]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/doc/invoke.texi
cif-code.def (MAX_INLINE_INSNS_SINGLE_O2_LIMIT, [...]): New.
[thirdparty/gcc.git] / gcc / doc / invoke.texi
1 @c Copyright (C) 1988-2019 Free Software Foundation, Inc.
2 @c This is part of the GCC manual.
3 @c For copying conditions, see the file gcc.texi.
4
5 @ignore
6 @c man begin INCLUDE
7 @include gcc-vers.texi
8 @c man end
9
10 @c man begin COPYRIGHT
11 Copyright @copyright{} 1988-2019 Free Software Foundation, Inc.
12
13 Permission is granted to copy, distribute and/or modify this document
14 under the terms of the GNU Free Documentation License, Version 1.3 or
15 any later version published by the Free Software Foundation; with the
16 Invariant Sections being ``GNU General Public License'' and ``Funding
17 Free Software'', the Front-Cover texts being (a) (see below), and with
18 the Back-Cover Texts being (b) (see below). A copy of the license is
19 included in the gfdl(7) man page.
20
21 (a) The FSF's Front-Cover Text is:
22
23 A GNU Manual
24
25 (b) The FSF's Back-Cover Text is:
26
27 You have freedom to copy and modify this GNU Manual, like GNU
28 software. Copies published by the Free Software Foundation raise
29 funds for GNU development.
30 @c man end
31 @c Set file name and title for the man page.
32 @setfilename gcc
33 @settitle GNU project C and C++ compiler
34 @c man begin SYNOPSIS
35 gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}]
36 [@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
37 [@option{-W}@var{warn}@dots{}] [@option{-Wpedantic}]
38 [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
39 [@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
40 [@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
41 [@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{}
42
43 Only the most useful options are listed here; see below for the
44 remainder. @command{g++} accepts mostly the same options as @command{gcc}.
45 @c man end
46 @c man begin SEEALSO
47 gpl(7), gfdl(7), fsf-funding(7),
48 cpp(1), gcov(1), as(1), ld(1), gdb(1), dbx(1)
49 and the Info entries for @file{gcc}, @file{cpp}, @file{as},
50 @file{ld}, @file{binutils} and @file{gdb}.
51 @c man end
52 @c man begin BUGS
53 For instructions on reporting bugs, see
54 @w{@value{BUGURL}}.
55 @c man end
56 @c man begin AUTHOR
57 See the Info entry for @command{gcc}, or
58 @w{@uref{http://gcc.gnu.org/onlinedocs/gcc/Contributors.html}},
59 for contributors to GCC@.
60 @c man end
61 @end ignore
62
63 @node Invoking GCC
64 @chapter GCC Command Options
65 @cindex GCC command options
66 @cindex command options
67 @cindex options, GCC command
68
69 @c man begin DESCRIPTION
70 When you invoke GCC, it normally does preprocessing, compilation,
71 assembly and linking. The ``overall options'' allow you to stop this
72 process at an intermediate stage. For example, the @option{-c} option
73 says not to run the linker. Then the output consists of object files
74 output by the assembler.
75 @xref{Overall Options,,Options Controlling the Kind of Output}.
76
77 Other options are passed on to one or more stages of processing. Some options
78 control the preprocessor and others the compiler itself. Yet other
79 options control the assembler and linker; most of these are not
80 documented here, since you rarely need to use any of them.
81
82 @cindex C compilation options
83 Most of the command-line options that you can use with GCC are useful
84 for C programs; when an option is only useful with another language
85 (usually C++), the explanation says so explicitly. If the description
86 for a particular option does not mention a source language, you can use
87 that option with all supported languages.
88
89 @cindex cross compiling
90 @cindex specifying machine version
91 @cindex specifying compiler version and target machine
92 @cindex compiler version, specifying
93 @cindex target machine, specifying
94 The usual way to run GCC is to run the executable called @command{gcc}, or
95 @command{@var{machine}-gcc} when cross-compiling, or
96 @command{@var{machine}-gcc-@var{version}} to run a specific version of GCC.
97 When you compile C++ programs, you should invoke GCC as @command{g++}
98 instead. @xref{Invoking G++,,Compiling C++ Programs},
99 for information about the differences in behavior between @command{gcc}
100 and @code{g++} when compiling C++ programs.
101
102 @cindex grouping options
103 @cindex options, grouping
104 The @command{gcc} program accepts options and file names as operands. Many
105 options have multi-letter names; therefore multiple single-letter options
106 may @emph{not} be grouped: @option{-dv} is very different from @w{@samp{-d
107 -v}}.
108
109 @cindex order of options
110 @cindex options, order
111 You can mix options and other arguments. For the most part, the order
112 you use doesn't matter. Order does matter when you use several
113 options of the same kind; for example, if you specify @option{-L} more
114 than once, the directories are searched in the order specified. Also,
115 the placement of the @option{-l} option is significant.
116
117 Many options have long names starting with @samp{-f} or with
118 @samp{-W}---for example,
119 @option{-fmove-loop-invariants}, @option{-Wformat} and so on. Most of
120 these have both positive and negative forms; the negative form of
121 @option{-ffoo} is @option{-fno-foo}. This manual documents
122 only one of these two forms, whichever one is not the default.
123
124 Some options take one or more arguments typically separated either
125 by a space or by the equals sign (@samp{=}) from the option name.
126 Unless documented otherwise, an argument can be either numeric or
127 a string. Numeric arguments must typically be small unsigned decimal
128 or hexadecimal integers. Hexadecimal arguments must begin with
129 the @samp{0x} prefix. Arguments to options that specify a size
130 threshold of some sort may be arbitrarily large decimal or hexadecimal
131 integers followed by a byte size suffix designating a multiple of bytes
132 such as @code{kB} and @code{KiB} for kilobyte and kibibyte, respectively,
133 @code{MB} and @code{MiB} for megabyte and mebibyte, @code{GB} and
134 @code{GiB} for gigabyte and gigibyte, and so on. Such arguments are
135 designated by @var{byte-size} in the following text. Refer to the NIST,
136 IEC, and other relevant national and international standards for the full
137 listing and explanation of the binary and decimal byte size prefixes.
138
139 @c man end
140
141 @xref{Option Index}, for an index to GCC's options.
142
143 @menu
144 * Option Summary:: Brief list of all options, without explanations.
145 * Overall Options:: Controlling the kind of output:
146 an executable, object files, assembler files,
147 or preprocessed source.
148 * Invoking G++:: Compiling C++ programs.
149 * C Dialect Options:: Controlling the variant of C language compiled.
150 * C++ Dialect Options:: Variations on C++.
151 * Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
152 and Objective-C++.
153 * Diagnostic Message Formatting Options:: Controlling how diagnostics should
154 be formatted.
155 * Warning Options:: How picky should the compiler be?
156 * Debugging Options:: Producing debuggable code.
157 * Optimize Options:: How much optimization?
158 * Instrumentation Options:: Enabling profiling and extra run-time error checking.
159 * Preprocessor Options:: Controlling header files and macro definitions.
160 Also, getting dependency information for Make.
161 * Assembler Options:: Passing options to the assembler.
162 * Link Options:: Specifying libraries and so on.
163 * Directory Options:: Where to find header files and libraries.
164 Where to find the compiler executable files.
165 * Code Gen Options:: Specifying conventions for function calls, data layout
166 and register usage.
167 * Developer Options:: Printing GCC configuration info, statistics, and
168 debugging dumps.
169 * Submodel Options:: Target-specific options, such as compiling for a
170 specific processor variant.
171 * Spec Files:: How to pass switches to sub-processes.
172 * Environment Variables:: Env vars that affect GCC.
173 * Precompiled Headers:: Compiling a header once, and using it many times.
174 @end menu
175
176 @c man begin OPTIONS
177
178 @node Option Summary
179 @section Option Summary
180
181 Here is a summary of all the options, grouped by type. Explanations are
182 in the following sections.
183
184 @table @emph
185 @item Overall Options
186 @xref{Overall Options,,Options Controlling the Kind of Output}.
187 @gccoptlist{-c -S -E -o @var{file} -x @var{language} @gol
188 -v -### --help@r{[}=@var{class}@r{[},@dots{}@r{]]} --target-help --version @gol
189 -pass-exit-codes -pipe -specs=@var{file} -wrapper @gol
190 @@@var{file} -ffile-prefix-map=@var{old}=@var{new} @gol
191 -fplugin=@var{file} -fplugin-arg-@var{name}=@var{arg} @gol
192 -fdump-ada-spec@r{[}-slim@r{]} -fada-spec-parent=@var{unit} -fdump-go-spec=@var{file}}
193
194 @item C Language Options
195 @xref{C Dialect Options,,Options Controlling C Dialect}.
196 @gccoptlist{-ansi -std=@var{standard} -fgnu89-inline @gol
197 -fpermitted-flt-eval-methods=@var{standard} @gol
198 -aux-info @var{filename} -fallow-parameterless-variadic-functions @gol
199 -fno-asm -fno-builtin -fno-builtin-@var{function} -fgimple@gol
200 -fhosted -ffreestanding @gol
201 -fopenacc -fopenacc-dim=@var{geom} @gol
202 -fopenmp -fopenmp-simd @gol
203 -fms-extensions -fplan9-extensions -fsso-struct=@var{endianness} @gol
204 -fallow-single-precision -fcond-mismatch -flax-vector-conversions @gol
205 -fsigned-bitfields -fsigned-char @gol
206 -funsigned-bitfields -funsigned-char}
207
208 @item C++ Language Options
209 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
210 @gccoptlist{-fabi-version=@var{n} -fno-access-control @gol
211 -faligned-new=@var{n} -fargs-in-order=@var{n} -fchar8_t -fcheck-new @gol
212 -fconstexpr-depth=@var{n} -fconstexpr-cache-depth=@var{n} @gol
213 -fconstexpr-loop-limit=@var{n} -fconstexpr-ops-limit=@var{n} @gol
214 -fno-elide-constructors @gol
215 -fno-enforce-eh-specs @gol
216 -fno-gnu-keywords @gol
217 -fno-implicit-templates @gol
218 -fno-implicit-inline-templates @gol
219 -fno-implement-inlines -fms-extensions @gol
220 -fnew-inheriting-ctors @gol
221 -fnew-ttp-matching @gol
222 -fno-nonansi-builtins -fnothrow-opt -fno-operator-names @gol
223 -fno-optional-diags -fpermissive @gol
224 -fno-pretty-templates @gol
225 -fno-rtti -fsized-deallocation @gol
226 -ftemplate-backtrace-limit=@var{n} @gol
227 -ftemplate-depth=@var{n} @gol
228 -fno-threadsafe-statics -fuse-cxa-atexit @gol
229 -fno-weak -nostdinc++ @gol
230 -fvisibility-inlines-hidden @gol
231 -fvisibility-ms-compat @gol
232 -fext-numeric-literals @gol
233 -Wabi=@var{n} -Wabi-tag -Wcomma-subscript -Wconversion-null @gol
234 -Wctor-dtor-privacy @gol
235 -Wdelete-non-virtual-dtor -Wdeprecated-copy -Wdeprecated-copy-dtor @gol
236 -Wliteral-suffix @gol
237 -Wmultiple-inheritance -Wno-init-list-lifetime @gol
238 -Wnamespaces -Wnarrowing @gol
239 -Wpessimizing-move -Wredundant-move @gol
240 -Wnoexcept -Wnoexcept-type -Wclass-memaccess @gol
241 -Wnon-virtual-dtor -Wreorder -Wregister @gol
242 -Weffc++ -Wstrict-null-sentinel -Wtemplates @gol
243 -Wno-non-template-friend -Wold-style-cast @gol
244 -Woverloaded-virtual -Wno-pmf-conversions @gol
245 -Wno-class-conversion -Wno-terminate @gol
246 -Wsign-promo -Wvirtual-inheritance -Wvolatile}
247
248 @item Objective-C and Objective-C++ Language Options
249 @xref{Objective-C and Objective-C++ Dialect Options,,Options Controlling
250 Objective-C and Objective-C++ Dialects}.
251 @gccoptlist{-fconstant-string-class=@var{class-name} @gol
252 -fgnu-runtime -fnext-runtime @gol
253 -fno-nil-receivers @gol
254 -fobjc-abi-version=@var{n} @gol
255 -fobjc-call-cxx-cdtors @gol
256 -fobjc-direct-dispatch @gol
257 -fobjc-exceptions @gol
258 -fobjc-gc @gol
259 -fobjc-nilcheck @gol
260 -fobjc-std=objc1 @gol
261 -fno-local-ivars @gol
262 -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]} @gol
263 -freplace-objc-classes @gol
264 -fzero-link @gol
265 -gen-decls @gol
266 -Wassign-intercept @gol
267 -Wno-protocol -Wselector @gol
268 -Wstrict-selector-match @gol
269 -Wundeclared-selector}
270
271 @item Diagnostic Message Formatting Options
272 @xref{Diagnostic Message Formatting Options,,Options to Control Diagnostic Messages Formatting}.
273 @gccoptlist{-fmessage-length=@var{n} @gol
274 -fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]} @gol
275 -fdiagnostics-color=@r{[}auto@r{|}never@r{|}always@r{]} @gol
276 -fdiagnostics-format=@r{[}text@r{|}json@r{]} @gol
277 -fno-diagnostics-show-option -fno-diagnostics-show-caret @gol
278 -fno-diagnostics-show-labels -fno-diagnostics-show-line-numbers @gol
279 -fdiagnostics-minimum-margin-width=@var{width} @gol
280 -fdiagnostics-parseable-fixits -fdiagnostics-generate-patch @gol
281 -fdiagnostics-show-template-tree -fno-elide-type @gol
282 -fno-show-column}
283
284 @item Warning Options
285 @xref{Warning Options,,Options to Request or Suppress Warnings}.
286 @gccoptlist{-fsyntax-only -fmax-errors=@var{n} -Wpedantic @gol
287 -pedantic-errors @gol
288 -w -Wextra -Wall -Waddress -Waddress-of-packed-member @gol
289 -Waggregate-return -Waligned-new @gol
290 -Walloc-zero -Walloc-size-larger-than=@var{byte-size} @gol
291 -Walloca -Walloca-larger-than=@var{byte-size} @gol
292 -Wno-aggressive-loop-optimizations -Warray-bounds -Warray-bounds=@var{n} @gol
293 -Wno-attributes -Wattribute-alias=@var{n} @gol
294 -Wbool-compare -Wbool-operation @gol
295 -Wno-builtin-declaration-mismatch @gol
296 -Wno-builtin-macro-redefined -Wc90-c99-compat -Wc99-c11-compat @gol
297 -Wc++-compat -Wc++11-compat -Wc++14-compat -Wc++17-compat @gol
298 -Wc++20-compat @gol
299 -Wcast-align -Wcast-align=strict -Wcast-function-type -Wcast-qual @gol
300 -Wchar-subscripts -Wcatch-value -Wcatch-value=@var{n} @gol
301 -Wclobbered -Wcomment -Wconditionally-supported @gol
302 -Wconversion -Wcoverage-mismatch -Wno-cpp -Wdangling-else -Wdate-time @gol
303 -Wdelete-incomplete @gol
304 -Wno-attribute-warning @gol
305 -Wno-deprecated -Wno-deprecated-declarations -Wno-designated-init @gol
306 -Wdisabled-optimization @gol
307 -Wno-discarded-qualifiers -Wno-discarded-array-qualifiers @gol
308 -Wno-div-by-zero -Wdouble-promotion @gol
309 -Wduplicated-branches -Wduplicated-cond @gol
310 -Wempty-body -Wenum-compare -Wenum-conversion @gol
311 -Wno-endif-labels -Wexpansion-to-defined @gol
312 -Werror -Werror=* -Wextra-semi -Wfatal-errors @gol
313 -Wfloat-equal -Wformat -Wformat=2 @gol
314 -Wno-format-contains-nul -Wno-format-extra-args @gol
315 -Wformat-nonliteral -Wformat-overflow=@var{n} @gol
316 -Wformat-security -Wformat-signedness -Wformat-truncation=@var{n} @gol
317 -Wformat-y2k -Wframe-address @gol
318 -Wframe-larger-than=@var{byte-size} -Wno-free-nonheap-object @gol
319 -Wjump-misses-init @gol
320 -Whsa -Wif-not-aligned @gol
321 -Wignored-qualifiers -Wignored-attributes -Wincompatible-pointer-types @gol
322 -Wimplicit -Wimplicit-fallthrough -Wimplicit-fallthrough=@var{n} @gol
323 -Wimplicit-function-declaration -Wimplicit-int @gol
324 -Winaccessible-base @gol
325 -Winit-self -Winline -Wno-int-conversion -Wint-in-bool-context @gol
326 -Wno-int-to-pointer-cast -Winvalid-memory-model -Wno-invalid-offsetof @gol
327 -Winvalid-pch -Wlarger-than=@var{byte-size} @gol
328 -Wlogical-op -Wlogical-not-parentheses -Wlong-long @gol
329 -Wmain -Wmaybe-uninitialized -Wmemset-elt-size -Wmemset-transposed-args @gol
330 -Wmisleading-indentation -Wmissing-attributes -Wmissing-braces @gol
331 -Wmissing-field-initializers -Wmissing-format-attribute @gol
332 -Wmissing-include-dirs -Wmissing-noreturn -Wmissing-profile @gol
333 -Wno-multichar -Wmultistatement-macros -Wnonnull -Wnonnull-compare @gol
334 -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]} @gol
335 -Wnull-dereference -Wodr -Wno-overflow -Wopenmp-simd @gol
336 -Woverride-init-side-effects -Woverlength-strings @gol
337 -Wpacked -Wpacked-bitfield-compat -Wpacked-not-aligned -Wpadded @gol
338 -Wparentheses -Wno-pedantic-ms-format @gol
339 -Wplacement-new -Wplacement-new=@var{n} @gol
340 -Wpointer-arith -Wpointer-compare -Wno-pointer-to-int-cast @gol
341 -Wno-pragmas -Wno-prio-ctor-dtor -Wredundant-decls @gol
342 -Wrestrict -Wno-return-local-addr @gol
343 -Wreturn-type -Wsequence-point -Wshadow -Wno-shadow-ivar @gol
344 -Wshadow=global, -Wshadow=local, -Wshadow=compatible-local @gol
345 -Wshift-overflow -Wshift-overflow=@var{n} @gol
346 -Wshift-count-negative -Wshift-count-overflow -Wshift-negative-value @gol
347 -Wsign-compare -Wsign-conversion -Wfloat-conversion @gol
348 -Wno-scalar-storage-order -Wsizeof-pointer-div @gol
349 -Wsizeof-pointer-memaccess -Wsizeof-array-argument @gol
350 -Wstack-protector -Wstack-usage=@var{byte-size} -Wstrict-aliasing @gol
351 -Wstrict-aliasing=n -Wstrict-overflow -Wstrict-overflow=@var{n} @gol
352 -Wstringop-overflow=@var{n} -Wstringop-truncation -Wsubobject-linkage @gol
353 -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{|}malloc@r{]} @gol
354 -Wsuggest-final-types @gol -Wsuggest-final-methods -Wsuggest-override @gol
355 -Wswitch -Wswitch-bool -Wswitch-default -Wswitch-enum @gol
356 -Wswitch-unreachable -Wsync-nand @gol
357 -Wsystem-headers -Wtautological-compare -Wtrampolines -Wtrigraphs @gol
358 -Wtype-limits -Wundef @gol
359 -Wuninitialized -Wunknown-pragmas @gol
360 -Wunsuffixed-float-constants -Wunused -Wunused-function @gol
361 -Wunused-label -Wunused-local-typedefs -Wunused-macros @gol
362 -Wunused-parameter -Wno-unused-result @gol
363 -Wunused-value -Wunused-variable @gol
364 -Wunused-const-variable -Wunused-const-variable=@var{n} @gol
365 -Wunused-but-set-parameter -Wunused-but-set-variable @gol
366 -Wuseless-cast -Wvariadic-macros -Wvector-operation-performance @gol
367 -Wvla -Wvla-larger-than=@var{byte-size} -Wvolatile-register-var @gol
368 -Wwrite-strings @gol
369 -Wzero-as-null-pointer-constant}
370
371 @item C and Objective-C-only Warning Options
372 @gccoptlist{-Wbad-function-cast -Wmissing-declarations @gol
373 -Wmissing-parameter-type -Wmissing-prototypes -Wnested-externs @gol
374 -Wold-style-declaration -Wold-style-definition @gol
375 -Wstrict-prototypes -Wtraditional -Wtraditional-conversion @gol
376 -Wdeclaration-after-statement -Wpointer-sign}
377
378 @item Debugging Options
379 @xref{Debugging Options,,Options for Debugging Your Program}.
380 @gccoptlist{-g -g@var{level} -gdwarf -gdwarf-@var{version} @gol
381 -ggdb -grecord-gcc-switches -gno-record-gcc-switches @gol
382 -gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf @gol
383 -gas-loc-support -gno-as-loc-support @gol
384 -gas-locview-support -gno-as-locview-support @gol
385 -gcolumn-info -gno-column-info @gol
386 -gstatement-frontiers -gno-statement-frontiers @gol
387 -gvariable-location-views -gno-variable-location-views @gol
388 -ginternal-reset-location-views -gno-internal-reset-location-views @gol
389 -ginline-points -gno-inline-points @gol
390 -gvms -gxcoff -gxcoff+ -gz@r{[}=@var{type}@r{]} @gol
391 -gsplit-dwarf -gdescribe-dies -gno-describe-dies @gol
392 -fdebug-prefix-map=@var{old}=@var{new} -fdebug-types-section @gol
393 -fno-eliminate-unused-debug-types @gol
394 -femit-struct-debug-baseonly -femit-struct-debug-reduced @gol
395 -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]} @gol
396 -fno-eliminate-unused-debug-symbols -femit-class-debug-always @gol
397 -fno-merge-debug-strings -fno-dwarf2-cfi-asm @gol
398 -fvar-tracking -fvar-tracking-assignments}
399
400 @item Optimization Options
401 @xref{Optimize Options,,Options that Control Optimization}.
402 @gccoptlist{-faggressive-loop-optimizations @gol
403 -falign-functions[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]] @gol
404 -falign-jumps[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]] @gol
405 -falign-labels[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]] @gol
406 -falign-loops[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]] @gol
407 -fassociative-math -fauto-profile -fauto-profile[=@var{path}] @gol
408 -fauto-inc-dec -fbranch-probabilities @gol
409 -fcaller-saves @gol
410 -fcombine-stack-adjustments -fconserve-stack @gol
411 -fcompare-elim -fcprop-registers -fcrossjumping @gol
412 -fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules @gol
413 -fcx-limited-range @gol
414 -fdata-sections -fdce -fdelayed-branch @gol
415 -fdelete-null-pointer-checks -fdevirtualize -fdevirtualize-speculatively @gol
416 -fdevirtualize-at-ltrans -fdse @gol
417 -fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects @gol
418 -ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=@var{style} @gol
419 -ffinite-loops @gol
420 -fforward-propagate -ffp-contract=@var{style} -ffunction-sections @gol
421 -fgcse -fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity @gol
422 -fgcse-sm -fhoist-adjacent-loads -fif-conversion @gol
423 -fif-conversion2 -findirect-inlining @gol
424 -finline-functions -finline-functions-called-once -finline-limit=@var{n} @gol
425 -finline-small-functions -fipa-cp -fipa-cp-clone @gol
426 -fipa-bit-cp -fipa-vrp -fipa-pta -fipa-profile -fipa-pure-const @gol
427 -fipa-reference -fipa-reference-addressable @gol
428 -fipa-stack-alignment -fipa-icf -fira-algorithm=@var{algorithm} @gol
429 -flive-patching=@var{level} @gol
430 -fira-region=@var{region} -fira-hoist-pressure @gol
431 -fira-loop-pressure -fno-ira-share-save-slots @gol
432 -fno-ira-share-spill-slots @gol
433 -fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute @gol
434 -fivopts -fkeep-inline-functions -fkeep-static-functions @gol
435 -fkeep-static-consts -flimit-function-alignment -flive-range-shrinkage @gol
436 -floop-block -floop-interchange -floop-strip-mine @gol
437 -floop-unroll-and-jam -floop-nest-optimize @gol
438 -floop-parallelize-all -flra-remat -flto -flto-compression-level @gol
439 -flto-partition=@var{alg} -fmerge-all-constants @gol
440 -fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves @gol
441 -fmove-loop-invariants -fno-branch-count-reg @gol
442 -fno-defer-pop -fno-fp-int-builtin-inexact -fno-function-cse @gol
443 -fno-guess-branch-probability -fno-inline -fno-math-errno -fno-peephole @gol
444 -fno-peephole2 -fno-printf-return-value -fno-sched-interblock @gol
445 -fno-sched-spec -fno-signed-zeros @gol
446 -fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss @gol
447 -fomit-frame-pointer -foptimize-sibling-calls @gol
448 -fpartial-inlining -fpeel-loops -fpredictive-commoning @gol
449 -fprefetch-loop-arrays @gol
450 -fprofile-correction @gol
451 -fprofile-use -fprofile-use=@var{path} -fprofile-values @gol
452 -fprofile-reorder-functions @gol
453 -freciprocal-math -free -frename-registers -freorder-blocks @gol
454 -freorder-blocks-algorithm=@var{algorithm} @gol
455 -freorder-blocks-and-partition -freorder-functions @gol
456 -frerun-cse-after-loop -freschedule-modulo-scheduled-loops @gol
457 -frounding-math -fsave-optimization-record @gol
458 -fsched2-use-superblocks -fsched-pressure @gol
459 -fsched-spec-load -fsched-spec-load-dangerous @gol
460 -fsched-stalled-insns-dep[=@var{n}] -fsched-stalled-insns[=@var{n}] @gol
461 -fsched-group-heuristic -fsched-critical-path-heuristic @gol
462 -fsched-spec-insn-heuristic -fsched-rank-heuristic @gol
463 -fsched-last-insn-heuristic -fsched-dep-count-heuristic @gol
464 -fschedule-fusion @gol
465 -fschedule-insns -fschedule-insns2 -fsection-anchors @gol
466 -fselective-scheduling -fselective-scheduling2 @gol
467 -fsel-sched-pipelining -fsel-sched-pipelining-outer-loops @gol
468 -fsemantic-interposition -fshrink-wrap -fshrink-wrap-separate @gol
469 -fsignaling-nans @gol
470 -fsingle-precision-constant -fsplit-ivs-in-unroller -fsplit-loops@gol
471 -fsplit-paths @gol
472 -fsplit-wide-types -fsplit-wide-types-early -fssa-backprop -fssa-phiopt @gol
473 -fstdarg-opt -fstore-merging -fstrict-aliasing @gol
474 -fthread-jumps -ftracer -ftree-bit-ccp @gol
475 -ftree-builtin-call-dce -ftree-ccp -ftree-ch @gol
476 -ftree-coalesce-vars -ftree-copy-prop -ftree-dce -ftree-dominator-opts @gol
477 -ftree-dse -ftree-forwprop -ftree-fre -fcode-hoisting @gol
478 -ftree-loop-if-convert -ftree-loop-im @gol
479 -ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns @gol
480 -ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize @gol
481 -ftree-loop-vectorize @gol
482 -ftree-parallelize-loops=@var{n} -ftree-pre -ftree-partial-pre -ftree-pta @gol
483 -ftree-reassoc -ftree-scev-cprop -ftree-sink -ftree-slsr -ftree-sra @gol
484 -ftree-switch-conversion -ftree-tail-merge @gol
485 -ftree-ter -ftree-vectorize -ftree-vrp -funconstrained-commons @gol
486 -funit-at-a-time -funroll-all-loops -funroll-loops @gol
487 -funsafe-math-optimizations -funswitch-loops @gol
488 -fipa-ra -fvariable-expansion-in-unroller -fvect-cost-model -fvpt @gol
489 -fweb -fwhole-program -fwpa -fuse-linker-plugin @gol
490 --param @var{name}=@var{value}
491 -O -O0 -O1 -O2 -O3 -Os -Ofast -Og}
492
493 @item Program Instrumentation Options
494 @xref{Instrumentation Options,,Program Instrumentation Options}.
495 @gccoptlist{-p -pg -fprofile-arcs --coverage -ftest-coverage @gol
496 -fprofile-abs-path @gol
497 -fprofile-dir=@var{path} -fprofile-generate -fprofile-generate=@var{path} @gol
498 -fprofile-note=@var{path} -fprofile-update=@var{method} @gol
499 -fprofile-filter-files=@var{regex} -fprofile-exclude-files=@var{regex} @gol
500 -fsanitize=@var{style} -fsanitize-recover -fsanitize-recover=@var{style} @gol
501 -fasan-shadow-offset=@var{number} -fsanitize-sections=@var{s1},@var{s2},... @gol
502 -fsanitize-undefined-trap-on-error -fbounds-check @gol
503 -fcf-protection=@r{[}full@r{|}branch@r{|}return@r{|}none@r{]} @gol
504 -fstack-protector -fstack-protector-all -fstack-protector-strong @gol
505 -fstack-protector-explicit -fstack-check @gol
506 -fstack-limit-register=@var{reg} -fstack-limit-symbol=@var{sym} @gol
507 -fno-stack-limit -fsplit-stack @gol
508 -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]} @gol
509 -fvtv-counts -fvtv-debug @gol
510 -finstrument-functions @gol
511 -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{} @gol
512 -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}}
513
514 @item Preprocessor Options
515 @xref{Preprocessor Options,,Options Controlling the Preprocessor}.
516 @gccoptlist{-A@var{question}=@var{answer} @gol
517 -A-@var{question}@r{[}=@var{answer}@r{]} @gol
518 -C -CC -D@var{macro}@r{[}=@var{defn}@r{]} @gol
519 -dD -dI -dM -dN -dU @gol
520 -fdebug-cpp -fdirectives-only -fdollars-in-identifiers @gol
521 -fexec-charset=@var{charset} -fextended-identifiers @gol
522 -finput-charset=@var{charset} -fmacro-prefix-map=@var{old}=@var{new} @gol
523 -fmax-include-depth=@var{depth} @gol
524 -fno-canonical-system-headers -fpch-deps -fpch-preprocess @gol
525 -fpreprocessed -ftabstop=@var{width} -ftrack-macro-expansion @gol
526 -fwide-exec-charset=@var{charset} -fworking-directory @gol
527 -H -imacros @var{file} -include @var{file} @gol
528 -M -MD -MF -MG -MM -MMD -MP -MQ -MT @gol
529 -no-integrated-cpp -P -pthread -remap @gol
530 -traditional -traditional-cpp -trigraphs @gol
531 -U@var{macro} -undef @gol
532 -Wp,@var{option} -Xpreprocessor @var{option}}
533
534 @item Assembler Options
535 @xref{Assembler Options,,Passing Options to the Assembler}.
536 @gccoptlist{-Wa,@var{option} -Xassembler @var{option}}
537
538 @item Linker Options
539 @xref{Link Options,,Options for Linking}.
540 @gccoptlist{@var{object-file-name} -fuse-ld=@var{linker} -l@var{library} @gol
541 -nostartfiles -nodefaultlibs -nolibc -nostdlib @gol
542 -e @var{entry} --entry=@var{entry} @gol
543 -pie -pthread -r -rdynamic @gol
544 -s -static -static-pie -static-libgcc -static-libstdc++ @gol
545 -static-libasan -static-libtsan -static-liblsan -static-libubsan @gol
546 -shared -shared-libgcc -symbolic @gol
547 -T @var{script} -Wl,@var{option} -Xlinker @var{option} @gol
548 -u @var{symbol} -z @var{keyword}}
549
550 @item Directory Options
551 @xref{Directory Options,,Options for Directory Search}.
552 @gccoptlist{-B@var{prefix} -I@var{dir} -I- @gol
553 -idirafter @var{dir} @gol
554 -imacros @var{file} -imultilib @var{dir} @gol
555 -iplugindir=@var{dir} -iprefix @var{file} @gol
556 -iquote @var{dir} -isysroot @var{dir} -isystem @var{dir} @gol
557 -iwithprefix @var{dir} -iwithprefixbefore @var{dir} @gol
558 -L@var{dir} -no-canonical-prefixes --no-sysroot-suffix @gol
559 -nostdinc -nostdinc++ --sysroot=@var{dir}}
560
561 @item Code Generation Options
562 @xref{Code Gen Options,,Options for Code Generation Conventions}.
563 @gccoptlist{-fcall-saved-@var{reg} -fcall-used-@var{reg} @gol
564 -ffixed-@var{reg} -fexceptions @gol
565 -fnon-call-exceptions -fdelete-dead-exceptions -funwind-tables @gol
566 -fasynchronous-unwind-tables @gol
567 -fno-gnu-unique @gol
568 -finhibit-size-directive -fno-common -fno-ident @gol
569 -fpcc-struct-return -fpic -fPIC -fpie -fPIE -fno-plt @gol
570 -fno-jump-tables @gol
571 -frecord-gcc-switches @gol
572 -freg-struct-return -fshort-enums -fshort-wchar @gol
573 -fverbose-asm -fpack-struct[=@var{n}] @gol
574 -fleading-underscore -ftls-model=@var{model} @gol
575 -fstack-reuse=@var{reuse_level} @gol
576 -ftrampolines -ftrapv -fwrapv @gol
577 -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]} @gol
578 -fstrict-volatile-bitfields -fsync-libcalls}
579
580 @item Developer Options
581 @xref{Developer Options,,GCC Developer Options}.
582 @gccoptlist{-d@var{letters} -dumpspecs -dumpmachine -dumpversion @gol
583 -dumpfullversion -fchecking -fchecking=@var{n} -fdbg-cnt-list @gol
584 -fdbg-cnt=@var{counter-value-list} @gol
585 -fdisable-ipa-@var{pass_name} @gol
586 -fdisable-rtl-@var{pass_name} @gol
587 -fdisable-rtl-@var{pass-name}=@var{range-list} @gol
588 -fdisable-tree-@var{pass_name} @gol
589 -fdisable-tree-@var{pass-name}=@var{range-list} @gol
590 -fdump-debug -fdump-earlydebug @gol
591 -fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links @gol
592 -fdump-final-insns@r{[}=@var{file}@r{]} @gol
593 -fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline @gol
594 -fdump-lang-all @gol
595 -fdump-lang-@var{switch} @gol
596 -fdump-lang-@var{switch}-@var{options} @gol
597 -fdump-lang-@var{switch}-@var{options}=@var{filename} @gol
598 -fdump-passes @gol
599 -fdump-rtl-@var{pass} -fdump-rtl-@var{pass}=@var{filename} @gol
600 -fdump-statistics @gol
601 -fdump-tree-all @gol
602 -fdump-tree-@var{switch} @gol
603 -fdump-tree-@var{switch}-@var{options} @gol
604 -fdump-tree-@var{switch}-@var{options}=@var{filename} @gol
605 -fcompare-debug@r{[}=@var{opts}@r{]} -fcompare-debug-second @gol
606 -fenable-@var{kind}-@var{pass} @gol
607 -fenable-@var{kind}-@var{pass}=@var{range-list} @gol
608 -fira-verbose=@var{n} @gol
609 -flto-report -flto-report-wpa -fmem-report-wpa @gol
610 -fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report @gol
611 -fopt-info -fopt-info-@var{options}@r{[}=@var{file}@r{]} @gol
612 -fprofile-report @gol
613 -frandom-seed=@var{string} -fsched-verbose=@var{n} @gol
614 -fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose @gol
615 -fstats -fstack-usage -ftime-report -ftime-report-details @gol
616 -fvar-tracking-assignments-toggle -gtoggle @gol
617 -print-file-name=@var{library} -print-libgcc-file-name @gol
618 -print-multi-directory -print-multi-lib -print-multi-os-directory @gol
619 -print-prog-name=@var{program} -print-search-dirs -Q @gol
620 -print-sysroot -print-sysroot-headers-suffix @gol
621 -save-temps -save-temps=cwd -save-temps=obj -time@r{[}=@var{file}@r{]}}
622
623 @item Machine-Dependent Options
624 @xref{Submodel Options,,Machine-Dependent Options}.
625 @c This list is ordered alphanumerically by subsection name.
626 @c Try and put the significant identifier (CPU or system) first,
627 @c so users have a clue at guessing where the ones they want will be.
628
629 @emph{AArch64 Options}
630 @gccoptlist{-mabi=@var{name} -mbig-endian -mlittle-endian @gol
631 -mgeneral-regs-only @gol
632 -mcmodel=tiny -mcmodel=small -mcmodel=large @gol
633 -mstrict-align -mno-strict-align @gol
634 -momit-leaf-frame-pointer @gol
635 -mtls-dialect=desc -mtls-dialect=traditional @gol
636 -mtls-size=@var{size} @gol
637 -mfix-cortex-a53-835769 -mfix-cortex-a53-843419 @gol
638 -mlow-precision-recip-sqrt -mlow-precision-sqrt -mlow-precision-div @gol
639 -mpc-relative-literal-loads @gol
640 -msign-return-address=@var{scope} @gol
641 -mbranch-protection=@var{none}|@var{standard}|@var{pac-ret}[+@var{leaf}
642 +@var{b-key}]|@var{bti} @gol
643 -march=@var{name} -mcpu=@var{name} -mtune=@var{name} @gol
644 -moverride=@var{string} -mverbose-cost-dump @gol
645 -mstack-protector-guard=@var{guard} -mstack-protector-guard-reg=@var{sysreg} @gol
646 -mstack-protector-guard-offset=@var{offset} -mtrack-speculation @gol
647 -moutline-atomics }
648
649 @emph{Adapteva Epiphany Options}
650 @gccoptlist{-mhalf-reg-file -mprefer-short-insn-regs @gol
651 -mbranch-cost=@var{num} -mcmove -mnops=@var{num} -msoft-cmpsf @gol
652 -msplit-lohi -mpost-inc -mpost-modify -mstack-offset=@var{num} @gol
653 -mround-nearest -mlong-calls -mshort-calls -msmall16 @gol
654 -mfp-mode=@var{mode} -mvect-double -max-vect-align=@var{num} @gol
655 -msplit-vecmove-early -m1reg-@var{reg}}
656
657 @emph{AMD GCN Options}
658 @gccoptlist{-march=@var{gpu} -mtune=@var{gpu} -mstack-size=@var{bytes}}
659
660 @emph{ARC Options}
661 @gccoptlist{-mbarrel-shifter -mjli-always @gol
662 -mcpu=@var{cpu} -mA6 -mARC600 -mA7 -mARC700 @gol
663 -mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr @gol
664 -mea -mno-mpy -mmul32x16 -mmul64 -matomic @gol
665 -mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float -mswap @gol
666 -mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape @gol
667 -mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof @gol
668 -mlong-calls -mmedium-calls -msdata -mirq-ctrl-saved @gol
669 -mrgf-banked-regs -mlpc-width=@var{width} -G @var{num} @gol
670 -mvolatile-cache -mtp-regno=@var{regno} @gol
671 -malign-call -mauto-modify-reg -mbbit-peephole -mno-brcc @gol
672 -mcase-vector-pcrel -mcompact-casesi -mno-cond-exec -mearly-cbranchsi @gol
673 -mexpand-adddi -mindexed-loads -mlra -mlra-priority-none @gol
674 -mlra-priority-compact mlra-priority-noncompact -mmillicode @gol
675 -mmixed-code -mq-class -mRcq -mRcw -msize-level=@var{level} @gol
676 -mtune=@var{cpu} -mmultcost=@var{num} -mcode-density-frame @gol
677 -munalign-prob-threshold=@var{probability} -mmpy-option=@var{multo} @gol
678 -mdiv-rem -mcode-density -mll64 -mfpu=@var{fpu} -mrf16 -mbranch-index}
679
680 @emph{ARM Options}
681 @gccoptlist{-mapcs-frame -mno-apcs-frame @gol
682 -mabi=@var{name} @gol
683 -mapcs-stack-check -mno-apcs-stack-check @gol
684 -mapcs-reentrant -mno-apcs-reentrant @gol
685 -mgeneral-regs-only @gol
686 -msched-prolog -mno-sched-prolog @gol
687 -mlittle-endian -mbig-endian @gol
688 -mbe8 -mbe32 @gol
689 -mfloat-abi=@var{name} @gol
690 -mfp16-format=@var{name}
691 -mthumb-interwork -mno-thumb-interwork @gol
692 -mcpu=@var{name} -march=@var{name} -mfpu=@var{name} @gol
693 -mtune=@var{name} -mprint-tune-info @gol
694 -mstructure-size-boundary=@var{n} @gol
695 -mabort-on-noreturn @gol
696 -mlong-calls -mno-long-calls @gol
697 -msingle-pic-base -mno-single-pic-base @gol
698 -mpic-register=@var{reg} @gol
699 -mnop-fun-dllimport @gol
700 -mpoke-function-name @gol
701 -mthumb -marm -mflip-thumb @gol
702 -mtpcs-frame -mtpcs-leaf-frame @gol
703 -mcaller-super-interworking -mcallee-super-interworking @gol
704 -mtp=@var{name} -mtls-dialect=@var{dialect} @gol
705 -mword-relocations @gol
706 -mfix-cortex-m3-ldrd @gol
707 -munaligned-access @gol
708 -mneon-for-64bits @gol
709 -mslow-flash-data @gol
710 -masm-syntax-unified @gol
711 -mrestrict-it @gol
712 -mverbose-cost-dump @gol
713 -mpure-code @gol
714 -mcmse @gol
715 -mfdpic}
716
717 @emph{AVR Options}
718 @gccoptlist{-mmcu=@var{mcu} -mabsdata -maccumulate-args @gol
719 -mbranch-cost=@var{cost} @gol
720 -mcall-prologues -mgas-isr-prologues -mint8 @gol
721 -mn_flash=@var{size} -mno-interrupts @gol
722 -mmain-is-OS_task -mrelax -mrmw -mstrict-X -mtiny-stack @gol
723 -mfract-convert-truncate @gol
724 -mshort-calls -nodevicelib @gol
725 -Waddr-space-convert -Wmisspelled-isr}
726
727 @emph{Blackfin Options}
728 @gccoptlist{-mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]} @gol
729 -msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer @gol
730 -mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly @gol
731 -mlow-64k -mno-low64k -mstack-check-l1 -mid-shared-library @gol
732 -mno-id-shared-library -mshared-library-id=@var{n} @gol
733 -mleaf-id-shared-library -mno-leaf-id-shared-library @gol
734 -msep-data -mno-sep-data -mlong-calls -mno-long-calls @gol
735 -mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram @gol
736 -micplb}
737
738 @emph{C6X Options}
739 @gccoptlist{-mbig-endian -mlittle-endian -march=@var{cpu} @gol
740 -msim -msdata=@var{sdata-type}}
741
742 @emph{CRIS Options}
743 @gccoptlist{-mcpu=@var{cpu} -march=@var{cpu} -mtune=@var{cpu} @gol
744 -mmax-stack-frame=@var{n} -melinux-stacksize=@var{n} @gol
745 -metrax4 -metrax100 -mpdebug -mcc-init -mno-side-effects @gol
746 -mstack-align -mdata-align -mconst-align @gol
747 -m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt @gol
748 -melf -maout -melinux -mlinux -sim -sim2 @gol
749 -mmul-bug-workaround -mno-mul-bug-workaround}
750
751 @emph{CR16 Options}
752 @gccoptlist{-mmac @gol
753 -mcr16cplus -mcr16c @gol
754 -msim -mint32 -mbit-ops
755 -mdata-model=@var{model}}
756
757 @emph{C-SKY Options}
758 @gccoptlist{-march=@var{arch} -mcpu=@var{cpu} @gol
759 -mbig-endian -EB -mlittle-endian -EL @gol
760 -mhard-float -msoft-float -mfpu=@var{fpu} -mdouble-float -mfdivdu @gol
761 -melrw -mistack -mmp -mcp -mcache -msecurity -mtrust @gol
762 -mdsp -medsp -mvdsp @gol
763 -mdiv -msmart -mhigh-registers -manchor @gol
764 -mpushpop -mmultiple-stld -mconstpool -mstack-size -mccrt @gol
765 -mbranch-cost=@var{n} -mcse-cc -msched-prolog}
766
767 @emph{Darwin Options}
768 @gccoptlist{-all_load -allowable_client -arch -arch_errors_fatal @gol
769 -arch_only -bind_at_load -bundle -bundle_loader @gol
770 -client_name -compatibility_version -current_version @gol
771 -dead_strip @gol
772 -dependency-file -dylib_file -dylinker_install_name @gol
773 -dynamic -dynamiclib -exported_symbols_list @gol
774 -filelist -flat_namespace -force_cpusubtype_ALL @gol
775 -force_flat_namespace -headerpad_max_install_names @gol
776 -iframework @gol
777 -image_base -init -install_name -keep_private_externs @gol
778 -multi_module -multiply_defined -multiply_defined_unused @gol
779 -noall_load -no_dead_strip_inits_and_terms @gol
780 -nofixprebinding -nomultidefs -noprebind -noseglinkedit @gol
781 -pagezero_size -prebind -prebind_all_twolevel_modules @gol
782 -private_bundle -read_only_relocs -sectalign @gol
783 -sectobjectsymbols -whyload -seg1addr @gol
784 -sectcreate -sectobjectsymbols -sectorder @gol
785 -segaddr -segs_read_only_addr -segs_read_write_addr @gol
786 -seg_addr_table -seg_addr_table_filename -seglinkedit @gol
787 -segprot -segs_read_only_addr -segs_read_write_addr @gol
788 -single_module -static -sub_library -sub_umbrella @gol
789 -twolevel_namespace -umbrella -undefined @gol
790 -unexported_symbols_list -weak_reference_mismatches @gol
791 -whatsloaded -F -gused -gfull -mmacosx-version-min=@var{version} @gol
792 -mkernel -mone-byte-bool}
793
794 @emph{DEC Alpha Options}
795 @gccoptlist{-mno-fp-regs -msoft-float @gol
796 -mieee -mieee-with-inexact -mieee-conformant @gol
797 -mfp-trap-mode=@var{mode} -mfp-rounding-mode=@var{mode} @gol
798 -mtrap-precision=@var{mode} -mbuild-constants @gol
799 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} @gol
800 -mbwx -mmax -mfix -mcix @gol
801 -mfloat-vax -mfloat-ieee @gol
802 -mexplicit-relocs -msmall-data -mlarge-data @gol
803 -msmall-text -mlarge-text @gol
804 -mmemory-latency=@var{time}}
805
806 @emph{eBPF Options}
807 @gccoptlist{-mbig-endian -mlittle-endian -mkernel=@var{version}
808 -mframe-limit=@var{bytes}}
809
810 @emph{FR30 Options}
811 @gccoptlist{-msmall-model -mno-lsim}
812
813 @emph{FT32 Options}
814 @gccoptlist{-msim -mlra -mnodiv -mft32b -mcompress -mnopm}
815
816 @emph{FRV Options}
817 @gccoptlist{-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64 @gol
818 -mhard-float -msoft-float @gol
819 -malloc-cc -mfixed-cc -mdword -mno-dword @gol
820 -mdouble -mno-double @gol
821 -mmedia -mno-media -mmuladd -mno-muladd @gol
822 -mfdpic -minline-plt -mgprel-ro -multilib-library-pic @gol
823 -mlinked-fp -mlong-calls -malign-labels @gol
824 -mlibrary-pic -macc-4 -macc-8 @gol
825 -mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move @gol
826 -moptimize-membar -mno-optimize-membar @gol
827 -mscc -mno-scc -mcond-exec -mno-cond-exec @gol
828 -mvliw-branch -mno-vliw-branch @gol
829 -mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec @gol
830 -mno-nested-cond-exec -mtomcat-stats @gol
831 -mTLS -mtls @gol
832 -mcpu=@var{cpu}}
833
834 @emph{GNU/Linux Options}
835 @gccoptlist{-mglibc -muclibc -mmusl -mbionic -mandroid @gol
836 -tno-android-cc -tno-android-ld}
837
838 @emph{H8/300 Options}
839 @gccoptlist{-mrelax -mh -ms -mn -mexr -mno-exr -mint32 -malign-300}
840
841 @emph{HPPA Options}
842 @gccoptlist{-march=@var{architecture-type} @gol
843 -mcaller-copies -mdisable-fpregs -mdisable-indexing @gol
844 -mfast-indirect-calls -mgas -mgnu-ld -mhp-ld @gol
845 -mfixed-range=@var{register-range} @gol
846 -mjump-in-delay -mlinker-opt -mlong-calls @gol
847 -mlong-load-store -mno-disable-fpregs @gol
848 -mno-disable-indexing -mno-fast-indirect-calls -mno-gas @gol
849 -mno-jump-in-delay -mno-long-load-store @gol
850 -mno-portable-runtime -mno-soft-float @gol
851 -mno-space-regs -msoft-float -mpa-risc-1-0 @gol
852 -mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime @gol
853 -mschedule=@var{cpu-type} -mspace-regs -msio -mwsio @gol
854 -munix=@var{unix-std} -nolibdld -static -threads}
855
856 @emph{IA-64 Options}
857 @gccoptlist{-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic @gol
858 -mvolatile-asm-stop -mregister-names -msdata -mno-sdata @gol
859 -mconstant-gp -mauto-pic -mfused-madd @gol
860 -minline-float-divide-min-latency @gol
861 -minline-float-divide-max-throughput @gol
862 -mno-inline-float-divide @gol
863 -minline-int-divide-min-latency @gol
864 -minline-int-divide-max-throughput @gol
865 -mno-inline-int-divide @gol
866 -minline-sqrt-min-latency -minline-sqrt-max-throughput @gol
867 -mno-inline-sqrt @gol
868 -mdwarf2-asm -mearly-stop-bits @gol
869 -mfixed-range=@var{register-range} -mtls-size=@var{tls-size} @gol
870 -mtune=@var{cpu-type} -milp32 -mlp64 @gol
871 -msched-br-data-spec -msched-ar-data-spec -msched-control-spec @gol
872 -msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec @gol
873 -msched-spec-ldc -msched-spec-control-ldc @gol
874 -msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns @gol
875 -msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path @gol
876 -msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost @gol
877 -msched-max-memory-insns-hard-limit -msched-max-memory-insns=@var{max-insns}}
878
879 @emph{LM32 Options}
880 @gccoptlist{-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled @gol
881 -msign-extend-enabled -muser-enabled}
882
883 @emph{M32R/D Options}
884 @gccoptlist{-m32r2 -m32rx -m32r @gol
885 -mdebug @gol
886 -malign-loops -mno-align-loops @gol
887 -missue-rate=@var{number} @gol
888 -mbranch-cost=@var{number} @gol
889 -mmodel=@var{code-size-model-type} @gol
890 -msdata=@var{sdata-type} @gol
891 -mno-flush-func -mflush-func=@var{name} @gol
892 -mno-flush-trap -mflush-trap=@var{number} @gol
893 -G @var{num}}
894
895 @emph{M32C Options}
896 @gccoptlist{-mcpu=@var{cpu} -msim -memregs=@var{number}}
897
898 @emph{M680x0 Options}
899 @gccoptlist{-march=@var{arch} -mcpu=@var{cpu} -mtune=@var{tune} @gol
900 -m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040 @gol
901 -m68060 -mcpu32 -m5200 -m5206e -m528x -m5307 -m5407 @gol
902 -mcfv4e -mbitfield -mno-bitfield -mc68000 -mc68020 @gol
903 -mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort @gol
904 -mno-short -mhard-float -m68881 -msoft-float -mpcrel @gol
905 -malign-int -mstrict-align -msep-data -mno-sep-data @gol
906 -mshared-library-id=n -mid-shared-library -mno-id-shared-library @gol
907 -mxgot -mno-xgot -mlong-jump-table-offsets}
908
909 @emph{MCore Options}
910 @gccoptlist{-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates @gol
911 -mno-relax-immediates -mwide-bitfields -mno-wide-bitfields @gol
912 -m4byte-functions -mno-4byte-functions -mcallgraph-data @gol
913 -mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim @gol
914 -mlittle-endian -mbig-endian -m210 -m340 -mstack-increment}
915
916 @emph{MeP Options}
917 @gccoptlist{-mabsdiff -mall-opts -maverage -mbased=@var{n} -mbitops @gol
918 -mc=@var{n} -mclip -mconfig=@var{name} -mcop -mcop32 -mcop64 -mivc2 @gol
919 -mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax @gol
920 -mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf @gol
921 -mtiny=@var{n}}
922
923 @emph{MicroBlaze Options}
924 @gccoptlist{-msoft-float -mhard-float -msmall-divides -mcpu=@var{cpu} @gol
925 -mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift @gol
926 -mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss @gol
927 -mxl-multiply-high -mxl-float-convert -mxl-float-sqrt @gol
928 -mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-@var{app-model} @gol
929 -mpic-data-is-text-relative}
930
931 @emph{MIPS Options}
932 @gccoptlist{-EL -EB -march=@var{arch} -mtune=@var{arch} @gol
933 -mips1 -mips2 -mips3 -mips4 -mips32 -mips32r2 -mips32r3 -mips32r5 @gol
934 -mips32r6 -mips64 -mips64r2 -mips64r3 -mips64r5 -mips64r6 @gol
935 -mips16 -mno-mips16 -mflip-mips16 @gol
936 -minterlink-compressed -mno-interlink-compressed @gol
937 -minterlink-mips16 -mno-interlink-mips16 @gol
938 -mabi=@var{abi} -mabicalls -mno-abicalls @gol
939 -mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot @gol
940 -mgp32 -mgp64 -mfp32 -mfpxx -mfp64 -mhard-float -msoft-float @gol
941 -mno-float -msingle-float -mdouble-float @gol
942 -modd-spreg -mno-odd-spreg @gol
943 -mabs=@var{mode} -mnan=@var{encoding} @gol
944 -mdsp -mno-dsp -mdspr2 -mno-dspr2 @gol
945 -mmcu -mmno-mcu @gol
946 -meva -mno-eva @gol
947 -mvirt -mno-virt @gol
948 -mxpa -mno-xpa @gol
949 -mcrc -mno-crc @gol
950 -mginv -mno-ginv @gol
951 -mmicromips -mno-micromips @gol
952 -mmsa -mno-msa @gol
953 -mloongson-mmi -mno-loongson-mmi @gol
954 -mloongson-ext -mno-loongson-ext @gol
955 -mloongson-ext2 -mno-loongson-ext2 @gol
956 -mfpu=@var{fpu-type} @gol
957 -msmartmips -mno-smartmips @gol
958 -mpaired-single -mno-paired-single -mdmx -mno-mdmx @gol
959 -mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc @gol
960 -mlong64 -mlong32 -msym32 -mno-sym32 @gol
961 -G@var{num} -mlocal-sdata -mno-local-sdata @gol
962 -mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt @gol
963 -membedded-data -mno-embedded-data @gol
964 -muninit-const-in-rodata -mno-uninit-const-in-rodata @gol
965 -mcode-readable=@var{setting} @gol
966 -msplit-addresses -mno-split-addresses @gol
967 -mexplicit-relocs -mno-explicit-relocs @gol
968 -mcheck-zero-division -mno-check-zero-division @gol
969 -mdivide-traps -mdivide-breaks @gol
970 -mload-store-pairs -mno-load-store-pairs @gol
971 -mmemcpy -mno-memcpy -mlong-calls -mno-long-calls @gol
972 -mmad -mno-mad -mimadd -mno-imadd -mfused-madd -mno-fused-madd -nocpp @gol
973 -mfix-24k -mno-fix-24k @gol
974 -mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400 @gol
975 -mfix-r5900 -mno-fix-r5900 @gol
976 -mfix-r10000 -mno-fix-r10000 -mfix-rm7000 -mno-fix-rm7000 @gol
977 -mfix-vr4120 -mno-fix-vr4120 @gol
978 -mfix-vr4130 -mno-fix-vr4130 -mfix-sb1 -mno-fix-sb1 @gol
979 -mflush-func=@var{func} -mno-flush-func @gol
980 -mbranch-cost=@var{num} -mbranch-likely -mno-branch-likely @gol
981 -mcompact-branches=@var{policy} @gol
982 -mfp-exceptions -mno-fp-exceptions @gol
983 -mvr4130-align -mno-vr4130-align -msynci -mno-synci @gol
984 -mlxc1-sxc1 -mno-lxc1-sxc1 -mmadd4 -mno-madd4 @gol
985 -mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address @gol
986 -mframe-header-opt -mno-frame-header-opt}
987
988 @emph{MMIX Options}
989 @gccoptlist{-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu @gol
990 -mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols @gol
991 -melf -mbranch-predict -mno-branch-predict -mbase-addresses @gol
992 -mno-base-addresses -msingle-exit -mno-single-exit}
993
994 @emph{MN10300 Options}
995 @gccoptlist{-mmult-bug -mno-mult-bug @gol
996 -mno-am33 -mam33 -mam33-2 -mam34 @gol
997 -mtune=@var{cpu-type} @gol
998 -mreturn-pointer-on-d0 @gol
999 -mno-crt0 -mrelax -mliw -msetlb}
1000
1001 @emph{Moxie Options}
1002 @gccoptlist{-meb -mel -mmul.x -mno-crt0}
1003
1004 @emph{MSP430 Options}
1005 @gccoptlist{-msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax @gol
1006 -mwarn-mcu @gol
1007 -mcode-region= -mdata-region= @gol
1008 -msilicon-errata= -msilicon-errata-warn= @gol
1009 -mhwmult= -minrt}
1010
1011 @emph{NDS32 Options}
1012 @gccoptlist{-mbig-endian -mlittle-endian @gol
1013 -mreduced-regs -mfull-regs @gol
1014 -mcmov -mno-cmov @gol
1015 -mext-perf -mno-ext-perf @gol
1016 -mext-perf2 -mno-ext-perf2 @gol
1017 -mext-string -mno-ext-string @gol
1018 -mv3push -mno-v3push @gol
1019 -m16bit -mno-16bit @gol
1020 -misr-vector-size=@var{num} @gol
1021 -mcache-block-size=@var{num} @gol
1022 -march=@var{arch} @gol
1023 -mcmodel=@var{code-model} @gol
1024 -mctor-dtor -mrelax}
1025
1026 @emph{Nios II Options}
1027 @gccoptlist{-G @var{num} -mgpopt=@var{option} -mgpopt -mno-gpopt @gol
1028 -mgprel-sec=@var{regexp} -mr0rel-sec=@var{regexp} @gol
1029 -mel -meb @gol
1030 -mno-bypass-cache -mbypass-cache @gol
1031 -mno-cache-volatile -mcache-volatile @gol
1032 -mno-fast-sw-div -mfast-sw-div @gol
1033 -mhw-mul -mno-hw-mul -mhw-mulx -mno-hw-mulx -mno-hw-div -mhw-div @gol
1034 -mcustom-@var{insn}=@var{N} -mno-custom-@var{insn} @gol
1035 -mcustom-fpu-cfg=@var{name} @gol
1036 -mhal -msmallc -msys-crt0=@var{name} -msys-lib=@var{name} @gol
1037 -march=@var{arch} -mbmx -mno-bmx -mcdx -mno-cdx}
1038
1039 @emph{Nvidia PTX Options}
1040 @gccoptlist{-m32 -m64 -mmainkernel -moptimize}
1041
1042 @emph{OpenRISC Options}
1043 @gccoptlist{-mboard=@var{name} -mnewlib -mhard-mul -mhard-div @gol
1044 -msoft-mul -msoft-div @gol
1045 -msoft-float -mhard-float -mdouble-float -munordered-float @gol
1046 -mcmov -mror -mrori -msext -msfimm -mshftimm}
1047
1048 @emph{PDP-11 Options}
1049 @gccoptlist{-mfpu -msoft-float -mac0 -mno-ac0 -m40 -m45 -m10 @gol
1050 -mint32 -mno-int16 -mint16 -mno-int32 @gol
1051 -msplit -munix-asm -mdec-asm -mgnu-asm -mlra}
1052
1053 @emph{picoChip Options}
1054 @gccoptlist{-mae=@var{ae_type} -mvliw-lookahead=@var{N} @gol
1055 -msymbol-as-address -mno-inefficient-warnings}
1056
1057 @emph{PowerPC Options}
1058 See RS/6000 and PowerPC Options.
1059
1060 @emph{PRU Options}
1061 @gccoptlist{-mmcu=@var{mcu} -minrt -mno-relax -mloop @gol
1062 -mabi=@var{variant} @gol}
1063
1064 @emph{RISC-V Options}
1065 @gccoptlist{-mbranch-cost=@var{N-instruction} @gol
1066 -mplt -mno-plt @gol
1067 -mabi=@var{ABI-string} @gol
1068 -mfdiv -mno-fdiv @gol
1069 -mdiv -mno-div @gol
1070 -march=@var{ISA-string} @gol
1071 -mtune=@var{processor-string} @gol
1072 -mpreferred-stack-boundary=@var{num} @gol
1073 -msmall-data-limit=@var{N-bytes} @gol
1074 -msave-restore -mno-save-restore @gol
1075 -mstrict-align -mno-strict-align @gol
1076 -mcmodel=medlow -mcmodel=medany @gol
1077 -mexplicit-relocs -mno-explicit-relocs @gol
1078 -mrelax -mno-relax @gol
1079 -mriscv-attribute -mmo-riscv-attribute @gol
1080 -malign-data=@var{type}}
1081
1082 @emph{RL78 Options}
1083 @gccoptlist{-msim -mmul=none -mmul=g13 -mmul=g14 -mallregs @gol
1084 -mcpu=g10 -mcpu=g13 -mcpu=g14 -mg10 -mg13 -mg14 @gol
1085 -m64bit-doubles -m32bit-doubles -msave-mduc-in-interrupts}
1086
1087 @emph{RS/6000 and PowerPC Options}
1088 @gccoptlist{-mcpu=@var{cpu-type} @gol
1089 -mtune=@var{cpu-type} @gol
1090 -mcmodel=@var{code-model} @gol
1091 -mpowerpc64 @gol
1092 -maltivec -mno-altivec @gol
1093 -mpowerpc-gpopt -mno-powerpc-gpopt @gol
1094 -mpowerpc-gfxopt -mno-powerpc-gfxopt @gol
1095 -mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mpopcntd -mno-popcntd @gol
1096 -mfprnd -mno-fprnd @gol
1097 -mcmpb -mno-cmpb -mhard-dfp -mno-hard-dfp @gol
1098 -mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc @gol
1099 -m64 -m32 -mxl-compat -mno-xl-compat -mpe @gol
1100 -malign-power -malign-natural @gol
1101 -msoft-float -mhard-float -mmultiple -mno-multiple @gol
1102 -mupdate -mno-update @gol
1103 -mavoid-indexed-addresses -mno-avoid-indexed-addresses @gol
1104 -mfused-madd -mno-fused-madd -mbit-align -mno-bit-align @gol
1105 -mstrict-align -mno-strict-align -mrelocatable @gol
1106 -mno-relocatable -mrelocatable-lib -mno-relocatable-lib @gol
1107 -mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian @gol
1108 -mdynamic-no-pic -mswdiv -msingle-pic-base @gol
1109 -mprioritize-restricted-insns=@var{priority} @gol
1110 -msched-costly-dep=@var{dependence_type} @gol
1111 -minsert-sched-nops=@var{scheme} @gol
1112 -mcall-aixdesc -mcall-eabi -mcall-freebsd @gol
1113 -mcall-linux -mcall-netbsd -mcall-openbsd @gol
1114 -mcall-sysv -mcall-sysv-eabi -mcall-sysv-noeabi @gol
1115 -mtraceback=@var{traceback_type} @gol
1116 -maix-struct-return -msvr4-struct-return @gol
1117 -mabi=@var{abi-type} -msecure-plt -mbss-plt @gol
1118 -mlongcall -mno-longcall -mpltseq -mno-pltseq @gol
1119 -mblock-move-inline-limit=@var{num} @gol
1120 -mblock-compare-inline-limit=@var{num} @gol
1121 -mblock-compare-inline-loop-limit=@var{num} @gol
1122 -mstring-compare-inline-limit=@var{num} @gol
1123 -misel -mno-isel @gol
1124 -mvrsave -mno-vrsave @gol
1125 -mmulhw -mno-mulhw @gol
1126 -mdlmzb -mno-dlmzb @gol
1127 -mprototype -mno-prototype @gol
1128 -msim -mmvme -mads -myellowknife -memb -msdata @gol
1129 -msdata=@var{opt} -mreadonly-in-sdata -mvxworks -G @var{num} @gol
1130 -mrecip -mrecip=@var{opt} -mno-recip -mrecip-precision @gol
1131 -mno-recip-precision @gol
1132 -mveclibabi=@var{type} -mfriz -mno-friz @gol
1133 -mpointers-to-nested-functions -mno-pointers-to-nested-functions @gol
1134 -msave-toc-indirect -mno-save-toc-indirect @gol
1135 -mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector @gol
1136 -mcrypto -mno-crypto -mhtm -mno-htm @gol
1137 -mquad-memory -mno-quad-memory @gol
1138 -mquad-memory-atomic -mno-quad-memory-atomic @gol
1139 -mcompat-align-parm -mno-compat-align-parm @gol
1140 -mfloat128 -mno-float128 -mfloat128-hardware -mno-float128-hardware @gol
1141 -mgnu-attribute -mno-gnu-attribute @gol
1142 -mstack-protector-guard=@var{guard} -mstack-protector-guard-reg=@var{reg} @gol
1143 -mstack-protector-guard-offset=@var{offset} -mpcrel -mno-pcrel}
1144
1145 @emph{RX Options}
1146 @gccoptlist{-m64bit-doubles -m32bit-doubles -fpu -nofpu@gol
1147 -mcpu=@gol
1148 -mbig-endian-data -mlittle-endian-data @gol
1149 -msmall-data @gol
1150 -msim -mno-sim@gol
1151 -mas100-syntax -mno-as100-syntax@gol
1152 -mrelax@gol
1153 -mmax-constant-size=@gol
1154 -mint-register=@gol
1155 -mpid@gol
1156 -mallow-string-insns -mno-allow-string-insns@gol
1157 -mjsr@gol
1158 -mno-warn-multiple-fast-interrupts@gol
1159 -msave-acc-in-interrupts}
1160
1161 @emph{S/390 and zSeries Options}
1162 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
1163 -mhard-float -msoft-float -mhard-dfp -mno-hard-dfp @gol
1164 -mlong-double-64 -mlong-double-128 @gol
1165 -mbackchain -mno-backchain -mpacked-stack -mno-packed-stack @gol
1166 -msmall-exec -mno-small-exec -mmvcle -mno-mvcle @gol
1167 -m64 -m31 -mdebug -mno-debug -mesa -mzarch @gol
1168 -mhtm -mvx -mzvector @gol
1169 -mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd @gol
1170 -mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard @gol
1171 -mhotpatch=@var{halfwords},@var{halfwords}}
1172
1173 @emph{Score Options}
1174 @gccoptlist{-meb -mel @gol
1175 -mnhwloop @gol
1176 -muls @gol
1177 -mmac @gol
1178 -mscore5 -mscore5u -mscore7 -mscore7d}
1179
1180 @emph{SH Options}
1181 @gccoptlist{-m1 -m2 -m2e @gol
1182 -m2a-nofpu -m2a-single-only -m2a-single -m2a @gol
1183 -m3 -m3e @gol
1184 -m4-nofpu -m4-single-only -m4-single -m4 @gol
1185 -m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al @gol
1186 -mb -ml -mdalign -mrelax @gol
1187 -mbigtable -mfmovd -mrenesas -mno-renesas -mnomacsave @gol
1188 -mieee -mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct @gol
1189 -mprefergot -musermode -multcost=@var{number} -mdiv=@var{strategy} @gol
1190 -mdivsi3_libfunc=@var{name} -mfixed-range=@var{register-range} @gol
1191 -maccumulate-outgoing-args @gol
1192 -matomic-model=@var{atomic-model} @gol
1193 -mbranch-cost=@var{num} -mzdcbranch -mno-zdcbranch @gol
1194 -mcbranch-force-delay-slot @gol
1195 -mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra @gol
1196 -mpretend-cmove -mtas}
1197
1198 @emph{Solaris 2 Options}
1199 @gccoptlist{-mclear-hwcap -mno-clear-hwcap -mimpure-text -mno-impure-text @gol
1200 -pthreads}
1201
1202 @emph{SPARC Options}
1203 @gccoptlist{-mcpu=@var{cpu-type} @gol
1204 -mtune=@var{cpu-type} @gol
1205 -mcmodel=@var{code-model} @gol
1206 -mmemory-model=@var{mem-model} @gol
1207 -m32 -m64 -mapp-regs -mno-app-regs @gol
1208 -mfaster-structs -mno-faster-structs -mflat -mno-flat @gol
1209 -mfpu -mno-fpu -mhard-float -msoft-float @gol
1210 -mhard-quad-float -msoft-quad-float @gol
1211 -mstack-bias -mno-stack-bias @gol
1212 -mstd-struct-return -mno-std-struct-return @gol
1213 -munaligned-doubles -mno-unaligned-doubles @gol
1214 -muser-mode -mno-user-mode @gol
1215 -mv8plus -mno-v8plus -mvis -mno-vis @gol
1216 -mvis2 -mno-vis2 -mvis3 -mno-vis3 @gol
1217 -mvis4 -mno-vis4 -mvis4b -mno-vis4b @gol
1218 -mcbcond -mno-cbcond -mfmaf -mno-fmaf -mfsmuld -mno-fsmuld @gol
1219 -mpopc -mno-popc -msubxc -mno-subxc @gol
1220 -mfix-at697f -mfix-ut699 -mfix-ut700 -mfix-gr712rc @gol
1221 -mlra -mno-lra}
1222
1223 @emph{System V Options}
1224 @gccoptlist{-Qy -Qn -YP,@var{paths} -Ym,@var{dir}}
1225
1226 @emph{TILE-Gx Options}
1227 @gccoptlist{-mcpu=CPU -m32 -m64 -mbig-endian -mlittle-endian @gol
1228 -mcmodel=@var{code-model}}
1229
1230 @emph{TILEPro Options}
1231 @gccoptlist{-mcpu=@var{cpu} -m32}
1232
1233 @emph{V850 Options}
1234 @gccoptlist{-mlong-calls -mno-long-calls -mep -mno-ep @gol
1235 -mprolog-function -mno-prolog-function -mspace @gol
1236 -mtda=@var{n} -msda=@var{n} -mzda=@var{n} @gol
1237 -mapp-regs -mno-app-regs @gol
1238 -mdisable-callt -mno-disable-callt @gol
1239 -mv850e2v3 -mv850e2 -mv850e1 -mv850es @gol
1240 -mv850e -mv850 -mv850e3v5 @gol
1241 -mloop @gol
1242 -mrelax @gol
1243 -mlong-jumps @gol
1244 -msoft-float @gol
1245 -mhard-float @gol
1246 -mgcc-abi @gol
1247 -mrh850-abi @gol
1248 -mbig-switch}
1249
1250 @emph{VAX Options}
1251 @gccoptlist{-mg -mgnu -munix}
1252
1253 @emph{Visium Options}
1254 @gccoptlist{-mdebug -msim -mfpu -mno-fpu -mhard-float -msoft-float @gol
1255 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} -msv-mode -muser-mode}
1256
1257 @emph{VMS Options}
1258 @gccoptlist{-mvms-return-codes -mdebug-main=@var{prefix} -mmalloc64 @gol
1259 -mpointer-size=@var{size}}
1260
1261 @emph{VxWorks Options}
1262 @gccoptlist{-mrtp -non-static -Bstatic -Bdynamic @gol
1263 -Xbind-lazy -Xbind-now}
1264
1265 @emph{x86 Options}
1266 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
1267 -mtune-ctrl=@var{feature-list} -mdump-tune-features -mno-default @gol
1268 -mfpmath=@var{unit} @gol
1269 -masm=@var{dialect} -mno-fancy-math-387 @gol
1270 -mno-fp-ret-in-387 -m80387 -mhard-float -msoft-float @gol
1271 -mno-wide-multiply -mrtd -malign-double @gol
1272 -mpreferred-stack-boundary=@var{num} @gol
1273 -mincoming-stack-boundary=@var{num} @gol
1274 -mcld -mcx16 -msahf -mmovbe -mcrc32 @gol
1275 -mrecip -mrecip=@var{opt} @gol
1276 -mvzeroupper -mprefer-avx128 -mprefer-vector-width=@var{opt} @gol
1277 -mmmx -msse -msse2 -msse3 -mssse3 -msse4.1 -msse4.2 -msse4 -mavx @gol
1278 -mavx2 -mavx512f -mavx512pf -mavx512er -mavx512cd -mavx512vl @gol
1279 -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi -msha -maes @gol
1280 -mpclmul -mfsgsbase -mrdrnd -mf16c -mfma -mpconfig -mwbnoinvd @gol
1281 -mptwrite -mprefetchwt1 -mclflushopt -mclwb -mxsavec -mxsaves @gol
1282 -msse4a -m3dnow -m3dnowa -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop @gol
1283 -madx -mlzcnt -mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm -mhle -mlwp @gol
1284 -mmwaitx -mclzero -mpku -mthreads -mgfni -mvaes -mwaitpkg @gol
1285 -mshstk -mmanual-endbr -mforce-indirect-call -mavx512vbmi2 -mavx512bf16 -menqcmd @gol
1286 -mvpclmulqdq -mavx512bitalg -mmovdiri -mmovdir64b -mavx512vpopcntdq @gol
1287 -mavx5124fmaps -mavx512vnni -mavx5124vnniw -mprfchw -mrdpid @gol
1288 -mrdseed -msgx -mavx512vp2intersect@gol
1289 -mcldemote -mms-bitfields -mno-align-stringops -minline-all-stringops @gol
1290 -minline-stringops-dynamically -mstringop-strategy=@var{alg} @gol
1291 -mmemcpy-strategy=@var{strategy} -mmemset-strategy=@var{strategy} @gol
1292 -mpush-args -maccumulate-outgoing-args -m128bit-long-double @gol
1293 -m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128 @gol
1294 -mregparm=@var{num} -msseregparm @gol
1295 -mveclibabi=@var{type} -mvect8-ret-in-mem @gol
1296 -mpc32 -mpc64 -mpc80 -mstackrealign @gol
1297 -momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs @gol
1298 -mcmodel=@var{code-model} -mabi=@var{name} -maddress-mode=@var{mode} @gol
1299 -m32 -m64 -mx32 -m16 -miamcu -mlarge-data-threshold=@var{num} @gol
1300 -msse2avx -mfentry -mrecord-mcount -mnop-mcount -m8bit-idiv @gol
1301 -minstrument-return=@var{type} -mfentry-name=@var{name} -mfentry-section=@var{name} @gol
1302 -mavx256-split-unaligned-load -mavx256-split-unaligned-store @gol
1303 -malign-data=@var{type} -mstack-protector-guard=@var{guard} @gol
1304 -mstack-protector-guard-reg=@var{reg} @gol
1305 -mstack-protector-guard-offset=@var{offset} @gol
1306 -mstack-protector-guard-symbol=@var{symbol} @gol
1307 -mgeneral-regs-only -mcall-ms2sysv-xlogues @gol
1308 -mindirect-branch=@var{choice} -mfunction-return=@var{choice} @gol
1309 -mindirect-branch-register}
1310
1311 @emph{x86 Windows Options}
1312 @gccoptlist{-mconsole -mcygwin -mno-cygwin -mdll @gol
1313 -mnop-fun-dllimport -mthread @gol
1314 -municode -mwin32 -mwindows -fno-set-stack-executable}
1315
1316 @emph{Xstormy16 Options}
1317 @gccoptlist{-msim}
1318
1319 @emph{Xtensa Options}
1320 @gccoptlist{-mconst16 -mno-const16 @gol
1321 -mfused-madd -mno-fused-madd @gol
1322 -mforce-no-pic @gol
1323 -mserialize-volatile -mno-serialize-volatile @gol
1324 -mtext-section-literals -mno-text-section-literals @gol
1325 -mauto-litpools -mno-auto-litpools @gol
1326 -mtarget-align -mno-target-align @gol
1327 -mlongcalls -mno-longcalls}
1328
1329 @emph{zSeries Options}
1330 See S/390 and zSeries Options.
1331 @end table
1332
1333
1334 @node Overall Options
1335 @section Options Controlling the Kind of Output
1336
1337 Compilation can involve up to four stages: preprocessing, compilation
1338 proper, assembly and linking, always in that order. GCC is capable of
1339 preprocessing and compiling several files either into several
1340 assembler input files, or into one assembler input file; then each
1341 assembler input file produces an object file, and linking combines all
1342 the object files (those newly compiled, and those specified as input)
1343 into an executable file.
1344
1345 @cindex file name suffix
1346 For any given input file, the file name suffix determines what kind of
1347 compilation is done:
1348
1349 @table @gcctabopt
1350 @item @var{file}.c
1351 C source code that must be preprocessed.
1352
1353 @item @var{file}.i
1354 C source code that should not be preprocessed.
1355
1356 @item @var{file}.ii
1357 C++ source code that should not be preprocessed.
1358
1359 @item @var{file}.m
1360 Objective-C source code. Note that you must link with the @file{libobjc}
1361 library to make an Objective-C program work.
1362
1363 @item @var{file}.mi
1364 Objective-C source code that should not be preprocessed.
1365
1366 @item @var{file}.mm
1367 @itemx @var{file}.M
1368 Objective-C++ source code. Note that you must link with the @file{libobjc}
1369 library to make an Objective-C++ program work. Note that @samp{.M} refers
1370 to a literal capital M@.
1371
1372 @item @var{file}.mii
1373 Objective-C++ source code that should not be preprocessed.
1374
1375 @item @var{file}.h
1376 C, C++, Objective-C or Objective-C++ header file to be turned into a
1377 precompiled header (default), or C, C++ header file to be turned into an
1378 Ada spec (via the @option{-fdump-ada-spec} switch).
1379
1380 @item @var{file}.cc
1381 @itemx @var{file}.cp
1382 @itemx @var{file}.cxx
1383 @itemx @var{file}.cpp
1384 @itemx @var{file}.CPP
1385 @itemx @var{file}.c++
1386 @itemx @var{file}.C
1387 C++ source code that must be preprocessed. Note that in @samp{.cxx},
1388 the last two letters must both be literally @samp{x}. Likewise,
1389 @samp{.C} refers to a literal capital C@.
1390
1391 @item @var{file}.mm
1392 @itemx @var{file}.M
1393 Objective-C++ source code that must be preprocessed.
1394
1395 @item @var{file}.mii
1396 Objective-C++ source code that should not be preprocessed.
1397
1398 @item @var{file}.hh
1399 @itemx @var{file}.H
1400 @itemx @var{file}.hp
1401 @itemx @var{file}.hxx
1402 @itemx @var{file}.hpp
1403 @itemx @var{file}.HPP
1404 @itemx @var{file}.h++
1405 @itemx @var{file}.tcc
1406 C++ header file to be turned into a precompiled header or Ada spec.
1407
1408 @item @var{file}.f
1409 @itemx @var{file}.for
1410 @itemx @var{file}.ftn
1411 Fixed form Fortran source code that should not be preprocessed.
1412
1413 @item @var{file}.F
1414 @itemx @var{file}.FOR
1415 @itemx @var{file}.fpp
1416 @itemx @var{file}.FPP
1417 @itemx @var{file}.FTN
1418 Fixed form Fortran source code that must be preprocessed (with the traditional
1419 preprocessor).
1420
1421 @item @var{file}.f90
1422 @itemx @var{file}.f95
1423 @itemx @var{file}.f03
1424 @itemx @var{file}.f08
1425 Free form Fortran source code that should not be preprocessed.
1426
1427 @item @var{file}.F90
1428 @itemx @var{file}.F95
1429 @itemx @var{file}.F03
1430 @itemx @var{file}.F08
1431 Free form Fortran source code that must be preprocessed (with the
1432 traditional preprocessor).
1433
1434 @item @var{file}.go
1435 Go source code.
1436
1437 @item @var{file}.brig
1438 BRIG files (binary representation of HSAIL).
1439
1440 @item @var{file}.d
1441 D source code.
1442
1443 @item @var{file}.di
1444 D interface file.
1445
1446 @item @var{file}.dd
1447 D documentation code (Ddoc).
1448
1449 @item @var{file}.ads
1450 Ada source code file that contains a library unit declaration (a
1451 declaration of a package, subprogram, or generic, or a generic
1452 instantiation), or a library unit renaming declaration (a package,
1453 generic, or subprogram renaming declaration). Such files are also
1454 called @dfn{specs}.
1455
1456 @item @var{file}.adb
1457 Ada source code file containing a library unit body (a subprogram or
1458 package body). Such files are also called @dfn{bodies}.
1459
1460 @c GCC also knows about some suffixes for languages not yet included:
1461 @c Ratfor:
1462 @c @var{file}.r
1463
1464 @item @var{file}.s
1465 Assembler code.
1466
1467 @item @var{file}.S
1468 @itemx @var{file}.sx
1469 Assembler code that must be preprocessed.
1470
1471 @item @var{other}
1472 An object file to be fed straight into linking.
1473 Any file name with no recognized suffix is treated this way.
1474 @end table
1475
1476 @opindex x
1477 You can specify the input language explicitly with the @option{-x} option:
1478
1479 @table @gcctabopt
1480 @item -x @var{language}
1481 Specify explicitly the @var{language} for the following input files
1482 (rather than letting the compiler choose a default based on the file
1483 name suffix). This option applies to all following input files until
1484 the next @option{-x} option. Possible values for @var{language} are:
1485 @smallexample
1486 c c-header cpp-output
1487 c++ c++-header c++-cpp-output
1488 objective-c objective-c-header objective-c-cpp-output
1489 objective-c++ objective-c++-header objective-c++-cpp-output
1490 assembler assembler-with-cpp
1491 ada
1492 d
1493 f77 f77-cpp-input f95 f95-cpp-input
1494 go
1495 brig
1496 @end smallexample
1497
1498 @item -x none
1499 Turn off any specification of a language, so that subsequent files are
1500 handled according to their file name suffixes (as they are if @option{-x}
1501 has not been used at all).
1502 @end table
1503
1504 If you only want some of the stages of compilation, you can use
1505 @option{-x} (or filename suffixes) to tell @command{gcc} where to start, and
1506 one of the options @option{-c}, @option{-S}, or @option{-E} to say where
1507 @command{gcc} is to stop. Note that some combinations (for example,
1508 @samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all.
1509
1510 @table @gcctabopt
1511 @item -c
1512 @opindex c
1513 Compile or assemble the source files, but do not link. The linking
1514 stage simply is not done. The ultimate output is in the form of an
1515 object file for each source file.
1516
1517 By default, the object file name for a source file is made by replacing
1518 the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
1519
1520 Unrecognized input files, not requiring compilation or assembly, are
1521 ignored.
1522
1523 @item -S
1524 @opindex S
1525 Stop after the stage of compilation proper; do not assemble. The output
1526 is in the form of an assembler code file for each non-assembler input
1527 file specified.
1528
1529 By default, the assembler file name for a source file is made by
1530 replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
1531
1532 Input files that don't require compilation are ignored.
1533
1534 @item -E
1535 @opindex E
1536 Stop after the preprocessing stage; do not run the compiler proper. The
1537 output is in the form of preprocessed source code, which is sent to the
1538 standard output.
1539
1540 Input files that don't require preprocessing are ignored.
1541
1542 @cindex output file option
1543 @item -o @var{file}
1544 @opindex o
1545 Place output in file @var{file}. This applies to whatever
1546 sort of output is being produced, whether it be an executable file,
1547 an object file, an assembler file or preprocessed C code.
1548
1549 If @option{-o} is not specified, the default is to put an executable
1550 file in @file{a.out}, the object file for
1551 @file{@var{source}.@var{suffix}} in @file{@var{source}.o}, its
1552 assembler file in @file{@var{source}.s}, a precompiled header file in
1553 @file{@var{source}.@var{suffix}.gch}, and all preprocessed C source on
1554 standard output.
1555
1556 @item -v
1557 @opindex v
1558 Print (on standard error output) the commands executed to run the stages
1559 of compilation. Also print the version number of the compiler driver
1560 program and of the preprocessor and the compiler proper.
1561
1562 @item -###
1563 @opindex ###
1564 Like @option{-v} except the commands are not executed and arguments
1565 are quoted unless they contain only alphanumeric characters or @code{./-_}.
1566 This is useful for shell scripts to capture the driver-generated command lines.
1567
1568 @item --help
1569 @opindex help
1570 Print (on the standard output) a description of the command-line options
1571 understood by @command{gcc}. If the @option{-v} option is also specified
1572 then @option{--help} is also passed on to the various processes
1573 invoked by @command{gcc}, so that they can display the command-line options
1574 they accept. If the @option{-Wextra} option has also been specified
1575 (prior to the @option{--help} option), then command-line options that
1576 have no documentation associated with them are also displayed.
1577
1578 @item --target-help
1579 @opindex target-help
1580 Print (on the standard output) a description of target-specific command-line
1581 options for each tool. For some targets extra target-specific
1582 information may also be printed.
1583
1584 @item --help=@{@var{class}@r{|[}^@r{]}@var{qualifier}@}@r{[},@dots{}@r{]}
1585 Print (on the standard output) a description of the command-line
1586 options understood by the compiler that fit into all specified classes
1587 and qualifiers. These are the supported classes:
1588
1589 @table @asis
1590 @item @samp{optimizers}
1591 Display all of the optimization options supported by the
1592 compiler.
1593
1594 @item @samp{warnings}
1595 Display all of the options controlling warning messages
1596 produced by the compiler.
1597
1598 @item @samp{target}
1599 Display target-specific options. Unlike the
1600 @option{--target-help} option however, target-specific options of the
1601 linker and assembler are not displayed. This is because those
1602 tools do not currently support the extended @option{--help=} syntax.
1603
1604 @item @samp{params}
1605 Display the values recognized by the @option{--param}
1606 option.
1607
1608 @item @var{language}
1609 Display the options supported for @var{language}, where
1610 @var{language} is the name of one of the languages supported in this
1611 version of GCC@.
1612
1613 @item @samp{common}
1614 Display the options that are common to all languages.
1615 @end table
1616
1617 These are the supported qualifiers:
1618
1619 @table @asis
1620 @item @samp{undocumented}
1621 Display only those options that are undocumented.
1622
1623 @item @samp{joined}
1624 Display options taking an argument that appears after an equal
1625 sign in the same continuous piece of text, such as:
1626 @samp{--help=target}.
1627
1628 @item @samp{separate}
1629 Display options taking an argument that appears as a separate word
1630 following the original option, such as: @samp{-o output-file}.
1631 @end table
1632
1633 Thus for example to display all the undocumented target-specific
1634 switches supported by the compiler, use:
1635
1636 @smallexample
1637 --help=target,undocumented
1638 @end smallexample
1639
1640 The sense of a qualifier can be inverted by prefixing it with the
1641 @samp{^} character, so for example to display all binary warning
1642 options (i.e., ones that are either on or off and that do not take an
1643 argument) that have a description, use:
1644
1645 @smallexample
1646 --help=warnings,^joined,^undocumented
1647 @end smallexample
1648
1649 The argument to @option{--help=} should not consist solely of inverted
1650 qualifiers.
1651
1652 Combining several classes is possible, although this usually
1653 restricts the output so much that there is nothing to display. One
1654 case where it does work, however, is when one of the classes is
1655 @var{target}. For example, to display all the target-specific
1656 optimization options, use:
1657
1658 @smallexample
1659 --help=target,optimizers
1660 @end smallexample
1661
1662 The @option{--help=} option can be repeated on the command line. Each
1663 successive use displays its requested class of options, skipping
1664 those that have already been displayed. If @option{--help} is also
1665 specified anywhere on the command line then this takes precedence
1666 over any @option{--help=} option.
1667
1668 If the @option{-Q} option appears on the command line before the
1669 @option{--help=} option, then the descriptive text displayed by
1670 @option{--help=} is changed. Instead of describing the displayed
1671 options, an indication is given as to whether the option is enabled,
1672 disabled or set to a specific value (assuming that the compiler
1673 knows this at the point where the @option{--help=} option is used).
1674
1675 Here is a truncated example from the ARM port of @command{gcc}:
1676
1677 @smallexample
1678 % gcc -Q -mabi=2 --help=target -c
1679 The following options are target specific:
1680 -mabi= 2
1681 -mabort-on-noreturn [disabled]
1682 -mapcs [disabled]
1683 @end smallexample
1684
1685 The output is sensitive to the effects of previous command-line
1686 options, so for example it is possible to find out which optimizations
1687 are enabled at @option{-O2} by using:
1688
1689 @smallexample
1690 -Q -O2 --help=optimizers
1691 @end smallexample
1692
1693 Alternatively you can discover which binary optimizations are enabled
1694 by @option{-O3} by using:
1695
1696 @smallexample
1697 gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
1698 gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
1699 diff /tmp/O2-opts /tmp/O3-opts | grep enabled
1700 @end smallexample
1701
1702 @item --version
1703 @opindex version
1704 Display the version number and copyrights of the invoked GCC@.
1705
1706 @item -pass-exit-codes
1707 @opindex pass-exit-codes
1708 Normally the @command{gcc} program exits with the code of 1 if any
1709 phase of the compiler returns a non-success return code. If you specify
1710 @option{-pass-exit-codes}, the @command{gcc} program instead returns with
1711 the numerically highest error produced by any phase returning an error
1712 indication. The C, C++, and Fortran front ends return 4 if an internal
1713 compiler error is encountered.
1714
1715 @item -pipe
1716 @opindex pipe
1717 Use pipes rather than temporary files for communication between the
1718 various stages of compilation. This fails to work on some systems where
1719 the assembler is unable to read from a pipe; but the GNU assembler has
1720 no trouble.
1721
1722 @item -specs=@var{file}
1723 @opindex specs
1724 Process @var{file} after the compiler reads in the standard @file{specs}
1725 file, in order to override the defaults which the @command{gcc} driver
1726 program uses when determining what switches to pass to @command{cc1},
1727 @command{cc1plus}, @command{as}, @command{ld}, etc. More than one
1728 @option{-specs=@var{file}} can be specified on the command line, and they
1729 are processed in order, from left to right. @xref{Spec Files}, for
1730 information about the format of the @var{file}.
1731
1732 @item -wrapper
1733 @opindex wrapper
1734 Invoke all subcommands under a wrapper program. The name of the
1735 wrapper program and its parameters are passed as a comma separated
1736 list.
1737
1738 @smallexample
1739 gcc -c t.c -wrapper gdb,--args
1740 @end smallexample
1741
1742 @noindent
1743 This invokes all subprograms of @command{gcc} under
1744 @samp{gdb --args}, thus the invocation of @command{cc1} is
1745 @samp{gdb --args cc1 @dots{}}.
1746
1747 @item -ffile-prefix-map=@var{old}=@var{new}
1748 @opindex ffile-prefix-map
1749 When compiling files residing in directory @file{@var{old}}, record
1750 any references to them in the result of the compilation as if the
1751 files resided in directory @file{@var{new}} instead. Specifying this
1752 option is equivalent to specifying all the individual
1753 @option{-f*-prefix-map} options. This can be used to make reproducible
1754 builds that are location independent. See also
1755 @option{-fmacro-prefix-map} and @option{-fdebug-prefix-map}.
1756
1757 @item -fplugin=@var{name}.so
1758 @opindex fplugin
1759 Load the plugin code in file @var{name}.so, assumed to be a
1760 shared object to be dlopen'd by the compiler. The base name of
1761 the shared object file is used to identify the plugin for the
1762 purposes of argument parsing (See
1763 @option{-fplugin-arg-@var{name}-@var{key}=@var{value}} below).
1764 Each plugin should define the callback functions specified in the
1765 Plugins API.
1766
1767 @item -fplugin-arg-@var{name}-@var{key}=@var{value}
1768 @opindex fplugin-arg
1769 Define an argument called @var{key} with a value of @var{value}
1770 for the plugin called @var{name}.
1771
1772 @item -fdump-ada-spec@r{[}-slim@r{]}
1773 @opindex fdump-ada-spec
1774 For C and C++ source and include files, generate corresponding Ada specs.
1775 @xref{Generating Ada Bindings for C and C++ headers,,, gnat_ugn,
1776 GNAT User's Guide}, which provides detailed documentation on this feature.
1777
1778 @item -fada-spec-parent=@var{unit}
1779 @opindex fada-spec-parent
1780 In conjunction with @option{-fdump-ada-spec@r{[}-slim@r{]}} above, generate
1781 Ada specs as child units of parent @var{unit}.
1782
1783 @item -fdump-go-spec=@var{file}
1784 @opindex fdump-go-spec
1785 For input files in any language, generate corresponding Go
1786 declarations in @var{file}. This generates Go @code{const},
1787 @code{type}, @code{var}, and @code{func} declarations which may be a
1788 useful way to start writing a Go interface to code written in some
1789 other language.
1790
1791 @include @value{srcdir}/../libiberty/at-file.texi
1792 @end table
1793
1794 @node Invoking G++
1795 @section Compiling C++ Programs
1796
1797 @cindex suffixes for C++ source
1798 @cindex C++ source file suffixes
1799 C++ source files conventionally use one of the suffixes @samp{.C},
1800 @samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or
1801 @samp{.cxx}; C++ header files often use @samp{.hh}, @samp{.hpp},
1802 @samp{.H}, or (for shared template code) @samp{.tcc}; and
1803 preprocessed C++ files use the suffix @samp{.ii}. GCC recognizes
1804 files with these names and compiles them as C++ programs even if you
1805 call the compiler the same way as for compiling C programs (usually
1806 with the name @command{gcc}).
1807
1808 @findex g++
1809 @findex c++
1810 However, the use of @command{gcc} does not add the C++ library.
1811 @command{g++} is a program that calls GCC and automatically specifies linking
1812 against the C++ library. It treats @samp{.c},
1813 @samp{.h} and @samp{.i} files as C++ source files instead of C source
1814 files unless @option{-x} is used. This program is also useful when
1815 precompiling a C header file with a @samp{.h} extension for use in C++
1816 compilations. On many systems, @command{g++} is also installed with
1817 the name @command{c++}.
1818
1819 @cindex invoking @command{g++}
1820 When you compile C++ programs, you may specify many of the same
1821 command-line options that you use for compiling programs in any
1822 language; or command-line options meaningful for C and related
1823 languages; or options that are meaningful only for C++ programs.
1824 @xref{C Dialect Options,,Options Controlling C Dialect}, for
1825 explanations of options for languages related to C@.
1826 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
1827 explanations of options that are meaningful only for C++ programs.
1828
1829 @node C Dialect Options
1830 @section Options Controlling C Dialect
1831 @cindex dialect options
1832 @cindex language dialect options
1833 @cindex options, dialect
1834
1835 The following options control the dialect of C (or languages derived
1836 from C, such as C++, Objective-C and Objective-C++) that the compiler
1837 accepts:
1838
1839 @table @gcctabopt
1840 @cindex ANSI support
1841 @cindex ISO support
1842 @item -ansi
1843 @opindex ansi
1844 In C mode, this is equivalent to @option{-std=c90}. In C++ mode, it is
1845 equivalent to @option{-std=c++98}.
1846
1847 This turns off certain features of GCC that are incompatible with ISO
1848 C90 (when compiling C code), or of standard C++ (when compiling C++ code),
1849 such as the @code{asm} and @code{typeof} keywords, and
1850 predefined macros such as @code{unix} and @code{vax} that identify the
1851 type of system you are using. It also enables the undesirable and
1852 rarely used ISO trigraph feature. For the C compiler,
1853 it disables recognition of C++ style @samp{//} comments as well as
1854 the @code{inline} keyword.
1855
1856 The alternate keywords @code{__asm__}, @code{__extension__},
1857 @code{__inline__} and @code{__typeof__} continue to work despite
1858 @option{-ansi}. You would not want to use them in an ISO C program, of
1859 course, but it is useful to put them in header files that might be included
1860 in compilations done with @option{-ansi}. Alternate predefined macros
1861 such as @code{__unix__} and @code{__vax__} are also available, with or
1862 without @option{-ansi}.
1863
1864 The @option{-ansi} option does not cause non-ISO programs to be
1865 rejected gratuitously. For that, @option{-Wpedantic} is required in
1866 addition to @option{-ansi}. @xref{Warning Options}.
1867
1868 The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi}
1869 option is used. Some header files may notice this macro and refrain
1870 from declaring certain functions or defining certain macros that the
1871 ISO standard doesn't call for; this is to avoid interfering with any
1872 programs that might use these names for other things.
1873
1874 Functions that are normally built in but do not have semantics
1875 defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in
1876 functions when @option{-ansi} is used. @xref{Other Builtins,,Other
1877 built-in functions provided by GCC}, for details of the functions
1878 affected.
1879
1880 @item -std=
1881 @opindex std
1882 Determine the language standard. @xref{Standards,,Language Standards
1883 Supported by GCC}, for details of these standard versions. This option
1884 is currently only supported when compiling C or C++.
1885
1886 The compiler can accept several base standards, such as @samp{c90} or
1887 @samp{c++98}, and GNU dialects of those standards, such as
1888 @samp{gnu90} or @samp{gnu++98}. When a base standard is specified, the
1889 compiler accepts all programs following that standard plus those
1890 using GNU extensions that do not contradict it. For example,
1891 @option{-std=c90} turns off certain features of GCC that are
1892 incompatible with ISO C90, such as the @code{asm} and @code{typeof}
1893 keywords, but not other GNU extensions that do not have a meaning in
1894 ISO C90, such as omitting the middle term of a @code{?:}
1895 expression. On the other hand, when a GNU dialect of a standard is
1896 specified, all features supported by the compiler are enabled, even when
1897 those features change the meaning of the base standard. As a result, some
1898 strict-conforming programs may be rejected. The particular standard
1899 is used by @option{-Wpedantic} to identify which features are GNU
1900 extensions given that version of the standard. For example
1901 @option{-std=gnu90 -Wpedantic} warns about C++ style @samp{//}
1902 comments, while @option{-std=gnu99 -Wpedantic} does not.
1903
1904 A value for this option must be provided; possible values are
1905
1906 @table @samp
1907 @item c90
1908 @itemx c89
1909 @itemx iso9899:1990
1910 Support all ISO C90 programs (certain GNU extensions that conflict
1911 with ISO C90 are disabled). Same as @option{-ansi} for C code.
1912
1913 @item iso9899:199409
1914 ISO C90 as modified in amendment 1.
1915
1916 @item c99
1917 @itemx c9x
1918 @itemx iso9899:1999
1919 @itemx iso9899:199x
1920 ISO C99. This standard is substantially completely supported, modulo
1921 bugs and floating-point issues
1922 (mainly but not entirely relating to optional C99 features from
1923 Annexes F and G). See
1924 @w{@uref{http://gcc.gnu.org/c99status.html}} for more information. The
1925 names @samp{c9x} and @samp{iso9899:199x} are deprecated.
1926
1927 @item c11
1928 @itemx c1x
1929 @itemx iso9899:2011
1930 ISO C11, the 2011 revision of the ISO C standard. This standard is
1931 substantially completely supported, modulo bugs, floating-point issues
1932 (mainly but not entirely relating to optional C11 features from
1933 Annexes F and G) and the optional Annexes K (Bounds-checking
1934 interfaces) and L (Analyzability). The name @samp{c1x} is deprecated.
1935
1936 @item c17
1937 @itemx c18
1938 @itemx iso9899:2017
1939 @itemx iso9899:2018
1940 ISO C17, the 2017 revision of the ISO C standard
1941 (published in 2018). This standard is
1942 same as C11 except for corrections of defects (all of which are also
1943 applied with @option{-std=c11}) and a new value of
1944 @code{__STDC_VERSION__}, and so is supported to the same extent as C11.
1945
1946 @item c2x
1947 The next version of the ISO C standard, still under development. The
1948 support for this version is experimental and incomplete.
1949
1950 @item gnu90
1951 @itemx gnu89
1952 GNU dialect of ISO C90 (including some C99 features).
1953
1954 @item gnu99
1955 @itemx gnu9x
1956 GNU dialect of ISO C99. The name @samp{gnu9x} is deprecated.
1957
1958 @item gnu11
1959 @itemx gnu1x
1960 GNU dialect of ISO C11.
1961 The name @samp{gnu1x} is deprecated.
1962
1963 @item gnu17
1964 @itemx gnu18
1965 GNU dialect of ISO C17. This is the default for C code.
1966
1967 @item gnu2x
1968 The next version of the ISO C standard, still under development, plus
1969 GNU extensions. The support for this version is experimental and
1970 incomplete.
1971
1972 @item c++98
1973 @itemx c++03
1974 The 1998 ISO C++ standard plus the 2003 technical corrigendum and some
1975 additional defect reports. Same as @option{-ansi} for C++ code.
1976
1977 @item gnu++98
1978 @itemx gnu++03
1979 GNU dialect of @option{-std=c++98}.
1980
1981 @item c++11
1982 @itemx c++0x
1983 The 2011 ISO C++ standard plus amendments.
1984 The name @samp{c++0x} is deprecated.
1985
1986 @item gnu++11
1987 @itemx gnu++0x
1988 GNU dialect of @option{-std=c++11}.
1989 The name @samp{gnu++0x} is deprecated.
1990
1991 @item c++14
1992 @itemx c++1y
1993 The 2014 ISO C++ standard plus amendments.
1994 The name @samp{c++1y} is deprecated.
1995
1996 @item gnu++14
1997 @itemx gnu++1y
1998 GNU dialect of @option{-std=c++14}.
1999 This is the default for C++ code.
2000 The name @samp{gnu++1y} is deprecated.
2001
2002 @item c++17
2003 @itemx c++1z
2004 The 2017 ISO C++ standard plus amendments.
2005 The name @samp{c++1z} is deprecated.
2006
2007 @item gnu++17
2008 @itemx gnu++1z
2009 GNU dialect of @option{-std=c++17}.
2010 The name @samp{gnu++1z} is deprecated.
2011
2012 @item c++2a
2013 The next revision of the ISO C++ standard, tentatively planned for
2014 2020. Support is highly experimental, and will almost certainly
2015 change in incompatible ways in future releases.
2016
2017 @item gnu++2a
2018 GNU dialect of @option{-std=c++2a}. Support is highly experimental,
2019 and will almost certainly change in incompatible ways in future
2020 releases.
2021 @end table
2022
2023 @item -fgnu89-inline
2024 @opindex fgnu89-inline
2025 The option @option{-fgnu89-inline} tells GCC to use the traditional
2026 GNU semantics for @code{inline} functions when in C99 mode.
2027 @xref{Inline,,An Inline Function is As Fast As a Macro}.
2028 Using this option is roughly equivalent to adding the
2029 @code{gnu_inline} function attribute to all inline functions
2030 (@pxref{Function Attributes}).
2031
2032 The option @option{-fno-gnu89-inline} explicitly tells GCC to use the
2033 C99 semantics for @code{inline} when in C99 or gnu99 mode (i.e., it
2034 specifies the default behavior).
2035 This option is not supported in @option{-std=c90} or
2036 @option{-std=gnu90} mode.
2037
2038 The preprocessor macros @code{__GNUC_GNU_INLINE__} and
2039 @code{__GNUC_STDC_INLINE__} may be used to check which semantics are
2040 in effect for @code{inline} functions. @xref{Common Predefined
2041 Macros,,,cpp,The C Preprocessor}.
2042
2043 @item -fpermitted-flt-eval-methods=@var{style}
2044 @opindex fpermitted-flt-eval-methods
2045 @opindex fpermitted-flt-eval-methods=c11
2046 @opindex fpermitted-flt-eval-methods=ts-18661-3
2047 ISO/IEC TS 18661-3 defines new permissible values for
2048 @code{FLT_EVAL_METHOD} that indicate that operations and constants with
2049 a semantic type that is an interchange or extended format should be
2050 evaluated to the precision and range of that type. These new values are
2051 a superset of those permitted under C99/C11, which does not specify the
2052 meaning of other positive values of @code{FLT_EVAL_METHOD}. As such, code
2053 conforming to C11 may not have been written expecting the possibility of
2054 the new values.
2055
2056 @option{-fpermitted-flt-eval-methods} specifies whether the compiler
2057 should allow only the values of @code{FLT_EVAL_METHOD} specified in C99/C11,
2058 or the extended set of values specified in ISO/IEC TS 18661-3.
2059
2060 @var{style} is either @code{c11} or @code{ts-18661-3} as appropriate.
2061
2062 The default when in a standards compliant mode (@option{-std=c11} or similar)
2063 is @option{-fpermitted-flt-eval-methods=c11}. The default when in a GNU
2064 dialect (@option{-std=gnu11} or similar) is
2065 @option{-fpermitted-flt-eval-methods=ts-18661-3}.
2066
2067 @item -aux-info @var{filename}
2068 @opindex aux-info
2069 Output to the given filename prototyped declarations for all functions
2070 declared and/or defined in a translation unit, including those in header
2071 files. This option is silently ignored in any language other than C@.
2072
2073 Besides declarations, the file indicates, in comments, the origin of
2074 each declaration (source file and line), whether the declaration was
2075 implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or
2076 @samp{O} for old, respectively, in the first character after the line
2077 number and the colon), and whether it came from a declaration or a
2078 definition (@samp{C} or @samp{F}, respectively, in the following
2079 character). In the case of function definitions, a K&R-style list of
2080 arguments followed by their declarations is also provided, inside
2081 comments, after the declaration.
2082
2083 @item -fallow-parameterless-variadic-functions
2084 @opindex fallow-parameterless-variadic-functions
2085 Accept variadic functions without named parameters.
2086
2087 Although it is possible to define such a function, this is not very
2088 useful as it is not possible to read the arguments. This is only
2089 supported for C as this construct is allowed by C++.
2090
2091 @item -fno-asm
2092 @opindex fno-asm
2093 @opindex fasm
2094 Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
2095 keyword, so that code can use these words as identifiers. You can use
2096 the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
2097 instead. @option{-ansi} implies @option{-fno-asm}.
2098
2099 In C++, this switch only affects the @code{typeof} keyword, since
2100 @code{asm} and @code{inline} are standard keywords. You may want to
2101 use the @option{-fno-gnu-keywords} flag instead, which has the same
2102 effect. In C99 mode (@option{-std=c99} or @option{-std=gnu99}), this
2103 switch only affects the @code{asm} and @code{typeof} keywords, since
2104 @code{inline} is a standard keyword in ISO C99.
2105
2106 @item -fno-builtin
2107 @itemx -fno-builtin-@var{function}
2108 @opindex fno-builtin
2109 @opindex fbuiltin
2110 @cindex built-in functions
2111 Don't recognize built-in functions that do not begin with
2112 @samp{__builtin_} as prefix. @xref{Other Builtins,,Other built-in
2113 functions provided by GCC}, for details of the functions affected,
2114 including those which are not built-in functions when @option{-ansi} or
2115 @option{-std} options for strict ISO C conformance are used because they
2116 do not have an ISO standard meaning.
2117
2118 GCC normally generates special code to handle certain built-in functions
2119 more efficiently; for instance, calls to @code{alloca} may become single
2120 instructions which adjust the stack directly, and calls to @code{memcpy}
2121 may become inline copy loops. The resulting code is often both smaller
2122 and faster, but since the function calls no longer appear as such, you
2123 cannot set a breakpoint on those calls, nor can you change the behavior
2124 of the functions by linking with a different library. In addition,
2125 when a function is recognized as a built-in function, GCC may use
2126 information about that function to warn about problems with calls to
2127 that function, or to generate more efficient code, even if the
2128 resulting code still contains calls to that function. For example,
2129 warnings are given with @option{-Wformat} for bad calls to
2130 @code{printf} when @code{printf} is built in and @code{strlen} is
2131 known not to modify global memory.
2132
2133 With the @option{-fno-builtin-@var{function}} option
2134 only the built-in function @var{function} is
2135 disabled. @var{function} must not begin with @samp{__builtin_}. If a
2136 function is named that is not built-in in this version of GCC, this
2137 option is ignored. There is no corresponding
2138 @option{-fbuiltin-@var{function}} option; if you wish to enable
2139 built-in functions selectively when using @option{-fno-builtin} or
2140 @option{-ffreestanding}, you may define macros such as:
2141
2142 @smallexample
2143 #define abs(n) __builtin_abs ((n))
2144 #define strcpy(d, s) __builtin_strcpy ((d), (s))
2145 @end smallexample
2146
2147 @item -fgimple
2148 @opindex fgimple
2149
2150 Enable parsing of function definitions marked with @code{__GIMPLE}.
2151 This is an experimental feature that allows unit testing of GIMPLE
2152 passes.
2153
2154 @item -fhosted
2155 @opindex fhosted
2156 @cindex hosted environment
2157
2158 Assert that compilation targets a hosted environment. This implies
2159 @option{-fbuiltin}. A hosted environment is one in which the
2160 entire standard library is available, and in which @code{main} has a return
2161 type of @code{int}. Examples are nearly everything except a kernel.
2162 This is equivalent to @option{-fno-freestanding}.
2163
2164 @item -ffreestanding
2165 @opindex ffreestanding
2166 @cindex hosted environment
2167
2168 Assert that compilation targets a freestanding environment. This
2169 implies @option{-fno-builtin}. A freestanding environment
2170 is one in which the standard library may not exist, and program startup may
2171 not necessarily be at @code{main}. The most obvious example is an OS kernel.
2172 This is equivalent to @option{-fno-hosted}.
2173
2174 @xref{Standards,,Language Standards Supported by GCC}, for details of
2175 freestanding and hosted environments.
2176
2177 @item -fopenacc
2178 @opindex fopenacc
2179 @cindex OpenACC accelerator programming
2180 Enable handling of OpenACC directives @code{#pragma acc} in C/C++ and
2181 @code{!$acc} in Fortran. When @option{-fopenacc} is specified, the
2182 compiler generates accelerated code according to the OpenACC Application
2183 Programming Interface v2.0 @w{@uref{https://www.openacc.org}}. This option
2184 implies @option{-pthread}, and thus is only supported on targets that
2185 have support for @option{-pthread}.
2186
2187 @item -fopenacc-dim=@var{geom}
2188 @opindex fopenacc-dim
2189 @cindex OpenACC accelerator programming
2190 Specify default compute dimensions for parallel offload regions that do
2191 not explicitly specify. The @var{geom} value is a triple of
2192 ':'-separated sizes, in order 'gang', 'worker' and, 'vector'. A size
2193 can be omitted, to use a target-specific default value.
2194
2195 @item -fopenmp
2196 @opindex fopenmp
2197 @cindex OpenMP parallel
2198 Enable handling of OpenMP directives @code{#pragma omp} in C/C++ and
2199 @code{!$omp} in Fortran. When @option{-fopenmp} is specified, the
2200 compiler generates parallel code according to the OpenMP Application
2201 Program Interface v4.5 @w{@uref{https://www.openmp.org}}. This option
2202 implies @option{-pthread}, and thus is only supported on targets that
2203 have support for @option{-pthread}. @option{-fopenmp} implies
2204 @option{-fopenmp-simd}.
2205
2206 @item -fopenmp-simd
2207 @opindex fopenmp-simd
2208 @cindex OpenMP SIMD
2209 @cindex SIMD
2210 Enable handling of OpenMP's SIMD directives with @code{#pragma omp}
2211 in C/C++ and @code{!$omp} in Fortran. Other OpenMP directives
2212 are ignored.
2213
2214 @item -fgnu-tm
2215 @opindex fgnu-tm
2216 When the option @option{-fgnu-tm} is specified, the compiler
2217 generates code for the Linux variant of Intel's current Transactional
2218 Memory ABI specification document (Revision 1.1, May 6 2009). This is
2219 an experimental feature whose interface may change in future versions
2220 of GCC, as the official specification changes. Please note that not
2221 all architectures are supported for this feature.
2222
2223 For more information on GCC's support for transactional memory,
2224 @xref{Enabling libitm,,The GNU Transactional Memory Library,libitm,GNU
2225 Transactional Memory Library}.
2226
2227 Note that the transactional memory feature is not supported with
2228 non-call exceptions (@option{-fnon-call-exceptions}).
2229
2230 @item -fms-extensions
2231 @opindex fms-extensions
2232 Accept some non-standard constructs used in Microsoft header files.
2233
2234 In C++ code, this allows member names in structures to be similar
2235 to previous types declarations.
2236
2237 @smallexample
2238 typedef int UOW;
2239 struct ABC @{
2240 UOW UOW;
2241 @};
2242 @end smallexample
2243
2244 Some cases of unnamed fields in structures and unions are only
2245 accepted with this option. @xref{Unnamed Fields,,Unnamed struct/union
2246 fields within structs/unions}, for details.
2247
2248 Note that this option is off for all targets except for x86
2249 targets using ms-abi.
2250
2251 @item -fplan9-extensions
2252 @opindex fplan9-extensions
2253 Accept some non-standard constructs used in Plan 9 code.
2254
2255 This enables @option{-fms-extensions}, permits passing pointers to
2256 structures with anonymous fields to functions that expect pointers to
2257 elements of the type of the field, and permits referring to anonymous
2258 fields declared using a typedef. @xref{Unnamed Fields,,Unnamed
2259 struct/union fields within structs/unions}, for details. This is only
2260 supported for C, not C++.
2261
2262 @item -fcond-mismatch
2263 @opindex fcond-mismatch
2264 Allow conditional expressions with mismatched types in the second and
2265 third arguments. The value of such an expression is void. This option
2266 is not supported for C++.
2267
2268 @item -flax-vector-conversions
2269 @opindex flax-vector-conversions
2270 Allow implicit conversions between vectors with differing numbers of
2271 elements and/or incompatible element types. This option should not be
2272 used for new code.
2273
2274 @item -funsigned-char
2275 @opindex funsigned-char
2276 Let the type @code{char} be unsigned, like @code{unsigned char}.
2277
2278 Each kind of machine has a default for what @code{char} should
2279 be. It is either like @code{unsigned char} by default or like
2280 @code{signed char} by default.
2281
2282 Ideally, a portable program should always use @code{signed char} or
2283 @code{unsigned char} when it depends on the signedness of an object.
2284 But many programs have been written to use plain @code{char} and
2285 expect it to be signed, or expect it to be unsigned, depending on the
2286 machines they were written for. This option, and its inverse, let you
2287 make such a program work with the opposite default.
2288
2289 The type @code{char} is always a distinct type from each of
2290 @code{signed char} or @code{unsigned char}, even though its behavior
2291 is always just like one of those two.
2292
2293 @item -fsigned-char
2294 @opindex fsigned-char
2295 Let the type @code{char} be signed, like @code{signed char}.
2296
2297 Note that this is equivalent to @option{-fno-unsigned-char}, which is
2298 the negative form of @option{-funsigned-char}. Likewise, the option
2299 @option{-fno-signed-char} is equivalent to @option{-funsigned-char}.
2300
2301 @item -fsigned-bitfields
2302 @itemx -funsigned-bitfields
2303 @itemx -fno-signed-bitfields
2304 @itemx -fno-unsigned-bitfields
2305 @opindex fsigned-bitfields
2306 @opindex funsigned-bitfields
2307 @opindex fno-signed-bitfields
2308 @opindex fno-unsigned-bitfields
2309 These options control whether a bit-field is signed or unsigned, when the
2310 declaration does not use either @code{signed} or @code{unsigned}. By
2311 default, such a bit-field is signed, because this is consistent: the
2312 basic integer types such as @code{int} are signed types.
2313
2314 @item -fsso-struct=@var{endianness}
2315 @opindex fsso-struct
2316 Set the default scalar storage order of structures and unions to the
2317 specified endianness. The accepted values are @samp{big-endian},
2318 @samp{little-endian} and @samp{native} for the native endianness of
2319 the target (the default). This option is not supported for C++.
2320
2321 @strong{Warning:} the @option{-fsso-struct} switch causes GCC to generate
2322 code that is not binary compatible with code generated without it if the
2323 specified endianness is not the native endianness of the target.
2324 @end table
2325
2326 @node C++ Dialect Options
2327 @section Options Controlling C++ Dialect
2328
2329 @cindex compiler options, C++
2330 @cindex C++ options, command-line
2331 @cindex options, C++
2332 This section describes the command-line options that are only meaningful
2333 for C++ programs. You can also use most of the GNU compiler options
2334 regardless of what language your program is in. For example, you
2335 might compile a file @file{firstClass.C} like this:
2336
2337 @smallexample
2338 g++ -g -fstrict-enums -O -c firstClass.C
2339 @end smallexample
2340
2341 @noindent
2342 In this example, only @option{-fstrict-enums} is an option meant
2343 only for C++ programs; you can use the other options with any
2344 language supported by GCC@.
2345
2346 Some options for compiling C programs, such as @option{-std}, are also
2347 relevant for C++ programs.
2348 @xref{C Dialect Options,,Options Controlling C Dialect}.
2349
2350 Here is a list of options that are @emph{only} for compiling C++ programs:
2351
2352 @table @gcctabopt
2353
2354 @item -fabi-version=@var{n}
2355 @opindex fabi-version
2356 Use version @var{n} of the C++ ABI@. The default is version 0.
2357
2358 Version 0 refers to the version conforming most closely to
2359 the C++ ABI specification. Therefore, the ABI obtained using version 0
2360 will change in different versions of G++ as ABI bugs are fixed.
2361
2362 Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.
2363
2364 Version 2 is the version of the C++ ABI that first appeared in G++
2365 3.4, and was the default through G++ 4.9.
2366
2367 Version 3 corrects an error in mangling a constant address as a
2368 template argument.
2369
2370 Version 4, which first appeared in G++ 4.5, implements a standard
2371 mangling for vector types.
2372
2373 Version 5, which first appeared in G++ 4.6, corrects the mangling of
2374 attribute const/volatile on function pointer types, decltype of a
2375 plain decl, and use of a function parameter in the declaration of
2376 another parameter.
2377
2378 Version 6, which first appeared in G++ 4.7, corrects the promotion
2379 behavior of C++11 scoped enums and the mangling of template argument
2380 packs, const/static_cast, prefix ++ and --, and a class scope function
2381 used as a template argument.
2382
2383 Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a
2384 builtin type and corrects the mangling of lambdas in default argument
2385 scope.
2386
2387 Version 8, which first appeared in G++ 4.9, corrects the substitution
2388 behavior of function types with function-cv-qualifiers.
2389
2390 Version 9, which first appeared in G++ 5.2, corrects the alignment of
2391 @code{nullptr_t}.
2392
2393 Version 10, which first appeared in G++ 6.1, adds mangling of
2394 attributes that affect type identity, such as ia32 calling convention
2395 attributes (e.g.@: @samp{stdcall}).
2396
2397 Version 11, which first appeared in G++ 7, corrects the mangling of
2398 sizeof... expressions and operator names. For multiple entities with
2399 the same name within a function, that are declared in different scopes,
2400 the mangling now changes starting with the twelfth occurrence. It also
2401 implies @option{-fnew-inheriting-ctors}.
2402
2403 Version 12, which first appeared in G++ 8, corrects the calling
2404 conventions for empty classes on the x86_64 target and for classes
2405 with only deleted copy/move constructors. It accidentally changes the
2406 calling convention for classes with a deleted copy constructor and a
2407 trivial move constructor.
2408
2409 Version 13, which first appeared in G++ 8.2, fixes the accidental
2410 change in version 12.
2411
2412 See also @option{-Wabi}.
2413
2414 @item -fabi-compat-version=@var{n}
2415 @opindex fabi-compat-version
2416 On targets that support strong aliases, G++
2417 works around mangling changes by creating an alias with the correct
2418 mangled name when defining a symbol with an incorrect mangled name.
2419 This switch specifies which ABI version to use for the alias.
2420
2421 With @option{-fabi-version=0} (the default), this defaults to 11 (GCC 7
2422 compatibility). If another ABI version is explicitly selected, this
2423 defaults to 0. For compatibility with GCC versions 3.2 through 4.9,
2424 use @option{-fabi-compat-version=2}.
2425
2426 If this option is not provided but @option{-Wabi=@var{n}} is, that
2427 version is used for compatibility aliases. If this option is provided
2428 along with @option{-Wabi} (without the version), the version from this
2429 option is used for the warning.
2430
2431 @item -fno-access-control
2432 @opindex fno-access-control
2433 @opindex faccess-control
2434 Turn off all access checking. This switch is mainly useful for working
2435 around bugs in the access control code.
2436
2437 @item -faligned-new
2438 @opindex faligned-new
2439 Enable support for C++17 @code{new} of types that require more
2440 alignment than @code{void* ::operator new(std::size_t)} provides. A
2441 numeric argument such as @code{-faligned-new=32} can be used to
2442 specify how much alignment (in bytes) is provided by that function,
2443 but few users will need to override the default of
2444 @code{alignof(std::max_align_t)}.
2445
2446 This flag is enabled by default for @option{-std=c++17}.
2447
2448 @item -fchar8_t
2449 @itemx -fno-char8_t
2450 @opindex fchar8_t
2451 @opindex fno-char8_t
2452 Enable support for @code{char8_t} as adopted for C++2a. This includes
2453 the addition of a new @code{char8_t} fundamental type, changes to the
2454 types of UTF-8 string and character literals, new signatures for
2455 user-defined literals, associated standard library updates, and new
2456 @code{__cpp_char8_t} and @code{__cpp_lib_char8_t} feature test macros.
2457
2458 This option enables functions to be overloaded for ordinary and UTF-8
2459 strings:
2460
2461 @smallexample
2462 int f(const char *); // #1
2463 int f(const char8_t *); // #2
2464 int v1 = f("text"); // Calls #1
2465 int v2 = f(u8"text"); // Calls #2
2466 @end smallexample
2467
2468 @noindent
2469 and introduces new signatures for user-defined literals:
2470
2471 @smallexample
2472 int operator""_udl1(char8_t);
2473 int v3 = u8'x'_udl1;
2474 int operator""_udl2(const char8_t*, std::size_t);
2475 int v4 = u8"text"_udl2;
2476 template<typename T, T...> int operator""_udl3();
2477 int v5 = u8"text"_udl3;
2478 @end smallexample
2479
2480 @noindent
2481 The change to the types of UTF-8 string and character literals introduces
2482 incompatibilities with ISO C++11 and later standards. For example, the
2483 following code is well-formed under ISO C++11, but is ill-formed when
2484 @option{-fchar8_t} is specified.
2485
2486 @smallexample
2487 char ca[] = u8"xx"; // error: char-array initialized from wide
2488 // string
2489 const char *cp = u8"xx";// error: invalid conversion from
2490 // `const char8_t*' to `const char*'
2491 int f(const char*);
2492 auto v = f(u8"xx"); // error: invalid conversion from
2493 // `const char8_t*' to `const char*'
2494 std::string s@{u8"xx"@}; // error: no matching function for call to
2495 // `std::basic_string<char>::basic_string()'
2496 using namespace std::literals;
2497 s = u8"xx"s; // error: conversion from
2498 // `basic_string<char8_t>' to non-scalar
2499 // type `basic_string<char>' requested
2500 @end smallexample
2501
2502 @item -fcheck-new
2503 @opindex fcheck-new
2504 Check that the pointer returned by @code{operator new} is non-null
2505 before attempting to modify the storage allocated. This check is
2506 normally unnecessary because the C++ standard specifies that
2507 @code{operator new} only returns @code{0} if it is declared
2508 @code{throw()}, in which case the compiler always checks the
2509 return value even without this option. In all other cases, when
2510 @code{operator new} has a non-empty exception specification, memory
2511 exhaustion is signalled by throwing @code{std::bad_alloc}. See also
2512 @samp{new (nothrow)}.
2513
2514 @item -fconcepts
2515 @opindex fconcepts
2516 Enable support for the C++ Extensions for Concepts Technical
2517 Specification, ISO 19217 (2015), which allows code like
2518
2519 @smallexample
2520 template <class T> concept bool Addable = requires (T t) @{ t + t; @};
2521 template <Addable T> T add (T a, T b) @{ return a + b; @}
2522 @end smallexample
2523
2524 @item -fconstexpr-depth=@var{n}
2525 @opindex fconstexpr-depth
2526 Set the maximum nested evaluation depth for C++11 constexpr functions
2527 to @var{n}. A limit is needed to detect endless recursion during
2528 constant expression evaluation. The minimum specified by the standard
2529 is 512.
2530
2531 @item -fconstexpr-cache-depth=@var{n}
2532 @opindex fconstexpr-cache-depth
2533 Set the maximum level of nested evaluation depth for C++11 constexpr
2534 functions that will be cached to @var{n}. This is a heuristic that
2535 trades off compilation speed (when the cache avoids repeated
2536 calculations) against memory consumption (when the cache grows very
2537 large from highly recursive evaluations). The default is 8. Very few
2538 users are likely to want to adjust it, but if your code does heavy
2539 constexpr calculations you might want to experiment to find which
2540 value works best for you.
2541
2542 @item -fconstexpr-loop-limit=@var{n}
2543 @opindex fconstexpr-loop-limit
2544 Set the maximum number of iterations for a loop in C++14 constexpr functions
2545 to @var{n}. A limit is needed to detect infinite loops during
2546 constant expression evaluation. The default is 262144 (1<<18).
2547
2548 @item -fconstexpr-ops-limit=@var{n}
2549 @opindex fconstexpr-ops-limit
2550 Set the maximum number of operations during a single constexpr evaluation.
2551 Even when number of iterations of a single loop is limited with the above limit,
2552 if there are several nested loops and each of them has many iterations but still
2553 smaller than the above limit, or if in a body of some loop or even outside
2554 of a loop too many expressions need to be evaluated, the resulting constexpr
2555 evaluation might take too long.
2556 The default is 33554432 (1<<25).
2557
2558 @item -fno-elide-constructors
2559 @opindex fno-elide-constructors
2560 @opindex felide-constructors
2561 The C++ standard allows an implementation to omit creating a temporary
2562 that is only used to initialize another object of the same type.
2563 Specifying this option disables that optimization, and forces G++ to
2564 call the copy constructor in all cases. This option also causes G++
2565 to call trivial member functions which otherwise would be expanded inline.
2566
2567 In C++17, the compiler is required to omit these temporaries, but this
2568 option still affects trivial member functions.
2569
2570 @item -fno-enforce-eh-specs
2571 @opindex fno-enforce-eh-specs
2572 @opindex fenforce-eh-specs
2573 Don't generate code to check for violation of exception specifications
2574 at run time. This option violates the C++ standard, but may be useful
2575 for reducing code size in production builds, much like defining
2576 @code{NDEBUG}. This does not give user code permission to throw
2577 exceptions in violation of the exception specifications; the compiler
2578 still optimizes based on the specifications, so throwing an
2579 unexpected exception results in undefined behavior at run time.
2580
2581 @item -fextern-tls-init
2582 @itemx -fno-extern-tls-init
2583 @opindex fextern-tls-init
2584 @opindex fno-extern-tls-init
2585 The C++11 and OpenMP standards allow @code{thread_local} and
2586 @code{threadprivate} variables to have dynamic (runtime)
2587 initialization. To support this, any use of such a variable goes
2588 through a wrapper function that performs any necessary initialization.
2589 When the use and definition of the variable are in the same
2590 translation unit, this overhead can be optimized away, but when the
2591 use is in a different translation unit there is significant overhead
2592 even if the variable doesn't actually need dynamic initialization. If
2593 the programmer can be sure that no use of the variable in a
2594 non-defining TU needs to trigger dynamic initialization (either
2595 because the variable is statically initialized, or a use of the
2596 variable in the defining TU will be executed before any uses in
2597 another TU), they can avoid this overhead with the
2598 @option{-fno-extern-tls-init} option.
2599
2600 On targets that support symbol aliases, the default is
2601 @option{-fextern-tls-init}. On targets that do not support symbol
2602 aliases, the default is @option{-fno-extern-tls-init}.
2603
2604 @item -fno-gnu-keywords
2605 @opindex fno-gnu-keywords
2606 @opindex fgnu-keywords
2607 Do not recognize @code{typeof} as a keyword, so that code can use this
2608 word as an identifier. You can use the keyword @code{__typeof__} instead.
2609 This option is implied by the strict ISO C++ dialects: @option{-ansi},
2610 @option{-std=c++98}, @option{-std=c++11}, etc.
2611
2612 @item -fno-implicit-templates
2613 @opindex fno-implicit-templates
2614 @opindex fimplicit-templates
2615 Never emit code for non-inline templates that are instantiated
2616 implicitly (i.e.@: by use); only emit code for explicit instantiations.
2617 If you use this option, you must take care to structure your code to
2618 include all the necessary explicit instantiations to avoid getting
2619 undefined symbols at link time.
2620 @xref{Template Instantiation}, for more information.
2621
2622 @item -fno-implicit-inline-templates
2623 @opindex fno-implicit-inline-templates
2624 @opindex fimplicit-inline-templates
2625 Don't emit code for implicit instantiations of inline templates, either.
2626 The default is to handle inlines differently so that compiles with and
2627 without optimization need the same set of explicit instantiations.
2628
2629 @item -fno-implement-inlines
2630 @opindex fno-implement-inlines
2631 @opindex fimplement-inlines
2632 To save space, do not emit out-of-line copies of inline functions
2633 controlled by @code{#pragma implementation}. This causes linker
2634 errors if these functions are not inlined everywhere they are called.
2635
2636 @item -fms-extensions
2637 @opindex fms-extensions
2638 Disable Wpedantic warnings about constructs used in MFC, such as implicit
2639 int and getting a pointer to member function via non-standard syntax.
2640
2641 @item -fnew-inheriting-ctors
2642 @opindex fnew-inheriting-ctors
2643 Enable the P0136 adjustment to the semantics of C++11 constructor
2644 inheritance. This is part of C++17 but also considered to be a Defect
2645 Report against C++11 and C++14. This flag is enabled by default
2646 unless @option{-fabi-version=10} or lower is specified.
2647
2648 @item -fnew-ttp-matching
2649 @opindex fnew-ttp-matching
2650 Enable the P0522 resolution to Core issue 150, template template
2651 parameters and default arguments: this allows a template with default
2652 template arguments as an argument for a template template parameter
2653 with fewer template parameters. This flag is enabled by default for
2654 @option{-std=c++17}.
2655
2656 @item -fno-nonansi-builtins
2657 @opindex fno-nonansi-builtins
2658 @opindex fnonansi-builtins
2659 Disable built-in declarations of functions that are not mandated by
2660 ANSI/ISO C@. These include @code{ffs}, @code{alloca}, @code{_exit},
2661 @code{index}, @code{bzero}, @code{conjf}, and other related functions.
2662
2663 @item -fnothrow-opt
2664 @opindex fnothrow-opt
2665 Treat a @code{throw()} exception specification as if it were a
2666 @code{noexcept} specification to reduce or eliminate the text size
2667 overhead relative to a function with no exception specification. If
2668 the function has local variables of types with non-trivial
2669 destructors, the exception specification actually makes the
2670 function smaller because the EH cleanups for those variables can be
2671 optimized away. The semantic effect is that an exception thrown out of
2672 a function with such an exception specification results in a call
2673 to @code{terminate} rather than @code{unexpected}.
2674
2675 @item -fno-operator-names
2676 @opindex fno-operator-names
2677 @opindex foperator-names
2678 Do not treat the operator name keywords @code{and}, @code{bitand},
2679 @code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
2680 synonyms as keywords.
2681
2682 @item -fno-optional-diags
2683 @opindex fno-optional-diags
2684 @opindex foptional-diags
2685 Disable diagnostics that the standard says a compiler does not need to
2686 issue. Currently, the only such diagnostic issued by G++ is the one for
2687 a name having multiple meanings within a class.
2688
2689 @item -fpermissive
2690 @opindex fpermissive
2691 Downgrade some diagnostics about nonconformant code from errors to
2692 warnings. Thus, using @option{-fpermissive} allows some
2693 nonconforming code to compile.
2694
2695 @item -fno-pretty-templates
2696 @opindex fno-pretty-templates
2697 @opindex fpretty-templates
2698 When an error message refers to a specialization of a function
2699 template, the compiler normally prints the signature of the
2700 template followed by the template arguments and any typedefs or
2701 typenames in the signature (e.g.@: @code{void f(T) [with T = int]}
2702 rather than @code{void f(int)}) so that it's clear which template is
2703 involved. When an error message refers to a specialization of a class
2704 template, the compiler omits any template arguments that match
2705 the default template arguments for that template. If either of these
2706 behaviors make it harder to understand the error message rather than
2707 easier, you can use @option{-fno-pretty-templates} to disable them.
2708
2709 @item -fno-rtti
2710 @opindex fno-rtti
2711 @opindex frtti
2712 Disable generation of information about every class with virtual
2713 functions for use by the C++ run-time type identification features
2714 (@code{dynamic_cast} and @code{typeid}). If you don't use those parts
2715 of the language, you can save some space by using this flag. Note that
2716 exception handling uses the same information, but G++ generates it as
2717 needed. The @code{dynamic_cast} operator can still be used for casts that
2718 do not require run-time type information, i.e.@: casts to @code{void *} or to
2719 unambiguous base classes.
2720
2721 Mixing code compiled with @option{-frtti} with that compiled with
2722 @option{-fno-rtti} may not work. For example, programs may
2723 fail to link if a class compiled with @option{-fno-rtti} is used as a base
2724 for a class compiled with @option{-frtti}.
2725
2726 @item -fsized-deallocation
2727 @opindex fsized-deallocation
2728 Enable the built-in global declarations
2729 @smallexample
2730 void operator delete (void *, std::size_t) noexcept;
2731 void operator delete[] (void *, std::size_t) noexcept;
2732 @end smallexample
2733 as introduced in C++14. This is useful for user-defined replacement
2734 deallocation functions that, for example, use the size of the object
2735 to make deallocation faster. Enabled by default under
2736 @option{-std=c++14} and above. The flag @option{-Wsized-deallocation}
2737 warns about places that might want to add a definition.
2738
2739 @item -fstrict-enums
2740 @opindex fstrict-enums
2741 Allow the compiler to optimize using the assumption that a value of
2742 enumerated type can only be one of the values of the enumeration (as
2743 defined in the C++ standard; basically, a value that can be
2744 represented in the minimum number of bits needed to represent all the
2745 enumerators). This assumption may not be valid if the program uses a
2746 cast to convert an arbitrary integer value to the enumerated type.
2747
2748 @item -fstrong-eval-order
2749 @opindex fstrong-eval-order
2750 Evaluate member access, array subscripting, and shift expressions in
2751 left-to-right order, and evaluate assignment in right-to-left order,
2752 as adopted for C++17. Enabled by default with @option{-std=c++17}.
2753 @option{-fstrong-eval-order=some} enables just the ordering of member
2754 access and shift expressions, and is the default without
2755 @option{-std=c++17}.
2756
2757 @item -ftemplate-backtrace-limit=@var{n}
2758 @opindex ftemplate-backtrace-limit
2759 Set the maximum number of template instantiation notes for a single
2760 warning or error to @var{n}. The default value is 10.
2761
2762 @item -ftemplate-depth=@var{n}
2763 @opindex ftemplate-depth
2764 Set the maximum instantiation depth for template classes to @var{n}.
2765 A limit on the template instantiation depth is needed to detect
2766 endless recursions during template class instantiation. ANSI/ISO C++
2767 conforming programs must not rely on a maximum depth greater than 17
2768 (changed to 1024 in C++11). The default value is 900, as the compiler
2769 can run out of stack space before hitting 1024 in some situations.
2770
2771 @item -fno-threadsafe-statics
2772 @opindex fno-threadsafe-statics
2773 @opindex fthreadsafe-statics
2774 Do not emit the extra code to use the routines specified in the C++
2775 ABI for thread-safe initialization of local statics. You can use this
2776 option to reduce code size slightly in code that doesn't need to be
2777 thread-safe.
2778
2779 @item -fuse-cxa-atexit
2780 @opindex fuse-cxa-atexit
2781 Register destructors for objects with static storage duration with the
2782 @code{__cxa_atexit} function rather than the @code{atexit} function.
2783 This option is required for fully standards-compliant handling of static
2784 destructors, but only works if your C library supports
2785 @code{__cxa_atexit}.
2786
2787 @item -fno-use-cxa-get-exception-ptr
2788 @opindex fno-use-cxa-get-exception-ptr
2789 @opindex fuse-cxa-get-exception-ptr
2790 Don't use the @code{__cxa_get_exception_ptr} runtime routine. This
2791 causes @code{std::uncaught_exception} to be incorrect, but is necessary
2792 if the runtime routine is not available.
2793
2794 @item -fvisibility-inlines-hidden
2795 @opindex fvisibility-inlines-hidden
2796 This switch declares that the user does not attempt to compare
2797 pointers to inline functions or methods where the addresses of the two functions
2798 are taken in different shared objects.
2799
2800 The effect of this is that GCC may, effectively, mark inline methods with
2801 @code{__attribute__ ((visibility ("hidden")))} so that they do not
2802 appear in the export table of a DSO and do not require a PLT indirection
2803 when used within the DSO@. Enabling this option can have a dramatic effect
2804 on load and link times of a DSO as it massively reduces the size of the
2805 dynamic export table when the library makes heavy use of templates.
2806
2807 The behavior of this switch is not quite the same as marking the
2808 methods as hidden directly, because it does not affect static variables
2809 local to the function or cause the compiler to deduce that
2810 the function is defined in only one shared object.
2811
2812 You may mark a method as having a visibility explicitly to negate the
2813 effect of the switch for that method. For example, if you do want to
2814 compare pointers to a particular inline method, you might mark it as
2815 having default visibility. Marking the enclosing class with explicit
2816 visibility has no effect.
2817
2818 Explicitly instantiated inline methods are unaffected by this option
2819 as their linkage might otherwise cross a shared library boundary.
2820 @xref{Template Instantiation}.
2821
2822 @item -fvisibility-ms-compat
2823 @opindex fvisibility-ms-compat
2824 This flag attempts to use visibility settings to make GCC's C++
2825 linkage model compatible with that of Microsoft Visual Studio.
2826
2827 The flag makes these changes to GCC's linkage model:
2828
2829 @enumerate
2830 @item
2831 It sets the default visibility to @code{hidden}, like
2832 @option{-fvisibility=hidden}.
2833
2834 @item
2835 Types, but not their members, are not hidden by default.
2836
2837 @item
2838 The One Definition Rule is relaxed for types without explicit
2839 visibility specifications that are defined in more than one
2840 shared object: those declarations are permitted if they are
2841 permitted when this option is not used.
2842 @end enumerate
2843
2844 In new code it is better to use @option{-fvisibility=hidden} and
2845 export those classes that are intended to be externally visible.
2846 Unfortunately it is possible for code to rely, perhaps accidentally,
2847 on the Visual Studio behavior.
2848
2849 Among the consequences of these changes are that static data members
2850 of the same type with the same name but defined in different shared
2851 objects are different, so changing one does not change the other;
2852 and that pointers to function members defined in different shared
2853 objects may not compare equal. When this flag is given, it is a
2854 violation of the ODR to define types with the same name differently.
2855
2856 @item -fno-weak
2857 @opindex fno-weak
2858 @opindex fweak
2859 Do not use weak symbol support, even if it is provided by the linker.
2860 By default, G++ uses weak symbols if they are available. This
2861 option exists only for testing, and should not be used by end-users;
2862 it results in inferior code and has no benefits. This option may
2863 be removed in a future release of G++.
2864
2865 @item -nostdinc++
2866 @opindex nostdinc++
2867 Do not search for header files in the standard directories specific to
2868 C++, but do still search the other standard directories. (This option
2869 is used when building the C++ library.)
2870 @end table
2871
2872 In addition, these optimization, warning, and code generation options
2873 have meanings only for C++ programs:
2874
2875 @table @gcctabopt
2876 @item -Wabi @r{(C, Objective-C, C++ and Objective-C++ only)}
2877 @opindex Wabi
2878 @opindex Wno-abi
2879 Warn when G++ it generates code that is probably not compatible with
2880 the vendor-neutral C++ ABI@. Since G++ now defaults to updating the
2881 ABI with each major release, normally @option{-Wabi} will warn only if
2882 there is a check added later in a release series for an ABI issue
2883 discovered since the initial release. @option{-Wabi} will warn about
2884 more things if an older ABI version is selected (with
2885 @option{-fabi-version=@var{n}}).
2886
2887 @option{-Wabi} can also be used with an explicit version number to
2888 warn about compatibility with a particular @option{-fabi-version}
2889 level, e.g.@: @option{-Wabi=2} to warn about changes relative to
2890 @option{-fabi-version=2}.
2891
2892 If an explicit version number is provided and
2893 @option{-fabi-compat-version} is not specified, the version number
2894 from this option is used for compatibility aliases. If no explicit
2895 version number is provided with this option, but
2896 @option{-fabi-compat-version} is specified, that version number is
2897 used for ABI warnings.
2898
2899 Although an effort has been made to warn about
2900 all such cases, there are probably some cases that are not warned about,
2901 even though G++ is generating incompatible code. There may also be
2902 cases where warnings are emitted even though the code that is generated
2903 is compatible.
2904
2905 You should rewrite your code to avoid these warnings if you are
2906 concerned about the fact that code generated by G++ may not be binary
2907 compatible with code generated by other compilers.
2908
2909 Known incompatibilities in @option{-fabi-version=2} (which was the
2910 default from GCC 3.4 to 4.9) include:
2911
2912 @itemize @bullet
2913
2914 @item
2915 A template with a non-type template parameter of reference type was
2916 mangled incorrectly:
2917 @smallexample
2918 extern int N;
2919 template <int &> struct S @{@};
2920 void n (S<N>) @{2@}
2921 @end smallexample
2922
2923 This was fixed in @option{-fabi-version=3}.
2924
2925 @item
2926 SIMD vector types declared using @code{__attribute ((vector_size))} were
2927 mangled in a non-standard way that does not allow for overloading of
2928 functions taking vectors of different sizes.
2929
2930 The mangling was changed in @option{-fabi-version=4}.
2931
2932 @item
2933 @code{__attribute ((const))} and @code{noreturn} were mangled as type
2934 qualifiers, and @code{decltype} of a plain declaration was folded away.
2935
2936 These mangling issues were fixed in @option{-fabi-version=5}.
2937
2938 @item
2939 Scoped enumerators passed as arguments to a variadic function are
2940 promoted like unscoped enumerators, causing @code{va_arg} to complain.
2941 On most targets this does not actually affect the parameter passing
2942 ABI, as there is no way to pass an argument smaller than @code{int}.
2943
2944 Also, the ABI changed the mangling of template argument packs,
2945 @code{const_cast}, @code{static_cast}, prefix increment/decrement, and
2946 a class scope function used as a template argument.
2947
2948 These issues were corrected in @option{-fabi-version=6}.
2949
2950 @item
2951 Lambdas in default argument scope were mangled incorrectly, and the
2952 ABI changed the mangling of @code{nullptr_t}.
2953
2954 These issues were corrected in @option{-fabi-version=7}.
2955
2956 @item
2957 When mangling a function type with function-cv-qualifiers, the
2958 un-qualified function type was incorrectly treated as a substitution
2959 candidate.
2960
2961 This was fixed in @option{-fabi-version=8}, the default for GCC 5.1.
2962
2963 @item
2964 @code{decltype(nullptr)} incorrectly had an alignment of 1, leading to
2965 unaligned accesses. Note that this did not affect the ABI of a
2966 function with a @code{nullptr_t} parameter, as parameters have a
2967 minimum alignment.
2968
2969 This was fixed in @option{-fabi-version=9}, the default for GCC 5.2.
2970
2971 @item
2972 Target-specific attributes that affect the identity of a type, such as
2973 ia32 calling conventions on a function type (stdcall, regparm, etc.),
2974 did not affect the mangled name, leading to name collisions when
2975 function pointers were used as template arguments.
2976
2977 This was fixed in @option{-fabi-version=10}, the default for GCC 6.1.
2978
2979 @end itemize
2980
2981 It also warns about psABI-related changes. The known psABI changes at this
2982 point include:
2983
2984 @itemize @bullet
2985
2986 @item
2987 For SysV/x86-64, unions with @code{long double} members are
2988 passed in memory as specified in psABI. For example:
2989
2990 @smallexample
2991 union U @{
2992 long double ld;
2993 int i;
2994 @};
2995 @end smallexample
2996
2997 @noindent
2998 @code{union U} is always passed in memory.
2999
3000 @end itemize
3001
3002 @item -Wabi-tag @r{(C++ and Objective-C++ only)}
3003 @opindex Wabi-tag
3004 @opindex Wabi-tag
3005 Warn when a type with an ABI tag is used in a context that does not
3006 have that ABI tag. See @ref{C++ Attributes} for more information
3007 about ABI tags.
3008
3009 @item -Wcomma-subscript @r{(C++ and Objective-C++ only)}
3010 @opindex Wcomma-subscript
3011 @opindex Wno-comma-subscript
3012 Warn about uses of a comma expression within a subscripting expression.
3013 This usage was deprecated in C++2a. However, a comma expression wrapped
3014 in @code{( )} is not deprecated. Example:
3015
3016 @smallexample
3017 @group
3018 void f(int *a, int b, int c) @{
3019 a[b,c]; // deprecated
3020 a[(b,c)]; // OK
3021 @}
3022 @end group
3023 @end smallexample
3024
3025 Enabled by default with @option{-std=c++2a}.
3026
3027 @item -Wctor-dtor-privacy @r{(C++ and Objective-C++ only)}
3028 @opindex Wctor-dtor-privacy
3029 @opindex Wno-ctor-dtor-privacy
3030 Warn when a class seems unusable because all the constructors or
3031 destructors in that class are private, and it has neither friends nor
3032 public static member functions. Also warn if there are no non-private
3033 methods, and there's at least one private member function that isn't
3034 a constructor or destructor.
3035
3036 @item -Wdelete-non-virtual-dtor @r{(C++ and Objective-C++ only)}
3037 @opindex Wdelete-non-virtual-dtor
3038 @opindex Wno-delete-non-virtual-dtor
3039 Warn when @code{delete} is used to destroy an instance of a class that
3040 has virtual functions and non-virtual destructor. It is unsafe to delete
3041 an instance of a derived class through a pointer to a base class if the
3042 base class does not have a virtual destructor. This warning is enabled
3043 by @option{-Wall}.
3044
3045 @item -Wdeprecated-copy @r{(C++ and Objective-C++ only)}
3046 @opindex Wdeprecated-copy
3047 @opindex Wno-deprecated-copy
3048 Warn that the implicit declaration of a copy constructor or copy
3049 assignment operator is deprecated if the class has a user-provided
3050 copy constructor or copy assignment operator, in C++11 and up. This
3051 warning is enabled by @option{-Wextra}. With
3052 @option{-Wdeprecated-copy-dtor}, also deprecate if the class has a
3053 user-provided destructor.
3054
3055 @item -Wno-init-list-lifetime @r{(C++ and Objective-C++ only)}
3056 @opindex Winit-list-lifetime
3057 @opindex Wno-init-list-lifetime
3058 Do not warn about uses of @code{std::initializer_list} that are likely
3059 to result in dangling pointers. Since the underlying array for an
3060 @code{initializer_list} is handled like a normal C++ temporary object,
3061 it is easy to inadvertently keep a pointer to the array past the end
3062 of the array's lifetime. For example:
3063
3064 @itemize @bullet
3065 @item
3066 If a function returns a temporary @code{initializer_list}, or a local
3067 @code{initializer_list} variable, the array's lifetime ends at the end
3068 of the return statement, so the value returned has a dangling pointer.
3069
3070 @item
3071 If a new-expression creates an @code{initializer_list}, the array only
3072 lives until the end of the enclosing full-expression, so the
3073 @code{initializer_list} in the heap has a dangling pointer.
3074
3075 @item
3076 When an @code{initializer_list} variable is assigned from a
3077 brace-enclosed initializer list, the temporary array created for the
3078 right side of the assignment only lives until the end of the
3079 full-expression, so at the next statement the @code{initializer_list}
3080 variable has a dangling pointer.
3081
3082 @smallexample
3083 // li's initial underlying array lives as long as li
3084 std::initializer_list<int> li = @{ 1,2,3 @};
3085 // assignment changes li to point to a temporary array
3086 li = @{ 4, 5 @};
3087 // now the temporary is gone and li has a dangling pointer
3088 int i = li.begin()[0] // undefined behavior
3089 @end smallexample
3090
3091 @item
3092 When a list constructor stores the @code{begin} pointer from the
3093 @code{initializer_list} argument, this doesn't extend the lifetime of
3094 the array, so if a class variable is constructed from a temporary
3095 @code{initializer_list}, the pointer is left dangling by the end of
3096 the variable declaration statement.
3097
3098 @end itemize
3099
3100 @item -Wliteral-suffix @r{(C++ and Objective-C++ only)}
3101 @opindex Wliteral-suffix
3102 @opindex Wno-literal-suffix
3103 Warn when a string or character literal is followed by a ud-suffix which does
3104 not begin with an underscore. As a conforming extension, GCC treats such
3105 suffixes as separate preprocessing tokens in order to maintain backwards
3106 compatibility with code that uses formatting macros from @code{<inttypes.h>}.
3107 For example:
3108
3109 @smallexample
3110 #define __STDC_FORMAT_MACROS
3111 #include <inttypes.h>
3112 #include <stdio.h>
3113
3114 int main() @{
3115 int64_t i64 = 123;
3116 printf("My int64: %" PRId64"\n", i64);
3117 @}
3118 @end smallexample
3119
3120 In this case, @code{PRId64} is treated as a separate preprocessing token.
3121
3122 Additionally, warn when a user-defined literal operator is declared with
3123 a literal suffix identifier that doesn't begin with an underscore. Literal
3124 suffix identifiers that don't begin with an underscore are reserved for
3125 future standardization.
3126
3127 This warning is enabled by default.
3128
3129 @item -Wlto-type-mismatch
3130 @opindex Wlto-type-mismatch
3131 @opindex Wno-lto-type-mismatch
3132
3133 During the link-time optimization warn about type mismatches in
3134 global declarations from different compilation units.
3135 Requires @option{-flto} to be enabled. Enabled by default.
3136
3137 @item -Wno-narrowing @r{(C++ and Objective-C++ only)}
3138 @opindex Wnarrowing
3139 @opindex Wno-narrowing
3140 For C++11 and later standards, narrowing conversions are diagnosed by default,
3141 as required by the standard. A narrowing conversion from a constant produces
3142 an error, and a narrowing conversion from a non-constant produces a warning,
3143 but @option{-Wno-narrowing} suppresses the diagnostic.
3144 Note that this does not affect the meaning of well-formed code;
3145 narrowing conversions are still considered ill-formed in SFINAE contexts.
3146
3147 With @option{-Wnarrowing} in C++98, warn when a narrowing
3148 conversion prohibited by C++11 occurs within
3149 @samp{@{ @}}, e.g.
3150
3151 @smallexample
3152 int i = @{ 2.2 @}; // error: narrowing from double to int
3153 @end smallexample
3154
3155 This flag is included in @option{-Wall} and @option{-Wc++11-compat}.
3156
3157 @item -Wnoexcept @r{(C++ and Objective-C++ only)}
3158 @opindex Wnoexcept
3159 @opindex Wno-noexcept
3160 Warn when a noexcept-expression evaluates to false because of a call
3161 to a function that does not have a non-throwing exception
3162 specification (i.e. @code{throw()} or @code{noexcept}) but is known by
3163 the compiler to never throw an exception.
3164
3165 @item -Wnoexcept-type @r{(C++ and Objective-C++ only)}
3166 @opindex Wnoexcept-type
3167 @opindex Wno-noexcept-type
3168 Warn if the C++17 feature making @code{noexcept} part of a function
3169 type changes the mangled name of a symbol relative to C++14. Enabled
3170 by @option{-Wabi} and @option{-Wc++17-compat}.
3171
3172 As an example:
3173
3174 @smallexample
3175 template <class T> void f(T t) @{ t(); @};
3176 void g() noexcept;
3177 void h() @{ f(g); @}
3178 @end smallexample
3179
3180 @noindent
3181 In C++14, @code{f} calls @code{f<void(*)()>}, but in
3182 C++17 it calls @code{f<void(*)()noexcept>}.
3183
3184 @item -Wclass-memaccess @r{(C++ and Objective-C++ only)}
3185 @opindex Wclass-memaccess
3186 @opindex Wno-class-memaccess
3187 Warn when the destination of a call to a raw memory function such as
3188 @code{memset} or @code{memcpy} is an object of class type, and when writing
3189 into such an object might bypass the class non-trivial or deleted constructor
3190 or copy assignment, violate const-correctness or encapsulation, or corrupt
3191 virtual table pointers. Modifying the representation of such objects may
3192 violate invariants maintained by member functions of the class. For example,
3193 the call to @code{memset} below is undefined because it modifies a non-trivial
3194 class object and is, therefore, diagnosed. The safe way to either initialize
3195 or clear the storage of objects of such types is by using the appropriate
3196 constructor or assignment operator, if one is available.
3197 @smallexample
3198 std::string str = "abc";
3199 memset (&str, 0, sizeof str);
3200 @end smallexample
3201 The @option{-Wclass-memaccess} option is enabled by @option{-Wall}.
3202 Explicitly casting the pointer to the class object to @code{void *} or
3203 to a type that can be safely accessed by the raw memory function suppresses
3204 the warning.
3205
3206 @item -Wnon-virtual-dtor @r{(C++ and Objective-C++ only)}
3207 @opindex Wnon-virtual-dtor
3208 @opindex Wno-non-virtual-dtor
3209 Warn when a class has virtual functions and an accessible non-virtual
3210 destructor itself or in an accessible polymorphic base class, in which
3211 case it is possible but unsafe to delete an instance of a derived
3212 class through a pointer to the class itself or base class. This
3213 warning is automatically enabled if @option{-Weffc++} is specified.
3214
3215 @item -Wregister @r{(C++ and Objective-C++ only)}
3216 @opindex Wregister
3217 @opindex Wno-register
3218 Warn on uses of the @code{register} storage class specifier, except
3219 when it is part of the GNU @ref{Explicit Register Variables} extension.
3220 The use of the @code{register} keyword as storage class specifier has
3221 been deprecated in C++11 and removed in C++17.
3222 Enabled by default with @option{-std=c++17}.
3223
3224 @item -Wreorder @r{(C++ and Objective-C++ only)}
3225 @opindex Wreorder
3226 @opindex Wno-reorder
3227 @cindex reordering, warning
3228 @cindex warning for reordering of member initializers
3229 Warn when the order of member initializers given in the code does not
3230 match the order in which they must be executed. For instance:
3231
3232 @smallexample
3233 struct A @{
3234 int i;
3235 int j;
3236 A(): j (0), i (1) @{ @}
3237 @};
3238 @end smallexample
3239
3240 @noindent
3241 The compiler rearranges the member initializers for @code{i}
3242 and @code{j} to match the declaration order of the members, emitting
3243 a warning to that effect. This warning is enabled by @option{-Wall}.
3244
3245 @item -Wno-pessimizing-move @r{(C++ and Objective-C++ only)}
3246 @opindex Wpessimizing-move
3247 @opindex Wno-pessimizing-move
3248 This warning warns when a call to @code{std::move} prevents copy
3249 elision. A typical scenario when copy elision can occur is when returning in
3250 a function with a class return type, when the expression being returned is the
3251 name of a non-volatile automatic object, and is not a function parameter, and
3252 has the same type as the function return type.
3253
3254 @smallexample
3255 struct T @{
3256 @dots{}
3257 @};
3258 T fn()
3259 @{
3260 T t;
3261 @dots{}
3262 return std::move (t);
3263 @}
3264 @end smallexample
3265
3266 But in this example, the @code{std::move} call prevents copy elision.
3267
3268 This warning is enabled by @option{-Wall}.
3269
3270 @item -Wno-redundant-move @r{(C++ and Objective-C++ only)}
3271 @opindex Wredundant-move
3272 @opindex Wno-redundant-move
3273 This warning warns about redundant calls to @code{std::move}; that is, when
3274 a move operation would have been performed even without the @code{std::move}
3275 call. This happens because the compiler is forced to treat the object as if
3276 it were an rvalue in certain situations such as returning a local variable,
3277 where copy elision isn't applicable. Consider:
3278
3279 @smallexample
3280 struct T @{
3281 @dots{}
3282 @};
3283 T fn(T t)
3284 @{
3285 @dots{}
3286 return std::move (t);
3287 @}
3288 @end smallexample
3289
3290 Here, the @code{std::move} call is redundant. Because G++ implements Core
3291 Issue 1579, another example is:
3292
3293 @smallexample
3294 struct T @{ // convertible to U
3295 @dots{}
3296 @};
3297 struct U @{
3298 @dots{}
3299 @};
3300 U fn()
3301 @{
3302 T t;
3303 @dots{}
3304 return std::move (t);
3305 @}
3306 @end smallexample
3307 In this example, copy elision isn't applicable because the type of the
3308 expression being returned and the function return type differ, yet G++
3309 treats the return value as if it were designated by an rvalue.
3310
3311 This warning is enabled by @option{-Wextra}.
3312
3313 @item -fext-numeric-literals @r{(C++ and Objective-C++ only)}
3314 @opindex fext-numeric-literals
3315 @opindex fno-ext-numeric-literals
3316 Accept imaginary, fixed-point, or machine-defined
3317 literal number suffixes as GNU extensions.
3318 When this option is turned off these suffixes are treated
3319 as C++11 user-defined literal numeric suffixes.
3320 This is on by default for all pre-C++11 dialects and all GNU dialects:
3321 @option{-std=c++98}, @option{-std=gnu++98}, @option{-std=gnu++11},
3322 @option{-std=gnu++14}.
3323 This option is off by default
3324 for ISO C++11 onwards (@option{-std=c++11}, ...).
3325 @end table
3326
3327 The following @option{-W@dots{}} options are not affected by @option{-Wall}.
3328
3329 @table @gcctabopt
3330 @item -Weffc++ @r{(C++ and Objective-C++ only)}
3331 @opindex Weffc++
3332 @opindex Wno-effc++
3333 Warn about violations of the following style guidelines from Scott Meyers'
3334 @cite{Effective C++} series of books:
3335
3336 @itemize @bullet
3337 @item
3338 Define a copy constructor and an assignment operator for classes
3339 with dynamically-allocated memory.
3340
3341 @item
3342 Prefer initialization to assignment in constructors.
3343
3344 @item
3345 Have @code{operator=} return a reference to @code{*this}.
3346
3347 @item
3348 Don't try to return a reference when you must return an object.
3349
3350 @item
3351 Distinguish between prefix and postfix forms of increment and
3352 decrement operators.
3353
3354 @item
3355 Never overload @code{&&}, @code{||}, or @code{,}.
3356
3357 @end itemize
3358
3359 This option also enables @option{-Wnon-virtual-dtor}, which is also
3360 one of the effective C++ recommendations. However, the check is
3361 extended to warn about the lack of virtual destructor in accessible
3362 non-polymorphic bases classes too.
3363
3364 When selecting this option, be aware that the standard library
3365 headers do not obey all of these guidelines; use @samp{grep -v}
3366 to filter out those warnings.
3367
3368 @item -Wstrict-null-sentinel @r{(C++ and Objective-C++ only)}
3369 @opindex Wstrict-null-sentinel
3370 @opindex Wno-strict-null-sentinel
3371 Warn about the use of an uncasted @code{NULL} as sentinel. When
3372 compiling only with GCC this is a valid sentinel, as @code{NULL} is defined
3373 to @code{__null}. Although it is a null pointer constant rather than a
3374 null pointer, it is guaranteed to be of the same size as a pointer.
3375 But this use is not portable across different compilers.
3376
3377 @item -Wno-non-template-friend @r{(C++ and Objective-C++ only)}
3378 @opindex Wno-non-template-friend
3379 @opindex Wnon-template-friend
3380 Disable warnings when non-template friend functions are declared
3381 within a template. In very old versions of GCC that predate implementation
3382 of the ISO standard, declarations such as
3383 @samp{friend int foo(int)}, where the name of the friend is an unqualified-id,
3384 could be interpreted as a particular specialization of a template
3385 function; the warning exists to diagnose compatibility problems,
3386 and is enabled by default.
3387
3388 @item -Wold-style-cast @r{(C++ and Objective-C++ only)}
3389 @opindex Wold-style-cast
3390 @opindex Wno-old-style-cast
3391 Warn if an old-style (C-style) cast to a non-void type is used within
3392 a C++ program. The new-style casts (@code{dynamic_cast},
3393 @code{static_cast}, @code{reinterpret_cast}, and @code{const_cast}) are
3394 less vulnerable to unintended effects and much easier to search for.
3395
3396 @item -Woverloaded-virtual @r{(C++ and Objective-C++ only)}
3397 @opindex Woverloaded-virtual
3398 @opindex Wno-overloaded-virtual
3399 @cindex overloaded virtual function, warning
3400 @cindex warning for overloaded virtual function
3401 Warn when a function declaration hides virtual functions from a
3402 base class. For example, in:
3403
3404 @smallexample
3405 struct A @{
3406 virtual void f();
3407 @};
3408
3409 struct B: public A @{
3410 void f(int);
3411 @};
3412 @end smallexample
3413
3414 the @code{A} class version of @code{f} is hidden in @code{B}, and code
3415 like:
3416
3417 @smallexample
3418 B* b;
3419 b->f();
3420 @end smallexample
3421
3422 @noindent
3423 fails to compile.
3424
3425 @item -Wno-pmf-conversions @r{(C++ and Objective-C++ only)}
3426 @opindex Wno-pmf-conversions
3427 @opindex Wpmf-conversions
3428 Disable the diagnostic for converting a bound pointer to member function
3429 to a plain pointer.
3430
3431 @item -Wsign-promo @r{(C++ and Objective-C++ only)}
3432 @opindex Wsign-promo
3433 @opindex Wno-sign-promo
3434 Warn when overload resolution chooses a promotion from unsigned or
3435 enumerated type to a signed type, over a conversion to an unsigned type of
3436 the same size. Previous versions of G++ tried to preserve
3437 unsignedness, but the standard mandates the current behavior.
3438
3439 @item -Wtemplates @r{(C++ and Objective-C++ only)}
3440 @opindex Wtemplates
3441 @opindex Wno-templates
3442 Warn when a primary template declaration is encountered. Some coding
3443 rules disallow templates, and this may be used to enforce that rule.
3444 The warning is inactive inside a system header file, such as the STL, so
3445 one can still use the STL. One may also instantiate or specialize
3446 templates.
3447
3448 @item -Wmultiple-inheritance @r{(C++ and Objective-C++ only)}
3449 @opindex Wmultiple-inheritance
3450 @opindex Wno-multiple-inheritance
3451 Warn when a class is defined with multiple direct base classes. Some
3452 coding rules disallow multiple inheritance, and this may be used to
3453 enforce that rule. The warning is inactive inside a system header file,
3454 such as the STL, so one can still use the STL. One may also define
3455 classes that indirectly use multiple inheritance.
3456
3457 @item -Wvirtual-inheritance
3458 @opindex Wvirtual-inheritance
3459 @opindex Wno-virtual-inheritance
3460 Warn when a class is defined with a virtual direct base class. Some
3461 coding rules disallow multiple inheritance, and this may be used to
3462 enforce that rule. The warning is inactive inside a system header file,
3463 such as the STL, so one can still use the STL. One may also define
3464 classes that indirectly use virtual inheritance.
3465
3466 @item -Wnamespaces
3467 @opindex Wnamespaces
3468 @opindex Wno-namespaces
3469 Warn when a namespace definition is opened. Some coding rules disallow
3470 namespaces, and this may be used to enforce that rule. The warning is
3471 inactive inside a system header file, such as the STL, so one can still
3472 use the STL. One may also use using directives and qualified names.
3473
3474 @item -Wno-terminate @r{(C++ and Objective-C++ only)}
3475 @opindex Wterminate
3476 @opindex Wno-terminate
3477 Disable the warning about a throw-expression that will immediately
3478 result in a call to @code{terminate}.
3479
3480 @item -Wno-class-conversion @r{(C++ and Objective-C++ only)}
3481 @opindex Wno-class-conversion
3482 @opindex Wclass-conversion
3483 Disable the warning about the case when a conversion function converts an
3484 object to the same type, to a base class of that type, or to void; such
3485 a conversion function will never be called.
3486
3487 @item -Wvolatile @r{(C++ and Objective-C++ only)}
3488 @opindex Wvolatile
3489 @opindex Wno-volatile
3490 Warn about deprecated uses of the @code{volatile} qualifier. This includes
3491 postfix and prefix @code{++} and @code{--} expressions of
3492 @code{volatile}-qualified types, using simple assignments where the left
3493 operand is a @code{volatile}-qualified non-class type for their value,
3494 compound assignments where the left operand is a @code{volatile}-qualified
3495 non-class type, @code{volatile}-qualified function return type,
3496 @code{volatile}-qualified parameter type, and structured bindings of a
3497 @code{volatile}-qualified type. This usage was deprecated in C++20.
3498
3499 Enabled by default with @option{-std=c++2a}.
3500 @end table
3501
3502 @node Objective-C and Objective-C++ Dialect Options
3503 @section Options Controlling Objective-C and Objective-C++ Dialects
3504
3505 @cindex compiler options, Objective-C and Objective-C++
3506 @cindex Objective-C and Objective-C++ options, command-line
3507 @cindex options, Objective-C and Objective-C++
3508 (NOTE: This manual does not describe the Objective-C and Objective-C++
3509 languages themselves. @xref{Standards,,Language Standards
3510 Supported by GCC}, for references.)
3511
3512 This section describes the command-line options that are only meaningful
3513 for Objective-C and Objective-C++ programs. You can also use most of
3514 the language-independent GNU compiler options.
3515 For example, you might compile a file @file{some_class.m} like this:
3516
3517 @smallexample
3518 gcc -g -fgnu-runtime -O -c some_class.m
3519 @end smallexample
3520
3521 @noindent
3522 In this example, @option{-fgnu-runtime} is an option meant only for
3523 Objective-C and Objective-C++ programs; you can use the other options with
3524 any language supported by GCC@.
3525
3526 Note that since Objective-C is an extension of the C language, Objective-C
3527 compilations may also use options specific to the C front-end (e.g.,
3528 @option{-Wtraditional}). Similarly, Objective-C++ compilations may use
3529 C++-specific options (e.g., @option{-Wabi}).
3530
3531 Here is a list of options that are @emph{only} for compiling Objective-C
3532 and Objective-C++ programs:
3533
3534 @table @gcctabopt
3535 @item -fconstant-string-class=@var{class-name}
3536 @opindex fconstant-string-class
3537 Use @var{class-name} as the name of the class to instantiate for each
3538 literal string specified with the syntax @code{@@"@dots{}"}. The default
3539 class name is @code{NXConstantString} if the GNU runtime is being used, and
3540 @code{NSConstantString} if the NeXT runtime is being used (see below). The
3541 @option{-fconstant-cfstrings} option, if also present, overrides the
3542 @option{-fconstant-string-class} setting and cause @code{@@"@dots{}"} literals
3543 to be laid out as constant CoreFoundation strings.
3544
3545 @item -fgnu-runtime
3546 @opindex fgnu-runtime
3547 Generate object code compatible with the standard GNU Objective-C
3548 runtime. This is the default for most types of systems.
3549
3550 @item -fnext-runtime
3551 @opindex fnext-runtime
3552 Generate output compatible with the NeXT runtime. This is the default
3553 for NeXT-based systems, including Darwin and Mac OS X@. The macro
3554 @code{__NEXT_RUNTIME__} is predefined if (and only if) this option is
3555 used.
3556
3557 @item -fno-nil-receivers
3558 @opindex fno-nil-receivers
3559 @opindex fnil-receivers
3560 Assume that all Objective-C message dispatches (@code{[receiver
3561 message:arg]}) in this translation unit ensure that the receiver is
3562 not @code{nil}. This allows for more efficient entry points in the
3563 runtime to be used. This option is only available in conjunction with
3564 the NeXT runtime and ABI version 0 or 1.
3565
3566 @item -fobjc-abi-version=@var{n}
3567 @opindex fobjc-abi-version
3568 Use version @var{n} of the Objective-C ABI for the selected runtime.
3569 This option is currently supported only for the NeXT runtime. In that
3570 case, Version 0 is the traditional (32-bit) ABI without support for
3571 properties and other Objective-C 2.0 additions. Version 1 is the
3572 traditional (32-bit) ABI with support for properties and other
3573 Objective-C 2.0 additions. Version 2 is the modern (64-bit) ABI. If
3574 nothing is specified, the default is Version 0 on 32-bit target
3575 machines, and Version 2 on 64-bit target machines.
3576
3577 @item -fobjc-call-cxx-cdtors
3578 @opindex fobjc-call-cxx-cdtors
3579 For each Objective-C class, check if any of its instance variables is a
3580 C++ object with a non-trivial default constructor. If so, synthesize a
3581 special @code{- (id) .cxx_construct} instance method which runs
3582 non-trivial default constructors on any such instance variables, in order,
3583 and then return @code{self}. Similarly, check if any instance variable
3584 is a C++ object with a non-trivial destructor, and if so, synthesize a
3585 special @code{- (void) .cxx_destruct} method which runs
3586 all such default destructors, in reverse order.
3587
3588 The @code{- (id) .cxx_construct} and @code{- (void) .cxx_destruct}
3589 methods thusly generated only operate on instance variables
3590 declared in the current Objective-C class, and not those inherited
3591 from superclasses. It is the responsibility of the Objective-C
3592 runtime to invoke all such methods in an object's inheritance
3593 hierarchy. The @code{- (id) .cxx_construct} methods are invoked
3594 by the runtime immediately after a new object instance is allocated;
3595 the @code{- (void) .cxx_destruct} methods are invoked immediately
3596 before the runtime deallocates an object instance.
3597
3598 As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
3599 support for invoking the @code{- (id) .cxx_construct} and
3600 @code{- (void) .cxx_destruct} methods.
3601
3602 @item -fobjc-direct-dispatch
3603 @opindex fobjc-direct-dispatch
3604 Allow fast jumps to the message dispatcher. On Darwin this is
3605 accomplished via the comm page.
3606
3607 @item -fobjc-exceptions
3608 @opindex fobjc-exceptions
3609 Enable syntactic support for structured exception handling in
3610 Objective-C, similar to what is offered by C++. This option
3611 is required to use the Objective-C keywords @code{@@try},
3612 @code{@@throw}, @code{@@catch}, @code{@@finally} and
3613 @code{@@synchronized}. This option is available with both the GNU
3614 runtime and the NeXT runtime (but not available in conjunction with
3615 the NeXT runtime on Mac OS X 10.2 and earlier).
3616
3617 @item -fobjc-gc
3618 @opindex fobjc-gc
3619 Enable garbage collection (GC) in Objective-C and Objective-C++
3620 programs. This option is only available with the NeXT runtime; the
3621 GNU runtime has a different garbage collection implementation that
3622 does not require special compiler flags.
3623
3624 @item -fobjc-nilcheck
3625 @opindex fobjc-nilcheck
3626 For the NeXT runtime with version 2 of the ABI, check for a nil
3627 receiver in method invocations before doing the actual method call.
3628 This is the default and can be disabled using
3629 @option{-fno-objc-nilcheck}. Class methods and super calls are never
3630 checked for nil in this way no matter what this flag is set to.
3631 Currently this flag does nothing when the GNU runtime, or an older
3632 version of the NeXT runtime ABI, is used.
3633
3634 @item -fobjc-std=objc1
3635 @opindex fobjc-std
3636 Conform to the language syntax of Objective-C 1.0, the language
3637 recognized by GCC 4.0. This only affects the Objective-C additions to
3638 the C/C++ language; it does not affect conformance to C/C++ standards,
3639 which is controlled by the separate C/C++ dialect option flags. When
3640 this option is used with the Objective-C or Objective-C++ compiler,
3641 any Objective-C syntax that is not recognized by GCC 4.0 is rejected.
3642 This is useful if you need to make sure that your Objective-C code can
3643 be compiled with older versions of GCC@.
3644
3645 @item -freplace-objc-classes
3646 @opindex freplace-objc-classes
3647 Emit a special marker instructing @command{ld(1)} not to statically link in
3648 the resulting object file, and allow @command{dyld(1)} to load it in at
3649 run time instead. This is used in conjunction with the Fix-and-Continue
3650 debugging mode, where the object file in question may be recompiled and
3651 dynamically reloaded in the course of program execution, without the need
3652 to restart the program itself. Currently, Fix-and-Continue functionality
3653 is only available in conjunction with the NeXT runtime on Mac OS X 10.3
3654 and later.
3655
3656 @item -fzero-link
3657 @opindex fzero-link
3658 When compiling for the NeXT runtime, the compiler ordinarily replaces calls
3659 to @code{objc_getClass("@dots{}")} (when the name of the class is known at
3660 compile time) with static class references that get initialized at load time,
3661 which improves run-time performance. Specifying the @option{-fzero-link} flag
3662 suppresses this behavior and causes calls to @code{objc_getClass("@dots{}")}
3663 to be retained. This is useful in Zero-Link debugging mode, since it allows
3664 for individual class implementations to be modified during program execution.
3665 The GNU runtime currently always retains calls to @code{objc_get_class("@dots{}")}
3666 regardless of command-line options.
3667
3668 @item -fno-local-ivars
3669 @opindex fno-local-ivars
3670 @opindex flocal-ivars
3671 By default instance variables in Objective-C can be accessed as if
3672 they were local variables from within the methods of the class they're
3673 declared in. This can lead to shadowing between instance variables
3674 and other variables declared either locally inside a class method or
3675 globally with the same name. Specifying the @option{-fno-local-ivars}
3676 flag disables this behavior thus avoiding variable shadowing issues.
3677
3678 @item -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]}
3679 @opindex fivar-visibility
3680 Set the default instance variable visibility to the specified option
3681 so that instance variables declared outside the scope of any access
3682 modifier directives default to the specified visibility.
3683
3684 @item -gen-decls
3685 @opindex gen-decls
3686 Dump interface declarations for all classes seen in the source file to a
3687 file named @file{@var{sourcename}.decl}.
3688
3689 @item -Wassign-intercept @r{(Objective-C and Objective-C++ only)}
3690 @opindex Wassign-intercept
3691 @opindex Wno-assign-intercept
3692 Warn whenever an Objective-C assignment is being intercepted by the
3693 garbage collector.
3694
3695 @item -Wno-protocol @r{(Objective-C and Objective-C++ only)}
3696 @opindex Wno-protocol
3697 @opindex Wprotocol
3698 If a class is declared to implement a protocol, a warning is issued for
3699 every method in the protocol that is not implemented by the class. The
3700 default behavior is to issue a warning for every method not explicitly
3701 implemented in the class, even if a method implementation is inherited
3702 from the superclass. If you use the @option{-Wno-protocol} option, then
3703 methods inherited from the superclass are considered to be implemented,
3704 and no warning is issued for them.
3705
3706 @item -Wselector @r{(Objective-C and Objective-C++ only)}
3707 @opindex Wselector
3708 @opindex Wno-selector
3709 Warn if multiple methods of different types for the same selector are
3710 found during compilation. The check is performed on the list of methods
3711 in the final stage of compilation. Additionally, a check is performed
3712 for each selector appearing in a @code{@@selector(@dots{})}
3713 expression, and a corresponding method for that selector has been found
3714 during compilation. Because these checks scan the method table only at
3715 the end of compilation, these warnings are not produced if the final
3716 stage of compilation is not reached, for example because an error is
3717 found during compilation, or because the @option{-fsyntax-only} option is
3718 being used.
3719
3720 @item -Wstrict-selector-match @r{(Objective-C and Objective-C++ only)}
3721 @opindex Wstrict-selector-match
3722 @opindex Wno-strict-selector-match
3723 Warn if multiple methods with differing argument and/or return types are
3724 found for a given selector when attempting to send a message using this
3725 selector to a receiver of type @code{id} or @code{Class}. When this flag
3726 is off (which is the default behavior), the compiler omits such warnings
3727 if any differences found are confined to types that share the same size
3728 and alignment.
3729
3730 @item -Wundeclared-selector @r{(Objective-C and Objective-C++ only)}
3731 @opindex Wundeclared-selector
3732 @opindex Wno-undeclared-selector
3733 Warn if a @code{@@selector(@dots{})} expression referring to an
3734 undeclared selector is found. A selector is considered undeclared if no
3735 method with that name has been declared before the
3736 @code{@@selector(@dots{})} expression, either explicitly in an
3737 @code{@@interface} or @code{@@protocol} declaration, or implicitly in
3738 an @code{@@implementation} section. This option always performs its
3739 checks as soon as a @code{@@selector(@dots{})} expression is found,
3740 while @option{-Wselector} only performs its checks in the final stage of
3741 compilation. This also enforces the coding style convention
3742 that methods and selectors must be declared before being used.
3743
3744 @item -print-objc-runtime-info
3745 @opindex print-objc-runtime-info
3746 Generate C header describing the largest structure that is passed by
3747 value, if any.
3748
3749 @end table
3750
3751 @node Diagnostic Message Formatting Options
3752 @section Options to Control Diagnostic Messages Formatting
3753 @cindex options to control diagnostics formatting
3754 @cindex diagnostic messages
3755 @cindex message formatting
3756
3757 Traditionally, diagnostic messages have been formatted irrespective of
3758 the output device's aspect (e.g.@: its width, @dots{}). You can use the
3759 options described below
3760 to control the formatting algorithm for diagnostic messages,
3761 e.g.@: how many characters per line, how often source location
3762 information should be reported. Note that some language front ends may not
3763 honor these options.
3764
3765 @table @gcctabopt
3766 @item -fmessage-length=@var{n}
3767 @opindex fmessage-length
3768 Try to format error messages so that they fit on lines of about
3769 @var{n} characters. If @var{n} is zero, then no line-wrapping is
3770 done; each error message appears on a single line. This is the
3771 default for all front ends.
3772
3773 Note - this option also affects the display of the @samp{#error} and
3774 @samp{#warning} pre-processor directives, and the @samp{deprecated}
3775 function/type/variable attribute. It does not however affect the
3776 @samp{pragma GCC warning} and @samp{pragma GCC error} pragmas.
3777
3778 @item -fdiagnostics-show-location=once
3779 @opindex fdiagnostics-show-location
3780 Only meaningful in line-wrapping mode. Instructs the diagnostic messages
3781 reporter to emit source location information @emph{once}; that is, in
3782 case the message is too long to fit on a single physical line and has to
3783 be wrapped, the source location won't be emitted (as prefix) again,
3784 over and over, in subsequent continuation lines. This is the default
3785 behavior.
3786
3787 @item -fdiagnostics-show-location=every-line
3788 Only meaningful in line-wrapping mode. Instructs the diagnostic
3789 messages reporter to emit the same source location information (as
3790 prefix) for physical lines that result from the process of breaking
3791 a message which is too long to fit on a single line.
3792
3793 @item -fdiagnostics-color[=@var{WHEN}]
3794 @itemx -fno-diagnostics-color
3795 @opindex fdiagnostics-color
3796 @cindex highlight, color
3797 @vindex GCC_COLORS @r{environment variable}
3798 Use color in diagnostics. @var{WHEN} is @samp{never}, @samp{always},
3799 or @samp{auto}. The default depends on how the compiler has been configured,
3800 it can be any of the above @var{WHEN} options or also @samp{never}
3801 if @env{GCC_COLORS} environment variable isn't present in the environment,
3802 and @samp{auto} otherwise.
3803 @samp{auto} means to use color only when the standard error is a terminal.
3804 The forms @option{-fdiagnostics-color} and @option{-fno-diagnostics-color} are
3805 aliases for @option{-fdiagnostics-color=always} and
3806 @option{-fdiagnostics-color=never}, respectively.
3807
3808 The colors are defined by the environment variable @env{GCC_COLORS}.
3809 Its value is a colon-separated list of capabilities and Select Graphic
3810 Rendition (SGR) substrings. SGR commands are interpreted by the
3811 terminal or terminal emulator. (See the section in the documentation
3812 of your text terminal for permitted values and their meanings as
3813 character attributes.) These substring values are integers in decimal
3814 representation and can be concatenated with semicolons.
3815 Common values to concatenate include
3816 @samp{1} for bold,
3817 @samp{4} for underline,
3818 @samp{5} for blink,
3819 @samp{7} for inverse,
3820 @samp{39} for default foreground color,
3821 @samp{30} to @samp{37} for foreground colors,
3822 @samp{90} to @samp{97} for 16-color mode foreground colors,
3823 @samp{38;5;0} to @samp{38;5;255}
3824 for 88-color and 256-color modes foreground colors,
3825 @samp{49} for default background color,
3826 @samp{40} to @samp{47} for background colors,
3827 @samp{100} to @samp{107} for 16-color mode background colors,
3828 and @samp{48;5;0} to @samp{48;5;255}
3829 for 88-color and 256-color modes background colors.
3830
3831 The default @env{GCC_COLORS} is
3832 @smallexample
3833 error=01;31:warning=01;35:note=01;36:range1=32:range2=34:locus=01:\
3834 quote=01:fixit-insert=32:fixit-delete=31:\
3835 diff-filename=01:diff-hunk=32:diff-delete=31:diff-insert=32:\
3836 type-diff=01;32
3837 @end smallexample
3838 @noindent
3839 where @samp{01;31} is bold red, @samp{01;35} is bold magenta,
3840 @samp{01;36} is bold cyan, @samp{32} is green, @samp{34} is blue,
3841 @samp{01} is bold, and @samp{31} is red.
3842 Setting @env{GCC_COLORS} to the empty string disables colors.
3843 Supported capabilities are as follows.
3844
3845 @table @code
3846 @item error=
3847 @vindex error GCC_COLORS @r{capability}
3848 SGR substring for error: markers.
3849
3850 @item warning=
3851 @vindex warning GCC_COLORS @r{capability}
3852 SGR substring for warning: markers.
3853
3854 @item note=
3855 @vindex note GCC_COLORS @r{capability}
3856 SGR substring for note: markers.
3857
3858 @item range1=
3859 @vindex range1 GCC_COLORS @r{capability}
3860 SGR substring for first additional range.
3861
3862 @item range2=
3863 @vindex range2 GCC_COLORS @r{capability}
3864 SGR substring for second additional range.
3865
3866 @item locus=
3867 @vindex locus GCC_COLORS @r{capability}
3868 SGR substring for location information, @samp{file:line} or
3869 @samp{file:line:column} etc.
3870
3871 @item quote=
3872 @vindex quote GCC_COLORS @r{capability}
3873 SGR substring for information printed within quotes.
3874
3875 @item fixit-insert=
3876 @vindex fixit-insert GCC_COLORS @r{capability}
3877 SGR substring for fix-it hints suggesting text to
3878 be inserted or replaced.
3879
3880 @item fixit-delete=
3881 @vindex fixit-delete GCC_COLORS @r{capability}
3882 SGR substring for fix-it hints suggesting text to
3883 be deleted.
3884
3885 @item diff-filename=
3886 @vindex diff-filename GCC_COLORS @r{capability}
3887 SGR substring for filename headers within generated patches.
3888
3889 @item diff-hunk=
3890 @vindex diff-hunk GCC_COLORS @r{capability}
3891 SGR substring for the starts of hunks within generated patches.
3892
3893 @item diff-delete=
3894 @vindex diff-delete GCC_COLORS @r{capability}
3895 SGR substring for deleted lines within generated patches.
3896
3897 @item diff-insert=
3898 @vindex diff-insert GCC_COLORS @r{capability}
3899 SGR substring for inserted lines within generated patches.
3900
3901 @item type-diff=
3902 @vindex type-diff GCC_COLORS @r{capability}
3903 SGR substring for highlighting mismatching types within template
3904 arguments in the C++ frontend.
3905 @end table
3906
3907 @item -fno-diagnostics-show-option
3908 @opindex fno-diagnostics-show-option
3909 @opindex fdiagnostics-show-option
3910 By default, each diagnostic emitted includes text indicating the
3911 command-line option that directly controls the diagnostic (if such an
3912 option is known to the diagnostic machinery). Specifying the
3913 @option{-fno-diagnostics-show-option} flag suppresses that behavior.
3914
3915 @item -fno-diagnostics-show-caret
3916 @opindex fno-diagnostics-show-caret
3917 @opindex fdiagnostics-show-caret
3918 By default, each diagnostic emitted includes the original source line
3919 and a caret @samp{^} indicating the column. This option suppresses this
3920 information. The source line is truncated to @var{n} characters, if
3921 the @option{-fmessage-length=n} option is given. When the output is done
3922 to the terminal, the width is limited to the width given by the
3923 @env{COLUMNS} environment variable or, if not set, to the terminal width.
3924
3925 @item -fno-diagnostics-show-labels
3926 @opindex fno-diagnostics-show-labels
3927 @opindex fdiagnostics-show-labels
3928 By default, when printing source code (via @option{-fdiagnostics-show-caret}),
3929 diagnostics can label ranges of source code with pertinent information, such
3930 as the types of expressions:
3931
3932 @smallexample
3933 printf ("foo %s bar", long_i + long_j);
3934 ~^ ~~~~~~~~~~~~~~~
3935 | |
3936 char * long int
3937 @end smallexample
3938
3939 This option suppresses the printing of these labels (in the example above,
3940 the vertical bars and the ``char *'' and ``long int'' text).
3941
3942 @item -fno-diagnostics-show-line-numbers
3943 @opindex fno-diagnostics-show-line-numbers
3944 @opindex fdiagnostics-show-line-numbers
3945 By default, when printing source code (via @option{-fdiagnostics-show-caret}),
3946 a left margin is printed, showing line numbers. This option suppresses this
3947 left margin.
3948
3949 @item -fdiagnostics-minimum-margin-width=@var{width}
3950 @opindex fdiagnostics-minimum-margin-width
3951 This option controls the minimum width of the left margin printed by
3952 @option{-fdiagnostics-show-line-numbers}. It defaults to 6.
3953
3954 @item -fdiagnostics-parseable-fixits
3955 @opindex fdiagnostics-parseable-fixits
3956 Emit fix-it hints in a machine-parseable format, suitable for consumption
3957 by IDEs. For each fix-it, a line will be printed after the relevant
3958 diagnostic, starting with the string ``fix-it:''. For example:
3959
3960 @smallexample
3961 fix-it:"test.c":@{45:3-45:21@}:"gtk_widget_show_all"
3962 @end smallexample
3963
3964 The location is expressed as a half-open range, expressed as a count of
3965 bytes, starting at byte 1 for the initial column. In the above example,
3966 bytes 3 through 20 of line 45 of ``test.c'' are to be replaced with the
3967 given string:
3968
3969 @smallexample
3970 00000000011111111112222222222
3971 12345678901234567890123456789
3972 gtk_widget_showall (dlg);
3973 ^^^^^^^^^^^^^^^^^^
3974 gtk_widget_show_all
3975 @end smallexample
3976
3977 The filename and replacement string escape backslash as ``\\", tab as ``\t'',
3978 newline as ``\n'', double quotes as ``\"'', non-printable characters as octal
3979 (e.g. vertical tab as ``\013'').
3980
3981 An empty replacement string indicates that the given range is to be removed.
3982 An empty range (e.g. ``45:3-45:3'') indicates that the string is to
3983 be inserted at the given position.
3984
3985 @item -fdiagnostics-generate-patch
3986 @opindex fdiagnostics-generate-patch
3987 Print fix-it hints to stderr in unified diff format, after any diagnostics
3988 are printed. For example:
3989
3990 @smallexample
3991 --- test.c
3992 +++ test.c
3993 @@ -42,5 +42,5 @@
3994
3995 void show_cb(GtkDialog *dlg)
3996 @{
3997 - gtk_widget_showall(dlg);
3998 + gtk_widget_show_all(dlg);
3999 @}
4000
4001 @end smallexample
4002
4003 The diff may or may not be colorized, following the same rules
4004 as for diagnostics (see @option{-fdiagnostics-color}).
4005
4006 @item -fdiagnostics-show-template-tree
4007 @opindex fdiagnostics-show-template-tree
4008
4009 In the C++ frontend, when printing diagnostics showing mismatching
4010 template types, such as:
4011
4012 @smallexample
4013 could not convert 'std::map<int, std::vector<double> >()'
4014 from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
4015 @end smallexample
4016
4017 the @option{-fdiagnostics-show-template-tree} flag enables printing a
4018 tree-like structure showing the common and differing parts of the types,
4019 such as:
4020
4021 @smallexample
4022 map<
4023 [...],
4024 vector<
4025 [double != float]>>
4026 @end smallexample
4027
4028 The parts that differ are highlighted with color (``double'' and
4029 ``float'' in this case).
4030
4031 @item -fno-elide-type
4032 @opindex fno-elide-type
4033 @opindex felide-type
4034 By default when the C++ frontend prints diagnostics showing mismatching
4035 template types, common parts of the types are printed as ``[...]'' to
4036 simplify the error message. For example:
4037
4038 @smallexample
4039 could not convert 'std::map<int, std::vector<double> >()'
4040 from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
4041 @end smallexample
4042
4043 Specifying the @option{-fno-elide-type} flag suppresses that behavior.
4044 This flag also affects the output of the
4045 @option{-fdiagnostics-show-template-tree} flag.
4046
4047 @item -fno-show-column
4048 @opindex fno-show-column
4049 @opindex fshow-column
4050 Do not print column numbers in diagnostics. This may be necessary if
4051 diagnostics are being scanned by a program that does not understand the
4052 column numbers, such as @command{dejagnu}.
4053
4054 @item -fdiagnostics-format=@var{FORMAT}
4055 @opindex fdiagnostics-format
4056 Select a different format for printing diagnostics.
4057 @var{FORMAT} is @samp{text} or @samp{json}.
4058 The default is @samp{text}.
4059
4060 The @samp{json} format consists of a top-level JSON array containing JSON
4061 objects representing the diagnostics.
4062
4063 The JSON is emitted as one line, without formatting; the examples below
4064 have been formatted for clarity.
4065
4066 Diagnostics can have child diagnostics. For example, this error and note:
4067
4068 @smallexample
4069 misleading-indentation.c:15:3: warning: this 'if' clause does not
4070 guard... [-Wmisleading-indentation]
4071 15 | if (flag)
4072 | ^~
4073 misleading-indentation.c:17:5: note: ...this statement, but the latter
4074 is misleadingly indented as if it were guarded by the 'if'
4075 17 | y = 2;
4076 | ^
4077 @end smallexample
4078
4079 @noindent
4080 might be printed in JSON form (after formatting) like this:
4081
4082 @smallexample
4083 [
4084 @{
4085 "kind": "warning",
4086 "locations": [
4087 @{
4088 "caret": @{
4089 "column": 3,
4090 "file": "misleading-indentation.c",
4091 "line": 15
4092 @},
4093 "finish": @{
4094 "column": 4,
4095 "file": "misleading-indentation.c",
4096 "line": 15
4097 @}
4098 @}
4099 ],
4100 "message": "this \u2018if\u2019 clause does not guard...",
4101 "option": "-Wmisleading-indentation",
4102 "children": [
4103 @{
4104 "kind": "note",
4105 "locations": [
4106 @{
4107 "caret": @{
4108 "column": 5,
4109 "file": "misleading-indentation.c",
4110 "line": 17
4111 @}
4112 @}
4113 ],
4114 "message": "...this statement, but the latter is @dots{}"
4115 @}
4116 ]
4117 @},
4118 @dots{}
4119 ]
4120 @end smallexample
4121
4122 @noindent
4123 where the @code{note} is a child of the @code{warning}.
4124
4125 A diagnostic has a @code{kind}. If this is @code{warning}, then there is
4126 an @code{option} key describing the command-line option controlling the
4127 warning.
4128
4129 A diagnostic can contain zero or more locations. Each location has up
4130 to three positions within it: a @code{caret} position and optional
4131 @code{start} and @code{finish} positions. A location can also have
4132 an optional @code{label} string. For example, this error:
4133
4134 @smallexample
4135 bad-binary-ops.c:64:23: error: invalid operands to binary + (have 'S' @{aka
4136 'struct s'@} and 'T' @{aka 'struct t'@})
4137 64 | return callee_4a () + callee_4b ();
4138 | ~~~~~~~~~~~~ ^ ~~~~~~~~~~~~
4139 | | |
4140 | | T @{aka struct t@}
4141 | S @{aka struct s@}
4142 @end smallexample
4143
4144 @noindent
4145 has three locations. Its primary location is at the ``+'' token at column
4146 23. It has two secondary locations, describing the left and right-hand sides
4147 of the expression, which have labels. It might be printed in JSON form as:
4148
4149 @smallexample
4150 @{
4151 "children": [],
4152 "kind": "error",
4153 "locations": [
4154 @{
4155 "caret": @{
4156 "column": 23, "file": "bad-binary-ops.c", "line": 64
4157 @}
4158 @},
4159 @{
4160 "caret": @{
4161 "column": 10, "file": "bad-binary-ops.c", "line": 64
4162 @},
4163 "finish": @{
4164 "column": 21, "file": "bad-binary-ops.c", "line": 64
4165 @},
4166 "label": "S @{aka struct s@}"
4167 @},
4168 @{
4169 "caret": @{
4170 "column": 25, "file": "bad-binary-ops.c", "line": 64
4171 @},
4172 "finish": @{
4173 "column": 36, "file": "bad-binary-ops.c", "line": 64
4174 @},
4175 "label": "T @{aka struct t@}"
4176 @}
4177 ],
4178 "message": "invalid operands to binary + @dots{}"
4179 @}
4180 @end smallexample
4181
4182 If a diagnostic contains fix-it hints, it has a @code{fixits} array,
4183 consisting of half-open intervals, similar to the output of
4184 @option{-fdiagnostics-parseable-fixits}. For example, this diagnostic
4185 with a replacement fix-it hint:
4186
4187 @smallexample
4188 demo.c:8:15: error: 'struct s' has no member named 'colour'; did you
4189 mean 'color'?
4190 8 | return ptr->colour;
4191 | ^~~~~~
4192 | color
4193 @end smallexample
4194
4195 @noindent
4196 might be printed in JSON form as:
4197
4198 @smallexample
4199 @{
4200 "children": [],
4201 "fixits": [
4202 @{
4203 "next": @{
4204 "column": 21,
4205 "file": "demo.c",
4206 "line": 8
4207 @},
4208 "start": @{
4209 "column": 15,
4210 "file": "demo.c",
4211 "line": 8
4212 @},
4213 "string": "color"
4214 @}
4215 ],
4216 "kind": "error",
4217 "locations": [
4218 @{
4219 "caret": @{
4220 "column": 15,
4221 "file": "demo.c",
4222 "line": 8
4223 @},
4224 "finish": @{
4225 "column": 20,
4226 "file": "demo.c",
4227 "line": 8
4228 @}
4229 @}
4230 ],
4231 "message": "\u2018struct s\u2019 has no member named @dots{}"
4232 @}
4233 @end smallexample
4234
4235 @noindent
4236 where the fix-it hint suggests replacing the text from @code{start} up
4237 to but not including @code{next} with @code{string}'s value. Deletions
4238 are expressed via an empty value for @code{string}, insertions by
4239 having @code{start} equal @code{next}.
4240
4241 @end table
4242
4243 @node Warning Options
4244 @section Options to Request or Suppress Warnings
4245 @cindex options to control warnings
4246 @cindex warning messages
4247 @cindex messages, warning
4248 @cindex suppressing warnings
4249
4250 Warnings are diagnostic messages that report constructions that
4251 are not inherently erroneous but that are risky or suggest there
4252 may have been an error.
4253
4254 The following language-independent options do not enable specific
4255 warnings but control the kinds of diagnostics produced by GCC@.
4256
4257 @table @gcctabopt
4258 @cindex syntax checking
4259 @item -fsyntax-only
4260 @opindex fsyntax-only
4261 Check the code for syntax errors, but don't do anything beyond that.
4262
4263 @item -fmax-errors=@var{n}
4264 @opindex fmax-errors
4265 Limits the maximum number of error messages to @var{n}, at which point
4266 GCC bails out rather than attempting to continue processing the source
4267 code. If @var{n} is 0 (the default), there is no limit on the number
4268 of error messages produced. If @option{-Wfatal-errors} is also
4269 specified, then @option{-Wfatal-errors} takes precedence over this
4270 option.
4271
4272 @item -w
4273 @opindex w
4274 Inhibit all warning messages.
4275
4276 @item -Werror
4277 @opindex Werror
4278 @opindex Wno-error
4279 Make all warnings into errors.
4280
4281 @item -Werror=
4282 @opindex Werror=
4283 @opindex Wno-error=
4284 Make the specified warning into an error. The specifier for a warning
4285 is appended; for example @option{-Werror=switch} turns the warnings
4286 controlled by @option{-Wswitch} into errors. This switch takes a
4287 negative form, to be used to negate @option{-Werror} for specific
4288 warnings; for example @option{-Wno-error=switch} makes
4289 @option{-Wswitch} warnings not be errors, even when @option{-Werror}
4290 is in effect.
4291
4292 The warning message for each controllable warning includes the
4293 option that controls the warning. That option can then be used with
4294 @option{-Werror=} and @option{-Wno-error=} as described above.
4295 (Printing of the option in the warning message can be disabled using the
4296 @option{-fno-diagnostics-show-option} flag.)
4297
4298 Note that specifying @option{-Werror=}@var{foo} automatically implies
4299 @option{-W}@var{foo}. However, @option{-Wno-error=}@var{foo} does not
4300 imply anything.
4301
4302 @item -Wfatal-errors
4303 @opindex Wfatal-errors
4304 @opindex Wno-fatal-errors
4305 This option causes the compiler to abort compilation on the first error
4306 occurred rather than trying to keep going and printing further error
4307 messages.
4308
4309 @end table
4310
4311 You can request many specific warnings with options beginning with
4312 @samp{-W}, for example @option{-Wimplicit} to request warnings on
4313 implicit declarations. Each of these specific warning options also
4314 has a negative form beginning @samp{-Wno-} to turn off warnings; for
4315 example, @option{-Wno-implicit}. This manual lists only one of the
4316 two forms, whichever is not the default. For further
4317 language-specific options also refer to @ref{C++ Dialect Options} and
4318 @ref{Objective-C and Objective-C++ Dialect Options}.
4319
4320 Some options, such as @option{-Wall} and @option{-Wextra}, turn on other
4321 options, such as @option{-Wunused}, which may turn on further options,
4322 such as @option{-Wunused-value}. The combined effect of positive and
4323 negative forms is that more specific options have priority over less
4324 specific ones, independently of their position in the command-line. For
4325 options of the same specificity, the last one takes effect. Options
4326 enabled or disabled via pragmas (@pxref{Diagnostic Pragmas}) take effect
4327 as if they appeared at the end of the command-line.
4328
4329 When an unrecognized warning option is requested (e.g.,
4330 @option{-Wunknown-warning}), GCC emits a diagnostic stating
4331 that the option is not recognized. However, if the @option{-Wno-} form
4332 is used, the behavior is slightly different: no diagnostic is
4333 produced for @option{-Wno-unknown-warning} unless other diagnostics
4334 are being produced. This allows the use of new @option{-Wno-} options
4335 with old compilers, but if something goes wrong, the compiler
4336 warns that an unrecognized option is present.
4337
4338 @table @gcctabopt
4339 @item -Wpedantic
4340 @itemx -pedantic
4341 @opindex pedantic
4342 @opindex Wpedantic
4343 @opindex Wno-pedantic
4344 Issue all the warnings demanded by strict ISO C and ISO C++;
4345 reject all programs that use forbidden extensions, and some other
4346 programs that do not follow ISO C and ISO C++. For ISO C, follows the
4347 version of the ISO C standard specified by any @option{-std} option used.
4348
4349 Valid ISO C and ISO C++ programs should compile properly with or without
4350 this option (though a rare few require @option{-ansi} or a
4351 @option{-std} option specifying the required version of ISO C)@. However,
4352 without this option, certain GNU extensions and traditional C and C++
4353 features are supported as well. With this option, they are rejected.
4354
4355 @option{-Wpedantic} does not cause warning messages for use of the
4356 alternate keywords whose names begin and end with @samp{__}. This alternate
4357 format can also be used to disable warnings for non-ISO @samp{__intN} types,
4358 i.e. @samp{__intN__}.
4359 Pedantic warnings are also disabled in the expression that follows
4360 @code{__extension__}. However, only system header files should use
4361 these escape routes; application programs should avoid them.
4362 @xref{Alternate Keywords}.
4363
4364 Some users try to use @option{-Wpedantic} to check programs for strict ISO
4365 C conformance. They soon find that it does not do quite what they want:
4366 it finds some non-ISO practices, but not all---only those for which
4367 ISO C @emph{requires} a diagnostic, and some others for which
4368 diagnostics have been added.
4369
4370 A feature to report any failure to conform to ISO C might be useful in
4371 some instances, but would require considerable additional work and would
4372 be quite different from @option{-Wpedantic}. We don't have plans to
4373 support such a feature in the near future.
4374
4375 Where the standard specified with @option{-std} represents a GNU
4376 extended dialect of C, such as @samp{gnu90} or @samp{gnu99}, there is a
4377 corresponding @dfn{base standard}, the version of ISO C on which the GNU
4378 extended dialect is based. Warnings from @option{-Wpedantic} are given
4379 where they are required by the base standard. (It does not make sense
4380 for such warnings to be given only for features not in the specified GNU
4381 C dialect, since by definition the GNU dialects of C include all
4382 features the compiler supports with the given option, and there would be
4383 nothing to warn about.)
4384
4385 @item -pedantic-errors
4386 @opindex pedantic-errors
4387 Give an error whenever the @dfn{base standard} (see @option{-Wpedantic})
4388 requires a diagnostic, in some cases where there is undefined behavior
4389 at compile-time and in some other cases that do not prevent compilation
4390 of programs that are valid according to the standard. This is not
4391 equivalent to @option{-Werror=pedantic}, since there are errors enabled
4392 by this option and not enabled by the latter and vice versa.
4393
4394 @item -Wall
4395 @opindex Wall
4396 @opindex Wno-all
4397 This enables all the warnings about constructions that some users
4398 consider questionable, and that are easy to avoid (or modify to
4399 prevent the warning), even in conjunction with macros. This also
4400 enables some language-specific warnings described in @ref{C++ Dialect
4401 Options} and @ref{Objective-C and Objective-C++ Dialect Options}.
4402
4403 @option{-Wall} turns on the following warning flags:
4404
4405 @gccoptlist{-Waddress @gol
4406 -Warray-bounds=1 @r{(only with} @option{-O2}@r{)} @gol
4407 -Wbool-compare @gol
4408 -Wbool-operation @gol
4409 -Wc++11-compat -Wc++14-compat @gol
4410 -Wcatch-value @r{(C++ and Objective-C++ only)} @gol
4411 -Wchar-subscripts @gol
4412 -Wcomment @gol
4413 -Wduplicate-decl-specifier @r{(C and Objective-C only)} @gol
4414 -Wenum-compare @r{(in C/ObjC; this is on by default in C++)} @gol
4415 -Wenum-conversion @r{in C/ObjC;} @gol
4416 -Wformat @gol
4417 -Wint-in-bool-context @gol
4418 -Wimplicit @r{(C and Objective-C only)} @gol
4419 -Wimplicit-int @r{(C and Objective-C only)} @gol
4420 -Wimplicit-function-declaration @r{(C and Objective-C only)} @gol
4421 -Winit-self @r{(only for C++)} @gol
4422 -Wlogical-not-parentheses @gol
4423 -Wmain @r{(only for C/ObjC and unless} @option{-ffreestanding}@r{)} @gol
4424 -Wmaybe-uninitialized @gol
4425 -Wmemset-elt-size @gol
4426 -Wmemset-transposed-args @gol
4427 -Wmisleading-indentation @r{(only for C/C++)} @gol
4428 -Wmissing-attributes @gol
4429 -Wmissing-braces @r{(only for C/ObjC)} @gol
4430 -Wmultistatement-macros @gol
4431 -Wnarrowing @r{(only for C++)} @gol
4432 -Wnonnull @gol
4433 -Wnonnull-compare @gol
4434 -Wopenmp-simd @gol
4435 -Wparentheses @gol
4436 -Wpessimizing-move @r{(only for C++)} @gol
4437 -Wpointer-sign @gol
4438 -Wreorder @gol
4439 -Wrestrict @gol
4440 -Wreturn-type @gol
4441 -Wsequence-point @gol
4442 -Wsign-compare @r{(only in C++)} @gol
4443 -Wsizeof-pointer-div @gol
4444 -Wsizeof-pointer-memaccess @gol
4445 -Wstrict-aliasing @gol
4446 -Wstrict-overflow=1 @gol
4447 -Wswitch @gol
4448 -Wtautological-compare @gol
4449 -Wtrigraphs @gol
4450 -Wuninitialized @gol
4451 -Wunknown-pragmas @gol
4452 -Wunused-function @gol
4453 -Wunused-label @gol
4454 -Wunused-value @gol
4455 -Wunused-variable @gol
4456 -Wvolatile-register-var}
4457
4458 Note that some warning flags are not implied by @option{-Wall}. Some of
4459 them warn about constructions that users generally do not consider
4460 questionable, but which occasionally you might wish to check for;
4461 others warn about constructions that are necessary or hard to avoid in
4462 some cases, and there is no simple way to modify the code to suppress
4463 the warning. Some of them are enabled by @option{-Wextra} but many of
4464 them must be enabled individually.
4465
4466 @item -Wextra
4467 @opindex W
4468 @opindex Wextra
4469 @opindex Wno-extra
4470 This enables some extra warning flags that are not enabled by
4471 @option{-Wall}. (This option used to be called @option{-W}. The older
4472 name is still supported, but the newer name is more descriptive.)
4473
4474 @gccoptlist{-Wclobbered @gol
4475 -Wcast-function-type @gol
4476 -Wdeprecated-copy @r{(C++ only)} @gol
4477 -Wempty-body @gol
4478 -Wignored-qualifiers @gol
4479 -Wimplicit-fallthrough=3 @gol
4480 -Wmissing-field-initializers @gol
4481 -Wmissing-parameter-type @r{(C only)} @gol
4482 -Wold-style-declaration @r{(C only)} @gol
4483 -Woverride-init @gol
4484 -Wsign-compare @r{(C only)} @gol
4485 -Wredundant-move @r{(only for C++)} @gol
4486 -Wtype-limits @gol
4487 -Wuninitialized @gol
4488 -Wshift-negative-value @r{(in C++03 and in C99 and newer)} @gol
4489 -Wunused-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
4490 -Wunused-but-set-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)}}
4491
4492
4493 The option @option{-Wextra} also prints warning messages for the
4494 following cases:
4495
4496 @itemize @bullet
4497
4498 @item
4499 A pointer is compared against integer zero with @code{<}, @code{<=},
4500 @code{>}, or @code{>=}.
4501
4502 @item
4503 (C++ only) An enumerator and a non-enumerator both appear in a
4504 conditional expression.
4505
4506 @item
4507 (C++ only) Ambiguous virtual bases.
4508
4509 @item
4510 (C++ only) Subscripting an array that has been declared @code{register}.
4511
4512 @item
4513 (C++ only) Taking the address of a variable that has been declared
4514 @code{register}.
4515
4516 @item
4517 (C++ only) A base class is not initialized in the copy constructor
4518 of a derived class.
4519
4520 @end itemize
4521
4522 @item -Wchar-subscripts
4523 @opindex Wchar-subscripts
4524 @opindex Wno-char-subscripts
4525 Warn if an array subscript has type @code{char}. This is a common cause
4526 of error, as programmers often forget that this type is signed on some
4527 machines.
4528 This warning is enabled by @option{-Wall}.
4529
4530 @item -Wno-coverage-mismatch
4531 @opindex Wno-coverage-mismatch
4532 @opindex Wcoverage-mismatch
4533 Warn if feedback profiles do not match when using the
4534 @option{-fprofile-use} option.
4535 If a source file is changed between compiling with @option{-fprofile-generate}
4536 and with @option{-fprofile-use}, the files with the profile feedback can fail
4537 to match the source file and GCC cannot use the profile feedback
4538 information. By default, this warning is enabled and is treated as an
4539 error. @option{-Wno-coverage-mismatch} can be used to disable the
4540 warning or @option{-Wno-error=coverage-mismatch} can be used to
4541 disable the error. Disabling the error for this warning can result in
4542 poorly optimized code and is useful only in the
4543 case of very minor changes such as bug fixes to an existing code-base.
4544 Completely disabling the warning is not recommended.
4545
4546 @item -Wno-cpp
4547 @r{(C, Objective-C, C++, Objective-C++ and Fortran only)}
4548
4549 Suppress warning messages emitted by @code{#warning} directives.
4550
4551 @item -Wdouble-promotion @r{(C, C++, Objective-C and Objective-C++ only)}
4552 @opindex Wdouble-promotion
4553 @opindex Wno-double-promotion
4554 Give a warning when a value of type @code{float} is implicitly
4555 promoted to @code{double}. CPUs with a 32-bit ``single-precision''
4556 floating-point unit implement @code{float} in hardware, but emulate
4557 @code{double} in software. On such a machine, doing computations
4558 using @code{double} values is much more expensive because of the
4559 overhead required for software emulation.
4560
4561 It is easy to accidentally do computations with @code{double} because
4562 floating-point literals are implicitly of type @code{double}. For
4563 example, in:
4564 @smallexample
4565 @group
4566 float area(float radius)
4567 @{
4568 return 3.14159 * radius * radius;
4569 @}
4570 @end group
4571 @end smallexample
4572 the compiler performs the entire computation with @code{double}
4573 because the floating-point literal is a @code{double}.
4574
4575 @item -Wduplicate-decl-specifier @r{(C and Objective-C only)}
4576 @opindex Wduplicate-decl-specifier
4577 @opindex Wno-duplicate-decl-specifier
4578 Warn if a declaration has duplicate @code{const}, @code{volatile},
4579 @code{restrict} or @code{_Atomic} specifier. This warning is enabled by
4580 @option{-Wall}.
4581
4582 @item -Wformat
4583 @itemx -Wformat=@var{n}
4584 @opindex Wformat
4585 @opindex Wno-format
4586 @opindex ffreestanding
4587 @opindex fno-builtin
4588 @opindex Wformat=
4589 Check calls to @code{printf} and @code{scanf}, etc., to make sure that
4590 the arguments supplied have types appropriate to the format string
4591 specified, and that the conversions specified in the format string make
4592 sense. This includes standard functions, and others specified by format
4593 attributes (@pxref{Function Attributes}), in the @code{printf},
4594 @code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
4595 not in the C standard) families (or other target-specific families).
4596 Which functions are checked without format attributes having been
4597 specified depends on the standard version selected, and such checks of
4598 functions without the attribute specified are disabled by
4599 @option{-ffreestanding} or @option{-fno-builtin}.
4600
4601 The formats are checked against the format features supported by GNU
4602 libc version 2.2. These include all ISO C90 and C99 features, as well
4603 as features from the Single Unix Specification and some BSD and GNU
4604 extensions. Other library implementations may not support all these
4605 features; GCC does not support warning about features that go beyond a
4606 particular library's limitations. However, if @option{-Wpedantic} is used
4607 with @option{-Wformat}, warnings are given about format features not
4608 in the selected standard version (but not for @code{strfmon} formats,
4609 since those are not in any version of the C standard). @xref{C Dialect
4610 Options,,Options Controlling C Dialect}.
4611
4612 @table @gcctabopt
4613 @item -Wformat=1
4614 @itemx -Wformat
4615 @opindex Wformat
4616 @opindex Wformat=1
4617 Option @option{-Wformat} is equivalent to @option{-Wformat=1}, and
4618 @option{-Wno-format} is equivalent to @option{-Wformat=0}. Since
4619 @option{-Wformat} also checks for null format arguments for several
4620 functions, @option{-Wformat} also implies @option{-Wnonnull}. Some
4621 aspects of this level of format checking can be disabled by the
4622 options: @option{-Wno-format-contains-nul},
4623 @option{-Wno-format-extra-args}, and @option{-Wno-format-zero-length}.
4624 @option{-Wformat} is enabled by @option{-Wall}.
4625
4626 @item -Wno-format-contains-nul
4627 @opindex Wno-format-contains-nul
4628 @opindex Wformat-contains-nul
4629 If @option{-Wformat} is specified, do not warn about format strings that
4630 contain NUL bytes.
4631
4632 @item -Wno-format-extra-args
4633 @opindex Wno-format-extra-args
4634 @opindex Wformat-extra-args
4635 If @option{-Wformat} is specified, do not warn about excess arguments to a
4636 @code{printf} or @code{scanf} format function. The C standard specifies
4637 that such arguments are ignored.
4638
4639 Where the unused arguments lie between used arguments that are
4640 specified with @samp{$} operand number specifications, normally
4641 warnings are still given, since the implementation could not know what
4642 type to pass to @code{va_arg} to skip the unused arguments. However,
4643 in the case of @code{scanf} formats, this option suppresses the
4644 warning if the unused arguments are all pointers, since the Single
4645 Unix Specification says that such unused arguments are allowed.
4646
4647 @item -Wformat-overflow
4648 @itemx -Wformat-overflow=@var{level}
4649 @opindex Wformat-overflow
4650 @opindex Wno-format-overflow
4651 Warn about calls to formatted input/output functions such as @code{sprintf}
4652 and @code{vsprintf} that might overflow the destination buffer. When the
4653 exact number of bytes written by a format directive cannot be determined
4654 at compile-time it is estimated based on heuristics that depend on the
4655 @var{level} argument and on optimization. While enabling optimization
4656 will in most cases improve the accuracy of the warning, it may also
4657 result in false positives.
4658
4659 @table @gcctabopt
4660 @item -Wformat-overflow
4661 @itemx -Wformat-overflow=1
4662 @opindex Wformat-overflow
4663 @opindex Wno-format-overflow
4664 Level @var{1} of @option{-Wformat-overflow} enabled by @option{-Wformat}
4665 employs a conservative approach that warns only about calls that most
4666 likely overflow the buffer. At this level, numeric arguments to format
4667 directives with unknown values are assumed to have the value of one, and
4668 strings of unknown length to be empty. Numeric arguments that are known
4669 to be bounded to a subrange of their type, or string arguments whose output
4670 is bounded either by their directive's precision or by a finite set of
4671 string literals, are assumed to take on the value within the range that
4672 results in the most bytes on output. For example, the call to @code{sprintf}
4673 below is diagnosed because even with both @var{a} and @var{b} equal to zero,
4674 the terminating NUL character (@code{'\0'}) appended by the function
4675 to the destination buffer will be written past its end. Increasing
4676 the size of the buffer by a single byte is sufficient to avoid the
4677 warning, though it may not be sufficient to avoid the overflow.
4678
4679 @smallexample
4680 void f (int a, int b)
4681 @{
4682 char buf [13];
4683 sprintf (buf, "a = %i, b = %i\n", a, b);
4684 @}
4685 @end smallexample
4686
4687 @item -Wformat-overflow=2
4688 Level @var{2} warns also about calls that might overflow the destination
4689 buffer given an argument of sufficient length or magnitude. At level
4690 @var{2}, unknown numeric arguments are assumed to have the minimum
4691 representable value for signed types with a precision greater than 1, and
4692 the maximum representable value otherwise. Unknown string arguments whose
4693 length cannot be assumed to be bounded either by the directive's precision,
4694 or by a finite set of string literals they may evaluate to, or the character
4695 array they may point to, are assumed to be 1 character long.
4696
4697 At level @var{2}, the call in the example above is again diagnosed, but
4698 this time because with @var{a} equal to a 32-bit @code{INT_MIN} the first
4699 @code{%i} directive will write some of its digits beyond the end of
4700 the destination buffer. To make the call safe regardless of the values
4701 of the two variables, the size of the destination buffer must be increased
4702 to at least 34 bytes. GCC includes the minimum size of the buffer in
4703 an informational note following the warning.
4704
4705 An alternative to increasing the size of the destination buffer is to
4706 constrain the range of formatted values. The maximum length of string
4707 arguments can be bounded by specifying the precision in the format
4708 directive. When numeric arguments of format directives can be assumed
4709 to be bounded by less than the precision of their type, choosing
4710 an appropriate length modifier to the format specifier will reduce
4711 the required buffer size. For example, if @var{a} and @var{b} in the
4712 example above can be assumed to be within the precision of
4713 the @code{short int} type then using either the @code{%hi} format
4714 directive or casting the argument to @code{short} reduces the maximum
4715 required size of the buffer to 24 bytes.
4716
4717 @smallexample
4718 void f (int a, int b)
4719 @{
4720 char buf [23];
4721 sprintf (buf, "a = %hi, b = %i\n", a, (short)b);
4722 @}
4723 @end smallexample
4724 @end table
4725
4726 @item -Wno-format-zero-length
4727 @opindex Wno-format-zero-length
4728 @opindex Wformat-zero-length
4729 If @option{-Wformat} is specified, do not warn about zero-length formats.
4730 The C standard specifies that zero-length formats are allowed.
4731
4732
4733 @item -Wformat=2
4734 @opindex Wformat=2
4735 Enable @option{-Wformat} plus additional format checks. Currently
4736 equivalent to @option{-Wformat -Wformat-nonliteral -Wformat-security
4737 -Wformat-y2k}.
4738
4739 @item -Wformat-nonliteral
4740 @opindex Wformat-nonliteral
4741 @opindex Wno-format-nonliteral
4742 If @option{-Wformat} is specified, also warn if the format string is not a
4743 string literal and so cannot be checked, unless the format function
4744 takes its format arguments as a @code{va_list}.
4745
4746 @item -Wformat-security
4747 @opindex Wformat-security
4748 @opindex Wno-format-security
4749 If @option{-Wformat} is specified, also warn about uses of format
4750 functions that represent possible security problems. At present, this
4751 warns about calls to @code{printf} and @code{scanf} functions where the
4752 format string is not a string literal and there are no format arguments,
4753 as in @code{printf (foo);}. This may be a security hole if the format
4754 string came from untrusted input and contains @samp{%n}. (This is
4755 currently a subset of what @option{-Wformat-nonliteral} warns about, but
4756 in future warnings may be added to @option{-Wformat-security} that are not
4757 included in @option{-Wformat-nonliteral}.)
4758
4759 @item -Wformat-signedness
4760 @opindex Wformat-signedness
4761 @opindex Wno-format-signedness
4762 If @option{-Wformat} is specified, also warn if the format string
4763 requires an unsigned argument and the argument is signed and vice versa.
4764
4765 @item -Wformat-truncation
4766 @itemx -Wformat-truncation=@var{level}
4767 @opindex Wformat-truncation
4768 @opindex Wno-format-truncation
4769 Warn about calls to formatted input/output functions such as @code{snprintf}
4770 and @code{vsnprintf} that might result in output truncation. When the exact
4771 number of bytes written by a format directive cannot be determined at
4772 compile-time it is estimated based on heuristics that depend on
4773 the @var{level} argument and on optimization. While enabling optimization
4774 will in most cases improve the accuracy of the warning, it may also result
4775 in false positives. Except as noted otherwise, the option uses the same
4776 logic @option{-Wformat-overflow}.
4777
4778 @table @gcctabopt
4779 @item -Wformat-truncation
4780 @itemx -Wformat-truncation=1
4781 @opindex Wformat-truncation
4782 @opindex Wno-format-truncation
4783 Level @var{1} of @option{-Wformat-truncation} enabled by @option{-Wformat}
4784 employs a conservative approach that warns only about calls to bounded
4785 functions whose return value is unused and that will most likely result
4786 in output truncation.
4787
4788 @item -Wformat-truncation=2
4789 Level @var{2} warns also about calls to bounded functions whose return
4790 value is used and that might result in truncation given an argument of
4791 sufficient length or magnitude.
4792 @end table
4793
4794 @item -Wformat-y2k
4795 @opindex Wformat-y2k
4796 @opindex Wno-format-y2k
4797 If @option{-Wformat} is specified, also warn about @code{strftime}
4798 formats that may yield only a two-digit year.
4799 @end table
4800
4801 @item -Wnonnull
4802 @opindex Wnonnull
4803 @opindex Wno-nonnull
4804 Warn about passing a null pointer for arguments marked as
4805 requiring a non-null value by the @code{nonnull} function attribute.
4806
4807 @option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}. It
4808 can be disabled with the @option{-Wno-nonnull} option.
4809
4810 @item -Wnonnull-compare
4811 @opindex Wnonnull-compare
4812 @opindex Wno-nonnull-compare
4813 Warn when comparing an argument marked with the @code{nonnull}
4814 function attribute against null inside the function.
4815
4816 @option{-Wnonnull-compare} is included in @option{-Wall}. It
4817 can be disabled with the @option{-Wno-nonnull-compare} option.
4818
4819 @item -Wnull-dereference
4820 @opindex Wnull-dereference
4821 @opindex Wno-null-dereference
4822 Warn if the compiler detects paths that trigger erroneous or
4823 undefined behavior due to dereferencing a null pointer. This option
4824 is only active when @option{-fdelete-null-pointer-checks} is active,
4825 which is enabled by optimizations in most targets. The precision of
4826 the warnings depends on the optimization options used.
4827
4828 @item -Winaccessible-base @r{(C++, Objective-C++ only)}
4829 @opindex Winaccessible-base
4830 @opindex Wno-inaccessible-base
4831 Warn when a base class is inaccessible in a class derived from it due to
4832 ambiguity. The warning is enabled by default. Note the warning for virtual
4833 bases is enabled by the @option{-Wextra} option.
4834 @smallexample
4835 @group
4836 struct A @{ int a; @};
4837
4838 struct B : A @{ @};
4839
4840 struct C : B, A @{ @};
4841 @end group
4842 @end smallexample
4843
4844 @item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)}
4845 @opindex Winit-self
4846 @opindex Wno-init-self
4847 Warn about uninitialized variables that are initialized with themselves.
4848 Note this option can only be used with the @option{-Wuninitialized} option.
4849
4850 For example, GCC warns about @code{i} being uninitialized in the
4851 following snippet only when @option{-Winit-self} has been specified:
4852 @smallexample
4853 @group
4854 int f()
4855 @{
4856 int i = i;
4857 return i;
4858 @}
4859 @end group
4860 @end smallexample
4861
4862 This warning is enabled by @option{-Wall} in C++.
4863
4864 @item -Wimplicit-int @r{(C and Objective-C only)}
4865 @opindex Wimplicit-int
4866 @opindex Wno-implicit-int
4867 Warn when a declaration does not specify a type.
4868 This warning is enabled by @option{-Wall}.
4869
4870 @item -Wimplicit-function-declaration @r{(C and Objective-C only)}
4871 @opindex Wimplicit-function-declaration
4872 @opindex Wno-implicit-function-declaration
4873 Give a warning whenever a function is used before being declared. In
4874 C99 mode (@option{-std=c99} or @option{-std=gnu99}), this warning is
4875 enabled by default and it is made into an error by
4876 @option{-pedantic-errors}. This warning is also enabled by
4877 @option{-Wall}.
4878
4879 @item -Wimplicit @r{(C and Objective-C only)}
4880 @opindex Wimplicit
4881 @opindex Wno-implicit
4882 Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
4883 This warning is enabled by @option{-Wall}.
4884
4885 @item -Wimplicit-fallthrough
4886 @opindex Wimplicit-fallthrough
4887 @opindex Wno-implicit-fallthrough
4888 @option{-Wimplicit-fallthrough} is the same as @option{-Wimplicit-fallthrough=3}
4889 and @option{-Wno-implicit-fallthrough} is the same as
4890 @option{-Wimplicit-fallthrough=0}.
4891
4892 @item -Wimplicit-fallthrough=@var{n}
4893 @opindex Wimplicit-fallthrough=
4894 Warn when a switch case falls through. For example:
4895
4896 @smallexample
4897 @group
4898 switch (cond)
4899 @{
4900 case 1:
4901 a = 1;
4902 break;
4903 case 2:
4904 a = 2;
4905 case 3:
4906 a = 3;
4907 break;
4908 @}
4909 @end group
4910 @end smallexample
4911
4912 This warning does not warn when the last statement of a case cannot
4913 fall through, e.g. when there is a return statement or a call to function
4914 declared with the noreturn attribute. @option{-Wimplicit-fallthrough=}
4915 also takes into account control flow statements, such as ifs, and only
4916 warns when appropriate. E.g.@:
4917
4918 @smallexample
4919 @group
4920 switch (cond)
4921 @{
4922 case 1:
4923 if (i > 3) @{
4924 bar (5);
4925 break;
4926 @} else if (i < 1) @{
4927 bar (0);
4928 @} else
4929 return;
4930 default:
4931 @dots{}
4932 @}
4933 @end group
4934 @end smallexample
4935
4936 Since there are occasions where a switch case fall through is desirable,
4937 GCC provides an attribute, @code{__attribute__ ((fallthrough))}, that is
4938 to be used along with a null statement to suppress this warning that
4939 would normally occur:
4940
4941 @smallexample
4942 @group
4943 switch (cond)
4944 @{
4945 case 1:
4946 bar (0);
4947 __attribute__ ((fallthrough));
4948 default:
4949 @dots{}
4950 @}
4951 @end group
4952 @end smallexample
4953
4954 C++17 provides a standard way to suppress the @option{-Wimplicit-fallthrough}
4955 warning using @code{[[fallthrough]];} instead of the GNU attribute. In C++11
4956 or C++14 users can use @code{[[gnu::fallthrough]];}, which is a GNU extension.
4957 Instead of these attributes, it is also possible to add a fallthrough comment
4958 to silence the warning. The whole body of the C or C++ style comment should
4959 match the given regular expressions listed below. The option argument @var{n}
4960 specifies what kind of comments are accepted:
4961
4962 @itemize @bullet
4963
4964 @item @option{-Wimplicit-fallthrough=0} disables the warning altogether.
4965
4966 @item @option{-Wimplicit-fallthrough=1} matches @code{.*} regular
4967 expression, any comment is used as fallthrough comment.
4968
4969 @item @option{-Wimplicit-fallthrough=2} case insensitively matches
4970 @code{.*falls?[ \t-]*thr(ough|u).*} regular expression.
4971
4972 @item @option{-Wimplicit-fallthrough=3} case sensitively matches one of the
4973 following regular expressions:
4974
4975 @itemize @bullet
4976
4977 @item @code{-fallthrough}
4978
4979 @item @code{@@fallthrough@@}
4980
4981 @item @code{lint -fallthrough[ \t]*}
4982
4983 @item @code{[ \t.!]*(ELSE,? |INTENTIONAL(LY)? )?@*FALL(S | |-)?THR(OUGH|U)[ \t.!]*(-[^\n\r]*)?}
4984
4985 @item @code{[ \t.!]*(Else,? |Intentional(ly)? )?@*Fall((s | |-)[Tt]|t)hr(ough|u)[ \t.!]*(-[^\n\r]*)?}
4986
4987 @item @code{[ \t.!]*([Ee]lse,? |[Ii]ntentional(ly)? )?@*fall(s | |-)?thr(ough|u)[ \t.!]*(-[^\n\r]*)?}
4988
4989 @end itemize
4990
4991 @item @option{-Wimplicit-fallthrough=4} case sensitively matches one of the
4992 following regular expressions:
4993
4994 @itemize @bullet
4995
4996 @item @code{-fallthrough}
4997
4998 @item @code{@@fallthrough@@}
4999
5000 @item @code{lint -fallthrough[ \t]*}
5001
5002 @item @code{[ \t]*FALLTHR(OUGH|U)[ \t]*}
5003
5004 @end itemize
5005
5006 @item @option{-Wimplicit-fallthrough=5} doesn't recognize any comments as
5007 fallthrough comments, only attributes disable the warning.
5008
5009 @end itemize
5010
5011 The comment needs to be followed after optional whitespace and other comments
5012 by @code{case} or @code{default} keywords or by a user label that precedes some
5013 @code{case} or @code{default} label.
5014
5015 @smallexample
5016 @group
5017 switch (cond)
5018 @{
5019 case 1:
5020 bar (0);
5021 /* FALLTHRU */
5022 default:
5023 @dots{}
5024 @}
5025 @end group
5026 @end smallexample
5027
5028 The @option{-Wimplicit-fallthrough=3} warning is enabled by @option{-Wextra}.
5029
5030 @item -Wif-not-aligned @r{(C, C++, Objective-C and Objective-C++ only)}
5031 @opindex Wif-not-aligned
5032 @opindex Wno-if-not-aligned
5033 Control if warning triggered by the @code{warn_if_not_aligned} attribute
5034 should be issued. This is enabled by default.
5035 Use @option{-Wno-if-not-aligned} to disable it.
5036
5037 @item -Wignored-qualifiers @r{(C and C++ only)}
5038 @opindex Wignored-qualifiers
5039 @opindex Wno-ignored-qualifiers
5040 Warn if the return type of a function has a type qualifier
5041 such as @code{const}. For ISO C such a type qualifier has no effect,
5042 since the value returned by a function is not an lvalue.
5043 For C++, the warning is only emitted for scalar types or @code{void}.
5044 ISO C prohibits qualified @code{void} return types on function
5045 definitions, so such return types always receive a warning
5046 even without this option.
5047
5048 This warning is also enabled by @option{-Wextra}.
5049
5050 @item -Wignored-attributes @r{(C and C++ only)}
5051 @opindex Wignored-attributes
5052 @opindex Wno-ignored-attributes
5053 Warn when an attribute is ignored. This is different from the
5054 @option{-Wattributes} option in that it warns whenever the compiler decides
5055 to drop an attribute, not that the attribute is either unknown, used in a
5056 wrong place, etc. This warning is enabled by default.
5057
5058 @item -Wmain
5059 @opindex Wmain
5060 @opindex Wno-main
5061 Warn if the type of @code{main} is suspicious. @code{main} should be
5062 a function with external linkage, returning int, taking either zero
5063 arguments, two, or three arguments of appropriate types. This warning
5064 is enabled by default in C++ and is enabled by either @option{-Wall}
5065 or @option{-Wpedantic}.
5066
5067 @item -Wmisleading-indentation @r{(C and C++ only)}
5068 @opindex Wmisleading-indentation
5069 @opindex Wno-misleading-indentation
5070 Warn when the indentation of the code does not reflect the block structure.
5071 Specifically, a warning is issued for @code{if}, @code{else}, @code{while}, and
5072 @code{for} clauses with a guarded statement that does not use braces,
5073 followed by an unguarded statement with the same indentation.
5074
5075 In the following example, the call to ``bar'' is misleadingly indented as
5076 if it were guarded by the ``if'' conditional.
5077
5078 @smallexample
5079 if (some_condition ())
5080 foo ();
5081 bar (); /* Gotcha: this is not guarded by the "if". */
5082 @end smallexample
5083
5084 In the case of mixed tabs and spaces, the warning uses the
5085 @option{-ftabstop=} option to determine if the statements line up
5086 (defaulting to 8).
5087
5088 The warning is not issued for code involving multiline preprocessor logic
5089 such as the following example.
5090
5091 @smallexample
5092 if (flagA)
5093 foo (0);
5094 #if SOME_CONDITION_THAT_DOES_NOT_HOLD
5095 if (flagB)
5096 #endif
5097 foo (1);
5098 @end smallexample
5099
5100 The warning is not issued after a @code{#line} directive, since this
5101 typically indicates autogenerated code, and no assumptions can be made
5102 about the layout of the file that the directive references.
5103
5104 This warning is enabled by @option{-Wall} in C and C++.
5105
5106 @item -Wmissing-attributes
5107 @opindex Wmissing-attributes
5108 @opindex Wno-missing-attributes
5109 Warn when a declaration of a function is missing one or more attributes
5110 that a related function is declared with and whose absence may adversely
5111 affect the correctness or efficiency of generated code. For example,
5112 the warning is issued for declarations of aliases that use attributes
5113 to specify less restrictive requirements than those of their targets.
5114 This typically represents a potential optimization opportunity.
5115 By contrast, the @option{-Wattribute-alias=2} option controls warnings
5116 issued when the alias is more restrictive than the target, which could
5117 lead to incorrect code generation.
5118 Attributes considered include @code{alloc_align}, @code{alloc_size},
5119 @code{cold}, @code{const}, @code{hot}, @code{leaf}, @code{malloc},
5120 @code{nonnull}, @code{noreturn}, @code{nothrow}, @code{pure},
5121 @code{returns_nonnull}, and @code{returns_twice}.
5122
5123 In C++, the warning is issued when an explicit specialization of a primary
5124 template declared with attribute @code{alloc_align}, @code{alloc_size},
5125 @code{assume_aligned}, @code{format}, @code{format_arg}, @code{malloc},
5126 or @code{nonnull} is declared without it. Attributes @code{deprecated},
5127 @code{error}, and @code{warning} suppress the warning.
5128 (@pxref{Function Attributes}).
5129
5130 You can use the @code{copy} attribute to apply the same
5131 set of attributes to a declaration as that on another declaration without
5132 explicitly enumerating the attributes. This attribute can be applied
5133 to declarations of functions (@pxref{Common Function Attributes}),
5134 variables (@pxref{Common Variable Attributes}), or types
5135 (@pxref{Common Type Attributes}).
5136
5137 @option{-Wmissing-attributes} is enabled by @option{-Wall}.
5138
5139 For example, since the declaration of the primary function template
5140 below makes use of both attribute @code{malloc} and @code{alloc_size}
5141 the declaration of the explicit specialization of the template is
5142 diagnosed because it is missing one of the attributes.
5143
5144 @smallexample
5145 template <class T>
5146 T* __attribute__ ((malloc, alloc_size (1)))
5147 allocate (size_t);
5148
5149 template <>
5150 void* __attribute__ ((malloc)) // missing alloc_size
5151 allocate<void> (size_t);
5152 @end smallexample
5153
5154 @item -Wmissing-braces
5155 @opindex Wmissing-braces
5156 @opindex Wno-missing-braces
5157 Warn if an aggregate or union initializer is not fully bracketed. In
5158 the following example, the initializer for @code{a} is not fully
5159 bracketed, but that for @code{b} is fully bracketed. This warning is
5160 enabled by @option{-Wall} in C.
5161
5162 @smallexample
5163 int a[2][2] = @{ 0, 1, 2, 3 @};
5164 int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
5165 @end smallexample
5166
5167 This warning is enabled by @option{-Wall}.
5168
5169 @item -Wmissing-include-dirs @r{(C, C++, Objective-C and Objective-C++ only)}
5170 @opindex Wmissing-include-dirs
5171 @opindex Wno-missing-include-dirs
5172 Warn if a user-supplied include directory does not exist.
5173
5174 @item -Wmissing-profile
5175 @opindex Wmissing-profile
5176 @opindex Wno-missing-profile
5177 Warn if feedback profiles are missing when using the
5178 @option{-fprofile-use} option.
5179 This option diagnoses those cases where a new function or a new file is added
5180 to the user code between compiling with @option{-fprofile-generate} and with
5181 @option{-fprofile-use}, without regenerating the profiles. In these cases, the
5182 profile feedback data files do not contain any profile feedback information for
5183 the newly added function or file respectively. Also, in the case when profile
5184 count data (.gcda) files are removed, GCC cannot use any profile feedback
5185 information. In all these cases, warnings are issued to inform the user that a
5186 profile generation step is due. @option{-Wno-missing-profile} can be used to
5187 disable the warning. Ignoring the warning can result in poorly optimized code.
5188 Completely disabling the warning is not recommended and should be done only
5189 when non-existent profile data is justified.
5190
5191 @item -Wmultistatement-macros
5192 @opindex Wmultistatement-macros
5193 @opindex Wno-multistatement-macros
5194 Warn about unsafe multiple statement macros that appear to be guarded
5195 by a clause such as @code{if}, @code{else}, @code{for}, @code{switch}, or
5196 @code{while}, in which only the first statement is actually guarded after
5197 the macro is expanded.
5198
5199 For example:
5200
5201 @smallexample
5202 #define DOIT x++; y++
5203 if (c)
5204 DOIT;
5205 @end smallexample
5206
5207 will increment @code{y} unconditionally, not just when @code{c} holds.
5208 The can usually be fixed by wrapping the macro in a do-while loop:
5209 @smallexample
5210 #define DOIT do @{ x++; y++; @} while (0)
5211 if (c)
5212 DOIT;
5213 @end smallexample
5214
5215 This warning is enabled by @option{-Wall} in C and C++.
5216
5217 @item -Wparentheses
5218 @opindex Wparentheses
5219 @opindex Wno-parentheses
5220 Warn if parentheses are omitted in certain contexts, such
5221 as when there is an assignment in a context where a truth value
5222 is expected, or when operators are nested whose precedence people
5223 often get confused about.
5224
5225 Also warn if a comparison like @code{x<=y<=z} appears; this is
5226 equivalent to @code{(x<=y ? 1 : 0) <= z}, which is a different
5227 interpretation from that of ordinary mathematical notation.
5228
5229 Also warn for dangerous uses of the GNU extension to
5230 @code{?:} with omitted middle operand. When the condition
5231 in the @code{?}: operator is a boolean expression, the omitted value is
5232 always 1. Often programmers expect it to be a value computed
5233 inside the conditional expression instead.
5234
5235 For C++ this also warns for some cases of unnecessary parentheses in
5236 declarations, which can indicate an attempt at a function call instead
5237 of a declaration:
5238 @smallexample
5239 @{
5240 // Declares a local variable called mymutex.
5241 std::unique_lock<std::mutex> (mymutex);
5242 // User meant std::unique_lock<std::mutex> lock (mymutex);
5243 @}
5244 @end smallexample
5245
5246 This warning is enabled by @option{-Wall}.
5247
5248 @item -Wsequence-point
5249 @opindex Wsequence-point
5250 @opindex Wno-sequence-point
5251 Warn about code that may have undefined semantics because of violations
5252 of sequence point rules in the C and C++ standards.
5253
5254 The C and C++ standards define the order in which expressions in a C/C++
5255 program are evaluated in terms of @dfn{sequence points}, which represent
5256 a partial ordering between the execution of parts of the program: those
5257 executed before the sequence point, and those executed after it. These
5258 occur after the evaluation of a full expression (one which is not part
5259 of a larger expression), after the evaluation of the first operand of a
5260 @code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
5261 function is called (but after the evaluation of its arguments and the
5262 expression denoting the called function), and in certain other places.
5263 Other than as expressed by the sequence point rules, the order of
5264 evaluation of subexpressions of an expression is not specified. All
5265 these rules describe only a partial order rather than a total order,
5266 since, for example, if two functions are called within one expression
5267 with no sequence point between them, the order in which the functions
5268 are called is not specified. However, the standards committee have
5269 ruled that function calls do not overlap.
5270
5271 It is not specified when between sequence points modifications to the
5272 values of objects take effect. Programs whose behavior depends on this
5273 have undefined behavior; the C and C++ standards specify that ``Between
5274 the previous and next sequence point an object shall have its stored
5275 value modified at most once by the evaluation of an expression.
5276 Furthermore, the prior value shall be read only to determine the value
5277 to be stored.''. If a program breaks these rules, the results on any
5278 particular implementation are entirely unpredictable.
5279
5280 Examples of code with undefined behavior are @code{a = a++;}, @code{a[n]
5281 = b[n++]} and @code{a[i++] = i;}. Some more complicated cases are not
5282 diagnosed by this option, and it may give an occasional false positive
5283 result, but in general it has been found fairly effective at detecting
5284 this sort of problem in programs.
5285
5286 The C++17 standard will define the order of evaluation of operands in
5287 more cases: in particular it requires that the right-hand side of an
5288 assignment be evaluated before the left-hand side, so the above
5289 examples are no longer undefined. But this warning will still warn
5290 about them, to help people avoid writing code that is undefined in C
5291 and earlier revisions of C++.
5292
5293 The standard is worded confusingly, therefore there is some debate
5294 over the precise meaning of the sequence point rules in subtle cases.
5295 Links to discussions of the problem, including proposed formal
5296 definitions, may be found on the GCC readings page, at
5297 @uref{http://gcc.gnu.org/@/readings.html}.
5298
5299 This warning is enabled by @option{-Wall} for C and C++.
5300
5301 @item -Wno-return-local-addr
5302 @opindex Wno-return-local-addr
5303 @opindex Wreturn-local-addr
5304 Do not warn about returning a pointer (or in C++, a reference) to a
5305 variable that goes out of scope after the function returns.
5306
5307 @item -Wreturn-type
5308 @opindex Wreturn-type
5309 @opindex Wno-return-type
5310 Warn whenever a function is defined with a return type that defaults
5311 to @code{int}. Also warn about any @code{return} statement with no
5312 return value in a function whose return type is not @code{void}
5313 (falling off the end of the function body is considered returning
5314 without a value).
5315
5316 For C only, warn about a @code{return} statement with an expression in a
5317 function whose return type is @code{void}, unless the expression type is
5318 also @code{void}. As a GNU extension, the latter case is accepted
5319 without a warning unless @option{-Wpedantic} is used. Attempting
5320 to use the return value of a non-@code{void} function other than @code{main}
5321 that flows off the end by reaching the closing curly brace that terminates
5322 the function is undefined.
5323
5324 Unlike in C, in C++, flowing off the end of a non-@code{void} function other
5325 than @code{main} results in undefined behavior even when the value of
5326 the function is not used.
5327
5328 This warning is enabled by default in C++ and by @option{-Wall} otherwise.
5329
5330 @item -Wshift-count-negative
5331 @opindex Wshift-count-negative
5332 @opindex Wno-shift-count-negative
5333 Warn if shift count is negative. This warning is enabled by default.
5334
5335 @item -Wshift-count-overflow
5336 @opindex Wshift-count-overflow
5337 @opindex Wno-shift-count-overflow
5338 Warn if shift count >= width of type. This warning is enabled by default.
5339
5340 @item -Wshift-negative-value
5341 @opindex Wshift-negative-value
5342 @opindex Wno-shift-negative-value
5343 Warn if left shifting a negative value. This warning is enabled by
5344 @option{-Wextra} in C99 and C++11 modes (and newer).
5345
5346 @item -Wshift-overflow
5347 @itemx -Wshift-overflow=@var{n}
5348 @opindex Wshift-overflow
5349 @opindex Wno-shift-overflow
5350 Warn about left shift overflows. This warning is enabled by
5351 default in C99 and C++11 modes (and newer).
5352
5353 @table @gcctabopt
5354 @item -Wshift-overflow=1
5355 This is the warning level of @option{-Wshift-overflow} and is enabled
5356 by default in C99 and C++11 modes (and newer). This warning level does
5357 not warn about left-shifting 1 into the sign bit. (However, in C, such
5358 an overflow is still rejected in contexts where an integer constant expression
5359 is required.) No warning is emitted in C++2A mode (and newer), as signed left
5360 shifts always wrap.
5361
5362 @item -Wshift-overflow=2
5363 This warning level also warns about left-shifting 1 into the sign bit,
5364 unless C++14 mode (or newer) is active.
5365 @end table
5366
5367 @item -Wswitch
5368 @opindex Wswitch
5369 @opindex Wno-switch
5370 Warn whenever a @code{switch} statement has an index of enumerated type
5371 and lacks a @code{case} for one or more of the named codes of that
5372 enumeration. (The presence of a @code{default} label prevents this
5373 warning.) @code{case} labels outside the enumeration range also
5374 provoke warnings when this option is used (even if there is a
5375 @code{default} label).
5376 This warning is enabled by @option{-Wall}.
5377
5378 @item -Wswitch-default
5379 @opindex Wswitch-default
5380 @opindex Wno-switch-default
5381 Warn whenever a @code{switch} statement does not have a @code{default}
5382 case.
5383
5384 @item -Wswitch-enum
5385 @opindex Wswitch-enum
5386 @opindex Wno-switch-enum
5387 Warn whenever a @code{switch} statement has an index of enumerated type
5388 and lacks a @code{case} for one or more of the named codes of that
5389 enumeration. @code{case} labels outside the enumeration range also
5390 provoke warnings when this option is used. The only difference
5391 between @option{-Wswitch} and this option is that this option gives a
5392 warning about an omitted enumeration code even if there is a
5393 @code{default} label.
5394
5395 @item -Wswitch-bool
5396 @opindex Wswitch-bool
5397 @opindex Wno-switch-bool
5398 Warn whenever a @code{switch} statement has an index of boolean type
5399 and the case values are outside the range of a boolean type.
5400 It is possible to suppress this warning by casting the controlling
5401 expression to a type other than @code{bool}. For example:
5402 @smallexample
5403 @group
5404 switch ((int) (a == 4))
5405 @{
5406 @dots{}
5407 @}
5408 @end group
5409 @end smallexample
5410 This warning is enabled by default for C and C++ programs.
5411
5412 @item -Wswitch-outside-range
5413 @opindex Wswitch-outside-range
5414 @opindex Wno-switch-outside-range
5415 Warn whenever a @code{switch} case has a value that is outside of its
5416 respective type range. This warning is enabled by default for
5417 C and C++ programs.
5418
5419 @item -Wswitch-unreachable
5420 @opindex Wswitch-unreachable
5421 @opindex Wno-switch-unreachable
5422 Warn whenever a @code{switch} statement contains statements between the
5423 controlling expression and the first case label, which will never be
5424 executed. For example:
5425 @smallexample
5426 @group
5427 switch (cond)
5428 @{
5429 i = 15;
5430 @dots{}
5431 case 5:
5432 @dots{}
5433 @}
5434 @end group
5435 @end smallexample
5436 @option{-Wswitch-unreachable} does not warn if the statement between the
5437 controlling expression and the first case label is just a declaration:
5438 @smallexample
5439 @group
5440 switch (cond)
5441 @{
5442 int i;
5443 @dots{}
5444 case 5:
5445 i = 5;
5446 @dots{}
5447 @}
5448 @end group
5449 @end smallexample
5450 This warning is enabled by default for C and C++ programs.
5451
5452 @item -Wsync-nand @r{(C and C++ only)}
5453 @opindex Wsync-nand
5454 @opindex Wno-sync-nand
5455 Warn when @code{__sync_fetch_and_nand} and @code{__sync_nand_and_fetch}
5456 built-in functions are used. These functions changed semantics in GCC 4.4.
5457
5458 @item -Wunused-but-set-parameter
5459 @opindex Wunused-but-set-parameter
5460 @opindex Wno-unused-but-set-parameter
5461 Warn whenever a function parameter is assigned to, but otherwise unused
5462 (aside from its declaration).
5463
5464 To suppress this warning use the @code{unused} attribute
5465 (@pxref{Variable Attributes}).
5466
5467 This warning is also enabled by @option{-Wunused} together with
5468 @option{-Wextra}.
5469
5470 @item -Wunused-but-set-variable
5471 @opindex Wunused-but-set-variable
5472 @opindex Wno-unused-but-set-variable
5473 Warn whenever a local variable is assigned to, but otherwise unused
5474 (aside from its declaration).
5475 This warning is enabled by @option{-Wall}.
5476
5477 To suppress this warning use the @code{unused} attribute
5478 (@pxref{Variable Attributes}).
5479
5480 This warning is also enabled by @option{-Wunused}, which is enabled
5481 by @option{-Wall}.
5482
5483 @item -Wunused-function
5484 @opindex Wunused-function
5485 @opindex Wno-unused-function
5486 Warn whenever a static function is declared but not defined or a
5487 non-inline static function is unused.
5488 This warning is enabled by @option{-Wall}.
5489
5490 @item -Wunused-label
5491 @opindex Wunused-label
5492 @opindex Wno-unused-label
5493 Warn whenever a label is declared but not used.
5494 This warning is enabled by @option{-Wall}.
5495
5496 To suppress this warning use the @code{unused} attribute
5497 (@pxref{Variable Attributes}).
5498
5499 @item -Wunused-local-typedefs @r{(C, Objective-C, C++ and Objective-C++ only)}
5500 @opindex Wunused-local-typedefs
5501 @opindex Wno-unused-local-typedefs
5502 Warn when a typedef locally defined in a function is not used.
5503 This warning is enabled by @option{-Wall}.
5504
5505 @item -Wunused-parameter
5506 @opindex Wunused-parameter
5507 @opindex Wno-unused-parameter
5508 Warn whenever a function parameter is unused aside from its declaration.
5509
5510 To suppress this warning use the @code{unused} attribute
5511 (@pxref{Variable Attributes}).
5512
5513 @item -Wno-unused-result
5514 @opindex Wunused-result
5515 @opindex Wno-unused-result
5516 Do not warn if a caller of a function marked with attribute
5517 @code{warn_unused_result} (@pxref{Function Attributes}) does not use
5518 its return value. The default is @option{-Wunused-result}.
5519
5520 @item -Wunused-variable
5521 @opindex Wunused-variable
5522 @opindex Wno-unused-variable
5523 Warn whenever a local or static variable is unused aside from its
5524 declaration. This option implies @option{-Wunused-const-variable=1} for C,
5525 but not for C++. This warning is enabled by @option{-Wall}.
5526
5527 To suppress this warning use the @code{unused} attribute
5528 (@pxref{Variable Attributes}).
5529
5530 @item -Wunused-const-variable
5531 @itemx -Wunused-const-variable=@var{n}
5532 @opindex Wunused-const-variable
5533 @opindex Wno-unused-const-variable
5534 Warn whenever a constant static variable is unused aside from its declaration.
5535 @option{-Wunused-const-variable=1} is enabled by @option{-Wunused-variable}
5536 for C, but not for C++. In C this declares variable storage, but in C++ this
5537 is not an error since const variables take the place of @code{#define}s.
5538
5539 To suppress this warning use the @code{unused} attribute
5540 (@pxref{Variable Attributes}).
5541
5542 @table @gcctabopt
5543 @item -Wunused-const-variable=1
5544 This is the warning level that is enabled by @option{-Wunused-variable} for
5545 C. It warns only about unused static const variables defined in the main
5546 compilation unit, but not about static const variables declared in any
5547 header included.
5548
5549 @item -Wunused-const-variable=2
5550 This warning level also warns for unused constant static variables in
5551 headers (excluding system headers). This is the warning level of
5552 @option{-Wunused-const-variable} and must be explicitly requested since
5553 in C++ this isn't an error and in C it might be harder to clean up all
5554 headers included.
5555 @end table
5556
5557 @item -Wunused-value
5558 @opindex Wunused-value
5559 @opindex Wno-unused-value
5560 Warn whenever a statement computes a result that is explicitly not
5561 used. To suppress this warning cast the unused expression to
5562 @code{void}. This includes an expression-statement or the left-hand
5563 side of a comma expression that contains no side effects. For example,
5564 an expression such as @code{x[i,j]} causes a warning, while
5565 @code{x[(void)i,j]} does not.
5566
5567 This warning is enabled by @option{-Wall}.
5568
5569 @item -Wunused
5570 @opindex Wunused
5571 @opindex Wno-unused
5572 All the above @option{-Wunused} options combined.
5573
5574 In order to get a warning about an unused function parameter, you must
5575 either specify @option{-Wextra -Wunused} (note that @option{-Wall} implies
5576 @option{-Wunused}), or separately specify @option{-Wunused-parameter}.
5577
5578 @item -Wuninitialized
5579 @opindex Wuninitialized
5580 @opindex Wno-uninitialized
5581 Warn if an automatic variable is used without first being initialized
5582 or if a variable may be clobbered by a @code{setjmp} call. In C++,
5583 warn if a non-static reference or non-static @code{const} member
5584 appears in a class without constructors.
5585
5586 If you want to warn about code that uses the uninitialized value of the
5587 variable in its own initializer, use the @option{-Winit-self} option.
5588
5589 These warnings occur for individual uninitialized or clobbered
5590 elements of structure, union or array variables as well as for
5591 variables that are uninitialized or clobbered as a whole. They do
5592 not occur for variables or elements declared @code{volatile}. Because
5593 these warnings depend on optimization, the exact variables or elements
5594 for which there are warnings depends on the precise optimization
5595 options and version of GCC used.
5596
5597 Note that there may be no warning about a variable that is used only
5598 to compute a value that itself is never used, because such
5599 computations may be deleted by data flow analysis before the warnings
5600 are printed.
5601
5602 @item -Winvalid-memory-model
5603 @opindex Winvalid-memory-model
5604 @opindex Wno-invalid-memory-model
5605 Warn for invocations of @ref{__atomic Builtins}, @ref{__sync Builtins},
5606 and the C11 atomic generic functions with a memory consistency argument
5607 that is either invalid for the operation or outside the range of values
5608 of the @code{memory_order} enumeration. For example, since the
5609 @code{__atomic_store} and @code{__atomic_store_n} built-ins are only
5610 defined for the relaxed, release, and sequentially consistent memory
5611 orders the following code is diagnosed:
5612
5613 @smallexample
5614 void store (int *i)
5615 @{
5616 __atomic_store_n (i, 0, memory_order_consume);
5617 @}
5618 @end smallexample
5619
5620 @option{-Winvalid-memory-model} is enabled by default.
5621
5622 @item -Wmaybe-uninitialized
5623 @opindex Wmaybe-uninitialized
5624 @opindex Wno-maybe-uninitialized
5625 For an automatic (i.e.@: local) variable, if there exists a path from the
5626 function entry to a use of the variable that is initialized, but there exist
5627 some other paths for which the variable is not initialized, the compiler
5628 emits a warning if it cannot prove the uninitialized paths are not
5629 executed at run time.
5630
5631 These warnings are only possible in optimizing compilation, because otherwise
5632 GCC does not keep track of the state of variables.
5633
5634 These warnings are made optional because GCC may not be able to determine when
5635 the code is correct in spite of appearing to have an error. Here is one
5636 example of how this can happen:
5637
5638 @smallexample
5639 @group
5640 @{
5641 int x;
5642 switch (y)
5643 @{
5644 case 1: x = 1;
5645 break;
5646 case 2: x = 4;
5647 break;
5648 case 3: x = 5;
5649 @}
5650 foo (x);
5651 @}
5652 @end group
5653 @end smallexample
5654
5655 @noindent
5656 If the value of @code{y} is always 1, 2 or 3, then @code{x} is
5657 always initialized, but GCC doesn't know this. To suppress the
5658 warning, you need to provide a default case with assert(0) or
5659 similar code.
5660
5661 @cindex @code{longjmp} warnings
5662 This option also warns when a non-volatile automatic variable might be
5663 changed by a call to @code{longjmp}.
5664 The compiler sees only the calls to @code{setjmp}. It cannot know
5665 where @code{longjmp} will be called; in fact, a signal handler could
5666 call it at any point in the code. As a result, you may get a warning
5667 even when there is in fact no problem because @code{longjmp} cannot
5668 in fact be called at the place that would cause a problem.
5669
5670 Some spurious warnings can be avoided if you declare all the functions
5671 you use that never return as @code{noreturn}. @xref{Function
5672 Attributes}.
5673
5674 This warning is enabled by @option{-Wall} or @option{-Wextra}.
5675
5676 @item -Wunknown-pragmas
5677 @opindex Wunknown-pragmas
5678 @opindex Wno-unknown-pragmas
5679 @cindex warning for unknown pragmas
5680 @cindex unknown pragmas, warning
5681 @cindex pragmas, warning of unknown
5682 Warn when a @code{#pragma} directive is encountered that is not understood by
5683 GCC@. If this command-line option is used, warnings are even issued
5684 for unknown pragmas in system header files. This is not the case if
5685 the warnings are only enabled by the @option{-Wall} command-line option.
5686
5687 @item -Wno-pragmas
5688 @opindex Wno-pragmas
5689 @opindex Wpragmas
5690 Do not warn about misuses of pragmas, such as incorrect parameters,
5691 invalid syntax, or conflicts between pragmas. See also
5692 @option{-Wunknown-pragmas}.
5693
5694 @item -Wno-prio-ctor-dtor
5695 @opindex Wno-prio-ctor-dtor
5696 @opindex Wprio-ctor-dtor
5697 Do not warn if a priority from 0 to 100 is used for constructor or destructor.
5698 The use of constructor and destructor attributes allow you to assign a
5699 priority to the constructor/destructor to control its order of execution
5700 before @code{main} is called or after it returns. The priority values must be
5701 greater than 100 as the compiler reserves priority values between 0--100 for
5702 the implementation.
5703
5704 @item -Wstrict-aliasing
5705 @opindex Wstrict-aliasing
5706 @opindex Wno-strict-aliasing
5707 This option is only active when @option{-fstrict-aliasing} is active.
5708 It warns about code that might break the strict aliasing rules that the
5709 compiler is using for optimization. The warning does not catch all
5710 cases, but does attempt to catch the more common pitfalls. It is
5711 included in @option{-Wall}.
5712 It is equivalent to @option{-Wstrict-aliasing=3}
5713
5714 @item -Wstrict-aliasing=n
5715 @opindex Wstrict-aliasing=n
5716 This option is only active when @option{-fstrict-aliasing} is active.
5717 It warns about code that might break the strict aliasing rules that the
5718 compiler is using for optimization.
5719 Higher levels correspond to higher accuracy (fewer false positives).
5720 Higher levels also correspond to more effort, similar to the way @option{-O}
5721 works.
5722 @option{-Wstrict-aliasing} is equivalent to @option{-Wstrict-aliasing=3}.
5723
5724 Level 1: Most aggressive, quick, least accurate.
5725 Possibly useful when higher levels
5726 do not warn but @option{-fstrict-aliasing} still breaks the code, as it has very few
5727 false negatives. However, it has many false positives.
5728 Warns for all pointer conversions between possibly incompatible types,
5729 even if never dereferenced. Runs in the front end only.
5730
5731 Level 2: Aggressive, quick, not too precise.
5732 May still have many false positives (not as many as level 1 though),
5733 and few false negatives (but possibly more than level 1).
5734 Unlike level 1, it only warns when an address is taken. Warns about
5735 incomplete types. Runs in the front end only.
5736
5737 Level 3 (default for @option{-Wstrict-aliasing}):
5738 Should have very few false positives and few false
5739 negatives. Slightly slower than levels 1 or 2 when optimization is enabled.
5740 Takes care of the common pun+dereference pattern in the front end:
5741 @code{*(int*)&some_float}.
5742 If optimization is enabled, it also runs in the back end, where it deals
5743 with multiple statement cases using flow-sensitive points-to information.
5744 Only warns when the converted pointer is dereferenced.
5745 Does not warn about incomplete types.
5746
5747 @item -Wstrict-overflow
5748 @itemx -Wstrict-overflow=@var{n}
5749 @opindex Wstrict-overflow
5750 @opindex Wno-strict-overflow
5751 This option is only active when signed overflow is undefined.
5752 It warns about cases where the compiler optimizes based on the
5753 assumption that signed overflow does not occur. Note that it does not
5754 warn about all cases where the code might overflow: it only warns
5755 about cases where the compiler implements some optimization. Thus
5756 this warning depends on the optimization level.
5757
5758 An optimization that assumes that signed overflow does not occur is
5759 perfectly safe if the values of the variables involved are such that
5760 overflow never does, in fact, occur. Therefore this warning can
5761 easily give a false positive: a warning about code that is not
5762 actually a problem. To help focus on important issues, several
5763 warning levels are defined. No warnings are issued for the use of
5764 undefined signed overflow when estimating how many iterations a loop
5765 requires, in particular when determining whether a loop will be
5766 executed at all.
5767
5768 @table @gcctabopt
5769 @item -Wstrict-overflow=1
5770 Warn about cases that are both questionable and easy to avoid. For
5771 example the compiler simplifies
5772 @code{x + 1 > x} to @code{1}. This level of
5773 @option{-Wstrict-overflow} is enabled by @option{-Wall}; higher levels
5774 are not, and must be explicitly requested.
5775
5776 @item -Wstrict-overflow=2
5777 Also warn about other cases where a comparison is simplified to a
5778 constant. For example: @code{abs (x) >= 0}. This can only be
5779 simplified when signed integer overflow is undefined, because
5780 @code{abs (INT_MIN)} overflows to @code{INT_MIN}, which is less than
5781 zero. @option{-Wstrict-overflow} (with no level) is the same as
5782 @option{-Wstrict-overflow=2}.
5783
5784 @item -Wstrict-overflow=3
5785 Also warn about other cases where a comparison is simplified. For
5786 example: @code{x + 1 > 1} is simplified to @code{x > 0}.
5787
5788 @item -Wstrict-overflow=4
5789 Also warn about other simplifications not covered by the above cases.
5790 For example: @code{(x * 10) / 5} is simplified to @code{x * 2}.
5791
5792 @item -Wstrict-overflow=5
5793 Also warn about cases where the compiler reduces the magnitude of a
5794 constant involved in a comparison. For example: @code{x + 2 > y} is
5795 simplified to @code{x + 1 >= y}. This is reported only at the
5796 highest warning level because this simplification applies to many
5797 comparisons, so this warning level gives a very large number of
5798 false positives.
5799 @end table
5800
5801 @item -Wstringop-overflow
5802 @itemx -Wstringop-overflow=@var{type}
5803 @opindex Wstringop-overflow
5804 @opindex Wno-stringop-overflow
5805 Warn for calls to string manipulation functions such as @code{memcpy} and
5806 @code{strcpy} that are determined to overflow the destination buffer. The
5807 optional argument is one greater than the type of Object Size Checking to
5808 perform to determine the size of the destination. @xref{Object Size Checking}.
5809 The argument is meaningful only for functions that operate on character arrays
5810 but not for raw memory functions like @code{memcpy} which always make use
5811 of Object Size type-0. The option also warns for calls that specify a size
5812 in excess of the largest possible object or at most @code{SIZE_MAX / 2} bytes.
5813 The option produces the best results with optimization enabled but can detect
5814 a small subset of simple buffer overflows even without optimization in
5815 calls to the GCC built-in functions like @code{__builtin_memcpy} that
5816 correspond to the standard functions. In any case, the option warns about
5817 just a subset of buffer overflows detected by the corresponding overflow
5818 checking built-ins. For example, the option will issue a warning for
5819 the @code{strcpy} call below because it copies at least 5 characters
5820 (the string @code{"blue"} including the terminating NUL) into the buffer
5821 of size 4.
5822
5823 @smallexample
5824 enum Color @{ blue, purple, yellow @};
5825 const char* f (enum Color clr)
5826 @{
5827 static char buf [4];
5828 const char *str;
5829 switch (clr)
5830 @{
5831 case blue: str = "blue"; break;
5832 case purple: str = "purple"; break;
5833 case yellow: str = "yellow"; break;
5834 @}
5835
5836 return strcpy (buf, str); // warning here
5837 @}
5838 @end smallexample
5839
5840 Option @option{-Wstringop-overflow=2} is enabled by default.
5841
5842 @table @gcctabopt
5843 @item -Wstringop-overflow
5844 @itemx -Wstringop-overflow=1
5845 @opindex Wstringop-overflow
5846 @opindex Wno-stringop-overflow
5847 The @option{-Wstringop-overflow=1} option uses type-zero Object Size Checking
5848 to determine the sizes of destination objects. This is the default setting
5849 of the option. At this setting the option will not warn for writes past
5850 the end of subobjects of larger objects accessed by pointers unless the
5851 size of the largest surrounding object is known. When the destination may
5852 be one of several objects it is assumed to be the largest one of them. On
5853 Linux systems, when optimization is enabled at this setting the option warns
5854 for the same code as when the @code{_FORTIFY_SOURCE} macro is defined to
5855 a non-zero value.
5856
5857 @item -Wstringop-overflow=2
5858 The @option{-Wstringop-overflow=2} option uses type-one Object Size Checking
5859 to determine the sizes of destination objects. At this setting the option
5860 will warn about overflows when writing to members of the largest complete
5861 objects whose exact size is known. It will, however, not warn for excessive
5862 writes to the same members of unknown objects referenced by pointers since
5863 they may point to arrays containing unknown numbers of elements.
5864
5865 @item -Wstringop-overflow=3
5866 The @option{-Wstringop-overflow=3} option uses type-two Object Size Checking
5867 to determine the sizes of destination objects. At this setting the option
5868 warns about overflowing the smallest object or data member. This is the
5869 most restrictive setting of the option that may result in warnings for safe
5870 code.
5871
5872 @item -Wstringop-overflow=4
5873 The @option{-Wstringop-overflow=4} option uses type-three Object Size Checking
5874 to determine the sizes of destination objects. At this setting the option
5875 will warn about overflowing any data members, and when the destination is
5876 one of several objects it uses the size of the largest of them to decide
5877 whether to issue a warning. Similarly to @option{-Wstringop-overflow=3} this
5878 setting of the option may result in warnings for benign code.
5879 @end table
5880
5881 @item -Wstringop-truncation
5882 @opindex Wstringop-truncation
5883 @opindex Wno-stringop-truncation
5884 Warn for calls to bounded string manipulation functions such as @code{strncat},
5885 @code{strncpy}, and @code{stpncpy} that may either truncate the copied string
5886 or leave the destination unchanged.
5887
5888 In the following example, the call to @code{strncat} specifies a bound that
5889 is less than the length of the source string. As a result, the copy of
5890 the source will be truncated and so the call is diagnosed. To avoid the
5891 warning use @code{bufsize - strlen (buf) - 1)} as the bound.
5892
5893 @smallexample
5894 void append (char *buf, size_t bufsize)
5895 @{
5896 strncat (buf, ".txt", 3);
5897 @}
5898 @end smallexample
5899
5900 As another example, the following call to @code{strncpy} results in copying
5901 to @code{d} just the characters preceding the terminating NUL, without
5902 appending the NUL to the end. Assuming the result of @code{strncpy} is
5903 necessarily a NUL-terminated string is a common mistake, and so the call
5904 is diagnosed. To avoid the warning when the result is not expected to be
5905 NUL-terminated, call @code{memcpy} instead.
5906
5907 @smallexample
5908 void copy (char *d, const char *s)
5909 @{
5910 strncpy (d, s, strlen (s));
5911 @}
5912 @end smallexample
5913
5914 In the following example, the call to @code{strncpy} specifies the size
5915 of the destination buffer as the bound. If the length of the source
5916 string is equal to or greater than this size the result of the copy will
5917 not be NUL-terminated. Therefore, the call is also diagnosed. To avoid
5918 the warning, specify @code{sizeof buf - 1} as the bound and set the last
5919 element of the buffer to @code{NUL}.
5920
5921 @smallexample
5922 void copy (const char *s)
5923 @{
5924 char buf[80];
5925 strncpy (buf, s, sizeof buf);
5926 @dots{}
5927 @}
5928 @end smallexample
5929
5930 In situations where a character array is intended to store a sequence
5931 of bytes with no terminating @code{NUL} such an array may be annotated
5932 with attribute @code{nonstring} to avoid this warning. Such arrays,
5933 however, are not suitable arguments to functions that expect
5934 @code{NUL}-terminated strings. To help detect accidental misuses of
5935 such arrays GCC issues warnings unless it can prove that the use is
5936 safe. @xref{Common Variable Attributes}.
5937
5938 @item -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{|}cold@r{|}malloc@r{]}
5939 @opindex Wsuggest-attribute=
5940 @opindex Wno-suggest-attribute=
5941 Warn for cases where adding an attribute may be beneficial. The
5942 attributes currently supported are listed below.
5943
5944 @table @gcctabopt
5945 @item -Wsuggest-attribute=pure
5946 @itemx -Wsuggest-attribute=const
5947 @itemx -Wsuggest-attribute=noreturn
5948 @itemx -Wmissing-noreturn
5949 @itemx -Wsuggest-attribute=malloc
5950 @opindex Wsuggest-attribute=pure
5951 @opindex Wno-suggest-attribute=pure
5952 @opindex Wsuggest-attribute=const
5953 @opindex Wno-suggest-attribute=const
5954 @opindex Wsuggest-attribute=noreturn
5955 @opindex Wno-suggest-attribute=noreturn
5956 @opindex Wmissing-noreturn
5957 @opindex Wno-missing-noreturn
5958 @opindex Wsuggest-attribute=malloc
5959 @opindex Wno-suggest-attribute=malloc
5960
5961 Warn about functions that might be candidates for attributes
5962 @code{pure}, @code{const} or @code{noreturn} or @code{malloc}. The compiler
5963 only warns for functions visible in other compilation units or (in the case of
5964 @code{pure} and @code{const}) if it cannot prove that the function returns
5965 normally. A function returns normally if it doesn't contain an infinite loop or
5966 return abnormally by throwing, calling @code{abort} or trapping. This analysis
5967 requires option @option{-fipa-pure-const}, which is enabled by default at
5968 @option{-O} and higher. Higher optimization levels improve the accuracy
5969 of the analysis.
5970
5971 @item -Wsuggest-attribute=format
5972 @itemx -Wmissing-format-attribute
5973 @opindex Wsuggest-attribute=format
5974 @opindex Wmissing-format-attribute
5975 @opindex Wno-suggest-attribute=format
5976 @opindex Wno-missing-format-attribute
5977 @opindex Wformat
5978 @opindex Wno-format
5979
5980 Warn about function pointers that might be candidates for @code{format}
5981 attributes. Note these are only possible candidates, not absolute ones.
5982 GCC guesses that function pointers with @code{format} attributes that
5983 are used in assignment, initialization, parameter passing or return
5984 statements should have a corresponding @code{format} attribute in the
5985 resulting type. I.e.@: the left-hand side of the assignment or
5986 initialization, the type of the parameter variable, or the return type
5987 of the containing function respectively should also have a @code{format}
5988 attribute to avoid the warning.
5989
5990 GCC also warns about function definitions that might be
5991 candidates for @code{format} attributes. Again, these are only
5992 possible candidates. GCC guesses that @code{format} attributes
5993 might be appropriate for any function that calls a function like
5994 @code{vprintf} or @code{vscanf}, but this might not always be the
5995 case, and some functions for which @code{format} attributes are
5996 appropriate may not be detected.
5997
5998 @item -Wsuggest-attribute=cold
5999 @opindex Wsuggest-attribute=cold
6000 @opindex Wno-suggest-attribute=cold
6001
6002 Warn about functions that might be candidates for @code{cold} attribute. This
6003 is based on static detection and generally will only warn about functions which
6004 always leads to a call to another @code{cold} function such as wrappers of
6005 C++ @code{throw} or fatal error reporting functions leading to @code{abort}.
6006 @end table
6007
6008 @item -Wsuggest-final-types
6009 @opindex Wno-suggest-final-types
6010 @opindex Wsuggest-final-types
6011 Warn about types with virtual methods where code quality would be improved
6012 if the type were declared with the C++11 @code{final} specifier,
6013 or, if possible,
6014 declared in an anonymous namespace. This allows GCC to more aggressively
6015 devirtualize the polymorphic calls. This warning is more effective with
6016 link-time optimization,
6017 where the information about the class hierarchy graph is
6018 more complete.
6019
6020 @item -Wsuggest-final-methods
6021 @opindex Wno-suggest-final-methods
6022 @opindex Wsuggest-final-methods
6023 Warn about virtual methods where code quality would be improved if the method
6024 were declared with the C++11 @code{final} specifier,
6025 or, if possible, its type were
6026 declared in an anonymous namespace or with the @code{final} specifier.
6027 This warning is
6028 more effective with link-time optimization, where the information about the
6029 class hierarchy graph is more complete. It is recommended to first consider
6030 suggestions of @option{-Wsuggest-final-types} and then rebuild with new
6031 annotations.
6032
6033 @item -Wsuggest-override
6034 Warn about overriding virtual functions that are not marked with the override
6035 keyword.
6036
6037 @item -Walloc-zero
6038 @opindex Wno-alloc-zero
6039 @opindex Walloc-zero
6040 Warn about calls to allocation functions decorated with attribute
6041 @code{alloc_size} that specify zero bytes, including those to the built-in
6042 forms of the functions @code{aligned_alloc}, @code{alloca}, @code{calloc},
6043 @code{malloc}, and @code{realloc}. Because the behavior of these functions
6044 when called with a zero size differs among implementations (and in the case
6045 of @code{realloc} has been deprecated) relying on it may result in subtle
6046 portability bugs and should be avoided.
6047
6048 @item -Walloc-size-larger-than=@var{byte-size}
6049 @opindex Walloc-size-larger-than=
6050 @opindex Wno-alloc-size-larger-than
6051 Warn about calls to functions decorated with attribute @code{alloc_size}
6052 that attempt to allocate objects larger than the specified number of bytes,
6053 or where the result of the size computation in an integer type with infinite
6054 precision would exceed the value of @samp{PTRDIFF_MAX} on the target.
6055 @option{-Walloc-size-larger-than=}@samp{PTRDIFF_MAX} is enabled by default.
6056 Warnings controlled by the option can be disabled either by specifying
6057 @var{byte-size} of @samp{SIZE_MAX} or more or by
6058 @option{-Wno-alloc-size-larger-than}.
6059 @xref{Function Attributes}.
6060
6061 @item -Wno-alloc-size-larger-than
6062 @opindex Wno-alloc-size-larger-than
6063 Disable @option{-Walloc-size-larger-than=} warnings. The option is
6064 equivalent to @option{-Walloc-size-larger-than=}@samp{SIZE_MAX} or
6065 larger.
6066
6067 @item -Walloca
6068 @opindex Wno-alloca
6069 @opindex Walloca
6070 This option warns on all uses of @code{alloca} in the source.
6071
6072 @item -Walloca-larger-than=@var{byte-size}
6073 @opindex Walloca-larger-than=
6074 @opindex Wno-alloca-larger-than
6075 This option warns on calls to @code{alloca} with an integer argument whose
6076 value is either zero, or that is not bounded by a controlling predicate
6077 that limits its value to at most @var{byte-size}. It also warns for calls
6078 to @code{alloca} where the bound value is unknown. Arguments of non-integer
6079 types are considered unbounded even if they appear to be constrained to
6080 the expected range.
6081
6082 For example, a bounded case of @code{alloca} could be:
6083
6084 @smallexample
6085 void func (size_t n)
6086 @{
6087 void *p;
6088 if (n <= 1000)
6089 p = alloca (n);
6090 else
6091 p = malloc (n);
6092 f (p);
6093 @}
6094 @end smallexample
6095
6096 In the above example, passing @code{-Walloca-larger-than=1000} would not
6097 issue a warning because the call to @code{alloca} is known to be at most
6098 1000 bytes. However, if @code{-Walloca-larger-than=500} were passed,
6099 the compiler would emit a warning.
6100
6101 Unbounded uses, on the other hand, are uses of @code{alloca} with no
6102 controlling predicate constraining its integer argument. For example:
6103
6104 @smallexample
6105 void func ()
6106 @{
6107 void *p = alloca (n);
6108 f (p);
6109 @}
6110 @end smallexample
6111
6112 If @code{-Walloca-larger-than=500} were passed, the above would trigger
6113 a warning, but this time because of the lack of bounds checking.
6114
6115 Note, that even seemingly correct code involving signed integers could
6116 cause a warning:
6117
6118 @smallexample
6119 void func (signed int n)
6120 @{
6121 if (n < 500)
6122 @{
6123 p = alloca (n);
6124 f (p);
6125 @}
6126 @}
6127 @end smallexample
6128
6129 In the above example, @var{n} could be negative, causing a larger than
6130 expected argument to be implicitly cast into the @code{alloca} call.
6131
6132 This option also warns when @code{alloca} is used in a loop.
6133
6134 @option{-Walloca-larger-than=}@samp{PTRDIFF_MAX} is enabled by default
6135 but is usually only effective when @option{-ftree-vrp} is active (default
6136 for @option{-O2} and above).
6137
6138 See also @option{-Wvla-larger-than=}@samp{byte-size}.
6139
6140 @item -Wno-alloca-larger-than
6141 @opindex Wno-alloca-larger-than
6142 Disable @option{-Walloca-larger-than=} warnings. The option is
6143 equivalent to @option{-Walloca-larger-than=}@samp{SIZE_MAX} or larger.
6144
6145 @item -Warray-bounds
6146 @itemx -Warray-bounds=@var{n}
6147 @opindex Wno-array-bounds
6148 @opindex Warray-bounds
6149 This option is only active when @option{-ftree-vrp} is active
6150 (default for @option{-O2} and above). It warns about subscripts to arrays
6151 that are always out of bounds. This warning is enabled by @option{-Wall}.
6152
6153 @table @gcctabopt
6154 @item -Warray-bounds=1
6155 This is the warning level of @option{-Warray-bounds} and is enabled
6156 by @option{-Wall}; higher levels are not, and must be explicitly requested.
6157
6158 @item -Warray-bounds=2
6159 This warning level also warns about out of bounds access for
6160 arrays at the end of a struct and for arrays accessed through
6161 pointers. This warning level may give a larger number of
6162 false positives and is deactivated by default.
6163 @end table
6164
6165 @item -Wattribute-alias=@var{n}
6166 @itemx -Wno-attribute-alias
6167 @opindex Wattribute-alias
6168 @opindex Wno-attribute-alias
6169 Warn about declarations using the @code{alias} and similar attributes whose
6170 target is incompatible with the type of the alias.
6171 @xref{Function Attributes,,Declaring Attributes of Functions}.
6172
6173 @table @gcctabopt
6174 @item -Wattribute-alias=1
6175 The default warning level of the @option{-Wattribute-alias} option diagnoses
6176 incompatibilities between the type of the alias declaration and that of its
6177 target. Such incompatibilities are typically indicative of bugs.
6178
6179 @item -Wattribute-alias=2
6180
6181 At this level @option{-Wattribute-alias} also diagnoses cases where
6182 the attributes of the alias declaration are more restrictive than the
6183 attributes applied to its target. These mismatches can potentially
6184 result in incorrect code generation. In other cases they may be
6185 benign and could be resolved simply by adding the missing attribute to
6186 the target. For comparison, see the @option{-Wmissing-attributes}
6187 option, which controls diagnostics when the alias declaration is less
6188 restrictive than the target, rather than more restrictive.
6189
6190 Attributes considered include @code{alloc_align}, @code{alloc_size},
6191 @code{cold}, @code{const}, @code{hot}, @code{leaf}, @code{malloc},
6192 @code{nonnull}, @code{noreturn}, @code{nothrow}, @code{pure},
6193 @code{returns_nonnull}, and @code{returns_twice}.
6194 @end table
6195
6196 @option{-Wattribute-alias} is equivalent to @option{-Wattribute-alias=1}.
6197 This is the default. You can disable these warnings with either
6198 @option{-Wno-attribute-alias} or @option{-Wattribute-alias=0}.
6199
6200 @item -Wbool-compare
6201 @opindex Wno-bool-compare
6202 @opindex Wbool-compare
6203 Warn about boolean expression compared with an integer value different from
6204 @code{true}/@code{false}. For instance, the following comparison is
6205 always false:
6206 @smallexample
6207 int n = 5;
6208 @dots{}
6209 if ((n > 1) == 2) @{ @dots{} @}
6210 @end smallexample
6211 This warning is enabled by @option{-Wall}.
6212
6213 @item -Wbool-operation
6214 @opindex Wno-bool-operation
6215 @opindex Wbool-operation
6216 Warn about suspicious operations on expressions of a boolean type. For
6217 instance, bitwise negation of a boolean is very likely a bug in the program.
6218 For C, this warning also warns about incrementing or decrementing a boolean,
6219 which rarely makes sense. (In C++, decrementing a boolean is always invalid.
6220 Incrementing a boolean is invalid in C++17, and deprecated otherwise.)
6221
6222 This warning is enabled by @option{-Wall}.
6223
6224 @item -Wduplicated-branches
6225 @opindex Wno-duplicated-branches
6226 @opindex Wduplicated-branches
6227 Warn when an if-else has identical branches. This warning detects cases like
6228 @smallexample
6229 if (p != NULL)
6230 return 0;
6231 else
6232 return 0;
6233 @end smallexample
6234 It doesn't warn when both branches contain just a null statement. This warning
6235 also warn for conditional operators:
6236 @smallexample
6237 int i = x ? *p : *p;
6238 @end smallexample
6239
6240 @item -Wduplicated-cond
6241 @opindex Wno-duplicated-cond
6242 @opindex Wduplicated-cond
6243 Warn about duplicated conditions in an if-else-if chain. For instance,
6244 warn for the following code:
6245 @smallexample
6246 if (p->q != NULL) @{ @dots{} @}
6247 else if (p->q != NULL) @{ @dots{} @}
6248 @end smallexample
6249
6250 @item -Wframe-address
6251 @opindex Wno-frame-address
6252 @opindex Wframe-address
6253 Warn when the @samp{__builtin_frame_address} or @samp{__builtin_return_address}
6254 is called with an argument greater than 0. Such calls may return indeterminate
6255 values or crash the program. The warning is included in @option{-Wall}.
6256
6257 @item -Wno-discarded-qualifiers @r{(C and Objective-C only)}
6258 @opindex Wno-discarded-qualifiers
6259 @opindex Wdiscarded-qualifiers
6260 Do not warn if type qualifiers on pointers are being discarded.
6261 Typically, the compiler warns if a @code{const char *} variable is
6262 passed to a function that takes a @code{char *} parameter. This option
6263 can be used to suppress such a warning.
6264
6265 @item -Wno-discarded-array-qualifiers @r{(C and Objective-C only)}
6266 @opindex Wno-discarded-array-qualifiers
6267 @opindex Wdiscarded-array-qualifiers
6268 Do not warn if type qualifiers on arrays which are pointer targets
6269 are being discarded. Typically, the compiler warns if a
6270 @code{const int (*)[]} variable is passed to a function that
6271 takes a @code{int (*)[]} parameter. This option can be used to
6272 suppress such a warning.
6273
6274 @item -Wno-incompatible-pointer-types @r{(C and Objective-C only)}
6275 @opindex Wno-incompatible-pointer-types
6276 @opindex Wincompatible-pointer-types
6277 Do not warn when there is a conversion between pointers that have incompatible
6278 types. This warning is for cases not covered by @option{-Wno-pointer-sign},
6279 which warns for pointer argument passing or assignment with different
6280 signedness.
6281
6282 @item -Wno-int-conversion @r{(C and Objective-C only)}
6283 @opindex Wno-int-conversion
6284 @opindex Wint-conversion
6285 Do not warn about incompatible integer to pointer and pointer to integer
6286 conversions. This warning is about implicit conversions; for explicit
6287 conversions the warnings @option{-Wno-int-to-pointer-cast} and
6288 @option{-Wno-pointer-to-int-cast} may be used.
6289
6290 @item -Wno-div-by-zero
6291 @opindex Wno-div-by-zero
6292 @opindex Wdiv-by-zero
6293 Do not warn about compile-time integer division by zero. Floating-point
6294 division by zero is not warned about, as it can be a legitimate way of
6295 obtaining infinities and NaNs.
6296
6297 @item -Wsystem-headers
6298 @opindex Wsystem-headers
6299 @opindex Wno-system-headers
6300 @cindex warnings from system headers
6301 @cindex system headers, warnings from
6302 Print warning messages for constructs found in system header files.
6303 Warnings from system headers are normally suppressed, on the assumption
6304 that they usually do not indicate real problems and would only make the
6305 compiler output harder to read. Using this command-line option tells
6306 GCC to emit warnings from system headers as if they occurred in user
6307 code. However, note that using @option{-Wall} in conjunction with this
6308 option does @emph{not} warn about unknown pragmas in system
6309 headers---for that, @option{-Wunknown-pragmas} must also be used.
6310
6311 @item -Wtautological-compare
6312 @opindex Wtautological-compare
6313 @opindex Wno-tautological-compare
6314 Warn if a self-comparison always evaluates to true or false. This
6315 warning detects various mistakes such as:
6316 @smallexample
6317 int i = 1;
6318 @dots{}
6319 if (i > i) @{ @dots{} @}
6320 @end smallexample
6321
6322 This warning also warns about bitwise comparisons that always evaluate
6323 to true or false, for instance:
6324 @smallexample
6325 if ((a & 16) == 10) @{ @dots{} @}
6326 @end smallexample
6327 will always be false.
6328
6329 This warning is enabled by @option{-Wall}.
6330
6331 @item -Wtrampolines
6332 @opindex Wtrampolines
6333 @opindex Wno-trampolines
6334 Warn about trampolines generated for pointers to nested functions.
6335 A trampoline is a small piece of data or code that is created at run
6336 time on the stack when the address of a nested function is taken, and is
6337 used to call the nested function indirectly. For some targets, it is
6338 made up of data only and thus requires no special treatment. But, for
6339 most targets, it is made up of code and thus requires the stack to be
6340 made executable in order for the program to work properly.
6341
6342 @item -Wfloat-equal
6343 @opindex Wfloat-equal
6344 @opindex Wno-float-equal
6345 Warn if floating-point values are used in equality comparisons.
6346
6347 The idea behind this is that sometimes it is convenient (for the
6348 programmer) to consider floating-point values as approximations to
6349 infinitely precise real numbers. If you are doing this, then you need
6350 to compute (by analyzing the code, or in some other way) the maximum or
6351 likely maximum error that the computation introduces, and allow for it
6352 when performing comparisons (and when producing output, but that's a
6353 different problem). In particular, instead of testing for equality, you
6354 should check to see whether the two values have ranges that overlap; and
6355 this is done with the relational operators, so equality comparisons are
6356 probably mistaken.
6357
6358 @item -Wtraditional @r{(C and Objective-C only)}
6359 @opindex Wtraditional
6360 @opindex Wno-traditional
6361 Warn about certain constructs that behave differently in traditional and
6362 ISO C@. Also warn about ISO C constructs that have no traditional C
6363 equivalent, and/or problematic constructs that should be avoided.
6364
6365 @itemize @bullet
6366 @item
6367 Macro parameters that appear within string literals in the macro body.
6368 In traditional C macro replacement takes place within string literals,
6369 but in ISO C it does not.
6370
6371 @item
6372 In traditional C, some preprocessor directives did not exist.
6373 Traditional preprocessors only considered a line to be a directive
6374 if the @samp{#} appeared in column 1 on the line. Therefore
6375 @option{-Wtraditional} warns about directives that traditional C
6376 understands but ignores because the @samp{#} does not appear as the
6377 first character on the line. It also suggests you hide directives like
6378 @code{#pragma} not understood by traditional C by indenting them. Some
6379 traditional implementations do not recognize @code{#elif}, so this option
6380 suggests avoiding it altogether.
6381
6382 @item
6383 A function-like macro that appears without arguments.
6384
6385 @item
6386 The unary plus operator.
6387
6388 @item
6389 The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating-point
6390 constant suffixes. (Traditional C does support the @samp{L} suffix on integer
6391 constants.) Note, these suffixes appear in macros defined in the system
6392 headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}.
6393 Use of these macros in user code might normally lead to spurious
6394 warnings, however GCC's integrated preprocessor has enough context to
6395 avoid warning in these cases.
6396
6397 @item
6398 A function declared external in one block and then used after the end of
6399 the block.
6400
6401 @item
6402 A @code{switch} statement has an operand of type @code{long}.
6403
6404 @item
6405 A non-@code{static} function declaration follows a @code{static} one.
6406 This construct is not accepted by some traditional C compilers.
6407
6408 @item
6409 The ISO type of an integer constant has a different width or
6410 signedness from its traditional type. This warning is only issued if
6411 the base of the constant is ten. I.e.@: hexadecimal or octal values, which
6412 typically represent bit patterns, are not warned about.
6413
6414 @item
6415 Usage of ISO string concatenation is detected.
6416
6417 @item
6418 Initialization of automatic aggregates.
6419
6420 @item
6421 Identifier conflicts with labels. Traditional C lacks a separate
6422 namespace for labels.
6423
6424 @item
6425 Initialization of unions. If the initializer is zero, the warning is
6426 omitted. This is done under the assumption that the zero initializer in
6427 user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
6428 initializer warnings and relies on default initialization to zero in the
6429 traditional C case.
6430
6431 @item
6432 Conversions by prototypes between fixed/floating-point values and vice
6433 versa. The absence of these prototypes when compiling with traditional
6434 C causes serious problems. This is a subset of the possible
6435 conversion warnings; for the full set use @option{-Wtraditional-conversion}.
6436
6437 @item
6438 Use of ISO C style function definitions. This warning intentionally is
6439 @emph{not} issued for prototype declarations or variadic functions
6440 because these ISO C features appear in your code when using
6441 libiberty's traditional C compatibility macros, @code{PARAMS} and
6442 @code{VPARAMS}. This warning is also bypassed for nested functions
6443 because that feature is already a GCC extension and thus not relevant to
6444 traditional C compatibility.
6445 @end itemize
6446
6447 @item -Wtraditional-conversion @r{(C and Objective-C only)}
6448 @opindex Wtraditional-conversion
6449 @opindex Wno-traditional-conversion
6450 Warn if a prototype causes a type conversion that is different from what
6451 would happen to the same argument in the absence of a prototype. This
6452 includes conversions of fixed point to floating and vice versa, and
6453 conversions changing the width or signedness of a fixed-point argument
6454 except when the same as the default promotion.
6455
6456 @item -Wdeclaration-after-statement @r{(C and Objective-C only)}
6457 @opindex Wdeclaration-after-statement
6458 @opindex Wno-declaration-after-statement
6459 Warn when a declaration is found after a statement in a block. This
6460 construct, known from C++, was introduced with ISO C99 and is by default
6461 allowed in GCC@. It is not supported by ISO C90. @xref{Mixed Declarations}.
6462
6463 @item -Wshadow
6464 @opindex Wshadow
6465 @opindex Wno-shadow
6466 Warn whenever a local variable or type declaration shadows another
6467 variable, parameter, type, class member (in C++), or instance variable
6468 (in Objective-C) or whenever a built-in function is shadowed. Note
6469 that in C++, the compiler warns if a local variable shadows an
6470 explicit typedef, but not if it shadows a struct/class/enum.
6471 Same as @option{-Wshadow=global}.
6472
6473 @item -Wno-shadow-ivar @r{(Objective-C only)}
6474 @opindex Wno-shadow-ivar
6475 @opindex Wshadow-ivar
6476 Do not warn whenever a local variable shadows an instance variable in an
6477 Objective-C method.
6478
6479 @item -Wshadow=global
6480 @opindex Wshadow=local
6481 The default for @option{-Wshadow}. Warns for any (global) shadowing.
6482
6483 @item -Wshadow=local
6484 @opindex Wshadow=local
6485 Warn when a local variable shadows another local variable or parameter.
6486 This warning is enabled by @option{-Wshadow=global}.
6487
6488 @item -Wshadow=compatible-local
6489 @opindex Wshadow=compatible-local
6490 Warn when a local variable shadows another local variable or parameter
6491 whose type is compatible with that of the shadowing variable. In C++,
6492 type compatibility here means the type of the shadowing variable can be
6493 converted to that of the shadowed variable. The creation of this flag
6494 (in addition to @option{-Wshadow=local}) is based on the idea that when
6495 a local variable shadows another one of incompatible type, it is most
6496 likely intentional, not a bug or typo, as shown in the following example:
6497
6498 @smallexample
6499 @group
6500 for (SomeIterator i = SomeObj.begin(); i != SomeObj.end(); ++i)
6501 @{
6502 for (int i = 0; i < N; ++i)
6503 @{
6504 ...
6505 @}
6506 ...
6507 @}
6508 @end group
6509 @end smallexample
6510
6511 Since the two variable @code{i} in the example above have incompatible types,
6512 enabling only @option{-Wshadow=compatible-local} will not emit a warning.
6513 Because their types are incompatible, if a programmer accidentally uses one
6514 in place of the other, type checking will catch that and emit an error or
6515 warning. So not warning (about shadowing) in this case will not lead to
6516 undetected bugs. Use of this flag instead of @option{-Wshadow=local} can
6517 possibly reduce the number of warnings triggered by intentional shadowing.
6518
6519 This warning is enabled by @option{-Wshadow=local}.
6520
6521 @item -Wlarger-than=@var{byte-size}
6522 @opindex Wlarger-than=
6523 @opindex Wlarger-than-@var{byte-size}
6524 Warn whenever an object is defined whose size exceeds @var{byte-size}.
6525 @option{-Wlarger-than=}@samp{PTRDIFF_MAX} is enabled by default.
6526 Warnings controlled by the option can be disabled either by specifying
6527 @var{byte-size} of @samp{SIZE_MAX} or more or by
6528 @option{-Wno-larger-than}.
6529
6530 @item -Wno-larger-than
6531 @opindex Wno-larger-than
6532 Disable @option{-Wlarger-than=} warnings. The option is equivalent
6533 to @option{-Wlarger-than=}@samp{SIZE_MAX} or larger.
6534
6535 @item -Wframe-larger-than=@var{byte-size}
6536 @opindex Wframe-larger-than=
6537 @opindex Wno-frame-larger-than
6538 Warn if the size of a function frame exceeds @var{byte-size}.
6539 The computation done to determine the stack frame size is approximate
6540 and not conservative.
6541 The actual requirements may be somewhat greater than @var{byte-size}
6542 even if you do not get a warning. In addition, any space allocated
6543 via @code{alloca}, variable-length arrays, or related constructs
6544 is not included by the compiler when determining
6545 whether or not to issue a warning.
6546 @option{-Wframe-larger-than=}@samp{PTRDIFF_MAX} is enabled by default.
6547 Warnings controlled by the option can be disabled either by specifying
6548 @var{byte-size} of @samp{SIZE_MAX} or more or by
6549 @option{-Wno-frame-larger-than}.
6550
6551 @item -Wno-frame-larger-than
6552 @opindex Wno-frame-larger-than
6553 Disable @option{-Wframe-larger-than=} warnings. The option is equivalent
6554 to @option{-Wframe-larger-than=}@samp{SIZE_MAX} or larger.
6555
6556 @item -Wno-free-nonheap-object
6557 @opindex Wno-free-nonheap-object
6558 @opindex Wfree-nonheap-object
6559 Do not warn when attempting to free an object that was not allocated
6560 on the heap.
6561
6562 @item -Wstack-usage=@var{byte-size}
6563 @opindex Wstack-usage
6564 @opindex Wno-stack-usage
6565 Warn if the stack usage of a function might exceed @var{byte-size}.
6566 The computation done to determine the stack usage is conservative.
6567 Any space allocated via @code{alloca}, variable-length arrays, or related
6568 constructs is included by the compiler when determining whether or not to
6569 issue a warning.
6570
6571 The message is in keeping with the output of @option{-fstack-usage}.
6572
6573 @itemize
6574 @item
6575 If the stack usage is fully static but exceeds the specified amount, it's:
6576
6577 @smallexample
6578 warning: stack usage is 1120 bytes
6579 @end smallexample
6580 @item
6581 If the stack usage is (partly) dynamic but bounded, it's:
6582
6583 @smallexample
6584 warning: stack usage might be 1648 bytes
6585 @end smallexample
6586 @item
6587 If the stack usage is (partly) dynamic and not bounded, it's:
6588
6589 @smallexample
6590 warning: stack usage might be unbounded
6591 @end smallexample
6592 @end itemize
6593
6594 @option{-Wstack-usage=}@samp{PTRDIFF_MAX} is enabled by default.
6595 Warnings controlled by the option can be disabled either by specifying
6596 @var{byte-size} of @samp{SIZE_MAX} or more or by
6597 @option{-Wno-stack-usage}.
6598
6599 @item -Wno-stack-usage
6600 @opindex Wno-stack-usage
6601 Disable @option{-Wstack-usage=} warnings. The option is equivalent
6602 to @option{-Wstack-usage=}@samp{SIZE_MAX} or larger.
6603
6604 @item -Wunsafe-loop-optimizations
6605 @opindex Wunsafe-loop-optimizations
6606 @opindex Wno-unsafe-loop-optimizations
6607 Warn if the loop cannot be optimized because the compiler cannot
6608 assume anything on the bounds of the loop indices. With
6609 @option{-funsafe-loop-optimizations} warn if the compiler makes
6610 such assumptions.
6611
6612 @item -Wno-pedantic-ms-format @r{(MinGW targets only)}
6613 @opindex Wno-pedantic-ms-format
6614 @opindex Wpedantic-ms-format
6615 When used in combination with @option{-Wformat}
6616 and @option{-pedantic} without GNU extensions, this option
6617 disables the warnings about non-ISO @code{printf} / @code{scanf} format
6618 width specifiers @code{I32}, @code{I64}, and @code{I} used on Windows targets,
6619 which depend on the MS runtime.
6620
6621 @item -Waligned-new
6622 @opindex Waligned-new
6623 @opindex Wno-aligned-new
6624 Warn about a new-expression of a type that requires greater alignment
6625 than the @code{alignof(std::max_align_t)} but uses an allocation
6626 function without an explicit alignment parameter. This option is
6627 enabled by @option{-Wall}.
6628
6629 Normally this only warns about global allocation functions, but
6630 @option{-Waligned-new=all} also warns about class member allocation
6631 functions.
6632
6633 @item -Wplacement-new
6634 @itemx -Wplacement-new=@var{n}
6635 @opindex Wplacement-new
6636 @opindex Wno-placement-new
6637 Warn about placement new expressions with undefined behavior, such as
6638 constructing an object in a buffer that is smaller than the type of
6639 the object. For example, the placement new expression below is diagnosed
6640 because it attempts to construct an array of 64 integers in a buffer only
6641 64 bytes large.
6642 @smallexample
6643 char buf [64];
6644 new (buf) int[64];
6645 @end smallexample
6646 This warning is enabled by default.
6647
6648 @table @gcctabopt
6649 @item -Wplacement-new=1
6650 This is the default warning level of @option{-Wplacement-new}. At this
6651 level the warning is not issued for some strictly undefined constructs that
6652 GCC allows as extensions for compatibility with legacy code. For example,
6653 the following @code{new} expression is not diagnosed at this level even
6654 though it has undefined behavior according to the C++ standard because
6655 it writes past the end of the one-element array.
6656 @smallexample
6657 struct S @{ int n, a[1]; @};
6658 S *s = (S *)malloc (sizeof *s + 31 * sizeof s->a[0]);
6659 new (s->a)int [32]();
6660 @end smallexample
6661
6662 @item -Wplacement-new=2
6663 At this level, in addition to diagnosing all the same constructs as at level
6664 1, a diagnostic is also issued for placement new expressions that construct
6665 an object in the last member of structure whose type is an array of a single
6666 element and whose size is less than the size of the object being constructed.
6667 While the previous example would be diagnosed, the following construct makes
6668 use of the flexible member array extension to avoid the warning at level 2.
6669 @smallexample
6670 struct S @{ int n, a[]; @};
6671 S *s = (S *)malloc (sizeof *s + 32 * sizeof s->a[0]);
6672 new (s->a)int [32]();
6673 @end smallexample
6674
6675 @end table
6676
6677 @item -Wpointer-arith
6678 @opindex Wpointer-arith
6679 @opindex Wno-pointer-arith
6680 Warn about anything that depends on the ``size of'' a function type or
6681 of @code{void}. GNU C assigns these types a size of 1, for
6682 convenience in calculations with @code{void *} pointers and pointers
6683 to functions. In C++, warn also when an arithmetic operation involves
6684 @code{NULL}. This warning is also enabled by @option{-Wpedantic}.
6685
6686 @item -Wpointer-compare
6687 @opindex Wpointer-compare
6688 @opindex Wno-pointer-compare
6689 Warn if a pointer is compared with a zero character constant. This usually
6690 means that the pointer was meant to be dereferenced. For example:
6691
6692 @smallexample
6693 const char *p = foo ();
6694 if (p == '\0')
6695 return 42;
6696 @end smallexample
6697
6698 Note that the code above is invalid in C++11.
6699
6700 This warning is enabled by default.
6701
6702 @item -Wtype-limits
6703 @opindex Wtype-limits
6704 @opindex Wno-type-limits
6705 Warn if a comparison is always true or always false due to the limited
6706 range of the data type, but do not warn for constant expressions. For
6707 example, warn if an unsigned variable is compared against zero with
6708 @code{<} or @code{>=}. This warning is also enabled by
6709 @option{-Wextra}.
6710
6711 @item -Wabsolute-value @r{(C and Objective-C only)}
6712 @opindex Wabsolute-value
6713 @opindex Wno-absolute-value
6714 Warn for calls to standard functions that compute the absolute value
6715 of an argument when a more appropriate standard function is available.
6716 For example, calling @code{abs(3.14)} triggers the warning because the
6717 appropriate function to call to compute the absolute value of a double
6718 argument is @code{fabs}. The option also triggers warnings when the
6719 argument in a call to such a function has an unsigned type. This
6720 warning can be suppressed with an explicit type cast and it is also
6721 enabled by @option{-Wextra}.
6722
6723 @include cppwarnopts.texi
6724
6725 @item -Wbad-function-cast @r{(C and Objective-C only)}
6726 @opindex Wbad-function-cast
6727 @opindex Wno-bad-function-cast
6728 Warn when a function call is cast to a non-matching type.
6729 For example, warn if a call to a function returning an integer type
6730 is cast to a pointer type.
6731
6732 @item -Wc90-c99-compat @r{(C and Objective-C only)}
6733 @opindex Wc90-c99-compat
6734 @opindex Wno-c90-c99-compat
6735 Warn about features not present in ISO C90, but present in ISO C99.
6736 For instance, warn about use of variable length arrays, @code{long long}
6737 type, @code{bool} type, compound literals, designated initializers, and so
6738 on. This option is independent of the standards mode. Warnings are disabled
6739 in the expression that follows @code{__extension__}.
6740
6741 @item -Wc99-c11-compat @r{(C and Objective-C only)}
6742 @opindex Wc99-c11-compat
6743 @opindex Wno-c99-c11-compat
6744 Warn about features not present in ISO C99, but present in ISO C11.
6745 For instance, warn about use of anonymous structures and unions,
6746 @code{_Atomic} type qualifier, @code{_Thread_local} storage-class specifier,
6747 @code{_Alignas} specifier, @code{Alignof} operator, @code{_Generic} keyword,
6748 and so on. This option is independent of the standards mode. Warnings are
6749 disabled in the expression that follows @code{__extension__}.
6750
6751 @item -Wc++-compat @r{(C and Objective-C only)}
6752 @opindex Wc++-compat
6753 @opindex Wno-c++-compat
6754 Warn about ISO C constructs that are outside of the common subset of
6755 ISO C and ISO C++, e.g.@: request for implicit conversion from
6756 @code{void *} to a pointer to non-@code{void} type.
6757
6758 @item -Wc++11-compat @r{(C++ and Objective-C++ only)}
6759 @opindex Wc++11-compat
6760 @opindex Wno-c++11-compat
6761 Warn about C++ constructs whose meaning differs between ISO C++ 1998
6762 and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords
6763 in ISO C++ 2011. This warning turns on @option{-Wnarrowing} and is
6764 enabled by @option{-Wall}.
6765
6766 @item -Wc++14-compat @r{(C++ and Objective-C++ only)}
6767 @opindex Wc++14-compat
6768 @opindex Wno-c++14-compat
6769 Warn about C++ constructs whose meaning differs between ISO C++ 2011
6770 and ISO C++ 2014. This warning is enabled by @option{-Wall}.
6771
6772 @item -Wc++17-compat @r{(C++ and Objective-C++ only)}
6773 @opindex Wc++17-compat
6774 @opindex Wno-c++17-compat
6775 Warn about C++ constructs whose meaning differs between ISO C++ 2014
6776 and ISO C++ 2017. This warning is enabled by @option{-Wall}.
6777
6778 @item -Wc++20-compat @r{(C++ and Objective-C++ only)}
6779 @opindex Wc++20-compat
6780 @opindex Wno-c++20-compat
6781 Warn about C++ constructs whose meaning differs between ISO C++ 2017
6782 and ISO C++ 2020. This warning is enabled by @option{-Wall}.
6783
6784 @item -Wcast-qual
6785 @opindex Wcast-qual
6786 @opindex Wno-cast-qual
6787 Warn whenever a pointer is cast so as to remove a type qualifier from
6788 the target type. For example, warn if a @code{const char *} is cast
6789 to an ordinary @code{char *}.
6790
6791 Also warn when making a cast that introduces a type qualifier in an
6792 unsafe way. For example, casting @code{char **} to @code{const char **}
6793 is unsafe, as in this example:
6794
6795 @smallexample
6796 /* p is char ** value. */
6797 const char **q = (const char **) p;
6798 /* Assignment of readonly string to const char * is OK. */
6799 *q = "string";
6800 /* Now char** pointer points to read-only memory. */
6801 **p = 'b';
6802 @end smallexample
6803
6804 @item -Wcast-align
6805 @opindex Wcast-align
6806 @opindex Wno-cast-align
6807 Warn whenever a pointer is cast such that the required alignment of the
6808 target is increased. For example, warn if a @code{char *} is cast to
6809 an @code{int *} on machines where integers can only be accessed at
6810 two- or four-byte boundaries.
6811
6812 @item -Wcast-align=strict
6813 @opindex Wcast-align=strict
6814 Warn whenever a pointer is cast such that the required alignment of the
6815 target is increased. For example, warn if a @code{char *} is cast to
6816 an @code{int *} regardless of the target machine.
6817
6818 @item -Wcast-function-type
6819 @opindex Wcast-function-type
6820 @opindex Wno-cast-function-type
6821 Warn when a function pointer is cast to an incompatible function pointer.
6822 In a cast involving function types with a variable argument list only
6823 the types of initial arguments that are provided are considered.
6824 Any parameter of pointer-type matches any other pointer-type. Any benign
6825 differences in integral types are ignored, like @code{int} vs.@: @code{long}
6826 on ILP32 targets. Likewise type qualifiers are ignored. The function
6827 type @code{void (*) (void)} is special and matches everything, which can
6828 be used to suppress this warning.
6829 In a cast involving pointer to member types this warning warns whenever
6830 the type cast is changing the pointer to member type.
6831 This warning is enabled by @option{-Wextra}.
6832
6833 @item -Wwrite-strings
6834 @opindex Wwrite-strings
6835 @opindex Wno-write-strings
6836 When compiling C, give string constants the type @code{const
6837 char[@var{length}]} so that copying the address of one into a
6838 non-@code{const} @code{char *} pointer produces a warning. These
6839 warnings help you find at compile time code that can try to write
6840 into a string constant, but only if you have been very careful about
6841 using @code{const} in declarations and prototypes. Otherwise, it is
6842 just a nuisance. This is why we did not make @option{-Wall} request
6843 these warnings.
6844
6845 When compiling C++, warn about the deprecated conversion from string
6846 literals to @code{char *}. This warning is enabled by default for C++
6847 programs.
6848
6849 @item -Wcatch-value
6850 @itemx -Wcatch-value=@var{n} @r{(C++ and Objective-C++ only)}
6851 @opindex Wcatch-value
6852 @opindex Wno-catch-value
6853 Warn about catch handlers that do not catch via reference.
6854 With @option{-Wcatch-value=1} (or @option{-Wcatch-value} for short)
6855 warn about polymorphic class types that are caught by value.
6856 With @option{-Wcatch-value=2} warn about all class types that are caught
6857 by value. With @option{-Wcatch-value=3} warn about all types that are
6858 not caught by reference. @option{-Wcatch-value} is enabled by @option{-Wall}.
6859
6860 @item -Wclobbered
6861 @opindex Wclobbered
6862 @opindex Wno-clobbered
6863 Warn for variables that might be changed by @code{longjmp} or
6864 @code{vfork}. This warning is also enabled by @option{-Wextra}.
6865
6866 @item -Wconditionally-supported @r{(C++ and Objective-C++ only)}
6867 @opindex Wconditionally-supported
6868 @opindex Wno-conditionally-supported
6869 Warn for conditionally-supported (C++11 [intro.defs]) constructs.
6870
6871 @item -Wconversion
6872 @opindex Wconversion
6873 @opindex Wno-conversion
6874 Warn for implicit conversions that may alter a value. This includes
6875 conversions between real and integer, like @code{abs (x)} when
6876 @code{x} is @code{double}; conversions between signed and unsigned,
6877 like @code{unsigned ui = -1}; and conversions to smaller types, like
6878 @code{sqrtf (M_PI)}. Do not warn for explicit casts like @code{abs
6879 ((int) x)} and @code{ui = (unsigned) -1}, or if the value is not
6880 changed by the conversion like in @code{abs (2.0)}. Warnings about
6881 conversions between signed and unsigned integers can be disabled by
6882 using @option{-Wno-sign-conversion}.
6883
6884 For C++, also warn for confusing overload resolution for user-defined
6885 conversions; and conversions that never use a type conversion
6886 operator: conversions to @code{void}, the same type, a base class or a
6887 reference to them. Warnings about conversions between signed and
6888 unsigned integers are disabled by default in C++ unless
6889 @option{-Wsign-conversion} is explicitly enabled.
6890
6891 @item -Wno-conversion-null @r{(C++ and Objective-C++ only)}
6892 @opindex Wconversion-null
6893 @opindex Wno-conversion-null
6894 Do not warn for conversions between @code{NULL} and non-pointer
6895 types. @option{-Wconversion-null} is enabled by default.
6896
6897 @item -Wzero-as-null-pointer-constant @r{(C++ and Objective-C++ only)}
6898 @opindex Wzero-as-null-pointer-constant
6899 @opindex Wno-zero-as-null-pointer-constant
6900 Warn when a literal @samp{0} is used as null pointer constant. This can
6901 be useful to facilitate the conversion to @code{nullptr} in C++11.
6902
6903 @item -Wsubobject-linkage @r{(C++ and Objective-C++ only)}
6904 @opindex Wsubobject-linkage
6905 @opindex Wno-subobject-linkage
6906 Warn if a class type has a base or a field whose type uses the anonymous
6907 namespace or depends on a type with no linkage. If a type A depends on
6908 a type B with no or internal linkage, defining it in multiple
6909 translation units would be an ODR violation because the meaning of B
6910 is different in each translation unit. If A only appears in a single
6911 translation unit, the best way to silence the warning is to give it
6912 internal linkage by putting it in an anonymous namespace as well. The
6913 compiler doesn't give this warning for types defined in the main .C
6914 file, as those are unlikely to have multiple definitions.
6915 @option{-Wsubobject-linkage} is enabled by default.
6916
6917 @item -Wdangling-else
6918 @opindex Wdangling-else
6919 @opindex Wno-dangling-else
6920 Warn about constructions where there may be confusion to which
6921 @code{if} statement an @code{else} branch belongs. Here is an example of
6922 such a case:
6923
6924 @smallexample
6925 @group
6926 @{
6927 if (a)
6928 if (b)
6929 foo ();
6930 else
6931 bar ();
6932 @}
6933 @end group
6934 @end smallexample
6935
6936 In C/C++, every @code{else} branch belongs to the innermost possible
6937 @code{if} statement, which in this example is @code{if (b)}. This is
6938 often not what the programmer expected, as illustrated in the above
6939 example by indentation the programmer chose. When there is the
6940 potential for this confusion, GCC issues a warning when this flag
6941 is specified. To eliminate the warning, add explicit braces around
6942 the innermost @code{if} statement so there is no way the @code{else}
6943 can belong to the enclosing @code{if}. The resulting code
6944 looks like this:
6945
6946 @smallexample
6947 @group
6948 @{
6949 if (a)
6950 @{
6951 if (b)
6952 foo ();
6953 else
6954 bar ();
6955 @}
6956 @}
6957 @end group
6958 @end smallexample
6959
6960 This warning is enabled by @option{-Wparentheses}.
6961
6962 @item -Wdate-time
6963 @opindex Wdate-time
6964 @opindex Wno-date-time
6965 Warn when macros @code{__TIME__}, @code{__DATE__} or @code{__TIMESTAMP__}
6966 are encountered as they might prevent bit-wise-identical reproducible
6967 compilations.
6968
6969 @item -Wdelete-incomplete @r{(C++ and Objective-C++ only)}
6970 @opindex Wdelete-incomplete
6971 @opindex Wno-delete-incomplete
6972 Warn when deleting a pointer to incomplete type, which may cause
6973 undefined behavior at runtime. This warning is enabled by default.
6974
6975 @item -Wuseless-cast @r{(C++ and Objective-C++ only)}
6976 @opindex Wuseless-cast
6977 @opindex Wno-useless-cast
6978 Warn when an expression is casted to its own type.
6979
6980 @item -Wempty-body
6981 @opindex Wempty-body
6982 @opindex Wno-empty-body
6983 Warn if an empty body occurs in an @code{if}, @code{else} or @code{do
6984 while} statement. This warning is also enabled by @option{-Wextra}.
6985
6986 @item -Wenum-compare
6987 @opindex Wenum-compare
6988 @opindex Wno-enum-compare
6989 Warn about a comparison between values of different enumerated types.
6990 In C++ enumerated type mismatches in conditional expressions are also
6991 diagnosed and the warning is enabled by default. In C this warning is
6992 enabled by @option{-Wall}.
6993
6994 @item -Wenum-conversion @r{(C, Objective-C only)}
6995 @opindex Wenum-conversion
6996 @opindex Wno-enum-conversion
6997 Warn when a value of enumerated type is implicitly converted to a
6998 different enumerated type. This warning is enabled by @option{-Wextra}.
6999
7000 @item -Wextra-semi @r{(C++, Objective-C++ only)}
7001 @opindex Wextra-semi
7002 @opindex Wno-extra-semi
7003 Warn about redundant semicolon after in-class function definition.
7004
7005 @item -Wjump-misses-init @r{(C, Objective-C only)}
7006 @opindex Wjump-misses-init
7007 @opindex Wno-jump-misses-init
7008 Warn if a @code{goto} statement or a @code{switch} statement jumps
7009 forward across the initialization of a variable, or jumps backward to a
7010 label after the variable has been initialized. This only warns about
7011 variables that are initialized when they are declared. This warning is
7012 only supported for C and Objective-C; in C++ this sort of branch is an
7013 error in any case.
7014
7015 @option{-Wjump-misses-init} is included in @option{-Wc++-compat}. It
7016 can be disabled with the @option{-Wno-jump-misses-init} option.
7017
7018 @item -Wsign-compare
7019 @opindex Wsign-compare
7020 @opindex Wno-sign-compare
7021 @cindex warning for comparison of signed and unsigned values
7022 @cindex comparison of signed and unsigned values, warning
7023 @cindex signed and unsigned values, comparison warning
7024 Warn when a comparison between signed and unsigned values could produce
7025 an incorrect result when the signed value is converted to unsigned.
7026 In C++, this warning is also enabled by @option{-Wall}. In C, it is
7027 also enabled by @option{-Wextra}.
7028
7029 @item -Wsign-conversion
7030 @opindex Wsign-conversion
7031 @opindex Wno-sign-conversion
7032 Warn for implicit conversions that may change the sign of an integer
7033 value, like assigning a signed integer expression to an unsigned
7034 integer variable. An explicit cast silences the warning. In C, this
7035 option is enabled also by @option{-Wconversion}.
7036
7037 @item -Wfloat-conversion
7038 @opindex Wfloat-conversion
7039 @opindex Wno-float-conversion
7040 Warn for implicit conversions that reduce the precision of a real value.
7041 This includes conversions from real to integer, and from higher precision
7042 real to lower precision real values. This option is also enabled by
7043 @option{-Wconversion}.
7044
7045 @item -Wno-scalar-storage-order
7046 @opindex Wno-scalar-storage-order
7047 @opindex Wscalar-storage-order
7048 Do not warn on suspicious constructs involving reverse scalar storage order.
7049
7050 @item -Wsized-deallocation @r{(C++ and Objective-C++ only)}
7051 @opindex Wsized-deallocation
7052 @opindex Wno-sized-deallocation
7053 Warn about a definition of an unsized deallocation function
7054 @smallexample
7055 void operator delete (void *) noexcept;
7056 void operator delete[] (void *) noexcept;
7057 @end smallexample
7058 without a definition of the corresponding sized deallocation function
7059 @smallexample
7060 void operator delete (void *, std::size_t) noexcept;
7061 void operator delete[] (void *, std::size_t) noexcept;
7062 @end smallexample
7063 or vice versa. Enabled by @option{-Wextra} along with
7064 @option{-fsized-deallocation}.
7065
7066 @item -Wsizeof-pointer-div
7067 @opindex Wsizeof-pointer-div
7068 @opindex Wno-sizeof-pointer-div
7069 Warn for suspicious divisions of two sizeof expressions that divide
7070 the pointer size by the element size, which is the usual way to compute
7071 the array size but won't work out correctly with pointers. This warning
7072 warns e.g.@: about @code{sizeof (ptr) / sizeof (ptr[0])} if @code{ptr} is
7073 not an array, but a pointer. This warning is enabled by @option{-Wall}.
7074
7075 @item -Wsizeof-pointer-memaccess
7076 @opindex Wsizeof-pointer-memaccess
7077 @opindex Wno-sizeof-pointer-memaccess
7078 Warn for suspicious length parameters to certain string and memory built-in
7079 functions if the argument uses @code{sizeof}. This warning triggers for
7080 example for @code{memset (ptr, 0, sizeof (ptr));} if @code{ptr} is not
7081 an array, but a pointer, and suggests a possible fix, or about
7082 @code{memcpy (&foo, ptr, sizeof (&foo));}. @option{-Wsizeof-pointer-memaccess}
7083 also warns about calls to bounded string copy functions like @code{strncat}
7084 or @code{strncpy} that specify as the bound a @code{sizeof} expression of
7085 the source array. For example, in the following function the call to
7086 @code{strncat} specifies the size of the source string as the bound. That
7087 is almost certainly a mistake and so the call is diagnosed.
7088 @smallexample
7089 void make_file (const char *name)
7090 @{
7091 char path[PATH_MAX];
7092 strncpy (path, name, sizeof path - 1);
7093 strncat (path, ".text", sizeof ".text");
7094 @dots{}
7095 @}
7096 @end smallexample
7097
7098 The @option{-Wsizeof-pointer-memaccess} option is enabled by @option{-Wall}.
7099
7100 @item -Wsizeof-array-argument
7101 @opindex Wsizeof-array-argument
7102 @opindex Wno-sizeof-array-argument
7103 Warn when the @code{sizeof} operator is applied to a parameter that is
7104 declared as an array in a function definition. This warning is enabled by
7105 default for C and C++ programs.
7106
7107 @item -Wmemset-elt-size
7108 @opindex Wmemset-elt-size
7109 @opindex Wno-memset-elt-size
7110 Warn for suspicious calls to the @code{memset} built-in function, if the
7111 first argument references an array, and the third argument is a number
7112 equal to the number of elements, but not equal to the size of the array
7113 in memory. This indicates that the user has omitted a multiplication by
7114 the element size. This warning is enabled by @option{-Wall}.
7115
7116 @item -Wmemset-transposed-args
7117 @opindex Wmemset-transposed-args
7118 @opindex Wno-memset-transposed-args
7119 Warn for suspicious calls to the @code{memset} built-in function where
7120 the second argument is not zero and the third argument is zero. For
7121 example, the call @code{memset (buf, sizeof buf, 0)} is diagnosed because
7122 @code{memset (buf, 0, sizeof buf)} was meant instead. The diagnostic
7123 is only emitted if the third argument is a literal zero. Otherwise, if
7124 it is an expression that is folded to zero, or a cast of zero to some
7125 type, it is far less likely that the arguments have been mistakenly
7126 transposed and no warning is emitted. This warning is enabled
7127 by @option{-Wall}.
7128
7129 @item -Waddress
7130 @opindex Waddress
7131 @opindex Wno-address
7132 Warn about suspicious uses of memory addresses. These include using
7133 the address of a function in a conditional expression, such as
7134 @code{void func(void); if (func)}, and comparisons against the memory
7135 address of a string literal, such as @code{if (x == "abc")}. Such
7136 uses typically indicate a programmer error: the address of a function
7137 always evaluates to true, so their use in a conditional usually
7138 indicate that the programmer forgot the parentheses in a function
7139 call; and comparisons against string literals result in unspecified
7140 behavior and are not portable in C, so they usually indicate that the
7141 programmer intended to use @code{strcmp}. This warning is enabled by
7142 @option{-Wall}.
7143
7144 @item -Waddress-of-packed-member
7145 @opindex Waddress-of-packed-member
7146 @opindex Wno-address-of-packed-member
7147 Warn when the address of packed member of struct or union is taken,
7148 which usually results in an unaligned pointer value. This is
7149 enabled by default.
7150
7151 @item -Wlogical-op
7152 @opindex Wlogical-op
7153 @opindex Wno-logical-op
7154 Warn about suspicious uses of logical operators in expressions.
7155 This includes using logical operators in contexts where a
7156 bit-wise operator is likely to be expected. Also warns when
7157 the operands of a logical operator are the same:
7158 @smallexample
7159 extern int a;
7160 if (a < 0 && a < 0) @{ @dots{} @}
7161 @end smallexample
7162
7163 @item -Wlogical-not-parentheses
7164 @opindex Wlogical-not-parentheses
7165 @opindex Wno-logical-not-parentheses
7166 Warn about logical not used on the left hand side operand of a comparison.
7167 This option does not warn if the right operand is considered to be a boolean
7168 expression. Its purpose is to detect suspicious code like the following:
7169 @smallexample
7170 int a;
7171 @dots{}
7172 if (!a > 1) @{ @dots{} @}
7173 @end smallexample
7174
7175 It is possible to suppress the warning by wrapping the LHS into
7176 parentheses:
7177 @smallexample
7178 if ((!a) > 1) @{ @dots{} @}
7179 @end smallexample
7180
7181 This warning is enabled by @option{-Wall}.
7182
7183 @item -Waggregate-return
7184 @opindex Waggregate-return
7185 @opindex Wno-aggregate-return
7186 Warn if any functions that return structures or unions are defined or
7187 called. (In languages where you can return an array, this also elicits
7188 a warning.)
7189
7190 @item -Wno-aggressive-loop-optimizations
7191 @opindex Wno-aggressive-loop-optimizations
7192 @opindex Waggressive-loop-optimizations
7193 Warn if in a loop with constant number of iterations the compiler detects
7194 undefined behavior in some statement during one or more of the iterations.
7195
7196 @item -Wno-attributes
7197 @opindex Wno-attributes
7198 @opindex Wattributes
7199 Do not warn if an unexpected @code{__attribute__} is used, such as
7200 unrecognized attributes, function attributes applied to variables,
7201 etc. This does not stop errors for incorrect use of supported
7202 attributes.
7203
7204 @item -Wno-builtin-declaration-mismatch
7205 @opindex Wno-builtin-declaration-mismatch
7206 @opindex Wbuiltin-declaration-mismatch
7207 Warn if a built-in function is declared with an incompatible signature
7208 or as a non-function, or when a built-in function declared with a type
7209 that does not include a prototype is called with arguments whose promoted
7210 types do not match those expected by the function. When @option{-Wextra}
7211 is specified, also warn when a built-in function that takes arguments is
7212 declared without a prototype. The @option{-Wno-builtin-declaration-mismatch}
7213 warning is enabled by default. To avoid the warning include the appropriate
7214 header to bring the prototypes of built-in functions into scope.
7215
7216 For example, the call to @code{memset} below is diagnosed by the warning
7217 because the function expects a value of type @code{size_t} as its argument
7218 but the type of @code{32} is @code{int}. With @option{-Wextra},
7219 the declaration of the function is diagnosed as well.
7220 @smallexample
7221 extern void* memset ();
7222 void f (void *d)
7223 @{
7224 memset (d, '\0', 32);
7225 @}
7226 @end smallexample
7227
7228 @item -Wno-builtin-macro-redefined
7229 @opindex Wno-builtin-macro-redefined
7230 @opindex Wbuiltin-macro-redefined
7231 Do not warn if certain built-in macros are redefined. This suppresses
7232 warnings for redefinition of @code{__TIMESTAMP__}, @code{__TIME__},
7233 @code{__DATE__}, @code{__FILE__}, and @code{__BASE_FILE__}.
7234
7235 @item -Wstrict-prototypes @r{(C and Objective-C only)}
7236 @opindex Wstrict-prototypes
7237 @opindex Wno-strict-prototypes
7238 Warn if a function is declared or defined without specifying the
7239 argument types. (An old-style function definition is permitted without
7240 a warning if preceded by a declaration that specifies the argument
7241 types.)
7242
7243 @item -Wold-style-declaration @r{(C and Objective-C only)}
7244 @opindex Wold-style-declaration
7245 @opindex Wno-old-style-declaration
7246 Warn for obsolescent usages, according to the C Standard, in a
7247 declaration. For example, warn if storage-class specifiers like
7248 @code{static} are not the first things in a declaration. This warning
7249 is also enabled by @option{-Wextra}.
7250
7251 @item -Wold-style-definition @r{(C and Objective-C only)}
7252 @opindex Wold-style-definition
7253 @opindex Wno-old-style-definition
7254 Warn if an old-style function definition is used. A warning is given
7255 even if there is a previous prototype.
7256
7257 @item -Wmissing-parameter-type @r{(C and Objective-C only)}
7258 @opindex Wmissing-parameter-type
7259 @opindex Wno-missing-parameter-type
7260 A function parameter is declared without a type specifier in K&R-style
7261 functions:
7262
7263 @smallexample
7264 void foo(bar) @{ @}
7265 @end smallexample
7266
7267 This warning is also enabled by @option{-Wextra}.
7268
7269 @item -Wmissing-prototypes @r{(C and Objective-C only)}
7270 @opindex Wmissing-prototypes
7271 @opindex Wno-missing-prototypes
7272 Warn if a global function is defined without a previous prototype
7273 declaration. This warning is issued even if the definition itself
7274 provides a prototype. Use this option to detect global functions
7275 that do not have a matching prototype declaration in a header file.
7276 This option is not valid for C++ because all function declarations
7277 provide prototypes and a non-matching declaration declares an
7278 overload rather than conflict with an earlier declaration.
7279 Use @option{-Wmissing-declarations} to detect missing declarations in C++.
7280
7281 @item -Wmissing-declarations
7282 @opindex Wmissing-declarations
7283 @opindex Wno-missing-declarations
7284 Warn if a global function is defined without a previous declaration.
7285 Do so even if the definition itself provides a prototype.
7286 Use this option to detect global functions that are not declared in
7287 header files. In C, no warnings are issued for functions with previous
7288 non-prototype declarations; use @option{-Wmissing-prototypes} to detect
7289 missing prototypes. In C++, no warnings are issued for function templates,
7290 or for inline functions, or for functions in anonymous namespaces.
7291
7292 @item -Wmissing-field-initializers
7293 @opindex Wmissing-field-initializers
7294 @opindex Wno-missing-field-initializers
7295 @opindex W
7296 @opindex Wextra
7297 @opindex Wno-extra
7298 Warn if a structure's initializer has some fields missing. For
7299 example, the following code causes such a warning, because
7300 @code{x.h} is implicitly zero:
7301
7302 @smallexample
7303 struct s @{ int f, g, h; @};
7304 struct s x = @{ 3, 4 @};
7305 @end smallexample
7306
7307 This option does not warn about designated initializers, so the following
7308 modification does not trigger a warning:
7309
7310 @smallexample
7311 struct s @{ int f, g, h; @};
7312 struct s x = @{ .f = 3, .g = 4 @};
7313 @end smallexample
7314
7315 In C this option does not warn about the universal zero initializer
7316 @samp{@{ 0 @}}:
7317
7318 @smallexample
7319 struct s @{ int f, g, h; @};
7320 struct s x = @{ 0 @};
7321 @end smallexample
7322
7323 Likewise, in C++ this option does not warn about the empty @{ @}
7324 initializer, for example:
7325
7326 @smallexample
7327 struct s @{ int f, g, h; @};
7328 s x = @{ @};
7329 @end smallexample
7330
7331 This warning is included in @option{-Wextra}. To get other @option{-Wextra}
7332 warnings without this one, use @option{-Wextra -Wno-missing-field-initializers}.
7333
7334 @item -Wno-multichar
7335 @opindex Wno-multichar
7336 @opindex Wmultichar
7337 Do not warn if a multicharacter constant (@samp{'FOOF'}) is used.
7338 Usually they indicate a typo in the user's code, as they have
7339 implementation-defined values, and should not be used in portable code.
7340
7341 @item -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]}
7342 @opindex Wnormalized=
7343 @opindex Wnormalized
7344 @opindex Wno-normalized
7345 @cindex NFC
7346 @cindex NFKC
7347 @cindex character set, input normalization
7348 In ISO C and ISO C++, two identifiers are different if they are
7349 different sequences of characters. However, sometimes when characters
7350 outside the basic ASCII character set are used, you can have two
7351 different character sequences that look the same. To avoid confusion,
7352 the ISO 10646 standard sets out some @dfn{normalization rules} which
7353 when applied ensure that two sequences that look the same are turned into
7354 the same sequence. GCC can warn you if you are using identifiers that
7355 have not been normalized; this option controls that warning.
7356
7357 There are four levels of warning supported by GCC@. The default is
7358 @option{-Wnormalized=nfc}, which warns about any identifier that is
7359 not in the ISO 10646 ``C'' normalized form, @dfn{NFC}. NFC is the
7360 recommended form for most uses. It is equivalent to
7361 @option{-Wnormalized}.
7362
7363 Unfortunately, there are some characters allowed in identifiers by
7364 ISO C and ISO C++ that, when turned into NFC, are not allowed in
7365 identifiers. That is, there's no way to use these symbols in portable
7366 ISO C or C++ and have all your identifiers in NFC@.
7367 @option{-Wnormalized=id} suppresses the warning for these characters.
7368 It is hoped that future versions of the standards involved will correct
7369 this, which is why this option is not the default.
7370
7371 You can switch the warning off for all characters by writing
7372 @option{-Wnormalized=none} or @option{-Wno-normalized}. You should
7373 only do this if you are using some other normalization scheme (like
7374 ``D''), because otherwise you can easily create bugs that are
7375 literally impossible to see.
7376
7377 Some characters in ISO 10646 have distinct meanings but look identical
7378 in some fonts or display methodologies, especially once formatting has
7379 been applied. For instance @code{\u207F}, ``SUPERSCRIPT LATIN SMALL
7380 LETTER N'', displays just like a regular @code{n} that has been
7381 placed in a superscript. ISO 10646 defines the @dfn{NFKC}
7382 normalization scheme to convert all these into a standard form as
7383 well, and GCC warns if your code is not in NFKC if you use
7384 @option{-Wnormalized=nfkc}. This warning is comparable to warning
7385 about every identifier that contains the letter O because it might be
7386 confused with the digit 0, and so is not the default, but may be
7387 useful as a local coding convention if the programming environment
7388 cannot be fixed to display these characters distinctly.
7389
7390 @item -Wno-attribute-warning
7391 @opindex Wno-attribute-warning
7392 @opindex Wattribute-warning
7393 Do not warn about usage of functions (@pxref{Function Attributes})
7394 declared with @code{warning} attribute. By default, this warning is
7395 enabled. @option{-Wno-attribute-warning} can be used to disable the
7396 warning or @option{-Wno-error=attribute-warning} can be used to
7397 disable the error when compiled with @option{-Werror} flag.
7398
7399 @item -Wno-deprecated
7400 @opindex Wno-deprecated
7401 @opindex Wdeprecated
7402 Do not warn about usage of deprecated features. @xref{Deprecated Features}.
7403
7404 @item -Wno-deprecated-declarations
7405 @opindex Wno-deprecated-declarations
7406 @opindex Wdeprecated-declarations
7407 Do not warn about uses of functions (@pxref{Function Attributes}),
7408 variables (@pxref{Variable Attributes}), and types (@pxref{Type
7409 Attributes}) marked as deprecated by using the @code{deprecated}
7410 attribute.
7411
7412 @item -Wno-overflow
7413 @opindex Wno-overflow
7414 @opindex Woverflow
7415 Do not warn about compile-time overflow in constant expressions.
7416
7417 @item -Wno-odr
7418 @opindex Wno-odr
7419 @opindex Wodr
7420 Warn about One Definition Rule violations during link-time optimization.
7421 Enabled by default.
7422
7423 @item -Wopenmp-simd
7424 @opindex Wopenmp-simd
7425 @opindex Wno-openmp-simd
7426 Warn if the vectorizer cost model overrides the OpenMP
7427 simd directive set by user. The @option{-fsimd-cost-model=unlimited}
7428 option can be used to relax the cost model.
7429
7430 @item -Woverride-init @r{(C and Objective-C only)}
7431 @opindex Woverride-init
7432 @opindex Wno-override-init
7433 @opindex W
7434 @opindex Wextra
7435 @opindex Wno-extra
7436 Warn if an initialized field without side effects is overridden when
7437 using designated initializers (@pxref{Designated Inits, , Designated
7438 Initializers}).
7439
7440 This warning is included in @option{-Wextra}. To get other
7441 @option{-Wextra} warnings without this one, use @option{-Wextra
7442 -Wno-override-init}.
7443
7444 @item -Woverride-init-side-effects @r{(C and Objective-C only)}
7445 @opindex Woverride-init-side-effects
7446 @opindex Wno-override-init-side-effects
7447 Warn if an initialized field with side effects is overridden when
7448 using designated initializers (@pxref{Designated Inits, , Designated
7449 Initializers}). This warning is enabled by default.
7450
7451 @item -Wpacked
7452 @opindex Wpacked
7453 @opindex Wno-packed
7454 Warn if a structure is given the packed attribute, but the packed
7455 attribute has no effect on the layout or size of the structure.
7456 Such structures may be mis-aligned for little benefit. For
7457 instance, in this code, the variable @code{f.x} in @code{struct bar}
7458 is misaligned even though @code{struct bar} does not itself
7459 have the packed attribute:
7460
7461 @smallexample
7462 @group
7463 struct foo @{
7464 int x;
7465 char a, b, c, d;
7466 @} __attribute__((packed));
7467 struct bar @{
7468 char z;
7469 struct foo f;
7470 @};
7471 @end group
7472 @end smallexample
7473
7474 @item -Wpacked-bitfield-compat
7475 @opindex Wpacked-bitfield-compat
7476 @opindex Wno-packed-bitfield-compat
7477 The 4.1, 4.2 and 4.3 series of GCC ignore the @code{packed} attribute
7478 on bit-fields of type @code{char}. This has been fixed in GCC 4.4 but
7479 the change can lead to differences in the structure layout. GCC
7480 informs you when the offset of such a field has changed in GCC 4.4.
7481 For example there is no longer a 4-bit padding between field @code{a}
7482 and @code{b} in this structure:
7483
7484 @smallexample
7485 struct foo
7486 @{
7487 char a:4;
7488 char b:8;
7489 @} __attribute__ ((packed));
7490 @end smallexample
7491
7492 This warning is enabled by default. Use
7493 @option{-Wno-packed-bitfield-compat} to disable this warning.
7494
7495 @item -Wpacked-not-aligned @r{(C, C++, Objective-C and Objective-C++ only)}
7496 @opindex Wpacked-not-aligned
7497 @opindex Wno-packed-not-aligned
7498 Warn if a structure field with explicitly specified alignment in a
7499 packed struct or union is misaligned. For example, a warning will
7500 be issued on @code{struct S}, like, @code{warning: alignment 1 of
7501 'struct S' is less than 8}, in this code:
7502
7503 @smallexample
7504 @group
7505 struct __attribute__ ((aligned (8))) S8 @{ char a[8]; @};
7506 struct __attribute__ ((packed)) S @{
7507 struct S8 s8;
7508 @};
7509 @end group
7510 @end smallexample
7511
7512 This warning is enabled by @option{-Wall}.
7513
7514 @item -Wpadded
7515 @opindex Wpadded
7516 @opindex Wno-padded
7517 Warn if padding is included in a structure, either to align an element
7518 of the structure or to align the whole structure. Sometimes when this
7519 happens it is possible to rearrange the fields of the structure to
7520 reduce the padding and so make the structure smaller.
7521
7522 @item -Wredundant-decls
7523 @opindex Wredundant-decls
7524 @opindex Wno-redundant-decls
7525 Warn if anything is declared more than once in the same scope, even in
7526 cases where multiple declaration is valid and changes nothing.
7527
7528 @item -Wno-restrict
7529 @opindex Wrestrict
7530 @opindex Wno-restrict
7531 Warn when an object referenced by a @code{restrict}-qualified parameter
7532 (or, in C++, a @code{__restrict}-qualified parameter) is aliased by another
7533 argument, or when copies between such objects overlap. For example,
7534 the call to the @code{strcpy} function below attempts to truncate the string
7535 by replacing its initial characters with the last four. However, because
7536 the call writes the terminating NUL into @code{a[4]}, the copies overlap and
7537 the call is diagnosed.
7538
7539 @smallexample
7540 void foo (void)
7541 @{
7542 char a[] = "abcd1234";
7543 strcpy (a, a + 4);
7544 @dots{}
7545 @}
7546 @end smallexample
7547 The @option{-Wrestrict} option detects some instances of simple overlap
7548 even without optimization but works best at @option{-O2} and above. It
7549 is included in @option{-Wall}.
7550
7551 @item -Wnested-externs @r{(C and Objective-C only)}
7552 @opindex Wnested-externs
7553 @opindex Wno-nested-externs
7554 Warn if an @code{extern} declaration is encountered within a function.
7555
7556 @item -Wno-inherited-variadic-ctor
7557 @opindex Winherited-variadic-ctor
7558 @opindex Wno-inherited-variadic-ctor
7559 Suppress warnings about use of C++11 inheriting constructors when the
7560 base class inherited from has a C variadic constructor; the warning is
7561 on by default because the ellipsis is not inherited.
7562
7563 @item -Winline
7564 @opindex Winline
7565 @opindex Wno-inline
7566 Warn if a function that is declared as inline cannot be inlined.
7567 Even with this option, the compiler does not warn about failures to
7568 inline functions declared in system headers.
7569
7570 The compiler uses a variety of heuristics to determine whether or not
7571 to inline a function. For example, the compiler takes into account
7572 the size of the function being inlined and the amount of inlining
7573 that has already been done in the current function. Therefore,
7574 seemingly insignificant changes in the source program can cause the
7575 warnings produced by @option{-Winline} to appear or disappear.
7576
7577 @item -Wno-invalid-offsetof @r{(C++ and Objective-C++ only)}
7578 @opindex Wno-invalid-offsetof
7579 @opindex Winvalid-offsetof
7580 Suppress warnings from applying the @code{offsetof} macro to a non-POD
7581 type. According to the 2014 ISO C++ standard, applying @code{offsetof}
7582 to a non-standard-layout type is undefined. In existing C++ implementations,
7583 however, @code{offsetof} typically gives meaningful results.
7584 This flag is for users who are aware that they are
7585 writing nonportable code and who have deliberately chosen to ignore the
7586 warning about it.
7587
7588 The restrictions on @code{offsetof} may be relaxed in a future version
7589 of the C++ standard.
7590
7591 @item -Wint-in-bool-context
7592 @opindex Wint-in-bool-context
7593 @opindex Wno-int-in-bool-context
7594 Warn for suspicious use of integer values where boolean values are expected,
7595 such as conditional expressions (?:) using non-boolean integer constants in
7596 boolean context, like @code{if (a <= b ? 2 : 3)}. Or left shifting of signed
7597 integers in boolean context, like @code{for (a = 0; 1 << a; a++);}. Likewise
7598 for all kinds of multiplications regardless of the data type.
7599 This warning is enabled by @option{-Wall}.
7600
7601 @item -Wno-int-to-pointer-cast
7602 @opindex Wno-int-to-pointer-cast
7603 @opindex Wint-to-pointer-cast
7604 Suppress warnings from casts to pointer type of an integer of a
7605 different size. In C++, casting to a pointer type of smaller size is
7606 an error. @option{Wint-to-pointer-cast} is enabled by default.
7607
7608
7609 @item -Wno-pointer-to-int-cast @r{(C and Objective-C only)}
7610 @opindex Wno-pointer-to-int-cast
7611 @opindex Wpointer-to-int-cast
7612 Suppress warnings from casts from a pointer to an integer type of a
7613 different size.
7614
7615 @item -Winvalid-pch
7616 @opindex Winvalid-pch
7617 @opindex Wno-invalid-pch
7618 Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
7619 the search path but cannot be used.
7620
7621 @item -Wlong-long
7622 @opindex Wlong-long
7623 @opindex Wno-long-long
7624 Warn if @code{long long} type is used. This is enabled by either
7625 @option{-Wpedantic} or @option{-Wtraditional} in ISO C90 and C++98
7626 modes. To inhibit the warning messages, use @option{-Wno-long-long}.
7627
7628 @item -Wvariadic-macros
7629 @opindex Wvariadic-macros
7630 @opindex Wno-variadic-macros
7631 Warn if variadic macros are used in ISO C90 mode, or if the GNU
7632 alternate syntax is used in ISO C99 mode. This is enabled by either
7633 @option{-Wpedantic} or @option{-Wtraditional}. To inhibit the warning
7634 messages, use @option{-Wno-variadic-macros}.
7635
7636 @item -Wvarargs
7637 @opindex Wvarargs
7638 @opindex Wno-varargs
7639 Warn upon questionable usage of the macros used to handle variable
7640 arguments like @code{va_start}. This is default. To inhibit the
7641 warning messages, use @option{-Wno-varargs}.
7642
7643 @item -Wvector-operation-performance
7644 @opindex Wvector-operation-performance
7645 @opindex Wno-vector-operation-performance
7646 Warn if vector operation is not implemented via SIMD capabilities of the
7647 architecture. Mainly useful for the performance tuning.
7648 Vector operation can be implemented @code{piecewise}, which means that the
7649 scalar operation is performed on every vector element;
7650 @code{in parallel}, which means that the vector operation is implemented
7651 using scalars of wider type, which normally is more performance efficient;
7652 and @code{as a single scalar}, which means that vector fits into a
7653 scalar type.
7654
7655 @item -Wno-virtual-move-assign
7656 @opindex Wvirtual-move-assign
7657 @opindex Wno-virtual-move-assign
7658 Suppress warnings about inheriting from a virtual base with a
7659 non-trivial C++11 move assignment operator. This is dangerous because
7660 if the virtual base is reachable along more than one path, it is
7661 moved multiple times, which can mean both objects end up in the
7662 moved-from state. If the move assignment operator is written to avoid
7663 moving from a moved-from object, this warning can be disabled.
7664
7665 @item -Wvla
7666 @opindex Wvla
7667 @opindex Wno-vla
7668 Warn if a variable-length array is used in the code.
7669 @option{-Wno-vla} prevents the @option{-Wpedantic} warning of
7670 the variable-length array.
7671
7672 @item -Wvla-larger-than=@var{byte-size}
7673 @opindex Wvla-larger-than=
7674 @opindex Wno-vla-larger-than
7675 If this option is used, the compiler will warn for declarations of
7676 variable-length arrays whose size is either unbounded, or bounded
7677 by an argument that allows the array size to exceed @var{byte-size}
7678 bytes. This is similar to how @option{-Walloca-larger-than=}@var{byte-size}
7679 works, but with variable-length arrays.
7680
7681 Note that GCC may optimize small variable-length arrays of a known
7682 value into plain arrays, so this warning may not get triggered for
7683 such arrays.
7684
7685 @option{-Wvla-larger-than=}@samp{PTRDIFF_MAX} is enabled by default but
7686 is typically only effective when @option{-ftree-vrp} is active (default
7687 for @option{-O2} and above).
7688
7689 See also @option{-Walloca-larger-than=@var{byte-size}}.
7690
7691 @item -Wno-vla-larger-than
7692 @opindex Wno-vla-larger-than
7693 Disable @option{-Wvla-larger-than=} warnings. The option is equivalent
7694 to @option{-Wvla-larger-than=}@samp{SIZE_MAX} or larger.
7695
7696 @item -Wvolatile-register-var
7697 @opindex Wvolatile-register-var
7698 @opindex Wno-volatile-register-var
7699 Warn if a register variable is declared volatile. The volatile
7700 modifier does not inhibit all optimizations that may eliminate reads
7701 and/or writes to register variables. This warning is enabled by
7702 @option{-Wall}.
7703
7704 @item -Wdisabled-optimization
7705 @opindex Wdisabled-optimization
7706 @opindex Wno-disabled-optimization
7707 Warn if a requested optimization pass is disabled. This warning does
7708 not generally indicate that there is anything wrong with your code; it
7709 merely indicates that GCC's optimizers are unable to handle the code
7710 effectively. Often, the problem is that your code is too big or too
7711 complex; GCC refuses to optimize programs when the optimization
7712 itself is likely to take inordinate amounts of time.
7713
7714 @item -Wpointer-sign @r{(C and Objective-C only)}
7715 @opindex Wpointer-sign
7716 @opindex Wno-pointer-sign
7717 Warn for pointer argument passing or assignment with different signedness.
7718 This option is only supported for C and Objective-C@. It is implied by
7719 @option{-Wall} and by @option{-Wpedantic}, which can be disabled with
7720 @option{-Wno-pointer-sign}.
7721
7722 @item -Wstack-protector
7723 @opindex Wstack-protector
7724 @opindex Wno-stack-protector
7725 This option is only active when @option{-fstack-protector} is active. It
7726 warns about functions that are not protected against stack smashing.
7727
7728 @item -Woverlength-strings
7729 @opindex Woverlength-strings
7730 @opindex Wno-overlength-strings
7731 Warn about string constants that are longer than the ``minimum
7732 maximum'' length specified in the C standard. Modern compilers
7733 generally allow string constants that are much longer than the
7734 standard's minimum limit, but very portable programs should avoid
7735 using longer strings.
7736
7737 The limit applies @emph{after} string constant concatenation, and does
7738 not count the trailing NUL@. In C90, the limit was 509 characters; in
7739 C99, it was raised to 4095. C++98 does not specify a normative
7740 minimum maximum, so we do not diagnose overlength strings in C++@.
7741
7742 This option is implied by @option{-Wpedantic}, and can be disabled with
7743 @option{-Wno-overlength-strings}.
7744
7745 @item -Wunsuffixed-float-constants @r{(C and Objective-C only)}
7746 @opindex Wunsuffixed-float-constants
7747 @opindex Wno-unsuffixed-float-constants
7748
7749 Issue a warning for any floating constant that does not have
7750 a suffix. When used together with @option{-Wsystem-headers} it
7751 warns about such constants in system header files. This can be useful
7752 when preparing code to use with the @code{FLOAT_CONST_DECIMAL64} pragma
7753 from the decimal floating-point extension to C99.
7754
7755 @item -Wno-designated-init @r{(C and Objective-C only)}
7756 Suppress warnings when a positional initializer is used to initialize
7757 a structure that has been marked with the @code{designated_init}
7758 attribute.
7759
7760 @item -Whsa
7761 Issue a warning when HSAIL cannot be emitted for the compiled function or
7762 OpenMP construct.
7763
7764 @end table
7765
7766 @node Debugging Options
7767 @section Options for Debugging Your Program
7768 @cindex options, debugging
7769 @cindex debugging information options
7770
7771 To tell GCC to emit extra information for use by a debugger, in almost
7772 all cases you need only to add @option{-g} to your other options.
7773
7774 GCC allows you to use @option{-g} with
7775 @option{-O}. The shortcuts taken by optimized code may occasionally
7776 be surprising: some variables you declared may not exist
7777 at all; flow of control may briefly move where you did not expect it;
7778 some statements may not be executed because they compute constant
7779 results or their values are already at hand; some statements may
7780 execute in different places because they have been moved out of loops.
7781 Nevertheless it is possible to debug optimized output. This makes
7782 it reasonable to use the optimizer for programs that might have bugs.
7783
7784 If you are not using some other optimization option, consider
7785 using @option{-Og} (@pxref{Optimize Options}) with @option{-g}.
7786 With no @option{-O} option at all, some compiler passes that collect
7787 information useful for debugging do not run at all, so that
7788 @option{-Og} may result in a better debugging experience.
7789
7790 @table @gcctabopt
7791 @item -g
7792 @opindex g
7793 Produce debugging information in the operating system's native format
7794 (stabs, COFF, XCOFF, or DWARF)@. GDB can work with this debugging
7795 information.
7796
7797 On most systems that use stabs format, @option{-g} enables use of extra
7798 debugging information that only GDB can use; this extra information
7799 makes debugging work better in GDB but probably makes other debuggers
7800 crash or
7801 refuse to read the program. If you want to control for certain whether
7802 to generate the extra information, use @option{-gstabs+}, @option{-gstabs},
7803 @option{-gxcoff+}, @option{-gxcoff}, or @option{-gvms} (see below).
7804
7805 @item -ggdb
7806 @opindex ggdb
7807 Produce debugging information for use by GDB@. This means to use the
7808 most expressive format available (DWARF, stabs, or the native format
7809 if neither of those are supported), including GDB extensions if at all
7810 possible.
7811
7812 @item -gdwarf
7813 @itemx -gdwarf-@var{version}
7814 @opindex gdwarf
7815 Produce debugging information in DWARF format (if that is supported).
7816 The value of @var{version} may be either 2, 3, 4 or 5; the default version
7817 for most targets is 4. DWARF Version 5 is only experimental.
7818
7819 Note that with DWARF Version 2, some ports require and always
7820 use some non-conflicting DWARF 3 extensions in the unwind tables.
7821
7822 Version 4 may require GDB 7.0 and @option{-fvar-tracking-assignments}
7823 for maximum benefit.
7824
7825 GCC no longer supports DWARF Version 1, which is substantially
7826 different than Version 2 and later. For historical reasons, some
7827 other DWARF-related options such as
7828 @option{-fno-dwarf2-cfi-asm}) retain a reference to DWARF Version 2
7829 in their names, but apply to all currently-supported versions of DWARF.
7830
7831 @item -gstabs
7832 @opindex gstabs
7833 Produce debugging information in stabs format (if that is supported),
7834 without GDB extensions. This is the format used by DBX on most BSD
7835 systems. On MIPS, Alpha and System V Release 4 systems this option
7836 produces stabs debugging output that is not understood by DBX@.
7837 On System V Release 4 systems this option requires the GNU assembler.
7838
7839 @item -gstabs+
7840 @opindex gstabs+
7841 Produce debugging information in stabs format (if that is supported),
7842 using GNU extensions understood only by the GNU debugger (GDB)@. The
7843 use of these extensions is likely to make other debuggers crash or
7844 refuse to read the program.
7845
7846 @item -gxcoff
7847 @opindex gxcoff
7848 Produce debugging information in XCOFF format (if that is supported).
7849 This is the format used by the DBX debugger on IBM RS/6000 systems.
7850
7851 @item -gxcoff+
7852 @opindex gxcoff+
7853 Produce debugging information in XCOFF format (if that is supported),
7854 using GNU extensions understood only by the GNU debugger (GDB)@. The
7855 use of these extensions is likely to make other debuggers crash or
7856 refuse to read the program, and may cause assemblers other than the GNU
7857 assembler (GAS) to fail with an error.
7858
7859 @item -gvms
7860 @opindex gvms
7861 Produce debugging information in Alpha/VMS debug format (if that is
7862 supported). This is the format used by DEBUG on Alpha/VMS systems.
7863
7864 @item -g@var{level}
7865 @itemx -ggdb@var{level}
7866 @itemx -gstabs@var{level}
7867 @itemx -gxcoff@var{level}
7868 @itemx -gvms@var{level}
7869 Request debugging information and also use @var{level} to specify how
7870 much information. The default level is 2.
7871
7872 Level 0 produces no debug information at all. Thus, @option{-g0} negates
7873 @option{-g}.
7874
7875 Level 1 produces minimal information, enough for making backtraces in
7876 parts of the program that you don't plan to debug. This includes
7877 descriptions of functions and external variables, and line number
7878 tables, but no information about local variables.
7879
7880 Level 3 includes extra information, such as all the macro definitions
7881 present in the program. Some debuggers support macro expansion when
7882 you use @option{-g3}.
7883
7884 If you use multiple @option{-g} options, with or without level numbers,
7885 the last such option is the one that is effective.
7886
7887 @option{-gdwarf} does not accept a concatenated debug level, to avoid
7888 confusion with @option{-gdwarf-@var{level}}.
7889 Instead use an additional @option{-g@var{level}} option to change the
7890 debug level for DWARF.
7891
7892 @item -fno-eliminate-unused-debug-symbols
7893 @opindex feliminate-unused-debug-symbols
7894 @opindex fno-eliminate-unused-debug-symbols
7895 By default, no debug information is produced for symbols that are not actually
7896 used. Use this option if you want debug information for all symbols.
7897
7898 @item -femit-class-debug-always
7899 @opindex femit-class-debug-always
7900 Instead of emitting debugging information for a C++ class in only one
7901 object file, emit it in all object files using the class. This option
7902 should be used only with debuggers that are unable to handle the way GCC
7903 normally emits debugging information for classes because using this
7904 option increases the size of debugging information by as much as a
7905 factor of two.
7906
7907 @item -fno-merge-debug-strings
7908 @opindex fmerge-debug-strings
7909 @opindex fno-merge-debug-strings
7910 Direct the linker to not merge together strings in the debugging
7911 information that are identical in different object files. Merging is
7912 not supported by all assemblers or linkers. Merging decreases the size
7913 of the debug information in the output file at the cost of increasing
7914 link processing time. Merging is enabled by default.
7915
7916 @item -fdebug-prefix-map=@var{old}=@var{new}
7917 @opindex fdebug-prefix-map
7918 When compiling files residing in directory @file{@var{old}}, record
7919 debugging information describing them as if the files resided in
7920 directory @file{@var{new}} instead. This can be used to replace a
7921 build-time path with an install-time path in the debug info. It can
7922 also be used to change an absolute path to a relative path by using
7923 @file{.} for @var{new}. This can give more reproducible builds, which
7924 are location independent, but may require an extra command to tell GDB
7925 where to find the source files. See also @option{-ffile-prefix-map}.
7926
7927 @item -fvar-tracking
7928 @opindex fvar-tracking
7929 Run variable tracking pass. It computes where variables are stored at each
7930 position in code. Better debugging information is then generated
7931 (if the debugging information format supports this information).
7932
7933 It is enabled by default when compiling with optimization (@option{-Os},
7934 @option{-O}, @option{-O2}, @dots{}), debugging information (@option{-g}) and
7935 the debug info format supports it.
7936
7937 @item -fvar-tracking-assignments
7938 @opindex fvar-tracking-assignments
7939 @opindex fno-var-tracking-assignments
7940 Annotate assignments to user variables early in the compilation and
7941 attempt to carry the annotations over throughout the compilation all the
7942 way to the end, in an attempt to improve debug information while
7943 optimizing. Use of @option{-gdwarf-4} is recommended along with it.
7944
7945 It can be enabled even if var-tracking is disabled, in which case
7946 annotations are created and maintained, but discarded at the end.
7947 By default, this flag is enabled together with @option{-fvar-tracking},
7948 except when selective scheduling is enabled.
7949
7950 @item -gsplit-dwarf
7951 @opindex gsplit-dwarf
7952 Separate as much DWARF debugging information as possible into a
7953 separate output file with the extension @file{.dwo}. This option allows
7954 the build system to avoid linking files with debug information. To
7955 be useful, this option requires a debugger capable of reading @file{.dwo}
7956 files.
7957
7958 @item -gdescribe-dies
7959 @opindex gdescribe-dies
7960 Add description attributes to some DWARF DIEs that have no name attribute,
7961 such as artificial variables, external references and call site
7962 parameter DIEs.
7963
7964 @item -gpubnames
7965 @opindex gpubnames
7966 Generate DWARF @code{.debug_pubnames} and @code{.debug_pubtypes} sections.
7967
7968 @item -ggnu-pubnames
7969 @opindex ggnu-pubnames
7970 Generate @code{.debug_pubnames} and @code{.debug_pubtypes} sections in a format
7971 suitable for conversion into a GDB@ index. This option is only useful
7972 with a linker that can produce GDB@ index version 7.
7973
7974 @item -fdebug-types-section
7975 @opindex fdebug-types-section
7976 @opindex fno-debug-types-section
7977 When using DWARF Version 4 or higher, type DIEs can be put into
7978 their own @code{.debug_types} section instead of making them part of the
7979 @code{.debug_info} section. It is more efficient to put them in a separate
7980 comdat section since the linker can then remove duplicates.
7981 But not all DWARF consumers support @code{.debug_types} sections yet
7982 and on some objects @code{.debug_types} produces larger instead of smaller
7983 debugging information.
7984
7985 @item -grecord-gcc-switches
7986 @itemx -gno-record-gcc-switches
7987 @opindex grecord-gcc-switches
7988 @opindex gno-record-gcc-switches
7989 This switch causes the command-line options used to invoke the
7990 compiler that may affect code generation to be appended to the
7991 DW_AT_producer attribute in DWARF debugging information. The options
7992 are concatenated with spaces separating them from each other and from
7993 the compiler version.
7994 It is enabled by default.
7995 See also @option{-frecord-gcc-switches} for another
7996 way of storing compiler options into the object file.
7997
7998 @item -gstrict-dwarf
7999 @opindex gstrict-dwarf
8000 Disallow using extensions of later DWARF standard version than selected
8001 with @option{-gdwarf-@var{version}}. On most targets using non-conflicting
8002 DWARF extensions from later standard versions is allowed.
8003
8004 @item -gno-strict-dwarf
8005 @opindex gno-strict-dwarf
8006 Allow using extensions of later DWARF standard version than selected with
8007 @option{-gdwarf-@var{version}}.
8008
8009 @item -gas-loc-support
8010 @opindex gas-loc-support
8011 Inform the compiler that the assembler supports @code{.loc} directives.
8012 It may then use them for the assembler to generate DWARF2+ line number
8013 tables.
8014
8015 This is generally desirable, because assembler-generated line-number
8016 tables are a lot more compact than those the compiler can generate
8017 itself.
8018
8019 This option will be enabled by default if, at GCC configure time, the
8020 assembler was found to support such directives.
8021
8022 @item -gno-as-loc-support
8023 @opindex gno-as-loc-support
8024 Force GCC to generate DWARF2+ line number tables internally, if DWARF2+
8025 line number tables are to be generated.
8026
8027 @item -gas-locview-support
8028 @opindex gas-locview-support
8029 Inform the compiler that the assembler supports @code{view} assignment
8030 and reset assertion checking in @code{.loc} directives.
8031
8032 This option will be enabled by default if, at GCC configure time, the
8033 assembler was found to support them.
8034
8035 @item -gno-as-locview-support
8036 Force GCC to assign view numbers internally, if
8037 @option{-gvariable-location-views} are explicitly requested.
8038
8039 @item -gcolumn-info
8040 @itemx -gno-column-info
8041 @opindex gcolumn-info
8042 @opindex gno-column-info
8043 Emit location column information into DWARF debugging information, rather
8044 than just file and line.
8045 This option is enabled by default.
8046
8047 @item -gstatement-frontiers
8048 @itemx -gno-statement-frontiers
8049 @opindex gstatement-frontiers
8050 @opindex gno-statement-frontiers
8051 This option causes GCC to create markers in the internal representation
8052 at the beginning of statements, and to keep them roughly in place
8053 throughout compilation, using them to guide the output of @code{is_stmt}
8054 markers in the line number table. This is enabled by default when
8055 compiling with optimization (@option{-Os}, @option{-O}, @option{-O2},
8056 @dots{}), and outputting DWARF 2 debug information at the normal level.
8057
8058 @item -gvariable-location-views
8059 @itemx -gvariable-location-views=incompat5
8060 @itemx -gno-variable-location-views
8061 @opindex gvariable-location-views
8062 @opindex gvariable-location-views=incompat5
8063 @opindex gno-variable-location-views
8064 Augment variable location lists with progressive view numbers implied
8065 from the line number table. This enables debug information consumers to
8066 inspect state at certain points of the program, even if no instructions
8067 associated with the corresponding source locations are present at that
8068 point. If the assembler lacks support for view numbers in line number
8069 tables, this will cause the compiler to emit the line number table,
8070 which generally makes them somewhat less compact. The augmented line
8071 number tables and location lists are fully backward-compatible, so they
8072 can be consumed by debug information consumers that are not aware of
8073 these augmentations, but they won't derive any benefit from them either.
8074
8075 This is enabled by default when outputting DWARF 2 debug information at
8076 the normal level, as long as there is assembler support,
8077 @option{-fvar-tracking-assignments} is enabled and
8078 @option{-gstrict-dwarf} is not. When assembler support is not
8079 available, this may still be enabled, but it will force GCC to output
8080 internal line number tables, and if
8081 @option{-ginternal-reset-location-views} is not enabled, that will most
8082 certainly lead to silently mismatching location views.
8083
8084 There is a proposed representation for view numbers that is not backward
8085 compatible with the location list format introduced in DWARF 5, that can
8086 be enabled with @option{-gvariable-location-views=incompat5}. This
8087 option may be removed in the future, is only provided as a reference
8088 implementation of the proposed representation. Debug information
8089 consumers are not expected to support this extended format, and they
8090 would be rendered unable to decode location lists using it.
8091
8092 @item -ginternal-reset-location-views
8093 @itemx -gnointernal-reset-location-views
8094 @opindex ginternal-reset-location-views
8095 @opindex gno-internal-reset-location-views
8096 Attempt to determine location views that can be omitted from location
8097 view lists. This requires the compiler to have very accurate insn
8098 length estimates, which isn't always the case, and it may cause
8099 incorrect view lists to be generated silently when using an assembler
8100 that does not support location view lists. The GNU assembler will flag
8101 any such error as a @code{view number mismatch}. This is only enabled
8102 on ports that define a reliable estimation function.
8103
8104 @item -ginline-points
8105 @itemx -gno-inline-points
8106 @opindex ginline-points
8107 @opindex gno-inline-points
8108 Generate extended debug information for inlined functions. Location
8109 view tracking markers are inserted at inlined entry points, so that
8110 address and view numbers can be computed and output in debug
8111 information. This can be enabled independently of location views, in
8112 which case the view numbers won't be output, but it can only be enabled
8113 along with statement frontiers, and it is only enabled by default if
8114 location views are enabled.
8115
8116 @item -gz@r{[}=@var{type}@r{]}
8117 @opindex gz
8118 Produce compressed debug sections in DWARF format, if that is supported.
8119 If @var{type} is not given, the default type depends on the capabilities
8120 of the assembler and linker used. @var{type} may be one of
8121 @samp{none} (don't compress debug sections), @samp{zlib} (use zlib
8122 compression in ELF gABI format), or @samp{zlib-gnu} (use zlib
8123 compression in traditional GNU format). If the linker doesn't support
8124 writing compressed debug sections, the option is rejected. Otherwise,
8125 if the assembler does not support them, @option{-gz} is silently ignored
8126 when producing object files.
8127
8128 @item -femit-struct-debug-baseonly
8129 @opindex femit-struct-debug-baseonly
8130 Emit debug information for struct-like types
8131 only when the base name of the compilation source file
8132 matches the base name of file in which the struct is defined.
8133
8134 This option substantially reduces the size of debugging information,
8135 but at significant potential loss in type information to the debugger.
8136 See @option{-femit-struct-debug-reduced} for a less aggressive option.
8137 See @option{-femit-struct-debug-detailed} for more detailed control.
8138
8139 This option works only with DWARF debug output.
8140
8141 @item -femit-struct-debug-reduced
8142 @opindex femit-struct-debug-reduced
8143 Emit debug information for struct-like types
8144 only when the base name of the compilation source file
8145 matches the base name of file in which the type is defined,
8146 unless the struct is a template or defined in a system header.
8147
8148 This option significantly reduces the size of debugging information,
8149 with some potential loss in type information to the debugger.
8150 See @option{-femit-struct-debug-baseonly} for a more aggressive option.
8151 See @option{-femit-struct-debug-detailed} for more detailed control.
8152
8153 This option works only with DWARF debug output.
8154
8155 @item -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]}
8156 @opindex femit-struct-debug-detailed
8157 Specify the struct-like types
8158 for which the compiler generates debug information.
8159 The intent is to reduce duplicate struct debug information
8160 between different object files within the same program.
8161
8162 This option is a detailed version of
8163 @option{-femit-struct-debug-reduced} and @option{-femit-struct-debug-baseonly},
8164 which serves for most needs.
8165
8166 A specification has the syntax@*
8167 [@samp{dir:}|@samp{ind:}][@samp{ord:}|@samp{gen:}](@samp{any}|@samp{sys}|@samp{base}|@samp{none})
8168
8169 The optional first word limits the specification to
8170 structs that are used directly (@samp{dir:}) or used indirectly (@samp{ind:}).
8171 A struct type is used directly when it is the type of a variable, member.
8172 Indirect uses arise through pointers to structs.
8173 That is, when use of an incomplete struct is valid, the use is indirect.
8174 An example is
8175 @samp{struct one direct; struct two * indirect;}.
8176
8177 The optional second word limits the specification to
8178 ordinary structs (@samp{ord:}) or generic structs (@samp{gen:}).
8179 Generic structs are a bit complicated to explain.
8180 For C++, these are non-explicit specializations of template classes,
8181 or non-template classes within the above.
8182 Other programming languages have generics,
8183 but @option{-femit-struct-debug-detailed} does not yet implement them.
8184
8185 The third word specifies the source files for those
8186 structs for which the compiler should emit debug information.
8187 The values @samp{none} and @samp{any} have the normal meaning.
8188 The value @samp{base} means that
8189 the base of name of the file in which the type declaration appears
8190 must match the base of the name of the main compilation file.
8191 In practice, this means that when compiling @file{foo.c}, debug information
8192 is generated for types declared in that file and @file{foo.h},
8193 but not other header files.
8194 The value @samp{sys} means those types satisfying @samp{base}
8195 or declared in system or compiler headers.
8196
8197 You may need to experiment to determine the best settings for your application.
8198
8199 The default is @option{-femit-struct-debug-detailed=all}.
8200
8201 This option works only with DWARF debug output.
8202
8203 @item -fno-dwarf2-cfi-asm
8204 @opindex fdwarf2-cfi-asm
8205 @opindex fno-dwarf2-cfi-asm
8206 Emit DWARF unwind info as compiler generated @code{.eh_frame} section
8207 instead of using GAS @code{.cfi_*} directives.
8208
8209 @item -fno-eliminate-unused-debug-types
8210 @opindex feliminate-unused-debug-types
8211 @opindex fno-eliminate-unused-debug-types
8212 Normally, when producing DWARF output, GCC avoids producing debug symbol
8213 output for types that are nowhere used in the source file being compiled.
8214 Sometimes it is useful to have GCC emit debugging
8215 information for all types declared in a compilation
8216 unit, regardless of whether or not they are actually used
8217 in that compilation unit, for example
8218 if, in the debugger, you want to cast a value to a type that is
8219 not actually used in your program (but is declared). More often,
8220 however, this results in a significant amount of wasted space.
8221 @end table
8222
8223 @node Optimize Options
8224 @section Options That Control Optimization
8225 @cindex optimize options
8226 @cindex options, optimization
8227
8228 These options control various sorts of optimizations.
8229
8230 Without any optimization option, the compiler's goal is to reduce the
8231 cost of compilation and to make debugging produce the expected
8232 results. Statements are independent: if you stop the program with a
8233 breakpoint between statements, you can then assign a new value to any
8234 variable or change the program counter to any other statement in the
8235 function and get exactly the results you expect from the source
8236 code.
8237
8238 Turning on optimization flags makes the compiler attempt to improve
8239 the performance and/or code size at the expense of compilation time
8240 and possibly the ability to debug the program.
8241
8242 The compiler performs optimization based on the knowledge it has of the
8243 program. Compiling multiple files at once to a single output file mode allows
8244 the compiler to use information gained from all of the files when compiling
8245 each of them.
8246
8247 Not all optimizations are controlled directly by a flag. Only
8248 optimizations that have a flag are listed in this section.
8249
8250 Most optimizations are completely disabled at @option{-O0} or if an
8251 @option{-O} level is not set on the command line, even if individual
8252 optimization flags are specified. Similarly, @option{-Og} suppresses
8253 many optimization passes.
8254
8255 Depending on the target and how GCC was configured, a slightly different
8256 set of optimizations may be enabled at each @option{-O} level than
8257 those listed here. You can invoke GCC with @option{-Q --help=optimizers}
8258 to find out the exact set of optimizations that are enabled at each level.
8259 @xref{Overall Options}, for examples.
8260
8261 @table @gcctabopt
8262 @item -O
8263 @itemx -O1
8264 @opindex O
8265 @opindex O1
8266 Optimize. Optimizing compilation takes somewhat more time, and a lot
8267 more memory for a large function.
8268
8269 With @option{-O}, the compiler tries to reduce code size and execution
8270 time, without performing any optimizations that take a great deal of
8271 compilation time.
8272
8273 @c Note that in addition to the default_options_table list in opts.c,
8274 @c several optimization flags default to true but control optimization
8275 @c passes that are explicitly disabled at -O0.
8276
8277 @option{-O} turns on the following optimization flags:
8278
8279 @c Please keep the following list alphabetized.
8280 @gccoptlist{-fauto-inc-dec @gol
8281 -fbranch-count-reg @gol
8282 -fcombine-stack-adjustments @gol
8283 -fcompare-elim @gol
8284 -fcprop-registers @gol
8285 -fdce @gol
8286 -fdefer-pop @gol
8287 -fdelayed-branch @gol
8288 -fdse @gol
8289 -fforward-propagate @gol
8290 -fguess-branch-probability @gol
8291 -fif-conversion @gol
8292 -fif-conversion2 @gol
8293 -finline-functions-called-once @gol
8294 -fipa-profile @gol
8295 -fipa-pure-const @gol
8296 -fipa-reference @gol
8297 -fipa-reference-addressable @gol
8298 -fmerge-constants @gol
8299 -fmove-loop-invariants @gol
8300 -fomit-frame-pointer @gol
8301 -freorder-blocks @gol
8302 -fshrink-wrap @gol
8303 -fshrink-wrap-separate @gol
8304 -fsplit-wide-types @gol
8305 -fssa-backprop @gol
8306 -fssa-phiopt @gol
8307 -ftree-bit-ccp @gol
8308 -ftree-ccp @gol
8309 -ftree-ch @gol
8310 -ftree-coalesce-vars @gol
8311 -ftree-copy-prop @gol
8312 -ftree-dce @gol
8313 -ftree-dominator-opts @gol
8314 -ftree-dse @gol
8315 -ftree-forwprop @gol
8316 -ftree-fre @gol
8317 -ftree-phiprop @gol
8318 -ftree-pta @gol
8319 -ftree-scev-cprop @gol
8320 -ftree-sink @gol
8321 -ftree-slsr @gol
8322 -ftree-sra @gol
8323 -ftree-ter @gol
8324 -funit-at-a-time}
8325
8326 @item -O2
8327 @opindex O2
8328 Optimize even more. GCC performs nearly all supported optimizations
8329 that do not involve a space-speed tradeoff.
8330 As compared to @option{-O}, this option increases both compilation time
8331 and the performance of the generated code.
8332
8333 @option{-O2} turns on all optimization flags specified by @option{-O}. It
8334 also turns on the following optimization flags:
8335
8336 @c Please keep the following list alphabetized!
8337 @gccoptlist{-falign-functions -falign-jumps @gol
8338 -falign-labels -falign-loops @gol
8339 -fcaller-saves @gol
8340 -fcode-hoisting @gol
8341 -fcrossjumping @gol
8342 -fcse-follow-jumps -fcse-skip-blocks @gol
8343 -fdelete-null-pointer-checks @gol
8344 -fdevirtualize -fdevirtualize-speculatively @gol
8345 -fexpensive-optimizations @gol
8346 -ffinite-loops @gol
8347 -fgcse -fgcse-lm @gol
8348 -fhoist-adjacent-loads @gol
8349 -finline-functions @gol
8350 -finline-small-functions @gol
8351 -findirect-inlining @gol
8352 -fipa-bit-cp -fipa-cp -fipa-icf @gol
8353 -fipa-ra -fipa-sra -fipa-vrp @gol
8354 -fisolate-erroneous-paths-dereference @gol
8355 -flra-remat @gol
8356 -foptimize-sibling-calls @gol
8357 -foptimize-strlen @gol
8358 -fpartial-inlining @gol
8359 -fpeephole2 @gol
8360 -freorder-blocks-algorithm=stc @gol
8361 -freorder-blocks-and-partition -freorder-functions @gol
8362 -frerun-cse-after-loop @gol
8363 -fschedule-insns -fschedule-insns2 @gol
8364 -fsched-interblock -fsched-spec @gol
8365 -fstore-merging @gol
8366 -fstrict-aliasing @gol
8367 -fthread-jumps @gol
8368 -ftree-builtin-call-dce @gol
8369 -ftree-pre @gol
8370 -ftree-switch-conversion -ftree-tail-merge @gol
8371 -ftree-vrp}
8372
8373 Please note the warning under @option{-fgcse} about
8374 invoking @option{-O2} on programs that use computed gotos.
8375
8376 @item -O3
8377 @opindex O3
8378 Optimize yet more. @option{-O3} turns on all optimizations specified
8379 by @option{-O2} and also turns on the following optimization flags:
8380
8381 @c Please keep the following list alphabetized!
8382 @gccoptlist{-fgcse-after-reload @gol
8383 -fipa-cp-clone
8384 -floop-interchange @gol
8385 -floop-unroll-and-jam @gol
8386 -fpeel-loops @gol
8387 -fpredictive-commoning @gol
8388 -fsplit-paths @gol
8389 -ftree-loop-distribute-patterns @gol
8390 -ftree-loop-distribution @gol
8391 -ftree-loop-vectorize @gol
8392 -ftree-partial-pre @gol
8393 -ftree-slp-vectorize @gol
8394 -funswitch-loops @gol
8395 -fvect-cost-model @gol
8396 -fversion-loops-for-strides}
8397
8398 @item -O0
8399 @opindex O0
8400 Reduce compilation time and make debugging produce the expected
8401 results. This is the default.
8402
8403 @item -Os
8404 @opindex Os
8405 Optimize for size. @option{-Os} enables all @option{-O2} optimizations
8406 except those that often increase code size:
8407
8408 @gccoptlist{-falign-functions -falign-jumps @gol
8409 -falign-labels -falign-loops @gol
8410 -fprefetch-loop-arrays -freorder-blocks-algorithm=stc}
8411
8412 It also enables @option{-finline-functions}, causes the compiler to tune for
8413 code size rather than execution speed, and performs further optimizations
8414 designed to reduce code size.
8415
8416 @item -Ofast
8417 @opindex Ofast
8418 Disregard strict standards compliance. @option{-Ofast} enables all
8419 @option{-O3} optimizations. It also enables optimizations that are not
8420 valid for all standard-compliant programs.
8421 It turns on @option{-ffast-math} and the Fortran-specific
8422 @option{-fstack-arrays}, unless @option{-fmax-stack-var-size} is
8423 specified, and @option{-fno-protect-parens}.
8424
8425 @item -Og
8426 @opindex Og
8427 Optimize debugging experience. @option{-Og} should be the optimization
8428 level of choice for the standard edit-compile-debug cycle, offering
8429 a reasonable level of optimization while maintaining fast compilation
8430 and a good debugging experience. It is a better choice than @option{-O0}
8431 for producing debuggable code because some compiler passes
8432 that collect debug information are disabled at @option{-O0}.
8433
8434 Like @option{-O0}, @option{-Og} completely disables a number of
8435 optimization passes so that individual options controlling them have
8436 no effect. Otherwise @option{-Og} enables all @option{-O1}
8437 optimization flags except for those that may interfere with debugging:
8438
8439 @gccoptlist{-fbranch-count-reg -fdelayed-branch @gol
8440 -fdse -fif-conversion -fif-conversion2 @gol
8441 -finline-functions-called-once @gol
8442 -fmove-loop-invariants -fssa-phiopt @gol
8443 -ftree-bit-ccp -ftree-dse -ftree-pta -ftree-sra}
8444
8445 @end table
8446
8447 If you use multiple @option{-O} options, with or without level numbers,
8448 the last such option is the one that is effective.
8449
8450 Options of the form @option{-f@var{flag}} specify machine-independent
8451 flags. Most flags have both positive and negative forms; the negative
8452 form of @option{-ffoo} is @option{-fno-foo}. In the table
8453 below, only one of the forms is listed---the one you typically
8454 use. You can figure out the other form by either removing @samp{no-}
8455 or adding it.
8456
8457 The following options control specific optimizations. They are either
8458 activated by @option{-O} options or are related to ones that are. You
8459 can use the following flags in the rare cases when ``fine-tuning'' of
8460 optimizations to be performed is desired.
8461
8462 @table @gcctabopt
8463 @item -fno-defer-pop
8464 @opindex fno-defer-pop
8465 @opindex fdefer-pop
8466 For machines that must pop arguments after a function call, always pop
8467 the arguments as soon as each function returns.
8468 At levels @option{-O1} and higher, @option{-fdefer-pop} is the default;
8469 this allows the compiler to let arguments accumulate on the stack for several
8470 function calls and pop them all at once.
8471
8472 @item -fforward-propagate
8473 @opindex fforward-propagate
8474 Perform a forward propagation pass on RTL@. The pass tries to combine two
8475 instructions and checks if the result can be simplified. If loop unrolling
8476 is active, two passes are performed and the second is scheduled after
8477 loop unrolling.
8478
8479 This option is enabled by default at optimization levels @option{-O},
8480 @option{-O2}, @option{-O3}, @option{-Os}.
8481
8482 @item -ffp-contract=@var{style}
8483 @opindex ffp-contract
8484 @option{-ffp-contract=off} disables floating-point expression contraction.
8485 @option{-ffp-contract=fast} enables floating-point expression contraction
8486 such as forming of fused multiply-add operations if the target has
8487 native support for them.
8488 @option{-ffp-contract=on} enables floating-point expression contraction
8489 if allowed by the language standard. This is currently not implemented
8490 and treated equal to @option{-ffp-contract=off}.
8491
8492 The default is @option{-ffp-contract=fast}.
8493
8494 @item -fomit-frame-pointer
8495 @opindex fomit-frame-pointer
8496 Omit the frame pointer in functions that don't need one. This avoids the
8497 instructions to save, set up and restore the frame pointer; on many targets
8498 it also makes an extra register available.
8499
8500 On some targets this flag has no effect because the standard calling sequence
8501 always uses a frame pointer, so it cannot be omitted.
8502
8503 Note that @option{-fno-omit-frame-pointer} doesn't guarantee the frame pointer
8504 is used in all functions. Several targets always omit the frame pointer in
8505 leaf functions.
8506
8507 Enabled by default at @option{-O} and higher.
8508
8509 @item -foptimize-sibling-calls
8510 @opindex foptimize-sibling-calls
8511 Optimize sibling and tail recursive calls.
8512
8513 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8514
8515 @item -foptimize-strlen
8516 @opindex foptimize-strlen
8517 Optimize various standard C string functions (e.g.@: @code{strlen},
8518 @code{strchr} or @code{strcpy}) and
8519 their @code{_FORTIFY_SOURCE} counterparts into faster alternatives.
8520
8521 Enabled at levels @option{-O2}, @option{-O3}.
8522
8523 @item -fno-inline
8524 @opindex fno-inline
8525 @opindex finline
8526 Do not expand any functions inline apart from those marked with
8527 the @code{always_inline} attribute. This is the default when not
8528 optimizing.
8529
8530 Single functions can be exempted from inlining by marking them
8531 with the @code{noinline} attribute.
8532
8533 @item -finline-small-functions
8534 @opindex finline-small-functions
8535 Integrate functions into their callers when their body is smaller than expected
8536 function call code (so overall size of program gets smaller). The compiler
8537 heuristically decides which functions are simple enough to be worth integrating
8538 in this way. This inlining applies to all functions, even those not declared
8539 inline.
8540
8541 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8542
8543 @item -findirect-inlining
8544 @opindex findirect-inlining
8545 Inline also indirect calls that are discovered to be known at compile
8546 time thanks to previous inlining. This option has any effect only
8547 when inlining itself is turned on by the @option{-finline-functions}
8548 or @option{-finline-small-functions} options.
8549
8550 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8551
8552 @item -finline-functions
8553 @opindex finline-functions
8554 Consider all functions for inlining, even if they are not declared inline.
8555 The compiler heuristically decides which functions are worth integrating
8556 in this way.
8557
8558 If all calls to a given function are integrated, and the function is
8559 declared @code{static}, then the function is normally not output as
8560 assembler code in its own right.
8561
8562 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}. Also enabled
8563 by @option{-fprofile-use} and @option{-fauto-profile}.
8564
8565 @item -finline-functions-called-once
8566 @opindex finline-functions-called-once
8567 Consider all @code{static} functions called once for inlining into their
8568 caller even if they are not marked @code{inline}. If a call to a given
8569 function is integrated, then the function is not output as assembler code
8570 in its own right.
8571
8572 Enabled at levels @option{-O1}, @option{-O2}, @option{-O3} and @option{-Os},
8573 but not @option{-Og}.
8574
8575 @item -fearly-inlining
8576 @opindex fearly-inlining
8577 Inline functions marked by @code{always_inline} and functions whose body seems
8578 smaller than the function call overhead early before doing
8579 @option{-fprofile-generate} instrumentation and real inlining pass. Doing so
8580 makes profiling significantly cheaper and usually inlining faster on programs
8581 having large chains of nested wrapper functions.
8582
8583 Enabled by default.
8584
8585 @item -fipa-sra
8586 @opindex fipa-sra
8587 Perform interprocedural scalar replacement of aggregates, removal of
8588 unused parameters and replacement of parameters passed by reference
8589 by parameters passed by value.
8590
8591 Enabled at levels @option{-O2}, @option{-O3} and @option{-Os}.
8592
8593 @item -finline-limit=@var{n}
8594 @opindex finline-limit
8595 By default, GCC limits the size of functions that can be inlined. This flag
8596 allows coarse control of this limit. @var{n} is the size of functions that
8597 can be inlined in number of pseudo instructions.
8598
8599 Inlining is actually controlled by a number of parameters, which may be
8600 specified individually by using @option{--param @var{name}=@var{value}}.
8601 The @option{-finline-limit=@var{n}} option sets some of these parameters
8602 as follows:
8603
8604 @table @gcctabopt
8605 @item max-inline-insns-single
8606 is set to @var{n}/2.
8607 @item max-inline-insns-auto
8608 is set to @var{n}/2.
8609 @end table
8610
8611 See below for a documentation of the individual
8612 parameters controlling inlining and for the defaults of these parameters.
8613
8614 @emph{Note:} there may be no value to @option{-finline-limit} that results
8615 in default behavior.
8616
8617 @emph{Note:} pseudo instruction represents, in this particular context, an
8618 abstract measurement of function's size. In no way does it represent a count
8619 of assembly instructions and as such its exact meaning might change from one
8620 release to an another.
8621
8622 @item -fno-keep-inline-dllexport
8623 @opindex fno-keep-inline-dllexport
8624 @opindex fkeep-inline-dllexport
8625 This is a more fine-grained version of @option{-fkeep-inline-functions},
8626 which applies only to functions that are declared using the @code{dllexport}
8627 attribute or declspec. @xref{Function Attributes,,Declaring Attributes of
8628 Functions}.
8629
8630 @item -fkeep-inline-functions
8631 @opindex fkeep-inline-functions
8632 In C, emit @code{static} functions that are declared @code{inline}
8633 into the object file, even if the function has been inlined into all
8634 of its callers. This switch does not affect functions using the
8635 @code{extern inline} extension in GNU C90@. In C++, emit any and all
8636 inline functions into the object file.
8637
8638 @item -fkeep-static-functions
8639 @opindex fkeep-static-functions
8640 Emit @code{static} functions into the object file, even if the function
8641 is never used.
8642
8643 @item -fkeep-static-consts
8644 @opindex fkeep-static-consts
8645 Emit variables declared @code{static const} when optimization isn't turned
8646 on, even if the variables aren't referenced.
8647
8648 GCC enables this option by default. If you want to force the compiler to
8649 check if a variable is referenced, regardless of whether or not
8650 optimization is turned on, use the @option{-fno-keep-static-consts} option.
8651
8652 @item -fmerge-constants
8653 @opindex fmerge-constants
8654 Attempt to merge identical constants (string constants and floating-point
8655 constants) across compilation units.
8656
8657 This option is the default for optimized compilation if the assembler and
8658 linker support it. Use @option{-fno-merge-constants} to inhibit this
8659 behavior.
8660
8661 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8662
8663 @item -fmerge-all-constants
8664 @opindex fmerge-all-constants
8665 Attempt to merge identical constants and identical variables.
8666
8667 This option implies @option{-fmerge-constants}. In addition to
8668 @option{-fmerge-constants} this considers e.g.@: even constant initialized
8669 arrays or initialized constant variables with integral or floating-point
8670 types. Languages like C or C++ require each variable, including multiple
8671 instances of the same variable in recursive calls, to have distinct locations,
8672 so using this option results in non-conforming
8673 behavior.
8674
8675 @item -fmodulo-sched
8676 @opindex fmodulo-sched
8677 Perform swing modulo scheduling immediately before the first scheduling
8678 pass. This pass looks at innermost loops and reorders their
8679 instructions by overlapping different iterations.
8680
8681 @item -fmodulo-sched-allow-regmoves
8682 @opindex fmodulo-sched-allow-regmoves
8683 Perform more aggressive SMS-based modulo scheduling with register moves
8684 allowed. By setting this flag certain anti-dependences edges are
8685 deleted, which triggers the generation of reg-moves based on the
8686 life-range analysis. This option is effective only with
8687 @option{-fmodulo-sched} enabled.
8688
8689 @item -fno-branch-count-reg
8690 @opindex fno-branch-count-reg
8691 @opindex fbranch-count-reg
8692 Disable the optimization pass that scans for opportunities to use
8693 ``decrement and branch'' instructions on a count register instead of
8694 instruction sequences that decrement a register, compare it against zero, and
8695 then branch based upon the result. This option is only meaningful on
8696 architectures that support such instructions, which include x86, PowerPC,
8697 IA-64 and S/390. Note that the @option{-fno-branch-count-reg} option
8698 doesn't remove the decrement and branch instructions from the generated
8699 instruction stream introduced by other optimization passes.
8700
8701 The default is @option{-fbranch-count-reg} at @option{-O1} and higher,
8702 except for @option{-Og}.
8703
8704 @item -fno-function-cse
8705 @opindex fno-function-cse
8706 @opindex ffunction-cse
8707 Do not put function addresses in registers; make each instruction that
8708 calls a constant function contain the function's address explicitly.
8709
8710 This option results in less efficient code, but some strange hacks
8711 that alter the assembler output may be confused by the optimizations
8712 performed when this option is not used.
8713
8714 The default is @option{-ffunction-cse}
8715
8716 @item -fno-zero-initialized-in-bss
8717 @opindex fno-zero-initialized-in-bss
8718 @opindex fzero-initialized-in-bss
8719 If the target supports a BSS section, GCC by default puts variables that
8720 are initialized to zero into BSS@. This can save space in the resulting
8721 code.
8722
8723 This option turns off this behavior because some programs explicitly
8724 rely on variables going to the data section---e.g., so that the
8725 resulting executable can find the beginning of that section and/or make
8726 assumptions based on that.
8727
8728 The default is @option{-fzero-initialized-in-bss}.
8729
8730 @item -fthread-jumps
8731 @opindex fthread-jumps
8732 Perform optimizations that check to see if a jump branches to a
8733 location where another comparison subsumed by the first is found. If
8734 so, the first branch is redirected to either the destination of the
8735 second branch or a point immediately following it, depending on whether
8736 the condition is known to be true or false.
8737
8738 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8739
8740 @item -fsplit-wide-types
8741 @opindex fsplit-wide-types
8742 When using a type that occupies multiple registers, such as @code{long
8743 long} on a 32-bit system, split the registers apart and allocate them
8744 independently. This normally generates better code for those types,
8745 but may make debugging more difficult.
8746
8747 Enabled at levels @option{-O}, @option{-O2}, @option{-O3},
8748 @option{-Os}.
8749
8750 @item -fsplit-wide-types-early
8751 @opindex fsplit-wide-types-early
8752 Fully split wide types early, instead of very late.
8753 This option has no effect unless @option{-fsplit-wide-types} is turned on.
8754
8755 This is the default on some targets.
8756
8757 @item -fcse-follow-jumps
8758 @opindex fcse-follow-jumps
8759 In common subexpression elimination (CSE), scan through jump instructions
8760 when the target of the jump is not reached by any other path. For
8761 example, when CSE encounters an @code{if} statement with an
8762 @code{else} clause, CSE follows the jump when the condition
8763 tested is false.
8764
8765 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8766
8767 @item -fcse-skip-blocks
8768 @opindex fcse-skip-blocks
8769 This is similar to @option{-fcse-follow-jumps}, but causes CSE to
8770 follow jumps that conditionally skip over blocks. When CSE
8771 encounters a simple @code{if} statement with no else clause,
8772 @option{-fcse-skip-blocks} causes CSE to follow the jump around the
8773 body of the @code{if}.
8774
8775 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8776
8777 @item -frerun-cse-after-loop
8778 @opindex frerun-cse-after-loop
8779 Re-run common subexpression elimination after loop optimizations are
8780 performed.
8781
8782 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8783
8784 @item -fgcse
8785 @opindex fgcse
8786 Perform a global common subexpression elimination pass.
8787 This pass also performs global constant and copy propagation.
8788
8789 @emph{Note:} When compiling a program using computed gotos, a GCC
8790 extension, you may get better run-time performance if you disable
8791 the global common subexpression elimination pass by adding
8792 @option{-fno-gcse} to the command line.
8793
8794 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8795
8796 @item -fgcse-lm
8797 @opindex fgcse-lm
8798 When @option{-fgcse-lm} is enabled, global common subexpression elimination
8799 attempts to move loads that are only killed by stores into themselves. This
8800 allows a loop containing a load/store sequence to be changed to a load outside
8801 the loop, and a copy/store within the loop.
8802
8803 Enabled by default when @option{-fgcse} is enabled.
8804
8805 @item -fgcse-sm
8806 @opindex fgcse-sm
8807 When @option{-fgcse-sm} is enabled, a store motion pass is run after
8808 global common subexpression elimination. This pass attempts to move
8809 stores out of loops. When used in conjunction with @option{-fgcse-lm},
8810 loops containing a load/store sequence can be changed to a load before
8811 the loop and a store after the loop.
8812
8813 Not enabled at any optimization level.
8814
8815 @item -fgcse-las
8816 @opindex fgcse-las
8817 When @option{-fgcse-las} is enabled, the global common subexpression
8818 elimination pass eliminates redundant loads that come after stores to the
8819 same memory location (both partial and full redundancies).
8820
8821 Not enabled at any optimization level.
8822
8823 @item -fgcse-after-reload
8824 @opindex fgcse-after-reload
8825 When @option{-fgcse-after-reload} is enabled, a redundant load elimination
8826 pass is performed after reload. The purpose of this pass is to clean up
8827 redundant spilling.
8828
8829 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
8830
8831 @item -faggressive-loop-optimizations
8832 @opindex faggressive-loop-optimizations
8833 This option tells the loop optimizer to use language constraints to
8834 derive bounds for the number of iterations of a loop. This assumes that
8835 loop code does not invoke undefined behavior by for example causing signed
8836 integer overflows or out-of-bound array accesses. The bounds for the
8837 number of iterations of a loop are used to guide loop unrolling and peeling
8838 and loop exit test optimizations.
8839 This option is enabled by default.
8840
8841 @item -funconstrained-commons
8842 @opindex funconstrained-commons
8843 This option tells the compiler that variables declared in common blocks
8844 (e.g.@: Fortran) may later be overridden with longer trailing arrays. This
8845 prevents certain optimizations that depend on knowing the array bounds.
8846
8847 @item -fcrossjumping
8848 @opindex fcrossjumping
8849 Perform cross-jumping transformation.
8850 This transformation unifies equivalent code and saves code size. The
8851 resulting code may or may not perform better than without cross-jumping.
8852
8853 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8854
8855 @item -fauto-inc-dec
8856 @opindex fauto-inc-dec
8857 Combine increments or decrements of addresses with memory accesses.
8858 This pass is always skipped on architectures that do not have
8859 instructions to support this. Enabled by default at @option{-O} and
8860 higher on architectures that support this.
8861
8862 @item -fdce
8863 @opindex fdce
8864 Perform dead code elimination (DCE) on RTL@.
8865 Enabled by default at @option{-O} and higher.
8866
8867 @item -fdse
8868 @opindex fdse
8869 Perform dead store elimination (DSE) on RTL@.
8870 Enabled by default at @option{-O} and higher.
8871
8872 @item -fif-conversion
8873 @opindex fif-conversion
8874 Attempt to transform conditional jumps into branch-less equivalents. This
8875 includes use of conditional moves, min, max, set flags and abs instructions, and
8876 some tricks doable by standard arithmetics. The use of conditional execution
8877 on chips where it is available is controlled by @option{-fif-conversion2}.
8878
8879 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}, but
8880 not with @option{-Og}.
8881
8882 @item -fif-conversion2
8883 @opindex fif-conversion2
8884 Use conditional execution (where available) to transform conditional jumps into
8885 branch-less equivalents.
8886
8887 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}, but
8888 not with @option{-Og}.
8889
8890 @item -fdeclone-ctor-dtor
8891 @opindex fdeclone-ctor-dtor
8892 The C++ ABI requires multiple entry points for constructors and
8893 destructors: one for a base subobject, one for a complete object, and
8894 one for a virtual destructor that calls operator delete afterwards.
8895 For a hierarchy with virtual bases, the base and complete variants are
8896 clones, which means two copies of the function. With this option, the
8897 base and complete variants are changed to be thunks that call a common
8898 implementation.
8899
8900 Enabled by @option{-Os}.
8901
8902 @item -fdelete-null-pointer-checks
8903 @opindex fdelete-null-pointer-checks
8904 Assume that programs cannot safely dereference null pointers, and that
8905 no code or data element resides at address zero.
8906 This option enables simple constant
8907 folding optimizations at all optimization levels. In addition, other
8908 optimization passes in GCC use this flag to control global dataflow
8909 analyses that eliminate useless checks for null pointers; these assume
8910 that a memory access to address zero always results in a trap, so
8911 that if a pointer is checked after it has already been dereferenced,
8912 it cannot be null.
8913
8914 Note however that in some environments this assumption is not true.
8915 Use @option{-fno-delete-null-pointer-checks} to disable this optimization
8916 for programs that depend on that behavior.
8917
8918 This option is enabled by default on most targets. On Nios II ELF, it
8919 defaults to off. On AVR, CR16, and MSP430, this option is completely disabled.
8920
8921 Passes that use the dataflow information
8922 are enabled independently at different optimization levels.
8923
8924 @item -fdevirtualize
8925 @opindex fdevirtualize
8926 Attempt to convert calls to virtual functions to direct calls. This
8927 is done both within a procedure and interprocedurally as part of
8928 indirect inlining (@option{-findirect-inlining}) and interprocedural constant
8929 propagation (@option{-fipa-cp}).
8930 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8931
8932 @item -fdevirtualize-speculatively
8933 @opindex fdevirtualize-speculatively
8934 Attempt to convert calls to virtual functions to speculative direct calls.
8935 Based on the analysis of the type inheritance graph, determine for a given call
8936 the set of likely targets. If the set is small, preferably of size 1, change
8937 the call into a conditional deciding between direct and indirect calls. The
8938 speculative calls enable more optimizations, such as inlining. When they seem
8939 useless after further optimization, they are converted back into original form.
8940
8941 @item -fdevirtualize-at-ltrans
8942 @opindex fdevirtualize-at-ltrans
8943 Stream extra information needed for aggressive devirtualization when running
8944 the link-time optimizer in local transformation mode.
8945 This option enables more devirtualization but
8946 significantly increases the size of streamed data. For this reason it is
8947 disabled by default.
8948
8949 @item -fexpensive-optimizations
8950 @opindex fexpensive-optimizations
8951 Perform a number of minor optimizations that are relatively expensive.
8952
8953 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8954
8955 @item -free
8956 @opindex free
8957 Attempt to remove redundant extension instructions. This is especially
8958 helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit
8959 registers after writing to their lower 32-bit half.
8960
8961 Enabled for Alpha, AArch64 and x86 at levels @option{-O2},
8962 @option{-O3}, @option{-Os}.
8963
8964 @item -fno-lifetime-dse
8965 @opindex fno-lifetime-dse
8966 @opindex flifetime-dse
8967 In C++ the value of an object is only affected by changes within its
8968 lifetime: when the constructor begins, the object has an indeterminate
8969 value, and any changes during the lifetime of the object are dead when
8970 the object is destroyed. Normally dead store elimination will take
8971 advantage of this; if your code relies on the value of the object
8972 storage persisting beyond the lifetime of the object, you can use this
8973 flag to disable this optimization. To preserve stores before the
8974 constructor starts (e.g.@: because your operator new clears the object
8975 storage) but still treat the object as dead after the destructor you,
8976 can use @option{-flifetime-dse=1}. The default behavior can be
8977 explicitly selected with @option{-flifetime-dse=2}.
8978 @option{-flifetime-dse=0} is equivalent to @option{-fno-lifetime-dse}.
8979
8980 @item -flive-range-shrinkage
8981 @opindex flive-range-shrinkage
8982 Attempt to decrease register pressure through register live range
8983 shrinkage. This is helpful for fast processors with small or moderate
8984 size register sets.
8985
8986 @item -fira-algorithm=@var{algorithm}
8987 @opindex fira-algorithm
8988 Use the specified coloring algorithm for the integrated register
8989 allocator. The @var{algorithm} argument can be @samp{priority}, which
8990 specifies Chow's priority coloring, or @samp{CB}, which specifies
8991 Chaitin-Briggs coloring. Chaitin-Briggs coloring is not implemented
8992 for all architectures, but for those targets that do support it, it is
8993 the default because it generates better code.
8994
8995 @item -fira-region=@var{region}
8996 @opindex fira-region
8997 Use specified regions for the integrated register allocator. The
8998 @var{region} argument should be one of the following:
8999
9000 @table @samp
9001
9002 @item all
9003 Use all loops as register allocation regions.
9004 This can give the best results for machines with a small and/or
9005 irregular register set.
9006
9007 @item mixed
9008 Use all loops except for loops with small register pressure
9009 as the regions. This value usually gives
9010 the best results in most cases and for most architectures,
9011 and is enabled by default when compiling with optimization for speed
9012 (@option{-O}, @option{-O2}, @dots{}).
9013
9014 @item one
9015 Use all functions as a single region.
9016 This typically results in the smallest code size, and is enabled by default for
9017 @option{-Os} or @option{-O0}.
9018
9019 @end table
9020
9021 @item -fira-hoist-pressure
9022 @opindex fira-hoist-pressure
9023 Use IRA to evaluate register pressure in the code hoisting pass for
9024 decisions to hoist expressions. This option usually results in smaller
9025 code, but it can slow the compiler down.
9026
9027 This option is enabled at level @option{-Os} for all targets.
9028
9029 @item -fira-loop-pressure
9030 @opindex fira-loop-pressure
9031 Use IRA to evaluate register pressure in loops for decisions to move
9032 loop invariants. This option usually results in generation
9033 of faster and smaller code on machines with large register files (>= 32
9034 registers), but it can slow the compiler down.
9035
9036 This option is enabled at level @option{-O3} for some targets.
9037
9038 @item -fno-ira-share-save-slots
9039 @opindex fno-ira-share-save-slots
9040 @opindex fira-share-save-slots
9041 Disable sharing of stack slots used for saving call-used hard
9042 registers living through a call. Each hard register gets a
9043 separate stack slot, and as a result function stack frames are
9044 larger.
9045
9046 @item -fno-ira-share-spill-slots
9047 @opindex fno-ira-share-spill-slots
9048 @opindex fira-share-spill-slots
9049 Disable sharing of stack slots allocated for pseudo-registers. Each
9050 pseudo-register that does not get a hard register gets a separate
9051 stack slot, and as a result function stack frames are larger.
9052
9053 @item -flra-remat
9054 @opindex flra-remat
9055 Enable CFG-sensitive rematerialization in LRA. Instead of loading
9056 values of spilled pseudos, LRA tries to rematerialize (recalculate)
9057 values if it is profitable.
9058
9059 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9060
9061 @item -fdelayed-branch
9062 @opindex fdelayed-branch
9063 If supported for the target machine, attempt to reorder instructions
9064 to exploit instruction slots available after delayed branch
9065 instructions.
9066
9067 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os},
9068 but not at @option{-Og}.
9069
9070 @item -fschedule-insns
9071 @opindex fschedule-insns
9072 If supported for the target machine, attempt to reorder instructions to
9073 eliminate execution stalls due to required data being unavailable. This
9074 helps machines that have slow floating point or memory load instructions
9075 by allowing other instructions to be issued until the result of the load
9076 or floating-point instruction is required.
9077
9078 Enabled at levels @option{-O2}, @option{-O3}.
9079
9080 @item -fschedule-insns2
9081 @opindex fschedule-insns2
9082 Similar to @option{-fschedule-insns}, but requests an additional pass of
9083 instruction scheduling after register allocation has been done. This is
9084 especially useful on machines with a relatively small number of
9085 registers and where memory load instructions take more than one cycle.
9086
9087 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9088
9089 @item -fno-sched-interblock
9090 @opindex fno-sched-interblock
9091 @opindex fsched-interblock
9092 Disable instruction scheduling across basic blocks, which
9093 is normally enabled when scheduling before register allocation, i.e.@:
9094 with @option{-fschedule-insns} or at @option{-O2} or higher.
9095
9096 @item -fno-sched-spec
9097 @opindex fno-sched-spec
9098 @opindex fsched-spec
9099 Disable speculative motion of non-load instructions, which
9100 is normally enabled when scheduling before register allocation, i.e.@:
9101 with @option{-fschedule-insns} or at @option{-O2} or higher.
9102
9103 @item -fsched-pressure
9104 @opindex fsched-pressure
9105 Enable register pressure sensitive insn scheduling before register
9106 allocation. This only makes sense when scheduling before register
9107 allocation is enabled, i.e.@: with @option{-fschedule-insns} or at
9108 @option{-O2} or higher. Usage of this option can improve the
9109 generated code and decrease its size by preventing register pressure
9110 increase above the number of available hard registers and subsequent
9111 spills in register allocation.
9112
9113 @item -fsched-spec-load
9114 @opindex fsched-spec-load
9115 Allow speculative motion of some load instructions. This only makes
9116 sense when scheduling before register allocation, i.e.@: with
9117 @option{-fschedule-insns} or at @option{-O2} or higher.
9118
9119 @item -fsched-spec-load-dangerous
9120 @opindex fsched-spec-load-dangerous
9121 Allow speculative motion of more load instructions. This only makes
9122 sense when scheduling before register allocation, i.e.@: with
9123 @option{-fschedule-insns} or at @option{-O2} or higher.
9124
9125 @item -fsched-stalled-insns
9126 @itemx -fsched-stalled-insns=@var{n}
9127 @opindex fsched-stalled-insns
9128 Define how many insns (if any) can be moved prematurely from the queue
9129 of stalled insns into the ready list during the second scheduling pass.
9130 @option{-fno-sched-stalled-insns} means that no insns are moved
9131 prematurely, @option{-fsched-stalled-insns=0} means there is no limit
9132 on how many queued insns can be moved prematurely.
9133 @option{-fsched-stalled-insns} without a value is equivalent to
9134 @option{-fsched-stalled-insns=1}.
9135
9136 @item -fsched-stalled-insns-dep
9137 @itemx -fsched-stalled-insns-dep=@var{n}
9138 @opindex fsched-stalled-insns-dep
9139 Define how many insn groups (cycles) are examined for a dependency
9140 on a stalled insn that is a candidate for premature removal from the queue
9141 of stalled insns. This has an effect only during the second scheduling pass,
9142 and only if @option{-fsched-stalled-insns} is used.
9143 @option{-fno-sched-stalled-insns-dep} is equivalent to
9144 @option{-fsched-stalled-insns-dep=0}.
9145 @option{-fsched-stalled-insns-dep} without a value is equivalent to
9146 @option{-fsched-stalled-insns-dep=1}.
9147
9148 @item -fsched2-use-superblocks
9149 @opindex fsched2-use-superblocks
9150 When scheduling after register allocation, use superblock scheduling.
9151 This allows motion across basic block boundaries,
9152 resulting in faster schedules. This option is experimental, as not all machine
9153 descriptions used by GCC model the CPU closely enough to avoid unreliable
9154 results from the algorithm.
9155
9156 This only makes sense when scheduling after register allocation, i.e.@: with
9157 @option{-fschedule-insns2} or at @option{-O2} or higher.
9158
9159 @item -fsched-group-heuristic
9160 @opindex fsched-group-heuristic
9161 Enable the group heuristic in the scheduler. This heuristic favors
9162 the instruction that belongs to a schedule group. This is enabled
9163 by default when scheduling is enabled, i.e.@: with @option{-fschedule-insns}
9164 or @option{-fschedule-insns2} or at @option{-O2} or higher.
9165
9166 @item -fsched-critical-path-heuristic
9167 @opindex fsched-critical-path-heuristic
9168 Enable the critical-path heuristic in the scheduler. This heuristic favors
9169 instructions on the critical path. This is enabled by default when
9170 scheduling is enabled, i.e.@: with @option{-fschedule-insns}
9171 or @option{-fschedule-insns2} or at @option{-O2} or higher.
9172
9173 @item -fsched-spec-insn-heuristic
9174 @opindex fsched-spec-insn-heuristic
9175 Enable the speculative instruction heuristic in the scheduler. This
9176 heuristic favors speculative instructions with greater dependency weakness.
9177 This is enabled by default when scheduling is enabled, i.e.@:
9178 with @option{-fschedule-insns} or @option{-fschedule-insns2}
9179 or at @option{-O2} or higher.
9180
9181 @item -fsched-rank-heuristic
9182 @opindex fsched-rank-heuristic
9183 Enable the rank heuristic in the scheduler. This heuristic favors
9184 the instruction belonging to a basic block with greater size or frequency.
9185 This is enabled by default when scheduling is enabled, i.e.@:
9186 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
9187 at @option{-O2} or higher.
9188
9189 @item -fsched-last-insn-heuristic
9190 @opindex fsched-last-insn-heuristic
9191 Enable the last-instruction heuristic in the scheduler. This heuristic
9192 favors the instruction that is less dependent on the last instruction
9193 scheduled. This is enabled by default when scheduling is enabled,
9194 i.e.@: with @option{-fschedule-insns} or @option{-fschedule-insns2} or
9195 at @option{-O2} or higher.
9196
9197 @item -fsched-dep-count-heuristic
9198 @opindex fsched-dep-count-heuristic
9199 Enable the dependent-count heuristic in the scheduler. This heuristic
9200 favors the instruction that has more instructions depending on it.
9201 This is enabled by default when scheduling is enabled, i.e.@:
9202 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
9203 at @option{-O2} or higher.
9204
9205 @item -freschedule-modulo-scheduled-loops
9206 @opindex freschedule-modulo-scheduled-loops
9207 Modulo scheduling is performed before traditional scheduling. If a loop
9208 is modulo scheduled, later scheduling passes may change its schedule.
9209 Use this option to control that behavior.
9210
9211 @item -fselective-scheduling
9212 @opindex fselective-scheduling
9213 Schedule instructions using selective scheduling algorithm. Selective
9214 scheduling runs instead of the first scheduler pass.
9215
9216 @item -fselective-scheduling2
9217 @opindex fselective-scheduling2
9218 Schedule instructions using selective scheduling algorithm. Selective
9219 scheduling runs instead of the second scheduler pass.
9220
9221 @item -fsel-sched-pipelining
9222 @opindex fsel-sched-pipelining
9223 Enable software pipelining of innermost loops during selective scheduling.
9224 This option has no effect unless one of @option{-fselective-scheduling} or
9225 @option{-fselective-scheduling2} is turned on.
9226
9227 @item -fsel-sched-pipelining-outer-loops
9228 @opindex fsel-sched-pipelining-outer-loops
9229 When pipelining loops during selective scheduling, also pipeline outer loops.
9230 This option has no effect unless @option{-fsel-sched-pipelining} is turned on.
9231
9232 @item -fsemantic-interposition
9233 @opindex fsemantic-interposition
9234 Some object formats, like ELF, allow interposing of symbols by the
9235 dynamic linker.
9236 This means that for symbols exported from the DSO, the compiler cannot perform
9237 interprocedural propagation, inlining and other optimizations in anticipation
9238 that the function or variable in question may change. While this feature is
9239 useful, for example, to rewrite memory allocation functions by a debugging
9240 implementation, it is expensive in the terms of code quality.
9241 With @option{-fno-semantic-interposition} the compiler assumes that
9242 if interposition happens for functions the overwriting function will have
9243 precisely the same semantics (and side effects).
9244 Similarly if interposition happens
9245 for variables, the constructor of the variable will be the same. The flag
9246 has no effect for functions explicitly declared inline
9247 (where it is never allowed for interposition to change semantics)
9248 and for symbols explicitly declared weak.
9249
9250 @item -fshrink-wrap
9251 @opindex fshrink-wrap
9252 Emit function prologues only before parts of the function that need it,
9253 rather than at the top of the function. This flag is enabled by default at
9254 @option{-O} and higher.
9255
9256 @item -fshrink-wrap-separate
9257 @opindex fshrink-wrap-separate
9258 Shrink-wrap separate parts of the prologue and epilogue separately, so that
9259 those parts are only executed when needed.
9260 This option is on by default, but has no effect unless @option{-fshrink-wrap}
9261 is also turned on and the target supports this.
9262
9263 @item -fcaller-saves
9264 @opindex fcaller-saves
9265 Enable allocation of values to registers that are clobbered by
9266 function calls, by emitting extra instructions to save and restore the
9267 registers around such calls. Such allocation is done only when it
9268 seems to result in better code.
9269
9270 This option is always enabled by default on certain machines, usually
9271 those which have no call-preserved registers to use instead.
9272
9273 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9274
9275 @item -fcombine-stack-adjustments
9276 @opindex fcombine-stack-adjustments
9277 Tracks stack adjustments (pushes and pops) and stack memory references
9278 and then tries to find ways to combine them.
9279
9280 Enabled by default at @option{-O1} and higher.
9281
9282 @item -fipa-ra
9283 @opindex fipa-ra
9284 Use caller save registers for allocation if those registers are not used by
9285 any called function. In that case it is not necessary to save and restore
9286 them around calls. This is only possible if called functions are part of
9287 same compilation unit as current function and they are compiled before it.
9288
9289 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}, however the option
9290 is disabled if generated code will be instrumented for profiling
9291 (@option{-p}, or @option{-pg}) or if callee's register usage cannot be known
9292 exactly (this happens on targets that do not expose prologues
9293 and epilogues in RTL).
9294
9295 @item -fconserve-stack
9296 @opindex fconserve-stack
9297 Attempt to minimize stack usage. The compiler attempts to use less
9298 stack space, even if that makes the program slower. This option
9299 implies setting the @option{large-stack-frame} parameter to 100
9300 and the @option{large-stack-frame-growth} parameter to 400.
9301
9302 @item -ftree-reassoc
9303 @opindex ftree-reassoc
9304 Perform reassociation on trees. This flag is enabled by default
9305 at @option{-O} and higher.
9306
9307 @item -fcode-hoisting
9308 @opindex fcode-hoisting
9309 Perform code hoisting. Code hoisting tries to move the
9310 evaluation of expressions executed on all paths to the function exit
9311 as early as possible. This is especially useful as a code size
9312 optimization, but it often helps for code speed as well.
9313 This flag is enabled by default at @option{-O2} and higher.
9314
9315 @item -ftree-pre
9316 @opindex ftree-pre
9317 Perform partial redundancy elimination (PRE) on trees. This flag is
9318 enabled by default at @option{-O2} and @option{-O3}.
9319
9320 @item -ftree-partial-pre
9321 @opindex ftree-partial-pre
9322 Make partial redundancy elimination (PRE) more aggressive. This flag is
9323 enabled by default at @option{-O3}.
9324
9325 @item -ftree-forwprop
9326 @opindex ftree-forwprop
9327 Perform forward propagation on trees. This flag is enabled by default
9328 at @option{-O} and higher.
9329
9330 @item -ftree-fre
9331 @opindex ftree-fre
9332 Perform full redundancy elimination (FRE) on trees. The difference
9333 between FRE and PRE is that FRE only considers expressions
9334 that are computed on all paths leading to the redundant computation.
9335 This analysis is faster than PRE, though it exposes fewer redundancies.
9336 This flag is enabled by default at @option{-O} and higher.
9337
9338 @item -ftree-phiprop
9339 @opindex ftree-phiprop
9340 Perform hoisting of loads from conditional pointers on trees. This
9341 pass is enabled by default at @option{-O} and higher.
9342
9343 @item -fhoist-adjacent-loads
9344 @opindex fhoist-adjacent-loads
9345 Speculatively hoist loads from both branches of an if-then-else if the
9346 loads are from adjacent locations in the same structure and the target
9347 architecture has a conditional move instruction. This flag is enabled
9348 by default at @option{-O2} and higher.
9349
9350 @item -ftree-copy-prop
9351 @opindex ftree-copy-prop
9352 Perform copy propagation on trees. This pass eliminates unnecessary
9353 copy operations. This flag is enabled by default at @option{-O} and
9354 higher.
9355
9356 @item -fipa-pure-const
9357 @opindex fipa-pure-const
9358 Discover which functions are pure or constant.
9359 Enabled by default at @option{-O} and higher.
9360
9361 @item -fipa-reference
9362 @opindex fipa-reference
9363 Discover which static variables do not escape the
9364 compilation unit.
9365 Enabled by default at @option{-O} and higher.
9366
9367 @item -fipa-reference-addressable
9368 @opindex fipa-reference-addressable
9369 Discover read-only, write-only and non-addressable static variables.
9370 Enabled by default at @option{-O} and higher.
9371
9372 @item -fipa-stack-alignment
9373 @opindex fipa-stack-alignment
9374 Reduce stack alignment on call sites if possible.
9375 Enabled by default.
9376
9377 @item -fipa-pta
9378 @opindex fipa-pta
9379 Perform interprocedural pointer analysis and interprocedural modification
9380 and reference analysis. This option can cause excessive memory and
9381 compile-time usage on large compilation units. It is not enabled by
9382 default at any optimization level.
9383
9384 @item -fipa-profile
9385 @opindex fipa-profile
9386 Perform interprocedural profile propagation. The functions called only from
9387 cold functions are marked as cold. Also functions executed once (such as
9388 @code{cold}, @code{noreturn}, static constructors or destructors) are identified. Cold
9389 functions and loop less parts of functions executed once are then optimized for
9390 size.
9391 Enabled by default at @option{-O} and higher.
9392
9393 @item -fipa-cp
9394 @opindex fipa-cp
9395 Perform interprocedural constant propagation.
9396 This optimization analyzes the program to determine when values passed
9397 to functions are constants and then optimizes accordingly.
9398 This optimization can substantially increase performance
9399 if the application has constants passed to functions.
9400 This flag is enabled by default at @option{-O2}, @option{-Os} and @option{-O3}.
9401 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9402
9403 @item -fipa-cp-clone
9404 @opindex fipa-cp-clone
9405 Perform function cloning to make interprocedural constant propagation stronger.
9406 When enabled, interprocedural constant propagation performs function cloning
9407 when externally visible function can be called with constant arguments.
9408 Because this optimization can create multiple copies of functions,
9409 it may significantly increase code size
9410 (see @option{--param ipcp-unit-growth=@var{value}}).
9411 This flag is enabled by default at @option{-O3}.
9412 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9413
9414 @item -fipa-bit-cp
9415 @opindex fipa-bit-cp
9416 When enabled, perform interprocedural bitwise constant
9417 propagation. This flag is enabled by default at @option{-O2} and
9418 by @option{-fprofile-use} and @option{-fauto-profile}.
9419 It requires that @option{-fipa-cp} is enabled.
9420
9421 @item -fipa-vrp
9422 @opindex fipa-vrp
9423 When enabled, perform interprocedural propagation of value
9424 ranges. This flag is enabled by default at @option{-O2}. It requires
9425 that @option{-fipa-cp} is enabled.
9426
9427 @item -fipa-icf
9428 @opindex fipa-icf
9429 Perform Identical Code Folding for functions and read-only variables.
9430 The optimization reduces code size and may disturb unwind stacks by replacing
9431 a function by equivalent one with a different name. The optimization works
9432 more effectively with link-time optimization enabled.
9433
9434 Although the behavior is similar to the Gold Linker's ICF optimization, GCC ICF
9435 works on different levels and thus the optimizations are not same - there are
9436 equivalences that are found only by GCC and equivalences found only by Gold.
9437
9438 This flag is enabled by default at @option{-O2} and @option{-Os}.
9439
9440 @item -flive-patching=@var{level}
9441 @opindex flive-patching
9442 Control GCC's optimizations to produce output suitable for live-patching.
9443
9444 If the compiler's optimization uses a function's body or information extracted
9445 from its body to optimize/change another function, the latter is called an
9446 impacted function of the former. If a function is patched, its impacted
9447 functions should be patched too.
9448
9449 The impacted functions are determined by the compiler's interprocedural
9450 optimizations. For example, a caller is impacted when inlining a function
9451 into its caller,
9452 cloning a function and changing its caller to call this new clone,
9453 or extracting a function's pureness/constness information to optimize
9454 its direct or indirect callers, etc.
9455
9456 Usually, the more IPA optimizations enabled, the larger the number of
9457 impacted functions for each function. In order to control the number of
9458 impacted functions and more easily compute the list of impacted function,
9459 IPA optimizations can be partially enabled at two different levels.
9460
9461 The @var{level} argument should be one of the following:
9462
9463 @table @samp
9464
9465 @item inline-clone
9466
9467 Only enable inlining and cloning optimizations, which includes inlining,
9468 cloning, interprocedural scalar replacement of aggregates and partial inlining.
9469 As a result, when patching a function, all its callers and its clones'
9470 callers are impacted, therefore need to be patched as well.
9471
9472 @option{-flive-patching=inline-clone} disables the following optimization flags:
9473 @gccoptlist{-fwhole-program -fipa-pta -fipa-reference -fipa-ra @gol
9474 -fipa-icf -fipa-icf-functions -fipa-icf-variables @gol
9475 -fipa-bit-cp -fipa-vrp -fipa-pure-const -fipa-reference-addressable @gol
9476 -fipa-stack-alignment}
9477
9478 @item inline-only-static
9479
9480 Only enable inlining of static functions.
9481 As a result, when patching a static function, all its callers are impacted
9482 and so need to be patched as well.
9483
9484 In addition to all the flags that @option{-flive-patching=inline-clone}
9485 disables,
9486 @option{-flive-patching=inline-only-static} disables the following additional
9487 optimization flags:
9488 @gccoptlist{-fipa-cp-clone -fipa-sra -fpartial-inlining -fipa-cp}
9489
9490 @end table
9491
9492 When @option{-flive-patching} is specified without any value, the default value
9493 is @var{inline-clone}.
9494
9495 This flag is disabled by default.
9496
9497 Note that @option{-flive-patching} is not supported with link-time optimization
9498 (@option{-flto}).
9499
9500 @item -fisolate-erroneous-paths-dereference
9501 @opindex fisolate-erroneous-paths-dereference
9502 Detect paths that trigger erroneous or undefined behavior due to
9503 dereferencing a null pointer. Isolate those paths from the main control
9504 flow and turn the statement with erroneous or undefined behavior into a trap.
9505 This flag is enabled by default at @option{-O2} and higher and depends on
9506 @option{-fdelete-null-pointer-checks} also being enabled.
9507
9508 @item -fisolate-erroneous-paths-attribute
9509 @opindex fisolate-erroneous-paths-attribute
9510 Detect paths that trigger erroneous or undefined behavior due to a null value
9511 being used in a way forbidden by a @code{returns_nonnull} or @code{nonnull}
9512 attribute. Isolate those paths from the main control flow and turn the
9513 statement with erroneous or undefined behavior into a trap. This is not
9514 currently enabled, but may be enabled by @option{-O2} in the future.
9515
9516 @item -ftree-sink
9517 @opindex ftree-sink
9518 Perform forward store motion on trees. This flag is
9519 enabled by default at @option{-O} and higher.
9520
9521 @item -ftree-bit-ccp
9522 @opindex ftree-bit-ccp
9523 Perform sparse conditional bit constant propagation on trees and propagate
9524 pointer alignment information.
9525 This pass only operates on local scalar variables and is enabled by default
9526 at @option{-O1} and higher, except for @option{-Og}.
9527 It requires that @option{-ftree-ccp} is enabled.
9528
9529 @item -ftree-ccp
9530 @opindex ftree-ccp
9531 Perform sparse conditional constant propagation (CCP) on trees. This
9532 pass only operates on local scalar variables and is enabled by default
9533 at @option{-O} and higher.
9534
9535 @item -fssa-backprop
9536 @opindex fssa-backprop
9537 Propagate information about uses of a value up the definition chain
9538 in order to simplify the definitions. For example, this pass strips
9539 sign operations if the sign of a value never matters. The flag is
9540 enabled by default at @option{-O} and higher.
9541
9542 @item -fssa-phiopt
9543 @opindex fssa-phiopt
9544 Perform pattern matching on SSA PHI nodes to optimize conditional
9545 code. This pass is enabled by default at @option{-O1} and higher,
9546 except for @option{-Og}.
9547
9548 @item -ftree-switch-conversion
9549 @opindex ftree-switch-conversion
9550 Perform conversion of simple initializations in a switch to
9551 initializations from a scalar array. This flag is enabled by default
9552 at @option{-O2} and higher.
9553
9554 @item -ftree-tail-merge
9555 @opindex ftree-tail-merge
9556 Look for identical code sequences. When found, replace one with a jump to the
9557 other. This optimization is known as tail merging or cross jumping. This flag
9558 is enabled by default at @option{-O2} and higher. The compilation time
9559 in this pass can
9560 be limited using @option{max-tail-merge-comparisons} parameter and
9561 @option{max-tail-merge-iterations} parameter.
9562
9563 @item -ftree-dce
9564 @opindex ftree-dce
9565 Perform dead code elimination (DCE) on trees. This flag is enabled by
9566 default at @option{-O} and higher.
9567
9568 @item -ftree-builtin-call-dce
9569 @opindex ftree-builtin-call-dce
9570 Perform conditional dead code elimination (DCE) for calls to built-in functions
9571 that may set @code{errno} but are otherwise free of side effects. This flag is
9572 enabled by default at @option{-O2} and higher if @option{-Os} is not also
9573 specified.
9574
9575 @item -ffinite-loops
9576 @opindex ffinite-loops
9577 @opindex fno-finite-loops
9578 Assume that a loop with an exit will eventually take the exit and not loop
9579 indefinitely. This allows the compiler to remove loops that otherwise have
9580 no side-effects, not considering eventual endless looping as such.
9581
9582 This option is enabled by default at @option{-O2}.
9583
9584 @item -ftree-dominator-opts
9585 @opindex ftree-dominator-opts
9586 Perform a variety of simple scalar cleanups (constant/copy
9587 propagation, redundancy elimination, range propagation and expression
9588 simplification) based on a dominator tree traversal. This also
9589 performs jump threading (to reduce jumps to jumps). This flag is
9590 enabled by default at @option{-O} and higher.
9591
9592 @item -ftree-dse
9593 @opindex ftree-dse
9594 Perform dead store elimination (DSE) on trees. A dead store is a store into
9595 a memory location that is later overwritten by another store without
9596 any intervening loads. In this case the earlier store can be deleted. This
9597 flag is enabled by default at @option{-O} and higher.
9598
9599 @item -ftree-ch
9600 @opindex ftree-ch
9601 Perform loop header copying on trees. This is beneficial since it increases
9602 effectiveness of code motion optimizations. It also saves one jump. This flag
9603 is enabled by default at @option{-O} and higher. It is not enabled
9604 for @option{-Os}, since it usually increases code size.
9605
9606 @item -ftree-loop-optimize
9607 @opindex ftree-loop-optimize
9608 Perform loop optimizations on trees. This flag is enabled by default
9609 at @option{-O} and higher.
9610
9611 @item -ftree-loop-linear
9612 @itemx -floop-strip-mine
9613 @itemx -floop-block
9614 @opindex ftree-loop-linear
9615 @opindex floop-strip-mine
9616 @opindex floop-block
9617 Perform loop nest optimizations. Same as
9618 @option{-floop-nest-optimize}. To use this code transformation, GCC has
9619 to be configured with @option{--with-isl} to enable the Graphite loop
9620 transformation infrastructure.
9621
9622 @item -fgraphite-identity
9623 @opindex fgraphite-identity
9624 Enable the identity transformation for graphite. For every SCoP we generate
9625 the polyhedral representation and transform it back to gimple. Using
9626 @option{-fgraphite-identity} we can check the costs or benefits of the
9627 GIMPLE -> GRAPHITE -> GIMPLE transformation. Some minimal optimizations
9628 are also performed by the code generator isl, like index splitting and
9629 dead code elimination in loops.
9630
9631 @item -floop-nest-optimize
9632 @opindex floop-nest-optimize
9633 Enable the isl based loop nest optimizer. This is a generic loop nest
9634 optimizer based on the Pluto optimization algorithms. It calculates a loop
9635 structure optimized for data-locality and parallelism. This option
9636 is experimental.
9637
9638 @item -floop-parallelize-all
9639 @opindex floop-parallelize-all
9640 Use the Graphite data dependence analysis to identify loops that can
9641 be parallelized. Parallelize all the loops that can be analyzed to
9642 not contain loop carried dependences without checking that it is
9643 profitable to parallelize the loops.
9644
9645 @item -ftree-coalesce-vars
9646 @opindex ftree-coalesce-vars
9647 While transforming the program out of the SSA representation, attempt to
9648 reduce copying by coalescing versions of different user-defined
9649 variables, instead of just compiler temporaries. This may severely
9650 limit the ability to debug an optimized program compiled with
9651 @option{-fno-var-tracking-assignments}. In the negated form, this flag
9652 prevents SSA coalescing of user variables. This option is enabled by
9653 default if optimization is enabled, and it does very little otherwise.
9654
9655 @item -ftree-loop-if-convert
9656 @opindex ftree-loop-if-convert
9657 Attempt to transform conditional jumps in the innermost loops to
9658 branch-less equivalents. The intent is to remove control-flow from
9659 the innermost loops in order to improve the ability of the
9660 vectorization pass to handle these loops. This is enabled by default
9661 if vectorization is enabled.
9662
9663 @item -ftree-loop-distribution
9664 @opindex ftree-loop-distribution
9665 Perform loop distribution. This flag can improve cache performance on
9666 big loop bodies and allow further loop optimizations, like
9667 parallelization or vectorization, to take place. For example, the loop
9668 @smallexample
9669 DO I = 1, N
9670 A(I) = B(I) + C
9671 D(I) = E(I) * F
9672 ENDDO
9673 @end smallexample
9674 is transformed to
9675 @smallexample
9676 DO I = 1, N
9677 A(I) = B(I) + C
9678 ENDDO
9679 DO I = 1, N
9680 D(I) = E(I) * F
9681 ENDDO
9682 @end smallexample
9683 This flag is enabled by default at @option{-O3}.
9684 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9685
9686 @item -ftree-loop-distribute-patterns
9687 @opindex ftree-loop-distribute-patterns
9688 Perform loop distribution of patterns that can be code generated with
9689 calls to a library. This flag is enabled by default at @option{-O3}, and
9690 by @option{-fprofile-use} and @option{-fauto-profile}.
9691
9692 This pass distributes the initialization loops and generates a call to
9693 memset zero. For example, the loop
9694 @smallexample
9695 DO I = 1, N
9696 A(I) = 0
9697 B(I) = A(I) + I
9698 ENDDO
9699 @end smallexample
9700 is transformed to
9701 @smallexample
9702 DO I = 1, N
9703 A(I) = 0
9704 ENDDO
9705 DO I = 1, N
9706 B(I) = A(I) + I
9707 ENDDO
9708 @end smallexample
9709 and the initialization loop is transformed into a call to memset zero.
9710 This flag is enabled by default at @option{-O3}.
9711 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9712
9713 @item -floop-interchange
9714 @opindex floop-interchange
9715 Perform loop interchange outside of graphite. This flag can improve cache
9716 performance on loop nest and allow further loop optimizations, like
9717 vectorization, to take place. For example, the loop
9718 @smallexample
9719 for (int i = 0; i < N; i++)
9720 for (int j = 0; j < N; j++)
9721 for (int k = 0; k < N; k++)
9722 c[i][j] = c[i][j] + a[i][k]*b[k][j];
9723 @end smallexample
9724 is transformed to
9725 @smallexample
9726 for (int i = 0; i < N; i++)
9727 for (int k = 0; k < N; k++)
9728 for (int j = 0; j < N; j++)
9729 c[i][j] = c[i][j] + a[i][k]*b[k][j];
9730 @end smallexample
9731 This flag is enabled by default at @option{-O3}.
9732 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9733
9734 @item -floop-unroll-and-jam
9735 @opindex floop-unroll-and-jam
9736 Apply unroll and jam transformations on feasible loops. In a loop
9737 nest this unrolls the outer loop by some factor and fuses the resulting
9738 multiple inner loops. This flag is enabled by default at @option{-O3}.
9739 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9740
9741 @item -ftree-loop-im
9742 @opindex ftree-loop-im
9743 Perform loop invariant motion on trees. This pass moves only invariants that
9744 are hard to handle at RTL level (function calls, operations that expand to
9745 nontrivial sequences of insns). With @option{-funswitch-loops} it also moves
9746 operands of conditions that are invariant out of the loop, so that we can use
9747 just trivial invariantness analysis in loop unswitching. The pass also includes
9748 store motion.
9749
9750 @item -ftree-loop-ivcanon
9751 @opindex ftree-loop-ivcanon
9752 Create a canonical counter for number of iterations in loops for which
9753 determining number of iterations requires complicated analysis. Later
9754 optimizations then may determine the number easily. Useful especially
9755 in connection with unrolling.
9756
9757 @item -ftree-scev-cprop
9758 @opindex ftree-scev-cprop
9759 Perform final value replacement. If a variable is modified in a loop
9760 in such a way that its value when exiting the loop can be determined using
9761 only its initial value and the number of loop iterations, replace uses of
9762 the final value by such a computation, provided it is sufficiently cheap.
9763 This reduces data dependencies and may allow further simplifications.
9764 Enabled by default at @option{-O} and higher.
9765
9766 @item -fivopts
9767 @opindex fivopts
9768 Perform induction variable optimizations (strength reduction, induction
9769 variable merging and induction variable elimination) on trees.
9770
9771 @item -ftree-parallelize-loops=n
9772 @opindex ftree-parallelize-loops
9773 Parallelize loops, i.e., split their iteration space to run in n threads.
9774 This is only possible for loops whose iterations are independent
9775 and can be arbitrarily reordered. The optimization is only
9776 profitable on multiprocessor machines, for loops that are CPU-intensive,
9777 rather than constrained e.g.@: by memory bandwidth. This option
9778 implies @option{-pthread}, and thus is only supported on targets
9779 that have support for @option{-pthread}.
9780
9781 @item -ftree-pta
9782 @opindex ftree-pta
9783 Perform function-local points-to analysis on trees. This flag is
9784 enabled by default at @option{-O1} and higher, except for @option{-Og}.
9785
9786 @item -ftree-sra
9787 @opindex ftree-sra
9788 Perform scalar replacement of aggregates. This pass replaces structure
9789 references with scalars to prevent committing structures to memory too
9790 early. This flag is enabled by default at @option{-O1} and higher,
9791 except for @option{-Og}.
9792
9793 @item -fstore-merging
9794 @opindex fstore-merging
9795 Perform merging of narrow stores to consecutive memory addresses. This pass
9796 merges contiguous stores of immediate values narrower than a word into fewer
9797 wider stores to reduce the number of instructions. This is enabled by default
9798 at @option{-O2} and higher as well as @option{-Os}.
9799
9800 @item -ftree-ter
9801 @opindex ftree-ter
9802 Perform temporary expression replacement during the SSA->normal phase. Single
9803 use/single def temporaries are replaced at their use location with their
9804 defining expression. This results in non-GIMPLE code, but gives the expanders
9805 much more complex trees to work on resulting in better RTL generation. This is
9806 enabled by default at @option{-O} and higher.
9807
9808 @item -ftree-slsr
9809 @opindex ftree-slsr
9810 Perform straight-line strength reduction on trees. This recognizes related
9811 expressions involving multiplications and replaces them by less expensive
9812 calculations when possible. This is enabled by default at @option{-O} and
9813 higher.
9814
9815 @item -ftree-vectorize
9816 @opindex ftree-vectorize
9817 Perform vectorization on trees. This flag enables @option{-ftree-loop-vectorize}
9818 and @option{-ftree-slp-vectorize} if not explicitly specified.
9819
9820 @item -ftree-loop-vectorize
9821 @opindex ftree-loop-vectorize
9822 Perform loop vectorization on trees. This flag is enabled by default at
9823 @option{-O3} and by @option{-ftree-vectorize}, @option{-fprofile-use},
9824 and @option{-fauto-profile}.
9825
9826 @item -ftree-slp-vectorize
9827 @opindex ftree-slp-vectorize
9828 Perform basic block vectorization on trees. This flag is enabled by default at
9829 @option{-O3} and by @option{-ftree-vectorize}, @option{-fprofile-use},
9830 and @option{-fauto-profile}.
9831
9832 @item -fvect-cost-model=@var{model}
9833 @opindex fvect-cost-model
9834 Alter the cost model used for vectorization. The @var{model} argument
9835 should be one of @samp{unlimited}, @samp{dynamic} or @samp{cheap}.
9836 With the @samp{unlimited} model the vectorized code-path is assumed
9837 to be profitable while with the @samp{dynamic} model a runtime check
9838 guards the vectorized code-path to enable it only for iteration
9839 counts that will likely execute faster than when executing the original
9840 scalar loop. The @samp{cheap} model disables vectorization of
9841 loops where doing so would be cost prohibitive for example due to
9842 required runtime checks for data dependence or alignment but otherwise
9843 is equal to the @samp{dynamic} model.
9844 The default cost model depends on other optimization flags and is
9845 either @samp{dynamic} or @samp{cheap}.
9846
9847 @item -fsimd-cost-model=@var{model}
9848 @opindex fsimd-cost-model
9849 Alter the cost model used for vectorization of loops marked with the OpenMP
9850 simd directive. The @var{model} argument should be one of
9851 @samp{unlimited}, @samp{dynamic}, @samp{cheap}. All values of @var{model}
9852 have the same meaning as described in @option{-fvect-cost-model} and by
9853 default a cost model defined with @option{-fvect-cost-model} is used.
9854
9855 @item -ftree-vrp
9856 @opindex ftree-vrp
9857 Perform Value Range Propagation on trees. This is similar to the
9858 constant propagation pass, but instead of values, ranges of values are
9859 propagated. This allows the optimizers to remove unnecessary range
9860 checks like array bound checks and null pointer checks. This is
9861 enabled by default at @option{-O2} and higher. Null pointer check
9862 elimination is only done if @option{-fdelete-null-pointer-checks} is
9863 enabled.
9864
9865 @item -fsplit-paths
9866 @opindex fsplit-paths
9867 Split paths leading to loop backedges. This can improve dead code
9868 elimination and common subexpression elimination. This is enabled by
9869 default at @option{-O3} and above.
9870
9871 @item -fsplit-ivs-in-unroller
9872 @opindex fsplit-ivs-in-unroller
9873 Enables expression of values of induction variables in later iterations
9874 of the unrolled loop using the value in the first iteration. This breaks
9875 long dependency chains, thus improving efficiency of the scheduling passes.
9876
9877 A combination of @option{-fweb} and CSE is often sufficient to obtain the
9878 same effect. However, that is not reliable in cases where the loop body
9879 is more complicated than a single basic block. It also does not work at all
9880 on some architectures due to restrictions in the CSE pass.
9881
9882 This optimization is enabled by default.
9883
9884 @item -fvariable-expansion-in-unroller
9885 @opindex fvariable-expansion-in-unroller
9886 With this option, the compiler creates multiple copies of some
9887 local variables when unrolling a loop, which can result in superior code.
9888
9889 This optimization is enabled by default for PowerPC targets, but disabled
9890 by default otherwise.
9891
9892 @item -fpartial-inlining
9893 @opindex fpartial-inlining
9894 Inline parts of functions. This option has any effect only
9895 when inlining itself is turned on by the @option{-finline-functions}
9896 or @option{-finline-small-functions} options.
9897
9898 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9899
9900 @item -fpredictive-commoning
9901 @opindex fpredictive-commoning
9902 Perform predictive commoning optimization, i.e., reusing computations
9903 (especially memory loads and stores) performed in previous
9904 iterations of loops.
9905
9906 This option is enabled at level @option{-O3}.
9907 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9908
9909 @item -fprefetch-loop-arrays
9910 @opindex fprefetch-loop-arrays
9911 If supported by the target machine, generate instructions to prefetch
9912 memory to improve the performance of loops that access large arrays.
9913
9914 This option may generate better or worse code; results are highly
9915 dependent on the structure of loops within the source code.
9916
9917 Disabled at level @option{-Os}.
9918
9919 @item -fno-printf-return-value
9920 @opindex fno-printf-return-value
9921 @opindex fprintf-return-value
9922 Do not substitute constants for known return value of formatted output
9923 functions such as @code{sprintf}, @code{snprintf}, @code{vsprintf}, and
9924 @code{vsnprintf} (but not @code{printf} of @code{fprintf}). This
9925 transformation allows GCC to optimize or even eliminate branches based
9926 on the known return value of these functions called with arguments that
9927 are either constant, or whose values are known to be in a range that
9928 makes determining the exact return value possible. For example, when
9929 @option{-fprintf-return-value} is in effect, both the branch and the
9930 body of the @code{if} statement (but not the call to @code{snprint})
9931 can be optimized away when @code{i} is a 32-bit or smaller integer
9932 because the return value is guaranteed to be at most 8.
9933
9934 @smallexample
9935 char buf[9];
9936 if (snprintf (buf, "%08x", i) >= sizeof buf)
9937 @dots{}
9938 @end smallexample
9939
9940 The @option{-fprintf-return-value} option relies on other optimizations
9941 and yields best results with @option{-O2} and above. It works in tandem
9942 with the @option{-Wformat-overflow} and @option{-Wformat-truncation}
9943 options. The @option{-fprintf-return-value} option is enabled by default.
9944
9945 @item -fno-peephole
9946 @itemx -fno-peephole2
9947 @opindex fno-peephole
9948 @opindex fpeephole
9949 @opindex fno-peephole2
9950 @opindex fpeephole2
9951 Disable any machine-specific peephole optimizations. The difference
9952 between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
9953 are implemented in the compiler; some targets use one, some use the
9954 other, a few use both.
9955
9956 @option{-fpeephole} is enabled by default.
9957 @option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9958
9959 @item -fno-guess-branch-probability
9960 @opindex fno-guess-branch-probability
9961 @opindex fguess-branch-probability
9962 Do not guess branch probabilities using heuristics.
9963
9964 GCC uses heuristics to guess branch probabilities if they are
9965 not provided by profiling feedback (@option{-fprofile-arcs}). These
9966 heuristics are based on the control flow graph. If some branch probabilities
9967 are specified by @code{__builtin_expect}, then the heuristics are
9968 used to guess branch probabilities for the rest of the control flow graph,
9969 taking the @code{__builtin_expect} info into account. The interactions
9970 between the heuristics and @code{__builtin_expect} can be complex, and in
9971 some cases, it may be useful to disable the heuristics so that the effects
9972 of @code{__builtin_expect} are easier to understand.
9973
9974 It is also possible to specify expected probability of the expression
9975 with @code{__builtin_expect_with_probability} built-in function.
9976
9977 The default is @option{-fguess-branch-probability} at levels
9978 @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9979
9980 @item -freorder-blocks
9981 @opindex freorder-blocks
9982 Reorder basic blocks in the compiled function in order to reduce number of
9983 taken branches and improve code locality.
9984
9985 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9986
9987 @item -freorder-blocks-algorithm=@var{algorithm}
9988 @opindex freorder-blocks-algorithm
9989 Use the specified algorithm for basic block reordering. The
9990 @var{algorithm} argument can be @samp{simple}, which does not increase
9991 code size (except sometimes due to secondary effects like alignment),
9992 or @samp{stc}, the ``software trace cache'' algorithm, which tries to
9993 put all often executed code together, minimizing the number of branches
9994 executed by making extra copies of code.
9995
9996 The default is @samp{simple} at levels @option{-O}, @option{-Os}, and
9997 @samp{stc} at levels @option{-O2}, @option{-O3}.
9998
9999 @item -freorder-blocks-and-partition
10000 @opindex freorder-blocks-and-partition
10001 In addition to reordering basic blocks in the compiled function, in order
10002 to reduce number of taken branches, partitions hot and cold basic blocks
10003 into separate sections of the assembly and @file{.o} files, to improve
10004 paging and cache locality performance.
10005
10006 This optimization is automatically turned off in the presence of
10007 exception handling or unwind tables (on targets using setjump/longjump or target specific scheme), for linkonce sections, for functions with a user-defined
10008 section attribute and on any architecture that does not support named
10009 sections. When @option{-fsplit-stack} is used this option is not
10010 enabled by default (to avoid linker errors), but may be enabled
10011 explicitly (if using a working linker).
10012
10013 Enabled for x86 at levels @option{-O2}, @option{-O3}, @option{-Os}.
10014
10015 @item -freorder-functions
10016 @opindex freorder-functions
10017 Reorder functions in the object file in order to
10018 improve code locality. This is implemented by using special
10019 subsections @code{.text.hot} for most frequently executed functions and
10020 @code{.text.unlikely} for unlikely executed functions. Reordering is done by
10021 the linker so object file format must support named sections and linker must
10022 place them in a reasonable way.
10023
10024 This option isn't effective unless you either provide profile feedback
10025 (see @option{-fprofile-arcs} for details) or manually annotate functions with
10026 @code{hot} or @code{cold} attributes (@pxref{Common Function Attributes}).
10027
10028 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
10029
10030 @item -fstrict-aliasing
10031 @opindex fstrict-aliasing
10032 Allow the compiler to assume the strictest aliasing rules applicable to
10033 the language being compiled. For C (and C++), this activates
10034 optimizations based on the type of expressions. In particular, an
10035 object of one type is assumed never to reside at the same address as an
10036 object of a different type, unless the types are almost the same. For
10037 example, an @code{unsigned int} can alias an @code{int}, but not a
10038 @code{void*} or a @code{double}. A character type may alias any other
10039 type.
10040
10041 @anchor{Type-punning}Pay special attention to code like this:
10042 @smallexample
10043 union a_union @{
10044 int i;
10045 double d;
10046 @};
10047
10048 int f() @{
10049 union a_union t;
10050 t.d = 3.0;
10051 return t.i;
10052 @}
10053 @end smallexample
10054 The practice of reading from a different union member than the one most
10055 recently written to (called ``type-punning'') is common. Even with
10056 @option{-fstrict-aliasing}, type-punning is allowed, provided the memory
10057 is accessed through the union type. So, the code above works as
10058 expected. @xref{Structures unions enumerations and bit-fields
10059 implementation}. However, this code might not:
10060 @smallexample
10061 int f() @{
10062 union a_union t;
10063 int* ip;
10064 t.d = 3.0;
10065 ip = &t.i;
10066 return *ip;
10067 @}
10068 @end smallexample
10069
10070 Similarly, access by taking the address, casting the resulting pointer
10071 and dereferencing the result has undefined behavior, even if the cast
10072 uses a union type, e.g.:
10073 @smallexample
10074 int f() @{
10075 double d = 3.0;
10076 return ((union a_union *) &d)->i;
10077 @}
10078 @end smallexample
10079
10080 The @option{-fstrict-aliasing} option is enabled at levels
10081 @option{-O2}, @option{-O3}, @option{-Os}.
10082
10083 @item -falign-functions
10084 @itemx -falign-functions=@var{n}
10085 @itemx -falign-functions=@var{n}:@var{m}
10086 @itemx -falign-functions=@var{n}:@var{m}:@var{n2}
10087 @itemx -falign-functions=@var{n}:@var{m}:@var{n2}:@var{m2}
10088 @opindex falign-functions
10089 Align the start of functions to the next power-of-two greater than
10090 @var{n}, skipping up to @var{m}-1 bytes. This ensures that at least
10091 the first @var{m} bytes of the function can be fetched by the CPU
10092 without crossing an @var{n}-byte alignment boundary.
10093
10094 If @var{m} is not specified, it defaults to @var{n}.
10095
10096 Examples: @option{-falign-functions=32} aligns functions to the next
10097 32-byte boundary, @option{-falign-functions=24} aligns to the next
10098 32-byte boundary only if this can be done by skipping 23 bytes or less,
10099 @option{-falign-functions=32:7} aligns to the next
10100 32-byte boundary only if this can be done by skipping 6 bytes or less.
10101
10102 The second pair of @var{n2}:@var{m2} values allows you to specify
10103 a secondary alignment: @option{-falign-functions=64:7:32:3} aligns to
10104 the next 64-byte boundary if this can be done by skipping 6 bytes or less,
10105 otherwise aligns to the next 32-byte boundary if this can be done
10106 by skipping 2 bytes or less.
10107 If @var{m2} is not specified, it defaults to @var{n2}.
10108
10109 Some assemblers only support this flag when @var{n} is a power of two;
10110 in that case, it is rounded up.
10111
10112 @option{-fno-align-functions} and @option{-falign-functions=1} are
10113 equivalent and mean that functions are not aligned.
10114
10115 If @var{n} is not specified or is zero, use a machine-dependent default.
10116 The maximum allowed @var{n} option value is 65536.
10117
10118 Enabled at levels @option{-O2}, @option{-O3}.
10119
10120 @item -flimit-function-alignment
10121 If this option is enabled, the compiler tries to avoid unnecessarily
10122 overaligning functions. It attempts to instruct the assembler to align
10123 by the amount specified by @option{-falign-functions}, but not to
10124 skip more bytes than the size of the function.
10125
10126 @item -falign-labels
10127 @itemx -falign-labels=@var{n}
10128 @itemx -falign-labels=@var{n}:@var{m}
10129 @itemx -falign-labels=@var{n}:@var{m}:@var{n2}
10130 @itemx -falign-labels=@var{n}:@var{m}:@var{n2}:@var{m2}
10131 @opindex falign-labels
10132 Align all branch targets to a power-of-two boundary.
10133
10134 Parameters of this option are analogous to the @option{-falign-functions} option.
10135 @option{-fno-align-labels} and @option{-falign-labels=1} are
10136 equivalent and mean that labels are not aligned.
10137
10138 If @option{-falign-loops} or @option{-falign-jumps} are applicable and
10139 are greater than this value, then their values are used instead.
10140
10141 If @var{n} is not specified or is zero, use a machine-dependent default
10142 which is very likely to be @samp{1}, meaning no alignment.
10143 The maximum allowed @var{n} option value is 65536.
10144
10145 Enabled at levels @option{-O2}, @option{-O3}.
10146
10147 @item -falign-loops
10148 @itemx -falign-loops=@var{n}
10149 @itemx -falign-loops=@var{n}:@var{m}
10150 @itemx -falign-loops=@var{n}:@var{m}:@var{n2}
10151 @itemx -falign-loops=@var{n}:@var{m}:@var{n2}:@var{m2}
10152 @opindex falign-loops
10153 Align loops to a power-of-two boundary. If the loops are executed
10154 many times, this makes up for any execution of the dummy padding
10155 instructions.
10156
10157 Parameters of this option are analogous to the @option{-falign-functions} option.
10158 @option{-fno-align-loops} and @option{-falign-loops=1} are
10159 equivalent and mean that loops are not aligned.
10160 The maximum allowed @var{n} option value is 65536.
10161
10162 If @var{n} is not specified or is zero, use a machine-dependent default.
10163
10164 Enabled at levels @option{-O2}, @option{-O3}.
10165
10166 @item -falign-jumps
10167 @itemx -falign-jumps=@var{n}
10168 @itemx -falign-jumps=@var{n}:@var{m}
10169 @itemx -falign-jumps=@var{n}:@var{m}:@var{n2}
10170 @itemx -falign-jumps=@var{n}:@var{m}:@var{n2}:@var{m2}
10171 @opindex falign-jumps
10172 Align branch targets to a power-of-two boundary, for branch targets
10173 where the targets can only be reached by jumping. In this case,
10174 no dummy operations need be executed.
10175
10176 Parameters of this option are analogous to the @option{-falign-functions} option.
10177 @option{-fno-align-jumps} and @option{-falign-jumps=1} are
10178 equivalent and mean that loops are not aligned.
10179
10180 If @var{n} is not specified or is zero, use a machine-dependent default.
10181 The maximum allowed @var{n} option value is 65536.
10182
10183 Enabled at levels @option{-O2}, @option{-O3}.
10184
10185 @item -funit-at-a-time
10186 @opindex funit-at-a-time
10187 This option is left for compatibility reasons. @option{-funit-at-a-time}
10188 has no effect, while @option{-fno-unit-at-a-time} implies
10189 @option{-fno-toplevel-reorder} and @option{-fno-section-anchors}.
10190
10191 Enabled by default.
10192
10193 @item -fno-toplevel-reorder
10194 @opindex fno-toplevel-reorder
10195 @opindex ftoplevel-reorder
10196 Do not reorder top-level functions, variables, and @code{asm}
10197 statements. Output them in the same order that they appear in the
10198 input file. When this option is used, unreferenced static variables
10199 are not removed. This option is intended to support existing code
10200 that relies on a particular ordering. For new code, it is better to
10201 use attributes when possible.
10202
10203 @option{-ftoplevel-reorder} is the default at @option{-O1} and higher, and
10204 also at @option{-O0} if @option{-fsection-anchors} is explicitly requested.
10205 Additionally @option{-fno-toplevel-reorder} implies
10206 @option{-fno-section-anchors}.
10207
10208 @item -fweb
10209 @opindex fweb
10210 Constructs webs as commonly used for register allocation purposes and assign
10211 each web individual pseudo register. This allows the register allocation pass
10212 to operate on pseudos directly, but also strengthens several other optimization
10213 passes, such as CSE, loop optimizer and trivial dead code remover. It can,
10214 however, make debugging impossible, since variables no longer stay in a
10215 ``home register''.
10216
10217 Enabled by default with @option{-funroll-loops}.
10218
10219 @item -fwhole-program
10220 @opindex fwhole-program
10221 Assume that the current compilation unit represents the whole program being
10222 compiled. All public functions and variables with the exception of @code{main}
10223 and those merged by attribute @code{externally_visible} become static functions
10224 and in effect are optimized more aggressively by interprocedural optimizers.
10225
10226 This option should not be used in combination with @option{-flto}.
10227 Instead relying on a linker plugin should provide safer and more precise
10228 information.
10229
10230 @item -flto[=@var{n}]
10231 @opindex flto
10232 This option runs the standard link-time optimizer. When invoked
10233 with source code, it generates GIMPLE (one of GCC's internal
10234 representations) and writes it to special ELF sections in the object
10235 file. When the object files are linked together, all the function
10236 bodies are read from these ELF sections and instantiated as if they
10237 had been part of the same translation unit.
10238
10239 To use the link-time optimizer, @option{-flto} and optimization
10240 options should be specified at compile time and during the final link.
10241 It is recommended that you compile all the files participating in the
10242 same link with the same options and also specify those options at
10243 link time.
10244 For example:
10245
10246 @smallexample
10247 gcc -c -O2 -flto foo.c
10248 gcc -c -O2 -flto bar.c
10249 gcc -o myprog -flto -O2 foo.o bar.o
10250 @end smallexample
10251
10252 The first two invocations to GCC save a bytecode representation
10253 of GIMPLE into special ELF sections inside @file{foo.o} and
10254 @file{bar.o}. The final invocation reads the GIMPLE bytecode from
10255 @file{foo.o} and @file{bar.o}, merges the two files into a single
10256 internal image, and compiles the result as usual. Since both
10257 @file{foo.o} and @file{bar.o} are merged into a single image, this
10258 causes all the interprocedural analyses and optimizations in GCC to
10259 work across the two files as if they were a single one. This means,
10260 for example, that the inliner is able to inline functions in
10261 @file{bar.o} into functions in @file{foo.o} and vice-versa.
10262
10263 Another (simpler) way to enable link-time optimization is:
10264
10265 @smallexample
10266 gcc -o myprog -flto -O2 foo.c bar.c
10267 @end smallexample
10268
10269 The above generates bytecode for @file{foo.c} and @file{bar.c},
10270 merges them together into a single GIMPLE representation and optimizes
10271 them as usual to produce @file{myprog}.
10272
10273 The important thing to keep in mind is that to enable link-time
10274 optimizations you need to use the GCC driver to perform the link step.
10275 GCC automatically performs link-time optimization if any of the
10276 objects involved were compiled with the @option{-flto} command-line option.
10277 You can always override
10278 the automatic decision to do link-time optimization
10279 by passing @option{-fno-lto} to the link command.
10280
10281 To make whole program optimization effective, it is necessary to make
10282 certain whole program assumptions. The compiler needs to know
10283 what functions and variables can be accessed by libraries and runtime
10284 outside of the link-time optimized unit. When supported by the linker,
10285 the linker plugin (see @option{-fuse-linker-plugin}) passes information
10286 to the compiler about used and externally visible symbols. When
10287 the linker plugin is not available, @option{-fwhole-program} should be
10288 used to allow the compiler to make these assumptions, which leads
10289 to more aggressive optimization decisions.
10290
10291 When a file is compiled with @option{-flto} without
10292 @option{-fuse-linker-plugin}, the generated object file is larger than
10293 a regular object file because it contains GIMPLE bytecodes and the usual
10294 final code (see @option{-ffat-lto-objects}. This means that
10295 object files with LTO information can be linked as normal object
10296 files; if @option{-fno-lto} is passed to the linker, no
10297 interprocedural optimizations are applied. Note that when
10298 @option{-fno-fat-lto-objects} is enabled the compile stage is faster
10299 but you cannot perform a regular, non-LTO link on them.
10300
10301 When producing the final binary, GCC only
10302 applies link-time optimizations to those files that contain bytecode.
10303 Therefore, you can mix and match object files and libraries with
10304 GIMPLE bytecodes and final object code. GCC automatically selects
10305 which files to optimize in LTO mode and which files to link without
10306 further processing.
10307
10308 Generally, options specified at link time override those
10309 specified at compile time, although in some cases GCC attempts to infer
10310 link-time options from the settings used to compile the input files.
10311
10312 If you do not specify an optimization level option @option{-O} at
10313 link time, then GCC uses the highest optimization level
10314 used when compiling the object files. Note that it is generally
10315 ineffective to specify an optimization level option only at link time and
10316 not at compile time, for two reasons. First, compiling without
10317 optimization suppresses compiler passes that gather information
10318 needed for effective optimization at link time. Second, some early
10319 optimization passes can be performed only at compile time and
10320 not at link time.
10321
10322 There are some code generation flags preserved by GCC when
10323 generating bytecodes, as they need to be used during the final link.
10324 Currently, the following options and their settings are taken from
10325 the first object file that explicitly specifies them:
10326 @option{-fPIC}, @option{-fpic}, @option{-fpie}, @option{-fcommon},
10327 @option{-fexceptions}, @option{-fnon-call-exceptions}, @option{-fgnu-tm}
10328 and all the @option{-m} target flags.
10329
10330 Certain ABI-changing flags are required to match in all compilation units,
10331 and trying to override this at link time with a conflicting value
10332 is ignored. This includes options such as @option{-freg-struct-return}
10333 and @option{-fpcc-struct-return}.
10334
10335 Other options such as @option{-ffp-contract}, @option{-fno-strict-overflow},
10336 @option{-fwrapv}, @option{-fno-trapv} or @option{-fno-strict-aliasing}
10337 are passed through to the link stage and merged conservatively for
10338 conflicting translation units. Specifically
10339 @option{-fno-strict-overflow}, @option{-fwrapv} and @option{-fno-trapv} take
10340 precedence; and for example @option{-ffp-contract=off} takes precedence
10341 over @option{-ffp-contract=fast}. You can override them at link time.
10342
10343 To enable debug info generation you need to supply @option{-g} at
10344 compile-time. If any of the input files at link time were built
10345 with debug info generation enabled the link will enable debug info
10346 generation as well. Any elaborate debug info settings
10347 like the dwarf level @option{-gdwarf-5} need to be explicitly repeated
10348 at the linker command line and mixing different settings in different
10349 translation units is discouraged.
10350
10351 If LTO encounters objects with C linkage declared with incompatible
10352 types in separate translation units to be linked together (undefined
10353 behavior according to ISO C99 6.2.7), a non-fatal diagnostic may be
10354 issued. The behavior is still undefined at run time. Similar
10355 diagnostics may be raised for other languages.
10356
10357 Another feature of LTO is that it is possible to apply interprocedural
10358 optimizations on files written in different languages:
10359
10360 @smallexample
10361 gcc -c -flto foo.c
10362 g++ -c -flto bar.cc
10363 gfortran -c -flto baz.f90
10364 g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
10365 @end smallexample
10366
10367 Notice that the final link is done with @command{g++} to get the C++
10368 runtime libraries and @option{-lgfortran} is added to get the Fortran
10369 runtime libraries. In general, when mixing languages in LTO mode, you
10370 should use the same link command options as when mixing languages in a
10371 regular (non-LTO) compilation.
10372
10373 If object files containing GIMPLE bytecode are stored in a library archive, say
10374 @file{libfoo.a}, it is possible to extract and use them in an LTO link if you
10375 are using a linker with plugin support. To create static libraries suitable
10376 for LTO, use @command{gcc-ar} and @command{gcc-ranlib} instead of @command{ar}
10377 and @command{ranlib};
10378 to show the symbols of object files with GIMPLE bytecode, use
10379 @command{gcc-nm}. Those commands require that @command{ar}, @command{ranlib}
10380 and @command{nm} have been compiled with plugin support. At link time, use the
10381 flag @option{-fuse-linker-plugin} to ensure that the library participates in
10382 the LTO optimization process:
10383
10384 @smallexample
10385 gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
10386 @end smallexample
10387
10388 With the linker plugin enabled, the linker extracts the needed
10389 GIMPLE files from @file{libfoo.a} and passes them on to the running GCC
10390 to make them part of the aggregated GIMPLE image to be optimized.
10391
10392 If you are not using a linker with plugin support and/or do not
10393 enable the linker plugin, then the objects inside @file{libfoo.a}
10394 are extracted and linked as usual, but they do not participate
10395 in the LTO optimization process. In order to make a static library suitable
10396 for both LTO optimization and usual linkage, compile its object files with
10397 @option{-flto} @option{-ffat-lto-objects}.
10398
10399 Link-time optimizations do not require the presence of the whole program to
10400 operate. If the program does not require any symbols to be exported, it is
10401 possible to combine @option{-flto} and @option{-fwhole-program} to allow
10402 the interprocedural optimizers to use more aggressive assumptions which may
10403 lead to improved optimization opportunities.
10404 Use of @option{-fwhole-program} is not needed when linker plugin is
10405 active (see @option{-fuse-linker-plugin}).
10406
10407 The current implementation of LTO makes no
10408 attempt to generate bytecode that is portable between different
10409 types of hosts. The bytecode files are versioned and there is a
10410 strict version check, so bytecode files generated in one version of
10411 GCC do not work with an older or newer version of GCC.
10412
10413 Link-time optimization does not work well with generation of debugging
10414 information on systems other than those using a combination of ELF and
10415 DWARF.
10416
10417 If you specify the optional @var{n}, the optimization and code
10418 generation done at link time is executed in parallel using @var{n}
10419 parallel jobs by utilizing an installed @command{make} program. The
10420 environment variable @env{MAKE} may be used to override the program
10421 used.
10422
10423 You can also specify @option{-flto=jobserver} to use GNU make's
10424 job server mode to determine the number of parallel jobs. This
10425 is useful when the Makefile calling GCC is already executing in parallel.
10426 You must prepend a @samp{+} to the command recipe in the parent Makefile
10427 for this to work. This option likely only works if @env{MAKE} is
10428 GNU make. Even without the option value, GCC tries to automatically
10429 detect a running GNU make's job server.
10430
10431 Use @option{-flto=auto} to use GNU make's job server, if available,
10432 or otherwise fall back to autodetection of the number of CPU threads
10433 present in your system.
10434
10435 @item -flto-partition=@var{alg}
10436 @opindex flto-partition
10437 Specify the partitioning algorithm used by the link-time optimizer.
10438 The value is either @samp{1to1} to specify a partitioning mirroring
10439 the original source files or @samp{balanced} to specify partitioning
10440 into equally sized chunks (whenever possible) or @samp{max} to create
10441 new partition for every symbol where possible. Specifying @samp{none}
10442 as an algorithm disables partitioning and streaming completely.
10443 The default value is @samp{balanced}. While @samp{1to1} can be used
10444 as an workaround for various code ordering issues, the @samp{max}
10445 partitioning is intended for internal testing only.
10446 The value @samp{one} specifies that exactly one partition should be
10447 used while the value @samp{none} bypasses partitioning and executes
10448 the link-time optimization step directly from the WPA phase.
10449
10450 @item -flto-compression-level=@var{n}
10451 @opindex flto-compression-level
10452 This option specifies the level of compression used for intermediate
10453 language written to LTO object files, and is only meaningful in
10454 conjunction with LTO mode (@option{-flto}). Valid
10455 values are 0 (no compression) to 9 (maximum compression). Values
10456 outside this range are clamped to either 0 or 9. If the option is not
10457 given, a default balanced compression setting is used.
10458
10459 @item -fuse-linker-plugin
10460 @opindex fuse-linker-plugin
10461 Enables the use of a linker plugin during link-time optimization. This
10462 option relies on plugin support in the linker, which is available in gold
10463 or in GNU ld 2.21 or newer.
10464
10465 This option enables the extraction of object files with GIMPLE bytecode out
10466 of library archives. This improves the quality of optimization by exposing
10467 more code to the link-time optimizer. This information specifies what
10468 symbols can be accessed externally (by non-LTO object or during dynamic
10469 linking). Resulting code quality improvements on binaries (and shared
10470 libraries that use hidden visibility) are similar to @option{-fwhole-program}.
10471 See @option{-flto} for a description of the effect of this flag and how to
10472 use it.
10473
10474 This option is enabled by default when LTO support in GCC is enabled
10475 and GCC was configured for use with
10476 a linker supporting plugins (GNU ld 2.21 or newer or gold).
10477
10478 @item -ffat-lto-objects
10479 @opindex ffat-lto-objects
10480 Fat LTO objects are object files that contain both the intermediate language
10481 and the object code. This makes them usable for both LTO linking and normal
10482 linking. This option is effective only when compiling with @option{-flto}
10483 and is ignored at link time.
10484
10485 @option{-fno-fat-lto-objects} improves compilation time over plain LTO, but
10486 requires the complete toolchain to be aware of LTO. It requires a linker with
10487 linker plugin support for basic functionality. Additionally,
10488 @command{nm}, @command{ar} and @command{ranlib}
10489 need to support linker plugins to allow a full-featured build environment
10490 (capable of building static libraries etc). GCC provides the @command{gcc-ar},
10491 @command{gcc-nm}, @command{gcc-ranlib} wrappers to pass the right options
10492 to these tools. With non fat LTO makefiles need to be modified to use them.
10493
10494 Note that modern binutils provide plugin auto-load mechanism.
10495 Installing the linker plugin into @file{$libdir/bfd-plugins} has the same
10496 effect as usage of the command wrappers (@command{gcc-ar}, @command{gcc-nm} and
10497 @command{gcc-ranlib}).
10498
10499 The default is @option{-fno-fat-lto-objects} on targets with linker plugin
10500 support.
10501
10502 @item -fcompare-elim
10503 @opindex fcompare-elim
10504 After register allocation and post-register allocation instruction splitting,
10505 identify arithmetic instructions that compute processor flags similar to a
10506 comparison operation based on that arithmetic. If possible, eliminate the
10507 explicit comparison operation.
10508
10509 This pass only applies to certain targets that cannot explicitly represent
10510 the comparison operation before register allocation is complete.
10511
10512 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
10513
10514 @item -fcprop-registers
10515 @opindex fcprop-registers
10516 After register allocation and post-register allocation instruction splitting,
10517 perform a copy-propagation pass to try to reduce scheduling dependencies
10518 and occasionally eliminate the copy.
10519
10520 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
10521
10522 @item -fprofile-correction
10523 @opindex fprofile-correction
10524 Profiles collected using an instrumented binary for multi-threaded programs may
10525 be inconsistent due to missed counter updates. When this option is specified,
10526 GCC uses heuristics to correct or smooth out such inconsistencies. By
10527 default, GCC emits an error message when an inconsistent profile is detected.
10528
10529 This option is enabled by @option{-fauto-profile}.
10530
10531 @item -fprofile-use
10532 @itemx -fprofile-use=@var{path}
10533 @opindex fprofile-use
10534 Enable profile feedback-directed optimizations,
10535 and the following optimizations, many of which
10536 are generally profitable only with profile feedback available:
10537
10538 @gccoptlist{-fbranch-probabilities -fprofile-values @gol
10539 -funroll-loops -fpeel-loops -ftracer -fvpt @gol
10540 -finline-functions -fipa-cp -fipa-cp-clone -fipa-bit-cp @gol
10541 -fpredictive-commoning -fsplit-loops -funswitch-loops @gol
10542 -fgcse-after-reload -ftree-loop-vectorize -ftree-slp-vectorize @gol
10543 -fvect-cost-model=dynamic -ftree-loop-distribute-patterns @gol
10544 -fprofile-reorder-functions}
10545
10546 Before you can use this option, you must first generate profiling information.
10547 @xref{Instrumentation Options}, for information about the
10548 @option{-fprofile-generate} option.
10549
10550 By default, GCC emits an error message if the feedback profiles do not
10551 match the source code. This error can be turned into a warning by using
10552 @option{-Wno-error=coverage-mismatch}. Note this may result in poorly
10553 optimized code. Additionally, by default, GCC also emits a warning message if
10554 the feedback profiles do not exist (see @option{-Wmissing-profile}).
10555
10556 If @var{path} is specified, GCC looks at the @var{path} to find
10557 the profile feedback data files. See @option{-fprofile-dir}.
10558
10559 @item -fauto-profile
10560 @itemx -fauto-profile=@var{path}
10561 @opindex fauto-profile
10562 Enable sampling-based feedback-directed optimizations,
10563 and the following optimizations,
10564 many of which are generally profitable only with profile feedback available:
10565
10566 @gccoptlist{-fbranch-probabilities -fprofile-values @gol
10567 -funroll-loops -fpeel-loops -ftracer -fvpt @gol
10568 -finline-functions -fipa-cp -fipa-cp-clone -fipa-bit-cp @gol
10569 -fpredictive-commoning -fsplit-loops -funswitch-loops @gol
10570 -fgcse-after-reload -ftree-loop-vectorize -ftree-slp-vectorize @gol
10571 -fvect-cost-model=dynamic -ftree-loop-distribute-patterns @gol
10572 -fprofile-correction}
10573
10574 @var{path} is the name of a file containing AutoFDO profile information.
10575 If omitted, it defaults to @file{fbdata.afdo} in the current directory.
10576
10577 Producing an AutoFDO profile data file requires running your program
10578 with the @command{perf} utility on a supported GNU/Linux target system.
10579 For more information, see @uref{https://perf.wiki.kernel.org/}.
10580
10581 E.g.
10582 @smallexample
10583 perf record -e br_inst_retired:near_taken -b -o perf.data \
10584 -- your_program
10585 @end smallexample
10586
10587 Then use the @command{create_gcov} tool to convert the raw profile data
10588 to a format that can be used by GCC.@ You must also supply the
10589 unstripped binary for your program to this tool.
10590 See @uref{https://github.com/google/autofdo}.
10591
10592 E.g.
10593 @smallexample
10594 create_gcov --binary=your_program.unstripped --profile=perf.data \
10595 --gcov=profile.afdo
10596 @end smallexample
10597 @end table
10598
10599 The following options control compiler behavior regarding floating-point
10600 arithmetic. These options trade off between speed and
10601 correctness. All must be specifically enabled.
10602
10603 @table @gcctabopt
10604 @item -ffloat-store
10605 @opindex ffloat-store
10606 Do not store floating-point variables in registers, and inhibit other
10607 options that might change whether a floating-point value is taken from a
10608 register or memory.
10609
10610 @cindex floating-point precision
10611 This option prevents undesirable excess precision on machines such as
10612 the 68000 where the floating registers (of the 68881) keep more
10613 precision than a @code{double} is supposed to have. Similarly for the
10614 x86 architecture. For most programs, the excess precision does only
10615 good, but a few programs rely on the precise definition of IEEE floating
10616 point. Use @option{-ffloat-store} for such programs, after modifying
10617 them to store all pertinent intermediate computations into variables.
10618
10619 @item -fexcess-precision=@var{style}
10620 @opindex fexcess-precision
10621 This option allows further control over excess precision on machines
10622 where floating-point operations occur in a format with more precision or
10623 range than the IEEE standard and interchange floating-point types. By
10624 default, @option{-fexcess-precision=fast} is in effect; this means that
10625 operations may be carried out in a wider precision than the types specified
10626 in the source if that would result in faster code, and it is unpredictable
10627 when rounding to the types specified in the source code takes place.
10628 When compiling C, if @option{-fexcess-precision=standard} is specified then
10629 excess precision follows the rules specified in ISO C99; in particular,
10630 both casts and assignments cause values to be rounded to their
10631 semantic types (whereas @option{-ffloat-store} only affects
10632 assignments). This option is enabled by default for C if a strict
10633 conformance option such as @option{-std=c99} is used.
10634 @option{-ffast-math} enables @option{-fexcess-precision=fast} by default
10635 regardless of whether a strict conformance option is used.
10636
10637 @opindex mfpmath
10638 @option{-fexcess-precision=standard} is not implemented for languages
10639 other than C. On the x86, it has no effect if @option{-mfpmath=sse}
10640 or @option{-mfpmath=sse+387} is specified; in the former case, IEEE
10641 semantics apply without excess precision, and in the latter, rounding
10642 is unpredictable.
10643
10644 @item -ffast-math
10645 @opindex ffast-math
10646 Sets the options @option{-fno-math-errno}, @option{-funsafe-math-optimizations},
10647 @option{-ffinite-math-only}, @option{-fno-rounding-math},
10648 @option{-fno-signaling-nans}, @option{-fcx-limited-range} and
10649 @option{-fexcess-precision=fast}.
10650
10651 This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.
10652
10653 This option is not turned on by any @option{-O} option besides
10654 @option{-Ofast} since it can result in incorrect output for programs
10655 that depend on an exact implementation of IEEE or ISO rules/specifications
10656 for math functions. It may, however, yield faster code for programs
10657 that do not require the guarantees of these specifications.
10658
10659 @item -fno-math-errno
10660 @opindex fno-math-errno
10661 @opindex fmath-errno
10662 Do not set @code{errno} after calling math functions that are executed
10663 with a single instruction, e.g., @code{sqrt}. A program that relies on
10664 IEEE exceptions for math error handling may want to use this flag
10665 for speed while maintaining IEEE arithmetic compatibility.
10666
10667 This option is not turned on by any @option{-O} option since
10668 it can result in incorrect output for programs that depend on
10669 an exact implementation of IEEE or ISO rules/specifications for
10670 math functions. It may, however, yield faster code for programs
10671 that do not require the guarantees of these specifications.
10672
10673 The default is @option{-fmath-errno}.
10674
10675 On Darwin systems, the math library never sets @code{errno}. There is
10676 therefore no reason for the compiler to consider the possibility that
10677 it might, and @option{-fno-math-errno} is the default.
10678
10679 @item -funsafe-math-optimizations
10680 @opindex funsafe-math-optimizations
10681
10682 Allow optimizations for floating-point arithmetic that (a) assume
10683 that arguments and results are valid and (b) may violate IEEE or
10684 ANSI standards. When used at link time, it may include libraries
10685 or startup files that change the default FPU control word or other
10686 similar optimizations.
10687
10688 This option is not turned on by any @option{-O} option since
10689 it can result in incorrect output for programs that depend on
10690 an exact implementation of IEEE or ISO rules/specifications for
10691 math functions. It may, however, yield faster code for programs
10692 that do not require the guarantees of these specifications.
10693 Enables @option{-fno-signed-zeros}, @option{-fno-trapping-math},
10694 @option{-fassociative-math} and @option{-freciprocal-math}.
10695
10696 The default is @option{-fno-unsafe-math-optimizations}.
10697
10698 @item -fassociative-math
10699 @opindex fassociative-math
10700
10701 Allow re-association of operands in series of floating-point operations.
10702 This violates the ISO C and C++ language standard by possibly changing
10703 computation result. NOTE: re-ordering may change the sign of zero as
10704 well as ignore NaNs and inhibit or create underflow or overflow (and
10705 thus cannot be used on code that relies on rounding behavior like
10706 @code{(x + 2**52) - 2**52}. May also reorder floating-point comparisons
10707 and thus may not be used when ordered comparisons are required.
10708 This option requires that both @option{-fno-signed-zeros} and
10709 @option{-fno-trapping-math} be in effect. Moreover, it doesn't make
10710 much sense with @option{-frounding-math}. For Fortran the option
10711 is automatically enabled when both @option{-fno-signed-zeros} and
10712 @option{-fno-trapping-math} are in effect.
10713
10714 The default is @option{-fno-associative-math}.
10715
10716 @item -freciprocal-math
10717 @opindex freciprocal-math
10718
10719 Allow the reciprocal of a value to be used instead of dividing by
10720 the value if this enables optimizations. For example @code{x / y}
10721 can be replaced with @code{x * (1/y)}, which is useful if @code{(1/y)}
10722 is subject to common subexpression elimination. Note that this loses
10723 precision and increases the number of flops operating on the value.
10724
10725 The default is @option{-fno-reciprocal-math}.
10726
10727 @item -ffinite-math-only
10728 @opindex ffinite-math-only
10729 Allow optimizations for floating-point arithmetic that assume
10730 that arguments and results are not NaNs or +-Infs.
10731
10732 This option is not turned on by any @option{-O} option since
10733 it can result in incorrect output for programs that depend on
10734 an exact implementation of IEEE or ISO rules/specifications for
10735 math functions. It may, however, yield faster code for programs
10736 that do not require the guarantees of these specifications.
10737
10738 The default is @option{-fno-finite-math-only}.
10739
10740 @item -fno-signed-zeros
10741 @opindex fno-signed-zeros
10742 @opindex fsigned-zeros
10743 Allow optimizations for floating-point arithmetic that ignore the
10744 signedness of zero. IEEE arithmetic specifies the behavior of
10745 distinct +0.0 and @minus{}0.0 values, which then prohibits simplification
10746 of expressions such as x+0.0 or 0.0*x (even with @option{-ffinite-math-only}).
10747 This option implies that the sign of a zero result isn't significant.
10748
10749 The default is @option{-fsigned-zeros}.
10750
10751 @item -fno-trapping-math
10752 @opindex fno-trapping-math
10753 @opindex ftrapping-math
10754 Compile code assuming that floating-point operations cannot generate
10755 user-visible traps. These traps include division by zero, overflow,
10756 underflow, inexact result and invalid operation. This option requires
10757 that @option{-fno-signaling-nans} be in effect. Setting this option may
10758 allow faster code if one relies on ``non-stop'' IEEE arithmetic, for example.
10759
10760 This option should never be turned on by any @option{-O} option since
10761 it can result in incorrect output for programs that depend on
10762 an exact implementation of IEEE or ISO rules/specifications for
10763 math functions.
10764
10765 The default is @option{-ftrapping-math}.
10766
10767 @item -frounding-math
10768 @opindex frounding-math
10769 Disable transformations and optimizations that assume default floating-point
10770 rounding behavior. This is round-to-zero for all floating point
10771 to integer conversions, and round-to-nearest for all other arithmetic
10772 truncations. This option should be specified for programs that change
10773 the FP rounding mode dynamically, or that may be executed with a
10774 non-default rounding mode. This option disables constant folding of
10775 floating-point expressions at compile time (which may be affected by
10776 rounding mode) and arithmetic transformations that are unsafe in the
10777 presence of sign-dependent rounding modes.
10778
10779 The default is @option{-fno-rounding-math}.
10780
10781 This option is experimental and does not currently guarantee to
10782 disable all GCC optimizations that are affected by rounding mode.
10783 Future versions of GCC may provide finer control of this setting
10784 using C99's @code{FENV_ACCESS} pragma. This command-line option
10785 will be used to specify the default state for @code{FENV_ACCESS}.
10786
10787 @item -fsignaling-nans
10788 @opindex fsignaling-nans
10789 Compile code assuming that IEEE signaling NaNs may generate user-visible
10790 traps during floating-point operations. Setting this option disables
10791 optimizations that may change the number of exceptions visible with
10792 signaling NaNs. This option implies @option{-ftrapping-math}.
10793
10794 This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
10795 be defined.
10796
10797 The default is @option{-fno-signaling-nans}.
10798
10799 This option is experimental and does not currently guarantee to
10800 disable all GCC optimizations that affect signaling NaN behavior.
10801
10802 @item -fno-fp-int-builtin-inexact
10803 @opindex fno-fp-int-builtin-inexact
10804 @opindex ffp-int-builtin-inexact
10805 Do not allow the built-in functions @code{ceil}, @code{floor},
10806 @code{round} and @code{trunc}, and their @code{float} and @code{long
10807 double} variants, to generate code that raises the ``inexact''
10808 floating-point exception for noninteger arguments. ISO C99 and C11
10809 allow these functions to raise the ``inexact'' exception, but ISO/IEC
10810 TS 18661-1:2014, the C bindings to IEEE 754-2008, does not allow these
10811 functions to do so.
10812
10813 The default is @option{-ffp-int-builtin-inexact}, allowing the
10814 exception to be raised. This option does nothing unless
10815 @option{-ftrapping-math} is in effect.
10816
10817 Even if @option{-fno-fp-int-builtin-inexact} is used, if the functions
10818 generate a call to a library function then the ``inexact'' exception
10819 may be raised if the library implementation does not follow TS 18661.
10820
10821 @item -fsingle-precision-constant
10822 @opindex fsingle-precision-constant
10823 Treat floating-point constants as single precision instead of
10824 implicitly converting them to double-precision constants.
10825
10826 @item -fcx-limited-range
10827 @opindex fcx-limited-range
10828 When enabled, this option states that a range reduction step is not
10829 needed when performing complex division. Also, there is no checking
10830 whether the result of a complex multiplication or division is @code{NaN
10831 + I*NaN}, with an attempt to rescue the situation in that case. The
10832 default is @option{-fno-cx-limited-range}, but is enabled by
10833 @option{-ffast-math}.
10834
10835 This option controls the default setting of the ISO C99
10836 @code{CX_LIMITED_RANGE} pragma. Nevertheless, the option applies to
10837 all languages.
10838
10839 @item -fcx-fortran-rules
10840 @opindex fcx-fortran-rules
10841 Complex multiplication and division follow Fortran rules. Range
10842 reduction is done as part of complex division, but there is no checking
10843 whether the result of a complex multiplication or division is @code{NaN
10844 + I*NaN}, with an attempt to rescue the situation in that case.
10845
10846 The default is @option{-fno-cx-fortran-rules}.
10847
10848 @end table
10849
10850 The following options control optimizations that may improve
10851 performance, but are not enabled by any @option{-O} options. This
10852 section includes experimental options that may produce broken code.
10853
10854 @table @gcctabopt
10855 @item -fbranch-probabilities
10856 @opindex fbranch-probabilities
10857 After running a program compiled with @option{-fprofile-arcs}
10858 (@pxref{Instrumentation Options}),
10859 you can compile it a second time using
10860 @option{-fbranch-probabilities}, to improve optimizations based on
10861 the number of times each branch was taken. When a program
10862 compiled with @option{-fprofile-arcs} exits, it saves arc execution
10863 counts to a file called @file{@var{sourcename}.gcda} for each source
10864 file. The information in this data file is very dependent on the
10865 structure of the generated code, so you must use the same source code
10866 and the same optimization options for both compilations.
10867
10868 With @option{-fbranch-probabilities}, GCC puts a
10869 @samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
10870 These can be used to improve optimization. Currently, they are only
10871 used in one place: in @file{reorg.c}, instead of guessing which path a
10872 branch is most likely to take, the @samp{REG_BR_PROB} values are used to
10873 exactly determine which path is taken more often.
10874
10875 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10876
10877 @item -fprofile-values
10878 @opindex fprofile-values
10879 If combined with @option{-fprofile-arcs}, it adds code so that some
10880 data about values of expressions in the program is gathered.
10881
10882 With @option{-fbranch-probabilities}, it reads back the data gathered
10883 from profiling values of expressions for usage in optimizations.
10884
10885 Enabled by @option{-fprofile-generate}, @option{-fprofile-use}, and
10886 @option{-fauto-profile}.
10887
10888 @item -fprofile-reorder-functions
10889 @opindex fprofile-reorder-functions
10890 Function reordering based on profile instrumentation collects
10891 first time of execution of a function and orders these functions
10892 in ascending order.
10893
10894 Enabled with @option{-fprofile-use}.
10895
10896 @item -fvpt
10897 @opindex fvpt
10898 If combined with @option{-fprofile-arcs}, this option instructs the compiler
10899 to add code to gather information about values of expressions.
10900
10901 With @option{-fbranch-probabilities}, it reads back the data gathered
10902 and actually performs the optimizations based on them.
10903 Currently the optimizations include specialization of division operations
10904 using the knowledge about the value of the denominator.
10905
10906 Enabled with @option{-fprofile-use} and @option{-fauto-profile}.
10907
10908 @item -frename-registers
10909 @opindex frename-registers
10910 Attempt to avoid false dependencies in scheduled code by making use
10911 of registers left over after register allocation. This optimization
10912 most benefits processors with lots of registers. Depending on the
10913 debug information format adopted by the target, however, it can
10914 make debugging impossible, since variables no longer stay in
10915 a ``home register''.
10916
10917 Enabled by default with @option{-funroll-loops}.
10918
10919 @item -fschedule-fusion
10920 @opindex fschedule-fusion
10921 Performs a target dependent pass over the instruction stream to schedule
10922 instructions of same type together because target machine can execute them
10923 more efficiently if they are adjacent to each other in the instruction flow.
10924
10925 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
10926
10927 @item -ftracer
10928 @opindex ftracer
10929 Perform tail duplication to enlarge superblock size. This transformation
10930 simplifies the control flow of the function allowing other optimizations to do
10931 a better job.
10932
10933 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10934
10935 @item -funroll-loops
10936 @opindex funroll-loops
10937 Unroll loops whose number of iterations can be determined at compile time or
10938 upon entry to the loop. @option{-funroll-loops} implies
10939 @option{-frerun-cse-after-loop}, @option{-fweb} and @option{-frename-registers}.
10940 It also turns on complete loop peeling (i.e.@: complete removal of loops with
10941 a small constant number of iterations). This option makes code larger, and may
10942 or may not make it run faster.
10943
10944 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10945
10946 @item -funroll-all-loops
10947 @opindex funroll-all-loops
10948 Unroll all loops, even if their number of iterations is uncertain when
10949 the loop is entered. This usually makes programs run more slowly.
10950 @option{-funroll-all-loops} implies the same options as
10951 @option{-funroll-loops}.
10952
10953 @item -fpeel-loops
10954 @opindex fpeel-loops
10955 Peels loops for which there is enough information that they do not
10956 roll much (from profile feedback or static analysis). It also turns on
10957 complete loop peeling (i.e.@: complete removal of loops with small constant
10958 number of iterations).
10959
10960 Enabled by @option{-O3}, @option{-fprofile-use}, and @option{-fauto-profile}.
10961
10962 @item -fmove-loop-invariants
10963 @opindex fmove-loop-invariants
10964 Enables the loop invariant motion pass in the RTL loop optimizer. Enabled
10965 at level @option{-O1} and higher, except for @option{-Og}.
10966
10967 @item -fsplit-loops
10968 @opindex fsplit-loops
10969 Split a loop into two if it contains a condition that's always true
10970 for one side of the iteration space and false for the other.
10971
10972 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10973
10974 @item -funswitch-loops
10975 @opindex funswitch-loops
10976 Move branches with loop invariant conditions out of the loop, with duplicates
10977 of the loop on both branches (modified according to result of the condition).
10978
10979 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10980
10981 @item -fversion-loops-for-strides
10982 @opindex fversion-loops-for-strides
10983 If a loop iterates over an array with a variable stride, create another
10984 version of the loop that assumes the stride is always one. For example:
10985
10986 @smallexample
10987 for (int i = 0; i < n; ++i)
10988 x[i * stride] = @dots{};
10989 @end smallexample
10990
10991 becomes:
10992
10993 @smallexample
10994 if (stride == 1)
10995 for (int i = 0; i < n; ++i)
10996 x[i] = @dots{};
10997 else
10998 for (int i = 0; i < n; ++i)
10999 x[i * stride] = @dots{};
11000 @end smallexample
11001
11002 This is particularly useful for assumed-shape arrays in Fortran where
11003 (for example) it allows better vectorization assuming contiguous accesses.
11004 This flag is enabled by default at @option{-O3}.
11005 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
11006
11007 @item -ffunction-sections
11008 @itemx -fdata-sections
11009 @opindex ffunction-sections
11010 @opindex fdata-sections
11011 Place each function or data item into its own section in the output
11012 file if the target supports arbitrary sections. The name of the
11013 function or the name of the data item determines the section's name
11014 in the output file.
11015
11016 Use these options on systems where the linker can perform optimizations to
11017 improve locality of reference in the instruction space. Most systems using the
11018 ELF object format have linkers with such optimizations. On AIX, the linker
11019 rearranges sections (CSECTs) based on the call graph. The performance impact
11020 varies.
11021
11022 Together with a linker garbage collection (linker @option{--gc-sections}
11023 option) these options may lead to smaller statically-linked executables (after
11024 stripping).
11025
11026 On ELF/DWARF systems these options do not degenerate the quality of the debug
11027 information. There could be issues with other object files/debug info formats.
11028
11029 Only use these options when there are significant benefits from doing so. When
11030 you specify these options, the assembler and linker create larger object and
11031 executable files and are also slower. These options affect code generation.
11032 They prevent optimizations by the compiler and assembler using relative
11033 locations inside a translation unit since the locations are unknown until
11034 link time. An example of such an optimization is relaxing calls to short call
11035 instructions.
11036
11037 @item -fstdarg-opt
11038 @opindex fstdarg-opt
11039 Optimize the prologue of variadic argument functions with respect to usage of
11040 those arguments.
11041
11042 @item -fsection-anchors
11043 @opindex fsection-anchors
11044 Try to reduce the number of symbolic address calculations by using
11045 shared ``anchor'' symbols to address nearby objects. This transformation
11046 can help to reduce the number of GOT entries and GOT accesses on some
11047 targets.
11048
11049 For example, the implementation of the following function @code{foo}:
11050
11051 @smallexample
11052 static int a, b, c;
11053 int foo (void) @{ return a + b + c; @}
11054 @end smallexample
11055
11056 @noindent
11057 usually calculates the addresses of all three variables, but if you
11058 compile it with @option{-fsection-anchors}, it accesses the variables
11059 from a common anchor point instead. The effect is similar to the
11060 following pseudocode (which isn't valid C):
11061
11062 @smallexample
11063 int foo (void)
11064 @{
11065 register int *xr = &x;
11066 return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
11067 @}
11068 @end smallexample
11069
11070 Not all targets support this option.
11071
11072 @item --param @var{name}=@var{value}
11073 @opindex param
11074 In some places, GCC uses various constants to control the amount of
11075 optimization that is done. For example, GCC does not inline functions
11076 that contain more than a certain number of instructions. You can
11077 control some of these constants on the command line using the
11078 @option{--param} option.
11079
11080 The names of specific parameters, and the meaning of the values, are
11081 tied to the internals of the compiler, and are subject to change
11082 without notice in future releases.
11083
11084 In order to get minimal, maximal and default value of a parameter,
11085 one can use @option{--help=param -Q} options.
11086
11087 In each case, the @var{value} is an integer. The allowable choices for
11088 @var{name} are:
11089
11090 @table @gcctabopt
11091 @item predictable-branch-outcome
11092 When branch is predicted to be taken with probability lower than this threshold
11093 (in percent), then it is considered well predictable.
11094
11095 @item max-rtl-if-conversion-insns
11096 RTL if-conversion tries to remove conditional branches around a block and
11097 replace them with conditionally executed instructions. This parameter
11098 gives the maximum number of instructions in a block which should be
11099 considered for if-conversion. The compiler will
11100 also use other heuristics to decide whether if-conversion is likely to be
11101 profitable.
11102
11103 @item max-rtl-if-conversion-predictable-cost
11104 @itemx max-rtl-if-conversion-unpredictable-cost
11105 RTL if-conversion will try to remove conditional branches around a block
11106 and replace them with conditionally executed instructions. These parameters
11107 give the maximum permissible cost for the sequence that would be generated
11108 by if-conversion depending on whether the branch is statically determined
11109 to be predictable or not. The units for this parameter are the same as
11110 those for the GCC internal seq_cost metric. The compiler will try to
11111 provide a reasonable default for this parameter using the BRANCH_COST
11112 target macro.
11113
11114 @item max-crossjump-edges
11115 The maximum number of incoming edges to consider for cross-jumping.
11116 The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
11117 the number of edges incoming to each block. Increasing values mean
11118 more aggressive optimization, making the compilation time increase with
11119 probably small improvement in executable size.
11120
11121 @item min-crossjump-insns
11122 The minimum number of instructions that must be matched at the end
11123 of two blocks before cross-jumping is performed on them. This
11124 value is ignored in the case where all instructions in the block being
11125 cross-jumped from are matched.
11126
11127 @item max-grow-copy-bb-insns
11128 The maximum code size expansion factor when copying basic blocks
11129 instead of jumping. The expansion is relative to a jump instruction.
11130
11131 @item max-goto-duplication-insns
11132 The maximum number of instructions to duplicate to a block that jumps
11133 to a computed goto. To avoid @math{O(N^2)} behavior in a number of
11134 passes, GCC factors computed gotos early in the compilation process,
11135 and unfactors them as late as possible. Only computed jumps at the
11136 end of a basic blocks with no more than max-goto-duplication-insns are
11137 unfactored.
11138
11139 @item max-delay-slot-insn-search
11140 The maximum number of instructions to consider when looking for an
11141 instruction to fill a delay slot. If more than this arbitrary number of
11142 instructions are searched, the time savings from filling the delay slot
11143 are minimal, so stop searching. Increasing values mean more
11144 aggressive optimization, making the compilation time increase with probably
11145 small improvement in execution time.
11146
11147 @item max-delay-slot-live-search
11148 When trying to fill delay slots, the maximum number of instructions to
11149 consider when searching for a block with valid live register
11150 information. Increasing this arbitrarily chosen value means more
11151 aggressive optimization, increasing the compilation time. This parameter
11152 should be removed when the delay slot code is rewritten to maintain the
11153 control-flow graph.
11154
11155 @item max-gcse-memory
11156 The approximate maximum amount of memory that can be allocated in
11157 order to perform the global common subexpression elimination
11158 optimization. If more memory than specified is required, the
11159 optimization is not done.
11160
11161 @item max-gcse-insertion-ratio
11162 If the ratio of expression insertions to deletions is larger than this value
11163 for any expression, then RTL PRE inserts or removes the expression and thus
11164 leaves partially redundant computations in the instruction stream.
11165
11166 @item max-pending-list-length
11167 The maximum number of pending dependencies scheduling allows
11168 before flushing the current state and starting over. Large functions
11169 with few branches or calls can create excessively large lists which
11170 needlessly consume memory and resources.
11171
11172 @item max-modulo-backtrack-attempts
11173 The maximum number of backtrack attempts the scheduler should make
11174 when modulo scheduling a loop. Larger values can exponentially increase
11175 compilation time.
11176
11177 @item max-inline-insns-single
11178 @item max-inline-insns-single-O2
11179 Several parameters control the tree inliner used in GCC@. This number sets the
11180 maximum number of instructions (counted in GCC's internal representation) in a
11181 single function that the tree inliner considers for inlining. This only
11182 affects functions declared inline and methods implemented in a class
11183 declaration (C++).
11184
11185 For functions compiled with optimization levels
11186 @option{-O3} and @option{-Ofast} parameter @option{max-inline-insns-single} is
11187 applied. In other cases @option{max-inline-insns-single-O2} is applied.
11188
11189
11190 @item max-inline-insns-auto
11191 @item max-inline-insns-auto-O2
11192 When you use @option{-finline-functions} (included in @option{-O3}),
11193 a lot of functions that would otherwise not be considered for inlining
11194 by the compiler are investigated. To those functions, a different
11195 (more restrictive) limit compared to functions declared inline can
11196 be applied.
11197
11198 For functions compiled with optimization levels
11199 @option{-O3} and @option{-Ofast} parameter @option{max-inline-insns-auto} is
11200 applied. In other cases @option{max-inline-insns-auto-O2} is applied.
11201
11202 @item max-inline-insns-small
11203 This is bound applied to calls which are considered relevant with
11204 @option{-finline-small-functions}.
11205
11206 @item max-inline-insns-size
11207 This is bound applied to calls which are optimized for size. Small growth
11208 may be desirable to anticipate optimization oppurtunities exposed by inlining.
11209
11210 @item uninlined-function-insns
11211 Number of instructions accounted by inliner for function overhead such as
11212 function prologue and epilogue.
11213
11214 @item uninlined-function-time
11215 Extra time accounted by inliner for function overhead such as time needed to
11216 execute function prologue and epilogue
11217
11218 @item uninlined-thunk-insns
11219 @item uninlined-thunk-time
11220 Same as @option{--param uninlined-function-insns} and
11221 @option{--param uninlined-function-time} but applied to function thunks
11222
11223 @item inline-min-speedup
11224 @item inline-min-speedup-O2
11225 When estimated performance improvement of caller + callee runtime exceeds this
11226 threshold (in percent), the function can be inlined regardless of the limit on
11227 @option{--param max-inline-insns-single} and @option{--param
11228 max-inline-insns-auto}.
11229
11230 For functions compiled with optimization levels
11231 @option{-O3} and @option{-Ofast} parameter @option{inline-min-speedup} is
11232 applied. In other cases @option{inline-min-speedup-O2} is applied.
11233
11234 @item large-function-insns
11235 The limit specifying really large functions. For functions larger than this
11236 limit after inlining, inlining is constrained by
11237 @option{--param large-function-growth}. This parameter is useful primarily
11238 to avoid extreme compilation time caused by non-linear algorithms used by the
11239 back end.
11240
11241 @item large-function-growth
11242 Specifies maximal growth of large function caused by inlining in percents.
11243 For example, parameter value 100 limits large function growth to 2.0 times
11244 the original size.
11245
11246 @item large-unit-insns
11247 The limit specifying large translation unit. Growth caused by inlining of
11248 units larger than this limit is limited by @option{--param inline-unit-growth}.
11249 For small units this might be too tight.
11250 For example, consider a unit consisting of function A
11251 that is inline and B that just calls A three times. If B is small relative to
11252 A, the growth of unit is 300\% and yet such inlining is very sane. For very
11253 large units consisting of small inlineable functions, however, the overall unit
11254 growth limit is needed to avoid exponential explosion of code size. Thus for
11255 smaller units, the size is increased to @option{--param large-unit-insns}
11256 before applying @option{--param inline-unit-growth}.
11257
11258 @item inline-unit-growth
11259 Specifies maximal overall growth of the compilation unit caused by inlining.
11260 For example, parameter value 20 limits unit growth to 1.2 times the original
11261 size. Cold functions (either marked cold via an attribute or by profile
11262 feedback) are not accounted into the unit size.
11263
11264 @item ipcp-unit-growth
11265 Specifies maximal overall growth of the compilation unit caused by
11266 interprocedural constant propagation. For example, parameter value 10 limits
11267 unit growth to 1.1 times the original size.
11268
11269 @item large-stack-frame
11270 The limit specifying large stack frames. While inlining the algorithm is trying
11271 to not grow past this limit too much.
11272
11273 @item large-stack-frame-growth
11274 Specifies maximal growth of large stack frames caused by inlining in percents.
11275 For example, parameter value 1000 limits large stack frame growth to 11 times
11276 the original size.
11277
11278 @item max-inline-insns-recursive
11279 @itemx max-inline-insns-recursive-auto
11280 Specifies the maximum number of instructions an out-of-line copy of a
11281 self-recursive inline
11282 function can grow into by performing recursive inlining.
11283
11284 @option{--param max-inline-insns-recursive} applies to functions
11285 declared inline.
11286 For functions not declared inline, recursive inlining
11287 happens only when @option{-finline-functions} (included in @option{-O3}) is
11288 enabled; @option{--param max-inline-insns-recursive-auto} applies instead.
11289
11290 @item max-inline-recursive-depth
11291 @itemx max-inline-recursive-depth-auto
11292 Specifies the maximum recursion depth used for recursive inlining.
11293
11294 @option{--param max-inline-recursive-depth} applies to functions
11295 declared inline. For functions not declared inline, recursive inlining
11296 happens only when @option{-finline-functions} (included in @option{-O3}) is
11297 enabled; @option{--param max-inline-recursive-depth-auto} applies instead.
11298
11299 @item min-inline-recursive-probability
11300 Recursive inlining is profitable only for function having deep recursion
11301 in average and can hurt for function having little recursion depth by
11302 increasing the prologue size or complexity of function body to other
11303 optimizers.
11304
11305 When profile feedback is available (see @option{-fprofile-generate}) the actual
11306 recursion depth can be guessed from the probability that function recurses
11307 via a given call expression. This parameter limits inlining only to call
11308 expressions whose probability exceeds the given threshold (in percents).
11309
11310 @item early-inlining-insns
11311 @item early-inlining-insns-O2
11312 Specify growth that the early inliner can make. In effect it increases
11313 the amount of inlining for code having a large abstraction penalty.
11314
11315 For functions compiled with optimization levels
11316 @option{-O3} and @option{-Ofast} parameter @option{early-inlining-insns} is
11317 applied. In other cases @option{early-inlining-insns-O2} is applied.
11318
11319 @item max-early-inliner-iterations
11320 Limit of iterations of the early inliner. This basically bounds
11321 the number of nested indirect calls the early inliner can resolve.
11322 Deeper chains are still handled by late inlining.
11323
11324 @item comdat-sharing-probability
11325 Probability (in percent) that C++ inline function with comdat visibility
11326 are shared across multiple compilation units.
11327
11328 @item profile-func-internal-id
11329 A parameter to control whether to use function internal id in profile
11330 database lookup. If the value is 0, the compiler uses an id that
11331 is based on function assembler name and filename, which makes old profile
11332 data more tolerant to source changes such as function reordering etc.
11333
11334 @item min-vect-loop-bound
11335 The minimum number of iterations under which loops are not vectorized
11336 when @option{-ftree-vectorize} is used. The number of iterations after
11337 vectorization needs to be greater than the value specified by this option
11338 to allow vectorization.
11339
11340 @item gcse-cost-distance-ratio
11341 Scaling factor in calculation of maximum distance an expression
11342 can be moved by GCSE optimizations. This is currently supported only in the
11343 code hoisting pass. The bigger the ratio, the more aggressive code hoisting
11344 is with simple expressions, i.e., the expressions that have cost
11345 less than @option{gcse-unrestricted-cost}. Specifying 0 disables
11346 hoisting of simple expressions.
11347
11348 @item gcse-unrestricted-cost
11349 Cost, roughly measured as the cost of a single typical machine
11350 instruction, at which GCSE optimizations do not constrain
11351 the distance an expression can travel. This is currently
11352 supported only in the code hoisting pass. The lesser the cost,
11353 the more aggressive code hoisting is. Specifying 0
11354 allows all expressions to travel unrestricted distances.
11355
11356 @item max-hoist-depth
11357 The depth of search in the dominator tree for expressions to hoist.
11358 This is used to avoid quadratic behavior in hoisting algorithm.
11359 The value of 0 does not limit on the search, but may slow down compilation
11360 of huge functions.
11361
11362 @item max-tail-merge-comparisons
11363 The maximum amount of similar bbs to compare a bb with. This is used to
11364 avoid quadratic behavior in tree tail merging.
11365
11366 @item max-tail-merge-iterations
11367 The maximum amount of iterations of the pass over the function. This is used to
11368 limit compilation time in tree tail merging.
11369
11370 @item store-merging-allow-unaligned
11371 Allow the store merging pass to introduce unaligned stores if it is legal to
11372 do so.
11373
11374 @item max-stores-to-merge
11375 The maximum number of stores to attempt to merge into wider stores in the store
11376 merging pass.
11377
11378 @item max-unrolled-insns
11379 The maximum number of instructions that a loop may have to be unrolled.
11380 If a loop is unrolled, this parameter also determines how many times
11381 the loop code is unrolled.
11382
11383 @item max-average-unrolled-insns
11384 The maximum number of instructions biased by probabilities of their execution
11385 that a loop may have to be unrolled. If a loop is unrolled,
11386 this parameter also determines how many times the loop code is unrolled.
11387
11388 @item max-unroll-times
11389 The maximum number of unrollings of a single loop.
11390
11391 @item max-peeled-insns
11392 The maximum number of instructions that a loop may have to be peeled.
11393 If a loop is peeled, this parameter also determines how many times
11394 the loop code is peeled.
11395
11396 @item max-peel-times
11397 The maximum number of peelings of a single loop.
11398
11399 @item max-peel-branches
11400 The maximum number of branches on the hot path through the peeled sequence.
11401
11402 @item max-completely-peeled-insns
11403 The maximum number of insns of a completely peeled loop.
11404
11405 @item max-completely-peel-times
11406 The maximum number of iterations of a loop to be suitable for complete peeling.
11407
11408 @item max-completely-peel-loop-nest-depth
11409 The maximum depth of a loop nest suitable for complete peeling.
11410
11411 @item max-unswitch-insns
11412 The maximum number of insns of an unswitched loop.
11413
11414 @item max-unswitch-level
11415 The maximum number of branches unswitched in a single loop.
11416
11417 @item lim-expensive
11418 The minimum cost of an expensive expression in the loop invariant motion.
11419
11420 @item iv-consider-all-candidates-bound
11421 Bound on number of candidates for induction variables, below which
11422 all candidates are considered for each use in induction variable
11423 optimizations. If there are more candidates than this,
11424 only the most relevant ones are considered to avoid quadratic time complexity.
11425
11426 @item iv-max-considered-uses
11427 The induction variable optimizations give up on loops that contain more
11428 induction variable uses.
11429
11430 @item iv-always-prune-cand-set-bound
11431 If the number of candidates in the set is smaller than this value,
11432 always try to remove unnecessary ivs from the set
11433 when adding a new one.
11434
11435 @item avg-loop-niter
11436 Average number of iterations of a loop.
11437
11438 @item dse-max-object-size
11439 Maximum size (in bytes) of objects tracked bytewise by dead store elimination.
11440 Larger values may result in larger compilation times.
11441
11442 @item dse-max-alias-queries-per-store
11443 Maximum number of queries into the alias oracle per store.
11444 Larger values result in larger compilation times and may result in more
11445 removed dead stores.
11446
11447 @item scev-max-expr-size
11448 Bound on size of expressions used in the scalar evolutions analyzer.
11449 Large expressions slow the analyzer.
11450
11451 @item scev-max-expr-complexity
11452 Bound on the complexity of the expressions in the scalar evolutions analyzer.
11453 Complex expressions slow the analyzer.
11454
11455 @item max-tree-if-conversion-phi-args
11456 Maximum number of arguments in a PHI supported by TREE if conversion
11457 unless the loop is marked with simd pragma.
11458
11459 @item vect-max-version-for-alignment-checks
11460 The maximum number of run-time checks that can be performed when
11461 doing loop versioning for alignment in the vectorizer.
11462
11463 @item vect-max-version-for-alias-checks
11464 The maximum number of run-time checks that can be performed when
11465 doing loop versioning for alias in the vectorizer.
11466
11467 @item vect-max-peeling-for-alignment
11468 The maximum number of loop peels to enhance access alignment
11469 for vectorizer. Value -1 means no limit.
11470
11471 @item max-iterations-to-track
11472 The maximum number of iterations of a loop the brute-force algorithm
11473 for analysis of the number of iterations of the loop tries to evaluate.
11474
11475 @item hot-bb-count-fraction
11476 The denominator n of fraction 1/n of the maximal execution count of a
11477 basic block in the entire program that a basic block needs to at least
11478 have in order to be considered hot. The default is 10000, which means
11479 that a basic block is considered hot if its execution count is greater
11480 than 1/10000 of the maximal execution count. 0 means that it is never
11481 considered hot. Used in non-LTO mode.
11482
11483 @item hot-bb-count-ws-permille
11484 The number of most executed permilles, ranging from 0 to 1000, of the
11485 profiled execution of the entire program to which the execution count
11486 of a basic block must be part of in order to be considered hot. The
11487 default is 990, which means that a basic block is considered hot if
11488 its execution count contributes to the upper 990 permilles, or 99.0%,
11489 of the profiled execution of the entire program. 0 means that it is
11490 never considered hot. Used in LTO mode.
11491
11492 @item hot-bb-frequency-fraction
11493 The denominator n of fraction 1/n of the execution frequency of the
11494 entry block of a function that a basic block of this function needs
11495 to at least have in order to be considered hot. The default is 1000,
11496 which means that a basic block is considered hot in a function if it
11497 is executed more frequently than 1/1000 of the frequency of the entry
11498 block of the function. 0 means that it is never considered hot.
11499
11500 @item unlikely-bb-count-fraction
11501 The denominator n of fraction 1/n of the number of profiled runs of
11502 the entire program below which the execution count of a basic block
11503 must be in order for the basic block to be considered unlikely executed.
11504 The default is 20, which means that a basic block is considered unlikely
11505 executed if it is executed in fewer than 1/20, or 5%, of the runs of
11506 the program. 0 means that it is always considered unlikely executed.
11507
11508 @item max-predicted-iterations
11509 The maximum number of loop iterations we predict statically. This is useful
11510 in cases where a function contains a single loop with known bound and
11511 another loop with unknown bound.
11512 The known number of iterations is predicted correctly, while
11513 the unknown number of iterations average to roughly 10. This means that the
11514 loop without bounds appears artificially cold relative to the other one.
11515
11516 @item builtin-expect-probability
11517 Control the probability of the expression having the specified value. This
11518 parameter takes a percentage (i.e.@: 0 ... 100) as input.
11519
11520 @item builtin-string-cmp-inline-length
11521 The maximum length of a constant string for a builtin string cmp call
11522 eligible for inlining.
11523
11524 @item align-threshold
11525
11526 Select fraction of the maximal frequency of executions of a basic block in
11527 a function to align the basic block.
11528
11529 @item align-loop-iterations
11530
11531 A loop expected to iterate at least the selected number of iterations is
11532 aligned.
11533
11534 @item tracer-dynamic-coverage
11535 @itemx tracer-dynamic-coverage-feedback
11536
11537 This value is used to limit superblock formation once the given percentage of
11538 executed instructions is covered. This limits unnecessary code size
11539 expansion.
11540
11541 The @option{tracer-dynamic-coverage-feedback} parameter
11542 is used only when profile
11543 feedback is available. The real profiles (as opposed to statically estimated
11544 ones) are much less balanced allowing the threshold to be larger value.
11545
11546 @item tracer-max-code-growth
11547 Stop tail duplication once code growth has reached given percentage. This is
11548 a rather artificial limit, as most of the duplicates are eliminated later in
11549 cross jumping, so it may be set to much higher values than is the desired code
11550 growth.
11551
11552 @item tracer-min-branch-ratio
11553
11554 Stop reverse growth when the reverse probability of best edge is less than this
11555 threshold (in percent).
11556
11557 @item tracer-min-branch-probability
11558 @itemx tracer-min-branch-probability-feedback
11559
11560 Stop forward growth if the best edge has probability lower than this
11561 threshold.
11562
11563 Similarly to @option{tracer-dynamic-coverage} two parameters are
11564 provided. @option{tracer-min-branch-probability-feedback} is used for
11565 compilation with profile feedback and @option{tracer-min-branch-probability}
11566 compilation without. The value for compilation with profile feedback
11567 needs to be more conservative (higher) in order to make tracer
11568 effective.
11569
11570 @item stack-clash-protection-guard-size
11571 Specify the size of the operating system provided stack guard as
11572 2 raised to @var{num} bytes. Higher values may reduce the
11573 number of explicit probes, but a value larger than the operating system
11574 provided guard will leave code vulnerable to stack clash style attacks.
11575
11576 @item stack-clash-protection-probe-interval
11577 Stack clash protection involves probing stack space as it is allocated. This
11578 param controls the maximum distance between probes into the stack as 2 raised
11579 to @var{num} bytes. Higher values may reduce the number of explicit probes, but a value
11580 larger than the operating system provided guard will leave code vulnerable to
11581 stack clash style attacks.
11582
11583 @item max-cse-path-length
11584
11585 The maximum number of basic blocks on path that CSE considers.
11586
11587 @item max-cse-insns
11588 The maximum number of instructions CSE processes before flushing.
11589
11590 @item ggc-min-expand
11591
11592 GCC uses a garbage collector to manage its own memory allocation. This
11593 parameter specifies the minimum percentage by which the garbage
11594 collector's heap should be allowed to expand between collections.
11595 Tuning this may improve compilation speed; it has no effect on code
11596 generation.
11597
11598 The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
11599 RAM >= 1GB@. If @code{getrlimit} is available, the notion of ``RAM'' is
11600 the smallest of actual RAM and @code{RLIMIT_DATA} or @code{RLIMIT_AS}. If
11601 GCC is not able to calculate RAM on a particular platform, the lower
11602 bound of 30% is used. Setting this parameter and
11603 @option{ggc-min-heapsize} to zero causes a full collection to occur at
11604 every opportunity. This is extremely slow, but can be useful for
11605 debugging.
11606
11607 @item ggc-min-heapsize
11608
11609 Minimum size of the garbage collector's heap before it begins bothering
11610 to collect garbage. The first collection occurs after the heap expands
11611 by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}. Again,
11612 tuning this may improve compilation speed, and has no effect on code
11613 generation.
11614
11615 The default is the smaller of RAM/8, RLIMIT_RSS, or a limit that
11616 tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
11617 with a lower bound of 4096 (four megabytes) and an upper bound of
11618 131072 (128 megabytes). If GCC is not able to calculate RAM on a
11619 particular platform, the lower bound is used. Setting this parameter
11620 very large effectively disables garbage collection. Setting this
11621 parameter and @option{ggc-min-expand} to zero causes a full collection
11622 to occur at every opportunity.
11623
11624 @item max-reload-search-insns
11625 The maximum number of instruction reload should look backward for equivalent
11626 register. Increasing values mean more aggressive optimization, making the
11627 compilation time increase with probably slightly better performance.
11628
11629 @item max-cselib-memory-locations
11630 The maximum number of memory locations cselib should take into account.
11631 Increasing values mean more aggressive optimization, making the compilation time
11632 increase with probably slightly better performance.
11633
11634 @item max-sched-ready-insns
11635 The maximum number of instructions ready to be issued the scheduler should
11636 consider at any given time during the first scheduling pass. Increasing
11637 values mean more thorough searches, making the compilation time increase
11638 with probably little benefit.
11639
11640 @item max-sched-region-blocks
11641 The maximum number of blocks in a region to be considered for
11642 interblock scheduling.
11643
11644 @item max-pipeline-region-blocks
11645 The maximum number of blocks in a region to be considered for
11646 pipelining in the selective scheduler.
11647
11648 @item max-sched-region-insns
11649 The maximum number of insns in a region to be considered for
11650 interblock scheduling.
11651
11652 @item max-pipeline-region-insns
11653 The maximum number of insns in a region to be considered for
11654 pipelining in the selective scheduler.
11655
11656 @item min-spec-prob
11657 The minimum probability (in percents) of reaching a source block
11658 for interblock speculative scheduling.
11659
11660 @item max-sched-extend-regions-iters
11661 The maximum number of iterations through CFG to extend regions.
11662 A value of 0 disables region extensions.
11663
11664 @item max-sched-insn-conflict-delay
11665 The maximum conflict delay for an insn to be considered for speculative motion.
11666
11667 @item sched-spec-prob-cutoff
11668 The minimal probability of speculation success (in percents), so that
11669 speculative insns are scheduled.
11670
11671 @item sched-state-edge-prob-cutoff
11672 The minimum probability an edge must have for the scheduler to save its
11673 state across it.
11674
11675 @item sched-mem-true-dep-cost
11676 Minimal distance (in CPU cycles) between store and load targeting same
11677 memory locations.
11678
11679 @item selsched-max-lookahead
11680 The maximum size of the lookahead window of selective scheduling. It is a
11681 depth of search for available instructions.
11682
11683 @item selsched-max-sched-times
11684 The maximum number of times that an instruction is scheduled during
11685 selective scheduling. This is the limit on the number of iterations
11686 through which the instruction may be pipelined.
11687
11688 @item selsched-insns-to-rename
11689 The maximum number of best instructions in the ready list that are considered
11690 for renaming in the selective scheduler.
11691
11692 @item sms-min-sc
11693 The minimum value of stage count that swing modulo scheduler
11694 generates.
11695
11696 @item max-last-value-rtl
11697 The maximum size measured as number of RTLs that can be recorded in an expression
11698 in combiner for a pseudo register as last known value of that register.
11699
11700 @item max-combine-insns
11701 The maximum number of instructions the RTL combiner tries to combine.
11702
11703 @item integer-share-limit
11704 Small integer constants can use a shared data structure, reducing the
11705 compiler's memory usage and increasing its speed. This sets the maximum
11706 value of a shared integer constant.
11707
11708 @item ssp-buffer-size
11709 The minimum size of buffers (i.e.@: arrays) that receive stack smashing
11710 protection when @option{-fstack-protection} is used.
11711
11712 @item min-size-for-stack-sharing
11713 The minimum size of variables taking part in stack slot sharing when not
11714 optimizing.
11715
11716 @item max-jump-thread-duplication-stmts
11717 Maximum number of statements allowed in a block that needs to be
11718 duplicated when threading jumps.
11719
11720 @item max-fields-for-field-sensitive
11721 Maximum number of fields in a structure treated in
11722 a field sensitive manner during pointer analysis.
11723
11724 @item prefetch-latency
11725 Estimate on average number of instructions that are executed before
11726 prefetch finishes. The distance prefetched ahead is proportional
11727 to this constant. Increasing this number may also lead to less
11728 streams being prefetched (see @option{simultaneous-prefetches}).
11729
11730 @item simultaneous-prefetches
11731 Maximum number of prefetches that can run at the same time.
11732
11733 @item l1-cache-line-size
11734 The size of cache line in L1 data cache, in bytes.
11735
11736 @item l1-cache-size
11737 The size of L1 data cache, in kilobytes.
11738
11739 @item l2-cache-size
11740 The size of L2 data cache, in kilobytes.
11741
11742 @item prefetch-dynamic-strides
11743 Whether the loop array prefetch pass should issue software prefetch hints
11744 for strides that are non-constant. In some cases this may be
11745 beneficial, though the fact the stride is non-constant may make it
11746 hard to predict when there is clear benefit to issuing these hints.
11747
11748 Set to 1 if the prefetch hints should be issued for non-constant
11749 strides. Set to 0 if prefetch hints should be issued only for strides that
11750 are known to be constant and below @option{prefetch-minimum-stride}.
11751
11752 @item prefetch-minimum-stride
11753 Minimum constant stride, in bytes, to start using prefetch hints for. If
11754 the stride is less than this threshold, prefetch hints will not be issued.
11755
11756 This setting is useful for processors that have hardware prefetchers, in
11757 which case there may be conflicts between the hardware prefetchers and
11758 the software prefetchers. If the hardware prefetchers have a maximum
11759 stride they can handle, it should be used here to improve the use of
11760 software prefetchers.
11761
11762 A value of -1 means we don't have a threshold and therefore
11763 prefetch hints can be issued for any constant stride.
11764
11765 This setting is only useful for strides that are known and constant.
11766
11767 @item loop-interchange-max-num-stmts
11768 The maximum number of stmts in a loop to be interchanged.
11769
11770 @item loop-interchange-stride-ratio
11771 The minimum ratio between stride of two loops for interchange to be profitable.
11772
11773 @item min-insn-to-prefetch-ratio
11774 The minimum ratio between the number of instructions and the
11775 number of prefetches to enable prefetching in a loop.
11776
11777 @item prefetch-min-insn-to-mem-ratio
11778 The minimum ratio between the number of instructions and the
11779 number of memory references to enable prefetching in a loop.
11780
11781 @item use-canonical-types
11782 Whether the compiler should use the ``canonical'' type system.
11783 Should always be 1, which uses a more efficient internal
11784 mechanism for comparing types in C++ and Objective-C++. However, if
11785 bugs in the canonical type system are causing compilation failures,
11786 set this value to 0 to disable canonical types.
11787
11788 @item switch-conversion-max-branch-ratio
11789 Switch initialization conversion refuses to create arrays that are
11790 bigger than @option{switch-conversion-max-branch-ratio} times the number of
11791 branches in the switch.
11792
11793 @item max-partial-antic-length
11794 Maximum length of the partial antic set computed during the tree
11795 partial redundancy elimination optimization (@option{-ftree-pre}) when
11796 optimizing at @option{-O3} and above. For some sorts of source code
11797 the enhanced partial redundancy elimination optimization can run away,
11798 consuming all of the memory available on the host machine. This
11799 parameter sets a limit on the length of the sets that are computed,
11800 which prevents the runaway behavior. Setting a value of 0 for
11801 this parameter allows an unlimited set length.
11802
11803 @item rpo-vn-max-loop-depth
11804 Maximum loop depth that is value-numbered optimistically.
11805 When the limit hits the innermost
11806 @var{rpo-vn-max-loop-depth} loops and the outermost loop in the
11807 loop nest are value-numbered optimistically and the remaining ones not.
11808
11809 @item sccvn-max-alias-queries-per-access
11810 Maximum number of alias-oracle queries we perform when looking for
11811 redundancies for loads and stores. If this limit is hit the search
11812 is aborted and the load or store is not considered redundant. The
11813 number of queries is algorithmically limited to the number of
11814 stores on all paths from the load to the function entry.
11815
11816 @item ira-max-loops-num
11817 IRA uses regional register allocation by default. If a function
11818 contains more loops than the number given by this parameter, only at most
11819 the given number of the most frequently-executed loops form regions
11820 for regional register allocation.
11821
11822 @item ira-max-conflict-table-size
11823 Although IRA uses a sophisticated algorithm to compress the conflict
11824 table, the table can still require excessive amounts of memory for
11825 huge functions. If the conflict table for a function could be more
11826 than the size in MB given by this parameter, the register allocator
11827 instead uses a faster, simpler, and lower-quality
11828 algorithm that does not require building a pseudo-register conflict table.
11829
11830 @item ira-loop-reserved-regs
11831 IRA can be used to evaluate more accurate register pressure in loops
11832 for decisions to move loop invariants (see @option{-O3}). The number
11833 of available registers reserved for some other purposes is given
11834 by this parameter. Default of the parameter
11835 is the best found from numerous experiments.
11836
11837 @item lra-inheritance-ebb-probability-cutoff
11838 LRA tries to reuse values reloaded in registers in subsequent insns.
11839 This optimization is called inheritance. EBB is used as a region to
11840 do this optimization. The parameter defines a minimal fall-through
11841 edge probability in percentage used to add BB to inheritance EBB in
11842 LRA. The default value was chosen
11843 from numerous runs of SPEC2000 on x86-64.
11844
11845 @item loop-invariant-max-bbs-in-loop
11846 Loop invariant motion can be very expensive, both in compilation time and
11847 in amount of needed compile-time memory, with very large loops. Loops
11848 with more basic blocks than this parameter won't have loop invariant
11849 motion optimization performed on them.
11850
11851 @item loop-max-datarefs-for-datadeps
11852 Building data dependencies is expensive for very large loops. This
11853 parameter limits the number of data references in loops that are
11854 considered for data dependence analysis. These large loops are no
11855 handled by the optimizations using loop data dependencies.
11856
11857 @item max-vartrack-size
11858 Sets a maximum number of hash table slots to use during variable
11859 tracking dataflow analysis of any function. If this limit is exceeded
11860 with variable tracking at assignments enabled, analysis for that
11861 function is retried without it, after removing all debug insns from
11862 the function. If the limit is exceeded even without debug insns, var
11863 tracking analysis is completely disabled for the function. Setting
11864 the parameter to zero makes it unlimited.
11865
11866 @item max-vartrack-expr-depth
11867 Sets a maximum number of recursion levels when attempting to map
11868 variable names or debug temporaries to value expressions. This trades
11869 compilation time for more complete debug information. If this is set too
11870 low, value expressions that are available and could be represented in
11871 debug information may end up not being used; setting this higher may
11872 enable the compiler to find more complex debug expressions, but compile
11873 time and memory use may grow.
11874
11875 @item max-debug-marker-count
11876 Sets a threshold on the number of debug markers (e.g.@: begin stmt
11877 markers) to avoid complexity explosion at inlining or expanding to RTL.
11878 If a function has more such gimple stmts than the set limit, such stmts
11879 will be dropped from the inlined copy of a function, and from its RTL
11880 expansion.
11881
11882 @item min-nondebug-insn-uid
11883 Use uids starting at this parameter for nondebug insns. The range below
11884 the parameter is reserved exclusively for debug insns created by
11885 @option{-fvar-tracking-assignments}, but debug insns may get
11886 (non-overlapping) uids above it if the reserved range is exhausted.
11887
11888 @item ipa-sra-ptr-growth-factor
11889 IPA-SRA replaces a pointer to an aggregate with one or more new
11890 parameters only when their cumulative size is less or equal to
11891 @option{ipa-sra-ptr-growth-factor} times the size of the original
11892 pointer parameter.
11893
11894 @item ipa-sra-max-replacements
11895 Maximum pieces of an aggregate that IPA-SRA tracks. As a
11896 consequence, it is also the maximum number of replacements of a formal
11897 parameter.
11898
11899 @item sra-max-scalarization-size-Ospeed
11900 @itemx sra-max-scalarization-size-Osize
11901 The two Scalar Reduction of Aggregates passes (SRA and IPA-SRA) aim to
11902 replace scalar parts of aggregates with uses of independent scalar
11903 variables. These parameters control the maximum size, in storage units,
11904 of aggregate which is considered for replacement when compiling for
11905 speed
11906 (@option{sra-max-scalarization-size-Ospeed}) or size
11907 (@option{sra-max-scalarization-size-Osize}) respectively.
11908
11909 @item tm-max-aggregate-size
11910 When making copies of thread-local variables in a transaction, this
11911 parameter specifies the size in bytes after which variables are
11912 saved with the logging functions as opposed to save/restore code
11913 sequence pairs. This option only applies when using
11914 @option{-fgnu-tm}.
11915
11916 @item graphite-max-nb-scop-params
11917 To avoid exponential effects in the Graphite loop transforms, the
11918 number of parameters in a Static Control Part (SCoP) is bounded.
11919 A value of zero can be used to lift
11920 the bound. A variable whose value is unknown at compilation time and
11921 defined outside a SCoP is a parameter of the SCoP.
11922
11923 @item loop-block-tile-size
11924 Loop blocking or strip mining transforms, enabled with
11925 @option{-floop-block} or @option{-floop-strip-mine}, strip mine each
11926 loop in the loop nest by a given number of iterations. The strip
11927 length can be changed using the @option{loop-block-tile-size}
11928 parameter.
11929
11930 @item ipa-cp-value-list-size
11931 IPA-CP attempts to track all possible values and types passed to a function's
11932 parameter in order to propagate them and perform devirtualization.
11933 @option{ipa-cp-value-list-size} is the maximum number of values and types it
11934 stores per one formal parameter of a function.
11935
11936 @item ipa-cp-eval-threshold
11937 IPA-CP calculates its own score of cloning profitability heuristics
11938 and performs those cloning opportunities with scores that exceed
11939 @option{ipa-cp-eval-threshold}.
11940
11941 @item ipa-cp-recursion-penalty
11942 Percentage penalty the recursive functions will receive when they
11943 are evaluated for cloning.
11944
11945 @item ipa-cp-single-call-penalty
11946 Percentage penalty functions containing a single call to another
11947 function will receive when they are evaluated for cloning.
11948
11949 @item ipa-max-agg-items
11950 IPA-CP is also capable to propagate a number of scalar values passed
11951 in an aggregate. @option{ipa-max-agg-items} controls the maximum
11952 number of such values per one parameter.
11953
11954 @item ipa-cp-loop-hint-bonus
11955 When IPA-CP determines that a cloning candidate would make the number
11956 of iterations of a loop known, it adds a bonus of
11957 @option{ipa-cp-loop-hint-bonus} to the profitability score of
11958 the candidate.
11959
11960 @item ipa-max-aa-steps
11961 During its analysis of function bodies, IPA-CP employs alias analysis
11962 in order to track values pointed to by function parameters. In order
11963 not spend too much time analyzing huge functions, it gives up and
11964 consider all memory clobbered after examining
11965 @option{ipa-max-aa-steps} statements modifying memory.
11966
11967 @item ipa-max-switch-predicate-bounds
11968 Maximal number of boundary endpoints of case ranges of switch statement.
11969 For switch exceeding this limit, IPA-CP will not construct cloning cost
11970 predicate, which is used to estimate cloning benefit, for default case
11971 of the switch statement.
11972
11973 @item lto-partitions
11974 Specify desired number of partitions produced during WHOPR compilation.
11975 The number of partitions should exceed the number of CPUs used for compilation.
11976
11977 @item lto-min-partition
11978 Size of minimal partition for WHOPR (in estimated instructions).
11979 This prevents expenses of splitting very small programs into too many
11980 partitions.
11981
11982 @item lto-max-partition
11983 Size of max partition for WHOPR (in estimated instructions).
11984 to provide an upper bound for individual size of partition.
11985 Meant to be used only with balanced partitioning.
11986
11987 @item lto-max-streaming-parallelism
11988 Maximal number of parallel processes used for LTO streaming.
11989
11990 @item cxx-max-namespaces-for-diagnostic-help
11991 The maximum number of namespaces to consult for suggestions when C++
11992 name lookup fails for an identifier.
11993
11994 @item sink-frequency-threshold
11995 The maximum relative execution frequency (in percents) of the target block
11996 relative to a statement's original block to allow statement sinking of a
11997 statement. Larger numbers result in more aggressive statement sinking.
11998 A small positive adjustment is applied for
11999 statements with memory operands as those are even more profitable so sink.
12000
12001 @item max-stores-to-sink
12002 The maximum number of conditional store pairs that can be sunk. Set to 0
12003 if either vectorization (@option{-ftree-vectorize}) or if-conversion
12004 (@option{-ftree-loop-if-convert}) is disabled.
12005
12006 @item allow-store-data-races
12007 Allow optimizers to introduce new data races on stores.
12008 Set to 1 to allow, otherwise to 0.
12009
12010 @item case-values-threshold
12011 The smallest number of different values for which it is best to use a
12012 jump-table instead of a tree of conditional branches. If the value is
12013 0, use the default for the machine.
12014
12015 @item jump-table-max-growth-ratio-for-size
12016 The maximum code size growth ratio when expanding
12017 into a jump table (in percent). The parameter is used when
12018 optimizing for size.
12019
12020 @item jump-table-max-growth-ratio-for-speed
12021 The maximum code size growth ratio when expanding
12022 into a jump table (in percent). The parameter is used when
12023 optimizing for speed.
12024
12025 @item tree-reassoc-width
12026 Set the maximum number of instructions executed in parallel in
12027 reassociated tree. This parameter overrides target dependent
12028 heuristics used by default if has non zero value.
12029
12030 @item sched-pressure-algorithm
12031 Choose between the two available implementations of
12032 @option{-fsched-pressure}. Algorithm 1 is the original implementation
12033 and is the more likely to prevent instructions from being reordered.
12034 Algorithm 2 was designed to be a compromise between the relatively
12035 conservative approach taken by algorithm 1 and the rather aggressive
12036 approach taken by the default scheduler. It relies more heavily on
12037 having a regular register file and accurate register pressure classes.
12038 See @file{haifa-sched.c} in the GCC sources for more details.
12039
12040 The default choice depends on the target.
12041
12042 @item max-slsr-cand-scan
12043 Set the maximum number of existing candidates that are considered when
12044 seeking a basis for a new straight-line strength reduction candidate.
12045
12046 @item asan-globals
12047 Enable buffer overflow detection for global objects. This kind
12048 of protection is enabled by default if you are using
12049 @option{-fsanitize=address} option.
12050 To disable global objects protection use @option{--param asan-globals=0}.
12051
12052 @item asan-stack
12053 Enable buffer overflow detection for stack objects. This kind of
12054 protection is enabled by default when using @option{-fsanitize=address}.
12055 To disable stack protection use @option{--param asan-stack=0} option.
12056
12057 @item asan-instrument-reads
12058 Enable buffer overflow detection for memory reads. This kind of
12059 protection is enabled by default when using @option{-fsanitize=address}.
12060 To disable memory reads protection use
12061 @option{--param asan-instrument-reads=0}.
12062
12063 @item asan-instrument-writes
12064 Enable buffer overflow detection for memory writes. This kind of
12065 protection is enabled by default when using @option{-fsanitize=address}.
12066 To disable memory writes protection use
12067 @option{--param asan-instrument-writes=0} option.
12068
12069 @item asan-memintrin
12070 Enable detection for built-in functions. This kind of protection
12071 is enabled by default when using @option{-fsanitize=address}.
12072 To disable built-in functions protection use
12073 @option{--param asan-memintrin=0}.
12074
12075 @item asan-use-after-return
12076 Enable detection of use-after-return. This kind of protection
12077 is enabled by default when using the @option{-fsanitize=address} option.
12078 To disable it use @option{--param asan-use-after-return=0}.
12079
12080 Note: By default the check is disabled at run time. To enable it,
12081 add @code{detect_stack_use_after_return=1} to the environment variable
12082 @env{ASAN_OPTIONS}.
12083
12084 @item asan-instrumentation-with-call-threshold
12085 If number of memory accesses in function being instrumented
12086 is greater or equal to this number, use callbacks instead of inline checks.
12087 E.g. to disable inline code use
12088 @option{--param asan-instrumentation-with-call-threshold=0}.
12089
12090 @item use-after-scope-direct-emission-threshold
12091 If the size of a local variable in bytes is smaller or equal to this
12092 number, directly poison (or unpoison) shadow memory instead of using
12093 run-time callbacks.
12094
12095 @item max-fsm-thread-path-insns
12096 Maximum number of instructions to copy when duplicating blocks on a
12097 finite state automaton jump thread path.
12098
12099 @item max-fsm-thread-length
12100 Maximum number of basic blocks on a finite state automaton jump thread
12101 path.
12102
12103 @item max-fsm-thread-paths
12104 Maximum number of new jump thread paths to create for a finite state
12105 automaton.
12106
12107 @item parloops-chunk-size
12108 Chunk size of omp schedule for loops parallelized by parloops.
12109
12110 @item parloops-schedule
12111 Schedule type of omp schedule for loops parallelized by parloops (static,
12112 dynamic, guided, auto, runtime).
12113
12114 @item parloops-min-per-thread
12115 The minimum number of iterations per thread of an innermost parallelized
12116 loop for which the parallelized variant is preferred over the single threaded
12117 one. Note that for a parallelized loop nest the
12118 minimum number of iterations of the outermost loop per thread is two.
12119
12120 @item max-ssa-name-query-depth
12121 Maximum depth of recursion when querying properties of SSA names in things
12122 like fold routines. One level of recursion corresponds to following a
12123 use-def chain.
12124
12125 @item hsa-gen-debug-stores
12126 Enable emission of special debug stores within HSA kernels which are
12127 then read and reported by libgomp plugin. Generation of these stores
12128 is disabled by default, use @option{--param hsa-gen-debug-stores=1} to
12129 enable it.
12130
12131 @item max-speculative-devirt-maydefs
12132 The maximum number of may-defs we analyze when looking for a must-def
12133 specifying the dynamic type of an object that invokes a virtual call
12134 we may be able to devirtualize speculatively.
12135
12136 @item max-vrp-switch-assertions
12137 The maximum number of assertions to add along the default edge of a switch
12138 statement during VRP.
12139
12140 @item unroll-jam-min-percent
12141 The minimum percentage of memory references that must be optimized
12142 away for the unroll-and-jam transformation to be considered profitable.
12143
12144 @item unroll-jam-max-unroll
12145 The maximum number of times the outer loop should be unrolled by
12146 the unroll-and-jam transformation.
12147
12148 @item max-rtl-if-conversion-unpredictable-cost
12149 Maximum permissible cost for the sequence that would be generated
12150 by the RTL if-conversion pass for a branch that is considered unpredictable.
12151
12152 @item max-variable-expansions-in-unroller
12153 If @option{-fvariable-expansion-in-unroller} is used, the maximum number
12154 of times that an individual variable will be expanded during loop unrolling.
12155
12156 @item tracer-min-branch-probability-feedback
12157 Stop forward growth if the probability of best edge is less than
12158 this threshold (in percent). Used when profile feedback is available.
12159
12160 @item partial-inlining-entry-probability
12161 Maximum probability of the entry BB of split region
12162 (in percent relative to entry BB of the function)
12163 to make partial inlining happen.
12164
12165 @item max-tracked-strlens
12166 Maximum number of strings for which strlen optimization pass will
12167 track string lengths.
12168
12169 @item gcse-after-reload-partial-fraction
12170 The threshold ratio for performing partial redundancy
12171 elimination after reload.
12172
12173 @item gcse-after-reload-critical-fraction
12174 The threshold ratio of critical edges execution count that
12175 permit performing redundancy elimination after reload.
12176
12177 @item max-loop-header-insns
12178 The maximum number of insns in loop header duplicated
12179 by the copy loop headers pass.
12180
12181 @item vect-epilogues-nomask
12182 Enable loop epilogue vectorization using smaller vector size.
12183
12184 @item slp-max-insns-in-bb
12185 Maximum number of instructions in basic block to be
12186 considered for SLP vectorization.
12187
12188 @item avoid-fma-max-bits
12189 Maximum number of bits for which we avoid creating FMAs.
12190
12191 @item sms-loop-average-count-threshold
12192 A threshold on the average loop count considered by the swing modulo scheduler.
12193
12194 @item sms-dfa-history
12195 The number of cycles the swing modulo scheduler considers when checking
12196 conflicts using DFA.
12197
12198 @item max-inline-insns-recursive-auto
12199 The maximum number of instructions non-inline function
12200 can grow to via recursive inlining.
12201
12202 @item graphite-allow-codegen-errors
12203 Whether codegen errors should be ICEs when @option{-fchecking}.
12204
12205 @item sms-max-ii-factor
12206 A factor for tuning the upper bound that swing modulo scheduler
12207 uses for scheduling a loop.
12208
12209 @item lra-max-considered-reload-pseudos
12210 The max number of reload pseudos which are considered during
12211 spilling a non-reload pseudo.
12212
12213 @item max-pow-sqrt-depth
12214 Maximum depth of sqrt chains to use when synthesizing exponentiation
12215 by a real constant.
12216
12217 @item max-dse-active-local-stores
12218 Maximum number of active local stores in RTL dead store elimination.
12219
12220 @item asan-instrument-allocas
12221 Enable asan allocas/VLAs protection.
12222
12223 @item max-iterations-computation-cost
12224 Bound on the cost of an expression to compute the number of iterations.
12225
12226 @item max-isl-operations
12227 Maximum number of isl operations, 0 means unlimited.
12228
12229 @item graphite-max-arrays-per-scop
12230 Maximum number of arrays per scop.
12231
12232 @item max-vartrack-reverse-op-size
12233 Max. size of loc list for which reverse ops should be added.
12234
12235 @item tracer-dynamic-coverage-feedback
12236 The percentage of function, weighted by execution frequency,
12237 that must be covered by trace formation.
12238 Used when profile feedback is available.
12239
12240 @item max-inline-recursive-depth-auto
12241 The maximum depth of recursive inlining for non-inline functions.
12242
12243 @item fsm-scale-path-stmts
12244 Scale factor to apply to the number of statements in a threading path
12245 when comparing to the number of (scaled) blocks.
12246
12247 @item fsm-maximum-phi-arguments
12248 Maximum number of arguments a PHI may have before the FSM threader
12249 will not try to thread through its block.
12250
12251 @item uninit-control-dep-attempts
12252 Maximum number of nested calls to search for control dependencies
12253 during uninitialized variable analysis.
12254
12255 @item max-once-peeled-insns
12256 The maximum number of insns of a peeled loop that rolls only once.
12257
12258 @item sra-max-scalarization-size-Osize
12259 Maximum size, in storage units, of an aggregate
12260 which should be considered for scalarization when compiling for size.
12261
12262 @item fsm-scale-path-blocks
12263 Scale factor to apply to the number of blocks in a threading path
12264 when comparing to the number of (scaled) statements.
12265
12266 @item sched-autopref-queue-depth
12267 Hardware autoprefetcher scheduler model control flag.
12268 Number of lookahead cycles the model looks into; at '
12269 ' only enable instruction sorting heuristic.
12270
12271 @item loop-versioning-max-inner-insns
12272 The maximum number of instructions that an inner loop can have
12273 before the loop versioning pass considers it too big to copy.
12274
12275 @item loop-versioning-max-outer-insns
12276 The maximum number of instructions that an outer loop can have
12277 before the loop versioning pass considers it too big to copy,
12278 discounting any instructions in inner loops that directly benefit
12279 from versioning.
12280
12281 @item ssa-name-def-chain-limit
12282 The maximum number of SSA_NAME assignments to follow in determining
12283 a property of a variable such as its value. This limits the number
12284 of iterations or recursive calls GCC performs when optimizing certain
12285 statements or when determining their validity prior to issuing
12286 diagnostics.
12287
12288 @end table
12289 @end table
12290
12291 @node Instrumentation Options
12292 @section Program Instrumentation Options
12293 @cindex instrumentation options
12294 @cindex program instrumentation options
12295 @cindex run-time error checking options
12296 @cindex profiling options
12297 @cindex options, program instrumentation
12298 @cindex options, run-time error checking
12299 @cindex options, profiling
12300
12301 GCC supports a number of command-line options that control adding
12302 run-time instrumentation to the code it normally generates.
12303 For example, one purpose of instrumentation is collect profiling
12304 statistics for use in finding program hot spots, code coverage
12305 analysis, or profile-guided optimizations.
12306 Another class of program instrumentation is adding run-time checking
12307 to detect programming errors like invalid pointer
12308 dereferences or out-of-bounds array accesses, as well as deliberately
12309 hostile attacks such as stack smashing or C++ vtable hijacking.
12310 There is also a general hook which can be used to implement other
12311 forms of tracing or function-level instrumentation for debug or
12312 program analysis purposes.
12313
12314 @table @gcctabopt
12315 @cindex @command{prof}
12316 @cindex @command{gprof}
12317 @item -p
12318 @itemx -pg
12319 @opindex p
12320 @opindex pg
12321 Generate extra code to write profile information suitable for the
12322 analysis program @command{prof} (for @option{-p}) or @command{gprof}
12323 (for @option{-pg}). You must use this option when compiling
12324 the source files you want data about, and you must also use it when
12325 linking.
12326
12327 You can use the function attribute @code{no_instrument_function} to
12328 suppress profiling of individual functions when compiling with these options.
12329 @xref{Common Function Attributes}.
12330
12331 @item -fprofile-arcs
12332 @opindex fprofile-arcs
12333 Add code so that program flow @dfn{arcs} are instrumented. During
12334 execution the program records how many times each branch and call is
12335 executed and how many times it is taken or returns. On targets that support
12336 constructors with priority support, profiling properly handles constructors,
12337 destructors and C++ constructors (and destructors) of classes which are used
12338 as a type of a global variable.
12339
12340 When the compiled
12341 program exits it saves this data to a file called
12342 @file{@var{auxname}.gcda} for each source file. The data may be used for
12343 profile-directed optimizations (@option{-fbranch-probabilities}), or for
12344 test coverage analysis (@option{-ftest-coverage}). Each object file's
12345 @var{auxname} is generated from the name of the output file, if
12346 explicitly specified and it is not the final executable, otherwise it is
12347 the basename of the source file. In both cases any suffix is removed
12348 (e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or
12349 @file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}).
12350 @xref{Cross-profiling}.
12351
12352 @cindex @command{gcov}
12353 @item --coverage
12354 @opindex coverage
12355
12356 This option is used to compile and link code instrumented for coverage
12357 analysis. The option is a synonym for @option{-fprofile-arcs}
12358 @option{-ftest-coverage} (when compiling) and @option{-lgcov} (when
12359 linking). See the documentation for those options for more details.
12360
12361 @itemize
12362
12363 @item
12364 Compile the source files with @option{-fprofile-arcs} plus optimization
12365 and code generation options. For test coverage analysis, use the
12366 additional @option{-ftest-coverage} option. You do not need to profile
12367 every source file in a program.
12368
12369 @item
12370 Compile the source files additionally with @option{-fprofile-abs-path}
12371 to create absolute path names in the @file{.gcno} files. This allows
12372 @command{gcov} to find the correct sources in projects where compilations
12373 occur with different working directories.
12374
12375 @item
12376 Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
12377 (the latter implies the former).
12378
12379 @item
12380 Run the program on a representative workload to generate the arc profile
12381 information. This may be repeated any number of times. You can run
12382 concurrent instances of your program, and provided that the file system
12383 supports locking, the data files will be correctly updated. Unless
12384 a strict ISO C dialect option is in effect, @code{fork} calls are
12385 detected and correctly handled without double counting.
12386
12387 @item
12388 For profile-directed optimizations, compile the source files again with
12389 the same optimization and code generation options plus
12390 @option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
12391 Control Optimization}).
12392
12393 @item
12394 For test coverage analysis, use @command{gcov} to produce human readable
12395 information from the @file{.gcno} and @file{.gcda} files. Refer to the
12396 @command{gcov} documentation for further information.
12397
12398 @end itemize
12399
12400 With @option{-fprofile-arcs}, for each function of your program GCC
12401 creates a program flow graph, then finds a spanning tree for the graph.
12402 Only arcs that are not on the spanning tree have to be instrumented: the
12403 compiler adds code to count the number of times that these arcs are
12404 executed. When an arc is the only exit or only entrance to a block, the
12405 instrumentation code can be added to the block; otherwise, a new basic
12406 block must be created to hold the instrumentation code.
12407
12408 @need 2000
12409 @item -ftest-coverage
12410 @opindex ftest-coverage
12411 Produce a notes file that the @command{gcov} code-coverage utility
12412 (@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
12413 show program coverage. Each source file's note file is called
12414 @file{@var{auxname}.gcno}. Refer to the @option{-fprofile-arcs} option
12415 above for a description of @var{auxname} and instructions on how to
12416 generate test coverage data. Coverage data matches the source files
12417 more closely if you do not optimize.
12418
12419 @item -fprofile-abs-path
12420 @opindex fprofile-abs-path
12421 Automatically convert relative source file names to absolute path names
12422 in the @file{.gcno} files. This allows @command{gcov} to find the correct
12423 sources in projects where compilations occur with different working
12424 directories.
12425
12426 @item -fprofile-dir=@var{path}
12427 @opindex fprofile-dir
12428
12429 Set the directory to search for the profile data files in to @var{path}.
12430 This option affects only the profile data generated by
12431 @option{-fprofile-generate}, @option{-ftest-coverage}, @option{-fprofile-arcs}
12432 and used by @option{-fprofile-use} and @option{-fbranch-probabilities}
12433 and its related options. Both absolute and relative paths can be used.
12434 By default, GCC uses the current directory as @var{path}, thus the
12435 profile data file appears in the same directory as the object file.
12436 In order to prevent the file name clashing, if the object file name is
12437 not an absolute path, we mangle the absolute path of the
12438 @file{@var{sourcename}.gcda} file and use it as the file name of a
12439 @file{.gcda} file. See similar option @option{-fprofile-note}.
12440
12441 When an executable is run in a massive parallel environment, it is recommended
12442 to save profile to different folders. That can be done with variables
12443 in @var{path} that are exported during run-time:
12444
12445 @table @gcctabopt
12446
12447 @item %p
12448 process ID.
12449
12450 @item %q@{VAR@}
12451 value of environment variable @var{VAR}
12452
12453 @end table
12454
12455 @item -fprofile-generate
12456 @itemx -fprofile-generate=@var{path}
12457 @opindex fprofile-generate
12458
12459 Enable options usually used for instrumenting application to produce
12460 profile useful for later recompilation with profile feedback based
12461 optimization. You must use @option{-fprofile-generate} both when
12462 compiling and when linking your program.
12463
12464 The following options are enabled:
12465 @option{-fprofile-arcs}, @option{-fprofile-values},
12466 @option{-finline-functions}, and @option{-fipa-bit-cp}.
12467
12468 If @var{path} is specified, GCC looks at the @var{path} to find
12469 the profile feedback data files. See @option{-fprofile-dir}.
12470
12471 To optimize the program based on the collected profile information, use
12472 @option{-fprofile-use}. @xref{Optimize Options}, for more information.
12473
12474 @item -fprofile-note=@var{path}
12475 @opindex fprofile-note
12476
12477 If @var{path} is specified, GCC saves @file{.gcno} file into @var{path}
12478 location. If you combine the option with multiple source files,
12479 the @file{.gcno} file will be overwritten.
12480
12481 @item -fprofile-update=@var{method}
12482 @opindex fprofile-update
12483
12484 Alter the update method for an application instrumented for profile
12485 feedback based optimization. The @var{method} argument should be one of
12486 @samp{single}, @samp{atomic} or @samp{prefer-atomic}.
12487 The first one is useful for single-threaded applications,
12488 while the second one prevents profile corruption by emitting thread-safe code.
12489
12490 @strong{Warning:} When an application does not properly join all threads
12491 (or creates an detached thread), a profile file can be still corrupted.
12492
12493 Using @samp{prefer-atomic} would be transformed either to @samp{atomic},
12494 when supported by a target, or to @samp{single} otherwise. The GCC driver
12495 automatically selects @samp{prefer-atomic} when @option{-pthread}
12496 is present in the command line.
12497
12498 @item -fprofile-filter-files=@var{regex}
12499 @opindex fprofile-filter-files
12500
12501 Instrument only functions from files where names match
12502 any regular expression (separated by a semi-colon).
12503
12504 For example, @option{-fprofile-filter-files=main.c;module.*.c} will instrument
12505 only @file{main.c} and all C files starting with 'module'.
12506
12507 @item -fprofile-exclude-files=@var{regex}
12508 @opindex fprofile-exclude-files
12509
12510 Instrument only functions from files where names do not match
12511 all the regular expressions (separated by a semi-colon).
12512
12513 For example, @option{-fprofile-exclude-files=/usr/*} will prevent instrumentation
12514 of all files that are located in @file{/usr/} folder.
12515
12516 @item -fsanitize=address
12517 @opindex fsanitize=address
12518 Enable AddressSanitizer, a fast memory error detector.
12519 Memory access instructions are instrumented to detect
12520 out-of-bounds and use-after-free bugs.
12521 The option enables @option{-fsanitize-address-use-after-scope}.
12522 See @uref{https://github.com/google/sanitizers/wiki/AddressSanitizer} for
12523 more details. The run-time behavior can be influenced using the
12524 @env{ASAN_OPTIONS} environment variable. When set to @code{help=1},
12525 the available options are shown at startup of the instrumented program. See
12526 @url{https://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run-time-flags}
12527 for a list of supported options.
12528 The option cannot be combined with @option{-fsanitize=thread}.
12529
12530 @item -fsanitize=kernel-address
12531 @opindex fsanitize=kernel-address
12532 Enable AddressSanitizer for Linux kernel.
12533 See @uref{https://github.com/google/kasan/wiki} for more details.
12534
12535 @item -fsanitize=pointer-compare
12536 @opindex fsanitize=pointer-compare
12537 Instrument comparison operation (<, <=, >, >=) with pointer operands.
12538 The option must be combined with either @option{-fsanitize=kernel-address} or
12539 @option{-fsanitize=address}
12540 The option cannot be combined with @option{-fsanitize=thread}.
12541 Note: By default the check is disabled at run time. To enable it,
12542 add @code{detect_invalid_pointer_pairs=2} to the environment variable
12543 @env{ASAN_OPTIONS}. Using @code{detect_invalid_pointer_pairs=1} detects
12544 invalid operation only when both pointers are non-null.
12545
12546 @item -fsanitize=pointer-subtract
12547 @opindex fsanitize=pointer-subtract
12548 Instrument subtraction with pointer operands.
12549 The option must be combined with either @option{-fsanitize=kernel-address} or
12550 @option{-fsanitize=address}
12551 The option cannot be combined with @option{-fsanitize=thread}.
12552 Note: By default the check is disabled at run time. To enable it,
12553 add @code{detect_invalid_pointer_pairs=2} to the environment variable
12554 @env{ASAN_OPTIONS}. Using @code{detect_invalid_pointer_pairs=1} detects
12555 invalid operation only when both pointers are non-null.
12556
12557 @item -fsanitize=thread
12558 @opindex fsanitize=thread
12559 Enable ThreadSanitizer, a fast data race detector.
12560 Memory access instructions are instrumented to detect
12561 data race bugs. See @uref{https://github.com/google/sanitizers/wiki#threadsanitizer} for more
12562 details. The run-time behavior can be influenced using the @env{TSAN_OPTIONS}
12563 environment variable; see
12564 @url{https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags} for a list of
12565 supported options.
12566 The option cannot be combined with @option{-fsanitize=address},
12567 @option{-fsanitize=leak}.
12568
12569 Note that sanitized atomic builtins cannot throw exceptions when
12570 operating on invalid memory addresses with non-call exceptions
12571 (@option{-fnon-call-exceptions}).
12572
12573 @item -fsanitize=leak
12574 @opindex fsanitize=leak
12575 Enable LeakSanitizer, a memory leak detector.
12576 This option only matters for linking of executables and
12577 the executable is linked against a library that overrides @code{malloc}
12578 and other allocator functions. See
12579 @uref{https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer} for more
12580 details. The run-time behavior can be influenced using the
12581 @env{LSAN_OPTIONS} environment variable.
12582 The option cannot be combined with @option{-fsanitize=thread}.
12583
12584 @item -fsanitize=undefined
12585 @opindex fsanitize=undefined
12586 Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector.
12587 Various computations are instrumented to detect undefined behavior
12588 at runtime. Current suboptions are:
12589
12590 @table @gcctabopt
12591
12592 @item -fsanitize=shift
12593 @opindex fsanitize=shift
12594 This option enables checking that the result of a shift operation is
12595 not undefined. Note that what exactly is considered undefined differs
12596 slightly between C and C++, as well as between ISO C90 and C99, etc.
12597 This option has two suboptions, @option{-fsanitize=shift-base} and
12598 @option{-fsanitize=shift-exponent}.
12599
12600 @item -fsanitize=shift-exponent
12601 @opindex fsanitize=shift-exponent
12602 This option enables checking that the second argument of a shift operation
12603 is not negative and is smaller than the precision of the promoted first
12604 argument.
12605
12606 @item -fsanitize=shift-base
12607 @opindex fsanitize=shift-base
12608 If the second argument of a shift operation is within range, check that the
12609 result of a shift operation is not undefined. Note that what exactly is
12610 considered undefined differs slightly between C and C++, as well as between
12611 ISO C90 and C99, etc.
12612
12613 @item -fsanitize=integer-divide-by-zero
12614 @opindex fsanitize=integer-divide-by-zero
12615 Detect integer division by zero as well as @code{INT_MIN / -1} division.
12616
12617 @item -fsanitize=unreachable
12618 @opindex fsanitize=unreachable
12619 With this option, the compiler turns the @code{__builtin_unreachable}
12620 call into a diagnostics message call instead. When reaching the
12621 @code{__builtin_unreachable} call, the behavior is undefined.
12622
12623 @item -fsanitize=vla-bound
12624 @opindex fsanitize=vla-bound
12625 This option instructs the compiler to check that the size of a variable
12626 length array is positive.
12627
12628 @item -fsanitize=null
12629 @opindex fsanitize=null
12630 This option enables pointer checking. Particularly, the application
12631 built with this option turned on will issue an error message when it
12632 tries to dereference a NULL pointer, or if a reference (possibly an
12633 rvalue reference) is bound to a NULL pointer, or if a method is invoked
12634 on an object pointed by a NULL pointer.
12635
12636 @item -fsanitize=return
12637 @opindex fsanitize=return
12638 This option enables return statement checking. Programs
12639 built with this option turned on will issue an error message
12640 when the end of a non-void function is reached without actually
12641 returning a value. This option works in C++ only.
12642
12643 @item -fsanitize=signed-integer-overflow
12644 @opindex fsanitize=signed-integer-overflow
12645 This option enables signed integer overflow checking. We check that
12646 the result of @code{+}, @code{*}, and both unary and binary @code{-}
12647 does not overflow in the signed arithmetics. Note, integer promotion
12648 rules must be taken into account. That is, the following is not an
12649 overflow:
12650 @smallexample
12651 signed char a = SCHAR_MAX;
12652 a++;
12653 @end smallexample
12654
12655 @item -fsanitize=bounds
12656 @opindex fsanitize=bounds
12657 This option enables instrumentation of array bounds. Various out of bounds
12658 accesses are detected. Flexible array members, flexible array member-like
12659 arrays, and initializers of variables with static storage are not instrumented.
12660
12661 @item -fsanitize=bounds-strict
12662 @opindex fsanitize=bounds-strict
12663 This option enables strict instrumentation of array bounds. Most out of bounds
12664 accesses are detected, including flexible array members and flexible array
12665 member-like arrays. Initializers of variables with static storage are not
12666 instrumented.
12667
12668 @item -fsanitize=alignment
12669 @opindex fsanitize=alignment
12670
12671 This option enables checking of alignment of pointers when they are
12672 dereferenced, or when a reference is bound to insufficiently aligned target,
12673 or when a method or constructor is invoked on insufficiently aligned object.
12674
12675 @item -fsanitize=object-size
12676 @opindex fsanitize=object-size
12677 This option enables instrumentation of memory references using the
12678 @code{__builtin_object_size} function. Various out of bounds pointer
12679 accesses are detected.
12680
12681 @item -fsanitize=float-divide-by-zero
12682 @opindex fsanitize=float-divide-by-zero
12683 Detect floating-point division by zero. Unlike other similar options,
12684 @option{-fsanitize=float-divide-by-zero} is not enabled by
12685 @option{-fsanitize=undefined}, since floating-point division by zero can
12686 be a legitimate way of obtaining infinities and NaNs.
12687
12688 @item -fsanitize=float-cast-overflow
12689 @opindex fsanitize=float-cast-overflow
12690 This option enables floating-point type to integer conversion checking.
12691 We check that the result of the conversion does not overflow.
12692 Unlike other similar options, @option{-fsanitize=float-cast-overflow} is
12693 not enabled by @option{-fsanitize=undefined}.
12694 This option does not work well with @code{FE_INVALID} exceptions enabled.
12695
12696 @item -fsanitize=nonnull-attribute
12697 @opindex fsanitize=nonnull-attribute
12698
12699 This option enables instrumentation of calls, checking whether null values
12700 are not passed to arguments marked as requiring a non-null value by the
12701 @code{nonnull} function attribute.
12702
12703 @item -fsanitize=returns-nonnull-attribute
12704 @opindex fsanitize=returns-nonnull-attribute
12705
12706 This option enables instrumentation of return statements in functions
12707 marked with @code{returns_nonnull} function attribute, to detect returning
12708 of null values from such functions.
12709
12710 @item -fsanitize=bool
12711 @opindex fsanitize=bool
12712
12713 This option enables instrumentation of loads from bool. If a value other
12714 than 0/1 is loaded, a run-time error is issued.
12715
12716 @item -fsanitize=enum
12717 @opindex fsanitize=enum
12718
12719 This option enables instrumentation of loads from an enum type. If
12720 a value outside the range of values for the enum type is loaded,
12721 a run-time error is issued.
12722
12723 @item -fsanitize=vptr
12724 @opindex fsanitize=vptr
12725
12726 This option enables instrumentation of C++ member function calls, member
12727 accesses and some conversions between pointers to base and derived classes,
12728 to verify the referenced object has the correct dynamic type.
12729
12730 @item -fsanitize=pointer-overflow
12731 @opindex fsanitize=pointer-overflow
12732
12733 This option enables instrumentation of pointer arithmetics. If the pointer
12734 arithmetics overflows, a run-time error is issued.
12735
12736 @item -fsanitize=builtin
12737 @opindex fsanitize=builtin
12738
12739 This option enables instrumentation of arguments to selected builtin
12740 functions. If an invalid value is passed to such arguments, a run-time
12741 error is issued. E.g.@ passing 0 as the argument to @code{__builtin_ctz}
12742 or @code{__builtin_clz} invokes undefined behavior and is diagnosed
12743 by this option.
12744
12745 @end table
12746
12747 While @option{-ftrapv} causes traps for signed overflows to be emitted,
12748 @option{-fsanitize=undefined} gives a diagnostic message.
12749 This currently works only for the C family of languages.
12750
12751 @item -fno-sanitize=all
12752 @opindex fno-sanitize=all
12753
12754 This option disables all previously enabled sanitizers.
12755 @option{-fsanitize=all} is not allowed, as some sanitizers cannot be used
12756 together.
12757
12758 @item -fasan-shadow-offset=@var{number}
12759 @opindex fasan-shadow-offset
12760 This option forces GCC to use custom shadow offset in AddressSanitizer checks.
12761 It is useful for experimenting with different shadow memory layouts in
12762 Kernel AddressSanitizer.
12763
12764 @item -fsanitize-sections=@var{s1},@var{s2},...
12765 @opindex fsanitize-sections
12766 Sanitize global variables in selected user-defined sections. @var{si} may
12767 contain wildcards.
12768
12769 @item -fsanitize-recover@r{[}=@var{opts}@r{]}
12770 @opindex fsanitize-recover
12771 @opindex fno-sanitize-recover
12772 @option{-fsanitize-recover=} controls error recovery mode for sanitizers
12773 mentioned in comma-separated list of @var{opts}. Enabling this option
12774 for a sanitizer component causes it to attempt to continue
12775 running the program as if no error happened. This means multiple
12776 runtime errors can be reported in a single program run, and the exit
12777 code of the program may indicate success even when errors
12778 have been reported. The @option{-fno-sanitize-recover=} option
12779 can be used to alter
12780 this behavior: only the first detected error is reported
12781 and program then exits with a non-zero exit code.
12782
12783 Currently this feature only works for @option{-fsanitize=undefined} (and its suboptions
12784 except for @option{-fsanitize=unreachable} and @option{-fsanitize=return}),
12785 @option{-fsanitize=float-cast-overflow}, @option{-fsanitize=float-divide-by-zero},
12786 @option{-fsanitize=bounds-strict},
12787 @option{-fsanitize=kernel-address} and @option{-fsanitize=address}.
12788 For these sanitizers error recovery is turned on by default,
12789 except @option{-fsanitize=address}, for which this feature is experimental.
12790 @option{-fsanitize-recover=all} and @option{-fno-sanitize-recover=all} is also
12791 accepted, the former enables recovery for all sanitizers that support it,
12792 the latter disables recovery for all sanitizers that support it.
12793
12794 Even if a recovery mode is turned on the compiler side, it needs to be also
12795 enabled on the runtime library side, otherwise the failures are still fatal.
12796 The runtime library defaults to @code{halt_on_error=0} for
12797 ThreadSanitizer and UndefinedBehaviorSanitizer, while default value for
12798 AddressSanitizer is @code{halt_on_error=1}. This can be overridden through
12799 setting the @code{halt_on_error} flag in the corresponding environment variable.
12800
12801 Syntax without an explicit @var{opts} parameter is deprecated. It is
12802 equivalent to specifying an @var{opts} list of:
12803
12804 @smallexample
12805 undefined,float-cast-overflow,float-divide-by-zero,bounds-strict
12806 @end smallexample
12807
12808 @item -fsanitize-address-use-after-scope
12809 @opindex fsanitize-address-use-after-scope
12810 Enable sanitization of local variables to detect use-after-scope bugs.
12811 The option sets @option{-fstack-reuse} to @samp{none}.
12812
12813 @item -fsanitize-undefined-trap-on-error
12814 @opindex fsanitize-undefined-trap-on-error
12815 The @option{-fsanitize-undefined-trap-on-error} option instructs the compiler to
12816 report undefined behavior using @code{__builtin_trap} rather than
12817 a @code{libubsan} library routine. The advantage of this is that the
12818 @code{libubsan} library is not needed and is not linked in, so this
12819 is usable even in freestanding environments.
12820
12821 @item -fsanitize-coverage=trace-pc
12822 @opindex fsanitize-coverage=trace-pc
12823 Enable coverage-guided fuzzing code instrumentation.
12824 Inserts a call to @code{__sanitizer_cov_trace_pc} into every basic block.
12825
12826 @item -fsanitize-coverage=trace-cmp
12827 @opindex fsanitize-coverage=trace-cmp
12828 Enable dataflow guided fuzzing code instrumentation.
12829 Inserts a call to @code{__sanitizer_cov_trace_cmp1},
12830 @code{__sanitizer_cov_trace_cmp2}, @code{__sanitizer_cov_trace_cmp4} or
12831 @code{__sanitizer_cov_trace_cmp8} for integral comparison with both operands
12832 variable or @code{__sanitizer_cov_trace_const_cmp1},
12833 @code{__sanitizer_cov_trace_const_cmp2},
12834 @code{__sanitizer_cov_trace_const_cmp4} or
12835 @code{__sanitizer_cov_trace_const_cmp8} for integral comparison with one
12836 operand constant, @code{__sanitizer_cov_trace_cmpf} or
12837 @code{__sanitizer_cov_trace_cmpd} for float or double comparisons and
12838 @code{__sanitizer_cov_trace_switch} for switch statements.
12839
12840 @item -fcf-protection=@r{[}full@r{|}branch@r{|}return@r{|}none@r{]}
12841 @opindex fcf-protection
12842 Enable code instrumentation of control-flow transfers to increase
12843 program security by checking that target addresses of control-flow
12844 transfer instructions (such as indirect function call, function return,
12845 indirect jump) are valid. This prevents diverting the flow of control
12846 to an unexpected target. This is intended to protect against such
12847 threats as Return-oriented Programming (ROP), and similarly
12848 call/jmp-oriented programming (COP/JOP).
12849
12850 The value @code{branch} tells the compiler to implement checking of
12851 validity of control-flow transfer at the point of indirect branch
12852 instructions, i.e.@: call/jmp instructions. The value @code{return}
12853 implements checking of validity at the point of returning from a
12854 function. The value @code{full} is an alias for specifying both
12855 @code{branch} and @code{return}. The value @code{none} turns off
12856 instrumentation.
12857
12858 The macro @code{__CET__} is defined when @option{-fcf-protection} is
12859 used. The first bit of @code{__CET__} is set to 1 for the value
12860 @code{branch} and the second bit of @code{__CET__} is set to 1 for
12861 the @code{return}.
12862
12863 You can also use the @code{nocf_check} attribute to identify
12864 which functions and calls should be skipped from instrumentation
12865 (@pxref{Function Attributes}).
12866
12867 Currently the x86 GNU/Linux target provides an implementation based
12868 on Intel Control-flow Enforcement Technology (CET).
12869
12870 @item -fstack-protector
12871 @opindex fstack-protector
12872 Emit extra code to check for buffer overflows, such as stack smashing
12873 attacks. This is done by adding a guard variable to functions with
12874 vulnerable objects. This includes functions that call @code{alloca}, and
12875 functions with buffers larger than 8 bytes. The guards are initialized
12876 when a function is entered and then checked when the function exits.
12877 If a guard check fails, an error message is printed and the program exits.
12878
12879 @item -fstack-protector-all
12880 @opindex fstack-protector-all
12881 Like @option{-fstack-protector} except that all functions are protected.
12882
12883 @item -fstack-protector-strong
12884 @opindex fstack-protector-strong
12885 Like @option{-fstack-protector} but includes additional functions to
12886 be protected --- those that have local array definitions, or have
12887 references to local frame addresses.
12888
12889 @item -fstack-protector-explicit
12890 @opindex fstack-protector-explicit
12891 Like @option{-fstack-protector} but only protects those functions which
12892 have the @code{stack_protect} attribute.
12893
12894 @item -fstack-check
12895 @opindex fstack-check
12896 Generate code to verify that you do not go beyond the boundary of the
12897 stack. You should specify this flag if you are running in an
12898 environment with multiple threads, but you only rarely need to specify it in
12899 a single-threaded environment since stack overflow is automatically
12900 detected on nearly all systems if there is only one stack.
12901
12902 Note that this switch does not actually cause checking to be done; the
12903 operating system or the language runtime must do that. The switch causes
12904 generation of code to ensure that they see the stack being extended.
12905
12906 You can additionally specify a string parameter: @samp{no} means no
12907 checking, @samp{generic} means force the use of old-style checking,
12908 @samp{specific} means use the best checking method and is equivalent
12909 to bare @option{-fstack-check}.
12910
12911 Old-style checking is a generic mechanism that requires no specific
12912 target support in the compiler but comes with the following drawbacks:
12913
12914 @enumerate
12915 @item
12916 Modified allocation strategy for large objects: they are always
12917 allocated dynamically if their size exceeds a fixed threshold. Note this
12918 may change the semantics of some code.
12919
12920 @item
12921 Fixed limit on the size of the static frame of functions: when it is
12922 topped by a particular function, stack checking is not reliable and
12923 a warning is issued by the compiler.
12924
12925 @item
12926 Inefficiency: because of both the modified allocation strategy and the
12927 generic implementation, code performance is hampered.
12928 @end enumerate
12929
12930 Note that old-style stack checking is also the fallback method for
12931 @samp{specific} if no target support has been added in the compiler.
12932
12933 @samp{-fstack-check=} is designed for Ada's needs to detect infinite recursion
12934 and stack overflows. @samp{specific} is an excellent choice when compiling
12935 Ada code. It is not generally sufficient to protect against stack-clash
12936 attacks. To protect against those you want @samp{-fstack-clash-protection}.
12937
12938 @item -fstack-clash-protection
12939 @opindex fstack-clash-protection
12940 Generate code to prevent stack clash style attacks. When this option is
12941 enabled, the compiler will only allocate one page of stack space at a time
12942 and each page is accessed immediately after allocation. Thus, it prevents
12943 allocations from jumping over any stack guard page provided by the
12944 operating system.
12945
12946 Most targets do not fully support stack clash protection. However, on
12947 those targets @option{-fstack-clash-protection} will protect dynamic stack
12948 allocations. @option{-fstack-clash-protection} may also provide limited
12949 protection for static stack allocations if the target supports
12950 @option{-fstack-check=specific}.
12951
12952 @item -fstack-limit-register=@var{reg}
12953 @itemx -fstack-limit-symbol=@var{sym}
12954 @itemx -fno-stack-limit
12955 @opindex fstack-limit-register
12956 @opindex fstack-limit-symbol
12957 @opindex fno-stack-limit
12958 Generate code to ensure that the stack does not grow beyond a certain value,
12959 either the value of a register or the address of a symbol. If a larger
12960 stack is required, a signal is raised at run time. For most targets,
12961 the signal is raised before the stack overruns the boundary, so
12962 it is possible to catch the signal without taking special precautions.
12963
12964 For instance, if the stack starts at absolute address @samp{0x80000000}
12965 and grows downwards, you can use the flags
12966 @option{-fstack-limit-symbol=__stack_limit} and
12967 @option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit
12968 of 128KB@. Note that this may only work with the GNU linker.
12969
12970 You can locally override stack limit checking by using the
12971 @code{no_stack_limit} function attribute (@pxref{Function Attributes}).
12972
12973 @item -fsplit-stack
12974 @opindex fsplit-stack
12975 Generate code to automatically split the stack before it overflows.
12976 The resulting program has a discontiguous stack which can only
12977 overflow if the program is unable to allocate any more memory. This
12978 is most useful when running threaded programs, as it is no longer
12979 necessary to calculate a good stack size to use for each thread. This
12980 is currently only implemented for the x86 targets running
12981 GNU/Linux.
12982
12983 When code compiled with @option{-fsplit-stack} calls code compiled
12984 without @option{-fsplit-stack}, there may not be much stack space
12985 available for the latter code to run. If compiling all code,
12986 including library code, with @option{-fsplit-stack} is not an option,
12987 then the linker can fix up these calls so that the code compiled
12988 without @option{-fsplit-stack} always has a large stack. Support for
12989 this is implemented in the gold linker in GNU binutils release 2.21
12990 and later.
12991
12992 @item -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]}
12993 @opindex fvtable-verify
12994 This option is only available when compiling C++ code.
12995 It turns on (or off, if using @option{-fvtable-verify=none}) the security
12996 feature that verifies at run time, for every virtual call, that
12997 the vtable pointer through which the call is made is valid for the type of
12998 the object, and has not been corrupted or overwritten. If an invalid vtable
12999 pointer is detected at run time, an error is reported and execution of the
13000 program is immediately halted.
13001
13002 This option causes run-time data structures to be built at program startup,
13003 which are used for verifying the vtable pointers.
13004 The options @samp{std} and @samp{preinit}
13005 control the timing of when these data structures are built. In both cases the
13006 data structures are built before execution reaches @code{main}. Using
13007 @option{-fvtable-verify=std} causes the data structures to be built after
13008 shared libraries have been loaded and initialized.
13009 @option{-fvtable-verify=preinit} causes them to be built before shared
13010 libraries have been loaded and initialized.
13011
13012 If this option appears multiple times in the command line with different
13013 values specified, @samp{none} takes highest priority over both @samp{std} and
13014 @samp{preinit}; @samp{preinit} takes priority over @samp{std}.
13015
13016 @item -fvtv-debug
13017 @opindex fvtv-debug
13018 When used in conjunction with @option{-fvtable-verify=std} or
13019 @option{-fvtable-verify=preinit}, causes debug versions of the
13020 runtime functions for the vtable verification feature to be called.
13021 This flag also causes the compiler to log information about which
13022 vtable pointers it finds for each class.
13023 This information is written to a file named @file{vtv_set_ptr_data.log}
13024 in the directory named by the environment variable @env{VTV_LOGS_DIR}
13025 if that is defined or the current working directory otherwise.
13026
13027 Note: This feature @emph{appends} data to the log file. If you want a fresh log
13028 file, be sure to delete any existing one.
13029
13030 @item -fvtv-counts
13031 @opindex fvtv-counts
13032 This is a debugging flag. When used in conjunction with
13033 @option{-fvtable-verify=std} or @option{-fvtable-verify=preinit}, this
13034 causes the compiler to keep track of the total number of virtual calls
13035 it encounters and the number of verifications it inserts. It also
13036 counts the number of calls to certain run-time library functions
13037 that it inserts and logs this information for each compilation unit.
13038 The compiler writes this information to a file named
13039 @file{vtv_count_data.log} in the directory named by the environment
13040 variable @env{VTV_LOGS_DIR} if that is defined or the current working
13041 directory otherwise. It also counts the size of the vtable pointer sets
13042 for each class, and writes this information to @file{vtv_class_set_sizes.log}
13043 in the same directory.
13044
13045 Note: This feature @emph{appends} data to the log files. To get fresh log
13046 files, be sure to delete any existing ones.
13047
13048 @item -finstrument-functions
13049 @opindex finstrument-functions
13050 Generate instrumentation calls for entry and exit to functions. Just
13051 after function entry and just before function exit, the following
13052 profiling functions are called with the address of the current
13053 function and its call site. (On some platforms,
13054 @code{__builtin_return_address} does not work beyond the current
13055 function, so the call site information may not be available to the
13056 profiling functions otherwise.)
13057
13058 @smallexample
13059 void __cyg_profile_func_enter (void *this_fn,
13060 void *call_site);
13061 void __cyg_profile_func_exit (void *this_fn,
13062 void *call_site);
13063 @end smallexample
13064
13065 The first argument is the address of the start of the current function,
13066 which may be looked up exactly in the symbol table.
13067
13068 This instrumentation is also done for functions expanded inline in other
13069 functions. The profiling calls indicate where, conceptually, the
13070 inline function is entered and exited. This means that addressable
13071 versions of such functions must be available. If all your uses of a
13072 function are expanded inline, this may mean an additional expansion of
13073 code size. If you use @code{extern inline} in your C code, an
13074 addressable version of such functions must be provided. (This is
13075 normally the case anyway, but if you get lucky and the optimizer always
13076 expands the functions inline, you might have gotten away without
13077 providing static copies.)
13078
13079 A function may be given the attribute @code{no_instrument_function}, in
13080 which case this instrumentation is not done. This can be used, for
13081 example, for the profiling functions listed above, high-priority
13082 interrupt routines, and any functions from which the profiling functions
13083 cannot safely be called (perhaps signal handlers, if the profiling
13084 routines generate output or allocate memory).
13085 @xref{Common Function Attributes}.
13086
13087 @item -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}
13088 @opindex finstrument-functions-exclude-file-list
13089
13090 Set the list of functions that are excluded from instrumentation (see
13091 the description of @option{-finstrument-functions}). If the file that
13092 contains a function definition matches with one of @var{file}, then
13093 that function is not instrumented. The match is done on substrings:
13094 if the @var{file} parameter is a substring of the file name, it is
13095 considered to be a match.
13096
13097 For example:
13098
13099 @smallexample
13100 -finstrument-functions-exclude-file-list=/bits/stl,include/sys
13101 @end smallexample
13102
13103 @noindent
13104 excludes any inline function defined in files whose pathnames
13105 contain @file{/bits/stl} or @file{include/sys}.
13106
13107 If, for some reason, you want to include letter @samp{,} in one of
13108 @var{sym}, write @samp{\,}. For example,
13109 @option{-finstrument-functions-exclude-file-list='\,\,tmp'}
13110 (note the single quote surrounding the option).
13111
13112 @item -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{}
13113 @opindex finstrument-functions-exclude-function-list
13114
13115 This is similar to @option{-finstrument-functions-exclude-file-list},
13116 but this option sets the list of function names to be excluded from
13117 instrumentation. The function name to be matched is its user-visible
13118 name, such as @code{vector<int> blah(const vector<int> &)}, not the
13119 internal mangled name (e.g., @code{_Z4blahRSt6vectorIiSaIiEE}). The
13120 match is done on substrings: if the @var{sym} parameter is a substring
13121 of the function name, it is considered to be a match. For C99 and C++
13122 extended identifiers, the function name must be given in UTF-8, not
13123 using universal character names.
13124
13125 @item -fpatchable-function-entry=@var{N}[,@var{M}]
13126 @opindex fpatchable-function-entry
13127 Generate @var{N} NOPs right at the beginning
13128 of each function, with the function entry point before the @var{M}th NOP.
13129 If @var{M} is omitted, it defaults to @code{0} so the
13130 function entry points to the address just at the first NOP.
13131 The NOP instructions reserve extra space which can be used to patch in
13132 any desired instrumentation at run time, provided that the code segment
13133 is writable. The amount of space is controllable indirectly via
13134 the number of NOPs; the NOP instruction used corresponds to the instruction
13135 emitted by the internal GCC back-end interface @code{gen_nop}. This behavior
13136 is target-specific and may also depend on the architecture variant and/or
13137 other compilation options.
13138
13139 For run-time identification, the starting addresses of these areas,
13140 which correspond to their respective function entries minus @var{M},
13141 are additionally collected in the @code{__patchable_function_entries}
13142 section of the resulting binary.
13143
13144 Note that the value of @code{__attribute__ ((patchable_function_entry
13145 (N,M)))} takes precedence over command-line option
13146 @option{-fpatchable-function-entry=N,M}. This can be used to increase
13147 the area size or to remove it completely on a single function.
13148 If @code{N=0}, no pad location is recorded.
13149
13150 The NOP instructions are inserted at---and maybe before, depending on
13151 @var{M}---the function entry address, even before the prologue.
13152
13153 @end table
13154
13155
13156 @node Preprocessor Options
13157 @section Options Controlling the Preprocessor
13158 @cindex preprocessor options
13159 @cindex options, preprocessor
13160
13161 These options control the C preprocessor, which is run on each C source
13162 file before actual compilation.
13163
13164 If you use the @option{-E} option, nothing is done except preprocessing.
13165 Some of these options make sense only together with @option{-E} because
13166 they cause the preprocessor output to be unsuitable for actual
13167 compilation.
13168
13169 In addition to the options listed here, there are a number of options
13170 to control search paths for include files documented in
13171 @ref{Directory Options}.
13172 Options to control preprocessor diagnostics are listed in
13173 @ref{Warning Options}.
13174
13175 @table @gcctabopt
13176 @include cppopts.texi
13177
13178 @item -Wp,@var{option}
13179 @opindex Wp
13180 You can use @option{-Wp,@var{option}} to bypass the compiler driver
13181 and pass @var{option} directly through to the preprocessor. If
13182 @var{option} contains commas, it is split into multiple options at the
13183 commas. However, many options are modified, translated or interpreted
13184 by the compiler driver before being passed to the preprocessor, and
13185 @option{-Wp} forcibly bypasses this phase. The preprocessor's direct
13186 interface is undocumented and subject to change, so whenever possible
13187 you should avoid using @option{-Wp} and let the driver handle the
13188 options instead.
13189
13190 @item -Xpreprocessor @var{option}
13191 @opindex Xpreprocessor
13192 Pass @var{option} as an option to the preprocessor. You can use this to
13193 supply system-specific preprocessor options that GCC does not
13194 recognize.
13195
13196 If you want to pass an option that takes an argument, you must use
13197 @option{-Xpreprocessor} twice, once for the option and once for the argument.
13198
13199 @item -no-integrated-cpp
13200 @opindex no-integrated-cpp
13201 Perform preprocessing as a separate pass before compilation.
13202 By default, GCC performs preprocessing as an integrated part of
13203 input tokenization and parsing.
13204 If this option is provided, the appropriate language front end
13205 (@command{cc1}, @command{cc1plus}, or @command{cc1obj} for C, C++,
13206 and Objective-C, respectively) is instead invoked twice,
13207 once for preprocessing only and once for actual compilation
13208 of the preprocessed input.
13209 This option may be useful in conjunction with the @option{-B} or
13210 @option{-wrapper} options to specify an alternate preprocessor or
13211 perform additional processing of the program source between
13212 normal preprocessing and compilation.
13213
13214 @end table
13215
13216 @node Assembler Options
13217 @section Passing Options to the Assembler
13218
13219 @c prevent bad page break with this line
13220 You can pass options to the assembler.
13221
13222 @table @gcctabopt
13223 @item -Wa,@var{option}
13224 @opindex Wa
13225 Pass @var{option} as an option to the assembler. If @var{option}
13226 contains commas, it is split into multiple options at the commas.
13227
13228 @item -Xassembler @var{option}
13229 @opindex Xassembler
13230 Pass @var{option} as an option to the assembler. You can use this to
13231 supply system-specific assembler options that GCC does not
13232 recognize.
13233
13234 If you want to pass an option that takes an argument, you must use
13235 @option{-Xassembler} twice, once for the option and once for the argument.
13236
13237 @end table
13238
13239 @node Link Options
13240 @section Options for Linking
13241 @cindex link options
13242 @cindex options, linking
13243
13244 These options come into play when the compiler links object files into
13245 an executable output file. They are meaningless if the compiler is
13246 not doing a link step.
13247
13248 @table @gcctabopt
13249 @cindex file names
13250 @item @var{object-file-name}
13251 A file name that does not end in a special recognized suffix is
13252 considered to name an object file or library. (Object files are
13253 distinguished from libraries by the linker according to the file
13254 contents.) If linking is done, these object files are used as input
13255 to the linker.
13256
13257 @item -c
13258 @itemx -S
13259 @itemx -E
13260 @opindex c
13261 @opindex S
13262 @opindex E
13263 If any of these options is used, then the linker is not run, and
13264 object file names should not be used as arguments. @xref{Overall
13265 Options}.
13266
13267 @item -flinker-output=@var{type}
13268 @opindex flinker-output
13269 This option controls code generation of the link-time optimizer. By
13270 default the linker output is automatically determined by the linker
13271 plugin. For debugging the compiler and if incremental linking with a
13272 non-LTO object file is desired, it may be useful to control the type
13273 manually.
13274
13275 If @var{type} is @samp{exec}, code generation produces a static
13276 binary. In this case @option{-fpic} and @option{-fpie} are both
13277 disabled.
13278
13279 If @var{type} is @samp{dyn}, code generation produces a shared
13280 library. In this case @option{-fpic} or @option{-fPIC} is preserved,
13281 but not enabled automatically. This allows to build shared libraries
13282 without position-independent code on architectures where this is
13283 possible, i.e.@: on x86.
13284
13285 If @var{type} is @samp{pie}, code generation produces an @option{-fpie}
13286 executable. This results in similar optimizations as @samp{exec}
13287 except that @option{-fpie} is not disabled if specified at compilation
13288 time.
13289
13290 If @var{type} is @samp{rel}, the compiler assumes that incremental linking is
13291 done. The sections containing intermediate code for link-time optimization are
13292 merged, pre-optimized, and output to the resulting object file. In addition, if
13293 @option{-ffat-lto-objects} is specified, binary code is produced for future
13294 non-LTO linking. The object file produced by incremental linking is smaller
13295 than a static library produced from the same object files. At link time the
13296 result of incremental linking also loads faster than a static
13297 library assuming that the majority of objects in the library are used.
13298
13299 Finally @samp{nolto-rel} configures the compiler for incremental linking where
13300 code generation is forced, a final binary is produced, and the intermediate
13301 code for later link-time optimization is stripped. When multiple object files
13302 are linked together the resulting code is better optimized than with
13303 link-time optimizations disabled (for example, cross-module inlining
13304 happens), but most of benefits of whole program optimizations are lost.
13305
13306 During the incremental link (by @option{-r}) the linker plugin defaults to
13307 @option{rel}. With current interfaces to GNU Binutils it is however not
13308 possible to incrementally link LTO objects and non-LTO objects into a single
13309 mixed object file. If any of object files in incremental link cannot
13310 be used for link-time optimization, the linker plugin issues a warning and
13311 uses @samp{nolto-rel}. To maintain whole program optimization, it is
13312 recommended to link such objects into static library instead. Alternatively it
13313 is possible to use H.J. Lu's binutils with support for mixed objects.
13314
13315 @item -fuse-ld=bfd
13316 @opindex fuse-ld=bfd
13317 Use the @command{bfd} linker instead of the default linker.
13318
13319 @item -fuse-ld=gold
13320 @opindex fuse-ld=gold
13321 Use the @command{gold} linker instead of the default linker.
13322
13323 @item -fuse-ld=lld
13324 @opindex fuse-ld=lld
13325 Use the LLVM @command{lld} linker instead of the default linker.
13326
13327 @cindex Libraries
13328 @item -l@var{library}
13329 @itemx -l @var{library}
13330 @opindex l
13331 Search the library named @var{library} when linking. (The second
13332 alternative with the library as a separate argument is only for
13333 POSIX compliance and is not recommended.)
13334
13335 The @option{-l} option is passed directly to the linker by GCC. Refer
13336 to your linker documentation for exact details. The general
13337 description below applies to the GNU linker.
13338
13339 The linker searches a standard list of directories for the library.
13340 The directories searched include several standard system directories
13341 plus any that you specify with @option{-L}.
13342
13343 Static libraries are archives of object files, and have file names
13344 like @file{lib@var{library}.a}. Some targets also support shared
13345 libraries, which typically have names like @file{lib@var{library}.so}.
13346 If both static and shared libraries are found, the linker gives
13347 preference to linking with the shared library unless the
13348 @option{-static} option is used.
13349
13350 It makes a difference where in the command you write this option; the
13351 linker searches and processes libraries and object files in the order they
13352 are specified. Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
13353 after file @file{foo.o} but before @file{bar.o}. If @file{bar.o} refers
13354 to functions in @samp{z}, those functions may not be loaded.
13355
13356 @item -lobjc
13357 @opindex lobjc
13358 You need this special case of the @option{-l} option in order to
13359 link an Objective-C or Objective-C++ program.
13360
13361 @item -nostartfiles
13362 @opindex nostartfiles
13363 Do not use the standard system startup files when linking.
13364 The standard system libraries are used normally, unless @option{-nostdlib},
13365 @option{-nolibc}, or @option{-nodefaultlibs} is used.
13366
13367 @item -nodefaultlibs
13368 @opindex nodefaultlibs
13369 Do not use the standard system libraries when linking.
13370 Only the libraries you specify are passed to the linker, and options
13371 specifying linkage of the system libraries, such as @option{-static-libgcc}
13372 or @option{-shared-libgcc}, are ignored.
13373 The standard startup files are used normally, unless @option{-nostartfiles}
13374 is used.
13375
13376 The compiler may generate calls to @code{memcmp},
13377 @code{memset}, @code{memcpy} and @code{memmove}.
13378 These entries are usually resolved by entries in
13379 libc. These entry points should be supplied through some other
13380 mechanism when this option is specified.
13381
13382 @item -nolibc
13383 @opindex nolibc
13384 Do not use the C library or system libraries tightly coupled with it when
13385 linking. Still link with the startup files, @file{libgcc} or toolchain
13386 provided language support libraries such as @file{libgnat}, @file{libgfortran}
13387 or @file{libstdc++} unless options preventing their inclusion are used as
13388 well. This typically removes @option{-lc} from the link command line, as well
13389 as system libraries that normally go with it and become meaningless when
13390 absence of a C library is assumed, for example @option{-lpthread} or
13391 @option{-lm} in some configurations. This is intended for bare-board
13392 targets when there is indeed no C library available.
13393
13394 @item -nostdlib
13395 @opindex nostdlib
13396 Do not use the standard system startup files or libraries when linking.
13397 No startup files and only the libraries you specify are passed to
13398 the linker, and options specifying linkage of the system libraries, such as
13399 @option{-static-libgcc} or @option{-shared-libgcc}, are ignored.
13400
13401 The compiler may generate calls to @code{memcmp}, @code{memset},
13402 @code{memcpy} and @code{memmove}.
13403 These entries are usually resolved by entries in
13404 libc. These entry points should be supplied through some other
13405 mechanism when this option is specified.
13406
13407 @cindex @option{-lgcc}, use with @option{-nostdlib}
13408 @cindex @option{-nostdlib} and unresolved references
13409 @cindex unresolved references and @option{-nostdlib}
13410 @cindex @option{-lgcc}, use with @option{-nodefaultlibs}
13411 @cindex @option{-nodefaultlibs} and unresolved references
13412 @cindex unresolved references and @option{-nodefaultlibs}
13413 One of the standard libraries bypassed by @option{-nostdlib} and
13414 @option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
13415 which GCC uses to overcome shortcomings of particular machines, or special
13416 needs for some languages.
13417 (@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
13418 Collection (GCC) Internals},
13419 for more discussion of @file{libgcc.a}.)
13420 In most cases, you need @file{libgcc.a} even when you want to avoid
13421 other standard libraries. In other words, when you specify @option{-nostdlib}
13422 or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
13423 This ensures that you have no unresolved references to internal GCC
13424 library subroutines.
13425 (An example of such an internal subroutine is @code{__main}, used to ensure C++
13426 constructors are called; @pxref{Collect2,,@code{collect2}, gccint,
13427 GNU Compiler Collection (GCC) Internals}.)
13428
13429 @item -e @var{entry}
13430 @itemx --entry=@var{entry}
13431 @opindex e
13432 @opindex entry
13433
13434 Specify that the program entry point is @var{entry}. The argument is
13435 interpreted by the linker; the GNU linker accepts either a symbol name
13436 or an address.
13437
13438 @item -pie
13439 @opindex pie
13440 Produce a dynamically linked position independent executable on targets
13441 that support it. For predictable results, you must also specify the same
13442 set of options used for compilation (@option{-fpie}, @option{-fPIE},
13443 or model suboptions) when you specify this linker option.
13444
13445 @item -no-pie
13446 @opindex no-pie
13447 Don't produce a dynamically linked position independent executable.
13448
13449 @item -static-pie
13450 @opindex static-pie
13451 Produce a static position independent executable on targets that support
13452 it. A static position independent executable is similar to a static
13453 executable, but can be loaded at any address without a dynamic linker.
13454 For predictable results, you must also specify the same set of options
13455 used for compilation (@option{-fpie}, @option{-fPIE}, or model
13456 suboptions) when you specify this linker option.
13457
13458 @item -pthread
13459 @opindex pthread
13460 Link with the POSIX threads library. This option is supported on
13461 GNU/Linux targets, most other Unix derivatives, and also on
13462 x86 Cygwin and MinGW targets. On some targets this option also sets
13463 flags for the preprocessor, so it should be used consistently for both
13464 compilation and linking.
13465
13466 @item -r
13467 @opindex r
13468 Produce a relocatable object as output. This is also known as partial
13469 linking.
13470
13471 @item -rdynamic
13472 @opindex rdynamic
13473 Pass the flag @option{-export-dynamic} to the ELF linker, on targets
13474 that support it. This instructs the linker to add all symbols, not
13475 only used ones, to the dynamic symbol table. This option is needed
13476 for some uses of @code{dlopen} or to allow obtaining backtraces
13477 from within a program.
13478
13479 @item -s
13480 @opindex s
13481 Remove all symbol table and relocation information from the executable.
13482
13483 @item -static
13484 @opindex static
13485 On systems that support dynamic linking, this overrides @option{-pie}
13486 and prevents linking with the shared libraries. On other systems, this
13487 option has no effect.
13488
13489 @item -shared
13490 @opindex shared
13491 Produce a shared object which can then be linked with other objects to
13492 form an executable. Not all systems support this option. For predictable
13493 results, you must also specify the same set of options used for compilation
13494 (@option{-fpic}, @option{-fPIC}, or model suboptions) when
13495 you specify this linker option.@footnote{On some systems, @samp{gcc -shared}
13496 needs to build supplementary stub code for constructors to work. On
13497 multi-libbed systems, @samp{gcc -shared} must select the correct support
13498 libraries to link against. Failing to supply the correct flags may lead
13499 to subtle defects. Supplying them in cases where they are not necessary
13500 is innocuous.}
13501
13502 @item -shared-libgcc
13503 @itemx -static-libgcc
13504 @opindex shared-libgcc
13505 @opindex static-libgcc
13506 On systems that provide @file{libgcc} as a shared library, these options
13507 force the use of either the shared or static version, respectively.
13508 If no shared version of @file{libgcc} was built when the compiler was
13509 configured, these options have no effect.
13510
13511 There are several situations in which an application should use the
13512 shared @file{libgcc} instead of the static version. The most common
13513 of these is when the application wishes to throw and catch exceptions
13514 across different shared libraries. In that case, each of the libraries
13515 as well as the application itself should use the shared @file{libgcc}.
13516
13517 Therefore, the G++ driver automatically adds @option{-shared-libgcc}
13518 whenever you build a shared library or a main executable, because C++
13519 programs typically use exceptions, so this is the right thing to do.
13520
13521 If, instead, you use the GCC driver to create shared libraries, you may
13522 find that they are not always linked with the shared @file{libgcc}.
13523 If GCC finds, at its configuration time, that you have a non-GNU linker
13524 or a GNU linker that does not support option @option{--eh-frame-hdr},
13525 it links the shared version of @file{libgcc} into shared libraries
13526 by default. Otherwise, it takes advantage of the linker and optimizes
13527 away the linking with the shared version of @file{libgcc}, linking with
13528 the static version of libgcc by default. This allows exceptions to
13529 propagate through such shared libraries, without incurring relocation
13530 costs at library load time.
13531
13532 However, if a library or main executable is supposed to throw or catch
13533 exceptions, you must link it using the G++ driver, or using the option
13534 @option{-shared-libgcc}, such that it is linked with the shared
13535 @file{libgcc}.
13536
13537 @item -static-libasan
13538 @opindex static-libasan
13539 When the @option{-fsanitize=address} option is used to link a program,
13540 the GCC driver automatically links against @option{libasan}. If
13541 @file{libasan} is available as a shared library, and the @option{-static}
13542 option is not used, then this links against the shared version of
13543 @file{libasan}. The @option{-static-libasan} option directs the GCC
13544 driver to link @file{libasan} statically, without necessarily linking
13545 other libraries statically.
13546
13547 @item -static-libtsan
13548 @opindex static-libtsan
13549 When the @option{-fsanitize=thread} option is used to link a program,
13550 the GCC driver automatically links against @option{libtsan}. If
13551 @file{libtsan} is available as a shared library, and the @option{-static}
13552 option is not used, then this links against the shared version of
13553 @file{libtsan}. The @option{-static-libtsan} option directs the GCC
13554 driver to link @file{libtsan} statically, without necessarily linking
13555 other libraries statically.
13556
13557 @item -static-liblsan
13558 @opindex static-liblsan
13559 When the @option{-fsanitize=leak} option is used to link a program,
13560 the GCC driver automatically links against @option{liblsan}. If
13561 @file{liblsan} is available as a shared library, and the @option{-static}
13562 option is not used, then this links against the shared version of
13563 @file{liblsan}. The @option{-static-liblsan} option directs the GCC
13564 driver to link @file{liblsan} statically, without necessarily linking
13565 other libraries statically.
13566
13567 @item -static-libubsan
13568 @opindex static-libubsan
13569 When the @option{-fsanitize=undefined} option is used to link a program,
13570 the GCC driver automatically links against @option{libubsan}. If
13571 @file{libubsan} is available as a shared library, and the @option{-static}
13572 option is not used, then this links against the shared version of
13573 @file{libubsan}. The @option{-static-libubsan} option directs the GCC
13574 driver to link @file{libubsan} statically, without necessarily linking
13575 other libraries statically.
13576
13577 @item -static-libstdc++
13578 @opindex static-libstdc++
13579 When the @command{g++} program is used to link a C++ program, it
13580 normally automatically links against @option{libstdc++}. If
13581 @file{libstdc++} is available as a shared library, and the
13582 @option{-static} option is not used, then this links against the
13583 shared version of @file{libstdc++}. That is normally fine. However, it
13584 is sometimes useful to freeze the version of @file{libstdc++} used by
13585 the program without going all the way to a fully static link. The
13586 @option{-static-libstdc++} option directs the @command{g++} driver to
13587 link @file{libstdc++} statically, without necessarily linking other
13588 libraries statically.
13589
13590 @item -symbolic
13591 @opindex symbolic
13592 Bind references to global symbols when building a shared object. Warn
13593 about any unresolved references (unless overridden by the link editor
13594 option @option{-Xlinker -z -Xlinker defs}). Only a few systems support
13595 this option.
13596
13597 @item -T @var{script}
13598 @opindex T
13599 @cindex linker script
13600 Use @var{script} as the linker script. This option is supported by most
13601 systems using the GNU linker. On some targets, such as bare-board
13602 targets without an operating system, the @option{-T} option may be required
13603 when linking to avoid references to undefined symbols.
13604
13605 @item -Xlinker @var{option}
13606 @opindex Xlinker
13607 Pass @var{option} as an option to the linker. You can use this to
13608 supply system-specific linker options that GCC does not recognize.
13609
13610 If you want to pass an option that takes a separate argument, you must use
13611 @option{-Xlinker} twice, once for the option and once for the argument.
13612 For example, to pass @option{-assert definitions}, you must write
13613 @option{-Xlinker -assert -Xlinker definitions}. It does not work to write
13614 @option{-Xlinker "-assert definitions"}, because this passes the entire
13615 string as a single argument, which is not what the linker expects.
13616
13617 When using the GNU linker, it is usually more convenient to pass
13618 arguments to linker options using the @option{@var{option}=@var{value}}
13619 syntax than as separate arguments. For example, you can specify
13620 @option{-Xlinker -Map=output.map} rather than
13621 @option{-Xlinker -Map -Xlinker output.map}. Other linkers may not support
13622 this syntax for command-line options.
13623
13624 @item -Wl,@var{option}
13625 @opindex Wl
13626 Pass @var{option} as an option to the linker. If @var{option} contains
13627 commas, it is split into multiple options at the commas. You can use this
13628 syntax to pass an argument to the option.
13629 For example, @option{-Wl,-Map,output.map} passes @option{-Map output.map} to the
13630 linker. When using the GNU linker, you can also get the same effect with
13631 @option{-Wl,-Map=output.map}.
13632
13633 @item -u @var{symbol}
13634 @opindex u
13635 Pretend the symbol @var{symbol} is undefined, to force linking of
13636 library modules to define it. You can use @option{-u} multiple times with
13637 different symbols to force loading of additional library modules.
13638
13639 @item -z @var{keyword}
13640 @opindex z
13641 @option{-z} is passed directly on to the linker along with the keyword
13642 @var{keyword}. See the section in the documentation of your linker for
13643 permitted values and their meanings.
13644 @end table
13645
13646 @node Directory Options
13647 @section Options for Directory Search
13648 @cindex directory options
13649 @cindex options, directory search
13650 @cindex search path
13651
13652 These options specify directories to search for header files, for
13653 libraries and for parts of the compiler:
13654
13655 @table @gcctabopt
13656 @include cppdiropts.texi
13657
13658 @item -iplugindir=@var{dir}
13659 @opindex iplugindir=
13660 Set the directory to search for plugins that are passed
13661 by @option{-fplugin=@var{name}} instead of
13662 @option{-fplugin=@var{path}/@var{name}.so}. This option is not meant
13663 to be used by the user, but only passed by the driver.
13664
13665 @item -L@var{dir}
13666 @opindex L
13667 Add directory @var{dir} to the list of directories to be searched
13668 for @option{-l}.
13669
13670 @item -B@var{prefix}
13671 @opindex B
13672 This option specifies where to find the executables, libraries,
13673 include files, and data files of the compiler itself.
13674
13675 The compiler driver program runs one or more of the subprograms
13676 @command{cpp}, @command{cc1}, @command{as} and @command{ld}. It tries
13677 @var{prefix} as a prefix for each program it tries to run, both with and
13678 without @samp{@var{machine}/@var{version}/} for the corresponding target
13679 machine and compiler version.
13680
13681 For each subprogram to be run, the compiler driver first tries the
13682 @option{-B} prefix, if any. If that name is not found, or if @option{-B}
13683 is not specified, the driver tries two standard prefixes,
13684 @file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}. If neither of
13685 those results in a file name that is found, the unmodified program
13686 name is searched for using the directories specified in your
13687 @env{PATH} environment variable.
13688
13689 The compiler checks to see if the path provided by @option{-B}
13690 refers to a directory, and if necessary it adds a directory
13691 separator character at the end of the path.
13692
13693 @option{-B} prefixes that effectively specify directory names also apply
13694 to libraries in the linker, because the compiler translates these
13695 options into @option{-L} options for the linker. They also apply to
13696 include files in the preprocessor, because the compiler translates these
13697 options into @option{-isystem} options for the preprocessor. In this case,
13698 the compiler appends @samp{include} to the prefix.
13699
13700 The runtime support file @file{libgcc.a} can also be searched for using
13701 the @option{-B} prefix, if needed. If it is not found there, the two
13702 standard prefixes above are tried, and that is all. The file is left
13703 out of the link if it is not found by those means.
13704
13705 Another way to specify a prefix much like the @option{-B} prefix is to use
13706 the environment variable @env{GCC_EXEC_PREFIX}. @xref{Environment
13707 Variables}.
13708
13709 As a special kludge, if the path provided by @option{-B} is
13710 @file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
13711 9, then it is replaced by @file{[dir/]include}. This is to help
13712 with boot-strapping the compiler.
13713
13714 @item -no-canonical-prefixes
13715 @opindex no-canonical-prefixes
13716 Do not expand any symbolic links, resolve references to @samp{/../}
13717 or @samp{/./}, or make the path absolute when generating a relative
13718 prefix.
13719
13720 @item --sysroot=@var{dir}
13721 @opindex sysroot
13722 Use @var{dir} as the logical root directory for headers and libraries.
13723 For example, if the compiler normally searches for headers in
13724 @file{/usr/include} and libraries in @file{/usr/lib}, it instead
13725 searches @file{@var{dir}/usr/include} and @file{@var{dir}/usr/lib}.
13726
13727 If you use both this option and the @option{-isysroot} option, then
13728 the @option{--sysroot} option applies to libraries, but the
13729 @option{-isysroot} option applies to header files.
13730
13731 The GNU linker (beginning with version 2.16) has the necessary support
13732 for this option. If your linker does not support this option, the
13733 header file aspect of @option{--sysroot} still works, but the
13734 library aspect does not.
13735
13736 @item --no-sysroot-suffix
13737 @opindex no-sysroot-suffix
13738 For some targets, a suffix is added to the root directory specified
13739 with @option{--sysroot}, depending on the other options used, so that
13740 headers may for example be found in
13741 @file{@var{dir}/@var{suffix}/usr/include} instead of
13742 @file{@var{dir}/usr/include}. This option disables the addition of
13743 such a suffix.
13744
13745 @end table
13746
13747 @node Code Gen Options
13748 @section Options for Code Generation Conventions
13749 @cindex code generation conventions
13750 @cindex options, code generation
13751 @cindex run-time options
13752
13753 These machine-independent options control the interface conventions
13754 used in code generation.
13755
13756 Most of them have both positive and negative forms; the negative form
13757 of @option{-ffoo} is @option{-fno-foo}. In the table below, only
13758 one of the forms is listed---the one that is not the default. You
13759 can figure out the other form by either removing @samp{no-} or adding
13760 it.
13761
13762 @table @gcctabopt
13763 @item -fstack-reuse=@var{reuse-level}
13764 @opindex fstack_reuse
13765 This option controls stack space reuse for user declared local/auto variables
13766 and compiler generated temporaries. @var{reuse_level} can be @samp{all},
13767 @samp{named_vars}, or @samp{none}. @samp{all} enables stack reuse for all
13768 local variables and temporaries, @samp{named_vars} enables the reuse only for
13769 user defined local variables with names, and @samp{none} disables stack reuse
13770 completely. The default value is @samp{all}. The option is needed when the
13771 program extends the lifetime of a scoped local variable or a compiler generated
13772 temporary beyond the end point defined by the language. When a lifetime of
13773 a variable ends, and if the variable lives in memory, the optimizing compiler
13774 has the freedom to reuse its stack space with other temporaries or scoped
13775 local variables whose live range does not overlap with it. Legacy code extending
13776 local lifetime is likely to break with the stack reuse optimization.
13777
13778 For example,
13779
13780 @smallexample
13781 int *p;
13782 @{
13783 int local1;
13784
13785 p = &local1;
13786 local1 = 10;
13787 ....
13788 @}
13789 @{
13790 int local2;
13791 local2 = 20;
13792 ...
13793 @}
13794
13795 if (*p == 10) // out of scope use of local1
13796 @{
13797
13798 @}
13799 @end smallexample
13800
13801 Another example:
13802 @smallexample
13803
13804 struct A
13805 @{
13806 A(int k) : i(k), j(k) @{ @}
13807 int i;
13808 int j;
13809 @};
13810
13811 A *ap;
13812
13813 void foo(const A& ar)
13814 @{
13815 ap = &ar;
13816 @}
13817
13818 void bar()
13819 @{
13820 foo(A(10)); // temp object's lifetime ends when foo returns
13821
13822 @{
13823 A a(20);
13824 ....
13825 @}
13826 ap->i+= 10; // ap references out of scope temp whose space
13827 // is reused with a. What is the value of ap->i?
13828 @}
13829
13830 @end smallexample
13831
13832 The lifetime of a compiler generated temporary is well defined by the C++
13833 standard. When a lifetime of a temporary ends, and if the temporary lives
13834 in memory, the optimizing compiler has the freedom to reuse its stack
13835 space with other temporaries or scoped local variables whose live range
13836 does not overlap with it. However some of the legacy code relies on
13837 the behavior of older compilers in which temporaries' stack space is
13838 not reused, the aggressive stack reuse can lead to runtime errors. This
13839 option is used to control the temporary stack reuse optimization.
13840
13841 @item -ftrapv
13842 @opindex ftrapv
13843 This option generates traps for signed overflow on addition, subtraction,
13844 multiplication operations.
13845 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
13846 @option{-ftrapv} @option{-fwrapv} on the command-line results in
13847 @option{-fwrapv} being effective. Note that only active options override, so
13848 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
13849 results in @option{-ftrapv} being effective.
13850
13851 @item -fwrapv
13852 @opindex fwrapv
13853 This option instructs the compiler to assume that signed arithmetic
13854 overflow of addition, subtraction and multiplication wraps around
13855 using twos-complement representation. This flag enables some optimizations
13856 and disables others.
13857 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
13858 @option{-ftrapv} @option{-fwrapv} on the command-line results in
13859 @option{-fwrapv} being effective. Note that only active options override, so
13860 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
13861 results in @option{-ftrapv} being effective.
13862
13863 @item -fwrapv-pointer
13864 @opindex fwrapv-pointer
13865 This option instructs the compiler to assume that pointer arithmetic
13866 overflow on addition and subtraction wraps around using twos-complement
13867 representation. This flag disables some optimizations which assume
13868 pointer overflow is invalid.
13869
13870 @item -fstrict-overflow
13871 @opindex fstrict-overflow
13872 This option implies @option{-fno-wrapv} @option{-fno-wrapv-pointer} and when
13873 negated implies @option{-fwrapv} @option{-fwrapv-pointer}.
13874
13875 @item -fexceptions
13876 @opindex fexceptions
13877 Enable exception handling. Generates extra code needed to propagate
13878 exceptions. For some targets, this implies GCC generates frame
13879 unwind information for all functions, which can produce significant data
13880 size overhead, although it does not affect execution. If you do not
13881 specify this option, GCC enables it by default for languages like
13882 C++ that normally require exception handling, and disables it for
13883 languages like C that do not normally require it. However, you may need
13884 to enable this option when compiling C code that needs to interoperate
13885 properly with exception handlers written in C++. You may also wish to
13886 disable this option if you are compiling older C++ programs that don't
13887 use exception handling.
13888
13889 @item -fnon-call-exceptions
13890 @opindex fnon-call-exceptions
13891 Generate code that allows trapping instructions to throw exceptions.
13892 Note that this requires platform-specific runtime support that does
13893 not exist everywhere. Moreover, it only allows @emph{trapping}
13894 instructions to throw exceptions, i.e.@: memory references or floating-point
13895 instructions. It does not allow exceptions to be thrown from
13896 arbitrary signal handlers such as @code{SIGALRM}.
13897
13898 @item -fdelete-dead-exceptions
13899 @opindex fdelete-dead-exceptions
13900 Consider that instructions that may throw exceptions but don't otherwise
13901 contribute to the execution of the program can be optimized away.
13902 This option is enabled by default for the Ada front end, as permitted by
13903 the Ada language specification.
13904 Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels.
13905
13906 @item -funwind-tables
13907 @opindex funwind-tables
13908 Similar to @option{-fexceptions}, except that it just generates any needed
13909 static data, but does not affect the generated code in any other way.
13910 You normally do not need to enable this option; instead, a language processor
13911 that needs this handling enables it on your behalf.
13912
13913 @item -fasynchronous-unwind-tables
13914 @opindex fasynchronous-unwind-tables
13915 Generate unwind table in DWARF format, if supported by target machine. The
13916 table is exact at each instruction boundary, so it can be used for stack
13917 unwinding from asynchronous events (such as debugger or garbage collector).
13918
13919 @item -fno-gnu-unique
13920 @opindex fno-gnu-unique
13921 @opindex fgnu-unique
13922 On systems with recent GNU assembler and C library, the C++ compiler
13923 uses the @code{STB_GNU_UNIQUE} binding to make sure that definitions
13924 of template static data members and static local variables in inline
13925 functions are unique even in the presence of @code{RTLD_LOCAL}; this
13926 is necessary to avoid problems with a library used by two different
13927 @code{RTLD_LOCAL} plugins depending on a definition in one of them and
13928 therefore disagreeing with the other one about the binding of the
13929 symbol. But this causes @code{dlclose} to be ignored for affected
13930 DSOs; if your program relies on reinitialization of a DSO via
13931 @code{dlclose} and @code{dlopen}, you can use
13932 @option{-fno-gnu-unique}.
13933
13934 @item -fpcc-struct-return
13935 @opindex fpcc-struct-return
13936 Return ``short'' @code{struct} and @code{union} values in memory like
13937 longer ones, rather than in registers. This convention is less
13938 efficient, but it has the advantage of allowing intercallability between
13939 GCC-compiled files and files compiled with other compilers, particularly
13940 the Portable C Compiler (pcc).
13941
13942 The precise convention for returning structures in memory depends
13943 on the target configuration macros.
13944
13945 Short structures and unions are those whose size and alignment match
13946 that of some integer type.
13947
13948 @strong{Warning:} code compiled with the @option{-fpcc-struct-return}
13949 switch is not binary compatible with code compiled with the
13950 @option{-freg-struct-return} switch.
13951 Use it to conform to a non-default application binary interface.
13952
13953 @item -freg-struct-return
13954 @opindex freg-struct-return
13955 Return @code{struct} and @code{union} values in registers when possible.
13956 This is more efficient for small structures than
13957 @option{-fpcc-struct-return}.
13958
13959 If you specify neither @option{-fpcc-struct-return} nor
13960 @option{-freg-struct-return}, GCC defaults to whichever convention is
13961 standard for the target. If there is no standard convention, GCC
13962 defaults to @option{-fpcc-struct-return}, except on targets where GCC is
13963 the principal compiler. In those cases, we can choose the standard, and
13964 we chose the more efficient register return alternative.
13965
13966 @strong{Warning:} code compiled with the @option{-freg-struct-return}
13967 switch is not binary compatible with code compiled with the
13968 @option{-fpcc-struct-return} switch.
13969 Use it to conform to a non-default application binary interface.
13970
13971 @item -fshort-enums
13972 @opindex fshort-enums
13973 Allocate to an @code{enum} type only as many bytes as it needs for the
13974 declared range of possible values. Specifically, the @code{enum} type
13975 is equivalent to the smallest integer type that has enough room.
13976
13977 @strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate
13978 code that is not binary compatible with code generated without that switch.
13979 Use it to conform to a non-default application binary interface.
13980
13981 @item -fshort-wchar
13982 @opindex fshort-wchar
13983 Override the underlying type for @code{wchar_t} to be @code{short
13984 unsigned int} instead of the default for the target. This option is
13985 useful for building programs to run under WINE@.
13986
13987 @strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate
13988 code that is not binary compatible with code generated without that switch.
13989 Use it to conform to a non-default application binary interface.
13990
13991 @item -fno-common
13992 @opindex fno-common
13993 @opindex fcommon
13994 @cindex tentative definitions
13995 In C code, this option controls the placement of global variables
13996 defined without an initializer, known as @dfn{tentative definitions}
13997 in the C standard. Tentative definitions are distinct from declarations
13998 of a variable with the @code{extern} keyword, which do not allocate storage.
13999
14000 Unix C compilers have traditionally allocated storage for
14001 uninitialized global variables in a common block. This allows the
14002 linker to resolve all tentative definitions of the same variable
14003 in different compilation units to the same object, or to a non-tentative
14004 definition.
14005 This is the behavior specified by @option{-fcommon}, and is the default for
14006 GCC on most targets.
14007 On the other hand, this behavior is not required by ISO
14008 C, and on some targets may carry a speed or code size penalty on
14009 variable references.
14010
14011 The @option{-fno-common} option specifies that the compiler should instead
14012 place uninitialized global variables in the BSS section of the object file.
14013 This inhibits the merging of tentative definitions by the linker so
14014 you get a multiple-definition error if the same
14015 variable is defined in more than one compilation unit.
14016 Compiling with @option{-fno-common} is useful on targets for which
14017 it provides better performance, or if you wish to verify that the
14018 program will work on other systems that always treat uninitialized
14019 variable definitions this way.
14020
14021 @item -fno-ident
14022 @opindex fno-ident
14023 @opindex fident
14024 Ignore the @code{#ident} directive.
14025
14026 @item -finhibit-size-directive
14027 @opindex finhibit-size-directive
14028 Don't output a @code{.size} assembler directive, or anything else that
14029 would cause trouble if the function is split in the middle, and the
14030 two halves are placed at locations far apart in memory. This option is
14031 used when compiling @file{crtstuff.c}; you should not need to use it
14032 for anything else.
14033
14034 @item -fverbose-asm
14035 @opindex fverbose-asm
14036 Put extra commentary information in the generated assembly code to
14037 make it more readable. This option is generally only of use to those
14038 who actually need to read the generated assembly code (perhaps while
14039 debugging the compiler itself).
14040
14041 @option{-fno-verbose-asm}, the default, causes the
14042 extra information to be omitted and is useful when comparing two assembler
14043 files.
14044
14045 The added comments include:
14046
14047 @itemize @bullet
14048
14049 @item
14050 information on the compiler version and command-line options,
14051
14052 @item
14053 the source code lines associated with the assembly instructions,
14054 in the form FILENAME:LINENUMBER:CONTENT OF LINE,
14055
14056 @item
14057 hints on which high-level expressions correspond to
14058 the various assembly instruction operands.
14059
14060 @end itemize
14061
14062 For example, given this C source file:
14063
14064 @smallexample
14065 int test (int n)
14066 @{
14067 int i;
14068 int total = 0;
14069
14070 for (i = 0; i < n; i++)
14071 total += i * i;
14072
14073 return total;
14074 @}
14075 @end smallexample
14076
14077 compiling to (x86_64) assembly via @option{-S} and emitting the result
14078 direct to stdout via @option{-o} @option{-}
14079
14080 @smallexample
14081 gcc -S test.c -fverbose-asm -Os -o -
14082 @end smallexample
14083
14084 gives output similar to this:
14085
14086 @smallexample
14087 .file "test.c"
14088 # GNU C11 (GCC) version 7.0.0 20160809 (experimental) (x86_64-pc-linux-gnu)
14089 [...snip...]
14090 # options passed:
14091 [...snip...]
14092
14093 .text
14094 .globl test
14095 .type test, @@function
14096 test:
14097 .LFB0:
14098 .cfi_startproc
14099 # test.c:4: int total = 0;
14100 xorl %eax, %eax # <retval>
14101 # test.c:6: for (i = 0; i < n; i++)
14102 xorl %edx, %edx # i
14103 .L2:
14104 # test.c:6: for (i = 0; i < n; i++)
14105 cmpl %edi, %edx # n, i
14106 jge .L5 #,
14107 # test.c:7: total += i * i;
14108 movl %edx, %ecx # i, tmp92
14109 imull %edx, %ecx # i, tmp92
14110 # test.c:6: for (i = 0; i < n; i++)
14111 incl %edx # i
14112 # test.c:7: total += i * i;
14113 addl %ecx, %eax # tmp92, <retval>
14114 jmp .L2 #
14115 .L5:
14116 # test.c:10: @}
14117 ret
14118 .cfi_endproc
14119 .LFE0:
14120 .size test, .-test
14121 .ident "GCC: (GNU) 7.0.0 20160809 (experimental)"
14122 .section .note.GNU-stack,"",@@progbits
14123 @end smallexample
14124
14125 The comments are intended for humans rather than machines and hence the
14126 precise format of the comments is subject to change.
14127
14128 @item -frecord-gcc-switches
14129 @opindex frecord-gcc-switches
14130 This switch causes the command line used to invoke the
14131 compiler to be recorded into the object file that is being created.
14132 This switch is only implemented on some targets and the exact format
14133 of the recording is target and binary file format dependent, but it
14134 usually takes the form of a section containing ASCII text. This
14135 switch is related to the @option{-fverbose-asm} switch, but that
14136 switch only records information in the assembler output file as
14137 comments, so it never reaches the object file.
14138 See also @option{-grecord-gcc-switches} for another
14139 way of storing compiler options into the object file.
14140
14141 @item -fpic
14142 @opindex fpic
14143 @cindex global offset table
14144 @cindex PIC
14145 Generate position-independent code (PIC) suitable for use in a shared
14146 library, if supported for the target machine. Such code accesses all
14147 constant addresses through a global offset table (GOT)@. The dynamic
14148 loader resolves the GOT entries when the program starts (the dynamic
14149 loader is not part of GCC; it is part of the operating system). If
14150 the GOT size for the linked executable exceeds a machine-specific
14151 maximum size, you get an error message from the linker indicating that
14152 @option{-fpic} does not work; in that case, recompile with @option{-fPIC}
14153 instead. (These maximums are 8k on the SPARC, 28k on AArch64 and 32k
14154 on the m68k and RS/6000. The x86 has no such limit.)
14155
14156 Position-independent code requires special support, and therefore works
14157 only on certain machines. For the x86, GCC supports PIC for System V
14158 but not for the Sun 386i. Code generated for the IBM RS/6000 is always
14159 position-independent.
14160
14161 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
14162 are defined to 1.
14163
14164 @item -fPIC
14165 @opindex fPIC
14166 If supported for the target machine, emit position-independent code,
14167 suitable for dynamic linking and avoiding any limit on the size of the
14168 global offset table. This option makes a difference on AArch64, m68k,
14169 PowerPC and SPARC@.
14170
14171 Position-independent code requires special support, and therefore works
14172 only on certain machines.
14173
14174 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
14175 are defined to 2.
14176
14177 @item -fpie
14178 @itemx -fPIE
14179 @opindex fpie
14180 @opindex fPIE
14181 These options are similar to @option{-fpic} and @option{-fPIC}, but the
14182 generated position-independent code can be only linked into executables.
14183 Usually these options are used to compile code that will be linked using
14184 the @option{-pie} GCC option.
14185
14186 @option{-fpie} and @option{-fPIE} both define the macros
14187 @code{__pie__} and @code{__PIE__}. The macros have the value 1
14188 for @option{-fpie} and 2 for @option{-fPIE}.
14189
14190 @item -fno-plt
14191 @opindex fno-plt
14192 @opindex fplt
14193 Do not use the PLT for external function calls in position-independent code.
14194 Instead, load the callee address at call sites from the GOT and branch to it.
14195 This leads to more efficient code by eliminating PLT stubs and exposing
14196 GOT loads to optimizations. On architectures such as 32-bit x86 where
14197 PLT stubs expect the GOT pointer in a specific register, this gives more
14198 register allocation freedom to the compiler.
14199 Lazy binding requires use of the PLT;
14200 with @option{-fno-plt} all external symbols are resolved at load time.
14201
14202 Alternatively, the function attribute @code{noplt} can be used to avoid calls
14203 through the PLT for specific external functions.
14204
14205 In position-dependent code, a few targets also convert calls to
14206 functions that are marked to not use the PLT to use the GOT instead.
14207
14208 @item -fno-jump-tables
14209 @opindex fno-jump-tables
14210 @opindex fjump-tables
14211 Do not use jump tables for switch statements even where it would be
14212 more efficient than other code generation strategies. This option is
14213 of use in conjunction with @option{-fpic} or @option{-fPIC} for
14214 building code that forms part of a dynamic linker and cannot
14215 reference the address of a jump table. On some targets, jump tables
14216 do not require a GOT and this option is not needed.
14217
14218 @item -ffixed-@var{reg}
14219 @opindex ffixed
14220 Treat the register named @var{reg} as a fixed register; generated code
14221 should never refer to it (except perhaps as a stack pointer, frame
14222 pointer or in some other fixed role).
14223
14224 @var{reg} must be the name of a register. The register names accepted
14225 are machine-specific and are defined in the @code{REGISTER_NAMES}
14226 macro in the machine description macro file.
14227
14228 This flag does not have a negative form, because it specifies a
14229 three-way choice.
14230
14231 @item -fcall-used-@var{reg}
14232 @opindex fcall-used
14233 Treat the register named @var{reg} as an allocable register that is
14234 clobbered by function calls. It may be allocated for temporaries or
14235 variables that do not live across a call. Functions compiled this way
14236 do not save and restore the register @var{reg}.
14237
14238 It is an error to use this flag with the frame pointer or stack pointer.
14239 Use of this flag for other registers that have fixed pervasive roles in
14240 the machine's execution model produces disastrous results.
14241
14242 This flag does not have a negative form, because it specifies a
14243 three-way choice.
14244
14245 @item -fcall-saved-@var{reg}
14246 @opindex fcall-saved
14247 Treat the register named @var{reg} as an allocable register saved by
14248 functions. It may be allocated even for temporaries or variables that
14249 live across a call. Functions compiled this way save and restore
14250 the register @var{reg} if they use it.
14251
14252 It is an error to use this flag with the frame pointer or stack pointer.
14253 Use of this flag for other registers that have fixed pervasive roles in
14254 the machine's execution model produces disastrous results.
14255
14256 A different sort of disaster results from the use of this flag for
14257 a register in which function values may be returned.
14258
14259 This flag does not have a negative form, because it specifies a
14260 three-way choice.
14261
14262 @item -fpack-struct[=@var{n}]
14263 @opindex fpack-struct
14264 Without a value specified, pack all structure members together without
14265 holes. When a value is specified (which must be a small power of two), pack
14266 structure members according to this value, representing the maximum
14267 alignment (that is, objects with default alignment requirements larger than
14268 this are output potentially unaligned at the next fitting location.
14269
14270 @strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate
14271 code that is not binary compatible with code generated without that switch.
14272 Additionally, it makes the code suboptimal.
14273 Use it to conform to a non-default application binary interface.
14274
14275 @item -fleading-underscore
14276 @opindex fleading-underscore
14277 This option and its counterpart, @option{-fno-leading-underscore}, forcibly
14278 change the way C symbols are represented in the object file. One use
14279 is to help link with legacy assembly code.
14280
14281 @strong{Warning:} the @option{-fleading-underscore} switch causes GCC to
14282 generate code that is not binary compatible with code generated without that
14283 switch. Use it to conform to a non-default application binary interface.
14284 Not all targets provide complete support for this switch.
14285
14286 @item -ftls-model=@var{model}
14287 @opindex ftls-model
14288 Alter the thread-local storage model to be used (@pxref{Thread-Local}).
14289 The @var{model} argument should be one of @samp{global-dynamic},
14290 @samp{local-dynamic}, @samp{initial-exec} or @samp{local-exec}.
14291 Note that the choice is subject to optimization: the compiler may use
14292 a more efficient model for symbols not visible outside of the translation
14293 unit, or if @option{-fpic} is not given on the command line.
14294
14295 The default without @option{-fpic} is @samp{initial-exec}; with
14296 @option{-fpic} the default is @samp{global-dynamic}.
14297
14298 @item -ftrampolines
14299 @opindex ftrampolines
14300 For targets that normally need trampolines for nested functions, always
14301 generate them instead of using descriptors. Otherwise, for targets that
14302 do not need them, like for example HP-PA or IA-64, do nothing.
14303
14304 A trampoline is a small piece of code that is created at run time on the
14305 stack when the address of a nested function is taken, and is used to call
14306 the nested function indirectly. Therefore, it requires the stack to be
14307 made executable in order for the program to work properly.
14308
14309 @option{-fno-trampolines} is enabled by default on a language by language
14310 basis to let the compiler avoid generating them, if it computes that this
14311 is safe, and replace them with descriptors. Descriptors are made up of data
14312 only, but the generated code must be prepared to deal with them. As of this
14313 writing, @option{-fno-trampolines} is enabled by default only for Ada.
14314
14315 Moreover, code compiled with @option{-ftrampolines} and code compiled with
14316 @option{-fno-trampolines} are not binary compatible if nested functions are
14317 present. This option must therefore be used on a program-wide basis and be
14318 manipulated with extreme care.
14319
14320 @item -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]}
14321 @opindex fvisibility
14322 Set the default ELF image symbol visibility to the specified option---all
14323 symbols are marked with this unless overridden within the code.
14324 Using this feature can very substantially improve linking and
14325 load times of shared object libraries, produce more optimized
14326 code, provide near-perfect API export and prevent symbol clashes.
14327 It is @strong{strongly} recommended that you use this in any shared objects
14328 you distribute.
14329
14330 Despite the nomenclature, @samp{default} always means public; i.e.,
14331 available to be linked against from outside the shared object.
14332 @samp{protected} and @samp{internal} are pretty useless in real-world
14333 usage so the only other commonly used option is @samp{hidden}.
14334 The default if @option{-fvisibility} isn't specified is
14335 @samp{default}, i.e., make every symbol public.
14336
14337 A good explanation of the benefits offered by ensuring ELF
14338 symbols have the correct visibility is given by ``How To Write
14339 Shared Libraries'' by Ulrich Drepper (which can be found at
14340 @w{@uref{https://www.akkadia.org/drepper/}})---however a superior
14341 solution made possible by this option to marking things hidden when
14342 the default is public is to make the default hidden and mark things
14343 public. This is the norm with DLLs on Windows and with @option{-fvisibility=hidden}
14344 and @code{__attribute__ ((visibility("default")))} instead of
14345 @code{__declspec(dllexport)} you get almost identical semantics with
14346 identical syntax. This is a great boon to those working with
14347 cross-platform projects.
14348
14349 For those adding visibility support to existing code, you may find
14350 @code{#pragma GCC visibility} of use. This works by you enclosing
14351 the declarations you wish to set visibility for with (for example)
14352 @code{#pragma GCC visibility push(hidden)} and
14353 @code{#pragma GCC visibility pop}.
14354 Bear in mind that symbol visibility should be viewed @strong{as
14355 part of the API interface contract} and thus all new code should
14356 always specify visibility when it is not the default; i.e., declarations
14357 only for use within the local DSO should @strong{always} be marked explicitly
14358 as hidden as so to avoid PLT indirection overheads---making this
14359 abundantly clear also aids readability and self-documentation of the code.
14360 Note that due to ISO C++ specification requirements, @code{operator new} and
14361 @code{operator delete} must always be of default visibility.
14362
14363 Be aware that headers from outside your project, in particular system
14364 headers and headers from any other library you use, may not be
14365 expecting to be compiled with visibility other than the default. You
14366 may need to explicitly say @code{#pragma GCC visibility push(default)}
14367 before including any such headers.
14368
14369 @code{extern} declarations are not affected by @option{-fvisibility}, so
14370 a lot of code can be recompiled with @option{-fvisibility=hidden} with
14371 no modifications. However, this means that calls to @code{extern}
14372 functions with no explicit visibility use the PLT, so it is more
14373 effective to use @code{__attribute ((visibility))} and/or
14374 @code{#pragma GCC visibility} to tell the compiler which @code{extern}
14375 declarations should be treated as hidden.
14376
14377 Note that @option{-fvisibility} does affect C++ vague linkage
14378 entities. This means that, for instance, an exception class that is
14379 be thrown between DSOs must be explicitly marked with default
14380 visibility so that the @samp{type_info} nodes are unified between
14381 the DSOs.
14382
14383 An overview of these techniques, their benefits and how to use them
14384 is at @uref{http://gcc.gnu.org/@/wiki/@/Visibility}.
14385
14386 @item -fstrict-volatile-bitfields
14387 @opindex fstrict-volatile-bitfields
14388 This option should be used if accesses to volatile bit-fields (or other
14389 structure fields, although the compiler usually honors those types
14390 anyway) should use a single access of the width of the
14391 field's type, aligned to a natural alignment if possible. For
14392 example, targets with memory-mapped peripheral registers might require
14393 all such accesses to be 16 bits wide; with this flag you can
14394 declare all peripheral bit-fields as @code{unsigned short} (assuming short
14395 is 16 bits on these targets) to force GCC to use 16-bit accesses
14396 instead of, perhaps, a more efficient 32-bit access.
14397
14398 If this option is disabled, the compiler uses the most efficient
14399 instruction. In the previous example, that might be a 32-bit load
14400 instruction, even though that accesses bytes that do not contain
14401 any portion of the bit-field, or memory-mapped registers unrelated to
14402 the one being updated.
14403
14404 In some cases, such as when the @code{packed} attribute is applied to a
14405 structure field, it may not be possible to access the field with a single
14406 read or write that is correctly aligned for the target machine. In this
14407 case GCC falls back to generating multiple accesses rather than code that
14408 will fault or truncate the result at run time.
14409
14410 Note: Due to restrictions of the C/C++11 memory model, write accesses are
14411 not allowed to touch non bit-field members. It is therefore recommended
14412 to define all bits of the field's type as bit-field members.
14413
14414 The default value of this option is determined by the application binary
14415 interface for the target processor.
14416
14417 @item -fsync-libcalls
14418 @opindex fsync-libcalls
14419 This option controls whether any out-of-line instance of the @code{__sync}
14420 family of functions may be used to implement the C++11 @code{__atomic}
14421 family of functions.
14422
14423 The default value of this option is enabled, thus the only useful form
14424 of the option is @option{-fno-sync-libcalls}. This option is used in
14425 the implementation of the @file{libatomic} runtime library.
14426
14427 @end table
14428
14429 @node Developer Options
14430 @section GCC Developer Options
14431 @cindex developer options
14432 @cindex debugging GCC
14433 @cindex debug dump options
14434 @cindex dump options
14435 @cindex compilation statistics
14436
14437 This section describes command-line options that are primarily of
14438 interest to GCC developers, including options to support compiler
14439 testing and investigation of compiler bugs and compile-time
14440 performance problems. This includes options that produce debug dumps
14441 at various points in the compilation; that print statistics such as
14442 memory use and execution time; and that print information about GCC's
14443 configuration, such as where it searches for libraries. You should
14444 rarely need to use any of these options for ordinary compilation and
14445 linking tasks.
14446
14447 Many developer options that cause GCC to dump output to a file take an
14448 optional @samp{=@var{filename}} suffix. You can specify @samp{stdout}
14449 or @samp{-} to dump to standard output, and @samp{stderr} for standard
14450 error.
14451
14452 If @samp{=@var{filename}} is omitted, a default dump file name is
14453 constructed by concatenating the base dump file name, a pass number,
14454 phase letter, and pass name. The base dump file name is the name of
14455 output file produced by the compiler if explicitly specified and not
14456 an executable; otherwise it is the source file name.
14457 The pass number is determined by the order passes are registered with
14458 the compiler's pass manager.
14459 This is generally the same as the order of execution, but passes
14460 registered by plugins, target-specific passes, or passes that are
14461 otherwise registered late are numbered higher than the pass named
14462 @samp{final}, even if they are executed earlier. The phase letter is
14463 one of @samp{i} (inter-procedural analysis), @samp{l}
14464 (language-specific), @samp{r} (RTL), or @samp{t} (tree).
14465 The files are created in the directory of the output file.
14466
14467 @table @gcctabopt
14468
14469 @item -d@var{letters}
14470 @itemx -fdump-rtl-@var{pass}
14471 @itemx -fdump-rtl-@var{pass}=@var{filename}
14472 @opindex d
14473 @opindex fdump-rtl-@var{pass}
14474 Says to make debugging dumps during compilation at times specified by
14475 @var{letters}. This is used for debugging the RTL-based passes of the
14476 compiler.
14477
14478 Some @option{-d@var{letters}} switches have different meaning when
14479 @option{-E} is used for preprocessing. @xref{Preprocessor Options},
14480 for information about preprocessor-specific dump options.
14481
14482 Debug dumps can be enabled with a @option{-fdump-rtl} switch or some
14483 @option{-d} option @var{letters}. Here are the possible
14484 letters for use in @var{pass} and @var{letters}, and their meanings:
14485
14486 @table @gcctabopt
14487
14488 @item -fdump-rtl-alignments
14489 @opindex fdump-rtl-alignments
14490 Dump after branch alignments have been computed.
14491
14492 @item -fdump-rtl-asmcons
14493 @opindex fdump-rtl-asmcons
14494 Dump after fixing rtl statements that have unsatisfied in/out constraints.
14495
14496 @item -fdump-rtl-auto_inc_dec
14497 @opindex fdump-rtl-auto_inc_dec
14498 Dump after auto-inc-dec discovery. This pass is only run on
14499 architectures that have auto inc or auto dec instructions.
14500
14501 @item -fdump-rtl-barriers
14502 @opindex fdump-rtl-barriers
14503 Dump after cleaning up the barrier instructions.
14504
14505 @item -fdump-rtl-bbpart
14506 @opindex fdump-rtl-bbpart
14507 Dump after partitioning hot and cold basic blocks.
14508
14509 @item -fdump-rtl-bbro
14510 @opindex fdump-rtl-bbro
14511 Dump after block reordering.
14512
14513 @item -fdump-rtl-btl1
14514 @itemx -fdump-rtl-btl2
14515 @opindex fdump-rtl-btl2
14516 @opindex fdump-rtl-btl2
14517 @option{-fdump-rtl-btl1} and @option{-fdump-rtl-btl2} enable dumping
14518 after the two branch
14519 target load optimization passes.
14520
14521 @item -fdump-rtl-bypass
14522 @opindex fdump-rtl-bypass
14523 Dump after jump bypassing and control flow optimizations.
14524
14525 @item -fdump-rtl-combine
14526 @opindex fdump-rtl-combine
14527 Dump after the RTL instruction combination pass.
14528
14529 @item -fdump-rtl-compgotos
14530 @opindex fdump-rtl-compgotos
14531 Dump after duplicating the computed gotos.
14532
14533 @item -fdump-rtl-ce1
14534 @itemx -fdump-rtl-ce2
14535 @itemx -fdump-rtl-ce3
14536 @opindex fdump-rtl-ce1
14537 @opindex fdump-rtl-ce2
14538 @opindex fdump-rtl-ce3
14539 @option{-fdump-rtl-ce1}, @option{-fdump-rtl-ce2}, and
14540 @option{-fdump-rtl-ce3} enable dumping after the three
14541 if conversion passes.
14542
14543 @item -fdump-rtl-cprop_hardreg
14544 @opindex fdump-rtl-cprop_hardreg
14545 Dump after hard register copy propagation.
14546
14547 @item -fdump-rtl-csa
14548 @opindex fdump-rtl-csa
14549 Dump after combining stack adjustments.
14550
14551 @item -fdump-rtl-cse1
14552 @itemx -fdump-rtl-cse2
14553 @opindex fdump-rtl-cse1
14554 @opindex fdump-rtl-cse2
14555 @option{-fdump-rtl-cse1} and @option{-fdump-rtl-cse2} enable dumping after
14556 the two common subexpression elimination passes.
14557
14558 @item -fdump-rtl-dce
14559 @opindex fdump-rtl-dce
14560 Dump after the standalone dead code elimination passes.
14561
14562 @item -fdump-rtl-dbr
14563 @opindex fdump-rtl-dbr
14564 Dump after delayed branch scheduling.
14565
14566 @item -fdump-rtl-dce1
14567 @itemx -fdump-rtl-dce2
14568 @opindex fdump-rtl-dce1
14569 @opindex fdump-rtl-dce2
14570 @option{-fdump-rtl-dce1} and @option{-fdump-rtl-dce2} enable dumping after
14571 the two dead store elimination passes.
14572
14573 @item -fdump-rtl-eh
14574 @opindex fdump-rtl-eh
14575 Dump after finalization of EH handling code.
14576
14577 @item -fdump-rtl-eh_ranges
14578 @opindex fdump-rtl-eh_ranges
14579 Dump after conversion of EH handling range regions.
14580
14581 @item -fdump-rtl-expand
14582 @opindex fdump-rtl-expand
14583 Dump after RTL generation.
14584
14585 @item -fdump-rtl-fwprop1
14586 @itemx -fdump-rtl-fwprop2
14587 @opindex fdump-rtl-fwprop1
14588 @opindex fdump-rtl-fwprop2
14589 @option{-fdump-rtl-fwprop1} and @option{-fdump-rtl-fwprop2} enable
14590 dumping after the two forward propagation passes.
14591
14592 @item -fdump-rtl-gcse1
14593 @itemx -fdump-rtl-gcse2
14594 @opindex fdump-rtl-gcse1
14595 @opindex fdump-rtl-gcse2
14596 @option{-fdump-rtl-gcse1} and @option{-fdump-rtl-gcse2} enable dumping
14597 after global common subexpression elimination.
14598
14599 @item -fdump-rtl-init-regs
14600 @opindex fdump-rtl-init-regs
14601 Dump after the initialization of the registers.
14602
14603 @item -fdump-rtl-initvals
14604 @opindex fdump-rtl-initvals
14605 Dump after the computation of the initial value sets.
14606
14607 @item -fdump-rtl-into_cfglayout
14608 @opindex fdump-rtl-into_cfglayout
14609 Dump after converting to cfglayout mode.
14610
14611 @item -fdump-rtl-ira
14612 @opindex fdump-rtl-ira
14613 Dump after iterated register allocation.
14614
14615 @item -fdump-rtl-jump
14616 @opindex fdump-rtl-jump
14617 Dump after the second jump optimization.
14618
14619 @item -fdump-rtl-loop2
14620 @opindex fdump-rtl-loop2
14621 @option{-fdump-rtl-loop2} enables dumping after the rtl
14622 loop optimization passes.
14623
14624 @item -fdump-rtl-mach
14625 @opindex fdump-rtl-mach
14626 Dump after performing the machine dependent reorganization pass, if that
14627 pass exists.
14628
14629 @item -fdump-rtl-mode_sw
14630 @opindex fdump-rtl-mode_sw
14631 Dump after removing redundant mode switches.
14632
14633 @item -fdump-rtl-rnreg
14634 @opindex fdump-rtl-rnreg
14635 Dump after register renumbering.
14636
14637 @item -fdump-rtl-outof_cfglayout
14638 @opindex fdump-rtl-outof_cfglayout
14639 Dump after converting from cfglayout mode.
14640
14641 @item -fdump-rtl-peephole2
14642 @opindex fdump-rtl-peephole2
14643 Dump after the peephole pass.
14644
14645 @item -fdump-rtl-postreload
14646 @opindex fdump-rtl-postreload
14647 Dump after post-reload optimizations.
14648
14649 @item -fdump-rtl-pro_and_epilogue
14650 @opindex fdump-rtl-pro_and_epilogue
14651 Dump after generating the function prologues and epilogues.
14652
14653 @item -fdump-rtl-sched1
14654 @itemx -fdump-rtl-sched2
14655 @opindex fdump-rtl-sched1
14656 @opindex fdump-rtl-sched2
14657 @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2} enable dumping
14658 after the basic block scheduling passes.
14659
14660 @item -fdump-rtl-ree
14661 @opindex fdump-rtl-ree
14662 Dump after sign/zero extension elimination.
14663
14664 @item -fdump-rtl-seqabstr
14665 @opindex fdump-rtl-seqabstr
14666 Dump after common sequence discovery.
14667
14668 @item -fdump-rtl-shorten
14669 @opindex fdump-rtl-shorten
14670 Dump after shortening branches.
14671
14672 @item -fdump-rtl-sibling
14673 @opindex fdump-rtl-sibling
14674 Dump after sibling call optimizations.
14675
14676 @item -fdump-rtl-split1
14677 @itemx -fdump-rtl-split2
14678 @itemx -fdump-rtl-split3
14679 @itemx -fdump-rtl-split4
14680 @itemx -fdump-rtl-split5
14681 @opindex fdump-rtl-split1
14682 @opindex fdump-rtl-split2
14683 @opindex fdump-rtl-split3
14684 @opindex fdump-rtl-split4
14685 @opindex fdump-rtl-split5
14686 These options enable dumping after five rounds of
14687 instruction splitting.
14688
14689 @item -fdump-rtl-sms
14690 @opindex fdump-rtl-sms
14691 Dump after modulo scheduling. This pass is only run on some
14692 architectures.
14693
14694 @item -fdump-rtl-stack
14695 @opindex fdump-rtl-stack
14696 Dump after conversion from GCC's ``flat register file'' registers to the
14697 x87's stack-like registers. This pass is only run on x86 variants.
14698
14699 @item -fdump-rtl-subreg1
14700 @itemx -fdump-rtl-subreg2
14701 @opindex fdump-rtl-subreg1
14702 @opindex fdump-rtl-subreg2
14703 @option{-fdump-rtl-subreg1} and @option{-fdump-rtl-subreg2} enable dumping after
14704 the two subreg expansion passes.
14705
14706 @item -fdump-rtl-unshare
14707 @opindex fdump-rtl-unshare
14708 Dump after all rtl has been unshared.
14709
14710 @item -fdump-rtl-vartrack
14711 @opindex fdump-rtl-vartrack
14712 Dump after variable tracking.
14713
14714 @item -fdump-rtl-vregs
14715 @opindex fdump-rtl-vregs
14716 Dump after converting virtual registers to hard registers.
14717
14718 @item -fdump-rtl-web
14719 @opindex fdump-rtl-web
14720 Dump after live range splitting.
14721
14722 @item -fdump-rtl-regclass
14723 @itemx -fdump-rtl-subregs_of_mode_init
14724 @itemx -fdump-rtl-subregs_of_mode_finish
14725 @itemx -fdump-rtl-dfinit
14726 @itemx -fdump-rtl-dfinish
14727 @opindex fdump-rtl-regclass
14728 @opindex fdump-rtl-subregs_of_mode_init
14729 @opindex fdump-rtl-subregs_of_mode_finish
14730 @opindex fdump-rtl-dfinit
14731 @opindex fdump-rtl-dfinish
14732 These dumps are defined but always produce empty files.
14733
14734 @item -da
14735 @itemx -fdump-rtl-all
14736 @opindex da
14737 @opindex fdump-rtl-all
14738 Produce all the dumps listed above.
14739
14740 @item -dA
14741 @opindex dA
14742 Annotate the assembler output with miscellaneous debugging information.
14743
14744 @item -dD
14745 @opindex dD
14746 Dump all macro definitions, at the end of preprocessing, in addition to
14747 normal output.
14748
14749 @item -dH
14750 @opindex dH
14751 Produce a core dump whenever an error occurs.
14752
14753 @item -dp
14754 @opindex dp
14755 Annotate the assembler output with a comment indicating which
14756 pattern and alternative is used. The length and cost of each instruction are
14757 also printed.
14758
14759 @item -dP
14760 @opindex dP
14761 Dump the RTL in the assembler output as a comment before each instruction.
14762 Also turns on @option{-dp} annotation.
14763
14764 @item -dx
14765 @opindex dx
14766 Just generate RTL for a function instead of compiling it. Usually used
14767 with @option{-fdump-rtl-expand}.
14768 @end table
14769
14770 @item -fdump-debug
14771 @opindex fdump-debug
14772 Dump debugging information generated during the debug
14773 generation phase.
14774
14775 @item -fdump-earlydebug
14776 @opindex fdump-earlydebug
14777 Dump debugging information generated during the early debug
14778 generation phase.
14779
14780 @item -fdump-noaddr
14781 @opindex fdump-noaddr
14782 When doing debugging dumps, suppress address output. This makes it more
14783 feasible to use diff on debugging dumps for compiler invocations with
14784 different compiler binaries and/or different
14785 text / bss / data / heap / stack / dso start locations.
14786
14787 @item -freport-bug
14788 @opindex freport-bug
14789 Collect and dump debug information into a temporary file if an
14790 internal compiler error (ICE) occurs.
14791
14792 @item -fdump-unnumbered
14793 @opindex fdump-unnumbered
14794 When doing debugging dumps, suppress instruction numbers and address output.
14795 This makes it more feasible to use diff on debugging dumps for compiler
14796 invocations with different options, in particular with and without
14797 @option{-g}.
14798
14799 @item -fdump-unnumbered-links
14800 @opindex fdump-unnumbered-links
14801 When doing debugging dumps (see @option{-d} option above), suppress
14802 instruction numbers for the links to the previous and next instructions
14803 in a sequence.
14804
14805 @item -fdump-ipa-@var{switch}
14806 @itemx -fdump-ipa-@var{switch}-@var{options}
14807 @opindex fdump-ipa
14808 Control the dumping at various stages of inter-procedural analysis
14809 language tree to a file. The file name is generated by appending a
14810 switch specific suffix to the source file name, and the file is created
14811 in the same directory as the output file. The following dumps are
14812 possible:
14813
14814 @table @samp
14815 @item all
14816 Enables all inter-procedural analysis dumps.
14817
14818 @item cgraph
14819 Dumps information about call-graph optimization, unused function removal,
14820 and inlining decisions.
14821
14822 @item inline
14823 Dump after function inlining.
14824
14825 @end table
14826
14827 Additionally, the options @option{-optimized}, @option{-missed},
14828 @option{-note}, and @option{-all} can be provided, with the same meaning
14829 as for @option{-fopt-info}, defaulting to @option{-optimized}.
14830
14831 For example, @option{-fdump-ipa-inline-optimized-missed} will emit
14832 information on callsites that were inlined, along with callsites
14833 that were not inlined.
14834
14835 By default, the dump will contain messages about successful
14836 optimizations (equivalent to @option{-optimized}) together with
14837 low-level details about the analysis.
14838
14839 @item -fdump-lang-all
14840 @itemx -fdump-lang-@var{switch}
14841 @itemx -fdump-lang-@var{switch}-@var{options}
14842 @itemx -fdump-lang-@var{switch}-@var{options}=@var{filename}
14843 @opindex fdump-lang-all
14844 @opindex fdump-lang
14845 Control the dumping of language-specific information. The @var{options}
14846 and @var{filename} portions behave as described in the
14847 @option{-fdump-tree} option. The following @var{switch} values are
14848 accepted:
14849
14850 @table @samp
14851 @item all
14852
14853 Enable all language-specific dumps.
14854
14855 @item class
14856 Dump class hierarchy information. Virtual table information is emitted
14857 unless '@option{slim}' is specified. This option is applicable to C++ only.
14858
14859 @item raw
14860 Dump the raw internal tree data. This option is applicable to C++ only.
14861
14862 @end table
14863
14864 @item -fdump-passes
14865 @opindex fdump-passes
14866 Print on @file{stderr} the list of optimization passes that are turned
14867 on and off by the current command-line options.
14868
14869 @item -fdump-statistics-@var{option}
14870 @opindex fdump-statistics
14871 Enable and control dumping of pass statistics in a separate file. The
14872 file name is generated by appending a suffix ending in
14873 @samp{.statistics} to the source file name, and the file is created in
14874 the same directory as the output file. If the @samp{-@var{option}}
14875 form is used, @samp{-stats} causes counters to be summed over the
14876 whole compilation unit while @samp{-details} dumps every event as
14877 the passes generate them. The default with no option is to sum
14878 counters for each function compiled.
14879
14880 @item -fdump-tree-all
14881 @itemx -fdump-tree-@var{switch}
14882 @itemx -fdump-tree-@var{switch}-@var{options}
14883 @itemx -fdump-tree-@var{switch}-@var{options}=@var{filename}
14884 @opindex fdump-tree-all
14885 @opindex fdump-tree
14886 Control the dumping at various stages of processing the intermediate
14887 language tree to a file. If the @samp{-@var{options}}
14888 form is used, @var{options} is a list of @samp{-} separated options
14889 which control the details of the dump. Not all options are applicable
14890 to all dumps; those that are not meaningful are ignored. The
14891 following options are available
14892
14893 @table @samp
14894 @item address
14895 Print the address of each node. Usually this is not meaningful as it
14896 changes according to the environment and source file. Its primary use
14897 is for tying up a dump file with a debug environment.
14898 @item asmname
14899 If @code{DECL_ASSEMBLER_NAME} has been set for a given decl, use that
14900 in the dump instead of @code{DECL_NAME}. Its primary use is ease of
14901 use working backward from mangled names in the assembly file.
14902 @item slim
14903 When dumping front-end intermediate representations, inhibit dumping
14904 of members of a scope or body of a function merely because that scope
14905 has been reached. Only dump such items when they are directly reachable
14906 by some other path.
14907
14908 When dumping pretty-printed trees, this option inhibits dumping the
14909 bodies of control structures.
14910
14911 When dumping RTL, print the RTL in slim (condensed) form instead of
14912 the default LISP-like representation.
14913 @item raw
14914 Print a raw representation of the tree. By default, trees are
14915 pretty-printed into a C-like representation.
14916 @item details
14917 Enable more detailed dumps (not honored by every dump option). Also
14918 include information from the optimization passes.
14919 @item stats
14920 Enable dumping various statistics about the pass (not honored by every dump
14921 option).
14922 @item blocks
14923 Enable showing basic block boundaries (disabled in raw dumps).
14924 @item graph
14925 For each of the other indicated dump files (@option{-fdump-rtl-@var{pass}}),
14926 dump a representation of the control flow graph suitable for viewing with
14927 GraphViz to @file{@var{file}.@var{passid}.@var{pass}.dot}. Each function in
14928 the file is pretty-printed as a subgraph, so that GraphViz can render them
14929 all in a single plot.
14930
14931 This option currently only works for RTL dumps, and the RTL is always
14932 dumped in slim form.
14933 @item vops
14934 Enable showing virtual operands for every statement.
14935 @item lineno
14936 Enable showing line numbers for statements.
14937 @item uid
14938 Enable showing the unique ID (@code{DECL_UID}) for each variable.
14939 @item verbose
14940 Enable showing the tree dump for each statement.
14941 @item eh
14942 Enable showing the EH region number holding each statement.
14943 @item scev
14944 Enable showing scalar evolution analysis details.
14945 @item optimized
14946 Enable showing optimization information (only available in certain
14947 passes).
14948 @item missed
14949 Enable showing missed optimization information (only available in certain
14950 passes).
14951 @item note
14952 Enable other detailed optimization information (only available in
14953 certain passes).
14954 @item all
14955 Turn on all options, except @option{raw}, @option{slim}, @option{verbose}
14956 and @option{lineno}.
14957 @item optall
14958 Turn on all optimization options, i.e., @option{optimized},
14959 @option{missed}, and @option{note}.
14960 @end table
14961
14962 To determine what tree dumps are available or find the dump for a pass
14963 of interest follow the steps below.
14964
14965 @enumerate
14966 @item
14967 Invoke GCC with @option{-fdump-passes} and in the @file{stderr} output
14968 look for a code that corresponds to the pass you are interested in.
14969 For example, the codes @code{tree-evrp}, @code{tree-vrp1}, and
14970 @code{tree-vrp2} correspond to the three Value Range Propagation passes.
14971 The number at the end distinguishes distinct invocations of the same pass.
14972 @item
14973 To enable the creation of the dump file, append the pass code to
14974 the @option{-fdump-} option prefix and invoke GCC with it. For example,
14975 to enable the dump from the Early Value Range Propagation pass, invoke
14976 GCC with the @option{-fdump-tree-evrp} option. Optionally, you may
14977 specify the name of the dump file. If you don't specify one, GCC
14978 creates as described below.
14979 @item
14980 Find the pass dump in a file whose name is composed of three components
14981 separated by a period: the name of the source file GCC was invoked to
14982 compile, a numeric suffix indicating the pass number followed by the
14983 letter @samp{t} for tree passes (and the letter @samp{r} for RTL passes),
14984 and finally the pass code. For example, the Early VRP pass dump might
14985 be in a file named @file{myfile.c.038t.evrp} in the current working
14986 directory. Note that the numeric codes are not stable and may change
14987 from one version of GCC to another.
14988 @end enumerate
14989
14990 @item -fopt-info
14991 @itemx -fopt-info-@var{options}
14992 @itemx -fopt-info-@var{options}=@var{filename}
14993 @opindex fopt-info
14994 Controls optimization dumps from various optimization passes. If the
14995 @samp{-@var{options}} form is used, @var{options} is a list of
14996 @samp{-} separated option keywords to select the dump details and
14997 optimizations.
14998
14999 The @var{options} can be divided into three groups:
15000 @enumerate
15001 @item
15002 options describing what kinds of messages should be emitted,
15003 @item
15004 options describing the verbosity of the dump, and
15005 @item
15006 options describing which optimizations should be included.
15007 @end enumerate
15008 The options from each group can be freely mixed as they are
15009 non-overlapping. However, in case of any conflicts,
15010 the later options override the earlier options on the command
15011 line.
15012
15013 The following options control which kinds of messages should be emitted:
15014
15015 @table @samp
15016 @item optimized
15017 Print information when an optimization is successfully applied. It is
15018 up to a pass to decide which information is relevant. For example, the
15019 vectorizer passes print the source location of loops which are
15020 successfully vectorized.
15021 @item missed
15022 Print information about missed optimizations. Individual passes
15023 control which information to include in the output.
15024 @item note
15025 Print verbose information about optimizations, such as certain
15026 transformations, more detailed messages about decisions etc.
15027 @item all
15028 Print detailed optimization information. This includes
15029 @samp{optimized}, @samp{missed}, and @samp{note}.
15030 @end table
15031
15032 The following option controls the dump verbosity:
15033
15034 @table @samp
15035 @item internals
15036 By default, only ``high-level'' messages are emitted. This option enables
15037 additional, more detailed, messages, which are likely to only be of interest
15038 to GCC developers.
15039 @end table
15040
15041 One or more of the following option keywords can be used to describe a
15042 group of optimizations:
15043
15044 @table @samp
15045 @item ipa
15046 Enable dumps from all interprocedural optimizations.
15047 @item loop
15048 Enable dumps from all loop optimizations.
15049 @item inline
15050 Enable dumps from all inlining optimizations.
15051 @item omp
15052 Enable dumps from all OMP (Offloading and Multi Processing) optimizations.
15053 @item vec
15054 Enable dumps from all vectorization optimizations.
15055 @item optall
15056 Enable dumps from all optimizations. This is a superset of
15057 the optimization groups listed above.
15058 @end table
15059
15060 If @var{options} is
15061 omitted, it defaults to @samp{optimized-optall}, which means to dump messages
15062 about successful optimizations from all the passes, omitting messages
15063 that are treated as ``internals''.
15064
15065 If the @var{filename} is provided, then the dumps from all the
15066 applicable optimizations are concatenated into the @var{filename}.
15067 Otherwise the dump is output onto @file{stderr}. Though multiple
15068 @option{-fopt-info} options are accepted, only one of them can include
15069 a @var{filename}. If other filenames are provided then all but the
15070 first such option are ignored.
15071
15072 Note that the output @var{filename} is overwritten
15073 in case of multiple translation units. If a combined output from
15074 multiple translation units is desired, @file{stderr} should be used
15075 instead.
15076
15077 In the following example, the optimization info is output to
15078 @file{stderr}:
15079
15080 @smallexample
15081 gcc -O3 -fopt-info
15082 @end smallexample
15083
15084 This example:
15085 @smallexample
15086 gcc -O3 -fopt-info-missed=missed.all
15087 @end smallexample
15088
15089 @noindent
15090 outputs missed optimization report from all the passes into
15091 @file{missed.all}, and this one:
15092
15093 @smallexample
15094 gcc -O2 -ftree-vectorize -fopt-info-vec-missed
15095 @end smallexample
15096
15097 @noindent
15098 prints information about missed optimization opportunities from
15099 vectorization passes on @file{stderr}.
15100 Note that @option{-fopt-info-vec-missed} is equivalent to
15101 @option{-fopt-info-missed-vec}. The order of the optimization group
15102 names and message types listed after @option{-fopt-info} does not matter.
15103
15104 As another example,
15105 @smallexample
15106 gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
15107 @end smallexample
15108
15109 @noindent
15110 outputs information about missed optimizations as well as
15111 optimized locations from all the inlining passes into
15112 @file{inline.txt}.
15113
15114 Finally, consider:
15115
15116 @smallexample
15117 gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
15118 @end smallexample
15119
15120 @noindent
15121 Here the two output filenames @file{vec.miss} and @file{loop.opt} are
15122 in conflict since only one output file is allowed. In this case, only
15123 the first option takes effect and the subsequent options are
15124 ignored. Thus only @file{vec.miss} is produced which contains
15125 dumps from the vectorizer about missed opportunities.
15126
15127 @item -fsave-optimization-record
15128 @opindex fsave-optimization-record
15129 Write a SRCFILE.opt-record.json.gz file detailing what optimizations
15130 were performed, for those optimizations that support @option{-fopt-info}.
15131
15132 This option is experimental and the format of the data within the
15133 compressed JSON file is subject to change.
15134
15135 It is roughly equivalent to a machine-readable version of
15136 @option{-fopt-info-all}, as a collection of messages with source file,
15137 line number and column number, with the following additional data for
15138 each message:
15139
15140 @itemize @bullet
15141
15142 @item
15143 the execution count of the code being optimized, along with metadata about
15144 whether this was from actual profile data, or just an estimate, allowing
15145 consumers to prioritize messages by code hotness,
15146
15147 @item
15148 the function name of the code being optimized, where applicable,
15149
15150 @item
15151 the ``inlining chain'' for the code being optimized, so that when
15152 a function is inlined into several different places (which might
15153 themselves be inlined), the reader can distinguish between the copies,
15154
15155 @item
15156 objects identifying those parts of the message that refer to expressions,
15157 statements or symbol-table nodes, which of these categories they are, and,
15158 when available, their source code location,
15159
15160 @item
15161 the GCC pass that emitted the message, and
15162
15163 @item
15164 the location in GCC's own code from which the message was emitted
15165
15166 @end itemize
15167
15168 Additionally, some messages are logically nested within other
15169 messages, reflecting implementation details of the optimization
15170 passes.
15171
15172 @item -fsched-verbose=@var{n}
15173 @opindex fsched-verbose
15174 On targets that use instruction scheduling, this option controls the
15175 amount of debugging output the scheduler prints to the dump files.
15176
15177 For @var{n} greater than zero, @option{-fsched-verbose} outputs the
15178 same information as @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2}.
15179 For @var{n} greater than one, it also output basic block probabilities,
15180 detailed ready list information and unit/insn info. For @var{n} greater
15181 than two, it includes RTL at abort point, control-flow and regions info.
15182 And for @var{n} over four, @option{-fsched-verbose} also includes
15183 dependence info.
15184
15185
15186
15187 @item -fenable-@var{kind}-@var{pass}
15188 @itemx -fdisable-@var{kind}-@var{pass}=@var{range-list}
15189 @opindex fdisable-
15190 @opindex fenable-
15191
15192 This is a set of options that are used to explicitly disable/enable
15193 optimization passes. These options are intended for use for debugging GCC.
15194 Compiler users should use regular options for enabling/disabling
15195 passes instead.
15196
15197 @table @gcctabopt
15198
15199 @item -fdisable-ipa-@var{pass}
15200 Disable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
15201 statically invoked in the compiler multiple times, the pass name should be
15202 appended with a sequential number starting from 1.
15203
15204 @item -fdisable-rtl-@var{pass}
15205 @itemx -fdisable-rtl-@var{pass}=@var{range-list}
15206 Disable RTL pass @var{pass}. @var{pass} is the pass name. If the same pass is
15207 statically invoked in the compiler multiple times, the pass name should be
15208 appended with a sequential number starting from 1. @var{range-list} is a
15209 comma-separated list of function ranges or assembler names. Each range is a number
15210 pair separated by a colon. The range is inclusive in both ends. If the range
15211 is trivial, the number pair can be simplified as a single number. If the
15212 function's call graph node's @var{uid} falls within one of the specified ranges,
15213 the @var{pass} is disabled for that function. The @var{uid} is shown in the
15214 function header of a dump file, and the pass names can be dumped by using
15215 option @option{-fdump-passes}.
15216
15217 @item -fdisable-tree-@var{pass}
15218 @itemx -fdisable-tree-@var{pass}=@var{range-list}
15219 Disable tree pass @var{pass}. See @option{-fdisable-rtl} for the description of
15220 option arguments.
15221
15222 @item -fenable-ipa-@var{pass}
15223 Enable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
15224 statically invoked in the compiler multiple times, the pass name should be
15225 appended with a sequential number starting from 1.
15226
15227 @item -fenable-rtl-@var{pass}
15228 @itemx -fenable-rtl-@var{pass}=@var{range-list}
15229 Enable RTL pass @var{pass}. See @option{-fdisable-rtl} for option argument
15230 description and examples.
15231
15232 @item -fenable-tree-@var{pass}
15233 @itemx -fenable-tree-@var{pass}=@var{range-list}
15234 Enable tree pass @var{pass}. See @option{-fdisable-rtl} for the description
15235 of option arguments.
15236
15237 @end table
15238
15239 Here are some examples showing uses of these options.
15240
15241 @smallexample
15242
15243 # disable ccp1 for all functions
15244 -fdisable-tree-ccp1
15245 # disable complete unroll for function whose cgraph node uid is 1
15246 -fenable-tree-cunroll=1
15247 # disable gcse2 for functions at the following ranges [1,1],
15248 # [300,400], and [400,1000]
15249 # disable gcse2 for functions foo and foo2
15250 -fdisable-rtl-gcse2=foo,foo2
15251 # disable early inlining
15252 -fdisable-tree-einline
15253 # disable ipa inlining
15254 -fdisable-ipa-inline
15255 # enable tree full unroll
15256 -fenable-tree-unroll
15257
15258 @end smallexample
15259
15260 @item -fchecking
15261 @itemx -fchecking=@var{n}
15262 @opindex fchecking
15263 @opindex fno-checking
15264 Enable internal consistency checking. The default depends on
15265 the compiler configuration. @option{-fchecking=2} enables further
15266 internal consistency checking that might affect code generation.
15267
15268 @item -frandom-seed=@var{string}
15269 @opindex frandom-seed
15270 This option provides a seed that GCC uses in place of
15271 random numbers in generating certain symbol names
15272 that have to be different in every compiled file. It is also used to
15273 place unique stamps in coverage data files and the object files that
15274 produce them. You can use the @option{-frandom-seed} option to produce
15275 reproducibly identical object files.
15276
15277 The @var{string} can either be a number (decimal, octal or hex) or an
15278 arbitrary string (in which case it's converted to a number by
15279 computing CRC32).
15280
15281 The @var{string} should be different for every file you compile.
15282
15283 @item -save-temps
15284 @itemx -save-temps=cwd
15285 @opindex save-temps
15286 Store the usual ``temporary'' intermediate files permanently; place them
15287 in the current directory and name them based on the source file. Thus,
15288 compiling @file{foo.c} with @option{-c -save-temps} produces files
15289 @file{foo.i} and @file{foo.s}, as well as @file{foo.o}. This creates a
15290 preprocessed @file{foo.i} output file even though the compiler now
15291 normally uses an integrated preprocessor.
15292
15293 When used in combination with the @option{-x} command-line option,
15294 @option{-save-temps} is sensible enough to avoid over writing an
15295 input source file with the same extension as an intermediate file.
15296 The corresponding intermediate file may be obtained by renaming the
15297 source file before using @option{-save-temps}.
15298
15299 If you invoke GCC in parallel, compiling several different source
15300 files that share a common base name in different subdirectories or the
15301 same source file compiled for multiple output destinations, it is
15302 likely that the different parallel compilers will interfere with each
15303 other, and overwrite the temporary files. For instance:
15304
15305 @smallexample
15306 gcc -save-temps -o outdir1/foo.o indir1/foo.c&
15307 gcc -save-temps -o outdir2/foo.o indir2/foo.c&
15308 @end smallexample
15309
15310 may result in @file{foo.i} and @file{foo.o} being written to
15311 simultaneously by both compilers.
15312
15313 @item -save-temps=obj
15314 @opindex save-temps=obj
15315 Store the usual ``temporary'' intermediate files permanently. If the
15316 @option{-o} option is used, the temporary files are based on the
15317 object file. If the @option{-o} option is not used, the
15318 @option{-save-temps=obj} switch behaves like @option{-save-temps}.
15319
15320 For example:
15321
15322 @smallexample
15323 gcc -save-temps=obj -c foo.c
15324 gcc -save-temps=obj -c bar.c -o dir/xbar.o
15325 gcc -save-temps=obj foobar.c -o dir2/yfoobar
15326 @end smallexample
15327
15328 @noindent
15329 creates @file{foo.i}, @file{foo.s}, @file{dir/xbar.i},
15330 @file{dir/xbar.s}, @file{dir2/yfoobar.i}, @file{dir2/yfoobar.s}, and
15331 @file{dir2/yfoobar.o}.
15332
15333 @item -time@r{[}=@var{file}@r{]}
15334 @opindex time
15335 Report the CPU time taken by each subprocess in the compilation
15336 sequence. For C source files, this is the compiler proper and assembler
15337 (plus the linker if linking is done).
15338
15339 Without the specification of an output file, the output looks like this:
15340
15341 @smallexample
15342 # cc1 0.12 0.01
15343 # as 0.00 0.01
15344 @end smallexample
15345
15346 The first number on each line is the ``user time'', that is time spent
15347 executing the program itself. The second number is ``system time'',
15348 time spent executing operating system routines on behalf of the program.
15349 Both numbers are in seconds.
15350
15351 With the specification of an output file, the output is appended to the
15352 named file, and it looks like this:
15353
15354 @smallexample
15355 0.12 0.01 cc1 @var{options}
15356 0.00 0.01 as @var{options}
15357 @end smallexample
15358
15359 The ``user time'' and the ``system time'' are moved before the program
15360 name, and the options passed to the program are displayed, so that one
15361 can later tell what file was being compiled, and with which options.
15362
15363 @item -fdump-final-insns@r{[}=@var{file}@r{]}
15364 @opindex fdump-final-insns
15365 Dump the final internal representation (RTL) to @var{file}. If the
15366 optional argument is omitted (or if @var{file} is @code{.}), the name
15367 of the dump file is determined by appending @code{.gkd} to the
15368 compilation output file name.
15369
15370 @item -fcompare-debug@r{[}=@var{opts}@r{]}
15371 @opindex fcompare-debug
15372 @opindex fno-compare-debug
15373 If no error occurs during compilation, run the compiler a second time,
15374 adding @var{opts} and @option{-fcompare-debug-second} to the arguments
15375 passed to the second compilation. Dump the final internal
15376 representation in both compilations, and print an error if they differ.
15377
15378 If the equal sign is omitted, the default @option{-gtoggle} is used.
15379
15380 The environment variable @env{GCC_COMPARE_DEBUG}, if defined, non-empty
15381 and nonzero, implicitly enables @option{-fcompare-debug}. If
15382 @env{GCC_COMPARE_DEBUG} is defined to a string starting with a dash,
15383 then it is used for @var{opts}, otherwise the default @option{-gtoggle}
15384 is used.
15385
15386 @option{-fcompare-debug=}, with the equal sign but without @var{opts},
15387 is equivalent to @option{-fno-compare-debug}, which disables the dumping
15388 of the final representation and the second compilation, preventing even
15389 @env{GCC_COMPARE_DEBUG} from taking effect.
15390
15391 To verify full coverage during @option{-fcompare-debug} testing, set
15392 @env{GCC_COMPARE_DEBUG} to say @option{-fcompare-debug-not-overridden},
15393 which GCC rejects as an invalid option in any actual compilation
15394 (rather than preprocessing, assembly or linking). To get just a
15395 warning, setting @env{GCC_COMPARE_DEBUG} to @samp{-w%n-fcompare-debug
15396 not overridden} will do.
15397
15398 @item -fcompare-debug-second
15399 @opindex fcompare-debug-second
15400 This option is implicitly passed to the compiler for the second
15401 compilation requested by @option{-fcompare-debug}, along with options to
15402 silence warnings, and omitting other options that would cause the compiler
15403 to produce output to files or to standard output as a side effect. Dump
15404 files and preserved temporary files are renamed so as to contain the
15405 @code{.gk} additional extension during the second compilation, to avoid
15406 overwriting those generated by the first.
15407
15408 When this option is passed to the compiler driver, it causes the
15409 @emph{first} compilation to be skipped, which makes it useful for little
15410 other than debugging the compiler proper.
15411
15412 @item -gtoggle
15413 @opindex gtoggle
15414 Turn off generation of debug info, if leaving out this option
15415 generates it, or turn it on at level 2 otherwise. The position of this
15416 argument in the command line does not matter; it takes effect after all
15417 other options are processed, and it does so only once, no matter how
15418 many times it is given. This is mainly intended to be used with
15419 @option{-fcompare-debug}.
15420
15421 @item -fvar-tracking-assignments-toggle
15422 @opindex fvar-tracking-assignments-toggle
15423 @opindex fno-var-tracking-assignments-toggle
15424 Toggle @option{-fvar-tracking-assignments}, in the same way that
15425 @option{-gtoggle} toggles @option{-g}.
15426
15427 @item -Q
15428 @opindex Q
15429 Makes the compiler print out each function name as it is compiled, and
15430 print some statistics about each pass when it finishes.
15431
15432 @item -ftime-report
15433 @opindex ftime-report
15434 Makes the compiler print some statistics about the time consumed by each
15435 pass when it finishes.
15436
15437 @item -ftime-report-details
15438 @opindex ftime-report-details
15439 Record the time consumed by infrastructure parts separately for each pass.
15440
15441 @item -fira-verbose=@var{n}
15442 @opindex fira-verbose
15443 Control the verbosity of the dump file for the integrated register allocator.
15444 The default value is 5. If the value @var{n} is greater or equal to 10,
15445 the dump output is sent to stderr using the same format as @var{n} minus 10.
15446
15447 @item -flto-report
15448 @opindex flto-report
15449 Prints a report with internal details on the workings of the link-time
15450 optimizer. The contents of this report vary from version to version.
15451 It is meant to be useful to GCC developers when processing object
15452 files in LTO mode (via @option{-flto}).
15453
15454 Disabled by default.
15455
15456 @item -flto-report-wpa
15457 @opindex flto-report-wpa
15458 Like @option{-flto-report}, but only print for the WPA phase of link-time
15459 optimization.
15460
15461 @item -fmem-report
15462 @opindex fmem-report
15463 Makes the compiler print some statistics about permanent memory
15464 allocation when it finishes.
15465
15466 @item -fmem-report-wpa
15467 @opindex fmem-report-wpa
15468 Makes the compiler print some statistics about permanent memory
15469 allocation for the WPA phase only.
15470
15471 @item -fpre-ipa-mem-report
15472 @opindex fpre-ipa-mem-report
15473 @item -fpost-ipa-mem-report
15474 @opindex fpost-ipa-mem-report
15475 Makes the compiler print some statistics about permanent memory
15476 allocation before or after interprocedural optimization.
15477
15478 @item -fprofile-report
15479 @opindex fprofile-report
15480 Makes the compiler print some statistics about consistency of the
15481 (estimated) profile and effect of individual passes.
15482
15483 @item -fstack-usage
15484 @opindex fstack-usage
15485 Makes the compiler output stack usage information for the program, on a
15486 per-function basis. The filename for the dump is made by appending
15487 @file{.su} to the @var{auxname}. @var{auxname} is generated from the name of
15488 the output file, if explicitly specified and it is not an executable,
15489 otherwise it is the basename of the source file. An entry is made up
15490 of three fields:
15491
15492 @itemize
15493 @item
15494 The name of the function.
15495 @item
15496 A number of bytes.
15497 @item
15498 One or more qualifiers: @code{static}, @code{dynamic}, @code{bounded}.
15499 @end itemize
15500
15501 The qualifier @code{static} means that the function manipulates the stack
15502 statically: a fixed number of bytes are allocated for the frame on function
15503 entry and released on function exit; no stack adjustments are otherwise made
15504 in the function. The second field is this fixed number of bytes.
15505
15506 The qualifier @code{dynamic} means that the function manipulates the stack
15507 dynamically: in addition to the static allocation described above, stack
15508 adjustments are made in the body of the function, for example to push/pop
15509 arguments around function calls. If the qualifier @code{bounded} is also
15510 present, the amount of these adjustments is bounded at compile time and
15511 the second field is an upper bound of the total amount of stack used by
15512 the function. If it is not present, the amount of these adjustments is
15513 not bounded at compile time and the second field only represents the
15514 bounded part.
15515
15516 @item -fstats
15517 @opindex fstats
15518 Emit statistics about front-end processing at the end of the compilation.
15519 This option is supported only by the C++ front end, and
15520 the information is generally only useful to the G++ development team.
15521
15522 @item -fdbg-cnt-list
15523 @opindex fdbg-cnt-list
15524 Print the name and the counter upper bound for all debug counters.
15525
15526
15527 @item -fdbg-cnt=@var{counter-value-list}
15528 @opindex fdbg-cnt
15529 Set the internal debug counter lower and upper bound. @var{counter-value-list}
15530 is a comma-separated list of @var{name}:@var{lower_bound}:@var{upper_bound}
15531 tuples which sets the lower and the upper bound of each debug
15532 counter @var{name}. The @var{lower_bound} is optional and is zero
15533 initialized if not set.
15534 All debug counters have the initial upper bound of @code{UINT_MAX};
15535 thus @code{dbg_cnt} returns true always unless the upper bound
15536 is set by this option.
15537 For example, with @option{-fdbg-cnt=dce:2:4,tail_call:10},
15538 @code{dbg_cnt(dce)} returns true only for third and fourth invocation.
15539 For @code{dbg_cnt(tail_call)} true is returned for first 10 invocations.
15540
15541 @item -print-file-name=@var{library}
15542 @opindex print-file-name
15543 Print the full absolute name of the library file @var{library} that
15544 would be used when linking---and don't do anything else. With this
15545 option, GCC does not compile or link anything; it just prints the
15546 file name.
15547
15548 @item -print-multi-directory
15549 @opindex print-multi-directory
15550 Print the directory name corresponding to the multilib selected by any
15551 other switches present in the command line. This directory is supposed
15552 to exist in @env{GCC_EXEC_PREFIX}.
15553
15554 @item -print-multi-lib
15555 @opindex print-multi-lib
15556 Print the mapping from multilib directory names to compiler switches
15557 that enable them. The directory name is separated from the switches by
15558 @samp{;}, and each switch starts with an @samp{@@} instead of the
15559 @samp{-}, without spaces between multiple switches. This is supposed to
15560 ease shell processing.
15561
15562 @item -print-multi-os-directory
15563 @opindex print-multi-os-directory
15564 Print the path to OS libraries for the selected
15565 multilib, relative to some @file{lib} subdirectory. If OS libraries are
15566 present in the @file{lib} subdirectory and no multilibs are used, this is
15567 usually just @file{.}, if OS libraries are present in @file{lib@var{suffix}}
15568 sibling directories this prints e.g.@: @file{../lib64}, @file{../lib} or
15569 @file{../lib32}, or if OS libraries are present in @file{lib/@var{subdir}}
15570 subdirectories it prints e.g.@: @file{amd64}, @file{sparcv9} or @file{ev6}.
15571
15572 @item -print-multiarch
15573 @opindex print-multiarch
15574 Print the path to OS libraries for the selected multiarch,
15575 relative to some @file{lib} subdirectory.
15576
15577 @item -print-prog-name=@var{program}
15578 @opindex print-prog-name
15579 Like @option{-print-file-name}, but searches for a program such as @command{cpp}.
15580
15581 @item -print-libgcc-file-name
15582 @opindex print-libgcc-file-name
15583 Same as @option{-print-file-name=libgcc.a}.
15584
15585 This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
15586 but you do want to link with @file{libgcc.a}. You can do:
15587
15588 @smallexample
15589 gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
15590 @end smallexample
15591
15592 @item -print-search-dirs
15593 @opindex print-search-dirs
15594 Print the name of the configured installation directory and a list of
15595 program and library directories @command{gcc} searches---and don't do anything else.
15596
15597 This is useful when @command{gcc} prints the error message
15598 @samp{installation problem, cannot exec cpp0: No such file or directory}.
15599 To resolve this you either need to put @file{cpp0} and the other compiler
15600 components where @command{gcc} expects to find them, or you can set the environment
15601 variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
15602 Don't forget the trailing @samp{/}.
15603 @xref{Environment Variables}.
15604
15605 @item -print-sysroot
15606 @opindex print-sysroot
15607 Print the target sysroot directory that is used during
15608 compilation. This is the target sysroot specified either at configure
15609 time or using the @option{--sysroot} option, possibly with an extra
15610 suffix that depends on compilation options. If no target sysroot is
15611 specified, the option prints nothing.
15612
15613 @item -print-sysroot-headers-suffix
15614 @opindex print-sysroot-headers-suffix
15615 Print the suffix added to the target sysroot when searching for
15616 headers, or give an error if the compiler is not configured with such
15617 a suffix---and don't do anything else.
15618
15619 @item -dumpmachine
15620 @opindex dumpmachine
15621 Print the compiler's target machine (for example,
15622 @samp{i686-pc-linux-gnu})---and don't do anything else.
15623
15624 @item -dumpversion
15625 @opindex dumpversion
15626 Print the compiler version (for example, @code{3.0}, @code{6.3.0} or @code{7})---and don't do
15627 anything else. This is the compiler version used in filesystem paths and
15628 specs. Depending on how the compiler has been configured it can be just
15629 a single number (major version), two numbers separated by a dot (major and
15630 minor version) or three numbers separated by dots (major, minor and patchlevel
15631 version).
15632
15633 @item -dumpfullversion
15634 @opindex dumpfullversion
15635 Print the full compiler version---and don't do anything else. The output is
15636 always three numbers separated by dots, major, minor and patchlevel version.
15637
15638 @item -dumpspecs
15639 @opindex dumpspecs
15640 Print the compiler's built-in specs---and don't do anything else. (This
15641 is used when GCC itself is being built.) @xref{Spec Files}.
15642 @end table
15643
15644 @node Submodel Options
15645 @section Machine-Dependent Options
15646 @cindex submodel options
15647 @cindex specifying hardware config
15648 @cindex hardware models and configurations, specifying
15649 @cindex target-dependent options
15650 @cindex machine-dependent options
15651
15652 Each target machine supported by GCC can have its own options---for
15653 example, to allow you to compile for a particular processor variant or
15654 ABI, or to control optimizations specific to that machine. By
15655 convention, the names of machine-specific options start with
15656 @samp{-m}.
15657
15658 Some configurations of the compiler also support additional target-specific
15659 options, usually for compatibility with other compilers on the same
15660 platform.
15661
15662 @c This list is ordered alphanumerically by subsection name.
15663 @c It should be the same order and spelling as these options are listed
15664 @c in Machine Dependent Options
15665
15666 @menu
15667 * AArch64 Options::
15668 * Adapteva Epiphany Options::
15669 * AMD GCN Options::
15670 * ARC Options::
15671 * ARM Options::
15672 * AVR Options::
15673 * Blackfin Options::
15674 * C6X Options::
15675 * CRIS Options::
15676 * CR16 Options::
15677 * C-SKY Options::
15678 * Darwin Options::
15679 * DEC Alpha Options::
15680 * eBPF Options::
15681 * FR30 Options::
15682 * FT32 Options::
15683 * FRV Options::
15684 * GNU/Linux Options::
15685 * H8/300 Options::
15686 * HPPA Options::
15687 * IA-64 Options::
15688 * LM32 Options::
15689 * M32C Options::
15690 * M32R/D Options::
15691 * M680x0 Options::
15692 * MCore Options::
15693 * MeP Options::
15694 * MicroBlaze Options::
15695 * MIPS Options::
15696 * MMIX Options::
15697 * MN10300 Options::
15698 * Moxie Options::
15699 * MSP430 Options::
15700 * NDS32 Options::
15701 * Nios II Options::
15702 * Nvidia PTX Options::
15703 * OpenRISC Options::
15704 * PDP-11 Options::
15705 * picoChip Options::
15706 * PowerPC Options::
15707 * PRU Options::
15708 * RISC-V Options::
15709 * RL78 Options::
15710 * RS/6000 and PowerPC Options::
15711 * RX Options::
15712 * S/390 and zSeries Options::
15713 * Score Options::
15714 * SH Options::
15715 * Solaris 2 Options::
15716 * SPARC Options::
15717 * System V Options::
15718 * TILE-Gx Options::
15719 * TILEPro Options::
15720 * V850 Options::
15721 * VAX Options::
15722 * Visium Options::
15723 * VMS Options::
15724 * VxWorks Options::
15725 * x86 Options::
15726 * x86 Windows Options::
15727 * Xstormy16 Options::
15728 * Xtensa Options::
15729 * zSeries Options::
15730 @end menu
15731
15732 @node AArch64 Options
15733 @subsection AArch64 Options
15734 @cindex AArch64 Options
15735
15736 These options are defined for AArch64 implementations:
15737
15738 @table @gcctabopt
15739
15740 @item -mabi=@var{name}
15741 @opindex mabi
15742 Generate code for the specified data model. Permissible values
15743 are @samp{ilp32} for SysV-like data model where int, long int and pointers
15744 are 32 bits, and @samp{lp64} for SysV-like data model where int is 32 bits,
15745 but long int and pointers are 64 bits.
15746
15747 The default depends on the specific target configuration. Note that
15748 the LP64 and ILP32 ABIs are not link-compatible; you must compile your
15749 entire program with the same ABI, and link with a compatible set of libraries.
15750
15751 @item -mbig-endian
15752 @opindex mbig-endian
15753 Generate big-endian code. This is the default when GCC is configured for an
15754 @samp{aarch64_be-*-*} target.
15755
15756 @item -mgeneral-regs-only
15757 @opindex mgeneral-regs-only
15758 Generate code which uses only the general-purpose registers. This will prevent
15759 the compiler from using floating-point and Advanced SIMD registers but will not
15760 impose any restrictions on the assembler.
15761
15762 @item -mlittle-endian
15763 @opindex mlittle-endian
15764 Generate little-endian code. This is the default when GCC is configured for an
15765 @samp{aarch64-*-*} but not an @samp{aarch64_be-*-*} target.
15766
15767 @item -mcmodel=tiny
15768 @opindex mcmodel=tiny
15769 Generate code for the tiny code model. The program and its statically defined
15770 symbols must be within 1MB of each other. Programs can be statically or
15771 dynamically linked.
15772
15773 @item -mcmodel=small
15774 @opindex mcmodel=small
15775 Generate code for the small code model. The program and its statically defined
15776 symbols must be within 4GB of each other. Programs can be statically or
15777 dynamically linked. This is the default code model.
15778
15779 @item -mcmodel=large
15780 @opindex mcmodel=large
15781 Generate code for the large code model. This makes no assumptions about
15782 addresses and sizes of sections. Programs can be statically linked only.
15783
15784 @item -mstrict-align
15785 @itemx -mno-strict-align
15786 @opindex mstrict-align
15787 @opindex mno-strict-align
15788 Avoid or allow generating memory accesses that may not be aligned on a natural
15789 object boundary as described in the architecture specification.
15790
15791 @item -momit-leaf-frame-pointer
15792 @itemx -mno-omit-leaf-frame-pointer
15793 @opindex momit-leaf-frame-pointer
15794 @opindex mno-omit-leaf-frame-pointer
15795 Omit or keep the frame pointer in leaf functions. The former behavior is the
15796 default.
15797
15798 @item -mstack-protector-guard=@var{guard}
15799 @itemx -mstack-protector-guard-reg=@var{reg}
15800 @itemx -mstack-protector-guard-offset=@var{offset}
15801 @opindex mstack-protector-guard
15802 @opindex mstack-protector-guard-reg
15803 @opindex mstack-protector-guard-offset
15804 Generate stack protection code using canary at @var{guard}. Supported
15805 locations are @samp{global} for a global canary or @samp{sysreg} for a
15806 canary in an appropriate system register.
15807
15808 With the latter choice the options
15809 @option{-mstack-protector-guard-reg=@var{reg}} and
15810 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
15811 which system register to use as base register for reading the canary,
15812 and from what offset from that base register. There is no default
15813 register or offset as this is entirely for use within the Linux
15814 kernel.
15815
15816 @item -mstack-protector-guard=@var{guard}
15817 @itemx -mstack-protector-guard-reg=@var{reg}
15818 @itemx -mstack-protector-guard-offset=@var{offset}
15819 @opindex mstack-protector-guard
15820 @opindex mstack-protector-guard-reg
15821 @opindex mstack-protector-guard-offset
15822 Generate stack protection code using canary at @var{guard}. Supported
15823 locations are @samp{global} for a global canary or @samp{sysreg} for a
15824 canary in an appropriate system register.
15825
15826 With the latter choice the options
15827 @option{-mstack-protector-guard-reg=@var{reg}} and
15828 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
15829 which system register to use as base register for reading the canary,
15830 and from what offset from that base register. There is no default
15831 register or offset as this is entirely for use within the Linux
15832 kernel.
15833
15834 @item -mtls-dialect=desc
15835 @opindex mtls-dialect=desc
15836 Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
15837 of TLS variables. This is the default.
15838
15839 @item -mtls-dialect=traditional
15840 @opindex mtls-dialect=traditional
15841 Use traditional TLS as the thread-local storage mechanism for dynamic accesses
15842 of TLS variables.
15843
15844 @item -mtls-size=@var{size}
15845 @opindex mtls-size
15846 Specify bit size of immediate TLS offsets. Valid values are 12, 24, 32, 48.
15847 This option requires binutils 2.26 or newer.
15848
15849 @item -mfix-cortex-a53-835769
15850 @itemx -mno-fix-cortex-a53-835769
15851 @opindex mfix-cortex-a53-835769
15852 @opindex mno-fix-cortex-a53-835769
15853 Enable or disable the workaround for the ARM Cortex-A53 erratum number 835769.
15854 This involves inserting a NOP instruction between memory instructions and
15855 64-bit integer multiply-accumulate instructions.
15856
15857 @item -mfix-cortex-a53-843419
15858 @itemx -mno-fix-cortex-a53-843419
15859 @opindex mfix-cortex-a53-843419
15860 @opindex mno-fix-cortex-a53-843419
15861 Enable or disable the workaround for the ARM Cortex-A53 erratum number 843419.
15862 This erratum workaround is made at link time and this will only pass the
15863 corresponding flag to the linker.
15864
15865 @item -mlow-precision-recip-sqrt
15866 @itemx -mno-low-precision-recip-sqrt
15867 @opindex mlow-precision-recip-sqrt
15868 @opindex mno-low-precision-recip-sqrt
15869 Enable or disable the reciprocal square root approximation.
15870 This option only has an effect if @option{-ffast-math} or
15871 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
15872 precision of reciprocal square root results to about 16 bits for
15873 single precision and to 32 bits for double precision.
15874
15875 @item -mlow-precision-sqrt
15876 @itemx -mno-low-precision-sqrt
15877 @opindex mlow-precision-sqrt
15878 @opindex mno-low-precision-sqrt
15879 Enable or disable the square root approximation.
15880 This option only has an effect if @option{-ffast-math} or
15881 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
15882 precision of square root results to about 16 bits for
15883 single precision and to 32 bits for double precision.
15884 If enabled, it implies @option{-mlow-precision-recip-sqrt}.
15885
15886 @item -mlow-precision-div
15887 @itemx -mno-low-precision-div
15888 @opindex mlow-precision-div
15889 @opindex mno-low-precision-div
15890 Enable or disable the division approximation.
15891 This option only has an effect if @option{-ffast-math} or
15892 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
15893 precision of division results to about 16 bits for
15894 single precision and to 32 bits for double precision.
15895
15896 @item -mtrack-speculation
15897 @itemx -mno-track-speculation
15898 Enable or disable generation of additional code to track speculative
15899 execution through conditional branches. The tracking state can then
15900 be used by the compiler when expanding calls to
15901 @code{__builtin_speculation_safe_copy} to permit a more efficient code
15902 sequence to be generated.
15903
15904 @item -moutline-atomics
15905 @itemx -mno-outline-atomics
15906 Enable or disable calls to out-of-line helpers to implement atomic operations.
15907 These helpers will, at runtime, determine if the LSE instructions from
15908 ARMv8.1-A can be used; if not, they will use the load/store-exclusive
15909 instructions that are present in the base ARMv8.0 ISA.
15910
15911 This option is only applicable when compiling for the base ARMv8.0
15912 instruction set. If using a later revision, e.g. @option{-march=armv8.1-a}
15913 or @option{-march=armv8-a+lse}, the ARMv8.1-Atomics instructions will be
15914 used directly. The same applies when using @option{-mcpu=} when the
15915 selected cpu supports the @samp{lse} feature.
15916
15917 @item -march=@var{name}
15918 @opindex march
15919 Specify the name of the target architecture and, optionally, one or
15920 more feature modifiers. This option has the form
15921 @option{-march=@var{arch}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}.
15922
15923 The permissible values for @var{arch} are @samp{armv8-a},
15924 @samp{armv8.1-a}, @samp{armv8.2-a}, @samp{armv8.3-a}, @samp{armv8.4-a},
15925 @samp{armv8.5-a} or @var{native}.
15926
15927 The value @samp{armv8.5-a} implies @samp{armv8.4-a} and enables compiler
15928 support for the ARMv8.5-A architecture extensions.
15929
15930 The value @samp{armv8.4-a} implies @samp{armv8.3-a} and enables compiler
15931 support for the ARMv8.4-A architecture extensions.
15932
15933 The value @samp{armv8.3-a} implies @samp{armv8.2-a} and enables compiler
15934 support for the ARMv8.3-A architecture extensions.
15935
15936 The value @samp{armv8.2-a} implies @samp{armv8.1-a} and enables compiler
15937 support for the ARMv8.2-A architecture extensions.
15938
15939 The value @samp{armv8.1-a} implies @samp{armv8-a} and enables compiler
15940 support for the ARMv8.1-A architecture extension. In particular, it
15941 enables the @samp{+crc}, @samp{+lse}, and @samp{+rdma} features.
15942
15943 The value @samp{native} is available on native AArch64 GNU/Linux and
15944 causes the compiler to pick the architecture of the host system. This
15945 option has no effect if the compiler is unable to recognize the
15946 architecture of the host system,
15947
15948 The permissible values for @var{feature} are listed in the sub-section
15949 on @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
15950 Feature Modifiers}. Where conflicting feature modifiers are
15951 specified, the right-most feature is used.
15952
15953 GCC uses @var{name} to determine what kind of instructions it can emit
15954 when generating assembly code. If @option{-march} is specified
15955 without either of @option{-mtune} or @option{-mcpu} also being
15956 specified, the code is tuned to perform well across a range of target
15957 processors implementing the target architecture.
15958
15959 @item -mtune=@var{name}
15960 @opindex mtune
15961 Specify the name of the target processor for which GCC should tune the
15962 performance of the code. Permissible values for this option are:
15963 @samp{generic}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55},
15964 @samp{cortex-a57}, @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75},
15965 @samp{cortex-a76}, @samp{cortex-a76ae}, @samp{cortex-a77},
15966 @samp{cortex-a65}, @samp{cortex-a65ae}, @samp{cortex-a34},
15967 @samp{ares}, @samp{exynos-m1}, @samp{emag}, @samp{falkor},
15968 @samp{neoverse-e1},@samp{neoverse-n1},@samp{qdf24xx}, @samp{saphira},
15969 @samp{phecda}, @samp{xgene1}, @samp{vulcan}, @samp{octeontx},
15970 @samp{octeontx81}, @samp{octeontx83}, @samp{thunderx}, @samp{thunderxt88},
15971 @samp{thunderxt88p1}, @samp{thunderxt81}, @samp{tsv110},
15972 @samp{thunderxt83}, @samp{thunderx2t99},
15973 @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
15974 @samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53},
15975 @samp{cortex-a75.cortex-a55}, @samp{cortex-a76.cortex-a55}
15976 @samp{native}.
15977
15978 The values @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
15979 @samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53},
15980 @samp{cortex-a75.cortex-a55}, @samp{cortex-a76.cortex-a55} specify that GCC
15981 should tune for a big.LITTLE system.
15982
15983 Additionally on native AArch64 GNU/Linux systems the value
15984 @samp{native} tunes performance to the host system. This option has no effect
15985 if the compiler is unable to recognize the processor of the host system.
15986
15987 Where none of @option{-mtune=}, @option{-mcpu=} or @option{-march=}
15988 are specified, the code is tuned to perform well across a range
15989 of target processors.
15990
15991 This option cannot be suffixed by feature modifiers.
15992
15993 @item -mcpu=@var{name}
15994 @opindex mcpu
15995 Specify the name of the target processor, optionally suffixed by one
15996 or more feature modifiers. This option has the form
15997 @option{-mcpu=@var{cpu}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where
15998 the permissible values for @var{cpu} are the same as those available
15999 for @option{-mtune}. The permissible values for @var{feature} are
16000 documented in the sub-section on
16001 @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
16002 Feature Modifiers}. Where conflicting feature modifiers are
16003 specified, the right-most feature is used.
16004
16005 GCC uses @var{name} to determine what kind of instructions it can emit when
16006 generating assembly code (as if by @option{-march}) and to determine
16007 the target processor for which to tune for performance (as if
16008 by @option{-mtune}). Where this option is used in conjunction
16009 with @option{-march} or @option{-mtune}, those options take precedence
16010 over the appropriate part of this option.
16011
16012 @item -moverride=@var{string}
16013 @opindex moverride
16014 Override tuning decisions made by the back-end in response to a
16015 @option{-mtune=} switch. The syntax, semantics, and accepted values
16016 for @var{string} in this option are not guaranteed to be consistent
16017 across releases.
16018
16019 This option is only intended to be useful when developing GCC.
16020
16021 @item -mverbose-cost-dump
16022 @opindex mverbose-cost-dump
16023 Enable verbose cost model dumping in the debug dump files. This option is
16024 provided for use in debugging the compiler.
16025
16026 @item -mpc-relative-literal-loads
16027 @itemx -mno-pc-relative-literal-loads
16028 @opindex mpc-relative-literal-loads
16029 @opindex mno-pc-relative-literal-loads
16030 Enable or disable PC-relative literal loads. With this option literal pools are
16031 accessed using a single instruction and emitted after each function. This
16032 limits the maximum size of functions to 1MB. This is enabled by default for
16033 @option{-mcmodel=tiny}.
16034
16035 @item -msign-return-address=@var{scope}
16036 @opindex msign-return-address
16037 Select the function scope on which return address signing will be applied.
16038 Permissible values are @samp{none}, which disables return address signing,
16039 @samp{non-leaf}, which enables pointer signing for functions which are not leaf
16040 functions, and @samp{all}, which enables pointer signing for all functions. The
16041 default value is @samp{none}. This option has been deprecated by
16042 -mbranch-protection.
16043
16044 @item -mbranch-protection=@var{none}|@var{standard}|@var{pac-ret}[+@var{leaf}+@var{b-key}]|@var{bti}
16045 @opindex mbranch-protection
16046 Select the branch protection features to use.
16047 @samp{none} is the default and turns off all types of branch protection.
16048 @samp{standard} turns on all types of branch protection features. If a feature
16049 has additional tuning options, then @samp{standard} sets it to its standard
16050 level.
16051 @samp{pac-ret[+@var{leaf}]} turns on return address signing to its standard
16052 level: signing functions that save the return address to memory (non-leaf
16053 functions will practically always do this) using the a-key. The optional
16054 argument @samp{leaf} can be used to extend the signing to include leaf
16055 functions. The optional argument @samp{b-key} can be used to sign the functions
16056 with the B-key instead of the A-key.
16057 @samp{bti} turns on branch target identification mechanism.
16058
16059 @item -msve-vector-bits=@var{bits}
16060 @opindex msve-vector-bits
16061 Specify the number of bits in an SVE vector register. This option only has
16062 an effect when SVE is enabled.
16063
16064 GCC supports two forms of SVE code generation: ``vector-length
16065 agnostic'' output that works with any size of vector register and
16066 ``vector-length specific'' output that allows GCC to make assumptions
16067 about the vector length when it is useful for optimization reasons.
16068 The possible values of @samp{bits} are: @samp{scalable}, @samp{128},
16069 @samp{256}, @samp{512}, @samp{1024} and @samp{2048}.
16070 Specifying @samp{scalable} selects vector-length agnostic
16071 output. At present @samp{-msve-vector-bits=128} also generates vector-length
16072 agnostic output. All other values generate vector-length specific code.
16073 The behavior of these values may change in future releases and no value except
16074 @samp{scalable} should be relied on for producing code that is portable across
16075 different hardware SVE vector lengths.
16076
16077 The default is @samp{-msve-vector-bits=scalable}, which produces
16078 vector-length agnostic code.
16079 @end table
16080
16081 @subsubsection @option{-march} and @option{-mcpu} Feature Modifiers
16082 @anchor{aarch64-feature-modifiers}
16083 @cindex @option{-march} feature modifiers
16084 @cindex @option{-mcpu} feature modifiers
16085 Feature modifiers used with @option{-march} and @option{-mcpu} can be any of
16086 the following and their inverses @option{no@var{feature}}:
16087
16088 @table @samp
16089 @item crc
16090 Enable CRC extension. This is on by default for
16091 @option{-march=armv8.1-a}.
16092 @item crypto
16093 Enable Crypto extension. This also enables Advanced SIMD and floating-point
16094 instructions.
16095 @item fp
16096 Enable floating-point instructions. This is on by default for all possible
16097 values for options @option{-march} and @option{-mcpu}.
16098 @item simd
16099 Enable Advanced SIMD instructions. This also enables floating-point
16100 instructions. This is on by default for all possible values for options
16101 @option{-march} and @option{-mcpu}.
16102 @item sve
16103 Enable Scalable Vector Extension instructions. This also enables Advanced
16104 SIMD and floating-point instructions.
16105 @item lse
16106 Enable Large System Extension instructions. This is on by default for
16107 @option{-march=armv8.1-a}.
16108 @item rdma
16109 Enable Round Double Multiply Accumulate instructions. This is on by default
16110 for @option{-march=armv8.1-a}.
16111 @item fp16
16112 Enable FP16 extension. This also enables floating-point instructions.
16113 @item fp16fml
16114 Enable FP16 fmla extension. This also enables FP16 extensions and
16115 floating-point instructions. This option is enabled by default for @option{-march=armv8.4-a}. Use of this option with architectures prior to Armv8.2-A is not supported.
16116
16117 @item rcpc
16118 Enable the RcPc extension. This does not change code generation from GCC,
16119 but is passed on to the assembler, enabling inline asm statements to use
16120 instructions from the RcPc extension.
16121 @item dotprod
16122 Enable the Dot Product extension. This also enables Advanced SIMD instructions.
16123 @item aes
16124 Enable the Armv8-a aes and pmull crypto extension. This also enables Advanced
16125 SIMD instructions.
16126 @item sha2
16127 Enable the Armv8-a sha2 crypto extension. This also enables Advanced SIMD instructions.
16128 @item sha3
16129 Enable the sha512 and sha3 crypto extension. This also enables Advanced SIMD
16130 instructions. Use of this option with architectures prior to Armv8.2-A is not supported.
16131 @item sm4
16132 Enable the sm3 and sm4 crypto extension. This also enables Advanced SIMD instructions.
16133 Use of this option with architectures prior to Armv8.2-A is not supported.
16134 @item profile
16135 Enable the Statistical Profiling extension. This option is only to enable the
16136 extension at the assembler level and does not affect code generation.
16137 @item rng
16138 Enable the Armv8.5-a Random Number instructions. This option is only to
16139 enable the extension at the assembler level and does not affect code
16140 generation.
16141 @item memtag
16142 Enable the Armv8.5-a Memory Tagging Extensions. This option is only to
16143 enable the extension at the assembler level and does not affect code
16144 generation.
16145 @item sb
16146 Enable the Armv8-a Speculation Barrier instruction. This option is only to
16147 enable the extension at the assembler level and does not affect code
16148 generation. This option is enabled by default for @option{-march=armv8.5-a}.
16149 @item ssbs
16150 Enable the Armv8-a Speculative Store Bypass Safe instruction. This option
16151 is only to enable the extension at the assembler level and does not affect code
16152 generation. This option is enabled by default for @option{-march=armv8.5-a}.
16153 @item predres
16154 Enable the Armv8-a Execution and Data Prediction Restriction instructions.
16155 This option is only to enable the extension at the assembler level and does
16156 not affect code generation. This option is enabled by default for
16157 @item sve2
16158 Enable the Armv8-a Scalable Vector Extension 2. This also enables SVE
16159 instructions.
16160 @item sve2-bitperm
16161 Enable SVE2 bitperm instructions. This also enables SVE2 instructions.
16162 @item sve2-sm4
16163 Enable SVE2 sm4 instructions. This also enables SVE2 instructions.
16164 @item sve2-aes
16165 Enable SVE2 aes instructions. This also enables SVE2 instructions.
16166 @item sve2-sha3
16167 Enable SVE2 sha3 instructions. This also enables SVE2 instructions.
16168 @option{-march=armv8.5-a}.
16169 @item tme
16170 Enable the Transactional Memory Extension.
16171
16172 @end table
16173
16174 Feature @option{crypto} implies @option{aes}, @option{sha2}, and @option{simd},
16175 which implies @option{fp}.
16176 Conversely, @option{nofp} implies @option{nosimd}, which implies
16177 @option{nocrypto}, @option{noaes} and @option{nosha2}.
16178
16179 @node Adapteva Epiphany Options
16180 @subsection Adapteva Epiphany Options
16181
16182 These @samp{-m} options are defined for Adapteva Epiphany:
16183
16184 @table @gcctabopt
16185 @item -mhalf-reg-file
16186 @opindex mhalf-reg-file
16187 Don't allocate any register in the range @code{r32}@dots{}@code{r63}.
16188 That allows code to run on hardware variants that lack these registers.
16189
16190 @item -mprefer-short-insn-regs
16191 @opindex mprefer-short-insn-regs
16192 Preferentially allocate registers that allow short instruction generation.
16193 This can result in increased instruction count, so this may either reduce or
16194 increase overall code size.
16195
16196 @item -mbranch-cost=@var{num}
16197 @opindex mbranch-cost
16198 Set the cost of branches to roughly @var{num} ``simple'' instructions.
16199 This cost is only a heuristic and is not guaranteed to produce
16200 consistent results across releases.
16201
16202 @item -mcmove
16203 @opindex mcmove
16204 Enable the generation of conditional moves.
16205
16206 @item -mnops=@var{num}
16207 @opindex mnops
16208 Emit @var{num} NOPs before every other generated instruction.
16209
16210 @item -mno-soft-cmpsf
16211 @opindex mno-soft-cmpsf
16212 @opindex msoft-cmpsf
16213 For single-precision floating-point comparisons, emit an @code{fsub} instruction
16214 and test the flags. This is faster than a software comparison, but can
16215 get incorrect results in the presence of NaNs, or when two different small
16216 numbers are compared such that their difference is calculated as zero.
16217 The default is @option{-msoft-cmpsf}, which uses slower, but IEEE-compliant,
16218 software comparisons.
16219
16220 @item -mstack-offset=@var{num}
16221 @opindex mstack-offset
16222 Set the offset between the top of the stack and the stack pointer.
16223 E.g., a value of 8 means that the eight bytes in the range @code{sp+0@dots{}sp+7}
16224 can be used by leaf functions without stack allocation.
16225 Values other than @samp{8} or @samp{16} are untested and unlikely to work.
16226 Note also that this option changes the ABI; compiling a program with a
16227 different stack offset than the libraries have been compiled with
16228 generally does not work.
16229 This option can be useful if you want to evaluate if a different stack
16230 offset would give you better code, but to actually use a different stack
16231 offset to build working programs, it is recommended to configure the
16232 toolchain with the appropriate @option{--with-stack-offset=@var{num}} option.
16233
16234 @item -mno-round-nearest
16235 @opindex mno-round-nearest
16236 @opindex mround-nearest
16237 Make the scheduler assume that the rounding mode has been set to
16238 truncating. The default is @option{-mround-nearest}.
16239
16240 @item -mlong-calls
16241 @opindex mlong-calls
16242 If not otherwise specified by an attribute, assume all calls might be beyond
16243 the offset range of the @code{b} / @code{bl} instructions, and therefore load the
16244 function address into a register before performing a (otherwise direct) call.
16245 This is the default.
16246
16247 @item -mshort-calls
16248 @opindex short-calls
16249 If not otherwise specified by an attribute, assume all direct calls are
16250 in the range of the @code{b} / @code{bl} instructions, so use these instructions
16251 for direct calls. The default is @option{-mlong-calls}.
16252
16253 @item -msmall16
16254 @opindex msmall16
16255 Assume addresses can be loaded as 16-bit unsigned values. This does not
16256 apply to function addresses for which @option{-mlong-calls} semantics
16257 are in effect.
16258
16259 @item -mfp-mode=@var{mode}
16260 @opindex mfp-mode
16261 Set the prevailing mode of the floating-point unit.
16262 This determines the floating-point mode that is provided and expected
16263 at function call and return time. Making this mode match the mode you
16264 predominantly need at function start can make your programs smaller and
16265 faster by avoiding unnecessary mode switches.
16266
16267 @var{mode} can be set to one the following values:
16268
16269 @table @samp
16270 @item caller
16271 Any mode at function entry is valid, and retained or restored when
16272 the function returns, and when it calls other functions.
16273 This mode is useful for compiling libraries or other compilation units
16274 you might want to incorporate into different programs with different
16275 prevailing FPU modes, and the convenience of being able to use a single
16276 object file outweighs the size and speed overhead for any extra
16277 mode switching that might be needed, compared with what would be needed
16278 with a more specific choice of prevailing FPU mode.
16279
16280 @item truncate
16281 This is the mode used for floating-point calculations with
16282 truncating (i.e.@: round towards zero) rounding mode. That includes
16283 conversion from floating point to integer.
16284
16285 @item round-nearest
16286 This is the mode used for floating-point calculations with
16287 round-to-nearest-or-even rounding mode.
16288
16289 @item int
16290 This is the mode used to perform integer calculations in the FPU, e.g.@:
16291 integer multiply, or integer multiply-and-accumulate.
16292 @end table
16293
16294 The default is @option{-mfp-mode=caller}
16295
16296 @item -mno-split-lohi
16297 @itemx -mno-postinc
16298 @itemx -mno-postmodify
16299 @opindex mno-split-lohi
16300 @opindex msplit-lohi
16301 @opindex mno-postinc
16302 @opindex mpostinc
16303 @opindex mno-postmodify
16304 @opindex mpostmodify
16305 Code generation tweaks that disable, respectively, splitting of 32-bit
16306 loads, generation of post-increment addresses, and generation of
16307 post-modify addresses. The defaults are @option{msplit-lohi},
16308 @option{-mpost-inc}, and @option{-mpost-modify}.
16309
16310 @item -mnovect-double
16311 @opindex mno-vect-double
16312 @opindex mvect-double
16313 Change the preferred SIMD mode to SImode. The default is
16314 @option{-mvect-double}, which uses DImode as preferred SIMD mode.
16315
16316 @item -max-vect-align=@var{num}
16317 @opindex max-vect-align
16318 The maximum alignment for SIMD vector mode types.
16319 @var{num} may be 4 or 8. The default is 8.
16320 Note that this is an ABI change, even though many library function
16321 interfaces are unaffected if they don't use SIMD vector modes
16322 in places that affect size and/or alignment of relevant types.
16323
16324 @item -msplit-vecmove-early
16325 @opindex msplit-vecmove-early
16326 Split vector moves into single word moves before reload. In theory this
16327 can give better register allocation, but so far the reverse seems to be
16328 generally the case.
16329
16330 @item -m1reg-@var{reg}
16331 @opindex m1reg-
16332 Specify a register to hold the constant @minus{}1, which makes loading small negative
16333 constants and certain bitmasks faster.
16334 Allowable values for @var{reg} are @samp{r43} and @samp{r63},
16335 which specify use of that register as a fixed register,
16336 and @samp{none}, which means that no register is used for this
16337 purpose. The default is @option{-m1reg-none}.
16338
16339 @end table
16340
16341 @node AMD GCN Options
16342 @subsection AMD GCN Options
16343 @cindex AMD GCN Options
16344
16345 These options are defined specifically for the AMD GCN port.
16346
16347 @table @gcctabopt
16348
16349 @item -march=@var{gpu}
16350 @opindex march
16351 @itemx -mtune=@var{gpu}
16352 @opindex mtune
16353 Set architecture type or tuning for @var{gpu}. Supported values for @var{gpu}
16354 are
16355
16356 @table @samp
16357 @opindex fiji
16358 @item fiji
16359 Compile for GCN3 Fiji devices (gfx803).
16360
16361 @item gfx900
16362 Compile for GCN5 Vega 10 devices (gfx900).
16363
16364 @item gfx906
16365 Compile for GCN5 Vega 20 devices (gfx906).
16366
16367 @end table
16368
16369 @item -mstack-size=@var{bytes}
16370 @opindex mstack-size
16371 Specify how many @var{bytes} of stack space will be requested for each GPU
16372 thread (wave-front). Beware that there may be many threads and limited memory
16373 available. The size of the stack allocation may also have an impact on
16374 run-time performance. The default is 32KB when using OpenACC or OpenMP, and
16375 1MB otherwise.
16376
16377 @end table
16378
16379 @node ARC Options
16380 @subsection ARC Options
16381 @cindex ARC options
16382
16383 The following options control the architecture variant for which code
16384 is being compiled:
16385
16386 @c architecture variants
16387 @table @gcctabopt
16388
16389 @item -mbarrel-shifter
16390 @opindex mbarrel-shifter
16391 Generate instructions supported by barrel shifter. This is the default
16392 unless @option{-mcpu=ARC601} or @samp{-mcpu=ARCEM} is in effect.
16393
16394 @item -mjli-always
16395 @opindex mjli-alawys
16396 Force to call a function using jli_s instruction. This option is
16397 valid only for ARCv2 architecture.
16398
16399 @item -mcpu=@var{cpu}
16400 @opindex mcpu
16401 Set architecture type, register usage, and instruction scheduling
16402 parameters for @var{cpu}. There are also shortcut alias options
16403 available for backward compatibility and convenience. Supported
16404 values for @var{cpu} are
16405
16406 @table @samp
16407 @opindex mA6
16408 @opindex mARC600
16409 @item arc600
16410 Compile for ARC600. Aliases: @option{-mA6}, @option{-mARC600}.
16411
16412 @item arc601
16413 @opindex mARC601
16414 Compile for ARC601. Alias: @option{-mARC601}.
16415
16416 @item arc700
16417 @opindex mA7
16418 @opindex mARC700
16419 Compile for ARC700. Aliases: @option{-mA7}, @option{-mARC700}.
16420 This is the default when configured with @option{--with-cpu=arc700}@.
16421
16422 @item arcem
16423 Compile for ARC EM.
16424
16425 @item archs
16426 Compile for ARC HS.
16427
16428 @item em
16429 Compile for ARC EM CPU with no hardware extensions.
16430
16431 @item em4
16432 Compile for ARC EM4 CPU.
16433
16434 @item em4_dmips
16435 Compile for ARC EM4 DMIPS CPU.
16436
16437 @item em4_fpus
16438 Compile for ARC EM4 DMIPS CPU with the single-precision floating-point
16439 extension.
16440
16441 @item em4_fpuda
16442 Compile for ARC EM4 DMIPS CPU with single-precision floating-point and
16443 double assist instructions.
16444
16445 @item hs
16446 Compile for ARC HS CPU with no hardware extensions except the atomic
16447 instructions.
16448
16449 @item hs34
16450 Compile for ARC HS34 CPU.
16451
16452 @item hs38
16453 Compile for ARC HS38 CPU.
16454
16455 @item hs38_linux
16456 Compile for ARC HS38 CPU with all hardware extensions on.
16457
16458 @item arc600_norm
16459 Compile for ARC 600 CPU with @code{norm} instructions enabled.
16460
16461 @item arc600_mul32x16
16462 Compile for ARC 600 CPU with @code{norm} and 32x16-bit multiply
16463 instructions enabled.
16464
16465 @item arc600_mul64
16466 Compile for ARC 600 CPU with @code{norm} and @code{mul64}-family
16467 instructions enabled.
16468
16469 @item arc601_norm
16470 Compile for ARC 601 CPU with @code{norm} instructions enabled.
16471
16472 @item arc601_mul32x16
16473 Compile for ARC 601 CPU with @code{norm} and 32x16-bit multiply
16474 instructions enabled.
16475
16476 @item arc601_mul64
16477 Compile for ARC 601 CPU with @code{norm} and @code{mul64}-family
16478 instructions enabled.
16479
16480 @item nps400
16481 Compile for ARC 700 on NPS400 chip.
16482
16483 @item em_mini
16484 Compile for ARC EM minimalist configuration featuring reduced register
16485 set.
16486
16487 @end table
16488
16489 @item -mdpfp
16490 @opindex mdpfp
16491 @itemx -mdpfp-compact
16492 @opindex mdpfp-compact
16493 Generate double-precision FPX instructions, tuned for the compact
16494 implementation.
16495
16496 @item -mdpfp-fast
16497 @opindex mdpfp-fast
16498 Generate double-precision FPX instructions, tuned for the fast
16499 implementation.
16500
16501 @item -mno-dpfp-lrsr
16502 @opindex mno-dpfp-lrsr
16503 Disable @code{lr} and @code{sr} instructions from using FPX extension
16504 aux registers.
16505
16506 @item -mea
16507 @opindex mea
16508 Generate extended arithmetic instructions. Currently only
16509 @code{divaw}, @code{adds}, @code{subs}, and @code{sat16} are
16510 supported. This is always enabled for @option{-mcpu=ARC700}.
16511
16512 @item -mno-mpy
16513 @opindex mno-mpy
16514 @opindex mmpy
16515 Do not generate @code{mpy}-family instructions for ARC700. This option is
16516 deprecated.
16517
16518 @item -mmul32x16
16519 @opindex mmul32x16
16520 Generate 32x16-bit multiply and multiply-accumulate instructions.
16521
16522 @item -mmul64
16523 @opindex mmul64
16524 Generate @code{mul64} and @code{mulu64} instructions.
16525 Only valid for @option{-mcpu=ARC600}.
16526
16527 @item -mnorm
16528 @opindex mnorm
16529 Generate @code{norm} instructions. This is the default if @option{-mcpu=ARC700}
16530 is in effect.
16531
16532 @item -mspfp
16533 @opindex mspfp
16534 @itemx -mspfp-compact
16535 @opindex mspfp-compact
16536 Generate single-precision FPX instructions, tuned for the compact
16537 implementation.
16538
16539 @item -mspfp-fast
16540 @opindex mspfp-fast
16541 Generate single-precision FPX instructions, tuned for the fast
16542 implementation.
16543
16544 @item -msimd
16545 @opindex msimd
16546 Enable generation of ARC SIMD instructions via target-specific
16547 builtins. Only valid for @option{-mcpu=ARC700}.
16548
16549 @item -msoft-float
16550 @opindex msoft-float
16551 This option ignored; it is provided for compatibility purposes only.
16552 Software floating-point code is emitted by default, and this default
16553 can overridden by FPX options; @option{-mspfp}, @option{-mspfp-compact}, or
16554 @option{-mspfp-fast} for single precision, and @option{-mdpfp},
16555 @option{-mdpfp-compact}, or @option{-mdpfp-fast} for double precision.
16556
16557 @item -mswap
16558 @opindex mswap
16559 Generate @code{swap} instructions.
16560
16561 @item -matomic
16562 @opindex matomic
16563 This enables use of the locked load/store conditional extension to implement
16564 atomic memory built-in functions. Not available for ARC 6xx or ARC
16565 EM cores.
16566
16567 @item -mdiv-rem
16568 @opindex mdiv-rem
16569 Enable @code{div} and @code{rem} instructions for ARCv2 cores.
16570
16571 @item -mcode-density
16572 @opindex mcode-density
16573 Enable code density instructions for ARC EM.
16574 This option is on by default for ARC HS.
16575
16576 @item -mll64
16577 @opindex mll64
16578 Enable double load/store operations for ARC HS cores.
16579
16580 @item -mtp-regno=@var{regno}
16581 @opindex mtp-regno
16582 Specify thread pointer register number.
16583
16584 @item -mmpy-option=@var{multo}
16585 @opindex mmpy-option
16586 Compile ARCv2 code with a multiplier design option. You can specify
16587 the option using either a string or numeric value for @var{multo}.
16588 @samp{wlh1} is the default value. The recognized values are:
16589
16590 @table @samp
16591 @item 0
16592 @itemx none
16593 No multiplier available.
16594
16595 @item 1
16596 @itemx w
16597 16x16 multiplier, fully pipelined.
16598 The following instructions are enabled: @code{mpyw} and @code{mpyuw}.
16599
16600 @item 2
16601 @itemx wlh1
16602 32x32 multiplier, fully
16603 pipelined (1 stage). The following instructions are additionally
16604 enabled: @code{mpy}, @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
16605
16606 @item 3
16607 @itemx wlh2
16608 32x32 multiplier, fully pipelined
16609 (2 stages). The following instructions are additionally enabled: @code{mpy},
16610 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
16611
16612 @item 4
16613 @itemx wlh3
16614 Two 16x16 multipliers, blocking,
16615 sequential. The following instructions are additionally enabled: @code{mpy},
16616 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
16617
16618 @item 5
16619 @itemx wlh4
16620 One 16x16 multiplier, blocking,
16621 sequential. The following instructions are additionally enabled: @code{mpy},
16622 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
16623
16624 @item 6
16625 @itemx wlh5
16626 One 32x4 multiplier, blocking,
16627 sequential. The following instructions are additionally enabled: @code{mpy},
16628 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
16629
16630 @item 7
16631 @itemx plus_dmpy
16632 ARC HS SIMD support.
16633
16634 @item 8
16635 @itemx plus_macd
16636 ARC HS SIMD support.
16637
16638 @item 9
16639 @itemx plus_qmacw
16640 ARC HS SIMD support.
16641
16642 @end table
16643
16644 This option is only available for ARCv2 cores@.
16645
16646 @item -mfpu=@var{fpu}
16647 @opindex mfpu
16648 Enables support for specific floating-point hardware extensions for ARCv2
16649 cores. Supported values for @var{fpu} are:
16650
16651 @table @samp
16652
16653 @item fpus
16654 Enables support for single-precision floating-point hardware
16655 extensions@.
16656
16657 @item fpud
16658 Enables support for double-precision floating-point hardware
16659 extensions. The single-precision floating-point extension is also
16660 enabled. Not available for ARC EM@.
16661
16662 @item fpuda
16663 Enables support for double-precision floating-point hardware
16664 extensions using double-precision assist instructions. The single-precision
16665 floating-point extension is also enabled. This option is
16666 only available for ARC EM@.
16667
16668 @item fpuda_div
16669 Enables support for double-precision floating-point hardware
16670 extensions using double-precision assist instructions.
16671 The single-precision floating-point, square-root, and divide
16672 extensions are also enabled. This option is
16673 only available for ARC EM@.
16674
16675 @item fpuda_fma
16676 Enables support for double-precision floating-point hardware
16677 extensions using double-precision assist instructions.
16678 The single-precision floating-point and fused multiply and add
16679 hardware extensions are also enabled. This option is
16680 only available for ARC EM@.
16681
16682 @item fpuda_all
16683 Enables support for double-precision floating-point hardware
16684 extensions using double-precision assist instructions.
16685 All single-precision floating-point hardware extensions are also
16686 enabled. This option is only available for ARC EM@.
16687
16688 @item fpus_div
16689 Enables support for single-precision floating-point, square-root and divide
16690 hardware extensions@.
16691
16692 @item fpud_div
16693 Enables support for double-precision floating-point, square-root and divide
16694 hardware extensions. This option
16695 includes option @samp{fpus_div}. Not available for ARC EM@.
16696
16697 @item fpus_fma
16698 Enables support for single-precision floating-point and
16699 fused multiply and add hardware extensions@.
16700
16701 @item fpud_fma
16702 Enables support for double-precision floating-point and
16703 fused multiply and add hardware extensions. This option
16704 includes option @samp{fpus_fma}. Not available for ARC EM@.
16705
16706 @item fpus_all
16707 Enables support for all single-precision floating-point hardware
16708 extensions@.
16709
16710 @item fpud_all
16711 Enables support for all single- and double-precision floating-point
16712 hardware extensions. Not available for ARC EM@.
16713
16714 @end table
16715
16716 @item -mirq-ctrl-saved=@var{register-range}, @var{blink}, @var{lp_count}
16717 @opindex mirq-ctrl-saved
16718 Specifies general-purposes registers that the processor automatically
16719 saves/restores on interrupt entry and exit. @var{register-range} is
16720 specified as two registers separated by a dash. The register range
16721 always starts with @code{r0}, the upper limit is @code{fp} register.
16722 @var{blink} and @var{lp_count} are optional. This option is only
16723 valid for ARC EM and ARC HS cores.
16724
16725 @item -mrgf-banked-regs=@var{number}
16726 @opindex mrgf-banked-regs
16727 Specifies the number of registers replicated in second register bank
16728 on entry to fast interrupt. Fast interrupts are interrupts with the
16729 highest priority level P0. These interrupts save only PC and STATUS32
16730 registers to avoid memory transactions during interrupt entry and exit
16731 sequences. Use this option when you are using fast interrupts in an
16732 ARC V2 family processor. Permitted values are 4, 8, 16, and 32.
16733
16734 @item -mlpc-width=@var{width}
16735 @opindex mlpc-width
16736 Specify the width of the @code{lp_count} register. Valid values for
16737 @var{width} are 8, 16, 20, 24, 28 and 32 bits. The default width is
16738 fixed to 32 bits. If the width is less than 32, the compiler does not
16739 attempt to transform loops in your program to use the zero-delay loop
16740 mechanism unless it is known that the @code{lp_count} register can
16741 hold the required loop-counter value. Depending on the width
16742 specified, the compiler and run-time library might continue to use the
16743 loop mechanism for various needs. This option defines macro
16744 @code{__ARC_LPC_WIDTH__} with the value of @var{width}.
16745
16746 @item -mrf16
16747 @opindex mrf16
16748 This option instructs the compiler to generate code for a 16-entry
16749 register file. This option defines the @code{__ARC_RF16__}
16750 preprocessor macro.
16751
16752 @item -mbranch-index
16753 @opindex mbranch-index
16754 Enable use of @code{bi} or @code{bih} instructions to implement jump
16755 tables.
16756
16757 @end table
16758
16759 The following options are passed through to the assembler, and also
16760 define preprocessor macro symbols.
16761
16762 @c Flags used by the assembler, but for which we define preprocessor
16763 @c macro symbols as well.
16764 @table @gcctabopt
16765 @item -mdsp-packa
16766 @opindex mdsp-packa
16767 Passed down to the assembler to enable the DSP Pack A extensions.
16768 Also sets the preprocessor symbol @code{__Xdsp_packa}. This option is
16769 deprecated.
16770
16771 @item -mdvbf
16772 @opindex mdvbf
16773 Passed down to the assembler to enable the dual Viterbi butterfly
16774 extension. Also sets the preprocessor symbol @code{__Xdvbf}. This
16775 option is deprecated.
16776
16777 @c ARC700 4.10 extension instruction
16778 @item -mlock
16779 @opindex mlock
16780 Passed down to the assembler to enable the locked load/store
16781 conditional extension. Also sets the preprocessor symbol
16782 @code{__Xlock}.
16783
16784 @item -mmac-d16
16785 @opindex mmac-d16
16786 Passed down to the assembler. Also sets the preprocessor symbol
16787 @code{__Xxmac_d16}. This option is deprecated.
16788
16789 @item -mmac-24
16790 @opindex mmac-24
16791 Passed down to the assembler. Also sets the preprocessor symbol
16792 @code{__Xxmac_24}. This option is deprecated.
16793
16794 @c ARC700 4.10 extension instruction
16795 @item -mrtsc
16796 @opindex mrtsc
16797 Passed down to the assembler to enable the 64-bit time-stamp counter
16798 extension instruction. Also sets the preprocessor symbol
16799 @code{__Xrtsc}. This option is deprecated.
16800
16801 @c ARC700 4.10 extension instruction
16802 @item -mswape
16803 @opindex mswape
16804 Passed down to the assembler to enable the swap byte ordering
16805 extension instruction. Also sets the preprocessor symbol
16806 @code{__Xswape}.
16807
16808 @item -mtelephony
16809 @opindex mtelephony
16810 Passed down to the assembler to enable dual- and single-operand
16811 instructions for telephony. Also sets the preprocessor symbol
16812 @code{__Xtelephony}. This option is deprecated.
16813
16814 @item -mxy
16815 @opindex mxy
16816 Passed down to the assembler to enable the XY memory extension. Also
16817 sets the preprocessor symbol @code{__Xxy}.
16818
16819 @end table
16820
16821 The following options control how the assembly code is annotated:
16822
16823 @c Assembly annotation options
16824 @table @gcctabopt
16825 @item -misize
16826 @opindex misize
16827 Annotate assembler instructions with estimated addresses.
16828
16829 @item -mannotate-align
16830 @opindex mannotate-align
16831 Explain what alignment considerations lead to the decision to make an
16832 instruction short or long.
16833
16834 @end table
16835
16836 The following options are passed through to the linker:
16837
16838 @c options passed through to the linker
16839 @table @gcctabopt
16840 @item -marclinux
16841 @opindex marclinux
16842 Passed through to the linker, to specify use of the @code{arclinux} emulation.
16843 This option is enabled by default in tool chains built for
16844 @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets
16845 when profiling is not requested.
16846
16847 @item -marclinux_prof
16848 @opindex marclinux_prof
16849 Passed through to the linker, to specify use of the
16850 @code{arclinux_prof} emulation. This option is enabled by default in
16851 tool chains built for @w{@code{arc-linux-uclibc}} and
16852 @w{@code{arceb-linux-uclibc}} targets when profiling is requested.
16853
16854 @end table
16855
16856 The following options control the semantics of generated code:
16857
16858 @c semantically relevant code generation options
16859 @table @gcctabopt
16860 @item -mlong-calls
16861 @opindex mlong-calls
16862 Generate calls as register indirect calls, thus providing access
16863 to the full 32-bit address range.
16864
16865 @item -mmedium-calls
16866 @opindex mmedium-calls
16867 Don't use less than 25-bit addressing range for calls, which is the
16868 offset available for an unconditional branch-and-link
16869 instruction. Conditional execution of function calls is suppressed, to
16870 allow use of the 25-bit range, rather than the 21-bit range with
16871 conditional branch-and-link. This is the default for tool chains built
16872 for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets.
16873
16874 @item -G @var{num}
16875 @opindex G
16876 Put definitions of externally-visible data in a small data section if
16877 that data is no bigger than @var{num} bytes. The default value of
16878 @var{num} is 4 for any ARC configuration, or 8 when we have double
16879 load/store operations.
16880
16881 @item -mno-sdata
16882 @opindex mno-sdata
16883 @opindex msdata
16884 Do not generate sdata references. This is the default for tool chains
16885 built for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}}
16886 targets.
16887
16888 @item -mvolatile-cache
16889 @opindex mvolatile-cache
16890 Use ordinarily cached memory accesses for volatile references. This is the
16891 default.
16892
16893 @item -mno-volatile-cache
16894 @opindex mno-volatile-cache
16895 @opindex mvolatile-cache
16896 Enable cache bypass for volatile references.
16897
16898 @end table
16899
16900 The following options fine tune code generation:
16901 @c code generation tuning options
16902 @table @gcctabopt
16903 @item -malign-call
16904 @opindex malign-call
16905 Do alignment optimizations for call instructions.
16906
16907 @item -mauto-modify-reg
16908 @opindex mauto-modify-reg
16909 Enable the use of pre/post modify with register displacement.
16910
16911 @item -mbbit-peephole
16912 @opindex mbbit-peephole
16913 Enable bbit peephole2.
16914
16915 @item -mno-brcc
16916 @opindex mno-brcc
16917 This option disables a target-specific pass in @file{arc_reorg} to
16918 generate compare-and-branch (@code{br@var{cc}}) instructions.
16919 It has no effect on
16920 generation of these instructions driven by the combiner pass.
16921
16922 @item -mcase-vector-pcrel
16923 @opindex mcase-vector-pcrel
16924 Use PC-relative switch case tables to enable case table shortening.
16925 This is the default for @option{-Os}.
16926
16927 @item -mcompact-casesi
16928 @opindex mcompact-casesi
16929 Enable compact @code{casesi} pattern. This is the default for @option{-Os},
16930 and only available for ARCv1 cores. This option is deprecated.
16931
16932 @item -mno-cond-exec
16933 @opindex mno-cond-exec
16934 Disable the ARCompact-specific pass to generate conditional
16935 execution instructions.
16936
16937 Due to delay slot scheduling and interactions between operand numbers,
16938 literal sizes, instruction lengths, and the support for conditional execution,
16939 the target-independent pass to generate conditional execution is often lacking,
16940 so the ARC port has kept a special pass around that tries to find more
16941 conditional execution generation opportunities after register allocation,
16942 branch shortening, and delay slot scheduling have been done. This pass
16943 generally, but not always, improves performance and code size, at the cost of
16944 extra compilation time, which is why there is an option to switch it off.
16945 If you have a problem with call instructions exceeding their allowable
16946 offset range because they are conditionalized, you should consider using
16947 @option{-mmedium-calls} instead.
16948
16949 @item -mearly-cbranchsi
16950 @opindex mearly-cbranchsi
16951 Enable pre-reload use of the @code{cbranchsi} pattern.
16952
16953 @item -mexpand-adddi
16954 @opindex mexpand-adddi
16955 Expand @code{adddi3} and @code{subdi3} at RTL generation time into
16956 @code{add.f}, @code{adc} etc. This option is deprecated.
16957
16958 @item -mindexed-loads
16959 @opindex mindexed-loads
16960 Enable the use of indexed loads. This can be problematic because some
16961 optimizers then assume that indexed stores exist, which is not
16962 the case.
16963
16964 @item -mlra
16965 @opindex mlra
16966 Enable Local Register Allocation. This is still experimental for ARC,
16967 so by default the compiler uses standard reload
16968 (i.e.@: @option{-mno-lra}).
16969
16970 @item -mlra-priority-none
16971 @opindex mlra-priority-none
16972 Don't indicate any priority for target registers.
16973
16974 @item -mlra-priority-compact
16975 @opindex mlra-priority-compact
16976 Indicate target register priority for r0..r3 / r12..r15.
16977
16978 @item -mlra-priority-noncompact
16979 @opindex mlra-priority-noncompact
16980 Reduce target register priority for r0..r3 / r12..r15.
16981
16982 @item -mmillicode
16983 @opindex mmillicode
16984 When optimizing for size (using @option{-Os}), prologues and epilogues
16985 that have to save or restore a large number of registers are often
16986 shortened by using call to a special function in libgcc; this is
16987 referred to as a @emph{millicode} call. As these calls can pose
16988 performance issues, and/or cause linking issues when linking in a
16989 nonstandard way, this option is provided to turn on or off millicode
16990 call generation.
16991
16992 @item -mcode-density-frame
16993 @opindex mcode-density-frame
16994 This option enable the compiler to emit @code{enter} and @code{leave}
16995 instructions. These instructions are only valid for CPUs with
16996 code-density feature.
16997
16998 @item -mmixed-code
16999 @opindex mmixed-code
17000 Tweak register allocation to help 16-bit instruction generation.
17001 This generally has the effect of decreasing the average instruction size
17002 while increasing the instruction count.
17003
17004 @item -mq-class
17005 @opindex mq-class
17006 Enable @samp{q} instruction alternatives.
17007 This is the default for @option{-Os}.
17008
17009 @item -mRcq
17010 @opindex mRcq
17011 Enable @samp{Rcq} constraint handling.
17012 Most short code generation depends on this.
17013 This is the default.
17014
17015 @item -mRcw
17016 @opindex mRcw
17017 Enable @samp{Rcw} constraint handling.
17018 Most ccfsm condexec mostly depends on this.
17019 This is the default.
17020
17021 @item -msize-level=@var{level}
17022 @opindex msize-level
17023 Fine-tune size optimization with regards to instruction lengths and alignment.
17024 The recognized values for @var{level} are:
17025 @table @samp
17026 @item 0
17027 No size optimization. This level is deprecated and treated like @samp{1}.
17028
17029 @item 1
17030 Short instructions are used opportunistically.
17031
17032 @item 2
17033 In addition, alignment of loops and of code after barriers are dropped.
17034
17035 @item 3
17036 In addition, optional data alignment is dropped, and the option @option{Os} is enabled.
17037
17038 @end table
17039
17040 This defaults to @samp{3} when @option{-Os} is in effect. Otherwise,
17041 the behavior when this is not set is equivalent to level @samp{1}.
17042
17043 @item -mtune=@var{cpu}
17044 @opindex mtune
17045 Set instruction scheduling parameters for @var{cpu}, overriding any implied
17046 by @option{-mcpu=}.
17047
17048 Supported values for @var{cpu} are
17049
17050 @table @samp
17051 @item ARC600
17052 Tune for ARC600 CPU.
17053
17054 @item ARC601
17055 Tune for ARC601 CPU.
17056
17057 @item ARC700
17058 Tune for ARC700 CPU with standard multiplier block.
17059
17060 @item ARC700-xmac
17061 Tune for ARC700 CPU with XMAC block.
17062
17063 @item ARC725D
17064 Tune for ARC725D CPU.
17065
17066 @item ARC750D
17067 Tune for ARC750D CPU.
17068
17069 @end table
17070
17071 @item -mmultcost=@var{num}
17072 @opindex mmultcost
17073 Cost to assume for a multiply instruction, with @samp{4} being equal to a
17074 normal instruction.
17075
17076 @item -munalign-prob-threshold=@var{probability}
17077 @opindex munalign-prob-threshold
17078 Set probability threshold for unaligning branches.
17079 When tuning for @samp{ARC700} and optimizing for speed, branches without
17080 filled delay slot are preferably emitted unaligned and long, unless
17081 profiling indicates that the probability for the branch to be taken
17082 is below @var{probability}. @xref{Cross-profiling}.
17083 The default is (REG_BR_PROB_BASE/2), i.e.@: 5000.
17084
17085 @end table
17086
17087 The following options are maintained for backward compatibility, but
17088 are now deprecated and will be removed in a future release:
17089
17090 @c Deprecated options
17091 @table @gcctabopt
17092
17093 @item -margonaut
17094 @opindex margonaut
17095 Obsolete FPX.
17096
17097 @item -mbig-endian
17098 @opindex mbig-endian
17099 @itemx -EB
17100 @opindex EB
17101 Compile code for big-endian targets. Use of these options is now
17102 deprecated. Big-endian code is supported by configuring GCC to build
17103 @w{@code{arceb-elf32}} and @w{@code{arceb-linux-uclibc}} targets,
17104 for which big endian is the default.
17105
17106 @item -mlittle-endian
17107 @opindex mlittle-endian
17108 @itemx -EL
17109 @opindex EL
17110 Compile code for little-endian targets. Use of these options is now
17111 deprecated. Little-endian code is supported by configuring GCC to build
17112 @w{@code{arc-elf32}} and @w{@code{arc-linux-uclibc}} targets,
17113 for which little endian is the default.
17114
17115 @item -mbarrel_shifter
17116 @opindex mbarrel_shifter
17117 Replaced by @option{-mbarrel-shifter}.
17118
17119 @item -mdpfp_compact
17120 @opindex mdpfp_compact
17121 Replaced by @option{-mdpfp-compact}.
17122
17123 @item -mdpfp_fast
17124 @opindex mdpfp_fast
17125 Replaced by @option{-mdpfp-fast}.
17126
17127 @item -mdsp_packa
17128 @opindex mdsp_packa
17129 Replaced by @option{-mdsp-packa}.
17130
17131 @item -mEA
17132 @opindex mEA
17133 Replaced by @option{-mea}.
17134
17135 @item -mmac_24
17136 @opindex mmac_24
17137 Replaced by @option{-mmac-24}.
17138
17139 @item -mmac_d16
17140 @opindex mmac_d16
17141 Replaced by @option{-mmac-d16}.
17142
17143 @item -mspfp_compact
17144 @opindex mspfp_compact
17145 Replaced by @option{-mspfp-compact}.
17146
17147 @item -mspfp_fast
17148 @opindex mspfp_fast
17149 Replaced by @option{-mspfp-fast}.
17150
17151 @item -mtune=@var{cpu}
17152 @opindex mtune
17153 Values @samp{arc600}, @samp{arc601}, @samp{arc700} and
17154 @samp{arc700-xmac} for @var{cpu} are replaced by @samp{ARC600},
17155 @samp{ARC601}, @samp{ARC700} and @samp{ARC700-xmac} respectively.
17156
17157 @item -multcost=@var{num}
17158 @opindex multcost
17159 Replaced by @option{-mmultcost}.
17160
17161 @end table
17162
17163 @node ARM Options
17164 @subsection ARM Options
17165 @cindex ARM options
17166
17167 These @samp{-m} options are defined for the ARM port:
17168
17169 @table @gcctabopt
17170 @item -mabi=@var{name}
17171 @opindex mabi
17172 Generate code for the specified ABI@. Permissible values are: @samp{apcs-gnu},
17173 @samp{atpcs}, @samp{aapcs}, @samp{aapcs-linux} and @samp{iwmmxt}.
17174
17175 @item -mapcs-frame
17176 @opindex mapcs-frame
17177 Generate a stack frame that is compliant with the ARM Procedure Call
17178 Standard for all functions, even if this is not strictly necessary for
17179 correct execution of the code. Specifying @option{-fomit-frame-pointer}
17180 with this option causes the stack frames not to be generated for
17181 leaf functions. The default is @option{-mno-apcs-frame}.
17182 This option is deprecated.
17183
17184 @item -mapcs
17185 @opindex mapcs
17186 This is a synonym for @option{-mapcs-frame} and is deprecated.
17187
17188 @ignore
17189 @c not currently implemented
17190 @item -mapcs-stack-check
17191 @opindex mapcs-stack-check
17192 Generate code to check the amount of stack space available upon entry to
17193 every function (that actually uses some stack space). If there is
17194 insufficient space available then either the function
17195 @code{__rt_stkovf_split_small} or @code{__rt_stkovf_split_big} is
17196 called, depending upon the amount of stack space required. The runtime
17197 system is required to provide these functions. The default is
17198 @option{-mno-apcs-stack-check}, since this produces smaller code.
17199
17200 @c not currently implemented
17201 @item -mapcs-reentrant
17202 @opindex mapcs-reentrant
17203 Generate reentrant, position-independent code. The default is
17204 @option{-mno-apcs-reentrant}.
17205 @end ignore
17206
17207 @item -mthumb-interwork
17208 @opindex mthumb-interwork
17209 Generate code that supports calling between the ARM and Thumb
17210 instruction sets. Without this option, on pre-v5 architectures, the
17211 two instruction sets cannot be reliably used inside one program. The
17212 default is @option{-mno-thumb-interwork}, since slightly larger code
17213 is generated when @option{-mthumb-interwork} is specified. In AAPCS
17214 configurations this option is meaningless.
17215
17216 @item -mno-sched-prolog
17217 @opindex mno-sched-prolog
17218 @opindex msched-prolog
17219 Prevent the reordering of instructions in the function prologue, or the
17220 merging of those instruction with the instructions in the function's
17221 body. This means that all functions start with a recognizable set
17222 of instructions (or in fact one of a choice from a small set of
17223 different function prologues), and this information can be used to
17224 locate the start of functions inside an executable piece of code. The
17225 default is @option{-msched-prolog}.
17226
17227 @item -mfloat-abi=@var{name}
17228 @opindex mfloat-abi
17229 Specifies which floating-point ABI to use. Permissible values
17230 are: @samp{soft}, @samp{softfp} and @samp{hard}.
17231
17232 Specifying @samp{soft} causes GCC to generate output containing
17233 library calls for floating-point operations.
17234 @samp{softfp} allows the generation of code using hardware floating-point
17235 instructions, but still uses the soft-float calling conventions.
17236 @samp{hard} allows generation of floating-point instructions
17237 and uses FPU-specific calling conventions.
17238
17239 The default depends on the specific target configuration. Note that
17240 the hard-float and soft-float ABIs are not link-compatible; you must
17241 compile your entire program with the same ABI, and link with a
17242 compatible set of libraries.
17243
17244 @item -mgeneral-regs-only
17245 @opindex mgeneral-regs-only
17246 Generate code which uses only the general-purpose registers. This will prevent
17247 the compiler from using floating-point and Advanced SIMD registers but will not
17248 impose any restrictions on the assembler.
17249
17250 @item -mlittle-endian
17251 @opindex mlittle-endian
17252 Generate code for a processor running in little-endian mode. This is
17253 the default for all standard configurations.
17254
17255 @item -mbig-endian
17256 @opindex mbig-endian
17257 Generate code for a processor running in big-endian mode; the default is
17258 to compile code for a little-endian processor.
17259
17260 @item -mbe8
17261 @itemx -mbe32
17262 @opindex mbe8
17263 When linking a big-endian image select between BE8 and BE32 formats.
17264 The option has no effect for little-endian images and is ignored. The
17265 default is dependent on the selected target architecture. For ARMv6
17266 and later architectures the default is BE8, for older architectures
17267 the default is BE32. BE32 format has been deprecated by ARM.
17268
17269 @item -march=@var{name}@r{[}+extension@dots{}@r{]}
17270 @opindex march
17271 This specifies the name of the target ARM architecture. GCC uses this
17272 name to determine what kind of instructions it can emit when generating
17273 assembly code. This option can be used in conjunction with or instead
17274 of the @option{-mcpu=} option.
17275
17276 Permissible names are:
17277 @samp{armv4t},
17278 @samp{armv5t}, @samp{armv5te},
17279 @samp{armv6}, @samp{armv6j}, @samp{armv6k}, @samp{armv6kz}, @samp{armv6t2},
17280 @samp{armv6z}, @samp{armv6zk},
17281 @samp{armv7}, @samp{armv7-a}, @samp{armv7ve},
17282 @samp{armv8-a}, @samp{armv8.1-a}, @samp{armv8.2-a}, @samp{armv8.3-a},
17283 @samp{armv8.4-a},
17284 @samp{armv8.5-a},
17285 @samp{armv7-r},
17286 @samp{armv8-r},
17287 @samp{armv6-m}, @samp{armv6s-m},
17288 @samp{armv7-m}, @samp{armv7e-m},
17289 @samp{armv8-m.base}, @samp{armv8-m.main},
17290 @samp{iwmmxt} and @samp{iwmmxt2}.
17291
17292 Additionally, the following architectures, which lack support for the
17293 Thumb execution state, are recognized but support is deprecated: @samp{armv4}.
17294
17295 Many of the architectures support extensions. These can be added by
17296 appending @samp{+@var{extension}} to the architecture name. Extension
17297 options are processed in order and capabilities accumulate. An extension
17298 will also enable any necessary base extensions
17299 upon which it depends. For example, the @samp{+crypto} extension
17300 will always enable the @samp{+simd} extension. The exception to the
17301 additive construction is for extensions that are prefixed with
17302 @samp{+no@dots{}}: these extensions disable the specified option and
17303 any other extensions that may depend on the presence of that
17304 extension.
17305
17306 For example, @samp{-march=armv7-a+simd+nofp+vfpv4} is equivalent to
17307 writing @samp{-march=armv7-a+vfpv4} since the @samp{+simd} option is
17308 entirely disabled by the @samp{+nofp} option that follows it.
17309
17310 Most extension names are generically named, but have an effect that is
17311 dependent upon the architecture to which it is applied. For example,
17312 the @samp{+simd} option can be applied to both @samp{armv7-a} and
17313 @samp{armv8-a} architectures, but will enable the original ARMv7-A
17314 Advanced SIMD (Neon) extensions for @samp{armv7-a} and the ARMv8-A
17315 variant for @samp{armv8-a}.
17316
17317 The table below lists the supported extensions for each architecture.
17318 Architectures not mentioned do not support any extensions.
17319
17320 @table @samp
17321 @item armv5te
17322 @itemx armv6
17323 @itemx armv6j
17324 @itemx armv6k
17325 @itemx armv6kz
17326 @itemx armv6t2
17327 @itemx armv6z
17328 @itemx armv6zk
17329 @table @samp
17330 @item +fp
17331 The VFPv2 floating-point instructions. The extension @samp{+vfpv2} can be
17332 used as an alias for this extension.
17333
17334 @item +nofp
17335 Disable the floating-point instructions.
17336 @end table
17337
17338 @item armv7
17339 The common subset of the ARMv7-A, ARMv7-R and ARMv7-M architectures.
17340 @table @samp
17341 @item +fp
17342 The VFPv3 floating-point instructions, with 16 double-precision
17343 registers. The extension @samp{+vfpv3-d16} can be used as an alias
17344 for this extension. Note that floating-point is not supported by the
17345 base ARMv7-M architecture, but is compatible with both the ARMv7-A and
17346 ARMv7-R architectures.
17347
17348 @item +nofp
17349 Disable the floating-point instructions.
17350 @end table
17351
17352 @item armv7-a
17353 @table @samp
17354 @item +mp
17355 The multiprocessing extension.
17356
17357 @item +sec
17358 The security extension.
17359
17360 @item +fp
17361 The VFPv3 floating-point instructions, with 16 double-precision
17362 registers. The extension @samp{+vfpv3-d16} can be used as an alias
17363 for this extension.
17364
17365 @item +simd
17366 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
17367 The extensions @samp{+neon} and @samp{+neon-vfpv3} can be used as aliases
17368 for this extension.
17369
17370 @item +vfpv3
17371 The VFPv3 floating-point instructions, with 32 double-precision
17372 registers.
17373
17374 @item +vfpv3-d16-fp16
17375 The VFPv3 floating-point instructions, with 16 double-precision
17376 registers and the half-precision floating-point conversion operations.
17377
17378 @item +vfpv3-fp16
17379 The VFPv3 floating-point instructions, with 32 double-precision
17380 registers and the half-precision floating-point conversion operations.
17381
17382 @item +vfpv4-d16
17383 The VFPv4 floating-point instructions, with 16 double-precision
17384 registers.
17385
17386 @item +vfpv4
17387 The VFPv4 floating-point instructions, with 32 double-precision
17388 registers.
17389
17390 @item +neon-fp16
17391 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
17392 the half-precision floating-point conversion operations.
17393
17394 @item +neon-vfpv4
17395 The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions.
17396
17397 @item +nosimd
17398 Disable the Advanced SIMD instructions (does not disable floating point).
17399
17400 @item +nofp
17401 Disable the floating-point and Advanced SIMD instructions.
17402 @end table
17403
17404 @item armv7ve
17405 The extended version of the ARMv7-A architecture with support for
17406 virtualization.
17407 @table @samp
17408 @item +fp
17409 The VFPv4 floating-point instructions, with 16 double-precision registers.
17410 The extension @samp{+vfpv4-d16} can be used as an alias for this extension.
17411
17412 @item +simd
17413 The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions. The
17414 extension @samp{+neon-vfpv4} can be used as an alias for this extension.
17415
17416 @item +vfpv3-d16
17417 The VFPv3 floating-point instructions, with 16 double-precision
17418 registers.
17419
17420 @item +vfpv3
17421 The VFPv3 floating-point instructions, with 32 double-precision
17422 registers.
17423
17424 @item +vfpv3-d16-fp16
17425 The VFPv3 floating-point instructions, with 16 double-precision
17426 registers and the half-precision floating-point conversion operations.
17427
17428 @item +vfpv3-fp16
17429 The VFPv3 floating-point instructions, with 32 double-precision
17430 registers and the half-precision floating-point conversion operations.
17431
17432 @item +vfpv4-d16
17433 The VFPv4 floating-point instructions, with 16 double-precision
17434 registers.
17435
17436 @item +vfpv4
17437 The VFPv4 floating-point instructions, with 32 double-precision
17438 registers.
17439
17440 @item +neon
17441 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
17442 The extension @samp{+neon-vfpv3} can be used as an alias for this extension.
17443
17444 @item +neon-fp16
17445 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
17446 the half-precision floating-point conversion operations.
17447
17448 @item +nosimd
17449 Disable the Advanced SIMD instructions (does not disable floating point).
17450
17451 @item +nofp
17452 Disable the floating-point and Advanced SIMD instructions.
17453 @end table
17454
17455 @item armv8-a
17456 @table @samp
17457 @item +crc
17458 The Cyclic Redundancy Check (CRC) instructions.
17459 @item +simd
17460 The ARMv8-A Advanced SIMD and floating-point instructions.
17461 @item +crypto
17462 The cryptographic instructions.
17463 @item +nocrypto
17464 Disable the cryptographic instructions.
17465 @item +nofp
17466 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17467 @item +sb
17468 Speculation Barrier Instruction.
17469 @item +predres
17470 Execution and Data Prediction Restriction Instructions.
17471 @end table
17472
17473 @item armv8.1-a
17474 @table @samp
17475 @item +simd
17476 The ARMv8.1-A Advanced SIMD and floating-point instructions.
17477
17478 @item +crypto
17479 The cryptographic instructions. This also enables the Advanced SIMD and
17480 floating-point instructions.
17481
17482 @item +nocrypto
17483 Disable the cryptographic instructions.
17484
17485 @item +nofp
17486 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17487
17488 @item +sb
17489 Speculation Barrier Instruction.
17490
17491 @item +predres
17492 Execution and Data Prediction Restriction Instructions.
17493 @end table
17494
17495 @item armv8.2-a
17496 @itemx armv8.3-a
17497 @table @samp
17498 @item +fp16
17499 The half-precision floating-point data processing instructions.
17500 This also enables the Advanced SIMD and floating-point instructions.
17501
17502 @item +fp16fml
17503 The half-precision floating-point fmla extension. This also enables
17504 the half-precision floating-point extension and Advanced SIMD and
17505 floating-point instructions.
17506
17507 @item +simd
17508 The ARMv8.1-A Advanced SIMD and floating-point instructions.
17509
17510 @item +crypto
17511 The cryptographic instructions. This also enables the Advanced SIMD and
17512 floating-point instructions.
17513
17514 @item +dotprod
17515 Enable the Dot Product extension. This also enables Advanced SIMD instructions.
17516
17517 @item +nocrypto
17518 Disable the cryptographic extension.
17519
17520 @item +nofp
17521 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17522
17523 @item +sb
17524 Speculation Barrier Instruction.
17525
17526 @item +predres
17527 Execution and Data Prediction Restriction Instructions.
17528 @end table
17529
17530 @item armv8.4-a
17531 @table @samp
17532 @item +fp16
17533 The half-precision floating-point data processing instructions.
17534 This also enables the Advanced SIMD and floating-point instructions as well
17535 as the Dot Product extension and the half-precision floating-point fmla
17536 extension.
17537
17538 @item +simd
17539 The ARMv8.3-A Advanced SIMD and floating-point instructions as well as the
17540 Dot Product extension.
17541
17542 @item +crypto
17543 The cryptographic instructions. This also enables the Advanced SIMD and
17544 floating-point instructions as well as the Dot Product extension.
17545
17546 @item +nocrypto
17547 Disable the cryptographic extension.
17548
17549 @item +nofp
17550 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17551
17552 @item +sb
17553 Speculation Barrier Instruction.
17554
17555 @item +predres
17556 Execution and Data Prediction Restriction Instructions.
17557 @end table
17558
17559 @item armv8.5-a
17560 @table @samp
17561 @item +fp16
17562 The half-precision floating-point data processing instructions.
17563 This also enables the Advanced SIMD and floating-point instructions as well
17564 as the Dot Product extension and the half-precision floating-point fmla
17565 extension.
17566
17567 @item +simd
17568 The ARMv8.3-A Advanced SIMD and floating-point instructions as well as the
17569 Dot Product extension.
17570
17571 @item +crypto
17572 The cryptographic instructions. This also enables the Advanced SIMD and
17573 floating-point instructions as well as the Dot Product extension.
17574
17575 @item +nocrypto
17576 Disable the cryptographic extension.
17577
17578 @item +nofp
17579 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17580 @end table
17581
17582 @item armv7-r
17583 @table @samp
17584 @item +fp.sp
17585 The single-precision VFPv3 floating-point instructions. The extension
17586 @samp{+vfpv3xd} can be used as an alias for this extension.
17587
17588 @item +fp
17589 The VFPv3 floating-point instructions with 16 double-precision registers.
17590 The extension +vfpv3-d16 can be used as an alias for this extension.
17591
17592 @item +vfpv3xd-d16-fp16
17593 The single-precision VFPv3 floating-point instructions with 16 double-precision
17594 registers and the half-precision floating-point conversion operations.
17595
17596 @item +vfpv3-d16-fp16
17597 The VFPv3 floating-point instructions with 16 double-precision
17598 registers and the half-precision floating-point conversion operations.
17599
17600 @item +nofp
17601 Disable the floating-point extension.
17602
17603 @item +idiv
17604 The ARM-state integer division instructions.
17605
17606 @item +noidiv
17607 Disable the ARM-state integer division extension.
17608 @end table
17609
17610 @item armv7e-m
17611 @table @samp
17612 @item +fp
17613 The single-precision VFPv4 floating-point instructions.
17614
17615 @item +fpv5
17616 The single-precision FPv5 floating-point instructions.
17617
17618 @item +fp.dp
17619 The single- and double-precision FPv5 floating-point instructions.
17620
17621 @item +nofp
17622 Disable the floating-point extensions.
17623 @end table
17624
17625 @item armv8-m.main
17626 @table @samp
17627 @item +dsp
17628 The DSP instructions.
17629
17630 @item +nodsp
17631 Disable the DSP extension.
17632
17633 @item +fp
17634 The single-precision floating-point instructions.
17635
17636 @item +fp.dp
17637 The single- and double-precision floating-point instructions.
17638
17639 @item +nofp
17640 Disable the floating-point extension.
17641 @end table
17642
17643 @item armv8-r
17644 @table @samp
17645 @item +crc
17646 The Cyclic Redundancy Check (CRC) instructions.
17647 @item +fp.sp
17648 The single-precision FPv5 floating-point instructions.
17649 @item +simd
17650 The ARMv8-A Advanced SIMD and floating-point instructions.
17651 @item +crypto
17652 The cryptographic instructions.
17653 @item +nocrypto
17654 Disable the cryptographic instructions.
17655 @item +nofp
17656 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17657 @end table
17658
17659 @end table
17660
17661 @option{-march=native} causes the compiler to auto-detect the architecture
17662 of the build computer. At present, this feature is only supported on
17663 GNU/Linux, and not all architectures are recognized. If the auto-detect
17664 is unsuccessful the option has no effect.
17665
17666 @item -mtune=@var{name}
17667 @opindex mtune
17668 This option specifies the name of the target ARM processor for
17669 which GCC should tune the performance of the code.
17670 For some ARM implementations better performance can be obtained by using
17671 this option.
17672 Permissible names are: @samp{arm7tdmi}, @samp{arm7tdmi-s}, @samp{arm710t},
17673 @samp{arm720t}, @samp{arm740t}, @samp{strongarm}, @samp{strongarm110},
17674 @samp{strongarm1100}, 0@samp{strongarm1110}, @samp{arm8}, @samp{arm810},
17675 @samp{arm9}, @samp{arm9e}, @samp{arm920}, @samp{arm920t}, @samp{arm922t},
17676 @samp{arm946e-s}, @samp{arm966e-s}, @samp{arm968e-s}, @samp{arm926ej-s},
17677 @samp{arm940t}, @samp{arm9tdmi}, @samp{arm10tdmi}, @samp{arm1020t},
17678 @samp{arm1026ej-s}, @samp{arm10e}, @samp{arm1020e}, @samp{arm1022e},
17679 @samp{arm1136j-s}, @samp{arm1136jf-s}, @samp{mpcore}, @samp{mpcorenovfp},
17680 @samp{arm1156t2-s}, @samp{arm1156t2f-s}, @samp{arm1176jz-s}, @samp{arm1176jzf-s},
17681 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}, @samp{cortex-a8},
17682 @samp{cortex-a9}, @samp{cortex-a12}, @samp{cortex-a15}, @samp{cortex-a17},
17683 @samp{cortex-a32}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55},
17684 @samp{cortex-a57}, @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75},
17685 @samp{cortex-a76}, @samp{cortex-a76ae}, @samp{cortex-a77},
17686 @samp{ares}, @samp{cortex-r4}, @samp{cortex-r4f},
17687 @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8}, @samp{cortex-r52},
17688 @samp{cortex-m0}, @samp{cortex-m0plus}, @samp{cortex-m1}, @samp{cortex-m3},
17689 @samp{cortex-m4}, @samp{cortex-m7}, @samp{cortex-m23}, @samp{cortex-m33},
17690 @samp{cortex-m35p},
17691 @samp{cortex-m1.small-multiply}, @samp{cortex-m0.small-multiply},
17692 @samp{cortex-m0plus.small-multiply}, @samp{exynos-m1}, @samp{marvell-pj4},
17693 @samp{neoverse-n1}, @samp{xscale}, @samp{iwmmxt}, @samp{iwmmxt2},
17694 @samp{ep9312}, @samp{fa526}, @samp{fa626}, @samp{fa606te}, @samp{fa626te},
17695 @samp{fmp626}, @samp{fa726te}, @samp{xgene1}.
17696
17697 Additionally, this option can specify that GCC should tune the performance
17698 of the code for a big.LITTLE system. Permissible names are:
17699 @samp{cortex-a15.cortex-a7}, @samp{cortex-a17.cortex-a7},
17700 @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
17701 @samp{cortex-a72.cortex-a35}, @samp{cortex-a73.cortex-a53},
17702 @samp{cortex-a75.cortex-a55}, @samp{cortex-a76.cortex-a55}.
17703
17704 @option{-mtune=generic-@var{arch}} specifies that GCC should tune the
17705 performance for a blend of processors within architecture @var{arch}.
17706 The aim is to generate code that run well on the current most popular
17707 processors, balancing between optimizations that benefit some CPUs in the
17708 range, and avoiding performance pitfalls of other CPUs. The effects of
17709 this option may change in future GCC versions as CPU models come and go.
17710
17711 @option{-mtune} permits the same extension options as @option{-mcpu}, but
17712 the extension options do not affect the tuning of the generated code.
17713
17714 @option{-mtune=native} causes the compiler to auto-detect the CPU
17715 of the build computer. At present, this feature is only supported on
17716 GNU/Linux, and not all architectures are recognized. If the auto-detect is
17717 unsuccessful the option has no effect.
17718
17719 @item -mcpu=@var{name}@r{[}+extension@dots{}@r{]}
17720 @opindex mcpu
17721 This specifies the name of the target ARM processor. GCC uses this name
17722 to derive the name of the target ARM architecture (as if specified
17723 by @option{-march}) and the ARM processor type for which to tune for
17724 performance (as if specified by @option{-mtune}). Where this option
17725 is used in conjunction with @option{-march} or @option{-mtune},
17726 those options take precedence over the appropriate part of this option.
17727
17728 Many of the supported CPUs implement optional architectural
17729 extensions. Where this is so the architectural extensions are
17730 normally enabled by default. If implementations that lack the
17731 extension exist, then the extension syntax can be used to disable
17732 those extensions that have been omitted. For floating-point and
17733 Advanced SIMD (Neon) instructions, the settings of the options
17734 @option{-mfloat-abi} and @option{-mfpu} must also be considered:
17735 floating-point and Advanced SIMD instructions will only be used if
17736 @option{-mfloat-abi} is not set to @samp{soft}; and any setting of
17737 @option{-mfpu} other than @samp{auto} will override the available
17738 floating-point and SIMD extension instructions.
17739
17740 For example, @samp{cortex-a9} can be found in three major
17741 configurations: integer only, with just a floating-point unit or with
17742 floating-point and Advanced SIMD. The default is to enable all the
17743 instructions, but the extensions @samp{+nosimd} and @samp{+nofp} can
17744 be used to disable just the SIMD or both the SIMD and floating-point
17745 instructions respectively.
17746
17747 Permissible names for this option are the same as those for
17748 @option{-mtune}.
17749
17750 The following extension options are common to the listed CPUs:
17751
17752 @table @samp
17753 @item +nodsp
17754 Disable the DSP instructions on @samp{cortex-m33}, @samp{cortex-m35p}.
17755
17756 @item +nofp
17757 Disables the floating-point instructions on @samp{arm9e},
17758 @samp{arm946e-s}, @samp{arm966e-s}, @samp{arm968e-s}, @samp{arm10e},
17759 @samp{arm1020e}, @samp{arm1022e}, @samp{arm926ej-s},
17760 @samp{arm1026ej-s}, @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8},
17761 @samp{cortex-m4}, @samp{cortex-m7}, @samp{cortex-m33} and @samp{cortex-m35p}.
17762 Disables the floating-point and SIMD instructions on
17763 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7},
17764 @samp{cortex-a8}, @samp{cortex-a9}, @samp{cortex-a12},
17765 @samp{cortex-a15}, @samp{cortex-a17}, @samp{cortex-a15.cortex-a7},
17766 @samp{cortex-a17.cortex-a7}, @samp{cortex-a32}, @samp{cortex-a35},
17767 @samp{cortex-a53} and @samp{cortex-a55}.
17768
17769 @item +nofp.dp
17770 Disables the double-precision component of the floating-point instructions
17771 on @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8}, @samp{cortex-r52} and
17772 @samp{cortex-m7}.
17773
17774 @item +nosimd
17775 Disables the SIMD (but not floating-point) instructions on
17776 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}
17777 and @samp{cortex-a9}.
17778
17779 @item +crypto
17780 Enables the cryptographic instructions on @samp{cortex-a32},
17781 @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55}, @samp{cortex-a57},
17782 @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75}, @samp{exynos-m1},
17783 @samp{xgene1}, @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
17784 @samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53} and
17785 @samp{cortex-a75.cortex-a55}.
17786 @end table
17787
17788 Additionally the @samp{generic-armv7-a} pseudo target defaults to
17789 VFPv3 with 16 double-precision registers. It supports the following
17790 extension options: @samp{mp}, @samp{sec}, @samp{vfpv3-d16},
17791 @samp{vfpv3}, @samp{vfpv3-d16-fp16}, @samp{vfpv3-fp16},
17792 @samp{vfpv4-d16}, @samp{vfpv4}, @samp{neon}, @samp{neon-vfpv3},
17793 @samp{neon-fp16}, @samp{neon-vfpv4}. The meanings are the same as for
17794 the extensions to @option{-march=armv7-a}.
17795
17796 @option{-mcpu=generic-@var{arch}} is also permissible, and is
17797 equivalent to @option{-march=@var{arch} -mtune=generic-@var{arch}}.
17798 See @option{-mtune} for more information.
17799
17800 @option{-mcpu=native} causes the compiler to auto-detect the CPU
17801 of the build computer. At present, this feature is only supported on
17802 GNU/Linux, and not all architectures are recognized. If the auto-detect
17803 is unsuccessful the option has no effect.
17804
17805 @item -mfpu=@var{name}
17806 @opindex mfpu
17807 This specifies what floating-point hardware (or hardware emulation) is
17808 available on the target. Permissible names are: @samp{auto}, @samp{vfpv2},
17809 @samp{vfpv3},
17810 @samp{vfpv3-fp16}, @samp{vfpv3-d16}, @samp{vfpv3-d16-fp16}, @samp{vfpv3xd},
17811 @samp{vfpv3xd-fp16}, @samp{neon-vfpv3}, @samp{neon-fp16}, @samp{vfpv4},
17812 @samp{vfpv4-d16}, @samp{fpv4-sp-d16}, @samp{neon-vfpv4},
17813 @samp{fpv5-d16}, @samp{fpv5-sp-d16},
17814 @samp{fp-armv8}, @samp{neon-fp-armv8} and @samp{crypto-neon-fp-armv8}.
17815 Note that @samp{neon} is an alias for @samp{neon-vfpv3} and @samp{vfp}
17816 is an alias for @samp{vfpv2}.
17817
17818 The setting @samp{auto} is the default and is special. It causes the
17819 compiler to select the floating-point and Advanced SIMD instructions
17820 based on the settings of @option{-mcpu} and @option{-march}.
17821
17822 If the selected floating-point hardware includes the NEON extension
17823 (e.g.@: @option{-mfpu=neon}), note that floating-point
17824 operations are not generated by GCC's auto-vectorization pass unless
17825 @option{-funsafe-math-optimizations} is also specified. This is
17826 because NEON hardware does not fully implement the IEEE 754 standard for
17827 floating-point arithmetic (in particular denormal values are treated as
17828 zero), so the use of NEON instructions may lead to a loss of precision.
17829
17830 You can also set the fpu name at function level by using the @code{target("fpu=")} function attributes (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
17831
17832 @item -mfp16-format=@var{name}
17833 @opindex mfp16-format
17834 Specify the format of the @code{__fp16} half-precision floating-point type.
17835 Permissible names are @samp{none}, @samp{ieee}, and @samp{alternative};
17836 the default is @samp{none}, in which case the @code{__fp16} type is not
17837 defined. @xref{Half-Precision}, for more information.
17838
17839 @item -mstructure-size-boundary=@var{n}
17840 @opindex mstructure-size-boundary
17841 The sizes of all structures and unions are rounded up to a multiple
17842 of the number of bits set by this option. Permissible values are 8, 32
17843 and 64. The default value varies for different toolchains. For the COFF
17844 targeted toolchain the default value is 8. A value of 64 is only allowed
17845 if the underlying ABI supports it.
17846
17847 Specifying a larger number can produce faster, more efficient code, but
17848 can also increase the size of the program. Different values are potentially
17849 incompatible. Code compiled with one value cannot necessarily expect to
17850 work with code or libraries compiled with another value, if they exchange
17851 information using structures or unions.
17852
17853 This option is deprecated.
17854
17855 @item -mabort-on-noreturn
17856 @opindex mabort-on-noreturn
17857 Generate a call to the function @code{abort} at the end of a
17858 @code{noreturn} function. It is executed if the function tries to
17859 return.
17860
17861 @item -mlong-calls
17862 @itemx -mno-long-calls
17863 @opindex mlong-calls
17864 @opindex mno-long-calls
17865 Tells the compiler to perform function calls by first loading the
17866 address of the function into a register and then performing a subroutine
17867 call on this register. This switch is needed if the target function
17868 lies outside of the 64-megabyte addressing range of the offset-based
17869 version of subroutine call instruction.
17870
17871 Even if this switch is enabled, not all function calls are turned
17872 into long calls. The heuristic is that static functions, functions
17873 that have the @code{short_call} attribute, functions that are inside
17874 the scope of a @code{#pragma no_long_calls} directive, and functions whose
17875 definitions have already been compiled within the current compilation
17876 unit are not turned into long calls. The exceptions to this rule are
17877 that weak function definitions, functions with the @code{long_call}
17878 attribute or the @code{section} attribute, and functions that are within
17879 the scope of a @code{#pragma long_calls} directive are always
17880 turned into long calls.
17881
17882 This feature is not enabled by default. Specifying
17883 @option{-mno-long-calls} restores the default behavior, as does
17884 placing the function calls within the scope of a @code{#pragma
17885 long_calls_off} directive. Note these switches have no effect on how
17886 the compiler generates code to handle function calls via function
17887 pointers.
17888
17889 @item -msingle-pic-base
17890 @opindex msingle-pic-base
17891 Treat the register used for PIC addressing as read-only, rather than
17892 loading it in the prologue for each function. The runtime system is
17893 responsible for initializing this register with an appropriate value
17894 before execution begins.
17895
17896 @item -mpic-register=@var{reg}
17897 @opindex mpic-register
17898 Specify the register to be used for PIC addressing.
17899 For standard PIC base case, the default is any suitable register
17900 determined by compiler. For single PIC base case, the default is
17901 @samp{R9} if target is EABI based or stack-checking is enabled,
17902 otherwise the default is @samp{R10}.
17903
17904 @item -mpic-data-is-text-relative
17905 @opindex mpic-data-is-text-relative
17906 Assume that the displacement between the text and data segments is fixed
17907 at static link time. This permits using PC-relative addressing
17908 operations to access data known to be in the data segment. For
17909 non-VxWorks RTP targets, this option is enabled by default. When
17910 disabled on such targets, it will enable @option{-msingle-pic-base} by
17911 default.
17912
17913 @item -mpoke-function-name
17914 @opindex mpoke-function-name
17915 Write the name of each function into the text section, directly
17916 preceding the function prologue. The generated code is similar to this:
17917
17918 @smallexample
17919 t0
17920 .ascii "arm_poke_function_name", 0
17921 .align
17922 t1
17923 .word 0xff000000 + (t1 - t0)
17924 arm_poke_function_name
17925 mov ip, sp
17926 stmfd sp!, @{fp, ip, lr, pc@}
17927 sub fp, ip, #4
17928 @end smallexample
17929
17930 When performing a stack backtrace, code can inspect the value of
17931 @code{pc} stored at @code{fp + 0}. If the trace function then looks at
17932 location @code{pc - 12} and the top 8 bits are set, then we know that
17933 there is a function name embedded immediately preceding this location
17934 and has length @code{((pc[-3]) & 0xff000000)}.
17935
17936 @item -mthumb
17937 @itemx -marm
17938 @opindex marm
17939 @opindex mthumb
17940
17941 Select between generating code that executes in ARM and Thumb
17942 states. The default for most configurations is to generate code
17943 that executes in ARM state, but the default can be changed by
17944 configuring GCC with the @option{--with-mode=}@var{state}
17945 configure option.
17946
17947 You can also override the ARM and Thumb mode for each function
17948 by using the @code{target("thumb")} and @code{target("arm")} function attributes
17949 (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
17950
17951 @item -mflip-thumb
17952 @opindex mflip-thumb
17953 Switch ARM/Thumb modes on alternating functions.
17954 This option is provided for regression testing of mixed Thumb/ARM code
17955 generation, and is not intended for ordinary use in compiling code.
17956
17957 @item -mtpcs-frame
17958 @opindex mtpcs-frame
17959 Generate a stack frame that is compliant with the Thumb Procedure Call
17960 Standard for all non-leaf functions. (A leaf function is one that does
17961 not call any other functions.) The default is @option{-mno-tpcs-frame}.
17962
17963 @item -mtpcs-leaf-frame
17964 @opindex mtpcs-leaf-frame
17965 Generate a stack frame that is compliant with the Thumb Procedure Call
17966 Standard for all leaf functions. (A leaf function is one that does
17967 not call any other functions.) The default is @option{-mno-apcs-leaf-frame}.
17968
17969 @item -mcallee-super-interworking
17970 @opindex mcallee-super-interworking
17971 Gives all externally visible functions in the file being compiled an ARM
17972 instruction set header which switches to Thumb mode before executing the
17973 rest of the function. This allows these functions to be called from
17974 non-interworking code. This option is not valid in AAPCS configurations
17975 because interworking is enabled by default.
17976
17977 @item -mcaller-super-interworking
17978 @opindex mcaller-super-interworking
17979 Allows calls via function pointers (including virtual functions) to
17980 execute correctly regardless of whether the target code has been
17981 compiled for interworking or not. There is a small overhead in the cost
17982 of executing a function pointer if this option is enabled. This option
17983 is not valid in AAPCS configurations because interworking is enabled
17984 by default.
17985
17986 @item -mtp=@var{name}
17987 @opindex mtp
17988 Specify the access model for the thread local storage pointer. The valid
17989 models are @samp{soft}, which generates calls to @code{__aeabi_read_tp},
17990 @samp{cp15}, which fetches the thread pointer from @code{cp15} directly
17991 (supported in the arm6k architecture), and @samp{auto}, which uses the
17992 best available method for the selected processor. The default setting is
17993 @samp{auto}.
17994
17995 @item -mtls-dialect=@var{dialect}
17996 @opindex mtls-dialect
17997 Specify the dialect to use for accessing thread local storage. Two
17998 @var{dialect}s are supported---@samp{gnu} and @samp{gnu2}. The
17999 @samp{gnu} dialect selects the original GNU scheme for supporting
18000 local and global dynamic TLS models. The @samp{gnu2} dialect
18001 selects the GNU descriptor scheme, which provides better performance
18002 for shared libraries. The GNU descriptor scheme is compatible with
18003 the original scheme, but does require new assembler, linker and
18004 library support. Initial and local exec TLS models are unaffected by
18005 this option and always use the original scheme.
18006
18007 @item -mword-relocations
18008 @opindex mword-relocations
18009 Only generate absolute relocations on word-sized values (i.e.@: R_ARM_ABS32).
18010 This is enabled by default on targets (uClinux, SymbianOS) where the runtime
18011 loader imposes this restriction, and when @option{-fpic} or @option{-fPIC}
18012 is specified. This option conflicts with @option{-mslow-flash-data}.
18013
18014 @item -mfix-cortex-m3-ldrd
18015 @opindex mfix-cortex-m3-ldrd
18016 Some Cortex-M3 cores can cause data corruption when @code{ldrd} instructions
18017 with overlapping destination and base registers are used. This option avoids
18018 generating these instructions. This option is enabled by default when
18019 @option{-mcpu=cortex-m3} is specified.
18020
18021 @item -munaligned-access
18022 @itemx -mno-unaligned-access
18023 @opindex munaligned-access
18024 @opindex mno-unaligned-access
18025 Enables (or disables) reading and writing of 16- and 32- bit values
18026 from addresses that are not 16- or 32- bit aligned. By default
18027 unaligned access is disabled for all pre-ARMv6, all ARMv6-M and for
18028 ARMv8-M Baseline architectures, and enabled for all other
18029 architectures. If unaligned access is not enabled then words in packed
18030 data structures are accessed a byte at a time.
18031
18032 The ARM attribute @code{Tag_CPU_unaligned_access} is set in the
18033 generated object file to either true or false, depending upon the
18034 setting of this option. If unaligned access is enabled then the
18035 preprocessor symbol @code{__ARM_FEATURE_UNALIGNED} is also
18036 defined.
18037
18038 @item -mneon-for-64bits
18039 @opindex mneon-for-64bits
18040 This option is deprecated and has no effect.
18041
18042 @item -mslow-flash-data
18043 @opindex mslow-flash-data
18044 Assume loading data from flash is slower than fetching instruction.
18045 Therefore literal load is minimized for better performance.
18046 This option is only supported when compiling for ARMv7 M-profile and
18047 off by default. It conflicts with @option{-mword-relocations}.
18048
18049 @item -masm-syntax-unified
18050 @opindex masm-syntax-unified
18051 Assume inline assembler is using unified asm syntax. The default is
18052 currently off which implies divided syntax. This option has no impact
18053 on Thumb2. However, this may change in future releases of GCC.
18054 Divided syntax should be considered deprecated.
18055
18056 @item -mrestrict-it
18057 @opindex mrestrict-it
18058 Restricts generation of IT blocks to conform to the rules of ARMv8-A.
18059 IT blocks can only contain a single 16-bit instruction from a select
18060 set of instructions. This option is on by default for ARMv8-A Thumb mode.
18061
18062 @item -mprint-tune-info
18063 @opindex mprint-tune-info
18064 Print CPU tuning information as comment in assembler file. This is
18065 an option used only for regression testing of the compiler and not
18066 intended for ordinary use in compiling code. This option is disabled
18067 by default.
18068
18069 @item -mverbose-cost-dump
18070 @opindex mverbose-cost-dump
18071 Enable verbose cost model dumping in the debug dump files. This option is
18072 provided for use in debugging the compiler.
18073
18074 @item -mpure-code
18075 @opindex mpure-code
18076 Do not allow constant data to be placed in code sections.
18077 Additionally, when compiling for ELF object format give all text sections the
18078 ELF processor-specific section attribute @code{SHF_ARM_PURECODE}. This option
18079 is only available when generating non-pic code for M-profile targets with the
18080 MOVT instruction.
18081
18082 @item -mcmse
18083 @opindex mcmse
18084 Generate secure code as per the "ARMv8-M Security Extensions: Requirements on
18085 Development Tools Engineering Specification", which can be found on
18086 @url{http://infocenter.arm.com/help/topic/com.arm.doc.ecm0359818/ECM0359818_armv8m_security_extensions_reqs_on_dev_tools_1_0.pdf}.
18087
18088 @item -mfdpic
18089 @itemx -mno-fdpic
18090 @opindex mfdpic
18091 @opindex mno-fdpic
18092 Select the FDPIC ABI, which uses 64-bit function descriptors to
18093 represent pointers to functions. When the compiler is configured for
18094 @code{arm-*-uclinuxfdpiceabi} targets, this option is on by default
18095 and implies @option{-fPIE} if none of the PIC/PIE-related options is
18096 provided. On other targets, it only enables the FDPIC-specific code
18097 generation features, and the user should explicitly provide the
18098 PIC/PIE-related options as needed.
18099
18100 Note that static linking is not supported because it would still
18101 involve the dynamic linker when the program self-relocates. If such
18102 behavior is acceptable, use -static and -Wl,-dynamic-linker options.
18103
18104 The opposite @option{-mno-fdpic} option is useful (and required) to
18105 build the Linux kernel using the same (@code{arm-*-uclinuxfdpiceabi})
18106 toolchain as the one used to build the userland programs.
18107
18108 @end table
18109
18110 @node AVR Options
18111 @subsection AVR Options
18112 @cindex AVR Options
18113
18114 These options are defined for AVR implementations:
18115
18116 @table @gcctabopt
18117 @item -mmcu=@var{mcu}
18118 @opindex mmcu
18119 Specify Atmel AVR instruction set architectures (ISA) or MCU type.
18120
18121 The default for this option is@tie{}@samp{avr2}.
18122
18123 GCC supports the following AVR devices and ISAs:
18124
18125 @include avr-mmcu.texi
18126
18127 @item -mabsdata
18128 @opindex mabsdata
18129
18130 Assume that all data in static storage can be accessed by LDS / STS
18131 instructions. This option has only an effect on reduced Tiny devices like
18132 ATtiny40. See also the @code{absdata}
18133 @ref{AVR Variable Attributes,variable attribute}.
18134
18135 @item -maccumulate-args
18136 @opindex maccumulate-args
18137 Accumulate outgoing function arguments and acquire/release the needed
18138 stack space for outgoing function arguments once in function
18139 prologue/epilogue. Without this option, outgoing arguments are pushed
18140 before calling a function and popped afterwards.
18141
18142 Popping the arguments after the function call can be expensive on
18143 AVR so that accumulating the stack space might lead to smaller
18144 executables because arguments need not be removed from the
18145 stack after such a function call.
18146
18147 This option can lead to reduced code size for functions that perform
18148 several calls to functions that get their arguments on the stack like
18149 calls to printf-like functions.
18150
18151 @item -mbranch-cost=@var{cost}
18152 @opindex mbranch-cost
18153 Set the branch costs for conditional branch instructions to
18154 @var{cost}. Reasonable values for @var{cost} are small, non-negative
18155 integers. The default branch cost is 0.
18156
18157 @item -mcall-prologues
18158 @opindex mcall-prologues
18159 Functions prologues/epilogues are expanded as calls to appropriate
18160 subroutines. Code size is smaller.
18161
18162 @item -mgas-isr-prologues
18163 @opindex mgas-isr-prologues
18164 Interrupt service routines (ISRs) may use the @code{__gcc_isr} pseudo
18165 instruction supported by GNU Binutils.
18166 If this option is on, the feature can still be disabled for individual
18167 ISRs by means of the @ref{AVR Function Attributes,,@code{no_gccisr}}
18168 function attribute. This feature is activated per default
18169 if optimization is on (but not with @option{-Og}, @pxref{Optimize Options}),
18170 and if GNU Binutils support @w{@uref{https://sourceware.org/PR21683,PR21683}}.
18171
18172 @item -mint8
18173 @opindex mint8
18174 Assume @code{int} to be 8-bit integer. This affects the sizes of all types: a
18175 @code{char} is 1 byte, an @code{int} is 1 byte, a @code{long} is 2 bytes,
18176 and @code{long long} is 4 bytes. Please note that this option does not
18177 conform to the C standards, but it results in smaller code
18178 size.
18179
18180 @item -mmain-is-OS_task
18181 @opindex mmain-is-OS_task
18182 Do not save registers in @code{main}. The effect is the same like
18183 attaching attribute @ref{AVR Function Attributes,,@code{OS_task}}
18184 to @code{main}. It is activated per default if optimization is on.
18185
18186 @item -mn-flash=@var{num}
18187 @opindex mn-flash
18188 Assume that the flash memory has a size of
18189 @var{num} times 64@tie{}KiB.
18190
18191 @item -mno-interrupts
18192 @opindex mno-interrupts
18193 Generated code is not compatible with hardware interrupts.
18194 Code size is smaller.
18195
18196 @item -mrelax
18197 @opindex mrelax
18198 Try to replace @code{CALL} resp.@: @code{JMP} instruction by the shorter
18199 @code{RCALL} resp.@: @code{RJMP} instruction if applicable.
18200 Setting @option{-mrelax} just adds the @option{--mlink-relax} option to
18201 the assembler's command line and the @option{--relax} option to the
18202 linker's command line.
18203
18204 Jump relaxing is performed by the linker because jump offsets are not
18205 known before code is located. Therefore, the assembler code generated by the
18206 compiler is the same, but the instructions in the executable may
18207 differ from instructions in the assembler code.
18208
18209 Relaxing must be turned on if linker stubs are needed, see the
18210 section on @code{EIND} and linker stubs below.
18211
18212 @item -mrmw
18213 @opindex mrmw
18214 Assume that the device supports the Read-Modify-Write
18215 instructions @code{XCH}, @code{LAC}, @code{LAS} and @code{LAT}.
18216
18217 @item -mshort-calls
18218 @opindex mshort-calls
18219
18220 Assume that @code{RJMP} and @code{RCALL} can target the whole
18221 program memory.
18222
18223 This option is used internally for multilib selection. It is
18224 not an optimization option, and you don't need to set it by hand.
18225
18226 @item -msp8
18227 @opindex msp8
18228 Treat the stack pointer register as an 8-bit register,
18229 i.e.@: assume the high byte of the stack pointer is zero.
18230 In general, you don't need to set this option by hand.
18231
18232 This option is used internally by the compiler to select and
18233 build multilibs for architectures @code{avr2} and @code{avr25}.
18234 These architectures mix devices with and without @code{SPH}.
18235 For any setting other than @option{-mmcu=avr2} or @option{-mmcu=avr25}
18236 the compiler driver adds or removes this option from the compiler
18237 proper's command line, because the compiler then knows if the device
18238 or architecture has an 8-bit stack pointer and thus no @code{SPH}
18239 register or not.
18240
18241 @item -mstrict-X
18242 @opindex mstrict-X
18243 Use address register @code{X} in a way proposed by the hardware. This means
18244 that @code{X} is only used in indirect, post-increment or
18245 pre-decrement addressing.
18246
18247 Without this option, the @code{X} register may be used in the same way
18248 as @code{Y} or @code{Z} which then is emulated by additional
18249 instructions.
18250 For example, loading a value with @code{X+const} addressing with a
18251 small non-negative @code{const < 64} to a register @var{Rn} is
18252 performed as
18253
18254 @example
18255 adiw r26, const ; X += const
18256 ld @var{Rn}, X ; @var{Rn} = *X
18257 sbiw r26, const ; X -= const
18258 @end example
18259
18260 @item -mtiny-stack
18261 @opindex mtiny-stack
18262 Only change the lower 8@tie{}bits of the stack pointer.
18263
18264 @item -mfract-convert-truncate
18265 @opindex mfract-convert-truncate
18266 Allow to use truncation instead of rounding towards zero for fractional fixed-point types.
18267
18268 @item -nodevicelib
18269 @opindex nodevicelib
18270 Don't link against AVR-LibC's device specific library @code{lib<mcu>.a}.
18271
18272 @item -Waddr-space-convert
18273 @opindex Waddr-space-convert
18274 @opindex Wno-addr-space-convert
18275 Warn about conversions between address spaces in the case where the
18276 resulting address space is not contained in the incoming address space.
18277
18278 @item -Wmisspelled-isr
18279 @opindex Wmisspelled-isr
18280 @opindex Wno-misspelled-isr
18281 Warn if the ISR is misspelled, i.e.@: without __vector prefix.
18282 Enabled by default.
18283 @end table
18284
18285 @subsubsection @code{EIND} and Devices with More Than 128 Ki Bytes of Flash
18286 @cindex @code{EIND}
18287 Pointers in the implementation are 16@tie{}bits wide.
18288 The address of a function or label is represented as word address so
18289 that indirect jumps and calls can target any code address in the
18290 range of 64@tie{}Ki words.
18291
18292 In order to facilitate indirect jump on devices with more than 128@tie{}Ki
18293 bytes of program memory space, there is a special function register called
18294 @code{EIND} that serves as most significant part of the target address
18295 when @code{EICALL} or @code{EIJMP} instructions are used.
18296
18297 Indirect jumps and calls on these devices are handled as follows by
18298 the compiler and are subject to some limitations:
18299
18300 @itemize @bullet
18301
18302 @item
18303 The compiler never sets @code{EIND}.
18304
18305 @item
18306 The compiler uses @code{EIND} implicitly in @code{EICALL}/@code{EIJMP}
18307 instructions or might read @code{EIND} directly in order to emulate an
18308 indirect call/jump by means of a @code{RET} instruction.
18309
18310 @item
18311 The compiler assumes that @code{EIND} never changes during the startup
18312 code or during the application. In particular, @code{EIND} is not
18313 saved/restored in function or interrupt service routine
18314 prologue/epilogue.
18315
18316 @item
18317 For indirect calls to functions and computed goto, the linker
18318 generates @emph{stubs}. Stubs are jump pads sometimes also called
18319 @emph{trampolines}. Thus, the indirect call/jump jumps to such a stub.
18320 The stub contains a direct jump to the desired address.
18321
18322 @item
18323 Linker relaxation must be turned on so that the linker generates
18324 the stubs correctly in all situations. See the compiler option
18325 @option{-mrelax} and the linker option @option{--relax}.
18326 There are corner cases where the linker is supposed to generate stubs
18327 but aborts without relaxation and without a helpful error message.
18328
18329 @item
18330 The default linker script is arranged for code with @code{EIND = 0}.
18331 If code is supposed to work for a setup with @code{EIND != 0}, a custom
18332 linker script has to be used in order to place the sections whose
18333 name start with @code{.trampolines} into the segment where @code{EIND}
18334 points to.
18335
18336 @item
18337 The startup code from libgcc never sets @code{EIND}.
18338 Notice that startup code is a blend of code from libgcc and AVR-LibC.
18339 For the impact of AVR-LibC on @code{EIND}, see the
18340 @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC user manual}}.
18341
18342 @item
18343 It is legitimate for user-specific startup code to set up @code{EIND}
18344 early, for example by means of initialization code located in
18345 section @code{.init3}. Such code runs prior to general startup code
18346 that initializes RAM and calls constructors, but after the bit
18347 of startup code from AVR-LibC that sets @code{EIND} to the segment
18348 where the vector table is located.
18349 @example
18350 #include <avr/io.h>
18351
18352 static void
18353 __attribute__((section(".init3"),naked,used,no_instrument_function))
18354 init3_set_eind (void)
18355 @{
18356 __asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
18357 "out %i0,r24" :: "n" (&EIND) : "r24","memory");
18358 @}
18359 @end example
18360
18361 @noindent
18362 The @code{__trampolines_start} symbol is defined in the linker script.
18363
18364 @item
18365 Stubs are generated automatically by the linker if
18366 the following two conditions are met:
18367 @itemize @minus
18368
18369 @item The address of a label is taken by means of the @code{gs} modifier
18370 (short for @emph{generate stubs}) like so:
18371 @example
18372 LDI r24, lo8(gs(@var{func}))
18373 LDI r25, hi8(gs(@var{func}))
18374 @end example
18375 @item The final location of that label is in a code segment
18376 @emph{outside} the segment where the stubs are located.
18377 @end itemize
18378
18379 @item
18380 The compiler emits such @code{gs} modifiers for code labels in the
18381 following situations:
18382 @itemize @minus
18383 @item Taking address of a function or code label.
18384 @item Computed goto.
18385 @item If prologue-save function is used, see @option{-mcall-prologues}
18386 command-line option.
18387 @item Switch/case dispatch tables. If you do not want such dispatch
18388 tables you can specify the @option{-fno-jump-tables} command-line option.
18389 @item C and C++ constructors/destructors called during startup/shutdown.
18390 @item If the tools hit a @code{gs()} modifier explained above.
18391 @end itemize
18392
18393 @item
18394 Jumping to non-symbolic addresses like so is @emph{not} supported:
18395
18396 @example
18397 int main (void)
18398 @{
18399 /* Call function at word address 0x2 */
18400 return ((int(*)(void)) 0x2)();
18401 @}
18402 @end example
18403
18404 Instead, a stub has to be set up, i.e.@: the function has to be called
18405 through a symbol (@code{func_4} in the example):
18406
18407 @example
18408 int main (void)
18409 @{
18410 extern int func_4 (void);
18411
18412 /* Call function at byte address 0x4 */
18413 return func_4();
18414 @}
18415 @end example
18416
18417 and the application be linked with @option{-Wl,--defsym,func_4=0x4}.
18418 Alternatively, @code{func_4} can be defined in the linker script.
18419 @end itemize
18420
18421 @subsubsection Handling of the @code{RAMPD}, @code{RAMPX}, @code{RAMPY} and @code{RAMPZ} Special Function Registers
18422 @cindex @code{RAMPD}
18423 @cindex @code{RAMPX}
18424 @cindex @code{RAMPY}
18425 @cindex @code{RAMPZ}
18426 Some AVR devices support memories larger than the 64@tie{}KiB range
18427 that can be accessed with 16-bit pointers. To access memory locations
18428 outside this 64@tie{}KiB range, the content of a @code{RAMP}
18429 register is used as high part of the address:
18430 The @code{X}, @code{Y}, @code{Z} address register is concatenated
18431 with the @code{RAMPX}, @code{RAMPY}, @code{RAMPZ} special function
18432 register, respectively, to get a wide address. Similarly,
18433 @code{RAMPD} is used together with direct addressing.
18434
18435 @itemize
18436 @item
18437 The startup code initializes the @code{RAMP} special function
18438 registers with zero.
18439
18440 @item
18441 If a @ref{AVR Named Address Spaces,named address space} other than
18442 generic or @code{__flash} is used, then @code{RAMPZ} is set
18443 as needed before the operation.
18444
18445 @item
18446 If the device supports RAM larger than 64@tie{}KiB and the compiler
18447 needs to change @code{RAMPZ} to accomplish an operation, @code{RAMPZ}
18448 is reset to zero after the operation.
18449
18450 @item
18451 If the device comes with a specific @code{RAMP} register, the ISR
18452 prologue/epilogue saves/restores that SFR and initializes it with
18453 zero in case the ISR code might (implicitly) use it.
18454
18455 @item
18456 RAM larger than 64@tie{}KiB is not supported by GCC for AVR targets.
18457 If you use inline assembler to read from locations outside the
18458 16-bit address range and change one of the @code{RAMP} registers,
18459 you must reset it to zero after the access.
18460
18461 @end itemize
18462
18463 @subsubsection AVR Built-in Macros
18464
18465 GCC defines several built-in macros so that the user code can test
18466 for the presence or absence of features. Almost any of the following
18467 built-in macros are deduced from device capabilities and thus
18468 triggered by the @option{-mmcu=} command-line option.
18469
18470 For even more AVR-specific built-in macros see
18471 @ref{AVR Named Address Spaces} and @ref{AVR Built-in Functions}.
18472
18473 @table @code
18474
18475 @item __AVR_ARCH__
18476 Build-in macro that resolves to a decimal number that identifies the
18477 architecture and depends on the @option{-mmcu=@var{mcu}} option.
18478 Possible values are:
18479
18480 @code{2}, @code{25}, @code{3}, @code{31}, @code{35},
18481 @code{4}, @code{5}, @code{51}, @code{6}
18482
18483 for @var{mcu}=@code{avr2}, @code{avr25}, @code{avr3}, @code{avr31},
18484 @code{avr35}, @code{avr4}, @code{avr5}, @code{avr51}, @code{avr6},
18485
18486 respectively and
18487
18488 @code{100},
18489 @code{102}, @code{103}, @code{104},
18490 @code{105}, @code{106}, @code{107}
18491
18492 for @var{mcu}=@code{avrtiny},
18493 @code{avrxmega2}, @code{avrxmega3}, @code{avrxmega4},
18494 @code{avrxmega5}, @code{avrxmega6}, @code{avrxmega7}, respectively.
18495 If @var{mcu} specifies a device, this built-in macro is set
18496 accordingly. For example, with @option{-mmcu=atmega8} the macro is
18497 defined to @code{4}.
18498
18499 @item __AVR_@var{Device}__
18500 Setting @option{-mmcu=@var{device}} defines this built-in macro which reflects
18501 the device's name. For example, @option{-mmcu=atmega8} defines the
18502 built-in macro @code{__AVR_ATmega8__}, @option{-mmcu=attiny261a} defines
18503 @code{__AVR_ATtiny261A__}, etc.
18504
18505 The built-in macros' names follow
18506 the scheme @code{__AVR_@var{Device}__} where @var{Device} is
18507 the device name as from the AVR user manual. The difference between
18508 @var{Device} in the built-in macro and @var{device} in
18509 @option{-mmcu=@var{device}} is that the latter is always lowercase.
18510
18511 If @var{device} is not a device but only a core architecture like
18512 @samp{avr51}, this macro is not defined.
18513
18514 @item __AVR_DEVICE_NAME__
18515 Setting @option{-mmcu=@var{device}} defines this built-in macro to
18516 the device's name. For example, with @option{-mmcu=atmega8} the macro
18517 is defined to @code{atmega8}.
18518
18519 If @var{device} is not a device but only a core architecture like
18520 @samp{avr51}, this macro is not defined.
18521
18522 @item __AVR_XMEGA__
18523 The device / architecture belongs to the XMEGA family of devices.
18524
18525 @item __AVR_HAVE_ELPM__
18526 The device has the @code{ELPM} instruction.
18527
18528 @item __AVR_HAVE_ELPMX__
18529 The device has the @code{ELPM R@var{n},Z} and @code{ELPM
18530 R@var{n},Z+} instructions.
18531
18532 @item __AVR_HAVE_MOVW__
18533 The device has the @code{MOVW} instruction to perform 16-bit
18534 register-register moves.
18535
18536 @item __AVR_HAVE_LPMX__
18537 The device has the @code{LPM R@var{n},Z} and
18538 @code{LPM R@var{n},Z+} instructions.
18539
18540 @item __AVR_HAVE_MUL__
18541 The device has a hardware multiplier.
18542
18543 @item __AVR_HAVE_JMP_CALL__
18544 The device has the @code{JMP} and @code{CALL} instructions.
18545 This is the case for devices with more than 8@tie{}KiB of program
18546 memory.
18547
18548 @item __AVR_HAVE_EIJMP_EICALL__
18549 @itemx __AVR_3_BYTE_PC__
18550 The device has the @code{EIJMP} and @code{EICALL} instructions.
18551 This is the case for devices with more than 128@tie{}KiB of program memory.
18552 This also means that the program counter
18553 (PC) is 3@tie{}bytes wide.
18554
18555 @item __AVR_2_BYTE_PC__
18556 The program counter (PC) is 2@tie{}bytes wide. This is the case for devices
18557 with up to 128@tie{}KiB of program memory.
18558
18559 @item __AVR_HAVE_8BIT_SP__
18560 @itemx __AVR_HAVE_16BIT_SP__
18561 The stack pointer (SP) register is treated as 8-bit respectively
18562 16-bit register by the compiler.
18563 The definition of these macros is affected by @option{-mtiny-stack}.
18564
18565 @item __AVR_HAVE_SPH__
18566 @itemx __AVR_SP8__
18567 The device has the SPH (high part of stack pointer) special function
18568 register or has an 8-bit stack pointer, respectively.
18569 The definition of these macros is affected by @option{-mmcu=} and
18570 in the cases of @option{-mmcu=avr2} and @option{-mmcu=avr25} also
18571 by @option{-msp8}.
18572
18573 @item __AVR_HAVE_RAMPD__
18574 @itemx __AVR_HAVE_RAMPX__
18575 @itemx __AVR_HAVE_RAMPY__
18576 @itemx __AVR_HAVE_RAMPZ__
18577 The device has the @code{RAMPD}, @code{RAMPX}, @code{RAMPY},
18578 @code{RAMPZ} special function register, respectively.
18579
18580 @item __NO_INTERRUPTS__
18581 This macro reflects the @option{-mno-interrupts} command-line option.
18582
18583 @item __AVR_ERRATA_SKIP__
18584 @itemx __AVR_ERRATA_SKIP_JMP_CALL__
18585 Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit
18586 instructions because of a hardware erratum. Skip instructions are
18587 @code{SBRS}, @code{SBRC}, @code{SBIS}, @code{SBIC} and @code{CPSE}.
18588 The second macro is only defined if @code{__AVR_HAVE_JMP_CALL__} is also
18589 set.
18590
18591 @item __AVR_ISA_RMW__
18592 The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT).
18593
18594 @item __AVR_SFR_OFFSET__=@var{offset}
18595 Instructions that can address I/O special function registers directly
18596 like @code{IN}, @code{OUT}, @code{SBI}, etc.@: may use a different
18597 address as if addressed by an instruction to access RAM like @code{LD}
18598 or @code{STS}. This offset depends on the device architecture and has
18599 to be subtracted from the RAM address in order to get the
18600 respective I/O@tie{}address.
18601
18602 @item __AVR_SHORT_CALLS__
18603 The @option{-mshort-calls} command line option is set.
18604
18605 @item __AVR_PM_BASE_ADDRESS__=@var{addr}
18606 Some devices support reading from flash memory by means of @code{LD*}
18607 instructions. The flash memory is seen in the data address space
18608 at an offset of @code{__AVR_PM_BASE_ADDRESS__}. If this macro
18609 is not defined, this feature is not available. If defined,
18610 the address space is linear and there is no need to put
18611 @code{.rodata} into RAM. This is handled by the default linker
18612 description file, and is currently available for
18613 @code{avrtiny} and @code{avrxmega3}. Even more convenient,
18614 there is no need to use address spaces like @code{__flash} or
18615 features like attribute @code{progmem} and @code{pgm_read_*}.
18616
18617 @item __WITH_AVRLIBC__
18618 The compiler is configured to be used together with AVR-Libc.
18619 See the @option{--with-avrlibc} configure option.
18620
18621 @end table
18622
18623 @node Blackfin Options
18624 @subsection Blackfin Options
18625 @cindex Blackfin Options
18626
18627 @table @gcctabopt
18628 @item -mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]}
18629 @opindex mcpu=
18630 Specifies the name of the target Blackfin processor. Currently, @var{cpu}
18631 can be one of @samp{bf512}, @samp{bf514}, @samp{bf516}, @samp{bf518},
18632 @samp{bf522}, @samp{bf523}, @samp{bf524}, @samp{bf525}, @samp{bf526},
18633 @samp{bf527}, @samp{bf531}, @samp{bf532}, @samp{bf533},
18634 @samp{bf534}, @samp{bf536}, @samp{bf537}, @samp{bf538}, @samp{bf539},
18635 @samp{bf542}, @samp{bf544}, @samp{bf547}, @samp{bf548}, @samp{bf549},
18636 @samp{bf542m}, @samp{bf544m}, @samp{bf547m}, @samp{bf548m}, @samp{bf549m},
18637 @samp{bf561}, @samp{bf592}.
18638
18639 The optional @var{sirevision} specifies the silicon revision of the target
18640 Blackfin processor. Any workarounds available for the targeted silicon revision
18641 are enabled. If @var{sirevision} is @samp{none}, no workarounds are enabled.
18642 If @var{sirevision} is @samp{any}, all workarounds for the targeted processor
18643 are enabled. The @code{__SILICON_REVISION__} macro is defined to two
18644 hexadecimal digits representing the major and minor numbers in the silicon
18645 revision. If @var{sirevision} is @samp{none}, the @code{__SILICON_REVISION__}
18646 is not defined. If @var{sirevision} is @samp{any}, the
18647 @code{__SILICON_REVISION__} is defined to be @code{0xffff}.
18648 If this optional @var{sirevision} is not used, GCC assumes the latest known
18649 silicon revision of the targeted Blackfin processor.
18650
18651 GCC defines a preprocessor macro for the specified @var{cpu}.
18652 For the @samp{bfin-elf} toolchain, this option causes the hardware BSP
18653 provided by libgloss to be linked in if @option{-msim} is not given.
18654
18655 Without this option, @samp{bf532} is used as the processor by default.
18656
18657 Note that support for @samp{bf561} is incomplete. For @samp{bf561},
18658 only the preprocessor macro is defined.
18659
18660 @item -msim
18661 @opindex msim
18662 Specifies that the program will be run on the simulator. This causes
18663 the simulator BSP provided by libgloss to be linked in. This option
18664 has effect only for @samp{bfin-elf} toolchain.
18665 Certain other options, such as @option{-mid-shared-library} and
18666 @option{-mfdpic}, imply @option{-msim}.
18667
18668 @item -momit-leaf-frame-pointer
18669 @opindex momit-leaf-frame-pointer
18670 Don't keep the frame pointer in a register for leaf functions. This
18671 avoids the instructions to save, set up and restore frame pointers and
18672 makes an extra register available in leaf functions.
18673
18674 @item -mspecld-anomaly
18675 @opindex mspecld-anomaly
18676 When enabled, the compiler ensures that the generated code does not
18677 contain speculative loads after jump instructions. If this option is used,
18678 @code{__WORKAROUND_SPECULATIVE_LOADS} is defined.
18679
18680 @item -mno-specld-anomaly
18681 @opindex mno-specld-anomaly
18682 @opindex mspecld-anomaly
18683 Don't generate extra code to prevent speculative loads from occurring.
18684
18685 @item -mcsync-anomaly
18686 @opindex mcsync-anomaly
18687 When enabled, the compiler ensures that the generated code does not
18688 contain CSYNC or SSYNC instructions too soon after conditional branches.
18689 If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined.
18690
18691 @item -mno-csync-anomaly
18692 @opindex mno-csync-anomaly
18693 @opindex mcsync-anomaly
18694 Don't generate extra code to prevent CSYNC or SSYNC instructions from
18695 occurring too soon after a conditional branch.
18696
18697 @item -mlow64k
18698 @opindex mlow64k
18699 When enabled, the compiler is free to take advantage of the knowledge that
18700 the entire program fits into the low 64k of memory.
18701
18702 @item -mno-low64k
18703 @opindex mno-low64k
18704 Assume that the program is arbitrarily large. This is the default.
18705
18706 @item -mstack-check-l1
18707 @opindex mstack-check-l1
18708 Do stack checking using information placed into L1 scratchpad memory by the
18709 uClinux kernel.
18710
18711 @item -mid-shared-library
18712 @opindex mid-shared-library
18713 Generate code that supports shared libraries via the library ID method.
18714 This allows for execute in place and shared libraries in an environment
18715 without virtual memory management. This option implies @option{-fPIC}.
18716 With a @samp{bfin-elf} target, this option implies @option{-msim}.
18717
18718 @item -mno-id-shared-library
18719 @opindex mno-id-shared-library
18720 @opindex mid-shared-library
18721 Generate code that doesn't assume ID-based shared libraries are being used.
18722 This is the default.
18723
18724 @item -mleaf-id-shared-library
18725 @opindex mleaf-id-shared-library
18726 Generate code that supports shared libraries via the library ID method,
18727 but assumes that this library or executable won't link against any other
18728 ID shared libraries. That allows the compiler to use faster code for jumps
18729 and calls.
18730
18731 @item -mno-leaf-id-shared-library
18732 @opindex mno-leaf-id-shared-library
18733 @opindex mleaf-id-shared-library
18734 Do not assume that the code being compiled won't link against any ID shared
18735 libraries. Slower code is generated for jump and call insns.
18736
18737 @item -mshared-library-id=n
18738 @opindex mshared-library-id
18739 Specifies the identification number of the ID-based shared library being
18740 compiled. Specifying a value of 0 generates more compact code; specifying
18741 other values forces the allocation of that number to the current
18742 library but is no more space- or time-efficient than omitting this option.
18743
18744 @item -msep-data
18745 @opindex msep-data
18746 Generate code that allows the data segment to be located in a different
18747 area of memory from the text segment. This allows for execute in place in
18748 an environment without virtual memory management by eliminating relocations
18749 against the text section.
18750
18751 @item -mno-sep-data
18752 @opindex mno-sep-data
18753 @opindex msep-data
18754 Generate code that assumes that the data segment follows the text segment.
18755 This is the default.
18756
18757 @item -mlong-calls
18758 @itemx -mno-long-calls
18759 @opindex mlong-calls
18760 @opindex mno-long-calls
18761 Tells the compiler to perform function calls by first loading the
18762 address of the function into a register and then performing a subroutine
18763 call on this register. This switch is needed if the target function
18764 lies outside of the 24-bit addressing range of the offset-based
18765 version of subroutine call instruction.
18766
18767 This feature is not enabled by default. Specifying
18768 @option{-mno-long-calls} restores the default behavior. Note these
18769 switches have no effect on how the compiler generates code to handle
18770 function calls via function pointers.
18771
18772 @item -mfast-fp
18773 @opindex mfast-fp
18774 Link with the fast floating-point library. This library relaxes some of
18775 the IEEE floating-point standard's rules for checking inputs against
18776 Not-a-Number (NAN), in the interest of performance.
18777
18778 @item -minline-plt
18779 @opindex minline-plt
18780 Enable inlining of PLT entries in function calls to functions that are
18781 not known to bind locally. It has no effect without @option{-mfdpic}.
18782
18783 @item -mmulticore
18784 @opindex mmulticore
18785 Build a standalone application for multicore Blackfin processors.
18786 This option causes proper start files and link scripts supporting
18787 multicore to be used, and defines the macro @code{__BFIN_MULTICORE}.
18788 It can only be used with @option{-mcpu=bf561@r{[}-@var{sirevision}@r{]}}.
18789
18790 This option can be used with @option{-mcorea} or @option{-mcoreb}, which
18791 selects the one-application-per-core programming model. Without
18792 @option{-mcorea} or @option{-mcoreb}, the single-application/dual-core
18793 programming model is used. In this model, the main function of Core B
18794 should be named as @code{coreb_main}.
18795
18796 If this option is not used, the single-core application programming
18797 model is used.
18798
18799 @item -mcorea
18800 @opindex mcorea
18801 Build a standalone application for Core A of BF561 when using
18802 the one-application-per-core programming model. Proper start files
18803 and link scripts are used to support Core A, and the macro
18804 @code{__BFIN_COREA} is defined.
18805 This option can only be used in conjunction with @option{-mmulticore}.
18806
18807 @item -mcoreb
18808 @opindex mcoreb
18809 Build a standalone application for Core B of BF561 when using
18810 the one-application-per-core programming model. Proper start files
18811 and link scripts are used to support Core B, and the macro
18812 @code{__BFIN_COREB} is defined. When this option is used, @code{coreb_main}
18813 should be used instead of @code{main}.
18814 This option can only be used in conjunction with @option{-mmulticore}.
18815
18816 @item -msdram
18817 @opindex msdram
18818 Build a standalone application for SDRAM. Proper start files and
18819 link scripts are used to put the application into SDRAM, and the macro
18820 @code{__BFIN_SDRAM} is defined.
18821 The loader should initialize SDRAM before loading the application.
18822
18823 @item -micplb
18824 @opindex micplb
18825 Assume that ICPLBs are enabled at run time. This has an effect on certain
18826 anomaly workarounds. For Linux targets, the default is to assume ICPLBs
18827 are enabled; for standalone applications the default is off.
18828 @end table
18829
18830 @node C6X Options
18831 @subsection C6X Options
18832 @cindex C6X Options
18833
18834 @table @gcctabopt
18835 @item -march=@var{name}
18836 @opindex march
18837 This specifies the name of the target architecture. GCC uses this
18838 name to determine what kind of instructions it can emit when generating
18839 assembly code. Permissible names are: @samp{c62x},
18840 @samp{c64x}, @samp{c64x+}, @samp{c67x}, @samp{c67x+}, @samp{c674x}.
18841
18842 @item -mbig-endian
18843 @opindex mbig-endian
18844 Generate code for a big-endian target.
18845
18846 @item -mlittle-endian
18847 @opindex mlittle-endian
18848 Generate code for a little-endian target. This is the default.
18849
18850 @item -msim
18851 @opindex msim
18852 Choose startup files and linker script suitable for the simulator.
18853
18854 @item -msdata=default
18855 @opindex msdata=default
18856 Put small global and static data in the @code{.neardata} section,
18857 which is pointed to by register @code{B14}. Put small uninitialized
18858 global and static data in the @code{.bss} section, which is adjacent
18859 to the @code{.neardata} section. Put small read-only data into the
18860 @code{.rodata} section. The corresponding sections used for large
18861 pieces of data are @code{.fardata}, @code{.far} and @code{.const}.
18862
18863 @item -msdata=all
18864 @opindex msdata=all
18865 Put all data, not just small objects, into the sections reserved for
18866 small data, and use addressing relative to the @code{B14} register to
18867 access them.
18868
18869 @item -msdata=none
18870 @opindex msdata=none
18871 Make no use of the sections reserved for small data, and use absolute
18872 addresses to access all data. Put all initialized global and static
18873 data in the @code{.fardata} section, and all uninitialized data in the
18874 @code{.far} section. Put all constant data into the @code{.const}
18875 section.
18876 @end table
18877
18878 @node CRIS Options
18879 @subsection CRIS Options
18880 @cindex CRIS Options
18881
18882 These options are defined specifically for the CRIS ports.
18883
18884 @table @gcctabopt
18885 @item -march=@var{architecture-type}
18886 @itemx -mcpu=@var{architecture-type}
18887 @opindex march
18888 @opindex mcpu
18889 Generate code for the specified architecture. The choices for
18890 @var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
18891 respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX@.
18892 Default is @samp{v0} except for cris-axis-linux-gnu, where the default is
18893 @samp{v10}.
18894
18895 @item -mtune=@var{architecture-type}
18896 @opindex mtune
18897 Tune to @var{architecture-type} everything applicable about the generated
18898 code, except for the ABI and the set of available instructions. The
18899 choices for @var{architecture-type} are the same as for
18900 @option{-march=@var{architecture-type}}.
18901
18902 @item -mmax-stack-frame=@var{n}
18903 @opindex mmax-stack-frame
18904 Warn when the stack frame of a function exceeds @var{n} bytes.
18905
18906 @item -metrax4
18907 @itemx -metrax100
18908 @opindex metrax4
18909 @opindex metrax100
18910 The options @option{-metrax4} and @option{-metrax100} are synonyms for
18911 @option{-march=v3} and @option{-march=v8} respectively.
18912
18913 @item -mmul-bug-workaround
18914 @itemx -mno-mul-bug-workaround
18915 @opindex mmul-bug-workaround
18916 @opindex mno-mul-bug-workaround
18917 Work around a bug in the @code{muls} and @code{mulu} instructions for CPU
18918 models where it applies. This option is active by default.
18919
18920 @item -mpdebug
18921 @opindex mpdebug
18922 Enable CRIS-specific verbose debug-related information in the assembly
18923 code. This option also has the effect of turning off the @samp{#NO_APP}
18924 formatted-code indicator to the assembler at the beginning of the
18925 assembly file.
18926
18927 @item -mcc-init
18928 @opindex mcc-init
18929 Do not use condition-code results from previous instruction; always emit
18930 compare and test instructions before use of condition codes.
18931
18932 @item -mno-side-effects
18933 @opindex mno-side-effects
18934 @opindex mside-effects
18935 Do not emit instructions with side effects in addressing modes other than
18936 post-increment.
18937
18938 @item -mstack-align
18939 @itemx -mno-stack-align
18940 @itemx -mdata-align
18941 @itemx -mno-data-align
18942 @itemx -mconst-align
18943 @itemx -mno-const-align
18944 @opindex mstack-align
18945 @opindex mno-stack-align
18946 @opindex mdata-align
18947 @opindex mno-data-align
18948 @opindex mconst-align
18949 @opindex mno-const-align
18950 These options (@samp{no-} options) arrange (eliminate arrangements) for the
18951 stack frame, individual data and constants to be aligned for the maximum
18952 single data access size for the chosen CPU model. The default is to
18953 arrange for 32-bit alignment. ABI details such as structure layout are
18954 not affected by these options.
18955
18956 @item -m32-bit
18957 @itemx -m16-bit
18958 @itemx -m8-bit
18959 @opindex m32-bit
18960 @opindex m16-bit
18961 @opindex m8-bit
18962 Similar to the stack- data- and const-align options above, these options
18963 arrange for stack frame, writable data and constants to all be 32-bit,
18964 16-bit or 8-bit aligned. The default is 32-bit alignment.
18965
18966 @item -mno-prologue-epilogue
18967 @itemx -mprologue-epilogue
18968 @opindex mno-prologue-epilogue
18969 @opindex mprologue-epilogue
18970 With @option{-mno-prologue-epilogue}, the normal function prologue and
18971 epilogue which set up the stack frame are omitted and no return
18972 instructions or return sequences are generated in the code. Use this
18973 option only together with visual inspection of the compiled code: no
18974 warnings or errors are generated when call-saved registers must be saved,
18975 or storage for local variables needs to be allocated.
18976
18977 @item -mno-gotplt
18978 @itemx -mgotplt
18979 @opindex mno-gotplt
18980 @opindex mgotplt
18981 With @option{-fpic} and @option{-fPIC}, don't generate (do generate)
18982 instruction sequences that load addresses for functions from the PLT part
18983 of the GOT rather than (traditional on other architectures) calls to the
18984 PLT@. The default is @option{-mgotplt}.
18985
18986 @item -melf
18987 @opindex melf
18988 Legacy no-op option only recognized with the cris-axis-elf and
18989 cris-axis-linux-gnu targets.
18990
18991 @item -mlinux
18992 @opindex mlinux
18993 Legacy no-op option only recognized with the cris-axis-linux-gnu target.
18994
18995 @item -sim
18996 @opindex sim
18997 This option, recognized for the cris-axis-elf, arranges
18998 to link with input-output functions from a simulator library. Code,
18999 initialized data and zero-initialized data are allocated consecutively.
19000
19001 @item -sim2
19002 @opindex sim2
19003 Like @option{-sim}, but pass linker options to locate initialized data at
19004 0x40000000 and zero-initialized data at 0x80000000.
19005 @end table
19006
19007 @node CR16 Options
19008 @subsection CR16 Options
19009 @cindex CR16 Options
19010
19011 These options are defined specifically for the CR16 ports.
19012
19013 @table @gcctabopt
19014
19015 @item -mmac
19016 @opindex mmac
19017 Enable the use of multiply-accumulate instructions. Disabled by default.
19018
19019 @item -mcr16cplus
19020 @itemx -mcr16c
19021 @opindex mcr16cplus
19022 @opindex mcr16c
19023 Generate code for CR16C or CR16C+ architecture. CR16C+ architecture
19024 is default.
19025
19026 @item -msim
19027 @opindex msim
19028 Links the library libsim.a which is in compatible with simulator. Applicable
19029 to ELF compiler only.
19030
19031 @item -mint32
19032 @opindex mint32
19033 Choose integer type as 32-bit wide.
19034
19035 @item -mbit-ops
19036 @opindex mbit-ops
19037 Generates @code{sbit}/@code{cbit} instructions for bit manipulations.
19038
19039 @item -mdata-model=@var{model}
19040 @opindex mdata-model
19041 Choose a data model. The choices for @var{model} are @samp{near},
19042 @samp{far} or @samp{medium}. @samp{medium} is default.
19043 However, @samp{far} is not valid with @option{-mcr16c}, as the
19044 CR16C architecture does not support the far data model.
19045 @end table
19046
19047 @node C-SKY Options
19048 @subsection C-SKY Options
19049 @cindex C-SKY Options
19050
19051 GCC supports these options when compiling for C-SKY V2 processors.
19052
19053 @table @gcctabopt
19054
19055 @item -march=@var{arch}
19056 @opindex march=
19057 Specify the C-SKY target architecture. Valid values for @var{arch} are:
19058 @samp{ck801}, @samp{ck802}, @samp{ck803}, @samp{ck807}, and @samp{ck810}.
19059 The default is @samp{ck810}.
19060
19061 @item -mcpu=@var{cpu}
19062 @opindex mcpu=
19063 Specify the C-SKY target processor. Valid values for @var{cpu} are:
19064 @samp{ck801}, @samp{ck801t},
19065 @samp{ck802}, @samp{ck802t}, @samp{ck802j},
19066 @samp{ck803}, @samp{ck803h}, @samp{ck803t}, @samp{ck803ht},
19067 @samp{ck803f}, @samp{ck803fh}, @samp{ck803e}, @samp{ck803eh},
19068 @samp{ck803et}, @samp{ck803eht}, @samp{ck803ef}, @samp{ck803efh},
19069 @samp{ck803ft}, @samp{ck803eft}, @samp{ck803efht}, @samp{ck803r1},
19070 @samp{ck803hr1}, @samp{ck803tr1}, @samp{ck803htr1}, @samp{ck803fr1},
19071 @samp{ck803fhr1}, @samp{ck803er1}, @samp{ck803ehr1}, @samp{ck803etr1},
19072 @samp{ck803ehtr1}, @samp{ck803efr1}, @samp{ck803efhr1}, @samp{ck803ftr1},
19073 @samp{ck803eftr1}, @samp{ck803efhtr1},
19074 @samp{ck803s}, @samp{ck803st}, @samp{ck803se}, @samp{ck803sf},
19075 @samp{ck803sef}, @samp{ck803seft},
19076 @samp{ck807e}, @samp{ck807ef}, @samp{ck807}, @samp{ck807f},
19077 @samp{ck810e}, @samp{ck810et}, @samp{ck810ef}, @samp{ck810eft},
19078 @samp{ck810}, @samp{ck810v}, @samp{ck810f}, @samp{ck810t}, @samp{ck810fv},
19079 @samp{ck810tv}, @samp{ck810ft}, and @samp{ck810ftv}.
19080
19081 @item -mbig-endian
19082 @opindex mbig-endian
19083 @itemx -EB
19084 @opindex EB
19085 @itemx -mlittle-endian
19086 @opindex mlittle-endian
19087 @itemx -EL
19088 @opindex EL
19089
19090 Select big- or little-endian code. The default is little-endian.
19091
19092 @item -mhard-float
19093 @opindex mhard-float
19094 @itemx -msoft-float
19095 @opindex msoft-float
19096
19097 Select hardware or software floating-point implementations.
19098 The default is soft float.
19099
19100 @item -mdouble-float
19101 @itemx -mno-double-float
19102 @opindex mdouble-float
19103 When @option{-mhard-float} is in effect, enable generation of
19104 double-precision float instructions. This is the default except
19105 when compiling for CK803.
19106
19107 @item -mfdivdu
19108 @itemx -mno-fdivdu
19109 @opindex mfdivdu
19110 When @option{-mhard-float} is in effect, enable generation of
19111 @code{frecipd}, @code{fsqrtd}, and @code{fdivd} instructions.
19112 This is the default except when compiling for CK803.
19113
19114 @item -mfpu=@var{fpu}
19115 @opindex mfpu=
19116 Select the floating-point processor. This option can only be used with
19117 @option{-mhard-float}.
19118 Values for @var{fpu} are
19119 @samp{fpv2_sf} (equivalent to @samp{-mno-double-float -mno-fdivdu}),
19120 @samp{fpv2} (@samp{-mdouble-float -mno-divdu}), and
19121 @samp{fpv2_divd} (@samp{-mdouble-float -mdivdu}).
19122
19123 @item -melrw
19124 @itemx -mno-elrw
19125 @opindex melrw
19126 Enable the extended @code{lrw} instruction. This option defaults to on
19127 for CK801 and off otherwise.
19128
19129 @item -mistack
19130 @itemx -mno-istack
19131 @opindex mistack
19132 Enable interrupt stack instructions; the default is off.
19133
19134 The @option{-mistack} option is required to handle the
19135 @code{interrupt} and @code{isr} function attributes
19136 (@pxref{C-SKY Function Attributes}).
19137
19138 @item -mmp
19139 @opindex mmp
19140 Enable multiprocessor instructions; the default is off.
19141
19142 @item -mcp
19143 @opindex mcp
19144 Enable coprocessor instructions; the default is off.
19145
19146 @item -mcache
19147 @opindex mcache
19148 Enable coprocessor instructions; the default is off.
19149
19150 @item -msecurity
19151 @opindex msecurity
19152 Enable C-SKY security instructions; the default is off.
19153
19154 @item -mtrust
19155 @opindex mtrust
19156 Enable C-SKY trust instructions; the default is off.
19157
19158 @item -mdsp
19159 @opindex mdsp
19160 @itemx -medsp
19161 @opindex medsp
19162 @itemx -mvdsp
19163 @opindex mvdsp
19164 Enable C-SKY DSP, Enhanced DSP, or Vector DSP instructions, respectively.
19165 All of these options default to off.
19166
19167 @item -mdiv
19168 @itemx -mno-div
19169 @opindex mdiv
19170 Generate divide instructions. Default is off.
19171
19172 @item -msmart
19173 @itemx -mno-smart
19174 @opindex msmart
19175 Generate code for Smart Mode, using only registers numbered 0-7 to allow
19176 use of 16-bit instructions. This option is ignored for CK801 where this
19177 is the required behavior, and it defaults to on for CK802.
19178 For other targets, the default is off.
19179
19180 @item -mhigh-registers
19181 @itemx -mno-high-registers
19182 @opindex mhigh-registers
19183 Generate code using the high registers numbered 16-31. This option
19184 is not supported on CK801, CK802, or CK803, and is enabled by default
19185 for other processors.
19186
19187 @item -manchor
19188 @itemx -mno-anchor
19189 @opindex manchor
19190 Generate code using global anchor symbol addresses.
19191
19192 @item -mpushpop
19193 @itemx -mno-pushpop
19194 @opindex mpushpop
19195 Generate code using @code{push} and @code{pop} instructions. This option
19196 defaults to on.
19197
19198 @item -mmultiple-stld
19199 @itemx -mstm
19200 @itemx -mno-multiple-stld
19201 @itemx -mno-stm
19202 @opindex mmultiple-stld
19203 Generate code using @code{stm} and @code{ldm} instructions. This option
19204 isn't supported on CK801 but is enabled by default on other processors.
19205
19206 @item -mconstpool
19207 @itemx -mno-constpool
19208 @opindex mconstpool
19209 Create constant pools in the compiler instead of deferring it to the
19210 assembler. This option is the default and required for correct code
19211 generation on CK801 and CK802, and is optional on other processors.
19212
19213 @item -mstack-size
19214 @item -mno-stack-size
19215 @opindex mstack-size
19216 Emit @code{.stack_size} directives for each function in the assembly
19217 output. This option defaults to off.
19218
19219 @item -mccrt
19220 @itemx -mno-ccrt
19221 @opindex mccrt
19222 Generate code for the C-SKY compiler runtime instead of libgcc. This
19223 option defaults to off.
19224
19225 @item -mbranch-cost=@var{n}
19226 @opindex mbranch-cost=
19227 Set the branch costs to roughly @code{n} instructions. The default is 1.
19228
19229 @item -msched-prolog
19230 @itemx -mno-sched-prolog
19231 @opindex msched-prolog
19232 Permit scheduling of function prologue and epilogue sequences. Using
19233 this option can result in code that is not compliant with the C-SKY V2 ABI
19234 prologue requirements and that cannot be debugged or backtraced.
19235 It is disabled by default.
19236
19237 @end table
19238
19239 @node Darwin Options
19240 @subsection Darwin Options
19241 @cindex Darwin options
19242
19243 These options are defined for all architectures running the Darwin operating
19244 system.
19245
19246 FSF GCC on Darwin does not create ``fat'' object files; it creates
19247 an object file for the single architecture that GCC was built to
19248 target. Apple's GCC on Darwin does create ``fat'' files if multiple
19249 @option{-arch} options are used; it does so by running the compiler or
19250 linker multiple times and joining the results together with
19251 @file{lipo}.
19252
19253 The subtype of the file created (like @samp{ppc7400} or @samp{ppc970} or
19254 @samp{i686}) is determined by the flags that specify the ISA
19255 that GCC is targeting, like @option{-mcpu} or @option{-march}. The
19256 @option{-force_cpusubtype_ALL} option can be used to override this.
19257
19258 The Darwin tools vary in their behavior when presented with an ISA
19259 mismatch. The assembler, @file{as}, only permits instructions to
19260 be used that are valid for the subtype of the file it is generating,
19261 so you cannot put 64-bit instructions in a @samp{ppc750} object file.
19262 The linker for shared libraries, @file{/usr/bin/libtool}, fails
19263 and prints an error if asked to create a shared library with a less
19264 restrictive subtype than its input files (for instance, trying to put
19265 a @samp{ppc970} object file in a @samp{ppc7400} library). The linker
19266 for executables, @command{ld}, quietly gives the executable the most
19267 restrictive subtype of any of its input files.
19268
19269 @table @gcctabopt
19270 @item -F@var{dir}
19271 @opindex F
19272 Add the framework directory @var{dir} to the head of the list of
19273 directories to be searched for header files. These directories are
19274 interleaved with those specified by @option{-I} options and are
19275 scanned in a left-to-right order.
19276
19277 A framework directory is a directory with frameworks in it. A
19278 framework is a directory with a @file{Headers} and/or
19279 @file{PrivateHeaders} directory contained directly in it that ends
19280 in @file{.framework}. The name of a framework is the name of this
19281 directory excluding the @file{.framework}. Headers associated with
19282 the framework are found in one of those two directories, with
19283 @file{Headers} being searched first. A subframework is a framework
19284 directory that is in a framework's @file{Frameworks} directory.
19285 Includes of subframework headers can only appear in a header of a
19286 framework that contains the subframework, or in a sibling subframework
19287 header. Two subframeworks are siblings if they occur in the same
19288 framework. A subframework should not have the same name as a
19289 framework; a warning is issued if this is violated. Currently a
19290 subframework cannot have subframeworks; in the future, the mechanism
19291 may be extended to support this. The standard frameworks can be found
19292 in @file{/System/Library/Frameworks} and
19293 @file{/Library/Frameworks}. An example include looks like
19294 @code{#include <Framework/header.h>}, where @file{Framework} denotes
19295 the name of the framework and @file{header.h} is found in the
19296 @file{PrivateHeaders} or @file{Headers} directory.
19297
19298 @item -iframework@var{dir}
19299 @opindex iframework
19300 Like @option{-F} except the directory is a treated as a system
19301 directory. The main difference between this @option{-iframework} and
19302 @option{-F} is that with @option{-iframework} the compiler does not
19303 warn about constructs contained within header files found via
19304 @var{dir}. This option is valid only for the C family of languages.
19305
19306 @item -gused
19307 @opindex gused
19308 Emit debugging information for symbols that are used. For stabs
19309 debugging format, this enables @option{-feliminate-unused-debug-symbols}.
19310 This is by default ON@.
19311
19312 @item -gfull
19313 @opindex gfull
19314 Emit debugging information for all symbols and types.
19315
19316 @item -mmacosx-version-min=@var{version}
19317 The earliest version of MacOS X that this executable will run on
19318 is @var{version}. Typical values of @var{version} include @code{10.1},
19319 @code{10.2}, and @code{10.3.9}.
19320
19321 If the compiler was built to use the system's headers by default,
19322 then the default for this option is the system version on which the
19323 compiler is running, otherwise the default is to make choices that
19324 are compatible with as many systems and code bases as possible.
19325
19326 @item -mkernel
19327 @opindex mkernel
19328 Enable kernel development mode. The @option{-mkernel} option sets
19329 @option{-static}, @option{-fno-common}, @option{-fno-use-cxa-atexit},
19330 @option{-fno-exceptions}, @option{-fno-non-call-exceptions},
19331 @option{-fapple-kext}, @option{-fno-weak} and @option{-fno-rtti} where
19332 applicable. This mode also sets @option{-mno-altivec},
19333 @option{-msoft-float}, @option{-fno-builtin} and
19334 @option{-mlong-branch} for PowerPC targets.
19335
19336 @item -mone-byte-bool
19337 @opindex mone-byte-bool
19338 Override the defaults for @code{bool} so that @code{sizeof(bool)==1}.
19339 By default @code{sizeof(bool)} is @code{4} when compiling for
19340 Darwin/PowerPC and @code{1} when compiling for Darwin/x86, so this
19341 option has no effect on x86.
19342
19343 @strong{Warning:} The @option{-mone-byte-bool} switch causes GCC
19344 to generate code that is not binary compatible with code generated
19345 without that switch. Using this switch may require recompiling all
19346 other modules in a program, including system libraries. Use this
19347 switch to conform to a non-default data model.
19348
19349 @item -mfix-and-continue
19350 @itemx -ffix-and-continue
19351 @itemx -findirect-data
19352 @opindex mfix-and-continue
19353 @opindex ffix-and-continue
19354 @opindex findirect-data
19355 Generate code suitable for fast turnaround development, such as to
19356 allow GDB to dynamically load @file{.o} files into already-running
19357 programs. @option{-findirect-data} and @option{-ffix-and-continue}
19358 are provided for backwards compatibility.
19359
19360 @item -all_load
19361 @opindex all_load
19362 Loads all members of static archive libraries.
19363 See man ld(1) for more information.
19364
19365 @item -arch_errors_fatal
19366 @opindex arch_errors_fatal
19367 Cause the errors having to do with files that have the wrong architecture
19368 to be fatal.
19369
19370 @item -bind_at_load
19371 @opindex bind_at_load
19372 Causes the output file to be marked such that the dynamic linker will
19373 bind all undefined references when the file is loaded or launched.
19374
19375 @item -bundle
19376 @opindex bundle
19377 Produce a Mach-o bundle format file.
19378 See man ld(1) for more information.
19379
19380 @item -bundle_loader @var{executable}
19381 @opindex bundle_loader
19382 This option specifies the @var{executable} that will load the build
19383 output file being linked. See man ld(1) for more information.
19384
19385 @item -dynamiclib
19386 @opindex dynamiclib
19387 When passed this option, GCC produces a dynamic library instead of
19388 an executable when linking, using the Darwin @file{libtool} command.
19389
19390 @item -force_cpusubtype_ALL
19391 @opindex force_cpusubtype_ALL
19392 This causes GCC's output file to have the @samp{ALL} subtype, instead of
19393 one controlled by the @option{-mcpu} or @option{-march} option.
19394
19395 @item -allowable_client @var{client_name}
19396 @itemx -client_name
19397 @itemx -compatibility_version
19398 @itemx -current_version
19399 @itemx -dead_strip
19400 @itemx -dependency-file
19401 @itemx -dylib_file
19402 @itemx -dylinker_install_name
19403 @itemx -dynamic
19404 @itemx -exported_symbols_list
19405 @itemx -filelist
19406 @need 800
19407 @itemx -flat_namespace
19408 @itemx -force_flat_namespace
19409 @itemx -headerpad_max_install_names
19410 @itemx -image_base
19411 @itemx -init
19412 @itemx -install_name
19413 @itemx -keep_private_externs
19414 @itemx -multi_module
19415 @itemx -multiply_defined
19416 @itemx -multiply_defined_unused
19417 @need 800
19418 @itemx -noall_load
19419 @itemx -no_dead_strip_inits_and_terms
19420 @itemx -nofixprebinding
19421 @itemx -nomultidefs
19422 @itemx -noprebind
19423 @itemx -noseglinkedit
19424 @itemx -pagezero_size
19425 @itemx -prebind
19426 @itemx -prebind_all_twolevel_modules
19427 @itemx -private_bundle
19428 @need 800
19429 @itemx -read_only_relocs
19430 @itemx -sectalign
19431 @itemx -sectobjectsymbols
19432 @itemx -whyload
19433 @itemx -seg1addr
19434 @itemx -sectcreate
19435 @itemx -sectobjectsymbols
19436 @itemx -sectorder
19437 @itemx -segaddr
19438 @itemx -segs_read_only_addr
19439 @need 800
19440 @itemx -segs_read_write_addr
19441 @itemx -seg_addr_table
19442 @itemx -seg_addr_table_filename
19443 @itemx -seglinkedit
19444 @itemx -segprot
19445 @itemx -segs_read_only_addr
19446 @itemx -segs_read_write_addr
19447 @itemx -single_module
19448 @itemx -static
19449 @itemx -sub_library
19450 @need 800
19451 @itemx -sub_umbrella
19452 @itemx -twolevel_namespace
19453 @itemx -umbrella
19454 @itemx -undefined
19455 @itemx -unexported_symbols_list
19456 @itemx -weak_reference_mismatches
19457 @itemx -whatsloaded
19458 @opindex allowable_client
19459 @opindex client_name
19460 @opindex compatibility_version
19461 @opindex current_version
19462 @opindex dead_strip
19463 @opindex dependency-file
19464 @opindex dylib_file
19465 @opindex dylinker_install_name
19466 @opindex dynamic
19467 @opindex exported_symbols_list
19468 @opindex filelist
19469 @opindex flat_namespace
19470 @opindex force_flat_namespace
19471 @opindex headerpad_max_install_names
19472 @opindex image_base
19473 @opindex init
19474 @opindex install_name
19475 @opindex keep_private_externs
19476 @opindex multi_module
19477 @opindex multiply_defined
19478 @opindex multiply_defined_unused
19479 @opindex noall_load
19480 @opindex no_dead_strip_inits_and_terms
19481 @opindex nofixprebinding
19482 @opindex nomultidefs
19483 @opindex noprebind
19484 @opindex noseglinkedit
19485 @opindex pagezero_size
19486 @opindex prebind
19487 @opindex prebind_all_twolevel_modules
19488 @opindex private_bundle
19489 @opindex read_only_relocs
19490 @opindex sectalign
19491 @opindex sectobjectsymbols
19492 @opindex whyload
19493 @opindex seg1addr
19494 @opindex sectcreate
19495 @opindex sectobjectsymbols
19496 @opindex sectorder
19497 @opindex segaddr
19498 @opindex segs_read_only_addr
19499 @opindex segs_read_write_addr
19500 @opindex seg_addr_table
19501 @opindex seg_addr_table_filename
19502 @opindex seglinkedit
19503 @opindex segprot
19504 @opindex segs_read_only_addr
19505 @opindex segs_read_write_addr
19506 @opindex single_module
19507 @opindex static
19508 @opindex sub_library
19509 @opindex sub_umbrella
19510 @opindex twolevel_namespace
19511 @opindex umbrella
19512 @opindex undefined
19513 @opindex unexported_symbols_list
19514 @opindex weak_reference_mismatches
19515 @opindex whatsloaded
19516 These options are passed to the Darwin linker. The Darwin linker man page
19517 describes them in detail.
19518 @end table
19519
19520 @node DEC Alpha Options
19521 @subsection DEC Alpha Options
19522
19523 These @samp{-m} options are defined for the DEC Alpha implementations:
19524
19525 @table @gcctabopt
19526 @item -mno-soft-float
19527 @itemx -msoft-float
19528 @opindex mno-soft-float
19529 @opindex msoft-float
19530 Use (do not use) the hardware floating-point instructions for
19531 floating-point operations. When @option{-msoft-float} is specified,
19532 functions in @file{libgcc.a} are used to perform floating-point
19533 operations. Unless they are replaced by routines that emulate the
19534 floating-point operations, or compiled in such a way as to call such
19535 emulations routines, these routines issue floating-point
19536 operations. If you are compiling for an Alpha without floating-point
19537 operations, you must ensure that the library is built so as not to call
19538 them.
19539
19540 Note that Alpha implementations without floating-point operations are
19541 required to have floating-point registers.
19542
19543 @item -mfp-reg
19544 @itemx -mno-fp-regs
19545 @opindex mfp-reg
19546 @opindex mno-fp-regs
19547 Generate code that uses (does not use) the floating-point register set.
19548 @option{-mno-fp-regs} implies @option{-msoft-float}. If the floating-point
19549 register set is not used, floating-point operands are passed in integer
19550 registers as if they were integers and floating-point results are passed
19551 in @code{$0} instead of @code{$f0}. This is a non-standard calling sequence,
19552 so any function with a floating-point argument or return value called by code
19553 compiled with @option{-mno-fp-regs} must also be compiled with that
19554 option.
19555
19556 A typical use of this option is building a kernel that does not use,
19557 and hence need not save and restore, any floating-point registers.
19558
19559 @item -mieee
19560 @opindex mieee
19561 The Alpha architecture implements floating-point hardware optimized for
19562 maximum performance. It is mostly compliant with the IEEE floating-point
19563 standard. However, for full compliance, software assistance is
19564 required. This option generates code fully IEEE-compliant code
19565 @emph{except} that the @var{inexact-flag} is not maintained (see below).
19566 If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
19567 defined during compilation. The resulting code is less efficient but is
19568 able to correctly support denormalized numbers and exceptional IEEE
19569 values such as not-a-number and plus/minus infinity. Other Alpha
19570 compilers call this option @option{-ieee_with_no_inexact}.
19571
19572 @item -mieee-with-inexact
19573 @opindex mieee-with-inexact
19574 This is like @option{-mieee} except the generated code also maintains
19575 the IEEE @var{inexact-flag}. Turning on this option causes the
19576 generated code to implement fully-compliant IEEE math. In addition to
19577 @code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
19578 macro. On some Alpha implementations the resulting code may execute
19579 significantly slower than the code generated by default. Since there is
19580 very little code that depends on the @var{inexact-flag}, you should
19581 normally not specify this option. Other Alpha compilers call this
19582 option @option{-ieee_with_inexact}.
19583
19584 @item -mfp-trap-mode=@var{trap-mode}
19585 @opindex mfp-trap-mode
19586 This option controls what floating-point related traps are enabled.
19587 Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
19588 The trap mode can be set to one of four values:
19589
19590 @table @samp
19591 @item n
19592 This is the default (normal) setting. The only traps that are enabled
19593 are the ones that cannot be disabled in software (e.g., division by zero
19594 trap).
19595
19596 @item u
19597 In addition to the traps enabled by @samp{n}, underflow traps are enabled
19598 as well.
19599
19600 @item su
19601 Like @samp{u}, but the instructions are marked to be safe for software
19602 completion (see Alpha architecture manual for details).
19603
19604 @item sui
19605 Like @samp{su}, but inexact traps are enabled as well.
19606 @end table
19607
19608 @item -mfp-rounding-mode=@var{rounding-mode}
19609 @opindex mfp-rounding-mode
19610 Selects the IEEE rounding mode. Other Alpha compilers call this option
19611 @option{-fprm @var{rounding-mode}}. The @var{rounding-mode} can be one
19612 of:
19613
19614 @table @samp
19615 @item n
19616 Normal IEEE rounding mode. Floating-point numbers are rounded towards
19617 the nearest machine number or towards the even machine number in case
19618 of a tie.
19619
19620 @item m
19621 Round towards minus infinity.
19622
19623 @item c
19624 Chopped rounding mode. Floating-point numbers are rounded towards zero.
19625
19626 @item d
19627 Dynamic rounding mode. A field in the floating-point control register
19628 (@var{fpcr}, see Alpha architecture reference manual) controls the
19629 rounding mode in effect. The C library initializes this register for
19630 rounding towards plus infinity. Thus, unless your program modifies the
19631 @var{fpcr}, @samp{d} corresponds to round towards plus infinity.
19632 @end table
19633
19634 @item -mtrap-precision=@var{trap-precision}
19635 @opindex mtrap-precision
19636 In the Alpha architecture, floating-point traps are imprecise. This
19637 means without software assistance it is impossible to recover from a
19638 floating trap and program execution normally needs to be terminated.
19639 GCC can generate code that can assist operating system trap handlers
19640 in determining the exact location that caused a floating-point trap.
19641 Depending on the requirements of an application, different levels of
19642 precisions can be selected:
19643
19644 @table @samp
19645 @item p
19646 Program precision. This option is the default and means a trap handler
19647 can only identify which program caused a floating-point exception.
19648
19649 @item f
19650 Function precision. The trap handler can determine the function that
19651 caused a floating-point exception.
19652
19653 @item i
19654 Instruction precision. The trap handler can determine the exact
19655 instruction that caused a floating-point exception.
19656 @end table
19657
19658 Other Alpha compilers provide the equivalent options called
19659 @option{-scope_safe} and @option{-resumption_safe}.
19660
19661 @item -mieee-conformant
19662 @opindex mieee-conformant
19663 This option marks the generated code as IEEE conformant. You must not
19664 use this option unless you also specify @option{-mtrap-precision=i} and either
19665 @option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}. Its only effect
19666 is to emit the line @samp{.eflag 48} in the function prologue of the
19667 generated assembly file.
19668
19669 @item -mbuild-constants
19670 @opindex mbuild-constants
19671 Normally GCC examines a 32- or 64-bit integer constant to
19672 see if it can construct it from smaller constants in two or three
19673 instructions. If it cannot, it outputs the constant as a literal and
19674 generates code to load it from the data segment at run time.
19675
19676 Use this option to require GCC to construct @emph{all} integer constants
19677 using code, even if it takes more instructions (the maximum is six).
19678
19679 You typically use this option to build a shared library dynamic
19680 loader. Itself a shared library, it must relocate itself in memory
19681 before it can find the variables and constants in its own data segment.
19682
19683 @item -mbwx
19684 @itemx -mno-bwx
19685 @itemx -mcix
19686 @itemx -mno-cix
19687 @itemx -mfix
19688 @itemx -mno-fix
19689 @itemx -mmax
19690 @itemx -mno-max
19691 @opindex mbwx
19692 @opindex mno-bwx
19693 @opindex mcix
19694 @opindex mno-cix
19695 @opindex mfix
19696 @opindex mno-fix
19697 @opindex mmax
19698 @opindex mno-max
19699 Indicate whether GCC should generate code to use the optional BWX,
19700 CIX, FIX and MAX instruction sets. The default is to use the instruction
19701 sets supported by the CPU type specified via @option{-mcpu=} option or that
19702 of the CPU on which GCC was built if none is specified.
19703
19704 @item -mfloat-vax
19705 @itemx -mfloat-ieee
19706 @opindex mfloat-vax
19707 @opindex mfloat-ieee
19708 Generate code that uses (does not use) VAX F and G floating-point
19709 arithmetic instead of IEEE single and double precision.
19710
19711 @item -mexplicit-relocs
19712 @itemx -mno-explicit-relocs
19713 @opindex mexplicit-relocs
19714 @opindex mno-explicit-relocs
19715 Older Alpha assemblers provided no way to generate symbol relocations
19716 except via assembler macros. Use of these macros does not allow
19717 optimal instruction scheduling. GNU binutils as of version 2.12
19718 supports a new syntax that allows the compiler to explicitly mark
19719 which relocations should apply to which instructions. This option
19720 is mostly useful for debugging, as GCC detects the capabilities of
19721 the assembler when it is built and sets the default accordingly.
19722
19723 @item -msmall-data
19724 @itemx -mlarge-data
19725 @opindex msmall-data
19726 @opindex mlarge-data
19727 When @option{-mexplicit-relocs} is in effect, static data is
19728 accessed via @dfn{gp-relative} relocations. When @option{-msmall-data}
19729 is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
19730 (the @code{.sdata} and @code{.sbss} sections) and are accessed via
19731 16-bit relocations off of the @code{$gp} register. This limits the
19732 size of the small data area to 64KB, but allows the variables to be
19733 directly accessed via a single instruction.
19734
19735 The default is @option{-mlarge-data}. With this option the data area
19736 is limited to just below 2GB@. Programs that require more than 2GB of
19737 data must use @code{malloc} or @code{mmap} to allocate the data in the
19738 heap instead of in the program's data segment.
19739
19740 When generating code for shared libraries, @option{-fpic} implies
19741 @option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.
19742
19743 @item -msmall-text
19744 @itemx -mlarge-text
19745 @opindex msmall-text
19746 @opindex mlarge-text
19747 When @option{-msmall-text} is used, the compiler assumes that the
19748 code of the entire program (or shared library) fits in 4MB, and is
19749 thus reachable with a branch instruction. When @option{-msmall-data}
19750 is used, the compiler can assume that all local symbols share the
19751 same @code{$gp} value, and thus reduce the number of instructions
19752 required for a function call from 4 to 1.
19753
19754 The default is @option{-mlarge-text}.
19755
19756 @item -mcpu=@var{cpu_type}
19757 @opindex mcpu
19758 Set the instruction set and instruction scheduling parameters for
19759 machine type @var{cpu_type}. You can specify either the @samp{EV}
19760 style name or the corresponding chip number. GCC supports scheduling
19761 parameters for the EV4, EV5 and EV6 family of processors and
19762 chooses the default values for the instruction set from the processor
19763 you specify. If you do not specify a processor type, GCC defaults
19764 to the processor on which the compiler was built.
19765
19766 Supported values for @var{cpu_type} are
19767
19768 @table @samp
19769 @item ev4
19770 @itemx ev45
19771 @itemx 21064
19772 Schedules as an EV4 and has no instruction set extensions.
19773
19774 @item ev5
19775 @itemx 21164
19776 Schedules as an EV5 and has no instruction set extensions.
19777
19778 @item ev56
19779 @itemx 21164a
19780 Schedules as an EV5 and supports the BWX extension.
19781
19782 @item pca56
19783 @itemx 21164pc
19784 @itemx 21164PC
19785 Schedules as an EV5 and supports the BWX and MAX extensions.
19786
19787 @item ev6
19788 @itemx 21264
19789 Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
19790
19791 @item ev67
19792 @itemx 21264a
19793 Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
19794 @end table
19795
19796 Native toolchains also support the value @samp{native},
19797 which selects the best architecture option for the host processor.
19798 @option{-mcpu=native} has no effect if GCC does not recognize
19799 the processor.
19800
19801 @item -mtune=@var{cpu_type}
19802 @opindex mtune
19803 Set only the instruction scheduling parameters for machine type
19804 @var{cpu_type}. The instruction set is not changed.
19805
19806 Native toolchains also support the value @samp{native},
19807 which selects the best architecture option for the host processor.
19808 @option{-mtune=native} has no effect if GCC does not recognize
19809 the processor.
19810
19811 @item -mmemory-latency=@var{time}
19812 @opindex mmemory-latency
19813 Sets the latency the scheduler should assume for typical memory
19814 references as seen by the application. This number is highly
19815 dependent on the memory access patterns used by the application
19816 and the size of the external cache on the machine.
19817
19818 Valid options for @var{time} are
19819
19820 @table @samp
19821 @item @var{number}
19822 A decimal number representing clock cycles.
19823
19824 @item L1
19825 @itemx L2
19826 @itemx L3
19827 @itemx main
19828 The compiler contains estimates of the number of clock cycles for
19829 ``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
19830 (also called Dcache, Scache, and Bcache), as well as to main memory.
19831 Note that L3 is only valid for EV5.
19832
19833 @end table
19834 @end table
19835
19836 @node eBPF Options
19837 @subsection eBPF Options
19838 @cindex eBPF Options
19839
19840 @table @gcctabopt
19841 @item -mframe-limit=@var{bytes}
19842 This specifies the hard limit for frame sizes, in bytes. Currently,
19843 the value that can be specified should be less than or equal to
19844 @samp{32767}. Defaults to whatever limit is imposed by the version of
19845 the Linux kernel targeted.
19846
19847 @item -mkernel=@var{version}
19848 @opindex mkernel
19849 This specifies the minimum version of the kernel that will run the
19850 compiled program. GCC uses this version to determine which
19851 instructions to use, what kernel helpers to allow, etc. Currently,
19852 @var{version} can be one of @samp{4.0}, @samp{4.1}, @samp{4.2},
19853 @samp{4.3}, @samp{4.4}, @samp{4.5}, @samp{4.6}, @samp{4.7},
19854 @samp{4.8}, @samp{4.9}, @samp{4.10}, @samp{4.11}, @samp{4.12},
19855 @samp{4.13}, @samp{4.14}, @samp{4.15}, @samp{4.16}, @samp{4.17},
19856 @samp{4.18}, @samp{4.19}, @samp{4.20}, @samp{5.0}, @samp{5.1},
19857 @samp{5.2}, @samp{latest} and @samp{native}.
19858
19859 @item -mbig-endian
19860 @opindex mbig-endian
19861 Generate code for a big-endian target.
19862
19863 @item -mlittle-endian
19864 @opindex mlittle-endian
19865 Generate code for a little-endian target. This is the default.
19866 @end table
19867
19868 @node FR30 Options
19869 @subsection FR30 Options
19870 @cindex FR30 Options
19871
19872 These options are defined specifically for the FR30 port.
19873
19874 @table @gcctabopt
19875
19876 @item -msmall-model
19877 @opindex msmall-model
19878 Use the small address space model. This can produce smaller code, but
19879 it does assume that all symbolic values and addresses fit into a
19880 20-bit range.
19881
19882 @item -mno-lsim
19883 @opindex mno-lsim
19884 Assume that runtime support has been provided and so there is no need
19885 to include the simulator library (@file{libsim.a}) on the linker
19886 command line.
19887
19888 @end table
19889
19890 @node FT32 Options
19891 @subsection FT32 Options
19892 @cindex FT32 Options
19893
19894 These options are defined specifically for the FT32 port.
19895
19896 @table @gcctabopt
19897
19898 @item -msim
19899 @opindex msim
19900 Specifies that the program will be run on the simulator. This causes
19901 an alternate runtime startup and library to be linked.
19902 You must not use this option when generating programs that will run on
19903 real hardware; you must provide your own runtime library for whatever
19904 I/O functions are needed.
19905
19906 @item -mlra
19907 @opindex mlra
19908 Enable Local Register Allocation. This is still experimental for FT32,
19909 so by default the compiler uses standard reload.
19910
19911 @item -mnodiv
19912 @opindex mnodiv
19913 Do not use div and mod instructions.
19914
19915 @item -mft32b
19916 @opindex mft32b
19917 Enable use of the extended instructions of the FT32B processor.
19918
19919 @item -mcompress
19920 @opindex mcompress
19921 Compress all code using the Ft32B code compression scheme.
19922
19923 @item -mnopm
19924 @opindex mnopm
19925 Do not generate code that reads program memory.
19926
19927 @end table
19928
19929 @node FRV Options
19930 @subsection FRV Options
19931 @cindex FRV Options
19932
19933 @table @gcctabopt
19934 @item -mgpr-32
19935 @opindex mgpr-32
19936
19937 Only use the first 32 general-purpose registers.
19938
19939 @item -mgpr-64
19940 @opindex mgpr-64
19941
19942 Use all 64 general-purpose registers.
19943
19944 @item -mfpr-32
19945 @opindex mfpr-32
19946
19947 Use only the first 32 floating-point registers.
19948
19949 @item -mfpr-64
19950 @opindex mfpr-64
19951
19952 Use all 64 floating-point registers.
19953
19954 @item -mhard-float
19955 @opindex mhard-float
19956
19957 Use hardware instructions for floating-point operations.
19958
19959 @item -msoft-float
19960 @opindex msoft-float
19961
19962 Use library routines for floating-point operations.
19963
19964 @item -malloc-cc
19965 @opindex malloc-cc
19966
19967 Dynamically allocate condition code registers.
19968
19969 @item -mfixed-cc
19970 @opindex mfixed-cc
19971
19972 Do not try to dynamically allocate condition code registers, only
19973 use @code{icc0} and @code{fcc0}.
19974
19975 @item -mdword
19976 @opindex mdword
19977
19978 Change ABI to use double word insns.
19979
19980 @item -mno-dword
19981 @opindex mno-dword
19982 @opindex mdword
19983
19984 Do not use double word instructions.
19985
19986 @item -mdouble
19987 @opindex mdouble
19988
19989 Use floating-point double instructions.
19990
19991 @item -mno-double
19992 @opindex mno-double
19993
19994 Do not use floating-point double instructions.
19995
19996 @item -mmedia
19997 @opindex mmedia
19998
19999 Use media instructions.
20000
20001 @item -mno-media
20002 @opindex mno-media
20003
20004 Do not use media instructions.
20005
20006 @item -mmuladd
20007 @opindex mmuladd
20008
20009 Use multiply and add/subtract instructions.
20010
20011 @item -mno-muladd
20012 @opindex mno-muladd
20013
20014 Do not use multiply and add/subtract instructions.
20015
20016 @item -mfdpic
20017 @opindex mfdpic
20018
20019 Select the FDPIC ABI, which uses function descriptors to represent
20020 pointers to functions. Without any PIC/PIE-related options, it
20021 implies @option{-fPIE}. With @option{-fpic} or @option{-fpie}, it
20022 assumes GOT entries and small data are within a 12-bit range from the
20023 GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets
20024 are computed with 32 bits.
20025 With a @samp{bfin-elf} target, this option implies @option{-msim}.
20026
20027 @item -minline-plt
20028 @opindex minline-plt
20029
20030 Enable inlining of PLT entries in function calls to functions that are
20031 not known to bind locally. It has no effect without @option{-mfdpic}.
20032 It's enabled by default if optimizing for speed and compiling for
20033 shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an
20034 optimization option such as @option{-O3} or above is present in the
20035 command line.
20036
20037 @item -mTLS
20038 @opindex mTLS
20039
20040 Assume a large TLS segment when generating thread-local code.
20041
20042 @item -mtls
20043 @opindex mtls
20044
20045 Do not assume a large TLS segment when generating thread-local code.
20046
20047 @item -mgprel-ro
20048 @opindex mgprel-ro
20049
20050 Enable the use of @code{GPREL} relocations in the FDPIC ABI for data
20051 that is known to be in read-only sections. It's enabled by default,
20052 except for @option{-fpic} or @option{-fpie}: even though it may help
20053 make the global offset table smaller, it trades 1 instruction for 4.
20054 With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4,
20055 one of which may be shared by multiple symbols, and it avoids the need
20056 for a GOT entry for the referenced symbol, so it's more likely to be a
20057 win. If it is not, @option{-mno-gprel-ro} can be used to disable it.
20058
20059 @item -multilib-library-pic
20060 @opindex multilib-library-pic
20061
20062 Link with the (library, not FD) pic libraries. It's implied by
20063 @option{-mlibrary-pic}, as well as by @option{-fPIC} and
20064 @option{-fpic} without @option{-mfdpic}. You should never have to use
20065 it explicitly.
20066
20067 @item -mlinked-fp
20068 @opindex mlinked-fp
20069
20070 Follow the EABI requirement of always creating a frame pointer whenever
20071 a stack frame is allocated. This option is enabled by default and can
20072 be disabled with @option{-mno-linked-fp}.
20073
20074 @item -mlong-calls
20075 @opindex mlong-calls
20076
20077 Use indirect addressing to call functions outside the current
20078 compilation unit. This allows the functions to be placed anywhere
20079 within the 32-bit address space.
20080
20081 @item -malign-labels
20082 @opindex malign-labels
20083
20084 Try to align labels to an 8-byte boundary by inserting NOPs into the
20085 previous packet. This option only has an effect when VLIW packing
20086 is enabled. It doesn't create new packets; it merely adds NOPs to
20087 existing ones.
20088
20089 @item -mlibrary-pic
20090 @opindex mlibrary-pic
20091
20092 Generate position-independent EABI code.
20093
20094 @item -macc-4
20095 @opindex macc-4
20096
20097 Use only the first four media accumulator registers.
20098
20099 @item -macc-8
20100 @opindex macc-8
20101
20102 Use all eight media accumulator registers.
20103
20104 @item -mpack
20105 @opindex mpack
20106
20107 Pack VLIW instructions.
20108
20109 @item -mno-pack
20110 @opindex mno-pack
20111
20112 Do not pack VLIW instructions.
20113
20114 @item -mno-eflags
20115 @opindex mno-eflags
20116
20117 Do not mark ABI switches in e_flags.
20118
20119 @item -mcond-move
20120 @opindex mcond-move
20121
20122 Enable the use of conditional-move instructions (default).
20123
20124 This switch is mainly for debugging the compiler and will likely be removed
20125 in a future version.
20126
20127 @item -mno-cond-move
20128 @opindex mno-cond-move
20129
20130 Disable the use of conditional-move instructions.
20131
20132 This switch is mainly for debugging the compiler and will likely be removed
20133 in a future version.
20134
20135 @item -mscc
20136 @opindex mscc
20137
20138 Enable the use of conditional set instructions (default).
20139
20140 This switch is mainly for debugging the compiler and will likely be removed
20141 in a future version.
20142
20143 @item -mno-scc
20144 @opindex mno-scc
20145
20146 Disable the use of conditional set instructions.
20147
20148 This switch is mainly for debugging the compiler and will likely be removed
20149 in a future version.
20150
20151 @item -mcond-exec
20152 @opindex mcond-exec
20153
20154 Enable the use of conditional execution (default).
20155
20156 This switch is mainly for debugging the compiler and will likely be removed
20157 in a future version.
20158
20159 @item -mno-cond-exec
20160 @opindex mno-cond-exec
20161
20162 Disable the use of conditional execution.
20163
20164 This switch is mainly for debugging the compiler and will likely be removed
20165 in a future version.
20166
20167 @item -mvliw-branch
20168 @opindex mvliw-branch
20169
20170 Run a pass to pack branches into VLIW instructions (default).
20171
20172 This switch is mainly for debugging the compiler and will likely be removed
20173 in a future version.
20174
20175 @item -mno-vliw-branch
20176 @opindex mno-vliw-branch
20177
20178 Do not run a pass to pack branches into VLIW instructions.
20179
20180 This switch is mainly for debugging the compiler and will likely be removed
20181 in a future version.
20182
20183 @item -mmulti-cond-exec
20184 @opindex mmulti-cond-exec
20185
20186 Enable optimization of @code{&&} and @code{||} in conditional execution
20187 (default).
20188
20189 This switch is mainly for debugging the compiler and will likely be removed
20190 in a future version.
20191
20192 @item -mno-multi-cond-exec
20193 @opindex mno-multi-cond-exec
20194
20195 Disable optimization of @code{&&} and @code{||} in conditional execution.
20196
20197 This switch is mainly for debugging the compiler and will likely be removed
20198 in a future version.
20199
20200 @item -mnested-cond-exec
20201 @opindex mnested-cond-exec
20202
20203 Enable nested conditional execution optimizations (default).
20204
20205 This switch is mainly for debugging the compiler and will likely be removed
20206 in a future version.
20207
20208 @item -mno-nested-cond-exec
20209 @opindex mno-nested-cond-exec
20210
20211 Disable nested conditional execution optimizations.
20212
20213 This switch is mainly for debugging the compiler and will likely be removed
20214 in a future version.
20215
20216 @item -moptimize-membar
20217 @opindex moptimize-membar
20218
20219 This switch removes redundant @code{membar} instructions from the
20220 compiler-generated code. It is enabled by default.
20221
20222 @item -mno-optimize-membar
20223 @opindex mno-optimize-membar
20224 @opindex moptimize-membar
20225
20226 This switch disables the automatic removal of redundant @code{membar}
20227 instructions from the generated code.
20228
20229 @item -mtomcat-stats
20230 @opindex mtomcat-stats
20231
20232 Cause gas to print out tomcat statistics.
20233
20234 @item -mcpu=@var{cpu}
20235 @opindex mcpu
20236
20237 Select the processor type for which to generate code. Possible values are
20238 @samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450},
20239 @samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}.
20240
20241 @end table
20242
20243 @node GNU/Linux Options
20244 @subsection GNU/Linux Options
20245
20246 These @samp{-m} options are defined for GNU/Linux targets:
20247
20248 @table @gcctabopt
20249 @item -mglibc
20250 @opindex mglibc
20251 Use the GNU C library. This is the default except
20252 on @samp{*-*-linux-*uclibc*}, @samp{*-*-linux-*musl*} and
20253 @samp{*-*-linux-*android*} targets.
20254
20255 @item -muclibc
20256 @opindex muclibc
20257 Use uClibc C library. This is the default on
20258 @samp{*-*-linux-*uclibc*} targets.
20259
20260 @item -mmusl
20261 @opindex mmusl
20262 Use the musl C library. This is the default on
20263 @samp{*-*-linux-*musl*} targets.
20264
20265 @item -mbionic
20266 @opindex mbionic
20267 Use Bionic C library. This is the default on
20268 @samp{*-*-linux-*android*} targets.
20269
20270 @item -mandroid
20271 @opindex mandroid
20272 Compile code compatible with Android platform. This is the default on
20273 @samp{*-*-linux-*android*} targets.
20274
20275 When compiling, this option enables @option{-mbionic}, @option{-fPIC},
20276 @option{-fno-exceptions} and @option{-fno-rtti} by default. When linking,
20277 this option makes the GCC driver pass Android-specific options to the linker.
20278 Finally, this option causes the preprocessor macro @code{__ANDROID__}
20279 to be defined.
20280
20281 @item -tno-android-cc
20282 @opindex tno-android-cc
20283 Disable compilation effects of @option{-mandroid}, i.e., do not enable
20284 @option{-mbionic}, @option{-fPIC}, @option{-fno-exceptions} and
20285 @option{-fno-rtti} by default.
20286
20287 @item -tno-android-ld
20288 @opindex tno-android-ld
20289 Disable linking effects of @option{-mandroid}, i.e., pass standard Linux
20290 linking options to the linker.
20291
20292 @end table
20293
20294 @node H8/300 Options
20295 @subsection H8/300 Options
20296
20297 These @samp{-m} options are defined for the H8/300 implementations:
20298
20299 @table @gcctabopt
20300 @item -mrelax
20301 @opindex mrelax
20302 Shorten some address references at link time, when possible; uses the
20303 linker option @option{-relax}. @xref{H8/300,, @code{ld} and the H8/300,
20304 ld, Using ld}, for a fuller description.
20305
20306 @item -mh
20307 @opindex mh
20308 Generate code for the H8/300H@.
20309
20310 @item -ms
20311 @opindex ms
20312 Generate code for the H8S@.
20313
20314 @item -mn
20315 @opindex mn
20316 Generate code for the H8S and H8/300H in the normal mode. This switch
20317 must be used either with @option{-mh} or @option{-ms}.
20318
20319 @item -ms2600
20320 @opindex ms2600
20321 Generate code for the H8S/2600. This switch must be used with @option{-ms}.
20322
20323 @item -mexr
20324 @opindex mexr
20325 Extended registers are stored on stack before execution of function
20326 with monitor attribute. Default option is @option{-mexr}.
20327 This option is valid only for H8S targets.
20328
20329 @item -mno-exr
20330 @opindex mno-exr
20331 @opindex mexr
20332 Extended registers are not stored on stack before execution of function
20333 with monitor attribute. Default option is @option{-mno-exr}.
20334 This option is valid only for H8S targets.
20335
20336 @item -mint32
20337 @opindex mint32
20338 Make @code{int} data 32 bits by default.
20339
20340 @item -malign-300
20341 @opindex malign-300
20342 On the H8/300H and H8S, use the same alignment rules as for the H8/300.
20343 The default for the H8/300H and H8S is to align longs and floats on
20344 4-byte boundaries.
20345 @option{-malign-300} causes them to be aligned on 2-byte boundaries.
20346 This option has no effect on the H8/300.
20347 @end table
20348
20349 @node HPPA Options
20350 @subsection HPPA Options
20351 @cindex HPPA Options
20352
20353 These @samp{-m} options are defined for the HPPA family of computers:
20354
20355 @table @gcctabopt
20356 @item -march=@var{architecture-type}
20357 @opindex march
20358 Generate code for the specified architecture. The choices for
20359 @var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
20360 1.1, and @samp{2.0} for PA 2.0 processors. Refer to
20361 @file{/usr/lib/sched.models} on an HP-UX system to determine the proper
20362 architecture option for your machine. Code compiled for lower numbered
20363 architectures runs on higher numbered architectures, but not the
20364 other way around.
20365
20366 @item -mpa-risc-1-0
20367 @itemx -mpa-risc-1-1
20368 @itemx -mpa-risc-2-0
20369 @opindex mpa-risc-1-0
20370 @opindex mpa-risc-1-1
20371 @opindex mpa-risc-2-0
20372 Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively.
20373
20374 @item -mcaller-copies
20375 @opindex mcaller-copies
20376 The caller copies function arguments passed by hidden reference. This
20377 option should be used with care as it is not compatible with the default
20378 32-bit runtime. However, only aggregates larger than eight bytes are
20379 passed by hidden reference and the option provides better compatibility
20380 with OpenMP.
20381
20382 @item -mjump-in-delay
20383 @opindex mjump-in-delay
20384 This option is ignored and provided for compatibility purposes only.
20385
20386 @item -mdisable-fpregs
20387 @opindex mdisable-fpregs
20388 Prevent floating-point registers from being used in any manner. This is
20389 necessary for compiling kernels that perform lazy context switching of
20390 floating-point registers. If you use this option and attempt to perform
20391 floating-point operations, the compiler aborts.
20392
20393 @item -mdisable-indexing
20394 @opindex mdisable-indexing
20395 Prevent the compiler from using indexing address modes. This avoids some
20396 rather obscure problems when compiling MIG generated code under MACH@.
20397
20398 @item -mno-space-regs
20399 @opindex mno-space-regs
20400 @opindex mspace-regs
20401 Generate code that assumes the target has no space registers. This allows
20402 GCC to generate faster indirect calls and use unscaled index address modes.
20403
20404 Such code is suitable for level 0 PA systems and kernels.
20405
20406 @item -mfast-indirect-calls
20407 @opindex mfast-indirect-calls
20408 Generate code that assumes calls never cross space boundaries. This
20409 allows GCC to emit code that performs faster indirect calls.
20410
20411 This option does not work in the presence of shared libraries or nested
20412 functions.
20413
20414 @item -mfixed-range=@var{register-range}
20415 @opindex mfixed-range
20416 Generate code treating the given register range as fixed registers.
20417 A fixed register is one that the register allocator cannot use. This is
20418 useful when compiling kernel code. A register range is specified as
20419 two registers separated by a dash. Multiple register ranges can be
20420 specified separated by a comma.
20421
20422 @item -mlong-load-store
20423 @opindex mlong-load-store
20424 Generate 3-instruction load and store sequences as sometimes required by
20425 the HP-UX 10 linker. This is equivalent to the @samp{+k} option to
20426 the HP compilers.
20427
20428 @item -mportable-runtime
20429 @opindex mportable-runtime
20430 Use the portable calling conventions proposed by HP for ELF systems.
20431
20432 @item -mgas
20433 @opindex mgas
20434 Enable the use of assembler directives only GAS understands.
20435
20436 @item -mschedule=@var{cpu-type}
20437 @opindex mschedule
20438 Schedule code according to the constraints for the machine type
20439 @var{cpu-type}. The choices for @var{cpu-type} are @samp{700}
20440 @samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}. Refer
20441 to @file{/usr/lib/sched.models} on an HP-UX system to determine the
20442 proper scheduling option for your machine. The default scheduling is
20443 @samp{8000}.
20444
20445 @item -mlinker-opt
20446 @opindex mlinker-opt
20447 Enable the optimization pass in the HP-UX linker. Note this makes symbolic
20448 debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9
20449 linkers in which they give bogus error messages when linking some programs.
20450
20451 @item -msoft-float
20452 @opindex msoft-float
20453 Generate output containing library calls for floating point.
20454 @strong{Warning:} the requisite libraries are not available for all HPPA
20455 targets. Normally the facilities of the machine's usual C compiler are
20456 used, but this cannot be done directly in cross-compilation. You must make
20457 your own arrangements to provide suitable library functions for
20458 cross-compilation.
20459
20460 @option{-msoft-float} changes the calling convention in the output file;
20461 therefore, it is only useful if you compile @emph{all} of a program with
20462 this option. In particular, you need to compile @file{libgcc.a}, the
20463 library that comes with GCC, with @option{-msoft-float} in order for
20464 this to work.
20465
20466 @item -msio
20467 @opindex msio
20468 Generate the predefine, @code{_SIO}, for server IO@. The default is
20469 @option{-mwsio}. This generates the predefines, @code{__hp9000s700},
20470 @code{__hp9000s700__} and @code{_WSIO}, for workstation IO@. These
20471 options are available under HP-UX and HI-UX@.
20472
20473 @item -mgnu-ld
20474 @opindex mgnu-ld
20475 Use options specific to GNU @command{ld}.
20476 This passes @option{-shared} to @command{ld} when
20477 building a shared library. It is the default when GCC is configured,
20478 explicitly or implicitly, with the GNU linker. This option does not
20479 affect which @command{ld} is called; it only changes what parameters
20480 are passed to that @command{ld}.
20481 The @command{ld} that is called is determined by the
20482 @option{--with-ld} configure option, GCC's program search path, and
20483 finally by the user's @env{PATH}. The linker used by GCC can be printed
20484 using @samp{which `gcc -print-prog-name=ld`}. This option is only available
20485 on the 64-bit HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
20486
20487 @item -mhp-ld
20488 @opindex mhp-ld
20489 Use options specific to HP @command{ld}.
20490 This passes @option{-b} to @command{ld} when building
20491 a shared library and passes @option{+Accept TypeMismatch} to @command{ld} on all
20492 links. It is the default when GCC is configured, explicitly or
20493 implicitly, with the HP linker. This option does not affect
20494 which @command{ld} is called; it only changes what parameters are passed to that
20495 @command{ld}.
20496 The @command{ld} that is called is determined by the @option{--with-ld}
20497 configure option, GCC's program search path, and finally by the user's
20498 @env{PATH}. The linker used by GCC can be printed using @samp{which
20499 `gcc -print-prog-name=ld`}. This option is only available on the 64-bit
20500 HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
20501
20502 @item -mlong-calls
20503 @opindex mno-long-calls
20504 @opindex mlong-calls
20505 Generate code that uses long call sequences. This ensures that a call
20506 is always able to reach linker generated stubs. The default is to generate
20507 long calls only when the distance from the call site to the beginning
20508 of the function or translation unit, as the case may be, exceeds a
20509 predefined limit set by the branch type being used. The limits for
20510 normal calls are 7,600,000 and 240,000 bytes, respectively for the
20511 PA 2.0 and PA 1.X architectures. Sibcalls are always limited at
20512 240,000 bytes.
20513
20514 Distances are measured from the beginning of functions when using the
20515 @option{-ffunction-sections} option, or when using the @option{-mgas}
20516 and @option{-mno-portable-runtime} options together under HP-UX with
20517 the SOM linker.
20518
20519 It is normally not desirable to use this option as it degrades
20520 performance. However, it may be useful in large applications,
20521 particularly when partial linking is used to build the application.
20522
20523 The types of long calls used depends on the capabilities of the
20524 assembler and linker, and the type of code being generated. The
20525 impact on systems that support long absolute calls, and long pic
20526 symbol-difference or pc-relative calls should be relatively small.
20527 However, an indirect call is used on 32-bit ELF systems in pic code
20528 and it is quite long.
20529
20530 @item -munix=@var{unix-std}
20531 @opindex march
20532 Generate compiler predefines and select a startfile for the specified
20533 UNIX standard. The choices for @var{unix-std} are @samp{93}, @samp{95}
20534 and @samp{98}. @samp{93} is supported on all HP-UX versions. @samp{95}
20535 is available on HP-UX 10.10 and later. @samp{98} is available on HP-UX
20536 11.11 and later. The default values are @samp{93} for HP-UX 10.00,
20537 @samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11
20538 and later.
20539
20540 @option{-munix=93} provides the same predefines as GCC 3.3 and 3.4.
20541 @option{-munix=95} provides additional predefines for @code{XOPEN_UNIX}
20542 and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}.
20543 @option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX},
20544 @code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and
20545 @code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}.
20546
20547 It is @emph{important} to note that this option changes the interfaces
20548 for various library routines. It also affects the operational behavior
20549 of the C library. Thus, @emph{extreme} care is needed in using this
20550 option.
20551
20552 Library code that is intended to operate with more than one UNIX
20553 standard must test, set and restore the variable @code{__xpg4_extended_mask}
20554 as appropriate. Most GNU software doesn't provide this capability.
20555
20556 @item -nolibdld
20557 @opindex nolibdld
20558 Suppress the generation of link options to search libdld.sl when the
20559 @option{-static} option is specified on HP-UX 10 and later.
20560
20561 @item -static
20562 @opindex static
20563 The HP-UX implementation of setlocale in libc has a dependency on
20564 libdld.sl. There isn't an archive version of libdld.sl. Thus,
20565 when the @option{-static} option is specified, special link options
20566 are needed to resolve this dependency.
20567
20568 On HP-UX 10 and later, the GCC driver adds the necessary options to
20569 link with libdld.sl when the @option{-static} option is specified.
20570 This causes the resulting binary to be dynamic. On the 64-bit port,
20571 the linkers generate dynamic binaries by default in any case. The
20572 @option{-nolibdld} option can be used to prevent the GCC driver from
20573 adding these link options.
20574
20575 @item -threads
20576 @opindex threads
20577 Add support for multithreading with the @dfn{dce thread} library
20578 under HP-UX@. This option sets flags for both the preprocessor and
20579 linker.
20580 @end table
20581
20582 @node IA-64 Options
20583 @subsection IA-64 Options
20584 @cindex IA-64 Options
20585
20586 These are the @samp{-m} options defined for the Intel IA-64 architecture.
20587
20588 @table @gcctabopt
20589 @item -mbig-endian
20590 @opindex mbig-endian
20591 Generate code for a big-endian target. This is the default for HP-UX@.
20592
20593 @item -mlittle-endian
20594 @opindex mlittle-endian
20595 Generate code for a little-endian target. This is the default for AIX5
20596 and GNU/Linux.
20597
20598 @item -mgnu-as
20599 @itemx -mno-gnu-as
20600 @opindex mgnu-as
20601 @opindex mno-gnu-as
20602 Generate (or don't) code for the GNU assembler. This is the default.
20603 @c Also, this is the default if the configure option @option{--with-gnu-as}
20604 @c is used.
20605
20606 @item -mgnu-ld
20607 @itemx -mno-gnu-ld
20608 @opindex mgnu-ld
20609 @opindex mno-gnu-ld
20610 Generate (or don't) code for the GNU linker. This is the default.
20611 @c Also, this is the default if the configure option @option{--with-gnu-ld}
20612 @c is used.
20613
20614 @item -mno-pic
20615 @opindex mno-pic
20616 Generate code that does not use a global pointer register. The result
20617 is not position independent code, and violates the IA-64 ABI@.
20618
20619 @item -mvolatile-asm-stop
20620 @itemx -mno-volatile-asm-stop
20621 @opindex mvolatile-asm-stop
20622 @opindex mno-volatile-asm-stop
20623 Generate (or don't) a stop bit immediately before and after volatile asm
20624 statements.
20625
20626 @item -mregister-names
20627 @itemx -mno-register-names
20628 @opindex mregister-names
20629 @opindex mno-register-names
20630 Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for
20631 the stacked registers. This may make assembler output more readable.
20632
20633 @item -mno-sdata
20634 @itemx -msdata
20635 @opindex mno-sdata
20636 @opindex msdata
20637 Disable (or enable) optimizations that use the small data section. This may
20638 be useful for working around optimizer bugs.
20639
20640 @item -mconstant-gp
20641 @opindex mconstant-gp
20642 Generate code that uses a single constant global pointer value. This is
20643 useful when compiling kernel code.
20644
20645 @item -mauto-pic
20646 @opindex mauto-pic
20647 Generate code that is self-relocatable. This implies @option{-mconstant-gp}.
20648 This is useful when compiling firmware code.
20649
20650 @item -minline-float-divide-min-latency
20651 @opindex minline-float-divide-min-latency
20652 Generate code for inline divides of floating-point values
20653 using the minimum latency algorithm.
20654
20655 @item -minline-float-divide-max-throughput
20656 @opindex minline-float-divide-max-throughput
20657 Generate code for inline divides of floating-point values
20658 using the maximum throughput algorithm.
20659
20660 @item -mno-inline-float-divide
20661 @opindex mno-inline-float-divide
20662 Do not generate inline code for divides of floating-point values.
20663
20664 @item -minline-int-divide-min-latency
20665 @opindex minline-int-divide-min-latency
20666 Generate code for inline divides of integer values
20667 using the minimum latency algorithm.
20668
20669 @item -minline-int-divide-max-throughput
20670 @opindex minline-int-divide-max-throughput
20671 Generate code for inline divides of integer values
20672 using the maximum throughput algorithm.
20673
20674 @item -mno-inline-int-divide
20675 @opindex mno-inline-int-divide
20676 @opindex minline-int-divide
20677 Do not generate inline code for divides of integer values.
20678
20679 @item -minline-sqrt-min-latency
20680 @opindex minline-sqrt-min-latency
20681 Generate code for inline square roots
20682 using the minimum latency algorithm.
20683
20684 @item -minline-sqrt-max-throughput
20685 @opindex minline-sqrt-max-throughput
20686 Generate code for inline square roots
20687 using the maximum throughput algorithm.
20688
20689 @item -mno-inline-sqrt
20690 @opindex mno-inline-sqrt
20691 Do not generate inline code for @code{sqrt}.
20692
20693 @item -mfused-madd
20694 @itemx -mno-fused-madd
20695 @opindex mfused-madd
20696 @opindex mno-fused-madd
20697 Do (don't) generate code that uses the fused multiply/add or multiply/subtract
20698 instructions. The default is to use these instructions.
20699
20700 @item -mno-dwarf2-asm
20701 @itemx -mdwarf2-asm
20702 @opindex mno-dwarf2-asm
20703 @opindex mdwarf2-asm
20704 Don't (or do) generate assembler code for the DWARF line number debugging
20705 info. This may be useful when not using the GNU assembler.
20706
20707 @item -mearly-stop-bits
20708 @itemx -mno-early-stop-bits
20709 @opindex mearly-stop-bits
20710 @opindex mno-early-stop-bits
20711 Allow stop bits to be placed earlier than immediately preceding the
20712 instruction that triggered the stop bit. This can improve instruction
20713 scheduling, but does not always do so.
20714
20715 @item -mfixed-range=@var{register-range}
20716 @opindex mfixed-range
20717 Generate code treating the given register range as fixed registers.
20718 A fixed register is one that the register allocator cannot use. This is
20719 useful when compiling kernel code. A register range is specified as
20720 two registers separated by a dash. Multiple register ranges can be
20721 specified separated by a comma.
20722
20723 @item -mtls-size=@var{tls-size}
20724 @opindex mtls-size
20725 Specify bit size of immediate TLS offsets. Valid values are 14, 22, and
20726 64.
20727
20728 @item -mtune=@var{cpu-type}
20729 @opindex mtune
20730 Tune the instruction scheduling for a particular CPU, Valid values are
20731 @samp{itanium}, @samp{itanium1}, @samp{merced}, @samp{itanium2},
20732 and @samp{mckinley}.
20733
20734 @item -milp32
20735 @itemx -mlp64
20736 @opindex milp32
20737 @opindex mlp64
20738 Generate code for a 32-bit or 64-bit environment.
20739 The 32-bit environment sets int, long and pointer to 32 bits.
20740 The 64-bit environment sets int to 32 bits and long and pointer
20741 to 64 bits. These are HP-UX specific flags.
20742
20743 @item -mno-sched-br-data-spec
20744 @itemx -msched-br-data-spec
20745 @opindex mno-sched-br-data-spec
20746 @opindex msched-br-data-spec
20747 (Dis/En)able data speculative scheduling before reload.
20748 This results in generation of @code{ld.a} instructions and
20749 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
20750 The default setting is disabled.
20751
20752 @item -msched-ar-data-spec
20753 @itemx -mno-sched-ar-data-spec
20754 @opindex msched-ar-data-spec
20755 @opindex mno-sched-ar-data-spec
20756 (En/Dis)able data speculative scheduling after reload.
20757 This results in generation of @code{ld.a} instructions and
20758 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
20759 The default setting is enabled.
20760
20761 @item -mno-sched-control-spec
20762 @itemx -msched-control-spec
20763 @opindex mno-sched-control-spec
20764 @opindex msched-control-spec
20765 (Dis/En)able control speculative scheduling. This feature is
20766 available only during region scheduling (i.e.@: before reload).
20767 This results in generation of the @code{ld.s} instructions and
20768 the corresponding check instructions @code{chk.s}.
20769 The default setting is disabled.
20770
20771 @item -msched-br-in-data-spec
20772 @itemx -mno-sched-br-in-data-spec
20773 @opindex msched-br-in-data-spec
20774 @opindex mno-sched-br-in-data-spec
20775 (En/Dis)able speculative scheduling of the instructions that
20776 are dependent on the data speculative loads before reload.
20777 This is effective only with @option{-msched-br-data-spec} enabled.
20778 The default setting is enabled.
20779
20780 @item -msched-ar-in-data-spec
20781 @itemx -mno-sched-ar-in-data-spec
20782 @opindex msched-ar-in-data-spec
20783 @opindex mno-sched-ar-in-data-spec
20784 (En/Dis)able speculative scheduling of the instructions that
20785 are dependent on the data speculative loads after reload.
20786 This is effective only with @option{-msched-ar-data-spec} enabled.
20787 The default setting is enabled.
20788
20789 @item -msched-in-control-spec
20790 @itemx -mno-sched-in-control-spec
20791 @opindex msched-in-control-spec
20792 @opindex mno-sched-in-control-spec
20793 (En/Dis)able speculative scheduling of the instructions that
20794 are dependent on the control speculative loads.
20795 This is effective only with @option{-msched-control-spec} enabled.
20796 The default setting is enabled.
20797
20798 @item -mno-sched-prefer-non-data-spec-insns
20799 @itemx -msched-prefer-non-data-spec-insns
20800 @opindex mno-sched-prefer-non-data-spec-insns
20801 @opindex msched-prefer-non-data-spec-insns
20802 If enabled, data-speculative instructions are chosen for schedule
20803 only if there are no other choices at the moment. This makes
20804 the use of the data speculation much more conservative.
20805 The default setting is disabled.
20806
20807 @item -mno-sched-prefer-non-control-spec-insns
20808 @itemx -msched-prefer-non-control-spec-insns
20809 @opindex mno-sched-prefer-non-control-spec-insns
20810 @opindex msched-prefer-non-control-spec-insns
20811 If enabled, control-speculative instructions are chosen for schedule
20812 only if there are no other choices at the moment. This makes
20813 the use of the control speculation much more conservative.
20814 The default setting is disabled.
20815
20816 @item -mno-sched-count-spec-in-critical-path
20817 @itemx -msched-count-spec-in-critical-path
20818 @opindex mno-sched-count-spec-in-critical-path
20819 @opindex msched-count-spec-in-critical-path
20820 If enabled, speculative dependencies are considered during
20821 computation of the instructions priorities. This makes the use of the
20822 speculation a bit more conservative.
20823 The default setting is disabled.
20824
20825 @item -msched-spec-ldc
20826 @opindex msched-spec-ldc
20827 Use a simple data speculation check. This option is on by default.
20828
20829 @item -msched-control-spec-ldc
20830 @opindex msched-spec-ldc
20831 Use a simple check for control speculation. This option is on by default.
20832
20833 @item -msched-stop-bits-after-every-cycle
20834 @opindex msched-stop-bits-after-every-cycle
20835 Place a stop bit after every cycle when scheduling. This option is on
20836 by default.
20837
20838 @item -msched-fp-mem-deps-zero-cost
20839 @opindex msched-fp-mem-deps-zero-cost
20840 Assume that floating-point stores and loads are not likely to cause a conflict
20841 when placed into the same instruction group. This option is disabled by
20842 default.
20843
20844 @item -msel-sched-dont-check-control-spec
20845 @opindex msel-sched-dont-check-control-spec
20846 Generate checks for control speculation in selective scheduling.
20847 This flag is disabled by default.
20848
20849 @item -msched-max-memory-insns=@var{max-insns}
20850 @opindex msched-max-memory-insns
20851 Limit on the number of memory insns per instruction group, giving lower
20852 priority to subsequent memory insns attempting to schedule in the same
20853 instruction group. Frequently useful to prevent cache bank conflicts.
20854 The default value is 1.
20855
20856 @item -msched-max-memory-insns-hard-limit
20857 @opindex msched-max-memory-insns-hard-limit
20858 Makes the limit specified by @option{msched-max-memory-insns} a hard limit,
20859 disallowing more than that number in an instruction group.
20860 Otherwise, the limit is ``soft'', meaning that non-memory operations
20861 are preferred when the limit is reached, but memory operations may still
20862 be scheduled.
20863
20864 @end table
20865
20866 @node LM32 Options
20867 @subsection LM32 Options
20868 @cindex LM32 options
20869
20870 These @option{-m} options are defined for the LatticeMico32 architecture:
20871
20872 @table @gcctabopt
20873 @item -mbarrel-shift-enabled
20874 @opindex mbarrel-shift-enabled
20875 Enable barrel-shift instructions.
20876
20877 @item -mdivide-enabled
20878 @opindex mdivide-enabled
20879 Enable divide and modulus instructions.
20880
20881 @item -mmultiply-enabled
20882 @opindex multiply-enabled
20883 Enable multiply instructions.
20884
20885 @item -msign-extend-enabled
20886 @opindex msign-extend-enabled
20887 Enable sign extend instructions.
20888
20889 @item -muser-enabled
20890 @opindex muser-enabled
20891 Enable user-defined instructions.
20892
20893 @end table
20894
20895 @node M32C Options
20896 @subsection M32C Options
20897 @cindex M32C options
20898
20899 @table @gcctabopt
20900 @item -mcpu=@var{name}
20901 @opindex mcpu=
20902 Select the CPU for which code is generated. @var{name} may be one of
20903 @samp{r8c} for the R8C/Tiny series, @samp{m16c} for the M16C (up to
20904 /60) series, @samp{m32cm} for the M16C/80 series, or @samp{m32c} for
20905 the M32C/80 series.
20906
20907 @item -msim
20908 @opindex msim
20909 Specifies that the program will be run on the simulator. This causes
20910 an alternate runtime library to be linked in which supports, for
20911 example, file I/O@. You must not use this option when generating
20912 programs that will run on real hardware; you must provide your own
20913 runtime library for whatever I/O functions are needed.
20914
20915 @item -memregs=@var{number}
20916 @opindex memregs=
20917 Specifies the number of memory-based pseudo-registers GCC uses
20918 during code generation. These pseudo-registers are used like real
20919 registers, so there is a tradeoff between GCC's ability to fit the
20920 code into available registers, and the performance penalty of using
20921 memory instead of registers. Note that all modules in a program must
20922 be compiled with the same value for this option. Because of that, you
20923 must not use this option with GCC's default runtime libraries.
20924
20925 @end table
20926
20927 @node M32R/D Options
20928 @subsection M32R/D Options
20929 @cindex M32R/D options
20930
20931 These @option{-m} options are defined for Renesas M32R/D architectures:
20932
20933 @table @gcctabopt
20934 @item -m32r2
20935 @opindex m32r2
20936 Generate code for the M32R/2@.
20937
20938 @item -m32rx
20939 @opindex m32rx
20940 Generate code for the M32R/X@.
20941
20942 @item -m32r
20943 @opindex m32r
20944 Generate code for the M32R@. This is the default.
20945
20946 @item -mmodel=small
20947 @opindex mmodel=small
20948 Assume all objects live in the lower 16MB of memory (so that their addresses
20949 can be loaded with the @code{ld24} instruction), and assume all subroutines
20950 are reachable with the @code{bl} instruction.
20951 This is the default.
20952
20953 The addressability of a particular object can be set with the
20954 @code{model} attribute.
20955
20956 @item -mmodel=medium
20957 @opindex mmodel=medium
20958 Assume objects may be anywhere in the 32-bit address space (the compiler
20959 generates @code{seth/add3} instructions to load their addresses), and
20960 assume all subroutines are reachable with the @code{bl} instruction.
20961
20962 @item -mmodel=large
20963 @opindex mmodel=large
20964 Assume objects may be anywhere in the 32-bit address space (the compiler
20965 generates @code{seth/add3} instructions to load their addresses), and
20966 assume subroutines may not be reachable with the @code{bl} instruction
20967 (the compiler generates the much slower @code{seth/add3/jl}
20968 instruction sequence).
20969
20970 @item -msdata=none
20971 @opindex msdata=none
20972 Disable use of the small data area. Variables are put into
20973 one of @code{.data}, @code{.bss}, or @code{.rodata} (unless the
20974 @code{section} attribute has been specified).
20975 This is the default.
20976
20977 The small data area consists of sections @code{.sdata} and @code{.sbss}.
20978 Objects may be explicitly put in the small data area with the
20979 @code{section} attribute using one of these sections.
20980
20981 @item -msdata=sdata
20982 @opindex msdata=sdata
20983 Put small global and static data in the small data area, but do not
20984 generate special code to reference them.
20985
20986 @item -msdata=use
20987 @opindex msdata=use
20988 Put small global and static data in the small data area, and generate
20989 special instructions to reference them.
20990
20991 @item -G @var{num}
20992 @opindex G
20993 @cindex smaller data references
20994 Put global and static objects less than or equal to @var{num} bytes
20995 into the small data or BSS sections instead of the normal data or BSS
20996 sections. The default value of @var{num} is 8.
20997 The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
20998 for this option to have any effect.
20999
21000 All modules should be compiled with the same @option{-G @var{num}} value.
21001 Compiling with different values of @var{num} may or may not work; if it
21002 doesn't the linker gives an error message---incorrect code is not
21003 generated.
21004
21005 @item -mdebug
21006 @opindex mdebug
21007 Makes the M32R-specific code in the compiler display some statistics
21008 that might help in debugging programs.
21009
21010 @item -malign-loops
21011 @opindex malign-loops
21012 Align all loops to a 32-byte boundary.
21013
21014 @item -mno-align-loops
21015 @opindex mno-align-loops
21016 Do not enforce a 32-byte alignment for loops. This is the default.
21017
21018 @item -missue-rate=@var{number}
21019 @opindex missue-rate=@var{number}
21020 Issue @var{number} instructions per cycle. @var{number} can only be 1
21021 or 2.
21022
21023 @item -mbranch-cost=@var{number}
21024 @opindex mbranch-cost=@var{number}
21025 @var{number} can only be 1 or 2. If it is 1 then branches are
21026 preferred over conditional code, if it is 2, then the opposite applies.
21027
21028 @item -mflush-trap=@var{number}
21029 @opindex mflush-trap=@var{number}
21030 Specifies the trap number to use to flush the cache. The default is
21031 12. Valid numbers are between 0 and 15 inclusive.
21032
21033 @item -mno-flush-trap
21034 @opindex mno-flush-trap
21035 Specifies that the cache cannot be flushed by using a trap.
21036
21037 @item -mflush-func=@var{name}
21038 @opindex mflush-func=@var{name}
21039 Specifies the name of the operating system function to call to flush
21040 the cache. The default is @samp{_flush_cache}, but a function call
21041 is only used if a trap is not available.
21042
21043 @item -mno-flush-func
21044 @opindex mno-flush-func
21045 Indicates that there is no OS function for flushing the cache.
21046
21047 @end table
21048
21049 @node M680x0 Options
21050 @subsection M680x0 Options
21051 @cindex M680x0 options
21052
21053 These are the @samp{-m} options defined for M680x0 and ColdFire processors.
21054 The default settings depend on which architecture was selected when
21055 the compiler was configured; the defaults for the most common choices
21056 are given below.
21057
21058 @table @gcctabopt
21059 @item -march=@var{arch}
21060 @opindex march
21061 Generate code for a specific M680x0 or ColdFire instruction set
21062 architecture. Permissible values of @var{arch} for M680x0
21063 architectures are: @samp{68000}, @samp{68010}, @samp{68020},
21064 @samp{68030}, @samp{68040}, @samp{68060} and @samp{cpu32}. ColdFire
21065 architectures are selected according to Freescale's ISA classification
21066 and the permissible values are: @samp{isaa}, @samp{isaaplus},
21067 @samp{isab} and @samp{isac}.
21068
21069 GCC defines a macro @code{__mcf@var{arch}__} whenever it is generating
21070 code for a ColdFire target. The @var{arch} in this macro is one of the
21071 @option{-march} arguments given above.
21072
21073 When used together, @option{-march} and @option{-mtune} select code
21074 that runs on a family of similar processors but that is optimized
21075 for a particular microarchitecture.
21076
21077 @item -mcpu=@var{cpu}
21078 @opindex mcpu
21079 Generate code for a specific M680x0 or ColdFire processor.
21080 The M680x0 @var{cpu}s are: @samp{68000}, @samp{68010}, @samp{68020},
21081 @samp{68030}, @samp{68040}, @samp{68060}, @samp{68302}, @samp{68332}
21082 and @samp{cpu32}. The ColdFire @var{cpu}s are given by the table
21083 below, which also classifies the CPUs into families:
21084
21085 @multitable @columnfractions 0.20 0.80
21086 @item @strong{Family} @tab @strong{@samp{-mcpu} arguments}
21087 @item @samp{51} @tab @samp{51} @samp{51ac} @samp{51ag} @samp{51cn} @samp{51em} @samp{51je} @samp{51jf} @samp{51jg} @samp{51jm} @samp{51mm} @samp{51qe} @samp{51qm}
21088 @item @samp{5206} @tab @samp{5202} @samp{5204} @samp{5206}
21089 @item @samp{5206e} @tab @samp{5206e}
21090 @item @samp{5208} @tab @samp{5207} @samp{5208}
21091 @item @samp{5211a} @tab @samp{5210a} @samp{5211a}
21092 @item @samp{5213} @tab @samp{5211} @samp{5212} @samp{5213}
21093 @item @samp{5216} @tab @samp{5214} @samp{5216}
21094 @item @samp{52235} @tab @samp{52230} @samp{52231} @samp{52232} @samp{52233} @samp{52234} @samp{52235}
21095 @item @samp{5225} @tab @samp{5224} @samp{5225}
21096 @item @samp{52259} @tab @samp{52252} @samp{52254} @samp{52255} @samp{52256} @samp{52258} @samp{52259}
21097 @item @samp{5235} @tab @samp{5232} @samp{5233} @samp{5234} @samp{5235} @samp{523x}
21098 @item @samp{5249} @tab @samp{5249}
21099 @item @samp{5250} @tab @samp{5250}
21100 @item @samp{5271} @tab @samp{5270} @samp{5271}
21101 @item @samp{5272} @tab @samp{5272}
21102 @item @samp{5275} @tab @samp{5274} @samp{5275}
21103 @item @samp{5282} @tab @samp{5280} @samp{5281} @samp{5282} @samp{528x}
21104 @item @samp{53017} @tab @samp{53011} @samp{53012} @samp{53013} @samp{53014} @samp{53015} @samp{53016} @samp{53017}
21105 @item @samp{5307} @tab @samp{5307}
21106 @item @samp{5329} @tab @samp{5327} @samp{5328} @samp{5329} @samp{532x}
21107 @item @samp{5373} @tab @samp{5372} @samp{5373} @samp{537x}
21108 @item @samp{5407} @tab @samp{5407}
21109 @item @samp{5475} @tab @samp{5470} @samp{5471} @samp{5472} @samp{5473} @samp{5474} @samp{5475} @samp{547x} @samp{5480} @samp{5481} @samp{5482} @samp{5483} @samp{5484} @samp{5485}
21110 @end multitable
21111
21112 @option{-mcpu=@var{cpu}} overrides @option{-march=@var{arch}} if
21113 @var{arch} is compatible with @var{cpu}. Other combinations of
21114 @option{-mcpu} and @option{-march} are rejected.
21115
21116 GCC defines the macro @code{__mcf_cpu_@var{cpu}} when ColdFire target
21117 @var{cpu} is selected. It also defines @code{__mcf_family_@var{family}},
21118 where the value of @var{family} is given by the table above.
21119
21120 @item -mtune=@var{tune}
21121 @opindex mtune
21122 Tune the code for a particular microarchitecture within the
21123 constraints set by @option{-march} and @option{-mcpu}.
21124 The M680x0 microarchitectures are: @samp{68000}, @samp{68010},
21125 @samp{68020}, @samp{68030}, @samp{68040}, @samp{68060}
21126 and @samp{cpu32}. The ColdFire microarchitectures
21127 are: @samp{cfv1}, @samp{cfv2}, @samp{cfv3}, @samp{cfv4} and @samp{cfv4e}.
21128
21129 You can also use @option{-mtune=68020-40} for code that needs
21130 to run relatively well on 68020, 68030 and 68040 targets.
21131 @option{-mtune=68020-60} is similar but includes 68060 targets
21132 as well. These two options select the same tuning decisions as
21133 @option{-m68020-40} and @option{-m68020-60} respectively.
21134
21135 GCC defines the macros @code{__mc@var{arch}} and @code{__mc@var{arch}__}
21136 when tuning for 680x0 architecture @var{arch}. It also defines
21137 @code{mc@var{arch}} unless either @option{-ansi} or a non-GNU @option{-std}
21138 option is used. If GCC is tuning for a range of architectures,
21139 as selected by @option{-mtune=68020-40} or @option{-mtune=68020-60},
21140 it defines the macros for every architecture in the range.
21141
21142 GCC also defines the macro @code{__m@var{uarch}__} when tuning for
21143 ColdFire microarchitecture @var{uarch}, where @var{uarch} is one
21144 of the arguments given above.
21145
21146 @item -m68000
21147 @itemx -mc68000
21148 @opindex m68000
21149 @opindex mc68000
21150 Generate output for a 68000. This is the default
21151 when the compiler is configured for 68000-based systems.
21152 It is equivalent to @option{-march=68000}.
21153
21154 Use this option for microcontrollers with a 68000 or EC000 core,
21155 including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
21156
21157 @item -m68010
21158 @opindex m68010
21159 Generate output for a 68010. This is the default
21160 when the compiler is configured for 68010-based systems.
21161 It is equivalent to @option{-march=68010}.
21162
21163 @item -m68020
21164 @itemx -mc68020
21165 @opindex m68020
21166 @opindex mc68020
21167 Generate output for a 68020. This is the default
21168 when the compiler is configured for 68020-based systems.
21169 It is equivalent to @option{-march=68020}.
21170
21171 @item -m68030
21172 @opindex m68030
21173 Generate output for a 68030. This is the default when the compiler is
21174 configured for 68030-based systems. It is equivalent to
21175 @option{-march=68030}.
21176
21177 @item -m68040
21178 @opindex m68040
21179 Generate output for a 68040. This is the default when the compiler is
21180 configured for 68040-based systems. It is equivalent to
21181 @option{-march=68040}.
21182
21183 This option inhibits the use of 68881/68882 instructions that have to be
21184 emulated by software on the 68040. Use this option if your 68040 does not
21185 have code to emulate those instructions.
21186
21187 @item -m68060
21188 @opindex m68060
21189 Generate output for a 68060. This is the default when the compiler is
21190 configured for 68060-based systems. It is equivalent to
21191 @option{-march=68060}.
21192
21193 This option inhibits the use of 68020 and 68881/68882 instructions that
21194 have to be emulated by software on the 68060. Use this option if your 68060
21195 does not have code to emulate those instructions.
21196
21197 @item -mcpu32
21198 @opindex mcpu32
21199 Generate output for a CPU32. This is the default
21200 when the compiler is configured for CPU32-based systems.
21201 It is equivalent to @option{-march=cpu32}.
21202
21203 Use this option for microcontrollers with a
21204 CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
21205 68336, 68340, 68341, 68349 and 68360.
21206
21207 @item -m5200
21208 @opindex m5200
21209 Generate output for a 520X ColdFire CPU@. This is the default
21210 when the compiler is configured for 520X-based systems.
21211 It is equivalent to @option{-mcpu=5206}, and is now deprecated
21212 in favor of that option.
21213
21214 Use this option for microcontroller with a 5200 core, including
21215 the MCF5202, MCF5203, MCF5204 and MCF5206.
21216
21217 @item -m5206e
21218 @opindex m5206e
21219 Generate output for a 5206e ColdFire CPU@. The option is now
21220 deprecated in favor of the equivalent @option{-mcpu=5206e}.
21221
21222 @item -m528x
21223 @opindex m528x
21224 Generate output for a member of the ColdFire 528X family.
21225 The option is now deprecated in favor of the equivalent
21226 @option{-mcpu=528x}.
21227
21228 @item -m5307
21229 @opindex m5307
21230 Generate output for a ColdFire 5307 CPU@. The option is now deprecated
21231 in favor of the equivalent @option{-mcpu=5307}.
21232
21233 @item -m5407
21234 @opindex m5407
21235 Generate output for a ColdFire 5407 CPU@. The option is now deprecated
21236 in favor of the equivalent @option{-mcpu=5407}.
21237
21238 @item -mcfv4e
21239 @opindex mcfv4e
21240 Generate output for a ColdFire V4e family CPU (e.g.@: 547x/548x).
21241 This includes use of hardware floating-point instructions.
21242 The option is equivalent to @option{-mcpu=547x}, and is now
21243 deprecated in favor of that option.
21244
21245 @item -m68020-40
21246 @opindex m68020-40
21247 Generate output for a 68040, without using any of the new instructions.
21248 This results in code that can run relatively efficiently on either a
21249 68020/68881 or a 68030 or a 68040. The generated code does use the
21250 68881 instructions that are emulated on the 68040.
21251
21252 The option is equivalent to @option{-march=68020} @option{-mtune=68020-40}.
21253
21254 @item -m68020-60
21255 @opindex m68020-60
21256 Generate output for a 68060, without using any of the new instructions.
21257 This results in code that can run relatively efficiently on either a
21258 68020/68881 or a 68030 or a 68040. The generated code does use the
21259 68881 instructions that are emulated on the 68060.
21260
21261 The option is equivalent to @option{-march=68020} @option{-mtune=68020-60}.
21262
21263 @item -mhard-float
21264 @itemx -m68881
21265 @opindex mhard-float
21266 @opindex m68881
21267 Generate floating-point instructions. This is the default for 68020
21268 and above, and for ColdFire devices that have an FPU@. It defines the
21269 macro @code{__HAVE_68881__} on M680x0 targets and @code{__mcffpu__}
21270 on ColdFire targets.
21271
21272 @item -msoft-float
21273 @opindex msoft-float
21274 Do not generate floating-point instructions; use library calls instead.
21275 This is the default for 68000, 68010, and 68832 targets. It is also
21276 the default for ColdFire devices that have no FPU.
21277
21278 @item -mdiv
21279 @itemx -mno-div
21280 @opindex mdiv
21281 @opindex mno-div
21282 Generate (do not generate) ColdFire hardware divide and remainder
21283 instructions. If @option{-march} is used without @option{-mcpu},
21284 the default is ``on'' for ColdFire architectures and ``off'' for M680x0
21285 architectures. Otherwise, the default is taken from the target CPU
21286 (either the default CPU, or the one specified by @option{-mcpu}). For
21287 example, the default is ``off'' for @option{-mcpu=5206} and ``on'' for
21288 @option{-mcpu=5206e}.
21289
21290 GCC defines the macro @code{__mcfhwdiv__} when this option is enabled.
21291
21292 @item -mshort
21293 @opindex mshort
21294 Consider type @code{int} to be 16 bits wide, like @code{short int}.
21295 Additionally, parameters passed on the stack are also aligned to a
21296 16-bit boundary even on targets whose API mandates promotion to 32-bit.
21297
21298 @item -mno-short
21299 @opindex mno-short
21300 Do not consider type @code{int} to be 16 bits wide. This is the default.
21301
21302 @item -mnobitfield
21303 @itemx -mno-bitfield
21304 @opindex mnobitfield
21305 @opindex mno-bitfield
21306 Do not use the bit-field instructions. The @option{-m68000}, @option{-mcpu32}
21307 and @option{-m5200} options imply @w{@option{-mnobitfield}}.
21308
21309 @item -mbitfield
21310 @opindex mbitfield
21311 Do use the bit-field instructions. The @option{-m68020} option implies
21312 @option{-mbitfield}. This is the default if you use a configuration
21313 designed for a 68020.
21314
21315 @item -mrtd
21316 @opindex mrtd
21317 Use a different function-calling convention, in which functions
21318 that take a fixed number of arguments return with the @code{rtd}
21319 instruction, which pops their arguments while returning. This
21320 saves one instruction in the caller since there is no need to pop
21321 the arguments there.
21322
21323 This calling convention is incompatible with the one normally
21324 used on Unix, so you cannot use it if you need to call libraries
21325 compiled with the Unix compiler.
21326
21327 Also, you must provide function prototypes for all functions that
21328 take variable numbers of arguments (including @code{printf});
21329 otherwise incorrect code is generated for calls to those
21330 functions.
21331
21332 In addition, seriously incorrect code results if you call a
21333 function with too many arguments. (Normally, extra arguments are
21334 harmlessly ignored.)
21335
21336 The @code{rtd} instruction is supported by the 68010, 68020, 68030,
21337 68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
21338
21339 The default is @option{-mno-rtd}.
21340
21341 @item -malign-int
21342 @itemx -mno-align-int
21343 @opindex malign-int
21344 @opindex mno-align-int
21345 Control whether GCC aligns @code{int}, @code{long}, @code{long long},
21346 @code{float}, @code{double}, and @code{long double} variables on a 32-bit
21347 boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
21348 Aligning variables on 32-bit boundaries produces code that runs somewhat
21349 faster on processors with 32-bit busses at the expense of more memory.
21350
21351 @strong{Warning:} if you use the @option{-malign-int} switch, GCC
21352 aligns structures containing the above types differently than
21353 most published application binary interface specifications for the m68k.
21354
21355 @item -mpcrel
21356 @opindex mpcrel
21357 Use the pc-relative addressing mode of the 68000 directly, instead of
21358 using a global offset table. At present, this option implies @option{-fpic},
21359 allowing at most a 16-bit offset for pc-relative addressing. @option{-fPIC} is
21360 not presently supported with @option{-mpcrel}, though this could be supported for
21361 68020 and higher processors.
21362
21363 @item -mno-strict-align
21364 @itemx -mstrict-align
21365 @opindex mno-strict-align
21366 @opindex mstrict-align
21367 Do not (do) assume that unaligned memory references are handled by
21368 the system.
21369
21370 @item -msep-data
21371 Generate code that allows the data segment to be located in a different
21372 area of memory from the text segment. This allows for execute-in-place in
21373 an environment without virtual memory management. This option implies
21374 @option{-fPIC}.
21375
21376 @item -mno-sep-data
21377 Generate code that assumes that the data segment follows the text segment.
21378 This is the default.
21379
21380 @item -mid-shared-library
21381 Generate code that supports shared libraries via the library ID method.
21382 This allows for execute-in-place and shared libraries in an environment
21383 without virtual memory management. This option implies @option{-fPIC}.
21384
21385 @item -mno-id-shared-library
21386 Generate code that doesn't assume ID-based shared libraries are being used.
21387 This is the default.
21388
21389 @item -mshared-library-id=n
21390 Specifies the identification number of the ID-based shared library being
21391 compiled. Specifying a value of 0 generates more compact code; specifying
21392 other values forces the allocation of that number to the current
21393 library, but is no more space- or time-efficient than omitting this option.
21394
21395 @item -mxgot
21396 @itemx -mno-xgot
21397 @opindex mxgot
21398 @opindex mno-xgot
21399 When generating position-independent code for ColdFire, generate code
21400 that works if the GOT has more than 8192 entries. This code is
21401 larger and slower than code generated without this option. On M680x0
21402 processors, this option is not needed; @option{-fPIC} suffices.
21403
21404 GCC normally uses a single instruction to load values from the GOT@.
21405 While this is relatively efficient, it only works if the GOT
21406 is smaller than about 64k. Anything larger causes the linker
21407 to report an error such as:
21408
21409 @cindex relocation truncated to fit (ColdFire)
21410 @smallexample
21411 relocation truncated to fit: R_68K_GOT16O foobar
21412 @end smallexample
21413
21414 If this happens, you should recompile your code with @option{-mxgot}.
21415 It should then work with very large GOTs. However, code generated with
21416 @option{-mxgot} is less efficient, since it takes 4 instructions to fetch
21417 the value of a global symbol.
21418
21419 Note that some linkers, including newer versions of the GNU linker,
21420 can create multiple GOTs and sort GOT entries. If you have such a linker,
21421 you should only need to use @option{-mxgot} when compiling a single
21422 object file that accesses more than 8192 GOT entries. Very few do.
21423
21424 These options have no effect unless GCC is generating
21425 position-independent code.
21426
21427 @item -mlong-jump-table-offsets
21428 @opindex mlong-jump-table-offsets
21429 Use 32-bit offsets in @code{switch} tables. The default is to use
21430 16-bit offsets.
21431
21432 @end table
21433
21434 @node MCore Options
21435 @subsection MCore Options
21436 @cindex MCore options
21437
21438 These are the @samp{-m} options defined for the Motorola M*Core
21439 processors.
21440
21441 @table @gcctabopt
21442
21443 @item -mhardlit
21444 @itemx -mno-hardlit
21445 @opindex mhardlit
21446 @opindex mno-hardlit
21447 Inline constants into the code stream if it can be done in two
21448 instructions or less.
21449
21450 @item -mdiv
21451 @itemx -mno-div
21452 @opindex mdiv
21453 @opindex mno-div
21454 Use the divide instruction. (Enabled by default).
21455
21456 @item -mrelax-immediate
21457 @itemx -mno-relax-immediate
21458 @opindex mrelax-immediate
21459 @opindex mno-relax-immediate
21460 Allow arbitrary-sized immediates in bit operations.
21461
21462 @item -mwide-bitfields
21463 @itemx -mno-wide-bitfields
21464 @opindex mwide-bitfields
21465 @opindex mno-wide-bitfields
21466 Always treat bit-fields as @code{int}-sized.
21467
21468 @item -m4byte-functions
21469 @itemx -mno-4byte-functions
21470 @opindex m4byte-functions
21471 @opindex mno-4byte-functions
21472 Force all functions to be aligned to a 4-byte boundary.
21473
21474 @item -mcallgraph-data
21475 @itemx -mno-callgraph-data
21476 @opindex mcallgraph-data
21477 @opindex mno-callgraph-data
21478 Emit callgraph information.
21479
21480 @item -mslow-bytes
21481 @itemx -mno-slow-bytes
21482 @opindex mslow-bytes
21483 @opindex mno-slow-bytes
21484 Prefer word access when reading byte quantities.
21485
21486 @item -mlittle-endian
21487 @itemx -mbig-endian
21488 @opindex mlittle-endian
21489 @opindex mbig-endian
21490 Generate code for a little-endian target.
21491
21492 @item -m210
21493 @itemx -m340
21494 @opindex m210
21495 @opindex m340
21496 Generate code for the 210 processor.
21497
21498 @item -mno-lsim
21499 @opindex mno-lsim
21500 Assume that runtime support has been provided and so omit the
21501 simulator library (@file{libsim.a)} from the linker command line.
21502
21503 @item -mstack-increment=@var{size}
21504 @opindex mstack-increment
21505 Set the maximum amount for a single stack increment operation. Large
21506 values can increase the speed of programs that contain functions
21507 that need a large amount of stack space, but they can also trigger a
21508 segmentation fault if the stack is extended too much. The default
21509 value is 0x1000.
21510
21511 @end table
21512
21513 @node MeP Options
21514 @subsection MeP Options
21515 @cindex MeP options
21516
21517 @table @gcctabopt
21518
21519 @item -mabsdiff
21520 @opindex mabsdiff
21521 Enables the @code{abs} instruction, which is the absolute difference
21522 between two registers.
21523
21524 @item -mall-opts
21525 @opindex mall-opts
21526 Enables all the optional instructions---average, multiply, divide, bit
21527 operations, leading zero, absolute difference, min/max, clip, and
21528 saturation.
21529
21530
21531 @item -maverage
21532 @opindex maverage
21533 Enables the @code{ave} instruction, which computes the average of two
21534 registers.
21535
21536 @item -mbased=@var{n}
21537 @opindex mbased=
21538 Variables of size @var{n} bytes or smaller are placed in the
21539 @code{.based} section by default. Based variables use the @code{$tp}
21540 register as a base register, and there is a 128-byte limit to the
21541 @code{.based} section.
21542
21543 @item -mbitops
21544 @opindex mbitops
21545 Enables the bit operation instructions---bit test (@code{btstm}), set
21546 (@code{bsetm}), clear (@code{bclrm}), invert (@code{bnotm}), and
21547 test-and-set (@code{tas}).
21548
21549 @item -mc=@var{name}
21550 @opindex mc=
21551 Selects which section constant data is placed in. @var{name} may
21552 be @samp{tiny}, @samp{near}, or @samp{far}.
21553
21554 @item -mclip
21555 @opindex mclip
21556 Enables the @code{clip} instruction. Note that @option{-mclip} is not
21557 useful unless you also provide @option{-mminmax}.
21558
21559 @item -mconfig=@var{name}
21560 @opindex mconfig=
21561 Selects one of the built-in core configurations. Each MeP chip has
21562 one or more modules in it; each module has a core CPU and a variety of
21563 coprocessors, optional instructions, and peripherals. The
21564 @code{MeP-Integrator} tool, not part of GCC, provides these
21565 configurations through this option; using this option is the same as
21566 using all the corresponding command-line options. The default
21567 configuration is @samp{default}.
21568
21569 @item -mcop
21570 @opindex mcop
21571 Enables the coprocessor instructions. By default, this is a 32-bit
21572 coprocessor. Note that the coprocessor is normally enabled via the
21573 @option{-mconfig=} option.
21574
21575 @item -mcop32
21576 @opindex mcop32
21577 Enables the 32-bit coprocessor's instructions.
21578
21579 @item -mcop64
21580 @opindex mcop64
21581 Enables the 64-bit coprocessor's instructions.
21582
21583 @item -mivc2
21584 @opindex mivc2
21585 Enables IVC2 scheduling. IVC2 is a 64-bit VLIW coprocessor.
21586
21587 @item -mdc
21588 @opindex mdc
21589 Causes constant variables to be placed in the @code{.near} section.
21590
21591 @item -mdiv
21592 @opindex mdiv
21593 Enables the @code{div} and @code{divu} instructions.
21594
21595 @item -meb
21596 @opindex meb
21597 Generate big-endian code.
21598
21599 @item -mel
21600 @opindex mel
21601 Generate little-endian code.
21602
21603 @item -mio-volatile
21604 @opindex mio-volatile
21605 Tells the compiler that any variable marked with the @code{io}
21606 attribute is to be considered volatile.
21607
21608 @item -ml
21609 @opindex ml
21610 Causes variables to be assigned to the @code{.far} section by default.
21611
21612 @item -mleadz
21613 @opindex mleadz
21614 Enables the @code{leadz} (leading zero) instruction.
21615
21616 @item -mm
21617 @opindex mm
21618 Causes variables to be assigned to the @code{.near} section by default.
21619
21620 @item -mminmax
21621 @opindex mminmax
21622 Enables the @code{min} and @code{max} instructions.
21623
21624 @item -mmult
21625 @opindex mmult
21626 Enables the multiplication and multiply-accumulate instructions.
21627
21628 @item -mno-opts
21629 @opindex mno-opts
21630 Disables all the optional instructions enabled by @option{-mall-opts}.
21631
21632 @item -mrepeat
21633 @opindex mrepeat
21634 Enables the @code{repeat} and @code{erepeat} instructions, used for
21635 low-overhead looping.
21636
21637 @item -ms
21638 @opindex ms
21639 Causes all variables to default to the @code{.tiny} section. Note
21640 that there is a 65536-byte limit to this section. Accesses to these
21641 variables use the @code{%gp} base register.
21642
21643 @item -msatur
21644 @opindex msatur
21645 Enables the saturation instructions. Note that the compiler does not
21646 currently generate these itself, but this option is included for
21647 compatibility with other tools, like @code{as}.
21648
21649 @item -msdram
21650 @opindex msdram
21651 Link the SDRAM-based runtime instead of the default ROM-based runtime.
21652
21653 @item -msim
21654 @opindex msim
21655 Link the simulator run-time libraries.
21656
21657 @item -msimnovec
21658 @opindex msimnovec
21659 Link the simulator runtime libraries, excluding built-in support
21660 for reset and exception vectors and tables.
21661
21662 @item -mtf
21663 @opindex mtf
21664 Causes all functions to default to the @code{.far} section. Without
21665 this option, functions default to the @code{.near} section.
21666
21667 @item -mtiny=@var{n}
21668 @opindex mtiny=
21669 Variables that are @var{n} bytes or smaller are allocated to the
21670 @code{.tiny} section. These variables use the @code{$gp} base
21671 register. The default for this option is 4, but note that there's a
21672 65536-byte limit to the @code{.tiny} section.
21673
21674 @end table
21675
21676 @node MicroBlaze Options
21677 @subsection MicroBlaze Options
21678 @cindex MicroBlaze Options
21679
21680 @table @gcctabopt
21681
21682 @item -msoft-float
21683 @opindex msoft-float
21684 Use software emulation for floating point (default).
21685
21686 @item -mhard-float
21687 @opindex mhard-float
21688 Use hardware floating-point instructions.
21689
21690 @item -mmemcpy
21691 @opindex mmemcpy
21692 Do not optimize block moves, use @code{memcpy}.
21693
21694 @item -mno-clearbss
21695 @opindex mno-clearbss
21696 This option is deprecated. Use @option{-fno-zero-initialized-in-bss} instead.
21697
21698 @item -mcpu=@var{cpu-type}
21699 @opindex mcpu=
21700 Use features of, and schedule code for, the given CPU.
21701 Supported values are in the format @samp{v@var{X}.@var{YY}.@var{Z}},
21702 where @var{X} is a major version, @var{YY} is the minor version, and
21703 @var{Z} is compatibility code. Example values are @samp{v3.00.a},
21704 @samp{v4.00.b}, @samp{v5.00.a}, @samp{v5.00.b}, @samp{v6.00.a}.
21705
21706 @item -mxl-soft-mul
21707 @opindex mxl-soft-mul
21708 Use software multiply emulation (default).
21709
21710 @item -mxl-soft-div
21711 @opindex mxl-soft-div
21712 Use software emulation for divides (default).
21713
21714 @item -mxl-barrel-shift
21715 @opindex mxl-barrel-shift
21716 Use the hardware barrel shifter.
21717
21718 @item -mxl-pattern-compare
21719 @opindex mxl-pattern-compare
21720 Use pattern compare instructions.
21721
21722 @item -msmall-divides
21723 @opindex msmall-divides
21724 Use table lookup optimization for small signed integer divisions.
21725
21726 @item -mxl-stack-check
21727 @opindex mxl-stack-check
21728 This option is deprecated. Use @option{-fstack-check} instead.
21729
21730 @item -mxl-gp-opt
21731 @opindex mxl-gp-opt
21732 Use GP-relative @code{.sdata}/@code{.sbss} sections.
21733
21734 @item -mxl-multiply-high
21735 @opindex mxl-multiply-high
21736 Use multiply high instructions for high part of 32x32 multiply.
21737
21738 @item -mxl-float-convert
21739 @opindex mxl-float-convert
21740 Use hardware floating-point conversion instructions.
21741
21742 @item -mxl-float-sqrt
21743 @opindex mxl-float-sqrt
21744 Use hardware floating-point square root instruction.
21745
21746 @item -mbig-endian
21747 @opindex mbig-endian
21748 Generate code for a big-endian target.
21749
21750 @item -mlittle-endian
21751 @opindex mlittle-endian
21752 Generate code for a little-endian target.
21753
21754 @item -mxl-reorder
21755 @opindex mxl-reorder
21756 Use reorder instructions (swap and byte reversed load/store).
21757
21758 @item -mxl-mode-@var{app-model}
21759 Select application model @var{app-model}. Valid models are
21760 @table @samp
21761 @item executable
21762 normal executable (default), uses startup code @file{crt0.o}.
21763
21764 @item -mpic-data-is-text-relative
21765 @opindex mpic-data-is-text-relative
21766 Assume that the displacement between the text and data segments is fixed
21767 at static link time. This allows data to be referenced by offset from start of
21768 text address instead of GOT since PC-relative addressing is not supported.
21769
21770 @item xmdstub
21771 for use with Xilinx Microprocessor Debugger (XMD) based
21772 software intrusive debug agent called xmdstub. This uses startup file
21773 @file{crt1.o} and sets the start address of the program to 0x800.
21774
21775 @item bootstrap
21776 for applications that are loaded using a bootloader.
21777 This model uses startup file @file{crt2.o} which does not contain a processor
21778 reset vector handler. This is suitable for transferring control on a
21779 processor reset to the bootloader rather than the application.
21780
21781 @item novectors
21782 for applications that do not require any of the
21783 MicroBlaze vectors. This option may be useful for applications running
21784 within a monitoring application. This model uses @file{crt3.o} as a startup file.
21785 @end table
21786
21787 Option @option{-xl-mode-@var{app-model}} is a deprecated alias for
21788 @option{-mxl-mode-@var{app-model}}.
21789
21790 @end table
21791
21792 @node MIPS Options
21793 @subsection MIPS Options
21794 @cindex MIPS options
21795
21796 @table @gcctabopt
21797
21798 @item -EB
21799 @opindex EB
21800 Generate big-endian code.
21801
21802 @item -EL
21803 @opindex EL
21804 Generate little-endian code. This is the default for @samp{mips*el-*-*}
21805 configurations.
21806
21807 @item -march=@var{arch}
21808 @opindex march
21809 Generate code that runs on @var{arch}, which can be the name of a
21810 generic MIPS ISA, or the name of a particular processor.
21811 The ISA names are:
21812 @samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4},
21813 @samp{mips32}, @samp{mips32r2}, @samp{mips32r3}, @samp{mips32r5},
21814 @samp{mips32r6}, @samp{mips64}, @samp{mips64r2}, @samp{mips64r3},
21815 @samp{mips64r5} and @samp{mips64r6}.
21816 The processor names are:
21817 @samp{4kc}, @samp{4km}, @samp{4kp}, @samp{4ksc},
21818 @samp{4kec}, @samp{4kem}, @samp{4kep}, @samp{4ksd},
21819 @samp{5kc}, @samp{5kf},
21820 @samp{20kc},
21821 @samp{24kc}, @samp{24kf2_1}, @samp{24kf1_1},
21822 @samp{24kec}, @samp{24kef2_1}, @samp{24kef1_1},
21823 @samp{34kc}, @samp{34kf2_1}, @samp{34kf1_1}, @samp{34kn},
21824 @samp{74kc}, @samp{74kf2_1}, @samp{74kf1_1}, @samp{74kf3_2},
21825 @samp{1004kc}, @samp{1004kf2_1}, @samp{1004kf1_1},
21826 @samp{i6400}, @samp{i6500},
21827 @samp{interaptiv},
21828 @samp{loongson2e}, @samp{loongson2f}, @samp{loongson3a}, @samp{gs464},
21829 @samp{gs464e}, @samp{gs264e},
21830 @samp{m4k},
21831 @samp{m14k}, @samp{m14kc}, @samp{m14ke}, @samp{m14kec},
21832 @samp{m5100}, @samp{m5101},
21833 @samp{octeon}, @samp{octeon+}, @samp{octeon2}, @samp{octeon3},
21834 @samp{orion},
21835 @samp{p5600}, @samp{p6600},
21836 @samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400},
21837 @samp{r4600}, @samp{r4650}, @samp{r4700}, @samp{r5900},
21838 @samp{r6000}, @samp{r8000},
21839 @samp{rm7000}, @samp{rm9000},
21840 @samp{r10000}, @samp{r12000}, @samp{r14000}, @samp{r16000},
21841 @samp{sb1},
21842 @samp{sr71000},
21843 @samp{vr4100}, @samp{vr4111}, @samp{vr4120}, @samp{vr4130}, @samp{vr4300},
21844 @samp{vr5000}, @samp{vr5400}, @samp{vr5500},
21845 @samp{xlr} and @samp{xlp}.
21846 The special value @samp{from-abi} selects the
21847 most compatible architecture for the selected ABI (that is,
21848 @samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@.
21849
21850 The native Linux/GNU toolchain also supports the value @samp{native},
21851 which selects the best architecture option for the host processor.
21852 @option{-march=native} has no effect if GCC does not recognize
21853 the processor.
21854
21855 In processor names, a final @samp{000} can be abbreviated as @samp{k}
21856 (for example, @option{-march=r2k}). Prefixes are optional, and
21857 @samp{vr} may be written @samp{r}.
21858
21859 Names of the form @samp{@var{n}f2_1} refer to processors with
21860 FPUs clocked at half the rate of the core, names of the form
21861 @samp{@var{n}f1_1} refer to processors with FPUs clocked at the same
21862 rate as the core, and names of the form @samp{@var{n}f3_2} refer to
21863 processors with FPUs clocked a ratio of 3:2 with respect to the core.
21864 For compatibility reasons, @samp{@var{n}f} is accepted as a synonym
21865 for @samp{@var{n}f2_1} while @samp{@var{n}x} and @samp{@var{b}fx} are
21866 accepted as synonyms for @samp{@var{n}f1_1}.
21867
21868 GCC defines two macros based on the value of this option. The first
21869 is @code{_MIPS_ARCH}, which gives the name of target architecture, as
21870 a string. The second has the form @code{_MIPS_ARCH_@var{foo}},
21871 where @var{foo} is the capitalized value of @code{_MIPS_ARCH}@.
21872 For example, @option{-march=r2000} sets @code{_MIPS_ARCH}
21873 to @code{"r2000"} and defines the macro @code{_MIPS_ARCH_R2000}.
21874
21875 Note that the @code{_MIPS_ARCH} macro uses the processor names given
21876 above. In other words, it has the full prefix and does not
21877 abbreviate @samp{000} as @samp{k}. In the case of @samp{from-abi},
21878 the macro names the resolved architecture (either @code{"mips1"} or
21879 @code{"mips3"}). It names the default architecture when no
21880 @option{-march} option is given.
21881
21882 @item -mtune=@var{arch}
21883 @opindex mtune
21884 Optimize for @var{arch}. Among other things, this option controls
21885 the way instructions are scheduled, and the perceived cost of arithmetic
21886 operations. The list of @var{arch} values is the same as for
21887 @option{-march}.
21888
21889 When this option is not used, GCC optimizes for the processor
21890 specified by @option{-march}. By using @option{-march} and
21891 @option{-mtune} together, it is possible to generate code that
21892 runs on a family of processors, but optimize the code for one
21893 particular member of that family.
21894
21895 @option{-mtune} defines the macros @code{_MIPS_TUNE} and
21896 @code{_MIPS_TUNE_@var{foo}}, which work in the same way as the
21897 @option{-march} ones described above.
21898
21899 @item -mips1
21900 @opindex mips1
21901 Equivalent to @option{-march=mips1}.
21902
21903 @item -mips2
21904 @opindex mips2
21905 Equivalent to @option{-march=mips2}.
21906
21907 @item -mips3
21908 @opindex mips3
21909 Equivalent to @option{-march=mips3}.
21910
21911 @item -mips4
21912 @opindex mips4
21913 Equivalent to @option{-march=mips4}.
21914
21915 @item -mips32
21916 @opindex mips32
21917 Equivalent to @option{-march=mips32}.
21918
21919 @item -mips32r3
21920 @opindex mips32r3
21921 Equivalent to @option{-march=mips32r3}.
21922
21923 @item -mips32r5
21924 @opindex mips32r5
21925 Equivalent to @option{-march=mips32r5}.
21926
21927 @item -mips32r6
21928 @opindex mips32r6
21929 Equivalent to @option{-march=mips32r6}.
21930
21931 @item -mips64
21932 @opindex mips64
21933 Equivalent to @option{-march=mips64}.
21934
21935 @item -mips64r2
21936 @opindex mips64r2
21937 Equivalent to @option{-march=mips64r2}.
21938
21939 @item -mips64r3
21940 @opindex mips64r3
21941 Equivalent to @option{-march=mips64r3}.
21942
21943 @item -mips64r5
21944 @opindex mips64r5
21945 Equivalent to @option{-march=mips64r5}.
21946
21947 @item -mips64r6
21948 @opindex mips64r6
21949 Equivalent to @option{-march=mips64r6}.
21950
21951 @item -mips16
21952 @itemx -mno-mips16
21953 @opindex mips16
21954 @opindex mno-mips16
21955 Generate (do not generate) MIPS16 code. If GCC is targeting a
21956 MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE@.
21957
21958 MIPS16 code generation can also be controlled on a per-function basis
21959 by means of @code{mips16} and @code{nomips16} attributes.
21960 @xref{Function Attributes}, for more information.
21961
21962 @item -mflip-mips16
21963 @opindex mflip-mips16
21964 Generate MIPS16 code on alternating functions. This option is provided
21965 for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
21966 not intended for ordinary use in compiling user code.
21967
21968 @item -minterlink-compressed
21969 @itemx -mno-interlink-compressed
21970 @opindex minterlink-compressed
21971 @opindex mno-interlink-compressed
21972 Require (do not require) that code using the standard (uncompressed) MIPS ISA
21973 be link-compatible with MIPS16 and microMIPS code, and vice versa.
21974
21975 For example, code using the standard ISA encoding cannot jump directly
21976 to MIPS16 or microMIPS code; it must either use a call or an indirect jump.
21977 @option{-minterlink-compressed} therefore disables direct jumps unless GCC
21978 knows that the target of the jump is not compressed.
21979
21980 @item -minterlink-mips16
21981 @itemx -mno-interlink-mips16
21982 @opindex minterlink-mips16
21983 @opindex mno-interlink-mips16
21984 Aliases of @option{-minterlink-compressed} and
21985 @option{-mno-interlink-compressed}. These options predate the microMIPS ASE
21986 and are retained for backwards compatibility.
21987
21988 @item -mabi=32
21989 @itemx -mabi=o64
21990 @itemx -mabi=n32
21991 @itemx -mabi=64
21992 @itemx -mabi=eabi
21993 @opindex mabi=32
21994 @opindex mabi=o64
21995 @opindex mabi=n32
21996 @opindex mabi=64
21997 @opindex mabi=eabi
21998 Generate code for the given ABI@.
21999
22000 Note that the EABI has a 32-bit and a 64-bit variant. GCC normally
22001 generates 64-bit code when you select a 64-bit architecture, but you
22002 can use @option{-mgp32} to get 32-bit code instead.
22003
22004 For information about the O64 ABI, see
22005 @uref{http://gcc.gnu.org/@/projects/@/mipso64-abi.html}.
22006
22007 GCC supports a variant of the o32 ABI in which floating-point registers
22008 are 64 rather than 32 bits wide. You can select this combination with
22009 @option{-mabi=32} @option{-mfp64}. This ABI relies on the @code{mthc1}
22010 and @code{mfhc1} instructions and is therefore only supported for
22011 MIPS32R2, MIPS32R3 and MIPS32R5 processors.
22012
22013 The register assignments for arguments and return values remain the
22014 same, but each scalar value is passed in a single 64-bit register
22015 rather than a pair of 32-bit registers. For example, scalar
22016 floating-point values are returned in @samp{$f0} only, not a
22017 @samp{$f0}/@samp{$f1} pair. The set of call-saved registers also
22018 remains the same in that the even-numbered double-precision registers
22019 are saved.
22020
22021 Two additional variants of the o32 ABI are supported to enable
22022 a transition from 32-bit to 64-bit registers. These are FPXX
22023 (@option{-mfpxx}) and FP64A (@option{-mfp64} @option{-mno-odd-spreg}).
22024 The FPXX extension mandates that all code must execute correctly
22025 when run using 32-bit or 64-bit registers. The code can be interlinked
22026 with either FP32 or FP64, but not both.
22027 The FP64A extension is similar to the FP64 extension but forbids the
22028 use of odd-numbered single-precision registers. This can be used
22029 in conjunction with the @code{FRE} mode of FPUs in MIPS32R5
22030 processors and allows both FP32 and FP64A code to interlink and
22031 run in the same process without changing FPU modes.
22032
22033 @item -mabicalls
22034 @itemx -mno-abicalls
22035 @opindex mabicalls
22036 @opindex mno-abicalls
22037 Generate (do not generate) code that is suitable for SVR4-style
22038 dynamic objects. @option{-mabicalls} is the default for SVR4-based
22039 systems.
22040
22041 @item -mshared
22042 @itemx -mno-shared
22043 Generate (do not generate) code that is fully position-independent,
22044 and that can therefore be linked into shared libraries. This option
22045 only affects @option{-mabicalls}.
22046
22047 All @option{-mabicalls} code has traditionally been position-independent,
22048 regardless of options like @option{-fPIC} and @option{-fpic}. However,
22049 as an extension, the GNU toolchain allows executables to use absolute
22050 accesses for locally-binding symbols. It can also use shorter GP
22051 initialization sequences and generate direct calls to locally-defined
22052 functions. This mode is selected by @option{-mno-shared}.
22053
22054 @option{-mno-shared} depends on binutils 2.16 or higher and generates
22055 objects that can only be linked by the GNU linker. However, the option
22056 does not affect the ABI of the final executable; it only affects the ABI
22057 of relocatable objects. Using @option{-mno-shared} generally makes
22058 executables both smaller and quicker.
22059
22060 @option{-mshared} is the default.
22061
22062 @item -mplt
22063 @itemx -mno-plt
22064 @opindex mplt
22065 @opindex mno-plt
22066 Assume (do not assume) that the static and dynamic linkers
22067 support PLTs and copy relocations. This option only affects
22068 @option{-mno-shared -mabicalls}. For the n64 ABI, this option
22069 has no effect without @option{-msym32}.
22070
22071 You can make @option{-mplt} the default by configuring
22072 GCC with @option{--with-mips-plt}. The default is
22073 @option{-mno-plt} otherwise.
22074
22075 @item -mxgot
22076 @itemx -mno-xgot
22077 @opindex mxgot
22078 @opindex mno-xgot
22079 Lift (do not lift) the usual restrictions on the size of the global
22080 offset table.
22081
22082 GCC normally uses a single instruction to load values from the GOT@.
22083 While this is relatively efficient, it only works if the GOT
22084 is smaller than about 64k. Anything larger causes the linker
22085 to report an error such as:
22086
22087 @cindex relocation truncated to fit (MIPS)
22088 @smallexample
22089 relocation truncated to fit: R_MIPS_GOT16 foobar
22090 @end smallexample
22091
22092 If this happens, you should recompile your code with @option{-mxgot}.
22093 This works with very large GOTs, although the code is also
22094 less efficient, since it takes three instructions to fetch the
22095 value of a global symbol.
22096
22097 Note that some linkers can create multiple GOTs. If you have such a
22098 linker, you should only need to use @option{-mxgot} when a single object
22099 file accesses more than 64k's worth of GOT entries. Very few do.
22100
22101 These options have no effect unless GCC is generating position
22102 independent code.
22103
22104 @item -mgp32
22105 @opindex mgp32
22106 Assume that general-purpose registers are 32 bits wide.
22107
22108 @item -mgp64
22109 @opindex mgp64
22110 Assume that general-purpose registers are 64 bits wide.
22111
22112 @item -mfp32
22113 @opindex mfp32
22114 Assume that floating-point registers are 32 bits wide.
22115
22116 @item -mfp64
22117 @opindex mfp64
22118 Assume that floating-point registers are 64 bits wide.
22119
22120 @item -mfpxx
22121 @opindex mfpxx
22122 Do not assume the width of floating-point registers.
22123
22124 @item -mhard-float
22125 @opindex mhard-float
22126 Use floating-point coprocessor instructions.
22127
22128 @item -msoft-float
22129 @opindex msoft-float
22130 Do not use floating-point coprocessor instructions. Implement
22131 floating-point calculations using library calls instead.
22132
22133 @item -mno-float
22134 @opindex mno-float
22135 Equivalent to @option{-msoft-float}, but additionally asserts that the
22136 program being compiled does not perform any floating-point operations.
22137 This option is presently supported only by some bare-metal MIPS
22138 configurations, where it may select a special set of libraries
22139 that lack all floating-point support (including, for example, the
22140 floating-point @code{printf} formats).
22141 If code compiled with @option{-mno-float} accidentally contains
22142 floating-point operations, it is likely to suffer a link-time
22143 or run-time failure.
22144
22145 @item -msingle-float
22146 @opindex msingle-float
22147 Assume that the floating-point coprocessor only supports single-precision
22148 operations.
22149
22150 @item -mdouble-float
22151 @opindex mdouble-float
22152 Assume that the floating-point coprocessor supports double-precision
22153 operations. This is the default.
22154
22155 @item -modd-spreg
22156 @itemx -mno-odd-spreg
22157 @opindex modd-spreg
22158 @opindex mno-odd-spreg
22159 Enable the use of odd-numbered single-precision floating-point registers
22160 for the o32 ABI. This is the default for processors that are known to
22161 support these registers. When using the o32 FPXX ABI, @option{-mno-odd-spreg}
22162 is set by default.
22163
22164 @item -mabs=2008
22165 @itemx -mabs=legacy
22166 @opindex mabs=2008
22167 @opindex mabs=legacy
22168 These options control the treatment of the special not-a-number (NaN)
22169 IEEE 754 floating-point data with the @code{abs.@i{fmt}} and
22170 @code{neg.@i{fmt}} machine instructions.
22171
22172 By default or when @option{-mabs=legacy} is used the legacy
22173 treatment is selected. In this case these instructions are considered
22174 arithmetic and avoided where correct operation is required and the
22175 input operand might be a NaN. A longer sequence of instructions that
22176 manipulate the sign bit of floating-point datum manually is used
22177 instead unless the @option{-ffinite-math-only} option has also been
22178 specified.
22179
22180 The @option{-mabs=2008} option selects the IEEE 754-2008 treatment. In
22181 this case these instructions are considered non-arithmetic and therefore
22182 operating correctly in all cases, including in particular where the
22183 input operand is a NaN. These instructions are therefore always used
22184 for the respective operations.
22185
22186 @item -mnan=2008
22187 @itemx -mnan=legacy
22188 @opindex mnan=2008
22189 @opindex mnan=legacy
22190 These options control the encoding of the special not-a-number (NaN)
22191 IEEE 754 floating-point data.
22192
22193 The @option{-mnan=legacy} option selects the legacy encoding. In this
22194 case quiet NaNs (qNaNs) are denoted by the first bit of their trailing
22195 significand field being 0, whereas signaling NaNs (sNaNs) are denoted
22196 by the first bit of their trailing significand field being 1.
22197
22198 The @option{-mnan=2008} option selects the IEEE 754-2008 encoding. In
22199 this case qNaNs are denoted by the first bit of their trailing
22200 significand field being 1, whereas sNaNs are denoted by the first bit of
22201 their trailing significand field being 0.
22202
22203 The default is @option{-mnan=legacy} unless GCC has been configured with
22204 @option{--with-nan=2008}.
22205
22206 @item -mllsc
22207 @itemx -mno-llsc
22208 @opindex mllsc
22209 @opindex mno-llsc
22210 Use (do not use) @samp{ll}, @samp{sc}, and @samp{sync} instructions to
22211 implement atomic memory built-in functions. When neither option is
22212 specified, GCC uses the instructions if the target architecture
22213 supports them.
22214
22215 @option{-mllsc} is useful if the runtime environment can emulate the
22216 instructions and @option{-mno-llsc} can be useful when compiling for
22217 nonstandard ISAs. You can make either option the default by
22218 configuring GCC with @option{--with-llsc} and @option{--without-llsc}
22219 respectively. @option{--with-llsc} is the default for some
22220 configurations; see the installation documentation for details.
22221
22222 @item -mdsp
22223 @itemx -mno-dsp
22224 @opindex mdsp
22225 @opindex mno-dsp
22226 Use (do not use) revision 1 of the MIPS DSP ASE@.
22227 @xref{MIPS DSP Built-in Functions}. This option defines the
22228 preprocessor macro @code{__mips_dsp}. It also defines
22229 @code{__mips_dsp_rev} to 1.
22230
22231 @item -mdspr2
22232 @itemx -mno-dspr2
22233 @opindex mdspr2
22234 @opindex mno-dspr2
22235 Use (do not use) revision 2 of the MIPS DSP ASE@.
22236 @xref{MIPS DSP Built-in Functions}. This option defines the
22237 preprocessor macros @code{__mips_dsp} and @code{__mips_dspr2}.
22238 It also defines @code{__mips_dsp_rev} to 2.
22239
22240 @item -msmartmips
22241 @itemx -mno-smartmips
22242 @opindex msmartmips
22243 @opindex mno-smartmips
22244 Use (do not use) the MIPS SmartMIPS ASE.
22245
22246 @item -mpaired-single
22247 @itemx -mno-paired-single
22248 @opindex mpaired-single
22249 @opindex mno-paired-single
22250 Use (do not use) paired-single floating-point instructions.
22251 @xref{MIPS Paired-Single Support}. This option requires
22252 hardware floating-point support to be enabled.
22253
22254 @item -mdmx
22255 @itemx -mno-mdmx
22256 @opindex mdmx
22257 @opindex mno-mdmx
22258 Use (do not use) MIPS Digital Media Extension instructions.
22259 This option can only be used when generating 64-bit code and requires
22260 hardware floating-point support to be enabled.
22261
22262 @item -mips3d
22263 @itemx -mno-mips3d
22264 @opindex mips3d
22265 @opindex mno-mips3d
22266 Use (do not use) the MIPS-3D ASE@. @xref{MIPS-3D Built-in Functions}.
22267 The option @option{-mips3d} implies @option{-mpaired-single}.
22268
22269 @item -mmicromips
22270 @itemx -mno-micromips
22271 @opindex mmicromips
22272 @opindex mno-mmicromips
22273 Generate (do not generate) microMIPS code.
22274
22275 MicroMIPS code generation can also be controlled on a per-function basis
22276 by means of @code{micromips} and @code{nomicromips} attributes.
22277 @xref{Function Attributes}, for more information.
22278
22279 @item -mmt
22280 @itemx -mno-mt
22281 @opindex mmt
22282 @opindex mno-mt
22283 Use (do not use) MT Multithreading instructions.
22284
22285 @item -mmcu
22286 @itemx -mno-mcu
22287 @opindex mmcu
22288 @opindex mno-mcu
22289 Use (do not use) the MIPS MCU ASE instructions.
22290
22291 @item -meva
22292 @itemx -mno-eva
22293 @opindex meva
22294 @opindex mno-eva
22295 Use (do not use) the MIPS Enhanced Virtual Addressing instructions.
22296
22297 @item -mvirt
22298 @itemx -mno-virt
22299 @opindex mvirt
22300 @opindex mno-virt
22301 Use (do not use) the MIPS Virtualization (VZ) instructions.
22302
22303 @item -mxpa
22304 @itemx -mno-xpa
22305 @opindex mxpa
22306 @opindex mno-xpa
22307 Use (do not use) the MIPS eXtended Physical Address (XPA) instructions.
22308
22309 @item -mcrc
22310 @itemx -mno-crc
22311 @opindex mcrc
22312 @opindex mno-crc
22313 Use (do not use) the MIPS Cyclic Redundancy Check (CRC) instructions.
22314
22315 @item -mginv
22316 @itemx -mno-ginv
22317 @opindex mginv
22318 @opindex mno-ginv
22319 Use (do not use) the MIPS Global INValidate (GINV) instructions.
22320
22321 @item -mloongson-mmi
22322 @itemx -mno-loongson-mmi
22323 @opindex mloongson-mmi
22324 @opindex mno-loongson-mmi
22325 Use (do not use) the MIPS Loongson MultiMedia extensions Instructions (MMI).
22326
22327 @item -mloongson-ext
22328 @itemx -mno-loongson-ext
22329 @opindex mloongson-ext
22330 @opindex mno-loongson-ext
22331 Use (do not use) the MIPS Loongson EXTensions (EXT) instructions.
22332
22333 @item -mloongson-ext2
22334 @itemx -mno-loongson-ext2
22335 @opindex mloongson-ext2
22336 @opindex mno-loongson-ext2
22337 Use (do not use) the MIPS Loongson EXTensions r2 (EXT2) instructions.
22338
22339 @item -mlong64
22340 @opindex mlong64
22341 Force @code{long} types to be 64 bits wide. See @option{-mlong32} for
22342 an explanation of the default and the way that the pointer size is
22343 determined.
22344
22345 @item -mlong32
22346 @opindex mlong32
22347 Force @code{long}, @code{int}, and pointer types to be 32 bits wide.
22348
22349 The default size of @code{int}s, @code{long}s and pointers depends on
22350 the ABI@. All the supported ABIs use 32-bit @code{int}s. The n64 ABI
22351 uses 64-bit @code{long}s, as does the 64-bit EABI; the others use
22352 32-bit @code{long}s. Pointers are the same size as @code{long}s,
22353 or the same size as integer registers, whichever is smaller.
22354
22355 @item -msym32
22356 @itemx -mno-sym32
22357 @opindex msym32
22358 @opindex mno-sym32
22359 Assume (do not assume) that all symbols have 32-bit values, regardless
22360 of the selected ABI@. This option is useful in combination with
22361 @option{-mabi=64} and @option{-mno-abicalls} because it allows GCC
22362 to generate shorter and faster references to symbolic addresses.
22363
22364 @item -G @var{num}
22365 @opindex G
22366 Put definitions of externally-visible data in a small data section
22367 if that data is no bigger than @var{num} bytes. GCC can then generate
22368 more efficient accesses to the data; see @option{-mgpopt} for details.
22369
22370 The default @option{-G} option depends on the configuration.
22371
22372 @item -mlocal-sdata
22373 @itemx -mno-local-sdata
22374 @opindex mlocal-sdata
22375 @opindex mno-local-sdata
22376 Extend (do not extend) the @option{-G} behavior to local data too,
22377 such as to static variables in C@. @option{-mlocal-sdata} is the
22378 default for all configurations.
22379
22380 If the linker complains that an application is using too much small data,
22381 you might want to try rebuilding the less performance-critical parts with
22382 @option{-mno-local-sdata}. You might also want to build large
22383 libraries with @option{-mno-local-sdata}, so that the libraries leave
22384 more room for the main program.
22385
22386 @item -mextern-sdata
22387 @itemx -mno-extern-sdata
22388 @opindex mextern-sdata
22389 @opindex mno-extern-sdata
22390 Assume (do not assume) that externally-defined data is in
22391 a small data section if the size of that data is within the @option{-G} limit.
22392 @option{-mextern-sdata} is the default for all configurations.
22393
22394 If you compile a module @var{Mod} with @option{-mextern-sdata} @option{-G
22395 @var{num}} @option{-mgpopt}, and @var{Mod} references a variable @var{Var}
22396 that is no bigger than @var{num} bytes, you must make sure that @var{Var}
22397 is placed in a small data section. If @var{Var} is defined by another
22398 module, you must either compile that module with a high-enough
22399 @option{-G} setting or attach a @code{section} attribute to @var{Var}'s
22400 definition. If @var{Var} is common, you must link the application
22401 with a high-enough @option{-G} setting.
22402
22403 The easiest way of satisfying these restrictions is to compile
22404 and link every module with the same @option{-G} option. However,
22405 you may wish to build a library that supports several different
22406 small data limits. You can do this by compiling the library with
22407 the highest supported @option{-G} setting and additionally using
22408 @option{-mno-extern-sdata} to stop the library from making assumptions
22409 about externally-defined data.
22410
22411 @item -mgpopt
22412 @itemx -mno-gpopt
22413 @opindex mgpopt
22414 @opindex mno-gpopt
22415 Use (do not use) GP-relative accesses for symbols that are known to be
22416 in a small data section; see @option{-G}, @option{-mlocal-sdata} and
22417 @option{-mextern-sdata}. @option{-mgpopt} is the default for all
22418 configurations.
22419
22420 @option{-mno-gpopt} is useful for cases where the @code{$gp} register
22421 might not hold the value of @code{_gp}. For example, if the code is
22422 part of a library that might be used in a boot monitor, programs that
22423 call boot monitor routines pass an unknown value in @code{$gp}.
22424 (In such situations, the boot monitor itself is usually compiled
22425 with @option{-G0}.)
22426
22427 @option{-mno-gpopt} implies @option{-mno-local-sdata} and
22428 @option{-mno-extern-sdata}.
22429
22430 @item -membedded-data
22431 @itemx -mno-embedded-data
22432 @opindex membedded-data
22433 @opindex mno-embedded-data
22434 Allocate variables to the read-only data section first if possible, then
22435 next in the small data section if possible, otherwise in data. This gives
22436 slightly slower code than the default, but reduces the amount of RAM required
22437 when executing, and thus may be preferred for some embedded systems.
22438
22439 @item -muninit-const-in-rodata
22440 @itemx -mno-uninit-const-in-rodata
22441 @opindex muninit-const-in-rodata
22442 @opindex mno-uninit-const-in-rodata
22443 Put uninitialized @code{const} variables in the read-only data section.
22444 This option is only meaningful in conjunction with @option{-membedded-data}.
22445
22446 @item -mcode-readable=@var{setting}
22447 @opindex mcode-readable
22448 Specify whether GCC may generate code that reads from executable sections.
22449 There are three possible settings:
22450
22451 @table @gcctabopt
22452 @item -mcode-readable=yes
22453 Instructions may freely access executable sections. This is the
22454 default setting.
22455
22456 @item -mcode-readable=pcrel
22457 MIPS16 PC-relative load instructions can access executable sections,
22458 but other instructions must not do so. This option is useful on 4KSc
22459 and 4KSd processors when the code TLBs have the Read Inhibit bit set.
22460 It is also useful on processors that can be configured to have a dual
22461 instruction/data SRAM interface and that, like the M4K, automatically
22462 redirect PC-relative loads to the instruction RAM.
22463
22464 @item -mcode-readable=no
22465 Instructions must not access executable sections. This option can be
22466 useful on targets that are configured to have a dual instruction/data
22467 SRAM interface but that (unlike the M4K) do not automatically redirect
22468 PC-relative loads to the instruction RAM.
22469 @end table
22470
22471 @item -msplit-addresses
22472 @itemx -mno-split-addresses
22473 @opindex msplit-addresses
22474 @opindex mno-split-addresses
22475 Enable (disable) use of the @code{%hi()} and @code{%lo()} assembler
22476 relocation operators. This option has been superseded by
22477 @option{-mexplicit-relocs} but is retained for backwards compatibility.
22478
22479 @item -mexplicit-relocs
22480 @itemx -mno-explicit-relocs
22481 @opindex mexplicit-relocs
22482 @opindex mno-explicit-relocs
22483 Use (do not use) assembler relocation operators when dealing with symbolic
22484 addresses. The alternative, selected by @option{-mno-explicit-relocs},
22485 is to use assembler macros instead.
22486
22487 @option{-mexplicit-relocs} is the default if GCC was configured
22488 to use an assembler that supports relocation operators.
22489
22490 @item -mcheck-zero-division
22491 @itemx -mno-check-zero-division
22492 @opindex mcheck-zero-division
22493 @opindex mno-check-zero-division
22494 Trap (do not trap) on integer division by zero.
22495
22496 The default is @option{-mcheck-zero-division}.
22497
22498 @item -mdivide-traps
22499 @itemx -mdivide-breaks
22500 @opindex mdivide-traps
22501 @opindex mdivide-breaks
22502 MIPS systems check for division by zero by generating either a
22503 conditional trap or a break instruction. Using traps results in
22504 smaller code, but is only supported on MIPS II and later. Also, some
22505 versions of the Linux kernel have a bug that prevents trap from
22506 generating the proper signal (@code{SIGFPE}). Use @option{-mdivide-traps} to
22507 allow conditional traps on architectures that support them and
22508 @option{-mdivide-breaks} to force the use of breaks.
22509
22510 The default is usually @option{-mdivide-traps}, but this can be
22511 overridden at configure time using @option{--with-divide=breaks}.
22512 Divide-by-zero checks can be completely disabled using
22513 @option{-mno-check-zero-division}.
22514
22515 @item -mload-store-pairs
22516 @itemx -mno-load-store-pairs
22517 @opindex mload-store-pairs
22518 @opindex mno-load-store-pairs
22519 Enable (disable) an optimization that pairs consecutive load or store
22520 instructions to enable load/store bonding. This option is enabled by
22521 default but only takes effect when the selected architecture is known
22522 to support bonding.
22523
22524 @item -mmemcpy
22525 @itemx -mno-memcpy
22526 @opindex mmemcpy
22527 @opindex mno-memcpy
22528 Force (do not force) the use of @code{memcpy} for non-trivial block
22529 moves. The default is @option{-mno-memcpy}, which allows GCC to inline
22530 most constant-sized copies.
22531
22532 @item -mlong-calls
22533 @itemx -mno-long-calls
22534 @opindex mlong-calls
22535 @opindex mno-long-calls
22536 Disable (do not disable) use of the @code{jal} instruction. Calling
22537 functions using @code{jal} is more efficient but requires the caller
22538 and callee to be in the same 256 megabyte segment.
22539
22540 This option has no effect on abicalls code. The default is
22541 @option{-mno-long-calls}.
22542
22543 @item -mmad
22544 @itemx -mno-mad
22545 @opindex mmad
22546 @opindex mno-mad
22547 Enable (disable) use of the @code{mad}, @code{madu} and @code{mul}
22548 instructions, as provided by the R4650 ISA@.
22549
22550 @item -mimadd
22551 @itemx -mno-imadd
22552 @opindex mimadd
22553 @opindex mno-imadd
22554 Enable (disable) use of the @code{madd} and @code{msub} integer
22555 instructions. The default is @option{-mimadd} on architectures
22556 that support @code{madd} and @code{msub} except for the 74k
22557 architecture where it was found to generate slower code.
22558
22559 @item -mfused-madd
22560 @itemx -mno-fused-madd
22561 @opindex mfused-madd
22562 @opindex mno-fused-madd
22563 Enable (disable) use of the floating-point multiply-accumulate
22564 instructions, when they are available. The default is
22565 @option{-mfused-madd}.
22566
22567 On the R8000 CPU when multiply-accumulate instructions are used,
22568 the intermediate product is calculated to infinite precision
22569 and is not subject to the FCSR Flush to Zero bit. This may be
22570 undesirable in some circumstances. On other processors the result
22571 is numerically identical to the equivalent computation using
22572 separate multiply, add, subtract and negate instructions.
22573
22574 @item -nocpp
22575 @opindex nocpp
22576 Tell the MIPS assembler to not run its preprocessor over user
22577 assembler files (with a @samp{.s} suffix) when assembling them.
22578
22579 @item -mfix-24k
22580 @itemx -mno-fix-24k
22581 @opindex mfix-24k
22582 @opindex mno-fix-24k
22583 Work around the 24K E48 (lost data on stores during refill) errata.
22584 The workarounds are implemented by the assembler rather than by GCC@.
22585
22586 @item -mfix-r4000
22587 @itemx -mno-fix-r4000
22588 @opindex mfix-r4000
22589 @opindex mno-fix-r4000
22590 Work around certain R4000 CPU errata:
22591 @itemize @minus
22592 @item
22593 A double-word or a variable shift may give an incorrect result if executed
22594 immediately after starting an integer division.
22595 @item
22596 A double-word or a variable shift may give an incorrect result if executed
22597 while an integer multiplication is in progress.
22598 @item
22599 An integer division may give an incorrect result if started in a delay slot
22600 of a taken branch or a jump.
22601 @end itemize
22602
22603 @item -mfix-r4400
22604 @itemx -mno-fix-r4400
22605 @opindex mfix-r4400
22606 @opindex mno-fix-r4400
22607 Work around certain R4400 CPU errata:
22608 @itemize @minus
22609 @item
22610 A double-word or a variable shift may give an incorrect result if executed
22611 immediately after starting an integer division.
22612 @end itemize
22613
22614 @item -mfix-r10000
22615 @itemx -mno-fix-r10000
22616 @opindex mfix-r10000
22617 @opindex mno-fix-r10000
22618 Work around certain R10000 errata:
22619 @itemize @minus
22620 @item
22621 @code{ll}/@code{sc} sequences may not behave atomically on revisions
22622 prior to 3.0. They may deadlock on revisions 2.6 and earlier.
22623 @end itemize
22624
22625 This option can only be used if the target architecture supports
22626 branch-likely instructions. @option{-mfix-r10000} is the default when
22627 @option{-march=r10000} is used; @option{-mno-fix-r10000} is the default
22628 otherwise.
22629
22630 @item -mfix-r5900
22631 @itemx -mno-fix-r5900
22632 @opindex mfix-r5900
22633 Do not attempt to schedule the preceding instruction into the delay slot
22634 of a branch instruction placed at the end of a short loop of six
22635 instructions or fewer and always schedule a @code{nop} instruction there
22636 instead. The short loop bug under certain conditions causes loops to
22637 execute only once or twice, due to a hardware bug in the R5900 chip. The
22638 workaround is implemented by the assembler rather than by GCC@.
22639
22640 @item -mfix-rm7000
22641 @itemx -mno-fix-rm7000
22642 @opindex mfix-rm7000
22643 Work around the RM7000 @code{dmult}/@code{dmultu} errata. The
22644 workarounds are implemented by the assembler rather than by GCC@.
22645
22646 @item -mfix-vr4120
22647 @itemx -mno-fix-vr4120
22648 @opindex mfix-vr4120
22649 Work around certain VR4120 errata:
22650 @itemize @minus
22651 @item
22652 @code{dmultu} does not always produce the correct result.
22653 @item
22654 @code{div} and @code{ddiv} do not always produce the correct result if one
22655 of the operands is negative.
22656 @end itemize
22657 The workarounds for the division errata rely on special functions in
22658 @file{libgcc.a}. At present, these functions are only provided by
22659 the @code{mips64vr*-elf} configurations.
22660
22661 Other VR4120 errata require a NOP to be inserted between certain pairs of
22662 instructions. These errata are handled by the assembler, not by GCC itself.
22663
22664 @item -mfix-vr4130
22665 @opindex mfix-vr4130
22666 Work around the VR4130 @code{mflo}/@code{mfhi} errata. The
22667 workarounds are implemented by the assembler rather than by GCC,
22668 although GCC avoids using @code{mflo} and @code{mfhi} if the
22669 VR4130 @code{macc}, @code{macchi}, @code{dmacc} and @code{dmacchi}
22670 instructions are available instead.
22671
22672 @item -mfix-sb1
22673 @itemx -mno-fix-sb1
22674 @opindex mfix-sb1
22675 Work around certain SB-1 CPU core errata.
22676 (This flag currently works around the SB-1 revision 2
22677 ``F1'' and ``F2'' floating-point errata.)
22678
22679 @item -mr10k-cache-barrier=@var{setting}
22680 @opindex mr10k-cache-barrier
22681 Specify whether GCC should insert cache barriers to avoid the
22682 side effects of speculation on R10K processors.
22683
22684 In common with many processors, the R10K tries to predict the outcome
22685 of a conditional branch and speculatively executes instructions from
22686 the ``taken'' branch. It later aborts these instructions if the
22687 predicted outcome is wrong. However, on the R10K, even aborted
22688 instructions can have side effects.
22689
22690 This problem only affects kernel stores and, depending on the system,
22691 kernel loads. As an example, a speculatively-executed store may load
22692 the target memory into cache and mark the cache line as dirty, even if
22693 the store itself is later aborted. If a DMA operation writes to the
22694 same area of memory before the ``dirty'' line is flushed, the cached
22695 data overwrites the DMA-ed data. See the R10K processor manual
22696 for a full description, including other potential problems.
22697
22698 One workaround is to insert cache barrier instructions before every memory
22699 access that might be speculatively executed and that might have side
22700 effects even if aborted. @option{-mr10k-cache-barrier=@var{setting}}
22701 controls GCC's implementation of this workaround. It assumes that
22702 aborted accesses to any byte in the following regions does not have
22703 side effects:
22704
22705 @enumerate
22706 @item
22707 the memory occupied by the current function's stack frame;
22708
22709 @item
22710 the memory occupied by an incoming stack argument;
22711
22712 @item
22713 the memory occupied by an object with a link-time-constant address.
22714 @end enumerate
22715
22716 It is the kernel's responsibility to ensure that speculative
22717 accesses to these regions are indeed safe.
22718
22719 If the input program contains a function declaration such as:
22720
22721 @smallexample
22722 void foo (void);
22723 @end smallexample
22724
22725 then the implementation of @code{foo} must allow @code{j foo} and
22726 @code{jal foo} to be executed speculatively. GCC honors this
22727 restriction for functions it compiles itself. It expects non-GCC
22728 functions (such as hand-written assembly code) to do the same.
22729
22730 The option has three forms:
22731
22732 @table @gcctabopt
22733 @item -mr10k-cache-barrier=load-store
22734 Insert a cache barrier before a load or store that might be
22735 speculatively executed and that might have side effects even
22736 if aborted.
22737
22738 @item -mr10k-cache-barrier=store
22739 Insert a cache barrier before a store that might be speculatively
22740 executed and that might have side effects even if aborted.
22741
22742 @item -mr10k-cache-barrier=none
22743 Disable the insertion of cache barriers. This is the default setting.
22744 @end table
22745
22746 @item -mflush-func=@var{func}
22747 @itemx -mno-flush-func
22748 @opindex mflush-func
22749 Specifies the function to call to flush the I and D caches, or to not
22750 call any such function. If called, the function must take the same
22751 arguments as the common @code{_flush_func}, that is, the address of the
22752 memory range for which the cache is being flushed, the size of the
22753 memory range, and the number 3 (to flush both caches). The default
22754 depends on the target GCC was configured for, but commonly is either
22755 @code{_flush_func} or @code{__cpu_flush}.
22756
22757 @item mbranch-cost=@var{num}
22758 @opindex mbranch-cost
22759 Set the cost of branches to roughly @var{num} ``simple'' instructions.
22760 This cost is only a heuristic and is not guaranteed to produce
22761 consistent results across releases. A zero cost redundantly selects
22762 the default, which is based on the @option{-mtune} setting.
22763
22764 @item -mbranch-likely
22765 @itemx -mno-branch-likely
22766 @opindex mbranch-likely
22767 @opindex mno-branch-likely
22768 Enable or disable use of Branch Likely instructions, regardless of the
22769 default for the selected architecture. By default, Branch Likely
22770 instructions may be generated if they are supported by the selected
22771 architecture. An exception is for the MIPS32 and MIPS64 architectures
22772 and processors that implement those architectures; for those, Branch
22773 Likely instructions are not be generated by default because the MIPS32
22774 and MIPS64 architectures specifically deprecate their use.
22775
22776 @item -mcompact-branches=never
22777 @itemx -mcompact-branches=optimal
22778 @itemx -mcompact-branches=always
22779 @opindex mcompact-branches=never
22780 @opindex mcompact-branches=optimal
22781 @opindex mcompact-branches=always
22782 These options control which form of branches will be generated. The
22783 default is @option{-mcompact-branches=optimal}.
22784
22785 The @option{-mcompact-branches=never} option ensures that compact branch
22786 instructions will never be generated.
22787
22788 The @option{-mcompact-branches=always} option ensures that a compact
22789 branch instruction will be generated if available. If a compact branch
22790 instruction is not available, a delay slot form of the branch will be
22791 used instead.
22792
22793 This option is supported from MIPS Release 6 onwards.
22794
22795 The @option{-mcompact-branches=optimal} option will cause a delay slot
22796 branch to be used if one is available in the current ISA and the delay
22797 slot is successfully filled. If the delay slot is not filled, a compact
22798 branch will be chosen if one is available.
22799
22800 @item -mfp-exceptions
22801 @itemx -mno-fp-exceptions
22802 @opindex mfp-exceptions
22803 Specifies whether FP exceptions are enabled. This affects how
22804 FP instructions are scheduled for some processors.
22805 The default is that FP exceptions are
22806 enabled.
22807
22808 For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
22809 64-bit code, then we can use both FP pipes. Otherwise, we can only use one
22810 FP pipe.
22811
22812 @item -mvr4130-align
22813 @itemx -mno-vr4130-align
22814 @opindex mvr4130-align
22815 The VR4130 pipeline is two-way superscalar, but can only issue two
22816 instructions together if the first one is 8-byte aligned. When this
22817 option is enabled, GCC aligns pairs of instructions that it
22818 thinks should execute in parallel.
22819
22820 This option only has an effect when optimizing for the VR4130.
22821 It normally makes code faster, but at the expense of making it bigger.
22822 It is enabled by default at optimization level @option{-O3}.
22823
22824 @item -msynci
22825 @itemx -mno-synci
22826 @opindex msynci
22827 Enable (disable) generation of @code{synci} instructions on
22828 architectures that support it. The @code{synci} instructions (if
22829 enabled) are generated when @code{__builtin___clear_cache} is
22830 compiled.
22831
22832 This option defaults to @option{-mno-synci}, but the default can be
22833 overridden by configuring GCC with @option{--with-synci}.
22834
22835 When compiling code for single processor systems, it is generally safe
22836 to use @code{synci}. However, on many multi-core (SMP) systems, it
22837 does not invalidate the instruction caches on all cores and may lead
22838 to undefined behavior.
22839
22840 @item -mrelax-pic-calls
22841 @itemx -mno-relax-pic-calls
22842 @opindex mrelax-pic-calls
22843 Try to turn PIC calls that are normally dispatched via register
22844 @code{$25} into direct calls. This is only possible if the linker can
22845 resolve the destination at link time and if the destination is within
22846 range for a direct call.
22847
22848 @option{-mrelax-pic-calls} is the default if GCC was configured to use
22849 an assembler and a linker that support the @code{.reloc} assembly
22850 directive and @option{-mexplicit-relocs} is in effect. With
22851 @option{-mno-explicit-relocs}, this optimization can be performed by the
22852 assembler and the linker alone without help from the compiler.
22853
22854 @item -mmcount-ra-address
22855 @itemx -mno-mcount-ra-address
22856 @opindex mmcount-ra-address
22857 @opindex mno-mcount-ra-address
22858 Emit (do not emit) code that allows @code{_mcount} to modify the
22859 calling function's return address. When enabled, this option extends
22860 the usual @code{_mcount} interface with a new @var{ra-address}
22861 parameter, which has type @code{intptr_t *} and is passed in register
22862 @code{$12}. @code{_mcount} can then modify the return address by
22863 doing both of the following:
22864 @itemize
22865 @item
22866 Returning the new address in register @code{$31}.
22867 @item
22868 Storing the new address in @code{*@var{ra-address}},
22869 if @var{ra-address} is nonnull.
22870 @end itemize
22871
22872 The default is @option{-mno-mcount-ra-address}.
22873
22874 @item -mframe-header-opt
22875 @itemx -mno-frame-header-opt
22876 @opindex mframe-header-opt
22877 Enable (disable) frame header optimization in the o32 ABI. When using the
22878 o32 ABI, calling functions will allocate 16 bytes on the stack for the called
22879 function to write out register arguments. When enabled, this optimization
22880 will suppress the allocation of the frame header if it can be determined that
22881 it is unused.
22882
22883 This optimization is off by default at all optimization levels.
22884
22885 @item -mlxc1-sxc1
22886 @itemx -mno-lxc1-sxc1
22887 @opindex mlxc1-sxc1
22888 When applicable, enable (disable) the generation of @code{lwxc1},
22889 @code{swxc1}, @code{ldxc1}, @code{sdxc1} instructions. Enabled by default.
22890
22891 @item -mmadd4
22892 @itemx -mno-madd4
22893 @opindex mmadd4
22894 When applicable, enable (disable) the generation of 4-operand @code{madd.s},
22895 @code{madd.d} and related instructions. Enabled by default.
22896
22897 @end table
22898
22899 @node MMIX Options
22900 @subsection MMIX Options
22901 @cindex MMIX Options
22902
22903 These options are defined for the MMIX:
22904
22905 @table @gcctabopt
22906 @item -mlibfuncs
22907 @itemx -mno-libfuncs
22908 @opindex mlibfuncs
22909 @opindex mno-libfuncs
22910 Specify that intrinsic library functions are being compiled, passing all
22911 values in registers, no matter the size.
22912
22913 @item -mepsilon
22914 @itemx -mno-epsilon
22915 @opindex mepsilon
22916 @opindex mno-epsilon
22917 Generate floating-point comparison instructions that compare with respect
22918 to the @code{rE} epsilon register.
22919
22920 @item -mabi=mmixware
22921 @itemx -mabi=gnu
22922 @opindex mabi=mmixware
22923 @opindex mabi=gnu
22924 Generate code that passes function parameters and return values that (in
22925 the called function) are seen as registers @code{$0} and up, as opposed to
22926 the GNU ABI which uses global registers @code{$231} and up.
22927
22928 @item -mzero-extend
22929 @itemx -mno-zero-extend
22930 @opindex mzero-extend
22931 @opindex mno-zero-extend
22932 When reading data from memory in sizes shorter than 64 bits, use (do not
22933 use) zero-extending load instructions by default, rather than
22934 sign-extending ones.
22935
22936 @item -mknuthdiv
22937 @itemx -mno-knuthdiv
22938 @opindex mknuthdiv
22939 @opindex mno-knuthdiv
22940 Make the result of a division yielding a remainder have the same sign as
22941 the divisor. With the default, @option{-mno-knuthdiv}, the sign of the
22942 remainder follows the sign of the dividend. Both methods are
22943 arithmetically valid, the latter being almost exclusively used.
22944
22945 @item -mtoplevel-symbols
22946 @itemx -mno-toplevel-symbols
22947 @opindex mtoplevel-symbols
22948 @opindex mno-toplevel-symbols
22949 Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly
22950 code can be used with the @code{PREFIX} assembly directive.
22951
22952 @item -melf
22953 @opindex melf
22954 Generate an executable in the ELF format, rather than the default
22955 @samp{mmo} format used by the @command{mmix} simulator.
22956
22957 @item -mbranch-predict
22958 @itemx -mno-branch-predict
22959 @opindex mbranch-predict
22960 @opindex mno-branch-predict
22961 Use (do not use) the probable-branch instructions, when static branch
22962 prediction indicates a probable branch.
22963
22964 @item -mbase-addresses
22965 @itemx -mno-base-addresses
22966 @opindex mbase-addresses
22967 @opindex mno-base-addresses
22968 Generate (do not generate) code that uses @emph{base addresses}. Using a
22969 base address automatically generates a request (handled by the assembler
22970 and the linker) for a constant to be set up in a global register. The
22971 register is used for one or more base address requests within the range 0
22972 to 255 from the value held in the register. The generally leads to short
22973 and fast code, but the number of different data items that can be
22974 addressed is limited. This means that a program that uses lots of static
22975 data may require @option{-mno-base-addresses}.
22976
22977 @item -msingle-exit
22978 @itemx -mno-single-exit
22979 @opindex msingle-exit
22980 @opindex mno-single-exit
22981 Force (do not force) generated code to have a single exit point in each
22982 function.
22983 @end table
22984
22985 @node MN10300 Options
22986 @subsection MN10300 Options
22987 @cindex MN10300 options
22988
22989 These @option{-m} options are defined for Matsushita MN10300 architectures:
22990
22991 @table @gcctabopt
22992 @item -mmult-bug
22993 @opindex mmult-bug
22994 Generate code to avoid bugs in the multiply instructions for the MN10300
22995 processors. This is the default.
22996
22997 @item -mno-mult-bug
22998 @opindex mno-mult-bug
22999 Do not generate code to avoid bugs in the multiply instructions for the
23000 MN10300 processors.
23001
23002 @item -mam33
23003 @opindex mam33
23004 Generate code using features specific to the AM33 processor.
23005
23006 @item -mno-am33
23007 @opindex mno-am33
23008 Do not generate code using features specific to the AM33 processor. This
23009 is the default.
23010
23011 @item -mam33-2
23012 @opindex mam33-2
23013 Generate code using features specific to the AM33/2.0 processor.
23014
23015 @item -mam34
23016 @opindex mam34
23017 Generate code using features specific to the AM34 processor.
23018
23019 @item -mtune=@var{cpu-type}
23020 @opindex mtune
23021 Use the timing characteristics of the indicated CPU type when
23022 scheduling instructions. This does not change the targeted processor
23023 type. The CPU type must be one of @samp{mn10300}, @samp{am33},
23024 @samp{am33-2} or @samp{am34}.
23025
23026 @item -mreturn-pointer-on-d0
23027 @opindex mreturn-pointer-on-d0
23028 When generating a function that returns a pointer, return the pointer
23029 in both @code{a0} and @code{d0}. Otherwise, the pointer is returned
23030 only in @code{a0}, and attempts to call such functions without a prototype
23031 result in errors. Note that this option is on by default; use
23032 @option{-mno-return-pointer-on-d0} to disable it.
23033
23034 @item -mno-crt0
23035 @opindex mno-crt0
23036 Do not link in the C run-time initialization object file.
23037
23038 @item -mrelax
23039 @opindex mrelax
23040 Indicate to the linker that it should perform a relaxation optimization pass
23041 to shorten branches, calls and absolute memory addresses. This option only
23042 has an effect when used on the command line for the final link step.
23043
23044 This option makes symbolic debugging impossible.
23045
23046 @item -mliw
23047 @opindex mliw
23048 Allow the compiler to generate @emph{Long Instruction Word}
23049 instructions if the target is the @samp{AM33} or later. This is the
23050 default. This option defines the preprocessor macro @code{__LIW__}.
23051
23052 @item -mno-liw
23053 @opindex mno-liw
23054 Do not allow the compiler to generate @emph{Long Instruction Word}
23055 instructions. This option defines the preprocessor macro
23056 @code{__NO_LIW__}.
23057
23058 @item -msetlb
23059 @opindex msetlb
23060 Allow the compiler to generate the @emph{SETLB} and @emph{Lcc}
23061 instructions if the target is the @samp{AM33} or later. This is the
23062 default. This option defines the preprocessor macro @code{__SETLB__}.
23063
23064 @item -mno-setlb
23065 @opindex mno-setlb
23066 Do not allow the compiler to generate @emph{SETLB} or @emph{Lcc}
23067 instructions. This option defines the preprocessor macro
23068 @code{__NO_SETLB__}.
23069
23070 @end table
23071
23072 @node Moxie Options
23073 @subsection Moxie Options
23074 @cindex Moxie Options
23075
23076 @table @gcctabopt
23077
23078 @item -meb
23079 @opindex meb
23080 Generate big-endian code. This is the default for @samp{moxie-*-*}
23081 configurations.
23082
23083 @item -mel
23084 @opindex mel
23085 Generate little-endian code.
23086
23087 @item -mmul.x
23088 @opindex mmul.x
23089 Generate mul.x and umul.x instructions. This is the default for
23090 @samp{moxiebox-*-*} configurations.
23091
23092 @item -mno-crt0
23093 @opindex mno-crt0
23094 Do not link in the C run-time initialization object file.
23095
23096 @end table
23097
23098 @node MSP430 Options
23099 @subsection MSP430 Options
23100 @cindex MSP430 Options
23101
23102 These options are defined for the MSP430:
23103
23104 @table @gcctabopt
23105
23106 @item -masm-hex
23107 @opindex masm-hex
23108 Force assembly output to always use hex constants. Normally such
23109 constants are signed decimals, but this option is available for
23110 testsuite and/or aesthetic purposes.
23111
23112 @item -mmcu=
23113 @opindex mmcu=
23114 Select the MCU to target. This is used to create a C preprocessor
23115 symbol based upon the MCU name, converted to upper case and pre- and
23116 post-fixed with @samp{__}. This in turn is used by the
23117 @file{msp430.h} header file to select an MCU-specific supplementary
23118 header file.
23119
23120 The option also sets the ISA to use. If the MCU name is one that is
23121 known to only support the 430 ISA then that is selected, otherwise the
23122 430X ISA is selected. A generic MCU name of @samp{msp430} can also be
23123 used to select the 430 ISA. Similarly the generic @samp{msp430x} MCU
23124 name selects the 430X ISA.
23125
23126 In addition an MCU-specific linker script is added to the linker
23127 command line. The script's name is the name of the MCU with
23128 @file{.ld} appended. Thus specifying @option{-mmcu=xxx} on the @command{gcc}
23129 command line defines the C preprocessor symbol @code{__XXX__} and
23130 cause the linker to search for a script called @file{xxx.ld}.
23131
23132 The ISA and hardware multiply supported for the different MCUs is hard-coded
23133 into GCC. However, an external @samp{devices.csv} file can be used to
23134 extend device support beyond those that have been hard-coded.
23135
23136 GCC searches for the @samp{devices.csv} file on the paths specified
23137 with the @code{-I} and @code{-L} options.
23138
23139 @item -mwarn-mcu
23140 @itemx -mno-warn-mcu
23141 @opindex mwarn-mcu
23142 @opindex mno-warn-mcu
23143 This option enables or disables warnings about conflicts between the
23144 MCU name specified by the @option{-mmcu} option and the ISA set by the
23145 @option{-mcpu} option and/or the hardware multiply support set by the
23146 @option{-mhwmult} option. It also toggles warnings about unrecognized
23147 MCU names. This option is on by default.
23148
23149 @item -mcpu=
23150 @opindex mcpu=
23151 Specifies the ISA to use. Accepted values are @samp{msp430},
23152 @samp{msp430x} and @samp{msp430xv2}. This option is deprecated. The
23153 @option{-mmcu=} option should be used to select the ISA.
23154
23155 @item -msim
23156 @opindex msim
23157 Link to the simulator runtime libraries and linker script. Overrides
23158 any scripts that would be selected by the @option{-mmcu=} option.
23159
23160 @item -mlarge
23161 @opindex mlarge
23162 Use large-model addressing (20-bit pointers, 32-bit @code{size_t}).
23163
23164 @item -msmall
23165 @opindex msmall
23166 Use small-model addressing (16-bit pointers, 16-bit @code{size_t}).
23167
23168 @item -mrelax
23169 @opindex mrelax
23170 This option is passed to the assembler and linker, and allows the
23171 linker to perform certain optimizations that cannot be done until
23172 the final link.
23173
23174 @item mhwmult=
23175 @opindex mhwmult=
23176 Describes the type of hardware multiply supported by the target.
23177 Accepted values are @samp{none} for no hardware multiply, @samp{16bit}
23178 for the original 16-bit-only multiply supported by early MCUs.
23179 @samp{32bit} for the 16/32-bit multiply supported by later MCUs and
23180 @samp{f5series} for the 16/32-bit multiply supported by F5-series MCUs.
23181 A value of @samp{auto} can also be given. This tells GCC to deduce
23182 the hardware multiply support based upon the MCU name provided by the
23183 @option{-mmcu} option. If no @option{-mmcu} option is specified or if
23184 the MCU name is not recognized then no hardware multiply support is
23185 assumed. @code{auto} is the default setting.
23186
23187 Hardware multiplies are normally performed by calling a library
23188 routine. This saves space in the generated code. When compiling at
23189 @option{-O3} or higher however the hardware multiplier is invoked
23190 inline. This makes for bigger, but faster code.
23191
23192 The hardware multiply routines disable interrupts whilst running and
23193 restore the previous interrupt state when they finish. This makes
23194 them safe to use inside interrupt handlers as well as in normal code.
23195
23196 @item -minrt
23197 @opindex minrt
23198 Enable the use of a minimum runtime environment - no static
23199 initializers or constructors. This is intended for memory-constrained
23200 devices. The compiler includes special symbols in some objects
23201 that tell the linker and runtime which code fragments are required.
23202
23203 @item -mcode-region=
23204 @itemx -mdata-region=
23205 @opindex mcode-region
23206 @opindex mdata-region
23207 These options tell the compiler where to place functions and data that
23208 do not have one of the @code{lower}, @code{upper}, @code{either} or
23209 @code{section} attributes. Possible values are @code{lower},
23210 @code{upper}, @code{either} or @code{any}. The first three behave
23211 like the corresponding attribute. The fourth possible value -
23212 @code{any} - is the default. It leaves placement entirely up to the
23213 linker script and how it assigns the standard sections
23214 (@code{.text}, @code{.data}, etc) to the memory regions.
23215
23216 @item -msilicon-errata=
23217 @opindex msilicon-errata
23218 This option passes on a request to assembler to enable the fixes for
23219 the named silicon errata.
23220
23221 @item -msilicon-errata-warn=
23222 @opindex msilicon-errata-warn
23223 This option passes on a request to the assembler to enable warning
23224 messages when a silicon errata might need to be applied.
23225
23226 @item -mwarn-devices-csv
23227 @itemx -mno-warn-devices-csv
23228 @opindex mwarn-devices-csv
23229 @opindex mno-warn-devices-csv
23230 Warn if @samp{devices.csv} is not found or there are problem parsing it
23231 (default: on).
23232
23233 @end table
23234
23235 @node NDS32 Options
23236 @subsection NDS32 Options
23237 @cindex NDS32 Options
23238
23239 These options are defined for NDS32 implementations:
23240
23241 @table @gcctabopt
23242
23243 @item -mbig-endian
23244 @opindex mbig-endian
23245 Generate code in big-endian mode.
23246
23247 @item -mlittle-endian
23248 @opindex mlittle-endian
23249 Generate code in little-endian mode.
23250
23251 @item -mreduced-regs
23252 @opindex mreduced-regs
23253 Use reduced-set registers for register allocation.
23254
23255 @item -mfull-regs
23256 @opindex mfull-regs
23257 Use full-set registers for register allocation.
23258
23259 @item -mcmov
23260 @opindex mcmov
23261 Generate conditional move instructions.
23262
23263 @item -mno-cmov
23264 @opindex mno-cmov
23265 Do not generate conditional move instructions.
23266
23267 @item -mext-perf
23268 @opindex mext-perf
23269 Generate performance extension instructions.
23270
23271 @item -mno-ext-perf
23272 @opindex mno-ext-perf
23273 Do not generate performance extension instructions.
23274
23275 @item -mext-perf2
23276 @opindex mext-perf2
23277 Generate performance extension 2 instructions.
23278
23279 @item -mno-ext-perf2
23280 @opindex mno-ext-perf2
23281 Do not generate performance extension 2 instructions.
23282
23283 @item -mext-string
23284 @opindex mext-string
23285 Generate string extension instructions.
23286
23287 @item -mno-ext-string
23288 @opindex mno-ext-string
23289 Do not generate string extension instructions.
23290
23291 @item -mv3push
23292 @opindex mv3push
23293 Generate v3 push25/pop25 instructions.
23294
23295 @item -mno-v3push
23296 @opindex mno-v3push
23297 Do not generate v3 push25/pop25 instructions.
23298
23299 @item -m16-bit
23300 @opindex m16-bit
23301 Generate 16-bit instructions.
23302
23303 @item -mno-16-bit
23304 @opindex mno-16-bit
23305 Do not generate 16-bit instructions.
23306
23307 @item -misr-vector-size=@var{num}
23308 @opindex misr-vector-size
23309 Specify the size of each interrupt vector, which must be 4 or 16.
23310
23311 @item -mcache-block-size=@var{num}
23312 @opindex mcache-block-size
23313 Specify the size of each cache block,
23314 which must be a power of 2 between 4 and 512.
23315
23316 @item -march=@var{arch}
23317 @opindex march
23318 Specify the name of the target architecture.
23319
23320 @item -mcmodel=@var{code-model}
23321 @opindex mcmodel
23322 Set the code model to one of
23323 @table @asis
23324 @item @samp{small}
23325 All the data and read-only data segments must be within 512KB addressing space.
23326 The text segment must be within 16MB addressing space.
23327 @item @samp{medium}
23328 The data segment must be within 512KB while the read-only data segment can be
23329 within 4GB addressing space. The text segment should be still within 16MB
23330 addressing space.
23331 @item @samp{large}
23332 All the text and data segments can be within 4GB addressing space.
23333 @end table
23334
23335 @item -mctor-dtor
23336 @opindex mctor-dtor
23337 Enable constructor/destructor feature.
23338
23339 @item -mrelax
23340 @opindex mrelax
23341 Guide linker to relax instructions.
23342
23343 @end table
23344
23345 @node Nios II Options
23346 @subsection Nios II Options
23347 @cindex Nios II options
23348 @cindex Altera Nios II options
23349
23350 These are the options defined for the Altera Nios II processor.
23351
23352 @table @gcctabopt
23353
23354 @item -G @var{num}
23355 @opindex G
23356 @cindex smaller data references
23357 Put global and static objects less than or equal to @var{num} bytes
23358 into the small data or BSS sections instead of the normal data or BSS
23359 sections. The default value of @var{num} is 8.
23360
23361 @item -mgpopt=@var{option}
23362 @itemx -mgpopt
23363 @itemx -mno-gpopt
23364 @opindex mgpopt
23365 @opindex mno-gpopt
23366 Generate (do not generate) GP-relative accesses. The following
23367 @var{option} names are recognized:
23368
23369 @table @samp
23370
23371 @item none
23372 Do not generate GP-relative accesses.
23373
23374 @item local
23375 Generate GP-relative accesses for small data objects that are not
23376 external, weak, or uninitialized common symbols.
23377 Also use GP-relative addressing for objects that
23378 have been explicitly placed in a small data section via a @code{section}
23379 attribute.
23380
23381 @item global
23382 As for @samp{local}, but also generate GP-relative accesses for
23383 small data objects that are external, weak, or common. If you use this option,
23384 you must ensure that all parts of your program (including libraries) are
23385 compiled with the same @option{-G} setting.
23386
23387 @item data
23388 Generate GP-relative accesses for all data objects in the program. If you
23389 use this option, the entire data and BSS segments
23390 of your program must fit in 64K of memory and you must use an appropriate
23391 linker script to allocate them within the addressable range of the
23392 global pointer.
23393
23394 @item all
23395 Generate GP-relative addresses for function pointers as well as data
23396 pointers. If you use this option, the entire text, data, and BSS segments
23397 of your program must fit in 64K of memory and you must use an appropriate
23398 linker script to allocate them within the addressable range of the
23399 global pointer.
23400
23401 @end table
23402
23403 @option{-mgpopt} is equivalent to @option{-mgpopt=local}, and
23404 @option{-mno-gpopt} is equivalent to @option{-mgpopt=none}.
23405
23406 The default is @option{-mgpopt} except when @option{-fpic} or
23407 @option{-fPIC} is specified to generate position-independent code.
23408 Note that the Nios II ABI does not permit GP-relative accesses from
23409 shared libraries.
23410
23411 You may need to specify @option{-mno-gpopt} explicitly when building
23412 programs that include large amounts of small data, including large
23413 GOT data sections. In this case, the 16-bit offset for GP-relative
23414 addressing may not be large enough to allow access to the entire
23415 small data section.
23416
23417 @item -mgprel-sec=@var{regexp}
23418 @opindex mgprel-sec
23419 This option specifies additional section names that can be accessed via
23420 GP-relative addressing. It is most useful in conjunction with
23421 @code{section} attributes on variable declarations
23422 (@pxref{Common Variable Attributes}) and a custom linker script.
23423 The @var{regexp} is a POSIX Extended Regular Expression.
23424
23425 This option does not affect the behavior of the @option{-G} option, and
23426 the specified sections are in addition to the standard @code{.sdata}
23427 and @code{.sbss} small-data sections that are recognized by @option{-mgpopt}.
23428
23429 @item -mr0rel-sec=@var{regexp}
23430 @opindex mr0rel-sec
23431 This option specifies names of sections that can be accessed via a
23432 16-bit offset from @code{r0}; that is, in the low 32K or high 32K
23433 of the 32-bit address space. It is most useful in conjunction with
23434 @code{section} attributes on variable declarations
23435 (@pxref{Common Variable Attributes}) and a custom linker script.
23436 The @var{regexp} is a POSIX Extended Regular Expression.
23437
23438 In contrast to the use of GP-relative addressing for small data,
23439 zero-based addressing is never generated by default and there are no
23440 conventional section names used in standard linker scripts for sections
23441 in the low or high areas of memory.
23442
23443 @item -mel
23444 @itemx -meb
23445 @opindex mel
23446 @opindex meb
23447 Generate little-endian (default) or big-endian (experimental) code,
23448 respectively.
23449
23450 @item -march=@var{arch}
23451 @opindex march
23452 This specifies the name of the target Nios II architecture. GCC uses this
23453 name to determine what kind of instructions it can emit when generating
23454 assembly code. Permissible names are: @samp{r1}, @samp{r2}.
23455
23456 The preprocessor macro @code{__nios2_arch__} is available to programs,
23457 with value 1 or 2, indicating the targeted ISA level.
23458
23459 @item -mbypass-cache
23460 @itemx -mno-bypass-cache
23461 @opindex mno-bypass-cache
23462 @opindex mbypass-cache
23463 Force all load and store instructions to always bypass cache by
23464 using I/O variants of the instructions. The default is not to
23465 bypass the cache.
23466
23467 @item -mno-cache-volatile
23468 @itemx -mcache-volatile
23469 @opindex mcache-volatile
23470 @opindex mno-cache-volatile
23471 Volatile memory access bypass the cache using the I/O variants of
23472 the load and store instructions. The default is not to bypass the cache.
23473
23474 @item -mno-fast-sw-div
23475 @itemx -mfast-sw-div
23476 @opindex mno-fast-sw-div
23477 @opindex mfast-sw-div
23478 Do not use table-based fast divide for small numbers. The default
23479 is to use the fast divide at @option{-O3} and above.
23480
23481 @item -mno-hw-mul
23482 @itemx -mhw-mul
23483 @itemx -mno-hw-mulx
23484 @itemx -mhw-mulx
23485 @itemx -mno-hw-div
23486 @itemx -mhw-div
23487 @opindex mno-hw-mul
23488 @opindex mhw-mul
23489 @opindex mno-hw-mulx
23490 @opindex mhw-mulx
23491 @opindex mno-hw-div
23492 @opindex mhw-div
23493 Enable or disable emitting @code{mul}, @code{mulx} and @code{div} family of
23494 instructions by the compiler. The default is to emit @code{mul}
23495 and not emit @code{div} and @code{mulx}.
23496
23497 @item -mbmx
23498 @itemx -mno-bmx
23499 @itemx -mcdx
23500 @itemx -mno-cdx
23501 Enable or disable generation of Nios II R2 BMX (bit manipulation) and
23502 CDX (code density) instructions. Enabling these instructions also
23503 requires @option{-march=r2}. Since these instructions are optional
23504 extensions to the R2 architecture, the default is not to emit them.
23505
23506 @item -mcustom-@var{insn}=@var{N}
23507 @itemx -mno-custom-@var{insn}
23508 @opindex mcustom-@var{insn}
23509 @opindex mno-custom-@var{insn}
23510 Each @option{-mcustom-@var{insn}=@var{N}} option enables use of a
23511 custom instruction with encoding @var{N} when generating code that uses
23512 @var{insn}. For example, @option{-mcustom-fadds=253} generates custom
23513 instruction 253 for single-precision floating-point add operations instead
23514 of the default behavior of using a library call.
23515
23516 The following values of @var{insn} are supported. Except as otherwise
23517 noted, floating-point operations are expected to be implemented with
23518 normal IEEE 754 semantics and correspond directly to the C operators or the
23519 equivalent GCC built-in functions (@pxref{Other Builtins}).
23520
23521 Single-precision floating point:
23522 @table @asis
23523
23524 @item @samp{fadds}, @samp{fsubs}, @samp{fdivs}, @samp{fmuls}
23525 Binary arithmetic operations.
23526
23527 @item @samp{fnegs}
23528 Unary negation.
23529
23530 @item @samp{fabss}
23531 Unary absolute value.
23532
23533 @item @samp{fcmpeqs}, @samp{fcmpges}, @samp{fcmpgts}, @samp{fcmples}, @samp{fcmplts}, @samp{fcmpnes}
23534 Comparison operations.
23535
23536 @item @samp{fmins}, @samp{fmaxs}
23537 Floating-point minimum and maximum. These instructions are only
23538 generated if @option{-ffinite-math-only} is specified.
23539
23540 @item @samp{fsqrts}
23541 Unary square root operation.
23542
23543 @item @samp{fcoss}, @samp{fsins}, @samp{ftans}, @samp{fatans}, @samp{fexps}, @samp{flogs}
23544 Floating-point trigonometric and exponential functions. These instructions
23545 are only generated if @option{-funsafe-math-optimizations} is also specified.
23546
23547 @end table
23548
23549 Double-precision floating point:
23550 @table @asis
23551
23552 @item @samp{faddd}, @samp{fsubd}, @samp{fdivd}, @samp{fmuld}
23553 Binary arithmetic operations.
23554
23555 @item @samp{fnegd}
23556 Unary negation.
23557
23558 @item @samp{fabsd}
23559 Unary absolute value.
23560
23561 @item @samp{fcmpeqd}, @samp{fcmpged}, @samp{fcmpgtd}, @samp{fcmpled}, @samp{fcmpltd}, @samp{fcmpned}
23562 Comparison operations.
23563
23564 @item @samp{fmind}, @samp{fmaxd}
23565 Double-precision minimum and maximum. These instructions are only
23566 generated if @option{-ffinite-math-only} is specified.
23567
23568 @item @samp{fsqrtd}
23569 Unary square root operation.
23570
23571 @item @samp{fcosd}, @samp{fsind}, @samp{ftand}, @samp{fatand}, @samp{fexpd}, @samp{flogd}
23572 Double-precision trigonometric and exponential functions. These instructions
23573 are only generated if @option{-funsafe-math-optimizations} is also specified.
23574
23575 @end table
23576
23577 Conversions:
23578 @table @asis
23579 @item @samp{fextsd}
23580 Conversion from single precision to double precision.
23581
23582 @item @samp{ftruncds}
23583 Conversion from double precision to single precision.
23584
23585 @item @samp{fixsi}, @samp{fixsu}, @samp{fixdi}, @samp{fixdu}
23586 Conversion from floating point to signed or unsigned integer types, with
23587 truncation towards zero.
23588
23589 @item @samp{round}
23590 Conversion from single-precision floating point to signed integer,
23591 rounding to the nearest integer and ties away from zero.
23592 This corresponds to the @code{__builtin_lroundf} function when
23593 @option{-fno-math-errno} is used.
23594
23595 @item @samp{floatis}, @samp{floatus}, @samp{floatid}, @samp{floatud}
23596 Conversion from signed or unsigned integer types to floating-point types.
23597
23598 @end table
23599
23600 In addition, all of the following transfer instructions for internal
23601 registers X and Y must be provided to use any of the double-precision
23602 floating-point instructions. Custom instructions taking two
23603 double-precision source operands expect the first operand in the
23604 64-bit register X. The other operand (or only operand of a unary
23605 operation) is given to the custom arithmetic instruction with the
23606 least significant half in source register @var{src1} and the most
23607 significant half in @var{src2}. A custom instruction that returns a
23608 double-precision result returns the most significant 32 bits in the
23609 destination register and the other half in 32-bit register Y.
23610 GCC automatically generates the necessary code sequences to write
23611 register X and/or read register Y when double-precision floating-point
23612 instructions are used.
23613
23614 @table @asis
23615
23616 @item @samp{fwrx}
23617 Write @var{src1} into the least significant half of X and @var{src2} into
23618 the most significant half of X.
23619
23620 @item @samp{fwry}
23621 Write @var{src1} into Y.
23622
23623 @item @samp{frdxhi}, @samp{frdxlo}
23624 Read the most or least (respectively) significant half of X and store it in
23625 @var{dest}.
23626
23627 @item @samp{frdy}
23628 Read the value of Y and store it into @var{dest}.
23629 @end table
23630
23631 Note that you can gain more local control over generation of Nios II custom
23632 instructions by using the @code{target("custom-@var{insn}=@var{N}")}
23633 and @code{target("no-custom-@var{insn}")} function attributes
23634 (@pxref{Function Attributes})
23635 or pragmas (@pxref{Function Specific Option Pragmas}).
23636
23637 @item -mcustom-fpu-cfg=@var{name}
23638 @opindex mcustom-fpu-cfg
23639
23640 This option enables a predefined, named set of custom instruction encodings
23641 (see @option{-mcustom-@var{insn}} above).
23642 Currently, the following sets are defined:
23643
23644 @option{-mcustom-fpu-cfg=60-1} is equivalent to:
23645 @gccoptlist{-mcustom-fmuls=252 @gol
23646 -mcustom-fadds=253 @gol
23647 -mcustom-fsubs=254 @gol
23648 -fsingle-precision-constant}
23649
23650 @option{-mcustom-fpu-cfg=60-2} is equivalent to:
23651 @gccoptlist{-mcustom-fmuls=252 @gol
23652 -mcustom-fadds=253 @gol
23653 -mcustom-fsubs=254 @gol
23654 -mcustom-fdivs=255 @gol
23655 -fsingle-precision-constant}
23656
23657 @option{-mcustom-fpu-cfg=72-3} is equivalent to:
23658 @gccoptlist{-mcustom-floatus=243 @gol
23659 -mcustom-fixsi=244 @gol
23660 -mcustom-floatis=245 @gol
23661 -mcustom-fcmpgts=246 @gol
23662 -mcustom-fcmples=249 @gol
23663 -mcustom-fcmpeqs=250 @gol
23664 -mcustom-fcmpnes=251 @gol
23665 -mcustom-fmuls=252 @gol
23666 -mcustom-fadds=253 @gol
23667 -mcustom-fsubs=254 @gol
23668 -mcustom-fdivs=255 @gol
23669 -fsingle-precision-constant}
23670
23671 Custom instruction assignments given by individual
23672 @option{-mcustom-@var{insn}=} options override those given by
23673 @option{-mcustom-fpu-cfg=}, regardless of the
23674 order of the options on the command line.
23675
23676 Note that you can gain more local control over selection of a FPU
23677 configuration by using the @code{target("custom-fpu-cfg=@var{name}")}
23678 function attribute (@pxref{Function Attributes})
23679 or pragma (@pxref{Function Specific Option Pragmas}).
23680
23681 @end table
23682
23683 These additional @samp{-m} options are available for the Altera Nios II
23684 ELF (bare-metal) target:
23685
23686 @table @gcctabopt
23687
23688 @item -mhal
23689 @opindex mhal
23690 Link with HAL BSP. This suppresses linking with the GCC-provided C runtime
23691 startup and termination code, and is typically used in conjunction with
23692 @option{-msys-crt0=} to specify the location of the alternate startup code
23693 provided by the HAL BSP.
23694
23695 @item -msmallc
23696 @opindex msmallc
23697 Link with a limited version of the C library, @option{-lsmallc}, rather than
23698 Newlib.
23699
23700 @item -msys-crt0=@var{startfile}
23701 @opindex msys-crt0
23702 @var{startfile} is the file name of the startfile (crt0) to use
23703 when linking. This option is only useful in conjunction with @option{-mhal}.
23704
23705 @item -msys-lib=@var{systemlib}
23706 @opindex msys-lib
23707 @var{systemlib} is the library name of the library that provides
23708 low-level system calls required by the C library,
23709 e.g.@: @code{read} and @code{write}.
23710 This option is typically used to link with a library provided by a HAL BSP.
23711
23712 @end table
23713
23714 @node Nvidia PTX Options
23715 @subsection Nvidia PTX Options
23716 @cindex Nvidia PTX options
23717 @cindex nvptx options
23718
23719 These options are defined for Nvidia PTX:
23720
23721 @table @gcctabopt
23722
23723 @item -m32
23724 @itemx -m64
23725 @opindex m32
23726 @opindex m64
23727 Generate code for 32-bit or 64-bit ABI.
23728
23729 @item -misa=@var{ISA-string}
23730 @opindex march
23731 Generate code for given the specified PTX ISA (e.g.@: @samp{sm_35}). ISA
23732 strings must be lower-case. Valid ISA strings include @samp{sm_30} and
23733 @samp{sm_35}. The default ISA is sm_30.
23734
23735 @item -mmainkernel
23736 @opindex mmainkernel
23737 Link in code for a __main kernel. This is for stand-alone instead of
23738 offloading execution.
23739
23740 @item -moptimize
23741 @opindex moptimize
23742 Apply partitioned execution optimizations. This is the default when any
23743 level of optimization is selected.
23744
23745 @item -msoft-stack
23746 @opindex msoft-stack
23747 Generate code that does not use @code{.local} memory
23748 directly for stack storage. Instead, a per-warp stack pointer is
23749 maintained explicitly. This enables variable-length stack allocation (with
23750 variable-length arrays or @code{alloca}), and when global memory is used for
23751 underlying storage, makes it possible to access automatic variables from other
23752 threads, or with atomic instructions. This code generation variant is used
23753 for OpenMP offloading, but the option is exposed on its own for the purpose
23754 of testing the compiler; to generate code suitable for linking into programs
23755 using OpenMP offloading, use option @option{-mgomp}.
23756
23757 @item -muniform-simt
23758 @opindex muniform-simt
23759 Switch to code generation variant that allows to execute all threads in each
23760 warp, while maintaining memory state and side effects as if only one thread
23761 in each warp was active outside of OpenMP SIMD regions. All atomic operations
23762 and calls to runtime (malloc, free, vprintf) are conditionally executed (iff
23763 current lane index equals the master lane index), and the register being
23764 assigned is copied via a shuffle instruction from the master lane. Outside of
23765 SIMD regions lane 0 is the master; inside, each thread sees itself as the
23766 master. Shared memory array @code{int __nvptx_uni[]} stores all-zeros or
23767 all-ones bitmasks for each warp, indicating current mode (0 outside of SIMD
23768 regions). Each thread can bitwise-and the bitmask at position @code{tid.y}
23769 with current lane index to compute the master lane index.
23770
23771 @item -mgomp
23772 @opindex mgomp
23773 Generate code for use in OpenMP offloading: enables @option{-msoft-stack} and
23774 @option{-muniform-simt} options, and selects corresponding multilib variant.
23775
23776 @end table
23777
23778 @node OpenRISC Options
23779 @subsection OpenRISC Options
23780 @cindex OpenRISC Options
23781
23782 These options are defined for OpenRISC:
23783
23784 @table @gcctabopt
23785
23786 @item -mboard=@var{name}
23787 @opindex mboard
23788 Configure a board specific runtime. This will be passed to the linker for
23789 newlib board library linking. The default is @code{or1ksim}.
23790
23791 @item -mnewlib
23792 @opindex mnewlib
23793 This option is ignored; it is for compatibility purposes only. This used to
23794 select linker and preprocessor options for use with newlib.
23795
23796 @item -msoft-div
23797 @itemx -mhard-div
23798 @opindex msoft-div
23799 @opindex mhard-div
23800 Select software or hardware divide (@code{l.div}, @code{l.divu}) instructions.
23801 This default is hardware divide.
23802
23803 @item -msoft-mul
23804 @itemx -mhard-mul
23805 @opindex msoft-mul
23806 @opindex mhard-mul
23807 Select software or hardware multiply (@code{l.mul}, @code{l.muli}) instructions.
23808 This default is hardware multiply.
23809
23810 @item -msoft-float
23811 @itemx -mhard-float
23812 @opindex msoft-float
23813 @opindex mhard-float
23814 Select software or hardware for floating point operations.
23815 The default is software.
23816
23817 @item -mdouble-float
23818 @opindex mdouble-float
23819 When @option{-mhard-float} is selected, enables generation of double-precision
23820 floating point instructions. By default functions from @file{libgcc} are used
23821 to perform double-precision floating point operations.
23822
23823 @item -munordered-float
23824 @opindex munordered-float
23825 When @option{-mhard-float} is selected, enables generation of unordered
23826 floating point compare and set flag (@code{lf.sfun*}) instructions. By default
23827 functions from @file{libgcc} are used to perform unordered floating point
23828 compare and set flag operations.
23829
23830 @item -mcmov
23831 @opindex mcmov
23832 Enable generation of conditional move (@code{l.cmov}) instructions. By
23833 default the equivalent will be generated using using set and branch.
23834
23835 @item -mror
23836 @opindex mror
23837 Enable generation of rotate right (@code{l.ror}) instructions. By default
23838 functions from @file{libgcc} are used to perform rotate right operations.
23839
23840 @item -mrori
23841 @opindex mrori
23842 Enable generation of rotate right with immediate (@code{l.rori}) instructions.
23843 By default functions from @file{libgcc} are used to perform rotate right with
23844 immediate operations.
23845
23846 @item -msext
23847 @opindex msext
23848 Enable generation of sign extension (@code{l.ext*}) instructions. By default
23849 memory loads are used to perform sign extension.
23850
23851 @item -msfimm
23852 @opindex msfimm
23853 Enable generation of compare and set flag with immediate (@code{l.sf*i})
23854 instructions. By default extra instructions will be generated to store the
23855 immediate to a register first.
23856
23857 @item -mshftimm
23858 @opindex mshftimm
23859 Enable generation of shift with immediate (@code{l.srai}, @code{l.srli},
23860 @code{l.slli}) instructions. By default extra instructions will be generated
23861 to store the immediate to a register first.
23862
23863
23864 @end table
23865
23866 @node PDP-11 Options
23867 @subsection PDP-11 Options
23868 @cindex PDP-11 Options
23869
23870 These options are defined for the PDP-11:
23871
23872 @table @gcctabopt
23873 @item -mfpu
23874 @opindex mfpu
23875 Use hardware FPP floating point. This is the default. (FIS floating
23876 point on the PDP-11/40 is not supported.) Implies -m45.
23877
23878 @item -msoft-float
23879 @opindex msoft-float
23880 Do not use hardware floating point.
23881
23882 @item -mac0
23883 @opindex mac0
23884 Return floating-point results in ac0 (fr0 in Unix assembler syntax).
23885
23886 @item -mno-ac0
23887 @opindex mno-ac0
23888 Return floating-point results in memory. This is the default.
23889
23890 @item -m40
23891 @opindex m40
23892 Generate code for a PDP-11/40. Implies -msoft-float -mno-split.
23893
23894 @item -m45
23895 @opindex m45
23896 Generate code for a PDP-11/45. This is the default.
23897
23898 @item -m10
23899 @opindex m10
23900 Generate code for a PDP-11/10. Implies -msoft-float -mno-split.
23901
23902 @item -mint16
23903 @itemx -mno-int32
23904 @opindex mint16
23905 @opindex mno-int32
23906 Use 16-bit @code{int}. This is the default.
23907
23908 @item -mint32
23909 @itemx -mno-int16
23910 @opindex mint32
23911 @opindex mno-int16
23912 Use 32-bit @code{int}.
23913
23914 @item -msplit
23915 @opindex msplit
23916 Target has split instruction and data space. Implies -m45.
23917
23918 @item -munix-asm
23919 @opindex munix-asm
23920 Use Unix assembler syntax.
23921
23922 @item -mdec-asm
23923 @opindex mdec-asm
23924 Use DEC assembler syntax.
23925
23926 @item -mgnu-asm
23927 @opindex mgnu-asm
23928 Use GNU assembler syntax. This is the default.
23929
23930 @item -mlra
23931 @opindex mlra
23932 Use the new LRA register allocator. By default, the old ``reload''
23933 allocator is used.
23934 @end table
23935
23936 @node picoChip Options
23937 @subsection picoChip Options
23938 @cindex picoChip options
23939
23940 These @samp{-m} options are defined for picoChip implementations:
23941
23942 @table @gcctabopt
23943
23944 @item -mae=@var{ae_type}
23945 @opindex mcpu
23946 Set the instruction set, register set, and instruction scheduling
23947 parameters for array element type @var{ae_type}. Supported values
23948 for @var{ae_type} are @samp{ANY}, @samp{MUL}, and @samp{MAC}.
23949
23950 @option{-mae=ANY} selects a completely generic AE type. Code
23951 generated with this option runs on any of the other AE types. The
23952 code is not as efficient as it would be if compiled for a specific
23953 AE type, and some types of operation (e.g., multiplication) do not
23954 work properly on all types of AE.
23955
23956 @option{-mae=MUL} selects a MUL AE type. This is the most useful AE type
23957 for compiled code, and is the default.
23958
23959 @option{-mae=MAC} selects a DSP-style MAC AE. Code compiled with this
23960 option may suffer from poor performance of byte (char) manipulation,
23961 since the DSP AE does not provide hardware support for byte load/stores.
23962
23963 @item -msymbol-as-address
23964 Enable the compiler to directly use a symbol name as an address in a
23965 load/store instruction, without first loading it into a
23966 register. Typically, the use of this option generates larger
23967 programs, which run faster than when the option isn't used. However, the
23968 results vary from program to program, so it is left as a user option,
23969 rather than being permanently enabled.
23970
23971 @item -mno-inefficient-warnings
23972 Disables warnings about the generation of inefficient code. These
23973 warnings can be generated, for example, when compiling code that
23974 performs byte-level memory operations on the MAC AE type. The MAC AE has
23975 no hardware support for byte-level memory operations, so all byte
23976 load/stores must be synthesized from word load/store operations. This is
23977 inefficient and a warning is generated to indicate
23978 that you should rewrite the code to avoid byte operations, or to target
23979 an AE type that has the necessary hardware support. This option disables
23980 these warnings.
23981
23982 @end table
23983
23984 @node PowerPC Options
23985 @subsection PowerPC Options
23986 @cindex PowerPC options
23987
23988 These are listed under @xref{RS/6000 and PowerPC Options}.
23989
23990 @node PRU Options
23991 @subsection PRU Options
23992 @cindex PRU Options
23993
23994 These command-line options are defined for PRU target:
23995
23996 @table @gcctabopt
23997 @item -minrt
23998 @opindex minrt
23999 Link with a minimum runtime environment, with no support for static
24000 initializers and constructors. Using this option can significantly reduce
24001 the size of the final ELF binary. Beware that the compiler could still
24002 generate code with static initializers and constructors. It is up to the
24003 programmer to ensure that the source program will not use those features.
24004
24005 @item -mmcu=@var{mcu}
24006 @opindex mmcu
24007 Specify the PRU MCU variant to use. Check Newlib for the exact list of
24008 supported MCUs.
24009
24010 @item -mno-relax
24011 @opindex mno-relax
24012 Make GCC pass the @option{--no-relax} command-line option to the linker
24013 instead of the @option{--relax} option.
24014
24015 @item -mloop
24016 @opindex mloop
24017 Allow (or do not allow) GCC to use the LOOP instruction.
24018
24019 @item -mabi=@var{variant}
24020 @opindex mabi
24021 Specify the ABI variant to output code for. @option{-mabi=ti} selects the
24022 unmodified TI ABI while @option{-mabi=gnu} selects a GNU variant that copes
24023 more naturally with certain GCC assumptions. These are the differences:
24024
24025 @table @samp
24026 @item Function Pointer Size
24027 TI ABI specifies that function (code) pointers are 16-bit, whereas GNU
24028 supports only 32-bit data and code pointers.
24029
24030 @item Optional Return Value Pointer
24031 Function return values larger than 64 bits are passed by using a hidden
24032 pointer as the first argument of the function. TI ABI, though, mandates that
24033 the pointer can be NULL in case the caller is not using the returned value.
24034 GNU always passes and expects a valid return value pointer.
24035
24036 @end table
24037
24038 The current @option{-mabi=ti} implementation simply raises a compile error
24039 when any of the above code constructs is detected. As a consequence
24040 the standard C library cannot be built and it is omitted when linking with
24041 @option{-mabi=ti}.
24042
24043 Relaxation is a GNU feature and for safety reasons is disabled when using
24044 @option{-mabi=ti}. The TI toolchain does not emit relocations for QBBx
24045 instructions, so the GNU linker cannot adjust them when shortening adjacent
24046 LDI32 pseudo instructions.
24047
24048 @end table
24049
24050 @node RISC-V Options
24051 @subsection RISC-V Options
24052 @cindex RISC-V Options
24053
24054 These command-line options are defined for RISC-V targets:
24055
24056 @table @gcctabopt
24057 @item -mbranch-cost=@var{n}
24058 @opindex mbranch-cost
24059 Set the cost of branches to roughly @var{n} instructions.
24060
24061 @item -mplt
24062 @itemx -mno-plt
24063 @opindex plt
24064 When generating PIC code, do or don't allow the use of PLTs. Ignored for
24065 non-PIC. The default is @option{-mplt}.
24066
24067 @item -mabi=@var{ABI-string}
24068 @opindex mabi
24069 Specify integer and floating-point calling convention. @var{ABI-string}
24070 contains two parts: the size of integer types and the registers used for
24071 floating-point types. For example @samp{-march=rv64ifd -mabi=lp64d} means that
24072 @samp{long} and pointers are 64-bit (implicitly defining @samp{int} to be
24073 32-bit), and that floating-point values up to 64 bits wide are passed in F
24074 registers. Contrast this with @samp{-march=rv64ifd -mabi=lp64f}, which still
24075 allows the compiler to generate code that uses the F and D extensions but only
24076 allows floating-point values up to 32 bits long to be passed in registers; or
24077 @samp{-march=rv64ifd -mabi=lp64}, in which no floating-point arguments will be
24078 passed in registers.
24079
24080 The default for this argument is system dependent, users who want a specific
24081 calling convention should specify one explicitly. The valid calling
24082 conventions are: @samp{ilp32}, @samp{ilp32f}, @samp{ilp32d}, @samp{lp64},
24083 @samp{lp64f}, and @samp{lp64d}. Some calling conventions are impossible to
24084 implement on some ISAs: for example, @samp{-march=rv32if -mabi=ilp32d} is
24085 invalid because the ABI requires 64-bit values be passed in F registers, but F
24086 registers are only 32 bits wide. There is also the @samp{ilp32e} ABI that can
24087 only be used with the @samp{rv32e} architecture. This ABI is not well
24088 specified at present, and is subject to change.
24089
24090 @item -mfdiv
24091 @itemx -mno-fdiv
24092 @opindex mfdiv
24093 Do or don't use hardware floating-point divide and square root instructions.
24094 This requires the F or D extensions for floating-point registers. The default
24095 is to use them if the specified architecture has these instructions.
24096
24097 @item -mdiv
24098 @itemx -mno-div
24099 @opindex mdiv
24100 Do or don't use hardware instructions for integer division. This requires the
24101 M extension. The default is to use them if the specified architecture has
24102 these instructions.
24103
24104 @item -march=@var{ISA-string}
24105 @opindex march
24106 Generate code for given RISC-V ISA (e.g.@: @samp{rv64im}). ISA strings must be
24107 lower-case. Examples include @samp{rv64i}, @samp{rv32g}, @samp{rv32e}, and
24108 @samp{rv32imaf}.
24109
24110 @item -mtune=@var{processor-string}
24111 @opindex mtune
24112 Optimize the output for the given processor, specified by microarchitecture
24113 name. Permissible values for this option are: @samp{rocket},
24114 @samp{sifive-3-series}, @samp{sifive-5-series}, @samp{sifive-7-series},
24115 and @samp{size}.
24116
24117 When @option{-mtune=} is not specified, the default is @samp{rocket}.
24118
24119 The @samp{size} choice is not intended for use by end-users. This is used
24120 when @option{-Os} is specified. It overrides the instruction cost info
24121 provided by @option{-mtune=}, but does not override the pipeline info. This
24122 helps reduce code size while still giving good performance.
24123
24124 @item -mpreferred-stack-boundary=@var{num}
24125 @opindex mpreferred-stack-boundary
24126 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
24127 byte boundary. If @option{-mpreferred-stack-boundary} is not specified,
24128 the default is 4 (16 bytes or 128-bits).
24129
24130 @strong{Warning:} If you use this switch, then you must build all modules with
24131 the same value, including any libraries. This includes the system libraries
24132 and startup modules.
24133
24134 @item -msmall-data-limit=@var{n}
24135 @opindex msmall-data-limit
24136 Put global and static data smaller than @var{n} bytes into a special section
24137 (on some targets).
24138
24139 @item -msave-restore
24140 @itemx -mno-save-restore
24141 @opindex msave-restore
24142 Do or don't use smaller but slower prologue and epilogue code that uses
24143 library function calls. The default is to use fast inline prologues and
24144 epilogues.
24145
24146 @item -mstrict-align
24147 @itemx -mno-strict-align
24148 @opindex mstrict-align
24149 Do not or do generate unaligned memory accesses. The default is set depending
24150 on whether the processor we are optimizing for supports fast unaligned access
24151 or not.
24152
24153 @item -mcmodel=medlow
24154 @opindex mcmodel=medlow
24155 Generate code for the medium-low code model. The program and its statically
24156 defined symbols must lie within a single 2 GiB address range and must lie
24157 between absolute addresses @minus{}2 GiB and +2 GiB. Programs can be
24158 statically or dynamically linked. This is the default code model.
24159
24160 @item -mcmodel=medany
24161 @opindex mcmodel=medany
24162 Generate code for the medium-any code model. The program and its statically
24163 defined symbols must be within any single 2 GiB address range. Programs can be
24164 statically or dynamically linked.
24165
24166 @item -mexplicit-relocs
24167 @itemx -mno-exlicit-relocs
24168 Use or do not use assembler relocation operators when dealing with symbolic
24169 addresses. The alternative is to use assembler macros instead, which may
24170 limit optimization.
24171
24172 @item -mrelax
24173 @itemx -mno-relax
24174 Take advantage of linker relaxations to reduce the number of instructions
24175 required to materialize symbol addresses. The default is to take advantage of
24176 linker relaxations.
24177
24178 @item -memit-attribute
24179 @itemx -mno-emit-attribute
24180 Emit (do not emit) RISC-V attribute to record extra information into ELF
24181 objects. This feature requires at least binutils 2.32.
24182
24183 @item -malign-data=@var{type}
24184 @opindex malign-data
24185 Control how GCC aligns variables and constants of array, structure, or union
24186 types. Supported values for @var{type} are @samp{xlen} which uses x register
24187 width as the alignment value, and @samp{natural} which uses natural alignment.
24188 @samp{xlen} is the default.
24189 @end table
24190
24191 @node RL78 Options
24192 @subsection RL78 Options
24193 @cindex RL78 Options
24194
24195 @table @gcctabopt
24196
24197 @item -msim
24198 @opindex msim
24199 Links in additional target libraries to support operation within a
24200 simulator.
24201
24202 @item -mmul=none
24203 @itemx -mmul=g10
24204 @itemx -mmul=g13
24205 @itemx -mmul=g14
24206 @itemx -mmul=rl78
24207 @opindex mmul
24208 Specifies the type of hardware multiplication and division support to
24209 be used. The simplest is @code{none}, which uses software for both
24210 multiplication and division. This is the default. The @code{g13}
24211 value is for the hardware multiply/divide peripheral found on the
24212 RL78/G13 (S2 core) targets. The @code{g14} value selects the use of
24213 the multiplication and division instructions supported by the RL78/G14
24214 (S3 core) parts. The value @code{rl78} is an alias for @code{g14} and
24215 the value @code{mg10} is an alias for @code{none}.
24216
24217 In addition a C preprocessor macro is defined, based upon the setting
24218 of this option. Possible values are: @code{__RL78_MUL_NONE__},
24219 @code{__RL78_MUL_G13__} or @code{__RL78_MUL_G14__}.
24220
24221 @item -mcpu=g10
24222 @itemx -mcpu=g13
24223 @itemx -mcpu=g14
24224 @itemx -mcpu=rl78
24225 @opindex mcpu
24226 Specifies the RL78 core to target. The default is the G14 core, also
24227 known as an S3 core or just RL78. The G13 or S2 core does not have
24228 multiply or divide instructions, instead it uses a hardware peripheral
24229 for these operations. The G10 or S1 core does not have register
24230 banks, so it uses a different calling convention.
24231
24232 If this option is set it also selects the type of hardware multiply
24233 support to use, unless this is overridden by an explicit
24234 @option{-mmul=none} option on the command line. Thus specifying
24235 @option{-mcpu=g13} enables the use of the G13 hardware multiply
24236 peripheral and specifying @option{-mcpu=g10} disables the use of
24237 hardware multiplications altogether.
24238
24239 Note, although the RL78/G14 core is the default target, specifying
24240 @option{-mcpu=g14} or @option{-mcpu=rl78} on the command line does
24241 change the behavior of the toolchain since it also enables G14
24242 hardware multiply support. If these options are not specified on the
24243 command line then software multiplication routines will be used even
24244 though the code targets the RL78 core. This is for backwards
24245 compatibility with older toolchains which did not have hardware
24246 multiply and divide support.
24247
24248 In addition a C preprocessor macro is defined, based upon the setting
24249 of this option. Possible values are: @code{__RL78_G10__},
24250 @code{__RL78_G13__} or @code{__RL78_G14__}.
24251
24252 @item -mg10
24253 @itemx -mg13
24254 @itemx -mg14
24255 @itemx -mrl78
24256 @opindex mg10
24257 @opindex mg13
24258 @opindex mg14
24259 @opindex mrl78
24260 These are aliases for the corresponding @option{-mcpu=} option. They
24261 are provided for backwards compatibility.
24262
24263 @item -mallregs
24264 @opindex mallregs
24265 Allow the compiler to use all of the available registers. By default
24266 registers @code{r24..r31} are reserved for use in interrupt handlers.
24267 With this option enabled these registers can be used in ordinary
24268 functions as well.
24269
24270 @item -m64bit-doubles
24271 @itemx -m32bit-doubles
24272 @opindex m64bit-doubles
24273 @opindex m32bit-doubles
24274 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
24275 or 32 bits (@option{-m32bit-doubles}) in size. The default is
24276 @option{-m32bit-doubles}.
24277
24278 @item -msave-mduc-in-interrupts
24279 @itemx -mno-save-mduc-in-interrupts
24280 @opindex msave-mduc-in-interrupts
24281 @opindex mno-save-mduc-in-interrupts
24282 Specifies that interrupt handler functions should preserve the
24283 MDUC registers. This is only necessary if normal code might use
24284 the MDUC registers, for example because it performs multiplication
24285 and division operations. The default is to ignore the MDUC registers
24286 as this makes the interrupt handlers faster. The target option -mg13
24287 needs to be passed for this to work as this feature is only available
24288 on the G13 target (S2 core). The MDUC registers will only be saved
24289 if the interrupt handler performs a multiplication or division
24290 operation or it calls another function.
24291
24292 @end table
24293
24294 @node RS/6000 and PowerPC Options
24295 @subsection IBM RS/6000 and PowerPC Options
24296 @cindex RS/6000 and PowerPC Options
24297 @cindex IBM RS/6000 and PowerPC Options
24298
24299 These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
24300 @table @gcctabopt
24301 @item -mpowerpc-gpopt
24302 @itemx -mno-powerpc-gpopt
24303 @itemx -mpowerpc-gfxopt
24304 @itemx -mno-powerpc-gfxopt
24305 @need 800
24306 @itemx -mpowerpc64
24307 @itemx -mno-powerpc64
24308 @itemx -mmfcrf
24309 @itemx -mno-mfcrf
24310 @itemx -mpopcntb
24311 @itemx -mno-popcntb
24312 @itemx -mpopcntd
24313 @itemx -mno-popcntd
24314 @itemx -mfprnd
24315 @itemx -mno-fprnd
24316 @need 800
24317 @itemx -mcmpb
24318 @itemx -mno-cmpb
24319 @itemx -mhard-dfp
24320 @itemx -mno-hard-dfp
24321 @opindex mpowerpc-gpopt
24322 @opindex mno-powerpc-gpopt
24323 @opindex mpowerpc-gfxopt
24324 @opindex mno-powerpc-gfxopt
24325 @opindex mpowerpc64
24326 @opindex mno-powerpc64
24327 @opindex mmfcrf
24328 @opindex mno-mfcrf
24329 @opindex mpopcntb
24330 @opindex mno-popcntb
24331 @opindex mpopcntd
24332 @opindex mno-popcntd
24333 @opindex mfprnd
24334 @opindex mno-fprnd
24335 @opindex mcmpb
24336 @opindex mno-cmpb
24337 @opindex mhard-dfp
24338 @opindex mno-hard-dfp
24339 You use these options to specify which instructions are available on the
24340 processor you are using. The default value of these options is
24341 determined when configuring GCC@. Specifying the
24342 @option{-mcpu=@var{cpu_type}} overrides the specification of these
24343 options. We recommend you use the @option{-mcpu=@var{cpu_type}} option
24344 rather than the options listed above.
24345
24346 Specifying @option{-mpowerpc-gpopt} allows
24347 GCC to use the optional PowerPC architecture instructions in the
24348 General Purpose group, including floating-point square root. Specifying
24349 @option{-mpowerpc-gfxopt} allows GCC to
24350 use the optional PowerPC architecture instructions in the Graphics
24351 group, including floating-point select.
24352
24353 The @option{-mmfcrf} option allows GCC to generate the move from
24354 condition register field instruction implemented on the POWER4
24355 processor and other processors that support the PowerPC V2.01
24356 architecture.
24357 The @option{-mpopcntb} option allows GCC to generate the popcount and
24358 double-precision FP reciprocal estimate instruction implemented on the
24359 POWER5 processor and other processors that support the PowerPC V2.02
24360 architecture.
24361 The @option{-mpopcntd} option allows GCC to generate the popcount
24362 instruction implemented on the POWER7 processor and other processors
24363 that support the PowerPC V2.06 architecture.
24364 The @option{-mfprnd} option allows GCC to generate the FP round to
24365 integer instructions implemented on the POWER5+ processor and other
24366 processors that support the PowerPC V2.03 architecture.
24367 The @option{-mcmpb} option allows GCC to generate the compare bytes
24368 instruction implemented on the POWER6 processor and other processors
24369 that support the PowerPC V2.05 architecture.
24370 The @option{-mhard-dfp} option allows GCC to generate the decimal
24371 floating-point instructions implemented on some POWER processors.
24372
24373 The @option{-mpowerpc64} option allows GCC to generate the additional
24374 64-bit instructions that are found in the full PowerPC64 architecture
24375 and to treat GPRs as 64-bit, doubleword quantities. GCC defaults to
24376 @option{-mno-powerpc64}.
24377
24378 @item -mcpu=@var{cpu_type}
24379 @opindex mcpu
24380 Set architecture type, register usage, and
24381 instruction scheduling parameters for machine type @var{cpu_type}.
24382 Supported values for @var{cpu_type} are @samp{401}, @samp{403},
24383 @samp{405}, @samp{405fp}, @samp{440}, @samp{440fp}, @samp{464}, @samp{464fp},
24384 @samp{476}, @samp{476fp}, @samp{505}, @samp{601}, @samp{602}, @samp{603},
24385 @samp{603e}, @samp{604}, @samp{604e}, @samp{620}, @samp{630}, @samp{740},
24386 @samp{7400}, @samp{7450}, @samp{750}, @samp{801}, @samp{821}, @samp{823},
24387 @samp{860}, @samp{970}, @samp{8540}, @samp{a2}, @samp{e300c2},
24388 @samp{e300c3}, @samp{e500mc}, @samp{e500mc64}, @samp{e5500},
24389 @samp{e6500}, @samp{ec603e}, @samp{G3}, @samp{G4}, @samp{G5},
24390 @samp{titan}, @samp{power3}, @samp{power4}, @samp{power5}, @samp{power5+},
24391 @samp{power6}, @samp{power6x}, @samp{power7}, @samp{power8},
24392 @samp{power9}, @samp{future}, @samp{powerpc}, @samp{powerpc64},
24393 @samp{powerpc64le}, @samp{rs64}, and @samp{native}.
24394
24395 @option{-mcpu=powerpc}, @option{-mcpu=powerpc64}, and
24396 @option{-mcpu=powerpc64le} specify pure 32-bit PowerPC (either
24397 endian), 64-bit big endian PowerPC and 64-bit little endian PowerPC
24398 architecture machine types, with an appropriate, generic processor
24399 model assumed for scheduling purposes.
24400
24401 Specifying @samp{native} as cpu type detects and selects the
24402 architecture option that corresponds to the host processor of the
24403 system performing the compilation.
24404 @option{-mcpu=native} has no effect if GCC does not recognize the
24405 processor.
24406
24407 The other options specify a specific processor. Code generated under
24408 those options runs best on that processor, and may not run at all on
24409 others.
24410
24411 The @option{-mcpu} options automatically enable or disable the
24412 following options:
24413
24414 @gccoptlist{-maltivec -mfprnd -mhard-float -mmfcrf -mmultiple @gol
24415 -mpopcntb -mpopcntd -mpowerpc64 @gol
24416 -mpowerpc-gpopt -mpowerpc-gfxopt @gol
24417 -mmulhw -mdlmzb -mmfpgpr -mvsx @gol
24418 -mcrypto -mhtm -mpower8-fusion -mpower8-vector @gol
24419 -mquad-memory -mquad-memory-atomic -mfloat128 -mfloat128-hardware}
24420
24421 The particular options set for any particular CPU varies between
24422 compiler versions, depending on what setting seems to produce optimal
24423 code for that CPU; it doesn't necessarily reflect the actual hardware's
24424 capabilities. If you wish to set an individual option to a particular
24425 value, you may specify it after the @option{-mcpu} option, like
24426 @option{-mcpu=970 -mno-altivec}.
24427
24428 On AIX, the @option{-maltivec} and @option{-mpowerpc64} options are
24429 not enabled or disabled by the @option{-mcpu} option at present because
24430 AIX does not have full support for these options. You may still
24431 enable or disable them individually if you're sure it'll work in your
24432 environment.
24433
24434 @item -mtune=@var{cpu_type}
24435 @opindex mtune
24436 Set the instruction scheduling parameters for machine type
24437 @var{cpu_type}, but do not set the architecture type or register usage,
24438 as @option{-mcpu=@var{cpu_type}} does. The same
24439 values for @var{cpu_type} are used for @option{-mtune} as for
24440 @option{-mcpu}. If both are specified, the code generated uses the
24441 architecture and registers set by @option{-mcpu}, but the
24442 scheduling parameters set by @option{-mtune}.
24443
24444 @item -mcmodel=small
24445 @opindex mcmodel=small
24446 Generate PowerPC64 code for the small model: The TOC is limited to
24447 64k.
24448
24449 @item -mcmodel=medium
24450 @opindex mcmodel=medium
24451 Generate PowerPC64 code for the medium model: The TOC and other static
24452 data may be up to a total of 4G in size. This is the default for 64-bit
24453 Linux.
24454
24455 @item -mcmodel=large
24456 @opindex mcmodel=large
24457 Generate PowerPC64 code for the large model: The TOC may be up to 4G
24458 in size. Other data and code is only limited by the 64-bit address
24459 space.
24460
24461 @item -maltivec
24462 @itemx -mno-altivec
24463 @opindex maltivec
24464 @opindex mno-altivec
24465 Generate code that uses (does not use) AltiVec instructions, and also
24466 enable the use of built-in functions that allow more direct access to
24467 the AltiVec instruction set. You may also need to set
24468 @option{-mabi=altivec} to adjust the current ABI with AltiVec ABI
24469 enhancements.
24470
24471 When @option{-maltivec} is used, the element order for AltiVec intrinsics
24472 such as @code{vec_splat}, @code{vec_extract}, and @code{vec_insert}
24473 match array element order corresponding to the endianness of the
24474 target. That is, element zero identifies the leftmost element in a
24475 vector register when targeting a big-endian platform, and identifies
24476 the rightmost element in a vector register when targeting a
24477 little-endian platform.
24478
24479 @item -mvrsave
24480 @itemx -mno-vrsave
24481 @opindex mvrsave
24482 @opindex mno-vrsave
24483 Generate VRSAVE instructions when generating AltiVec code.
24484
24485 @item -msecure-plt
24486 @opindex msecure-plt
24487 Generate code that allows @command{ld} and @command{ld.so}
24488 to build executables and shared
24489 libraries with non-executable @code{.plt} and @code{.got} sections.
24490 This is a PowerPC
24491 32-bit SYSV ABI option.
24492
24493 @item -mbss-plt
24494 @opindex mbss-plt
24495 Generate code that uses a BSS @code{.plt} section that @command{ld.so}
24496 fills in, and
24497 requires @code{.plt} and @code{.got}
24498 sections that are both writable and executable.
24499 This is a PowerPC 32-bit SYSV ABI option.
24500
24501 @item -misel
24502 @itemx -mno-isel
24503 @opindex misel
24504 @opindex mno-isel
24505 This switch enables or disables the generation of ISEL instructions.
24506
24507 @item -mvsx
24508 @itemx -mno-vsx
24509 @opindex mvsx
24510 @opindex mno-vsx
24511 Generate code that uses (does not use) vector/scalar (VSX)
24512 instructions, and also enable the use of built-in functions that allow
24513 more direct access to the VSX instruction set.
24514
24515 @item -mcrypto
24516 @itemx -mno-crypto
24517 @opindex mcrypto
24518 @opindex mno-crypto
24519 Enable the use (disable) of the built-in functions that allow direct
24520 access to the cryptographic instructions that were added in version
24521 2.07 of the PowerPC ISA.
24522
24523 @item -mhtm
24524 @itemx -mno-htm
24525 @opindex mhtm
24526 @opindex mno-htm
24527 Enable (disable) the use of the built-in functions that allow direct
24528 access to the Hardware Transactional Memory (HTM) instructions that
24529 were added in version 2.07 of the PowerPC ISA.
24530
24531 @item -mpower8-fusion
24532 @itemx -mno-power8-fusion
24533 @opindex mpower8-fusion
24534 @opindex mno-power8-fusion
24535 Generate code that keeps (does not keeps) some integer operations
24536 adjacent so that the instructions can be fused together on power8 and
24537 later processors.
24538
24539 @item -mpower8-vector
24540 @itemx -mno-power8-vector
24541 @opindex mpower8-vector
24542 @opindex mno-power8-vector
24543 Generate code that uses (does not use) the vector and scalar
24544 instructions that were added in version 2.07 of the PowerPC ISA. Also
24545 enable the use of built-in functions that allow more direct access to
24546 the vector instructions.
24547
24548 @item -mquad-memory
24549 @itemx -mno-quad-memory
24550 @opindex mquad-memory
24551 @opindex mno-quad-memory
24552 Generate code that uses (does not use) the non-atomic quad word memory
24553 instructions. The @option{-mquad-memory} option requires use of
24554 64-bit mode.
24555
24556 @item -mquad-memory-atomic
24557 @itemx -mno-quad-memory-atomic
24558 @opindex mquad-memory-atomic
24559 @opindex mno-quad-memory-atomic
24560 Generate code that uses (does not use) the atomic quad word memory
24561 instructions. The @option{-mquad-memory-atomic} option requires use of
24562 64-bit mode.
24563
24564 @item -mfloat128
24565 @itemx -mno-float128
24566 @opindex mfloat128
24567 @opindex mno-float128
24568 Enable/disable the @var{__float128} keyword for IEEE 128-bit floating point
24569 and use either software emulation for IEEE 128-bit floating point or
24570 hardware instructions.
24571
24572 The VSX instruction set (@option{-mvsx}, @option{-mcpu=power7},
24573 @option{-mcpu=power8}), or @option{-mcpu=power9} must be enabled to
24574 use the IEEE 128-bit floating point support. The IEEE 128-bit
24575 floating point support only works on PowerPC Linux systems.
24576
24577 The default for @option{-mfloat128} is enabled on PowerPC Linux
24578 systems using the VSX instruction set, and disabled on other systems.
24579
24580 If you use the ISA 3.0 instruction set (@option{-mpower9-vector} or
24581 @option{-mcpu=power9}) on a 64-bit system, the IEEE 128-bit floating
24582 point support will also enable the generation of ISA 3.0 IEEE 128-bit
24583 floating point instructions. Otherwise, if you do not specify to
24584 generate ISA 3.0 instructions or you are targeting a 32-bit big endian
24585 system, IEEE 128-bit floating point will be done with software
24586 emulation.
24587
24588 @item -mfloat128-hardware
24589 @itemx -mno-float128-hardware
24590 @opindex mfloat128-hardware
24591 @opindex mno-float128-hardware
24592 Enable/disable using ISA 3.0 hardware instructions to support the
24593 @var{__float128} data type.
24594
24595 The default for @option{-mfloat128-hardware} is enabled on PowerPC
24596 Linux systems using the ISA 3.0 instruction set, and disabled on other
24597 systems.
24598
24599 @item -m32
24600 @itemx -m64
24601 @opindex m32
24602 @opindex m64
24603 Generate code for 32-bit or 64-bit environments of Darwin and SVR4
24604 targets (including GNU/Linux). The 32-bit environment sets int, long
24605 and pointer to 32 bits and generates code that runs on any PowerPC
24606 variant. The 64-bit environment sets int to 32 bits and long and
24607 pointer to 64 bits, and generates code for PowerPC64, as for
24608 @option{-mpowerpc64}.
24609
24610 @item -mfull-toc
24611 @itemx -mno-fp-in-toc
24612 @itemx -mno-sum-in-toc
24613 @itemx -mminimal-toc
24614 @opindex mfull-toc
24615 @opindex mno-fp-in-toc
24616 @opindex mno-sum-in-toc
24617 @opindex mminimal-toc
24618 Modify generation of the TOC (Table Of Contents), which is created for
24619 every executable file. The @option{-mfull-toc} option is selected by
24620 default. In that case, GCC allocates at least one TOC entry for
24621 each unique non-automatic variable reference in your program. GCC
24622 also places floating-point constants in the TOC@. However, only
24623 16,384 entries are available in the TOC@.
24624
24625 If you receive a linker error message that saying you have overflowed
24626 the available TOC space, you can reduce the amount of TOC space used
24627 with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
24628 @option{-mno-fp-in-toc} prevents GCC from putting floating-point
24629 constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
24630 generate code to calculate the sum of an address and a constant at
24631 run time instead of putting that sum into the TOC@. You may specify one
24632 or both of these options. Each causes GCC to produce very slightly
24633 slower and larger code at the expense of conserving TOC space.
24634
24635 If you still run out of space in the TOC even when you specify both of
24636 these options, specify @option{-mminimal-toc} instead. This option causes
24637 GCC to make only one TOC entry for every file. When you specify this
24638 option, GCC produces code that is slower and larger but which
24639 uses extremely little TOC space. You may wish to use this option
24640 only on files that contain less frequently-executed code.
24641
24642 @item -maix64
24643 @itemx -maix32
24644 @opindex maix64
24645 @opindex maix32
24646 Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
24647 @code{long} type, and the infrastructure needed to support them.
24648 Specifying @option{-maix64} implies @option{-mpowerpc64},
24649 while @option{-maix32} disables the 64-bit ABI and
24650 implies @option{-mno-powerpc64}. GCC defaults to @option{-maix32}.
24651
24652 @item -mxl-compat
24653 @itemx -mno-xl-compat
24654 @opindex mxl-compat
24655 @opindex mno-xl-compat
24656 Produce code that conforms more closely to IBM XL compiler semantics
24657 when using AIX-compatible ABI@. Pass floating-point arguments to
24658 prototyped functions beyond the register save area (RSA) on the stack
24659 in addition to argument FPRs. Do not assume that most significant
24660 double in 128-bit long double value is properly rounded when comparing
24661 values and converting to double. Use XL symbol names for long double
24662 support routines.
24663
24664 The AIX calling convention was extended but not initially documented to
24665 handle an obscure K&R C case of calling a function that takes the
24666 address of its arguments with fewer arguments than declared. IBM XL
24667 compilers access floating-point arguments that do not fit in the
24668 RSA from the stack when a subroutine is compiled without
24669 optimization. Because always storing floating-point arguments on the
24670 stack is inefficient and rarely needed, this option is not enabled by
24671 default and only is necessary when calling subroutines compiled by IBM
24672 XL compilers without optimization.
24673
24674 @item -mpe
24675 @opindex mpe
24676 Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@. Link an
24677 application written to use message passing with special startup code to
24678 enable the application to run. The system must have PE installed in the
24679 standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
24680 must be overridden with the @option{-specs=} option to specify the
24681 appropriate directory location. The Parallel Environment does not
24682 support threads, so the @option{-mpe} option and the @option{-pthread}
24683 option are incompatible.
24684
24685 @item -malign-natural
24686 @itemx -malign-power
24687 @opindex malign-natural
24688 @opindex malign-power
24689 On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
24690 @option{-malign-natural} overrides the ABI-defined alignment of larger
24691 types, such as floating-point doubles, on their natural size-based boundary.
24692 The option @option{-malign-power} instructs GCC to follow the ABI-specified
24693 alignment rules. GCC defaults to the standard alignment defined in the ABI@.
24694
24695 On 64-bit Darwin, natural alignment is the default, and @option{-malign-power}
24696 is not supported.
24697
24698 @item -msoft-float
24699 @itemx -mhard-float
24700 @opindex msoft-float
24701 @opindex mhard-float
24702 Generate code that does not use (uses) the floating-point register set.
24703 Software floating-point emulation is provided if you use the
24704 @option{-msoft-float} option, and pass the option to GCC when linking.
24705
24706 @item -mmultiple
24707 @itemx -mno-multiple
24708 @opindex mmultiple
24709 @opindex mno-multiple
24710 Generate code that uses (does not use) the load multiple word
24711 instructions and the store multiple word instructions. These
24712 instructions are generated by default on POWER systems, and not
24713 generated on PowerPC systems. Do not use @option{-mmultiple} on little-endian
24714 PowerPC systems, since those instructions do not work when the
24715 processor is in little-endian mode. The exceptions are PPC740 and
24716 PPC750 which permit these instructions in little-endian mode.
24717
24718 @item -mupdate
24719 @itemx -mno-update
24720 @opindex mupdate
24721 @opindex mno-update
24722 Generate code that uses (does not use) the load or store instructions
24723 that update the base register to the address of the calculated memory
24724 location. These instructions are generated by default. If you use
24725 @option{-mno-update}, there is a small window between the time that the
24726 stack pointer is updated and the address of the previous frame is
24727 stored, which means code that walks the stack frame across interrupts or
24728 signals may get corrupted data.
24729
24730 @item -mavoid-indexed-addresses
24731 @itemx -mno-avoid-indexed-addresses
24732 @opindex mavoid-indexed-addresses
24733 @opindex mno-avoid-indexed-addresses
24734 Generate code that tries to avoid (not avoid) the use of indexed load
24735 or store instructions. These instructions can incur a performance
24736 penalty on Power6 processors in certain situations, such as when
24737 stepping through large arrays that cross a 16M boundary. This option
24738 is enabled by default when targeting Power6 and disabled otherwise.
24739
24740 @item -mfused-madd
24741 @itemx -mno-fused-madd
24742 @opindex mfused-madd
24743 @opindex mno-fused-madd
24744 Generate code that uses (does not use) the floating-point multiply and
24745 accumulate instructions. These instructions are generated by default
24746 if hardware floating point is used. The machine-dependent
24747 @option{-mfused-madd} option is now mapped to the machine-independent
24748 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
24749 mapped to @option{-ffp-contract=off}.
24750
24751 @item -mmulhw
24752 @itemx -mno-mulhw
24753 @opindex mmulhw
24754 @opindex mno-mulhw
24755 Generate code that uses (does not use) the half-word multiply and
24756 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
24757 These instructions are generated by default when targeting those
24758 processors.
24759
24760 @item -mdlmzb
24761 @itemx -mno-dlmzb
24762 @opindex mdlmzb
24763 @opindex mno-dlmzb
24764 Generate code that uses (does not use) the string-search @samp{dlmzb}
24765 instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
24766 generated by default when targeting those processors.
24767
24768 @item -mno-bit-align
24769 @itemx -mbit-align
24770 @opindex mno-bit-align
24771 @opindex mbit-align
24772 On System V.4 and embedded PowerPC systems do not (do) force structures
24773 and unions that contain bit-fields to be aligned to the base type of the
24774 bit-field.
24775
24776 For example, by default a structure containing nothing but 8
24777 @code{unsigned} bit-fields of length 1 is aligned to a 4-byte
24778 boundary and has a size of 4 bytes. By using @option{-mno-bit-align},
24779 the structure is aligned to a 1-byte boundary and is 1 byte in
24780 size.
24781
24782 @item -mno-strict-align
24783 @itemx -mstrict-align
24784 @opindex mno-strict-align
24785 @opindex mstrict-align
24786 On System V.4 and embedded PowerPC systems do not (do) assume that
24787 unaligned memory references are handled by the system.
24788
24789 @item -mrelocatable
24790 @itemx -mno-relocatable
24791 @opindex mrelocatable
24792 @opindex mno-relocatable
24793 Generate code that allows (does not allow) a static executable to be
24794 relocated to a different address at run time. A simple embedded
24795 PowerPC system loader should relocate the entire contents of
24796 @code{.got2} and 4-byte locations listed in the @code{.fixup} section,
24797 a table of 32-bit addresses generated by this option. For this to
24798 work, all objects linked together must be compiled with
24799 @option{-mrelocatable} or @option{-mrelocatable-lib}.
24800 @option{-mrelocatable} code aligns the stack to an 8-byte boundary.
24801
24802 @item -mrelocatable-lib
24803 @itemx -mno-relocatable-lib
24804 @opindex mrelocatable-lib
24805 @opindex mno-relocatable-lib
24806 Like @option{-mrelocatable}, @option{-mrelocatable-lib} generates a
24807 @code{.fixup} section to allow static executables to be relocated at
24808 run time, but @option{-mrelocatable-lib} does not use the smaller stack
24809 alignment of @option{-mrelocatable}. Objects compiled with
24810 @option{-mrelocatable-lib} may be linked with objects compiled with
24811 any combination of the @option{-mrelocatable} options.
24812
24813 @item -mno-toc
24814 @itemx -mtoc
24815 @opindex mno-toc
24816 @opindex mtoc
24817 On System V.4 and embedded PowerPC systems do not (do) assume that
24818 register 2 contains a pointer to a global area pointing to the addresses
24819 used in the program.
24820
24821 @item -mlittle
24822 @itemx -mlittle-endian
24823 @opindex mlittle
24824 @opindex mlittle-endian
24825 On System V.4 and embedded PowerPC systems compile code for the
24826 processor in little-endian mode. The @option{-mlittle-endian} option is
24827 the same as @option{-mlittle}.
24828
24829 @item -mbig
24830 @itemx -mbig-endian
24831 @opindex mbig
24832 @opindex mbig-endian
24833 On System V.4 and embedded PowerPC systems compile code for the
24834 processor in big-endian mode. The @option{-mbig-endian} option is
24835 the same as @option{-mbig}.
24836
24837 @item -mdynamic-no-pic
24838 @opindex mdynamic-no-pic
24839 On Darwin and Mac OS X systems, compile code so that it is not
24840 relocatable, but that its external references are relocatable. The
24841 resulting code is suitable for applications, but not shared
24842 libraries.
24843
24844 @item -msingle-pic-base
24845 @opindex msingle-pic-base
24846 Treat the register used for PIC addressing as read-only, rather than
24847 loading it in the prologue for each function. The runtime system is
24848 responsible for initializing this register with an appropriate value
24849 before execution begins.
24850
24851 @item -mprioritize-restricted-insns=@var{priority}
24852 @opindex mprioritize-restricted-insns
24853 This option controls the priority that is assigned to
24854 dispatch-slot restricted instructions during the second scheduling
24855 pass. The argument @var{priority} takes the value @samp{0}, @samp{1},
24856 or @samp{2} to assign no, highest, or second-highest (respectively)
24857 priority to dispatch-slot restricted
24858 instructions.
24859
24860 @item -msched-costly-dep=@var{dependence_type}
24861 @opindex msched-costly-dep
24862 This option controls which dependences are considered costly
24863 by the target during instruction scheduling. The argument
24864 @var{dependence_type} takes one of the following values:
24865
24866 @table @asis
24867 @item @samp{no}
24868 No dependence is costly.
24869
24870 @item @samp{all}
24871 All dependences are costly.
24872
24873 @item @samp{true_store_to_load}
24874 A true dependence from store to load is costly.
24875
24876 @item @samp{store_to_load}
24877 Any dependence from store to load is costly.
24878
24879 @item @var{number}
24880 Any dependence for which the latency is greater than or equal to
24881 @var{number} is costly.
24882 @end table
24883
24884 @item -minsert-sched-nops=@var{scheme}
24885 @opindex minsert-sched-nops
24886 This option controls which NOP insertion scheme is used during
24887 the second scheduling pass. The argument @var{scheme} takes one of the
24888 following values:
24889
24890 @table @asis
24891 @item @samp{no}
24892 Don't insert NOPs.
24893
24894 @item @samp{pad}
24895 Pad with NOPs any dispatch group that has vacant issue slots,
24896 according to the scheduler's grouping.
24897
24898 @item @samp{regroup_exact}
24899 Insert NOPs to force costly dependent insns into
24900 separate groups. Insert exactly as many NOPs as needed to force an insn
24901 to a new group, according to the estimated processor grouping.
24902
24903 @item @var{number}
24904 Insert NOPs to force costly dependent insns into
24905 separate groups. Insert @var{number} NOPs to force an insn to a new group.
24906 @end table
24907
24908 @item -mcall-sysv
24909 @opindex mcall-sysv
24910 On System V.4 and embedded PowerPC systems compile code using calling
24911 conventions that adhere to the March 1995 draft of the System V
24912 Application Binary Interface, PowerPC processor supplement. This is the
24913 default unless you configured GCC using @samp{powerpc-*-eabiaix}.
24914
24915 @item -mcall-sysv-eabi
24916 @itemx -mcall-eabi
24917 @opindex mcall-sysv-eabi
24918 @opindex mcall-eabi
24919 Specify both @option{-mcall-sysv} and @option{-meabi} options.
24920
24921 @item -mcall-sysv-noeabi
24922 @opindex mcall-sysv-noeabi
24923 Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
24924
24925 @item -mcall-aixdesc
24926 @opindex m
24927 On System V.4 and embedded PowerPC systems compile code for the AIX
24928 operating system.
24929
24930 @item -mcall-linux
24931 @opindex mcall-linux
24932 On System V.4 and embedded PowerPC systems compile code for the
24933 Linux-based GNU system.
24934
24935 @item -mcall-freebsd
24936 @opindex mcall-freebsd
24937 On System V.4 and embedded PowerPC systems compile code for the
24938 FreeBSD operating system.
24939
24940 @item -mcall-netbsd
24941 @opindex mcall-netbsd
24942 On System V.4 and embedded PowerPC systems compile code for the
24943 NetBSD operating system.
24944
24945 @item -mcall-openbsd
24946 @opindex mcall-netbsd
24947 On System V.4 and embedded PowerPC systems compile code for the
24948 OpenBSD operating system.
24949
24950 @item -mtraceback=@var{traceback_type}
24951 @opindex mtraceback
24952 Select the type of traceback table. Valid values for @var{traceback_type}
24953 are @samp{full}, @samp{part}, and @samp{no}.
24954
24955 @item -maix-struct-return
24956 @opindex maix-struct-return
24957 Return all structures in memory (as specified by the AIX ABI)@.
24958
24959 @item -msvr4-struct-return
24960 @opindex msvr4-struct-return
24961 Return structures smaller than 8 bytes in registers (as specified by the
24962 SVR4 ABI)@.
24963
24964 @item -mabi=@var{abi-type}
24965 @opindex mabi
24966 Extend the current ABI with a particular extension, or remove such extension.
24967 Valid values are @samp{altivec}, @samp{no-altivec},
24968 @samp{ibmlongdouble}, @samp{ieeelongdouble},
24969 @samp{elfv1}, @samp{elfv2}@.
24970
24971 @item -mabi=ibmlongdouble
24972 @opindex mabi=ibmlongdouble
24973 Change the current ABI to use IBM extended-precision long double.
24974 This is not likely to work if your system defaults to using IEEE
24975 extended-precision long double. If you change the long double type
24976 from IEEE extended-precision, the compiler will issue a warning unless
24977 you use the @option{-Wno-psabi} option. Requires @option{-mlong-double-128}
24978 to be enabled.
24979
24980 @item -mabi=ieeelongdouble
24981 @opindex mabi=ieeelongdouble
24982 Change the current ABI to use IEEE extended-precision long double.
24983 This is not likely to work if your system defaults to using IBM
24984 extended-precision long double. If you change the long double type
24985 from IBM extended-precision, the compiler will issue a warning unless
24986 you use the @option{-Wno-psabi} option. Requires @option{-mlong-double-128}
24987 to be enabled.
24988
24989 @item -mabi=elfv1
24990 @opindex mabi=elfv1
24991 Change the current ABI to use the ELFv1 ABI.
24992 This is the default ABI for big-endian PowerPC 64-bit Linux.
24993 Overriding the default ABI requires special system support and is
24994 likely to fail in spectacular ways.
24995
24996 @item -mabi=elfv2
24997 @opindex mabi=elfv2
24998 Change the current ABI to use the ELFv2 ABI.
24999 This is the default ABI for little-endian PowerPC 64-bit Linux.
25000 Overriding the default ABI requires special system support and is
25001 likely to fail in spectacular ways.
25002
25003 @item -mgnu-attribute
25004 @itemx -mno-gnu-attribute
25005 @opindex mgnu-attribute
25006 @opindex mno-gnu-attribute
25007 Emit .gnu_attribute assembly directives to set tag/value pairs in a
25008 .gnu.attributes section that specify ABI variations in function
25009 parameters or return values.
25010
25011 @item -mprototype
25012 @itemx -mno-prototype
25013 @opindex mprototype
25014 @opindex mno-prototype
25015 On System V.4 and embedded PowerPC systems assume that all calls to
25016 variable argument functions are properly prototyped. Otherwise, the
25017 compiler must insert an instruction before every non-prototyped call to
25018 set or clear bit 6 of the condition code register (@code{CR}) to
25019 indicate whether floating-point values are passed in the floating-point
25020 registers in case the function takes variable arguments. With
25021 @option{-mprototype}, only calls to prototyped variable argument functions
25022 set or clear the bit.
25023
25024 @item -msim
25025 @opindex msim
25026 On embedded PowerPC systems, assume that the startup module is called
25027 @file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
25028 @file{libc.a}. This is the default for @samp{powerpc-*-eabisim}
25029 configurations.
25030
25031 @item -mmvme
25032 @opindex mmvme
25033 On embedded PowerPC systems, assume that the startup module is called
25034 @file{crt0.o} and the standard C libraries are @file{libmvme.a} and
25035 @file{libc.a}.
25036
25037 @item -mads
25038 @opindex mads
25039 On embedded PowerPC systems, assume that the startup module is called
25040 @file{crt0.o} and the standard C libraries are @file{libads.a} and
25041 @file{libc.a}.
25042
25043 @item -myellowknife
25044 @opindex myellowknife
25045 On embedded PowerPC systems, assume that the startup module is called
25046 @file{crt0.o} and the standard C libraries are @file{libyk.a} and
25047 @file{libc.a}.
25048
25049 @item -mvxworks
25050 @opindex mvxworks
25051 On System V.4 and embedded PowerPC systems, specify that you are
25052 compiling for a VxWorks system.
25053
25054 @item -memb
25055 @opindex memb
25056 On embedded PowerPC systems, set the @code{PPC_EMB} bit in the ELF flags
25057 header to indicate that @samp{eabi} extended relocations are used.
25058
25059 @item -meabi
25060 @itemx -mno-eabi
25061 @opindex meabi
25062 @opindex mno-eabi
25063 On System V.4 and embedded PowerPC systems do (do not) adhere to the
25064 Embedded Applications Binary Interface (EABI), which is a set of
25065 modifications to the System V.4 specifications. Selecting @option{-meabi}
25066 means that the stack is aligned to an 8-byte boundary, a function
25067 @code{__eabi} is called from @code{main} to set up the EABI
25068 environment, and the @option{-msdata} option can use both @code{r2} and
25069 @code{r13} to point to two separate small data areas. Selecting
25070 @option{-mno-eabi} means that the stack is aligned to a 16-byte boundary,
25071 no EABI initialization function is called from @code{main}, and the
25072 @option{-msdata} option only uses @code{r13} to point to a single
25073 small data area. The @option{-meabi} option is on by default if you
25074 configured GCC using one of the @samp{powerpc*-*-eabi*} options.
25075
25076 @item -msdata=eabi
25077 @opindex msdata=eabi
25078 On System V.4 and embedded PowerPC systems, put small initialized
25079 @code{const} global and static data in the @code{.sdata2} section, which
25080 is pointed to by register @code{r2}. Put small initialized
25081 non-@code{const} global and static data in the @code{.sdata} section,
25082 which is pointed to by register @code{r13}. Put small uninitialized
25083 global and static data in the @code{.sbss} section, which is adjacent to
25084 the @code{.sdata} section. The @option{-msdata=eabi} option is
25085 incompatible with the @option{-mrelocatable} option. The
25086 @option{-msdata=eabi} option also sets the @option{-memb} option.
25087
25088 @item -msdata=sysv
25089 @opindex msdata=sysv
25090 On System V.4 and embedded PowerPC systems, put small global and static
25091 data in the @code{.sdata} section, which is pointed to by register
25092 @code{r13}. Put small uninitialized global and static data in the
25093 @code{.sbss} section, which is adjacent to the @code{.sdata} section.
25094 The @option{-msdata=sysv} option is incompatible with the
25095 @option{-mrelocatable} option.
25096
25097 @item -msdata=default
25098 @itemx -msdata
25099 @opindex msdata=default
25100 @opindex msdata
25101 On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
25102 compile code the same as @option{-msdata=eabi}, otherwise compile code the
25103 same as @option{-msdata=sysv}.
25104
25105 @item -msdata=data
25106 @opindex msdata=data
25107 On System V.4 and embedded PowerPC systems, put small global
25108 data in the @code{.sdata} section. Put small uninitialized global
25109 data in the @code{.sbss} section. Do not use register @code{r13}
25110 to address small data however. This is the default behavior unless
25111 other @option{-msdata} options are used.
25112
25113 @item -msdata=none
25114 @itemx -mno-sdata
25115 @opindex msdata=none
25116 @opindex mno-sdata
25117 On embedded PowerPC systems, put all initialized global and static data
25118 in the @code{.data} section, and all uninitialized data in the
25119 @code{.bss} section.
25120
25121 @item -mreadonly-in-sdata
25122 @opindex mreadonly-in-sdata
25123 @opindex mno-readonly-in-sdata
25124 Put read-only objects in the @code{.sdata} section as well. This is the
25125 default.
25126
25127 @item -mblock-move-inline-limit=@var{num}
25128 @opindex mblock-move-inline-limit
25129 Inline all block moves (such as calls to @code{memcpy} or structure
25130 copies) less than or equal to @var{num} bytes. The minimum value for
25131 @var{num} is 32 bytes on 32-bit targets and 64 bytes on 64-bit
25132 targets. The default value is target-specific.
25133
25134 @item -mblock-compare-inline-limit=@var{num}
25135 @opindex mblock-compare-inline-limit
25136 Generate non-looping inline code for all block compares (such as calls
25137 to @code{memcmp} or structure compares) less than or equal to @var{num}
25138 bytes. If @var{num} is 0, all inline expansion (non-loop and loop) of
25139 block compare is disabled. The default value is target-specific.
25140
25141 @item -mblock-compare-inline-loop-limit=@var{num}
25142 @opindex mblock-compare-inline-loop-limit
25143 Generate an inline expansion using loop code for all block compares that
25144 are less than or equal to @var{num} bytes, but greater than the limit
25145 for non-loop inline block compare expansion. If the block length is not
25146 constant, at most @var{num} bytes will be compared before @code{memcmp}
25147 is called to compare the remainder of the block. The default value is
25148 target-specific.
25149
25150 @item -mstring-compare-inline-limit=@var{num}
25151 @opindex mstring-compare-inline-limit
25152 Compare at most @var{num} string bytes with inline code.
25153 If the difference or end of string is not found at the
25154 end of the inline compare a call to @code{strcmp} or @code{strncmp} will
25155 take care of the rest of the comparison. The default is 64 bytes.
25156
25157 @item -G @var{num}
25158 @opindex G
25159 @cindex smaller data references (PowerPC)
25160 @cindex .sdata/.sdata2 references (PowerPC)
25161 On embedded PowerPC systems, put global and static items less than or
25162 equal to @var{num} bytes into the small data or BSS sections instead of
25163 the normal data or BSS section. By default, @var{num} is 8. The
25164 @option{-G @var{num}} switch is also passed to the linker.
25165 All modules should be compiled with the same @option{-G @var{num}} value.
25166
25167 @item -mregnames
25168 @itemx -mno-regnames
25169 @opindex mregnames
25170 @opindex mno-regnames
25171 On System V.4 and embedded PowerPC systems do (do not) emit register
25172 names in the assembly language output using symbolic forms.
25173
25174 @item -mlongcall
25175 @itemx -mno-longcall
25176 @opindex mlongcall
25177 @opindex mno-longcall
25178 By default assume that all calls are far away so that a longer and more
25179 expensive calling sequence is required. This is required for calls
25180 farther than 32 megabytes (33,554,432 bytes) from the current location.
25181 A short call is generated if the compiler knows
25182 the call cannot be that far away. This setting can be overridden by
25183 the @code{shortcall} function attribute, or by @code{#pragma
25184 longcall(0)}.
25185
25186 Some linkers are capable of detecting out-of-range calls and generating
25187 glue code on the fly. On these systems, long calls are unnecessary and
25188 generate slower code. As of this writing, the AIX linker can do this,
25189 as can the GNU linker for PowerPC/64. It is planned to add this feature
25190 to the GNU linker for 32-bit PowerPC systems as well.
25191
25192 On PowerPC64 ELFv2 and 32-bit PowerPC systems with newer GNU linkers,
25193 GCC can generate long calls using an inline PLT call sequence (see
25194 @option{-mpltseq}). PowerPC with @option{-mbss-plt} and PowerPC64
25195 ELFv1 (big-endian) do not support inline PLT calls.
25196
25197 On Darwin/PPC systems, @code{#pragma longcall} generates @code{jbsr
25198 callee, L42}, plus a @dfn{branch island} (glue code). The two target
25199 addresses represent the callee and the branch island. The
25200 Darwin/PPC linker prefers the first address and generates a @code{bl
25201 callee} if the PPC @code{bl} instruction reaches the callee directly;
25202 otherwise, the linker generates @code{bl L42} to call the branch
25203 island. The branch island is appended to the body of the
25204 calling function; it computes the full 32-bit address of the callee
25205 and jumps to it.
25206
25207 On Mach-O (Darwin) systems, this option directs the compiler emit to
25208 the glue for every direct call, and the Darwin linker decides whether
25209 to use or discard it.
25210
25211 In the future, GCC may ignore all longcall specifications
25212 when the linker is known to generate glue.
25213
25214 @item -mpltseq
25215 @itemx -mno-pltseq
25216 @opindex mpltseq
25217 @opindex mno-pltseq
25218 Implement (do not implement) -fno-plt and long calls using an inline
25219 PLT call sequence that supports lazy linking and long calls to
25220 functions in dlopen'd shared libraries. Inline PLT calls are only
25221 supported on PowerPC64 ELFv2 and 32-bit PowerPC systems with newer GNU
25222 linkers, and are enabled by default if the support is detected when
25223 configuring GCC, and, in the case of 32-bit PowerPC, if GCC is
25224 configured with @option{--enable-secureplt}. @option{-mpltseq} code
25225 and @option{-mbss-plt} 32-bit PowerPC relocatable objects may not be
25226 linked together.
25227
25228 @item -mtls-markers
25229 @itemx -mno-tls-markers
25230 @opindex mtls-markers
25231 @opindex mno-tls-markers
25232 Mark (do not mark) calls to @code{__tls_get_addr} with a relocation
25233 specifying the function argument. The relocation allows the linker to
25234 reliably associate function call with argument setup instructions for
25235 TLS optimization, which in turn allows GCC to better schedule the
25236 sequence.
25237
25238 @item -mrecip
25239 @itemx -mno-recip
25240 @opindex mrecip
25241 This option enables use of the reciprocal estimate and
25242 reciprocal square root estimate instructions with additional
25243 Newton-Raphson steps to increase precision instead of doing a divide or
25244 square root and divide for floating-point arguments. You should use
25245 the @option{-ffast-math} option when using @option{-mrecip} (or at
25246 least @option{-funsafe-math-optimizations},
25247 @option{-ffinite-math-only}, @option{-freciprocal-math} and
25248 @option{-fno-trapping-math}). Note that while the throughput of the
25249 sequence is generally higher than the throughput of the non-reciprocal
25250 instruction, the precision of the sequence can be decreased by up to 2
25251 ulp (i.e.@: the inverse of 1.0 equals 0.99999994) for reciprocal square
25252 roots.
25253
25254 @item -mrecip=@var{opt}
25255 @opindex mrecip=opt
25256 This option controls which reciprocal estimate instructions
25257 may be used. @var{opt} is a comma-separated list of options, which may
25258 be preceded by a @code{!} to invert the option:
25259
25260 @table @samp
25261
25262 @item all
25263 Enable all estimate instructions.
25264
25265 @item default
25266 Enable the default instructions, equivalent to @option{-mrecip}.
25267
25268 @item none
25269 Disable all estimate instructions, equivalent to @option{-mno-recip}.
25270
25271 @item div
25272 Enable the reciprocal approximation instructions for both
25273 single and double precision.
25274
25275 @item divf
25276 Enable the single-precision reciprocal approximation instructions.
25277
25278 @item divd
25279 Enable the double-precision reciprocal approximation instructions.
25280
25281 @item rsqrt
25282 Enable the reciprocal square root approximation instructions for both
25283 single and double precision.
25284
25285 @item rsqrtf
25286 Enable the single-precision reciprocal square root approximation instructions.
25287
25288 @item rsqrtd
25289 Enable the double-precision reciprocal square root approximation instructions.
25290
25291 @end table
25292
25293 So, for example, @option{-mrecip=all,!rsqrtd} enables
25294 all of the reciprocal estimate instructions, except for the
25295 @code{FRSQRTE}, @code{XSRSQRTEDP}, and @code{XVRSQRTEDP} instructions
25296 which handle the double-precision reciprocal square root calculations.
25297
25298 @item -mrecip-precision
25299 @itemx -mno-recip-precision
25300 @opindex mrecip-precision
25301 Assume (do not assume) that the reciprocal estimate instructions
25302 provide higher-precision estimates than is mandated by the PowerPC
25303 ABI. Selecting @option{-mcpu=power6}, @option{-mcpu=power7} or
25304 @option{-mcpu=power8} automatically selects @option{-mrecip-precision}.
25305 The double-precision square root estimate instructions are not generated by
25306 default on low-precision machines, since they do not provide an
25307 estimate that converges after three steps.
25308
25309 @item -mveclibabi=@var{type}
25310 @opindex mveclibabi
25311 Specifies the ABI type to use for vectorizing intrinsics using an
25312 external library. The only type supported at present is @samp{mass},
25313 which specifies to use IBM's Mathematical Acceleration Subsystem
25314 (MASS) libraries for vectorizing intrinsics using external libraries.
25315 GCC currently emits calls to @code{acosd2}, @code{acosf4},
25316 @code{acoshd2}, @code{acoshf4}, @code{asind2}, @code{asinf4},
25317 @code{asinhd2}, @code{asinhf4}, @code{atan2d2}, @code{atan2f4},
25318 @code{atand2}, @code{atanf4}, @code{atanhd2}, @code{atanhf4},
25319 @code{cbrtd2}, @code{cbrtf4}, @code{cosd2}, @code{cosf4},
25320 @code{coshd2}, @code{coshf4}, @code{erfcd2}, @code{erfcf4},
25321 @code{erfd2}, @code{erff4}, @code{exp2d2}, @code{exp2f4},
25322 @code{expd2}, @code{expf4}, @code{expm1d2}, @code{expm1f4},
25323 @code{hypotd2}, @code{hypotf4}, @code{lgammad2}, @code{lgammaf4},
25324 @code{log10d2}, @code{log10f4}, @code{log1pd2}, @code{log1pf4},
25325 @code{log2d2}, @code{log2f4}, @code{logd2}, @code{logf4},
25326 @code{powd2}, @code{powf4}, @code{sind2}, @code{sinf4}, @code{sinhd2},
25327 @code{sinhf4}, @code{sqrtd2}, @code{sqrtf4}, @code{tand2},
25328 @code{tanf4}, @code{tanhd2}, and @code{tanhf4} when generating code
25329 for power7. Both @option{-ftree-vectorize} and
25330 @option{-funsafe-math-optimizations} must also be enabled. The MASS
25331 libraries must be specified at link time.
25332
25333 @item -mfriz
25334 @itemx -mno-friz
25335 @opindex mfriz
25336 Generate (do not generate) the @code{friz} instruction when the
25337 @option{-funsafe-math-optimizations} option is used to optimize
25338 rounding of floating-point values to 64-bit integer and back to floating
25339 point. The @code{friz} instruction does not return the same value if
25340 the floating-point number is too large to fit in an integer.
25341
25342 @item -mpointers-to-nested-functions
25343 @itemx -mno-pointers-to-nested-functions
25344 @opindex mpointers-to-nested-functions
25345 Generate (do not generate) code to load up the static chain register
25346 (@code{r11}) when calling through a pointer on AIX and 64-bit Linux
25347 systems where a function pointer points to a 3-word descriptor giving
25348 the function address, TOC value to be loaded in register @code{r2}, and
25349 static chain value to be loaded in register @code{r11}. The
25350 @option{-mpointers-to-nested-functions} is on by default. You cannot
25351 call through pointers to nested functions or pointers
25352 to functions compiled in other languages that use the static chain if
25353 you use @option{-mno-pointers-to-nested-functions}.
25354
25355 @item -msave-toc-indirect
25356 @itemx -mno-save-toc-indirect
25357 @opindex msave-toc-indirect
25358 Generate (do not generate) code to save the TOC value in the reserved
25359 stack location in the function prologue if the function calls through
25360 a pointer on AIX and 64-bit Linux systems. If the TOC value is not
25361 saved in the prologue, it is saved just before the call through the
25362 pointer. The @option{-mno-save-toc-indirect} option is the default.
25363
25364 @item -mcompat-align-parm
25365 @itemx -mno-compat-align-parm
25366 @opindex mcompat-align-parm
25367 Generate (do not generate) code to pass structure parameters with a
25368 maximum alignment of 64 bits, for compatibility with older versions
25369 of GCC.
25370
25371 Older versions of GCC (prior to 4.9.0) incorrectly did not align a
25372 structure parameter on a 128-bit boundary when that structure contained
25373 a member requiring 128-bit alignment. This is corrected in more
25374 recent versions of GCC. This option may be used to generate code
25375 that is compatible with functions compiled with older versions of
25376 GCC.
25377
25378 The @option{-mno-compat-align-parm} option is the default.
25379
25380 @item -mstack-protector-guard=@var{guard}
25381 @itemx -mstack-protector-guard-reg=@var{reg}
25382 @itemx -mstack-protector-guard-offset=@var{offset}
25383 @itemx -mstack-protector-guard-symbol=@var{symbol}
25384 @opindex mstack-protector-guard
25385 @opindex mstack-protector-guard-reg
25386 @opindex mstack-protector-guard-offset
25387 @opindex mstack-protector-guard-symbol
25388 Generate stack protection code using canary at @var{guard}. Supported
25389 locations are @samp{global} for global canary or @samp{tls} for per-thread
25390 canary in the TLS block (the default with GNU libc version 2.4 or later).
25391
25392 With the latter choice the options
25393 @option{-mstack-protector-guard-reg=@var{reg}} and
25394 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
25395 which register to use as base register for reading the canary, and from what
25396 offset from that base register. The default for those is as specified in the
25397 relevant ABI. @option{-mstack-protector-guard-symbol=@var{symbol}} overrides
25398 the offset with a symbol reference to a canary in the TLS block.
25399
25400 @item -mpcrel
25401 @itemx -mno-pcrel
25402 @opindex mpcrel
25403 @opindex mno-pcrel
25404 Generate (do not generate) pc-relative addressing when the option
25405 @option{-mcpu=future} is used.
25406 @end table
25407
25408 @node RX Options
25409 @subsection RX Options
25410 @cindex RX Options
25411
25412 These command-line options are defined for RX targets:
25413
25414 @table @gcctabopt
25415 @item -m64bit-doubles
25416 @itemx -m32bit-doubles
25417 @opindex m64bit-doubles
25418 @opindex m32bit-doubles
25419 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
25420 or 32 bits (@option{-m32bit-doubles}) in size. The default is
25421 @option{-m32bit-doubles}. @emph{Note} RX floating-point hardware only
25422 works on 32-bit values, which is why the default is
25423 @option{-m32bit-doubles}.
25424
25425 @item -fpu
25426 @itemx -nofpu
25427 @opindex fpu
25428 @opindex nofpu
25429 Enables (@option{-fpu}) or disables (@option{-nofpu}) the use of RX
25430 floating-point hardware. The default is enabled for the RX600
25431 series and disabled for the RX200 series.
25432
25433 Floating-point instructions are only generated for 32-bit floating-point
25434 values, however, so the FPU hardware is not used for doubles if the
25435 @option{-m64bit-doubles} option is used.
25436
25437 @emph{Note} If the @option{-fpu} option is enabled then
25438 @option{-funsafe-math-optimizations} is also enabled automatically.
25439 This is because the RX FPU instructions are themselves unsafe.
25440
25441 @item -mcpu=@var{name}
25442 @opindex mcpu
25443 Selects the type of RX CPU to be targeted. Currently three types are
25444 supported, the generic @samp{RX600} and @samp{RX200} series hardware and
25445 the specific @samp{RX610} CPU. The default is @samp{RX600}.
25446
25447 The only difference between @samp{RX600} and @samp{RX610} is that the
25448 @samp{RX610} does not support the @code{MVTIPL} instruction.
25449
25450 The @samp{RX200} series does not have a hardware floating-point unit
25451 and so @option{-nofpu} is enabled by default when this type is
25452 selected.
25453
25454 @item -mbig-endian-data
25455 @itemx -mlittle-endian-data
25456 @opindex mbig-endian-data
25457 @opindex mlittle-endian-data
25458 Store data (but not code) in the big-endian format. The default is
25459 @option{-mlittle-endian-data}, i.e.@: to store data in the little-endian
25460 format.
25461
25462 @item -msmall-data-limit=@var{N}
25463 @opindex msmall-data-limit
25464 Specifies the maximum size in bytes of global and static variables
25465 which can be placed into the small data area. Using the small data
25466 area can lead to smaller and faster code, but the size of area is
25467 limited and it is up to the programmer to ensure that the area does
25468 not overflow. Also when the small data area is used one of the RX's
25469 registers (usually @code{r13}) is reserved for use pointing to this
25470 area, so it is no longer available for use by the compiler. This
25471 could result in slower and/or larger code if variables are pushed onto
25472 the stack instead of being held in this register.
25473
25474 Note, common variables (variables that have not been initialized) and
25475 constants are not placed into the small data area as they are assigned
25476 to other sections in the output executable.
25477
25478 The default value is zero, which disables this feature. Note, this
25479 feature is not enabled by default with higher optimization levels
25480 (@option{-O2} etc) because of the potentially detrimental effects of
25481 reserving a register. It is up to the programmer to experiment and
25482 discover whether this feature is of benefit to their program. See the
25483 description of the @option{-mpid} option for a description of how the
25484 actual register to hold the small data area pointer is chosen.
25485
25486 @item -msim
25487 @itemx -mno-sim
25488 @opindex msim
25489 @opindex mno-sim
25490 Use the simulator runtime. The default is to use the libgloss
25491 board-specific runtime.
25492
25493 @item -mas100-syntax
25494 @itemx -mno-as100-syntax
25495 @opindex mas100-syntax
25496 @opindex mno-as100-syntax
25497 When generating assembler output use a syntax that is compatible with
25498 Renesas's AS100 assembler. This syntax can also be handled by the GAS
25499 assembler, but it has some restrictions so it is not generated by default.
25500
25501 @item -mmax-constant-size=@var{N}
25502 @opindex mmax-constant-size
25503 Specifies the maximum size, in bytes, of a constant that can be used as
25504 an operand in a RX instruction. Although the RX instruction set does
25505 allow constants of up to 4 bytes in length to be used in instructions,
25506 a longer value equates to a longer instruction. Thus in some
25507 circumstances it can be beneficial to restrict the size of constants
25508 that are used in instructions. Constants that are too big are instead
25509 placed into a constant pool and referenced via register indirection.
25510
25511 The value @var{N} can be between 0 and 4. A value of 0 (the default)
25512 or 4 means that constants of any size are allowed.
25513
25514 @item -mrelax
25515 @opindex mrelax
25516 Enable linker relaxation. Linker relaxation is a process whereby the
25517 linker attempts to reduce the size of a program by finding shorter
25518 versions of various instructions. Disabled by default.
25519
25520 @item -mint-register=@var{N}
25521 @opindex mint-register
25522 Specify the number of registers to reserve for fast interrupt handler
25523 functions. The value @var{N} can be between 0 and 4. A value of 1
25524 means that register @code{r13} is reserved for the exclusive use
25525 of fast interrupt handlers. A value of 2 reserves @code{r13} and
25526 @code{r12}. A value of 3 reserves @code{r13}, @code{r12} and
25527 @code{r11}, and a value of 4 reserves @code{r13} through @code{r10}.
25528 A value of 0, the default, does not reserve any registers.
25529
25530 @item -msave-acc-in-interrupts
25531 @opindex msave-acc-in-interrupts
25532 Specifies that interrupt handler functions should preserve the
25533 accumulator register. This is only necessary if normal code might use
25534 the accumulator register, for example because it performs 64-bit
25535 multiplications. The default is to ignore the accumulator as this
25536 makes the interrupt handlers faster.
25537
25538 @item -mpid
25539 @itemx -mno-pid
25540 @opindex mpid
25541 @opindex mno-pid
25542 Enables the generation of position independent data. When enabled any
25543 access to constant data is done via an offset from a base address
25544 held in a register. This allows the location of constant data to be
25545 determined at run time without requiring the executable to be
25546 relocated, which is a benefit to embedded applications with tight
25547 memory constraints. Data that can be modified is not affected by this
25548 option.
25549
25550 Note, using this feature reserves a register, usually @code{r13}, for
25551 the constant data base address. This can result in slower and/or
25552 larger code, especially in complicated functions.
25553
25554 The actual register chosen to hold the constant data base address
25555 depends upon whether the @option{-msmall-data-limit} and/or the
25556 @option{-mint-register} command-line options are enabled. Starting
25557 with register @code{r13} and proceeding downwards, registers are
25558 allocated first to satisfy the requirements of @option{-mint-register},
25559 then @option{-mpid} and finally @option{-msmall-data-limit}. Thus it
25560 is possible for the small data area register to be @code{r8} if both
25561 @option{-mint-register=4} and @option{-mpid} are specified on the
25562 command line.
25563
25564 By default this feature is not enabled. The default can be restored
25565 via the @option{-mno-pid} command-line option.
25566
25567 @item -mno-warn-multiple-fast-interrupts
25568 @itemx -mwarn-multiple-fast-interrupts
25569 @opindex mno-warn-multiple-fast-interrupts
25570 @opindex mwarn-multiple-fast-interrupts
25571 Prevents GCC from issuing a warning message if it finds more than one
25572 fast interrupt handler when it is compiling a file. The default is to
25573 issue a warning for each extra fast interrupt handler found, as the RX
25574 only supports one such interrupt.
25575
25576 @item -mallow-string-insns
25577 @itemx -mno-allow-string-insns
25578 @opindex mallow-string-insns
25579 @opindex mno-allow-string-insns
25580 Enables or disables the use of the string manipulation instructions
25581 @code{SMOVF}, @code{SCMPU}, @code{SMOVB}, @code{SMOVU}, @code{SUNTIL}
25582 @code{SWHILE} and also the @code{RMPA} instruction. These
25583 instructions may prefetch data, which is not safe to do if accessing
25584 an I/O register. (See section 12.2.7 of the RX62N Group User's Manual
25585 for more information).
25586
25587 The default is to allow these instructions, but it is not possible for
25588 GCC to reliably detect all circumstances where a string instruction
25589 might be used to access an I/O register, so their use cannot be
25590 disabled automatically. Instead it is reliant upon the programmer to
25591 use the @option{-mno-allow-string-insns} option if their program
25592 accesses I/O space.
25593
25594 When the instructions are enabled GCC defines the C preprocessor
25595 symbol @code{__RX_ALLOW_STRING_INSNS__}, otherwise it defines the
25596 symbol @code{__RX_DISALLOW_STRING_INSNS__}.
25597
25598 @item -mjsr
25599 @itemx -mno-jsr
25600 @opindex mjsr
25601 @opindex mno-jsr
25602 Use only (or not only) @code{JSR} instructions to access functions.
25603 This option can be used when code size exceeds the range of @code{BSR}
25604 instructions. Note that @option{-mno-jsr} does not mean to not use
25605 @code{JSR} but instead means that any type of branch may be used.
25606 @end table
25607
25608 @emph{Note:} The generic GCC command-line option @option{-ffixed-@var{reg}}
25609 has special significance to the RX port when used with the
25610 @code{interrupt} function attribute. This attribute indicates a
25611 function intended to process fast interrupts. GCC ensures
25612 that it only uses the registers @code{r10}, @code{r11}, @code{r12}
25613 and/or @code{r13} and only provided that the normal use of the
25614 corresponding registers have been restricted via the
25615 @option{-ffixed-@var{reg}} or @option{-mint-register} command-line
25616 options.
25617
25618 @node S/390 and zSeries Options
25619 @subsection S/390 and zSeries Options
25620 @cindex S/390 and zSeries Options
25621
25622 These are the @samp{-m} options defined for the S/390 and zSeries architecture.
25623
25624 @table @gcctabopt
25625 @item -mhard-float
25626 @itemx -msoft-float
25627 @opindex mhard-float
25628 @opindex msoft-float
25629 Use (do not use) the hardware floating-point instructions and registers
25630 for floating-point operations. When @option{-msoft-float} is specified,
25631 functions in @file{libgcc.a} are used to perform floating-point
25632 operations. When @option{-mhard-float} is specified, the compiler
25633 generates IEEE floating-point instructions. This is the default.
25634
25635 @item -mhard-dfp
25636 @itemx -mno-hard-dfp
25637 @opindex mhard-dfp
25638 @opindex mno-hard-dfp
25639 Use (do not use) the hardware decimal-floating-point instructions for
25640 decimal-floating-point operations. When @option{-mno-hard-dfp} is
25641 specified, functions in @file{libgcc.a} are used to perform
25642 decimal-floating-point operations. When @option{-mhard-dfp} is
25643 specified, the compiler generates decimal-floating-point hardware
25644 instructions. This is the default for @option{-march=z9-ec} or higher.
25645
25646 @item -mlong-double-64
25647 @itemx -mlong-double-128
25648 @opindex mlong-double-64
25649 @opindex mlong-double-128
25650 These switches control the size of @code{long double} type. A size
25651 of 64 bits makes the @code{long double} type equivalent to the @code{double}
25652 type. This is the default.
25653
25654 @item -mbackchain
25655 @itemx -mno-backchain
25656 @opindex mbackchain
25657 @opindex mno-backchain
25658 Store (do not store) the address of the caller's frame as backchain pointer
25659 into the callee's stack frame.
25660 A backchain may be needed to allow debugging using tools that do not understand
25661 DWARF call frame information.
25662 When @option{-mno-packed-stack} is in effect, the backchain pointer is stored
25663 at the bottom of the stack frame; when @option{-mpacked-stack} is in effect,
25664 the backchain is placed into the topmost word of the 96/160 byte register
25665 save area.
25666
25667 In general, code compiled with @option{-mbackchain} is call-compatible with
25668 code compiled with @option{-mmo-backchain}; however, use of the backchain
25669 for debugging purposes usually requires that the whole binary is built with
25670 @option{-mbackchain}. Note that the combination of @option{-mbackchain},
25671 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
25672 to build a linux kernel use @option{-msoft-float}.
25673
25674 The default is to not maintain the backchain.
25675
25676 @item -mpacked-stack
25677 @itemx -mno-packed-stack
25678 @opindex mpacked-stack
25679 @opindex mno-packed-stack
25680 Use (do not use) the packed stack layout. When @option{-mno-packed-stack} is
25681 specified, the compiler uses the all fields of the 96/160 byte register save
25682 area only for their default purpose; unused fields still take up stack space.
25683 When @option{-mpacked-stack} is specified, register save slots are densely
25684 packed at the top of the register save area; unused space is reused for other
25685 purposes, allowing for more efficient use of the available stack space.
25686 However, when @option{-mbackchain} is also in effect, the topmost word of
25687 the save area is always used to store the backchain, and the return address
25688 register is always saved two words below the backchain.
25689
25690 As long as the stack frame backchain is not used, code generated with
25691 @option{-mpacked-stack} is call-compatible with code generated with
25692 @option{-mno-packed-stack}. Note that some non-FSF releases of GCC 2.95 for
25693 S/390 or zSeries generated code that uses the stack frame backchain at run
25694 time, not just for debugging purposes. Such code is not call-compatible
25695 with code compiled with @option{-mpacked-stack}. Also, note that the
25696 combination of @option{-mbackchain},
25697 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
25698 to build a linux kernel use @option{-msoft-float}.
25699
25700 The default is to not use the packed stack layout.
25701
25702 @item -msmall-exec
25703 @itemx -mno-small-exec
25704 @opindex msmall-exec
25705 @opindex mno-small-exec
25706 Generate (or do not generate) code using the @code{bras} instruction
25707 to do subroutine calls.
25708 This only works reliably if the total executable size does not
25709 exceed 64k. The default is to use the @code{basr} instruction instead,
25710 which does not have this limitation.
25711
25712 @item -m64
25713 @itemx -m31
25714 @opindex m64
25715 @opindex m31
25716 When @option{-m31} is specified, generate code compliant to the
25717 GNU/Linux for S/390 ABI@. When @option{-m64} is specified, generate
25718 code compliant to the GNU/Linux for zSeries ABI@. This allows GCC in
25719 particular to generate 64-bit instructions. For the @samp{s390}
25720 targets, the default is @option{-m31}, while the @samp{s390x}
25721 targets default to @option{-m64}.
25722
25723 @item -mzarch
25724 @itemx -mesa
25725 @opindex mzarch
25726 @opindex mesa
25727 When @option{-mzarch} is specified, generate code using the
25728 instructions available on z/Architecture.
25729 When @option{-mesa} is specified, generate code using the
25730 instructions available on ESA/390. Note that @option{-mesa} is
25731 not possible with @option{-m64}.
25732 When generating code compliant to the GNU/Linux for S/390 ABI,
25733 the default is @option{-mesa}. When generating code compliant
25734 to the GNU/Linux for zSeries ABI, the default is @option{-mzarch}.
25735
25736 @item -mhtm
25737 @itemx -mno-htm
25738 @opindex mhtm
25739 @opindex mno-htm
25740 The @option{-mhtm} option enables a set of builtins making use of
25741 instructions available with the transactional execution facility
25742 introduced with the IBM zEnterprise EC12 machine generation
25743 @ref{S/390 System z Built-in Functions}.
25744 @option{-mhtm} is enabled by default when using @option{-march=zEC12}.
25745
25746 @item -mvx
25747 @itemx -mno-vx
25748 @opindex mvx
25749 @opindex mno-vx
25750 When @option{-mvx} is specified, generate code using the instructions
25751 available with the vector extension facility introduced with the IBM
25752 z13 machine generation.
25753 This option changes the ABI for some vector type values with regard to
25754 alignment and calling conventions. In case vector type values are
25755 being used in an ABI-relevant context a GAS @samp{.gnu_attribute}
25756 command will be added to mark the resulting binary with the ABI used.
25757 @option{-mvx} is enabled by default when using @option{-march=z13}.
25758
25759 @item -mzvector
25760 @itemx -mno-zvector
25761 @opindex mzvector
25762 @opindex mno-zvector
25763 The @option{-mzvector} option enables vector language extensions and
25764 builtins using instructions available with the vector extension
25765 facility introduced with the IBM z13 machine generation.
25766 This option adds support for @samp{vector} to be used as a keyword to
25767 define vector type variables and arguments. @samp{vector} is only
25768 available when GNU extensions are enabled. It will not be expanded
25769 when requesting strict standard compliance e.g.@: with @option{-std=c99}.
25770 In addition to the GCC low-level builtins @option{-mzvector} enables
25771 a set of builtins added for compatibility with AltiVec-style
25772 implementations like Power and Cell. In order to make use of these
25773 builtins the header file @file{vecintrin.h} needs to be included.
25774 @option{-mzvector} is disabled by default.
25775
25776 @item -mmvcle
25777 @itemx -mno-mvcle
25778 @opindex mmvcle
25779 @opindex mno-mvcle
25780 Generate (or do not generate) code using the @code{mvcle} instruction
25781 to perform block moves. When @option{-mno-mvcle} is specified,
25782 use a @code{mvc} loop instead. This is the default unless optimizing for
25783 size.
25784
25785 @item -mdebug
25786 @itemx -mno-debug
25787 @opindex mdebug
25788 @opindex mno-debug
25789 Print (or do not print) additional debug information when compiling.
25790 The default is to not print debug information.
25791
25792 @item -march=@var{cpu-type}
25793 @opindex march
25794 Generate code that runs on @var{cpu-type}, which is the name of a
25795 system representing a certain processor type. Possible values for
25796 @var{cpu-type} are @samp{z900}/@samp{arch5}, @samp{z990}/@samp{arch6},
25797 @samp{z9-109}, @samp{z9-ec}/@samp{arch7}, @samp{z10}/@samp{arch8},
25798 @samp{z196}/@samp{arch9}, @samp{zEC12}, @samp{z13}/@samp{arch11},
25799 @samp{z14}/@samp{arch12}, and @samp{native}.
25800
25801 The default is @option{-march=z900}.
25802
25803 Specifying @samp{native} as cpu type can be used to select the best
25804 architecture option for the host processor.
25805 @option{-march=native} has no effect if GCC does not recognize the
25806 processor.
25807
25808 @item -mtune=@var{cpu-type}
25809 @opindex mtune
25810 Tune to @var{cpu-type} everything applicable about the generated code,
25811 except for the ABI and the set of available instructions.
25812 The list of @var{cpu-type} values is the same as for @option{-march}.
25813 The default is the value used for @option{-march}.
25814
25815 @item -mtpf-trace
25816 @itemx -mno-tpf-trace
25817 @opindex mtpf-trace
25818 @opindex mno-tpf-trace
25819 Generate code that adds (does not add) in TPF OS specific branches to trace
25820 routines in the operating system. This option is off by default, even
25821 when compiling for the TPF OS@.
25822
25823 @item -mfused-madd
25824 @itemx -mno-fused-madd
25825 @opindex mfused-madd
25826 @opindex mno-fused-madd
25827 Generate code that uses (does not use) the floating-point multiply and
25828 accumulate instructions. These instructions are generated by default if
25829 hardware floating point is used.
25830
25831 @item -mwarn-framesize=@var{framesize}
25832 @opindex mwarn-framesize
25833 Emit a warning if the current function exceeds the given frame size. Because
25834 this is a compile-time check it doesn't need to be a real problem when the program
25835 runs. It is intended to identify functions that most probably cause
25836 a stack overflow. It is useful to be used in an environment with limited stack
25837 size e.g.@: the linux kernel.
25838
25839 @item -mwarn-dynamicstack
25840 @opindex mwarn-dynamicstack
25841 Emit a warning if the function calls @code{alloca} or uses dynamically-sized
25842 arrays. This is generally a bad idea with a limited stack size.
25843
25844 @item -mstack-guard=@var{stack-guard}
25845 @itemx -mstack-size=@var{stack-size}
25846 @opindex mstack-guard
25847 @opindex mstack-size
25848 If these options are provided the S/390 back end emits additional instructions in
25849 the function prologue that trigger a trap if the stack size is @var{stack-guard}
25850 bytes above the @var{stack-size} (remember that the stack on S/390 grows downward).
25851 If the @var{stack-guard} option is omitted the smallest power of 2 larger than
25852 the frame size of the compiled function is chosen.
25853 These options are intended to be used to help debugging stack overflow problems.
25854 The additionally emitted code causes only little overhead and hence can also be
25855 used in production-like systems without greater performance degradation. The given
25856 values have to be exact powers of 2 and @var{stack-size} has to be greater than
25857 @var{stack-guard} without exceeding 64k.
25858 In order to be efficient the extra code makes the assumption that the stack starts
25859 at an address aligned to the value given by @var{stack-size}.
25860 The @var{stack-guard} option can only be used in conjunction with @var{stack-size}.
25861
25862 @item -mhotpatch=@var{pre-halfwords},@var{post-halfwords}
25863 @opindex mhotpatch
25864 If the hotpatch option is enabled, a ``hot-patching'' function
25865 prologue is generated for all functions in the compilation unit.
25866 The funtion label is prepended with the given number of two-byte
25867 NOP instructions (@var{pre-halfwords}, maximum 1000000). After
25868 the label, 2 * @var{post-halfwords} bytes are appended, using the
25869 largest NOP like instructions the architecture allows (maximum
25870 1000000).
25871
25872 If both arguments are zero, hotpatching is disabled.
25873
25874 This option can be overridden for individual functions with the
25875 @code{hotpatch} attribute.
25876 @end table
25877
25878 @node Score Options
25879 @subsection Score Options
25880 @cindex Score Options
25881
25882 These options are defined for Score implementations:
25883
25884 @table @gcctabopt
25885 @item -meb
25886 @opindex meb
25887 Compile code for big-endian mode. This is the default.
25888
25889 @item -mel
25890 @opindex mel
25891 Compile code for little-endian mode.
25892
25893 @item -mnhwloop
25894 @opindex mnhwloop
25895 Disable generation of @code{bcnz} instructions.
25896
25897 @item -muls
25898 @opindex muls
25899 Enable generation of unaligned load and store instructions.
25900
25901 @item -mmac
25902 @opindex mmac
25903 Enable the use of multiply-accumulate instructions. Disabled by default.
25904
25905 @item -mscore5
25906 @opindex mscore5
25907 Specify the SCORE5 as the target architecture.
25908
25909 @item -mscore5u
25910 @opindex mscore5u
25911 Specify the SCORE5U of the target architecture.
25912
25913 @item -mscore7
25914 @opindex mscore7
25915 Specify the SCORE7 as the target architecture. This is the default.
25916
25917 @item -mscore7d
25918 @opindex mscore7d
25919 Specify the SCORE7D as the target architecture.
25920 @end table
25921
25922 @node SH Options
25923 @subsection SH Options
25924
25925 These @samp{-m} options are defined for the SH implementations:
25926
25927 @table @gcctabopt
25928 @item -m1
25929 @opindex m1
25930 Generate code for the SH1.
25931
25932 @item -m2
25933 @opindex m2
25934 Generate code for the SH2.
25935
25936 @item -m2e
25937 Generate code for the SH2e.
25938
25939 @item -m2a-nofpu
25940 @opindex m2a-nofpu
25941 Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
25942 that the floating-point unit is not used.
25943
25944 @item -m2a-single-only
25945 @opindex m2a-single-only
25946 Generate code for the SH2a-FPU, in such a way that no double-precision
25947 floating-point operations are used.
25948
25949 @item -m2a-single
25950 @opindex m2a-single
25951 Generate code for the SH2a-FPU assuming the floating-point unit is in
25952 single-precision mode by default.
25953
25954 @item -m2a
25955 @opindex m2a
25956 Generate code for the SH2a-FPU assuming the floating-point unit is in
25957 double-precision mode by default.
25958
25959 @item -m3
25960 @opindex m3
25961 Generate code for the SH3.
25962
25963 @item -m3e
25964 @opindex m3e
25965 Generate code for the SH3e.
25966
25967 @item -m4-nofpu
25968 @opindex m4-nofpu
25969 Generate code for the SH4 without a floating-point unit.
25970
25971 @item -m4-single-only
25972 @opindex m4-single-only
25973 Generate code for the SH4 with a floating-point unit that only
25974 supports single-precision arithmetic.
25975
25976 @item -m4-single
25977 @opindex m4-single
25978 Generate code for the SH4 assuming the floating-point unit is in
25979 single-precision mode by default.
25980
25981 @item -m4
25982 @opindex m4
25983 Generate code for the SH4.
25984
25985 @item -m4-100
25986 @opindex m4-100
25987 Generate code for SH4-100.
25988
25989 @item -m4-100-nofpu
25990 @opindex m4-100-nofpu
25991 Generate code for SH4-100 in such a way that the
25992 floating-point unit is not used.
25993
25994 @item -m4-100-single
25995 @opindex m4-100-single
25996 Generate code for SH4-100 assuming the floating-point unit is in
25997 single-precision mode by default.
25998
25999 @item -m4-100-single-only
26000 @opindex m4-100-single-only
26001 Generate code for SH4-100 in such a way that no double-precision
26002 floating-point operations are used.
26003
26004 @item -m4-200
26005 @opindex m4-200
26006 Generate code for SH4-200.
26007
26008 @item -m4-200-nofpu
26009 @opindex m4-200-nofpu
26010 Generate code for SH4-200 without in such a way that the
26011 floating-point unit is not used.
26012
26013 @item -m4-200-single
26014 @opindex m4-200-single
26015 Generate code for SH4-200 assuming the floating-point unit is in
26016 single-precision mode by default.
26017
26018 @item -m4-200-single-only
26019 @opindex m4-200-single-only
26020 Generate code for SH4-200 in such a way that no double-precision
26021 floating-point operations are used.
26022
26023 @item -m4-300
26024 @opindex m4-300
26025 Generate code for SH4-300.
26026
26027 @item -m4-300-nofpu
26028 @opindex m4-300-nofpu
26029 Generate code for SH4-300 without in such a way that the
26030 floating-point unit is not used.
26031
26032 @item -m4-300-single
26033 @opindex m4-300-single
26034 Generate code for SH4-300 in such a way that no double-precision
26035 floating-point operations are used.
26036
26037 @item -m4-300-single-only
26038 @opindex m4-300-single-only
26039 Generate code for SH4-300 in such a way that no double-precision
26040 floating-point operations are used.
26041
26042 @item -m4-340
26043 @opindex m4-340
26044 Generate code for SH4-340 (no MMU, no FPU).
26045
26046 @item -m4-500
26047 @opindex m4-500
26048 Generate code for SH4-500 (no FPU). Passes @option{-isa=sh4-nofpu} to the
26049 assembler.
26050
26051 @item -m4a-nofpu
26052 @opindex m4a-nofpu
26053 Generate code for the SH4al-dsp, or for a SH4a in such a way that the
26054 floating-point unit is not used.
26055
26056 @item -m4a-single-only
26057 @opindex m4a-single-only
26058 Generate code for the SH4a, in such a way that no double-precision
26059 floating-point operations are used.
26060
26061 @item -m4a-single
26062 @opindex m4a-single
26063 Generate code for the SH4a assuming the floating-point unit is in
26064 single-precision mode by default.
26065
26066 @item -m4a
26067 @opindex m4a
26068 Generate code for the SH4a.
26069
26070 @item -m4al
26071 @opindex m4al
26072 Same as @option{-m4a-nofpu}, except that it implicitly passes
26073 @option{-dsp} to the assembler. GCC doesn't generate any DSP
26074 instructions at the moment.
26075
26076 @item -mb
26077 @opindex mb
26078 Compile code for the processor in big-endian mode.
26079
26080 @item -ml
26081 @opindex ml
26082 Compile code for the processor in little-endian mode.
26083
26084 @item -mdalign
26085 @opindex mdalign
26086 Align doubles at 64-bit boundaries. Note that this changes the calling
26087 conventions, and thus some functions from the standard C library do
26088 not work unless you recompile it first with @option{-mdalign}.
26089
26090 @item -mrelax
26091 @opindex mrelax
26092 Shorten some address references at link time, when possible; uses the
26093 linker option @option{-relax}.
26094
26095 @item -mbigtable
26096 @opindex mbigtable
26097 Use 32-bit offsets in @code{switch} tables. The default is to use
26098 16-bit offsets.
26099
26100 @item -mbitops
26101 @opindex mbitops
26102 Enable the use of bit manipulation instructions on SH2A.
26103
26104 @item -mfmovd
26105 @opindex mfmovd
26106 Enable the use of the instruction @code{fmovd}. Check @option{-mdalign} for
26107 alignment constraints.
26108
26109 @item -mrenesas
26110 @opindex mrenesas
26111 Comply with the calling conventions defined by Renesas.
26112
26113 @item -mno-renesas
26114 @opindex mno-renesas
26115 Comply with the calling conventions defined for GCC before the Renesas
26116 conventions were available. This option is the default for all
26117 targets of the SH toolchain.
26118
26119 @item -mnomacsave
26120 @opindex mnomacsave
26121 Mark the @code{MAC} register as call-clobbered, even if
26122 @option{-mrenesas} is given.
26123
26124 @item -mieee
26125 @itemx -mno-ieee
26126 @opindex mieee
26127 @opindex mno-ieee
26128 Control the IEEE compliance of floating-point comparisons, which affects the
26129 handling of cases where the result of a comparison is unordered. By default
26130 @option{-mieee} is implicitly enabled. If @option{-ffinite-math-only} is
26131 enabled @option{-mno-ieee} is implicitly set, which results in faster
26132 floating-point greater-equal and less-equal comparisons. The implicit settings
26133 can be overridden by specifying either @option{-mieee} or @option{-mno-ieee}.
26134
26135 @item -minline-ic_invalidate
26136 @opindex minline-ic_invalidate
26137 Inline code to invalidate instruction cache entries after setting up
26138 nested function trampolines.
26139 This option has no effect if @option{-musermode} is in effect and the selected
26140 code generation option (e.g.@: @option{-m4}) does not allow the use of the @code{icbi}
26141 instruction.
26142 If the selected code generation option does not allow the use of the @code{icbi}
26143 instruction, and @option{-musermode} is not in effect, the inlined code
26144 manipulates the instruction cache address array directly with an associative
26145 write. This not only requires privileged mode at run time, but it also
26146 fails if the cache line had been mapped via the TLB and has become unmapped.
26147
26148 @item -misize
26149 @opindex misize
26150 Dump instruction size and location in the assembly code.
26151
26152 @item -mpadstruct
26153 @opindex mpadstruct
26154 This option is deprecated. It pads structures to multiple of 4 bytes,
26155 which is incompatible with the SH ABI@.
26156
26157 @item -matomic-model=@var{model}
26158 @opindex matomic-model=@var{model}
26159 Sets the model of atomic operations and additional parameters as a comma
26160 separated list. For details on the atomic built-in functions see
26161 @ref{__atomic Builtins}. The following models and parameters are supported:
26162
26163 @table @samp
26164
26165 @item none
26166 Disable compiler generated atomic sequences and emit library calls for atomic
26167 operations. This is the default if the target is not @code{sh*-*-linux*}.
26168
26169 @item soft-gusa
26170 Generate GNU/Linux compatible gUSA software atomic sequences for the atomic
26171 built-in functions. The generated atomic sequences require additional support
26172 from the interrupt/exception handling code of the system and are only suitable
26173 for SH3* and SH4* single-core systems. This option is enabled by default when
26174 the target is @code{sh*-*-linux*} and SH3* or SH4*. When the target is SH4A,
26175 this option also partially utilizes the hardware atomic instructions
26176 @code{movli.l} and @code{movco.l} to create more efficient code, unless
26177 @samp{strict} is specified.
26178
26179 @item soft-tcb
26180 Generate software atomic sequences that use a variable in the thread control
26181 block. This is a variation of the gUSA sequences which can also be used on
26182 SH1* and SH2* targets. The generated atomic sequences require additional
26183 support from the interrupt/exception handling code of the system and are only
26184 suitable for single-core systems. When using this model, the @samp{gbr-offset=}
26185 parameter has to be specified as well.
26186
26187 @item soft-imask
26188 Generate software atomic sequences that temporarily disable interrupts by
26189 setting @code{SR.IMASK = 1111}. This model works only when the program runs
26190 in privileged mode and is only suitable for single-core systems. Additional
26191 support from the interrupt/exception handling code of the system is not
26192 required. This model is enabled by default when the target is
26193 @code{sh*-*-linux*} and SH1* or SH2*.
26194
26195 @item hard-llcs
26196 Generate hardware atomic sequences using the @code{movli.l} and @code{movco.l}
26197 instructions only. This is only available on SH4A and is suitable for
26198 multi-core systems. Since the hardware instructions support only 32 bit atomic
26199 variables access to 8 or 16 bit variables is emulated with 32 bit accesses.
26200 Code compiled with this option is also compatible with other software
26201 atomic model interrupt/exception handling systems if executed on an SH4A
26202 system. Additional support from the interrupt/exception handling code of the
26203 system is not required for this model.
26204
26205 @item gbr-offset=
26206 This parameter specifies the offset in bytes of the variable in the thread
26207 control block structure that should be used by the generated atomic sequences
26208 when the @samp{soft-tcb} model has been selected. For other models this
26209 parameter is ignored. The specified value must be an integer multiple of four
26210 and in the range 0-1020.
26211
26212 @item strict
26213 This parameter prevents mixed usage of multiple atomic models, even if they
26214 are compatible, and makes the compiler generate atomic sequences of the
26215 specified model only.
26216
26217 @end table
26218
26219 @item -mtas
26220 @opindex mtas
26221 Generate the @code{tas.b} opcode for @code{__atomic_test_and_set}.
26222 Notice that depending on the particular hardware and software configuration
26223 this can degrade overall performance due to the operand cache line flushes
26224 that are implied by the @code{tas.b} instruction. On multi-core SH4A
26225 processors the @code{tas.b} instruction must be used with caution since it
26226 can result in data corruption for certain cache configurations.
26227
26228 @item -mprefergot
26229 @opindex mprefergot
26230 When generating position-independent code, emit function calls using
26231 the Global Offset Table instead of the Procedure Linkage Table.
26232
26233 @item -musermode
26234 @itemx -mno-usermode
26235 @opindex musermode
26236 @opindex mno-usermode
26237 Don't allow (allow) the compiler generating privileged mode code. Specifying
26238 @option{-musermode} also implies @option{-mno-inline-ic_invalidate} if the
26239 inlined code would not work in user mode. @option{-musermode} is the default
26240 when the target is @code{sh*-*-linux*}. If the target is SH1* or SH2*
26241 @option{-musermode} has no effect, since there is no user mode.
26242
26243 @item -multcost=@var{number}
26244 @opindex multcost=@var{number}
26245 Set the cost to assume for a multiply insn.
26246
26247 @item -mdiv=@var{strategy}
26248 @opindex mdiv=@var{strategy}
26249 Set the division strategy to be used for integer division operations.
26250 @var{strategy} can be one of:
26251
26252 @table @samp
26253
26254 @item call-div1
26255 Calls a library function that uses the single-step division instruction
26256 @code{div1} to perform the operation. Division by zero calculates an
26257 unspecified result and does not trap. This is the default except for SH4,
26258 SH2A and SHcompact.
26259
26260 @item call-fp
26261 Calls a library function that performs the operation in double precision
26262 floating point. Division by zero causes a floating-point exception. This is
26263 the default for SHcompact with FPU. Specifying this for targets that do not
26264 have a double precision FPU defaults to @code{call-div1}.
26265
26266 @item call-table
26267 Calls a library function that uses a lookup table for small divisors and
26268 the @code{div1} instruction with case distinction for larger divisors. Division
26269 by zero calculates an unspecified result and does not trap. This is the default
26270 for SH4. Specifying this for targets that do not have dynamic shift
26271 instructions defaults to @code{call-div1}.
26272
26273 @end table
26274
26275 When a division strategy has not been specified the default strategy is
26276 selected based on the current target. For SH2A the default strategy is to
26277 use the @code{divs} and @code{divu} instructions instead of library function
26278 calls.
26279
26280 @item -maccumulate-outgoing-args
26281 @opindex maccumulate-outgoing-args
26282 Reserve space once for outgoing arguments in the function prologue rather
26283 than around each call. Generally beneficial for performance and size. Also
26284 needed for unwinding to avoid changing the stack frame around conditional code.
26285
26286 @item -mdivsi3_libfunc=@var{name}
26287 @opindex mdivsi3_libfunc=@var{name}
26288 Set the name of the library function used for 32-bit signed division to
26289 @var{name}.
26290 This only affects the name used in the @samp{call} division strategies, and
26291 the compiler still expects the same sets of input/output/clobbered registers as
26292 if this option were not present.
26293
26294 @item -mfixed-range=@var{register-range}
26295 @opindex mfixed-range
26296 Generate code treating the given register range as fixed registers.
26297 A fixed register is one that the register allocator cannot use. This is
26298 useful when compiling kernel code. A register range is specified as
26299 two registers separated by a dash. Multiple register ranges can be
26300 specified separated by a comma.
26301
26302 @item -mbranch-cost=@var{num}
26303 @opindex mbranch-cost=@var{num}
26304 Assume @var{num} to be the cost for a branch instruction. Higher numbers
26305 make the compiler try to generate more branch-free code if possible.
26306 If not specified the value is selected depending on the processor type that
26307 is being compiled for.
26308
26309 @item -mzdcbranch
26310 @itemx -mno-zdcbranch
26311 @opindex mzdcbranch
26312 @opindex mno-zdcbranch
26313 Assume (do not assume) that zero displacement conditional branch instructions
26314 @code{bt} and @code{bf} are fast. If @option{-mzdcbranch} is specified, the
26315 compiler prefers zero displacement branch code sequences. This is
26316 enabled by default when generating code for SH4 and SH4A. It can be explicitly
26317 disabled by specifying @option{-mno-zdcbranch}.
26318
26319 @item -mcbranch-force-delay-slot
26320 @opindex mcbranch-force-delay-slot
26321 Force the usage of delay slots for conditional branches, which stuffs the delay
26322 slot with a @code{nop} if a suitable instruction cannot be found. By default
26323 this option is disabled. It can be enabled to work around hardware bugs as
26324 found in the original SH7055.
26325
26326 @item -mfused-madd
26327 @itemx -mno-fused-madd
26328 @opindex mfused-madd
26329 @opindex mno-fused-madd
26330 Generate code that uses (does not use) the floating-point multiply and
26331 accumulate instructions. These instructions are generated by default
26332 if hardware floating point is used. The machine-dependent
26333 @option{-mfused-madd} option is now mapped to the machine-independent
26334 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
26335 mapped to @option{-ffp-contract=off}.
26336
26337 @item -mfsca
26338 @itemx -mno-fsca
26339 @opindex mfsca
26340 @opindex mno-fsca
26341 Allow or disallow the compiler to emit the @code{fsca} instruction for sine
26342 and cosine approximations. The option @option{-mfsca} must be used in
26343 combination with @option{-funsafe-math-optimizations}. It is enabled by default
26344 when generating code for SH4A. Using @option{-mno-fsca} disables sine and cosine
26345 approximations even if @option{-funsafe-math-optimizations} is in effect.
26346
26347 @item -mfsrra
26348 @itemx -mno-fsrra
26349 @opindex mfsrra
26350 @opindex mno-fsrra
26351 Allow or disallow the compiler to emit the @code{fsrra} instruction for
26352 reciprocal square root approximations. The option @option{-mfsrra} must be used
26353 in combination with @option{-funsafe-math-optimizations} and
26354 @option{-ffinite-math-only}. It is enabled by default when generating code for
26355 SH4A. Using @option{-mno-fsrra} disables reciprocal square root approximations
26356 even if @option{-funsafe-math-optimizations} and @option{-ffinite-math-only} are
26357 in effect.
26358
26359 @item -mpretend-cmove
26360 @opindex mpretend-cmove
26361 Prefer zero-displacement conditional branches for conditional move instruction
26362 patterns. This can result in faster code on the SH4 processor.
26363
26364 @item -mfdpic
26365 @opindex fdpic
26366 Generate code using the FDPIC ABI.
26367
26368 @end table
26369
26370 @node Solaris 2 Options
26371 @subsection Solaris 2 Options
26372 @cindex Solaris 2 options
26373
26374 These @samp{-m} options are supported on Solaris 2:
26375
26376 @table @gcctabopt
26377 @item -mclear-hwcap
26378 @opindex mclear-hwcap
26379 @option{-mclear-hwcap} tells the compiler to remove the hardware
26380 capabilities generated by the Solaris assembler. This is only necessary
26381 when object files use ISA extensions not supported by the current
26382 machine, but check at runtime whether or not to use them.
26383
26384 @item -mimpure-text
26385 @opindex mimpure-text
26386 @option{-mimpure-text}, used in addition to @option{-shared}, tells
26387 the compiler to not pass @option{-z text} to the linker when linking a
26388 shared object. Using this option, you can link position-dependent
26389 code into a shared object.
26390
26391 @option{-mimpure-text} suppresses the ``relocations remain against
26392 allocatable but non-writable sections'' linker error message.
26393 However, the necessary relocations trigger copy-on-write, and the
26394 shared object is not actually shared across processes. Instead of
26395 using @option{-mimpure-text}, you should compile all source code with
26396 @option{-fpic} or @option{-fPIC}.
26397
26398 @end table
26399
26400 These switches are supported in addition to the above on Solaris 2:
26401
26402 @table @gcctabopt
26403 @item -pthreads
26404 @opindex pthreads
26405 This is a synonym for @option{-pthread}.
26406 @end table
26407
26408 @node SPARC Options
26409 @subsection SPARC Options
26410 @cindex SPARC options
26411
26412 These @samp{-m} options are supported on the SPARC:
26413
26414 @table @gcctabopt
26415 @item -mno-app-regs
26416 @itemx -mapp-regs
26417 @opindex mno-app-regs
26418 @opindex mapp-regs
26419 Specify @option{-mapp-regs} to generate output using the global registers
26420 2 through 4, which the SPARC SVR4 ABI reserves for applications. Like the
26421 global register 1, each global register 2 through 4 is then treated as an
26422 allocable register that is clobbered by function calls. This is the default.
26423
26424 To be fully SVR4 ABI-compliant at the cost of some performance loss,
26425 specify @option{-mno-app-regs}. You should compile libraries and system
26426 software with this option.
26427
26428 @item -mflat
26429 @itemx -mno-flat
26430 @opindex mflat
26431 @opindex mno-flat
26432 With @option{-mflat}, the compiler does not generate save/restore instructions
26433 and uses a ``flat'' or single register window model. This model is compatible
26434 with the regular register window model. The local registers and the input
26435 registers (0--5) are still treated as ``call-saved'' registers and are
26436 saved on the stack as needed.
26437
26438 With @option{-mno-flat} (the default), the compiler generates save/restore
26439 instructions (except for leaf functions). This is the normal operating mode.
26440
26441 @item -mfpu
26442 @itemx -mhard-float
26443 @opindex mfpu
26444 @opindex mhard-float
26445 Generate output containing floating-point instructions. This is the
26446 default.
26447
26448 @item -mno-fpu
26449 @itemx -msoft-float
26450 @opindex mno-fpu
26451 @opindex msoft-float
26452 Generate output containing library calls for floating point.
26453 @strong{Warning:} the requisite libraries are not available for all SPARC
26454 targets. Normally the facilities of the machine's usual C compiler are
26455 used, but this cannot be done directly in cross-compilation. You must make
26456 your own arrangements to provide suitable library functions for
26457 cross-compilation. The embedded targets @samp{sparc-*-aout} and
26458 @samp{sparclite-*-*} do provide software floating-point support.
26459
26460 @option{-msoft-float} changes the calling convention in the output file;
26461 therefore, it is only useful if you compile @emph{all} of a program with
26462 this option. In particular, you need to compile @file{libgcc.a}, the
26463 library that comes with GCC, with @option{-msoft-float} in order for
26464 this to work.
26465
26466 @item -mhard-quad-float
26467 @opindex mhard-quad-float
26468 Generate output containing quad-word (long double) floating-point
26469 instructions.
26470
26471 @item -msoft-quad-float
26472 @opindex msoft-quad-float
26473 Generate output containing library calls for quad-word (long double)
26474 floating-point instructions. The functions called are those specified
26475 in the SPARC ABI@. This is the default.
26476
26477 As of this writing, there are no SPARC implementations that have hardware
26478 support for the quad-word floating-point instructions. They all invoke
26479 a trap handler for one of these instructions, and then the trap handler
26480 emulates the effect of the instruction. Because of the trap handler overhead,
26481 this is much slower than calling the ABI library routines. Thus the
26482 @option{-msoft-quad-float} option is the default.
26483
26484 @item -mno-unaligned-doubles
26485 @itemx -munaligned-doubles
26486 @opindex mno-unaligned-doubles
26487 @opindex munaligned-doubles
26488 Assume that doubles have 8-byte alignment. This is the default.
26489
26490 With @option{-munaligned-doubles}, GCC assumes that doubles have 8-byte
26491 alignment only if they are contained in another type, or if they have an
26492 absolute address. Otherwise, it assumes they have 4-byte alignment.
26493 Specifying this option avoids some rare compatibility problems with code
26494 generated by other compilers. It is not the default because it results
26495 in a performance loss, especially for floating-point code.
26496
26497 @item -muser-mode
26498 @itemx -mno-user-mode
26499 @opindex muser-mode
26500 @opindex mno-user-mode
26501 Do not generate code that can only run in supervisor mode. This is relevant
26502 only for the @code{casa} instruction emitted for the LEON3 processor. This
26503 is the default.
26504
26505 @item -mfaster-structs
26506 @itemx -mno-faster-structs
26507 @opindex mfaster-structs
26508 @opindex mno-faster-structs
26509 With @option{-mfaster-structs}, the compiler assumes that structures
26510 should have 8-byte alignment. This enables the use of pairs of
26511 @code{ldd} and @code{std} instructions for copies in structure
26512 assignment, in place of twice as many @code{ld} and @code{st} pairs.
26513 However, the use of this changed alignment directly violates the SPARC
26514 ABI@. Thus, it's intended only for use on targets where the developer
26515 acknowledges that their resulting code is not directly in line with
26516 the rules of the ABI@.
26517
26518 @item -mstd-struct-return
26519 @itemx -mno-std-struct-return
26520 @opindex mstd-struct-return
26521 @opindex mno-std-struct-return
26522 With @option{-mstd-struct-return}, the compiler generates checking code
26523 in functions returning structures or unions to detect size mismatches
26524 between the two sides of function calls, as per the 32-bit ABI@.
26525
26526 The default is @option{-mno-std-struct-return}. This option has no effect
26527 in 64-bit mode.
26528
26529 @item -mlra
26530 @itemx -mno-lra
26531 @opindex mlra
26532 @opindex mno-lra
26533 Enable Local Register Allocation. This is the default for SPARC since GCC 7
26534 so @option{-mno-lra} needs to be passed to get old Reload.
26535
26536 @item -mcpu=@var{cpu_type}
26537 @opindex mcpu
26538 Set the instruction set, register set, and instruction scheduling parameters
26539 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
26540 @samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{hypersparc},
26541 @samp{leon}, @samp{leon3}, @samp{leon3v7}, @samp{sparclite}, @samp{f930},
26542 @samp{f934}, @samp{sparclite86x}, @samp{sparclet}, @samp{tsc701}, @samp{v9},
26543 @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
26544 @samp{niagara3}, @samp{niagara4}, @samp{niagara7} and @samp{m8}.
26545
26546 Native Solaris and GNU/Linux toolchains also support the value @samp{native},
26547 which selects the best architecture option for the host processor.
26548 @option{-mcpu=native} has no effect if GCC does not recognize
26549 the processor.
26550
26551 Default instruction scheduling parameters are used for values that select
26552 an architecture and not an implementation. These are @samp{v7}, @samp{v8},
26553 @samp{sparclite}, @samp{sparclet}, @samp{v9}.
26554
26555 Here is a list of each supported architecture and their supported
26556 implementations.
26557
26558 @table @asis
26559 @item v7
26560 cypress, leon3v7
26561
26562 @item v8
26563 supersparc, hypersparc, leon, leon3
26564
26565 @item sparclite
26566 f930, f934, sparclite86x
26567
26568 @item sparclet
26569 tsc701
26570
26571 @item v9
26572 ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4,
26573 niagara7, m8
26574 @end table
26575
26576 By default (unless configured otherwise), GCC generates code for the V7
26577 variant of the SPARC architecture. With @option{-mcpu=cypress}, the compiler
26578 additionally optimizes it for the Cypress CY7C602 chip, as used in the
26579 SPARCStation/SPARCServer 3xx series. This is also appropriate for the older
26580 SPARCStation 1, 2, IPX etc.
26581
26582 With @option{-mcpu=v8}, GCC generates code for the V8 variant of the SPARC
26583 architecture. The only difference from V7 code is that the compiler emits
26584 the integer multiply and integer divide instructions which exist in SPARC-V8
26585 but not in SPARC-V7. With @option{-mcpu=supersparc}, the compiler additionally
26586 optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
26587 2000 series.
26588
26589 With @option{-mcpu=sparclite}, GCC generates code for the SPARClite variant of
26590 the SPARC architecture. This adds the integer multiply, integer divide step
26591 and scan (@code{ffs}) instructions which exist in SPARClite but not in SPARC-V7.
26592 With @option{-mcpu=f930}, the compiler additionally optimizes it for the
26593 Fujitsu MB86930 chip, which is the original SPARClite, with no FPU@. With
26594 @option{-mcpu=f934}, the compiler additionally optimizes it for the Fujitsu
26595 MB86934 chip, which is the more recent SPARClite with FPU@.
26596
26597 With @option{-mcpu=sparclet}, GCC generates code for the SPARClet variant of
26598 the SPARC architecture. This adds the integer multiply, multiply/accumulate,
26599 integer divide step and scan (@code{ffs}) instructions which exist in SPARClet
26600 but not in SPARC-V7. With @option{-mcpu=tsc701}, the compiler additionally
26601 optimizes it for the TEMIC SPARClet chip.
26602
26603 With @option{-mcpu=v9}, GCC generates code for the V9 variant of the SPARC
26604 architecture. This adds 64-bit integer and floating-point move instructions,
26605 3 additional floating-point condition code registers and conditional move
26606 instructions. With @option{-mcpu=ultrasparc}, the compiler additionally
26607 optimizes it for the Sun UltraSPARC I/II/IIi chips. With
26608 @option{-mcpu=ultrasparc3}, the compiler additionally optimizes it for the
26609 Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips. With
26610 @option{-mcpu=niagara}, the compiler additionally optimizes it for
26611 Sun UltraSPARC T1 chips. With @option{-mcpu=niagara2}, the compiler
26612 additionally optimizes it for Sun UltraSPARC T2 chips. With
26613 @option{-mcpu=niagara3}, the compiler additionally optimizes it for Sun
26614 UltraSPARC T3 chips. With @option{-mcpu=niagara4}, the compiler
26615 additionally optimizes it for Sun UltraSPARC T4 chips. With
26616 @option{-mcpu=niagara7}, the compiler additionally optimizes it for
26617 Oracle SPARC M7 chips. With @option{-mcpu=m8}, the compiler
26618 additionally optimizes it for Oracle M8 chips.
26619
26620 @item -mtune=@var{cpu_type}
26621 @opindex mtune
26622 Set the instruction scheduling parameters for machine type
26623 @var{cpu_type}, but do not set the instruction set or register set that the
26624 option @option{-mcpu=@var{cpu_type}} does.
26625
26626 The same values for @option{-mcpu=@var{cpu_type}} can be used for
26627 @option{-mtune=@var{cpu_type}}, but the only useful values are those
26628 that select a particular CPU implementation. Those are
26629 @samp{cypress}, @samp{supersparc}, @samp{hypersparc}, @samp{leon},
26630 @samp{leon3}, @samp{leon3v7}, @samp{f930}, @samp{f934},
26631 @samp{sparclite86x}, @samp{tsc701}, @samp{ultrasparc},
26632 @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2}, @samp{niagara3},
26633 @samp{niagara4}, @samp{niagara7} and @samp{m8}. With native Solaris
26634 and GNU/Linux toolchains, @samp{native} can also be used.
26635
26636 @item -mv8plus
26637 @itemx -mno-v8plus
26638 @opindex mv8plus
26639 @opindex mno-v8plus
26640 With @option{-mv8plus}, GCC generates code for the SPARC-V8+ ABI@. The
26641 difference from the V8 ABI is that the global and out registers are
26642 considered 64 bits wide. This is enabled by default on Solaris in 32-bit
26643 mode for all SPARC-V9 processors.
26644
26645 @item -mvis
26646 @itemx -mno-vis
26647 @opindex mvis
26648 @opindex mno-vis
26649 With @option{-mvis}, GCC generates code that takes advantage of the UltraSPARC
26650 Visual Instruction Set extensions. The default is @option{-mno-vis}.
26651
26652 @item -mvis2
26653 @itemx -mno-vis2
26654 @opindex mvis2
26655 @opindex mno-vis2
26656 With @option{-mvis2}, GCC generates code that takes advantage of
26657 version 2.0 of the UltraSPARC Visual Instruction Set extensions. The
26658 default is @option{-mvis2} when targeting a cpu that supports such
26659 instructions, such as UltraSPARC-III and later. Setting @option{-mvis2}
26660 also sets @option{-mvis}.
26661
26662 @item -mvis3
26663 @itemx -mno-vis3
26664 @opindex mvis3
26665 @opindex mno-vis3
26666 With @option{-mvis3}, GCC generates code that takes advantage of
26667 version 3.0 of the UltraSPARC Visual Instruction Set extensions. The
26668 default is @option{-mvis3} when targeting a cpu that supports such
26669 instructions, such as niagara-3 and later. Setting @option{-mvis3}
26670 also sets @option{-mvis2} and @option{-mvis}.
26671
26672 @item -mvis4
26673 @itemx -mno-vis4
26674 @opindex mvis4
26675 @opindex mno-vis4
26676 With @option{-mvis4}, GCC generates code that takes advantage of
26677 version 4.0 of the UltraSPARC Visual Instruction Set extensions. The
26678 default is @option{-mvis4} when targeting a cpu that supports such
26679 instructions, such as niagara-7 and later. Setting @option{-mvis4}
26680 also sets @option{-mvis3}, @option{-mvis2} and @option{-mvis}.
26681
26682 @item -mvis4b
26683 @itemx -mno-vis4b
26684 @opindex mvis4b
26685 @opindex mno-vis4b
26686 With @option{-mvis4b}, GCC generates code that takes advantage of
26687 version 4.0 of the UltraSPARC Visual Instruction Set extensions, plus
26688 the additional VIS instructions introduced in the Oracle SPARC
26689 Architecture 2017. The default is @option{-mvis4b} when targeting a
26690 cpu that supports such instructions, such as m8 and later. Setting
26691 @option{-mvis4b} also sets @option{-mvis4}, @option{-mvis3},
26692 @option{-mvis2} and @option{-mvis}.
26693
26694 @item -mcbcond
26695 @itemx -mno-cbcond
26696 @opindex mcbcond
26697 @opindex mno-cbcond
26698 With @option{-mcbcond}, GCC generates code that takes advantage of the UltraSPARC
26699 Compare-and-Branch-on-Condition instructions. The default is @option{-mcbcond}
26700 when targeting a CPU that supports such instructions, such as Niagara-4 and
26701 later.
26702
26703 @item -mfmaf
26704 @itemx -mno-fmaf
26705 @opindex mfmaf
26706 @opindex mno-fmaf
26707 With @option{-mfmaf}, GCC generates code that takes advantage of the UltraSPARC
26708 Fused Multiply-Add Floating-point instructions. The default is @option{-mfmaf}
26709 when targeting a CPU that supports such instructions, such as Niagara-3 and
26710 later.
26711
26712 @item -mfsmuld
26713 @itemx -mno-fsmuld
26714 @opindex mfsmuld
26715 @opindex mno-fsmuld
26716 With @option{-mfsmuld}, GCC generates code that takes advantage of the
26717 Floating-point Multiply Single to Double (FsMULd) instruction. The default is
26718 @option{-mfsmuld} when targeting a CPU supporting the architecture versions V8
26719 or V9 with FPU except @option{-mcpu=leon}.
26720
26721 @item -mpopc
26722 @itemx -mno-popc
26723 @opindex mpopc
26724 @opindex mno-popc
26725 With @option{-mpopc}, GCC generates code that takes advantage of the UltraSPARC
26726 Population Count instruction. The default is @option{-mpopc}
26727 when targeting a CPU that supports such an instruction, such as Niagara-2 and
26728 later.
26729
26730 @item -msubxc
26731 @itemx -mno-subxc
26732 @opindex msubxc
26733 @opindex mno-subxc
26734 With @option{-msubxc}, GCC generates code that takes advantage of the UltraSPARC
26735 Subtract-Extended-with-Carry instruction. The default is @option{-msubxc}
26736 when targeting a CPU that supports such an instruction, such as Niagara-7 and
26737 later.
26738
26739 @item -mfix-at697f
26740 @opindex mfix-at697f
26741 Enable the documented workaround for the single erratum of the Atmel AT697F
26742 processor (which corresponds to erratum #13 of the AT697E processor).
26743
26744 @item -mfix-ut699
26745 @opindex mfix-ut699
26746 Enable the documented workarounds for the floating-point errata and the data
26747 cache nullify errata of the UT699 processor.
26748
26749 @item -mfix-ut700
26750 @opindex mfix-ut700
26751 Enable the documented workaround for the back-to-back store errata of
26752 the UT699E/UT700 processor.
26753
26754 @item -mfix-gr712rc
26755 @opindex mfix-gr712rc
26756 Enable the documented workaround for the back-to-back store errata of
26757 the GR712RC processor.
26758 @end table
26759
26760 These @samp{-m} options are supported in addition to the above
26761 on SPARC-V9 processors in 64-bit environments:
26762
26763 @table @gcctabopt
26764 @item -m32
26765 @itemx -m64
26766 @opindex m32
26767 @opindex m64
26768 Generate code for a 32-bit or 64-bit environment.
26769 The 32-bit environment sets int, long and pointer to 32 bits.
26770 The 64-bit environment sets int to 32 bits and long and pointer
26771 to 64 bits.
26772
26773 @item -mcmodel=@var{which}
26774 @opindex mcmodel
26775 Set the code model to one of
26776
26777 @table @samp
26778 @item medlow
26779 The Medium/Low code model: 64-bit addresses, programs
26780 must be linked in the low 32 bits of memory. Programs can be statically
26781 or dynamically linked.
26782
26783 @item medmid
26784 The Medium/Middle code model: 64-bit addresses, programs
26785 must be linked in the low 44 bits of memory, the text and data segments must
26786 be less than 2GB in size and the data segment must be located within 2GB of
26787 the text segment.
26788
26789 @item medany
26790 The Medium/Anywhere code model: 64-bit addresses, programs
26791 may be linked anywhere in memory, the text and data segments must be less
26792 than 2GB in size and the data segment must be located within 2GB of the
26793 text segment.
26794
26795 @item embmedany
26796 The Medium/Anywhere code model for embedded systems:
26797 64-bit addresses, the text and data segments must be less than 2GB in
26798 size, both starting anywhere in memory (determined at link time). The
26799 global register %g4 points to the base of the data segment. Programs
26800 are statically linked and PIC is not supported.
26801 @end table
26802
26803 @item -mmemory-model=@var{mem-model}
26804 @opindex mmemory-model
26805 Set the memory model in force on the processor to one of
26806
26807 @table @samp
26808 @item default
26809 The default memory model for the processor and operating system.
26810
26811 @item rmo
26812 Relaxed Memory Order
26813
26814 @item pso
26815 Partial Store Order
26816
26817 @item tso
26818 Total Store Order
26819
26820 @item sc
26821 Sequential Consistency
26822 @end table
26823
26824 These memory models are formally defined in Appendix D of the SPARC-V9
26825 architecture manual, as set in the processor's @code{PSTATE.MM} field.
26826
26827 @item -mstack-bias
26828 @itemx -mno-stack-bias
26829 @opindex mstack-bias
26830 @opindex mno-stack-bias
26831 With @option{-mstack-bias}, GCC assumes that the stack pointer, and
26832 frame pointer if present, are offset by @minus{}2047 which must be added back
26833 when making stack frame references. This is the default in 64-bit mode.
26834 Otherwise, assume no such offset is present.
26835 @end table
26836
26837 @node System V Options
26838 @subsection Options for System V
26839
26840 These additional options are available on System V Release 4 for
26841 compatibility with other compilers on those systems:
26842
26843 @table @gcctabopt
26844 @item -G
26845 @opindex G
26846 Create a shared object.
26847 It is recommended that @option{-symbolic} or @option{-shared} be used instead.
26848
26849 @item -Qy
26850 @opindex Qy
26851 Identify the versions of each tool used by the compiler, in a
26852 @code{.ident} assembler directive in the output.
26853
26854 @item -Qn
26855 @opindex Qn
26856 Refrain from adding @code{.ident} directives to the output file (this is
26857 the default).
26858
26859 @item -YP,@var{dirs}
26860 @opindex YP
26861 Search the directories @var{dirs}, and no others, for libraries
26862 specified with @option{-l}.
26863
26864 @item -Ym,@var{dir}
26865 @opindex Ym
26866 Look in the directory @var{dir} to find the M4 preprocessor.
26867 The assembler uses this option.
26868 @c This is supposed to go with a -Yd for predefined M4 macro files, but
26869 @c the generic assembler that comes with Solaris takes just -Ym.
26870 @end table
26871
26872 @node TILE-Gx Options
26873 @subsection TILE-Gx Options
26874 @cindex TILE-Gx options
26875
26876 These @samp{-m} options are supported on the TILE-Gx:
26877
26878 @table @gcctabopt
26879 @item -mcmodel=small
26880 @opindex mcmodel=small
26881 Generate code for the small model. The distance for direct calls is
26882 limited to 500M in either direction. PC-relative addresses are 32
26883 bits. Absolute addresses support the full address range.
26884
26885 @item -mcmodel=large
26886 @opindex mcmodel=large
26887 Generate code for the large model. There is no limitation on call
26888 distance, pc-relative addresses, or absolute addresses.
26889
26890 @item -mcpu=@var{name}
26891 @opindex mcpu
26892 Selects the type of CPU to be targeted. Currently the only supported
26893 type is @samp{tilegx}.
26894
26895 @item -m32
26896 @itemx -m64
26897 @opindex m32
26898 @opindex m64
26899 Generate code for a 32-bit or 64-bit environment. The 32-bit
26900 environment sets int, long, and pointer to 32 bits. The 64-bit
26901 environment sets int to 32 bits and long and pointer to 64 bits.
26902
26903 @item -mbig-endian
26904 @itemx -mlittle-endian
26905 @opindex mbig-endian
26906 @opindex mlittle-endian
26907 Generate code in big/little endian mode, respectively.
26908 @end table
26909
26910 @node TILEPro Options
26911 @subsection TILEPro Options
26912 @cindex TILEPro options
26913
26914 These @samp{-m} options are supported on the TILEPro:
26915
26916 @table @gcctabopt
26917 @item -mcpu=@var{name}
26918 @opindex mcpu
26919 Selects the type of CPU to be targeted. Currently the only supported
26920 type is @samp{tilepro}.
26921
26922 @item -m32
26923 @opindex m32
26924 Generate code for a 32-bit environment, which sets int, long, and
26925 pointer to 32 bits. This is the only supported behavior so the flag
26926 is essentially ignored.
26927 @end table
26928
26929 @node V850 Options
26930 @subsection V850 Options
26931 @cindex V850 Options
26932
26933 These @samp{-m} options are defined for V850 implementations:
26934
26935 @table @gcctabopt
26936 @item -mlong-calls
26937 @itemx -mno-long-calls
26938 @opindex mlong-calls
26939 @opindex mno-long-calls
26940 Treat all calls as being far away (near). If calls are assumed to be
26941 far away, the compiler always loads the function's address into a
26942 register, and calls indirect through the pointer.
26943
26944 @item -mno-ep
26945 @itemx -mep
26946 @opindex mno-ep
26947 @opindex mep
26948 Do not optimize (do optimize) basic blocks that use the same index
26949 pointer 4 or more times to copy pointer into the @code{ep} register, and
26950 use the shorter @code{sld} and @code{sst} instructions. The @option{-mep}
26951 option is on by default if you optimize.
26952
26953 @item -mno-prolog-function
26954 @itemx -mprolog-function
26955 @opindex mno-prolog-function
26956 @opindex mprolog-function
26957 Do not use (do use) external functions to save and restore registers
26958 at the prologue and epilogue of a function. The external functions
26959 are slower, but use less code space if more than one function saves
26960 the same number of registers. The @option{-mprolog-function} option
26961 is on by default if you optimize.
26962
26963 @item -mspace
26964 @opindex mspace
26965 Try to make the code as small as possible. At present, this just turns
26966 on the @option{-mep} and @option{-mprolog-function} options.
26967
26968 @item -mtda=@var{n}
26969 @opindex mtda
26970 Put static or global variables whose size is @var{n} bytes or less into
26971 the tiny data area that register @code{ep} points to. The tiny data
26972 area can hold up to 256 bytes in total (128 bytes for byte references).
26973
26974 @item -msda=@var{n}
26975 @opindex msda
26976 Put static or global variables whose size is @var{n} bytes or less into
26977 the small data area that register @code{gp} points to. The small data
26978 area can hold up to 64 kilobytes.
26979
26980 @item -mzda=@var{n}
26981 @opindex mzda
26982 Put static or global variables whose size is @var{n} bytes or less into
26983 the first 32 kilobytes of memory.
26984
26985 @item -mv850
26986 @opindex mv850
26987 Specify that the target processor is the V850.
26988
26989 @item -mv850e3v5
26990 @opindex mv850e3v5
26991 Specify that the target processor is the V850E3V5. The preprocessor
26992 constant @code{__v850e3v5__} is defined if this option is used.
26993
26994 @item -mv850e2v4
26995 @opindex mv850e2v4
26996 Specify that the target processor is the V850E3V5. This is an alias for
26997 the @option{-mv850e3v5} option.
26998
26999 @item -mv850e2v3
27000 @opindex mv850e2v3
27001 Specify that the target processor is the V850E2V3. The preprocessor
27002 constant @code{__v850e2v3__} is defined if this option is used.
27003
27004 @item -mv850e2
27005 @opindex mv850e2
27006 Specify that the target processor is the V850E2. The preprocessor
27007 constant @code{__v850e2__} is defined if this option is used.
27008
27009 @item -mv850e1
27010 @opindex mv850e1
27011 Specify that the target processor is the V850E1. The preprocessor
27012 constants @code{__v850e1__} and @code{__v850e__} are defined if
27013 this option is used.
27014
27015 @item -mv850es
27016 @opindex mv850es
27017 Specify that the target processor is the V850ES. This is an alias for
27018 the @option{-mv850e1} option.
27019
27020 @item -mv850e
27021 @opindex mv850e
27022 Specify that the target processor is the V850E@. The preprocessor
27023 constant @code{__v850e__} is defined if this option is used.
27024
27025 If neither @option{-mv850} nor @option{-mv850e} nor @option{-mv850e1}
27026 nor @option{-mv850e2} nor @option{-mv850e2v3} nor @option{-mv850e3v5}
27027 are defined then a default target processor is chosen and the
27028 relevant @samp{__v850*__} preprocessor constant is defined.
27029
27030 The preprocessor constants @code{__v850} and @code{__v851__} are always
27031 defined, regardless of which processor variant is the target.
27032
27033 @item -mdisable-callt
27034 @itemx -mno-disable-callt
27035 @opindex mdisable-callt
27036 @opindex mno-disable-callt
27037 This option suppresses generation of the @code{CALLT} instruction for the
27038 v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850
27039 architecture.
27040
27041 This option is enabled by default when the RH850 ABI is
27042 in use (see @option{-mrh850-abi}), and disabled by default when the
27043 GCC ABI is in use. If @code{CALLT} instructions are being generated
27044 then the C preprocessor symbol @code{__V850_CALLT__} is defined.
27045
27046 @item -mrelax
27047 @itemx -mno-relax
27048 @opindex mrelax
27049 @opindex mno-relax
27050 Pass on (or do not pass on) the @option{-mrelax} command-line option
27051 to the assembler.
27052
27053 @item -mlong-jumps
27054 @itemx -mno-long-jumps
27055 @opindex mlong-jumps
27056 @opindex mno-long-jumps
27057 Disable (or re-enable) the generation of PC-relative jump instructions.
27058
27059 @item -msoft-float
27060 @itemx -mhard-float
27061 @opindex msoft-float
27062 @opindex mhard-float
27063 Disable (or re-enable) the generation of hardware floating point
27064 instructions. This option is only significant when the target
27065 architecture is @samp{V850E2V3} or higher. If hardware floating point
27066 instructions are being generated then the C preprocessor symbol
27067 @code{__FPU_OK__} is defined, otherwise the symbol
27068 @code{__NO_FPU__} is defined.
27069
27070 @item -mloop
27071 @opindex mloop
27072 Enables the use of the e3v5 LOOP instruction. The use of this
27073 instruction is not enabled by default when the e3v5 architecture is
27074 selected because its use is still experimental.
27075
27076 @item -mrh850-abi
27077 @itemx -mghs
27078 @opindex mrh850-abi
27079 @opindex mghs
27080 Enables support for the RH850 version of the V850 ABI. This is the
27081 default. With this version of the ABI the following rules apply:
27082
27083 @itemize
27084 @item
27085 Integer sized structures and unions are returned via a memory pointer
27086 rather than a register.
27087
27088 @item
27089 Large structures and unions (more than 8 bytes in size) are passed by
27090 value.
27091
27092 @item
27093 Functions are aligned to 16-bit boundaries.
27094
27095 @item
27096 The @option{-m8byte-align} command-line option is supported.
27097
27098 @item
27099 The @option{-mdisable-callt} command-line option is enabled by
27100 default. The @option{-mno-disable-callt} command-line option is not
27101 supported.
27102 @end itemize
27103
27104 When this version of the ABI is enabled the C preprocessor symbol
27105 @code{__V850_RH850_ABI__} is defined.
27106
27107 @item -mgcc-abi
27108 @opindex mgcc-abi
27109 Enables support for the old GCC version of the V850 ABI. With this
27110 version of the ABI the following rules apply:
27111
27112 @itemize
27113 @item
27114 Integer sized structures and unions are returned in register @code{r10}.
27115
27116 @item
27117 Large structures and unions (more than 8 bytes in size) are passed by
27118 reference.
27119
27120 @item
27121 Functions are aligned to 32-bit boundaries, unless optimizing for
27122 size.
27123
27124 @item
27125 The @option{-m8byte-align} command-line option is not supported.
27126
27127 @item
27128 The @option{-mdisable-callt} command-line option is supported but not
27129 enabled by default.
27130 @end itemize
27131
27132 When this version of the ABI is enabled the C preprocessor symbol
27133 @code{__V850_GCC_ABI__} is defined.
27134
27135 @item -m8byte-align
27136 @itemx -mno-8byte-align
27137 @opindex m8byte-align
27138 @opindex mno-8byte-align
27139 Enables support for @code{double} and @code{long long} types to be
27140 aligned on 8-byte boundaries. The default is to restrict the
27141 alignment of all objects to at most 4-bytes. When
27142 @option{-m8byte-align} is in effect the C preprocessor symbol
27143 @code{__V850_8BYTE_ALIGN__} is defined.
27144
27145 @item -mbig-switch
27146 @opindex mbig-switch
27147 Generate code suitable for big switch tables. Use this option only if
27148 the assembler/linker complain about out of range branches within a switch
27149 table.
27150
27151 @item -mapp-regs
27152 @opindex mapp-regs
27153 This option causes r2 and r5 to be used in the code generated by
27154 the compiler. This setting is the default.
27155
27156 @item -mno-app-regs
27157 @opindex mno-app-regs
27158 This option causes r2 and r5 to be treated as fixed registers.
27159
27160 @end table
27161
27162 @node VAX Options
27163 @subsection VAX Options
27164 @cindex VAX options
27165
27166 These @samp{-m} options are defined for the VAX:
27167
27168 @table @gcctabopt
27169 @item -munix
27170 @opindex munix
27171 Do not output certain jump instructions (@code{aobleq} and so on)
27172 that the Unix assembler for the VAX cannot handle across long
27173 ranges.
27174
27175 @item -mgnu
27176 @opindex mgnu
27177 Do output those jump instructions, on the assumption that the
27178 GNU assembler is being used.
27179
27180 @item -mg
27181 @opindex mg
27182 Output code for G-format floating-point numbers instead of D-format.
27183 @end table
27184
27185 @node Visium Options
27186 @subsection Visium Options
27187 @cindex Visium options
27188
27189 @table @gcctabopt
27190
27191 @item -mdebug
27192 @opindex mdebug
27193 A program which performs file I/O and is destined to run on an MCM target
27194 should be linked with this option. It causes the libraries libc.a and
27195 libdebug.a to be linked. The program should be run on the target under
27196 the control of the GDB remote debugging stub.
27197
27198 @item -msim
27199 @opindex msim
27200 A program which performs file I/O and is destined to run on the simulator
27201 should be linked with option. This causes libraries libc.a and libsim.a to
27202 be linked.
27203
27204 @item -mfpu
27205 @itemx -mhard-float
27206 @opindex mfpu
27207 @opindex mhard-float
27208 Generate code containing floating-point instructions. This is the
27209 default.
27210
27211 @item -mno-fpu
27212 @itemx -msoft-float
27213 @opindex mno-fpu
27214 @opindex msoft-float
27215 Generate code containing library calls for floating-point.
27216
27217 @option{-msoft-float} changes the calling convention in the output file;
27218 therefore, it is only useful if you compile @emph{all} of a program with
27219 this option. In particular, you need to compile @file{libgcc.a}, the
27220 library that comes with GCC, with @option{-msoft-float} in order for
27221 this to work.
27222
27223 @item -mcpu=@var{cpu_type}
27224 @opindex mcpu
27225 Set the instruction set, register set, and instruction scheduling parameters
27226 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
27227 @samp{mcm}, @samp{gr5} and @samp{gr6}.
27228
27229 @samp{mcm} is a synonym of @samp{gr5} present for backward compatibility.
27230
27231 By default (unless configured otherwise), GCC generates code for the GR5
27232 variant of the Visium architecture.
27233
27234 With @option{-mcpu=gr6}, GCC generates code for the GR6 variant of the Visium
27235 architecture. The only difference from GR5 code is that the compiler will
27236 generate block move instructions.
27237
27238 @item -mtune=@var{cpu_type}
27239 @opindex mtune
27240 Set the instruction scheduling parameters for machine type @var{cpu_type},
27241 but do not set the instruction set or register set that the option
27242 @option{-mcpu=@var{cpu_type}} would.
27243
27244 @item -msv-mode
27245 @opindex msv-mode
27246 Generate code for the supervisor mode, where there are no restrictions on
27247 the access to general registers. This is the default.
27248
27249 @item -muser-mode
27250 @opindex muser-mode
27251 Generate code for the user mode, where the access to some general registers
27252 is forbidden: on the GR5, registers r24 to r31 cannot be accessed in this
27253 mode; on the GR6, only registers r29 to r31 are affected.
27254 @end table
27255
27256 @node VMS Options
27257 @subsection VMS Options
27258
27259 These @samp{-m} options are defined for the VMS implementations:
27260
27261 @table @gcctabopt
27262 @item -mvms-return-codes
27263 @opindex mvms-return-codes
27264 Return VMS condition codes from @code{main}. The default is to return POSIX-style
27265 condition (e.g.@: error) codes.
27266
27267 @item -mdebug-main=@var{prefix}
27268 @opindex mdebug-main=@var{prefix}
27269 Flag the first routine whose name starts with @var{prefix} as the main
27270 routine for the debugger.
27271
27272 @item -mmalloc64
27273 @opindex mmalloc64
27274 Default to 64-bit memory allocation routines.
27275
27276 @item -mpointer-size=@var{size}
27277 @opindex mpointer-size=@var{size}
27278 Set the default size of pointers. Possible options for @var{size} are
27279 @samp{32} or @samp{short} for 32 bit pointers, @samp{64} or @samp{long}
27280 for 64 bit pointers, and @samp{no} for supporting only 32 bit pointers.
27281 The later option disables @code{pragma pointer_size}.
27282 @end table
27283
27284 @node VxWorks Options
27285 @subsection VxWorks Options
27286 @cindex VxWorks Options
27287
27288 The options in this section are defined for all VxWorks targets.
27289 Options specific to the target hardware are listed with the other
27290 options for that target.
27291
27292 @table @gcctabopt
27293 @item -mrtp
27294 @opindex mrtp
27295 GCC can generate code for both VxWorks kernels and real time processes
27296 (RTPs). This option switches from the former to the latter. It also
27297 defines the preprocessor macro @code{__RTP__}.
27298
27299 @item -non-static
27300 @opindex non-static
27301 Link an RTP executable against shared libraries rather than static
27302 libraries. The options @option{-static} and @option{-shared} can
27303 also be used for RTPs (@pxref{Link Options}); @option{-static}
27304 is the default.
27305
27306 @item -Bstatic
27307 @itemx -Bdynamic
27308 @opindex Bstatic
27309 @opindex Bdynamic
27310 These options are passed down to the linker. They are defined for
27311 compatibility with Diab.
27312
27313 @item -Xbind-lazy
27314 @opindex Xbind-lazy
27315 Enable lazy binding of function calls. This option is equivalent to
27316 @option{-Wl,-z,now} and is defined for compatibility with Diab.
27317
27318 @item -Xbind-now
27319 @opindex Xbind-now
27320 Disable lazy binding of function calls. This option is the default and
27321 is defined for compatibility with Diab.
27322 @end table
27323
27324 @node x86 Options
27325 @subsection x86 Options
27326 @cindex x86 Options
27327
27328 These @samp{-m} options are defined for the x86 family of computers.
27329
27330 @table @gcctabopt
27331
27332 @item -march=@var{cpu-type}
27333 @opindex march
27334 Generate instructions for the machine type @var{cpu-type}. In contrast to
27335 @option{-mtune=@var{cpu-type}}, which merely tunes the generated code
27336 for the specified @var{cpu-type}, @option{-march=@var{cpu-type}} allows GCC
27337 to generate code that may not run at all on processors other than the one
27338 indicated. Specifying @option{-march=@var{cpu-type}} implies
27339 @option{-mtune=@var{cpu-type}}.
27340
27341 The choices for @var{cpu-type} are:
27342
27343 @table @samp
27344 @item native
27345 This selects the CPU to generate code for at compilation time by determining
27346 the processor type of the compiling machine. Using @option{-march=native}
27347 enables all instruction subsets supported by the local machine (hence
27348 the result might not run on different machines). Using @option{-mtune=native}
27349 produces code optimized for the local machine under the constraints
27350 of the selected instruction set.
27351
27352 @item x86-64
27353 A generic CPU with 64-bit extensions.
27354
27355 @item i386
27356 Original Intel i386 CPU@.
27357
27358 @item i486
27359 Intel i486 CPU@. (No scheduling is implemented for this chip.)
27360
27361 @item i586
27362 @itemx pentium
27363 Intel Pentium CPU with no MMX support.
27364
27365 @item lakemont
27366 Intel Lakemont MCU, based on Intel Pentium CPU.
27367
27368 @item pentium-mmx
27369 Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support.
27370
27371 @item pentiumpro
27372 Intel Pentium Pro CPU@.
27373
27374 @item i686
27375 When used with @option{-march}, the Pentium Pro
27376 instruction set is used, so the code runs on all i686 family chips.
27377 When used with @option{-mtune}, it has the same meaning as @samp{generic}.
27378
27379 @item pentium2
27380 Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set
27381 support.
27382
27383 @item pentium3
27384 @itemx pentium3m
27385 Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction
27386 set support.
27387
27388 @item pentium-m
27389 Intel Pentium M; low-power version of Intel Pentium III CPU
27390 with MMX, SSE and SSE2 instruction set support. Used by Centrino notebooks.
27391
27392 @item pentium4
27393 @itemx pentium4m
27394 Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support.
27395
27396 @item prescott
27397 Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction
27398 set support.
27399
27400 @item nocona
27401 Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE,
27402 SSE2 and SSE3 instruction set support.
27403
27404 @item core2
27405 Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
27406 instruction set support.
27407
27408 @item nehalem
27409 Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
27410 SSE4.1, SSE4.2 and POPCNT instruction set support.
27411
27412 @item westmere
27413 Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
27414 SSE4.1, SSE4.2, POPCNT, AES and PCLMUL instruction set support.
27415
27416 @item sandybridge
27417 Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
27418 SSE4.1, SSE4.2, POPCNT, AVX, AES and PCLMUL instruction set support.
27419
27420 @item ivybridge
27421 Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
27422 SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C
27423 instruction set support.
27424
27425 @item haswell
27426 Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27427 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27428 BMI, BMI2 and F16C instruction set support.
27429
27430 @item broadwell
27431 Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27432 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27433 BMI, BMI2, F16C, RDSEED, ADCX and PREFETCHW instruction set support.
27434
27435 @item skylake
27436 Intel Skylake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27437 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27438 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC and
27439 XSAVES instruction set support.
27440
27441 @item bonnell
27442 Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3
27443 instruction set support.
27444
27445 @item silvermont
27446 Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27447 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL and RDRND instruction set support.
27448
27449 @item goldmont
27450 Intel Goldmont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27451 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL, RDRND, XSAVE, XSAVEOPT and FSGSBASE
27452 instruction set support.
27453
27454 @item goldmont-plus
27455 Intel Goldmont Plus CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
27456 SSSE3, SSE4.1, SSE4.2, POPCNT, AES, PCLMUL, RDRND, XSAVE, XSAVEOPT, FSGSBASE,
27457 PTWRITE, RDPID, SGX and UMIP instruction set support.
27458
27459 @item tremont
27460 Intel Tremont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27461 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL, RDRND, XSAVE, XSAVEOPT, FSGSBASE, PTWRITE,
27462 RDPID, SGX, UMIP, GFNI-SSE, CLWB and ENCLV instruction set support.
27463
27464 @item knl
27465 Intel Knight's Landing CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
27466 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27467 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER and
27468 AVX512CD instruction set support.
27469
27470 @item knm
27471 Intel Knights Mill CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
27472 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27473 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER, AVX512CD,
27474 AVX5124VNNIW, AVX5124FMAPS and AVX512VPOPCNTDQ instruction set support.
27475
27476 @item skylake-avx512
27477 Intel Skylake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
27478 SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27479 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,
27480 CLWB, AVX512VL, AVX512BW, AVX512DQ and AVX512CD instruction set support.
27481
27482 @item cannonlake
27483 Intel Cannonlake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
27484 SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
27485 RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
27486 XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
27487 AVX512IFMA, SHA and UMIP instruction set support.
27488
27489 @item icelake-client
27490 Intel Icelake Client CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
27491 SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
27492 RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
27493 XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
27494 AVX512IFMA, SHA, CLWB, UMIP, RDPID, GFNI, AVX512VBMI2, AVX512VPOPCNTDQ,
27495 AVX512BITALG, AVX512VNNI, VPCLMULQDQ, VAES instruction set support.
27496
27497 @item icelake-server
27498 Intel Icelake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
27499 SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
27500 RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
27501 XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
27502 AVX512IFMA, SHA, CLWB, UMIP, RDPID, GFNI, AVX512VBMI2, AVX512VPOPCNTDQ,
27503 AVX512BITALG, AVX512VNNI, VPCLMULQDQ, VAES, PCONFIG and WBNOINVD instruction
27504 set support.
27505
27506 @item cascadelake
27507 Intel Cascadelake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27508 SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI,
27509 BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F, CLWB,
27510 AVX512VL, AVX512BW, AVX512DQ, AVX512CD and AVX512VNNI instruction set support.
27511
27512 @item cooperlake
27513 Intel cooperlake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27514 SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI,
27515 BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F, CLWB,
27516 AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VNNI and AVX512BF16 instruction
27517 set support.
27518
27519 @item tigerlake
27520 Intel Tigerlake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27521 SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI,
27522 BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,
27523 AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI, AVX512IFMA, SHA, CLWB, UMIP,
27524 RDPID, GFNI, AVX512VBMI2, AVX512VPOPCNTDQ, AVX512BITALG, AVX512VNNI, VPCLMULQDQ,
27525 VAES, PCONFIG, WBNOINVD, MOVDIRI, MOVDIR64B and AVX512VP2INTERSECT instruction
27526 set support.
27527
27528 @item k6
27529 AMD K6 CPU with MMX instruction set support.
27530
27531 @item k6-2
27532 @itemx k6-3
27533 Improved versions of AMD K6 CPU with MMX and 3DNow!@: instruction set support.
27534
27535 @item athlon
27536 @itemx athlon-tbird
27537 AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow!@: and SSE prefetch instructions
27538 support.
27539
27540 @item athlon-4
27541 @itemx athlon-xp
27542 @itemx athlon-mp
27543 Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow!@: and full SSE
27544 instruction set support.
27545
27546 @item k8
27547 @itemx opteron
27548 @itemx athlon64
27549 @itemx athlon-fx
27550 Processors based on the AMD K8 core with x86-64 instruction set support,
27551 including the AMD Opteron, Athlon 64, and Athlon 64 FX processors.
27552 (This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow!@: and 64-bit
27553 instruction set extensions.)
27554
27555 @item k8-sse3
27556 @itemx opteron-sse3
27557 @itemx athlon64-sse3
27558 Improved versions of AMD K8 cores with SSE3 instruction set support.
27559
27560 @item amdfam10
27561 @itemx barcelona
27562 CPUs based on AMD Family 10h cores with x86-64 instruction set support. (This
27563 supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit
27564 instruction set extensions.)
27565
27566 @item bdver1
27567 CPUs based on AMD Family 15h cores with x86-64 instruction set support. (This
27568 supersets FMA4, AVX, XOP, LWP, AES, PCLMUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
27569 SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)
27570 @item bdver2
27571 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
27572 supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCLMUL, CX16, MMX,
27573 SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set
27574 extensions.)
27575 @item bdver3
27576 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
27577 supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES,
27578 PCLMUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and
27579 64-bit instruction set extensions.
27580 @item bdver4
27581 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
27582 supersets BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP,
27583 AES, PCLMUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,
27584 SSE4.2, ABM and 64-bit instruction set extensions.
27585
27586 @item znver1
27587 AMD Family 17h core based CPUs with x86-64 instruction set support. (This
27588 supersets BMI, BMI2, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED, MWAITX,
27589 SHA, CLZERO, AES, PCLMUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3,
27590 SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, and 64-bit
27591 instruction set extensions.
27592 @item znver2
27593 AMD Family 17h core based CPUs with x86-64 instruction set support. (This
27594 supersets BMI, BMI2, ,CLWB, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED,
27595 MWAITX, SHA, CLZERO, AES, PCLMUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A,
27596 SSSE3, SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, and 64-bit
27597 instruction set extensions.)
27598
27599
27600 @item btver1
27601 CPUs based on AMD Family 14h cores with x86-64 instruction set support. (This
27602 supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit
27603 instruction set extensions.)
27604
27605 @item btver2
27606 CPUs based on AMD Family 16h cores with x86-64 instruction set support. This
27607 includes MOVBE, F16C, BMI, AVX, PCLMUL, AES, SSE4.2, SSE4.1, CX16, ABM,
27608 SSE4A, SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set extensions.
27609
27610 @item winchip-c6
27611 IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction
27612 set support.
27613
27614 @item winchip2
27615 IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and 3DNow!@:
27616 instruction set support.
27617
27618 @item c3
27619 VIA C3 CPU with MMX and 3DNow!@: instruction set support.
27620 (No scheduling is implemented for this chip.)
27621
27622 @item c3-2
27623 VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support.
27624 (No scheduling is implemented for this chip.)
27625
27626 @item c7
27627 VIA C7 (Esther) CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
27628 (No scheduling is implemented for this chip.)
27629
27630 @item samuel-2
27631 VIA Eden Samuel 2 CPU with MMX and 3DNow!@: instruction set support.
27632 (No scheduling is implemented for this chip.)
27633
27634 @item nehemiah
27635 VIA Eden Nehemiah CPU with MMX and SSE instruction set support.
27636 (No scheduling is implemented for this chip.)
27637
27638 @item esther
27639 VIA Eden Esther CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
27640 (No scheduling is implemented for this chip.)
27641
27642 @item eden-x2
27643 VIA Eden X2 CPU with x86-64, MMX, SSE, SSE2 and SSE3 instruction set support.
27644 (No scheduling is implemented for this chip.)
27645
27646 @item eden-x4
27647 VIA Eden X4 CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
27648 AVX and AVX2 instruction set support.
27649 (No scheduling is implemented for this chip.)
27650
27651 @item nano
27652 Generic VIA Nano CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
27653 instruction set support.
27654 (No scheduling is implemented for this chip.)
27655
27656 @item nano-1000
27657 VIA Nano 1xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
27658 instruction set support.
27659 (No scheduling is implemented for this chip.)
27660
27661 @item nano-2000
27662 VIA Nano 2xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
27663 instruction set support.
27664 (No scheduling is implemented for this chip.)
27665
27666 @item nano-3000
27667 VIA Nano 3xxx CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
27668 instruction set support.
27669 (No scheduling is implemented for this chip.)
27670
27671 @item nano-x2
27672 VIA Nano Dual Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
27673 instruction set support.
27674 (No scheduling is implemented for this chip.)
27675
27676 @item nano-x4
27677 VIA Nano Quad Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
27678 instruction set support.
27679 (No scheduling is implemented for this chip.)
27680
27681 @item geode
27682 AMD Geode embedded processor with MMX and 3DNow!@: instruction set support.
27683 @end table
27684
27685 @item -mtune=@var{cpu-type}
27686 @opindex mtune
27687 Tune to @var{cpu-type} everything applicable about the generated code, except
27688 for the ABI and the set of available instructions.
27689 While picking a specific @var{cpu-type} schedules things appropriately
27690 for that particular chip, the compiler does not generate any code that
27691 cannot run on the default machine type unless you use a
27692 @option{-march=@var{cpu-type}} option.
27693 For example, if GCC is configured for i686-pc-linux-gnu
27694 then @option{-mtune=pentium4} generates code that is tuned for Pentium 4
27695 but still runs on i686 machines.
27696
27697 The choices for @var{cpu-type} are the same as for @option{-march}.
27698 In addition, @option{-mtune} supports 2 extra choices for @var{cpu-type}:
27699
27700 @table @samp
27701 @item generic
27702 Produce code optimized for the most common IA32/@/AMD64/@/EM64T processors.
27703 If you know the CPU on which your code will run, then you should use
27704 the corresponding @option{-mtune} or @option{-march} option instead of
27705 @option{-mtune=generic}. But, if you do not know exactly what CPU users
27706 of your application will have, then you should use this option.
27707
27708 As new processors are deployed in the marketplace, the behavior of this
27709 option will change. Therefore, if you upgrade to a newer version of
27710 GCC, code generation controlled by this option will change to reflect
27711 the processors
27712 that are most common at the time that version of GCC is released.
27713
27714 There is no @option{-march=generic} option because @option{-march}
27715 indicates the instruction set the compiler can use, and there is no
27716 generic instruction set applicable to all processors. In contrast,
27717 @option{-mtune} indicates the processor (or, in this case, collection of
27718 processors) for which the code is optimized.
27719
27720 @item intel
27721 Produce code optimized for the most current Intel processors, which are
27722 Haswell and Silvermont for this version of GCC. If you know the CPU
27723 on which your code will run, then you should use the corresponding
27724 @option{-mtune} or @option{-march} option instead of @option{-mtune=intel}.
27725 But, if you want your application performs better on both Haswell and
27726 Silvermont, then you should use this option.
27727
27728 As new Intel processors are deployed in the marketplace, the behavior of
27729 this option will change. Therefore, if you upgrade to a newer version of
27730 GCC, code generation controlled by this option will change to reflect
27731 the most current Intel processors at the time that version of GCC is
27732 released.
27733
27734 There is no @option{-march=intel} option because @option{-march} indicates
27735 the instruction set the compiler can use, and there is no common
27736 instruction set applicable to all processors. In contrast,
27737 @option{-mtune} indicates the processor (or, in this case, collection of
27738 processors) for which the code is optimized.
27739 @end table
27740
27741 @item -mcpu=@var{cpu-type}
27742 @opindex mcpu
27743 A deprecated synonym for @option{-mtune}.
27744
27745 @item -mfpmath=@var{unit}
27746 @opindex mfpmath
27747 Generate floating-point arithmetic for selected unit @var{unit}. The choices
27748 for @var{unit} are:
27749
27750 @table @samp
27751 @item 387
27752 Use the standard 387 floating-point coprocessor present on the majority of chips and
27753 emulated otherwise. Code compiled with this option runs almost everywhere.
27754 The temporary results are computed in 80-bit precision instead of the precision
27755 specified by the type, resulting in slightly different results compared to most
27756 of other chips. See @option{-ffloat-store} for more detailed description.
27757
27758 This is the default choice for non-Darwin x86-32 targets.
27759
27760 @item sse
27761 Use scalar floating-point instructions present in the SSE instruction set.
27762 This instruction set is supported by Pentium III and newer chips,
27763 and in the AMD line
27764 by Athlon-4, Athlon XP and Athlon MP chips. The earlier version of the SSE
27765 instruction set supports only single-precision arithmetic, thus the double and
27766 extended-precision arithmetic are still done using 387. A later version, present
27767 only in Pentium 4 and AMD x86-64 chips, supports double-precision
27768 arithmetic too.
27769
27770 For the x86-32 compiler, you must use @option{-march=@var{cpu-type}}, @option{-msse}
27771 or @option{-msse2} switches to enable SSE extensions and make this option
27772 effective. For the x86-64 compiler, these extensions are enabled by default.
27773
27774 The resulting code should be considerably faster in the majority of cases and avoid
27775 the numerical instability problems of 387 code, but may break some existing
27776 code that expects temporaries to be 80 bits.
27777
27778 This is the default choice for the x86-64 compiler, Darwin x86-32 targets,
27779 and the default choice for x86-32 targets with the SSE2 instruction set
27780 when @option{-ffast-math} is enabled.
27781
27782 @item sse,387
27783 @itemx sse+387
27784 @itemx both
27785 Attempt to utilize both instruction sets at once. This effectively doubles the
27786 amount of available registers, and on chips with separate execution units for
27787 387 and SSE the execution resources too. Use this option with care, as it is
27788 still experimental, because the GCC register allocator does not model separate
27789 functional units well, resulting in unstable performance.
27790 @end table
27791
27792 @item -masm=@var{dialect}
27793 @opindex masm=@var{dialect}
27794 Output assembly instructions using selected @var{dialect}. Also affects
27795 which dialect is used for basic @code{asm} (@pxref{Basic Asm}) and
27796 extended @code{asm} (@pxref{Extended Asm}). Supported choices (in dialect
27797 order) are @samp{att} or @samp{intel}. The default is @samp{att}. Darwin does
27798 not support @samp{intel}.
27799
27800 @item -mieee-fp
27801 @itemx -mno-ieee-fp
27802 @opindex mieee-fp
27803 @opindex mno-ieee-fp
27804 Control whether or not the compiler uses IEEE floating-point
27805 comparisons. These correctly handle the case where the result of a
27806 comparison is unordered.
27807
27808 @item -m80387
27809 @itemx -mhard-float
27810 @opindex 80387
27811 @opindex mhard-float
27812 Generate output containing 80387 instructions for floating point.
27813
27814 @item -mno-80387
27815 @itemx -msoft-float
27816 @opindex no-80387
27817 @opindex msoft-float
27818 Generate output containing library calls for floating point.
27819
27820 @strong{Warning:} the requisite libraries are not part of GCC@.
27821 Normally the facilities of the machine's usual C compiler are used, but
27822 this cannot be done directly in cross-compilation. You must make your
27823 own arrangements to provide suitable library functions for
27824 cross-compilation.
27825
27826 On machines where a function returns floating-point results in the 80387
27827 register stack, some floating-point opcodes may be emitted even if
27828 @option{-msoft-float} is used.
27829
27830 @item -mno-fp-ret-in-387
27831 @opindex mno-fp-ret-in-387
27832 @opindex mfp-ret-in-387
27833 Do not use the FPU registers for return values of functions.
27834
27835 The usual calling convention has functions return values of types
27836 @code{float} and @code{double} in an FPU register, even if there
27837 is no FPU@. The idea is that the operating system should emulate
27838 an FPU@.
27839
27840 The option @option{-mno-fp-ret-in-387} causes such values to be returned
27841 in ordinary CPU registers instead.
27842
27843 @item -mno-fancy-math-387
27844 @opindex mno-fancy-math-387
27845 @opindex mfancy-math-387
27846 Some 387 emulators do not support the @code{sin}, @code{cos} and
27847 @code{sqrt} instructions for the 387. Specify this option to avoid
27848 generating those instructions.
27849 This option is overridden when @option{-march}
27850 indicates that the target CPU always has an FPU and so the
27851 instruction does not need emulation. These
27852 instructions are not generated unless you also use the
27853 @option{-funsafe-math-optimizations} switch.
27854
27855 @item -malign-double
27856 @itemx -mno-align-double
27857 @opindex malign-double
27858 @opindex mno-align-double
27859 Control whether GCC aligns @code{double}, @code{long double}, and
27860 @code{long long} variables on a two-word boundary or a one-word
27861 boundary. Aligning @code{double} variables on a two-word boundary
27862 produces code that runs somewhat faster on a Pentium at the
27863 expense of more memory.
27864
27865 On x86-64, @option{-malign-double} is enabled by default.
27866
27867 @strong{Warning:} if you use the @option{-malign-double} switch,
27868 structures containing the above types are aligned differently than
27869 the published application binary interface specifications for the x86-32
27870 and are not binary compatible with structures in code compiled
27871 without that switch.
27872
27873 @item -m96bit-long-double
27874 @itemx -m128bit-long-double
27875 @opindex m96bit-long-double
27876 @opindex m128bit-long-double
27877 These switches control the size of @code{long double} type. The x86-32
27878 application binary interface specifies the size to be 96 bits,
27879 so @option{-m96bit-long-double} is the default in 32-bit mode.
27880
27881 Modern architectures (Pentium and newer) prefer @code{long double}
27882 to be aligned to an 8- or 16-byte boundary. In arrays or structures
27883 conforming to the ABI, this is not possible. So specifying
27884 @option{-m128bit-long-double} aligns @code{long double}
27885 to a 16-byte boundary by padding the @code{long double} with an additional
27886 32-bit zero.
27887
27888 In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as
27889 its ABI specifies that @code{long double} is aligned on 16-byte boundary.
27890
27891 Notice that neither of these options enable any extra precision over the x87
27892 standard of 80 bits for a @code{long double}.
27893
27894 @strong{Warning:} if you override the default value for your target ABI, this
27895 changes the size of
27896 structures and arrays containing @code{long double} variables,
27897 as well as modifying the function calling convention for functions taking
27898 @code{long double}. Hence they are not binary-compatible
27899 with code compiled without that switch.
27900
27901 @item -mlong-double-64
27902 @itemx -mlong-double-80
27903 @itemx -mlong-double-128
27904 @opindex mlong-double-64
27905 @opindex mlong-double-80
27906 @opindex mlong-double-128
27907 These switches control the size of @code{long double} type. A size
27908 of 64 bits makes the @code{long double} type equivalent to the @code{double}
27909 type. This is the default for 32-bit Bionic C library. A size
27910 of 128 bits makes the @code{long double} type equivalent to the
27911 @code{__float128} type. This is the default for 64-bit Bionic C library.
27912
27913 @strong{Warning:} if you override the default value for your target ABI, this
27914 changes the size of
27915 structures and arrays containing @code{long double} variables,
27916 as well as modifying the function calling convention for functions taking
27917 @code{long double}. Hence they are not binary-compatible
27918 with code compiled without that switch.
27919
27920 @item -malign-data=@var{type}
27921 @opindex malign-data
27922 Control how GCC aligns variables. Supported values for @var{type} are
27923 @samp{compat} uses increased alignment value compatible uses GCC 4.8
27924 and earlier, @samp{abi} uses alignment value as specified by the
27925 psABI, and @samp{cacheline} uses increased alignment value to match
27926 the cache line size. @samp{compat} is the default.
27927
27928 @item -mlarge-data-threshold=@var{threshold}
27929 @opindex mlarge-data-threshold
27930 When @option{-mcmodel=medium} is specified, data objects larger than
27931 @var{threshold} are placed in the large data section. This value must be the
27932 same across all objects linked into the binary, and defaults to 65535.
27933
27934 @item -mrtd
27935 @opindex mrtd
27936 Use a different function-calling convention, in which functions that
27937 take a fixed number of arguments return with the @code{ret @var{num}}
27938 instruction, which pops their arguments while returning. This saves one
27939 instruction in the caller since there is no need to pop the arguments
27940 there.
27941
27942 You can specify that an individual function is called with this calling
27943 sequence with the function attribute @code{stdcall}. You can also
27944 override the @option{-mrtd} option by using the function attribute
27945 @code{cdecl}. @xref{Function Attributes}.
27946
27947 @strong{Warning:} this calling convention is incompatible with the one
27948 normally used on Unix, so you cannot use it if you need to call
27949 libraries compiled with the Unix compiler.
27950
27951 Also, you must provide function prototypes for all functions that
27952 take variable numbers of arguments (including @code{printf});
27953 otherwise incorrect code is generated for calls to those
27954 functions.
27955
27956 In addition, seriously incorrect code results if you call a
27957 function with too many arguments. (Normally, extra arguments are
27958 harmlessly ignored.)
27959
27960 @item -mregparm=@var{num}
27961 @opindex mregparm
27962 Control how many registers are used to pass integer arguments. By
27963 default, no registers are used to pass arguments, and at most 3
27964 registers can be used. You can control this behavior for a specific
27965 function by using the function attribute @code{regparm}.
27966 @xref{Function Attributes}.
27967
27968 @strong{Warning:} if you use this switch, and
27969 @var{num} is nonzero, then you must build all modules with the same
27970 value, including any libraries. This includes the system libraries and
27971 startup modules.
27972
27973 @item -msseregparm
27974 @opindex msseregparm
27975 Use SSE register passing conventions for float and double arguments
27976 and return values. You can control this behavior for a specific
27977 function by using the function attribute @code{sseregparm}.
27978 @xref{Function Attributes}.
27979
27980 @strong{Warning:} if you use this switch then you must build all
27981 modules with the same value, including any libraries. This includes
27982 the system libraries and startup modules.
27983
27984 @item -mvect8-ret-in-mem
27985 @opindex mvect8-ret-in-mem
27986 Return 8-byte vectors in memory instead of MMX registers. This is the
27987 default on VxWorks to match the ABI of the Sun Studio compilers until
27988 version 12. @emph{Only} use this option if you need to remain
27989 compatible with existing code produced by those previous compiler
27990 versions or older versions of GCC@.
27991
27992 @item -mpc32
27993 @itemx -mpc64
27994 @itemx -mpc80
27995 @opindex mpc32
27996 @opindex mpc64
27997 @opindex mpc80
27998
27999 Set 80387 floating-point precision to 32, 64 or 80 bits. When @option{-mpc32}
28000 is specified, the significands of results of floating-point operations are
28001 rounded to 24 bits (single precision); @option{-mpc64} rounds the
28002 significands of results of floating-point operations to 53 bits (double
28003 precision) and @option{-mpc80} rounds the significands of results of
28004 floating-point operations to 64 bits (extended double precision), which is
28005 the default. When this option is used, floating-point operations in higher
28006 precisions are not available to the programmer without setting the FPU
28007 control word explicitly.
28008
28009 Setting the rounding of floating-point operations to less than the default
28010 80 bits can speed some programs by 2% or more. Note that some mathematical
28011 libraries assume that extended-precision (80-bit) floating-point operations
28012 are enabled by default; routines in such libraries could suffer significant
28013 loss of accuracy, typically through so-called ``catastrophic cancellation'',
28014 when this option is used to set the precision to less than extended precision.
28015
28016 @item -mstackrealign
28017 @opindex mstackrealign
28018 Realign the stack at entry. On the x86, the @option{-mstackrealign}
28019 option generates an alternate prologue and epilogue that realigns the
28020 run-time stack if necessary. This supports mixing legacy codes that keep
28021 4-byte stack alignment with modern codes that keep 16-byte stack alignment for
28022 SSE compatibility. See also the attribute @code{force_align_arg_pointer},
28023 applicable to individual functions.
28024
28025 @item -mpreferred-stack-boundary=@var{num}
28026 @opindex mpreferred-stack-boundary
28027 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
28028 byte boundary. If @option{-mpreferred-stack-boundary} is not specified,
28029 the default is 4 (16 bytes or 128 bits).
28030
28031 @strong{Warning:} When generating code for the x86-64 architecture with
28032 SSE extensions disabled, @option{-mpreferred-stack-boundary=3} can be
28033 used to keep the stack boundary aligned to 8 byte boundary. Since
28034 x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and
28035 intended to be used in controlled environment where stack space is
28036 important limitation. This option leads to wrong code when functions
28037 compiled with 16 byte stack alignment (such as functions from a standard
28038 library) are called with misaligned stack. In this case, SSE
28039 instructions may lead to misaligned memory access traps. In addition,
28040 variable arguments are handled incorrectly for 16 byte aligned
28041 objects (including x87 long double and __int128), leading to wrong
28042 results. You must build all modules with
28043 @option{-mpreferred-stack-boundary=3}, including any libraries. This
28044 includes the system libraries and startup modules.
28045
28046 @item -mincoming-stack-boundary=@var{num}
28047 @opindex mincoming-stack-boundary
28048 Assume the incoming stack is aligned to a 2 raised to @var{num} byte
28049 boundary. If @option{-mincoming-stack-boundary} is not specified,
28050 the one specified by @option{-mpreferred-stack-boundary} is used.
28051
28052 On Pentium and Pentium Pro, @code{double} and @code{long double} values
28053 should be aligned to an 8-byte boundary (see @option{-malign-double}) or
28054 suffer significant run time performance penalties. On Pentium III, the
28055 Streaming SIMD Extension (SSE) data type @code{__m128} may not work
28056 properly if it is not 16-byte aligned.
28057
28058 To ensure proper alignment of this values on the stack, the stack boundary
28059 must be as aligned as that required by any value stored on the stack.
28060 Further, every function must be generated such that it keeps the stack
28061 aligned. Thus calling a function compiled with a higher preferred
28062 stack boundary from a function compiled with a lower preferred stack
28063 boundary most likely misaligns the stack. It is recommended that
28064 libraries that use callbacks always use the default setting.
28065
28066 This extra alignment does consume extra stack space, and generally
28067 increases code size. Code that is sensitive to stack space usage, such
28068 as embedded systems and operating system kernels, may want to reduce the
28069 preferred alignment to @option{-mpreferred-stack-boundary=2}.
28070
28071 @need 200
28072 @item -mmmx
28073 @opindex mmmx
28074 @need 200
28075 @itemx -msse
28076 @opindex msse
28077 @need 200
28078 @itemx -msse2
28079 @opindex msse2
28080 @need 200
28081 @itemx -msse3
28082 @opindex msse3
28083 @need 200
28084 @itemx -mssse3
28085 @opindex mssse3
28086 @need 200
28087 @itemx -msse4
28088 @opindex msse4
28089 @need 200
28090 @itemx -msse4a
28091 @opindex msse4a
28092 @need 200
28093 @itemx -msse4.1
28094 @opindex msse4.1
28095 @need 200
28096 @itemx -msse4.2
28097 @opindex msse4.2
28098 @need 200
28099 @itemx -mavx
28100 @opindex mavx
28101 @need 200
28102 @itemx -mavx2
28103 @opindex mavx2
28104 @need 200
28105 @itemx -mavx512f
28106 @opindex mavx512f
28107 @need 200
28108 @itemx -mavx512pf
28109 @opindex mavx512pf
28110 @need 200
28111 @itemx -mavx512er
28112 @opindex mavx512er
28113 @need 200
28114 @itemx -mavx512cd
28115 @opindex mavx512cd
28116 @need 200
28117 @itemx -mavx512vl
28118 @opindex mavx512vl
28119 @need 200
28120 @itemx -mavx512bw
28121 @opindex mavx512bw
28122 @need 200
28123 @itemx -mavx512dq
28124 @opindex mavx512dq
28125 @need 200
28126 @itemx -mavx512ifma
28127 @opindex mavx512ifma
28128 @need 200
28129 @itemx -mavx512vbmi
28130 @opindex mavx512vbmi
28131 @need 200
28132 @itemx -msha
28133 @opindex msha
28134 @need 200
28135 @itemx -maes
28136 @opindex maes
28137 @need 200
28138 @itemx -mpclmul
28139 @opindex mpclmul
28140 @need 200
28141 @itemx -mclflushopt
28142 @opindex mclflushopt
28143 @need 200
28144 @itemx -mclwb
28145 @opindex mclwb
28146 @need 200
28147 @itemx -mfsgsbase
28148 @opindex mfsgsbase
28149 @need 200
28150 @itemx -mptwrite
28151 @opindex mptwrite
28152 @need 200
28153 @itemx -mrdrnd
28154 @opindex mrdrnd
28155 @need 200
28156 @itemx -mf16c
28157 @opindex mf16c
28158 @need 200
28159 @itemx -mfma
28160 @opindex mfma
28161 @need 200
28162 @itemx -mpconfig
28163 @opindex mpconfig
28164 @need 200
28165 @itemx -mwbnoinvd
28166 @opindex mwbnoinvd
28167 @need 200
28168 @itemx -mfma4
28169 @opindex mfma4
28170 @need 200
28171 @itemx -mprfchw
28172 @opindex mprfchw
28173 @need 200
28174 @itemx -mrdpid
28175 @opindex mrdpid
28176 @need 200
28177 @itemx -mprefetchwt1
28178 @opindex mprefetchwt1
28179 @need 200
28180 @itemx -mrdseed
28181 @opindex mrdseed
28182 @need 200
28183 @itemx -msgx
28184 @opindex msgx
28185 @need 200
28186 @itemx -mxop
28187 @opindex mxop
28188 @need 200
28189 @itemx -mlwp
28190 @opindex mlwp
28191 @need 200
28192 @itemx -m3dnow
28193 @opindex m3dnow
28194 @need 200
28195 @itemx -m3dnowa
28196 @opindex m3dnowa
28197 @need 200
28198 @itemx -mpopcnt
28199 @opindex mpopcnt
28200 @need 200
28201 @itemx -mabm
28202 @opindex mabm
28203 @need 200
28204 @itemx -madx
28205 @opindex madx
28206 @need 200
28207 @itemx -mbmi
28208 @opindex mbmi
28209 @need 200
28210 @itemx -mbmi2
28211 @opindex mbmi2
28212 @need 200
28213 @itemx -mlzcnt
28214 @opindex mlzcnt
28215 @need 200
28216 @itemx -mfxsr
28217 @opindex mfxsr
28218 @need 200
28219 @itemx -mxsave
28220 @opindex mxsave
28221 @need 200
28222 @itemx -mxsaveopt
28223 @opindex mxsaveopt
28224 @need 200
28225 @itemx -mxsavec
28226 @opindex mxsavec
28227 @need 200
28228 @itemx -mxsaves
28229 @opindex mxsaves
28230 @need 200
28231 @itemx -mrtm
28232 @opindex mrtm
28233 @need 200
28234 @itemx -mhle
28235 @opindex mhle
28236 @need 200
28237 @itemx -mtbm
28238 @opindex mtbm
28239 @need 200
28240 @itemx -mmwaitx
28241 @opindex mmwaitx
28242 @need 200
28243 @itemx -mclzero
28244 @opindex mclzero
28245 @need 200
28246 @itemx -mpku
28247 @opindex mpku
28248 @need 200
28249 @itemx -mavx512vbmi2
28250 @opindex mavx512vbmi2
28251 @need 200
28252 @itemx -mavx512bf16
28253 @opindex mavx512bf16
28254 @need 200
28255 @itemx -mgfni
28256 @opindex mgfni
28257 @need 200
28258 @itemx -mvaes
28259 @opindex mvaes
28260 @need 200
28261 @itemx -mwaitpkg
28262 @opindex mwaitpkg
28263 @need 200
28264 @itemx -mvpclmulqdq
28265 @opindex mvpclmulqdq
28266 @need 200
28267 @itemx -mavx512bitalg
28268 @opindex mavx512bitalg
28269 @need 200
28270 @itemx -mmovdiri
28271 @opindex mmovdiri
28272 @need 200
28273 @itemx -mmovdir64b
28274 @opindex mmovdir64b
28275 @need 200
28276 @itemx -menqcmd
28277 @opindex menqcmd
28278 @need 200
28279 @itemx -mavx512vpopcntdq
28280 @opindex mavx512vpopcntdq
28281 @need 200
28282 @itemx -mavx512vp2intersect
28283 @opindex mavx512vp2intersect
28284 @need 200
28285 @itemx -mavx5124fmaps
28286 @opindex mavx5124fmaps
28287 @need 200
28288 @itemx -mavx512vnni
28289 @opindex mavx512vnni
28290 @need 200
28291 @itemx -mavx5124vnniw
28292 @opindex mavx5124vnniw
28293 @need 200
28294 @itemx -mcldemote
28295 @opindex mcldemote
28296 These switches enable the use of instructions in the MMX, SSE,
28297 SSE2, SSE3, SSSE3, SSE4, SSE4A, SSE4.1, SSE4.2, AVX, AVX2, AVX512F, AVX512PF,
28298 AVX512ER, AVX512CD, AVX512VL, AVX512BW, AVX512DQ, AVX512IFMA, AVX512VBMI, SHA,
28299 AES, PCLMUL, CLFLUSHOPT, CLWB, FSGSBASE, PTWRITE, RDRND, F16C, FMA, PCONFIG,
28300 WBNOINVD, FMA4, PREFETCHW, RDPID, PREFETCHWT1, RDSEED, SGX, XOP, LWP,
28301 3DNow!@:, enhanced 3DNow!@:, POPCNT, ABM, ADX, BMI, BMI2, LZCNT, FXSR, XSAVE,
28302 XSAVEOPT, XSAVEC, XSAVES, RTM, HLE, TBM, MWAITX, CLZERO, PKU, AVX512VBMI2,
28303 GFNI, VAES, WAITPKG, VPCLMULQDQ, AVX512BITALG, MOVDIRI, MOVDIR64B, AVX512BF16,
28304 ENQCMD, AVX512VPOPCNTDQ, AVX5124FMAPS, AVX512VNNI, AVX5124VNNIW, or CLDEMOTE
28305 extended instruction sets. Each has a corresponding @option{-mno-} option to
28306 disable use of these instructions.
28307
28308 These extensions are also available as built-in functions: see
28309 @ref{x86 Built-in Functions}, for details of the functions enabled and
28310 disabled by these switches.
28311
28312 To generate SSE/SSE2 instructions automatically from floating-point
28313 code (as opposed to 387 instructions), see @option{-mfpmath=sse}.
28314
28315 GCC depresses SSEx instructions when @option{-mavx} is used. Instead, it
28316 generates new AVX instructions or AVX equivalence for all SSEx instructions
28317 when needed.
28318
28319 These options enable GCC to use these extended instructions in
28320 generated code, even without @option{-mfpmath=sse}. Applications that
28321 perform run-time CPU detection must compile separate files for each
28322 supported architecture, using the appropriate flags. In particular,
28323 the file containing the CPU detection code should be compiled without
28324 these options.
28325
28326 @item -mdump-tune-features
28327 @opindex mdump-tune-features
28328 This option instructs GCC to dump the names of the x86 performance
28329 tuning features and default settings. The names can be used in
28330 @option{-mtune-ctrl=@var{feature-list}}.
28331
28332 @item -mtune-ctrl=@var{feature-list}
28333 @opindex mtune-ctrl=@var{feature-list}
28334 This option is used to do fine grain control of x86 code generation features.
28335 @var{feature-list} is a comma separated list of @var{feature} names. See also
28336 @option{-mdump-tune-features}. When specified, the @var{feature} is turned
28337 on if it is not preceded with @samp{^}, otherwise, it is turned off.
28338 @option{-mtune-ctrl=@var{feature-list}} is intended to be used by GCC
28339 developers. Using it may lead to code paths not covered by testing and can
28340 potentially result in compiler ICEs or runtime errors.
28341
28342 @item -mno-default
28343 @opindex mno-default
28344 This option instructs GCC to turn off all tunable features. See also
28345 @option{-mtune-ctrl=@var{feature-list}} and @option{-mdump-tune-features}.
28346
28347 @item -mcld
28348 @opindex mcld
28349 This option instructs GCC to emit a @code{cld} instruction in the prologue
28350 of functions that use string instructions. String instructions depend on
28351 the DF flag to select between autoincrement or autodecrement mode. While the
28352 ABI specifies the DF flag to be cleared on function entry, some operating
28353 systems violate this specification by not clearing the DF flag in their
28354 exception dispatchers. The exception handler can be invoked with the DF flag
28355 set, which leads to wrong direction mode when string instructions are used.
28356 This option can be enabled by default on 32-bit x86 targets by configuring
28357 GCC with the @option{--enable-cld} configure option. Generation of @code{cld}
28358 instructions can be suppressed with the @option{-mno-cld} compiler option
28359 in this case.
28360
28361 @item -mvzeroupper
28362 @opindex mvzeroupper
28363 This option instructs GCC to emit a @code{vzeroupper} instruction
28364 before a transfer of control flow out of the function to minimize
28365 the AVX to SSE transition penalty as well as remove unnecessary @code{zeroupper}
28366 intrinsics.
28367
28368 @item -mprefer-avx128
28369 @opindex mprefer-avx128
28370 This option instructs GCC to use 128-bit AVX instructions instead of
28371 256-bit AVX instructions in the auto-vectorizer.
28372
28373 @item -mprefer-vector-width=@var{opt}
28374 @opindex mprefer-vector-width
28375 This option instructs GCC to use @var{opt}-bit vector width in instructions
28376 instead of default on the selected platform.
28377
28378 @table @samp
28379 @item none
28380 No extra limitations applied to GCC other than defined by the selected platform.
28381
28382 @item 128
28383 Prefer 128-bit vector width for instructions.
28384
28385 @item 256
28386 Prefer 256-bit vector width for instructions.
28387
28388 @item 512
28389 Prefer 512-bit vector width for instructions.
28390 @end table
28391
28392 @item -mcx16
28393 @opindex mcx16
28394 This option enables GCC to generate @code{CMPXCHG16B} instructions in 64-bit
28395 code to implement compare-and-exchange operations on 16-byte aligned 128-bit
28396 objects. This is useful for atomic updates of data structures exceeding one
28397 machine word in size. The compiler uses this instruction to implement
28398 @ref{__sync Builtins}. However, for @ref{__atomic Builtins} operating on
28399 128-bit integers, a library call is always used.
28400
28401 @item -msahf
28402 @opindex msahf
28403 This option enables generation of @code{SAHF} instructions in 64-bit code.
28404 Early Intel Pentium 4 CPUs with Intel 64 support,
28405 prior to the introduction of Pentium 4 G1 step in December 2005,
28406 lacked the @code{LAHF} and @code{SAHF} instructions
28407 which are supported by AMD64.
28408 These are load and store instructions, respectively, for certain status flags.
28409 In 64-bit mode, the @code{SAHF} instruction is used to optimize @code{fmod},
28410 @code{drem}, and @code{remainder} built-in functions;
28411 see @ref{Other Builtins} for details.
28412
28413 @item -mmovbe
28414 @opindex mmovbe
28415 This option enables use of the @code{movbe} instruction to implement
28416 @code{__builtin_bswap32} and @code{__builtin_bswap64}.
28417
28418 @item -mshstk
28419 @opindex mshstk
28420 The @option{-mshstk} option enables shadow stack built-in functions
28421 from x86 Control-flow Enforcement Technology (CET).
28422
28423 @item -mcrc32
28424 @opindex mcrc32
28425 This option enables built-in functions @code{__builtin_ia32_crc32qi},
28426 @code{__builtin_ia32_crc32hi}, @code{__builtin_ia32_crc32si} and
28427 @code{__builtin_ia32_crc32di} to generate the @code{crc32} machine instruction.
28428
28429 @item -mrecip
28430 @opindex mrecip
28431 This option enables use of @code{RCPSS} and @code{RSQRTSS} instructions
28432 (and their vectorized variants @code{RCPPS} and @code{RSQRTPS})
28433 with an additional Newton-Raphson step
28434 to increase precision instead of @code{DIVSS} and @code{SQRTSS}
28435 (and their vectorized
28436 variants) for single-precision floating-point arguments. These instructions
28437 are generated only when @option{-funsafe-math-optimizations} is enabled
28438 together with @option{-ffinite-math-only} and @option{-fno-trapping-math}.
28439 Note that while the throughput of the sequence is higher than the throughput
28440 of the non-reciprocal instruction, the precision of the sequence can be
28441 decreased by up to 2 ulp (i.e.@: the inverse of 1.0 equals 0.99999994).
28442
28443 Note that GCC implements @code{1.0f/sqrtf(@var{x})} in terms of @code{RSQRTSS}
28444 (or @code{RSQRTPS}) already with @option{-ffast-math} (or the above option
28445 combination), and doesn't need @option{-mrecip}.
28446
28447 Also note that GCC emits the above sequence with additional Newton-Raphson step
28448 for vectorized single-float division and vectorized @code{sqrtf(@var{x})}
28449 already with @option{-ffast-math} (or the above option combination), and
28450 doesn't need @option{-mrecip}.
28451
28452 @item -mrecip=@var{opt}
28453 @opindex mrecip=opt
28454 This option controls which reciprocal estimate instructions
28455 may be used. @var{opt} is a comma-separated list of options, which may
28456 be preceded by a @samp{!} to invert the option:
28457
28458 @table @samp
28459 @item all
28460 Enable all estimate instructions.
28461
28462 @item default
28463 Enable the default instructions, equivalent to @option{-mrecip}.
28464
28465 @item none
28466 Disable all estimate instructions, equivalent to @option{-mno-recip}.
28467
28468 @item div
28469 Enable the approximation for scalar division.
28470
28471 @item vec-div
28472 Enable the approximation for vectorized division.
28473
28474 @item sqrt
28475 Enable the approximation for scalar square root.
28476
28477 @item vec-sqrt
28478 Enable the approximation for vectorized square root.
28479 @end table
28480
28481 So, for example, @option{-mrecip=all,!sqrt} enables
28482 all of the reciprocal approximations, except for square root.
28483
28484 @item -mveclibabi=@var{type}
28485 @opindex mveclibabi
28486 Specifies the ABI type to use for vectorizing intrinsics using an
28487 external library. Supported values for @var{type} are @samp{svml}
28488 for the Intel short
28489 vector math library and @samp{acml} for the AMD math core library.
28490 To use this option, both @option{-ftree-vectorize} and
28491 @option{-funsafe-math-optimizations} have to be enabled, and an SVML or ACML
28492 ABI-compatible library must be specified at link time.
28493
28494 GCC currently emits calls to @code{vmldExp2},
28495 @code{vmldLn2}, @code{vmldLog102}, @code{vmldPow2},
28496 @code{vmldTanh2}, @code{vmldTan2}, @code{vmldAtan2}, @code{vmldAtanh2},
28497 @code{vmldCbrt2}, @code{vmldSinh2}, @code{vmldSin2}, @code{vmldAsinh2},
28498 @code{vmldAsin2}, @code{vmldCosh2}, @code{vmldCos2}, @code{vmldAcosh2},
28499 @code{vmldAcos2}, @code{vmlsExp4}, @code{vmlsLn4},
28500 @code{vmlsLog104}, @code{vmlsPow4}, @code{vmlsTanh4}, @code{vmlsTan4},
28501 @code{vmlsAtan4}, @code{vmlsAtanh4}, @code{vmlsCbrt4}, @code{vmlsSinh4},
28502 @code{vmlsSin4}, @code{vmlsAsinh4}, @code{vmlsAsin4}, @code{vmlsCosh4},
28503 @code{vmlsCos4}, @code{vmlsAcosh4} and @code{vmlsAcos4} for corresponding
28504 function type when @option{-mveclibabi=svml} is used, and @code{__vrd2_sin},
28505 @code{__vrd2_cos}, @code{__vrd2_exp}, @code{__vrd2_log}, @code{__vrd2_log2},
28506 @code{__vrd2_log10}, @code{__vrs4_sinf}, @code{__vrs4_cosf},
28507 @code{__vrs4_expf}, @code{__vrs4_logf}, @code{__vrs4_log2f},
28508 @code{__vrs4_log10f} and @code{__vrs4_powf} for the corresponding function type
28509 when @option{-mveclibabi=acml} is used.
28510
28511 @item -mabi=@var{name}
28512 @opindex mabi
28513 Generate code for the specified calling convention. Permissible values
28514 are @samp{sysv} for the ABI used on GNU/Linux and other systems, and
28515 @samp{ms} for the Microsoft ABI. The default is to use the Microsoft
28516 ABI when targeting Microsoft Windows and the SysV ABI on all other systems.
28517 You can control this behavior for specific functions by
28518 using the function attributes @code{ms_abi} and @code{sysv_abi}.
28519 @xref{Function Attributes}.
28520
28521 @item -mforce-indirect-call
28522 @opindex mforce-indirect-call
28523 Force all calls to functions to be indirect. This is useful
28524 when using Intel Processor Trace where it generates more precise timing
28525 information for function calls.
28526
28527 @item -mmanual-endbr
28528 @opindex mmanual-endbr
28529 Insert ENDBR instruction at function entry only via the @code{cf_check}
28530 function attribute. This is useful when used with the option
28531 @option{-fcf-protection=branch} to control ENDBR insertion at the
28532 function entry.
28533
28534 @item -mcall-ms2sysv-xlogues
28535 @opindex mcall-ms2sysv-xlogues
28536 @opindex mno-call-ms2sysv-xlogues
28537 Due to differences in 64-bit ABIs, any Microsoft ABI function that calls a
28538 System V ABI function must consider RSI, RDI and XMM6-15 as clobbered. By
28539 default, the code for saving and restoring these registers is emitted inline,
28540 resulting in fairly lengthy prologues and epilogues. Using
28541 @option{-mcall-ms2sysv-xlogues} emits prologues and epilogues that
28542 use stubs in the static portion of libgcc to perform these saves and restores,
28543 thus reducing function size at the cost of a few extra instructions.
28544
28545 @item -mtls-dialect=@var{type}
28546 @opindex mtls-dialect
28547 Generate code to access thread-local storage using the @samp{gnu} or
28548 @samp{gnu2} conventions. @samp{gnu} is the conservative default;
28549 @samp{gnu2} is more efficient, but it may add compile- and run-time
28550 requirements that cannot be satisfied on all systems.
28551
28552 @item -mpush-args
28553 @itemx -mno-push-args
28554 @opindex mpush-args
28555 @opindex mno-push-args
28556 Use PUSH operations to store outgoing parameters. This method is shorter
28557 and usually equally fast as method using SUB/MOV operations and is enabled
28558 by default. In some cases disabling it may improve performance because of
28559 improved scheduling and reduced dependencies.
28560
28561 @item -maccumulate-outgoing-args
28562 @opindex maccumulate-outgoing-args
28563 If enabled, the maximum amount of space required for outgoing arguments is
28564 computed in the function prologue. This is faster on most modern CPUs
28565 because of reduced dependencies, improved scheduling and reduced stack usage
28566 when the preferred stack boundary is not equal to 2. The drawback is a notable
28567 increase in code size. This switch implies @option{-mno-push-args}.
28568
28569 @item -mthreads
28570 @opindex mthreads
28571 Support thread-safe exception handling on MinGW. Programs that rely
28572 on thread-safe exception handling must compile and link all code with the
28573 @option{-mthreads} option. When compiling, @option{-mthreads} defines
28574 @option{-D_MT}; when linking, it links in a special thread helper library
28575 @option{-lmingwthrd} which cleans up per-thread exception-handling data.
28576
28577 @item -mms-bitfields
28578 @itemx -mno-ms-bitfields
28579 @opindex mms-bitfields
28580 @opindex mno-ms-bitfields
28581
28582 Enable/disable bit-field layout compatible with the native Microsoft
28583 Windows compiler.
28584
28585 If @code{packed} is used on a structure, or if bit-fields are used,
28586 it may be that the Microsoft ABI lays out the structure differently
28587 than the way GCC normally does. Particularly when moving packed
28588 data between functions compiled with GCC and the native Microsoft compiler
28589 (either via function call or as data in a file), it may be necessary to access
28590 either format.
28591
28592 This option is enabled by default for Microsoft Windows
28593 targets. This behavior can also be controlled locally by use of variable
28594 or type attributes. For more information, see @ref{x86 Variable Attributes}
28595 and @ref{x86 Type Attributes}.
28596
28597 The Microsoft structure layout algorithm is fairly simple with the exception
28598 of the bit-field packing.
28599 The padding and alignment of members of structures and whether a bit-field
28600 can straddle a storage-unit boundary are determine by these rules:
28601
28602 @enumerate
28603 @item Structure members are stored sequentially in the order in which they are
28604 declared: the first member has the lowest memory address and the last member
28605 the highest.
28606
28607 @item Every data object has an alignment requirement. The alignment requirement
28608 for all data except structures, unions, and arrays is either the size of the
28609 object or the current packing size (specified with either the
28610 @code{aligned} attribute or the @code{pack} pragma),
28611 whichever is less. For structures, unions, and arrays,
28612 the alignment requirement is the largest alignment requirement of its members.
28613 Every object is allocated an offset so that:
28614
28615 @smallexample
28616 offset % alignment_requirement == 0
28617 @end smallexample
28618
28619 @item Adjacent bit-fields are packed into the same 1-, 2-, or 4-byte allocation
28620 unit if the integral types are the same size and if the next bit-field fits
28621 into the current allocation unit without crossing the boundary imposed by the
28622 common alignment requirements of the bit-fields.
28623 @end enumerate
28624
28625 MSVC interprets zero-length bit-fields in the following ways:
28626
28627 @enumerate
28628 @item If a zero-length bit-field is inserted between two bit-fields that
28629 are normally coalesced, the bit-fields are not coalesced.
28630
28631 For example:
28632
28633 @smallexample
28634 struct
28635 @{
28636 unsigned long bf_1 : 12;
28637 unsigned long : 0;
28638 unsigned long bf_2 : 12;
28639 @} t1;
28640 @end smallexample
28641
28642 @noindent
28643 The size of @code{t1} is 8 bytes with the zero-length bit-field. If the
28644 zero-length bit-field were removed, @code{t1}'s size would be 4 bytes.
28645
28646 @item If a zero-length bit-field is inserted after a bit-field, @code{foo}, and the
28647 alignment of the zero-length bit-field is greater than the member that follows it,
28648 @code{bar}, @code{bar} is aligned as the type of the zero-length bit-field.
28649
28650 For example:
28651
28652 @smallexample
28653 struct
28654 @{
28655 char foo : 4;
28656 short : 0;
28657 char bar;
28658 @} t2;
28659
28660 struct
28661 @{
28662 char foo : 4;
28663 short : 0;
28664 double bar;
28665 @} t3;
28666 @end smallexample
28667
28668 @noindent
28669 For @code{t2}, @code{bar} is placed at offset 2, rather than offset 1.
28670 Accordingly, the size of @code{t2} is 4. For @code{t3}, the zero-length
28671 bit-field does not affect the alignment of @code{bar} or, as a result, the size
28672 of the structure.
28673
28674 Taking this into account, it is important to note the following:
28675
28676 @enumerate
28677 @item If a zero-length bit-field follows a normal bit-field, the type of the
28678 zero-length bit-field may affect the alignment of the structure as whole. For
28679 example, @code{t2} has a size of 4 bytes, since the zero-length bit-field follows a
28680 normal bit-field, and is of type short.
28681
28682 @item Even if a zero-length bit-field is not followed by a normal bit-field, it may
28683 still affect the alignment of the structure:
28684
28685 @smallexample
28686 struct
28687 @{
28688 char foo : 6;
28689 long : 0;
28690 @} t4;
28691 @end smallexample
28692
28693 @noindent
28694 Here, @code{t4} takes up 4 bytes.
28695 @end enumerate
28696
28697 @item Zero-length bit-fields following non-bit-field members are ignored:
28698
28699 @smallexample
28700 struct
28701 @{
28702 char foo;
28703 long : 0;
28704 char bar;
28705 @} t5;
28706 @end smallexample
28707
28708 @noindent
28709 Here, @code{t5} takes up 2 bytes.
28710 @end enumerate
28711
28712
28713 @item -mno-align-stringops
28714 @opindex mno-align-stringops
28715 @opindex malign-stringops
28716 Do not align the destination of inlined string operations. This switch reduces
28717 code size and improves performance in case the destination is already aligned,
28718 but GCC doesn't know about it.
28719
28720 @item -minline-all-stringops
28721 @opindex minline-all-stringops
28722 By default GCC inlines string operations only when the destination is
28723 known to be aligned to least a 4-byte boundary.
28724 This enables more inlining and increases code
28725 size, but may improve performance of code that depends on fast
28726 @code{memcpy} and @code{memset} for short lengths.
28727 The option enables inline expansion of @code{strlen} for all
28728 pointer alignments.
28729
28730 @item -minline-stringops-dynamically
28731 @opindex minline-stringops-dynamically
28732 For string operations of unknown size, use run-time checks with
28733 inline code for small blocks and a library call for large blocks.
28734
28735 @item -mstringop-strategy=@var{alg}
28736 @opindex mstringop-strategy=@var{alg}
28737 Override the internal decision heuristic for the particular algorithm to use
28738 for inlining string operations. The allowed values for @var{alg} are:
28739
28740 @table @samp
28741 @item rep_byte
28742 @itemx rep_4byte
28743 @itemx rep_8byte
28744 Expand using i386 @code{rep} prefix of the specified size.
28745
28746 @item byte_loop
28747 @itemx loop
28748 @itemx unrolled_loop
28749 Expand into an inline loop.
28750
28751 @item libcall
28752 Always use a library call.
28753 @end table
28754
28755 @item -mmemcpy-strategy=@var{strategy}
28756 @opindex mmemcpy-strategy=@var{strategy}
28757 Override the internal decision heuristic to decide if @code{__builtin_memcpy}
28758 should be inlined and what inline algorithm to use when the expected size
28759 of the copy operation is known. @var{strategy}
28760 is a comma-separated list of @var{alg}:@var{max_size}:@var{dest_align} triplets.
28761 @var{alg} is specified in @option{-mstringop-strategy}, @var{max_size} specifies
28762 the max byte size with which inline algorithm @var{alg} is allowed. For the last
28763 triplet, the @var{max_size} must be @code{-1}. The @var{max_size} of the triplets
28764 in the list must be specified in increasing order. The minimal byte size for
28765 @var{alg} is @code{0} for the first triplet and @code{@var{max_size} + 1} of the
28766 preceding range.
28767
28768 @item -mmemset-strategy=@var{strategy}
28769 @opindex mmemset-strategy=@var{strategy}
28770 The option is similar to @option{-mmemcpy-strategy=} except that it is to control
28771 @code{__builtin_memset} expansion.
28772
28773 @item -momit-leaf-frame-pointer
28774 @opindex momit-leaf-frame-pointer
28775 Don't keep the frame pointer in a register for leaf functions. This
28776 avoids the instructions to save, set up, and restore frame pointers and
28777 makes an extra register available in leaf functions. The option
28778 @option{-fomit-leaf-frame-pointer} removes the frame pointer for leaf functions,
28779 which might make debugging harder.
28780
28781 @item -mtls-direct-seg-refs
28782 @itemx -mno-tls-direct-seg-refs
28783 @opindex mtls-direct-seg-refs
28784 Controls whether TLS variables may be accessed with offsets from the
28785 TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
28786 or whether the thread base pointer must be added. Whether or not this
28787 is valid depends on the operating system, and whether it maps the
28788 segment to cover the entire TLS area.
28789
28790 For systems that use the GNU C Library, the default is on.
28791
28792 @item -msse2avx
28793 @itemx -mno-sse2avx
28794 @opindex msse2avx
28795 Specify that the assembler should encode SSE instructions with VEX
28796 prefix. The option @option{-mavx} turns this on by default.
28797
28798 @item -mfentry
28799 @itemx -mno-fentry
28800 @opindex mfentry
28801 If profiling is active (@option{-pg}), put the profiling
28802 counter call before the prologue.
28803 Note: On x86 architectures the attribute @code{ms_hook_prologue}
28804 isn't possible at the moment for @option{-mfentry} and @option{-pg}.
28805
28806 @item -mrecord-mcount
28807 @itemx -mno-record-mcount
28808 @opindex mrecord-mcount
28809 If profiling is active (@option{-pg}), generate a __mcount_loc section
28810 that contains pointers to each profiling call. This is useful for
28811 automatically patching and out calls.
28812
28813 @item -mnop-mcount
28814 @itemx -mno-nop-mcount
28815 @opindex mnop-mcount
28816 If profiling is active (@option{-pg}), generate the calls to
28817 the profiling functions as NOPs. This is useful when they
28818 should be patched in later dynamically. This is likely only
28819 useful together with @option{-mrecord-mcount}.
28820
28821 @item -minstrument-return=@var{type}
28822 @opindex minstrument-return
28823 Instrument function exit in -pg -mfentry instrumented functions with
28824 call to specified function. This only instruments true returns ending
28825 with ret, but not sibling calls ending with jump. Valid types
28826 are @var{none} to not instrument, @var{call} to generate a call to __return__,
28827 or @var{nop5} to generate a 5 byte nop.
28828
28829 @item -mrecord-return
28830 @itemx -mno-record-return
28831 @opindex mrecord-return
28832 Generate a __return_loc section pointing to all return instrumentation code.
28833
28834 @item -mfentry-name=@var{name}
28835 @opindex mfentry-name
28836 Set name of __fentry__ symbol called at function entry for -pg -mfentry functions.
28837
28838 @item -mfentry-section=@var{name}
28839 @opindex mfentry-section
28840 Set name of section to record -mrecord-mcount calls (default __mcount_loc).
28841
28842 @item -mskip-rax-setup
28843 @itemx -mno-skip-rax-setup
28844 @opindex mskip-rax-setup
28845 When generating code for the x86-64 architecture with SSE extensions
28846 disabled, @option{-mskip-rax-setup} can be used to skip setting up RAX
28847 register when there are no variable arguments passed in vector registers.
28848
28849 @strong{Warning:} Since RAX register is used to avoid unnecessarily
28850 saving vector registers on stack when passing variable arguments, the
28851 impacts of this option are callees may waste some stack space,
28852 misbehave or jump to a random location. GCC 4.4 or newer don't have
28853 those issues, regardless the RAX register value.
28854
28855 @item -m8bit-idiv
28856 @itemx -mno-8bit-idiv
28857 @opindex m8bit-idiv
28858 On some processors, like Intel Atom, 8-bit unsigned integer divide is
28859 much faster than 32-bit/64-bit integer divide. This option generates a
28860 run-time check. If both dividend and divisor are within range of 0
28861 to 255, 8-bit unsigned integer divide is used instead of
28862 32-bit/64-bit integer divide.
28863
28864 @item -mavx256-split-unaligned-load
28865 @itemx -mavx256-split-unaligned-store
28866 @opindex mavx256-split-unaligned-load
28867 @opindex mavx256-split-unaligned-store
28868 Split 32-byte AVX unaligned load and store.
28869
28870 @item -mstack-protector-guard=@var{guard}
28871 @itemx -mstack-protector-guard-reg=@var{reg}
28872 @itemx -mstack-protector-guard-offset=@var{offset}
28873 @opindex mstack-protector-guard
28874 @opindex mstack-protector-guard-reg
28875 @opindex mstack-protector-guard-offset
28876 Generate stack protection code using canary at @var{guard}. Supported
28877 locations are @samp{global} for global canary or @samp{tls} for per-thread
28878 canary in the TLS block (the default). This option has effect only when
28879 @option{-fstack-protector} or @option{-fstack-protector-all} is specified.
28880
28881 With the latter choice the options
28882 @option{-mstack-protector-guard-reg=@var{reg}} and
28883 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
28884 which segment register (@code{%fs} or @code{%gs}) to use as base register
28885 for reading the canary, and from what offset from that base register.
28886 The default for those is as specified in the relevant ABI.
28887
28888 @item -mgeneral-regs-only
28889 @opindex mgeneral-regs-only
28890 Generate code that uses only the general-purpose registers. This
28891 prevents the compiler from using floating-point, vector, mask and bound
28892 registers.
28893
28894 @item -mindirect-branch=@var{choice}
28895 @opindex mindirect-branch
28896 Convert indirect call and jump with @var{choice}. The default is
28897 @samp{keep}, which keeps indirect call and jump unmodified.
28898 @samp{thunk} converts indirect call and jump to call and return thunk.
28899 @samp{thunk-inline} converts indirect call and jump to inlined call
28900 and return thunk. @samp{thunk-extern} converts indirect call and jump
28901 to external call and return thunk provided in a separate object file.
28902 You can control this behavior for a specific function by using the
28903 function attribute @code{indirect_branch}. @xref{Function Attributes}.
28904
28905 Note that @option{-mcmodel=large} is incompatible with
28906 @option{-mindirect-branch=thunk} and
28907 @option{-mindirect-branch=thunk-extern} since the thunk function may
28908 not be reachable in the large code model.
28909
28910 Note that @option{-mindirect-branch=thunk-extern} is incompatible with
28911 @option{-fcf-protection=branch} since the external thunk cannot be modified
28912 to disable control-flow check.
28913
28914 @item -mfunction-return=@var{choice}
28915 @opindex mfunction-return
28916 Convert function return with @var{choice}. The default is @samp{keep},
28917 which keeps function return unmodified. @samp{thunk} converts function
28918 return to call and return thunk. @samp{thunk-inline} converts function
28919 return to inlined call and return thunk. @samp{thunk-extern} converts
28920 function return to external call and return thunk provided in a separate
28921 object file. You can control this behavior for a specific function by
28922 using the function attribute @code{function_return}.
28923 @xref{Function Attributes}.
28924
28925 Note that @option{-mcmodel=large} is incompatible with
28926 @option{-mfunction-return=thunk} and
28927 @option{-mfunction-return=thunk-extern} since the thunk function may
28928 not be reachable in the large code model.
28929
28930
28931 @item -mindirect-branch-register
28932 @opindex mindirect-branch-register
28933 Force indirect call and jump via register.
28934
28935 @end table
28936
28937 These @samp{-m} switches are supported in addition to the above
28938 on x86-64 processors in 64-bit environments.
28939
28940 @table @gcctabopt
28941 @item -m32
28942 @itemx -m64
28943 @itemx -mx32
28944 @itemx -m16
28945 @itemx -miamcu
28946 @opindex m32
28947 @opindex m64
28948 @opindex mx32
28949 @opindex m16
28950 @opindex miamcu
28951 Generate code for a 16-bit, 32-bit or 64-bit environment.
28952 The @option{-m32} option sets @code{int}, @code{long}, and pointer types
28953 to 32 bits, and
28954 generates code that runs on any i386 system.
28955
28956 The @option{-m64} option sets @code{int} to 32 bits and @code{long} and pointer
28957 types to 64 bits, and generates code for the x86-64 architecture.
28958 For Darwin only the @option{-m64} option also turns off the @option{-fno-pic}
28959 and @option{-mdynamic-no-pic} options.
28960
28961 The @option{-mx32} option sets @code{int}, @code{long}, and pointer types
28962 to 32 bits, and
28963 generates code for the x86-64 architecture.
28964
28965 The @option{-m16} option is the same as @option{-m32}, except for that
28966 it outputs the @code{.code16gcc} assembly directive at the beginning of
28967 the assembly output so that the binary can run in 16-bit mode.
28968
28969 The @option{-miamcu} option generates code which conforms to Intel MCU
28970 psABI. It requires the @option{-m32} option to be turned on.
28971
28972 @item -mno-red-zone
28973 @opindex mno-red-zone
28974 @opindex mred-zone
28975 Do not use a so-called ``red zone'' for x86-64 code. The red zone is mandated
28976 by the x86-64 ABI; it is a 128-byte area beyond the location of the
28977 stack pointer that is not modified by signal or interrupt handlers
28978 and therefore can be used for temporary data without adjusting the stack
28979 pointer. The flag @option{-mno-red-zone} disables this red zone.
28980
28981 @item -mcmodel=small
28982 @opindex mcmodel=small
28983 Generate code for the small code model: the program and its symbols must
28984 be linked in the lower 2 GB of the address space. Pointers are 64 bits.
28985 Programs can be statically or dynamically linked. This is the default
28986 code model.
28987
28988 @item -mcmodel=kernel
28989 @opindex mcmodel=kernel
28990 Generate code for the kernel code model. The kernel runs in the
28991 negative 2 GB of the address space.
28992 This model has to be used for Linux kernel code.
28993
28994 @item -mcmodel=medium
28995 @opindex mcmodel=medium
28996 Generate code for the medium model: the program is linked in the lower 2
28997 GB of the address space. Small symbols are also placed there. Symbols
28998 with sizes larger than @option{-mlarge-data-threshold} are put into
28999 large data or BSS sections and can be located above 2GB. Programs can
29000 be statically or dynamically linked.
29001
29002 @item -mcmodel=large
29003 @opindex mcmodel=large
29004 Generate code for the large model. This model makes no assumptions
29005 about addresses and sizes of sections.
29006
29007 @item -maddress-mode=long
29008 @opindex maddress-mode=long
29009 Generate code for long address mode. This is only supported for 64-bit
29010 and x32 environments. It is the default address mode for 64-bit
29011 environments.
29012
29013 @item -maddress-mode=short
29014 @opindex maddress-mode=short
29015 Generate code for short address mode. This is only supported for 32-bit
29016 and x32 environments. It is the default address mode for 32-bit and
29017 x32 environments.
29018 @end table
29019
29020 @node x86 Windows Options
29021 @subsection x86 Windows Options
29022 @cindex x86 Windows Options
29023 @cindex Windows Options for x86
29024
29025 These additional options are available for Microsoft Windows targets:
29026
29027 @table @gcctabopt
29028 @item -mconsole
29029 @opindex mconsole
29030 This option
29031 specifies that a console application is to be generated, by
29032 instructing the linker to set the PE header subsystem type
29033 required for console applications.
29034 This option is available for Cygwin and MinGW targets and is
29035 enabled by default on those targets.
29036
29037 @item -mdll
29038 @opindex mdll
29039 This option is available for Cygwin and MinGW targets. It
29040 specifies that a DLL---a dynamic link library---is to be
29041 generated, enabling the selection of the required runtime
29042 startup object and entry point.
29043
29044 @item -mnop-fun-dllimport
29045 @opindex mnop-fun-dllimport
29046 This option is available for Cygwin and MinGW targets. It
29047 specifies that the @code{dllimport} attribute should be ignored.
29048
29049 @item -mthread
29050 @opindex mthread
29051 This option is available for MinGW targets. It specifies
29052 that MinGW-specific thread support is to be used.
29053
29054 @item -municode
29055 @opindex municode
29056 This option is available for MinGW-w64 targets. It causes
29057 the @code{UNICODE} preprocessor macro to be predefined, and
29058 chooses Unicode-capable runtime startup code.
29059
29060 @item -mwin32
29061 @opindex mwin32
29062 This option is available for Cygwin and MinGW targets. It
29063 specifies that the typical Microsoft Windows predefined macros are to
29064 be set in the pre-processor, but does not influence the choice
29065 of runtime library/startup code.
29066
29067 @item -mwindows
29068 @opindex mwindows
29069 This option is available for Cygwin and MinGW targets. It
29070 specifies that a GUI application is to be generated by
29071 instructing the linker to set the PE header subsystem type
29072 appropriately.
29073
29074 @item -fno-set-stack-executable
29075 @opindex fno-set-stack-executable
29076 @opindex fset-stack-executable
29077 This option is available for MinGW targets. It specifies that
29078 the executable flag for the stack used by nested functions isn't
29079 set. This is necessary for binaries running in kernel mode of
29080 Microsoft Windows, as there the User32 API, which is used to set executable
29081 privileges, isn't available.
29082
29083 @item -fwritable-relocated-rdata
29084 @opindex fno-writable-relocated-rdata
29085 @opindex fwritable-relocated-rdata
29086 This option is available for MinGW and Cygwin targets. It specifies
29087 that relocated-data in read-only section is put into the @code{.data}
29088 section. This is a necessary for older runtimes not supporting
29089 modification of @code{.rdata} sections for pseudo-relocation.
29090
29091 @item -mpe-aligned-commons
29092 @opindex mpe-aligned-commons
29093 This option is available for Cygwin and MinGW targets. It
29094 specifies that the GNU extension to the PE file format that
29095 permits the correct alignment of COMMON variables should be
29096 used when generating code. It is enabled by default if
29097 GCC detects that the target assembler found during configuration
29098 supports the feature.
29099 @end table
29100
29101 See also under @ref{x86 Options} for standard options.
29102
29103 @node Xstormy16 Options
29104 @subsection Xstormy16 Options
29105 @cindex Xstormy16 Options
29106
29107 These options are defined for Xstormy16:
29108
29109 @table @gcctabopt
29110 @item -msim
29111 @opindex msim
29112 Choose startup files and linker script suitable for the simulator.
29113 @end table
29114
29115 @node Xtensa Options
29116 @subsection Xtensa Options
29117 @cindex Xtensa Options
29118
29119 These options are supported for Xtensa targets:
29120
29121 @table @gcctabopt
29122 @item -mconst16
29123 @itemx -mno-const16
29124 @opindex mconst16
29125 @opindex mno-const16
29126 Enable or disable use of @code{CONST16} instructions for loading
29127 constant values. The @code{CONST16} instruction is currently not a
29128 standard option from Tensilica. When enabled, @code{CONST16}
29129 instructions are always used in place of the standard @code{L32R}
29130 instructions. The use of @code{CONST16} is enabled by default only if
29131 the @code{L32R} instruction is not available.
29132
29133 @item -mfused-madd
29134 @itemx -mno-fused-madd
29135 @opindex mfused-madd
29136 @opindex mno-fused-madd
29137 Enable or disable use of fused multiply/add and multiply/subtract
29138 instructions in the floating-point option. This has no effect if the
29139 floating-point option is not also enabled. Disabling fused multiply/add
29140 and multiply/subtract instructions forces the compiler to use separate
29141 instructions for the multiply and add/subtract operations. This may be
29142 desirable in some cases where strict IEEE 754-compliant results are
29143 required: the fused multiply add/subtract instructions do not round the
29144 intermediate result, thereby producing results with @emph{more} bits of
29145 precision than specified by the IEEE standard. Disabling fused multiply
29146 add/subtract instructions also ensures that the program output is not
29147 sensitive to the compiler's ability to combine multiply and add/subtract
29148 operations.
29149
29150 @item -mserialize-volatile
29151 @itemx -mno-serialize-volatile
29152 @opindex mserialize-volatile
29153 @opindex mno-serialize-volatile
29154 When this option is enabled, GCC inserts @code{MEMW} instructions before
29155 @code{volatile} memory references to guarantee sequential consistency.
29156 The default is @option{-mserialize-volatile}. Use
29157 @option{-mno-serialize-volatile} to omit the @code{MEMW} instructions.
29158
29159 @item -mforce-no-pic
29160 @opindex mforce-no-pic
29161 For targets, like GNU/Linux, where all user-mode Xtensa code must be
29162 position-independent code (PIC), this option disables PIC for compiling
29163 kernel code.
29164
29165 @item -mtext-section-literals
29166 @itemx -mno-text-section-literals
29167 @opindex mtext-section-literals
29168 @opindex mno-text-section-literals
29169 These options control the treatment of literal pools. The default is
29170 @option{-mno-text-section-literals}, which places literals in a separate
29171 section in the output file. This allows the literal pool to be placed
29172 in a data RAM/ROM, and it also allows the linker to combine literal
29173 pools from separate object files to remove redundant literals and
29174 improve code size. With @option{-mtext-section-literals}, the literals
29175 are interspersed in the text section in order to keep them as close as
29176 possible to their references. This may be necessary for large assembly
29177 files. Literals for each function are placed right before that function.
29178
29179 @item -mauto-litpools
29180 @itemx -mno-auto-litpools
29181 @opindex mauto-litpools
29182 @opindex mno-auto-litpools
29183 These options control the treatment of literal pools. The default is
29184 @option{-mno-auto-litpools}, which places literals in a separate
29185 section in the output file unless @option{-mtext-section-literals} is
29186 used. With @option{-mauto-litpools} the literals are interspersed in
29187 the text section by the assembler. Compiler does not produce explicit
29188 @code{.literal} directives and loads literals into registers with
29189 @code{MOVI} instructions instead of @code{L32R} to let the assembler
29190 do relaxation and place literals as necessary. This option allows
29191 assembler to create several literal pools per function and assemble
29192 very big functions, which may not be possible with
29193 @option{-mtext-section-literals}.
29194
29195 @item -mtarget-align
29196 @itemx -mno-target-align
29197 @opindex mtarget-align
29198 @opindex mno-target-align
29199 When this option is enabled, GCC instructs the assembler to
29200 automatically align instructions to reduce branch penalties at the
29201 expense of some code density. The assembler attempts to widen density
29202 instructions to align branch targets and the instructions following call
29203 instructions. If there are not enough preceding safe density
29204 instructions to align a target, no widening is performed. The
29205 default is @option{-mtarget-align}. These options do not affect the
29206 treatment of auto-aligned instructions like @code{LOOP}, which the
29207 assembler always aligns, either by widening density instructions or
29208 by inserting NOP instructions.
29209
29210 @item -mlongcalls
29211 @itemx -mno-longcalls
29212 @opindex mlongcalls
29213 @opindex mno-longcalls
29214 When this option is enabled, GCC instructs the assembler to translate
29215 direct calls to indirect calls unless it can determine that the target
29216 of a direct call is in the range allowed by the call instruction. This
29217 translation typically occurs for calls to functions in other source
29218 files. Specifically, the assembler translates a direct @code{CALL}
29219 instruction into an @code{L32R} followed by a @code{CALLX} instruction.
29220 The default is @option{-mno-longcalls}. This option should be used in
29221 programs where the call target can potentially be out of range. This
29222 option is implemented in the assembler, not the compiler, so the
29223 assembly code generated by GCC still shows direct call
29224 instructions---look at the disassembled object code to see the actual
29225 instructions. Note that the assembler uses an indirect call for
29226 every cross-file call, not just those that really are out of range.
29227 @end table
29228
29229 @node zSeries Options
29230 @subsection zSeries Options
29231 @cindex zSeries options
29232
29233 These are listed under @xref{S/390 and zSeries Options}.
29234
29235
29236 @c man end
29237
29238 @node Spec Files
29239 @section Specifying Subprocesses and the Switches to Pass to Them
29240 @cindex Spec Files
29241
29242 @command{gcc} is a driver program. It performs its job by invoking a
29243 sequence of other programs to do the work of compiling, assembling and
29244 linking. GCC interprets its command-line parameters and uses these to
29245 deduce which programs it should invoke, and which command-line options
29246 it ought to place on their command lines. This behavior is controlled
29247 by @dfn{spec strings}. In most cases there is one spec string for each
29248 program that GCC can invoke, but a few programs have multiple spec
29249 strings to control their behavior. The spec strings built into GCC can
29250 be overridden by using the @option{-specs=} command-line switch to specify
29251 a spec file.
29252
29253 @dfn{Spec files} are plain-text files that are used to construct spec
29254 strings. They consist of a sequence of directives separated by blank
29255 lines. The type of directive is determined by the first non-whitespace
29256 character on the line, which can be one of the following:
29257
29258 @table @code
29259 @item %@var{command}
29260 Issues a @var{command} to the spec file processor. The commands that can
29261 appear here are:
29262
29263 @table @code
29264 @item %include <@var{file}>
29265 @cindex @code{%include}
29266 Search for @var{file} and insert its text at the current point in the
29267 specs file.
29268
29269 @item %include_noerr <@var{file}>
29270 @cindex @code{%include_noerr}
29271 Just like @samp{%include}, but do not generate an error message if the include
29272 file cannot be found.
29273
29274 @item %rename @var{old_name} @var{new_name}
29275 @cindex @code{%rename}
29276 Rename the spec string @var{old_name} to @var{new_name}.
29277
29278 @end table
29279
29280 @item *[@var{spec_name}]:
29281 This tells the compiler to create, override or delete the named spec
29282 string. All lines after this directive up to the next directive or
29283 blank line are considered to be the text for the spec string. If this
29284 results in an empty string then the spec is deleted. (Or, if the
29285 spec did not exist, then nothing happens.) Otherwise, if the spec
29286 does not currently exist a new spec is created. If the spec does
29287 exist then its contents are overridden by the text of this
29288 directive, unless the first character of that text is the @samp{+}
29289 character, in which case the text is appended to the spec.
29290
29291 @item [@var{suffix}]:
29292 Creates a new @samp{[@var{suffix}] spec} pair. All lines after this directive
29293 and up to the next directive or blank line are considered to make up the
29294 spec string for the indicated suffix. When the compiler encounters an
29295 input file with the named suffix, it processes the spec string in
29296 order to work out how to compile that file. For example:
29297
29298 @smallexample
29299 .ZZ:
29300 z-compile -input %i
29301 @end smallexample
29302
29303 This says that any input file whose name ends in @samp{.ZZ} should be
29304 passed to the program @samp{z-compile}, which should be invoked with the
29305 command-line switch @option{-input} and with the result of performing the
29306 @samp{%i} substitution. (See below.)
29307
29308 As an alternative to providing a spec string, the text following a
29309 suffix directive can be one of the following:
29310
29311 @table @code
29312 @item @@@var{language}
29313 This says that the suffix is an alias for a known @var{language}. This is
29314 similar to using the @option{-x} command-line switch to GCC to specify a
29315 language explicitly. For example:
29316
29317 @smallexample
29318 .ZZ:
29319 @@c++
29320 @end smallexample
29321
29322 Says that .ZZ files are, in fact, C++ source files.
29323
29324 @item #@var{name}
29325 This causes an error messages saying:
29326
29327 @smallexample
29328 @var{name} compiler not installed on this system.
29329 @end smallexample
29330 @end table
29331
29332 GCC already has an extensive list of suffixes built into it.
29333 This directive adds an entry to the end of the list of suffixes, but
29334 since the list is searched from the end backwards, it is effectively
29335 possible to override earlier entries using this technique.
29336
29337 @end table
29338
29339 GCC has the following spec strings built into it. Spec files can
29340 override these strings or create their own. Note that individual
29341 targets can also add their own spec strings to this list.
29342
29343 @smallexample
29344 asm Options to pass to the assembler
29345 asm_final Options to pass to the assembler post-processor
29346 cpp Options to pass to the C preprocessor
29347 cc1 Options to pass to the C compiler
29348 cc1plus Options to pass to the C++ compiler
29349 endfile Object files to include at the end of the link
29350 link Options to pass to the linker
29351 lib Libraries to include on the command line to the linker
29352 libgcc Decides which GCC support library to pass to the linker
29353 linker Sets the name of the linker
29354 predefines Defines to be passed to the C preprocessor
29355 signed_char Defines to pass to CPP to say whether @code{char} is signed
29356 by default
29357 startfile Object files to include at the start of the link
29358 @end smallexample
29359
29360 Here is a small example of a spec file:
29361
29362 @smallexample
29363 %rename lib old_lib
29364
29365 *lib:
29366 --start-group -lgcc -lc -leval1 --end-group %(old_lib)
29367 @end smallexample
29368
29369 This example renames the spec called @samp{lib} to @samp{old_lib} and
29370 then overrides the previous definition of @samp{lib} with a new one.
29371 The new definition adds in some extra command-line options before
29372 including the text of the old definition.
29373
29374 @dfn{Spec strings} are a list of command-line options to be passed to their
29375 corresponding program. In addition, the spec strings can contain
29376 @samp{%}-prefixed sequences to substitute variable text or to
29377 conditionally insert text into the command line. Using these constructs
29378 it is possible to generate quite complex command lines.
29379
29380 Here is a table of all defined @samp{%}-sequences for spec
29381 strings. Note that spaces are not generated automatically around the
29382 results of expanding these sequences. Therefore you can concatenate them
29383 together or combine them with constant text in a single argument.
29384
29385 @table @code
29386 @item %%
29387 Substitute one @samp{%} into the program name or argument.
29388
29389 @item %i
29390 Substitute the name of the input file being processed.
29391
29392 @item %b
29393 Substitute the basename of the input file being processed.
29394 This is the substring up to (and not including) the last period
29395 and not including the directory.
29396
29397 @item %B
29398 This is the same as @samp{%b}, but include the file suffix (text after
29399 the last period).
29400
29401 @item %d
29402 Marks the argument containing or following the @samp{%d} as a
29403 temporary file name, so that that file is deleted if GCC exits
29404 successfully. Unlike @samp{%g}, this contributes no text to the
29405 argument.
29406
29407 @item %g@var{suffix}
29408 Substitute a file name that has suffix @var{suffix} and is chosen
29409 once per compilation, and mark the argument in the same way as
29410 @samp{%d}. To reduce exposure to denial-of-service attacks, the file
29411 name is now chosen in a way that is hard to predict even when previously
29412 chosen file names are known. For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
29413 might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}. @var{suffix} matches
29414 the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
29415 treated exactly as if @samp{%O} had been preprocessed. Previously, @samp{%g}
29416 was simply substituted with a file name chosen once per compilation,
29417 without regard to any appended suffix (which was therefore treated
29418 just like ordinary text), making such attacks more likely to succeed.
29419
29420 @item %u@var{suffix}
29421 Like @samp{%g}, but generates a new temporary file name
29422 each time it appears instead of once per compilation.
29423
29424 @item %U@var{suffix}
29425 Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
29426 new one if there is no such last file name. In the absence of any
29427 @samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
29428 the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s}
29429 involves the generation of two distinct file names, one
29430 for each @samp{%g.s} and another for each @samp{%U.s}. Previously, @samp{%U} was
29431 simply substituted with a file name chosen for the previous @samp{%u},
29432 without regard to any appended suffix.
29433
29434 @item %j@var{suffix}
29435 Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
29436 writable, and if @option{-save-temps} is not used;
29437 otherwise, substitute the name
29438 of a temporary file, just like @samp{%u}. This temporary file is not
29439 meant for communication between processes, but rather as a junk
29440 disposal mechanism.
29441
29442 @item %|@var{suffix}
29443 @itemx %m@var{suffix}
29444 Like @samp{%g}, except if @option{-pipe} is in effect. In that case
29445 @samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
29446 all. These are the two most common ways to instruct a program that it
29447 should read from standard input or write to standard output. If you
29448 need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
29449 construct: see for example @file{gcc/fortran/lang-specs.h}.
29450
29451 @item %.@var{SUFFIX}
29452 Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args
29453 when it is subsequently output with @samp{%*}. @var{SUFFIX} is
29454 terminated by the next space or %.
29455
29456 @item %w
29457 Marks the argument containing or following the @samp{%w} as the
29458 designated output file of this compilation. This puts the argument
29459 into the sequence of arguments that @samp{%o} substitutes.
29460
29461 @item %o
29462 Substitutes the names of all the output files, with spaces
29463 automatically placed around them. You should write spaces
29464 around the @samp{%o} as well or the results are undefined.
29465 @samp{%o} is for use in the specs for running the linker.
29466 Input files whose names have no recognized suffix are not compiled
29467 at all, but they are included among the output files, so they are
29468 linked.
29469
29470 @item %O
29471 Substitutes the suffix for object files. Note that this is
29472 handled specially when it immediately follows @samp{%g, %u, or %U},
29473 because of the need for those to form complete file names. The
29474 handling is such that @samp{%O} is treated exactly as if it had already
29475 been substituted, except that @samp{%g, %u, and %U} do not currently
29476 support additional @var{suffix} characters following @samp{%O} as they do
29477 following, for example, @samp{.o}.
29478
29479 @item %p
29480 Substitutes the standard macro predefinitions for the
29481 current target machine. Use this when running @command{cpp}.
29482
29483 @item %P
29484 Like @samp{%p}, but puts @samp{__} before and after the name of each
29485 predefined macro, except for macros that start with @samp{__} or with
29486 @samp{_@var{L}}, where @var{L} is an uppercase letter. This is for ISO
29487 C@.
29488
29489 @item %I
29490 Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
29491 @option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}),
29492 @option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
29493 and @option{-imultilib} as necessary.
29494
29495 @item %s
29496 Current argument is the name of a library or startup file of some sort.
29497 Search for that file in a standard list of directories and substitute
29498 the full name found. The current working directory is included in the
29499 list of directories scanned.
29500
29501 @item %T
29502 Current argument is the name of a linker script. Search for that file
29503 in the current list of directories to scan for libraries. If the file
29504 is located insert a @option{--script} option into the command line
29505 followed by the full path name found. If the file is not found then
29506 generate an error message. Note: the current working directory is not
29507 searched.
29508
29509 @item %e@var{str}
29510 Print @var{str} as an error message. @var{str} is terminated by a newline.
29511 Use this when inconsistent options are detected.
29512
29513 @item %(@var{name})
29514 Substitute the contents of spec string @var{name} at this point.
29515
29516 @item %x@{@var{option}@}
29517 Accumulate an option for @samp{%X}.
29518
29519 @item %X
29520 Output the accumulated linker options specified by @option{-Wl} or a @samp{%x}
29521 spec string.
29522
29523 @item %Y
29524 Output the accumulated assembler options specified by @option{-Wa}.
29525
29526 @item %Z
29527 Output the accumulated preprocessor options specified by @option{-Wp}.
29528
29529 @item %a
29530 Process the @code{asm} spec. This is used to compute the
29531 switches to be passed to the assembler.
29532
29533 @item %A
29534 Process the @code{asm_final} spec. This is a spec string for
29535 passing switches to an assembler post-processor, if such a program is
29536 needed.
29537
29538 @item %l
29539 Process the @code{link} spec. This is the spec for computing the
29540 command line passed to the linker. Typically it makes use of the
29541 @samp{%L %G %S %D and %E} sequences.
29542
29543 @item %D
29544 Dump out a @option{-L} option for each directory that GCC believes might
29545 contain startup files. If the target supports multilibs then the
29546 current multilib directory is prepended to each of these paths.
29547
29548 @item %L
29549 Process the @code{lib} spec. This is a spec string for deciding which
29550 libraries are included on the command line to the linker.
29551
29552 @item %G
29553 Process the @code{libgcc} spec. This is a spec string for deciding
29554 which GCC support library is included on the command line to the linker.
29555
29556 @item %S
29557 Process the @code{startfile} spec. This is a spec for deciding which
29558 object files are the first ones passed to the linker. Typically
29559 this might be a file named @file{crt0.o}.
29560
29561 @item %E
29562 Process the @code{endfile} spec. This is a spec string that specifies
29563 the last object files that are passed to the linker.
29564
29565 @item %C
29566 Process the @code{cpp} spec. This is used to construct the arguments
29567 to be passed to the C preprocessor.
29568
29569 @item %1
29570 Process the @code{cc1} spec. This is used to construct the options to be
29571 passed to the actual C compiler (@command{cc1}).
29572
29573 @item %2
29574 Process the @code{cc1plus} spec. This is used to construct the options to be
29575 passed to the actual C++ compiler (@command{cc1plus}).
29576
29577 @item %*
29578 Substitute the variable part of a matched option. See below.
29579 Note that each comma in the substituted string is replaced by
29580 a single space.
29581
29582 @item %<S
29583 Remove all occurrences of @code{-S} from the command line. Note---this
29584 command is position dependent. @samp{%} commands in the spec string
29585 before this one see @code{-S}, @samp{%} commands in the spec string
29586 after this one do not.
29587
29588 @item %:@var{function}(@var{args})
29589 Call the named function @var{function}, passing it @var{args}.
29590 @var{args} is first processed as a nested spec string, then split
29591 into an argument vector in the usual fashion. The function returns
29592 a string which is processed as if it had appeared literally as part
29593 of the current spec.
29594
29595 The following built-in spec functions are provided:
29596
29597 @table @code
29598 @item @code{getenv}
29599 The @code{getenv} spec function takes two arguments: an environment
29600 variable name and a string. If the environment variable is not
29601 defined, a fatal error is issued. Otherwise, the return value is the
29602 value of the environment variable concatenated with the string. For
29603 example, if @env{TOPDIR} is defined as @file{/path/to/top}, then:
29604
29605 @smallexample
29606 %:getenv(TOPDIR /include)
29607 @end smallexample
29608
29609 expands to @file{/path/to/top/include}.
29610
29611 @item @code{if-exists}
29612 The @code{if-exists} spec function takes one argument, an absolute
29613 pathname to a file. If the file exists, @code{if-exists} returns the
29614 pathname. Here is a small example of its usage:
29615
29616 @smallexample
29617 *startfile:
29618 crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
29619 @end smallexample
29620
29621 @item @code{if-exists-else}
29622 The @code{if-exists-else} spec function is similar to the @code{if-exists}
29623 spec function, except that it takes two arguments. The first argument is
29624 an absolute pathname to a file. If the file exists, @code{if-exists-else}
29625 returns the pathname. If it does not exist, it returns the second argument.
29626 This way, @code{if-exists-else} can be used to select one file or another,
29627 based on the existence of the first. Here is a small example of its usage:
29628
29629 @smallexample
29630 *startfile:
29631 crt0%O%s %:if-exists(crti%O%s) \
29632 %:if-exists-else(crtbeginT%O%s crtbegin%O%s)
29633 @end smallexample
29634
29635 @item @code{replace-outfile}
29636 The @code{replace-outfile} spec function takes two arguments. It looks for the
29637 first argument in the outfiles array and replaces it with the second argument. Here
29638 is a small example of its usage:
29639
29640 @smallexample
29641 %@{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)@}
29642 @end smallexample
29643
29644 @item @code{remove-outfile}
29645 The @code{remove-outfile} spec function takes one argument. It looks for the
29646 first argument in the outfiles array and removes it. Here is a small example
29647 its usage:
29648
29649 @smallexample
29650 %:remove-outfile(-lm)
29651 @end smallexample
29652
29653 @item @code{pass-through-libs}
29654 The @code{pass-through-libs} spec function takes any number of arguments. It
29655 finds any @option{-l} options and any non-options ending in @file{.a} (which it
29656 assumes are the names of linker input library archive files) and returns a
29657 result containing all the found arguments each prepended by
29658 @option{-plugin-opt=-pass-through=} and joined by spaces. This list is
29659 intended to be passed to the LTO linker plugin.
29660
29661 @smallexample
29662 %:pass-through-libs(%G %L %G)
29663 @end smallexample
29664
29665 @item @code{print-asm-header}
29666 The @code{print-asm-header} function takes no arguments and simply
29667 prints a banner like:
29668
29669 @smallexample
29670 Assembler options
29671 =================
29672
29673 Use "-Wa,OPTION" to pass "OPTION" to the assembler.
29674 @end smallexample
29675
29676 It is used to separate compiler options from assembler options
29677 in the @option{--target-help} output.
29678 @end table
29679
29680 @item %@{S@}
29681 Substitutes the @code{-S} switch, if that switch is given to GCC@.
29682 If that switch is not specified, this substitutes nothing. Note that
29683 the leading dash is omitted when specifying this option, and it is
29684 automatically inserted if the substitution is performed. Thus the spec
29685 string @samp{%@{foo@}} matches the command-line option @option{-foo}
29686 and outputs the command-line option @option{-foo}.
29687
29688 @item %W@{S@}
29689 Like %@{@code{S}@} but mark last argument supplied within as a file to be
29690 deleted on failure.
29691
29692 @item %@{S*@}
29693 Substitutes all the switches specified to GCC whose names start
29694 with @code{-S}, but which also take an argument. This is used for
29695 switches like @option{-o}, @option{-D}, @option{-I}, etc.
29696 GCC considers @option{-o foo} as being
29697 one switch whose name starts with @samp{o}. %@{o*@} substitutes this
29698 text, including the space. Thus two arguments are generated.
29699
29700 @item %@{S*&T*@}
29701 Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options
29702 (the order of @code{S} and @code{T} in the spec is not significant).
29703 There can be any number of ampersand-separated variables; for each the
29704 wild card is optional. Useful for CPP as @samp{%@{D*&U*&A*@}}.
29705
29706 @item %@{S:X@}
29707 Substitutes @code{X}, if the @option{-S} switch is given to GCC@.
29708
29709 @item %@{!S:X@}
29710 Substitutes @code{X}, if the @option{-S} switch is @emph{not} given to GCC@.
29711
29712 @item %@{S*:X@}
29713 Substitutes @code{X} if one or more switches whose names start with
29714 @code{-S} are specified to GCC@. Normally @code{X} is substituted only
29715 once, no matter how many such switches appeared. However, if @code{%*}
29716 appears somewhere in @code{X}, then @code{X} is substituted once
29717 for each matching switch, with the @code{%*} replaced by the part of
29718 that switch matching the @code{*}.
29719
29720 If @code{%*} appears as the last part of a spec sequence then a space
29721 is added after the end of the last substitution. If there is more
29722 text in the sequence, however, then a space is not generated. This
29723 allows the @code{%*} substitution to be used as part of a larger
29724 string. For example, a spec string like this:
29725
29726 @smallexample
29727 %@{mcu=*:--script=%*/memory.ld@}
29728 @end smallexample
29729
29730 @noindent
29731 when matching an option like @option{-mcu=newchip} produces:
29732
29733 @smallexample
29734 --script=newchip/memory.ld
29735 @end smallexample
29736
29737 @item %@{.S:X@}
29738 Substitutes @code{X}, if processing a file with suffix @code{S}.
29739
29740 @item %@{!.S:X@}
29741 Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}.
29742
29743 @item %@{,S:X@}
29744 Substitutes @code{X}, if processing a file for language @code{S}.
29745
29746 @item %@{!,S:X@}
29747 Substitutes @code{X}, if not processing a file for language @code{S}.
29748
29749 @item %@{S|P:X@}
29750 Substitutes @code{X} if either @code{-S} or @code{-P} is given to
29751 GCC@. This may be combined with @samp{!}, @samp{.}, @samp{,}, and
29752 @code{*} sequences as well, although they have a stronger binding than
29753 the @samp{|}. If @code{%*} appears in @code{X}, all of the
29754 alternatives must be starred, and only the first matching alternative
29755 is substituted.
29756
29757 For example, a spec string like this:
29758
29759 @smallexample
29760 %@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
29761 @end smallexample
29762
29763 @noindent
29764 outputs the following command-line options from the following input
29765 command-line options:
29766
29767 @smallexample
29768 fred.c -foo -baz
29769 jim.d -bar -boggle
29770 -d fred.c -foo -baz -boggle
29771 -d jim.d -bar -baz -boggle
29772 @end smallexample
29773
29774 @item %@{S:X; T:Y; :D@}
29775
29776 If @code{S} is given to GCC, substitutes @code{X}; else if @code{T} is
29777 given to GCC, substitutes @code{Y}; else substitutes @code{D}. There can
29778 be as many clauses as you need. This may be combined with @code{.},
29779 @code{,}, @code{!}, @code{|}, and @code{*} as needed.
29780
29781
29782 @end table
29783
29784 The switch matching text @code{S} in a @samp{%@{S@}}, @samp{%@{S:X@}}
29785 or similar construct can use a backslash to ignore the special meaning
29786 of the character following it, thus allowing literal matching of a
29787 character that is otherwise specially treated. For example,
29788 @samp{%@{std=iso9899\:1999:X@}} substitutes @code{X} if the
29789 @option{-std=iso9899:1999} option is given.
29790
29791 The conditional text @code{X} in a @samp{%@{S:X@}} or similar
29792 construct may contain other nested @samp{%} constructs or spaces, or
29793 even newlines. They are processed as usual, as described above.
29794 Trailing white space in @code{X} is ignored. White space may also
29795 appear anywhere on the left side of the colon in these constructs,
29796 except between @code{.} or @code{*} and the corresponding word.
29797
29798 The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
29799 handled specifically in these constructs. If another value of
29800 @option{-O} or the negated form of a @option{-f}, @option{-m}, or
29801 @option{-W} switch is found later in the command line, the earlier
29802 switch value is ignored, except with @{@code{S}*@} where @code{S} is
29803 just one letter, which passes all matching options.
29804
29805 The character @samp{|} at the beginning of the predicate text is used to
29806 indicate that a command should be piped to the following command, but
29807 only if @option{-pipe} is specified.
29808
29809 It is built into GCC which switches take arguments and which do not.
29810 (You might think it would be useful to generalize this to allow each
29811 compiler's spec to say which switches take arguments. But this cannot
29812 be done in a consistent fashion. GCC cannot even decide which input
29813 files have been specified without knowing which switches take arguments,
29814 and it must know which input files to compile in order to tell which
29815 compilers to run).
29816
29817 GCC also knows implicitly that arguments starting in @option{-l} are to be
29818 treated as compiler output files, and passed to the linker in their
29819 proper position among the other output files.
29820
29821 @node Environment Variables
29822 @section Environment Variables Affecting GCC
29823 @cindex environment variables
29824
29825 @c man begin ENVIRONMENT
29826 This section describes several environment variables that affect how GCC
29827 operates. Some of them work by specifying directories or prefixes to use
29828 when searching for various kinds of files. Some are used to specify other
29829 aspects of the compilation environment.
29830
29831 Note that you can also specify places to search using options such as
29832 @option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}). These
29833 take precedence over places specified using environment variables, which
29834 in turn take precedence over those specified by the configuration of GCC@.
29835 @xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint,
29836 GNU Compiler Collection (GCC) Internals}.
29837
29838 @table @env
29839 @item LANG
29840 @itemx LC_CTYPE
29841 @c @itemx LC_COLLATE
29842 @itemx LC_MESSAGES
29843 @c @itemx LC_MONETARY
29844 @c @itemx LC_NUMERIC
29845 @c @itemx LC_TIME
29846 @itemx LC_ALL
29847 @findex LANG
29848 @findex LC_CTYPE
29849 @c @findex LC_COLLATE
29850 @findex LC_MESSAGES
29851 @c @findex LC_MONETARY
29852 @c @findex LC_NUMERIC
29853 @c @findex LC_TIME
29854 @findex LC_ALL
29855 @cindex locale
29856 These environment variables control the way that GCC uses
29857 localization information which allows GCC to work with different
29858 national conventions. GCC inspects the locale categories
29859 @env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do
29860 so. These locale categories can be set to any value supported by your
29861 installation. A typical value is @samp{en_GB.UTF-8} for English in the United
29862 Kingdom encoded in UTF-8.
29863
29864 The @env{LC_CTYPE} environment variable specifies character
29865 classification. GCC uses it to determine the character boundaries in
29866 a string; this is needed for some multibyte encodings that contain quote
29867 and escape characters that are otherwise interpreted as a string
29868 end or escape.
29869
29870 The @env{LC_MESSAGES} environment variable specifies the language to
29871 use in diagnostic messages.
29872
29873 If the @env{LC_ALL} environment variable is set, it overrides the value
29874 of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE}
29875 and @env{LC_MESSAGES} default to the value of the @env{LANG}
29876 environment variable. If none of these variables are set, GCC
29877 defaults to traditional C English behavior.
29878
29879 @item TMPDIR
29880 @findex TMPDIR
29881 If @env{TMPDIR} is set, it specifies the directory to use for temporary
29882 files. GCC uses temporary files to hold the output of one stage of
29883 compilation which is to be used as input to the next stage: for example,
29884 the output of the preprocessor, which is the input to the compiler
29885 proper.
29886
29887 @item GCC_COMPARE_DEBUG
29888 @findex GCC_COMPARE_DEBUG
29889 Setting @env{GCC_COMPARE_DEBUG} is nearly equivalent to passing
29890 @option{-fcompare-debug} to the compiler driver. See the documentation
29891 of this option for more details.
29892
29893 @item GCC_EXEC_PREFIX
29894 @findex GCC_EXEC_PREFIX
29895 If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
29896 names of the subprograms executed by the compiler. No slash is added
29897 when this prefix is combined with the name of a subprogram, but you can
29898 specify a prefix that ends with a slash if you wish.
29899
29900 If @env{GCC_EXEC_PREFIX} is not set, GCC attempts to figure out
29901 an appropriate prefix to use based on the pathname it is invoked with.
29902
29903 If GCC cannot find the subprogram using the specified prefix, it
29904 tries looking in the usual places for the subprogram.
29905
29906 The default value of @env{GCC_EXEC_PREFIX} is
29907 @file{@var{prefix}/lib/gcc/} where @var{prefix} is the prefix to
29908 the installed compiler. In many cases @var{prefix} is the value
29909 of @code{prefix} when you ran the @file{configure} script.
29910
29911 Other prefixes specified with @option{-B} take precedence over this prefix.
29912
29913 This prefix is also used for finding files such as @file{crt0.o} that are
29914 used for linking.
29915
29916 In addition, the prefix is used in an unusual way in finding the
29917 directories to search for header files. For each of the standard
29918 directories whose name normally begins with @samp{/usr/local/lib/gcc}
29919 (more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries
29920 replacing that beginning with the specified prefix to produce an
29921 alternate directory name. Thus, with @option{-Bfoo/}, GCC searches
29922 @file{foo/bar} just before it searches the standard directory
29923 @file{/usr/local/lib/bar}.
29924 If a standard directory begins with the configured
29925 @var{prefix} then the value of @var{prefix} is replaced by
29926 @env{GCC_EXEC_PREFIX} when looking for header files.
29927
29928 @item COMPILER_PATH
29929 @findex COMPILER_PATH
29930 The value of @env{COMPILER_PATH} is a colon-separated list of
29931 directories, much like @env{PATH}. GCC tries the directories thus
29932 specified when searching for subprograms, if it cannot find the
29933 subprograms using @env{GCC_EXEC_PREFIX}.
29934
29935 @item LIBRARY_PATH
29936 @findex LIBRARY_PATH
29937 The value of @env{LIBRARY_PATH} is a colon-separated list of
29938 directories, much like @env{PATH}. When configured as a native compiler,
29939 GCC tries the directories thus specified when searching for special
29940 linker files, if it cannot find them using @env{GCC_EXEC_PREFIX}. Linking
29941 using GCC also uses these directories when searching for ordinary
29942 libraries for the @option{-l} option (but directories specified with
29943 @option{-L} come first).
29944
29945 @item LANG
29946 @findex LANG
29947 @cindex locale definition
29948 This variable is used to pass locale information to the compiler. One way in
29949 which this information is used is to determine the character set to be used
29950 when character literals, string literals and comments are parsed in C and C++.
29951 When the compiler is configured to allow multibyte characters,
29952 the following values for @env{LANG} are recognized:
29953
29954 @table @samp
29955 @item C-JIS
29956 Recognize JIS characters.
29957 @item C-SJIS
29958 Recognize SJIS characters.
29959 @item C-EUCJP
29960 Recognize EUCJP characters.
29961 @end table
29962
29963 If @env{LANG} is not defined, or if it has some other value, then the
29964 compiler uses @code{mblen} and @code{mbtowc} as defined by the default locale to
29965 recognize and translate multibyte characters.
29966 @end table
29967
29968 @noindent
29969 Some additional environment variables affect the behavior of the
29970 preprocessor.
29971
29972 @include cppenv.texi
29973
29974 @c man end
29975
29976 @node Precompiled Headers
29977 @section Using Precompiled Headers
29978 @cindex precompiled headers
29979 @cindex speed of compilation
29980
29981 Often large projects have many header files that are included in every
29982 source file. The time the compiler takes to process these header files
29983 over and over again can account for nearly all of the time required to
29984 build the project. To make builds faster, GCC allows you to
29985 @dfn{precompile} a header file.
29986
29987 To create a precompiled header file, simply compile it as you would any
29988 other file, if necessary using the @option{-x} option to make the driver
29989 treat it as a C or C++ header file. You may want to use a
29990 tool like @command{make} to keep the precompiled header up-to-date when
29991 the headers it contains change.
29992
29993 A precompiled header file is searched for when @code{#include} is
29994 seen in the compilation. As it searches for the included file
29995 (@pxref{Search Path,,Search Path,cpp,The C Preprocessor}) the
29996 compiler looks for a precompiled header in each directory just before it
29997 looks for the include file in that directory. The name searched for is
29998 the name specified in the @code{#include} with @samp{.gch} appended. If
29999 the precompiled header file cannot be used, it is ignored.
30000
30001 For instance, if you have @code{#include "all.h"}, and you have
30002 @file{all.h.gch} in the same directory as @file{all.h}, then the
30003 precompiled header file is used if possible, and the original
30004 header is used otherwise.
30005
30006 Alternatively, you might decide to put the precompiled header file in a
30007 directory and use @option{-I} to ensure that directory is searched
30008 before (or instead of) the directory containing the original header.
30009 Then, if you want to check that the precompiled header file is always
30010 used, you can put a file of the same name as the original header in this
30011 directory containing an @code{#error} command.
30012
30013 This also works with @option{-include}. So yet another way to use
30014 precompiled headers, good for projects not designed with precompiled
30015 header files in mind, is to simply take most of the header files used by
30016 a project, include them from another header file, precompile that header
30017 file, and @option{-include} the precompiled header. If the header files
30018 have guards against multiple inclusion, they are skipped because
30019 they've already been included (in the precompiled header).
30020
30021 If you need to precompile the same header file for different
30022 languages, targets, or compiler options, you can instead make a
30023 @emph{directory} named like @file{all.h.gch}, and put each precompiled
30024 header in the directory, perhaps using @option{-o}. It doesn't matter
30025 what you call the files in the directory; every precompiled header in
30026 the directory is considered. The first precompiled header
30027 encountered in the directory that is valid for this compilation is
30028 used; they're searched in no particular order.
30029
30030 There are many other possibilities, limited only by your imagination,
30031 good sense, and the constraints of your build system.
30032
30033 A precompiled header file can be used only when these conditions apply:
30034
30035 @itemize
30036 @item
30037 Only one precompiled header can be used in a particular compilation.
30038
30039 @item
30040 A precompiled header cannot be used once the first C token is seen. You
30041 can have preprocessor directives before a precompiled header; you cannot
30042 include a precompiled header from inside another header.
30043
30044 @item
30045 The precompiled header file must be produced for the same language as
30046 the current compilation. You cannot use a C precompiled header for a C++
30047 compilation.
30048
30049 @item
30050 The precompiled header file must have been produced by the same compiler
30051 binary as the current compilation is using.
30052
30053 @item
30054 Any macros defined before the precompiled header is included must
30055 either be defined in the same way as when the precompiled header was
30056 generated, or must not affect the precompiled header, which usually
30057 means that they don't appear in the precompiled header at all.
30058
30059 The @option{-D} option is one way to define a macro before a
30060 precompiled header is included; using a @code{#define} can also do it.
30061 There are also some options that define macros implicitly, like
30062 @option{-O} and @option{-Wdeprecated}; the same rule applies to macros
30063 defined this way.
30064
30065 @item If debugging information is output when using the precompiled
30066 header, using @option{-g} or similar, the same kind of debugging information
30067 must have been output when building the precompiled header. However,
30068 a precompiled header built using @option{-g} can be used in a compilation
30069 when no debugging information is being output.
30070
30071 @item The same @option{-m} options must generally be used when building
30072 and using the precompiled header. @xref{Submodel Options},
30073 for any cases where this rule is relaxed.
30074
30075 @item Each of the following options must be the same when building and using
30076 the precompiled header:
30077
30078 @gccoptlist{-fexceptions}
30079
30080 @item
30081 Some other command-line options starting with @option{-f},
30082 @option{-p}, or @option{-O} must be defined in the same way as when
30083 the precompiled header was generated. At present, it's not clear
30084 which options are safe to change and which are not; the safest choice
30085 is to use exactly the same options when generating and using the
30086 precompiled header. The following are known to be safe:
30087
30088 @gccoptlist{-fmessage-length= -fpreprocessed -fsched-interblock @gol
30089 -fsched-spec -fsched-spec-load -fsched-spec-load-dangerous @gol
30090 -fsched-verbose=@var{number} -fschedule-insns -fvisibility= @gol
30091 -pedantic-errors}
30092
30093 @end itemize
30094
30095 For all of these except the last, the compiler automatically
30096 ignores the precompiled header if the conditions aren't met. If you
30097 find an option combination that doesn't work and doesn't cause the
30098 precompiled header to be ignored, please consider filing a bug report,
30099 see @ref{Bugs}.
30100
30101 If you do use differing options when generating and using the
30102 precompiled header, the actual behavior is a mixture of the
30103 behavior for the options. For instance, if you use @option{-g} to
30104 generate the precompiled header but not when using it, you may or may
30105 not get debugging information for routines in the precompiled header.