions for high part of 32x32 multiply.
19263
19264 @item -mxl-float-convert
19265 @opindex mxl-float-convert
19266 Use hardware floating-point conversion instructions.
19267
19268 @item -mxl-float-sqrt
19269 @opindex mxl-float-sqrt
19270 Use hardware floating-point square root instruction.
19271
19272 @item -mbig-endian
19273 @opindex mbig-endian
19274 Generate code for a big-endian target.
19275
19276 @item -mlittle-endian
19277 @opindex mlittle-endian
19278 Generate code for a little-endian target.
19279
19280 @item -mxl-reorder
19281 @opindex mxl-reorder
19282 Use reorder instructions (swap and byte reversed load/store).
19283
19284 @item -mxl-mode-@var{app-model}
19285 Select application model @var{app-model}. Valid models are
19286 @table @samp
19287 @item executable
19288 normal executable (default), uses startup code @file{crt0.o}.
19289
19290 @item xmdstub
19291 for use with Xilinx Microprocessor Debugger (XMD) based
19292 software intrusive debug agent called xmdstub. This uses startup file
19293 @file{crt1.o} and sets the start address of the program to 0x800.
19294
19295 @item bootstrap
19296 for applications that are loaded using a bootloader.
19297 This model uses startup file @file{crt2.o} which does not contain a processor
19298 reset vector handler. This is suitable for transferring control on a
19299 processor reset to the bootloader rather than the application.
19300
19301 @item novectors
19302 for applications that do not require any of the
19303 MicroBlaze vectors. This option may be useful for applications running
19304 within a monitoring application. This model uses @file{crt3.o} as a startup file.
19305 @end table
19306
19307 Option @option{-xl-mode-@var{app-model}} is a deprecated alias for
19308 @option{-mxl-mode-@var{app-model}}.
19309
19310 @end table
19311
19312 @node MIPS Options
19313 @subsection MIPS Options
19314 @cindex MIPS options
19315
19316 @table @gcctabopt
19317
19318 @item -EB
19319 @opindex EB
19320 Generate big-endian code.
19321
19322 @item -EL
19323 @opindex EL
19324 Generate little-endian code. This is the default for @samp{mips*el-*-*}
19325 configurations.
19326
19327 @item -march=@var{arch}
19328 @opindex march
19329 Generate code that runs on @var{arch}, which can be the name of a
19330 generic MIPS ISA, or the name of a particular processor.
19331 The ISA names are:
19332 @samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4},
19333 @samp{mips32}, @samp{mips32r2}, @samp{mips32r3}, @samp{mips32r5},
19334 @samp{mips32r6}, @samp{mips64}, @samp{mips64r2}, @samp{mips64r3},
19335 @samp{mips64r5} and @samp{mips64r6}.
19336 The processor names are:
19337 @samp{4kc}, @samp{4km}, @samp{4kp}, @samp{4ksc},
19338 @samp{4kec}, @samp{4kem}, @samp{4kep}, @samp{4ksd},
19339 @samp{5kc}, @samp{5kf},
19340 @samp{20kc},
19341 @samp{24kc}, @samp{24kf2_1}, @samp{24kf1_1},
19342 @samp{24kec}, @samp{24kef2_1}, @samp{24kef1_1},
19343 @samp{34kc}, @samp{34kf2_1}, @samp{34kf1_1}, @samp{34kn},
19344 @samp{74kc}, @samp{74kf2_1}, @samp{74kf1_1}, @samp{74kf3_2},
19345 @samp{1004kc}, @samp{1004kf2_1}, @samp{1004kf1_1},
19346 @samp{i6400},
19347 @samp{interaptiv},
19348 @samp{loongson2e}, @samp{loongson2f}, @samp{loongson3a},
19349 @samp{m4k},
19350 @samp{m14k}, @samp{m14kc}, @samp{m14ke}, @samp{m14kec},
19351 @samp{m5100}, @samp{m5101},
19352 @samp{octeon}, @samp{octeon+}, @samp{octeon2}, @samp{octeon3},
19353 @samp{orion},
19354 @samp{p5600},
19355 @samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400},
19356 @samp{r4600}, @samp{r4650}, @samp{r4700}, @samp{r6000}, @samp{r8000},
19357 @samp{rm7000}, @samp{rm9000},
19358 @samp{r10000}, @samp{r12000}, @samp{r14000}, @samp{r16000},
19359 @samp{sb1},
19360 @samp{sr71000},
19361 @samp{vr4100}, @samp{vr4111}, @samp{vr4120}, @samp{vr4130}, @samp{vr4300},
19362 @samp{vr5000}, @samp{vr5400}, @samp{vr5500},
19363 @samp{xlr} and @samp{xlp}.
19364 The special value @samp{from-abi} selects the
19365 most compatible architecture for the selected ABI (that is,
19366 @samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@.
19367
19368 The native Linux/GNU toolchain also supports the value @samp{native},
19369 which selects the best architecture option for the host processor.
19370 @option{-march=native} has no effect if GCC does not recognize
19371 the processor.
19372
19373 In processor names, a final @samp{000} can be abbreviated as @samp{k}
19374 (for example, @option{-march=r2k}). Prefixes are optional, and
19375 @samp{vr} may be written @samp{r}.
19376
19377 Names of the form @samp{@var{n}f2_1} refer to processors with
19378 FPUs clocked at half the rate of the core, names of the form
19379 @samp{@var{n}f1_1} refer to processors with FPUs clocked at the same
19380 rate as the core, and names of the form @samp{@var{n}f3_2} refer to
19381 processors with FPUs clocked a ratio of 3:2 with respect to the core.
19382 For compatibility reasons, @samp{@var{n}f} is accepted as a synonym
19383 for @samp{@var{n}f2_1} while @samp{@var{n}x} and @samp{@var{b}fx} are
19384 accepted as synonyms for @samp{@var{n}f1_1}.
19385
19386 GCC defines two macros based on the value of this option. The first
19387 is @code{_MIPS_ARCH}, which gives the name of target architecture, as
19388 a string. The second has the form @code{_MIPS_ARCH_@var{foo}},
19389 where @var{foo} is the capitalized value of @code{_MIPS_ARCH}@.
19390 For example, @option{-march=r2000} sets @code{_MIPS_ARCH}
19391 to @code{"r2000"} and defines the macro @code{_MIPS_ARCH_R2000}.
19392
19393 Note that the @code{_MIPS_ARCH} macro uses the processor names given
19394 above. In other words, it has the full prefix and does not
19395 abbreviate @samp{000} as @samp{k}. In the case of @samp{from-abi},
19396 the macro names the resolved architecture (either @code{"mips1"} or
19397 @code{"mips3"}). It names the default architecture when no
19398 @option{-march} option is given.
19399
19400 @item -mtune=@var{arch}
19401 @opindex mtune
19402 Optimize for @var{arch}. Among other things, this option controls
19403 the way instructions are scheduled, and the perceived cost of arithmetic
19404 operations. The list of @var{arch} values is the same as for
19405 @option{-march}.
19406
19407 When this option is not used, GCC optimizes for the processor
19408 specified by @option{-march}. By using @option{-march} and
19409 @option{-mtune} together, it is possible to generate code that
19410 runs on a family of processors, but optimize the code for one
19411 particular member of that family.
19412
19413 @option{-mtune} defines the macros @code{_MIPS_TUNE} and
19414 @code{_MIPS_TUNE_@var{foo}}, which work in the same way as the
19415 @option{-march} ones described above.
19416
19417 @item -mips1
19418 @opindex mips1
19419 Equivalent to @option{-march=mips1}.
19420
19421 @item -mips2
19422 @opindex mips2
19423 Equivalent to @option{-march=mips2}.
19424
19425 @item -mips3
19426 @opindex mips3
19427 Equivalent to @option{-march=mips3}.
19428
19429 @item -mips4
19430 @opindex mips4
19431 Equivalent to @option{-march=mips4}.
19432
19433 @item -mips32
19434 @opindex mips32
19435 Equivalent to @option{-march=mips32}.
19436
19437 @item -mips32r3
19438 @opindex mips32r3
19439 Equivalent to @option{-march=mips32r3}.
19440
19441 @item -mips32r5
19442 @opindex mips32r5
19443 Equivalent to @option{-march=mips32r5}.
19444
19445 @item -mips32r6
19446 @opindex mips32r6
19447 Equivalent to @option{-march=mips32r6}.
19448
19449 @item -mips64
19450 @opindex mips64
19451 Equivalent to @option{-march=mips64}.
19452
19453 @item -mips64r2
19454 @opindex mips64r2
19455 Equivalent to @option{-march=mips64r2}.
19456
19457 @item -mips64r3
19458 @opindex mips64r3
19459 Equivalent to @option{-march=mips64r3}.
19460
19461 @item -mips64r5
19462 @opindex mips64r5
19463 Equivalent to @option{-march=mips64r5}.
19464
19465 @item -mips64r6
19466 @opindex mips64r6
19467 Equivalent to @option{-march=mips64r6}.
19468
19469 @item -mips16
19470 @itemx -mno-mips16
19471 @opindex mips16
19472 @opindex mno-mips16
19473 Generate (do not generate) MIPS16 code. If GCC is targeting a
19474 MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE@.
19475
19476 MIPS16 code generation can also be controlled on a per-function basis
19477 by means of @code{mips16} and @code{nomips16} attributes.
19478 @xref{Function Attributes}, for more information.
19479
19480 @item -mflip-mips16
19481 @opindex mflip-mips16
19482 Generate MIPS16 code on alternating functions. This option is provided
19483 for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
19484 not intended for ordinary use in compiling user code.
19485
19486 @item -minterlink-compressed
19487 @item -mno-interlink-compressed
19488 @opindex minterlink-compressed
19489 @opindex mno-interlink-compressed
19490 Require (do not require) that code using the standard (uncompressed) MIPS ISA
19491 be link-compatible with MIPS16 and microMIPS code, and vice versa.
19492
19493 For example, code using the standard ISA encoding cannot jump directly
19494 to MIPS16 or microMIPS code; it must either use a call or an indirect jump.
19495 @option{-minterlink-compressed} therefore disables direct jumps unless GCC
19496 knows that the target of the jump is not compressed.
19497
19498 @item -minterlink-mips16
19499 @itemx -mno-interlink-mips16
19500 @opindex minterlink-mips16
19501 @opindex mno-interlink-mips16
19502 Aliases of @option{-minterlink-compressed} and
19503 @option{-mno-interlink-compressed}. These options predate the microMIPS ASE
19504 and are retained for backwards compatibility.
19505
19506 @item -mabi=32
19507 @itemx -mabi=o64
19508 @itemx -mabi=n32
19509 @itemx -mabi=64
19510 @itemx -mabi=eabi
19511 @opindex mabi=32
19512 @opindex mabi=o64
19513 @opindex mabi=n32
19514 @opindex mabi=64
19515 @opindex mabi=eabi
19516 Generate code for the given ABI@.
19517
19518 Note that the EABI has a 32-bit and a 64-bit variant. GCC normally
19519 generates 64-bit code when you select a 64-bit architecture, but you
19520 can use @option{-mgp32} to get 32-bit code instead.
19521
19522 For information about the O64 ABI, see
19523 @uref{http://gcc.gnu.org/@/projects/@/mipso64-abi.html}.
19524
19525 GCC supports a variant of the o32 ABI in which floating-point registers
19526 are 64 rather than 32 bits wide. You can select this combination with
19527 @option{-mabi=32} @option{-mfp64}. This ABI relies on the @code{mthc1}
19528 and @code{mfhc1} instructions and is therefore only supported for
19529 MIPS32R2, MIPS32R3 and MIPS32R5 processors.
19530
19531 The register assignments for arguments and return values remain the
19532 same, but each scalar value is passed in a single 64-bit register
19533 rather than a pair of 32-bit registers. For example, scalar
19534 floating-point values are returned in @samp{$f0} only, not a
19535 @samp{$f0}/@samp{$f1} pair. The set of call-saved registers also
19536 remains the same in that the even-numbered double-precision registers
19537 are saved.
19538
19539 Two additional variants of the o32 ABI are supported to enable
19540 a transition from 32-bit to 64-bit registers. These are FPXX
19541 (@option{-mfpxx}) and FP64A (@option{-mfp64} @option{-mno-odd-spreg}).
19542 The FPXX extension mandates that all code must execute correctly
19543 when run using 32-bit or 64-bit registers. The code can be interlinked
19544 with either FP32 or FP64, but not both.
19545 The FP64A extension is similar to the FP64 extension but forbids the
19546 use of odd-numbered single-precision registers. This can be used
19547 in conjunction with the @code{FRE} mode of FPUs in MIPS32R5
19548 processors and allows both FP32 and FP64A code to interlink and
19549 run in the same process without changing FPU modes.
19550
19551 @item -mabicalls
19552 @itemx -mno-abicalls
19553 @opindex mabicalls
19554 @opindex mno-abicalls
19555 Generate (do not generate) code that is suitable for SVR4-style
19556 dynamic objects. @option{-mabicalls} is the default for SVR4-based
19557 systems.
19558
19559 @item -mshared
19560 @itemx -mno-shared
19561 Generate (do not generate) code that is fully position-independent,
19562 and that can therefore be linked into shared libraries. This option
19563 only affects @option{-mabicalls}.
19564
19565 All @option{-mabicalls} code has traditionally been position-independent,
19566 regardless of options like @option{-fPIC} and @option{-fpic}. However,
19567 as an extension, the GNU toolchain allows executables to use absolute
19568 accesses for locally-binding symbols. It can also use shorter GP
19569 initialization sequences and generate direct calls to locally-defined
19570 functions. This mode is selected by @option{-mno-shared}.
19571
19572 @option{-mno-shared} depends on binutils 2.16 or higher and generates
19573 objects that can only be linked by the GNU linker. However, the option
19574 does not affect the ABI of the final executable; it only affects the ABI
19575 of relocatable objects. Using @option{-mno-shared} generally makes
19576 executables both smaller and quicker.
19577
19578 @option{-mshared} is the default.
19579
19580 @item -mplt
19581 @itemx -mno-plt
19582 @opindex mplt
19583 @opindex mno-plt
19584 Assume (do not assume) that the static and dynamic linkers
19585 support PLTs and copy relocations. This option only affects
19586 @option{-mno-shared -mabicalls}. For the n64 ABI, this option
19587 has no effect without @option{-msym32}.
19588
19589 You can make @option{-mplt} the default by configuring
19590 GCC with @option{--with-mips-plt}. The default is
19591 @option{-mno-plt} otherwise.
19592
19593 @item -mxgot
19594 @itemx -mno-xgot
19595 @opindex mxgot
19596 @opindex mno-xgot
19597 Lift (do not lift) the usual restrictions on the size of the global
19598 offset table.
19599
19600 GCC normally uses a single instruction to load values from the GOT@.
19601 While this is relatively efficient, it only works if the GOT
19602 is smaller than about 64k. Anything larger causes the linker
19603 to report an error such as:
19604
19605 @cindex relocation truncated to fit (MIPS)
19606 @smallexample
19607 relocation truncated to fit: R_MIPS_GOT16 foobar
19608 @end smallexample
19609
19610 If this happens, you should recompile your code with @option{-mxgot}.
19611 This works with very large GOTs, although the code is also
19612 less efficient, since it takes three instructions to fetch the
19613 value of a global symbol.
19614
19615 Note that some linkers can create multiple GOTs. If you have such a
19616 linker, you should only need to use @option{-mxgot} when a single object
19617 file accesses more than 64k's worth of GOT entries. Very few do.
19618
19619 These options have no effect unless GCC is generating position
19620 independent code.
19621
19622 @item -mgp32
19623 @opindex mgp32
19624 Assume that general-purpose registers are 32 bits wide.
19625
19626 @item -mgp64
19627 @opindex mgp64
19628 Assume that general-purpose registers are 64 bits wide.
19629
19630 @item -mfp32
19631 @opindex mfp32
19632 Assume that floating-point registers are 32 bits wide.
19633
19634 @item -mfp64
19635 @opindex mfp64
19636 Assume that floating-point registers are 64 bits wide.
19637
19638 @item -mfpxx
19639 @opindex mfpxx
19640 Do not assume the width of floating-point registers.
19641
19642 @item -mhard-float
19643 @opindex mhard-float
19644 Use floating-point coprocessor instructions.
19645
19646 @item -msoft-float
19647 @opindex msoft-float
19648 Do not use floating-point coprocessor instructions. Implement
19649 floating-point calculations using library calls instead.
19650
19651 @item -mno-float
19652 @opindex mno-float
19653 Equivalent to @option{-msoft-float}, but additionally asserts that the
19654 program being compiled does not perform any floating-point operations.
19655 This option is presently supported only by some bare-metal MIPS
19656 configurations, where it may select a special set of libraries
19657 that lack all floating-point support (including, for example, the
19658 floating-point @code{printf} formats).
19659 If code compiled with @option{-mno-float} accidentally contains
19660 floating-point operations, it is likely to suffer a link-time
19661 or run-time failure.
19662
19663 @item -msingle-float
19664 @opindex msingle-float
19665 Assume that the floating-point coprocessor only supports single-precision
19666 operations.
19667
19668 @item -mdouble-float
19669 @opindex mdouble-float
19670 Assume that the floating-point coprocessor supports double-precision
19671 operations. This is the default.
19672
19673 @item -modd-spreg
19674 @itemx -mno-odd-spreg
19675 @opindex modd-spreg
19676 @opindex mno-odd-spreg
19677 Enable the use of odd-numbered single-precision floating-point registers
19678 for the o32 ABI. This is the default for processors that are known to
19679 support these registers. When using the o32 FPXX ABI, @option{-mno-odd-spreg}
19680 is set by default.
19681
19682 @item -mabs=2008
19683 @itemx -mabs=legacy
19684 @opindex mabs=2008
19685 @opindex mabs=legacy
19686 These options control the treatment of the special not-a-number (NaN)
19687 IEEE 754 floating-point data with the @code{abs.@i{fmt}} and
19688 @code{neg.@i{fmt}} machine instructions.
19689
19690 By default or when @option{-mabs=legacy} is used the legacy
19691 treatment is selected. In this case these instructions are considered
19692 arithmetic and avoided where correct operation is required and the
19693 input operand might be a NaN. A longer sequence of instructions that
19694 manipulate the sign bit of floating-point datum manually is used
19695 instead unless the @option{-ffinite-math-only} option has also been
19696 specified.
19697
19698 The @option{-mabs=2008} option selects the IEEE 754-2008 treatment. In
19699 this case these instructions are considered non-arithmetic and therefore
19700 operating correctly in all cases, including in particular where the
19701 input operand is a NaN. These instructions are therefore always used
19702 for the respective operations.
19703
19704 @item -mnan=2008
19705 @itemx -mnan=legacy
19706 @opindex mnan=2008
19707 @opindex mnan=legacy
19708 These options control the encoding of the special not-a-number (NaN)
19709 IEEE 754 floating-point data.
19710
19711 The @option{-mnan=legacy} option selects the legacy encoding. In this
19712 case quiet NaNs (qNaNs) are denoted by the first bit of their trailing
19713 significand field being 0, whereas signaling NaNs (sNaNs) are denoted
19714 by the first bit of their trailing significand field being 1.
19715
19716 The @option{-mnan=2008} option selects the IEEE 754-2008 encoding. In
19717 this case qNaNs are denoted by the first bit of their trailing
19718 significand field being 1, whereas sNaNs are denoted by the first bit of
19719 their trailing significand field being 0.
19720
19721 The default is @option{-mnan=legacy} unless GCC has been configured with
19722 @option{--with-nan=2008}.
19723
19724 @item -mllsc
19725 @itemx -mno-llsc
19726 @opindex mllsc
19727 @opindex mno-llsc
19728 Use (do not use) @samp{ll}, @samp{sc}, and @samp{sync} instructions to
19729 implement atomic memory built-in functions. When neither option is
19730 specified, GCC uses the instructions if the target architecture
19731 supports them.
19732
19733 @option{-mllsc} is useful if the runtime environment can emulate the
19734 instructions and @option{-mno-llsc} can be useful when compiling for
19735 nonstandard ISAs. You can make either option the default by
19736 configuring GCC with @option{--with-llsc} and @option{--without-llsc}
19737 respectively. @option{--with-llsc} is the default for some
19738 configurations; see the installation documentation for details.
19739
19740 @item -mdsp
19741 @itemx -mno-dsp
19742 @opindex mdsp
19743 @opindex mno-dsp
19744 Use (do not use) revision 1 of the MIPS DSP ASE@.
19745 @xref{MIPS DSP Built-in Functions}. This option defines the
19746 preprocessor macro @code{__mips_dsp}. It also defines
19747 @code{__mips_dsp_rev} to 1.
19748
19749 @item -mdspr2
19750 @itemx -mno-dspr2
19751 @opindex mdspr2
19752 @opindex mno-dspr2
19753 Use (do not use) revision 2 of the MIPS DSP ASE@.
19754 @xref{MIPS DSP Built-in Functions}. This option defines the
19755 preprocessor macros @code{__mips_dsp} and @code{__mips_dspr2}.
19756 It also defines @code{__mips_dsp_rev} to 2.
19757
19758 @item -msmartmips
19759 @itemx -mno-smartmips
19760 @opindex msmartmips
19761 @opindex mno-smartmips
19762 Use (do not use) the MIPS SmartMIPS ASE.
19763
19764 @item -mpaired-single
19765 @itemx -mno-paired-single
19766 @opindex mpaired-single
19767 @opindex mno-paired-single
19768 Use (do not use) paired-single floating-point instructions.
19769 @xref{MIPS Paired-Single Support}. This option requires
19770 hardware floating-point support to be enabled.
19771
19772 @item -mdmx
19773 @itemx -mno-mdmx
19774 @opindex mdmx
19775 @opindex mno-mdmx
19776 Use (do not use) MIPS Digital Media Extension instructions.
19777 This option can only be used when generating 64-bit code and requires
19778 hardware floating-point support to be enabled.
19779
19780 @item -mips3d
19781 @itemx -mno-mips3d
19782 @opindex mips3d
19783 @opindex mno-mips3d
19784 Use (do not use) the MIPS-3D ASE@. @xref{MIPS-3D Built-in Functions}.
19785 The option @option{-mips3d} implies @option{-mpaired-single}.
19786
19787 @item -mmicromips
19788 @itemx -mno-micromips
19789 @opindex mmicromips
19790 @opindex mno-mmicromips
19791 Generate (do not generate) microMIPS code.
19792
19793 MicroMIPS code generation can also be controlled on a per-function basis
19794 by means of @code{micromips} and @code{nomicromips} attributes.
19795 @xref{Function Attributes}, for more information.
19796
19797 @item -mmt
19798 @itemx -mno-mt
19799 @opindex mmt
19800 @opindex mno-mt
19801 Use (do not use) MT Multithreading instructions.
19802
19803 @item -mmcu
19804 @itemx -mno-mcu
19805 @opindex mmcu
19806 @opindex mno-mcu
19807 Use (do not use) the MIPS MCU ASE instructions.
19808
19809 @item -meva
19810 @itemx -mno-eva
19811 @opindex meva
19812 @opindex mno-eva
19813 Use (do not use) the MIPS Enhanced Virtual Addressing instructions.
19814
19815 @item -mvirt
19816 @itemx -mno-virt
19817 @opindex mvirt
19818 @opindex mno-virt
19819 Use (do not use) the MIPS Virtualization (VZ) instructions.
19820
19821 @item -mxpa
19822 @itemx -mno-xpa
19823 @opindex mxpa
19824 @opindex mno-xpa
19825 Use (do not use) the MIPS eXtended Physical Address (XPA) instructions.
19826
19827 @item -mlong64
19828 @opindex mlong64
19829 Force @code{long} types to be 64 bits wide. See @option{-mlong32} for
19830 an explanation of the default and the way that the pointer size is
19831 determined.
19832
19833 @item -mlong32
19834 @opindex mlong32
19835 Force @code{long}, @code{int}, and pointer types to be 32 bits wide.
19836
19837 The default size of @code{int}s, @code{long}s and pointers depends on
19838 the ABI@. All the supported ABIs use 32-bit @code{int}s. The n64 ABI
19839 uses 64-bit @code{long}s, as does the 64-bit EABI; the others use
19840 32-bit @code{long}s. Pointers are the same size as @code{long}s,
19841 or the same size as integer registers, whichever is smaller.
19842
19843 @item -msym32
19844 @itemx -mno-sym32
19845 @opindex msym32
19846 @opindex mno-sym32
19847 Assume (do not assume) that all symbols have 32-bit values, regardless
19848 of the selected ABI@. This option is useful in combination with
19849 @option{-mabi=64} and @option{-mno-abicalls} because it allows GCC
19850 to generate shorter and faster references to symbolic addresses.
19851
19852 @item -G @var{num}
19853 @opindex G
19854 Put definitions of externally-visible data in a small data section
19855 if that data is no bigger than @var{num} bytes. GCC can then generate
19856 more efficient accesses to the data; see @option{-mgpopt} for details.
19857
19858 The default @option{-G} option depends on the configuration.
19859
19860 @item -mlocal-sdata
19861 @itemx -mno-local-sdata
19862 @opindex mlocal-sdata
19863 @opindex mno-local-sdata
19864 Extend (do not extend) the @option{-G} behavior to local data too,
19865 such as to static variables in C@. @option{-mlocal-sdata} is the
19866 default for all configurations.
19867
19868 If the linker complains that an application is using too much small data,
19869 you might want to try rebuilding the less performance-critical parts with
19870 @option{-mno-local-sdata}. You might also want to build large
19871 libraries with @option{-mno-local-sdata}, so that the libraries leave
19872 more room for the main program.
19873
19874 @item -mextern-sdata
19875 @itemx -mno-extern-sdata
19876 @opindex mextern-sdata
19877 @opindex mno-extern-sdata
19878 Assume (do not assume) that externally-defined data is in
19879 a small data section if the size of that data is within the @option{-G} limit.
19880 @option{-mextern-sdata} is the default for all configurations.
19881
19882 If you compile a module @var{Mod} with @option{-mextern-sdata} @option{-G
19883 @var{num}} @option{-mgpopt}, and @var{Mod} references a variable @var{Var}
19884 that is no bigger than @var{num} bytes, you must make sure that @var{Var}
19885 is placed in a small data section. If @var{Var} is defined by another
19886 module, you must either compile that module with a high-enough
19887 @option{-G} setting or attach a @code{section} attribute to @var{Var}'s
19888 definition. If @var{Var} is common, you must link the application
19889 with a high-enough @option{-G} setting.
19890
19891 The easiest way of satisfying these restrictions is to compile
19892 and link every module with the same @option{-G} option. However,
19893 you may wish to build a library that supports several different
19894 small data limits. You can do this by compiling the library with
19895 the highest supported @option{-G} setting and additionally using
19896 @option{-mno-extern-sdata} to stop the library from making assumptions
19897 about externally-defined data.
19898
19899 @item -mgpopt
19900 @itemx -mno-gpopt
19901 @opindex mgpopt
19902 @opindex mno-gpopt
19903 Use (do not use) GP-relative accesses for symbols that are known to be
19904 in a small data section; see @option{-G}, @option{-mlocal-sdata} and
19905 @option{-mextern-sdata}. @option{-mgpopt} is the default for all
19906 configurations.
19907
19908 @option{-mno-gpopt} is useful for cases where the @code{$gp} register
19909 might not hold the value of @code{_gp}. For example, if the code is
19910 part of a library that might be used in a boot monitor, programs that
19911 call boot monitor routines pass an unknown value in @code{$gp}.
19912 (In such situations, the boot monitor itself is usually compiled
19913 with @option{-G0}.)
19914
19915 @option{-mno-gpopt} implies @option{-mno-local-sdata} and
19916 @option{-mno-extern-sdata}.
19917
19918 @item -membedded-data
19919 @itemx -mno-embedded-data
19920 @opindex membedded-data
19921 @opindex mno-embedded-data
19922 Allocate variables to the read-only data section first if possible, then
19923 next in the small data section if possible, otherwise in data. This gives
19924 slightly slower code than the default, but reduces the amount of RAM required
19925 when executing, and thus may be preferred for some embedded systems.
19926
19927 @item -muninit-const-in-rodata
19928 @itemx -mno-uninit-const-in-rodata
19929 @opindex muninit-const-in-rodata
19930 @opindex mno-uninit-const-in-rodata
19931 Put uninitialized @code{const} variables in the read-only data section.
19932 This option is only meaningful in conjunction with @option{-membedded-data}.
19933
19934 @item -mcode-readable=@var{setting}
19935 @opindex mcode-readable
19936 Specify whether GCC may generate code that reads from executable sections.
19937 There are three possible settings:
19938
19939 @table @gcctabopt
19940 @item -mcode-readable=yes
19941 Instructions may freely access executable sections. This is the
19942 default setting.
19943
19944 @item -mcode-readable=pcrel
19945 MIPS16 PC-relative load instructions can access executable sections,
19946 but other instructions must not do so. This option is useful on 4KSc
19947 and 4KSd processors when the code TLBs have the Read Inhibit bit set.
19948 It is also useful on processors that can be configured to have a dual
19949 instruction/data SRAM interface and that, like the M4K, automatically
19950 redirect PC-relative loads to the instruction RAM.
19951
19952 @item -mcode-readable=no
19953 Instructions must not access executable sections. This option can be
19954 useful on targets that are configured to have a dual instruction/data
19955 SRAM interface but that (unlike the M4K) do not automatically redirect
19956 PC-relative loads to the instruction RAM.
19957 @end table
19958
19959 @item -msplit-addresses
19960 @itemx -mno-split-addresses
19961 @opindex msplit-addresses
19962 @opindex mno-split-addresses
19963 Enable (disable) use of the @code{%hi()} and @code{%lo()} assembler
19964 relocation operators. This option has been superseded by
19965 @option{-mexplicit-relocs} but is retained for backwards compatibility.
19966
19967 @item -mexplicit-relocs
19968 @itemx -mno-explicit-relocs
19969 @opindex mexplicit-relocs
19970 @opindex mno-explicit-relocs
19971 Use (do not use) assembler relocation operators when dealing with symbolic
19972 addresses. The alternative, selected by @option{-mno-explicit-relocs},
19973 is to use assembler macros instead.
19974
19975 @option{-mexplicit-relocs} is the default if GCC was configured
19976 to use an assembler that supports relocation operators.
19977
19978 @item -mcheck-zero-division
19979 @itemx -mno-check-zero-division
19980 @opindex mcheck-zero-division
19981 @opindex mno-check-zero-division
19982 Trap (do not trap) on integer division by zero.
19983
19984 The default is @option{-mcheck-zero-division}.
19985
19986 @item -mdivide-traps
19987 @itemx -mdivide-breaks
19988 @opindex mdivide-traps
19989 @opindex mdivide-breaks
19990 MIPS systems check for division by zero by generating either a
19991 conditional trap or a break instruction. Using traps results in
19992 smaller code, but is only supported on MIPS II and later. Also, some
19993 versions of the Linux kernel have a bug that prevents trap from
19994 generating the proper signal (@code{SIGFPE}). Use @option{-mdivide-traps} to
19995 allow conditional traps on architectures that support them and
19996 @option{-mdivide-breaks} to force the use of breaks.
19997
19998 The default is usually @option{-mdivide-traps}, but this can be
19999 overridden at configure time using @option{--with-divide=breaks}.
20000 Divide-by-zero checks can be completely disabled using
20001 @option{-mno-check-zero-division}.
20002
20003 @item -mload-store-pairs
20004 @itemx -mno-load-store-pairs
20005 @opindex mload-store-pairs
20006 @opindex mno-load-store-pairs
20007 Enable (disable) an optimization that pairs consecutive load or store
20008 instructions to enable load/store bonding. This option is enabled by
20009 default but only takes effect when the selected architecture is known
20010 to support bonding.
20011
20012 @item -mmemcpy
20013 @itemx -mno-memcpy
20014 @opindex mmemcpy
20015 @opindex mno-memcpy
20016 Force (do not force) the use of @code{memcpy} for non-trivial block
20017 moves. The default is @option{-mno-memcpy}, which allows GCC to inline
20018 most constant-sized copies.
20019
20020 @item -mlong-calls
20021 @itemx -mno-long-calls
20022 @opindex mlong-calls
20023 @opindex mno-long-calls
20024 Disable (do not disable) use of the @code{jal} instruction. Calling
20025 functions using @code{jal} is more efficient but requires the caller
20026 and callee to be in the same 256 megabyte segment.
20027
20028 This option has no effect on abicalls code. The default is
20029 @option{-mno-long-calls}.
20030
20031 @item -mmad
20032 @itemx -mno-mad
20033 @opindex mmad
20034 @opindex mno-mad
20035 Enable (disable) use of the @code{mad}, @code{madu} and @code{mul}
20036 instructions, as provided by the R4650 ISA@.
20037
20038 @item -mimadd
20039 @itemx -mno-imadd
20040 @opindex mimadd
20041 @opindex mno-imadd
20042 Enable (disable) use of the @code{madd} and @code{msub} integer
20043 instructions. The default is @option{-mimadd} on architectures
20044 that support @code{madd} and @code{msub} except for the 74k
20045 architecture where it was found to generate slower code.
20046
20047 @item -mfused-madd
20048 @itemx -mno-fused-madd
20049 @opindex mfused-madd
20050 @opindex mno-fused-madd
20051 Enable (disable) use of the floating-point multiply-accumulate
20052 instructions, when they are available. The default is
20053 @option{-mfused-madd}.
20054
20055 On the R8000 CPU when multiply-accumulate instructions are used,
20056 the intermediate product is calculated to infinite precision
20057 and is not subject to the FCSR Flush to Zero bit. This may be
20058 undesirable in some circumstances. On other processors the result
20059 is numerically identical to the equivalent computation using
20060 separate multiply, add, subtract and negate instructions.
20061
20062 @item -nocpp
20063 @opindex nocpp
20064 Tell the MIPS assembler to not run its preprocessor over user
20065 assembler files (with a @samp{.s} suffix) when assembling them.
20066
20067 @item -mfix-24k
20068 @item -mno-fix-24k
20069 @opindex mfix-24k
20070 @opindex mno-fix-24k
20071 Work around the 24K E48 (lost data on stores during refill) errata.
20072 The workarounds are implemented by the assembler rather than by GCC@.
20073
20074 @item -mfix-r4000
20075 @itemx -mno-fix-r4000
20076 @opindex mfix-r4000
20077 @opindex mno-fix-r4000
20078 Work around certain R4000 CPU errata:
20079 @itemize @minus
20080 @item
20081 A double-word or a variable shift may give an incorrect result if executed
20082 immediately after starting an integer division.
20083 @item
20084 A double-word or a variable shift may give an incorrect result if executed
20085 while an integer multiplication is in progress.
20086 @item
20087 An integer division may give an incorrect result if started in a delay slot
20088 of a taken branch or a jump.
20089 @end itemize
20090
20091 @item -mfix-r4400
20092 @itemx -mno-fix-r4400
20093 @opindex mfix-r4400
20094 @opindex mno-fix-r4400
20095 Work around certain R4400 CPU errata:
20096 @itemize @minus
20097 @item
20098 A double-word or a variable shift may give an incorrect result if executed
20099 immediately after starting an integer division.
20100 @end itemize
20101
20102 @item -mfix-r10000
20103 @itemx -mno-fix-r10000
20104 @opindex mfix-r10000
20105 @opindex mno-fix-r10000
20106 Work around certain R10000 errata:
20107 @itemize @minus
20108 @item
20109 @code{ll}/@code{sc} sequences may not behave atomically on revisions
20110 prior to 3.0. They may deadlock on revisions 2.6 and earlier.
20111 @end itemize
20112
20113 This option can only be used if the target architecture supports
20114 branch-likely instructions. @option{-mfix-r10000} is the default when
20115 @option{-march=r10000} is used; @option{-mno-fix-r10000} is the default
20116 otherwise.
20117
20118 @item -mfix-rm7000
20119 @itemx -mno-fix-rm7000
20120 @opindex mfix-rm7000
20121 Work around the RM7000 @code{dmult}/@code{dmultu} errata. The
20122 workarounds are implemented by the assembler rather than by GCC@.
20123
20124 @item -mfix-vr4120
20125 @itemx -mno-fix-vr4120
20126 @opindex mfix-vr4120
20127 Work around certain VR4120 errata:
20128 @itemize @minus
20129 @item
20130 @code{dmultu} does not always produce the correct result.
20131 @item
20132 @code{div} and @code{ddiv} do not always produce the correct result if one
20133 of the operands is negative.
20134 @end itemize
20135 The workarounds for the division errata rely on special functions in
20136 @file{libgcc.a}. At present, these functions are only provided by
20137 the @code{mips64vr*-elf} configurations.
20138
20139 Other VR4120 errata require a NOP to be inserted between certain pairs of
20140 instructions. These errata are handled by the assembler, not by GCC itself.
20141
20142 @item -mfix-vr4130
20143 @opindex mfix-vr4130
20144 Work around the VR4130 @code{mflo}/@code{mfhi} errata. The
20145 workarounds are implemented by the assembler rather than by GCC,
20146 although GCC avoids using @code{mflo} and @code{mfhi} if the
20147 VR4130 @code{macc}, @code{macchi}, @code{dmacc} and @code{dmacchi}
20148 instructions are available instead.
20149
20150 @item -mfix-sb1
20151 @itemx -mno-fix-sb1
20152 @opindex mfix-sb1
20153 Work around certain SB-1 CPU core errata.
20154 (This flag currently works around the SB-1 revision 2
20155 ``F1'' and ``F2'' floating-point errata.)
20156
20157 @item -mr10k-cache-barrier=@var{setting}
20158 @opindex mr10k-cache-barrier
20159 Specify whether GCC should insert cache barriers to avoid the
20160 side-effects of speculation on R10K processors.
20161
20162 In common with many processors, the R10K tries to predict the outcome
20163 of a conditional branch and speculatively executes instructions from
20164 the ``taken'' branch. It later aborts these instructions if the
20165 predicted outcome is wrong. However, on the R10K, even aborted
20166 instructions can have side effects.
20167
20168 This problem only affects kernel stores and, depending on the system,
20169 kernel loads. As an example, a speculatively-executed store may load
20170 the target memory into cache and mark the cache line as dirty, even if
20171 the store itself is later aborted. If a DMA operation writes to the
20172 same area of memory before the ``dirty'' line is flushed, the cached
20173 data overwrites the DMA-ed data. See the R10K processor manual
20174 for a full description, including other potential problems.
20175
20176 One workaround is to insert cache barrier instructions before every memory
20177 access that might be speculatively executed and that might have side
20178 effects even if aborted. @option{-mr10k-cache-barrier=@var{setting}}
20179 controls GCC's implementation of this workaround. It assumes that
20180 aborted accesses to any byte in the following regions does not have
20181 side effects:
20182
20183 @enumerate
20184 @item
20185 the memory occupied by the current function's stack frame;
20186
20187 @item
20188 the memory occupied by an incoming stack argument;
20189
20190 @item
20191 the memory occupied by an object with a link-time-constant address.
20192 @end enumerate
20193
20194 It is the kernel's responsibility to ensure that speculative
20195 accesses to these regions are indeed safe.
20196
20197 If the input program contains a function declaration such as:
20198
20199 @smallexample
20200 void foo (void);
20201 @end smallexample
20202
20203 then the implementation of @code{foo} must allow @code{j foo} and
20204 @code{jal foo} to be executed speculatively. GCC honors this
20205 restriction for functions it compiles itself. It expects non-GCC
20206 functions (such as hand-written assembly code) to do the same.
20207
20208 The option has three forms:
20209
20210 @table @gcctabopt
20211 @item -mr10k-cache-barrier=load-store
20212 Insert a cache barrier before a load or store that might be
20213 speculatively executed and that might have side effects even
20214 if aborted.
20215
20216 @item -mr10k-cache-barrier=store
20217 Insert a cache barrier before a store that might be speculatively
20218 executed and that might have side effects even if aborted.
20219
20220 @item -mr10k-cache-barrier=none
20221 Disable the insertion of cache barriers. This is the default setting.
20222 @end table
20223
20224 @item -mflush-func=@var{func}
20225 @itemx -mno-flush-func
20226 @opindex mflush-func
20227 Specifies the function to call to flush the I and D caches, or to not
20228 call any such function. If called, the function must take the same
20229 arguments as the common @code{_flush_func}, that is, the address of the
20230 memory range for which the cache is being flushed, the size of the
20231 memory range, and the number 3 (to flush both caches). The default
20232 depends on the target GCC was configured for, but commonly is either
20233 @code{_flush_func} or @code{__cpu_flush}.
20234
20235 @item mbranch-cost=@var{num}
20236 @opindex mbranch-cost
20237 Set the cost of branches to roughly @var{num} ``simple'' instructions.
20238 This cost is only a heuristic and is not guaranteed to produce
20239 consistent results across releases. A zero cost redundantly selects
20240 the default, which is based on the @option{-mtune} setting.
20241
20242 @item -mbranch-likely
20243 @itemx -mno-branch-likely
20244 @opindex mbranch-likely
20245 @opindex mno-branch-likely
20246 Enable or disable use of Branch Likely instructions, regardless of the
20247 default for the selected architecture. By default, Branch Likely
20248 instructions may be generated if they are supported by the selected
20249 architecture. An exception is for the MIPS32 and MIPS64 architectures
20250 and processors that implement those architectures; for those, Branch
20251 Likely instructions are not be generated by default because the MIPS32
20252 and MIPS64 architectures specifically deprecate their use.
20253
20254 @item -mcompact-branches=never
20255 @itemx -mcompact-branches=optimal
20256 @itemx -mcompact-branches=always
20257 @opindex mcompact-branches=never
20258 @opindex mcompact-branches=optimal
20259 @opindex mcompact-branches=always
20260 These options control which form of branches will be generated. The
20261 default is @option{-mcompact-branches=optimal}.
20262
20263 The @option{-mcompact-branches=never} option ensures that compact branch
20264 instructions will never be generated.
20265
20266 The @option{-mcompact-branches=always} option ensures that a compact
20267 branch instruction will be generated if available. If a compact branch
20268 instruction is not available, a delay slot form of the branch will be
20269 used instead.
20270
20271 This option is supported from MIPS Release 6 onwards.
20272
20273 The @option{-mcompact-branches=optimal} option will cause a delay slot
20274 branch to be used if one is available in the current ISA and the delay
20275 slot is successfully filled. If the delay slot is not filled, a compact
20276 branch will be chosen if one is available.
20277
20278 @item -mfp-exceptions
20279 @itemx -mno-fp-exceptions
20280 @opindex mfp-exceptions
20281 Specifies whether FP exceptions are enabled. This affects how
20282 FP instructions are scheduled for some processors.
20283 The default is that FP exceptions are
20284 enabled.
20285
20286 For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
20287 64-bit code, then we can use both FP pipes. Otherwise, we can only use one
20288 FP pipe.
20289
20290 @item -mvr4130-align
20291 @itemx -mno-vr4130-align
20292 @opindex mvr4130-align
20293 The VR4130 pipeline is two-way superscalar, but can only issue two
20294 instructions together if the first one is 8-byte aligned. When this
20295 option is enabled, GCC aligns pairs of instructions that it
20296 thinks should execute in parallel.
20297
20298 This option only has an effect when optimizing for the VR4130.
20299 It normally makes code faster, but at the expense of making it bigger.
20300 It is enabled by default at optimization level @option{-O3}.
20301
20302 @item -msynci
20303 @itemx -mno-synci
20304 @opindex msynci
20305 Enable (disable) generation of @code{synci} instructions on
20306 architectures that support it. The @code{synci} instructions (if
20307 enabled) are generated when @code{__builtin___clear_cache} is
20308 compiled.
20309
20310 This option defaults to @option{-mno-synci}, but the default can be
20311 overridden by configuring GCC with @option{--with-synci}.
20312
20313 When compiling code for single processor systems, it is generally safe
20314 to use @code{synci}. However, on many multi-core (SMP) systems, it
20315 does not invalidate the instruction caches on all cores and may lead
20316 to undefined behavior.
20317
20318 @item -mrelax-pic-calls
20319 @itemx -mno-relax-pic-calls
20320 @opindex mrelax-pic-calls
20321 Try to turn PIC calls that are normally dispatched via register
20322 @code{$25} into direct calls. This is only possible if the linker can
20323 resolve the destination at link time and if the destination is within
20324 range for a direct call.
20325
20326 @option{-mrelax-pic-calls} is the default if GCC was configured to use
20327 an assembler and a linker that support the @code{.reloc} assembly
20328 directive and @option{-mexplicit-relocs} is in effect. With
20329 @option{-mno-explicit-relocs}, this optimization can be performed by the
20330 assembler and the linker alone without help from the compiler.
20331
20332 @item -mmcount-ra-address
20333 @itemx -mno-mcount-ra-address
20334 @opindex mmcount-ra-address
20335 @opindex mno-mcount-ra-address
20336 Emit (do not emit) code that allows @code{_mcount} to modify the
20337 calling function's return address. When enabled, this option extends
20338 the usual @code{_mcount} interface with a new @var{ra-address}
20339 parameter, which has type @code{intptr_t *} and is passed in register
20340 @code{$12}. @code{_mcount} can then modify the return address by
20341 doing both of the following:
20342 @itemize
20343 @item
20344 Returning the new address in register @code{$31}.
20345 @item
20346 Storing the new address in @code{*@var{ra-address}},
20347 if @var{ra-address} is nonnull.
20348 @end itemize
20349
20350 The default is @option{-mno-mcount-ra-address}.
20351
20352 @item -mframe-header-opt
20353 @itemx -mno-frame-header-opt
20354 @opindex mframe-header-opt
20355 Enable (disable) frame header optimization in the o32 ABI. When using the
20356 o32 ABI, calling functions will allocate 16 bytes on the stack for the called
20357 function to write out register arguments. When enabled, this optimization
20358 will suppress the allocation of the frame header if it can be determined that
20359 it is unused.
20360
20361 This optimization is off by default at all optimization levels.
20362
20363 @item -mlxc1-sxc1
20364 @itemx -mno-lxc1-sxc1
20365 @opindex mlxc1-sxc1
20366 When applicable, enable (disable) the generation of @code{lwxc1},
20367 @code{swxc1}, @code{ldxc1}, @code{sdxc1} instructions. Enabled by default.
20368
20369 @item -mmadd4
20370 @itemx -mno-madd4
20371 @opindex mmadd4
20372 When applicable, enable (disable) the generation of 4-operand @code{madd.s},
20373 @code{madd.d} and related instructions. Enabled by default.
20374
20375 @end table
20376
20377 @node MMIX Options
20378 @subsection MMIX Options
20379 @cindex MMIX Options
20380
20381 These options are defined for the MMIX:
20382
20383 @table @gcctabopt
20384 @item -mlibfuncs
20385 @itemx -mno-libfuncs
20386 @opindex mlibfuncs
20387 @opindex mno-libfuncs
20388 Specify that intrinsic library functions are being compiled, passing all
20389 values in registers, no matter the size.
20390
20391 @item -mepsilon
20392 @itemx -mno-epsilon
20393 @opindex mepsilon
20394 @opindex mno-epsilon
20395 Generate floating-point comparison instructions that compare with respect
20396 to the @code{rE} epsilon register.
20397
20398 @item -mabi=mmixware
20399 @itemx -mabi=gnu
20400 @opindex mabi=mmixware
20401 @opindex mabi=gnu
20402 Generate code that passes function parameters and return values that (in
20403 the called function) are seen as registers @code{$0} and up, as opposed to
20404 the GNU ABI which uses global registers @code{$231} and up.
20405
20406 @item -mzero-extend
20407 @itemx -mno-zero-extend
20408 @opindex mzero-extend
20409 @opindex mno-zero-extend
20410 When reading data from memory in sizes shorter than 64 bits, use (do not
20411 use) zero-extending load instructions by default, rather than
20412 sign-extending ones.
20413
20414 @item -mknuthdiv
20415 @itemx -mno-knuthdiv
20416 @opindex mknuthdiv
20417 @opindex mno-knuthdiv
20418 Make the result of a division yielding a remainder have the same sign as
20419 the divisor. With the default, @option{-mno-knuthdiv}, the sign of the
20420 remainder follows the sign of the dividend. Both methods are
20421 arithmetically valid, the latter being almost exclusively used.
20422
20423 @item -mtoplevel-symbols
20424 @itemx -mno-toplevel-symbols
20425 @opindex mtoplevel-symbols
20426 @opindex mno-toplevel-symbols
20427 Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly
20428 code can be used with the @code{PREFIX} assembly directive.
20429
20430 @item -melf
20431 @opindex melf
20432 Generate an executable in the ELF format, rather than the default
20433 @samp{mmo} format used by the @command{mmix} simulator.
20434
20435 @item -mbranch-predict
20436 @itemx -mno-branch-predict
20437 @opindex mbranch-predict
20438 @opindex mno-branch-predict
20439 Use (do not use) the probable-branch instructions, when static branch
20440 prediction indicates a probable branch.
20441
20442 @item -mbase-addresses
20443 @itemx -mno-base-addresses
20444 @opindex mbase-addresses
20445 @opindex mno-base-addresses
20446 Generate (do not generate) code that uses @emph{base addresses}. Using a
20447 base address automatically generates a request (handled by the assembler
20448 and the linker) for a constant to be set up in a global register. The
20449 register is used for one or more base address requests within the range 0
20450 to 255 from the value held in the register. The generally leads to short
20451 and fast code, but the number of different data items that can be
20452 addressed is limited. This means that a program that uses lots of static
20453 data may require @option{-mno-base-addresses}.
20454
20455 @item -msingle-exit
20456 @itemx -mno-single-exit
20457 @opindex msingle-exit
20458 @opindex mno-single-exit
20459 Force (do not force) generated code to have a single exit point in each
20460 function.
20461 @end table
20462
20463 @node MN10300 Options
20464 @subsection MN10300 Options
20465 @cindex MN10300 options
20466
20467 These @option{-m} options are defined for Matsushita MN10300 architectures:
20468
20469 @table @gcctabopt
20470 @item -mmult-bug
20471 @opindex mmult-bug
20472 Generate code to avoid bugs in the multiply instructions for the MN10300
20473 processors. This is the default.
20474
20475 @item -mno-mult-bug
20476 @opindex mno-mult-bug
20477 Do not generate code to avoid bugs in the multiply instructions for the
20478 MN10300 processors.
20479
20480 @item -mam33
20481 @opindex mam33
20482 Generate code using features specific to the AM33 processor.
20483
20484 @item -mno-am33
20485 @opindex mno-am33
20486 Do not generate code using features specific to the AM33 processor. This
20487 is the default.
20488
20489 @item -mam33-2
20490 @opindex mam33-2
20491 Generate code using features specific to the AM33/2.0 processor.
20492
20493 @item -mam34
20494 @opindex mam34
20495 Generate code using features specific to the AM34 processor.
20496
20497 @item -mtune=@var{cpu-type}
20498 @opindex mtune
20499 Use the timing characteristics of the indicated CPU type when
20500 scheduling instructions. This does not change the targeted processor
20501 type. The CPU type must be one of @samp{mn10300}, @samp{am33},
20502 @samp{am33-2} or @samp{am34}.
20503
20504 @item -mreturn-pointer-on-d0
20505 @opindex mreturn-pointer-on-d0
20506 When generating a function that returns a pointer, return the pointer
20507 in both @code{a0} and @code{d0}. Otherwise, the pointer is returned
20508 only in @code{a0}, and attempts to call such functions without a prototype
20509 result in errors. Note that this option is on by default; use
20510 @option{-mno-return-pointer-on-d0} to disable it.
20511
20512 @item -mno-crt0
20513 @opindex mno-crt0
20514 Do not link in the C run-time initialization object file.
20515
20516 @item -mrelax
20517 @opindex mrelax
20518 Indicate to the linker that it should perform a relaxation optimization pass
20519 to shorten branches, calls and absolute memory addresses. This option only
20520 has an effect when used on the command line for the final link step.
20521
20522 This option makes symbolic debugging impossible.
20523
20524 @item -mliw
20525 @opindex mliw
20526 Allow the compiler to generate @emph{Long Instruction Word}
20527 instructions if the target is the @samp{AM33} or later. This is the
20528 default. This option defines the preprocessor macro @code{__LIW__}.
20529
20530 @item -mnoliw
20531 @opindex mnoliw
20532 Do not allow the compiler to generate @emph{Long Instruction Word}
20533 instructions. This option defines the preprocessor macro
20534 @code{__NO_LIW__}.
20535
20536 @item -msetlb
20537 @opindex msetlb
20538 Allow the compiler to generate the @emph{SETLB} and @emph{Lcc}
20539 instructions if the target is the @samp{AM33} or later. This is the
20540 default. This option defines the preprocessor macro @code{__SETLB__}.
20541
20542 @item -mnosetlb
20543 @opindex mnosetlb
20544 Do not allow the compiler to generate @emph{SETLB} or @emph{Lcc}
20545 instructions. This option defines the preprocessor macro
20546 @code{__NO_SETLB__}.
20547
20548 @end table
20549
20550 @node Moxie Options
20551 @subsection Moxie Options
20552 @cindex Moxie Options
20553
20554 @table @gcctabopt
20555
20556 @item -meb
20557 @opindex meb
20558 Generate big-endian code. This is the default for @samp{moxie-*-*}
20559 configurations.
20560
20561 @item -mel
20562 @opindex mel
20563 Generate little-endian code.
20564
20565 @item -mmul.x
20566 @opindex mmul.x
20567 Generate mul.x and umul.x instructions. This is the default for
20568 @samp{moxiebox-*-*} configurations.
20569
20570 @item -mno-crt0
20571 @opindex mno-crt0
20572 Do not link in the C run-time initialization object file.
20573
20574 @end table
20575
20576 @node MSP430 Options
20577 @subsection MSP430 Options
20578 @cindex MSP430 Options
20579
20580 These options are defined for the MSP430:
20581
20582 @table @gcctabopt
20583
20584 @item -masm-hex
20585 @opindex masm-hex
20586 Force assembly output to always use hex constants. Normally such
20587 constants are signed decimals, but this option is available for
20588 testsuite and/or aesthetic purposes.
20589
20590 @item -mmcu=
20591 @opindex mmcu=
20592 Select the MCU to target. This is used to create a C preprocessor
20593 symbol based upon the MCU name, converted to upper case and pre- and
20594 post-fixed with @samp{__}. This in turn is used by the
20595 @file{msp430.h} header file to select an MCU-specific supplementary
20596 header file.
20597
20598 The option also sets the ISA to use. If the MCU name is one that is
20599 known to only support the 430 ISA then that is selected, otherwise the
20600 430X ISA is selected. A generic MCU name of @samp{msp430} can also be
20601 used to select the 430 ISA. Similarly the generic @samp{msp430x} MCU
20602 name selects the 430X ISA.
20603
20604 In addition an MCU-specific linker script is added to the linker
20605 command line. The script's name is the name of the MCU with
20606 @file{.ld} appended. Thus specifying @option{-mmcu=xxx} on the @command{gcc}
20607 command line defines the C preprocessor symbol @code{__XXX__} and
20608 cause the linker to search for a script called @file{xxx.ld}.
20609
20610 This option is also passed on to the assembler.
20611
20612 @item -mwarn-mcu
20613 @itemx -mno-warn-mcu
20614 @opindex mwarn-mcu
20615 @opindex mno-warn-mcu
20616 This option enables or disables warnings about conflicts between the
20617 MCU name specified by the @option{-mmcu} option and the ISA set by the
20618 @option{-mcpu} option and/or the hardware multiply support set by the
20619 @option{-mhwmult} option. It also toggles warnings about unrecognized
20620 MCU names. This option is on by default.
20621
20622 @item -mcpu=
20623 @opindex mcpu=
20624 Specifies the ISA to use. Accepted values are @samp{msp430},
20625 @samp{msp430x} and @samp{msp430xv2}. This option is deprecated. The
20626 @option{-mmcu=} option should be used to select the ISA.
20627
20628 @item -msim
20629 @opindex msim
20630 Link to the simulator runtime libraries and linker script. Overrides
20631 any scripts that would be selected by the @option{-mmcu=} option.
20632
20633 @item -mlarge
20634 @opindex mlarge
20635 Use large-model addressing (20-bit pointers, 32-bit @code{size_t}).
20636
20637 @item -msmall
20638 @opindex msmall
20639 Use small-model addressing (16-bit pointers, 16-bit @code{size_t}).
20640
20641 @item -mrelax
20642 @opindex mrelax
20643 This option is passed to the assembler and linker, and allows the
20644 linker to perform certain optimizations that cannot be done until
20645 the final link.
20646
20647 @item mhwmult=
20648 @opindex mhwmult=
20649 Describes the type of hardware multiply supported by the target.
20650 Accepted values are @samp{none} for no hardware multiply, @samp{16bit}
20651 for the original 16-bit-only multiply supported by early MCUs.
20652 @samp{32bit} for the 16/32-bit multiply supported by later MCUs and
20653 @samp{f5series} for the 16/32-bit multiply supported by F5-series MCUs.
20654 A value of @samp{auto} can also be given. This tells GCC to deduce
20655 the hardware multiply support based upon the MCU name provided by the
20656 @option{-mmcu} option. If no @option{-mmcu} option is specified or if
20657 the MCU name is not recognized then no hardware multiply support is
20658 assumed. @code{auto} is the default setting.
20659
20660 Hardware multiplies are normally performed by calling a library
20661 routine. This saves space in the generated code. When compiling at
20662 @option{-O3} or higher however the hardware multiplier is invoked
20663 inline. This makes for bigger, but faster code.
20664
20665 The hardware multiply routines disable interrupts whilst running and
20666 restore the previous interrupt state when they finish. This makes
20667 them safe to use inside interrupt handlers as well as in normal code.
20668
20669 @item -minrt
20670 @opindex minrt
20671 Enable the use of a minimum runtime environment - no static
20672 initializers or constructors. This is intended for memory-constrained
20673 devices. The compiler includes special symbols in some objects
20674 that tell the linker and runtime which code fragments are required.
20675
20676 @item -mcode-region=
20677 @itemx -mdata-region=
20678 @opindex mcode-region
20679 @opindex mdata-region
20680 These options tell the compiler where to place functions and data that
20681 do not have one of the @code{lower}, @code{upper}, @code{either} or
20682 @code{section} attributes. Possible values are @code{lower},
20683 @code{upper}, @code{either} or @code{any}. The first three behave
20684 like the corresponding attribute. The fourth possible value -
20685 @code{any} - is the default. It leaves placement entirely up to the
20686 linker script and how it assigns the standard sections
20687 (@code{.text}, @code{.data}, etc) to the memory regions.
20688
20689 @item -msilicon-errata=
20690 @opindex msilicon-errata
20691 This option passes on a request to assembler to enable the fixes for
20692 the named silicon errata.
20693
20694 @item -msilicon-errata-warn=
20695 @opindex msilicon-errata-warn
20696 This option passes on a request to the assembler to enable warning
20697 messages when a silicon errata might need to be applied.
20698
20699 @end table
20700
20701 @node NDS32 Options
20702 @subsection NDS32 Options
20703 @cindex NDS32 Options
20704
20705 These options are defined for NDS32 implementations:
20706
20707 @table @gcctabopt
20708
20709 @item -mbig-endian
20710 @opindex mbig-endian
20711 Generate code in big-endian mode.
20712
20713 @item -mlittle-endian
20714 @opindex mlittle-endian
20715 Generate code in little-endian mode.
20716
20717 @item -mreduced-regs
20718 @opindex mreduced-regs
20719 Use reduced-set registers for register allocation.
20720
20721 @item -mfull-regs
20722 @opindex mfull-regs
20723 Use full-set registers for register allocation.
20724
20725 @item -mcmov
20726 @opindex mcmov
20727 Generate conditional move instructions.
20728
20729 @item -mno-cmov
20730 @opindex mno-cmov
20731 Do not generate conditional move instructions.
20732
20733 @item -mperf-ext
20734 @opindex mperf-ext
20735 Generate performance extension instructions.
20736
20737 @item -mno-perf-ext
20738 @opindex mno-perf-ext
20739 Do not generate performance extension instructions.
20740
20741 @item -mv3push
20742 @opindex mv3push
20743 Generate v3 push25/pop25 instructions.
20744
20745 @item -mno-v3push
20746 @opindex mno-v3push
20747 Do not generate v3 push25/pop25 instructions.
20748
20749 @item -m16-bit
20750 @opindex m16-bit
20751 Generate 16-bit instructions.
20752
20753 @item -mno-16-bit
20754 @opindex mno-16-bit
20755 Do not generate 16-bit instructions.
20756
20757 @item -misr-vector-size=@var{num}
20758 @opindex misr-vector-size
20759 Specify the size of each interrupt vector, which must be 4 or 16.
20760
20761 @item -mcache-block-size=@var{num}
20762 @opindex mcache-block-size
20763 Specify the size of each cache block,
20764 which must be a power of 2 between 4 and 512.
20765
20766 @item -march=@var{arch}
20767 @opindex march
20768 Specify the name of the target architecture.
20769
20770 @item -mcmodel=@var{code-model}
20771 @opindex mcmodel
20772 Set the code model to one of
20773 @table @asis
20774 @item @samp{small}
20775 All the data and read-only data segments must be within 512KB addressing space.
20776 The text segment must be within 16MB addressing space.
20777 @item @samp{medium}
20778 The data segment must be within 512KB while the read-only data segment can be
20779 within 4GB addressing space. The text segment should be still within 16MB
20780 addressing space.
20781 @item @samp{large}
20782 All the text and data segments can be within 4GB addressing space.
20783 @end table
20784
20785 @item -mctor-dtor
20786 @opindex mctor-dtor
20787 Enable constructor/destructor feature.
20788
20789 @item -mrelax
20790 @opindex mrelax
20791 Guide linker to relax instructions.
20792
20793 @end table
20794
20795 @node Nios II Options
20796 @subsection Nios II Options
20797 @cindex Nios II options
20798 @cindex Altera Nios II options
20799
20800 These are the options defined for the Altera Nios II processor.
20801
20802 @table @gcctabopt
20803
20804 @item -G @var{num}
20805 @opindex G
20806 @cindex smaller data references
20807 Put global and static objects less than or equal to @var{num} bytes
20808 into the small data or BSS sections instead of the normal data or BSS
20809 sections. The default value of @var{num} is 8.
20810
20811 @item -mgpopt=@var{option}
20812 @item -mgpopt
20813 @itemx -mno-gpopt
20814 @opindex mgpopt
20815 @opindex mno-gpopt
20816 Generate (do not generate) GP-relative accesses. The following
20817 @var{option} names are recognized:
20818
20819 @table @samp
20820
20821 @item none
20822 Do not generate GP-relative accesses.
20823
20824 @item local
20825 Generate GP-relative accesses for small data objects that are not
20826 external, weak, or uninitialized common symbols.
20827 Also use GP-relative addressing for objects that
20828 have been explicitly placed in a small data section via a @code{section}
20829 attribute.
20830
20831 @item global
20832 As for @samp{local}, but also generate GP-relative accesses for
20833 small data objects that are external, weak, or common. If you use this option,
20834 you must ensure that all parts of your program (including libraries) are
20835 compiled with the same @option{-G} setting.
20836
20837 @item data
20838 Generate GP-relative accesses for all data objects in the program. If you
20839 use this option, the entire data and BSS segments
20840 of your program must fit in 64K of memory and you must use an appropriate
20841 linker script to allocate them within the addressable range of the
20842 global pointer.
20843
20844 @item all
20845 Generate GP-relative addresses for function pointers as well as data
20846 pointers. If you use this option, the entire text, data, and BSS segments
20847 of your program must fit in 64K of memory and you must use an appropriate
20848 linker script to allocate them within the addressable range of the
20849 global pointer.
20850
20851 @end table
20852
20853 @option{-mgpopt} is equivalent to @option{-mgpopt=local}, and
20854 @option{-mno-gpopt} is equivalent to @option{-mgpopt=none}.
20855
20856 The default is @option{-mgpopt} except when @option{-fpic} or
20857 @option{-fPIC} is specified to generate position-independent code.
20858 Note that the Nios II ABI does not permit GP-relative accesses from
20859 shared libraries.
20860
20861 You may need to specify @option{-mno-gpopt} explicitly when building
20862 programs that include large amounts of small data, including large
20863 GOT data sections. In this case, the 16-bit offset for GP-relative
20864 addressing may not be large enough to allow access to the entire
20865 small data section.
20866
20867 @item -mel
20868 @itemx -meb
20869 @opindex mel
20870 @opindex meb
20871 Generate little-endian (default) or big-endian (experimental) code,
20872 respectively.
20873
20874 @item -march=@var{arch}
20875 @opindex march
20876 This specifies the name of the target Nios II architecture. GCC uses this
20877 name to determine what kind of instructions it can emit when generating
20878 assembly code. Permissible names are: @samp{r1}, @samp{r2}.
20879
20880 The preprocessor macro @code{__nios2_arch__} is available to programs,
20881 with value 1 or 2, indicating the targeted ISA level.
20882
20883 @item -mbypass-cache
20884 @itemx -mno-bypass-cache
20885 @opindex mno-bypass-cache
20886 @opindex mbypass-cache
20887 Force all load and store instructions to always bypass cache by
20888 using I/O variants of the instructions. The default is not to
20889 bypass the cache.
20890
20891 @item -mno-cache-volatile
20892 @itemx -mcache-volatile
20893 @opindex mcache-volatile
20894 @opindex mno-cache-volatile
20895 Volatile memory access bypass the cache using the I/O variants of
20896 the load and store instructions. The default is not to bypass the cache.
20897
20898 @item -mno-fast-sw-div
20899 @itemx -mfast-sw-div
20900 @opindex mno-fast-sw-div
20901 @opindex mfast-sw-div
20902 Do not use table-based fast divide for small numbers. The default
20903 is to use the fast divide at @option{-O3} and above.
20904
20905 @item -mno-hw-mul
20906 @itemx -mhw-mul
20907 @itemx -mno-hw-mulx
20908 @itemx -mhw-mulx
20909 @itemx -mno-hw-div
20910 @itemx -mhw-div
20911 @opindex mno-hw-mul
20912 @opindex mhw-mul
20913 @opindex mno-hw-mulx
20914 @opindex mhw-mulx
20915 @opindex mno-hw-div
20916 @opindex mhw-div
20917 Enable or disable emitting @code{mul}, @code{mulx} and @code{div} family of
20918 instructions by the compiler. The default is to emit @code{mul}
20919 and not emit @code{div} and @code{mulx}.
20920
20921 @item -mbmx
20922 @itemx -mno-bmx
20923 @itemx -mcdx
20924 @itemx -mno-cdx
20925 Enable or disable generation of Nios II R2 BMX (bit manipulation) and
20926 CDX (code density) instructions. Enabling these instructions also
20927 requires @option{-march=r2}. Since these instructions are optional
20928 extensions to the R2 architecture, the default is not to emit them.
20929
20930 @item -mcustom-@var{insn}=@var{N}
20931 @itemx -mno-custom-@var{insn}
20932 @opindex mcustom-@var{insn}
20933 @opindex mno-custom-@var{insn}
20934 Each @option{-mcustom-@var{insn}=@var{N}} option enables use of a
20935 custom instruction with encoding @var{N} when generating code that uses
20936 @var{insn}. For example, @option{-mcustom-fadds=253} generates custom
20937 instruction 253 for single-precision floating-point add operations instead
20938 of the default behavior of using a library call.
20939
20940 The following values of @var{insn} are supported. Except as otherwise
20941 noted, floating-point operations are expected to be implemented with
20942 normal IEEE 754 semantics and correspond directly to the C operators or the
20943 equivalent GCC built-in functions (@pxref{Other Builtins}).
20944
20945 Single-precision floating point:
20946 @table @asis
20947
20948 @item @samp{fadds}, @samp{fsubs}, @samp{fdivs}, @samp{fmuls}
20949 Binary arithmetic operations.
20950
20951 @item @samp{fnegs}
20952 Unary negation.
20953
20954 @item @samp{fabss}
20955 Unary absolute value.
20956
20957 @item @samp{fcmpeqs}, @samp{fcmpges}, @samp{fcmpgts}, @samp{fcmples}, @samp{fcmplts}, @samp{fcmpnes}
20958 Comparison operations.
20959
20960 @item @samp{fmins}, @samp{fmaxs}
20961 Floating-point minimum and maximum. These instructions are only
20962 generated if @option{-ffinite-math-only} is specified.
20963
20964 @item @samp{fsqrts}
20965 Unary square root operation.
20966
20967 @item @samp{fcoss}, @samp{fsins}, @samp{ftans}, @samp{fatans}, @samp{fexps}, @samp{flogs}
20968 Floating-point trigonometric and exponential functions. These instructions
20969 are only generated if @option{-funsafe-math-optimizations} is also specified.
20970
20971 @end table
20972
20973 Double-precision floating point:
20974 @table @asis
20975
20976 @item @samp{faddd}, @samp{fsubd}, @samp{fdivd}, @samp{fmuld}
20977 Binary arithmetic operations.
20978
20979 @item @samp{fnegd}
20980 Unary negation.
20981
20982 @item @samp{fabsd}
20983 Unary absolute value.
20984
20985 @item @samp{fcmpeqd}, @samp{fcmpged}, @samp{fcmpgtd}, @samp{fcmpled}, @samp{fcmpltd}, @samp{fcmpned}
20986 Comparison operations.
20987
20988 @item @samp{fmind}, @samp{fmaxd}
20989 Double-precision minimum and maximum. These instructions are only
20990 generated if @option{-ffinite-math-only} is specified.
20991
20992 @item @samp{fsqrtd}
20993 Unary square root operation.
20994
20995 @item @samp{fcosd}, @samp{fsind}, @samp{ftand}, @samp{fatand}, @samp{fexpd}, @samp{flogd}
20996 Double-precision trigonometric and exponential functions. These instructions
20997 are only generated if @option{-funsafe-math-optimizations} is also specified.
20998
20999 @end table
21000
21001 Conversions:
21002 @table @asis
21003 @item @samp{fextsd}
21004 Conversion from single precision to double precision.
21005
21006 @item @samp{ftruncds}
21007 Conversion from double precision to single precision.
21008
21009 @item @samp{fixsi}, @samp{fixsu}, @samp{fixdi}, @samp{fixdu}
21010 Conversion from floating point to signed or unsigned integer types, with
21011 truncation towards zero.
21012
21013 @item @samp{round}
21014 Conversion from single-precision floating point to signed integer,
21015 rounding to the nearest integer and ties away from zero.
21016 This corresponds to the @code{__builtin_lroundf} function when
21017 @option{-fno-math-errno} is used.
21018
21019 @item @samp{floatis}, @samp{floatus}, @samp{floatid}, @samp{floatud}
21020 Conversion from signed or unsigned integer types to floating-point types.
21021
21022 @end table
21023
21024 In addition, all of the following transfer instructions for internal
21025 registers X and Y must be provided to use any of the double-precision
21026 floating-point instructions. Custom instructions taking two
21027 double-precision source operands expect the first operand in the
21028 64-bit register X. The other operand (or only operand of a unary
21029 operation) is given to the custom arithmetic instruction with the
21030 least significant half in source register @var{src1} and the most
21031 significant half in @var{src2}. A custom instruction that returns a
21032 double-precision result returns the most significant 32 bits in the
21033 destination register and the other half in 32-bit register Y.
21034 GCC automatically generates the necessary code sequences to write
21035 register X and/or read register Y when double-precision floating-point
21036 instructions are used.
21037
21038 @table @asis
21039
21040 @item @samp{fwrx}
21041 Write @var{src1} into the least significant half of X and @var{src2} into
21042 the most significant half of X.
21043
21044 @item @samp{fwry}
21045 Write @var{src1} into Y.
21046
21047 @item @samp{frdxhi}, @samp{frdxlo}
21048 Read the most or least (respectively) significant half of X and store it in
21049 @var{dest}.
21050
21051 @item @samp{frdy}
21052 Read the value of Y and store it into @var{dest}.
21053 @end table
21054
21055 Note that you can gain more local control over generation of Nios II custom
21056 instructions by using the @code{target("custom-@var{insn}=@var{N}")}
21057 and @code{target("no-custom-@var{insn}")} function attributes
21058 (@pxref{Function Attributes})
21059 or pragmas (@pxref{Function Specific Option Pragmas}).
21060
21061 @item -mcustom-fpu-cfg=@var{name}
21062 @opindex mcustom-fpu-cfg
21063
21064 This option enables a predefined, named set of custom instruction encodings
21065 (see @option{-mcustom-@var{insn}} above).
21066 Currently, the following sets are defined:
21067
21068 @option{-mcustom-fpu-cfg=60-1} is equivalent to:
21069 @gccoptlist{-mcustom-fmuls=252 @gol
21070 -mcustom-fadds=253 @gol
21071 -mcustom-fsubs=254 @gol
21072 -fsingle-precision-constant}
21073
21074 @option{-mcustom-fpu-cfg=60-2} is equivalent to:
21075 @gccoptlist{-mcustom-fmuls=252 @gol
21076 -mcustom-fadds=253 @gol
21077 -mcustom-fsubs=254 @gol
21078 -mcustom-fdivs=255 @gol
21079 -fsingle-precision-constant}
21080
21081 @option{-mcustom-fpu-cfg=72-3} is equivalent to:
21082 @gccoptlist{-mcustom-floatus=243 @gol
21083 -mcustom-fixsi=244 @gol
21084 -mcustom-floatis=245 @gol
21085 -mcustom-fcmpgts=246 @gol
21086 -mcustom-fcmples=249 @gol
21087 -mcustom-fcmpeqs=250 @gol
21088 -mcustom-fcmpnes=251 @gol
21089 -mcustom-fmuls=252 @gol
21090 -mcustom-fadds=253 @gol
21091 -mcustom-fsubs=254 @gol
21092 -mcustom-fdivs=255 @gol
21093 -fsingle-precision-constant}
21094
21095 Custom instruction assignments given by individual
21096 @option{-mcustom-@var{insn}=} options override those given by
21097 @option{-mcustom-fpu-cfg=}, regardless of the
21098 order of the options on the command line.
21099
21100 Note that you can gain more local control over selection of a FPU
21101 configuration by using the @code{target("custom-fpu-cfg=@var{name}")}
21102 function attribute (@pxref{Function Attributes})
21103 or pragma (@pxref{Function Specific Option Pragmas}).
21104
21105 @end table
21106
21107 These additional @samp{-m} options are available for the Altera Nios II
21108 ELF (bare-metal) target:
21109
21110 @table @gcctabopt
21111
21112 @item -mhal
21113 @opindex mhal
21114 Link with HAL BSP. This suppresses linking with the GCC-provided C runtime
21115 startup and termination code, and is typically used in conjunction with
21116 @option{-msys-crt0=} to specify the location of the alternate startup code
21117 provided by the HAL BSP.
21118
21119 @item -msmallc
21120 @opindex msmallc
21121 Link with a limited version of the C library, @option{-lsmallc}, rather than
21122 Newlib.
21123
21124 @item -msys-crt0=@var{startfile}
21125 @opindex msys-crt0
21126 @var{startfile} is the file name of the startfile (crt0) to use
21127 when linking. This option is only useful in conjunction with @option{-mhal}.
21128
21129 @item -msys-lib=@var{systemlib}
21130 @opindex msys-lib
21131 @var{systemlib} is the library name of the library that provides
21132 low-level system calls required by the C library,
21133 e.g. @code{read} and @code{write}.
21134 This option is typically used to link with a library provided by a HAL BSP.
21135
21136 @end table
21137
21138 @node Nvidia PTX Options
21139 @subsection Nvidia PTX Options
21140 @cindex Nvidia PTX options
21141 @cindex nvptx options
21142
21143 These options are defined for Nvidia PTX:
21144
21145 @table @gcctabopt
21146
21147 @item -m32
21148 @itemx -m64
21149 @opindex m32
21150 @opindex m64
21151 Generate code for 32-bit or 64-bit ABI.
21152
21153 @item -mmainkernel
21154 @opindex mmainkernel
21155 Link in code for a __main kernel. This is for stand-alone instead of
21156 offloading execution.
21157
21158 @item -moptimize
21159 @opindex moptimize
21160 Apply partitioned execution optimizations. This is the default when any
21161 level of optimization is selected.
21162
21163 @item -msoft-stack
21164 @opindex msoft-stack
21165 Generate code that does not use @code{.local} memory
21166 directly for stack storage. Instead, a per-warp stack pointer is
21167 maintained explicitly. This enables variable-length stack allocation (with
21168 variable-length arrays or @code{alloca}), and when global memory is used for
21169 underlying storage, makes it possible to access automatic variables from other
21170 threads, or with atomic instructions. This code generation variant is used
21171 for OpenMP offloading, but the option is exposed on its own for the purpose
21172 of testing the compiler; to generate code suitable for linking into programs
21173 using OpenMP offloading, use option @option{-mgomp}.
21174
21175 @item -muniform-simt
21176 @opindex muniform-simt
21177 Switch to code generation variant that allows to execute all threads in each
21178 warp, while maintaining memory state and side effects as if only one thread
21179 in each warp was active outside of OpenMP SIMD regions. All atomic operations
21180 and calls to runtime (malloc, free, vprintf) are conditionally executed (iff
21181 current lane index equals the master lane index), and the register being
21182 assigned is copied via a shuffle instruction from the master lane. Outside of
21183 SIMD regions lane 0 is the master; inside, each thread sees itself as the
21184 master. Shared memory array @code{int __nvptx_uni[]} stores all-zeros or
21185 all-ones bitmasks for each warp, indicating current mode (0 outside of SIMD
21186 regions). Each thread can bitwise-and the bitmask at position @code{tid.y}
21187 with current lane index to compute the master lane index.
21188
21189 @item -mgomp
21190 @opindex mgomp
21191 Generate code for use in OpenMP offloading: enables @option{-msoft-stack} and
21192 @option{-muniform-simt} options, and selects corresponding multilib variant.
21193
21194 @end table
21195
21196 @node PDP-11 Options
21197 @subsection PDP-11 Options
21198 @cindex PDP-11 Options
21199
21200 These options are defined for the PDP-11:
21201
21202 @table @gcctabopt
21203 @item -mfpu
21204 @opindex mfpu
21205 Use hardware FPP floating point. This is the default. (FIS floating
21206 point on the PDP-11/40 is not supported.)
21207
21208 @item -msoft-float
21209 @opindex msoft-float
21210 Do not use hardware floating point.
21211
21212 @item -mac0
21213 @opindex mac0
21214 Return floating-point results in ac0 (fr0 in Unix assembler syntax).
21215
21216 @item -mno-ac0
21217 @opindex mno-ac0
21218 Return floating-point results in memory. This is the default.
21219
21220 @item -m40
21221 @opindex m40
21222 Generate code for a PDP-11/40.
21223
21224 @item -m45
21225 @opindex m45
21226 Generate code for a PDP-11/45. This is the default.
21227
21228 @item -m10
21229 @opindex m10
21230 Generate code for a PDP-11/10.
21231
21232 @item -mbcopy-builtin
21233 @opindex mbcopy-builtin
21234 Use inline @code{movmemhi} patterns for copying memory. This is the
21235 default.
21236
21237 @item -mbcopy
21238 @opindex mbcopy
21239 Do not use inline @code{movmemhi} patterns for copying memory.
21240
21241 @item -mint16
21242 @itemx -mno-int32
21243 @opindex mint16
21244 @opindex mno-int32
21245 Use 16-bit @code{int}. This is the default.
21246
21247 @item -mint32
21248 @itemx -mno-int16
21249 @opindex mint32
21250 @opindex mno-int16
21251 Use 32-bit @code{int}.
21252
21253 @item -mfloat64
21254 @itemx -mno-float32
21255 @opindex mfloat64
21256 @opindex mno-float32
21257 Use 64-bit @code{float}. This is the default.
21258
21259 @item -mfloat32
21260 @itemx -mno-float64
21261 @opindex mfloat32
21262 @opindex mno-float64
21263 Use 32-bit @code{float}.
21264
21265 @item -mabshi
21266 @opindex mabshi
21267 Use @code{abshi2} pattern. This is the default.
21268
21269 @item -mno-abshi
21270 @opindex mno-abshi
21271 Do not use @code{abshi2} pattern.
21272
21273 @item -mbranch-expensive
21274 @opindex mbranch-expensive
21275 Pretend that branches are expensive. This is for experimenting with
21276 code generation only.
21277
21278 @item -mbranch-cheap
21279 @opindex mbranch-cheap
21280 Do not pretend that branches are expensive. This is the default.
21281
21282 @item -munix-asm
21283 @opindex munix-asm
21284 Use Unix assembler syntax. This is the default when configured for
21285 @samp{pdp11-*-bsd}.
21286
21287 @item -mdec-asm
21288 @opindex mdec-asm
21289 Use DEC assembler syntax. This is the default when configured for any
21290 PDP-11 target other than @samp{pdp11-*-bsd}.
21291 @end table
21292
21293 @node picoChip Options
21294 @subsection picoChip Options
21295 @cindex picoChip options
21296
21297 These @samp{-m} options are defined for picoChip implementations:
21298
21299 @table @gcctabopt
21300
21301 @item -mae=@var{ae_type}
21302 @opindex mcpu
21303 Set the instruction set, register set, and instruction scheduling
21304 parameters for array element type @var{ae_type}. Supported values
21305 for @var{ae_type} are @samp{ANY}, @samp{MUL}, and @samp{MAC}.
21306
21307 @option{-mae=ANY} selects a completely generic AE type. Code
21308 generated with this option runs on any of the other AE types. The
21309 code is not as efficient as it would be if compiled for a specific
21310 AE type, and some types of operation (e.g., multiplication) do not
21311 work properly on all types of AE.
21312
21313 @option{-mae=MUL} selects a MUL AE type. This is the most useful AE type
21314 for compiled code, and is the default.
21315
21316 @option{-mae=MAC} selects a DSP-style MAC AE. Code compiled with this
21317 option may suffer from poor performance of byte (char) manipulation,
21318 since the DSP AE does not provide hardware support for byte load/stores.
21319
21320 @item -msymbol-as-address
21321 Enable the compiler to directly use a symbol name as an address in a
21322 load/store instruction, without first loading it into a
21323 register. Typically, the use of this option generates larger
21324 programs, which run faster than when the option isn't used. However, the
21325 results vary from program to program, so it is left as a user option,
21326 rather than being permanently enabled.
21327
21328 @item -mno-inefficient-warnings
21329 Disables warnings about the generation of inefficient code. These
21330 warnings can be generated, for example, when compiling code that
21331 performs byte-level memory operations on the MAC AE type. The MAC AE has
21332 no hardware support for byte-level memory operations, so all byte
21333 load/stores must be synthesized from word load/store operations. This is
21334 inefficient and a warning is generated to indicate
21335 that you should rewrite the code to avoid byte operations, or to target
21336 an AE type that has the necessary hardware support. This option disables
21337 these warnings.
21338
21339 @end table
21340
21341 @node PowerPC Options
21342 @subsection PowerPC Options
21343 @cindex PowerPC options
21344
21345 These are listed under @xref{RS/6000 and PowerPC Options}.
21346
21347 @node RISC-V Options
21348 @subsection RISC-V Options
21349 @cindex RISC-V Options
21350
21351 These command-line options are defined for RISC-V targets:
21352
21353 @table @gcctabopt
21354 @item -mbranch-cost=@var{n}
21355 @opindex mbranch-cost
21356 Set the cost of branches to roughly @var{n} instructions.
21357
21358 @item -mmemcpy
21359 @itemx -mno-memcpy
21360 @opindex mmemcpy
21361 Don't optimize block moves.
21362
21363 @item -mplt
21364 @itemx -mno-plt
21365 @opindex plt
21366 When generating PIC code, allow the use of PLTs. Ignored for non-PIC.
21367
21368 @item -mabi=@var{ABI-string}
21369 @opindex mabi
21370 Specify integer and floating-point calling convention. This defaults to the
21371 natural calling convention: e.g.@ LP64 for RV64I, ILP32 for RV32I, LP64D for
21372 RV64G.
21373
21374 @item -mfdiv
21375 @itemx -mno-fdiv
21376 @opindex mfdiv
21377 Use hardware floating-point divide and square root instructions. This requires
21378 the F or D extensions for floating-point registers.
21379
21380 @item -mdiv
21381 @itemx -mno-div
21382 @opindex mdiv
21383 Use hardware instructions for integer division. This requires the M extension.
21384
21385 @item -march=@var{ISA-string}
21386 @opindex march
21387 Generate code for given RISC-V ISA (e.g.@ @samp{rv64im}). ISA strings must be
21388 lower-case. Examples include @samp{rv64i}, @samp{rv32g}, and @samp{rv32imaf}.
21389
21390 @item -mtune=@var{processor-string}
21391 @opindex mtune
21392 Optimize the output for the given processor, specified by microarchitecture
21393 name.
21394
21395 @item -msmall-data-limit=@var{n}
21396 @opindex msmall-data-limit
21397 Put global and static data smaller than @var{n} bytes into a special section
21398 (on some targets).
21399
21400 @item -msave-restore
21401 @itemx -mno-save-restore
21402 @opindex msave-restore
21403 Use smaller but slower prologue and epilogue code.
21404
21405 @item -mstrict-align
21406 @itemx -mno-strict-align
21407 @opindex mstrict-align
21408 Do not generate unaligned memory accesses.
21409
21410 @item -mcmodel=@var{code-model}
21411 @opindex mcmodel
21412 Specify the code model.
21413
21414 @end table
21415
21416 @node RL78 Options
21417 @subsection RL78 Options
21418 @cindex RL78 Options
21419
21420 @table @gcctabopt
21421
21422 @item -msim
21423 @opindex msim
21424 Links in additional target libraries to support operation within a
21425 simulator.
21426
21427 @item -mmul=none
21428 @itemx -mmul=g10
21429 @itemx -mmul=g13
21430 @itemx -mmul=g14
21431 @itemx -mmul=rl78
21432 @opindex mmul
21433 Specifies the type of hardware multiplication and division support to
21434 be used. The simplest is @code{none}, which uses software for both
21435 multiplication and division. This is the default. The @code{g13}
21436 value is for the hardware multiply/divide peripheral found on the
21437 RL78/G13 (S2 core) targets. The @code{g14} value selects the use of
21438 the multiplication and division instructions supported by the RL78/G14
21439 (S3 core) parts. The value @code{rl78} is an alias for @code{g14} and
21440 the value @code{mg10} is an alias for @code{none}.
21441
21442 In addition a C preprocessor macro is defined, based upon the setting
21443 of this option. Possible values are: @code{__RL78_MUL_NONE__},
21444 @code{__RL78_MUL_G13__} or @code{__RL78_MUL_G14__}.
21445
21446 @item -mcpu=g10
21447 @itemx -mcpu=g13
21448 @itemx -mcpu=g14
21449 @itemx -mcpu=rl78
21450 @opindex mcpu
21451 Specifies the RL78 core to target. The default is the G14 core, also
21452 known as an S3 core or just RL78. The G13 or S2 core does not have
21453 multiply or divide instructions, instead it uses a hardware peripheral
21454 for these operations. The G10 or S1 core does not have register
21455 banks, so it uses a different calling convention.
21456
21457 If this option is set it also selects the type of hardware multiply
21458 support to use, unless this is overridden by an explicit
21459 @option{-mmul=none} option on the command line. Thus specifying
21460 @option{-mcpu=g13} enables the use of the G13 hardware multiply
21461 peripheral and specifying @option{-mcpu=g10} disables the use of
21462 hardware multiplications altogether.
21463
21464 Note, although the RL78/G14 core is the default target, specifying
21465 @option{-mcpu=g14} or @option{-mcpu=rl78} on the command line does
21466 change the behavior of the toolchain since it also enables G14
21467 hardware multiply support. If these options are not specified on the
21468 command line then software multiplication routines will be used even
21469 though the code targets the RL78 core. This is for backwards
21470 compatibility with older toolchains which did not have hardware
21471 multiply and divide support.
21472
21473 In addition a C preprocessor macro is defined, based upon the setting
21474 of this option. Possible values are: @code{__RL78_G10__},
21475 @code{__RL78_G13__} or @code{__RL78_G14__}.
21476
21477 @item -mg10
21478 @itemx -mg13
21479 @itemx -mg14
21480 @itemx -mrl78
21481 @opindex mg10
21482 @opindex mg13
21483 @opindex mg14
21484 @opindex mrl78
21485 These are aliases for the corresponding @option{-mcpu=} option. They
21486 are provided for backwards compatibility.
21487
21488 @item -mallregs
21489 @opindex mallregs
21490 Allow the compiler to use all of the available registers. By default
21491 registers @code{r24..r31} are reserved for use in interrupt handlers.
21492 With this option enabled these registers can be used in ordinary
21493 functions as well.
21494
21495 @item -m64bit-doubles
21496 @itemx -m32bit-doubles
21497 @opindex m64bit-doubles
21498 @opindex m32bit-doubles
21499 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
21500 or 32 bits (@option{-m32bit-doubles}) in size. The default is
21501 @option{-m32bit-doubles}.
21502
21503 @item -msave-mduc-in-interrupts
21504 @item -mno-save-mduc-in-interrupts
21505 @opindex msave-mduc-in-interrupts
21506 @opindex mno-save-mduc-in-interrupts
21507 Specifies that interrupt handler functions should preserve the
21508 MDUC registers. This is only necessary if normal code might use
21509 the MDUC registers, for example because it performs multiplication
21510 and division operations. The default is to ignore the MDUC registers
21511 as this makes the interrupt handlers faster. The target option -mg13
21512 needs to be passed for this to work as this feature is only available
21513 on the G13 target (S2 core). The MDUC registers will only be saved
21514 if the interrupt handler performs a multiplication or division
21515 operation or it calls another function.
21516
21517 @end table
21518
21519 @node RS/6000 and PowerPC Options
21520 @subsection IBM RS/6000 and PowerPC Options
21521 @cindex RS/6000 and PowerPC Options
21522 @cindex IBM RS/6000 and PowerPC Options
21523
21524 These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
21525 @table @gcctabopt
21526 @item -mpowerpc-gpopt
21527 @itemx -mno-powerpc-gpopt
21528 @itemx -mpowerpc-gfxopt
21529 @itemx -mno-powerpc-gfxopt
21530 @need 800
21531 @itemx -mpowerpc64
21532 @itemx -mno-powerpc64
21533 @itemx -mmfcrf
21534 @itemx -mno-mfcrf
21535 @itemx -mpopcntb
21536 @itemx -mno-popcntb
21537 @itemx -mpopcntd
21538 @itemx -mno-popcntd
21539 @itemx -mfprnd
21540 @itemx -mno-fprnd
21541 @need 800
21542 @itemx -mcmpb
21543 @itemx -mno-cmpb
21544 @itemx -mmfpgpr
21545 @itemx -mno-mfpgpr
21546 @itemx -mhard-dfp
21547 @itemx -mno-hard-dfp
21548 @opindex mpowerpc-gpopt
21549 @opindex mno-powerpc-gpopt
21550 @opindex mpowerpc-gfxopt
21551 @opindex mno-powerpc-gfxopt
21552 @opindex mpowerpc64
21553 @opindex mno-powerpc64
21554 @opindex mmfcrf
21555 @opindex mno-mfcrf
21556 @opindex mpopcntb
21557 @opindex mno-popcntb
21558 @opindex mpopcntd
21559 @opindex mno-popcntd
21560 @opindex mfprnd
21561 @opindex mno-fprnd
21562 @opindex mcmpb
21563 @opindex mno-cmpb
21564 @opindex mmfpgpr
21565 @opindex mno-mfpgpr
21566 @opindex mhard-dfp
21567 @opindex mno-hard-dfp
21568 You use these options to specify which instructions are available on the
21569 processor you are using. The default value of these options is
21570 determined when configuring GCC@. Specifying the
21571 @option{-mcpu=@var{cpu_type}} overrides the specification of these
21572 options. We recommend you use the @option{-mcpu=@var{cpu_type}} option
21573 rather than the options listed above.
21574
21575 Specifying @option{-mpowerpc-gpopt} allows
21576 GCC to use the optional PowerPC architecture instructions in the
21577 General Purpose group, including floating-point square root. Specifying
21578 @option{-mpowerpc-gfxopt} allows GCC to
21579 use the optional PowerPC architecture instructions in the Graphics
21580 group, including floating-point select.
21581
21582 The @option{-mmfcrf} option allows GCC to generate the move from
21583 condition register field instruction implemented on the POWER4
21584 processor and other processors that support the PowerPC V2.01
21585 architecture.
21586 The @option{-mpopcntb} option allows GCC to generate the popcount and
21587 double-precision FP reciprocal estimate instruction implemented on the
21588 POWER5 processor and other processors that support the PowerPC V2.02
21589 architecture.
21590 The @option{-mpopcntd} option allows GCC to generate the popcount
21591 instruction implemented on the POWER7 processor and other processors
21592 that support the PowerPC V2.06 architecture.
21593 The @option{-mfprnd} option allows GCC to generate the FP round to
21594 integer instructions implemented on the POWER5+ processor and other
21595 processors that support the PowerPC V2.03 architecture.
21596 The @option{-mcmpb} option allows GCC to generate the compare bytes
21597 instruction implemented on the POWER6 processor and other processors
21598 that support the PowerPC V2.05 architecture.
21599 The @option{-mmfpgpr} option allows GCC to generate the FP move to/from
21600 general-purpose register instructions implemented on the POWER6X
21601 processor and other processors that support the extended PowerPC V2.05
21602 architecture.
21603 The @option{-mhard-dfp} option allows GCC to generate the decimal
21604 floating-point instructions implemented on some POWER processors.
21605
21606 The @option{-mpowerpc64} option allows GCC to generate the additional
21607 64-bit instructions that are found in the full PowerPC64 architecture
21608 and to treat GPRs as 64-bit, doubleword quantities. GCC defaults to
21609 @option{-mno-powerpc64}.
21610
21611 @item -mcpu=@var{cpu_type}
21612 @opindex mcpu
21613 Set architecture type, register usage, and
21614 instruction scheduling parameters for machine type @var{cpu_type}.
21615 Supported values for @var{cpu_type} are @samp{401}, @samp{403},
21616 @samp{405}, @samp{405fp}, @samp{440}, @samp{440fp}, @samp{464}, @samp{464fp},
21617 @samp{476}, @samp{476fp}, @samp{505}, @samp{601}, @samp{602}, @samp{603},
21618 @samp{603e}, @samp{604}, @samp{604e}, @samp{620}, @samp{630}, @samp{740},
21619 @samp{7400}, @samp{7450}, @samp{750}, @samp{801}, @samp{821}, @samp{823},
21620 @samp{860}, @samp{970}, @samp{8540}, @samp{a2}, @samp{e300c2},
21621 @samp{e300c3}, @samp{e500mc}, @samp{e500mc64}, @samp{e5500},
21622 @samp{e6500}, @samp{ec603e}, @samp{G3}, @samp{G4}, @samp{G5},
21623 @samp{titan}, @samp{power3}, @samp{power4}, @samp{power5}, @samp{power5+},
21624 @samp{power6}, @samp{power6x}, @samp{power7}, @samp{power8},
21625 @samp{power9}, @samp{powerpc}, @samp{powerpc64}, @samp{powerpc64le},
21626 and @samp{rs64}.
21627
21628 @option{-mcpu=powerpc}, @option{-mcpu=powerpc64}, and
21629 @option{-mcpu=powerpc64le} specify pure 32-bit PowerPC (either
21630 endian), 64-bit big endian PowerPC and 64-bit little endian PowerPC
21631 architecture machine types, with an appropriate, generic processor
21632 model assumed for scheduling purposes.
21633
21634 The other options specify a specific processor. Code generated under
21635 those options runs best on that processor, and may not run at all on
21636 others.
21637
21638 The @option{-mcpu} options automatically enable or disable the
21639 following options:
21640
21641 @gccoptlist{-maltivec -mfprnd -mhard-float -mmfcrf -mmultiple @gol
21642 -mpopcntb -mpopcntd -mpowerpc64 @gol
21643 -mpowerpc-gpopt -mpowerpc-gfxopt -msingle-float -mdouble-float @gol
21644 -msimple-fpu -mstring -mmulhw -mdlmzb -mmfpgpr -mvsx @gol
21645 -mcrypto -mdirect-move -mhtm -mpower8-fusion -mpower8-vector @gol
21646 -mquad-memory -mquad-memory-atomic -mfloat128 -mfloat128-hardware}
21647
21648 The particular options set for any particular CPU varies between
21649 compiler versions, depending on what setting seems to produce optimal
21650 code for that CPU; it doesn't necessarily reflect the actual hardware's
21651 capabilities. If you wish to set an individual option to a particular
21652 value, you may specify it after the @option{-mcpu} option, like
21653 @option{-mcpu=970 -mno-altivec}.
21654
21655 On AIX, the @option{-maltivec} and @option{-mpowerpc64} options are
21656 not enabled or disabled by the @option{-mcpu} option at present because
21657 AIX does not have full support for these options. You may still
21658 enable or disable them individually if you're sure it'll work in your
21659 environment.
21660
21661 @item -mtune=@var{cpu_type}
21662 @opindex mtune
21663 Set the instruction scheduling parameters for machine type
21664 @var{cpu_type}, but do not set the architecture type or register usage,
21665 as @option{-mcpu=@var{cpu_type}} does. The same
21666 values for @var{cpu_type} are used for @option{-mtune} as for
21667 @option{-mcpu}. If both are specified, the code generated uses the
21668 architecture and registers set by @option{-mcpu}, but the
21669 scheduling parameters set by @option{-mtune}.
21670
21671 @item -mcmodel=small
21672 @opindex mcmodel=small
21673 Generate PowerPC64 code for the small model: The TOC is limited to
21674 64k.
21675
21676 @item -mcmodel=medium
21677 @opindex mcmodel=medium
21678 Generate PowerPC64 code for the medium model: The TOC and other static
21679 data may be up to a total of 4G in size. This is the default for 64-bit
21680 Linux.
21681
21682 @item -mcmodel=large
21683 @opindex mcmodel=large
21684 Generate PowerPC64 code for the large model: The TOC may be up to 4G
21685 in size. Other data and code is only limited by the 64-bit address
21686 space.
21687
21688 @item -maltivec
21689 @itemx -mno-altivec
21690 @opindex maltivec
21691 @opindex mno-altivec
21692 Generate code that uses (does not use) AltiVec instructions, and also
21693 enable the use of built-in functions that allow more direct access to
21694 the AltiVec instruction set. You may also need to set
21695 @option{-mabi=altivec} to adjust the current ABI with AltiVec ABI
21696 enhancements.
21697
21698 When @option{-maltivec} is used, rather than @option{-maltivec=le} or
21699 @option{-maltivec=be}, the element order for AltiVec intrinsics such
21700 as @code{vec_splat}, @code{vec_extract}, and @code{vec_insert}
21701 match array element order corresponding to the endianness of the
21702 target. That is, element zero identifies the leftmost element in a
21703 vector register when targeting a big-endian platform, and identifies
21704 the rightmost element in a vector register when targeting a
21705 little-endian platform.
21706
21707 @item -maltivec=be
21708 @opindex maltivec=be
21709 Generate AltiVec instructions using big-endian element order,
21710 regardless of whether the target is big- or little-endian. This is
21711 the default when targeting a big-endian platform.
21712
21713 The element order is used to interpret element numbers in AltiVec
21714 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
21715 @code{vec_insert}. By default, these match array element order
21716 corresponding to the endianness for the target.
21717
21718 @item -maltivec=le
21719 @opindex maltivec=le
21720 Generate AltiVec instructions using little-endian element order,
21721 regardless of whether the target is big- or little-endian. This is
21722 the default when targeting a little-endian platform. This option is
21723 currently ignored when targeting a big-endian platform.
21724
21725 The element order is used to interpret element numbers in AltiVec
21726 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
21727 @code{vec_insert}. By default, these match array element order
21728 corresponding to the endianness for the target.
21729
21730 @item -mvrsave
21731 @itemx -mno-vrsave
21732 @opindex mvrsave
21733 @opindex mno-vrsave
21734 Generate VRSAVE instructions when generating AltiVec code.
21735
21736 @item -msecure-plt
21737 @opindex msecure-plt
21738 Generate code that allows @command{ld} and @command{ld.so}
21739 to build executables and shared
21740 libraries with non-executable @code{.plt} and @code{.got} sections.
21741 This is a PowerPC
21742 32-bit SYSV ABI option.
21743
21744 @item -mbss-plt
21745 @opindex mbss-plt
21746 Generate code that uses a BSS @code{.plt} section that @command{ld.so}
21747 fills in, and
21748 requires @code{.plt} and @code{.got}
21749 sections that are both writable and executable.
21750 This is a PowerPC 32-bit SYSV ABI option.
21751
21752 @item -misel
21753 @itemx -mno-isel
21754 @opindex misel
21755 @opindex mno-isel
21756 This switch enables or disables the generation of ISEL instructions.
21757
21758 @item -misel=@var{yes/no}
21759 This switch has been deprecated. Use @option{-misel} and
21760 @option{-mno-isel} instead.
21761
21762 @item -mlra
21763 @opindex mlra
21764 Enable Local Register Allocation. By default the port uses LRA.
21765 (i.e. @option{-mno-lra}).
21766
21767 @item -mspe
21768 @itemx -mno-spe
21769 @opindex mspe
21770 @opindex mno-spe
21771 This switch enables or disables the generation of SPE simd
21772 instructions.
21773
21774 @item -mpaired
21775 @itemx -mno-paired
21776 @opindex mpaired
21777 @opindex mno-paired
21778 This switch enables or disables the generation of PAIRED simd
21779 instructions.
21780
21781 @item -mspe=@var{yes/no}
21782 This option has been deprecated. Use @option{-mspe} and
21783 @option{-mno-spe} instead.
21784
21785 @item -mvsx
21786 @itemx -mno-vsx
21787 @opindex mvsx
21788 @opindex mno-vsx
21789 Generate code that uses (does not use) vector/scalar (VSX)
21790 instructions, and also enable the use of built-in functions that allow
21791 more direct access to the VSX instruction set.
21792
21793 @item -mcrypto
21794 @itemx -mno-crypto
21795 @opindex mcrypto
21796 @opindex mno-crypto
21797 Enable the use (disable) of the built-in functions that allow direct
21798 access to the cryptographic instructions that were added in version
21799 2.07 of the PowerPC ISA.
21800
21801 @item -mdirect-move
21802 @itemx -mno-direct-move
21803 @opindex mdirect-move
21804 @opindex mno-direct-move
21805 Generate code that uses (does not use) the instructions to move data
21806 between the general purpose registers and the vector/scalar (VSX)
21807 registers that were added in version 2.07 of the PowerPC ISA.
21808
21809 @item -mhtm
21810 @itemx -mno-htm
21811 @opindex mhtm
21812 @opindex mno-htm
21813 Enable (disable) the use of the built-in functions that allow direct
21814 access to the Hardware Transactional Memory (HTM) instructions that
21815 were added in version 2.07 of the PowerPC ISA.
21816
21817 @item -mpower8-fusion
21818 @itemx -mno-power8-fusion
21819 @opindex mpower8-fusion
21820 @opindex mno-power8-fusion
21821 Generate code that keeps (does not keeps) some integer operations
21822 adjacent so that the instructions can be fused together on power8 and
21823 later processors.
21824
21825 @item -mpower8-vector
21826 @itemx -mno-power8-vector
21827 @opindex mpower8-vector
21828 @opindex mno-power8-vector
21829 Generate code that uses (does not use) the vector and scalar
21830 instructions that were added in version 2.07 of the PowerPC ISA. Also
21831 enable the use of built-in functions that allow more direct access to
21832 the vector instructions.
21833
21834 @item -mquad-memory
21835 @itemx -mno-quad-memory
21836 @opindex mquad-memory
21837 @opindex mno-quad-memory
21838 Generate code that uses (does not use) the non-atomic quad word memory
21839 instructions. The @option{-mquad-memory} option requires use of
21840 64-bit mode.
21841
21842 @item -mquad-memory-atomic
21843 @itemx -mno-quad-memory-atomic
21844 @opindex mquad-memory-atomic
21845 @opindex mno-quad-memory-atomic
21846 Generate code that uses (does not use) the atomic quad word memory
21847 instructions. The @option{-mquad-memory-atomic} option requires use of
21848 64-bit mode.
21849
21850 @item -mupper-regs-di
21851 @itemx -mno-upper-regs-di
21852 @opindex mupper-regs-di
21853 @opindex mno-upper-regs-di
21854 Generate code that uses (does not use) the scalar instructions that
21855 target all 64 registers in the vector/scalar floating point register
21856 set that were added in version 2.06 of the PowerPC ISA when processing
21857 integers. @option{-mupper-regs-di} is turned on by default if you use
21858 any of the @option{-mcpu=power7}, @option{-mcpu=power8},
21859 @option{-mcpu=power9}, or @option{-mvsx} options.
21860
21861 @item -mupper-regs-df
21862 @itemx -mno-upper-regs-df
21863 @opindex mupper-regs-df
21864 @opindex mno-upper-regs-df
21865 Generate code that uses (does not use) the scalar double precision
21866 instructions that target all 64 registers in the vector/scalar
21867 floating point register set that were added in version 2.06 of the
21868 PowerPC ISA. @option{-mupper-regs-df} is turned on by default if you
21869 use any of the @option{-mcpu=power7}, @option{-mcpu=power8},
21870 @option{-mcpu=power9}, or @option{-mvsx} options.
21871
21872 @item -mupper-regs-sf
21873 @itemx -mno-upper-regs-sf
21874 @opindex mupper-regs-sf
21875 @opindex mno-upper-regs-sf
21876 Generate code that uses (does not use) the scalar single precision
21877 instructions that target all 64 registers in the vector/scalar
21878 floating point register set that were added in version 2.07 of the
21879 PowerPC ISA. @option{-mupper-regs-sf} is turned on by default if you
21880 use either of the @option{-mcpu=power8}, @option{-mpower8-vector}, or
21881 @option{-mcpu=power9} options.
21882
21883 @item -mupper-regs
21884 @itemx -mno-upper-regs
21885 @opindex mupper-regs
21886 @opindex mno-upper-regs
21887 Generate code that uses (does not use) the scalar
21888 instructions that target all 64 registers in the vector/scalar
21889 floating point register set, depending on the model of the machine.
21890
21891 If the @option{-mno-upper-regs} option is used, it turns off both
21892 @option{-mupper-regs-sf} and @option{-mupper-regs-df} options.
21893
21894 @item -mfloat128
21895 @itemx -mno-float128
21896 @opindex mfloat128
21897 @opindex mno-float128
21898 Enable/disable the @var{__float128} keyword for IEEE 128-bit floating point
21899 and use either software emulation for IEEE 128-bit floating point or
21900 hardware instructions.
21901
21902 The VSX instruction set (@option{-mvsx}, @option{-mcpu=power7}, or
21903 @option{-mcpu=power8}) must be enabled to use the @option{-mfloat128}
21904 option. The @option{-mfloat128} option only works on PowerPC 64-bit
21905 Linux systems.
21906
21907 If you use the ISA 3.0 instruction set (@option{-mcpu=power9}), the
21908 @option{-mfloat128} option will also enable the generation of ISA 3.0
21909 IEEE 128-bit floating point instructions. Otherwise, IEEE 128-bit
21910 floating point will be done with software emulation.
21911
21912 @item -mfloat128-hardware
21913 @itemx -mno-float128-hardware
21914 @opindex mfloat128-hardware
21915 @opindex mno-float128-hardware
21916 Enable/disable using ISA 3.0 hardware instructions to support the
21917 @var{__float128} data type.
21918
21919 If you use @option{-mfloat128-hardware}, it will enable the option
21920 @option{-mfloat128} as well.
21921
21922 If you select ISA 3.0 instructions with @option{-mcpu=power9}, but do
21923 not use either @option{-mfloat128} or @option{-mfloat128-hardware},
21924 the IEEE 128-bit floating point support will not be enabled.
21925
21926 @item -mfloat-gprs=@var{yes/single/double/no}
21927 @itemx -mfloat-gprs
21928 @opindex mfloat-gprs
21929 This switch enables or disables the generation of floating-point
21930 operations on the general-purpose registers for architectures that
21931 support it.
21932
21933 The argument @samp{yes} or @samp{single} enables the use of
21934 single-precision floating-point operations.
21935
21936 The argument @samp{double} enables the use of single and
21937 double-precision floating-point operations.
21938
21939 The argument @samp{no} disables floating-point operations on the
21940 general-purpose registers.
21941
21942 This option is currently only available on the MPC854x.
21943
21944 @item -m32
21945 @itemx -m64
21946 @opindex m32
21947 @opindex m64
21948 Generate code for 32-bit or 64-bit environments of Darwin and SVR4
21949 targets (including GNU/Linux). The 32-bit environment sets int, long
21950 and pointer to 32 bits and generates code that runs on any PowerPC
21951 variant. The 64-bit environment sets int to 32 bits and long and
21952 pointer to 64 bits, and generates code for PowerPC64, as for
21953 @option{-mpowerpc64}.
21954
21955 @item -mfull-toc
21956 @itemx -mno-fp-in-toc
21957 @itemx -mno-sum-in-toc
21958 @itemx -mminimal-toc
21959 @opindex mfull-toc
21960 @opindex mno-fp-in-toc
21961 @opindex mno-sum-in-toc
21962 @opindex mminimal-toc
21963 Modify generation of the TOC (Table Of Contents), which is created for
21964 every executable file. The @option{-mfull-toc} option is selected by
21965 default. In that case, GCC allocates at least one TOC entry for
21966 each unique non-automatic variable reference in your program. GCC
21967 also places floating-point constants in the TOC@. However, only
21968 16,384 entries are available in the TOC@.
21969
21970 If you receive a linker error message that saying you have overflowed
21971 the available TOC space, you can reduce the amount of TOC space used
21972 with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
21973 @option{-mno-fp-in-toc} prevents GCC from putting floating-point
21974 constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
21975 generate code to calculate the sum of an address and a constant at
21976 run time instead of putting that sum into the TOC@. You may specify one
21977 or both of these options. Each causes GCC to produce very slightly
21978 slower and larger code at the expense of conserving TOC space.
21979
21980 If you still run out of space in the TOC even when you specify both of
21981 these options, specify @option{-mminimal-toc} instead. This option causes
21982 GCC to make only one TOC entry for every file. When you specify this
21983 option, GCC produces code that is slower and larger but which
21984 uses extremely little TOC space. You may wish to use this option
21985 only on files that contain less frequently-executed code.
21986
21987 @item -maix64
21988 @itemx -maix32
21989 @opindex maix64
21990 @opindex maix32
21991 Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
21992 @code{long} type, and the infrastructure needed to support them.
21993 Specifying @option{-maix64} implies @option{-mpowerpc64},
21994 while @option{-maix32} disables the 64-bit ABI and
21995 implies @option{-mno-powerpc64}. GCC defaults to @option{-maix32}.
21996
21997 @item -mxl-compat
21998 @itemx -mno-xl-compat
21999 @opindex mxl-compat
22000 @opindex mno-xl-compat
22001 Produce code that conforms more closely to IBM XL compiler semantics
22002 when using AIX-compatible ABI@. Pass floating-point arguments to
22003 prototyped functions beyond the register save area (RSA) on the stack
22004 in addition to argument FPRs. Do not assume that most significant
22005 double in 128-bit long double value is properly rounded when comparing
22006 values and converting to double. Use XL symbol names for long double
22007 support routines.
22008
22009 The AIX calling convention was extended but not initially documented to
22010 handle an obscure K&R C case of calling a function that takes the
22011 address of its arguments with fewer arguments than declared. IBM XL
22012 compilers access floating-point arguments that do not fit in the
22013 RSA from the stack when a subroutine is compiled without
22014 optimization. Because always storing floating-point arguments on the
22015 stack is inefficient and rarely needed, this option is not enabled by
22016 default and only is necessary when calling subroutines compiled by IBM
22017 XL compilers without optimization.
22018
22019 @item -mpe
22020 @opindex mpe
22021 Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@. Link an
22022 application written to use message passing with special startup code to
22023 enable the application to run. The system must have PE installed in the
22024 standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
22025 must be overridden with the @option{-specs=} option to specify the
22026 appropriate directory location. The Parallel Environment does not
22027 support threads, so the @option{-mpe} option and the @option{-pthread}
22028 option are incompatible.
22029
22030 @item -malign-natural
22031 @itemx -malign-power
22032 @opindex malign-natural
22033 @opindex malign-power
22034 On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
22035 @option{-malign-natural} overrides the ABI-defined alignment of larger
22036 types, such as floating-point doubles, on their natural size-based boundary.
22037 The option @option{-malign-power} instructs GCC to follow the ABI-specified
22038 alignment rules. GCC defaults to the standard alignment defined in the ABI@.
22039
22040 On 64-bit Darwin, natural alignment is the default, and @option{-malign-power}
22041 is not supported.
22042
22043 @item -msoft-float
22044 @itemx -mhard-float
22045 @opindex msoft-float
22046 @opindex mhard-float
22047 Generate code that does not use (uses) the floating-point register set.
22048 Software floating-point emulation is provided if you use the
22049 @option{-msoft-float} option, and pass the option to GCC when linking.
22050
22051 @item -msingle-float
22052 @itemx -mdouble-float
22053 @opindex msingle-float
22054 @opindex mdouble-float
22055 Generate code for single- or double-precision floating-point operations.
22056 @option{-mdouble-float} implies @option{-msingle-float}.
22057
22058 @item -msimple-fpu
22059 @opindex msimple-fpu
22060 Do not generate @code{sqrt} and @code{div} instructions for hardware
22061 floating-point unit.
22062
22063 @item -mfpu=@var{name}
22064 @opindex mfpu
22065 Specify type of floating-point unit. Valid values for @var{name} are
22066 @samp{sp_lite} (equivalent to @option{-msingle-float -msimple-fpu}),
22067 @samp{dp_lite} (equivalent to @option{-mdouble-float -msimple-fpu}),
22068 @samp{sp_full} (equivalent to @option{-msingle-float}),
22069 and @samp{dp_full} (equivalent to @option{-mdouble-float}).
22070
22071 @item -mxilinx-fpu
22072 @opindex mxilinx-fpu
22073 Perform optimizations for the floating-point unit on Xilinx PPC 405/440.
22074
22075 @item -mmultiple
22076 @itemx -mno-multiple
22077 @opindex mmultiple
22078 @opindex mno-multiple
22079 Generate code that uses (does not use) the load multiple word
22080 instructions and the store multiple word instructions. These
22081 instructions are generated by default on POWER systems, and not
22082 generated on PowerPC systems. Do not use @option{-mmultiple} on little-endian
22083 PowerPC systems, since those instructions do not work when the
22084 processor is in little-endian mode. The exceptions are PPC740 and
22085 PPC750 which permit these instructions in little-endian mode.
22086
22087 @item -mstring
22088 @itemx -mno-string
22089 @opindex mstring
22090 @opindex mno-string
22091 Generate code that uses (does not use) the load string instructions
22092 and the store string word instructions to save multiple registers and
22093 do small block moves. These instructions are generated by default on
22094 POWER systems, and not generated on PowerPC systems. Do not use
22095 @option{-mstring} on little-endian PowerPC systems, since those
22096 instructions do not work when the processor is in little-endian mode.
22097 The exceptions are PPC740 and PPC750 which permit these instructions
22098 in little-endian mode.
22099
22100 @item -mupdate
22101 @itemx -mno-update
22102 @opindex mupdate
22103 @opindex mno-update
22104 Generate code that uses (does not use) the load or store instructions
22105 that update the base register to the address of the calculated memory
22106 location. These instructions are generated by default. If you use
22107 @option{-mno-update}, there is a small window between the time that the
22108 stack pointer is updated and the address of the previous frame is
22109 stored, which means code that walks the stack frame across interrupts or
22110 signals may get corrupted data.
22111
22112 @item -mavoid-indexed-addresses
22113 @itemx -mno-avoid-indexed-addresses
22114 @opindex mavoid-indexed-addresses
22115 @opindex mno-avoid-indexed-addresses
22116 Generate code that tries to avoid (not avoid) the use of indexed load
22117 or store instructions. These instructions can incur a performance
22118 penalty on Power6 processors in certain situations, such as when
22119 stepping through large arrays that cross a 16M boundary. This option
22120 is enabled by default when targeting Power6 and disabled otherwise.
22121
22122 @item -mfused-madd
22123 @itemx -mno-fused-madd
22124 @opindex mfused-madd
22125 @opindex mno-fused-madd
22126 Generate code that uses (does not use) the floating-point multiply and
22127 accumulate instructions. These instructions are generated by default
22128 if hardware floating point is used. The machine-dependent
22129 @option{-mfused-madd} option is now mapped to the machine-independent
22130 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
22131 mapped to @option{-ffp-contract=off}.
22132
22133 @item -mmulhw
22134 @itemx -mno-mulhw
22135 @opindex mmulhw
22136 @opindex mno-mulhw
22137 Generate code that uses (does not use) the half-word multiply and
22138 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
22139 These instructions are generated by default when targeting those
22140 processors.
22141
22142 @item -mdlmzb
22143 @itemx -mno-dlmzb
22144 @opindex mdlmzb
22145 @opindex mno-dlmzb
22146 Generate code that uses (does not use) the string-search @samp{dlmzb}
22147 instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
22148 generated by default when targeting those processors.
22149
22150 @item -mno-bit-align
22151 @itemx -mbit-align
22152 @opindex mno-bit-align
22153 @opindex mbit-align
22154 On System V.4 and embedded PowerPC systems do not (do) force structures
22155 and unions that contain bit-fields to be aligned to the base type of the
22156 bit-field.
22157
22158 For example, by default a structure containing nothing but 8
22159 @code{unsigned} bit-fields of length 1 is aligned to a 4-byte
22160 boundary and has a size of 4 bytes. By using @option{-mno-bit-align},
22161 the structure is aligned to a 1-byte boundary and is 1 byte in
22162 size.
22163
22164 @item -mno-strict-align
22165 @itemx -mstrict-align
22166 @opindex mno-strict-align
22167 @opindex mstrict-align
22168 On System V.4 and embedded PowerPC systems do not (do) assume that
22169 unaligned memory references are handled by the system.
22170
22171 @item -mrelocatable
22172 @itemx -mno-relocatable
22173 @opindex mrelocatable
22174 @opindex mno-relocatable
22175 Generate code that allows (does not allow) a static executable to be
22176 relocated to a different address at run time. A simple embedded
22177 PowerPC system loader should relocate the entire contents of
22178 @code{.got2} and 4-byte locations listed in the @code{.fixup} section,
22179 a table of 32-bit addresses generated by this option. For this to
22180 work, all objects linked together must be compiled with
22181 @option{-mrelocatable} or @option{-mrelocatable-lib}.
22182 @option{-mrelocatable} code aligns the stack to an 8-byte boundary.
22183
22184 @item -mrelocatable-lib
22185 @itemx -mno-relocatable-lib
22186 @opindex mrelocatable-lib
22187 @opindex mno-relocatable-lib
22188 Like @option{-mrelocatable}, @option{-mrelocatable-lib} generates a
22189 @code{.fixup} section to allow static executables to be relocated at
22190 run time, but @option{-mrelocatable-lib} does not use the smaller stack
22191 alignment of @option{-mrelocatable}. Objects compiled with
22192 @option{-mrelocatable-lib} may be linked with objects compiled with
22193 any combination of the @option{-mrelocatable} options.
22194
22195 @item -mno-toc
22196 @itemx -mtoc
22197 @opindex mno-toc
22198 @opindex mtoc
22199 On System V.4 and embedded PowerPC systems do not (do) assume that
22200 register 2 contains a pointer to a global area pointing to the addresses
22201 used in the program.
22202
22203 @item -mlittle
22204 @itemx -mlittle-endian
22205 @opindex mlittle
22206 @opindex mlittle-endian
22207 On System V.4 and embedded PowerPC systems compile code for the
22208 processor in little-endian mode. The @option{-mlittle-endian} option is
22209 the same as @option{-mlittle}.
22210
22211 @item -mbig
22212 @itemx -mbig-endian
22213 @opindex mbig
22214 @opindex mbig-endian
22215 On System V.4 and embedded PowerPC systems compile code for the
22216 processor in big-endian mode. The @option{-mbig-endian} option is
22217 the same as @option{-mbig}.
22218
22219 @item -mdynamic-no-pic
22220 @opindex mdynamic-no-pic
22221 On Darwin and Mac OS X systems, compile code so that it is not
22222 relocatable, but that its external references are relocatable. The
22223 resulting code is suitable for applications, but not shared
22224 libraries.
22225
22226 @item -msingle-pic-base
22227 @opindex msingle-pic-base
22228 Treat the register used for PIC addressing as read-only, rather than
22229 loading it in the prologue for each function. The runtime system is
22230 responsible for initializing this register with an appropriate value
22231 before execution begins.
22232
22233 @item -mprioritize-restricted-insns=@var{priority}
22234 @opindex mprioritize-restricted-insns
22235 This option controls the priority that is assigned to
22236 dispatch-slot restricted instructions during the second scheduling
22237 pass. The argument @var{priority} takes the value @samp{0}, @samp{1},
22238 or @samp{2} to assign no, highest, or second-highest (respectively)
22239 priority to dispatch-slot restricted
22240 instructions.
22241
22242 @item -msched-costly-dep=@var{dependence_type}
22243 @opindex msched-costly-dep
22244 This option controls which dependences are considered costly
22245 by the target during instruction scheduling. The argument
22246 @var{dependence_type} takes one of the following values:
22247
22248 @table @asis
22249 @item @samp{no}
22250 No dependence is costly.
22251
22252 @item @samp{all}
22253 All dependences are costly.
22254
22255 @item @samp{true_store_to_load}
22256 A true dependence from store to load is costly.
22257
22258 @item @samp{store_to_load}
22259 Any dependence from store to load is costly.
22260
22261 @item @var{number}
22262 Any dependence for which the latency is greater than or equal to
22263 @var{number} is costly.
22264 @end table
22265
22266 @item -minsert-sched-nops=@var{scheme}
22267 @opindex minsert-sched-nops
22268 This option controls which NOP insertion scheme is used during
22269 the second scheduling pass. The argument @var{scheme} takes one of the
22270 following values:
22271
22272 @table @asis
22273 @item @samp{no}
22274 Don't insert NOPs.
22275
22276 @item @samp{pad}
22277 Pad with NOPs any dispatch group that has vacant issue slots,
22278 according to the scheduler's grouping.
22279
22280 @item @samp{regroup_exact}
22281 Insert NOPs to force costly dependent insns into
22282 separate groups. Insert exactly as many NOPs as needed to force an insn
22283 to a new group, according to the estimated processor grouping.
22284
22285 @item @var{number}
22286 Insert NOPs to force costly dependent insns into
22287 separate groups. Insert @var{number} NOPs to force an insn to a new group.
22288 @end table
22289
22290 @item -mcall-sysv
22291 @opindex mcall-sysv
22292 On System V.4 and embedded PowerPC systems compile code using calling
22293 conventions that adhere to the March 1995 draft of the System V
22294 Application Binary Interface, PowerPC processor supplement. This is the
22295 default unless you configured GCC using @samp{powerpc-*-eabiaix}.
22296
22297 @item -mcall-sysv-eabi
22298 @itemx -mcall-eabi
22299 @opindex mcall-sysv-eabi
22300 @opindex mcall-eabi
22301 Specify both @option{-mcall-sysv} and @option{-meabi} options.
22302
22303 @item -mcall-sysv-noeabi
22304 @opindex mcall-sysv-noeabi
22305 Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
22306
22307 @item -mcall-aixdesc
22308 @opindex m
22309 On System V.4 and embedded PowerPC systems compile code for the AIX
22310 operating system.
22311
22312 @item -mcall-linux
22313 @opindex mcall-linux
22314 On System V.4 and embedded PowerPC systems compile code for the
22315 Linux-based GNU system.
22316
22317 @item -mcall-freebsd
22318 @opindex mcall-freebsd
22319 On System V.4 and embedded PowerPC systems compile code for the
22320 FreeBSD operating system.
22321
22322 @item -mcall-netbsd
22323 @opindex mcall-netbsd
22324 On System V.4 and embedded PowerPC systems compile code for the
22325 NetBSD operating system.
22326
22327 @item -mcall-openbsd
22328 @opindex mcall-netbsd
22329 On System V.4 and embedded PowerPC systems compile code for the
22330 OpenBSD operating system.
22331
22332 @item -maix-struct-return
22333 @opindex maix-struct-return
22334 Return all structures in memory (as specified by the AIX ABI)@.
22335
22336 @item -msvr4-struct-return
22337 @opindex msvr4-struct-return
22338 Return structures smaller than 8 bytes in registers (as specified by the
22339 SVR4 ABI)@.
22340
22341 @item -mabi=@var{abi-type}
22342 @opindex mabi
22343 Extend the current ABI with a particular extension, or remove such extension.
22344 Valid values are @samp{altivec}, @samp{no-altivec}, @samp{spe},
22345 @samp{no-spe}, @samp{ibmlongdouble}, @samp{ieeelongdouble},
22346 @samp{elfv1}, @samp{elfv2}@.
22347
22348 @item -mabi=spe
22349 @opindex mabi=spe
22350 Extend the current ABI with SPE ABI extensions. This does not change
22351 the default ABI, instead it adds the SPE ABI extensions to the current
22352 ABI@.
22353
22354 @item -mabi=no-spe
22355 @opindex mabi=no-spe
22356 Disable Book-E SPE ABI extensions for the current ABI@.
22357
22358 @item -mabi=ibmlongdouble
22359 @opindex mabi=ibmlongdouble
22360 Change the current ABI to use IBM extended-precision long double.
22361 This is a PowerPC 32-bit SYSV ABI option.
22362
22363 @item -mabi=ieeelongdouble
22364 @opindex mabi=ieeelongdouble
22365 Change the current ABI to use IEEE extended-precision long double.
22366 This is a PowerPC 32-bit Linux ABI option.
22367
22368 @item -mabi=elfv1
22369 @opindex mabi=elfv1
22370 Change the current ABI to use the ELFv1 ABI.
22371 This is the default ABI for big-endian PowerPC 64-bit Linux.
22372 Overriding the default ABI requires special system support and is
22373 likely to fail in spectacular ways.
22374
22375 @item -mabi=elfv2
22376 @opindex mabi=elfv2
22377 Change the current ABI to use the ELFv2 ABI.
22378 This is the default ABI for little-endian PowerPC 64-bit Linux.
22379 Overriding the default ABI requires special system support and is
22380 likely to fail in spectacular ways.
22381
22382 @item -mgnu-attribute
22383 @itemx -mno-gnu-attribute
22384 @opindex mgnu-attribute
22385 @opindex mno-gnu-attribute
22386 Emit .gnu_attribute assembly directives to set tag/value pairs in a
22387 .gnu.attributes section that specify ABI variations in function
22388 parameters or return values.
22389
22390 @item -mprototype
22391 @itemx -mno-prototype
22392 @opindex mprototype
22393 @opindex mno-prototype
22394 On System V.4 and embedded PowerPC systems assume that all calls to
22395 variable argument functions are properly prototyped. Otherwise, the
22396 compiler must insert an instruction before every non-prototyped call to
22397 set or clear bit 6 of the condition code register (@code{CR}) to
22398 indicate whether floating-point values are passed in the floating-point
22399 registers in case the function takes variable arguments. With
22400 @option{-mprototype}, only calls to prototyped variable argument functions
22401 set or clear the bit.
22402
22403 @item -msim
22404 @opindex msim
22405 On embedded PowerPC systems, assume that the startup module is called
22406 @file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
22407 @file{libc.a}. This is the default for @samp{powerpc-*-eabisim}
22408 configurations.
22409
22410 @item -mmvme
22411 @opindex mmvme
22412 On embedded PowerPC systems, assume that the startup module is called
22413 @file{crt0.o} and the standard C libraries are @file{libmvme.a} and
22414 @file{libc.a}.
22415
22416 @item -mads
22417 @opindex mads
22418 On embedded PowerPC systems, assume that the startup module is called
22419 @file{crt0.o} and the standard C libraries are @file{libads.a} and
22420 @file{libc.a}.
22421
22422 @item -myellowknife
22423 @opindex myellowknife
22424 On embedded PowerPC systems, assume that the startup module is called
22425 @file{crt0.o} and the standard C libraries are @file{libyk.a} and
22426 @file{libc.a}.
22427
22428 @item -mvxworks
22429 @opindex mvxworks
22430 On System V.4 and embedded PowerPC systems, specify that you are
22431 compiling for a VxWorks system.
22432
22433 @item -memb
22434 @opindex memb
22435 On embedded PowerPC systems, set the @code{PPC_EMB} bit in the ELF flags
22436 header to indicate that @samp{eabi} extended relocations are used.
22437
22438 @item -meabi
22439 @itemx -mno-eabi
22440 @opindex meabi
22441 @opindex mno-eabi
22442 On System V.4 and embedded PowerPC systems do (do not) adhere to the
22443 Embedded Applications Binary Interface (EABI), which is a set of
22444 modifications to the System V.4 specifications. Selecting @option{-meabi}
22445 means that the stack is aligned to an 8-byte boundary, a function
22446 @code{__eabi} is called from @code{main} to set up the EABI
22447 environment, and the @option{-msdata} option can use both @code{r2} and
22448 @code{r13} to point to two separate small data areas. Selecting
22449 @option{-mno-eabi} means that the stack is aligned to a 16-byte boundary,
22450 no EABI initialization function is called from @code{main}, and the
22451 @option{-msdata} option only uses @code{r13} to point to a single
22452 small data area. The @option{-meabi} option is on by default if you
22453 configured GCC using one of the @samp{powerpc*-*-eabi*} options.
22454
22455 @item -msdata=eabi
22456 @opindex msdata=eabi
22457 On System V.4 and embedded PowerPC systems, put small initialized
22458 @code{const} global and static data in the @code{.sdata2} section, which
22459 is pointed to by register @code{r2}. Put small initialized
22460 non-@code{const} global and static data in the @code{.sdata} section,
22461 which is pointed to by register @code{r13}. Put small uninitialized
22462 global and static data in the @code{.sbss} section, which is adjacent to
22463 the @code{.sdata} section. The @option{-msdata=eabi} option is
22464 incompatible with the @option{-mrelocatable} option. The
22465 @option{-msdata=eabi} option also sets the @option{-memb} option.
22466
22467 @item -msdata=sysv
22468 @opindex msdata=sysv
22469 On System V.4 and embedded PowerPC systems, put small global and static
22470 data in the @code{.sdata} section, which is pointed to by register
22471 @code{r13}. Put small uninitialized global and static data in the
22472 @code{.sbss} section, which is adjacent to the @code{.sdata} section.
22473 The @option{-msdata=sysv} option is incompatible with the
22474 @option{-mrelocatable} option.
22475
22476 @item -msdata=default
22477 @itemx -msdata
22478 @opindex msdata=default
22479 @opindex msdata
22480 On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
22481 compile code the same as @option{-msdata=eabi}, otherwise compile code the
22482 same as @option{-msdata=sysv}.
22483
22484 @item -msdata=data
22485 @opindex msdata=data
22486 On System V.4 and embedded PowerPC systems, put small global
22487 data in the @code{.sdata} section. Put small uninitialized global
22488 data in the @code{.sbss} section. Do not use register @code{r13}
22489 to address small data however. This is the default behavior unless
22490 other @option{-msdata} options are used.
22491
22492 @item -msdata=none
22493 @itemx -mno-sdata
22494 @opindex msdata=none
22495 @opindex mno-sdata
22496 On embedded PowerPC systems, put all initialized global and static data
22497 in the @code{.data} section, and all uninitialized data in the
22498 @code{.bss} section.
22499
22500 @item -mblock-move-inline-limit=@var{num}
22501 @opindex mblock-move-inline-limit
22502 Inline all block moves (such as calls to @code{memcpy} or structure
22503 copies) less than or equal to @var{num} bytes. The minimum value for
22504 @var{num} is 32 bytes on 32-bit targets and 64 bytes on 64-bit
22505 targets. The default value is target-specific.
22506
22507 @item -G @var{num}
22508 @opindex G
22509 @cindex smaller data references (PowerPC)
22510 @cindex .sdata/.sdata2 references (PowerPC)
22511 On embedded PowerPC systems, put global and static items less than or
22512 equal to @var{num} bytes into the small data or BSS sections instead of
22513 the normal data or BSS section. By default, @var{num} is 8. The
22514 @option{-G @var{num}} switch is also passed to the linker.
22515 All modules should be compiled with the same @option{-G @var{num}} value.
22516
22517 @item -mregnames
22518 @itemx -mno-regnames
22519 @opindex mregnames
22520 @opindex mno-regnames
22521 On System V.4 and embedded PowerPC systems do (do not) emit register
22522 names in the assembly language output using symbolic forms.
22523
22524 @item -mlongcall
22525 @itemx -mno-longcall
22526 @opindex mlongcall
22527 @opindex mno-longcall
22528 By default assume that all calls are far away so that a longer and more
22529 expensive calling sequence is required. This is required for calls
22530 farther than 32 megabytes (33,554,432 bytes) from the current location.
22531 A short call is generated if the compiler knows
22532 the call cannot be that far away. This setting can be overridden by
22533 the @code{shortcall} function attribute, or by @code{#pragma
22534 longcall(0)}.
22535
22536 Some linkers are capable of detecting out-of-range calls and generating
22537 glue code on the fly. On these systems, long calls are unnecessary and
22538 generate slower code. As of this writing, the AIX linker can do this,
22539 as can the GNU linker for PowerPC/64. It is planned to add this feature
22540 to the GNU linker for 32-bit PowerPC systems as well.
22541
22542 On Darwin/PPC systems, @code{#pragma longcall} generates @code{jbsr
22543 callee, L42}, plus a @dfn{branch island} (glue code). The two target
22544 addresses represent the callee and the branch island. The
22545 Darwin/PPC linker prefers the first address and generates a @code{bl
22546 callee} if the PPC @code{bl} instruction reaches the callee directly;
22547 otherwise, the linker generates @code{bl L42} to call the branch
22548 island. The branch island is appended to the body of the
22549 calling function; it computes the full 32-bit address of the callee
22550 and jumps to it.
22551
22552 On Mach-O (Darwin) systems, this option directs the compiler emit to
22553 the glue for every direct call, and the Darwin linker decides whether
22554 to use or discard it.
22555
22556 In the future, GCC may ignore all longcall specifications
22557 when the linker is known to generate glue.
22558
22559 @item -mtls-markers
22560 @itemx -mno-tls-markers
22561 @opindex mtls-markers
22562 @opindex mno-tls-markers
22563 Mark (do not mark) calls to @code{__tls_get_addr} with a relocation
22564 specifying the function argument. The relocation allows the linker to
22565 reliably associate function call with argument setup instructions for
22566 TLS optimization, which in turn allows GCC to better schedule the
22567 sequence.
22568
22569 @item -mrecip
22570 @itemx -mno-recip
22571 @opindex mrecip
22572 This option enables use of the reciprocal estimate and
22573 reciprocal square root estimate instructions with additional
22574 Newton-Raphson steps to increase precision instead of doing a divide or
22575 square root and divide for floating-point arguments. You should use
22576 the @option{-ffast-math} option when using @option{-mrecip} (or at
22577 least @option{-funsafe-math-optimizations},
22578 @option{-ffinite-math-only}, @option{-freciprocal-math} and
22579 @option{-fno-trapping-math}). Note that while the throughput of the
22580 sequence is generally higher than the throughput of the non-reciprocal
22581 instruction, the precision of the sequence can be decreased by up to 2
22582 ulp (i.e.@: the inverse of 1.0 equals 0.99999994) for reciprocal square
22583 roots.
22584
22585 @item -mrecip=@var{opt}
22586 @opindex mrecip=opt
22587 This option controls which reciprocal estimate instructions
22588 may be used. @var{opt} is a comma-separated list of options, which may
22589 be preceded by a @code{!} to invert the option:
22590
22591 @table @samp
22592
22593 @item all
22594 Enable all estimate instructions.
22595
22596 @item default
22597 Enable the default instructions, equivalent to @option{-mrecip}.
22598
22599 @item none
22600 Disable all estimate instructions, equivalent to @option{-mno-recip}.
22601
22602 @item div
22603 Enable the reciprocal approximation instructions for both
22604 single and double precision.
22605
22606 @item divf
22607 Enable the single-precision reciprocal approximation instructions.
22608
22609 @item divd
22610 Enable the double-precision reciprocal approximation instructions.
22611
22612 @item rsqrt
22613 Enable the reciprocal square root approximation instructions for both
22614 single and double precision.
22615
22616 @item rsqrtf
22617 Enable the single-precision reciprocal square root approximation instructions.
22618
22619 @item rsqrtd
22620 Enable the double-precision reciprocal square root approximation instructions.
22621
22622 @end table
22623
22624 So, for example, @option{-mrecip=all,!rsqrtd} enables
22625 all of the reciprocal estimate instructions, except for the
22626 @code{FRSQRTE}, @code{XSRSQRTEDP}, and @code{XVRSQRTEDP} instructions
22627 which handle the double-precision reciprocal square root calculations.
22628
22629 @item -mrecip-precision
22630 @itemx -mno-recip-precision
22631 @opindex mrecip-precision
22632 Assume (do not assume) that the reciprocal estimate instructions
22633 provide higher-precision estimates than is mandated by the PowerPC
22634 ABI. Selecting @option{-mcpu=power6}, @option{-mcpu=power7} or
22635 @option{-mcpu=power8} automatically selects @option{-mrecip-precision}.
22636 The double-precision square root estimate instructions are not generated by
22637 default on low-precision machines, since they do not provide an
22638 estimate that converges after three steps.
22639
22640 @item -mveclibabi=@var{type}
22641 @opindex mveclibabi
22642 Specifies the ABI type to use for vectorizing intrinsics using an
22643 external library. The only type supported at present is @samp{mass},
22644 which specifies to use IBM's Mathematical Acceleration Subsystem
22645 (MASS) libraries for vectorizing intrinsics using external libraries.
22646 GCC currently emits calls to @code{acosd2}, @code{acosf4},
22647 @code{acoshd2}, @code{acoshf4}, @code{asind2}, @code{asinf4},
22648 @code{asinhd2}, @code{asinhf4}, @code{atan2d2}, @code{atan2f4},
22649 @code{atand2}, @code{atanf4}, @code{atanhd2}, @code{atanhf4},
22650 @code{cbrtd2}, @code{cbrtf4}, @code{cosd2}, @code{cosf4},
22651 @code{coshd2}, @code{coshf4}, @code{erfcd2}, @code{erfcf4},
22652 @code{erfd2}, @code{erff4}, @code{exp2d2}, @code{exp2f4},
22653 @code{expd2}, @code{expf4}, @code{expm1d2}, @code{expm1f4},
22654 @code{hypotd2}, @code{hypotf4}, @code{lgammad2}, @code{lgammaf4},
22655 @code{log10d2}, @code{log10f4}, @code{log1pd2}, @code{log1pf4},
22656 @code{log2d2}, @code{log2f4}, @code{logd2}, @code{logf4},
22657 @code{powd2}, @code{powf4}, @code{sind2}, @code{sinf4}, @code{sinhd2},
22658 @code{sinhf4}, @code{sqrtd2}, @code{sqrtf4}, @code{tand2},
22659 @code{tanf4}, @code{tanhd2}, and @code{tanhf4} when generating code
22660 for power7. Both @option{-ftree-vectorize} and
22661 @option{-funsafe-math-optimizations} must also be enabled. The MASS
22662 libraries must be specified at link time.
22663
22664 @item -mfriz
22665 @itemx -mno-friz
22666 @opindex mfriz
22667 Generate (do not generate) the @code{friz} instruction when the
22668 @option{-funsafe-math-optimizations} option is used to optimize
22669 rounding of floating-point values to 64-bit integer and back to floating
22670 point. The @code{friz} instruction does not return the same value if
22671 the floating-point number is too large to fit in an integer.
22672
22673 @item -mpointers-to-nested-functions
22674 @itemx -mno-pointers-to-nested-functions
22675 @opindex mpointers-to-nested-functions
22676 Generate (do not generate) code to load up the static chain register
22677 (@code{r11}) when calling through a pointer on AIX and 64-bit Linux
22678 systems where a function pointer points to a 3-word descriptor giving
22679 the function address, TOC value to be loaded in register @code{r2}, and
22680 static chain value to be loaded in register @code{r11}. The
22681 @option{-mpointers-to-nested-functions} is on by default. You cannot
22682 call through pointers to nested functions or pointers
22683 to functions compiled in other languages that use the static chain if
22684 you use @option{-mno-pointers-to-nested-functions}.
22685
22686 @item -msave-toc-indirect
22687 @itemx -mno-save-toc-indirect
22688 @opindex msave-toc-indirect
22689 Generate (do not generate) code to save the TOC value in the reserved
22690 stack location in the function prologue if the function calls through
22691 a pointer on AIX and 64-bit Linux systems. If the TOC value is not
22692 saved in the prologue, it is saved just before the call through the
22693 pointer. The @option{-mno-save-toc-indirect} option is the default.
22694
22695 @item -mcompat-align-parm
22696 @itemx -mno-compat-align-parm
22697 @opindex mcompat-align-parm
22698 Generate (do not generate) code to pass structure parameters with a
22699 maximum alignment of 64 bits, for compatibility with older versions
22700 of GCC.
22701
22702 Older versions of GCC (prior to 4.9.0) incorrectly did not align a
22703 structure parameter on a 128-bit boundary when that structure contained
22704 a member requiring 128-bit alignment. This is corrected in more
22705 recent versions of GCC. This option may be used to generate code
22706 that is compatible with functions compiled with older versions of
22707 GCC.
22708
22709 The @option{-mno-compat-align-parm} option is the default.
22710
22711 @item -mstack-protector-guard=@var{guard}
22712 @itemx -mstack-protector-guard-reg=@var{reg}
22713 @itemx -mstack-protector-guard-offset=@var{offset}
22714 @opindex mstack-protector-guard
22715 @opindex mstack-protector-guard-reg
22716 @opindex mstack-protector-guard-offset
22717 Generate stack protection code using canary at @var{guard}. Supported
22718 locations are @samp{global} for global canary or @samp{tls} for per-thread
22719 canary in the TLS block (the default with GNU libc version 2.4 or later).
22720
22721 With the latter choice the options
22722 @option{-mstack-protector-guard-reg=@var{reg}} and
22723 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
22724 which register to use as base register for reading the canary, and from what
22725 offset from that base register. The default for those is as specified in the
22726 relevant ABI.
22727 @end table
22728
22729 @node RX Options
22730 @subsection RX Options
22731 @cindex RX Options
22732
22733 These command-line options are defined for RX targets:
22734
22735 @table @gcctabopt
22736 @item -m64bit-doubles
22737 @itemx -m32bit-doubles
22738 @opindex m64bit-doubles
22739 @opindex m32bit-doubles
22740 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
22741 or 32 bits (@option{-m32bit-doubles}) in size. The default is
22742 @option{-m32bit-doubles}. @emph{Note} RX floating-point hardware only
22743 works on 32-bit values, which is why the default is
22744 @option{-m32bit-doubles}.
22745
22746 @item -fpu
22747 @itemx -nofpu
22748 @opindex fpu
22749 @opindex nofpu
22750 Enables (@option{-fpu}) or disables (@option{-nofpu}) the use of RX
22751 floating-point hardware. The default is enabled for the RX600
22752 series and disabled for the RX200 series.
22753
22754 Floating-point instructions are only generated for 32-bit floating-point
22755 values, however, so the FPU hardware is not used for doubles if the
22756 @option{-m64bit-doubles} option is used.
22757
22758 @emph{Note} If the @option{-fpu} option is enabled then
22759 @option{-funsafe-math-optimizations} is also enabled automatically.
22760 This is because the RX FPU instructions are themselves unsafe.
22761
22762 @item -mcpu=@var{name}
22763 @opindex mcpu
22764 Selects the type of RX CPU to be targeted. Currently three types are
22765 supported, the generic @samp{RX600} and @samp{RX200} series hardware and
22766 the specific @samp{RX610} CPU. The default is @samp{RX600}.
22767
22768 The only difference between @samp{RX600} and @samp{RX610} is that the
22769 @samp{RX610} does not support the @code{MVTIPL} instruction.
22770
22771 The @samp{RX200} series does not have a hardware floating-point unit
22772 and so @option{-nofpu} is enabled by default when this type is
22773 selected.
22774
22775 @item -mbig-endian-data
22776 @itemx -mlittle-endian-data
22777 @opindex mbig-endian-data
22778 @opindex mlittle-endian-data
22779 Store data (but not code) in the big-endian format. The default is
22780 @option{-mlittle-endian-data}, i.e.@: to store data in the little-endian
22781 format.
22782
22783 @item -msmall-data-limit=@var{N}
22784 @opindex msmall-data-limit
22785 Specifies the maximum size in bytes of global and static variables
22786 which can be placed into the small data area. Using the small data
22787 area can lead to smaller and faster code, but the size of area is
22788 limited and it is up to the programmer to ensure that the area does
22789 not overflow. Also when the small data area is used one of the RX's
22790 registers (usually @code{r13}) is reserved for use pointing to this
22791 area, so it is no longer available for use by the compiler. This
22792 could result in slower and/or larger code if variables are pushed onto
22793 the stack instead of being held in this register.
22794
22795 Note, common variables (variables that have not been initialized) and
22796 constants are not placed into the small data area as they are assigned
22797 to other sections in the output executable.
22798
22799 The default value is zero, which disables this feature. Note, this
22800 feature is not enabled by default with higher optimization levels
22801 (@option{-O2} etc) because of the potentially detrimental effects of
22802 reserving a register. It is up to the programmer to experiment and
22803 discover whether this feature is of benefit to their program. See the
22804 description of the @option{-mpid} option for a description of how the
22805 actual register to hold the small data area pointer is chosen.
22806
22807 @item -msim
22808 @itemx -mno-sim
22809 @opindex msim
22810 @opindex mno-sim
22811 Use the simulator runtime. The default is to use the libgloss
22812 board-specific runtime.
22813
22814 @item -mas100-syntax
22815 @itemx -mno-as100-syntax
22816 @opindex mas100-syntax
22817 @opindex mno-as100-syntax
22818 When generating assembler output use a syntax that is compatible with
22819 Renesas's AS100 assembler. This syntax can also be handled by the GAS
22820 assembler, but it has some restrictions so it is not generated by default.
22821
22822 @item -mmax-constant-size=@var{N}
22823 @opindex mmax-constant-size
22824 Specifies the maximum size, in bytes, of a constant that can be used as
22825 an operand in a RX instruction. Although the RX instruction set does
22826 allow constants of up to 4 bytes in length to be used in instructions,
22827 a longer value equates to a longer instruction. Thus in some
22828 circumstances it can be beneficial to restrict the size of constants
22829 that are used in instructions. Constants that are too big are instead
22830 placed into a constant pool and referenced via register indirection.
22831
22832 The value @var{N} can be between 0 and 4. A value of 0 (the default)
22833 or 4 means that constants of any size are allowed.
22834
22835 @item -mrelax
22836 @opindex mrelax
22837 Enable linker relaxation. Linker relaxation is a process whereby the
22838 linker attempts to reduce the size of a program by finding shorter
22839 versions of various instructions. Disabled by default.
22840
22841 @item -mint-register=@var{N}
22842 @opindex mint-register
22843 Specify the number of registers to reserve for fast interrupt handler
22844 functions. The value @var{N} can be between 0 and 4. A value of 1
22845 means that register @code{r13} is reserved for the exclusive use
22846 of fast interrupt handlers. A value of 2 reserves @code{r13} and
22847 @code{r12}. A value of 3 reserves @code{r13}, @code{r12} and
22848 @code{r11}, and a value of 4 reserves @code{r13} through @code{r10}.
22849 A value of 0, the default, does not reserve any registers.
22850
22851 @item -msave-acc-in-interrupts
22852 @opindex msave-acc-in-interrupts
22853 Specifies that interrupt handler functions should preserve the
22854 accumulator register. This is only necessary if normal code might use
22855 the accumulator register, for example because it performs 64-bit
22856 multiplications. The default is to ignore the accumulator as this
22857 makes the interrupt handlers faster.
22858
22859 @item -mpid
22860 @itemx -mno-pid
22861 @opindex mpid
22862 @opindex mno-pid
22863 Enables the generation of position independent data. When enabled any
22864 access to constant data is done via an offset from a base address
22865 held in a register. This allows the location of constant data to be
22866 determined at run time without requiring the executable to be
22867 relocated, which is a benefit to embedded applications with tight
22868 memory constraints. Data that can be modified is not affected by this
22869 option.
22870
22871 Note, using this feature reserves a register, usually @code{r13}, for
22872 the constant data base address. This can result in slower and/or
22873 larger code, especially in complicated functions.
22874
22875 The actual register chosen to hold the constant data base address
22876 depends upon whether the @option{-msmall-data-limit} and/or the
22877 @option{-mint-register} command-line options are enabled. Starting
22878 with register @code{r13} and proceeding downwards, registers are
22879 allocated first to satisfy the requirements of @option{-mint-register},
22880 then @option{-mpid} and finally @option{-msmall-data-limit}. Thus it
22881 is possible for the small data area register to be @code{r8} if both
22882 @option{-mint-register=4} and @option{-mpid} are specified on the
22883 command line.
22884
22885 By default this feature is not enabled. The default can be restored
22886 via the @option{-mno-pid} command-line option.
22887
22888 @item -mno-warn-multiple-fast-interrupts
22889 @itemx -mwarn-multiple-fast-interrupts
22890 @opindex mno-warn-multiple-fast-interrupts
22891 @opindex mwarn-multiple-fast-interrupts
22892 Prevents GCC from issuing a warning message if it finds more than one
22893 fast interrupt handler when it is compiling a file. The default is to
22894 issue a warning for each extra fast interrupt handler found, as the RX
22895 only supports one such interrupt.
22896
22897 @item -mallow-string-insns
22898 @itemx -mno-allow-string-insns
22899 @opindex mallow-string-insns
22900 @opindex mno-allow-string-insns
22901 Enables or disables the use of the string manipulation instructions
22902 @code{SMOVF}, @code{SCMPU}, @code{SMOVB}, @code{SMOVU}, @code{SUNTIL}
22903 @code{SWHILE} and also the @code{RMPA} instruction. These
22904 instructions may prefetch data, which is not safe to do if accessing
22905 an I/O register. (See section 12.2.7 of the RX62N Group User's Manual
22906 for more information).
22907
22908 The default is to allow these instructions, but it is not possible for
22909 GCC to reliably detect all circumstances where a string instruction
22910 might be used to access an I/O register, so their use cannot be
22911 disabled automatically. Instead it is reliant upon the programmer to
22912 use the @option{-mno-allow-string-insns} option if their program
22913 accesses I/O space.
22914
22915 When the instructions are enabled GCC defines the C preprocessor
22916 symbol @code{__RX_ALLOW_STRING_INSNS__}, otherwise it defines the
22917 symbol @code{__RX_DISALLOW_STRING_INSNS__}.
22918
22919 @item -mjsr
22920 @itemx -mno-jsr
22921 @opindex mjsr
22922 @opindex mno-jsr
22923 Use only (or not only) @code{JSR} instructions to access functions.
22924 This option can be used when code size exceeds the range of @code{BSR}
22925 instructions. Note that @option{-mno-jsr} does not mean to not use
22926 @code{JSR} but instead means that any type of branch may be used.
22927 @end table
22928
22929 @emph{Note:} The generic GCC command-line option @option{-ffixed-@var{reg}}
22930 has special significance to the RX port when used with the
22931 @code{interrupt} function attribute. This attribute indicates a
22932 function intended to process fast interrupts. GCC ensures
22933 that it only uses the registers @code{r10}, @code{r11}, @code{r12}
22934 and/or @code{r13} and only provided that the normal use of the
22935 corresponding registers have been restricted via the
22936 @option{-ffixed-@var{reg}} or @option{-mint-register} command-line
22937 options.
22938
22939 @node S/390 and zSeries Options
22940 @subsection S/390 and zSeries Options
22941 @cindex S/390 and zSeries Options
22942
22943 These are the @samp{-m} options defined for the S/390 and zSeries architecture.
22944
22945 @table @gcctabopt
22946 @item -mhard-float
22947 @itemx -msoft-float
22948 @opindex mhard-float
22949 @opindex msoft-float
22950 Use (do not use) the hardware floating-point instructions and registers
22951 for floating-point operations. When @option{-msoft-float} is specified,
22952 functions in @file{libgcc.a} are used to perform floating-point
22953 operations. When @option{-mhard-float} is specified, the compiler
22954 generates IEEE floating-point instructions. This is the default.
22955
22956 @item -mhard-dfp
22957 @itemx -mno-hard-dfp
22958 @opindex mhard-dfp
22959 @opindex mno-hard-dfp
22960 Use (do not use) the hardware decimal-floating-point instructions for
22961 decimal-floating-point operations. When @option{-mno-hard-dfp} is
22962 specified, functions in @file{libgcc.a} are used to perform
22963 decimal-floating-point operations. When @option{-mhard-dfp} is
22964 specified, the compiler generates decimal-floating-point hardware
22965 instructions. This is the default for @option{-march=z9-ec} or higher.
22966
22967 @item -mlong-double-64
22968 @itemx -mlong-double-128
22969 @opindex mlong-double-64
22970 @opindex mlong-double-128
22971 These switches control the size of @code{long double} type. A size
22972 of 64 bits makes the @code{long double} type equivalent to the @code{double}
22973 type. This is the default.
22974
22975 @item -mbackchain
22976 @itemx -mno-backchain
22977 @opindex mbackchain
22978 @opindex mno-backchain
22979 Store (do not store) the address of the caller's frame as backchain pointer
22980 into the callee's stack frame.
22981 A backchain may be needed to allow debugging using tools that do not understand
22982 DWARF call frame information.
22983 When @option{-mno-packed-stack} is in effect, the backchain pointer is stored
22984 at the bottom of the stack frame; when @option{-mpacked-stack} is in effect,
22985 the backchain is placed into the topmost word of the 96/160 byte register
22986 save area.
22987
22988 In general, code compiled with @option{-mbackchain} is call-compatible with
22989 code compiled with @option{-mmo-backchain}; however, use of the backchain
22990 for debugging purposes usually requires that the whole binary is built with
22991 @option{-mbackchain}. Note that the combination of @option{-mbackchain},
22992 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
22993 to build a linux kernel use @option{-msoft-float}.
22994
22995 The default is to not maintain the backchain.
22996
22997 @item -mpacked-stack
22998 @itemx -mno-packed-stack
22999 @opindex mpacked-stack
23000 @opindex mno-packed-stack
23001 Use (do not use) the packed stack layout. When @option{-mno-packed-stack} is
23002 specified, the compiler uses the all fields of the 96/160 byte register save
23003 area only for their default purpose; unused fields still take up stack space.
23004 When @option{-mpacked-stack} is specified, register save slots are densely
23005 packed at the top of the register save area; unused space is reused for other
23006 purposes, allowing for more efficient use of the available stack space.
23007 However, when @option{-mbackchain} is also in effect, the topmost word of
23008 the save area is always used to store the backchain, and the return address
23009 register is always saved two words below the backchain.
23010
23011 As long as the stack frame backchain is not used, code generated with
23012 @option{-mpacked-stack} is call-compatible with code generated with
23013 @option{-mno-packed-stack}. Note that some non-FSF releases of GCC 2.95 for
23014 S/390 or zSeries generated code that uses the stack frame backchain at run
23015 time, not just for debugging purposes. Such code is not call-compatible
23016 with code compiled with @option{-mpacked-stack}. Also, note that the
23017 combination of @option{-mbackchain},
23018 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
23019 to build a linux kernel use @option{-msoft-float}.
23020
23021 The default is to not use the packed stack layout.
23022
23023 @item -msmall-exec
23024 @itemx -mno-small-exec
23025 @opindex msmall-exec
23026 @opindex mno-small-exec
23027 Generate (or do not generate) code using the @code{bras} instruction
23028 to do subroutine calls.
23029 This only works reliably if the total executable size does not
23030 exceed 64k. The default is to use the @code{basr} instruction instead,
23031 which does not have this limitation.
23032
23033 @item -m64
23034 @itemx -m31
23035 @opindex m64
23036 @opindex m31
23037 When @option{-m31} is specified, generate code compliant to the
23038 GNU/Linux for S/390 ABI@. When @option{-m64} is specified, generate
23039 code compliant to the GNU/Linux for zSeries ABI@. This allows GCC in
23040 particular to generate 64-bit instructions. For the @samp{s390}
23041 targets, the default is @option{-m31}, while the @samp{s390x}
23042 targets default to @option{-m64}.
23043
23044 @item -mzarch
23045 @itemx -mesa
23046 @opindex mzarch
23047 @opindex mesa
23048 When @option{-mzarch} is specified, generate code using the
23049 instructions available on z/Architecture.
23050 When @option{-mesa} is specified, generate code using the
23051 instructions available on ESA/390. Note that @option{-mesa} is
23052 not possible with @option{-m64}.
23053 When generating code compliant to the GNU/Linux for S/390 ABI,
23054 the default is @option{-mesa}. When generating code compliant
23055 to the GNU/Linux for zSeries ABI, the default is @option{-mzarch}.
23056
23057 @item -mhtm
23058 @itemx -mno-htm
23059 @opindex mhtm
23060 @opindex mno-htm
23061 The @option{-mhtm} option enables a set of builtins making use of
23062 instructions available with the transactional execution facility
23063 introduced with the IBM zEnterprise EC12 machine generation
23064 @ref{S/390 System z Built-in Functions}.
23065 @option{-mhtm} is enabled by default when using @option{-march=zEC12}.
23066
23067 @item -mvx
23068 @itemx -mno-vx
23069 @opindex mvx
23070 @opindex mno-vx
23071 When @option{-mvx} is specified, generate code using the instructions
23072 available with the vector extension facility introduced with the IBM
23073 z13 machine generation.
23074 This option changes the ABI for some vector type values with regard to
23075 alignment and calling conventions. In case vector type values are
23076 being used in an ABI-relevant context a GAS @samp{.gnu_attribute}
23077 command will be added to mark the resulting binary with the ABI used.
23078 @option{-mvx} is enabled by default when using @option{-march=z13}.
23079
23080 @item -mzvector
23081 @itemx -mno-zvector
23082 @opindex mzvector
23083 @opindex mno-zvector
23084 The @option{-mzvector} option enables vector language extensions and
23085 builtins using instructions available with the vector extension
23086 facility introduced with the IBM z13 machine generation.
23087 This option adds support for @samp{vector} to be used as a keyword to
23088 define vector type variables and arguments. @samp{vector} is only
23089 available when GNU extensions are enabled. It will not be expanded
23090 when requesting strict standard compliance e.g. with @option{-std=c99}.
23091 In addition to the GCC low-level builtins @option{-mzvector} enables
23092 a set of builtins added for compatibility with AltiVec-style
23093 implementations like Power and Cell. In order to make use of these
23094 builtins the header file @file{vecintrin.h} needs to be included.
23095 @option{-mzvector} is disabled by default.
23096
23097 @item -mmvcle
23098 @itemx -mno-mvcle
23099 @opindex mmvcle
23100 @opindex mno-mvcle
23101 Generate (or do not generate) code using the @code{mvcle} instruction
23102 to perform block moves. When @option{-mno-mvcle} is specified,
23103 use a @code{mvc} loop instead. This is the default unless optimizing for
23104 size.
23105
23106 @item -mdebug
23107 @itemx -mno-debug
23108 @opindex mdebug
23109 @opindex mno-debug
23110 Print (or do not print) additional debug information when compiling.
23111 The default is to not print debug information.
23112
23113 @item -march=@var{cpu-type}
23114 @opindex march
23115 Generate code that runs on @var{cpu-type}, which is the name of a
23116 system representing a certain processor type. Possible values for
23117 @var{cpu-type} are @samp{z900}/@samp{arch5}, @samp{z990}/@samp{arch6},
23118 @samp{z9-109}, @samp{z9-ec}/@samp{arch7}, @samp{z10}/@samp{arch8},
23119 @samp{z196}/@samp{arch9}, @samp{zEC12}, @samp{z13}/@samp{arch11}, and
23120 @samp{native}.
23121
23122 The default is @option{-march=z900}. @samp{g5}/@samp{arch3} and
23123 @samp{g6} are deprecated and will be removed with future releases.
23124
23125 Specifying @samp{native} as cpu type can be used to select the best
23126 architecture option for the host processor.
23127 @option{-march=native} has no effect if GCC does not recognize the
23128 processor.
23129
23130 @item -mtune=@var{cpu-type}
23131 @opindex mtune
23132 Tune to @var{cpu-type} everything applicable about the generated code,
23133 except for the ABI and the set of available instructions.
23134 The list of @var{cpu-type} values is the same as for @option{-march}.
23135 The default is the value used for @option{-march}.
23136
23137 @item -mtpf-trace
23138 @itemx -mno-tpf-trace
23139 @opindex mtpf-trace
23140 @opindex mno-tpf-trace
23141 Generate code that adds (does not add) in TPF OS specific branches to trace
23142 routines in the operating system. This option is off by default, even
23143 when compiling for the TPF OS@.
23144
23145 @item -mfused-madd
23146 @itemx -mno-fused-madd
23147 @opindex mfused-madd
23148 @opindex mno-fused-madd
23149 Generate code that uses (does not use) the floating-point multiply and
23150 accumulate instructions. These instructions are generated by default if
23151 hardware floating point is used.
23152
23153 @item -mwarn-framesize=@var{framesize}
23154 @opindex mwarn-framesize
23155 Emit a warning if the current function exceeds the given frame size. Because
23156 this is a compile-time check it doesn't need to be a real problem when the program
23157 runs. It is intended to identify functions that most probably cause
23158 a stack overflow. It is useful to be used in an environment with limited stack
23159 size e.g.@: the linux kernel.
23160
23161 @item -mwarn-dynamicstack
23162 @opindex mwarn-dynamicstack
23163 Emit a warning if the function calls @code{alloca} or uses dynamically-sized
23164 arrays. This is generally a bad idea with a limited stack size.
23165
23166 @item -mstack-guard=@var{stack-guard}
23167 @itemx -mstack-size=@var{stack-size}
23168 @opindex mstack-guard
23169 @opindex mstack-size
23170 If these options are provided the S/390 back end emits additional instructions in
23171 the function prologue that trigger a trap if the stack size is @var{stack-guard}
23172 bytes above the @var{stack-size} (remember that the stack on S/390 grows downward).
23173 If the @var{stack-guard} option is omitted the smallest power of 2 larger than
23174 the frame size of the compiled function is chosen.
23175 These options are intended to be used to help debugging stack overflow problems.
23176 The additionally emitted code causes only little overhead and hence can also be
23177 used in production-like systems without greater performance degradation. The given
23178 values have to be exact powers of 2 and @var{stack-size} has to be greater than
23179 @var{stack-guard} without exceeding 64k.
23180 In order to be efficient the extra code makes the assumption that the stack starts
23181 at an address aligned to the value given by @var{stack-size}.
23182 The @var{stack-guard} option can only be used in conjunction with @var{stack-size}.
23183
23184 @item -mhotpatch=@var{pre-halfwords},@var{post-halfwords}
23185 @opindex mhotpatch
23186 If the hotpatch option is enabled, a ``hot-patching'' function
23187 prologue is generated for all functions in the compilation unit.
23188 The funtion label is prepended with the given number of two-byte
23189 NOP instructions (@var{pre-halfwords}, maximum 1000000). After
23190 the label, 2 * @var{post-halfwords} bytes are appended, using the
23191 largest NOP like instructions the architecture allows (maximum
23192 1000000).
23193
23194 If both arguments are zero, hotpatching is disabled.
23195
23196 This option can be overridden for individual functions with the
23197 @code{hotpatch} attribute.
23198 @end table
23199
23200 @node Score Options
23201 @subsection Score Options
23202 @cindex Score Options
23203
23204 These options are defined for Score implementations:
23205
23206 @table @gcctabopt
23207 @item -meb
23208 @opindex meb
23209 Compile code for big-endian mode. This is the default.
23210
23211 @item -mel
23212 @opindex mel
23213 Compile code for little-endian mode.
23214
23215 @item -mnhwloop
23216 @opindex mnhwloop
23217 Disable generation of @code{bcnz} instructions.
23218
23219 @item -muls
23220 @opindex muls
23221 Enable generation of unaligned load and store instructions.
23222
23223 @item -mmac
23224 @opindex mmac
23225 Enable the use of multiply-accumulate instructions. Disabled by default.
23226
23227 @item -mscore5
23228 @opindex mscore5
23229 Specify the SCORE5 as the target architecture.
23230
23231 @item -mscore5u
23232 @opindex mscore5u
23233 Specify the SCORE5U of the target architecture.
23234
23235 @item -mscore7
23236 @opindex mscore7
23237 Specify the SCORE7 as the target architecture. This is the default.
23238
23239 @item -mscore7d
23240 @opindex mscore7d
23241 Specify the SCORE7D as the target architecture.
23242 @end table
23243
23244 @node SH Options
23245 @subsection SH Options
23246
23247 These @samp{-m} options are defined for the SH implementations:
23248
23249 @table @gcctabopt
23250 @item -m1
23251 @opindex m1
23252 Generate code for the SH1.
23253
23254 @item -m2
23255 @opindex m2
23256 Generate code for the SH2.
23257
23258 @item -m2e
23259 Generate code for the SH2e.
23260
23261 @item -m2a-nofpu
23262 @opindex m2a-nofpu
23263 Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
23264 that the floating-point unit is not used.
23265
23266 @item -m2a-single-only
23267 @opindex m2a-single-only
23268 Generate code for the SH2a-FPU, in such a way that no double-precision
23269 floating-point operations are used.
23270
23271 @item -m2a-single
23272 @opindex m2a-single
23273 Generate code for the SH2a-FPU assuming the floating-point unit is in
23274 single-precision mode by default.
23275
23276 @item -m2a
23277 @opindex m2a
23278 Generate code for the SH2a-FPU assuming the floating-point unit is in
23279 double-precision mode by default.
23280
23281 @item -m3
23282 @opindex m3
23283 Generate code for the SH3.
23284
23285 @item -m3e
23286 @opindex m3e
23287 Generate code for the SH3e.
23288
23289 @item -m4-nofpu
23290 @opindex m4-nofpu
23291 Generate code for the SH4 without a floating-point unit.
23292
23293 @item -m4-single-only
23294 @opindex m4-single-only
23295 Generate code for the SH4 with a floating-point unit that only
23296 supports single-precision arithmetic.
23297
23298 @item -m4-single
23299 @opindex m4-single
23300 Generate code for the SH4 assuming the floating-point unit is in
23301 single-precision mode by default.
23302
23303 @item -m4
23304 @opindex m4
23305 Generate code for the SH4.
23306
23307 @item -m4-100
23308 @opindex m4-100
23309 Generate code for SH4-100.
23310
23311 @item -m4-100-nofpu
23312 @opindex m4-100-nofpu
23313 Generate code for SH4-100 in such a way that the
23314 floating-point unit is not used.
23315
23316 @item -m4-100-single
23317 @opindex m4-100-single
23318 Generate code for SH4-100 assuming the floating-point unit is in
23319 single-precision mode by default.
23320
23321 @item -m4-100-single-only
23322 @opindex m4-100-single-only
23323 Generate code for SH4-100 in such a way that no double-precision
23324 floating-point operations are used.
23325
23326 @item -m4-200
23327 @opindex m4-200
23328 Generate code for SH4-200.
23329
23330 @item -m4-200-nofpu
23331 @opindex m4-200-nofpu
23332 Generate code for SH4-200 without in such a way that the
23333 floating-point unit is not used.
23334
23335 @item -m4-200-single
23336 @opindex m4-200-single
23337 Generate code for SH4-200 assuming the floating-point unit is in
23338 single-precision mode by default.
23339
23340 @item -m4-200-single-only
23341 @opindex m4-200-single-only
23342 Generate code for SH4-200 in such a way that no double-precision
23343 floating-point operations are used.
23344
23345 @item -m4-300
23346 @opindex m4-300
23347 Generate code for SH4-300.
23348
23349 @item -m4-300-nofpu
23350 @opindex m4-300-nofpu
23351 Generate code for SH4-300 without in such a way that the
23352 floating-point unit is not used.
23353
23354 @item -m4-300-single
23355 @opindex m4-300-single
23356 Generate code for SH4-300 in such a way that no double-precision
23357 floating-point operations are used.
23358
23359 @item -m4-300-single-only
23360 @opindex m4-300-single-only
23361 Generate code for SH4-300 in such a way that no double-precision
23362 floating-point operations are used.
23363
23364 @item -m4-340
23365 @opindex m4-340
23366 Generate code for SH4-340 (no MMU, no FPU).
23367
23368 @item -m4-500
23369 @opindex m4-500
23370 Generate code for SH4-500 (no FPU). Passes @option{-isa=sh4-nofpu} to the
23371 assembler.
23372
23373 @item -m4a-nofpu
23374 @opindex m4a-nofpu
23375 Generate code for the SH4al-dsp, or for a SH4a in such a way that the
23376 floating-point unit is not used.
23377
23378 @item -m4a-single-only
23379 @opindex m4a-single-only
23380 Generate code for the SH4a, in such a way that no double-precision
23381 floating-point operations are used.
23382
23383 @item -m4a-single
23384 @opindex m4a-single
23385 Generate code for the SH4a assuming the floating-point unit is in
23386 single-precision mode by default.
23387
23388 @item -m4a
23389 @opindex m4a
23390 Generate code for the SH4a.
23391
23392 @item -m4al
23393 @opindex m4al
23394 Same as @option{-m4a-nofpu}, except that it implicitly passes
23395 @option{-dsp} to the assembler. GCC doesn't generate any DSP
23396 instructions at the moment.
23397
23398 @item -mb
23399 @opindex mb
23400 Compile code for the processor in big-endian mode.
23401
23402 @item -ml
23403 @opindex ml
23404 Compile code for the processor in little-endian mode.
23405
23406 @item -mdalign
23407 @opindex mdalign
23408 Align doubles at 64-bit boundaries. Note that this changes the calling
23409 conventions, and thus some functions from the standard C library do
23410 not work unless you recompile it first with @option{-mdalign}.
23411
23412 @item -mrelax
23413 @opindex mrelax
23414 Shorten some address references at link time, when possible; uses the
23415 linker option @option{-relax}.
23416
23417 @item -mbigtable
23418 @opindex mbigtable
23419 Use 32-bit offsets in @code{switch} tables. The default is to use
23420 16-bit offsets.
23421
23422 @item -mbitops
23423 @opindex mbitops
23424 Enable the use of bit manipulation instructions on SH2A.
23425
23426 @item -mfmovd
23427 @opindex mfmovd
23428 Enable the use of the instruction @code{fmovd}. Check @option{-mdalign} for
23429 alignment constraints.
23430
23431 @item -mrenesas
23432 @opindex mrenesas
23433 Comply with the calling conventions defined by Renesas.
23434
23435 @item -mno-renesas
23436 @opindex mno-renesas
23437 Comply with the calling conventions defined for GCC before the Renesas
23438 conventions were available. This option is the default for all
23439 targets of the SH toolchain.
23440
23441 @item -mnomacsave
23442 @opindex mnomacsave
23443 Mark the @code{MAC} register as call-clobbered, even if
23444 @option{-mrenesas} is given.
23445
23446 @item -mieee
23447 @itemx -mno-ieee
23448 @opindex mieee
23449 @opindex mno-ieee
23450 Control the IEEE compliance of floating-point comparisons, which affects the
23451 handling of cases where the result of a comparison is unordered. By default
23452 @option{-mieee} is implicitly enabled. If @option{-ffinite-math-only} is
23453 enabled @option{-mno-ieee} is implicitly set, which results in faster
23454 floating-point greater-equal and less-equal comparisons. The implicit settings
23455 can be overridden by specifying either @option{-mieee} or @option{-mno-ieee}.
23456
23457 @item -minline-ic_invalidate
23458 @opindex minline-ic_invalidate
23459 Inline code to invalidate instruction cache entries after setting up
23460 nested function trampolines.
23461 This option has no effect if @option{-musermode} is in effect and the selected
23462 code generation option (e.g. @option{-m4}) does not allow the use of the @code{icbi}
23463 instruction.
23464 If the selected code generation option does not allow the use of the @code{icbi}
23465 instruction, and @option{-musermode} is not in effect, the inlined code
23466 manipulates the instruction cache address array directly with an associative
23467 write. This not only requires privileged mode at run time, but it also
23468 fails if the cache line had been mapped via the TLB and has become unmapped.
23469
23470 @item -misize
23471 @opindex misize
23472 Dump instruction size and location in the assembly code.
23473
23474 @item -mpadstruct
23475 @opindex mpadstruct
23476 This option is deprecated. It pads structures to multiple of 4 bytes,
23477 which is incompatible with the SH ABI@.
23478
23479 @item -matomic-model=@var{model}
23480 @opindex matomic-model=@var{model}
23481 Sets the model of atomic operations and additional parameters as a comma
23482 separated list. For details on the atomic built-in functions see
23483 @ref{__atomic Builtins}. The following models and parameters are supported:
23484
23485 @table @samp
23486
23487 @item none
23488 Disable compiler generated atomic sequences and emit library calls for atomic
23489 operations. This is the default if the target is not @code{sh*-*-linux*}.
23490
23491 @item soft-gusa
23492 Generate GNU/Linux compatible gUSA software atomic sequences for the atomic
23493 built-in functions. The generated atomic sequences require additional support
23494 from the interrupt/exception handling code of the system and are only suitable
23495 for SH3* and SH4* single-core systems. This option is enabled by default when
23496 the target is @code{sh*-*-linux*} and SH3* or SH4*. When the target is SH4A,
23497 this option also partially utilizes the hardware atomic instructions
23498 @code{movli.l} and @code{movco.l} to create more efficient code, unless
23499 @samp{strict} is specified.
23500
23501 @item soft-tcb
23502 Generate software atomic sequences that use a variable in the thread control
23503 block. This is a variation of the gUSA sequences which can also be used on
23504 SH1* and SH2* targets. The generated atomic sequences require additional
23505 support from the interrupt/exception handling code of the system and are only
23506 suitable for single-core systems. When using this model, the @samp{gbr-offset=}
23507 parameter has to be specified as well.
23508
23509 @item soft-imask
23510 Generate software atomic sequences that temporarily disable interrupts by
23511 setting @code{SR.IMASK = 1111}. This model works only when the program runs
23512 in privileged mode and is only suitable for single-core systems. Additional
23513 support from the interrupt/exception handling code of the system is not
23514 required. This model is enabled by default when the target is
23515 @code{sh*-*-linux*} and SH1* or SH2*.
23516
23517 @item hard-llcs
23518 Generate hardware atomic sequences using the @code{movli.l} and @code{movco.l}
23519 instructions only. This is only available on SH4A and is suitable for
23520 multi-core systems. Since the hardware instructions support only 32 bit atomic
23521 variables access to 8 or 16 bit variables is emulated with 32 bit accesses.
23522 Code compiled with this option is also compatible with other software
23523 atomic model interrupt/exception handling systems if executed on an SH4A
23524 system. Additional support from the interrupt/exception handling code of the
23525 system is not required for this model.
23526
23527 @item gbr-offset=
23528 This parameter specifies the offset in bytes of the variable in the thread
23529 control block structure that should be used by the generated atomic sequences
23530 when the @samp{soft-tcb} model has been selected. For other models this
23531 parameter is ignored. The specified value must be an integer multiple of four
23532 and in the range 0-1020.
23533
23534 @item strict
23535 This parameter prevents mixed usage of multiple atomic models, even if they
23536 are compatible, and makes the compiler generate atomic sequences of the
23537 specified model only.
23538
23539 @end table
23540
23541 @item -mtas
23542 @opindex mtas
23543 Generate the @code{tas.b} opcode for @code{__atomic_test_and_set}.
23544 Notice that depending on the particular hardware and software configuration
23545 this can degrade overall performance due to the operand cache line flushes
23546 that are implied by the @code{tas.b} instruction. On multi-core SH4A
23547 processors the @code{tas.b} instruction must be used with caution since it
23548 can result in data corruption for certain cache configurations.
23549
23550 @item -mprefergot
23551 @opindex mprefergot
23552 When generating position-independent code, emit function calls using
23553 the Global Offset Table instead of the Procedure Linkage Table.
23554
23555 @item -musermode
23556 @itemx -mno-usermode
23557 @opindex musermode
23558 @opindex mno-usermode
23559 Don't allow (allow) the compiler generating privileged mode code. Specifying
23560 @option{-musermode} also implies @option{-mno-inline-ic_invalidate} if the
23561 inlined code would not work in user mode. @option{-musermode} is the default
23562 when the target is @code{sh*-*-linux*}. If the target is SH1* or SH2*
23563 @option{-musermode} has no effect, since there is no user mode.
23564
23565 @item -multcost=@var{number}
23566 @opindex multcost=@var{number}
23567 Set the cost to assume for a multiply insn.
23568
23569 @item -mdiv=@var{strategy}
23570 @opindex mdiv=@var{strategy}
23571 Set the division strategy to be used for integer division operations.
23572 @var{strategy} can be one of:
23573
23574 @table @samp
23575
23576 @item call-div1
23577 Calls a library function that uses the single-step division instruction
23578 @code{div1} to perform the operation. Division by zero calculates an
23579 unspecified result and does not trap. This is the default except for SH4,
23580 SH2A and SHcompact.
23581
23582 @item call-fp
23583 Calls a library function that performs the operation in double precision
23584 floating point. Division by zero causes a floating-point exception. This is
23585 the default for SHcompact with FPU. Specifying this for targets that do not
23586 have a double precision FPU defaults to @code{call-div1}.
23587
23588 @item call-table
23589 Calls a library function that uses a lookup table for small divisors and
23590 the @code{div1} instruction with case distinction for larger divisors. Division
23591 by zero calculates an unspecified result and does not trap. This is the default
23592 for SH4. Specifying this for targets that do not have dynamic shift
23593 instructions defaults to @code{call-div1}.
23594
23595 @end table
23596
23597 When a division strategy has not been specified the default strategy is
23598 selected based on the current target. For SH2A the default strategy is to
23599 use the @code{divs} and @code{divu} instructions instead of library function
23600 calls.
23601
23602 @item -maccumulate-outgoing-args
23603 @opindex maccumulate-outgoing-args
23604 Reserve space once for outgoing arguments in the function prologue rather
23605 than around each call. Generally beneficial for performance and size. Also
23606 needed for unwinding to avoid changing the stack frame around conditional code.
23607
23608 @item -mdivsi3_libfunc=@var{name}
23609 @opindex mdivsi3_libfunc=@var{name}
23610 Set the name of the library function used for 32-bit signed division to
23611 @var{name}.
23612 This only affects the name used in the @samp{call} division strategies, and
23613 the compiler still expects the same sets of input/output/clobbered registers as
23614 if this option were not present.
23615
23616 @item -mfixed-range=@var{register-range}
23617 @opindex mfixed-range
23618 Generate code treating the given register range as fixed registers.
23619 A fixed register is one that the register allocator can not use. This is
23620 useful when compiling kernel code. A register range is specified as
23621 two registers separated by a dash. Multiple register ranges can be
23622 specified separated by a comma.
23623
23624 @item -mbranch-cost=@var{num}
23625 @opindex mbranch-cost=@var{num}
23626 Assume @var{num} to be the cost for a branch instruction. Higher numbers
23627 make the compiler try to generate more branch-free code if possible.
23628 If not specified the value is selected depending on the processor type that
23629 is being compiled for.
23630
23631 @item -mzdcbranch
23632 @itemx -mno-zdcbranch
23633 @opindex mzdcbranch
23634 @opindex mno-zdcbranch
23635 Assume (do not assume) that zero displacement conditional branch instructions
23636 @code{bt} and @code{bf} are fast. If @option{-mzdcbranch} is specified, the
23637 compiler prefers zero displacement branch code sequences. This is
23638 enabled by default when generating code for SH4 and SH4A. It can be explicitly
23639 disabled by specifying @option{-mno-zdcbranch}.
23640
23641 @item -mcbranch-force-delay-slot
23642 @opindex mcbranch-force-delay-slot
23643 Force the usage of delay slots for conditional branches, which stuffs the delay
23644 slot with a @code{nop} if a suitable instruction cannot be found. By default
23645 this option is disabled. It can be enabled to work around hardware bugs as
23646 found in the original SH7055.
23647
23648 @item -mfused-madd
23649 @itemx -mno-fused-madd
23650 @opindex mfused-madd
23651 @opindex mno-fused-madd
23652 Generate code that uses (does not use) the floating-point multiply and
23653 accumulate instructions. These instructions are generated by default
23654 if hardware floating point is used. The machine-dependent
23655 @option{-mfused-madd} option is now mapped to the machine-independent
23656 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
23657 mapped to @option{-ffp-contract=off}.
23658
23659 @item -mfsca
23660 @itemx -mno-fsca
23661 @opindex mfsca
23662 @opindex mno-fsca
23663 Allow or disallow the compiler to emit the @code{fsca} instruction for sine
23664 and cosine approximations. The option @option{-mfsca} must be used in
23665 combination with @option{-funsafe-math-optimizations}. It is enabled by default
23666 when generating code for SH4A. Using @option{-mno-fsca} disables sine and cosine
23667 approximations even if @option{-funsafe-math-optimizations} is in effect.
23668
23669 @item -mfsrra
23670 @itemx -mno-fsrra
23671 @opindex mfsrra
23672 @opindex mno-fsrra
23673 Allow or disallow the compiler to emit the @code{fsrra} instruction for
23674 reciprocal square root approximations. The option @option{-mfsrra} must be used
23675 in combination with @option{-funsafe-math-optimizations} and
23676 @option{-ffinite-math-only}. It is enabled by default when generating code for
23677 SH4A. Using @option{-mno-fsrra} disables reciprocal square root approximations
23678 even if @option{-funsafe-math-optimizations} and @option{-ffinite-math-only} are
23679 in effect.
23680
23681 @item -mpretend-cmove
23682 @opindex mpretend-cmove
23683 Prefer zero-displacement conditional branches for conditional move instruction
23684 patterns. This can result in faster code on the SH4 processor.
23685
23686 @item -mfdpic
23687 @opindex fdpic
23688 Generate code using the FDPIC ABI.
23689
23690 @end table
23691
23692 @node Solaris 2 Options
23693 @subsection Solaris 2 Options
23694 @cindex Solaris 2 options
23695
23696 These @samp{-m} options are supported on Solaris 2:
23697
23698 @table @gcctabopt
23699 @item -mclear-hwcap
23700 @opindex mclear-hwcap
23701 @option{-mclear-hwcap} tells the compiler to remove the hardware
23702 capabilities generated by the Solaris assembler. This is only necessary
23703 when object files use ISA extensions not supported by the current
23704 machine, but check at runtime whether or not to use them.
23705
23706 @item -mimpure-text
23707 @opindex mimpure-text
23708 @option{-mimpure-text}, used in addition to @option{-shared}, tells
23709 the compiler to not pass @option{-z text} to the linker when linking a
23710 shared object. Using this option, you can link position-dependent
23711 code into a shared object.
23712
23713 @option{-mimpure-text} suppresses the ``relocations remain against
23714 allocatable but non-writable sections'' linker error message.
23715 However, the necessary relocations trigger copy-on-write, and the
23716 shared object is not actually shared across processes. Instead of
23717 using @option{-mimpure-text}, you should compile all source code with
23718 @option{-fpic} or @option{-fPIC}.
23719
23720 @end table
23721
23722 These switches are supported in addition to the above on Solaris 2:
23723
23724 @table @gcctabopt
23725 @item -pthreads
23726 @opindex pthreads
23727 This is a synonym for @option{-pthread}.
23728 @end table
23729
23730 @node SPARC Options
23731 @subsection SPARC Options
23732 @cindex SPARC options
23733
23734 These @samp{-m} options are supported on the SPARC:
23735
23736 @table @gcctabopt
23737 @item -mno-app-regs
23738 @itemx -mapp-regs
23739 @opindex mno-app-regs
23740 @opindex mapp-regs
23741 Specify @option{-mapp-regs} to generate output using the global registers
23742 2 through 4, which the SPARC SVR4 ABI reserves for applications. Like the
23743 global register 1, each global register 2 through 4 is then treated as an
23744 allocable register that is clobbered by function calls. This is the default.
23745
23746 To be fully SVR4 ABI-compliant at the cost of some performance loss,
23747 specify @option{-mno-app-regs}. You should compile libraries and system
23748 software with this option.
23749
23750 @item -mflat
23751 @itemx -mno-flat
23752 @opindex mflat
23753 @opindex mno-flat
23754 With @option{-mflat}, the compiler does not generate save/restore instructions
23755 and uses a ``flat'' or single register window model. This model is compatible
23756 with the regular register window model. The local registers and the input
23757 registers (0--5) are still treated as ``call-saved'' registers and are
23758 saved on the stack as needed.
23759
23760 With @option{-mno-flat} (the default), the compiler generates save/restore
23761 instructions (except for leaf functions). This is the normal operating mode.
23762
23763 @item -mfpu
23764 @itemx -mhard-float
23765 @opindex mfpu
23766 @opindex mhard-float
23767 Generate output containing floating-point instructions. This is the
23768 default.
23769
23770 @item -mno-fpu
23771 @itemx -msoft-float
23772 @opindex mno-fpu
23773 @opindex msoft-float
23774 Generate output containing library calls for floating point.
23775 @strong{Warning:} the requisite libraries are not available for all SPARC
23776 targets. Normally the facilities of the machine's usual C compiler are
23777 used, but this cannot be done directly in cross-compilation. You must make
23778 your own arrangements to provide suitable library functions for
23779 cross-compilation. The embedded targets @samp{sparc-*-aout} and
23780 @samp{sparclite-*-*} do provide software floating-point support.
23781
23782 @option{-msoft-float} changes the calling convention in the output file;
23783 therefore, it is only useful if you compile @emph{all} of a program with
23784 this option. In particular, you need to compile @file{libgcc.a}, the
23785 library that comes with GCC, with @option{-msoft-float} in order for
23786 this to work.
23787
23788 @item -mhard-quad-float
23789 @opindex mhard-quad-float
23790 Generate output containing quad-word (long double) floating-point
23791 instructions.
23792
23793 @item -msoft-quad-float
23794 @opindex msoft-quad-float
23795 Generate output containing library calls for quad-word (long double)
23796 floating-point instructions. The functions called are those specified
23797 in the SPARC ABI@. This is the default.
23798
23799 As of this writing, there are no SPARC implementations that have hardware
23800 support for the quad-word floating-point instructions. They all invoke
23801 a trap handler for one of these instructions, and then the trap handler
23802 emulates the effect of the instruction. Because of the trap handler overhead,
23803 this is much slower than calling the ABI library routines. Thus the
23804 @option{-msoft-quad-float} option is the default.
23805
23806 @item -mno-unaligned-doubles
23807 @itemx -munaligned-doubles
23808 @opindex mno-unaligned-doubles
23809 @opindex munaligned-doubles
23810 Assume that doubles have 8-byte alignment. This is the default.
23811
23812 With @option{-munaligned-doubles}, GCC assumes that doubles have 8-byte
23813 alignment only if they are contained in another type, or if they have an
23814 absolute address. Otherwise, it assumes they have 4-byte alignment.
23815 Specifying this option avoids some rare compatibility problems with code
23816 generated by other compilers. It is not the default because it results
23817 in a performance loss, especially for floating-point code.
23818
23819 @item -muser-mode
23820 @itemx -mno-user-mode
23821 @opindex muser-mode
23822 @opindex mno-user-mode
23823 Do not generate code that can only run in supervisor mode. This is relevant
23824 only for the @code{casa} instruction emitted for the LEON3 processor. This
23825 is the default.
23826
23827 @item -mfaster-structs
23828 @itemx -mno-faster-structs
23829 @opindex mfaster-structs
23830 @opindex mno-faster-structs
23831 With @option{-mfaster-structs}, the compiler assumes that structures
23832 should have 8-byte alignment. This enables the use of pairs of
23833 @code{ldd} and @code{std} instructions for copies in structure
23834 assignment, in place of twice as many @code{ld} and @code{st} pairs.
23835 However, the use of this changed alignment directly violates the SPARC
23836 ABI@. Thus, it's intended only for use on targets where the developer
23837 acknowledges that their resulting code is not directly in line with
23838 the rules of the ABI@.
23839
23840 @item -mstd-struct-return
23841 @itemx -mno-std-struct-return
23842 @opindex mstd-struct-return
23843 @opindex mno-std-struct-return
23844 With @option{-mstd-struct-return}, the compiler generates checking code
23845 in functions returning structures or unions to detect size mismatches
23846 between the two sides of function calls, as per the 32-bit ABI@.
23847
23848 The default is @option{-mno-std-struct-return}. This option has no effect
23849 in 64-bit mode.
23850
23851 @item -mlra
23852 @itemx -mno-lra
23853 @opindex mlra
23854 @opindex mno-lra
23855 Enable Local Register Allocation. This is the default for SPARC since GCC 7
23856 so @option{-mno-lra} needs to be passed to get old Reload.
23857
23858 @item -mcpu=@var{cpu_type}
23859 @opindex mcpu
23860 Set the instruction set, register set, and instruction scheduling parameters
23861 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
23862 @samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{hypersparc},
23863 @samp{leon}, @samp{leon3}, @samp{leon3v7}, @samp{sparclite}, @samp{f930},
23864 @samp{f934}, @samp{sparclite86x}, @samp{sparclet}, @samp{tsc701}, @samp{v9},
23865 @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
23866 @samp{niagara3}, @samp{niagara4} and @samp{niagara7}.
23867
23868 Native Solaris and GNU/Linux toolchains also support the value @samp{native},
23869 which selects the best architecture option for the host processor.
23870 @option{-mcpu=native} has no effect if GCC does not recognize
23871 the processor.
23872
23873 Default instruction scheduling parameters are used for values that select
23874 an architecture and not an implementation. These are @samp{v7}, @samp{v8},
23875 @samp{sparclite}, @samp{sparclet}, @samp{v9}.
23876
23877 Here is a list of each supported architecture and their supported
23878 implementations.
23879
23880 @table @asis
23881 @item v7
23882 cypress, leon3v7
23883
23884 @item v8
23885 supersparc, hypersparc, leon, leon3
23886
23887 @item sparclite
23888 f930, f934, sparclite86x
23889
23890 @item sparclet
23891 tsc701
23892
23893 @item v9
23894 ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4, niagara7
23895 @end table
23896
23897 By default (unless configured otherwise), GCC generates code for the V7
23898 variant of the SPARC architecture. With @option{-mcpu=cypress}, the compiler
23899 additionally optimizes it for the Cypress CY7C602 chip, as used in the
23900 SPARCStation/SPARCServer 3xx series. This is also appropriate for the older
23901 SPARCStation 1, 2, IPX etc.
23902
23903 With @option{-mcpu=v8}, GCC generates code for the V8 variant of the SPARC
23904 architecture. The only difference from V7 code is that the compiler emits
23905 the integer multiply and integer divide instructions which exist in SPARC-V8
23906 but not in SPARC-V7. With @option{-mcpu=supersparc}, the compiler additionally
23907 optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
23908 2000 series.
23909
23910 With @option{-mcpu=sparclite}, GCC generates code for the SPARClite variant of
23911 the SPARC architecture. This adds the integer multiply, integer divide step
23912 and scan (@code{ffs}) instructions which exist in SPARClite but not in SPARC-V7.
23913 With @option{-mcpu=f930}, the compiler additionally optimizes it for the
23914 Fujitsu MB86930 chip, which is the original SPARClite, with no FPU@. With
23915 @option{-mcpu=f934}, the compiler additionally optimizes it for the Fujitsu
23916 MB86934 chip, which is the more recent SPARClite with FPU@.
23917
23918 With @option{-mcpu=sparclet}, GCC generates code for the SPARClet variant of
23919 the SPARC architecture. This adds the integer multiply, multiply/accumulate,
23920 integer divide step and scan (@code{ffs}) instructions which exist in SPARClet
23921 but not in SPARC-V7. With @option{-mcpu=tsc701}, the compiler additionally
23922 optimizes it for the TEMIC SPARClet chip.
23923
23924 With @option{-mcpu=v9}, GCC generates code for the V9 variant of the SPARC
23925 architecture. This adds 64-bit integer and floating-point move instructions,
23926 3 additional floating-point condition code registers and conditional move
23927 instructions. With @option{-mcpu=ultrasparc}, the compiler additionally
23928 optimizes it for the Sun UltraSPARC I/II/IIi chips. With
23929 @option{-mcpu=ultrasparc3}, the compiler additionally optimizes it for the
23930 Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips. With
23931 @option{-mcpu=niagara}, the compiler additionally optimizes it for
23932 Sun UltraSPARC T1 chips. With @option{-mcpu=niagara2}, the compiler
23933 additionally optimizes it for Sun UltraSPARC T2 chips. With
23934 @option{-mcpu=niagara3}, the compiler additionally optimizes it for Sun
23935 UltraSPARC T3 chips. With @option{-mcpu=niagara4}, the compiler
23936 additionally optimizes it for Sun UltraSPARC T4 chips. With
23937 @option{-mcpu=niagara7}, the compiler additionally optimizes it for
23938 Oracle SPARC M7 chips.
23939
23940 @item -mtune=@var{cpu_type}
23941 @opindex mtune
23942 Set the instruction scheduling parameters for machine type
23943 @var{cpu_type}, but do not set the instruction set or register set that the
23944 option @option{-mcpu=@var{cpu_type}} does.
23945
23946 The same values for @option{-mcpu=@var{cpu_type}} can be used for
23947 @option{-mtune=@var{cpu_type}}, but the only useful values are those
23948 that select a particular CPU implementation. Those are
23949 @samp{cypress}, @samp{supersparc}, @samp{hypersparc}, @samp{leon},
23950 @samp{leon3}, @samp{leon3v7}, @samp{f930}, @samp{f934},
23951 @samp{sparclite86x}, @samp{tsc701}, @samp{ultrasparc},
23952 @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2}, @samp{niagara3},
23953 @samp{niagara4} and @samp{niagara7}. With native Solaris and
23954 GNU/Linux toolchains, @samp{native} can also be used.
23955
23956 @item -mv8plus
23957 @itemx -mno-v8plus
23958 @opindex mv8plus
23959 @opindex mno-v8plus
23960 With @option{-mv8plus}, GCC generates code for the SPARC-V8+ ABI@. The
23961 difference from the V8 ABI is that the global and out registers are
23962 considered 64 bits wide. This is enabled by default on Solaris in 32-bit
23963 mode for all SPARC-V9 processors.
23964
23965 @item -mvis
23966 @itemx -mno-vis
23967 @opindex mvis
23968 @opindex mno-vis
23969 With @option{-mvis}, GCC generates code that takes advantage of the UltraSPARC
23970 Visual Instruction Set extensions. The default is @option{-mno-vis}.
23971
23972 @item -mvis2
23973 @itemx -mno-vis2
23974 @opindex mvis2
23975 @opindex mno-vis2
23976 With @option{-mvis2}, GCC generates code that takes advantage of
23977 version 2.0 of the UltraSPARC Visual Instruction Set extensions. The
23978 default is @option{-mvis2} when targeting a cpu that supports such
23979 instructions, such as UltraSPARC-III and later. Setting @option{-mvis2}
23980 also sets @option{-mvis}.
23981
23982 @item -mvis3
23983 @itemx -mno-vis3
23984 @opindex mvis3
23985 @opindex mno-vis3
23986 With @option{-mvis3}, GCC generates code that takes advantage of
23987 version 3.0 of the UltraSPARC Visual Instruction Set extensions. The
23988 default is @option{-mvis3} when targeting a cpu that supports such
23989 instructions, such as niagara-3 and later. Setting @option{-mvis3}
23990 also sets @option{-mvis2} and @option{-mvis}.
23991
23992 @item -mvis4
23993 @itemx -mno-vis4
23994 @opindex mvis4
23995 @opindex mno-vis4
23996 With @option{-mvis4}, GCC generates code that takes advantage of
23997 version 4.0 of the UltraSPARC Visual Instruction Set extensions. The
23998 default is @option{-mvis4} when targeting a cpu that supports such
23999 instructions, such as niagara-7 and later. Setting @option{-mvis4}
24000 also sets @option{-mvis3}, @option{-mvis2} and @option{-mvis}.
24001
24002 @item -mcbcond
24003 @itemx -mno-cbcond
24004 @opindex mcbcond
24005 @opindex mno-cbcond
24006 With @option{-mcbcond}, GCC generates code that takes advantage of the UltraSPARC
24007 Compare-and-Branch-on-Condition instructions. The default is @option{-mcbcond}
24008 when targeting a CPU that supports such instructions, such as Niagara-4 and
24009 later.
24010
24011 @item -mfmaf
24012 @itemx -mno-fmaf
24013 @opindex mfmaf
24014 @opindex mno-fmaf
24015 With @option{-mfmaf}, GCC generates code that takes advantage of the UltraSPARC
24016 Fused Multiply-Add Floating-point instructions. The default is @option{-mfmaf}
24017 when targeting a CPU that supports such instructions, such as Niagara-3 and
24018 later.
24019
24020 @item -mpopc
24021 @itemx -mno-popc
24022 @opindex mpopc
24023 @opindex mno-popc
24024 With @option{-mpopc}, GCC generates code that takes advantage of the UltraSPARC
24025 Population Count instruction. The default is @option{-mpopc}
24026 when targeting a CPU that supports such an instruction, such as Niagara-2 and
24027 later.
24028
24029 @item -msubxc
24030 @itemx -mno-subxc
24031 @opindex msubxc
24032 @opindex mno-subxc
24033 With @option{-msubxc}, GCC generates code that takes advantage of the UltraSPARC
24034 Subtract-Extended-with-Carry instruction. The default is @option{-msubxc}
24035 when targeting a CPU that supports such an instruction, such as Niagara-7 and
24036 later.
24037
24038 @item -mfix-at697f
24039 @opindex mfix-at697f
24040 Enable the documented workaround for the single erratum of the Atmel AT697F
24041 processor (which corresponds to erratum #13 of the AT697E processor).
24042
24043 @item -mfix-ut699
24044 @opindex mfix-ut699
24045 Enable the documented workarounds for the floating-point errata and the data
24046 cache nullify errata of the UT699 processor.
24047 @end table
24048
24049 These @samp{-m} options are supported in addition to the above
24050 on SPARC-V9 processors in 64-bit environments:
24051
24052 @table @gcctabopt
24053 @item -m32
24054 @itemx -m64
24055 @opindex m32
24056 @opindex m64
24057 Generate code for a 32-bit or 64-bit environment.
24058 The 32-bit environment sets int, long and pointer to 32 bits.
24059 The 64-bit environment sets int to 32 bits and long and pointer
24060 to 64 bits.
24061
24062 @item -mcmodel=@var{which}
24063 @opindex mcmodel
24064 Set the code model to one of
24065
24066 @table @samp
24067 @item medlow
24068 The Medium/Low code model: 64-bit addresses, programs
24069 must be linked in the low 32 bits of memory. Programs can be statically
24070 or dynamically linked.
24071
24072 @item medmid
24073 The Medium/Middle code model: 64-bit addresses, programs
24074 must be linked in the low 44 bits of memory, the text and data segments must
24075 be less than 2GB in size and the data segment must be located within 2GB of
24076 the text segment.
24077
24078 @item medany
24079 The Medium/Anywhere code model: 64-bit addresses, programs
24080 may be linked anywhere in memory, the text and data segments must be less
24081 than 2GB in size and the data segment must be located within 2GB of the
24082 text segment.
24083
24084 @item embmedany
24085 The Medium/Anywhere code model for embedded systems:
24086 64-bit addresses, the text and data segments must be less than 2GB in
24087 size, both starting anywhere in memory (determined at link time). The
24088 global register %g4 points to the base of the data segment. Programs
24089 are statically linked and PIC is not supported.
24090 @end table
24091
24092 @item -mmemory-model=@var{mem-model}
24093 @opindex mmemory-model
24094 Set the memory model in force on the processor to one of
24095
24096 @table @samp
24097 @item default
24098 The default memory model for the processor and operating system.
24099
24100 @item rmo
24101 Relaxed Memory Order
24102
24103 @item pso
24104 Partial Store Order
24105
24106 @item tso
24107 Total Store Order
24108
24109 @item sc
24110 Sequential Consistency
24111 @end table
24112
24113 These memory models are formally defined in Appendix D of the SPARC-V9
24114 architecture manual, as set in the processor's @code{PSTATE.MM} field.
24115
24116 @item -mstack-bias
24117 @itemx -mno-stack-bias
24118 @opindex mstack-bias
24119 @opindex mno-stack-bias
24120 With @option{-mstack-bias}, GCC assumes that the stack pointer, and
24121 frame pointer if present, are offset by @minus{}2047 which must be added back
24122 when making stack frame references. This is the default in 64-bit mode.
24123 Otherwise, assume no such offset is present.
24124 @end table
24125
24126 @node SPU Options
24127 @subsection SPU Options
24128 @cindex SPU options
24129
24130 These @samp{-m} options are supported on the SPU:
24131
24132 @table @gcctabopt
24133 @item -mwarn-reloc
24134 @itemx -merror-reloc
24135 @opindex mwarn-reloc
24136 @opindex merror-reloc
24137
24138 The loader for SPU does not handle dynamic relocations. By default, GCC
24139 gives an error when it generates code that requires a dynamic
24140 relocation. @option{-mno-error-reloc} disables the error,
24141 @option{-mwarn-reloc} generates a warning instead.
24142
24143 @item -msafe-dma
24144 @itemx -munsafe-dma
24145 @opindex msafe-dma
24146 @opindex munsafe-dma
24147
24148 Instructions that initiate or test completion of DMA must not be
24149 reordered with respect to loads and stores of the memory that is being
24150 accessed.
24151 With @option{-munsafe-dma} you must use the @code{volatile} keyword to protect
24152 memory accesses, but that can lead to inefficient code in places where the
24153 memory is known to not change. Rather than mark the memory as volatile,
24154 you can use @option{-msafe-dma} to tell the compiler to treat
24155 the DMA instructions as potentially affecting all memory.
24156
24157 @item -mbranch-hints
24158 @opindex mbranch-hints
24159
24160 By default, GCC generates a branch hint instruction to avoid
24161 pipeline stalls for always-taken or probably-taken branches. A hint
24162 is not generated closer than 8 instructions away from its branch.
24163 There is little reason to disable them, except for debugging purposes,
24164 or to make an object a little bit smaller.
24165
24166 @item -msmall-mem
24167 @itemx -mlarge-mem
24168 @opindex msmall-mem
24169 @opindex mlarge-mem
24170
24171 By default, GCC generates code assuming that addresses are never larger
24172 than 18 bits. With @option{-mlarge-mem} code is generated that assumes
24173 a full 32-bit address.
24174
24175 @item -mstdmain
24176 @opindex mstdmain
24177
24178 By default, GCC links against startup code that assumes the SPU-style
24179 main function interface (which has an unconventional parameter list).
24180 With @option{-mstdmain}, GCC links your program against startup
24181 code that assumes a C99-style interface to @code{main}, including a
24182 local copy of @code{argv} strings.
24183
24184 @item -mfixed-range=@var{register-range}
24185 @opindex mfixed-range
24186 Generate code treating the given register range as fixed registers.
24187 A fixed register is one that the register allocator cannot use. This is
24188 useful when compiling kernel code. A register range is specified as
24189 two registers separated by a dash. Multiple register ranges can be
24190 specified separated by a comma.
24191
24192 @item -mea32
24193 @itemx -mea64
24194 @opindex mea32
24195 @opindex mea64
24196 Compile code assuming that pointers to the PPU address space accessed
24197 via the @code{__ea} named address space qualifier are either 32 or 64
24198 bits wide. The default is 32 bits. As this is an ABI-changing option,
24199 all object code in an executable must be compiled with the same setting.
24200
24201 @item -maddress-space-conversion
24202 @itemx -mno-address-space-conversion
24203 @opindex maddress-space-conversion
24204 @opindex mno-address-space-conversion
24205 Allow/disallow treating the @code{__ea} address space as superset
24206 of the generic address space. This enables explicit type casts
24207 between @code{__ea} and generic pointer as well as implicit
24208 conversions of generic pointers to @code{__ea} pointers. The
24209 default is to allow address space pointer conversions.
24210
24211 @item -mcache-size=@var{cache-size}
24212 @opindex mcache-size
24213 This option controls the version of libgcc that the compiler links to an
24214 executable and selects a software-managed cache for accessing variables
24215 in the @code{__ea} address space with a particular cache size. Possible
24216 options for @var{cache-size} are @samp{8}, @samp{16}, @samp{32}, @samp{64}
24217 and @samp{128}. The default cache size is 64KB.
24218
24219 @item -matomic-updates
24220 @itemx -mno-atomic-updates
24221 @opindex matomic-updates
24222 @opindex mno-atomic-updates
24223 This option controls the version of libgcc that the compiler links to an
24224 executable and selects whether atomic updates to the software-managed
24225 cache of PPU-side variables are used. If you use atomic updates, changes
24226 to a PPU variable from SPU code using the @code{__ea} named address space
24227 qualifier do not interfere with changes to other PPU variables residing
24228 in the same cache line from PPU code. If you do not use atomic updates,
24229 such interference may occur; however, writing back cache lines is
24230 more efficient. The default behavior is to use atomic updates.
24231
24232 @item -mdual-nops
24233 @itemx -mdual-nops=@var{n}
24234 @opindex mdual-nops
24235 By default, GCC inserts NOPs to increase dual issue when it expects
24236 it to increase performance. @var{n} can be a value from 0 to 10. A
24237 smaller @var{n} inserts fewer NOPs. 10 is the default, 0 is the
24238 same as @option{-mno-dual-nops}. Disabled with @option{-Os}.
24239
24240 @item -mhint-max-nops=@var{n}
24241 @opindex mhint-max-nops
24242 Maximum number of NOPs to insert for a branch hint. A branch hint must
24243 be at least 8 instructions away from the branch it is affecting. GCC
24244 inserts up to @var{n} NOPs to enforce this, otherwise it does not
24245 generate the branch hint.
24246
24247 @item -mhint-max-distance=@var{n}
24248 @opindex mhint-max-distance
24249 The encoding of the branch hint instruction limits the hint to be within
24250 256 instructions of the branch it is affecting. By default, GCC makes
24251 sure it is within 125.
24252
24253 @item -msafe-hints
24254 @opindex msafe-hints
24255 Work around a hardware bug that causes the SPU to stall indefinitely.
24256 By default, GCC inserts the @code{hbrp} instruction to make sure
24257 this stall won't happen.
24258
24259 @end table
24260
24261 @node System V Options
24262 @subsection Options for System V
24263
24264 These additional options are available on System V Release 4 for
24265 compatibility with other compilers on those systems:
24266
24267 @table @gcctabopt
24268 @item -G
24269 @opindex G
24270 Create a shared object.
24271 It is recommended that @option{-symbolic} or @option{-shared} be used instead.
24272
24273 @item -Qy
24274 @opindex Qy
24275 Identify the versions of each tool used by the compiler, in a
24276 @code{.ident} assembler directive in the output.
24277
24278 @item -Qn
24279 @opindex Qn
24280 Refrain from adding @code{.ident} directives to the output file (this is
24281 the default).
24282
24283 @item -YP,@var{dirs}
24284 @opindex YP
24285 Search the directories @var{dirs}, and no others, for libraries
24286 specified with @option{-l}.
24287
24288 @item -Ym,@var{dir}
24289 @opindex Ym
24290 Look in the directory @var{dir} to find the M4 preprocessor.
24291 The assembler uses this option.
24292 @c This is supposed to go with a -Yd for predefined M4 macro files, but
24293 @c the generic assembler that comes with Solaris takes just -Ym.
24294 @end table
24295
24296 @node TILE-Gx Options
24297 @subsection TILE-Gx Options
24298 @cindex TILE-Gx options
24299
24300 These @samp{-m} options are supported on the TILE-Gx:
24301
24302 @table @gcctabopt
24303 @item -mcmodel=small
24304 @opindex mcmodel=small
24305 Generate code for the small model. The distance for direct calls is
24306 limited to 500M in either direction. PC-relative addresses are 32
24307 bits. Absolute addresses support the full address range.
24308
24309 @item -mcmodel=large
24310 @opindex mcmodel=large
24311 Generate code for the large model. There is no limitation on call
24312 distance, pc-relative addresses, or absolute addresses.
24313
24314 @item -mcpu=@var{name}
24315 @opindex mcpu
24316 Selects the type of CPU to be targeted. Currently the only supported
24317 type is @samp{tilegx}.
24318
24319 @item -m32
24320 @itemx -m64
24321 @opindex m32
24322 @opindex m64
24323 Generate code for a 32-bit or 64-bit environment. The 32-bit
24324 environment sets int, long, and pointer to 32 bits. The 64-bit
24325 environment sets int to 32 bits and long and pointer to 64 bits.
24326
24327 @item -mbig-endian
24328 @itemx -mlittle-endian
24329 @opindex mbig-endian
24330 @opindex mlittle-endian
24331 Generate code in big/little endian mode, respectively.
24332 @end table
24333
24334 @node TILEPro Options
24335 @subsection TILEPro Options
24336 @cindex TILEPro options
24337
24338 These @samp{-m} options are supported on the TILEPro:
24339
24340 @table @gcctabopt
24341 @item -mcpu=@var{name}
24342 @opindex mcpu
24343 Selects the type of CPU to be targeted. Currently the only supported
24344 type is @samp{tilepro}.
24345
24346 @item -m32
24347 @opindex m32
24348 Generate code for a 32-bit environment, which sets int, long, and
24349 pointer to 32 bits. This is the only supported behavior so the flag
24350 is essentially ignored.
24351 @end table
24352
24353 @node V850 Options
24354 @subsection V850 Options
24355 @cindex V850 Options
24356
24357 These @samp{-m} options are defined for V850 implementations:
24358
24359 @table @gcctabopt
24360 @item -mlong-calls
24361 @itemx -mno-long-calls
24362 @opindex mlong-calls
24363 @opindex mno-long-calls
24364 Treat all calls as being far away (near). If calls are assumed to be
24365 far away, the compiler always loads the function's address into a
24366 register, and calls indirect through the pointer.
24367
24368 @item -mno-ep
24369 @itemx -mep
24370 @opindex mno-ep
24371 @opindex mep
24372 Do not optimize (do optimize) basic blocks that use the same index
24373 pointer 4 or more times to copy pointer into the @code{ep} register, and
24374 use the shorter @code{sld} and @code{sst} instructions. The @option{-mep}
24375 option is on by default if you optimize.
24376
24377 @item -mno-prolog-function
24378 @itemx -mprolog-function
24379 @opindex mno-prolog-function
24380 @opindex mprolog-function
24381 Do not use (do use) external functions to save and restore registers
24382 at the prologue and epilogue of a function. The external functions
24383 are slower, but use less code space if more than one function saves
24384 the same number of registers. The @option{-mprolog-function} option
24385 is on by default if you optimize.
24386
24387 @item -mspace
24388 @opindex mspace
24389 Try to make the code as small as possible. At present, this just turns
24390 on the @option{-mep} and @option{-mprolog-function} options.
24391
24392 @item -mtda=@var{n}
24393 @opindex mtda
24394 Put static or global variables whose size is @var{n} bytes or less into
24395 the tiny data area that register @code{ep} points to. The tiny data
24396 area can hold up to 256 bytes in total (128 bytes for byte references).
24397
24398 @item -msda=@var{n}
24399 @opindex msda
24400 Put static or global variables whose size is @var{n} bytes or less into
24401 the small data area that register @code{gp} points to. The small data
24402 area can hold up to 64 kilobytes.
24403
24404 @item -mzda=@var{n}
24405 @opindex mzda
24406 Put static or global variables whose size is @var{n} bytes or less into
24407 the first 32 kilobytes of memory.
24408
24409 @item -mv850
24410 @opindex mv850
24411 Specify that the target processor is the V850.
24412
24413 @item -mv850e3v5
24414 @opindex mv850e3v5
24415 Specify that the target processor is the V850E3V5. The preprocessor
24416 constant @code{__v850e3v5__} is defined if this option is used.
24417
24418 @item -mv850e2v4
24419 @opindex mv850e2v4
24420 Specify that the target processor is the V850E3V5. This is an alias for
24421 the @option{-mv850e3v5} option.
24422
24423 @item -mv850e2v3
24424 @opindex mv850e2v3
24425 Specify that the target processor is the V850E2V3. The preprocessor
24426 constant @code{__v850e2v3__} is defined if this option is used.
24427
24428 @item -mv850e2
24429 @opindex mv850e2
24430 Specify that the target processor is the V850E2. The preprocessor
24431 constant @code{__v850e2__} is defined if this option is used.
24432
24433 @item -mv850e1
24434 @opindex mv850e1
24435 Specify that the target processor is the V850E1. The preprocessor
24436 constants @code{__v850e1__} and @code{__v850e__} are defined if
24437 this option is used.
24438
24439 @item -mv850es
24440 @opindex mv850es
24441 Specify that the target processor is the V850ES. This is an alias for
24442 the @option{-mv850e1} option.
24443
24444 @item -mv850e
24445 @opindex mv850e
24446 Specify that the target processor is the V850E@. The preprocessor
24447 constant @code{__v850e__} is defined if this option is used.
24448
24449 If neither @option{-mv850} nor @option{-mv850e} nor @option{-mv850e1}
24450 nor @option{-mv850e2} nor @option{-mv850e2v3} nor @option{-mv850e3v5}
24451 are defined then a default target processor is chosen and the
24452 relevant @samp{__v850*__} preprocessor constant is defined.
24453
24454 The preprocessor constants @code{__v850} and @code{__v851__} are always
24455 defined, regardless of which processor variant is the target.
24456
24457 @item -mdisable-callt
24458 @itemx -mno-disable-callt
24459 @opindex mdisable-callt
24460 @opindex mno-disable-callt
24461 This option suppresses generation of the @code{CALLT} instruction for the
24462 v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850
24463 architecture.
24464
24465 This option is enabled by default when the RH850 ABI is
24466 in use (see @option{-mrh850-abi}), and disabled by default when the
24467 GCC ABI is in use. If @code{CALLT} instructions are being generated
24468 then the C preprocessor symbol @code{__V850_CALLT__} is defined.
24469
24470 @item -mrelax
24471 @itemx -mno-relax
24472 @opindex mrelax
24473 @opindex mno-relax
24474 Pass on (or do not pass on) the @option{-mrelax} command-line option
24475 to the assembler.
24476
24477 @item -mlong-jumps
24478 @itemx -mno-long-jumps
24479 @opindex mlong-jumps
24480 @opindex mno-long-jumps
24481 Disable (or re-enable) the generation of PC-relative jump instructions.
24482
24483 @item -msoft-float
24484 @itemx -mhard-float
24485 @opindex msoft-float
24486 @opindex mhard-float
24487 Disable (or re-enable) the generation of hardware floating point
24488 instructions. This option is only significant when the target
24489 architecture is @samp{V850E2V3} or higher. If hardware floating point
24490 instructions are being generated then the C preprocessor symbol
24491 @code{__FPU_OK__} is defined, otherwise the symbol
24492 @code{__NO_FPU__} is defined.
24493
24494 @item -mloop
24495 @opindex mloop
24496 Enables the use of the e3v5 LOOP instruction. The use of this
24497 instruction is not enabled by default when the e3v5 architecture is
24498 selected because its use is still experimental.
24499
24500 @item -mrh850-abi
24501 @itemx -mghs
24502 @opindex mrh850-abi
24503 @opindex mghs
24504 Enables support for the RH850 version of the V850 ABI. This is the
24505 default. With this version of the ABI the following rules apply:
24506
24507 @itemize
24508 @item
24509 Integer sized structures and unions are returned via a memory pointer
24510 rather than a register.
24511
24512 @item
24513 Large structures and unions (more than 8 bytes in size) are passed by
24514 value.
24515
24516 @item
24517 Functions are aligned to 16-bit boundaries.
24518
24519 @item
24520 The @option{-m8byte-align} command-line option is supported.
24521
24522 @item
24523 The @option{-mdisable-callt} command-line option is enabled by
24524 default. The @option{-mno-disable-callt} command-line option is not
24525 supported.
24526 @end itemize
24527
24528 When this version of the ABI is enabled the C preprocessor symbol
24529 @code{__V850_RH850_ABI__} is defined.
24530
24531 @item -mgcc-abi
24532 @opindex mgcc-abi
24533 Enables support for the old GCC version of the V850 ABI. With this
24534 version of the ABI the following rules apply:
24535
24536 @itemize
24537 @item
24538 Integer sized structures and unions are returned in register @code{r10}.
24539
24540 @item
24541 Large structures and unions (more than 8 bytes in size) are passed by
24542 reference.
24543
24544 @item
24545 Functions are aligned to 32-bit boundaries, unless optimizing for
24546 size.
24547
24548 @item
24549 The @option{-m8byte-align} command-line option is not supported.
24550
24551 @item
24552 The @option{-mdisable-callt} command-line option is supported but not
24553 enabled by default.
24554 @end itemize
24555
24556 When this version of the ABI is enabled the C preprocessor symbol
24557 @code{__V850_GCC_ABI__} is defined.
24558
24559 @item -m8byte-align
24560 @itemx -mno-8byte-align
24561 @opindex m8byte-align
24562 @opindex mno-8byte-align
24563 Enables support for @code{double} and @code{long long} types to be
24564 aligned on 8-byte boundaries. The default is to restrict the
24565 alignment of all objects to at most 4-bytes. When
24566 @option{-m8byte-align} is in effect the C preprocessor symbol
24567 @code{__V850_8BYTE_ALIGN__} is defined.
24568
24569 @item -mbig-switch
24570 @opindex mbig-switch
24571 Generate code suitable for big switch tables. Use this option only if
24572 the assembler/linker complain about out of range branches within a switch
24573 table.
24574
24575 @item -mapp-regs
24576 @opindex mapp-regs
24577 This option causes r2 and r5 to be used in the code generated by
24578 the compiler. This setting is the default.
24579
24580 @item -mno-app-regs
24581 @opindex mno-app-regs
24582 This option causes r2 and r5 to be treated as fixed registers.
24583
24584 @end table
24585
24586 @node VAX Options
24587 @subsection VAX Options
24588 @cindex VAX options
24589
24590 These @samp{-m} options are defined for the VAX:
24591
24592 @table @gcctabopt
24593 @item -munix
24594 @opindex munix
24595 Do not output certain jump instructions (@code{aobleq} and so on)
24596 that the Unix assembler for the VAX cannot handle across long
24597 ranges.
24598
24599 @item -mgnu
24600 @opindex mgnu
24601 Do output those jump instructions, on the assumption that the
24602 GNU assembler is being used.
24603
24604 @item -mg
24605 @opindex mg
24606 Output code for G-format floating-point numbers instead of D-format.
24607 @end table
24608
24609 @node Visium Options
24610 @subsection Visium Options
24611 @cindex Visium options
24612
24613 @table @gcctabopt
24614
24615 @item -mdebug
24616 @opindex mdebug
24617 A program which performs file I/O and is destined to run on an MCM target
24618 should be linked with this option. It causes the libraries libc.a and
24619 libdebug.a to be linked. The program should be run on the target under
24620 the control of the GDB remote debugging stub.
24621
24622 @item -msim
24623 @opindex msim
24624 A program which performs file I/O and is destined to run on the simulator
24625 should be linked with option. This causes libraries libc.a and libsim.a to
24626 be linked.
24627
24628 @item -mfpu
24629 @itemx -mhard-float
24630 @opindex mfpu
24631 @opindex mhard-float
24632 Generate code containing floating-point instructions. This is the
24633 default.
24634
24635 @item -mno-fpu
24636 @itemx -msoft-float
24637 @opindex mno-fpu
24638 @opindex msoft-float
24639 Generate code containing library calls for floating-point.
24640
24641 @option{-msoft-float} changes the calling convention in the output file;
24642 therefore, it is only useful if you compile @emph{all} of a program with
24643 this option. In particular, you need to compile @file{libgcc.a}, the
24644 library that comes with GCC, with @option{-msoft-float} in order for
24645 this to work.
24646
24647 @item -mcpu=@var{cpu_type}
24648 @opindex mcpu
24649 Set the instruction set, register set, and instruction scheduling parameters
24650 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
24651 @samp{mcm}, @samp{gr5} and @samp{gr6}.
24652
24653 @samp{mcm} is a synonym of @samp{gr5} present for backward compatibility.
24654
24655 By default (unless configured otherwise), GCC generates code for the GR5
24656 variant of the Visium architecture.
24657
24658 With @option{-mcpu=gr6}, GCC generates code for the GR6 variant of the Visium
24659 architecture. The only difference from GR5 code is that the compiler will
24660 generate block move instructions.
24661
24662 @item -mtune=@var{cpu_type}
24663 @opindex mtune
24664 Set the instruction scheduling parameters for machine type @var{cpu_type},
24665 but do not set the instruction set or register set that the option
24666 @option{-mcpu=@var{cpu_type}} would.
24667
24668 @item -msv-mode
24669 @opindex msv-mode
24670 Generate code for the supervisor mode, where there are no restrictions on
24671 the access to general registers. This is the default.
24672
24673 @item -muser-mode
24674 @opindex muser-mode
24675 Generate code for the user mode, where the access to some general registers
24676 is forbidden: on the GR5, registers r24 to r31 cannot be accessed in this
24677 mode; on the GR6, only registers r29 to r31 are affected.
24678 @end table
24679
24680 @node VMS Options
24681 @subsection VMS Options
24682
24683 These @samp{-m} options are defined for the VMS implementations:
24684
24685 @table @gcctabopt
24686 @item -mvms-return-codes
24687 @opindex mvms-return-codes
24688 Return VMS condition codes from @code{main}. The default is to return POSIX-style
24689 condition (e.g.@ error) codes.
24690
24691 @item -mdebug-main=@var{prefix}
24692 @opindex mdebug-main=@var{prefix}
24693 Flag the first routine whose name starts with @var{prefix} as the main
24694 routine for the debugger.
24695
24696 @item -mmalloc64
24697 @opindex mmalloc64
24698 Default to 64-bit memory allocation routines.
24699
24700 @item -mpointer-size=@var{size}
24701 @opindex mpointer-size=@var{size}
24702 Set the default size of pointers. Possible options for @var{size} are
24703 @samp{32} or @samp{short} for 32 bit pointers, @samp{64} or @samp{long}
24704 for 64 bit pointers, and @samp{no} for supporting only 32 bit pointers.
24705 The later option disables @code{pragma pointer_size}.
24706 @end table
24707
24708 @node VxWorks Options
24709 @subsection VxWorks Options
24710 @cindex VxWorks Options
24711
24712 The options in this section are defined for all VxWorks targets.
24713 Options specific to the target hardware are listed with the other
24714 options for that target.
24715
24716 @table @gcctabopt
24717 @item -mrtp
24718 @opindex mrtp
24719 GCC can generate code for both VxWorks kernels and real time processes
24720 (RTPs). This option switches from the former to the latter. It also
24721 defines the preprocessor macro @code{__RTP__}.
24722
24723 @item -non-static
24724 @opindex non-static
24725 Link an RTP executable against shared libraries rather than static
24726 libraries. The options @option{-static} and @option{-shared} can
24727 also be used for RTPs (@pxref{Link Options}); @option{-static}
24728 is the default.
24729
24730 @item -Bstatic
24731 @itemx -Bdynamic
24732 @opindex Bstatic
24733 @opindex Bdynamic
24734 These options are passed down to the linker. They are defined for
24735 compatibility with Diab.
24736
24737 @item -Xbind-lazy
24738 @opindex Xbind-lazy
24739 Enable lazy binding of function calls. This option is equivalent to
24740 @option{-Wl,-z,now} and is defined for compatibility with Diab.
24741
24742 @item -Xbind-now
24743 @opindex Xbind-now
24744 Disable lazy binding of function calls. This option is the default and
24745 is defined for compatibility with Diab.
24746 @end table
24747
24748 @node x86 Options
24749 @subsection x86 Options
24750 @cindex x86 Options
24751
24752 These @samp{-m} options are defined for the x86 family of computers.
24753
24754 @table @gcctabopt
24755
24756 @item -march=@var{cpu-type}
24757 @opindex march
24758 Generate instructions for the machine type @var{cpu-type}. In contrast to
24759 @option{-mtune=@var{cpu-type}}, which merely tunes the generated code
24760 for the specified @var{cpu-type}, @option{-march=@var{cpu-type}} allows GCC
24761 to generate code that may not run at all on processors other than the one
24762 indicated. Specifying @option{-march=@var{cpu-type}} implies
24763 @option{-mtune=@var{cpu-type}}.
24764
24765 The choices for @var{cpu-type} are:
24766
24767 @table @samp
24768 @item native
24769 This selects the CPU to generate code for at compilation time by determining
24770 the processor type of the compiling machine. Using @option{-march=native}
24771 enables all instruction subsets supported by the local machine (hence
24772 the result might not run on different machines). Using @option{-mtune=native}
24773 produces code optimized for the local machine under the constraints
24774 of the selected instruction set.
24775
24776 @item i386
24777 Original Intel i386 CPU@.
24778
24779 @item i486
24780 Intel i486 CPU@. (No scheduling is implemented for this chip.)
24781
24782 @item i586
24783 @itemx pentium
24784 Intel Pentium CPU with no MMX support.
24785
24786 @item lakemont
24787 Intel Lakemont MCU, based on Intel Pentium CPU.
24788
24789 @item pentium-mmx
24790 Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support.
24791
24792 @item pentiumpro
24793 Intel Pentium Pro CPU@.
24794
24795 @item i686
24796 When used with @option{-march}, the Pentium Pro
24797 instruction set is used, so the code runs on all i686 family chips.
24798 When used with @option{-mtune}, it has the same meaning as @samp{generic}.
24799
24800 @item pentium2
24801 Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set
24802 support.
24803
24804 @item pentium3
24805 @itemx pentium3m
24806 Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction
24807 set support.
24808
24809 @item pentium-m
24810 Intel Pentium M; low-power version of Intel Pentium III CPU
24811 with MMX, SSE and SSE2 instruction set support. Used by Centrino notebooks.
24812
24813 @item pentium4
24814 @itemx pentium4m
24815 Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support.
24816
24817 @item prescott
24818 Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction
24819 set support.
24820
24821 @item nocona
24822 Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE,
24823 SSE2 and SSE3 instruction set support.
24824
24825 @item core2
24826 Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
24827 instruction set support.
24828
24829 @item nehalem
24830 Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
24831 SSE4.1, SSE4.2 and POPCNT instruction set support.
24832
24833 @item westmere
24834 Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
24835 SSE4.1, SSE4.2, POPCNT, AES and PCLMUL instruction set support.
24836
24837 @item sandybridge
24838 Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
24839 SSE4.1, SSE4.2, POPCNT, AVX, AES and PCLMUL instruction set support.
24840
24841 @item ivybridge
24842 Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
24843 SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C
24844 instruction set support.
24845
24846 @item haswell
24847 Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
24848 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
24849 BMI, BMI2 and F16C instruction set support.
24850
24851 @item broadwell
24852 Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
24853 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
24854 BMI, BMI2, F16C, RDSEED, ADCX and PREFETCHW instruction set support.
24855
24856 @item skylake
24857 Intel Skylake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
24858 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
24859 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC and
24860 XSAVES instruction set support.
24861
24862 @item bonnell
24863 Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3
24864 instruction set support.
24865
24866 @item silvermont
24867 Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
24868 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL and RDRND instruction set support.
24869
24870 @item knl
24871 Intel Knight's Landing CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
24872 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
24873 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER and
24874 AVX512CD instruction set support.
24875
24876 @item skylake-avx512
24877 Intel Skylake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
24878 SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
24879 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,
24880 AVX512VL, AVX512BW, AVX512DQ and AVX512CD instruction set support.
24881
24882 @item k6
24883 AMD K6 CPU with MMX instruction set support.
24884
24885 @item k6-2
24886 @itemx k6-3
24887 Improved versions of AMD K6 CPU with MMX and 3DNow!@: instruction set support.
24888
24889 @item athlon
24890 @itemx athlon-tbird
24891 AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow!@: and SSE prefetch instructions
24892 support.
24893
24894 @item athlon-4
24895 @itemx athlon-xp
24896 @itemx athlon-mp
24897 Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow!@: and full SSE
24898 instruction set support.
24899
24900 @item k8
24901 @itemx opteron
24902 @itemx athlon64
24903 @itemx athlon-fx
24904 Processors based on the AMD K8 core with x86-64 instruction set support,
24905 including the AMD Opteron, Athlon 64, and Athlon 64 FX processors.
24906 (This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow!@: and 64-bit
24907 instruction set extensions.)
24908
24909 @item k8-sse3
24910 @itemx opteron-sse3
24911 @itemx athlon64-sse3
24912 Improved versions of AMD K8 cores with SSE3 instruction set support.
24913
24914 @item amdfam10
24915 @itemx barcelona
24916 CPUs based on AMD Family 10h cores with x86-64 instruction set support. (This
24917 supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit
24918 instruction set extensions.)
24919
24920 @item bdver1
24921 CPUs based on AMD Family 15h cores with x86-64 instruction set support. (This
24922 supersets FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
24923 SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)
24924 @item bdver2
24925 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
24926 supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX,
24927 SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set
24928 extensions.)
24929 @item bdver3
24930 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
24931 supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES,
24932 PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and
24933 64-bit instruction set extensions.
24934 @item bdver4
24935 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
24936 supersets BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP,
24937 AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,
24938 SSE4.2, ABM and 64-bit instruction set extensions.
24939
24940 @item znver1
24941 AMD Family 17h core based CPUs with x86-64 instruction set support. (This
24942 supersets BMI, BMI2, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED, MWAITX,
24943 SHA, CLZERO, AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3,
24944 SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, and 64-bit
24945 instruction set extensions.
24946
24947 @item btver1
24948 CPUs based on AMD Family 14h cores with x86-64 instruction set support. (This
24949 supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit
24950 instruction set extensions.)
24951
24952 @item btver2
24953 CPUs based on AMD Family 16h cores with x86-64 instruction set support. This
24954 includes MOVBE, F16C, BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16, ABM,
24955 SSE4A, SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set extensions.
24956
24957 @item winchip-c6
24958 IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction
24959 set support.
24960
24961 @item winchip2
24962 IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and 3DNow!@:
24963 instruction set support.
24964
24965 @item c3
24966 VIA C3 CPU with MMX and 3DNow!@: instruction set support.
24967 (No scheduling is implemented for this chip.)
24968
24969 @item c3-2
24970 VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support.
24971 (No scheduling is implemented for this chip.)
24972
24973 @item c7
24974 VIA C7 (Esther) CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
24975 (No scheduling is implemented for this chip.)
24976
24977 @item samuel-2
24978 VIA Eden Samuel 2 CPU with MMX and 3DNow!@: instruction set support.
24979 (No scheduling is implemented for this chip.)
24980
24981 @item nehemiah
24982 VIA Eden Nehemiah CPU with MMX and SSE instruction set support.
24983 (No scheduling is implemented for this chip.)
24984
24985 @item esther
24986 VIA Eden Esther CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
24987 (No scheduling is implemented for this chip.)
24988
24989 @item eden-x2
24990 VIA Eden X2 CPU with x86-64, MMX, SSE, SSE2 and SSE3 instruction set support.
24991 (No scheduling is implemented for this chip.)
24992
24993 @item eden-x4
24994 VIA Eden X4 CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
24995 AVX and AVX2 instruction set support.
24996 (No scheduling is implemented for this chip.)
24997
24998 @item nano
24999 Generic VIA Nano CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
25000 instruction set support.
25001 (No scheduling is implemented for this chip.)
25002
25003 @item nano-1000
25004 VIA Nano 1xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
25005 instruction set support.
25006 (No scheduling is implemented for this chip.)
25007
25008 @item nano-2000
25009 VIA Nano 2xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
25010 instruction set support.
25011 (No scheduling is implemented for this chip.)
25012
25013 @item nano-3000
25014 VIA Nano 3xxx CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
25015 instruction set support.
25016 (No scheduling is implemented for this chip.)
25017
25018 @item nano-x2
25019 VIA Nano Dual Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
25020 instruction set support.
25021 (No scheduling is implemented for this chip.)
25022
25023 @item nano-x4
25024 VIA Nano Quad Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
25025 instruction set support.
25026 (No scheduling is implemented for this chip.)
25027
25028 @item geode
25029 AMD Geode embedded processor with MMX and 3DNow!@: instruction set support.
25030 @end table
25031
25032 @item -mtune=@var{cpu-type}
25033 @opindex mtune
25034 Tune to @var{cpu-type} everything applicable about the generated code, except
25035 for the ABI and the set of available instructions.
25036 While picking a specific @var{cpu-type} schedules things appropriately
25037 for that particular chip, the compiler does not generate any code that
25038 cannot run on the default machine type unless you use a
25039 @option{-march=@var{cpu-type}} option.
25040 For example, if GCC is configured for i686-pc-linux-gnu
25041 then @option{-mtune=pentium4} generates code that is tuned for Pentium 4
25042 but still runs on i686 machines.
25043
25044 The choices for @var{cpu-type} are the same as for @option{-march}.
25045 In addition, @option{-mtune} supports 2 extra choices for @var{cpu-type}:
25046
25047 @table @samp
25048 @item generic
25049 Produce code optimized for the most common IA32/@/AMD64/@/EM64T processors.
25050 If you know the CPU on which your code will run, then you should use
25051 the corresponding @option{-mtune} or @option{-march} option instead of
25052 @option{-mtune=generic}. But, if you do not know exactly what CPU users
25053 of your application will have, then you should use this option.
25054
25055 As new processors are deployed in the marketplace, the behavior of this
25056 option will change. Therefore, if you upgrade to a newer version of
25057 GCC, code generation controlled by this option will change to reflect
25058 the processors
25059 that are most common at the time that version of GCC is released.
25060
25061 There is no @option{-march=generic} option because @option{-march}
25062 indicates the instruction set the compiler can use, and there is no
25063 generic instruction set applicable to all processors. In contrast,
25064 @option{-mtune} indicates the processor (or, in this case, collection of
25065 processors) for which the code is optimized.
25066
25067 @item intel
25068 Produce code optimized for the most current Intel processors, which are
25069 Haswell and Silvermont for this version of GCC. If you know the CPU
25070 on which your code will run, then you should use the corresponding
25071 @option{-mtune} or @option{-march} option instead of @option{-mtune=intel}.
25072 But, if you want your application performs better on both Haswell and
25073 Silvermont, then you should use this option.
25074
25075 As new Intel processors are deployed in the marketplace, the behavior of
25076 this option will change. Therefore, if you upgrade to a newer version of
25077 GCC, code generation controlled by this option will change to reflect
25078 the most current Intel processors at the time that version of GCC is
25079 released.
25080
25081 There is no @option{-march=intel} option because @option{-march} indicates
25082 the instruction set the compiler can use, and there is no common
25083 instruction set applicable to all processors. In contrast,
25084 @option{-mtune} indicates the processor (or, in this case, collection of
25085 processors) for which the code is optimized.
25086 @end table
25087
25088 @item -mcpu=@var{cpu-type}
25089 @opindex mcpu
25090 A deprecated synonym for @option{-mtune}.
25091
25092 @item -mfpmath=@var{unit}
25093 @opindex mfpmath
25094 Generate floating-point arithmetic for selected unit @var{unit}. The choices
25095 for @var{unit} are:
25096
25097 @table @samp
25098 @item 387
25099 Use the standard 387 floating-point coprocessor present on the majority of chips and
25100 emulated otherwise. Code compiled with this option runs almost everywhere.
25101 The temporary results are computed in 80-bit precision instead of the precision
25102 specified by the type, resulting in slightly different results compared to most
25103 of other chips. See @option{-ffloat-store} for more detailed description.
25104
25105 This is the default choice for non-Darwin x86-32 targets.
25106
25107 @item sse
25108 Use scalar floating-point instructions present in the SSE instruction set.
25109 This instruction set is supported by Pentium III and newer chips,
25110 and in the AMD line
25111 by Athlon-4, Athlon XP and Athlon MP chips. The earlier version of the SSE
25112 instruction set supports only single-precision arithmetic, thus the double and
25113 extended-precision arithmetic are still done using 387. A later version, present
25114 only in Pentium 4 and AMD x86-64 chips, supports double-precision
25115 arithmetic too.
25116
25117 For the x86-32 compiler, you must use @option{-march=@var{cpu-type}}, @option{-msse}
25118 or @option{-msse2} switches to enable SSE extensions and make this option
25119 effective. For the x86-64 compiler, these extensions are enabled by default.
25120
25121 The resulting code should be considerably faster in the majority of cases and avoid
25122 the numerical instability problems of 387 code, but may break some existing
25123 code that expects temporaries to be 80 bits.
25124
25125 This is the default choice for the x86-64 compiler, Darwin x86-32 targets,
25126 and the default choice for x86-32 targets with the SSE2 instruction set
25127 when @option{-ffast-math} is enabled.
25128
25129 @item sse,387
25130 @itemx sse+387
25131 @itemx both
25132 Attempt to utilize both instruction sets at once. This effectively doubles the
25133 amount of available registers, and on chips with separate execution units for
25134 387 and SSE the execution resources too. Use this option with care, as it is
25135 still experimental, because the GCC register allocator does not model separate
25136 functional units well, resulting in unstable performance.
25137 @end table
25138
25139 @item -masm=@var{dialect}
25140 @opindex masm=@var{dialect}
25141 Output assembly instructions using selected @var{dialect}. Also affects
25142 which dialect is used for basic @code{asm} (@pxref{Basic Asm}) and
25143 extended @code{asm} (@pxref{Extended Asm}). Supported choices (in dialect
25144 order) are @samp{att} or @samp{intel}. The default is @samp{att}. Darwin does
25145 not support @samp{intel}.
25146
25147 @item -mieee-fp
25148 @itemx -mno-ieee-fp
25149 @opindex mieee-fp
25150 @opindex mno-ieee-fp
25151 Control whether or not the compiler uses IEEE floating-point
25152 comparisons. These correctly handle the case where the result of a
25153 comparison is unordered.
25154
25155 @item -m80387
25156 @item -mhard-float
25157 @opindex 80387
25158 @opindex mhard-float
25159 Generate output containing 80387 instructions for floating point.
25160
25161 @item -mno-80387
25162 @item -msoft-float
25163 @opindex no-80387
25164 @opindex msoft-float
25165 Generate output containing library calls for floating point.
25166
25167 @strong{Warning:} the requisite libraries are not part of GCC@.
25168 Normally the facilities of the machine's usual C compiler are used, but
25169 this cannot be done directly in cross-compilation. You must make your
25170 own arrangements to provide suitable library functions for
25171 cross-compilation.
25172
25173 On machines where a function returns floating-point results in the 80387
25174 register stack, some floating-point opcodes may be emitted even if
25175 @option{-msoft-float} is used.
25176
25177 @item -mno-fp-ret-in-387
25178 @opindex mno-fp-ret-in-387
25179 Do not use the FPU registers for return values of functions.
25180
25181 The usual calling convention has functions return values of types
25182 @code{float} and @code{double} in an FPU register, even if there
25183 is no FPU@. The idea is that the operating system should emulate
25184 an FPU@.
25185
25186 The option @option{-mno-fp-ret-in-387} causes such values to be returned
25187 in ordinary CPU registers instead.
25188
25189 @item -mno-fancy-math-387
25190 @opindex mno-fancy-math-387
25191 Some 387 emulators do not support the @code{sin}, @code{cos} and
25192 @code{sqrt} instructions for the 387. Specify this option to avoid
25193 generating those instructions. This option is the default on
25194 OpenBSD and NetBSD@. This option is overridden when @option{-march}
25195 indicates that the target CPU always has an FPU and so the
25196 instruction does not need emulation. These
25197 instructions are not generated unless you also use the
25198 @option{-funsafe-math-optimizations} switch.
25199
25200 @item -malign-double
25201 @itemx -mno-align-double
25202 @opindex malign-double
25203 @opindex mno-align-double
25204 Control whether GCC aligns @code{double}, @code{long double}, and
25205 @code{long long} variables on a two-word boundary or a one-word
25206 boundary. Aligning @code{double} variables on a two-word boundary
25207 produces code that runs somewhat faster on a Pentium at the
25208 expense of more memory.
25209
25210 On x86-64, @option{-malign-double} is enabled by default.
25211
25212 @strong{Warning:} if you use the @option{-malign-double} switch,
25213 structures containing the above types are aligned differently than
25214 the published application binary interface specifications for the x86-32
25215 and are not binary compatible with structures in code compiled
25216 without that switch.
25217
25218 @item -m96bit-long-double
25219 @itemx -m128bit-long-double
25220 @opindex m96bit-long-double
25221 @opindex m128bit-long-double
25222 These switches control the size of @code{long double} type. The x86-32
25223 application binary interface specifies the size to be 96 bits,
25224 so @option{-m96bit-long-double} is the default in 32-bit mode.
25225
25226 Modern architectures (Pentium and newer) prefer @code{long double}
25227 to be aligned to an 8- or 16-byte boundary. In arrays or structures
25228 conforming to the ABI, this is not possible. So specifying
25229 @option{-m128bit-long-double} aligns @code{long double}
25230 to a 16-byte boundary by padding the @code{long double} with an additional
25231 32-bit zero.
25232
25233 In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as
25234 its ABI specifies that @code{long double} is aligned on 16-byte boundary.
25235
25236 Notice that neither of these options enable any extra precision over the x87
25237 standard of 80 bits for a @code{long double}.
25238
25239 @strong{Warning:} if you override the default value for your target ABI, this
25240 changes the size of
25241 structures and arrays containing @code{long double} variables,
25242 as well as modifying the function calling convention for functions taking
25243 @code{long double}. Hence they are not binary-compatible
25244 with code compiled without that switch.
25245
25246 @item -mlong-double-64
25247 @itemx -mlong-double-80
25248 @itemx -mlong-double-128
25249 @opindex mlong-double-64
25250 @opindex mlong-double-80
25251 @opindex mlong-double-128
25252 These switches control the size of @code{long double} type. A size
25253 of 64 bits makes the @code{long double} type equivalent to the @code{double}
25254 type. This is the default for 32-bit Bionic C library. A size
25255 of 128 bits makes the @code{long double} type equivalent to the
25256 @code{__float128} type. This is the default for 64-bit Bionic C library.
25257
25258 @strong{Warning:} if you override the default value for your target ABI, this
25259 changes the size of
25260 structures and arrays containing @code{long double} variables,
25261 as well as modifying the function calling convention for functions taking
25262 @code{long double}. Hence they are not binary-compatible
25263 with code compiled without that switch.
25264
25265 @item -malign-data=@var{type}
25266 @opindex malign-data
25267 Control how GCC aligns variables. Supported values for @var{type} are
25268 @samp{compat} uses increased alignment value compatible uses GCC 4.8
25269 and earlier, @samp{abi} uses alignment value as specified by the
25270 psABI, and @samp{cacheline} uses increased alignment value to match
25271 the cache line size. @samp{compat} is the default.
25272
25273 @item -mlarge-data-threshold=@var{threshold}
25274 @opindex mlarge-data-threshold
25275 When @option{-mcmodel=medium} is specified, data objects larger than
25276 @var{threshold} are placed in the large data section. This value must be the
25277 same across all objects linked into the binary, and defaults to 65535.
25278
25279 @item -mrtd
25280 @opindex mrtd
25281 Use a different function-calling convention, in which functions that
25282 take a fixed number of arguments return with the @code{ret @var{num}}
25283 instruction, which pops their arguments while returning. This saves one
25284 instruction in the caller since there is no need to pop the arguments
25285 there.
25286
25287 You can specify that an individual function is called with this calling
25288 sequence with the function attribute @code{stdcall}. You can also
25289 override the @option{-mrtd} option by using the function attribute
25290 @code{cdecl}. @xref{Function Attributes}.
25291
25292 @strong{Warning:} this calling convention is incompatible with the one
25293 normally used on Unix, so you cannot use it if you need to call
25294 libraries compiled with the Unix compiler.
25295
25296 Also, you must provide function prototypes for all functions that
25297 take variable numbers of arguments (including @code{printf});
25298 otherwise incorrect code is generated for calls to those
25299 functions.
25300
25301 In addition, seriously incorrect code results if you call a
25302 function with too many arguments. (Normally, extra arguments are
25303 harmlessly ignored.)
25304
25305 @item -mregparm=@var{num}
25306 @opindex mregparm
25307 Control how many registers are used to pass integer arguments. By
25308 default, no registers are used to pass arguments, and at most 3
25309 registers can be used. You can control this behavior for a specific
25310 function by using the function attribute @code{regparm}.
25311 @xref{Function Attributes}.
25312
25313 @strong{Warning:} if you use this switch, and
25314 @var{num} is nonzero, then you must build all modules with the same
25315 value, including any libraries. This includes the system libraries and
25316 startup modules.
25317
25318 @item -msseregparm
25319 @opindex msseregparm
25320 Use SSE register passing conventions for float and double arguments
25321 and return values. You can control this behavior for a specific
25322 function by using the function attribute @code{sseregparm}.
25323 @xref{Function Attributes}.
25324
25325 @strong{Warning:} if you use this switch then you must build all
25326 modules with the same value, including any libraries. This includes
25327 the system libraries and startup modules.
25328
25329 @item -mvect8-ret-in-mem
25330 @opindex mvect8-ret-in-mem
25331 Return 8-byte vectors in memory instead of MMX registers. This is the
25332 default on Solaris@tie{}8 and 9 and VxWorks to match the ABI of the Sun
25333 Studio compilers until version 12. Later compiler versions (starting
25334 with Studio 12 Update@tie{}1) follow the ABI used by other x86 targets, which
25335 is the default on Solaris@tie{}10 and later. @emph{Only} use this option if
25336 you need to remain compatible with existing code produced by those
25337 previous compiler versions or older versions of GCC@.
25338
25339 @item -mpc32
25340 @itemx -mpc64
25341 @itemx -mpc80
25342 @opindex mpc32
25343 @opindex mpc64
25344 @opindex mpc80
25345
25346 Set 80387 floating-point precision to 32, 64 or 80 bits. When @option{-mpc32}
25347 is specified, the significands of results of floating-point operations are
25348 rounded to 24 bits (single precision); @option{-mpc64} rounds the
25349 significands of results of floating-point operations to 53 bits (double
25350 precision) and @option{-mpc80} rounds the significands of results of
25351 floating-point operations to 64 bits (extended double precision), which is
25352 the default. When this option is used, floating-point operations in higher
25353 precisions are not available to the programmer without setting the FPU
25354 control word explicitly.
25355
25356 Setting the rounding of floating-point operations to less than the default
25357 80 bits can speed some programs by 2% or more. Note that some mathematical
25358 libraries assume that extended-precision (80-bit) floating-point operations
25359 are enabled by default; routines in such libraries could suffer significant
25360 loss of accuracy, typically through so-called ``catastrophic cancellation'',
25361 when this option is used to set the precision to less than extended precision.
25362
25363 @item -mstackrealign
25364 @opindex mstackrealign
25365 Realign the stack at entry. On the x86, the @option{-mstackrealign}
25366 option generates an alternate prologue and epilogue that realigns the
25367 run-time stack if necessary. This supports mixing legacy codes that keep
25368 4-byte stack alignment with modern codes that keep 16-byte stack alignment for
25369 SSE compatibility. See also the attribute @code{force_align_arg_pointer},
25370 applicable to individual functions.
25371
25372 @item -mpreferred-stack-boundary=@var{num}
25373 @opindex mpreferred-stack-boundary
25374 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
25375 byte boundary. If @option{-mpreferred-stack-boundary} is not specified,
25376 the default is 4 (16 bytes or 128 bits).
25377
25378 @strong{Warning:} When generating code for the x86-64 architecture with
25379 SSE extensions disabled, @option{-mpreferred-stack-boundary=3} can be
25380 used to keep the stack boundary aligned to 8 byte boundary. Since
25381 x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and
25382 intended to be used in controlled environment where stack space is
25383 important limitation. This option leads to wrong code when functions
25384 compiled with 16 byte stack alignment (such as functions from a standard
25385 library) are called with misaligned stack. In this case, SSE
25386 instructions may lead to misaligned memory access traps. In addition,
25387 variable arguments are handled incorrectly for 16 byte aligned
25388 objects (including x87 long double and __int128), leading to wrong
25389 results. You must build all modules with
25390 @option{-mpreferred-stack-boundary=3}, including any libraries. This
25391 includes the system libraries and startup modules.
25392
25393 @item -mincoming-stack-boundary=@var{num}
25394 @opindex mincoming-stack-boundary
25395 Assume the incoming stack is aligned to a 2 raised to @var{num} byte
25396 boundary. If @option{-mincoming-stack-boundary} is not specified,
25397 the one specified by @option{-mpreferred-stack-boundary} is used.
25398
25399 On Pentium and Pentium Pro, @code{double} and @code{long double} values
25400 should be aligned to an 8-byte boundary (see @option{-malign-double}) or
25401 suffer significant run time performance penalties. On Pentium III, the
25402 Streaming SIMD Extension (SSE) data type @code{__m128} may not work
25403 properly if it is not 16-byte aligned.
25404
25405 To ensure proper alignment of this values on the stack, the stack boundary
25406 must be as aligned as that required by any value stored on the stack.
25407 Further, every function must be generated such that it keeps the stack
25408 aligned. Thus calling a function compiled with a higher preferred
25409 stack boundary from a function compiled with a lower preferred stack
25410 boundary most likely misaligns the stack. It is recommended that
25411 libraries that use callbacks always use the default setting.
25412
25413 This extra alignment does consume extra stack space, and generally
25414 increases code size. Code that is sensitive to stack space usage, such
25415 as embedded systems and operating system kernels, may want to reduce the
25416 preferred alignment to @option{-mpreferred-stack-boundary=2}.
25417
25418 @need 200
25419 @item -mmmx
25420 @opindex mmmx
25421 @need 200
25422 @itemx -msse
25423 @opindex msse
25424 @need 200
25425 @itemx -msse2
25426 @opindex msse2
25427 @need 200
25428 @itemx -msse3
25429 @opindex msse3
25430 @need 200
25431 @itemx -mssse3
25432 @opindex mssse3
25433 @need 200
25434 @itemx -msse4
25435 @opindex msse4
25436 @need 200
25437 @itemx -msse4a
25438 @opindex msse4a
25439 @need 200
25440 @itemx -msse4.1
25441 @opindex msse4.1
25442 @need 200
25443 @itemx -msse4.2
25444 @opindex msse4.2
25445 @need 200
25446 @itemx -mavx
25447 @opindex mavx
25448 @need 200
25449 @itemx -mavx2
25450 @opindex mavx2
25451 @need 200
25452 @itemx -mavx512f
25453 @opindex mavx512f
25454 @need 200
25455 @itemx -mavx512pf
25456 @opindex mavx512pf
25457 @need 200
25458 @itemx -mavx512er
25459 @opindex mavx512er
25460 @need 200
25461 @itemx -mavx512cd
25462 @opindex mavx512cd
25463 @need 200
25464 @itemx -mavx512vl
25465 @opindex mavx512vl
25466 @need 200
25467 @itemx -mavx512bw
25468 @opindex mavx512bw
25469 @need 200
25470 @itemx -mavx512dq
25471 @opindex mavx512dq
25472 @need 200
25473 @itemx -mavx512ifma
25474 @opindex mavx512ifma
25475 @need 200
25476 @itemx -mavx512vbmi
25477 @opindex mavx512vbmi
25478 @need 200
25479 @itemx -msha
25480 @opindex msha
25481 @need 200
25482 @itemx -maes
25483 @opindex maes
25484 @need 200
25485 @itemx -mpclmul
25486 @opindex mpclmul
25487 @need 200
25488 @itemx -mclfushopt
25489 @opindex mclfushopt
25490 @need 200
25491 @itemx -mfsgsbase
25492 @opindex mfsgsbase
25493 @need 200
25494 @itemx -mrdrnd
25495 @opindex mrdrnd
25496 @need 200
25497 @itemx -mf16c
25498 @opindex mf16c
25499 @need 200
25500 @itemx -mfma
25501 @opindex mfma
25502 @need 200
25503 @itemx -mfma4
25504 @opindex mfma4
25505 @need 200
25506 @itemx -mprefetchwt1
25507 @opindex mprefetchwt1
25508 @need 200
25509 @itemx -mxop
25510 @opindex mxop
25511 @need 200
25512 @itemx -mlwp
25513 @opindex mlwp
25514 @need 200
25515 @itemx -m3dnow
25516 @opindex m3dnow
25517 @need 200
25518 @itemx -m3dnowa
25519 @opindex m3dnowa
25520 @need 200
25521 @itemx -mpopcnt
25522 @opindex mpopcnt
25523 @need 200
25524 @itemx -mabm
25525 @opindex mabm
25526 @need 200
25527 @itemx -mbmi
25528 @opindex mbmi
25529 @need 200
25530 @itemx -mbmi2
25531 @need 200
25532 @itemx -mlzcnt
25533 @opindex mlzcnt
25534 @need 200
25535 @itemx -mfxsr
25536 @opindex mfxsr
25537 @need 200
25538 @itemx -mxsave
25539 @opindex mxsave
25540 @need 200
25541 @itemx -mxsaveopt
25542 @opindex mxsaveopt
25543 @need 200
25544 @itemx -mxsavec
25545 @opindex mxsavec
25546 @need 200
25547 @itemx -mxsaves
25548 @opindex mxsaves
25549 @need 200
25550 @itemx -mrtm
25551 @opindex mrtm
25552 @need 200
25553 @itemx -mtbm
25554 @opindex mtbm
25555 @need 200
25556 @itemx -mmpx
25557 @opindex mmpx
25558 @need 200
25559 @itemx -mmwaitx
25560 @opindex mmwaitx
25561 @need 200
25562 @itemx -mclzero
25563 @opindex mclzero
25564 @itemx -mpku
25565 @opindex mpku
25566 These switches enable the use of instructions in the MMX, SSE,
25567 SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AVX512F, AVX512PF, AVX512ER, AVX512CD,
25568 SHA, AES, PCLMUL, FSGSBASE, RDRND, F16C, FMA, SSE4A, FMA4, XOP, LWP, ABM,
25569 AVX512VL, AVX512BW, AVX512DQ, AVX512IFMA AVX512VBMI, BMI, BMI2, FXSR,
25570 XSAVE, XSAVEOPT, LZCNT, RTM, MPX, MWAITX, PKU, 3DNow!@: or enhanced 3DNow!@:
25571 extended instruction sets. Each has a corresponding @option{-mno-} option
25572 to disable use of these instructions.
25573
25574 These extensions are also available as built-in functions: see
25575 @ref{x86 Built-in Functions}, for details of the functions enabled and
25576 disabled by these switches.
25577
25578 To generate SSE/SSE2 instructions automatically from floating-point
25579 code (as opposed to 387 instructions), see @option{-mfpmath=sse}.
25580
25581 GCC depresses SSEx instructions when @option{-mavx} is used. Instead, it
25582 generates new AVX instructions or AVX equivalence for all SSEx instructions
25583 when needed.
25584
25585 These options enable GCC to use these extended instructions in
25586 generated code, even without @option{-mfpmath=sse}. Applications that
25587 perform run-time CPU detection must compile separate files for each
25588 supported architecture, using the appropriate flags. In particular,
25589 the file containing the CPU detection code should be compiled without
25590 these options.
25591
25592 @item -mdump-tune-features
25593 @opindex mdump-tune-features
25594 This option instructs GCC to dump the names of the x86 performance
25595 tuning features and default settings. The names can be used in
25596 @option{-mtune-ctrl=@var{feature-list}}.
25597
25598 @item -mtune-ctrl=@var{feature-list}
25599 @opindex mtune-ctrl=@var{feature-list}
25600 This option is used to do fine grain control of x86 code generation features.
25601 @var{feature-list} is a comma separated list of @var{feature} names. See also
25602 @option{-mdump-tune-features}. When specified, the @var{feature} is turned
25603 on if it is not preceded with @samp{^}, otherwise, it is turned off.
25604 @option{-mtune-ctrl=@var{feature-list}} is intended to be used by GCC
25605 developers. Using it may lead to code paths not covered by testing and can
25606 potentially result in compiler ICEs or runtime errors.
25607
25608 @item -mno-default
25609 @opindex mno-default
25610 This option instructs GCC to turn off all tunable features. See also
25611 @option{-mtune-ctrl=@var{feature-list}} and @option{-mdump-tune-features}.
25612
25613 @item -mcld
25614 @opindex mcld
25615 This option instructs GCC to emit a @code{cld} instruction in the prologue
25616 of functions that use string instructions. String instructions depend on
25617 the DF flag to select between autoincrement or autodecrement mode. While the
25618 ABI specifies the DF flag to be cleared on function entry, some operating
25619 systems violate this specification by not clearing the DF flag in their
25620 exception dispatchers. The exception handler can be invoked with the DF flag
25621 set, which leads to wrong direction mode when string instructions are used.
25622 This option can be enabled by default on 32-bit x86 targets by configuring
25623 GCC with the @option{--enable-cld} configure option. Generation of @code{cld}
25624 instructions can be suppressed with the @option{-mno-cld} compiler option
25625 in this case.
25626
25627 @item -mvzeroupper
25628 @opindex mvzeroupper
25629 This option instructs GCC to emit a @code{vzeroupper} instruction
25630 before a transfer of control flow out of the function to minimize
25631 the AVX to SSE transition penalty as well as remove unnecessary @code{zeroupper}
25632 intrinsics.
25633
25634 @item -mprefer-avx128
25635 @opindex mprefer-avx128
25636 This option instructs GCC to use 128-bit AVX instructions instead of
25637 256-bit AVX instructions in the auto-vectorizer.
25638
25639 @item -mcx16
25640 @opindex mcx16
25641 This option enables GCC to generate @code{CMPXCHG16B} instructions in 64-bit
25642 code to implement compare-and-exchange operations on 16-byte aligned 128-bit
25643 objects. This is useful for atomic updates of data structures exceeding one
25644 machine word in size. The compiler uses this instruction to implement
25645 @ref{__sync Builtins}. However, for @ref{__atomic Builtins} operating on
25646 128-bit integers, a library call is always used.
25647
25648 @item -msahf
25649 @opindex msahf
25650 This option enables generation of @code{SAHF} instructions in 64-bit code.
25651 Early Intel Pentium 4 CPUs with Intel 64 support,
25652 prior to the introduction of Pentium 4 G1 step in December 2005,
25653 lacked the @code{LAHF} and @code{SAHF} instructions
25654 which are supported by AMD64.
25655 These are load and store instructions, respectively, for certain status flags.
25656 In 64-bit mode, the @code{SAHF} instruction is used to optimize @code{fmod},
25657 @code{drem}, and @code{remainder} built-in functions;
25658 see @ref{Other Builtins} for details.
25659
25660 @item -mmovbe
25661 @opindex mmovbe
25662 This option enables use of the @code{movbe} instruction to implement
25663 @code{__builtin_bswap32} and @code{__builtin_bswap64}.
25664
25665 @item -mcrc32
25666 @opindex mcrc32
25667 This option enables built-in functions @code{__builtin_ia32_crc32qi},
25668 @code{__builtin_ia32_crc32hi}, @code{__builtin_ia32_crc32si} and
25669 @code{__builtin_ia32_crc32di} to generate the @code{crc32} machine instruction.
25670
25671 @item -mrecip
25672 @opindex mrecip
25673 This option enables use of @code{RCPSS} and @code{RSQRTSS} instructions
25674 (and their vectorized variants @code{RCPPS} and @code{RSQRTPS})
25675 with an additional Newton-Raphson step
25676 to increase precision instead of @code{DIVSS} and @code{SQRTSS}
25677 (and their vectorized
25678 variants) for single-precision floating-point arguments. These instructions
25679 are generated only when @option{-funsafe-math-optimizations} is enabled
25680 together with @option{-ffinite-math-only} and @option{-fno-trapping-math}.
25681 Note that while the throughput of the sequence is higher than the throughput
25682 of the non-reciprocal instruction, the precision of the sequence can be
25683 decreased by up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994).
25684
25685 Note that GCC implements @code{1.0f/sqrtf(@var{x})} in terms of @code{RSQRTSS}
25686 (or @code{RSQRTPS}) already with @option{-ffast-math} (or the above option
25687 combination), and doesn't need @option{-mrecip}.
25688
25689 Also note that GCC emits the above sequence with additional Newton-Raphson step
25690 for vectorized single-float division and vectorized @code{sqrtf(@var{x})}
25691 already with @option{-ffast-math} (or the above option combination), and
25692 doesn't need @option{-mrecip}.
25693
25694 @item -mrecip=@var{opt}
25695 @opindex mrecip=opt
25696 This option controls which reciprocal estimate instructions
25697 may be used. @var{opt} is a comma-separated list of options, which may
25698 be preceded by a @samp{!} to invert the option:
25699
25700 @table @samp
25701 @item all
25702 Enable all estimate instructions.
25703
25704 @item default
25705 Enable the default instructions, equivalent to @option{-mrecip}.
25706
25707 @item none
25708 Disable all estimate instructions, equivalent to @option{-mno-recip}.
25709
25710 @item div
25711 Enable the approximation for scalar division.
25712
25713 @item vec-div
25714 Enable the approximation for vectorized division.
25715
25716 @item sqrt
25717 Enable the approximation for scalar square root.
25718
25719 @item vec-sqrt
25720 Enable the approximation for vectorized square root.
25721 @end table
25722
25723 So, for example, @option{-mrecip=all,!sqrt} enables
25724 all of the reciprocal approximations, except for square root.
25725
25726 @item -mveclibabi=@var{type}
25727 @opindex mveclibabi
25728 Specifies the ABI type to use for vectorizing intrinsics using an
25729 external library. Supported values for @var{type} are @samp{svml}
25730 for the Intel short
25731 vector math library and @samp{acml} for the AMD math core library.
25732 To use this option, both @option{-ftree-vectorize} and
25733 @option{-funsafe-math-optimizations} have to be enabled, and an SVML or ACML
25734 ABI-compatible library must be specified at link time.
25735
25736 GCC currently emits calls to @code{vmldExp2},
25737 @code{vmldLn2}, @code{vmldLog102}, @code{vmldLog102}, @code{vmldPow2},
25738 @code{vmldTanh2}, @code{vmldTan2}, @code{vmldAtan2}, @code{vmldAtanh2},
25739 @code{vmldCbrt2}, @code{vmldSinh2}, @code{vmldSin2}, @code{vmldAsinh2},
25740 @code{vmldAsin2}, @code{vmldCosh2}, @code{vmldCos2}, @code{vmldAcosh2},
25741 @code{vmldAcos2}, @code{vmlsExp4}, @code{vmlsLn4}, @code{vmlsLog104},
25742 @code{vmlsLog104}, @code{vmlsPow4}, @code{vmlsTanh4}, @code{vmlsTan4},
25743 @code{vmlsAtan4}, @code{vmlsAtanh4}, @code{vmlsCbrt4}, @code{vmlsSinh4},
25744 @code{vmlsSin4}, @code{vmlsAsinh4}, @code{vmlsAsin4}, @code{vmlsCosh4},
25745 @code{vmlsCos4}, @code{vmlsAcosh4} and @code{vmlsAcos4} for corresponding
25746 function type when @option{-mveclibabi=svml} is used, and @code{__vrd2_sin},
25747 @code{__vrd2_cos}, @code{__vrd2_exp}, @code{__vrd2_log}, @code{__vrd2_log2},
25748 @code{__vrd2_log10}, @code{__vrs4_sinf}, @code{__vrs4_cosf},
25749 @code{__vrs4_expf}, @code{__vrs4_logf}, @code{__vrs4_log2f},
25750 @code{__vrs4_log10f} and @code{__vrs4_powf} for the corresponding function type
25751 when @option{-mveclibabi=acml} is used.
25752
25753 @item -mabi=@var{name}
25754 @opindex mabi
25755 Generate code for the specified calling convention. Permissible values
25756 are @samp{sysv} for the ABI used on GNU/Linux and other systems, and
25757 @samp{ms} for the Microsoft ABI. The default is to use the Microsoft
25758 ABI when targeting Microsoft Windows and the SysV ABI on all other systems.
25759 You can control this behavior for specific functions by
25760 using the function attributes @code{ms_abi} and @code{sysv_abi}.
25761 @xref{Function Attributes}.
25762
25763 @item -mcall-ms2sysv-xlogues
25764 @opindex mcall-ms2sysv-xlogues
25765 @opindex mno-call-ms2sysv-xlogues
25766 Due to differences in 64-bit ABIs, any Microsoft ABI function that calls a
25767 System V ABI function must consider RSI, RDI and XMM6-15 as clobbered. By
25768 default, the code for saving and restoring these registers is emitted inline,
25769 resulting in fairly lengthy prologues and epilogues. Using
25770 @option{-mcall-ms2sysv-xlogues} emits prologues and epilogues that
25771 use stubs in the static portion of libgcc to perform these saves and restores,
25772 thus reducing function size at the cost of a few extra instructions.
25773
25774 @item -mtls-dialect=@var{type}
25775 @opindex mtls-dialect
25776 Generate code to access thread-local storage using the @samp{gnu} or
25777 @samp{gnu2} conventions. @samp{gnu} is the conservative default;
25778 @samp{gnu2} is more efficient, but it may add compile- and run-time
25779 requirements that cannot be satisfied on all systems.
25780
25781 @item -mpush-args
25782 @itemx -mno-push-args
25783 @opindex mpush-args
25784 @opindex mno-push-args
25785 Use PUSH operations to store outgoing parameters. This method is shorter
25786 and usually equally fast as method using SUB/MOV operations and is enabled
25787 by default. In some cases disabling it may improve performance because of
25788 improved scheduling and reduced dependencies.
25789
25790 @item -maccumulate-outgoing-args
25791 @opindex maccumulate-outgoing-args
25792 If enabled, the maximum amount of space required for outgoing arguments is
25793 computed in the function prologue. This is faster on most modern CPUs
25794 because of reduced dependencies, improved scheduling and reduced stack usage
25795 when the preferred stack boundary is not equal to 2. The drawback is a notable
25796 increase in code size. This switch implies @option{-mno-push-args}.
25797
25798 @item -mthreads
25799 @opindex mthreads
25800 Support thread-safe exception handling on MinGW. Programs that rely
25801 on thread-safe exception handling must compile and link all code with the
25802 @option{-mthreads} option. When compiling, @option{-mthreads} defines
25803 @option{-D_MT}; when linking, it links in a special thread helper library
25804 @option{-lmingwthrd} which cleans up per-thread exception-handling data.
25805
25806 @item -mms-bitfields
25807 @itemx -mno-ms-bitfields
25808 @opindex mms-bitfields
25809 @opindex mno-ms-bitfields
25810
25811 Enable/disable bit-field layout compatible with the native Microsoft
25812 Windows compiler.
25813
25814 If @code{packed} is used on a structure, or if bit-fields are used,
25815 it may be that the Microsoft ABI lays out the structure differently
25816 than the way GCC normally does. Particularly when moving packed
25817 data between functions compiled with GCC and the native Microsoft compiler
25818 (either via function call or as data in a file), it may be necessary to access
25819 either format.
25820
25821 This option is enabled by default for Microsoft Windows
25822 targets. This behavior can also be controlled locally by use of variable
25823 or type attributes. For more information, see @ref{x86 Variable Attributes}
25824 and @ref{x86 Type Attributes}.
25825
25826 The Microsoft structure layout algorithm is fairly simple with the exception
25827 of the bit-field packing.
25828 The padding and alignment of members of structures and whether a bit-field
25829 can straddle a storage-unit boundary are determine by these rules:
25830
25831 @enumerate
25832 @item Structure members are stored sequentially in the order in which they are
25833 declared: the first member has the lowest memory address and the last member
25834 the highest.
25835
25836 @item Every data object has an alignment requirement. The alignment requirement
25837 for all data except structures, unions, and arrays is either the size of the
25838 object or the current packing size (specified with either the
25839 @code{aligned} attribute or the @code{pack} pragma),
25840 whichever is less. For structures, unions, and arrays,
25841 the alignment requirement is the largest alignment requirement of its members.
25842 Every object is allocated an offset so that:
25843
25844 @smallexample
25845 offset % alignment_requirement == 0
25846 @end smallexample
25847
25848 @item Adjacent bit-fields are packed into the same 1-, 2-, or 4-byte allocation
25849 unit if the integral types are the same size and if the next bit-field fits
25850 into the current allocation unit without crossing the boundary imposed by the
25851 common alignment requirements of the bit-fields.
25852 @end enumerate
25853
25854 MSVC interprets zero-length bit-fields in the following ways:
25855
25856 @enumerate
25857 @item If a zero-length bit-field is inserted between two bit-fields that
25858 are normally coalesced, the bit-fields are not coalesced.
25859
25860 For example:
25861
25862 @smallexample
25863 struct
25864 @{
25865 unsigned long bf_1 : 12;
25866 unsigned long : 0;
25867 unsigned long bf_2 : 12;
25868 @} t1;
25869 @end smallexample
25870
25871 @noindent
25872 The size of @code{t1} is 8 bytes with the zero-length bit-field. If the
25873 zero-length bit-field were removed, @code{t1}'s size would be 4 bytes.
25874
25875 @item If a zero-length bit-field is inserted after a bit-field, @code{foo}, and the
25876 alignment of the zero-length bit-field is greater than the member that follows it,
25877 @code{bar}, @code{bar} is aligned as the type of the zero-length bit-field.
25878
25879 For example:
25880
25881 @smallexample
25882 struct
25883 @{
25884 char foo : 4;
25885 short : 0;
25886 char bar;
25887 @} t2;
25888
25889 struct
25890 @{
25891 char foo : 4;
25892 short : 0;
25893 double bar;
25894 @} t3;
25895 @end smallexample
25896
25897 @noindent
25898 For @code{t2}, @code{bar} is placed at offset 2, rather than offset 1.
25899 Accordingly, the size of @code{t2} is 4. For @code{t3}, the zero-length
25900 bit-field does not affect the alignment of @code{bar} or, as a result, the size
25901 of the structure.
25902
25903 Taking this into account, it is important to note the following:
25904
25905 @enumerate
25906 @item If a zero-length bit-field follows a normal bit-field, the type of the
25907 zero-length bit-field may affect the alignment of the structure as whole. For
25908 example, @code{t2} has a size of 4 bytes, since the zero-length bit-field follows a
25909 normal bit-field, and is of type short.
25910
25911 @item Even if a zero-length bit-field is not followed by a normal bit-field, it may
25912 still affect the alignment of the structure:
25913
25914 @smallexample
25915 struct
25916 @{
25917 char foo : 6;
25918 long : 0;
25919 @} t4;
25920 @end smallexample
25921
25922 @noindent
25923 Here, @code{t4} takes up 4 bytes.
25924 @end enumerate
25925
25926 @item Zero-length bit-fields following non-bit-field members are ignored:
25927
25928 @smallexample
25929 struct
25930 @{
25931 char foo;
25932 long : 0;
25933 char bar;
25934 @} t5;
25935 @end smallexample
25936
25937 @noindent
25938 Here, @code{t5} takes up 2 bytes.
25939 @end enumerate
25940
25941
25942 @item -mno-align-stringops
25943 @opindex mno-align-stringops
25944 Do not align the destination of inlined string operations. This switch reduces
25945 code size and improves performance in case the destination is already aligned,
25946 but GCC doesn't know about it.
25947
25948 @item -minline-all-stringops
25949 @opindex minline-all-stringops
25950 By default GCC inlines string operations only when the destination is
25951 known to be aligned to least a 4-byte boundary.
25952 This enables more inlining and increases code
25953 size, but may improve performance of code that depends on fast
25954 @code{memcpy}, @code{strlen},
25955 and @code{memset} for short lengths.
25956
25957 @item -minline-stringops-dynamically
25958 @opindex minline-stringops-dynamically
25959 For string operations of unknown size, use run-time checks with
25960 inline code for small blocks and a library call for large blocks.
25961
25962 @item -mstringop-strategy=@var{alg}
25963 @opindex mstringop-strategy=@var{alg}
25964 Override the internal decision heuristic for the particular algorithm to use
25965 for inlining string operations. The allowed values for @var{alg} are:
25966
25967 @table @samp
25968 @item rep_byte
25969 @itemx rep_4byte
25970 @itemx rep_8byte
25971 Expand using i386 @code{rep} prefix of the specified size.
25972
25973 @item byte_loop
25974 @itemx loop
25975 @itemx unrolled_loop
25976 Expand into an inline loop.
25977
25978 @item libcall
25979 Always use a library call.
25980 @end table
25981
25982 @item -mmemcpy-strategy=@var{strategy}
25983 @opindex mmemcpy-strategy=@var{strategy}
25984 Override the internal decision heuristic to decide if @code{__builtin_memcpy}
25985 should be inlined and what inline algorithm to use when the expected size
25986 of the copy operation is known. @var{strategy}
25987 is a comma-separated list of @var{alg}:@var{max_size}:@var{dest_align} triplets.
25988 @var{alg} is specified in @option{-mstringop-strategy}, @var{max_size} specifies
25989 the max byte size with which inline algorithm @var{alg} is allowed. For the last
25990 triplet, the @var{max_size} must be @code{-1}. The @var{max_size} of the triplets
25991 in the list must be specified in increasing order. The minimal byte size for
25992 @var{alg} is @code{0} for the first triplet and @code{@var{max_size} + 1} of the
25993 preceding range.
25994
25995 @item -mmemset-strategy=@var{strategy}
25996 @opindex mmemset-strategy=@var{strategy}
25997 The option is similar to @option{-mmemcpy-strategy=} except that it is to control
25998 @code{__builtin_memset} expansion.
25999
26000 @item -momit-leaf-frame-pointer
26001 @opindex momit-leaf-frame-pointer
26002 Don't keep the frame pointer in a register for leaf functions. This
26003 avoids the instructions to save, set up, and restore frame pointers and
26004 makes an extra register available in leaf functions. The option
26005 @option{-fomit-leaf-frame-pointer} removes the frame pointer for leaf functions,
26006 which might make debugging harder.
26007
26008 @item -mtls-direct-seg-refs
26009 @itemx -mno-tls-direct-seg-refs
26010 @opindex mtls-direct-seg-refs
26011 Controls whether TLS variables may be accessed with offsets from the
26012 TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
26013 or whether the thread base pointer must be added. Whether or not this
26014 is valid depends on the operating system, and whether it maps the
26015 segment to cover the entire TLS area.
26016
26017 For systems that use the GNU C Library, the default is on.
26018
26019 @item -msse2avx
26020 @itemx -mno-sse2avx
26021 @opindex msse2avx
26022 Specify that the assembler should encode SSE instructions with VEX
26023 prefix. The option @option{-mavx} turns this on by default.
26024
26025 @item -mfentry
26026 @itemx -mno-fentry
26027 @opindex mfentry
26028 If profiling is active (@option{-pg}), put the profiling
26029 counter call before the prologue.
26030 Note: On x86 architectures the attribute @code{ms_hook_prologue}
26031 isn't possible at the moment for @option{-mfentry} and @option{-pg}.
26032
26033 @item -mrecord-mcount
26034 @itemx -mno-record-mcount
26035 @opindex mrecord-mcount
26036 If profiling is active (@option{-pg}), generate a __mcount_loc section
26037 that contains pointers to each profiling call. This is useful for
26038 automatically patching and out calls.
26039
26040 @item -mnop-mcount
26041 @itemx -mno-nop-mcount
26042 @opindex mnop-mcount
26043 If profiling is active (@option{-pg}), generate the calls to
26044 the profiling functions as NOPs. This is useful when they
26045 should be patched in later dynamically. This is likely only
26046 useful together with @option{-mrecord-mcount}.
26047
26048 @item -mskip-rax-setup
26049 @itemx -mno-skip-rax-setup
26050 @opindex mskip-rax-setup
26051 When generating code for the x86-64 architecture with SSE extensions
26052 disabled, @option{-mskip-rax-setup} can be used to skip setting up RAX
26053 register when there are no variable arguments passed in vector registers.
26054
26055 @strong{Warning:} Since RAX register is used to avoid unnecessarily
26056 saving vector registers on stack when passing variable arguments, the
26057 impacts of this option are callees may waste some stack space,
26058 misbehave or jump to a random location. GCC 4.4 or newer don't have
26059 those issues, regardless the RAX register value.
26060
26061 @item -m8bit-idiv
26062 @itemx -mno-8bit-idiv
26063 @opindex m8bit-idiv
26064 On some processors, like Intel Atom, 8-bit unsigned integer divide is
26065 much faster than 32-bit/64-bit integer divide. This option generates a
26066 run-time check. If both dividend and divisor are within range of 0
26067 to 255, 8-bit unsigned integer divide is used instead of
26068 32-bit/64-bit integer divide.
26069
26070 @item -mavx256-split-unaligned-load
26071 @itemx -mavx256-split-unaligned-store
26072 @opindex mavx256-split-unaligned-load
26073 @opindex mavx256-split-unaligned-store
26074 Split 32-byte AVX unaligned load and store.
26075
26076 @item -mstack-protector-guard=@var{guard}
26077 @opindex mstack-protector-guard=@var{guard}
26078 Generate stack protection code using canary at @var{guard}. Supported
26079 locations are @samp{global} for global canary or @samp{tls} for per-thread
26080 canary in the TLS block (the default). This option has effect only when
26081 @option{-fstack-protector} or @option{-fstack-protector-all} is specified.
26082
26083 @item -mmitigate-rop
26084 @opindex mmitigate-rop
26085 Try to avoid generating code sequences that contain unintended return
26086 opcodes, to mitigate against certain forms of attack. At the moment,
26087 this option is limited in what it can do and should not be relied
26088 on to provide serious protection.
26089
26090 @item -mgeneral-regs-only
26091 @opindex mgeneral-regs-only
26092 Generate code that uses only the general-purpose registers. This
26093 prevents the compiler from using floating-point, vector, mask and bound
26094 registers.
26095
26096 @end table
26097
26098 These @samp{-m} switches are supported in addition to the above
26099 on x86-64 processors in 64-bit environments.
26100
26101 @table @gcctabopt
26102 @item -m32
26103 @itemx -m64
26104 @itemx -mx32
26105 @itemx -m16
26106 @itemx -miamcu
26107 @opindex m32
26108 @opindex m64
26109 @opindex mx32
26110 @opindex m16
26111 @opindex miamcu
26112 Generate code for a 16-bit, 32-bit or 64-bit environment.
26113 The @option{-m32} option sets @code{int}, @code{long}, and pointer types
26114 to 32 bits, and
26115 generates code that runs on any i386 system.
26116
26117 The @option{-m64} option sets @code{int} to 32 bits and @code{long} and pointer
26118 types to 64 bits, and generates code for the x86-64 architecture.
26119 For Darwin only the @option{-m64} option also turns off the @option{-fno-pic}
26120 and @option{-mdynamic-no-pic} options.
26121
26122 The @option{-mx32} option sets @code{int}, @code{long}, and pointer types
26123 to 32 bits, and
26124 generates code for the x86-64 architecture.
26125
26126 The @option{-m16} option is the same as @option{-m32}, except for that
26127 it outputs the @code{.code16gcc} assembly directive at the beginning of
26128 the assembly output so that the binary can run in 16-bit mode.
26129
26130 The @option{-miamcu} option generates code which conforms to Intel MCU
26131 psABI. It requires the @option{-m32} option to be turned on.
26132
26133 @item -mno-red-zone
26134 @opindex mno-red-zone
26135 Do not use a so-called ``red zone'' for x86-64 code. The red zone is mandated
26136 by the x86-64 ABI; it is a 128-byte area beyond the location of the
26137 stack pointer that is not modified by signal or interrupt handlers
26138 and therefore can be used for temporary data without adjusting the stack
26139 pointer. The flag @option{-mno-red-zone} disables this red zone.
26140
26141 @item -mcmodel=small
26142 @opindex mcmodel=small
26143 Generate code for the small code model: the program and its symbols must
26144 be linked in the lower 2 GB of the address space. Pointers are 64 bits.
26145 Programs can be statically or dynamically linked. This is the default
26146 code model.
26147
26148 @item -mcmodel=kernel
26149 @opindex mcmodel=kernel
26150 Generate code for the kernel code model. The kernel runs in the
26151 negative 2 GB of the address space.
26152 This model has to be used for Linux kernel code.
26153
26154 @item -mcmodel=medium
26155 @opindex mcmodel=medium
26156 Generate code for the medium model: the program is linked in the lower 2
26157 GB of the address space. Small symbols are also placed there. Symbols
26158 with sizes larger than @option{-mlarge-data-threshold} are put into
26159 large data or BSS sections and can be located above 2GB. Programs can
26160 be statically or dynamically linked.
26161
26162 @item -mcmodel=large
26163 @opindex mcmodel=large
26164 Generate code for the large model. This model makes no assumptions
26165 about addresses and sizes of sections.
26166
26167 @item -maddress-mode=long
26168 @opindex maddress-mode=long
26169 Generate code for long address mode. This is only supported for 64-bit
26170 and x32 environments. It is the default address mode for 64-bit
26171 environments.
26172
26173 @item -maddress-mode=short
26174 @opindex maddress-mode=short
26175 Generate code for short address mode. This is only supported for 32-bit
26176 and x32 environments. It is the default address mode for 32-bit and
26177 x32 environments.
26178 @end table
26179
26180 @node x86 Windows Options
26181 @subsection x86 Windows Options
26182 @cindex x86 Windows Options
26183 @cindex Windows Options for x86
26184
26185 These additional options are available for Microsoft Windows targets:
26186
26187 @table @gcctabopt
26188 @item -mconsole
26189 @opindex mconsole
26190 This option
26191 specifies that a console application is to be generated, by
26192 instructing the linker to set the PE header subsystem type
26193 required for console applications.
26194 This option is available for Cygwin and MinGW targets and is
26195 enabled by default on those targets.
26196
26197 @item -mdll
26198 @opindex mdll
26199 This option is available for Cygwin and MinGW targets. It
26200 specifies that a DLL---a dynamic link library---is to be
26201 generated, enabling the selection of the required runtime
26202 startup object and entry point.
26203
26204 @item -mnop-fun-dllimport
26205 @opindex mnop-fun-dllimport
26206 This option is available for Cygwin and MinGW targets. It
26207 specifies that the @code{dllimport} attribute should be ignored.
26208
26209 @item -mthread
26210 @opindex mthread
26211 This option is available for MinGW targets. It specifies
26212 that MinGW-specific thread support is to be used.
26213
26214 @item -municode
26215 @opindex municode
26216 This option is available for MinGW-w64 targets. It causes
26217 the @code{UNICODE} preprocessor macro to be predefined, and
26218 chooses Unicode-capable runtime startup code.
26219
26220 @item -mwin32
26221 @opindex mwin32
26222 This option is available for Cygwin and MinGW targets. It
26223 specifies that the typical Microsoft Windows predefined macros are to
26224 be set in the pre-processor, but does not influence the choice
26225 of runtime library/startup code.
26226
26227 @item -mwindows
26228 @opindex mwindows
26229 This option is available for Cygwin and MinGW targets. It
26230 specifies that a GUI application is to be generated by
26231 instructing the linker to set the PE header subsystem type
26232 appropriately.
26233
26234 @item -fno-set-stack-executable
26235 @opindex fno-set-stack-executable
26236 This option is available for MinGW targets. It specifies that
26237 the executable flag for the stack used by nested functions isn't
26238 set. This is necessary for binaries running in kernel mode of
26239 Microsoft Windows, as there the User32 API, which is used to set executable
26240 privileges, isn't available.
26241
26242 @item -fwritable-relocated-rdata
26243 @opindex fno-writable-relocated-rdata
26244 This option is available for MinGW and Cygwin targets. It specifies
26245 that relocated-data in read-only section is put into the @code{.data}
26246 section. This is a necessary for older runtimes not supporting
26247 modification of @code{.rdata} sections for pseudo-relocation.
26248
26249 @item -mpe-aligned-commons
26250 @opindex mpe-aligned-commons
26251 This option is available for Cygwin and MinGW targets. It
26252 specifies that the GNU extension to the PE file format that
26253 permits the correct alignment of COMMON variables should be
26254 used when generating code. It is enabled by default if
26255 GCC detects that the target assembler found during configuration
26256 supports the feature.
26257 @end table
26258
26259 See also under @ref{x86 Options} for standard options.
26260
26261 @node Xstormy16 Options
26262 @subsection Xstormy16 Options
26263 @cindex Xstormy16 Options
26264
26265 These options are defined for Xstormy16:
26266
26267 @table @gcctabopt
26268 @item -msim
26269 @opindex msim
26270 Choose startup files and linker script suitable for the simulator.
26271 @end table
26272
26273 @node Xtensa Options
26274 @subsection Xtensa Options
26275 @cindex Xtensa Options
26276
26277 These options are supported for Xtensa targets:
26278
26279 @table @gcctabopt
26280 @item -mconst16
26281 @itemx -mno-const16
26282 @opindex mconst16
26283 @opindex mno-const16
26284 Enable or disable use of @code{CONST16} instructions for loading
26285 constant values. The @code{CONST16} instruction is currently not a
26286 standard option from Tensilica. When enabled, @code{CONST16}
26287 instructions are always used in place of the standard @code{L32R}
26288 instructions. The use of @code{CONST16} is enabled by default only if
26289 the @code{L32R} instruction is not available.
26290
26291 @item -mfused-madd
26292 @itemx -mno-fused-madd
26293 @opindex mfused-madd
26294 @opindex mno-fused-madd
26295 Enable or disable use of fused multiply/add and multiply/subtract
26296 instructions in the floating-point option. This has no effect if the
26297 floating-point option is not also enabled. Disabling fused multiply/add
26298 and multiply/subtract instructions forces the compiler to use separate
26299 instructions for the multiply and add/subtract operations. This may be
26300 desirable in some cases where strict IEEE 754-compliant results are
26301 required: the fused multiply add/subtract instructions do not round the
26302 intermediate result, thereby producing results with @emph{more} bits of
26303 precision than specified by the IEEE standard. Disabling fused multiply
26304 add/subtract instructions also ensures that the program output is not
26305 sensitive to the compiler's ability to combine multiply and add/subtract
26306 operations.
26307
26308 @item -mserialize-volatile
26309 @itemx -mno-serialize-volatile
26310 @opindex mserialize-volatile
26311 @opindex mno-serialize-volatile
26312 When this option is enabled, GCC inserts @code{MEMW} instructions before
26313 @code{volatile} memory references to guarantee sequential consistency.
26314 The default is @option{-mserialize-volatile}. Use
26315 @option{-mno-serialize-volatile} to omit the @code{MEMW} instructions.
26316
26317 @item -mforce-no-pic
26318 @opindex mforce-no-pic
26319 For targets, like GNU/Linux, where all user-mode Xtensa code must be
26320 position-independent code (PIC), this option disables PIC for compiling
26321 kernel code.
26322
26323 @item -mtext-section-literals
26324 @itemx -mno-text-section-literals
26325 @opindex mtext-section-literals
26326 @opindex mno-text-section-literals
26327 These options control the treatment of literal pools. The default is
26328 @option{-mno-text-section-literals}, which places literals in a separate
26329 section in the output file. This allows the literal pool to be placed
26330 in a data RAM/ROM, and it also allows the linker to combine literal
26331 pools from separate object files to remove redundant literals and
26332 improve code size. With @option{-mtext-section-literals}, the literals
26333 are interspersed in the text section in order to keep them as close as
26334 possible to their references. This may be necessary for large assembly
26335 files. Literals for each function are placed right before that function.
26336
26337 @item -mauto-litpools
26338 @itemx -mno-auto-litpools
26339 @opindex mauto-litpools
26340 @opindex mno-auto-litpools
26341 These options control the treatment of literal pools. The default is
26342 @option{-mno-auto-litpools}, which places literals in a separate
26343 section in the output file unless @option{-mtext-section-literals} is
26344 used. With @option{-mauto-litpools} the literals are interspersed in
26345 the text section by the assembler. Compiler does not produce explicit
26346 @code{.literal} directives and loads literals into registers with
26347 @code{MOVI} instructions instead of @code{L32R} to let the assembler
26348 do relaxation and place literals as necessary. This option allows
26349 assembler to create several literal pools per function and assemble
26350 very big functions, which may not be possible with
26351 @option{-mtext-section-literals}.
26352
26353 @item -mtarget-align
26354 @itemx -mno-target-align
26355 @opindex mtarget-align
26356 @opindex mno-target-align
26357 When this option is enabled, GCC instructs the assembler to
26358 automatically align instructions to reduce branch penalties at the
26359 expense of some code density. The assembler attempts to widen density
26360 instructions to align branch targets and the instructions following call
26361 instructions. If there are not enough preceding safe density
26362 instructions to align a target, no widening is performed. The
26363 default is @option{-mtarget-align}. These options do not affect the
26364 treatment of auto-aligned instructions like @code{LOOP}, which the
26365 assembler always aligns, either by widening density instructions or
26366 by inserting NOP instructions.
26367
26368 @item -mlongcalls
26369 @itemx -mno-longcalls
26370 @opindex mlongcalls
26371 @opindex mno-longcalls
26372 When this option is enabled, GCC instructs the assembler to translate
26373 direct calls to indirect calls unless it can determine that the target
26374 of a direct call is in the range allowed by the call instruction. This
26375 translation typically occurs for calls to functions in other source
26376 files. Specifically, the assembler translates a direct @code{CALL}
26377 instruction into an @code{L32R} followed by a @code{CALLX} instruction.
26378 The default is @option{-mno-longcalls}. This option should be used in
26379 programs where the call target can potentially be out of range. This
26380 option is implemented in the assembler, not the compiler, so the
26381 assembly code generated by GCC still shows direct call
26382 instructions---look at the disassembled object code to see the actual
26383 instructions. Note that the assembler uses an indirect call for
26384 every cross-file call, not just those that really are out of range.
26385 @end table
26386
26387 @node zSeries Options
26388 @subsection zSeries Options
26389 @cindex zSeries options
26390
26391 These are listed under @xref{S/390 and zSeries Options}.
26392
26393
26394 @c man end
26395
26396 @node Spec Files
26397 @section Specifying Subprocesses and the Switches to Pass to Them
26398 @cindex Spec Files
26399
26400 @command{gcc} is a driver program. It performs its job by invoking a
26401 sequence of other programs to do the work of compiling, assembling and
26402 linking. GCC interprets its command-line parameters and uses these to
26403 deduce which programs it should invoke, and which command-line options
26404 it ought to place on their command lines. This behavior is controlled
26405 by @dfn{spec strings}. In most cases there is one spec string for each
26406 program that GCC can invoke, but a few programs have multiple spec
26407 strings to control their behavior. The spec strings built into GCC can
26408 be overridden by using the @option{-specs=} command-line switch to specify
26409 a spec file.
26410
26411 @dfn{Spec files} are plain-text files that are used to construct spec
26412 strings. They consist of a sequence of directives separated by blank
26413 lines. The type of directive is determined by the first non-whitespace
26414 character on the line, which can be one of the following:
26415
26416 @table @code
26417 @item %@var{command}
26418 Issues a @var{command} to the spec file processor. The commands that can
26419 appear here are:
26420
26421 @table @code
26422 @item %include <@var{file}>
26423 @cindex @code{%include}
26424 Search for @var{file} and insert its text at the current point in the
26425 specs file.
26426
26427 @item %include_noerr <@var{file}>
26428 @cindex @code{%include_noerr}
26429 Just like @samp{%include}, but do not generate an error message if the include
26430 file cannot be found.
26431
26432 @item %rename @var{old_name} @var{new_name}
26433 @cindex @code{%rename}
26434 Rename the spec string @var{old_name} to @var{new_name}.
26435
26436 @end table
26437
26438 @item *[@var{spec_name}]:
26439 This tells the compiler to create, override or delete the named spec
26440 string. All lines after this directive up to the next directive or
26441 blank line are considered to be the text for the spec string. If this
26442 results in an empty string then the spec is deleted. (Or, if the
26443 spec did not exist, then nothing happens.) Otherwise, if the spec
26444 does not currently exist a new spec is created. If the spec does
26445 exist then its contents are overridden by the text of this
26446 directive, unless the first character of that text is the @samp{+}
26447 character, in which case the text is appended to the spec.
26448
26449 @item [@var{suffix}]:
26450 Creates a new @samp{[@var{suffix}] spec} pair. All lines after this directive
26451 and up to the next directive or blank line are considered to make up the
26452 spec string for the indicated suffix. When the compiler encounters an
26453 input file with the named suffix, it processes the spec string in
26454 order to work out how to compile that file. For example:
26455
26456 @smallexample
26457 .ZZ:
26458 z-compile -input %i
26459 @end smallexample
26460
26461 This says that any input file whose name ends in @samp{.ZZ} should be
26462 passed to the program @samp{z-compile}, which should be invoked with the
26463 command-line switch @option{-input} and with the result of performing the
26464 @samp{%i} substitution. (See below.)
26465
26466 As an alternative to providing a spec string, the text following a
26467 suffix directive can be one of the following:
26468
26469 @table @code
26470 @item @@@var{language}
26471 This says that the suffix is an alias for a known @var{language}. This is
26472 similar to using the @option{-x} command-line switch to GCC to specify a
26473 language explicitly. For example:
26474
26475 @smallexample
26476 .ZZ:
26477 @@c++
26478 @end smallexample
26479
26480 Says that .ZZ files are, in fact, C++ source files.
26481
26482 @item #@var{name}
26483 This causes an error messages saying:
26484
26485 @smallexample
26486 @var{name} compiler not installed on this system.
26487 @end smallexample
26488 @end table
26489
26490 GCC already has an extensive list of suffixes built into it.
26491 This directive adds an entry to the end of the list of suffixes, but
26492 since the list is searched from the end backwards, it is effectively
26493 possible to override earlier entries using this technique.
26494
26495 @end table
26496
26497 GCC has the following spec strings built into it. Spec files can
26498 override these strings or create their own. Note that individual
26499 targets can also add their own spec strings to this list.
26500
26501 @smallexample
26502 asm Options to pass to the assembler
26503 asm_final Options to pass to the assembler post-processor
26504 cpp Options to pass to the C preprocessor
26505 cc1 Options to pass to the C compiler
26506 cc1plus Options to pass to the C++ compiler
26507 endfile Object files to include at the end of the link
26508 link Options to pass to the linker
26509 lib Libraries to include on the command line to the linker
26510 libgcc Decides which GCC support library to pass to the linker
26511 linker Sets the name of the linker
26512 predefines Defines to be passed to the C preprocessor
26513 signed_char Defines to pass to CPP to say whether @code{char} is signed
26514 by default
26515 startfile Object files to include at the start of the link
26516 @end smallexample
26517
26518 Here is a small example of a spec file:
26519
26520 @smallexample
26521 %rename lib old_lib
26522
26523 *lib:
26524 --start-group -lgcc -lc -leval1 --end-group %(old_lib)
26525 @end smallexample
26526
26527 This example renames the spec called @samp{lib} to @samp{old_lib} and
26528 then overrides the previous definition of @samp{lib} with a new one.
26529 The new definition adds in some extra command-line options before
26530 including the text of the old definition.
26531
26532 @dfn{Spec strings} are a list of command-line options to be passed to their
26533 corresponding program. In addition, the spec strings can contain
26534 @samp{%}-prefixed sequences to substitute variable text or to
26535 conditionally insert text into the command line. Using these constructs
26536 it is possible to generate quite complex command lines.
26537
26538 Here is a table of all defined @samp{%}-sequences for spec
26539 strings. Note that spaces are not generated automatically around the
26540 results of expanding these sequences. Therefore you can concatenate them
26541 together or combine them with constant text in a single argument.
26542
26543 @table @code
26544 @item %%
26545 Substitute one @samp{%} into the program name or argument.
26546
26547 @item %i
26548 Substitute the name of the input file being processed.
26549
26550 @item %b
26551 Substitute the basename of the input file being processed.
26552 This is the substring up to (and not including) the last period
26553 and not including the directory.
26554
26555 @item %B
26556 This is the same as @samp{%b}, but include the file suffix (text after
26557 the last period).
26558
26559 @item %d
26560 Marks the argument containing or following the @samp{%d} as a
26561 temporary file name, so that that file is deleted if GCC exits
26562 successfully. Unlike @samp{%g}, this contributes no text to the
26563 argument.
26564
26565 @item %g@var{suffix}
26566 Substitute a file name that has suffix @var{suffix} and is chosen
26567 once per compilation, and mark the argument in the same way as
26568 @samp{%d}. To reduce exposure to denial-of-service attacks, the file
26569 name is now chosen in a way that is hard to predict even when previously
26570 chosen file names are known. For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
26571 might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}. @var{suffix} matches
26572 the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
26573 treated exactly as if @samp{%O} had been preprocessed. Previously, @samp{%g}
26574 was simply substituted with a file name chosen once per compilation,
26575 without regard to any appended suffix (which was therefore treated
26576 just like ordinary text), making such attacks more likely to succeed.
26577
26578 @item %u@var{suffix}
26579 Like @samp{%g}, but generates a new temporary file name
26580 each time it appears instead of once per compilation.
26581
26582 @item %U@var{suffix}
26583 Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
26584 new one if there is no such last file name. In the absence of any
26585 @samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
26586 the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s}
26587 involves the generation of two distinct file names, one
26588 for each @samp{%g.s} and another for each @samp{%U.s}. Previously, @samp{%U} was
26589 simply substituted with a file name chosen for the previous @samp{%u},
26590 without regard to any appended suffix.
26591
26592 @item %j@var{suffix}
26593 Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
26594 writable, and if @option{-save-temps} is not used;
26595 otherwise, substitute the name
26596 of a temporary file, just like @samp{%u}. This temporary file is not
26597 meant for communication between processes, but rather as a junk
26598 disposal mechanism.
26599
26600 @item %|@var{suffix}
26601 @itemx %m@var{suffix}
26602 Like @samp{%g}, except if @option{-pipe} is in effect. In that case
26603 @samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
26604 all. These are the two most common ways to instruct a program that it
26605 should read from standard input or write to standard output. If you
26606 need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
26607 construct: see for example @file{f/lang-specs.h}.
26608
26609 @item %.@var{SUFFIX}
26610 Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args
26611 when it is subsequently output with @samp{%*}. @var{SUFFIX} is
26612 terminated by the next space or %.
26613
26614 @item %w
26615 Marks the argument containing or following the @samp{%w} as the
26616 designated output file of this compilation. This puts the argument
26617 into the sequence of arguments that @samp{%o} substitutes.
26618
26619 @item %o
26620 Substitutes the names of all the output files, with spaces
26621 automatically placed around them. You should write spaces
26622 around the @samp{%o} as well or the results are undefined.
26623 @samp{%o} is for use in the specs for running the linker.
26624 Input files whose names have no recognized suffix are not compiled
26625 at all, but they are included among the output files, so they are
26626 linked.
26627
26628 @item %O
26629 Substitutes the suffix for object files. Note that this is
26630 handled specially when it immediately follows @samp{%g, %u, or %U},
26631 because of the need for those to form complete file names. The
26632 handling is such that @samp{%O} is treated exactly as if it had already
26633 been substituted, except that @samp{%g, %u, and %U} do not currently
26634 support additional @var{suffix} characters following @samp{%O} as they do
26635 following, for example, @samp{.o}.
26636
26637 @item %p
26638 Substitutes the standard macro predefinitions for the
26639 current target machine. Use this when running @command{cpp}.
26640
26641 @item %P
26642 Like @samp{%p}, but puts @samp{__} before and after the name of each
26643 predefined macro, except for macros that start with @samp{__} or with
26644 @samp{_@var{L}}, where @var{L} is an uppercase letter. This is for ISO
26645 C@.
26646
26647 @item %I
26648 Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
26649 @option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}),
26650 @option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
26651 and @option{-imultilib} as necessary.
26652
26653 @item %s
26654 Current argument is the name of a library or startup file of some sort.
26655 Search for that file in a standard list of directories and substitute
26656 the full name found. The current working directory is included in the
26657 list of directories scanned.
26658
26659 @item %T
26660 Current argument is the name of a linker script. Search for that file
26661 in the current list of directories to scan for libraries. If the file
26662 is located insert a @option{--script} option into the command line
26663 followed by the full path name found. If the file is not found then
26664 generate an error message. Note: the current working directory is not
26665 searched.
26666
26667 @item %e@var{str}
26668 Print @var{str} as an error message. @var{str} is terminated by a newline.
26669 Use this when inconsistent options are detected.
26670
26671 @item %(@var{name})
26672 Substitute the contents of spec string @var{name} at this point.
26673
26674 @item %x@{@var{option}@}
26675 Accumulate an option for @samp{%X}.
26676
26677 @item %X
26678 Output the accumulated linker options specified by @option{-Wl} or a @samp{%x}
26679 spec string.
26680
26681 @item %Y
26682 Output the accumulated assembler options specified by @option{-Wa}.
26683
26684 @item %Z
26685 Output the accumulated preprocessor options specified by @option{-Wp}.
26686
26687 @item %a
26688 Process the @code{asm} spec. This is used to compute the
26689 switches to be passed to the assembler.
26690
26691 @item %A
26692 Process the @code{asm_final} spec. This is a spec string for
26693 passing switches to an assembler post-processor, if such a program is
26694 needed.
26695
26696 @item %l
26697 Process the @code{link} spec. This is the spec for computing the
26698 command line passed to the linker. Typically it makes use of the
26699 @samp{%L %G %S %D and %E} sequences.
26700
26701 @item %D
26702 Dump out a @option{-L} option for each directory that GCC believes might
26703 contain startup files. If the target supports multilibs then the
26704 current multilib directory is prepended to each of these paths.
26705
26706 @item %L
26707 Process the @code{lib} spec. This is a spec string for deciding which
26708 libraries are included on the command line to the linker.
26709
26710 @item %G
26711 Process the @code{libgcc} spec. This is a spec string for deciding
26712 which GCC support library is included on the command line to the linker.
26713
26714 @item %S
26715 Process the @code{startfile} spec. This is a spec for deciding which
26716 object files are the first ones passed to the linker. Typically
26717 this might be a file named @file{crt0.o}.
26718
26719 @item %E
26720 Process the @code{endfile} spec. This is a spec string that specifies
26721 the last object files that are passed to the linker.
26722
26723 @item %C
26724 Process the @code{cpp} spec. This is used to construct the arguments
26725 to be passed to the C preprocessor.
26726
26727 @item %1
26728 Process the @code{cc1} spec. This is used to construct the options to be
26729 passed to the actual C compiler (@command{cc1}).
26730
26731 @item %2
26732 Process the @code{cc1plus} spec. This is used to construct the options to be
26733 passed to the actual C++ compiler (@command{cc1plus}).
26734
26735 @item %*
26736 Substitute the variable part of a matched option. See below.
26737 Note that each comma in the substituted string is replaced by
26738 a single space.
26739
26740 @item %<S
26741 Remove all occurrences of @code{-S} from the command line. Note---this
26742 command is position dependent. @samp{%} commands in the spec string
26743 before this one see @code{-S}, @samp{%} commands in the spec string
26744 after this one do not.
26745
26746 @item %:@var{function}(@var{args})
26747 Call the named function @var{function}, passing it @var{args}.
26748 @var{args} is first processed as a nested spec string, then split
26749 into an argument vector in the usual fashion. The function returns
26750 a string which is processed as if it had appeared literally as part
26751 of the current spec.
26752
26753 The following built-in spec functions are provided:
26754
26755 @table @code
26756 @item @code{getenv}
26757 The @code{getenv} spec function takes two arguments: an environment
26758 variable name and a string. If the environment variable is not
26759 defined, a fatal error is issued. Otherwise, the return value is the
26760 value of the environment variable concatenated with the string. For
26761 example, if @env{TOPDIR} is defined as @file{/path/to/top}, then:
26762
26763 @smallexample
26764 %:getenv(TOPDIR /include)
26765 @end smallexample
26766
26767 expands to @file{/path/to/top/include}.
26768
26769 @item @code{if-exists}
26770 The @code{if-exists} spec function takes one argument, an absolute
26771 pathname to a file. If the file exists, @code{if-exists} returns the
26772 pathname. Here is a small example of its usage:
26773
26774 @smallexample
26775 *startfile:
26776 crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
26777 @end smallexample
26778
26779 @item @code{if-exists-else}
26780 The @code{if-exists-else} spec function is similar to the @code{if-exists}
26781 spec function, except that it takes two arguments. The first argument is
26782 an absolute pathname to a file. If the file exists, @code{if-exists-else}
26783 returns the pathname. If it does not exist, it returns the second argument.
26784 This way, @code{if-exists-else} can be used to select one file or another,
26785 based on the existence of the first. Here is a small example of its usage:
26786
26787 @smallexample
26788 *startfile:
26789 crt0%O%s %:if-exists(crti%O%s) \
26790 %:if-exists-else(crtbeginT%O%s crtbegin%O%s)
26791 @end smallexample
26792
26793 @item @code{replace-outfile}
26794 The @code{replace-outfile} spec function takes two arguments. It looks for the
26795 first argument in the outfiles array and replaces it with the second argument. Here
26796 is a small example of its usage:
26797
26798 @smallexample
26799 %@{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)@}
26800 @end smallexample
26801
26802 @item @code{remove-outfile}
26803 The @code{remove-outfile} spec function takes one argument. It looks for the
26804 first argument in the outfiles array and removes it. Here is a small example
26805 its usage:
26806
26807 @smallexample
26808 %:remove-outfile(-lm)
26809 @end smallexample
26810
26811 @item @code{pass-through-libs}
26812 The @code{pass-through-libs} spec function takes any number of arguments. It
26813 finds any @option{-l} options and any non-options ending in @file{.a} (which it
26814 assumes are the names of linker input library archive files) and returns a
26815 result containing all the found arguments each prepended by
26816 @option{-plugin-opt=-pass-through=} and joined by spaces. This list is
26817 intended to be passed to the LTO linker plugin.
26818
26819 @smallexample
26820 %:pass-through-libs(%G %L %G)
26821 @end smallexample
26822
26823 @item @code{print-asm-header}
26824 The @code{print-asm-header} function takes no arguments and simply
26825 prints a banner like:
26826
26827 @smallexample
26828 Assembler options
26829 =================
26830
26831 Use "-Wa,OPTION" to pass "OPTION" to the assembler.
26832 @end smallexample
26833
26834 It is used to separate compiler options from assembler options
26835 in the @option{--target-help} output.
26836 @end table
26837
26838 @item %@{S@}
26839 Substitutes the @code{-S} switch, if that switch is given to GCC@.
26840 If that switch is not specified, this substitutes nothing. Note that
26841 the leading dash is omitted when specifying this option, and it is
26842 automatically inserted if the substitution is performed. Thus the spec
26843 string @samp{%@{foo@}} matches the command-line option @option{-foo}
26844 and outputs the command-line option @option{-foo}.
26845
26846 @item %W@{S@}
26847 Like %@{@code{S}@} but mark last argument supplied within as a file to be
26848 deleted on failure.
26849
26850 @item %@{S*@}
26851 Substitutes all the switches specified to GCC whose names start
26852 with @code{-S}, but which also take an argument. This is used for
26853 switches like @option{-o}, @option{-D}, @option{-I}, etc.
26854 GCC considers @option{-o foo} as being
26855 one switch whose name starts with @samp{o}. %@{o*@} substitutes this
26856 text, including the space. Thus two arguments are generated.
26857
26858 @item %@{S*&T*@}
26859 Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options
26860 (the order of @code{S} and @code{T} in the spec is not significant).
26861 There can be any number of ampersand-separated variables; for each the
26862 wild card is optional. Useful for CPP as @samp{%@{D*&U*&A*@}}.
26863
26864 @item %@{S:X@}
26865 Substitutes @code{X}, if the @option{-S} switch is given to GCC@.
26866
26867 @item %@{!S:X@}
26868 Substitutes @code{X}, if the @option{-S} switch is @emph{not} given to GCC@.
26869
26870 @item %@{S*:X@}
26871 Substitutes @code{X} if one or more switches whose names start with
26872 @code{-S} are specified to GCC@. Normally @code{X} is substituted only
26873 once, no matter how many such switches appeared. However, if @code{%*}
26874 appears somewhere in @code{X}, then @code{X} is substituted once
26875 for each matching switch, with the @code{%*} replaced by the part of
26876 that switch matching the @code{*}.
26877
26878 If @code{%*} appears as the last part of a spec sequence then a space
26879 is added after the end of the last substitution. If there is more
26880 text in the sequence, however, then a space is not generated. This
26881 allows the @code{%*} substitution to be used as part of a larger
26882 string. For example, a spec string like this:
26883
26884 @smallexample
26885 %@{mcu=*:--script=%*/memory.ld@}
26886 @end smallexample
26887
26888 @noindent
26889 when matching an option like @option{-mcu=newchip} produces:
26890
26891 @smallexample
26892 --script=newchip/memory.ld
26893 @end smallexample
26894
26895 @item %@{.S:X@}
26896 Substitutes @code{X}, if processing a file with suffix @code{S}.
26897
26898 @item %@{!.S:X@}
26899 Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}.
26900
26901 @item %@{,S:X@}
26902 Substitutes @code{X}, if processing a file for language @code{S}.
26903
26904 @item %@{!,S:X@}
26905 Substitutes @code{X}, if not processing a file for language @code{S}.
26906
26907 @item %@{S|P:X@}
26908 Substitutes @code{X} if either @code{-S} or @code{-P} is given to
26909 GCC@. This may be combined with @samp{!}, @samp{.}, @samp{,}, and
26910 @code{*} sequences as well, although they have a stronger binding than
26911 the @samp{|}. If @code{%*} appears in @code{X}, all of the
26912 alternatives must be starred, and only the first matching alternative
26913 is substituted.
26914
26915 For example, a spec string like this:
26916
26917 @smallexample
26918 %@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
26919 @end smallexample
26920
26921 @noindent
26922 outputs the following command-line options from the following input
26923 command-line options:
26924
26925 @smallexample
26926 fred.c -foo -baz
26927 jim.d -bar -boggle
26928 -d fred.c -foo -baz -boggle
26929 -d jim.d -bar -baz -boggle
26930 @end smallexample
26931
26932 @item %@{S:X; T:Y; :D@}
26933
26934 If @code{S} is given to GCC, substitutes @code{X}; else if @code{T} is
26935 given to GCC, substitutes @code{Y}; else substitutes @code{D}. There can
26936 be as many clauses as you need. This may be combined with @code{.},
26937 @code{,}, @code{!}, @code{|}, and @code{*} as needed.
26938
26939
26940 @end table
26941
26942 The switch matching text @code{S} in a @samp{%@{S@}}, @samp{%@{S:X@}}
26943 or similar construct can use a backslash to ignore the special meaning
26944 of the character following it, thus allowing literal matching of a
26945 character that is otherwise specially treated. For example,
26946 @samp{%@{std=iso9899\:1999:X@}} substitutes @code{X} if the
26947 @option{-std=iso9899:1999} option is given.
26948
26949 The conditional text @code{X} in a @samp{%@{S:X@}} or similar
26950 construct may contain other nested @samp{%} constructs or spaces, or
26951 even newlines. They are processed as usual, as described above.
26952 Trailing white space in @code{X} is ignored. White space may also
26953 appear anywhere on the left side of the colon in these constructs,
26954 except between @code{.} or @code{*} and the corresponding word.
26955
26956 The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
26957 handled specifically in these constructs. If another value of
26958 @option{-O} or the negated form of a @option{-f}, @option{-m}, or
26959 @option{-W} switch is found later in the command line, the earlier
26960 switch value is ignored, except with @{@code{S}*@} where @code{S} is
26961 just one letter, which passes all matching options.
26962
26963 The character @samp{|} at the beginning of the predicate text is used to
26964 indicate that a command should be piped to the following command, but
26965 only if @option{-pipe} is specified.
26966
26967 It is built into GCC which switches take arguments and which do not.
26968 (You might think it would be useful to generalize this to allow each
26969 compiler's spec to say which switches take arguments. But this cannot
26970 be done in a consistent fashion. GCC cannot even decide which input
26971 files have been specified without knowing which switches take arguments,
26972 and it must know which input files to compile in order to tell which
26973 compilers to run).
26974
26975 GCC also knows implicitly that arguments starting in @option{-l} are to be
26976 treated as compiler output files, and passed to the linker in their
26977 proper position among the other output files.
26978
26979 @node Environment Variables
26980 @section Environment Variables Affecting GCC
26981 @cindex environment variables
26982
26983 @c man begin ENVIRONMENT
26984 This section describes several environment variables that affect how GCC
26985 operates. Some of them work by specifying directories or prefixes to use
26986 when searching for various kinds of files. Some are used to specify other
26987 aspects of the compilation environment.
26988
26989 Note that you can also specify places to search using options such as
26990 @option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}). These
26991 take precedence over places specified using environment variables, which
26992 in turn take precedence over those specified by the configuration of GCC@.
26993 @xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint,
26994 GNU Compiler Collection (GCC) Internals}.
26995
26996 @table @env
26997 @item LANG
26998 @itemx LC_CTYPE
26999 @c @itemx LC_COLLATE
27000 @itemx LC_MESSAGES
27001 @c @itemx LC_MONETARY
27002 @c @itemx LC_NUMERIC
27003 @c @itemx LC_TIME
27004 @itemx LC_ALL
27005 @findex LANG
27006 @findex LC_CTYPE
27007 @c @findex LC_COLLATE
27008 @findex LC_MESSAGES
27009 @c @findex LC_MONETARY
27010 @c @findex LC_NUMERIC
27011 @c @findex LC_TIME
27012 @findex LC_ALL
27013 @cindex locale
27014 These environment variables control the way that GCC uses
27015 localization information which allows GCC to work with different
27016 national conventions. GCC inspects the locale categories
27017 @env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do
27018 so. These locale categories can be set to any value supported by your
27019 installation. A typical value is @samp{en_GB.UTF-8} for English in the United
27020 Kingdom encoded in UTF-8.
27021
27022 The @env{LC_CTYPE} environment variable specifies character
27023 classification. GCC uses it to determine the character boundaries in
27024 a string; this is needed for some multibyte encodings that contain quote
27025 and escape characters that are otherwise interpreted as a string
27026 end or escape.
27027
27028 The @env{LC_MESSAGES} environment variable specifies the language to
27029 use in diagnostic messages.
27030
27031 If the @env{LC_ALL} environment variable is set, it overrides the value
27032 of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE}
27033 and @env{LC_MESSAGES} default to the value of the @env{LANG}
27034 environment variable. If none of these variables are set, GCC
27035 defaults to traditional C English behavior.
27036
27037 @item TMPDIR
27038 @findex TMPDIR
27039 If @env{TMPDIR} is set, it specifies the directory to use for temporary
27040 files. GCC uses temporary files to hold the output of one stage of
27041 compilation which is to be used as input to the next stage: for example,
27042 the output of the preprocessor, which is the input to the compiler
27043 proper.
27044
27045 @item GCC_COMPARE_DEBUG
27046 @findex GCC_COMPARE_DEBUG
27047 Setting @env{GCC_COMPARE_DEBUG} is nearly equivalent to passing
27048 @option{-fcompare-debug} to the compiler driver. See the documentation
27049 of this option for more details.
27050
27051 @item GCC_EXEC_PREFIX
27052 @findex GCC_EXEC_PREFIX
27053 If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
27054 names of the subprograms executed by the compiler. No slash is added
27055 when this prefix is combined with the name of a subprogram, but you can
27056 specify a prefix that ends with a slash if you wish.
27057
27058 If @env{GCC_EXEC_PREFIX} is not set, GCC attempts to figure out
27059 an appropriate prefix to use based on the pathname it is invoked with.
27060
27061 If GCC cannot find the subprogram using the specified prefix, it
27062 tries looking in the usual places for the subprogram.
27063
27064 The default value of @env{GCC_EXEC_PREFIX} is
27065 @file{@var{prefix}/lib/gcc/} where @var{prefix} is the prefix to
27066 the installed compiler. In many cases @var{prefix} is the value
27067 of @code{prefix} when you ran the @file{configure} script.
27068
27069 Other prefixes specified with @option{-B} take precedence over this prefix.
27070
27071 This prefix is also used for finding files such as @file{crt0.o} that are
27072 used for linking.
27073
27074 In addition, the prefix is used in an unusual way in finding the
27075 directories to search for header files. For each of the standard
27076 directories whose name normally begins with @samp{/usr/local/lib/gcc}
27077 (more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries
27078 replacing that beginning with the specified prefix to produce an
27079 alternate directory name. Thus, with @option{-Bfoo/}, GCC searches
27080 @file{foo/bar} just before it searches the standard directory
27081 @file{/usr/local/lib/bar}.
27082 If a standard directory begins with the configured
27083 @var{prefix} then the value of @var{prefix} is replaced by
27084 @env{GCC_EXEC_PREFIX} when looking for header files.
27085
27086 @item COMPILER_PATH
27087 @findex COMPILER_PATH
27088 The value of @env{COMPILER_PATH} is a colon-separated list of
27089 directories, much like @env{PATH}. GCC tries the directories thus
27090 specified when searching for subprograms, if it cannot find the
27091 subprograms using @env{GCC_EXEC_PREFIX}.
27092
27093 @item LIBRARY_PATH
27094 @findex LIBRARY_PATH
27095 The value of @env{LIBRARY_PATH} is a colon-separated list of
27096 directories, much like @env{PATH}. When configured as a native compiler,
27097 GCC tries the directories thus specified when searching for special
27098 linker files, if it cannot find them using @env{GCC_EXEC_PREFIX}. Linking
27099 using GCC also uses these directories when searching for ordinary
27100 libraries for the @option{-l} option (but directories specified with
27101 @option{-L} come first).
27102
27103 @item LANG
27104 @findex LANG
27105 @cindex locale definition
27106 This variable is used to pass locale information to the compiler. One way in
27107 which this information is used is to determine the character set to be used
27108 when character literals, string literals and comments are parsed in C and C++.
27109 When the compiler is configured to allow multibyte characters,
27110 the following values for @env{LANG} are recognized:
27111
27112 @table @samp
27113 @item C-JIS
27114 Recognize JIS characters.
27115 @item C-SJIS
27116 Recognize SJIS characters.
27117 @item C-EUCJP
27118 Recognize EUCJP characters.
27119 @end table
27120
27121 If @env{LANG} is not defined, or if it has some other value, then the
27122 compiler uses @code{mblen} and @code{mbtowc} as defined by the default locale to
27123 recognize and translate multibyte characters.
27124 @end table
27125
27126 @noindent
27127 Some additional environment variables affect the behavior of the
27128 preprocessor.
27129
27130 @include cppenv.texi
27131
27132 @c man end
27133
27134 @node Precompiled Headers
27135 @section Using Precompiled Headers
27136 @cindex precompiled headers
27137 @cindex speed of compilation
27138
27139 Often large projects have many header files that are included in every
27140 source file. The time the compiler takes to process these header files
27141 over and over again can account for nearly all of the time required to
27142 build the project. To make builds faster, GCC allows you to
27143 @dfn{precompile} a header file.
27144
27145 To create a precompiled header file, simply compile it as you would any
27146 other file, if necessary using the @option{-x} option to make the driver
27147 treat it as a C or C++ header file. You may want to use a
27148 tool like @command{make} to keep the precompiled header up-to-date when
27149 the headers it contains change.
27150
27151 A precompiled header file is searched for when @code{#include} is
27152 seen in the compilation. As it searches for the included file
27153 (@pxref{Search Path,,Search Path,cpp,The C Preprocessor}) the
27154 compiler looks for a precompiled header in each directory just before it
27155 looks for the include file in that directory. The name searched for is
27156 the name specified in the @code{#include} with @samp{.gch} appended. If
27157 the precompiled header file cannot be used, it is ignored.
27158
27159 For instance, if you have @code{#include "all.h"}, and you have
27160 @file{all.h.gch} in the same directory as @file{all.h}, then the
27161 precompiled header file is used if possible, and the original
27162 header is used otherwise.
27163
27164 Alternatively, you might decide to put the precompiled header file in a
27165 directory and use @option{-I} to ensure that directory is searched
27166 before (or instead of) the directory containing the original header.
27167 Then, if you want to check that the precompiled header file is always
27168 used, you can put a file of the same name as the original header in this
27169 directory containing an @code{#error} command.
27170
27171 This also works with @option{-include}. So yet another way to use
27172 precompiled headers, good for projects not designed with precompiled
27173 header files in mind, is to simply take most of the header files used by
27174 a project, include them from another header file, precompile that header
27175 file, and @option{-include} the precompiled header. If the header files
27176 have guards against multiple inclusion, they are skipped because
27177 they've already been included (in the precompiled header).
27178
27179 If you need to precompile the same header file for different
27180 languages, targets, or compiler options, you can instead make a
27181 @emph{directory} named like @file{all.h.gch}, and put each precompiled
27182 header in the directory, perhaps using @option{-o}. It doesn't matter
27183 what you call the files in the directory; every precompiled header in
27184 the directory is considered. The first precompiled header
27185 encountered in the directory that is valid for this compilation is
27186 used; they're searched in no particular order.
27187
27188 There are many other possibilities, limited only by your imagination,
27189 good sense, and the constraints of your build system.
27190
27191 A precompiled header file can be used only when these conditions apply:
27192
27193 @itemize
27194 @item
27195 Only one precompiled header can be used in a particular compilation.
27196
27197 @item
27198 A precompiled header cannot be used once the first C token is seen. You
27199 can have preprocessor directives before a precompiled header; you cannot
27200 include a precompiled header from inside another header.
27201
27202 @item
27203 The precompiled header file must be produced for the same language as
27204 the current compilation. You cannot use a C precompiled header for a C++
27205 compilation.
27206
27207 @item
27208 The precompiled header file must have been produced by the same compiler
27209 binary as the current compilation is using.
27210
27211 @item
27212 Any macros defined before the precompiled header is included must
27213 either be defined in the same way as when the precompiled header was
27214 generated, or must not affect the precompiled header, which usually
27215 means that they don't appear in the precompiled header at all.
27216
27217 The @option{-D} option is one way to define a macro before a
27218 precompiled header is included; using a @code{#define} can also do it.
27219 There are also some options that define macros implicitly, like
27220 @option{-O} and @option{-Wdeprecated}; the same rule applies to macros
27221 defined this way.
27222
27223 @item If debugging information is output when using the precompiled
27224 header, using @option{-g} or similar, the same kind of debugging information
27225 must have been output when building the precompiled header. However,
27226 a precompiled header built using @option{-g} can be used in a compilation
27227 when no debugging information is being output.
27228
27229 @item The same @option{-m} options must generally be used when building
27230 and using the precompiled header. @xref{Submodel Options},
27231 for any cases where this rule is relaxed.
27232
27233 @item Each of the following options must be the same when building and using
27234 the precompiled header:
27235
27236 @gccoptlist{-fexceptions}
27237
27238 @item
27239 Some other command-line options starting with @option{-f},
27240 @option{-p}, or @option{-O} must be defined in the same way as when
27241 the precompiled header was generated. At present, it's not clear
27242 which options are safe to change and which are not; the safest choice
27243 is to use exactly the same options when generating and using the
27244 precompiled header. The following are known to be safe:
27245
27246 @gccoptlist{-fmessage-length= -fpreprocessed -fsched-interblock @gol
27247 -fsched-spec -fsched-spec-load -fsched-spec-load-dangerous @gol
27248 -fsched-verbose=@var{number} -fschedule-insns -fvisibility= @gol
27249 -pedantic-errors}
27250
27251 @end itemize
27252
27253 For all of these except the last, the compiler automatically
27254 ignores the precompiled header if the conditions aren't met. If you
27255 find an option combination that doesn't work and doesn't cause the
27256 precompiled header to be ignored, please consider filing a bug report,
27257 see @ref{Bugs}.
27258
27259 If you do use differing options when generating and using the
27260 precompiled header, the actual behavior is a mixture of the
27261 behavior for the options. For instance, if you use @option{-g} to
27262 generate the precompiled header but not when using it, you may or may
27263 not get debugging information for routines in the precompiled header.