]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/doc/invoke.texi
invoke.texi (ssa-name-def-chain-limit): Document new --param.
[thirdparty/gcc.git] / gcc / doc / invoke.texi
1 @c Copyright (C) 1988-2019 Free Software Foundation, Inc.
2 @c This is part of the GCC manual.
3 @c For copying conditions, see the file gcc.texi.
4
5 @ignore
6 @c man begin INCLUDE
7 @include gcc-vers.texi
8 @c man end
9
10 @c man begin COPYRIGHT
11 Copyright @copyright{} 1988-2019 Free Software Foundation, Inc.
12
13 Permission is granted to copy, distribute and/or modify this document
14 under the terms of the GNU Free Documentation License, Version 1.3 or
15 any later version published by the Free Software Foundation; with the
16 Invariant Sections being ``GNU General Public License'' and ``Funding
17 Free Software'', the Front-Cover texts being (a) (see below), and with
18 the Back-Cover Texts being (b) (see below). A copy of the license is
19 included in the gfdl(7) man page.
20
21 (a) The FSF's Front-Cover Text is:
22
23 A GNU Manual
24
25 (b) The FSF's Back-Cover Text is:
26
27 You have freedom to copy and modify this GNU Manual, like GNU
28 software. Copies published by the Free Software Foundation raise
29 funds for GNU development.
30 @c man end
31 @c Set file name and title for the man page.
32 @setfilename gcc
33 @settitle GNU project C and C++ compiler
34 @c man begin SYNOPSIS
35 gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}]
36 [@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
37 [@option{-W}@var{warn}@dots{}] [@option{-Wpedantic}]
38 [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
39 [@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
40 [@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
41 [@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{}
42
43 Only the most useful options are listed here; see below for the
44 remainder. @command{g++} accepts mostly the same options as @command{gcc}.
45 @c man end
46 @c man begin SEEALSO
47 gpl(7), gfdl(7), fsf-funding(7),
48 cpp(1), gcov(1), as(1), ld(1), gdb(1), dbx(1)
49 and the Info entries for @file{gcc}, @file{cpp}, @file{as},
50 @file{ld}, @file{binutils} and @file{gdb}.
51 @c man end
52 @c man begin BUGS
53 For instructions on reporting bugs, see
54 @w{@value{BUGURL}}.
55 @c man end
56 @c man begin AUTHOR
57 See the Info entry for @command{gcc}, or
58 @w{@uref{http://gcc.gnu.org/onlinedocs/gcc/Contributors.html}},
59 for contributors to GCC@.
60 @c man end
61 @end ignore
62
63 @node Invoking GCC
64 @chapter GCC Command Options
65 @cindex GCC command options
66 @cindex command options
67 @cindex options, GCC command
68
69 @c man begin DESCRIPTION
70 When you invoke GCC, it normally does preprocessing, compilation,
71 assembly and linking. The ``overall options'' allow you to stop this
72 process at an intermediate stage. For example, the @option{-c} option
73 says not to run the linker. Then the output consists of object files
74 output by the assembler.
75 @xref{Overall Options,,Options Controlling the Kind of Output}.
76
77 Other options are passed on to one or more stages of processing. Some options
78 control the preprocessor and others the compiler itself. Yet other
79 options control the assembler and linker; most of these are not
80 documented here, since you rarely need to use any of them.
81
82 @cindex C compilation options
83 Most of the command-line options that you can use with GCC are useful
84 for C programs; when an option is only useful with another language
85 (usually C++), the explanation says so explicitly. If the description
86 for a particular option does not mention a source language, you can use
87 that option with all supported languages.
88
89 @cindex cross compiling
90 @cindex specifying machine version
91 @cindex specifying compiler version and target machine
92 @cindex compiler version, specifying
93 @cindex target machine, specifying
94 The usual way to run GCC is to run the executable called @command{gcc}, or
95 @command{@var{machine}-gcc} when cross-compiling, or
96 @command{@var{machine}-gcc-@var{version}} to run a specific version of GCC.
97 When you compile C++ programs, you should invoke GCC as @command{g++}
98 instead. @xref{Invoking G++,,Compiling C++ Programs},
99 for information about the differences in behavior between @command{gcc}
100 and @code{g++} when compiling C++ programs.
101
102 @cindex grouping options
103 @cindex options, grouping
104 The @command{gcc} program accepts options and file names as operands. Many
105 options have multi-letter names; therefore multiple single-letter options
106 may @emph{not} be grouped: @option{-dv} is very different from @w{@samp{-d
107 -v}}.
108
109 @cindex order of options
110 @cindex options, order
111 You can mix options and other arguments. For the most part, the order
112 you use doesn't matter. Order does matter when you use several
113 options of the same kind; for example, if you specify @option{-L} more
114 than once, the directories are searched in the order specified. Also,
115 the placement of the @option{-l} option is significant.
116
117 Many options have long names starting with @samp{-f} or with
118 @samp{-W}---for example,
119 @option{-fmove-loop-invariants}, @option{-Wformat} and so on. Most of
120 these have both positive and negative forms; the negative form of
121 @option{-ffoo} is @option{-fno-foo}. This manual documents
122 only one of these two forms, whichever one is not the default.
123
124 Some options take one or more arguments typically separated either
125 by a space or by the equals sign (@samp{=}) from the option name.
126 Unless documented otherwise, an argument can be either numeric or
127 a string. Numeric arguments must typically be small unsigned decimal
128 or hexadecimal integers. Hexadecimal arguments must begin with
129 the @samp{0x} prefix. Arguments to options that specify a size
130 threshold of some sort may be arbitrarily large decimal or hexadecimal
131 integers followed by a byte size suffix designating a multiple of bytes
132 such as @code{kB} and @code{KiB} for kilobyte and kibibyte, respectively,
133 @code{MB} and @code{MiB} for megabyte and mebibyte, @code{GB} and
134 @code{GiB} for gigabyte and gigibyte, and so on. Such arguments are
135 designated by @var{byte-size} in the following text. Refer to the NIST,
136 IEC, and other relevant national and international standards for the full
137 listing and explanation of the binary and decimal byte size prefixes.
138
139 @c man end
140
141 @xref{Option Index}, for an index to GCC's options.
142
143 @menu
144 * Option Summary:: Brief list of all options, without explanations.
145 * Overall Options:: Controlling the kind of output:
146 an executable, object files, assembler files,
147 or preprocessed source.
148 * Invoking G++:: Compiling C++ programs.
149 * C Dialect Options:: Controlling the variant of C language compiled.
150 * C++ Dialect Options:: Variations on C++.
151 * Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
152 and Objective-C++.
153 * Diagnostic Message Formatting Options:: Controlling how diagnostics should
154 be formatted.
155 * Warning Options:: How picky should the compiler be?
156 * Debugging Options:: Producing debuggable code.
157 * Optimize Options:: How much optimization?
158 * Instrumentation Options:: Enabling profiling and extra run-time error checking.
159 * Preprocessor Options:: Controlling header files and macro definitions.
160 Also, getting dependency information for Make.
161 * Assembler Options:: Passing options to the assembler.
162 * Link Options:: Specifying libraries and so on.
163 * Directory Options:: Where to find header files and libraries.
164 Where to find the compiler executable files.
165 * Code Gen Options:: Specifying conventions for function calls, data layout
166 and register usage.
167 * Developer Options:: Printing GCC configuration info, statistics, and
168 debugging dumps.
169 * Submodel Options:: Target-specific options, such as compiling for a
170 specific processor variant.
171 * Spec Files:: How to pass switches to sub-processes.
172 * Environment Variables:: Env vars that affect GCC.
173 * Precompiled Headers:: Compiling a header once, and using it many times.
174 @end menu
175
176 @c man begin OPTIONS
177
178 @node Option Summary
179 @section Option Summary
180
181 Here is a summary of all the options, grouped by type. Explanations are
182 in the following sections.
183
184 @table @emph
185 @item Overall Options
186 @xref{Overall Options,,Options Controlling the Kind of Output}.
187 @gccoptlist{-c -S -E -o @var{file} -x @var{language} @gol
188 -v -### --help@r{[}=@var{class}@r{[},@dots{}@r{]]} --target-help --version @gol
189 -pass-exit-codes -pipe -specs=@var{file} -wrapper @gol
190 @@@var{file} -ffile-prefix-map=@var{old}=@var{new} @gol
191 -fplugin=@var{file} -fplugin-arg-@var{name}=@var{arg} @gol
192 -fdump-ada-spec@r{[}-slim@r{]} -fada-spec-parent=@var{unit} -fdump-go-spec=@var{file}}
193
194 @item C Language Options
195 @xref{C Dialect Options,,Options Controlling C Dialect}.
196 @gccoptlist{-ansi -std=@var{standard} -fgnu89-inline @gol
197 -fpermitted-flt-eval-methods=@var{standard} @gol
198 -aux-info @var{filename} -fallow-parameterless-variadic-functions @gol
199 -fno-asm -fno-builtin -fno-builtin-@var{function} -fgimple@gol
200 -fhosted -ffreestanding @gol
201 -fopenacc -fopenacc-dim=@var{geom} @gol
202 -fopenmp -fopenmp-simd @gol
203 -fms-extensions -fplan9-extensions -fsso-struct=@var{endianness} @gol
204 -fallow-single-precision -fcond-mismatch -flax-vector-conversions @gol
205 -fsigned-bitfields -fsigned-char @gol
206 -funsigned-bitfields -funsigned-char}
207
208 @item C++ Language Options
209 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
210 @gccoptlist{-fabi-version=@var{n} -fno-access-control @gol
211 -faligned-new=@var{n} -fargs-in-order=@var{n} -fchar8_t -fcheck-new @gol
212 -fconstexpr-depth=@var{n} -fconstexpr-cache-depth=@var{n} @gol
213 -fconstexpr-loop-limit=@var{n} -fconstexpr-ops-limit=@var{n} @gol
214 -fno-elide-constructors @gol
215 -fno-enforce-eh-specs @gol
216 -fno-gnu-keywords @gol
217 -fno-implicit-templates @gol
218 -fno-implicit-inline-templates @gol
219 -fno-implement-inlines -fms-extensions @gol
220 -fnew-inheriting-ctors @gol
221 -fnew-ttp-matching @gol
222 -fno-nonansi-builtins -fnothrow-opt -fno-operator-names @gol
223 -fno-optional-diags -fpermissive @gol
224 -fno-pretty-templates @gol
225 -frepo -fno-rtti -fsized-deallocation @gol
226 -ftemplate-backtrace-limit=@var{n} @gol
227 -ftemplate-depth=@var{n} @gol
228 -fno-threadsafe-statics -fuse-cxa-atexit @gol
229 -fno-weak -nostdinc++ @gol
230 -fvisibility-inlines-hidden @gol
231 -fvisibility-ms-compat @gol
232 -fext-numeric-literals @gol
233 -Wabi=@var{n} -Wabi-tag -Wconversion-null -Wctor-dtor-privacy @gol
234 -Wdelete-non-virtual-dtor -Wdeprecated-copy -Wdeprecated-copy-dtor @gol
235 -Wliteral-suffix @gol
236 -Wmultiple-inheritance -Wno-init-list-lifetime @gol
237 -Wnamespaces -Wnarrowing @gol
238 -Wpessimizing-move -Wredundant-move @gol
239 -Wnoexcept -Wnoexcept-type -Wclass-memaccess @gol
240 -Wnon-virtual-dtor -Wreorder -Wregister @gol
241 -Weffc++ -Wstrict-null-sentinel -Wtemplates @gol
242 -Wno-non-template-friend -Wold-style-cast @gol
243 -Woverloaded-virtual -Wno-pmf-conversions @gol
244 -Wno-class-conversion -Wno-terminate @gol
245 -Wsign-promo -Wvirtual-inheritance}
246
247 @item Objective-C and Objective-C++ Language Options
248 @xref{Objective-C and Objective-C++ Dialect Options,,Options Controlling
249 Objective-C and Objective-C++ Dialects}.
250 @gccoptlist{-fconstant-string-class=@var{class-name} @gol
251 -fgnu-runtime -fnext-runtime @gol
252 -fno-nil-receivers @gol
253 -fobjc-abi-version=@var{n} @gol
254 -fobjc-call-cxx-cdtors @gol
255 -fobjc-direct-dispatch @gol
256 -fobjc-exceptions @gol
257 -fobjc-gc @gol
258 -fobjc-nilcheck @gol
259 -fobjc-std=objc1 @gol
260 -fno-local-ivars @gol
261 -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]} @gol
262 -freplace-objc-classes @gol
263 -fzero-link @gol
264 -gen-decls @gol
265 -Wassign-intercept @gol
266 -Wno-protocol -Wselector @gol
267 -Wstrict-selector-match @gol
268 -Wundeclared-selector}
269
270 @item Diagnostic Message Formatting Options
271 @xref{Diagnostic Message Formatting Options,,Options to Control Diagnostic Messages Formatting}.
272 @gccoptlist{-fmessage-length=@var{n} @gol
273 -fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]} @gol
274 -fdiagnostics-color=@r{[}auto@r{|}never@r{|}always@r{]} @gol
275 -fdiagnostics-format=@r{[}text@r{|}json@r{]} @gol
276 -fno-diagnostics-show-option -fno-diagnostics-show-caret @gol
277 -fno-diagnostics-show-labels -fno-diagnostics-show-line-numbers @gol
278 -fdiagnostics-minimum-margin-width=@var{width} @gol
279 -fdiagnostics-parseable-fixits -fdiagnostics-generate-patch @gol
280 -fdiagnostics-show-template-tree -fno-elide-type @gol
281 -fno-show-column}
282
283 @item Warning Options
284 @xref{Warning Options,,Options to Request or Suppress Warnings}.
285 @gccoptlist{-fsyntax-only -fmax-errors=@var{n} -Wpedantic @gol
286 -pedantic-errors @gol
287 -w -Wextra -Wall -Waddress -Waddress-of-packed-member @gol
288 -Waggregate-return -Waligned-new @gol
289 -Walloc-zero -Walloc-size-larger-than=@var{byte-size} @gol
290 -Walloca -Walloca-larger-than=@var{byte-size} @gol
291 -Wno-aggressive-loop-optimizations -Warray-bounds -Warray-bounds=@var{n} @gol
292 -Wno-attributes -Wattribute-alias=@var{n} @gol
293 -Wbool-compare -Wbool-operation @gol
294 -Wno-builtin-declaration-mismatch @gol
295 -Wno-builtin-macro-redefined -Wc90-c99-compat -Wc99-c11-compat @gol
296 -Wc++-compat -Wc++11-compat -Wc++14-compat -Wc++17-compat @gol
297 -Wcast-align -Wcast-align=strict -Wcast-function-type -Wcast-qual @gol
298 -Wchar-subscripts -Wcatch-value -Wcatch-value=@var{n} @gol
299 -Wclobbered -Wcomment -Wconditionally-supported @gol
300 -Wconversion -Wcoverage-mismatch -Wno-cpp -Wdangling-else -Wdate-time @gol
301 -Wdelete-incomplete @gol
302 -Wno-attribute-warning @gol
303 -Wno-deprecated -Wno-deprecated-declarations -Wno-designated-init @gol
304 -Wdisabled-optimization @gol
305 -Wno-discarded-qualifiers -Wno-discarded-array-qualifiers @gol
306 -Wno-div-by-zero -Wdouble-promotion @gol
307 -Wduplicated-branches -Wduplicated-cond @gol
308 -Wempty-body -Wenum-compare -Wno-endif-labels -Wexpansion-to-defined @gol
309 -Werror -Werror=* -Wextra-semi -Wfatal-errors @gol
310 -Wfloat-equal -Wformat -Wformat=2 @gol
311 -Wno-format-contains-nul -Wno-format-extra-args @gol
312 -Wformat-nonliteral -Wformat-overflow=@var{n} @gol
313 -Wformat-security -Wformat-signedness -Wformat-truncation=@var{n} @gol
314 -Wformat-y2k -Wframe-address @gol
315 -Wframe-larger-than=@var{byte-size} -Wno-free-nonheap-object @gol
316 -Wjump-misses-init @gol
317 -Whsa -Wif-not-aligned @gol
318 -Wignored-qualifiers -Wignored-attributes -Wincompatible-pointer-types @gol
319 -Wimplicit -Wimplicit-fallthrough -Wimplicit-fallthrough=@var{n} @gol
320 -Wimplicit-function-declaration -Wimplicit-int @gol
321 -Winaccessible-base @gol
322 -Winit-self -Winline -Wno-int-conversion -Wint-in-bool-context @gol
323 -Wno-int-to-pointer-cast -Winvalid-memory-model -Wno-invalid-offsetof @gol
324 -Winvalid-pch -Wlarger-than=@var{byte-size} @gol
325 -Wlogical-op -Wlogical-not-parentheses -Wlong-long @gol
326 -Wmain -Wmaybe-uninitialized -Wmemset-elt-size -Wmemset-transposed-args @gol
327 -Wmisleading-indentation -Wmissing-attributes -Wmissing-braces @gol
328 -Wmissing-field-initializers -Wmissing-format-attribute @gol
329 -Wmissing-include-dirs -Wmissing-noreturn -Wmissing-profile @gol
330 -Wno-multichar -Wmultistatement-macros -Wnonnull -Wnonnull-compare @gol
331 -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]} @gol
332 -Wnull-dereference -Wodr -Wno-overflow -Wopenmp-simd @gol
333 -Woverride-init-side-effects -Woverlength-strings @gol
334 -Wpacked -Wpacked-bitfield-compat -Wpacked-not-aligned -Wpadded @gol
335 -Wparentheses -Wno-pedantic-ms-format @gol
336 -Wplacement-new -Wplacement-new=@var{n} @gol
337 -Wpointer-arith -Wpointer-compare -Wno-pointer-to-int-cast @gol
338 -Wno-pragmas -Wno-prio-ctor-dtor -Wredundant-decls @gol
339 -Wrestrict -Wno-return-local-addr @gol
340 -Wreturn-type -Wsequence-point -Wshadow -Wno-shadow-ivar @gol
341 -Wshadow=global, -Wshadow=local, -Wshadow=compatible-local @gol
342 -Wshift-overflow -Wshift-overflow=@var{n} @gol
343 -Wshift-count-negative -Wshift-count-overflow -Wshift-negative-value @gol
344 -Wsign-compare -Wsign-conversion -Wfloat-conversion @gol
345 -Wno-scalar-storage-order -Wsizeof-pointer-div @gol
346 -Wsizeof-pointer-memaccess -Wsizeof-array-argument @gol
347 -Wstack-protector -Wstack-usage=@var{byte-size} -Wstrict-aliasing @gol
348 -Wstrict-aliasing=n -Wstrict-overflow -Wstrict-overflow=@var{n} @gol
349 -Wstringop-overflow=@var{n} -Wstringop-truncation -Wsubobject-linkage @gol
350 -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{|}malloc@r{]} @gol
351 -Wsuggest-final-types @gol -Wsuggest-final-methods -Wsuggest-override @gol
352 -Wswitch -Wswitch-bool -Wswitch-default -Wswitch-enum @gol
353 -Wswitch-unreachable -Wsync-nand @gol
354 -Wsystem-headers -Wtautological-compare -Wtrampolines -Wtrigraphs @gol
355 -Wtype-limits -Wundef @gol
356 -Wuninitialized -Wunknown-pragmas @gol
357 -Wunsuffixed-float-constants -Wunused -Wunused-function @gol
358 -Wunused-label -Wunused-local-typedefs -Wunused-macros @gol
359 -Wunused-parameter -Wno-unused-result @gol
360 -Wunused-value -Wunused-variable @gol
361 -Wunused-const-variable -Wunused-const-variable=@var{n} @gol
362 -Wunused-but-set-parameter -Wunused-but-set-variable @gol
363 -Wuseless-cast -Wvariadic-macros -Wvector-operation-performance @gol
364 -Wvla -Wvla-larger-than=@var{byte-size} -Wvolatile-register-var @gol
365 -Wwrite-strings @gol
366 -Wzero-as-null-pointer-constant}
367
368 @item C and Objective-C-only Warning Options
369 @gccoptlist{-Wbad-function-cast -Wmissing-declarations @gol
370 -Wmissing-parameter-type -Wmissing-prototypes -Wnested-externs @gol
371 -Wold-style-declaration -Wold-style-definition @gol
372 -Wstrict-prototypes -Wtraditional -Wtraditional-conversion @gol
373 -Wdeclaration-after-statement -Wpointer-sign}
374
375 @item Debugging Options
376 @xref{Debugging Options,,Options for Debugging Your Program}.
377 @gccoptlist{-g -g@var{level} -gdwarf -gdwarf-@var{version} @gol
378 -ggdb -grecord-gcc-switches -gno-record-gcc-switches @gol
379 -gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf @gol
380 -gas-loc-support -gno-as-loc-support @gol
381 -gas-locview-support -gno-as-locview-support @gol
382 -gcolumn-info -gno-column-info @gol
383 -gstatement-frontiers -gno-statement-frontiers @gol
384 -gvariable-location-views -gno-variable-location-views @gol
385 -ginternal-reset-location-views -gno-internal-reset-location-views @gol
386 -ginline-points -gno-inline-points @gol
387 -gvms -gxcoff -gxcoff+ -gz@r{[}=@var{type}@r{]} @gol
388 -gsplit-dwarf -gdescribe-dies -gno-describe-dies @gol
389 -fdebug-prefix-map=@var{old}=@var{new} -fdebug-types-section @gol
390 -fno-eliminate-unused-debug-types @gol
391 -femit-struct-debug-baseonly -femit-struct-debug-reduced @gol
392 -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]} @gol
393 -fno-eliminate-unused-debug-symbols -femit-class-debug-always @gol
394 -fno-merge-debug-strings -fno-dwarf2-cfi-asm @gol
395 -fvar-tracking -fvar-tracking-assignments}
396
397 @item Optimization Options
398 @xref{Optimize Options,,Options that Control Optimization}.
399 @gccoptlist{-faggressive-loop-optimizations @gol
400 -falign-functions[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]] @gol
401 -falign-jumps[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]] @gol
402 -falign-labels[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]] @gol
403 -falign-loops[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]] @gol
404 -fassociative-math -fauto-profile -fauto-profile[=@var{path}] @gol
405 -fauto-inc-dec -fbranch-probabilities @gol
406 -fbranch-target-load-optimize -fbranch-target-load-optimize2 @gol
407 -fbtr-bb-exclusive -fcaller-saves @gol
408 -fcombine-stack-adjustments -fconserve-stack @gol
409 -fcompare-elim -fcprop-registers -fcrossjumping @gol
410 -fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules @gol
411 -fcx-limited-range @gol
412 -fdata-sections -fdce -fdelayed-branch @gol
413 -fdelete-null-pointer-checks -fdevirtualize -fdevirtualize-speculatively @gol
414 -fdevirtualize-at-ltrans -fdse @gol
415 -fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects @gol
416 -ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=@var{style} @gol
417 -ffinite-loops @gol
418 -fforward-propagate -ffp-contract=@var{style} -ffunction-sections @gol
419 -fgcse -fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity @gol
420 -fgcse-sm -fhoist-adjacent-loads -fif-conversion @gol
421 -fif-conversion2 -findirect-inlining @gol
422 -finline-functions -finline-functions-called-once -finline-limit=@var{n} @gol
423 -finline-small-functions -fipa-cp -fipa-cp-clone @gol
424 -fipa-bit-cp -fipa-vrp -fipa-pta -fipa-profile -fipa-pure-const @gol
425 -fipa-reference -fipa-reference-addressable @gol
426 -fipa-stack-alignment -fipa-icf -fira-algorithm=@var{algorithm} @gol
427 -flive-patching=@var{level} @gol
428 -fira-region=@var{region} -fira-hoist-pressure @gol
429 -fira-loop-pressure -fno-ira-share-save-slots @gol
430 -fno-ira-share-spill-slots @gol
431 -fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute @gol
432 -fivopts -fkeep-inline-functions -fkeep-static-functions @gol
433 -fkeep-static-consts -flimit-function-alignment -flive-range-shrinkage @gol
434 -floop-block -floop-interchange -floop-strip-mine @gol
435 -floop-unroll-and-jam -floop-nest-optimize @gol
436 -floop-parallelize-all -flra-remat -flto -flto-compression-level @gol
437 -flto-partition=@var{alg} -fmerge-all-constants @gol
438 -fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves @gol
439 -fmove-loop-invariants -fno-branch-count-reg @gol
440 -fno-defer-pop -fno-fp-int-builtin-inexact -fno-function-cse @gol
441 -fno-guess-branch-probability -fno-inline -fno-math-errno -fno-peephole @gol
442 -fno-peephole2 -fno-printf-return-value -fno-sched-interblock @gol
443 -fno-sched-spec -fno-signed-zeros @gol
444 -fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss @gol
445 -fomit-frame-pointer -foptimize-sibling-calls @gol
446 -fpartial-inlining -fpeel-loops -fpredictive-commoning @gol
447 -fprefetch-loop-arrays @gol
448 -fprofile-correction @gol
449 -fprofile-use -fprofile-use=@var{path} -fprofile-values @gol
450 -fprofile-reorder-functions @gol
451 -freciprocal-math -free -frename-registers -freorder-blocks @gol
452 -freorder-blocks-algorithm=@var{algorithm} @gol
453 -freorder-blocks-and-partition -freorder-functions @gol
454 -frerun-cse-after-loop -freschedule-modulo-scheduled-loops @gol
455 -frounding-math -fsave-optimization-record @gol
456 -fsched2-use-superblocks -fsched-pressure @gol
457 -fsched-spec-load -fsched-spec-load-dangerous @gol
458 -fsched-stalled-insns-dep[=@var{n}] -fsched-stalled-insns[=@var{n}] @gol
459 -fsched-group-heuristic -fsched-critical-path-heuristic @gol
460 -fsched-spec-insn-heuristic -fsched-rank-heuristic @gol
461 -fsched-last-insn-heuristic -fsched-dep-count-heuristic @gol
462 -fschedule-fusion @gol
463 -fschedule-insns -fschedule-insns2 -fsection-anchors @gol
464 -fselective-scheduling -fselective-scheduling2 @gol
465 -fsel-sched-pipelining -fsel-sched-pipelining-outer-loops @gol
466 -fsemantic-interposition -fshrink-wrap -fshrink-wrap-separate @gol
467 -fsignaling-nans @gol
468 -fsingle-precision-constant -fsplit-ivs-in-unroller -fsplit-loops@gol
469 -fsplit-paths @gol
470 -fsplit-wide-types -fsplit-wide-types-early -fssa-backprop -fssa-phiopt @gol
471 -fstdarg-opt -fstore-merging -fstrict-aliasing @gol
472 -fthread-jumps -ftracer -ftree-bit-ccp @gol
473 -ftree-builtin-call-dce -ftree-ccp -ftree-ch @gol
474 -ftree-coalesce-vars -ftree-copy-prop -ftree-dce -ftree-dominator-opts @gol
475 -ftree-dse -ftree-forwprop -ftree-fre -fcode-hoisting @gol
476 -ftree-loop-if-convert -ftree-loop-im @gol
477 -ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns @gol
478 -ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize @gol
479 -ftree-loop-vectorize @gol
480 -ftree-parallelize-loops=@var{n} -ftree-pre -ftree-partial-pre -ftree-pta @gol
481 -ftree-reassoc -ftree-scev-cprop -ftree-sink -ftree-slsr -ftree-sra @gol
482 -ftree-switch-conversion -ftree-tail-merge @gol
483 -ftree-ter -ftree-vectorize -ftree-vrp -funconstrained-commons @gol
484 -funit-at-a-time -funroll-all-loops -funroll-loops @gol
485 -funsafe-math-optimizations -funswitch-loops @gol
486 -fipa-ra -fvariable-expansion-in-unroller -fvect-cost-model -fvpt @gol
487 -fweb -fwhole-program -fwpa -fuse-linker-plugin @gol
488 --param @var{name}=@var{value}
489 -O -O0 -O1 -O2 -O3 -Os -Ofast -Og}
490
491 @item Program Instrumentation Options
492 @xref{Instrumentation Options,,Program Instrumentation Options}.
493 @gccoptlist{-p -pg -fprofile-arcs --coverage -ftest-coverage @gol
494 -fprofile-abs-path @gol
495 -fprofile-dir=@var{path} -fprofile-generate -fprofile-generate=@var{path} @gol
496 -fprofile-note=@var{path} -fprofile-update=@var{method} @gol
497 -fprofile-filter-files=@var{regex} -fprofile-exclude-files=@var{regex} @gol
498 -fsanitize=@var{style} -fsanitize-recover -fsanitize-recover=@var{style} @gol
499 -fasan-shadow-offset=@var{number} -fsanitize-sections=@var{s1},@var{s2},... @gol
500 -fsanitize-undefined-trap-on-error -fbounds-check @gol
501 -fcf-protection=@r{[}full@r{|}branch@r{|}return@r{|}none@r{]} @gol
502 -fstack-protector -fstack-protector-all -fstack-protector-strong @gol
503 -fstack-protector-explicit -fstack-check @gol
504 -fstack-limit-register=@var{reg} -fstack-limit-symbol=@var{sym} @gol
505 -fno-stack-limit -fsplit-stack @gol
506 -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]} @gol
507 -fvtv-counts -fvtv-debug @gol
508 -finstrument-functions @gol
509 -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{} @gol
510 -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}}
511
512 @item Preprocessor Options
513 @xref{Preprocessor Options,,Options Controlling the Preprocessor}.
514 @gccoptlist{-A@var{question}=@var{answer} @gol
515 -A-@var{question}@r{[}=@var{answer}@r{]} @gol
516 -C -CC -D@var{macro}@r{[}=@var{defn}@r{]} @gol
517 -dD -dI -dM -dN -dU @gol
518 -fdebug-cpp -fdirectives-only -fdollars-in-identifiers @gol
519 -fexec-charset=@var{charset} -fextended-identifiers @gol
520 -finput-charset=@var{charset} -fmacro-prefix-map=@var{old}=@var{new} @gol
521 -fmax-include-depth=@var{depth} @gol
522 -fno-canonical-system-headers -fpch-deps -fpch-preprocess @gol
523 -fpreprocessed -ftabstop=@var{width} -ftrack-macro-expansion @gol
524 -fwide-exec-charset=@var{charset} -fworking-directory @gol
525 -H -imacros @var{file} -include @var{file} @gol
526 -M -MD -MF -MG -MM -MMD -MP -MQ -MT @gol
527 -no-integrated-cpp -P -pthread -remap @gol
528 -traditional -traditional-cpp -trigraphs @gol
529 -U@var{macro} -undef @gol
530 -Wp,@var{option} -Xpreprocessor @var{option}}
531
532 @item Assembler Options
533 @xref{Assembler Options,,Passing Options to the Assembler}.
534 @gccoptlist{-Wa,@var{option} -Xassembler @var{option}}
535
536 @item Linker Options
537 @xref{Link Options,,Options for Linking}.
538 @gccoptlist{@var{object-file-name} -fuse-ld=@var{linker} -l@var{library} @gol
539 -nostartfiles -nodefaultlibs -nolibc -nostdlib @gol
540 -e @var{entry} --entry=@var{entry} @gol
541 -pie -pthread -r -rdynamic @gol
542 -s -static -static-pie -static-libgcc -static-libstdc++ @gol
543 -static-libasan -static-libtsan -static-liblsan -static-libubsan @gol
544 -shared -shared-libgcc -symbolic @gol
545 -T @var{script} -Wl,@var{option} -Xlinker @var{option} @gol
546 -u @var{symbol} -z @var{keyword}}
547
548 @item Directory Options
549 @xref{Directory Options,,Options for Directory Search}.
550 @gccoptlist{-B@var{prefix} -I@var{dir} -I- @gol
551 -idirafter @var{dir} @gol
552 -imacros @var{file} -imultilib @var{dir} @gol
553 -iplugindir=@var{dir} -iprefix @var{file} @gol
554 -iquote @var{dir} -isysroot @var{dir} -isystem @var{dir} @gol
555 -iwithprefix @var{dir} -iwithprefixbefore @var{dir} @gol
556 -L@var{dir} -no-canonical-prefixes --no-sysroot-suffix @gol
557 -nostdinc -nostdinc++ --sysroot=@var{dir}}
558
559 @item Code Generation Options
560 @xref{Code Gen Options,,Options for Code Generation Conventions}.
561 @gccoptlist{-fcall-saved-@var{reg} -fcall-used-@var{reg} @gol
562 -ffixed-@var{reg} -fexceptions @gol
563 -fnon-call-exceptions -fdelete-dead-exceptions -funwind-tables @gol
564 -fasynchronous-unwind-tables @gol
565 -fno-gnu-unique @gol
566 -finhibit-size-directive -fno-common -fno-ident @gol
567 -fpcc-struct-return -fpic -fPIC -fpie -fPIE -fno-plt @gol
568 -fno-jump-tables @gol
569 -frecord-gcc-switches @gol
570 -freg-struct-return -fshort-enums -fshort-wchar @gol
571 -fverbose-asm -fpack-struct[=@var{n}] @gol
572 -fleading-underscore -ftls-model=@var{model} @gol
573 -fstack-reuse=@var{reuse_level} @gol
574 -ftrampolines -ftrapv -fwrapv @gol
575 -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]} @gol
576 -fstrict-volatile-bitfields -fsync-libcalls}
577
578 @item Developer Options
579 @xref{Developer Options,,GCC Developer Options}.
580 @gccoptlist{-d@var{letters} -dumpspecs -dumpmachine -dumpversion @gol
581 -dumpfullversion -fchecking -fchecking=@var{n} -fdbg-cnt-list @gol
582 -fdbg-cnt=@var{counter-value-list} @gol
583 -fdisable-ipa-@var{pass_name} @gol
584 -fdisable-rtl-@var{pass_name} @gol
585 -fdisable-rtl-@var{pass-name}=@var{range-list} @gol
586 -fdisable-tree-@var{pass_name} @gol
587 -fdisable-tree-@var{pass-name}=@var{range-list} @gol
588 -fdump-debug -fdump-earlydebug @gol
589 -fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links @gol
590 -fdump-final-insns@r{[}=@var{file}@r{]} @gol
591 -fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline @gol
592 -fdump-lang-all @gol
593 -fdump-lang-@var{switch} @gol
594 -fdump-lang-@var{switch}-@var{options} @gol
595 -fdump-lang-@var{switch}-@var{options}=@var{filename} @gol
596 -fdump-passes @gol
597 -fdump-rtl-@var{pass} -fdump-rtl-@var{pass}=@var{filename} @gol
598 -fdump-statistics @gol
599 -fdump-tree-all @gol
600 -fdump-tree-@var{switch} @gol
601 -fdump-tree-@var{switch}-@var{options} @gol
602 -fdump-tree-@var{switch}-@var{options}=@var{filename} @gol
603 -fcompare-debug@r{[}=@var{opts}@r{]} -fcompare-debug-second @gol
604 -fenable-@var{kind}-@var{pass} @gol
605 -fenable-@var{kind}-@var{pass}=@var{range-list} @gol
606 -fira-verbose=@var{n} @gol
607 -flto-report -flto-report-wpa -fmem-report-wpa @gol
608 -fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report @gol
609 -fopt-info -fopt-info-@var{options}@r{[}=@var{file}@r{]} @gol
610 -fprofile-report @gol
611 -frandom-seed=@var{string} -fsched-verbose=@var{n} @gol
612 -fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose @gol
613 -fstats -fstack-usage -ftime-report -ftime-report-details @gol
614 -fvar-tracking-assignments-toggle -gtoggle @gol
615 -print-file-name=@var{library} -print-libgcc-file-name @gol
616 -print-multi-directory -print-multi-lib -print-multi-os-directory @gol
617 -print-prog-name=@var{program} -print-search-dirs -Q @gol
618 -print-sysroot -print-sysroot-headers-suffix @gol
619 -save-temps -save-temps=cwd -save-temps=obj -time@r{[}=@var{file}@r{]}}
620
621 @item Machine-Dependent Options
622 @xref{Submodel Options,,Machine-Dependent Options}.
623 @c This list is ordered alphanumerically by subsection name.
624 @c Try and put the significant identifier (CPU or system) first,
625 @c so users have a clue at guessing where the ones they want will be.
626
627 @emph{AArch64 Options}
628 @gccoptlist{-mabi=@var{name} -mbig-endian -mlittle-endian @gol
629 -mgeneral-regs-only @gol
630 -mcmodel=tiny -mcmodel=small -mcmodel=large @gol
631 -mstrict-align -mno-strict-align @gol
632 -momit-leaf-frame-pointer @gol
633 -mtls-dialect=desc -mtls-dialect=traditional @gol
634 -mtls-size=@var{size} @gol
635 -mfix-cortex-a53-835769 -mfix-cortex-a53-843419 @gol
636 -mlow-precision-recip-sqrt -mlow-precision-sqrt -mlow-precision-div @gol
637 -mpc-relative-literal-loads @gol
638 -msign-return-address=@var{scope} @gol
639 -mbranch-protection=@var{none}|@var{standard}|@var{pac-ret}[+@var{leaf}
640 +@var{b-key}]|@var{bti} @gol
641 -march=@var{name} -mcpu=@var{name} -mtune=@var{name} @gol
642 -moverride=@var{string} -mverbose-cost-dump @gol
643 -mstack-protector-guard=@var{guard} -mstack-protector-guard-reg=@var{sysreg} @gol
644 -mstack-protector-guard-offset=@var{offset} -mtrack-speculation }
645
646 @emph{Adapteva Epiphany Options}
647 @gccoptlist{-mhalf-reg-file -mprefer-short-insn-regs @gol
648 -mbranch-cost=@var{num} -mcmove -mnops=@var{num} -msoft-cmpsf @gol
649 -msplit-lohi -mpost-inc -mpost-modify -mstack-offset=@var{num} @gol
650 -mround-nearest -mlong-calls -mshort-calls -msmall16 @gol
651 -mfp-mode=@var{mode} -mvect-double -max-vect-align=@var{num} @gol
652 -msplit-vecmove-early -m1reg-@var{reg}}
653
654 @emph{AMD GCN Options}
655 @gccoptlist{-march=@var{gpu} -mtune=@var{gpu} -mstack-size=@var{bytes}}
656
657 @emph{ARC Options}
658 @gccoptlist{-mbarrel-shifter -mjli-always @gol
659 -mcpu=@var{cpu} -mA6 -mARC600 -mA7 -mARC700 @gol
660 -mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr @gol
661 -mea -mno-mpy -mmul32x16 -mmul64 -matomic @gol
662 -mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float -mswap @gol
663 -mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape @gol
664 -mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof @gol
665 -mlong-calls -mmedium-calls -msdata -mirq-ctrl-saved @gol
666 -mrgf-banked-regs -mlpc-width=@var{width} -G @var{num} @gol
667 -mvolatile-cache -mtp-regno=@var{regno} @gol
668 -malign-call -mauto-modify-reg -mbbit-peephole -mno-brcc @gol
669 -mcase-vector-pcrel -mcompact-casesi -mno-cond-exec -mearly-cbranchsi @gol
670 -mexpand-adddi -mindexed-loads -mlra -mlra-priority-none @gol
671 -mlra-priority-compact mlra-priority-noncompact -mmillicode @gol
672 -mmixed-code -mq-class -mRcq -mRcw -msize-level=@var{level} @gol
673 -mtune=@var{cpu} -mmultcost=@var{num} -mcode-density-frame @gol
674 -munalign-prob-threshold=@var{probability} -mmpy-option=@var{multo} @gol
675 -mdiv-rem -mcode-density -mll64 -mfpu=@var{fpu} -mrf16 -mbranch-index}
676
677 @emph{ARM Options}
678 @gccoptlist{-mapcs-frame -mno-apcs-frame @gol
679 -mabi=@var{name} @gol
680 -mapcs-stack-check -mno-apcs-stack-check @gol
681 -mapcs-reentrant -mno-apcs-reentrant @gol
682 -mgeneral-regs-only @gol
683 -msched-prolog -mno-sched-prolog @gol
684 -mlittle-endian -mbig-endian @gol
685 -mbe8 -mbe32 @gol
686 -mfloat-abi=@var{name} @gol
687 -mfp16-format=@var{name}
688 -mthumb-interwork -mno-thumb-interwork @gol
689 -mcpu=@var{name} -march=@var{name} -mfpu=@var{name} @gol
690 -mtune=@var{name} -mprint-tune-info @gol
691 -mstructure-size-boundary=@var{n} @gol
692 -mabort-on-noreturn @gol
693 -mlong-calls -mno-long-calls @gol
694 -msingle-pic-base -mno-single-pic-base @gol
695 -mpic-register=@var{reg} @gol
696 -mnop-fun-dllimport @gol
697 -mpoke-function-name @gol
698 -mthumb -marm -mflip-thumb @gol
699 -mtpcs-frame -mtpcs-leaf-frame @gol
700 -mcaller-super-interworking -mcallee-super-interworking @gol
701 -mtp=@var{name} -mtls-dialect=@var{dialect} @gol
702 -mword-relocations @gol
703 -mfix-cortex-m3-ldrd @gol
704 -munaligned-access @gol
705 -mneon-for-64bits @gol
706 -mslow-flash-data @gol
707 -masm-syntax-unified @gol
708 -mrestrict-it @gol
709 -mverbose-cost-dump @gol
710 -mpure-code @gol
711 -mcmse}
712
713 @emph{AVR Options}
714 @gccoptlist{-mmcu=@var{mcu} -mabsdata -maccumulate-args @gol
715 -mbranch-cost=@var{cost} @gol
716 -mcall-prologues -mgas-isr-prologues -mint8 @gol
717 -mn_flash=@var{size} -mno-interrupts @gol
718 -mmain-is-OS_task -mrelax -mrmw -mstrict-X -mtiny-stack @gol
719 -mfract-convert-truncate @gol
720 -mshort-calls -nodevicelib @gol
721 -Waddr-space-convert -Wmisspelled-isr}
722
723 @emph{Blackfin Options}
724 @gccoptlist{-mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]} @gol
725 -msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer @gol
726 -mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly @gol
727 -mlow-64k -mno-low64k -mstack-check-l1 -mid-shared-library @gol
728 -mno-id-shared-library -mshared-library-id=@var{n} @gol
729 -mleaf-id-shared-library -mno-leaf-id-shared-library @gol
730 -msep-data -mno-sep-data -mlong-calls -mno-long-calls @gol
731 -mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram @gol
732 -micplb}
733
734 @emph{C6X Options}
735 @gccoptlist{-mbig-endian -mlittle-endian -march=@var{cpu} @gol
736 -msim -msdata=@var{sdata-type}}
737
738 @emph{CRIS Options}
739 @gccoptlist{-mcpu=@var{cpu} -march=@var{cpu} -mtune=@var{cpu} @gol
740 -mmax-stack-frame=@var{n} -melinux-stacksize=@var{n} @gol
741 -metrax4 -metrax100 -mpdebug -mcc-init -mno-side-effects @gol
742 -mstack-align -mdata-align -mconst-align @gol
743 -m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt @gol
744 -melf -maout -melinux -mlinux -sim -sim2 @gol
745 -mmul-bug-workaround -mno-mul-bug-workaround}
746
747 @emph{CR16 Options}
748 @gccoptlist{-mmac @gol
749 -mcr16cplus -mcr16c @gol
750 -msim -mint32 -mbit-ops
751 -mdata-model=@var{model}}
752
753 @emph{C-SKY Options}
754 @gccoptlist{-march=@var{arch} -mcpu=@var{cpu} @gol
755 -mbig-endian -EB -mlittle-endian -EL @gol
756 -mhard-float -msoft-float -mfpu=@var{fpu} -mdouble-float -mfdivdu @gol
757 -melrw -mistack -mmp -mcp -mcache -msecurity -mtrust @gol
758 -mdsp -medsp -mvdsp @gol
759 -mdiv -msmart -mhigh-registers -manchor @gol
760 -mpushpop -mmultiple-stld -mconstpool -mstack-size -mccrt @gol
761 -mbranch-cost=@var{n} -mcse-cc -msched-prolog}
762
763 @emph{Darwin Options}
764 @gccoptlist{-all_load -allowable_client -arch -arch_errors_fatal @gol
765 -arch_only -bind_at_load -bundle -bundle_loader @gol
766 -client_name -compatibility_version -current_version @gol
767 -dead_strip @gol
768 -dependency-file -dylib_file -dylinker_install_name @gol
769 -dynamic -dynamiclib -exported_symbols_list @gol
770 -filelist -flat_namespace -force_cpusubtype_ALL @gol
771 -force_flat_namespace -headerpad_max_install_names @gol
772 -iframework @gol
773 -image_base -init -install_name -keep_private_externs @gol
774 -multi_module -multiply_defined -multiply_defined_unused @gol
775 -noall_load -no_dead_strip_inits_and_terms @gol
776 -nofixprebinding -nomultidefs -noprebind -noseglinkedit @gol
777 -pagezero_size -prebind -prebind_all_twolevel_modules @gol
778 -private_bundle -read_only_relocs -sectalign @gol
779 -sectobjectsymbols -whyload -seg1addr @gol
780 -sectcreate -sectobjectsymbols -sectorder @gol
781 -segaddr -segs_read_only_addr -segs_read_write_addr @gol
782 -seg_addr_table -seg_addr_table_filename -seglinkedit @gol
783 -segprot -segs_read_only_addr -segs_read_write_addr @gol
784 -single_module -static -sub_library -sub_umbrella @gol
785 -twolevel_namespace -umbrella -undefined @gol
786 -unexported_symbols_list -weak_reference_mismatches @gol
787 -whatsloaded -F -gused -gfull -mmacosx-version-min=@var{version} @gol
788 -mkernel -mone-byte-bool}
789
790 @emph{DEC Alpha Options}
791 @gccoptlist{-mno-fp-regs -msoft-float @gol
792 -mieee -mieee-with-inexact -mieee-conformant @gol
793 -mfp-trap-mode=@var{mode} -mfp-rounding-mode=@var{mode} @gol
794 -mtrap-precision=@var{mode} -mbuild-constants @gol
795 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} @gol
796 -mbwx -mmax -mfix -mcix @gol
797 -mfloat-vax -mfloat-ieee @gol
798 -mexplicit-relocs -msmall-data -mlarge-data @gol
799 -msmall-text -mlarge-text @gol
800 -mmemory-latency=@var{time}}
801
802 @emph{FR30 Options}
803 @gccoptlist{-msmall-model -mno-lsim}
804
805 @emph{FT32 Options}
806 @gccoptlist{-msim -mlra -mnodiv -mft32b -mcompress -mnopm}
807
808 @emph{FRV Options}
809 @gccoptlist{-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64 @gol
810 -mhard-float -msoft-float @gol
811 -malloc-cc -mfixed-cc -mdword -mno-dword @gol
812 -mdouble -mno-double @gol
813 -mmedia -mno-media -mmuladd -mno-muladd @gol
814 -mfdpic -minline-plt -mgprel-ro -multilib-library-pic @gol
815 -mlinked-fp -mlong-calls -malign-labels @gol
816 -mlibrary-pic -macc-4 -macc-8 @gol
817 -mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move @gol
818 -moptimize-membar -mno-optimize-membar @gol
819 -mscc -mno-scc -mcond-exec -mno-cond-exec @gol
820 -mvliw-branch -mno-vliw-branch @gol
821 -mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec @gol
822 -mno-nested-cond-exec -mtomcat-stats @gol
823 -mTLS -mtls @gol
824 -mcpu=@var{cpu}}
825
826 @emph{GNU/Linux Options}
827 @gccoptlist{-mglibc -muclibc -mmusl -mbionic -mandroid @gol
828 -tno-android-cc -tno-android-ld}
829
830 @emph{H8/300 Options}
831 @gccoptlist{-mrelax -mh -ms -mn -mexr -mno-exr -mint32 -malign-300}
832
833 @emph{HPPA Options}
834 @gccoptlist{-march=@var{architecture-type} @gol
835 -mcaller-copies -mdisable-fpregs -mdisable-indexing @gol
836 -mfast-indirect-calls -mgas -mgnu-ld -mhp-ld @gol
837 -mfixed-range=@var{register-range} @gol
838 -mjump-in-delay -mlinker-opt -mlong-calls @gol
839 -mlong-load-store -mno-disable-fpregs @gol
840 -mno-disable-indexing -mno-fast-indirect-calls -mno-gas @gol
841 -mno-jump-in-delay -mno-long-load-store @gol
842 -mno-portable-runtime -mno-soft-float @gol
843 -mno-space-regs -msoft-float -mpa-risc-1-0 @gol
844 -mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime @gol
845 -mschedule=@var{cpu-type} -mspace-regs -msio -mwsio @gol
846 -munix=@var{unix-std} -nolibdld -static -threads}
847
848 @emph{IA-64 Options}
849 @gccoptlist{-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic @gol
850 -mvolatile-asm-stop -mregister-names -msdata -mno-sdata @gol
851 -mconstant-gp -mauto-pic -mfused-madd @gol
852 -minline-float-divide-min-latency @gol
853 -minline-float-divide-max-throughput @gol
854 -mno-inline-float-divide @gol
855 -minline-int-divide-min-latency @gol
856 -minline-int-divide-max-throughput @gol
857 -mno-inline-int-divide @gol
858 -minline-sqrt-min-latency -minline-sqrt-max-throughput @gol
859 -mno-inline-sqrt @gol
860 -mdwarf2-asm -mearly-stop-bits @gol
861 -mfixed-range=@var{register-range} -mtls-size=@var{tls-size} @gol
862 -mtune=@var{cpu-type} -milp32 -mlp64 @gol
863 -msched-br-data-spec -msched-ar-data-spec -msched-control-spec @gol
864 -msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec @gol
865 -msched-spec-ldc -msched-spec-control-ldc @gol
866 -msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns @gol
867 -msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path @gol
868 -msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost @gol
869 -msched-max-memory-insns-hard-limit -msched-max-memory-insns=@var{max-insns}}
870
871 @emph{LM32 Options}
872 @gccoptlist{-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled @gol
873 -msign-extend-enabled -muser-enabled}
874
875 @emph{M32R/D Options}
876 @gccoptlist{-m32r2 -m32rx -m32r @gol
877 -mdebug @gol
878 -malign-loops -mno-align-loops @gol
879 -missue-rate=@var{number} @gol
880 -mbranch-cost=@var{number} @gol
881 -mmodel=@var{code-size-model-type} @gol
882 -msdata=@var{sdata-type} @gol
883 -mno-flush-func -mflush-func=@var{name} @gol
884 -mno-flush-trap -mflush-trap=@var{number} @gol
885 -G @var{num}}
886
887 @emph{M32C Options}
888 @gccoptlist{-mcpu=@var{cpu} -msim -memregs=@var{number}}
889
890 @emph{M680x0 Options}
891 @gccoptlist{-march=@var{arch} -mcpu=@var{cpu} -mtune=@var{tune} @gol
892 -m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040 @gol
893 -m68060 -mcpu32 -m5200 -m5206e -m528x -m5307 -m5407 @gol
894 -mcfv4e -mbitfield -mno-bitfield -mc68000 -mc68020 @gol
895 -mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort @gol
896 -mno-short -mhard-float -m68881 -msoft-float -mpcrel @gol
897 -malign-int -mstrict-align -msep-data -mno-sep-data @gol
898 -mshared-library-id=n -mid-shared-library -mno-id-shared-library @gol
899 -mxgot -mno-xgot -mlong-jump-table-offsets}
900
901 @emph{MCore Options}
902 @gccoptlist{-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates @gol
903 -mno-relax-immediates -mwide-bitfields -mno-wide-bitfields @gol
904 -m4byte-functions -mno-4byte-functions -mcallgraph-data @gol
905 -mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim @gol
906 -mlittle-endian -mbig-endian -m210 -m340 -mstack-increment}
907
908 @emph{MeP Options}
909 @gccoptlist{-mabsdiff -mall-opts -maverage -mbased=@var{n} -mbitops @gol
910 -mc=@var{n} -mclip -mconfig=@var{name} -mcop -mcop32 -mcop64 -mivc2 @gol
911 -mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax @gol
912 -mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf @gol
913 -mtiny=@var{n}}
914
915 @emph{MicroBlaze Options}
916 @gccoptlist{-msoft-float -mhard-float -msmall-divides -mcpu=@var{cpu} @gol
917 -mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift @gol
918 -mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss @gol
919 -mxl-multiply-high -mxl-float-convert -mxl-float-sqrt @gol
920 -mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-@var{app-model} @gol
921 -mpic-data-is-text-relative}
922
923 @emph{MIPS Options}
924 @gccoptlist{-EL -EB -march=@var{arch} -mtune=@var{arch} @gol
925 -mips1 -mips2 -mips3 -mips4 -mips32 -mips32r2 -mips32r3 -mips32r5 @gol
926 -mips32r6 -mips64 -mips64r2 -mips64r3 -mips64r5 -mips64r6 @gol
927 -mips16 -mno-mips16 -mflip-mips16 @gol
928 -minterlink-compressed -mno-interlink-compressed @gol
929 -minterlink-mips16 -mno-interlink-mips16 @gol
930 -mabi=@var{abi} -mabicalls -mno-abicalls @gol
931 -mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot @gol
932 -mgp32 -mgp64 -mfp32 -mfpxx -mfp64 -mhard-float -msoft-float @gol
933 -mno-float -msingle-float -mdouble-float @gol
934 -modd-spreg -mno-odd-spreg @gol
935 -mabs=@var{mode} -mnan=@var{encoding} @gol
936 -mdsp -mno-dsp -mdspr2 -mno-dspr2 @gol
937 -mmcu -mmno-mcu @gol
938 -meva -mno-eva @gol
939 -mvirt -mno-virt @gol
940 -mxpa -mno-xpa @gol
941 -mcrc -mno-crc @gol
942 -mginv -mno-ginv @gol
943 -mmicromips -mno-micromips @gol
944 -mmsa -mno-msa @gol
945 -mloongson-mmi -mno-loongson-mmi @gol
946 -mloongson-ext -mno-loongson-ext @gol
947 -mloongson-ext2 -mno-loongson-ext2 @gol
948 -mfpu=@var{fpu-type} @gol
949 -msmartmips -mno-smartmips @gol
950 -mpaired-single -mno-paired-single -mdmx -mno-mdmx @gol
951 -mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc @gol
952 -mlong64 -mlong32 -msym32 -mno-sym32 @gol
953 -G@var{num} -mlocal-sdata -mno-local-sdata @gol
954 -mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt @gol
955 -membedded-data -mno-embedded-data @gol
956 -muninit-const-in-rodata -mno-uninit-const-in-rodata @gol
957 -mcode-readable=@var{setting} @gol
958 -msplit-addresses -mno-split-addresses @gol
959 -mexplicit-relocs -mno-explicit-relocs @gol
960 -mcheck-zero-division -mno-check-zero-division @gol
961 -mdivide-traps -mdivide-breaks @gol
962 -mload-store-pairs -mno-load-store-pairs @gol
963 -mmemcpy -mno-memcpy -mlong-calls -mno-long-calls @gol
964 -mmad -mno-mad -mimadd -mno-imadd -mfused-madd -mno-fused-madd -nocpp @gol
965 -mfix-24k -mno-fix-24k @gol
966 -mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400 @gol
967 -mfix-r5900 -mno-fix-r5900 @gol
968 -mfix-r10000 -mno-fix-r10000 -mfix-rm7000 -mno-fix-rm7000 @gol
969 -mfix-vr4120 -mno-fix-vr4120 @gol
970 -mfix-vr4130 -mno-fix-vr4130 -mfix-sb1 -mno-fix-sb1 @gol
971 -mflush-func=@var{func} -mno-flush-func @gol
972 -mbranch-cost=@var{num} -mbranch-likely -mno-branch-likely @gol
973 -mcompact-branches=@var{policy} @gol
974 -mfp-exceptions -mno-fp-exceptions @gol
975 -mvr4130-align -mno-vr4130-align -msynci -mno-synci @gol
976 -mlxc1-sxc1 -mno-lxc1-sxc1 -mmadd4 -mno-madd4 @gol
977 -mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address @gol
978 -mframe-header-opt -mno-frame-header-opt}
979
980 @emph{MMIX Options}
981 @gccoptlist{-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu @gol
982 -mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols @gol
983 -melf -mbranch-predict -mno-branch-predict -mbase-addresses @gol
984 -mno-base-addresses -msingle-exit -mno-single-exit}
985
986 @emph{MN10300 Options}
987 @gccoptlist{-mmult-bug -mno-mult-bug @gol
988 -mno-am33 -mam33 -mam33-2 -mam34 @gol
989 -mtune=@var{cpu-type} @gol
990 -mreturn-pointer-on-d0 @gol
991 -mno-crt0 -mrelax -mliw -msetlb}
992
993 @emph{Moxie Options}
994 @gccoptlist{-meb -mel -mmul.x -mno-crt0}
995
996 @emph{MSP430 Options}
997 @gccoptlist{-msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax @gol
998 -mwarn-mcu @gol
999 -mcode-region= -mdata-region= @gol
1000 -msilicon-errata= -msilicon-errata-warn= @gol
1001 -mhwmult= -minrt}
1002
1003 @emph{NDS32 Options}
1004 @gccoptlist{-mbig-endian -mlittle-endian @gol
1005 -mreduced-regs -mfull-regs @gol
1006 -mcmov -mno-cmov @gol
1007 -mext-perf -mno-ext-perf @gol
1008 -mext-perf2 -mno-ext-perf2 @gol
1009 -mext-string -mno-ext-string @gol
1010 -mv3push -mno-v3push @gol
1011 -m16bit -mno-16bit @gol
1012 -misr-vector-size=@var{num} @gol
1013 -mcache-block-size=@var{num} @gol
1014 -march=@var{arch} @gol
1015 -mcmodel=@var{code-model} @gol
1016 -mctor-dtor -mrelax}
1017
1018 @emph{Nios II Options}
1019 @gccoptlist{-G @var{num} -mgpopt=@var{option} -mgpopt -mno-gpopt @gol
1020 -mgprel-sec=@var{regexp} -mr0rel-sec=@var{regexp} @gol
1021 -mel -meb @gol
1022 -mno-bypass-cache -mbypass-cache @gol
1023 -mno-cache-volatile -mcache-volatile @gol
1024 -mno-fast-sw-div -mfast-sw-div @gol
1025 -mhw-mul -mno-hw-mul -mhw-mulx -mno-hw-mulx -mno-hw-div -mhw-div @gol
1026 -mcustom-@var{insn}=@var{N} -mno-custom-@var{insn} @gol
1027 -mcustom-fpu-cfg=@var{name} @gol
1028 -mhal -msmallc -msys-crt0=@var{name} -msys-lib=@var{name} @gol
1029 -march=@var{arch} -mbmx -mno-bmx -mcdx -mno-cdx}
1030
1031 @emph{Nvidia PTX Options}
1032 @gccoptlist{-m32 -m64 -mmainkernel -moptimize}
1033
1034 @emph{OpenRISC Options}
1035 @gccoptlist{-mboard=@var{name} -mnewlib -mhard-mul -mhard-div @gol
1036 -msoft-mul -msoft-div @gol
1037 -mcmov -mror -msext -msfimm -mshftimm}
1038
1039 @emph{PDP-11 Options}
1040 @gccoptlist{-mfpu -msoft-float -mac0 -mno-ac0 -m40 -m45 -m10 @gol
1041 -mint32 -mno-int16 -mint16 -mno-int32 @gol
1042 -msplit -munix-asm -mdec-asm -mgnu-asm -mlra}
1043
1044 @emph{picoChip Options}
1045 @gccoptlist{-mae=@var{ae_type} -mvliw-lookahead=@var{N} @gol
1046 -msymbol-as-address -mno-inefficient-warnings}
1047
1048 @emph{PowerPC Options}
1049 See RS/6000 and PowerPC Options.
1050
1051 @emph{PRU Options}
1052 @gccoptlist{-mmcu=@var{mcu} -minrt -mno-relax -mloop @gol
1053 -mabi=@var{variant} @gol}
1054
1055 @emph{RISC-V Options}
1056 @gccoptlist{-mbranch-cost=@var{N-instruction} @gol
1057 -mplt -mno-plt @gol
1058 -mabi=@var{ABI-string} @gol
1059 -mfdiv -mno-fdiv @gol
1060 -mdiv -mno-div @gol
1061 -march=@var{ISA-string} @gol
1062 -mtune=@var{processor-string} @gol
1063 -mpreferred-stack-boundary=@var{num} @gol
1064 -msmall-data-limit=@var{N-bytes} @gol
1065 -msave-restore -mno-save-restore @gol
1066 -mstrict-align -mno-strict-align @gol
1067 -mcmodel=medlow -mcmodel=medany @gol
1068 -mexplicit-relocs -mno-explicit-relocs @gol
1069 -mrelax -mno-relax @gol
1070 -mriscv-attribute -mmo-riscv-attribute}
1071
1072 @emph{RL78 Options}
1073 @gccoptlist{-msim -mmul=none -mmul=g13 -mmul=g14 -mallregs @gol
1074 -mcpu=g10 -mcpu=g13 -mcpu=g14 -mg10 -mg13 -mg14 @gol
1075 -m64bit-doubles -m32bit-doubles -msave-mduc-in-interrupts}
1076
1077 @emph{RS/6000 and PowerPC Options}
1078 @gccoptlist{-mcpu=@var{cpu-type} @gol
1079 -mtune=@var{cpu-type} @gol
1080 -mcmodel=@var{code-model} @gol
1081 -mpowerpc64 @gol
1082 -maltivec -mno-altivec @gol
1083 -mpowerpc-gpopt -mno-powerpc-gpopt @gol
1084 -mpowerpc-gfxopt -mno-powerpc-gfxopt @gol
1085 -mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mpopcntd -mno-popcntd @gol
1086 -mfprnd -mno-fprnd @gol
1087 -mcmpb -mno-cmpb -mhard-dfp -mno-hard-dfp @gol
1088 -mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc @gol
1089 -m64 -m32 -mxl-compat -mno-xl-compat -mpe @gol
1090 -malign-power -malign-natural @gol
1091 -msoft-float -mhard-float -mmultiple -mno-multiple @gol
1092 -mupdate -mno-update @gol
1093 -mavoid-indexed-addresses -mno-avoid-indexed-addresses @gol
1094 -mfused-madd -mno-fused-madd -mbit-align -mno-bit-align @gol
1095 -mstrict-align -mno-strict-align -mrelocatable @gol
1096 -mno-relocatable -mrelocatable-lib -mno-relocatable-lib @gol
1097 -mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian @gol
1098 -mdynamic-no-pic -mswdiv -msingle-pic-base @gol
1099 -mprioritize-restricted-insns=@var{priority} @gol
1100 -msched-costly-dep=@var{dependence_type} @gol
1101 -minsert-sched-nops=@var{scheme} @gol
1102 -mcall-aixdesc -mcall-eabi -mcall-freebsd @gol
1103 -mcall-linux -mcall-netbsd -mcall-openbsd @gol
1104 -mcall-sysv -mcall-sysv-eabi -mcall-sysv-noeabi @gol
1105 -mtraceback=@var{traceback_type} @gol
1106 -maix-struct-return -msvr4-struct-return @gol
1107 -mabi=@var{abi-type} -msecure-plt -mbss-plt @gol
1108 -mlongcall -mno-longcall -mpltseq -mno-pltseq @gol
1109 -mblock-move-inline-limit=@var{num} @gol
1110 -mblock-compare-inline-limit=@var{num} @gol
1111 -mblock-compare-inline-loop-limit=@var{num} @gol
1112 -mstring-compare-inline-limit=@var{num} @gol
1113 -misel -mno-isel @gol
1114 -mvrsave -mno-vrsave @gol
1115 -mmulhw -mno-mulhw @gol
1116 -mdlmzb -mno-dlmzb @gol
1117 -mprototype -mno-prototype @gol
1118 -msim -mmvme -mads -myellowknife -memb -msdata @gol
1119 -msdata=@var{opt} -mreadonly-in-sdata -mvxworks -G @var{num} @gol
1120 -mrecip -mrecip=@var{opt} -mno-recip -mrecip-precision @gol
1121 -mno-recip-precision @gol
1122 -mveclibabi=@var{type} -mfriz -mno-friz @gol
1123 -mpointers-to-nested-functions -mno-pointers-to-nested-functions @gol
1124 -msave-toc-indirect -mno-save-toc-indirect @gol
1125 -mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector @gol
1126 -mcrypto -mno-crypto -mhtm -mno-htm @gol
1127 -mquad-memory -mno-quad-memory @gol
1128 -mquad-memory-atomic -mno-quad-memory-atomic @gol
1129 -mcompat-align-parm -mno-compat-align-parm @gol
1130 -mfloat128 -mno-float128 -mfloat128-hardware -mno-float128-hardware @gol
1131 -mgnu-attribute -mno-gnu-attribute @gol
1132 -mstack-protector-guard=@var{guard} -mstack-protector-guard-reg=@var{reg} @gol
1133 -mstack-protector-guard-offset=@var{offset} -mpcrel -mno-pcrel}
1134
1135 @emph{RX Options}
1136 @gccoptlist{-m64bit-doubles -m32bit-doubles -fpu -nofpu@gol
1137 -mcpu=@gol
1138 -mbig-endian-data -mlittle-endian-data @gol
1139 -msmall-data @gol
1140 -msim -mno-sim@gol
1141 -mas100-syntax -mno-as100-syntax@gol
1142 -mrelax@gol
1143 -mmax-constant-size=@gol
1144 -mint-register=@gol
1145 -mpid@gol
1146 -mallow-string-insns -mno-allow-string-insns@gol
1147 -mjsr@gol
1148 -mno-warn-multiple-fast-interrupts@gol
1149 -msave-acc-in-interrupts}
1150
1151 @emph{S/390 and zSeries Options}
1152 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
1153 -mhard-float -msoft-float -mhard-dfp -mno-hard-dfp @gol
1154 -mlong-double-64 -mlong-double-128 @gol
1155 -mbackchain -mno-backchain -mpacked-stack -mno-packed-stack @gol
1156 -msmall-exec -mno-small-exec -mmvcle -mno-mvcle @gol
1157 -m64 -m31 -mdebug -mno-debug -mesa -mzarch @gol
1158 -mhtm -mvx -mzvector @gol
1159 -mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd @gol
1160 -mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard @gol
1161 -mhotpatch=@var{halfwords},@var{halfwords}}
1162
1163 @emph{Score Options}
1164 @gccoptlist{-meb -mel @gol
1165 -mnhwloop @gol
1166 -muls @gol
1167 -mmac @gol
1168 -mscore5 -mscore5u -mscore7 -mscore7d}
1169
1170 @emph{SH Options}
1171 @gccoptlist{-m1 -m2 -m2e @gol
1172 -m2a-nofpu -m2a-single-only -m2a-single -m2a @gol
1173 -m3 -m3e @gol
1174 -m4-nofpu -m4-single-only -m4-single -m4 @gol
1175 -m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al @gol
1176 -mb -ml -mdalign -mrelax @gol
1177 -mbigtable -mfmovd -mrenesas -mno-renesas -mnomacsave @gol
1178 -mieee -mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct @gol
1179 -mprefergot -musermode -multcost=@var{number} -mdiv=@var{strategy} @gol
1180 -mdivsi3_libfunc=@var{name} -mfixed-range=@var{register-range} @gol
1181 -maccumulate-outgoing-args @gol
1182 -matomic-model=@var{atomic-model} @gol
1183 -mbranch-cost=@var{num} -mzdcbranch -mno-zdcbranch @gol
1184 -mcbranch-force-delay-slot @gol
1185 -mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra @gol
1186 -mpretend-cmove -mtas}
1187
1188 @emph{Solaris 2 Options}
1189 @gccoptlist{-mclear-hwcap -mno-clear-hwcap -mimpure-text -mno-impure-text @gol
1190 -pthreads}
1191
1192 @emph{SPARC Options}
1193 @gccoptlist{-mcpu=@var{cpu-type} @gol
1194 -mtune=@var{cpu-type} @gol
1195 -mcmodel=@var{code-model} @gol
1196 -mmemory-model=@var{mem-model} @gol
1197 -m32 -m64 -mapp-regs -mno-app-regs @gol
1198 -mfaster-structs -mno-faster-structs -mflat -mno-flat @gol
1199 -mfpu -mno-fpu -mhard-float -msoft-float @gol
1200 -mhard-quad-float -msoft-quad-float @gol
1201 -mstack-bias -mno-stack-bias @gol
1202 -mstd-struct-return -mno-std-struct-return @gol
1203 -munaligned-doubles -mno-unaligned-doubles @gol
1204 -muser-mode -mno-user-mode @gol
1205 -mv8plus -mno-v8plus -mvis -mno-vis @gol
1206 -mvis2 -mno-vis2 -mvis3 -mno-vis3 @gol
1207 -mvis4 -mno-vis4 -mvis4b -mno-vis4b @gol
1208 -mcbcond -mno-cbcond -mfmaf -mno-fmaf -mfsmuld -mno-fsmuld @gol
1209 -mpopc -mno-popc -msubxc -mno-subxc @gol
1210 -mfix-at697f -mfix-ut699 -mfix-ut700 -mfix-gr712rc @gol
1211 -mlra -mno-lra}
1212
1213 @emph{SPU Options}
1214 @gccoptlist{-mwarn-reloc -merror-reloc @gol
1215 -msafe-dma -munsafe-dma @gol
1216 -mbranch-hints @gol
1217 -msmall-mem -mlarge-mem -mstdmain @gol
1218 -mfixed-range=@var{register-range} @gol
1219 -mea32 -mea64 @gol
1220 -maddress-space-conversion -mno-address-space-conversion @gol
1221 -mcache-size=@var{cache-size} @gol
1222 -matomic-updates -mno-atomic-updates}
1223
1224 @emph{System V Options}
1225 @gccoptlist{-Qy -Qn -YP,@var{paths} -Ym,@var{dir}}
1226
1227 @emph{TILE-Gx Options}
1228 @gccoptlist{-mcpu=CPU -m32 -m64 -mbig-endian -mlittle-endian @gol
1229 -mcmodel=@var{code-model}}
1230
1231 @emph{TILEPro Options}
1232 @gccoptlist{-mcpu=@var{cpu} -m32}
1233
1234 @emph{V850 Options}
1235 @gccoptlist{-mlong-calls -mno-long-calls -mep -mno-ep @gol
1236 -mprolog-function -mno-prolog-function -mspace @gol
1237 -mtda=@var{n} -msda=@var{n} -mzda=@var{n} @gol
1238 -mapp-regs -mno-app-regs @gol
1239 -mdisable-callt -mno-disable-callt @gol
1240 -mv850e2v3 -mv850e2 -mv850e1 -mv850es @gol
1241 -mv850e -mv850 -mv850e3v5 @gol
1242 -mloop @gol
1243 -mrelax @gol
1244 -mlong-jumps @gol
1245 -msoft-float @gol
1246 -mhard-float @gol
1247 -mgcc-abi @gol
1248 -mrh850-abi @gol
1249 -mbig-switch}
1250
1251 @emph{VAX Options}
1252 @gccoptlist{-mg -mgnu -munix}
1253
1254 @emph{Visium Options}
1255 @gccoptlist{-mdebug -msim -mfpu -mno-fpu -mhard-float -msoft-float @gol
1256 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} -msv-mode -muser-mode}
1257
1258 @emph{VMS Options}
1259 @gccoptlist{-mvms-return-codes -mdebug-main=@var{prefix} -mmalloc64 @gol
1260 -mpointer-size=@var{size}}
1261
1262 @emph{VxWorks Options}
1263 @gccoptlist{-mrtp -non-static -Bstatic -Bdynamic @gol
1264 -Xbind-lazy -Xbind-now}
1265
1266 @emph{x86 Options}
1267 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
1268 -mtune-ctrl=@var{feature-list} -mdump-tune-features -mno-default @gol
1269 -mfpmath=@var{unit} @gol
1270 -masm=@var{dialect} -mno-fancy-math-387 @gol
1271 -mno-fp-ret-in-387 -m80387 -mhard-float -msoft-float @gol
1272 -mno-wide-multiply -mrtd -malign-double @gol
1273 -mpreferred-stack-boundary=@var{num} @gol
1274 -mincoming-stack-boundary=@var{num} @gol
1275 -mcld -mcx16 -msahf -mmovbe -mcrc32 @gol
1276 -mrecip -mrecip=@var{opt} @gol
1277 -mvzeroupper -mprefer-avx128 -mprefer-vector-width=@var{opt} @gol
1278 -mmmx -msse -msse2 -msse3 -mssse3 -msse4.1 -msse4.2 -msse4 -mavx @gol
1279 -mavx2 -mavx512f -mavx512pf -mavx512er -mavx512cd -mavx512vl @gol
1280 -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi -msha -maes @gol
1281 -mpclmul -mfsgsbase -mrdrnd -mf16c -mfma -mpconfig -mwbnoinvd @gol
1282 -mptwrite -mprefetchwt1 -mclflushopt -mclwb -mxsavec -mxsaves @gol
1283 -msse4a -m3dnow -m3dnowa -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop @gol
1284 -madx -mlzcnt -mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm -mhle -mlwp @gol
1285 -mmwaitx -mclzero -mpku -mthreads -mgfni -mvaes -mwaitpkg @gol
1286 -mshstk -mmanual-endbr -mforce-indirect-call -mavx512vbmi2 -mavx512bf16 -menqcmd @gol
1287 -mvpclmulqdq -mavx512bitalg -mmovdiri -mmovdir64b -mavx512vpopcntdq @gol
1288 -mavx5124fmaps -mavx512vnni -mavx5124vnniw -mprfchw -mrdpid @gol
1289 -mrdseed -msgx -mavx512vp2intersect@gol
1290 -mcldemote -mms-bitfields -mno-align-stringops -minline-all-stringops @gol
1291 -minline-stringops-dynamically -mstringop-strategy=@var{alg} @gol
1292 -mmemcpy-strategy=@var{strategy} -mmemset-strategy=@var{strategy} @gol
1293 -mpush-args -maccumulate-outgoing-args -m128bit-long-double @gol
1294 -m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128 @gol
1295 -mregparm=@var{num} -msseregparm @gol
1296 -mveclibabi=@var{type} -mvect8-ret-in-mem @gol
1297 -mpc32 -mpc64 -mpc80 -mstackrealign @gol
1298 -momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs @gol
1299 -mcmodel=@var{code-model} -mabi=@var{name} -maddress-mode=@var{mode} @gol
1300 -m32 -m64 -mx32 -m16 -miamcu -mlarge-data-threshold=@var{num} @gol
1301 -msse2avx -mfentry -mrecord-mcount -mnop-mcount -m8bit-idiv @gol
1302 -minstrument-return=@var{type} -mfentry-name=@var{name} -mfentry-section=@var{name} @gol
1303 -mavx256-split-unaligned-load -mavx256-split-unaligned-store @gol
1304 -malign-data=@var{type} -mstack-protector-guard=@var{guard} @gol
1305 -mstack-protector-guard-reg=@var{reg} @gol
1306 -mstack-protector-guard-offset=@var{offset} @gol
1307 -mstack-protector-guard-symbol=@var{symbol} @gol
1308 -mgeneral-regs-only -mcall-ms2sysv-xlogues @gol
1309 -mindirect-branch=@var{choice} -mfunction-return=@var{choice} @gol
1310 -mindirect-branch-register}
1311
1312 @emph{x86 Windows Options}
1313 @gccoptlist{-mconsole -mcygwin -mno-cygwin -mdll @gol
1314 -mnop-fun-dllimport -mthread @gol
1315 -municode -mwin32 -mwindows -fno-set-stack-executable}
1316
1317 @emph{Xstormy16 Options}
1318 @gccoptlist{-msim}
1319
1320 @emph{Xtensa Options}
1321 @gccoptlist{-mconst16 -mno-const16 @gol
1322 -mfused-madd -mno-fused-madd @gol
1323 -mforce-no-pic @gol
1324 -mserialize-volatile -mno-serialize-volatile @gol
1325 -mtext-section-literals -mno-text-section-literals @gol
1326 -mauto-litpools -mno-auto-litpools @gol
1327 -mtarget-align -mno-target-align @gol
1328 -mlongcalls -mno-longcalls}
1329
1330 @emph{zSeries Options}
1331 See S/390 and zSeries Options.
1332 @end table
1333
1334
1335 @node Overall Options
1336 @section Options Controlling the Kind of Output
1337
1338 Compilation can involve up to four stages: preprocessing, compilation
1339 proper, assembly and linking, always in that order. GCC is capable of
1340 preprocessing and compiling several files either into several
1341 assembler input files, or into one assembler input file; then each
1342 assembler input file produces an object file, and linking combines all
1343 the object files (those newly compiled, and those specified as input)
1344 into an executable file.
1345
1346 @cindex file name suffix
1347 For any given input file, the file name suffix determines what kind of
1348 compilation is done:
1349
1350 @table @gcctabopt
1351 @item @var{file}.c
1352 C source code that must be preprocessed.
1353
1354 @item @var{file}.i
1355 C source code that should not be preprocessed.
1356
1357 @item @var{file}.ii
1358 C++ source code that should not be preprocessed.
1359
1360 @item @var{file}.m
1361 Objective-C source code. Note that you must link with the @file{libobjc}
1362 library to make an Objective-C program work.
1363
1364 @item @var{file}.mi
1365 Objective-C source code that should not be preprocessed.
1366
1367 @item @var{file}.mm
1368 @itemx @var{file}.M
1369 Objective-C++ source code. Note that you must link with the @file{libobjc}
1370 library to make an Objective-C++ program work. Note that @samp{.M} refers
1371 to a literal capital M@.
1372
1373 @item @var{file}.mii
1374 Objective-C++ source code that should not be preprocessed.
1375
1376 @item @var{file}.h
1377 C, C++, Objective-C or Objective-C++ header file to be turned into a
1378 precompiled header (default), or C, C++ header file to be turned into an
1379 Ada spec (via the @option{-fdump-ada-spec} switch).
1380
1381 @item @var{file}.cc
1382 @itemx @var{file}.cp
1383 @itemx @var{file}.cxx
1384 @itemx @var{file}.cpp
1385 @itemx @var{file}.CPP
1386 @itemx @var{file}.c++
1387 @itemx @var{file}.C
1388 C++ source code that must be preprocessed. Note that in @samp{.cxx},
1389 the last two letters must both be literally @samp{x}. Likewise,
1390 @samp{.C} refers to a literal capital C@.
1391
1392 @item @var{file}.mm
1393 @itemx @var{file}.M
1394 Objective-C++ source code that must be preprocessed.
1395
1396 @item @var{file}.mii
1397 Objective-C++ source code that should not be preprocessed.
1398
1399 @item @var{file}.hh
1400 @itemx @var{file}.H
1401 @itemx @var{file}.hp
1402 @itemx @var{file}.hxx
1403 @itemx @var{file}.hpp
1404 @itemx @var{file}.HPP
1405 @itemx @var{file}.h++
1406 @itemx @var{file}.tcc
1407 C++ header file to be turned into a precompiled header or Ada spec.
1408
1409 @item @var{file}.f
1410 @itemx @var{file}.for
1411 @itemx @var{file}.ftn
1412 Fixed form Fortran source code that should not be preprocessed.
1413
1414 @item @var{file}.F
1415 @itemx @var{file}.FOR
1416 @itemx @var{file}.fpp
1417 @itemx @var{file}.FPP
1418 @itemx @var{file}.FTN
1419 Fixed form Fortran source code that must be preprocessed (with the traditional
1420 preprocessor).
1421
1422 @item @var{file}.f90
1423 @itemx @var{file}.f95
1424 @itemx @var{file}.f03
1425 @itemx @var{file}.f08
1426 Free form Fortran source code that should not be preprocessed.
1427
1428 @item @var{file}.F90
1429 @itemx @var{file}.F95
1430 @itemx @var{file}.F03
1431 @itemx @var{file}.F08
1432 Free form Fortran source code that must be preprocessed (with the
1433 traditional preprocessor).
1434
1435 @item @var{file}.go
1436 Go source code.
1437
1438 @item @var{file}.brig
1439 BRIG files (binary representation of HSAIL).
1440
1441 @item @var{file}.d
1442 D source code.
1443
1444 @item @var{file}.di
1445 D interface file.
1446
1447 @item @var{file}.dd
1448 D documentation code (Ddoc).
1449
1450 @item @var{file}.ads
1451 Ada source code file that contains a library unit declaration (a
1452 declaration of a package, subprogram, or generic, or a generic
1453 instantiation), or a library unit renaming declaration (a package,
1454 generic, or subprogram renaming declaration). Such files are also
1455 called @dfn{specs}.
1456
1457 @item @var{file}.adb
1458 Ada source code file containing a library unit body (a subprogram or
1459 package body). Such files are also called @dfn{bodies}.
1460
1461 @c GCC also knows about some suffixes for languages not yet included:
1462 @c Ratfor:
1463 @c @var{file}.r
1464
1465 @item @var{file}.s
1466 Assembler code.
1467
1468 @item @var{file}.S
1469 @itemx @var{file}.sx
1470 Assembler code that must be preprocessed.
1471
1472 @item @var{other}
1473 An object file to be fed straight into linking.
1474 Any file name with no recognized suffix is treated this way.
1475 @end table
1476
1477 @opindex x
1478 You can specify the input language explicitly with the @option{-x} option:
1479
1480 @table @gcctabopt
1481 @item -x @var{language}
1482 Specify explicitly the @var{language} for the following input files
1483 (rather than letting the compiler choose a default based on the file
1484 name suffix). This option applies to all following input files until
1485 the next @option{-x} option. Possible values for @var{language} are:
1486 @smallexample
1487 c c-header cpp-output
1488 c++ c++-header c++-cpp-output
1489 objective-c objective-c-header objective-c-cpp-output
1490 objective-c++ objective-c++-header objective-c++-cpp-output
1491 assembler assembler-with-cpp
1492 ada
1493 d
1494 f77 f77-cpp-input f95 f95-cpp-input
1495 go
1496 brig
1497 @end smallexample
1498
1499 @item -x none
1500 Turn off any specification of a language, so that subsequent files are
1501 handled according to their file name suffixes (as they are if @option{-x}
1502 has not been used at all).
1503 @end table
1504
1505 If you only want some of the stages of compilation, you can use
1506 @option{-x} (or filename suffixes) to tell @command{gcc} where to start, and
1507 one of the options @option{-c}, @option{-S}, or @option{-E} to say where
1508 @command{gcc} is to stop. Note that some combinations (for example,
1509 @samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all.
1510
1511 @table @gcctabopt
1512 @item -c
1513 @opindex c
1514 Compile or assemble the source files, but do not link. The linking
1515 stage simply is not done. The ultimate output is in the form of an
1516 object file for each source file.
1517
1518 By default, the object file name for a source file is made by replacing
1519 the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
1520
1521 Unrecognized input files, not requiring compilation or assembly, are
1522 ignored.
1523
1524 @item -S
1525 @opindex S
1526 Stop after the stage of compilation proper; do not assemble. The output
1527 is in the form of an assembler code file for each non-assembler input
1528 file specified.
1529
1530 By default, the assembler file name for a source file is made by
1531 replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
1532
1533 Input files that don't require compilation are ignored.
1534
1535 @item -E
1536 @opindex E
1537 Stop after the preprocessing stage; do not run the compiler proper. The
1538 output is in the form of preprocessed source code, which is sent to the
1539 standard output.
1540
1541 Input files that don't require preprocessing are ignored.
1542
1543 @cindex output file option
1544 @item -o @var{file}
1545 @opindex o
1546 Place output in file @var{file}. This applies to whatever
1547 sort of output is being produced, whether it be an executable file,
1548 an object file, an assembler file or preprocessed C code.
1549
1550 If @option{-o} is not specified, the default is to put an executable
1551 file in @file{a.out}, the object file for
1552 @file{@var{source}.@var{suffix}} in @file{@var{source}.o}, its
1553 assembler file in @file{@var{source}.s}, a precompiled header file in
1554 @file{@var{source}.@var{suffix}.gch}, and all preprocessed C source on
1555 standard output.
1556
1557 @item -v
1558 @opindex v
1559 Print (on standard error output) the commands executed to run the stages
1560 of compilation. Also print the version number of the compiler driver
1561 program and of the preprocessor and the compiler proper.
1562
1563 @item -###
1564 @opindex ###
1565 Like @option{-v} except the commands are not executed and arguments
1566 are quoted unless they contain only alphanumeric characters or @code{./-_}.
1567 This is useful for shell scripts to capture the driver-generated command lines.
1568
1569 @item --help
1570 @opindex help
1571 Print (on the standard output) a description of the command-line options
1572 understood by @command{gcc}. If the @option{-v} option is also specified
1573 then @option{--help} is also passed on to the various processes
1574 invoked by @command{gcc}, so that they can display the command-line options
1575 they accept. If the @option{-Wextra} option has also been specified
1576 (prior to the @option{--help} option), then command-line options that
1577 have no documentation associated with them are also displayed.
1578
1579 @item --target-help
1580 @opindex target-help
1581 Print (on the standard output) a description of target-specific command-line
1582 options for each tool. For some targets extra target-specific
1583 information may also be printed.
1584
1585 @item --help=@{@var{class}@r{|[}^@r{]}@var{qualifier}@}@r{[},@dots{}@r{]}
1586 Print (on the standard output) a description of the command-line
1587 options understood by the compiler that fit into all specified classes
1588 and qualifiers. These are the supported classes:
1589
1590 @table @asis
1591 @item @samp{optimizers}
1592 Display all of the optimization options supported by the
1593 compiler.
1594
1595 @item @samp{warnings}
1596 Display all of the options controlling warning messages
1597 produced by the compiler.
1598
1599 @item @samp{target}
1600 Display target-specific options. Unlike the
1601 @option{--target-help} option however, target-specific options of the
1602 linker and assembler are not displayed. This is because those
1603 tools do not currently support the extended @option{--help=} syntax.
1604
1605 @item @samp{params}
1606 Display the values recognized by the @option{--param}
1607 option.
1608
1609 @item @var{language}
1610 Display the options supported for @var{language}, where
1611 @var{language} is the name of one of the languages supported in this
1612 version of GCC@.
1613
1614 @item @samp{common}
1615 Display the options that are common to all languages.
1616 @end table
1617
1618 These are the supported qualifiers:
1619
1620 @table @asis
1621 @item @samp{undocumented}
1622 Display only those options that are undocumented.
1623
1624 @item @samp{joined}
1625 Display options taking an argument that appears after an equal
1626 sign in the same continuous piece of text, such as:
1627 @samp{--help=target}.
1628
1629 @item @samp{separate}
1630 Display options taking an argument that appears as a separate word
1631 following the original option, such as: @samp{-o output-file}.
1632 @end table
1633
1634 Thus for example to display all the undocumented target-specific
1635 switches supported by the compiler, use:
1636
1637 @smallexample
1638 --help=target,undocumented
1639 @end smallexample
1640
1641 The sense of a qualifier can be inverted by prefixing it with the
1642 @samp{^} character, so for example to display all binary warning
1643 options (i.e., ones that are either on or off and that do not take an
1644 argument) that have a description, use:
1645
1646 @smallexample
1647 --help=warnings,^joined,^undocumented
1648 @end smallexample
1649
1650 The argument to @option{--help=} should not consist solely of inverted
1651 qualifiers.
1652
1653 Combining several classes is possible, although this usually
1654 restricts the output so much that there is nothing to display. One
1655 case where it does work, however, is when one of the classes is
1656 @var{target}. For example, to display all the target-specific
1657 optimization options, use:
1658
1659 @smallexample
1660 --help=target,optimizers
1661 @end smallexample
1662
1663 The @option{--help=} option can be repeated on the command line. Each
1664 successive use displays its requested class of options, skipping
1665 those that have already been displayed. If @option{--help} is also
1666 specified anywhere on the command line then this takes precedence
1667 over any @option{--help=} option.
1668
1669 If the @option{-Q} option appears on the command line before the
1670 @option{--help=} option, then the descriptive text displayed by
1671 @option{--help=} is changed. Instead of describing the displayed
1672 options, an indication is given as to whether the option is enabled,
1673 disabled or set to a specific value (assuming that the compiler
1674 knows this at the point where the @option{--help=} option is used).
1675
1676 Here is a truncated example from the ARM port of @command{gcc}:
1677
1678 @smallexample
1679 % gcc -Q -mabi=2 --help=target -c
1680 The following options are target specific:
1681 -mabi= 2
1682 -mabort-on-noreturn [disabled]
1683 -mapcs [disabled]
1684 @end smallexample
1685
1686 The output is sensitive to the effects of previous command-line
1687 options, so for example it is possible to find out which optimizations
1688 are enabled at @option{-O2} by using:
1689
1690 @smallexample
1691 -Q -O2 --help=optimizers
1692 @end smallexample
1693
1694 Alternatively you can discover which binary optimizations are enabled
1695 by @option{-O3} by using:
1696
1697 @smallexample
1698 gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
1699 gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
1700 diff /tmp/O2-opts /tmp/O3-opts | grep enabled
1701 @end smallexample
1702
1703 @item --version
1704 @opindex version
1705 Display the version number and copyrights of the invoked GCC@.
1706
1707 @item -pass-exit-codes
1708 @opindex pass-exit-codes
1709 Normally the @command{gcc} program exits with the code of 1 if any
1710 phase of the compiler returns a non-success return code. If you specify
1711 @option{-pass-exit-codes}, the @command{gcc} program instead returns with
1712 the numerically highest error produced by any phase returning an error
1713 indication. The C, C++, and Fortran front ends return 4 if an internal
1714 compiler error is encountered.
1715
1716 @item -pipe
1717 @opindex pipe
1718 Use pipes rather than temporary files for communication between the
1719 various stages of compilation. This fails to work on some systems where
1720 the assembler is unable to read from a pipe; but the GNU assembler has
1721 no trouble.
1722
1723 @item -specs=@var{file}
1724 @opindex specs
1725 Process @var{file} after the compiler reads in the standard @file{specs}
1726 file, in order to override the defaults which the @command{gcc} driver
1727 program uses when determining what switches to pass to @command{cc1},
1728 @command{cc1plus}, @command{as}, @command{ld}, etc. More than one
1729 @option{-specs=@var{file}} can be specified on the command line, and they
1730 are processed in order, from left to right. @xref{Spec Files}, for
1731 information about the format of the @var{file}.
1732
1733 @item -wrapper
1734 @opindex wrapper
1735 Invoke all subcommands under a wrapper program. The name of the
1736 wrapper program and its parameters are passed as a comma separated
1737 list.
1738
1739 @smallexample
1740 gcc -c t.c -wrapper gdb,--args
1741 @end smallexample
1742
1743 @noindent
1744 This invokes all subprograms of @command{gcc} under
1745 @samp{gdb --args}, thus the invocation of @command{cc1} is
1746 @samp{gdb --args cc1 @dots{}}.
1747
1748 @item -ffile-prefix-map=@var{old}=@var{new}
1749 @opindex ffile-prefix-map
1750 When compiling files residing in directory @file{@var{old}}, record
1751 any references to them in the result of the compilation as if the
1752 files resided in directory @file{@var{new}} instead. Specifying this
1753 option is equivalent to specifying all the individual
1754 @option{-f*-prefix-map} options. This can be used to make reproducible
1755 builds that are location independent. See also
1756 @option{-fmacro-prefix-map} and @option{-fdebug-prefix-map}.
1757
1758 @item -fplugin=@var{name}.so
1759 @opindex fplugin
1760 Load the plugin code in file @var{name}.so, assumed to be a
1761 shared object to be dlopen'd by the compiler. The base name of
1762 the shared object file is used to identify the plugin for the
1763 purposes of argument parsing (See
1764 @option{-fplugin-arg-@var{name}-@var{key}=@var{value}} below).
1765 Each plugin should define the callback functions specified in the
1766 Plugins API.
1767
1768 @item -fplugin-arg-@var{name}-@var{key}=@var{value}
1769 @opindex fplugin-arg
1770 Define an argument called @var{key} with a value of @var{value}
1771 for the plugin called @var{name}.
1772
1773 @item -fdump-ada-spec@r{[}-slim@r{]}
1774 @opindex fdump-ada-spec
1775 For C and C++ source and include files, generate corresponding Ada specs.
1776 @xref{Generating Ada Bindings for C and C++ headers,,, gnat_ugn,
1777 GNAT User's Guide}, which provides detailed documentation on this feature.
1778
1779 @item -fada-spec-parent=@var{unit}
1780 @opindex fada-spec-parent
1781 In conjunction with @option{-fdump-ada-spec@r{[}-slim@r{]}} above, generate
1782 Ada specs as child units of parent @var{unit}.
1783
1784 @item -fdump-go-spec=@var{file}
1785 @opindex fdump-go-spec
1786 For input files in any language, generate corresponding Go
1787 declarations in @var{file}. This generates Go @code{const},
1788 @code{type}, @code{var}, and @code{func} declarations which may be a
1789 useful way to start writing a Go interface to code written in some
1790 other language.
1791
1792 @include @value{srcdir}/../libiberty/at-file.texi
1793 @end table
1794
1795 @node Invoking G++
1796 @section Compiling C++ Programs
1797
1798 @cindex suffixes for C++ source
1799 @cindex C++ source file suffixes
1800 C++ source files conventionally use one of the suffixes @samp{.C},
1801 @samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or
1802 @samp{.cxx}; C++ header files often use @samp{.hh}, @samp{.hpp},
1803 @samp{.H}, or (for shared template code) @samp{.tcc}; and
1804 preprocessed C++ files use the suffix @samp{.ii}. GCC recognizes
1805 files with these names and compiles them as C++ programs even if you
1806 call the compiler the same way as for compiling C programs (usually
1807 with the name @command{gcc}).
1808
1809 @findex g++
1810 @findex c++
1811 However, the use of @command{gcc} does not add the C++ library.
1812 @command{g++} is a program that calls GCC and automatically specifies linking
1813 against the C++ library. It treats @samp{.c},
1814 @samp{.h} and @samp{.i} files as C++ source files instead of C source
1815 files unless @option{-x} is used. This program is also useful when
1816 precompiling a C header file with a @samp{.h} extension for use in C++
1817 compilations. On many systems, @command{g++} is also installed with
1818 the name @command{c++}.
1819
1820 @cindex invoking @command{g++}
1821 When you compile C++ programs, you may specify many of the same
1822 command-line options that you use for compiling programs in any
1823 language; or command-line options meaningful for C and related
1824 languages; or options that are meaningful only for C++ programs.
1825 @xref{C Dialect Options,,Options Controlling C Dialect}, for
1826 explanations of options for languages related to C@.
1827 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
1828 explanations of options that are meaningful only for C++ programs.
1829
1830 @node C Dialect Options
1831 @section Options Controlling C Dialect
1832 @cindex dialect options
1833 @cindex language dialect options
1834 @cindex options, dialect
1835
1836 The following options control the dialect of C (or languages derived
1837 from C, such as C++, Objective-C and Objective-C++) that the compiler
1838 accepts:
1839
1840 @table @gcctabopt
1841 @cindex ANSI support
1842 @cindex ISO support
1843 @item -ansi
1844 @opindex ansi
1845 In C mode, this is equivalent to @option{-std=c90}. In C++ mode, it is
1846 equivalent to @option{-std=c++98}.
1847
1848 This turns off certain features of GCC that are incompatible with ISO
1849 C90 (when compiling C code), or of standard C++ (when compiling C++ code),
1850 such as the @code{asm} and @code{typeof} keywords, and
1851 predefined macros such as @code{unix} and @code{vax} that identify the
1852 type of system you are using. It also enables the undesirable and
1853 rarely used ISO trigraph feature. For the C compiler,
1854 it disables recognition of C++ style @samp{//} comments as well as
1855 the @code{inline} keyword.
1856
1857 The alternate keywords @code{__asm__}, @code{__extension__},
1858 @code{__inline__} and @code{__typeof__} continue to work despite
1859 @option{-ansi}. You would not want to use them in an ISO C program, of
1860 course, but it is useful to put them in header files that might be included
1861 in compilations done with @option{-ansi}. Alternate predefined macros
1862 such as @code{__unix__} and @code{__vax__} are also available, with or
1863 without @option{-ansi}.
1864
1865 The @option{-ansi} option does not cause non-ISO programs to be
1866 rejected gratuitously. For that, @option{-Wpedantic} is required in
1867 addition to @option{-ansi}. @xref{Warning Options}.
1868
1869 The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi}
1870 option is used. Some header files may notice this macro and refrain
1871 from declaring certain functions or defining certain macros that the
1872 ISO standard doesn't call for; this is to avoid interfering with any
1873 programs that might use these names for other things.
1874
1875 Functions that are normally built in but do not have semantics
1876 defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in
1877 functions when @option{-ansi} is used. @xref{Other Builtins,,Other
1878 built-in functions provided by GCC}, for details of the functions
1879 affected.
1880
1881 @item -std=
1882 @opindex std
1883 Determine the language standard. @xref{Standards,,Language Standards
1884 Supported by GCC}, for details of these standard versions. This option
1885 is currently only supported when compiling C or C++.
1886
1887 The compiler can accept several base standards, such as @samp{c90} or
1888 @samp{c++98}, and GNU dialects of those standards, such as
1889 @samp{gnu90} or @samp{gnu++98}. When a base standard is specified, the
1890 compiler accepts all programs following that standard plus those
1891 using GNU extensions that do not contradict it. For example,
1892 @option{-std=c90} turns off certain features of GCC that are
1893 incompatible with ISO C90, such as the @code{asm} and @code{typeof}
1894 keywords, but not other GNU extensions that do not have a meaning in
1895 ISO C90, such as omitting the middle term of a @code{?:}
1896 expression. On the other hand, when a GNU dialect of a standard is
1897 specified, all features supported by the compiler are enabled, even when
1898 those features change the meaning of the base standard. As a result, some
1899 strict-conforming programs may be rejected. The particular standard
1900 is used by @option{-Wpedantic} to identify which features are GNU
1901 extensions given that version of the standard. For example
1902 @option{-std=gnu90 -Wpedantic} warns about C++ style @samp{//}
1903 comments, while @option{-std=gnu99 -Wpedantic} does not.
1904
1905 A value for this option must be provided; possible values are
1906
1907 @table @samp
1908 @item c90
1909 @itemx c89
1910 @itemx iso9899:1990
1911 Support all ISO C90 programs (certain GNU extensions that conflict
1912 with ISO C90 are disabled). Same as @option{-ansi} for C code.
1913
1914 @item iso9899:199409
1915 ISO C90 as modified in amendment 1.
1916
1917 @item c99
1918 @itemx c9x
1919 @itemx iso9899:1999
1920 @itemx iso9899:199x
1921 ISO C99. This standard is substantially completely supported, modulo
1922 bugs and floating-point issues
1923 (mainly but not entirely relating to optional C99 features from
1924 Annexes F and G). See
1925 @w{@uref{http://gcc.gnu.org/c99status.html}} for more information. The
1926 names @samp{c9x} and @samp{iso9899:199x} are deprecated.
1927
1928 @item c11
1929 @itemx c1x
1930 @itemx iso9899:2011
1931 ISO C11, the 2011 revision of the ISO C standard. This standard is
1932 substantially completely supported, modulo bugs, floating-point issues
1933 (mainly but not entirely relating to optional C11 features from
1934 Annexes F and G) and the optional Annexes K (Bounds-checking
1935 interfaces) and L (Analyzability). The name @samp{c1x} is deprecated.
1936
1937 @item c17
1938 @itemx c18
1939 @itemx iso9899:2017
1940 @itemx iso9899:2018
1941 ISO C17, the 2017 revision of the ISO C standard
1942 (published in 2018). This standard is
1943 same as C11 except for corrections of defects (all of which are also
1944 applied with @option{-std=c11}) and a new value of
1945 @code{__STDC_VERSION__}, and so is supported to the same extent as C11.
1946
1947 @item c2x
1948 The next version of the ISO C standard, still under development. The
1949 support for this version is experimental and incomplete.
1950
1951 @item gnu90
1952 @itemx gnu89
1953 GNU dialect of ISO C90 (including some C99 features).
1954
1955 @item gnu99
1956 @itemx gnu9x
1957 GNU dialect of ISO C99. The name @samp{gnu9x} is deprecated.
1958
1959 @item gnu11
1960 @itemx gnu1x
1961 GNU dialect of ISO C11.
1962 The name @samp{gnu1x} is deprecated.
1963
1964 @item gnu17
1965 @itemx gnu18
1966 GNU dialect of ISO C17. This is the default for C code.
1967
1968 @item gnu2x
1969 The next version of the ISO C standard, still under development, plus
1970 GNU extensions. The support for this version is experimental and
1971 incomplete.
1972
1973 @item c++98
1974 @itemx c++03
1975 The 1998 ISO C++ standard plus the 2003 technical corrigendum and some
1976 additional defect reports. Same as @option{-ansi} for C++ code.
1977
1978 @item gnu++98
1979 @itemx gnu++03
1980 GNU dialect of @option{-std=c++98}.
1981
1982 @item c++11
1983 @itemx c++0x
1984 The 2011 ISO C++ standard plus amendments.
1985 The name @samp{c++0x} is deprecated.
1986
1987 @item gnu++11
1988 @itemx gnu++0x
1989 GNU dialect of @option{-std=c++11}.
1990 The name @samp{gnu++0x} is deprecated.
1991
1992 @item c++14
1993 @itemx c++1y
1994 The 2014 ISO C++ standard plus amendments.
1995 The name @samp{c++1y} is deprecated.
1996
1997 @item gnu++14
1998 @itemx gnu++1y
1999 GNU dialect of @option{-std=c++14}.
2000 This is the default for C++ code.
2001 The name @samp{gnu++1y} is deprecated.
2002
2003 @item c++17
2004 @itemx c++1z
2005 The 2017 ISO C++ standard plus amendments.
2006 The name @samp{c++1z} is deprecated.
2007
2008 @item gnu++17
2009 @itemx gnu++1z
2010 GNU dialect of @option{-std=c++17}.
2011 The name @samp{gnu++1z} is deprecated.
2012
2013 @item c++2a
2014 The next revision of the ISO C++ standard, tentatively planned for
2015 2020. Support is highly experimental, and will almost certainly
2016 change in incompatible ways in future releases.
2017
2018 @item gnu++2a
2019 GNU dialect of @option{-std=c++2a}. Support is highly experimental,
2020 and will almost certainly change in incompatible ways in future
2021 releases.
2022 @end table
2023
2024 @item -fgnu89-inline
2025 @opindex fgnu89-inline
2026 The option @option{-fgnu89-inline} tells GCC to use the traditional
2027 GNU semantics for @code{inline} functions when in C99 mode.
2028 @xref{Inline,,An Inline Function is As Fast As a Macro}.
2029 Using this option is roughly equivalent to adding the
2030 @code{gnu_inline} function attribute to all inline functions
2031 (@pxref{Function Attributes}).
2032
2033 The option @option{-fno-gnu89-inline} explicitly tells GCC to use the
2034 C99 semantics for @code{inline} when in C99 or gnu99 mode (i.e., it
2035 specifies the default behavior).
2036 This option is not supported in @option{-std=c90} or
2037 @option{-std=gnu90} mode.
2038
2039 The preprocessor macros @code{__GNUC_GNU_INLINE__} and
2040 @code{__GNUC_STDC_INLINE__} may be used to check which semantics are
2041 in effect for @code{inline} functions. @xref{Common Predefined
2042 Macros,,,cpp,The C Preprocessor}.
2043
2044 @item -fpermitted-flt-eval-methods=@var{style}
2045 @opindex fpermitted-flt-eval-methods
2046 @opindex fpermitted-flt-eval-methods=c11
2047 @opindex fpermitted-flt-eval-methods=ts-18661-3
2048 ISO/IEC TS 18661-3 defines new permissible values for
2049 @code{FLT_EVAL_METHOD} that indicate that operations and constants with
2050 a semantic type that is an interchange or extended format should be
2051 evaluated to the precision and range of that type. These new values are
2052 a superset of those permitted under C99/C11, which does not specify the
2053 meaning of other positive values of @code{FLT_EVAL_METHOD}. As such, code
2054 conforming to C11 may not have been written expecting the possibility of
2055 the new values.
2056
2057 @option{-fpermitted-flt-eval-methods} specifies whether the compiler
2058 should allow only the values of @code{FLT_EVAL_METHOD} specified in C99/C11,
2059 or the extended set of values specified in ISO/IEC TS 18661-3.
2060
2061 @var{style} is either @code{c11} or @code{ts-18661-3} as appropriate.
2062
2063 The default when in a standards compliant mode (@option{-std=c11} or similar)
2064 is @option{-fpermitted-flt-eval-methods=c11}. The default when in a GNU
2065 dialect (@option{-std=gnu11} or similar) is
2066 @option{-fpermitted-flt-eval-methods=ts-18661-3}.
2067
2068 @item -aux-info @var{filename}
2069 @opindex aux-info
2070 Output to the given filename prototyped declarations for all functions
2071 declared and/or defined in a translation unit, including those in header
2072 files. This option is silently ignored in any language other than C@.
2073
2074 Besides declarations, the file indicates, in comments, the origin of
2075 each declaration (source file and line), whether the declaration was
2076 implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or
2077 @samp{O} for old, respectively, in the first character after the line
2078 number and the colon), and whether it came from a declaration or a
2079 definition (@samp{C} or @samp{F}, respectively, in the following
2080 character). In the case of function definitions, a K&R-style list of
2081 arguments followed by their declarations is also provided, inside
2082 comments, after the declaration.
2083
2084 @item -fallow-parameterless-variadic-functions
2085 @opindex fallow-parameterless-variadic-functions
2086 Accept variadic functions without named parameters.
2087
2088 Although it is possible to define such a function, this is not very
2089 useful as it is not possible to read the arguments. This is only
2090 supported for C as this construct is allowed by C++.
2091
2092 @item -fno-asm
2093 @opindex fno-asm
2094 @opindex fasm
2095 Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
2096 keyword, so that code can use these words as identifiers. You can use
2097 the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
2098 instead. @option{-ansi} implies @option{-fno-asm}.
2099
2100 In C++, this switch only affects the @code{typeof} keyword, since
2101 @code{asm} and @code{inline} are standard keywords. You may want to
2102 use the @option{-fno-gnu-keywords} flag instead, which has the same
2103 effect. In C99 mode (@option{-std=c99} or @option{-std=gnu99}), this
2104 switch only affects the @code{asm} and @code{typeof} keywords, since
2105 @code{inline} is a standard keyword in ISO C99.
2106
2107 @item -fno-builtin
2108 @itemx -fno-builtin-@var{function}
2109 @opindex fno-builtin
2110 @opindex fbuiltin
2111 @cindex built-in functions
2112 Don't recognize built-in functions that do not begin with
2113 @samp{__builtin_} as prefix. @xref{Other Builtins,,Other built-in
2114 functions provided by GCC}, for details of the functions affected,
2115 including those which are not built-in functions when @option{-ansi} or
2116 @option{-std} options for strict ISO C conformance are used because they
2117 do not have an ISO standard meaning.
2118
2119 GCC normally generates special code to handle certain built-in functions
2120 more efficiently; for instance, calls to @code{alloca} may become single
2121 instructions which adjust the stack directly, and calls to @code{memcpy}
2122 may become inline copy loops. The resulting code is often both smaller
2123 and faster, but since the function calls no longer appear as such, you
2124 cannot set a breakpoint on those calls, nor can you change the behavior
2125 of the functions by linking with a different library. In addition,
2126 when a function is recognized as a built-in function, GCC may use
2127 information about that function to warn about problems with calls to
2128 that function, or to generate more efficient code, even if the
2129 resulting code still contains calls to that function. For example,
2130 warnings are given with @option{-Wformat} for bad calls to
2131 @code{printf} when @code{printf} is built in and @code{strlen} is
2132 known not to modify global memory.
2133
2134 With the @option{-fno-builtin-@var{function}} option
2135 only the built-in function @var{function} is
2136 disabled. @var{function} must not begin with @samp{__builtin_}. If a
2137 function is named that is not built-in in this version of GCC, this
2138 option is ignored. There is no corresponding
2139 @option{-fbuiltin-@var{function}} option; if you wish to enable
2140 built-in functions selectively when using @option{-fno-builtin} or
2141 @option{-ffreestanding}, you may define macros such as:
2142
2143 @smallexample
2144 #define abs(n) __builtin_abs ((n))
2145 #define strcpy(d, s) __builtin_strcpy ((d), (s))
2146 @end smallexample
2147
2148 @item -fgimple
2149 @opindex fgimple
2150
2151 Enable parsing of function definitions marked with @code{__GIMPLE}.
2152 This is an experimental feature that allows unit testing of GIMPLE
2153 passes.
2154
2155 @item -fhosted
2156 @opindex fhosted
2157 @cindex hosted environment
2158
2159 Assert that compilation targets a hosted environment. This implies
2160 @option{-fbuiltin}. A hosted environment is one in which the
2161 entire standard library is available, and in which @code{main} has a return
2162 type of @code{int}. Examples are nearly everything except a kernel.
2163 This is equivalent to @option{-fno-freestanding}.
2164
2165 @item -ffreestanding
2166 @opindex ffreestanding
2167 @cindex hosted environment
2168
2169 Assert that compilation targets a freestanding environment. This
2170 implies @option{-fno-builtin}. A freestanding environment
2171 is one in which the standard library may not exist, and program startup may
2172 not necessarily be at @code{main}. The most obvious example is an OS kernel.
2173 This is equivalent to @option{-fno-hosted}.
2174
2175 @xref{Standards,,Language Standards Supported by GCC}, for details of
2176 freestanding and hosted environments.
2177
2178 @item -fopenacc
2179 @opindex fopenacc
2180 @cindex OpenACC accelerator programming
2181 Enable handling of OpenACC directives @code{#pragma acc} in C/C++ and
2182 @code{!$acc} in Fortran. When @option{-fopenacc} is specified, the
2183 compiler generates accelerated code according to the OpenACC Application
2184 Programming Interface v2.0 @w{@uref{https://www.openacc.org}}. This option
2185 implies @option{-pthread}, and thus is only supported on targets that
2186 have support for @option{-pthread}.
2187
2188 @item -fopenacc-dim=@var{geom}
2189 @opindex fopenacc-dim
2190 @cindex OpenACC accelerator programming
2191 Specify default compute dimensions for parallel offload regions that do
2192 not explicitly specify. The @var{geom} value is a triple of
2193 ':'-separated sizes, in order 'gang', 'worker' and, 'vector'. A size
2194 can be omitted, to use a target-specific default value.
2195
2196 @item -fopenmp
2197 @opindex fopenmp
2198 @cindex OpenMP parallel
2199 Enable handling of OpenMP directives @code{#pragma omp} in C/C++ and
2200 @code{!$omp} in Fortran. When @option{-fopenmp} is specified, the
2201 compiler generates parallel code according to the OpenMP Application
2202 Program Interface v4.5 @w{@uref{https://www.openmp.org}}. This option
2203 implies @option{-pthread}, and thus is only supported on targets that
2204 have support for @option{-pthread}. @option{-fopenmp} implies
2205 @option{-fopenmp-simd}.
2206
2207 @item -fopenmp-simd
2208 @opindex fopenmp-simd
2209 @cindex OpenMP SIMD
2210 @cindex SIMD
2211 Enable handling of OpenMP's SIMD directives with @code{#pragma omp}
2212 in C/C++ and @code{!$omp} in Fortran. Other OpenMP directives
2213 are ignored.
2214
2215 @item -fgnu-tm
2216 @opindex fgnu-tm
2217 When the option @option{-fgnu-tm} is specified, the compiler
2218 generates code for the Linux variant of Intel's current Transactional
2219 Memory ABI specification document (Revision 1.1, May 6 2009). This is
2220 an experimental feature whose interface may change in future versions
2221 of GCC, as the official specification changes. Please note that not
2222 all architectures are supported for this feature.
2223
2224 For more information on GCC's support for transactional memory,
2225 @xref{Enabling libitm,,The GNU Transactional Memory Library,libitm,GNU
2226 Transactional Memory Library}.
2227
2228 Note that the transactional memory feature is not supported with
2229 non-call exceptions (@option{-fnon-call-exceptions}).
2230
2231 @item -fms-extensions
2232 @opindex fms-extensions
2233 Accept some non-standard constructs used in Microsoft header files.
2234
2235 In C++ code, this allows member names in structures to be similar
2236 to previous types declarations.
2237
2238 @smallexample
2239 typedef int UOW;
2240 struct ABC @{
2241 UOW UOW;
2242 @};
2243 @end smallexample
2244
2245 Some cases of unnamed fields in structures and unions are only
2246 accepted with this option. @xref{Unnamed Fields,,Unnamed struct/union
2247 fields within structs/unions}, for details.
2248
2249 Note that this option is off for all targets except for x86
2250 targets using ms-abi.
2251
2252 @item -fplan9-extensions
2253 @opindex fplan9-extensions
2254 Accept some non-standard constructs used in Plan 9 code.
2255
2256 This enables @option{-fms-extensions}, permits passing pointers to
2257 structures with anonymous fields to functions that expect pointers to
2258 elements of the type of the field, and permits referring to anonymous
2259 fields declared using a typedef. @xref{Unnamed Fields,,Unnamed
2260 struct/union fields within structs/unions}, for details. This is only
2261 supported for C, not C++.
2262
2263 @item -fcond-mismatch
2264 @opindex fcond-mismatch
2265 Allow conditional expressions with mismatched types in the second and
2266 third arguments. The value of such an expression is void. This option
2267 is not supported for C++.
2268
2269 @item -flax-vector-conversions
2270 @opindex flax-vector-conversions
2271 Allow implicit conversions between vectors with differing numbers of
2272 elements and/or incompatible element types. This option should not be
2273 used for new code.
2274
2275 @item -funsigned-char
2276 @opindex funsigned-char
2277 Let the type @code{char} be unsigned, like @code{unsigned char}.
2278
2279 Each kind of machine has a default for what @code{char} should
2280 be. It is either like @code{unsigned char} by default or like
2281 @code{signed char} by default.
2282
2283 Ideally, a portable program should always use @code{signed char} or
2284 @code{unsigned char} when it depends on the signedness of an object.
2285 But many programs have been written to use plain @code{char} and
2286 expect it to be signed, or expect it to be unsigned, depending on the
2287 machines they were written for. This option, and its inverse, let you
2288 make such a program work with the opposite default.
2289
2290 The type @code{char} is always a distinct type from each of
2291 @code{signed char} or @code{unsigned char}, even though its behavior
2292 is always just like one of those two.
2293
2294 @item -fsigned-char
2295 @opindex fsigned-char
2296 Let the type @code{char} be signed, like @code{signed char}.
2297
2298 Note that this is equivalent to @option{-fno-unsigned-char}, which is
2299 the negative form of @option{-funsigned-char}. Likewise, the option
2300 @option{-fno-signed-char} is equivalent to @option{-funsigned-char}.
2301
2302 @item -fsigned-bitfields
2303 @itemx -funsigned-bitfields
2304 @itemx -fno-signed-bitfields
2305 @itemx -fno-unsigned-bitfields
2306 @opindex fsigned-bitfields
2307 @opindex funsigned-bitfields
2308 @opindex fno-signed-bitfields
2309 @opindex fno-unsigned-bitfields
2310 These options control whether a bit-field is signed or unsigned, when the
2311 declaration does not use either @code{signed} or @code{unsigned}. By
2312 default, such a bit-field is signed, because this is consistent: the
2313 basic integer types such as @code{int} are signed types.
2314
2315 @item -fsso-struct=@var{endianness}
2316 @opindex fsso-struct
2317 Set the default scalar storage order of structures and unions to the
2318 specified endianness. The accepted values are @samp{big-endian},
2319 @samp{little-endian} and @samp{native} for the native endianness of
2320 the target (the default). This option is not supported for C++.
2321
2322 @strong{Warning:} the @option{-fsso-struct} switch causes GCC to generate
2323 code that is not binary compatible with code generated without it if the
2324 specified endianness is not the native endianness of the target.
2325 @end table
2326
2327 @node C++ Dialect Options
2328 @section Options Controlling C++ Dialect
2329
2330 @cindex compiler options, C++
2331 @cindex C++ options, command-line
2332 @cindex options, C++
2333 This section describes the command-line options that are only meaningful
2334 for C++ programs. You can also use most of the GNU compiler options
2335 regardless of what language your program is in. For example, you
2336 might compile a file @file{firstClass.C} like this:
2337
2338 @smallexample
2339 g++ -g -fstrict-enums -O -c firstClass.C
2340 @end smallexample
2341
2342 @noindent
2343 In this example, only @option{-fstrict-enums} is an option meant
2344 only for C++ programs; you can use the other options with any
2345 language supported by GCC@.
2346
2347 Some options for compiling C programs, such as @option{-std}, are also
2348 relevant for C++ programs.
2349 @xref{C Dialect Options,,Options Controlling C Dialect}.
2350
2351 Here is a list of options that are @emph{only} for compiling C++ programs:
2352
2353 @table @gcctabopt
2354
2355 @item -fabi-version=@var{n}
2356 @opindex fabi-version
2357 Use version @var{n} of the C++ ABI@. The default is version 0.
2358
2359 Version 0 refers to the version conforming most closely to
2360 the C++ ABI specification. Therefore, the ABI obtained using version 0
2361 will change in different versions of G++ as ABI bugs are fixed.
2362
2363 Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.
2364
2365 Version 2 is the version of the C++ ABI that first appeared in G++
2366 3.4, and was the default through G++ 4.9.
2367
2368 Version 3 corrects an error in mangling a constant address as a
2369 template argument.
2370
2371 Version 4, which first appeared in G++ 4.5, implements a standard
2372 mangling for vector types.
2373
2374 Version 5, which first appeared in G++ 4.6, corrects the mangling of
2375 attribute const/volatile on function pointer types, decltype of a
2376 plain decl, and use of a function parameter in the declaration of
2377 another parameter.
2378
2379 Version 6, which first appeared in G++ 4.7, corrects the promotion
2380 behavior of C++11 scoped enums and the mangling of template argument
2381 packs, const/static_cast, prefix ++ and --, and a class scope function
2382 used as a template argument.
2383
2384 Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a
2385 builtin type and corrects the mangling of lambdas in default argument
2386 scope.
2387
2388 Version 8, which first appeared in G++ 4.9, corrects the substitution
2389 behavior of function types with function-cv-qualifiers.
2390
2391 Version 9, which first appeared in G++ 5.2, corrects the alignment of
2392 @code{nullptr_t}.
2393
2394 Version 10, which first appeared in G++ 6.1, adds mangling of
2395 attributes that affect type identity, such as ia32 calling convention
2396 attributes (e.g.@: @samp{stdcall}).
2397
2398 Version 11, which first appeared in G++ 7, corrects the mangling of
2399 sizeof... expressions and operator names. For multiple entities with
2400 the same name within a function, that are declared in different scopes,
2401 the mangling now changes starting with the twelfth occurrence. It also
2402 implies @option{-fnew-inheriting-ctors}.
2403
2404 Version 12, which first appeared in G++ 8, corrects the calling
2405 conventions for empty classes on the x86_64 target and for classes
2406 with only deleted copy/move constructors. It accidentally changes the
2407 calling convention for classes with a deleted copy constructor and a
2408 trivial move constructor.
2409
2410 Version 13, which first appeared in G++ 8.2, fixes the accidental
2411 change in version 12.
2412
2413 See also @option{-Wabi}.
2414
2415 @item -fabi-compat-version=@var{n}
2416 @opindex fabi-compat-version
2417 On targets that support strong aliases, G++
2418 works around mangling changes by creating an alias with the correct
2419 mangled name when defining a symbol with an incorrect mangled name.
2420 This switch specifies which ABI version to use for the alias.
2421
2422 With @option{-fabi-version=0} (the default), this defaults to 11 (GCC 7
2423 compatibility). If another ABI version is explicitly selected, this
2424 defaults to 0. For compatibility with GCC versions 3.2 through 4.9,
2425 use @option{-fabi-compat-version=2}.
2426
2427 If this option is not provided but @option{-Wabi=@var{n}} is, that
2428 version is used for compatibility aliases. If this option is provided
2429 along with @option{-Wabi} (without the version), the version from this
2430 option is used for the warning.
2431
2432 @item -fno-access-control
2433 @opindex fno-access-control
2434 @opindex faccess-control
2435 Turn off all access checking. This switch is mainly useful for working
2436 around bugs in the access control code.
2437
2438 @item -faligned-new
2439 @opindex faligned-new
2440 Enable support for C++17 @code{new} of types that require more
2441 alignment than @code{void* ::operator new(std::size_t)} provides. A
2442 numeric argument such as @code{-faligned-new=32} can be used to
2443 specify how much alignment (in bytes) is provided by that function,
2444 but few users will need to override the default of
2445 @code{alignof(std::max_align_t)}.
2446
2447 This flag is enabled by default for @option{-std=c++17}.
2448
2449 @item -fchar8_t
2450 @itemx -fno-char8_t
2451 @opindex fchar8_t
2452 @opindex fno-char8_t
2453 Enable support for @code{char8_t} as adopted for C++2a. This includes
2454 the addition of a new @code{char8_t} fundamental type, changes to the
2455 types of UTF-8 string and character literals, new signatures for
2456 user-defined literals, associated standard library updates, and new
2457 @code{__cpp_char8_t} and @code{__cpp_lib_char8_t} feature test macros.
2458
2459 This option enables functions to be overloaded for ordinary and UTF-8
2460 strings:
2461
2462 @smallexample
2463 int f(const char *); // #1
2464 int f(const char8_t *); // #2
2465 int v1 = f("text"); // Calls #1
2466 int v2 = f(u8"text"); // Calls #2
2467 @end smallexample
2468
2469 @noindent
2470 and introduces new signatures for user-defined literals:
2471
2472 @smallexample
2473 int operator""_udl1(char8_t);
2474 int v3 = u8'x'_udl1;
2475 int operator""_udl2(const char8_t*, std::size_t);
2476 int v4 = u8"text"_udl2;
2477 template<typename T, T...> int operator""_udl3();
2478 int v5 = u8"text"_udl3;
2479 @end smallexample
2480
2481 @noindent
2482 The change to the types of UTF-8 string and character literals introduces
2483 incompatibilities with ISO C++11 and later standards. For example, the
2484 following code is well-formed under ISO C++11, but is ill-formed when
2485 @option{-fchar8_t} is specified.
2486
2487 @smallexample
2488 char ca[] = u8"xx"; // error: char-array initialized from wide
2489 // string
2490 const char *cp = u8"xx";// error: invalid conversion from
2491 // `const char8_t*' to `const char*'
2492 int f(const char*);
2493 auto v = f(u8"xx"); // error: invalid conversion from
2494 // `const char8_t*' to `const char*'
2495 std::string s@{u8"xx"@}; // error: no matching function for call to
2496 // `std::basic_string<char>::basic_string()'
2497 using namespace std::literals;
2498 s = u8"xx"s; // error: conversion from
2499 // `basic_string<char8_t>' to non-scalar
2500 // type `basic_string<char>' requested
2501 @end smallexample
2502
2503 @item -fcheck-new
2504 @opindex fcheck-new
2505 Check that the pointer returned by @code{operator new} is non-null
2506 before attempting to modify the storage allocated. This check is
2507 normally unnecessary because the C++ standard specifies that
2508 @code{operator new} only returns @code{0} if it is declared
2509 @code{throw()}, in which case the compiler always checks the
2510 return value even without this option. In all other cases, when
2511 @code{operator new} has a non-empty exception specification, memory
2512 exhaustion is signalled by throwing @code{std::bad_alloc}. See also
2513 @samp{new (nothrow)}.
2514
2515 @item -fconcepts
2516 @opindex fconcepts
2517 Enable support for the C++ Extensions for Concepts Technical
2518 Specification, ISO 19217 (2015), which allows code like
2519
2520 @smallexample
2521 template <class T> concept bool Addable = requires (T t) @{ t + t; @};
2522 template <Addable T> T add (T a, T b) @{ return a + b; @}
2523 @end smallexample
2524
2525 @item -fconstexpr-depth=@var{n}
2526 @opindex fconstexpr-depth
2527 Set the maximum nested evaluation depth for C++11 constexpr functions
2528 to @var{n}. A limit is needed to detect endless recursion during
2529 constant expression evaluation. The minimum specified by the standard
2530 is 512.
2531
2532 @item -fconstexpr-cache-depth=@var{n}
2533 @opindex fconstexpr-cache-depth
2534 Set the maximum level of nested evaluation depth for C++11 constexpr
2535 functions that will be cached to @var{n}. This is a heuristic that
2536 trades off compilation speed (when the cache avoids repeated
2537 calculations) against memory consumption (when the cache grows very
2538 large from highly recursive evaluations). The default is 8. Very few
2539 users are likely to want to adjust it, but if your code does heavy
2540 constexpr calculations you might want to experiment to find which
2541 value works best for you.
2542
2543 @item -fconstexpr-loop-limit=@var{n}
2544 @opindex fconstexpr-loop-limit
2545 Set the maximum number of iterations for a loop in C++14 constexpr functions
2546 to @var{n}. A limit is needed to detect infinite loops during
2547 constant expression evaluation. The default is 262144 (1<<18).
2548
2549 @item -fconstexpr-ops-limit=@var{n}
2550 @opindex fconstexpr-ops-limit
2551 Set the maximum number of operations during a single constexpr evaluation.
2552 Even when number of iterations of a single loop is limited with the above limit,
2553 if there are several nested loops and each of them has many iterations but still
2554 smaller than the above limit, or if in a body of some loop or even outside
2555 of a loop too many expressions need to be evaluated, the resulting constexpr
2556 evaluation might take too long.
2557 The default is 33554432 (1<<25).
2558
2559 @item -fdeduce-init-list
2560 @opindex fdeduce-init-list
2561 Enable deduction of a template type parameter as
2562 @code{std::initializer_list} from a brace-enclosed initializer list, i.e.@:
2563
2564 @smallexample
2565 template <class T> auto forward(T t) -> decltype (realfn (t))
2566 @{
2567 return realfn (t);
2568 @}
2569
2570 void f()
2571 @{
2572 forward(@{1,2@}); // call forward<std::initializer_list<int>>
2573 @}
2574 @end smallexample
2575
2576 This deduction was implemented as a possible extension to the
2577 originally proposed semantics for the C++11 standard, but was not part
2578 of the final standard, so it is disabled by default. This option is
2579 deprecated, and may be removed in a future version of G++.
2580
2581 @item -fno-elide-constructors
2582 @opindex fno-elide-constructors
2583 @opindex felide-constructors
2584 The C++ standard allows an implementation to omit creating a temporary
2585 that is only used to initialize another object of the same type.
2586 Specifying this option disables that optimization, and forces G++ to
2587 call the copy constructor in all cases. This option also causes G++
2588 to call trivial member functions which otherwise would be expanded inline.
2589
2590 In C++17, the compiler is required to omit these temporaries, but this
2591 option still affects trivial member functions.
2592
2593 @item -fno-enforce-eh-specs
2594 @opindex fno-enforce-eh-specs
2595 @opindex fenforce-eh-specs
2596 Don't generate code to check for violation of exception specifications
2597 at run time. This option violates the C++ standard, but may be useful
2598 for reducing code size in production builds, much like defining
2599 @code{NDEBUG}. This does not give user code permission to throw
2600 exceptions in violation of the exception specifications; the compiler
2601 still optimizes based on the specifications, so throwing an
2602 unexpected exception results in undefined behavior at run time.
2603
2604 @item -fextern-tls-init
2605 @itemx -fno-extern-tls-init
2606 @opindex fextern-tls-init
2607 @opindex fno-extern-tls-init
2608 The C++11 and OpenMP standards allow @code{thread_local} and
2609 @code{threadprivate} variables to have dynamic (runtime)
2610 initialization. To support this, any use of such a variable goes
2611 through a wrapper function that performs any necessary initialization.
2612 When the use and definition of the variable are in the same
2613 translation unit, this overhead can be optimized away, but when the
2614 use is in a different translation unit there is significant overhead
2615 even if the variable doesn't actually need dynamic initialization. If
2616 the programmer can be sure that no use of the variable in a
2617 non-defining TU needs to trigger dynamic initialization (either
2618 because the variable is statically initialized, or a use of the
2619 variable in the defining TU will be executed before any uses in
2620 another TU), they can avoid this overhead with the
2621 @option{-fno-extern-tls-init} option.
2622
2623 On targets that support symbol aliases, the default is
2624 @option{-fextern-tls-init}. On targets that do not support symbol
2625 aliases, the default is @option{-fno-extern-tls-init}.
2626
2627 @item -fno-gnu-keywords
2628 @opindex fno-gnu-keywords
2629 @opindex fgnu-keywords
2630 Do not recognize @code{typeof} as a keyword, so that code can use this
2631 word as an identifier. You can use the keyword @code{__typeof__} instead.
2632 This option is implied by the strict ISO C++ dialects: @option{-ansi},
2633 @option{-std=c++98}, @option{-std=c++11}, etc.
2634
2635 @item -fno-implicit-templates
2636 @opindex fno-implicit-templates
2637 @opindex fimplicit-templates
2638 Never emit code for non-inline templates that are instantiated
2639 implicitly (i.e.@: by use); only emit code for explicit instantiations.
2640 If you use this option, you must take care to structure your code to
2641 include all the necessary explicit instantiations to avoid getting
2642 undefined symbols at link time.
2643 @xref{Template Instantiation}, for more information.
2644
2645 @item -fno-implicit-inline-templates
2646 @opindex fno-implicit-inline-templates
2647 @opindex fimplicit-inline-templates
2648 Don't emit code for implicit instantiations of inline templates, either.
2649 The default is to handle inlines differently so that compiles with and
2650 without optimization need the same set of explicit instantiations.
2651
2652 @item -fno-implement-inlines
2653 @opindex fno-implement-inlines
2654 @opindex fimplement-inlines
2655 To save space, do not emit out-of-line copies of inline functions
2656 controlled by @code{#pragma implementation}. This causes linker
2657 errors if these functions are not inlined everywhere they are called.
2658
2659 @item -fms-extensions
2660 @opindex fms-extensions
2661 Disable Wpedantic warnings about constructs used in MFC, such as implicit
2662 int and getting a pointer to member function via non-standard syntax.
2663
2664 @item -fnew-inheriting-ctors
2665 @opindex fnew-inheriting-ctors
2666 Enable the P0136 adjustment to the semantics of C++11 constructor
2667 inheritance. This is part of C++17 but also considered to be a Defect
2668 Report against C++11 and C++14. This flag is enabled by default
2669 unless @option{-fabi-version=10} or lower is specified.
2670
2671 @item -fnew-ttp-matching
2672 @opindex fnew-ttp-matching
2673 Enable the P0522 resolution to Core issue 150, template template
2674 parameters and default arguments: this allows a template with default
2675 template arguments as an argument for a template template parameter
2676 with fewer template parameters. This flag is enabled by default for
2677 @option{-std=c++17}.
2678
2679 @item -fno-nonansi-builtins
2680 @opindex fno-nonansi-builtins
2681 @opindex fnonansi-builtins
2682 Disable built-in declarations of functions that are not mandated by
2683 ANSI/ISO C@. These include @code{ffs}, @code{alloca}, @code{_exit},
2684 @code{index}, @code{bzero}, @code{conjf}, and other related functions.
2685
2686 @item -fnothrow-opt
2687 @opindex fnothrow-opt
2688 Treat a @code{throw()} exception specification as if it were a
2689 @code{noexcept} specification to reduce or eliminate the text size
2690 overhead relative to a function with no exception specification. If
2691 the function has local variables of types with non-trivial
2692 destructors, the exception specification actually makes the
2693 function smaller because the EH cleanups for those variables can be
2694 optimized away. The semantic effect is that an exception thrown out of
2695 a function with such an exception specification results in a call
2696 to @code{terminate} rather than @code{unexpected}.
2697
2698 @item -fno-operator-names
2699 @opindex fno-operator-names
2700 @opindex foperator-names
2701 Do not treat the operator name keywords @code{and}, @code{bitand},
2702 @code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
2703 synonyms as keywords.
2704
2705 @item -fno-optional-diags
2706 @opindex fno-optional-diags
2707 @opindex foptional-diags
2708 Disable diagnostics that the standard says a compiler does not need to
2709 issue. Currently, the only such diagnostic issued by G++ is the one for
2710 a name having multiple meanings within a class.
2711
2712 @item -fpermissive
2713 @opindex fpermissive
2714 Downgrade some diagnostics about nonconformant code from errors to
2715 warnings. Thus, using @option{-fpermissive} allows some
2716 nonconforming code to compile.
2717
2718 @item -fno-pretty-templates
2719 @opindex fno-pretty-templates
2720 @opindex fpretty-templates
2721 When an error message refers to a specialization of a function
2722 template, the compiler normally prints the signature of the
2723 template followed by the template arguments and any typedefs or
2724 typenames in the signature (e.g.@: @code{void f(T) [with T = int]}
2725 rather than @code{void f(int)}) so that it's clear which template is
2726 involved. When an error message refers to a specialization of a class
2727 template, the compiler omits any template arguments that match
2728 the default template arguments for that template. If either of these
2729 behaviors make it harder to understand the error message rather than
2730 easier, you can use @option{-fno-pretty-templates} to disable them.
2731
2732 @item -frepo
2733 @opindex frepo
2734 Enable automatic template instantiation at link time. This option also
2735 implies @option{-fno-implicit-templates}. @xref{Template
2736 Instantiation}, for more information.
2737
2738 @item -fno-rtti
2739 @opindex fno-rtti
2740 @opindex frtti
2741 Disable generation of information about every class with virtual
2742 functions for use by the C++ run-time type identification features
2743 (@code{dynamic_cast} and @code{typeid}). If you don't use those parts
2744 of the language, you can save some space by using this flag. Note that
2745 exception handling uses the same information, but G++ generates it as
2746 needed. The @code{dynamic_cast} operator can still be used for casts that
2747 do not require run-time type information, i.e.@: casts to @code{void *} or to
2748 unambiguous base classes.
2749
2750 Mixing code compiled with @option{-frtti} with that compiled with
2751 @option{-fno-rtti} may not work. For example, programs may
2752 fail to link if a class compiled with @option{-fno-rtti} is used as a base
2753 for a class compiled with @option{-frtti}.
2754
2755 @item -fsized-deallocation
2756 @opindex fsized-deallocation
2757 Enable the built-in global declarations
2758 @smallexample
2759 void operator delete (void *, std::size_t) noexcept;
2760 void operator delete[] (void *, std::size_t) noexcept;
2761 @end smallexample
2762 as introduced in C++14. This is useful for user-defined replacement
2763 deallocation functions that, for example, use the size of the object
2764 to make deallocation faster. Enabled by default under
2765 @option{-std=c++14} and above. The flag @option{-Wsized-deallocation}
2766 warns about places that might want to add a definition.
2767
2768 @item -fstrict-enums
2769 @opindex fstrict-enums
2770 Allow the compiler to optimize using the assumption that a value of
2771 enumerated type can only be one of the values of the enumeration (as
2772 defined in the C++ standard; basically, a value that can be
2773 represented in the minimum number of bits needed to represent all the
2774 enumerators). This assumption may not be valid if the program uses a
2775 cast to convert an arbitrary integer value to the enumerated type.
2776
2777 @item -fstrong-eval-order
2778 @opindex fstrong-eval-order
2779 Evaluate member access, array subscripting, and shift expressions in
2780 left-to-right order, and evaluate assignment in right-to-left order,
2781 as adopted for C++17. Enabled by default with @option{-std=c++17}.
2782 @option{-fstrong-eval-order=some} enables just the ordering of member
2783 access and shift expressions, and is the default without
2784 @option{-std=c++17}.
2785
2786 @item -ftemplate-backtrace-limit=@var{n}
2787 @opindex ftemplate-backtrace-limit
2788 Set the maximum number of template instantiation notes for a single
2789 warning or error to @var{n}. The default value is 10.
2790
2791 @item -ftemplate-depth=@var{n}
2792 @opindex ftemplate-depth
2793 Set the maximum instantiation depth for template classes to @var{n}.
2794 A limit on the template instantiation depth is needed to detect
2795 endless recursions during template class instantiation. ANSI/ISO C++
2796 conforming programs must not rely on a maximum depth greater than 17
2797 (changed to 1024 in C++11). The default value is 900, as the compiler
2798 can run out of stack space before hitting 1024 in some situations.
2799
2800 @item -fno-threadsafe-statics
2801 @opindex fno-threadsafe-statics
2802 @opindex fthreadsafe-statics
2803 Do not emit the extra code to use the routines specified in the C++
2804 ABI for thread-safe initialization of local statics. You can use this
2805 option to reduce code size slightly in code that doesn't need to be
2806 thread-safe.
2807
2808 @item -fuse-cxa-atexit
2809 @opindex fuse-cxa-atexit
2810 Register destructors for objects with static storage duration with the
2811 @code{__cxa_atexit} function rather than the @code{atexit} function.
2812 This option is required for fully standards-compliant handling of static
2813 destructors, but only works if your C library supports
2814 @code{__cxa_atexit}.
2815
2816 @item -fno-use-cxa-get-exception-ptr
2817 @opindex fno-use-cxa-get-exception-ptr
2818 @opindex fuse-cxa-get-exception-ptr
2819 Don't use the @code{__cxa_get_exception_ptr} runtime routine. This
2820 causes @code{std::uncaught_exception} to be incorrect, but is necessary
2821 if the runtime routine is not available.
2822
2823 @item -fvisibility-inlines-hidden
2824 @opindex fvisibility-inlines-hidden
2825 This switch declares that the user does not attempt to compare
2826 pointers to inline functions or methods where the addresses of the two functions
2827 are taken in different shared objects.
2828
2829 The effect of this is that GCC may, effectively, mark inline methods with
2830 @code{__attribute__ ((visibility ("hidden")))} so that they do not
2831 appear in the export table of a DSO and do not require a PLT indirection
2832 when used within the DSO@. Enabling this option can have a dramatic effect
2833 on load and link times of a DSO as it massively reduces the size of the
2834 dynamic export table when the library makes heavy use of templates.
2835
2836 The behavior of this switch is not quite the same as marking the
2837 methods as hidden directly, because it does not affect static variables
2838 local to the function or cause the compiler to deduce that
2839 the function is defined in only one shared object.
2840
2841 You may mark a method as having a visibility explicitly to negate the
2842 effect of the switch for that method. For example, if you do want to
2843 compare pointers to a particular inline method, you might mark it as
2844 having default visibility. Marking the enclosing class with explicit
2845 visibility has no effect.
2846
2847 Explicitly instantiated inline methods are unaffected by this option
2848 as their linkage might otherwise cross a shared library boundary.
2849 @xref{Template Instantiation}.
2850
2851 @item -fvisibility-ms-compat
2852 @opindex fvisibility-ms-compat
2853 This flag attempts to use visibility settings to make GCC's C++
2854 linkage model compatible with that of Microsoft Visual Studio.
2855
2856 The flag makes these changes to GCC's linkage model:
2857
2858 @enumerate
2859 @item
2860 It sets the default visibility to @code{hidden}, like
2861 @option{-fvisibility=hidden}.
2862
2863 @item
2864 Types, but not their members, are not hidden by default.
2865
2866 @item
2867 The One Definition Rule is relaxed for types without explicit
2868 visibility specifications that are defined in more than one
2869 shared object: those declarations are permitted if they are
2870 permitted when this option is not used.
2871 @end enumerate
2872
2873 In new code it is better to use @option{-fvisibility=hidden} and
2874 export those classes that are intended to be externally visible.
2875 Unfortunately it is possible for code to rely, perhaps accidentally,
2876 on the Visual Studio behavior.
2877
2878 Among the consequences of these changes are that static data members
2879 of the same type with the same name but defined in different shared
2880 objects are different, so changing one does not change the other;
2881 and that pointers to function members defined in different shared
2882 objects may not compare equal. When this flag is given, it is a
2883 violation of the ODR to define types with the same name differently.
2884
2885 @item -fno-weak
2886 @opindex fno-weak
2887 @opindex fweak
2888 Do not use weak symbol support, even if it is provided by the linker.
2889 By default, G++ uses weak symbols if they are available. This
2890 option exists only for testing, and should not be used by end-users;
2891 it results in inferior code and has no benefits. This option may
2892 be removed in a future release of G++.
2893
2894 @item -nostdinc++
2895 @opindex nostdinc++
2896 Do not search for header files in the standard directories specific to
2897 C++, but do still search the other standard directories. (This option
2898 is used when building the C++ library.)
2899 @end table
2900
2901 In addition, these optimization, warning, and code generation options
2902 have meanings only for C++ programs:
2903
2904 @table @gcctabopt
2905 @item -Wabi @r{(C, Objective-C, C++ and Objective-C++ only)}
2906 @opindex Wabi
2907 @opindex Wno-abi
2908 Warn when G++ it generates code that is probably not compatible with
2909 the vendor-neutral C++ ABI@. Since G++ now defaults to updating the
2910 ABI with each major release, normally @option{-Wabi} will warn only if
2911 there is a check added later in a release series for an ABI issue
2912 discovered since the initial release. @option{-Wabi} will warn about
2913 more things if an older ABI version is selected (with
2914 @option{-fabi-version=@var{n}}).
2915
2916 @option{-Wabi} can also be used with an explicit version number to
2917 warn about compatibility with a particular @option{-fabi-version}
2918 level, e.g.@: @option{-Wabi=2} to warn about changes relative to
2919 @option{-fabi-version=2}.
2920
2921 If an explicit version number is provided and
2922 @option{-fabi-compat-version} is not specified, the version number
2923 from this option is used for compatibility aliases. If no explicit
2924 version number is provided with this option, but
2925 @option{-fabi-compat-version} is specified, that version number is
2926 used for ABI warnings.
2927
2928 Although an effort has been made to warn about
2929 all such cases, there are probably some cases that are not warned about,
2930 even though G++ is generating incompatible code. There may also be
2931 cases where warnings are emitted even though the code that is generated
2932 is compatible.
2933
2934 You should rewrite your code to avoid these warnings if you are
2935 concerned about the fact that code generated by G++ may not be binary
2936 compatible with code generated by other compilers.
2937
2938 Known incompatibilities in @option{-fabi-version=2} (which was the
2939 default from GCC 3.4 to 4.9) include:
2940
2941 @itemize @bullet
2942
2943 @item
2944 A template with a non-type template parameter of reference type was
2945 mangled incorrectly:
2946 @smallexample
2947 extern int N;
2948 template <int &> struct S @{@};
2949 void n (S<N>) @{2@}
2950 @end smallexample
2951
2952 This was fixed in @option{-fabi-version=3}.
2953
2954 @item
2955 SIMD vector types declared using @code{__attribute ((vector_size))} were
2956 mangled in a non-standard way that does not allow for overloading of
2957 functions taking vectors of different sizes.
2958
2959 The mangling was changed in @option{-fabi-version=4}.
2960
2961 @item
2962 @code{__attribute ((const))} and @code{noreturn} were mangled as type
2963 qualifiers, and @code{decltype} of a plain declaration was folded away.
2964
2965 These mangling issues were fixed in @option{-fabi-version=5}.
2966
2967 @item
2968 Scoped enumerators passed as arguments to a variadic function are
2969 promoted like unscoped enumerators, causing @code{va_arg} to complain.
2970 On most targets this does not actually affect the parameter passing
2971 ABI, as there is no way to pass an argument smaller than @code{int}.
2972
2973 Also, the ABI changed the mangling of template argument packs,
2974 @code{const_cast}, @code{static_cast}, prefix increment/decrement, and
2975 a class scope function used as a template argument.
2976
2977 These issues were corrected in @option{-fabi-version=6}.
2978
2979 @item
2980 Lambdas in default argument scope were mangled incorrectly, and the
2981 ABI changed the mangling of @code{nullptr_t}.
2982
2983 These issues were corrected in @option{-fabi-version=7}.
2984
2985 @item
2986 When mangling a function type with function-cv-qualifiers, the
2987 un-qualified function type was incorrectly treated as a substitution
2988 candidate.
2989
2990 This was fixed in @option{-fabi-version=8}, the default for GCC 5.1.
2991
2992 @item
2993 @code{decltype(nullptr)} incorrectly had an alignment of 1, leading to
2994 unaligned accesses. Note that this did not affect the ABI of a
2995 function with a @code{nullptr_t} parameter, as parameters have a
2996 minimum alignment.
2997
2998 This was fixed in @option{-fabi-version=9}, the default for GCC 5.2.
2999
3000 @item
3001 Target-specific attributes that affect the identity of a type, such as
3002 ia32 calling conventions on a function type (stdcall, regparm, etc.),
3003 did not affect the mangled name, leading to name collisions when
3004 function pointers were used as template arguments.
3005
3006 This was fixed in @option{-fabi-version=10}, the default for GCC 6.1.
3007
3008 @end itemize
3009
3010 It also warns about psABI-related changes. The known psABI changes at this
3011 point include:
3012
3013 @itemize @bullet
3014
3015 @item
3016 For SysV/x86-64, unions with @code{long double} members are
3017 passed in memory as specified in psABI. For example:
3018
3019 @smallexample
3020 union U @{
3021 long double ld;
3022 int i;
3023 @};
3024 @end smallexample
3025
3026 @noindent
3027 @code{union U} is always passed in memory.
3028
3029 @end itemize
3030
3031 @item -Wabi-tag @r{(C++ and Objective-C++ only)}
3032 @opindex Wabi-tag
3033 @opindex Wabi-tag
3034 Warn when a type with an ABI tag is used in a context that does not
3035 have that ABI tag. See @ref{C++ Attributes} for more information
3036 about ABI tags.
3037
3038 @item -Wctor-dtor-privacy @r{(C++ and Objective-C++ only)}
3039 @opindex Wctor-dtor-privacy
3040 @opindex Wno-ctor-dtor-privacy
3041 Warn when a class seems unusable because all the constructors or
3042 destructors in that class are private, and it has neither friends nor
3043 public static member functions. Also warn if there are no non-private
3044 methods, and there's at least one private member function that isn't
3045 a constructor or destructor.
3046
3047 @item -Wdelete-non-virtual-dtor @r{(C++ and Objective-C++ only)}
3048 @opindex Wdelete-non-virtual-dtor
3049 @opindex Wno-delete-non-virtual-dtor
3050 Warn when @code{delete} is used to destroy an instance of a class that
3051 has virtual functions and non-virtual destructor. It is unsafe to delete
3052 an instance of a derived class through a pointer to a base class if the
3053 base class does not have a virtual destructor. This warning is enabled
3054 by @option{-Wall}.
3055
3056 @item -Wdeprecated-copy @r{(C++ and Objective-C++ only)}
3057 @opindex Wdeprecated-copy
3058 @opindex Wno-deprecated-copy
3059 Warn that the implicit declaration of a copy constructor or copy
3060 assignment operator is deprecated if the class has a user-provided
3061 copy constructor or copy assignment operator, in C++11 and up. This
3062 warning is enabled by @option{-Wextra}. With
3063 @option{-Wdeprecated-copy-dtor}, also deprecate if the class has a
3064 user-provided destructor.
3065
3066 @item -Wno-init-list-lifetime @r{(C++ and Objective-C++ only)}
3067 @opindex Winit-list-lifetime
3068 @opindex Wno-init-list-lifetime
3069 Do not warn about uses of @code{std::initializer_list} that are likely
3070 to result in dangling pointers. Since the underlying array for an
3071 @code{initializer_list} is handled like a normal C++ temporary object,
3072 it is easy to inadvertently keep a pointer to the array past the end
3073 of the array's lifetime. For example:
3074
3075 @itemize @bullet
3076 @item
3077 If a function returns a temporary @code{initializer_list}, or a local
3078 @code{initializer_list} variable, the array's lifetime ends at the end
3079 of the return statement, so the value returned has a dangling pointer.
3080
3081 @item
3082 If a new-expression creates an @code{initializer_list}, the array only
3083 lives until the end of the enclosing full-expression, so the
3084 @code{initializer_list} in the heap has a dangling pointer.
3085
3086 @item
3087 When an @code{initializer_list} variable is assigned from a
3088 brace-enclosed initializer list, the temporary array created for the
3089 right side of the assignment only lives until the end of the
3090 full-expression, so at the next statement the @code{initializer_list}
3091 variable has a dangling pointer.
3092
3093 @smallexample
3094 // li's initial underlying array lives as long as li
3095 std::initializer_list<int> li = @{ 1,2,3 @};
3096 // assignment changes li to point to a temporary array
3097 li = @{ 4, 5 @};
3098 // now the temporary is gone and li has a dangling pointer
3099 int i = li.begin()[0] // undefined behavior
3100 @end smallexample
3101
3102 @item
3103 When a list constructor stores the @code{begin} pointer from the
3104 @code{initializer_list} argument, this doesn't extend the lifetime of
3105 the array, so if a class variable is constructed from a temporary
3106 @code{initializer_list}, the pointer is left dangling by the end of
3107 the variable declaration statement.
3108
3109 @end itemize
3110
3111 @item -Wliteral-suffix @r{(C++ and Objective-C++ only)}
3112 @opindex Wliteral-suffix
3113 @opindex Wno-literal-suffix
3114 Warn when a string or character literal is followed by a ud-suffix which does
3115 not begin with an underscore. As a conforming extension, GCC treats such
3116 suffixes as separate preprocessing tokens in order to maintain backwards
3117 compatibility with code that uses formatting macros from @code{<inttypes.h>}.
3118 For example:
3119
3120 @smallexample
3121 #define __STDC_FORMAT_MACROS
3122 #include <inttypes.h>
3123 #include <stdio.h>
3124
3125 int main() @{
3126 int64_t i64 = 123;
3127 printf("My int64: %" PRId64"\n", i64);
3128 @}
3129 @end smallexample
3130
3131 In this case, @code{PRId64} is treated as a separate preprocessing token.
3132
3133 Additionally, warn when a user-defined literal operator is declared with
3134 a literal suffix identifier that doesn't begin with an underscore. Literal
3135 suffix identifiers that don't begin with an underscore are reserved for
3136 future standardization.
3137
3138 This warning is enabled by default.
3139
3140 @item -Wlto-type-mismatch
3141 @opindex Wlto-type-mismatch
3142 @opindex Wno-lto-type-mismatch
3143
3144 During the link-time optimization warn about type mismatches in
3145 global declarations from different compilation units.
3146 Requires @option{-flto} to be enabled. Enabled by default.
3147
3148 @item -Wno-narrowing @r{(C++ and Objective-C++ only)}
3149 @opindex Wnarrowing
3150 @opindex Wno-narrowing
3151 For C++11 and later standards, narrowing conversions are diagnosed by default,
3152 as required by the standard. A narrowing conversion from a constant produces
3153 an error, and a narrowing conversion from a non-constant produces a warning,
3154 but @option{-Wno-narrowing} suppresses the diagnostic.
3155 Note that this does not affect the meaning of well-formed code;
3156 narrowing conversions are still considered ill-formed in SFINAE contexts.
3157
3158 With @option{-Wnarrowing} in C++98, warn when a narrowing
3159 conversion prohibited by C++11 occurs within
3160 @samp{@{ @}}, e.g.
3161
3162 @smallexample
3163 int i = @{ 2.2 @}; // error: narrowing from double to int
3164 @end smallexample
3165
3166 This flag is included in @option{-Wall} and @option{-Wc++11-compat}.
3167
3168 @item -Wnoexcept @r{(C++ and Objective-C++ only)}
3169 @opindex Wnoexcept
3170 @opindex Wno-noexcept
3171 Warn when a noexcept-expression evaluates to false because of a call
3172 to a function that does not have a non-throwing exception
3173 specification (i.e. @code{throw()} or @code{noexcept}) but is known by
3174 the compiler to never throw an exception.
3175
3176 @item -Wnoexcept-type @r{(C++ and Objective-C++ only)}
3177 @opindex Wnoexcept-type
3178 @opindex Wno-noexcept-type
3179 Warn if the C++17 feature making @code{noexcept} part of a function
3180 type changes the mangled name of a symbol relative to C++14. Enabled
3181 by @option{-Wabi} and @option{-Wc++17-compat}.
3182
3183 As an example:
3184
3185 @smallexample
3186 template <class T> void f(T t) @{ t(); @};
3187 void g() noexcept;
3188 void h() @{ f(g); @}
3189 @end smallexample
3190
3191 @noindent
3192 In C++14, @code{f} calls @code{f<void(*)()>}, but in
3193 C++17 it calls @code{f<void(*)()noexcept>}.
3194
3195 @item -Wclass-memaccess @r{(C++ and Objective-C++ only)}
3196 @opindex Wclass-memaccess
3197 @opindex Wno-class-memaccess
3198 Warn when the destination of a call to a raw memory function such as
3199 @code{memset} or @code{memcpy} is an object of class type, and when writing
3200 into such an object might bypass the class non-trivial or deleted constructor
3201 or copy assignment, violate const-correctness or encapsulation, or corrupt
3202 virtual table pointers. Modifying the representation of such objects may
3203 violate invariants maintained by member functions of the class. For example,
3204 the call to @code{memset} below is undefined because it modifies a non-trivial
3205 class object and is, therefore, diagnosed. The safe way to either initialize
3206 or clear the storage of objects of such types is by using the appropriate
3207 constructor or assignment operator, if one is available.
3208 @smallexample
3209 std::string str = "abc";
3210 memset (&str, 0, sizeof str);
3211 @end smallexample
3212 The @option{-Wclass-memaccess} option is enabled by @option{-Wall}.
3213 Explicitly casting the pointer to the class object to @code{void *} or
3214 to a type that can be safely accessed by the raw memory function suppresses
3215 the warning.
3216
3217 @item -Wnon-virtual-dtor @r{(C++ and Objective-C++ only)}
3218 @opindex Wnon-virtual-dtor
3219 @opindex Wno-non-virtual-dtor
3220 Warn when a class has virtual functions and an accessible non-virtual
3221 destructor itself or in an accessible polymorphic base class, in which
3222 case it is possible but unsafe to delete an instance of a derived
3223 class through a pointer to the class itself or base class. This
3224 warning is automatically enabled if @option{-Weffc++} is specified.
3225
3226 @item -Wregister @r{(C++ and Objective-C++ only)}
3227 @opindex Wregister
3228 @opindex Wno-register
3229 Warn on uses of the @code{register} storage class specifier, except
3230 when it is part of the GNU @ref{Explicit Register Variables} extension.
3231 The use of the @code{register} keyword as storage class specifier has
3232 been deprecated in C++11 and removed in C++17.
3233 Enabled by default with @option{-std=c++17}.
3234
3235 @item -Wreorder @r{(C++ and Objective-C++ only)}
3236 @opindex Wreorder
3237 @opindex Wno-reorder
3238 @cindex reordering, warning
3239 @cindex warning for reordering of member initializers
3240 Warn when the order of member initializers given in the code does not
3241 match the order in which they must be executed. For instance:
3242
3243 @smallexample
3244 struct A @{
3245 int i;
3246 int j;
3247 A(): j (0), i (1) @{ @}
3248 @};
3249 @end smallexample
3250
3251 @noindent
3252 The compiler rearranges the member initializers for @code{i}
3253 and @code{j} to match the declaration order of the members, emitting
3254 a warning to that effect. This warning is enabled by @option{-Wall}.
3255
3256 @item -Wno-pessimizing-move @r{(C++ and Objective-C++ only)}
3257 @opindex Wpessimizing-move
3258 @opindex Wno-pessimizing-move
3259 This warning warns when a call to @code{std::move} prevents copy
3260 elision. A typical scenario when copy elision can occur is when returning in
3261 a function with a class return type, when the expression being returned is the
3262 name of a non-volatile automatic object, and is not a function parameter, and
3263 has the same type as the function return type.
3264
3265 @smallexample
3266 struct T @{
3267 @dots{}
3268 @};
3269 T fn()
3270 @{
3271 T t;
3272 @dots{}
3273 return std::move (t);
3274 @}
3275 @end smallexample
3276
3277 But in this example, the @code{std::move} call prevents copy elision.
3278
3279 This warning is enabled by @option{-Wall}.
3280
3281 @item -Wno-redundant-move @r{(C++ and Objective-C++ only)}
3282 @opindex Wredundant-move
3283 @opindex Wno-redundant-move
3284 This warning warns about redundant calls to @code{std::move}; that is, when
3285 a move operation would have been performed even without the @code{std::move}
3286 call. This happens because the compiler is forced to treat the object as if
3287 it were an rvalue in certain situations such as returning a local variable,
3288 where copy elision isn't applicable. Consider:
3289
3290 @smallexample
3291 struct T @{
3292 @dots{}
3293 @};
3294 T fn(T t)
3295 @{
3296 @dots{}
3297 return std::move (t);
3298 @}
3299 @end smallexample
3300
3301 Here, the @code{std::move} call is redundant. Because G++ implements Core
3302 Issue 1579, another example is:
3303
3304 @smallexample
3305 struct T @{ // convertible to U
3306 @dots{}
3307 @};
3308 struct U @{
3309 @dots{}
3310 @};
3311 U fn()
3312 @{
3313 T t;
3314 @dots{}
3315 return std::move (t);
3316 @}
3317 @end smallexample
3318 In this example, copy elision isn't applicable because the type of the
3319 expression being returned and the function return type differ, yet G++
3320 treats the return value as if it were designated by an rvalue.
3321
3322 This warning is enabled by @option{-Wextra}.
3323
3324 @item -fext-numeric-literals @r{(C++ and Objective-C++ only)}
3325 @opindex fext-numeric-literals
3326 @opindex fno-ext-numeric-literals
3327 Accept imaginary, fixed-point, or machine-defined
3328 literal number suffixes as GNU extensions.
3329 When this option is turned off these suffixes are treated
3330 as C++11 user-defined literal numeric suffixes.
3331 This is on by default for all pre-C++11 dialects and all GNU dialects:
3332 @option{-std=c++98}, @option{-std=gnu++98}, @option{-std=gnu++11},
3333 @option{-std=gnu++14}.
3334 This option is off by default
3335 for ISO C++11 onwards (@option{-std=c++11}, ...).
3336 @end table
3337
3338 The following @option{-W@dots{}} options are not affected by @option{-Wall}.
3339
3340 @table @gcctabopt
3341 @item -Weffc++ @r{(C++ and Objective-C++ only)}
3342 @opindex Weffc++
3343 @opindex Wno-effc++
3344 Warn about violations of the following style guidelines from Scott Meyers'
3345 @cite{Effective C++} series of books:
3346
3347 @itemize @bullet
3348 @item
3349 Define a copy constructor and an assignment operator for classes
3350 with dynamically-allocated memory.
3351
3352 @item
3353 Prefer initialization to assignment in constructors.
3354
3355 @item
3356 Have @code{operator=} return a reference to @code{*this}.
3357
3358 @item
3359 Don't try to return a reference when you must return an object.
3360
3361 @item
3362 Distinguish between prefix and postfix forms of increment and
3363 decrement operators.
3364
3365 @item
3366 Never overload @code{&&}, @code{||}, or @code{,}.
3367
3368 @end itemize
3369
3370 This option also enables @option{-Wnon-virtual-dtor}, which is also
3371 one of the effective C++ recommendations. However, the check is
3372 extended to warn about the lack of virtual destructor in accessible
3373 non-polymorphic bases classes too.
3374
3375 When selecting this option, be aware that the standard library
3376 headers do not obey all of these guidelines; use @samp{grep -v}
3377 to filter out those warnings.
3378
3379 @item -Wstrict-null-sentinel @r{(C++ and Objective-C++ only)}
3380 @opindex Wstrict-null-sentinel
3381 @opindex Wno-strict-null-sentinel
3382 Warn about the use of an uncasted @code{NULL} as sentinel. When
3383 compiling only with GCC this is a valid sentinel, as @code{NULL} is defined
3384 to @code{__null}. Although it is a null pointer constant rather than a
3385 null pointer, it is guaranteed to be of the same size as a pointer.
3386 But this use is not portable across different compilers.
3387
3388 @item -Wno-non-template-friend @r{(C++ and Objective-C++ only)}
3389 @opindex Wno-non-template-friend
3390 @opindex Wnon-template-friend
3391 Disable warnings when non-template friend functions are declared
3392 within a template. In very old versions of GCC that predate implementation
3393 of the ISO standard, declarations such as
3394 @samp{friend int foo(int)}, where the name of the friend is an unqualified-id,
3395 could be interpreted as a particular specialization of a template
3396 function; the warning exists to diagnose compatibility problems,
3397 and is enabled by default.
3398
3399 @item -Wold-style-cast @r{(C++ and Objective-C++ only)}
3400 @opindex Wold-style-cast
3401 @opindex Wno-old-style-cast
3402 Warn if an old-style (C-style) cast to a non-void type is used within
3403 a C++ program. The new-style casts (@code{dynamic_cast},
3404 @code{static_cast}, @code{reinterpret_cast}, and @code{const_cast}) are
3405 less vulnerable to unintended effects and much easier to search for.
3406
3407 @item -Woverloaded-virtual @r{(C++ and Objective-C++ only)}
3408 @opindex Woverloaded-virtual
3409 @opindex Wno-overloaded-virtual
3410 @cindex overloaded virtual function, warning
3411 @cindex warning for overloaded virtual function
3412 Warn when a function declaration hides virtual functions from a
3413 base class. For example, in:
3414
3415 @smallexample
3416 struct A @{
3417 virtual void f();
3418 @};
3419
3420 struct B: public A @{
3421 void f(int);
3422 @};
3423 @end smallexample
3424
3425 the @code{A} class version of @code{f} is hidden in @code{B}, and code
3426 like:
3427
3428 @smallexample
3429 B* b;
3430 b->f();
3431 @end smallexample
3432
3433 @noindent
3434 fails to compile.
3435
3436 @item -Wno-pmf-conversions @r{(C++ and Objective-C++ only)}
3437 @opindex Wno-pmf-conversions
3438 @opindex Wpmf-conversions
3439 Disable the diagnostic for converting a bound pointer to member function
3440 to a plain pointer.
3441
3442 @item -Wsign-promo @r{(C++ and Objective-C++ only)}
3443 @opindex Wsign-promo
3444 @opindex Wno-sign-promo
3445 Warn when overload resolution chooses a promotion from unsigned or
3446 enumerated type to a signed type, over a conversion to an unsigned type of
3447 the same size. Previous versions of G++ tried to preserve
3448 unsignedness, but the standard mandates the current behavior.
3449
3450 @item -Wtemplates @r{(C++ and Objective-C++ only)}
3451 @opindex Wtemplates
3452 @opindex Wno-templates
3453 Warn when a primary template declaration is encountered. Some coding
3454 rules disallow templates, and this may be used to enforce that rule.
3455 The warning is inactive inside a system header file, such as the STL, so
3456 one can still use the STL. One may also instantiate or specialize
3457 templates.
3458
3459 @item -Wmultiple-inheritance @r{(C++ and Objective-C++ only)}
3460 @opindex Wmultiple-inheritance
3461 @opindex Wno-multiple-inheritance
3462 Warn when a class is defined with multiple direct base classes. Some
3463 coding rules disallow multiple inheritance, and this may be used to
3464 enforce that rule. The warning is inactive inside a system header file,
3465 such as the STL, so one can still use the STL. One may also define
3466 classes that indirectly use multiple inheritance.
3467
3468 @item -Wvirtual-inheritance
3469 @opindex Wvirtual-inheritance
3470 @opindex Wno-virtual-inheritance
3471 Warn when a class is defined with a virtual direct base class. Some
3472 coding rules disallow multiple inheritance, and this may be used to
3473 enforce that rule. The warning is inactive inside a system header file,
3474 such as the STL, so one can still use the STL. One may also define
3475 classes that indirectly use virtual inheritance.
3476
3477 @item -Wnamespaces
3478 @opindex Wnamespaces
3479 @opindex Wno-namespaces
3480 Warn when a namespace definition is opened. Some coding rules disallow
3481 namespaces, and this may be used to enforce that rule. The warning is
3482 inactive inside a system header file, such as the STL, so one can still
3483 use the STL. One may also use using directives and qualified names.
3484
3485 @item -Wno-terminate @r{(C++ and Objective-C++ only)}
3486 @opindex Wterminate
3487 @opindex Wno-terminate
3488 Disable the warning about a throw-expression that will immediately
3489 result in a call to @code{terminate}.
3490
3491 @item -Wno-class-conversion @r{(C++ and Objective-C++ only)}
3492 @opindex Wno-class-conversion
3493 @opindex Wclass-conversion
3494 Disable the warning about the case when a conversion function converts an
3495 object to the same type, to a base class of that type, or to void; such
3496 a conversion function will never be called.
3497 @end table
3498
3499 @node Objective-C and Objective-C++ Dialect Options
3500 @section Options Controlling Objective-C and Objective-C++ Dialects
3501
3502 @cindex compiler options, Objective-C and Objective-C++
3503 @cindex Objective-C and Objective-C++ options, command-line
3504 @cindex options, Objective-C and Objective-C++
3505 (NOTE: This manual does not describe the Objective-C and Objective-C++
3506 languages themselves. @xref{Standards,,Language Standards
3507 Supported by GCC}, for references.)
3508
3509 This section describes the command-line options that are only meaningful
3510 for Objective-C and Objective-C++ programs. You can also use most of
3511 the language-independent GNU compiler options.
3512 For example, you might compile a file @file{some_class.m} like this:
3513
3514 @smallexample
3515 gcc -g -fgnu-runtime -O -c some_class.m
3516 @end smallexample
3517
3518 @noindent
3519 In this example, @option{-fgnu-runtime} is an option meant only for
3520 Objective-C and Objective-C++ programs; you can use the other options with
3521 any language supported by GCC@.
3522
3523 Note that since Objective-C is an extension of the C language, Objective-C
3524 compilations may also use options specific to the C front-end (e.g.,
3525 @option{-Wtraditional}). Similarly, Objective-C++ compilations may use
3526 C++-specific options (e.g., @option{-Wabi}).
3527
3528 Here is a list of options that are @emph{only} for compiling Objective-C
3529 and Objective-C++ programs:
3530
3531 @table @gcctabopt
3532 @item -fconstant-string-class=@var{class-name}
3533 @opindex fconstant-string-class
3534 Use @var{class-name} as the name of the class to instantiate for each
3535 literal string specified with the syntax @code{@@"@dots{}"}. The default
3536 class name is @code{NXConstantString} if the GNU runtime is being used, and
3537 @code{NSConstantString} if the NeXT runtime is being used (see below). The
3538 @option{-fconstant-cfstrings} option, if also present, overrides the
3539 @option{-fconstant-string-class} setting and cause @code{@@"@dots{}"} literals
3540 to be laid out as constant CoreFoundation strings.
3541
3542 @item -fgnu-runtime
3543 @opindex fgnu-runtime
3544 Generate object code compatible with the standard GNU Objective-C
3545 runtime. This is the default for most types of systems.
3546
3547 @item -fnext-runtime
3548 @opindex fnext-runtime
3549 Generate output compatible with the NeXT runtime. This is the default
3550 for NeXT-based systems, including Darwin and Mac OS X@. The macro
3551 @code{__NEXT_RUNTIME__} is predefined if (and only if) this option is
3552 used.
3553
3554 @item -fno-nil-receivers
3555 @opindex fno-nil-receivers
3556 @opindex fnil-receivers
3557 Assume that all Objective-C message dispatches (@code{[receiver
3558 message:arg]}) in this translation unit ensure that the receiver is
3559 not @code{nil}. This allows for more efficient entry points in the
3560 runtime to be used. This option is only available in conjunction with
3561 the NeXT runtime and ABI version 0 or 1.
3562
3563 @item -fobjc-abi-version=@var{n}
3564 @opindex fobjc-abi-version
3565 Use version @var{n} of the Objective-C ABI for the selected runtime.
3566 This option is currently supported only for the NeXT runtime. In that
3567 case, Version 0 is the traditional (32-bit) ABI without support for
3568 properties and other Objective-C 2.0 additions. Version 1 is the
3569 traditional (32-bit) ABI with support for properties and other
3570 Objective-C 2.0 additions. Version 2 is the modern (64-bit) ABI. If
3571 nothing is specified, the default is Version 0 on 32-bit target
3572 machines, and Version 2 on 64-bit target machines.
3573
3574 @item -fobjc-call-cxx-cdtors
3575 @opindex fobjc-call-cxx-cdtors
3576 For each Objective-C class, check if any of its instance variables is a
3577 C++ object with a non-trivial default constructor. If so, synthesize a
3578 special @code{- (id) .cxx_construct} instance method which runs
3579 non-trivial default constructors on any such instance variables, in order,
3580 and then return @code{self}. Similarly, check if any instance variable
3581 is a C++ object with a non-trivial destructor, and if so, synthesize a
3582 special @code{- (void) .cxx_destruct} method which runs
3583 all such default destructors, in reverse order.
3584
3585 The @code{- (id) .cxx_construct} and @code{- (void) .cxx_destruct}
3586 methods thusly generated only operate on instance variables
3587 declared in the current Objective-C class, and not those inherited
3588 from superclasses. It is the responsibility of the Objective-C
3589 runtime to invoke all such methods in an object's inheritance
3590 hierarchy. The @code{- (id) .cxx_construct} methods are invoked
3591 by the runtime immediately after a new object instance is allocated;
3592 the @code{- (void) .cxx_destruct} methods are invoked immediately
3593 before the runtime deallocates an object instance.
3594
3595 As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
3596 support for invoking the @code{- (id) .cxx_construct} and
3597 @code{- (void) .cxx_destruct} methods.
3598
3599 @item -fobjc-direct-dispatch
3600 @opindex fobjc-direct-dispatch
3601 Allow fast jumps to the message dispatcher. On Darwin this is
3602 accomplished via the comm page.
3603
3604 @item -fobjc-exceptions
3605 @opindex fobjc-exceptions
3606 Enable syntactic support for structured exception handling in
3607 Objective-C, similar to what is offered by C++. This option
3608 is required to use the Objective-C keywords @code{@@try},
3609 @code{@@throw}, @code{@@catch}, @code{@@finally} and
3610 @code{@@synchronized}. This option is available with both the GNU
3611 runtime and the NeXT runtime (but not available in conjunction with
3612 the NeXT runtime on Mac OS X 10.2 and earlier).
3613
3614 @item -fobjc-gc
3615 @opindex fobjc-gc
3616 Enable garbage collection (GC) in Objective-C and Objective-C++
3617 programs. This option is only available with the NeXT runtime; the
3618 GNU runtime has a different garbage collection implementation that
3619 does not require special compiler flags.
3620
3621 @item -fobjc-nilcheck
3622 @opindex fobjc-nilcheck
3623 For the NeXT runtime with version 2 of the ABI, check for a nil
3624 receiver in method invocations before doing the actual method call.
3625 This is the default and can be disabled using
3626 @option{-fno-objc-nilcheck}. Class methods and super calls are never
3627 checked for nil in this way no matter what this flag is set to.
3628 Currently this flag does nothing when the GNU runtime, or an older
3629 version of the NeXT runtime ABI, is used.
3630
3631 @item -fobjc-std=objc1
3632 @opindex fobjc-std
3633 Conform to the language syntax of Objective-C 1.0, the language
3634 recognized by GCC 4.0. This only affects the Objective-C additions to
3635 the C/C++ language; it does not affect conformance to C/C++ standards,
3636 which is controlled by the separate C/C++ dialect option flags. When
3637 this option is used with the Objective-C or Objective-C++ compiler,
3638 any Objective-C syntax that is not recognized by GCC 4.0 is rejected.
3639 This is useful if you need to make sure that your Objective-C code can
3640 be compiled with older versions of GCC@.
3641
3642 @item -freplace-objc-classes
3643 @opindex freplace-objc-classes
3644 Emit a special marker instructing @command{ld(1)} not to statically link in
3645 the resulting object file, and allow @command{dyld(1)} to load it in at
3646 run time instead. This is used in conjunction with the Fix-and-Continue
3647 debugging mode, where the object file in question may be recompiled and
3648 dynamically reloaded in the course of program execution, without the need
3649 to restart the program itself. Currently, Fix-and-Continue functionality
3650 is only available in conjunction with the NeXT runtime on Mac OS X 10.3
3651 and later.
3652
3653 @item -fzero-link
3654 @opindex fzero-link
3655 When compiling for the NeXT runtime, the compiler ordinarily replaces calls
3656 to @code{objc_getClass("@dots{}")} (when the name of the class is known at
3657 compile time) with static class references that get initialized at load time,
3658 which improves run-time performance. Specifying the @option{-fzero-link} flag
3659 suppresses this behavior and causes calls to @code{objc_getClass("@dots{}")}
3660 to be retained. This is useful in Zero-Link debugging mode, since it allows
3661 for individual class implementations to be modified during program execution.
3662 The GNU runtime currently always retains calls to @code{objc_get_class("@dots{}")}
3663 regardless of command-line options.
3664
3665 @item -fno-local-ivars
3666 @opindex fno-local-ivars
3667 @opindex flocal-ivars
3668 By default instance variables in Objective-C can be accessed as if
3669 they were local variables from within the methods of the class they're
3670 declared in. This can lead to shadowing between instance variables
3671 and other variables declared either locally inside a class method or
3672 globally with the same name. Specifying the @option{-fno-local-ivars}
3673 flag disables this behavior thus avoiding variable shadowing issues.
3674
3675 @item -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]}
3676 @opindex fivar-visibility
3677 Set the default instance variable visibility to the specified option
3678 so that instance variables declared outside the scope of any access
3679 modifier directives default to the specified visibility.
3680
3681 @item -gen-decls
3682 @opindex gen-decls
3683 Dump interface declarations for all classes seen in the source file to a
3684 file named @file{@var{sourcename}.decl}.
3685
3686 @item -Wassign-intercept @r{(Objective-C and Objective-C++ only)}
3687 @opindex Wassign-intercept
3688 @opindex Wno-assign-intercept
3689 Warn whenever an Objective-C assignment is being intercepted by the
3690 garbage collector.
3691
3692 @item -Wno-protocol @r{(Objective-C and Objective-C++ only)}
3693 @opindex Wno-protocol
3694 @opindex Wprotocol
3695 If a class is declared to implement a protocol, a warning is issued for
3696 every method in the protocol that is not implemented by the class. The
3697 default behavior is to issue a warning for every method not explicitly
3698 implemented in the class, even if a method implementation is inherited
3699 from the superclass. If you use the @option{-Wno-protocol} option, then
3700 methods inherited from the superclass are considered to be implemented,
3701 and no warning is issued for them.
3702
3703 @item -Wselector @r{(Objective-C and Objective-C++ only)}
3704 @opindex Wselector
3705 @opindex Wno-selector
3706 Warn if multiple methods of different types for the same selector are
3707 found during compilation. The check is performed on the list of methods
3708 in the final stage of compilation. Additionally, a check is performed
3709 for each selector appearing in a @code{@@selector(@dots{})}
3710 expression, and a corresponding method for that selector has been found
3711 during compilation. Because these checks scan the method table only at
3712 the end of compilation, these warnings are not produced if the final
3713 stage of compilation is not reached, for example because an error is
3714 found during compilation, or because the @option{-fsyntax-only} option is
3715 being used.
3716
3717 @item -Wstrict-selector-match @r{(Objective-C and Objective-C++ only)}
3718 @opindex Wstrict-selector-match
3719 @opindex Wno-strict-selector-match
3720 Warn if multiple methods with differing argument and/or return types are
3721 found for a given selector when attempting to send a message using this
3722 selector to a receiver of type @code{id} or @code{Class}. When this flag
3723 is off (which is the default behavior), the compiler omits such warnings
3724 if any differences found are confined to types that share the same size
3725 and alignment.
3726
3727 @item -Wundeclared-selector @r{(Objective-C and Objective-C++ only)}
3728 @opindex Wundeclared-selector
3729 @opindex Wno-undeclared-selector
3730 Warn if a @code{@@selector(@dots{})} expression referring to an
3731 undeclared selector is found. A selector is considered undeclared if no
3732 method with that name has been declared before the
3733 @code{@@selector(@dots{})} expression, either explicitly in an
3734 @code{@@interface} or @code{@@protocol} declaration, or implicitly in
3735 an @code{@@implementation} section. This option always performs its
3736 checks as soon as a @code{@@selector(@dots{})} expression is found,
3737 while @option{-Wselector} only performs its checks in the final stage of
3738 compilation. This also enforces the coding style convention
3739 that methods and selectors must be declared before being used.
3740
3741 @item -print-objc-runtime-info
3742 @opindex print-objc-runtime-info
3743 Generate C header describing the largest structure that is passed by
3744 value, if any.
3745
3746 @end table
3747
3748 @node Diagnostic Message Formatting Options
3749 @section Options to Control Diagnostic Messages Formatting
3750 @cindex options to control diagnostics formatting
3751 @cindex diagnostic messages
3752 @cindex message formatting
3753
3754 Traditionally, diagnostic messages have been formatted irrespective of
3755 the output device's aspect (e.g.@: its width, @dots{}). You can use the
3756 options described below
3757 to control the formatting algorithm for diagnostic messages,
3758 e.g.@: how many characters per line, how often source location
3759 information should be reported. Note that some language front ends may not
3760 honor these options.
3761
3762 @table @gcctabopt
3763 @item -fmessage-length=@var{n}
3764 @opindex fmessage-length
3765 Try to format error messages so that they fit on lines of about
3766 @var{n} characters. If @var{n} is zero, then no line-wrapping is
3767 done; each error message appears on a single line. This is the
3768 default for all front ends.
3769
3770 Note - this option also affects the display of the @samp{#error} and
3771 @samp{#warning} pre-processor directives, and the @samp{deprecated}
3772 function/type/variable attribute. It does not however affect the
3773 @samp{pragma GCC warning} and @samp{pragma GCC error} pragmas.
3774
3775 @item -fdiagnostics-show-location=once
3776 @opindex fdiagnostics-show-location
3777 Only meaningful in line-wrapping mode. Instructs the diagnostic messages
3778 reporter to emit source location information @emph{once}; that is, in
3779 case the message is too long to fit on a single physical line and has to
3780 be wrapped, the source location won't be emitted (as prefix) again,
3781 over and over, in subsequent continuation lines. This is the default
3782 behavior.
3783
3784 @item -fdiagnostics-show-location=every-line
3785 Only meaningful in line-wrapping mode. Instructs the diagnostic
3786 messages reporter to emit the same source location information (as
3787 prefix) for physical lines that result from the process of breaking
3788 a message which is too long to fit on a single line.
3789
3790 @item -fdiagnostics-color[=@var{WHEN}]
3791 @itemx -fno-diagnostics-color
3792 @opindex fdiagnostics-color
3793 @cindex highlight, color
3794 @vindex GCC_COLORS @r{environment variable}
3795 Use color in diagnostics. @var{WHEN} is @samp{never}, @samp{always},
3796 or @samp{auto}. The default depends on how the compiler has been configured,
3797 it can be any of the above @var{WHEN} options or also @samp{never}
3798 if @env{GCC_COLORS} environment variable isn't present in the environment,
3799 and @samp{auto} otherwise.
3800 @samp{auto} means to use color only when the standard error is a terminal.
3801 The forms @option{-fdiagnostics-color} and @option{-fno-diagnostics-color} are
3802 aliases for @option{-fdiagnostics-color=always} and
3803 @option{-fdiagnostics-color=never}, respectively.
3804
3805 The colors are defined by the environment variable @env{GCC_COLORS}.
3806 Its value is a colon-separated list of capabilities and Select Graphic
3807 Rendition (SGR) substrings. SGR commands are interpreted by the
3808 terminal or terminal emulator. (See the section in the documentation
3809 of your text terminal for permitted values and their meanings as
3810 character attributes.) These substring values are integers in decimal
3811 representation and can be concatenated with semicolons.
3812 Common values to concatenate include
3813 @samp{1} for bold,
3814 @samp{4} for underline,
3815 @samp{5} for blink,
3816 @samp{7} for inverse,
3817 @samp{39} for default foreground color,
3818 @samp{30} to @samp{37} for foreground colors,
3819 @samp{90} to @samp{97} for 16-color mode foreground colors,
3820 @samp{38;5;0} to @samp{38;5;255}
3821 for 88-color and 256-color modes foreground colors,
3822 @samp{49} for default background color,
3823 @samp{40} to @samp{47} for background colors,
3824 @samp{100} to @samp{107} for 16-color mode background colors,
3825 and @samp{48;5;0} to @samp{48;5;255}
3826 for 88-color and 256-color modes background colors.
3827
3828 The default @env{GCC_COLORS} is
3829 @smallexample
3830 error=01;31:warning=01;35:note=01;36:range1=32:range2=34:locus=01:\
3831 quote=01:fixit-insert=32:fixit-delete=31:\
3832 diff-filename=01:diff-hunk=32:diff-delete=31:diff-insert=32:\
3833 type-diff=01;32
3834 @end smallexample
3835 @noindent
3836 where @samp{01;31} is bold red, @samp{01;35} is bold magenta,
3837 @samp{01;36} is bold cyan, @samp{32} is green, @samp{34} is blue,
3838 @samp{01} is bold, and @samp{31} is red.
3839 Setting @env{GCC_COLORS} to the empty string disables colors.
3840 Supported capabilities are as follows.
3841
3842 @table @code
3843 @item error=
3844 @vindex error GCC_COLORS @r{capability}
3845 SGR substring for error: markers.
3846
3847 @item warning=
3848 @vindex warning GCC_COLORS @r{capability}
3849 SGR substring for warning: markers.
3850
3851 @item note=
3852 @vindex note GCC_COLORS @r{capability}
3853 SGR substring for note: markers.
3854
3855 @item range1=
3856 @vindex range1 GCC_COLORS @r{capability}
3857 SGR substring for first additional range.
3858
3859 @item range2=
3860 @vindex range2 GCC_COLORS @r{capability}
3861 SGR substring for second additional range.
3862
3863 @item locus=
3864 @vindex locus GCC_COLORS @r{capability}
3865 SGR substring for location information, @samp{file:line} or
3866 @samp{file:line:column} etc.
3867
3868 @item quote=
3869 @vindex quote GCC_COLORS @r{capability}
3870 SGR substring for information printed within quotes.
3871
3872 @item fixit-insert=
3873 @vindex fixit-insert GCC_COLORS @r{capability}
3874 SGR substring for fix-it hints suggesting text to
3875 be inserted or replaced.
3876
3877 @item fixit-delete=
3878 @vindex fixit-delete GCC_COLORS @r{capability}
3879 SGR substring for fix-it hints suggesting text to
3880 be deleted.
3881
3882 @item diff-filename=
3883 @vindex diff-filename GCC_COLORS @r{capability}
3884 SGR substring for filename headers within generated patches.
3885
3886 @item diff-hunk=
3887 @vindex diff-hunk GCC_COLORS @r{capability}
3888 SGR substring for the starts of hunks within generated patches.
3889
3890 @item diff-delete=
3891 @vindex diff-delete GCC_COLORS @r{capability}
3892 SGR substring for deleted lines within generated patches.
3893
3894 @item diff-insert=
3895 @vindex diff-insert GCC_COLORS @r{capability}
3896 SGR substring for inserted lines within generated patches.
3897
3898 @item type-diff=
3899 @vindex type-diff GCC_COLORS @r{capability}
3900 SGR substring for highlighting mismatching types within template
3901 arguments in the C++ frontend.
3902 @end table
3903
3904 @item -fno-diagnostics-show-option
3905 @opindex fno-diagnostics-show-option
3906 @opindex fdiagnostics-show-option
3907 By default, each diagnostic emitted includes text indicating the
3908 command-line option that directly controls the diagnostic (if such an
3909 option is known to the diagnostic machinery). Specifying the
3910 @option{-fno-diagnostics-show-option} flag suppresses that behavior.
3911
3912 @item -fno-diagnostics-show-caret
3913 @opindex fno-diagnostics-show-caret
3914 @opindex fdiagnostics-show-caret
3915 By default, each diagnostic emitted includes the original source line
3916 and a caret @samp{^} indicating the column. This option suppresses this
3917 information. The source line is truncated to @var{n} characters, if
3918 the @option{-fmessage-length=n} option is given. When the output is done
3919 to the terminal, the width is limited to the width given by the
3920 @env{COLUMNS} environment variable or, if not set, to the terminal width.
3921
3922 @item -fno-diagnostics-show-labels
3923 @opindex fno-diagnostics-show-labels
3924 @opindex fdiagnostics-show-labels
3925 By default, when printing source code (via @option{-fdiagnostics-show-caret}),
3926 diagnostics can label ranges of source code with pertinent information, such
3927 as the types of expressions:
3928
3929 @smallexample
3930 printf ("foo %s bar", long_i + long_j);
3931 ~^ ~~~~~~~~~~~~~~~
3932 | |
3933 char * long int
3934 @end smallexample
3935
3936 This option suppresses the printing of these labels (in the example above,
3937 the vertical bars and the ``char *'' and ``long int'' text).
3938
3939 @item -fno-diagnostics-show-line-numbers
3940 @opindex fno-diagnostics-show-line-numbers
3941 @opindex fdiagnostics-show-line-numbers
3942 By default, when printing source code (via @option{-fdiagnostics-show-caret}),
3943 a left margin is printed, showing line numbers. This option suppresses this
3944 left margin.
3945
3946 @item -fdiagnostics-minimum-margin-width=@var{width}
3947 @opindex fdiagnostics-minimum-margin-width
3948 This option controls the minimum width of the left margin printed by
3949 @option{-fdiagnostics-show-line-numbers}. It defaults to 6.
3950
3951 @item -fdiagnostics-parseable-fixits
3952 @opindex fdiagnostics-parseable-fixits
3953 Emit fix-it hints in a machine-parseable format, suitable for consumption
3954 by IDEs. For each fix-it, a line will be printed after the relevant
3955 diagnostic, starting with the string ``fix-it:''. For example:
3956
3957 @smallexample
3958 fix-it:"test.c":@{45:3-45:21@}:"gtk_widget_show_all"
3959 @end smallexample
3960
3961 The location is expressed as a half-open range, expressed as a count of
3962 bytes, starting at byte 1 for the initial column. In the above example,
3963 bytes 3 through 20 of line 45 of ``test.c'' are to be replaced with the
3964 given string:
3965
3966 @smallexample
3967 00000000011111111112222222222
3968 12345678901234567890123456789
3969 gtk_widget_showall (dlg);
3970 ^^^^^^^^^^^^^^^^^^
3971 gtk_widget_show_all
3972 @end smallexample
3973
3974 The filename and replacement string escape backslash as ``\\", tab as ``\t'',
3975 newline as ``\n'', double quotes as ``\"'', non-printable characters as octal
3976 (e.g. vertical tab as ``\013'').
3977
3978 An empty replacement string indicates that the given range is to be removed.
3979 An empty range (e.g. ``45:3-45:3'') indicates that the string is to
3980 be inserted at the given position.
3981
3982 @item -fdiagnostics-generate-patch
3983 @opindex fdiagnostics-generate-patch
3984 Print fix-it hints to stderr in unified diff format, after any diagnostics
3985 are printed. For example:
3986
3987 @smallexample
3988 --- test.c
3989 +++ test.c
3990 @@ -42,5 +42,5 @@
3991
3992 void show_cb(GtkDialog *dlg)
3993 @{
3994 - gtk_widget_showall(dlg);
3995 + gtk_widget_show_all(dlg);
3996 @}
3997
3998 @end smallexample
3999
4000 The diff may or may not be colorized, following the same rules
4001 as for diagnostics (see @option{-fdiagnostics-color}).
4002
4003 @item -fdiagnostics-show-template-tree
4004 @opindex fdiagnostics-show-template-tree
4005
4006 In the C++ frontend, when printing diagnostics showing mismatching
4007 template types, such as:
4008
4009 @smallexample
4010 could not convert 'std::map<int, std::vector<double> >()'
4011 from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
4012 @end smallexample
4013
4014 the @option{-fdiagnostics-show-template-tree} flag enables printing a
4015 tree-like structure showing the common and differing parts of the types,
4016 such as:
4017
4018 @smallexample
4019 map<
4020 [...],
4021 vector<
4022 [double != float]>>
4023 @end smallexample
4024
4025 The parts that differ are highlighted with color (``double'' and
4026 ``float'' in this case).
4027
4028 @item -fno-elide-type
4029 @opindex fno-elide-type
4030 @opindex felide-type
4031 By default when the C++ frontend prints diagnostics showing mismatching
4032 template types, common parts of the types are printed as ``[...]'' to
4033 simplify the error message. For example:
4034
4035 @smallexample
4036 could not convert 'std::map<int, std::vector<double> >()'
4037 from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
4038 @end smallexample
4039
4040 Specifying the @option{-fno-elide-type} flag suppresses that behavior.
4041 This flag also affects the output of the
4042 @option{-fdiagnostics-show-template-tree} flag.
4043
4044 @item -fno-show-column
4045 @opindex fno-show-column
4046 @opindex fshow-column
4047 Do not print column numbers in diagnostics. This may be necessary if
4048 diagnostics are being scanned by a program that does not understand the
4049 column numbers, such as @command{dejagnu}.
4050
4051 @item -fdiagnostics-format=@var{FORMAT}
4052 @opindex fdiagnostics-format
4053 Select a different format for printing diagnostics.
4054 @var{FORMAT} is @samp{text} or @samp{json}.
4055 The default is @samp{text}.
4056
4057 The @samp{json} format consists of a top-level JSON array containing JSON
4058 objects representing the diagnostics.
4059
4060 The JSON is emitted as one line, without formatting; the examples below
4061 have been formatted for clarity.
4062
4063 Diagnostics can have child diagnostics. For example, this error and note:
4064
4065 @smallexample
4066 misleading-indentation.c:15:3: warning: this 'if' clause does not
4067 guard... [-Wmisleading-indentation]
4068 15 | if (flag)
4069 | ^~
4070 misleading-indentation.c:17:5: note: ...this statement, but the latter
4071 is misleadingly indented as if it were guarded by the 'if'
4072 17 | y = 2;
4073 | ^
4074 @end smallexample
4075
4076 @noindent
4077 might be printed in JSON form (after formatting) like this:
4078
4079 @smallexample
4080 [
4081 @{
4082 "kind": "warning",
4083 "locations": [
4084 @{
4085 "caret": @{
4086 "column": 3,
4087 "file": "misleading-indentation.c",
4088 "line": 15
4089 @},
4090 "finish": @{
4091 "column": 4,
4092 "file": "misleading-indentation.c",
4093 "line": 15
4094 @}
4095 @}
4096 ],
4097 "message": "this \u2018if\u2019 clause does not guard...",
4098 "option": "-Wmisleading-indentation",
4099 "children": [
4100 @{
4101 "kind": "note",
4102 "locations": [
4103 @{
4104 "caret": @{
4105 "column": 5,
4106 "file": "misleading-indentation.c",
4107 "line": 17
4108 @}
4109 @}
4110 ],
4111 "message": "...this statement, but the latter is @dots{}"
4112 @}
4113 ]
4114 @},
4115 @dots{}
4116 ]
4117 @end smallexample
4118
4119 @noindent
4120 where the @code{note} is a child of the @code{warning}.
4121
4122 A diagnostic has a @code{kind}. If this is @code{warning}, then there is
4123 an @code{option} key describing the command-line option controlling the
4124 warning.
4125
4126 A diagnostic can contain zero or more locations. Each location has up
4127 to three positions within it: a @code{caret} position and optional
4128 @code{start} and @code{finish} positions. A location can also have
4129 an optional @code{label} string. For example, this error:
4130
4131 @smallexample
4132 bad-binary-ops.c:64:23: error: invalid operands to binary + (have 'S' @{aka
4133 'struct s'@} and 'T' @{aka 'struct t'@})
4134 64 | return callee_4a () + callee_4b ();
4135 | ~~~~~~~~~~~~ ^ ~~~~~~~~~~~~
4136 | | |
4137 | | T @{aka struct t@}
4138 | S @{aka struct s@}
4139 @end smallexample
4140
4141 @noindent
4142 has three locations. Its primary location is at the ``+'' token at column
4143 23. It has two secondary locations, describing the left and right-hand sides
4144 of the expression, which have labels. It might be printed in JSON form as:
4145
4146 @smallexample
4147 @{
4148 "children": [],
4149 "kind": "error",
4150 "locations": [
4151 @{
4152 "caret": @{
4153 "column": 23, "file": "bad-binary-ops.c", "line": 64
4154 @}
4155 @},
4156 @{
4157 "caret": @{
4158 "column": 10, "file": "bad-binary-ops.c", "line": 64
4159 @},
4160 "finish": @{
4161 "column": 21, "file": "bad-binary-ops.c", "line": 64
4162 @},
4163 "label": "S @{aka struct s@}"
4164 @},
4165 @{
4166 "caret": @{
4167 "column": 25, "file": "bad-binary-ops.c", "line": 64
4168 @},
4169 "finish": @{
4170 "column": 36, "file": "bad-binary-ops.c", "line": 64
4171 @},
4172 "label": "T @{aka struct t@}"
4173 @}
4174 ],
4175 "message": "invalid operands to binary + @dots{}"
4176 @}
4177 @end smallexample
4178
4179 If a diagnostic contains fix-it hints, it has a @code{fixits} array,
4180 consisting of half-open intervals, similar to the output of
4181 @option{-fdiagnostics-parseable-fixits}. For example, this diagnostic
4182 with a replacement fix-it hint:
4183
4184 @smallexample
4185 demo.c:8:15: error: 'struct s' has no member named 'colour'; did you
4186 mean 'color'?
4187 8 | return ptr->colour;
4188 | ^~~~~~
4189 | color
4190 @end smallexample
4191
4192 @noindent
4193 might be printed in JSON form as:
4194
4195 @smallexample
4196 @{
4197 "children": [],
4198 "fixits": [
4199 @{
4200 "next": @{
4201 "column": 21,
4202 "file": "demo.c",
4203 "line": 8
4204 @},
4205 "start": @{
4206 "column": 15,
4207 "file": "demo.c",
4208 "line": 8
4209 @},
4210 "string": "color"
4211 @}
4212 ],
4213 "kind": "error",
4214 "locations": [
4215 @{
4216 "caret": @{
4217 "column": 15,
4218 "file": "demo.c",
4219 "line": 8
4220 @},
4221 "finish": @{
4222 "column": 20,
4223 "file": "demo.c",
4224 "line": 8
4225 @}
4226 @}
4227 ],
4228 "message": "\u2018struct s\u2019 has no member named @dots{}"
4229 @}
4230 @end smallexample
4231
4232 @noindent
4233 where the fix-it hint suggests replacing the text from @code{start} up
4234 to but not including @code{next} with @code{string}'s value. Deletions
4235 are expressed via an empty value for @code{string}, insertions by
4236 having @code{start} equal @code{next}.
4237
4238 @end table
4239
4240 @node Warning Options
4241 @section Options to Request or Suppress Warnings
4242 @cindex options to control warnings
4243 @cindex warning messages
4244 @cindex messages, warning
4245 @cindex suppressing warnings
4246
4247 Warnings are diagnostic messages that report constructions that
4248 are not inherently erroneous but that are risky or suggest there
4249 may have been an error.
4250
4251 The following language-independent options do not enable specific
4252 warnings but control the kinds of diagnostics produced by GCC@.
4253
4254 @table @gcctabopt
4255 @cindex syntax checking
4256 @item -fsyntax-only
4257 @opindex fsyntax-only
4258 Check the code for syntax errors, but don't do anything beyond that.
4259
4260 @item -fmax-errors=@var{n}
4261 @opindex fmax-errors
4262 Limits the maximum number of error messages to @var{n}, at which point
4263 GCC bails out rather than attempting to continue processing the source
4264 code. If @var{n} is 0 (the default), there is no limit on the number
4265 of error messages produced. If @option{-Wfatal-errors} is also
4266 specified, then @option{-Wfatal-errors} takes precedence over this
4267 option.
4268
4269 @item -w
4270 @opindex w
4271 Inhibit all warning messages.
4272
4273 @item -Werror
4274 @opindex Werror
4275 @opindex Wno-error
4276 Make all warnings into errors.
4277
4278 @item -Werror=
4279 @opindex Werror=
4280 @opindex Wno-error=
4281 Make the specified warning into an error. The specifier for a warning
4282 is appended; for example @option{-Werror=switch} turns the warnings
4283 controlled by @option{-Wswitch} into errors. This switch takes a
4284 negative form, to be used to negate @option{-Werror} for specific
4285 warnings; for example @option{-Wno-error=switch} makes
4286 @option{-Wswitch} warnings not be errors, even when @option{-Werror}
4287 is in effect.
4288
4289 The warning message for each controllable warning includes the
4290 option that controls the warning. That option can then be used with
4291 @option{-Werror=} and @option{-Wno-error=} as described above.
4292 (Printing of the option in the warning message can be disabled using the
4293 @option{-fno-diagnostics-show-option} flag.)
4294
4295 Note that specifying @option{-Werror=}@var{foo} automatically implies
4296 @option{-W}@var{foo}. However, @option{-Wno-error=}@var{foo} does not
4297 imply anything.
4298
4299 @item -Wfatal-errors
4300 @opindex Wfatal-errors
4301 @opindex Wno-fatal-errors
4302 This option causes the compiler to abort compilation on the first error
4303 occurred rather than trying to keep going and printing further error
4304 messages.
4305
4306 @end table
4307
4308 You can request many specific warnings with options beginning with
4309 @samp{-W}, for example @option{-Wimplicit} to request warnings on
4310 implicit declarations. Each of these specific warning options also
4311 has a negative form beginning @samp{-Wno-} to turn off warnings; for
4312 example, @option{-Wno-implicit}. This manual lists only one of the
4313 two forms, whichever is not the default. For further
4314 language-specific options also refer to @ref{C++ Dialect Options} and
4315 @ref{Objective-C and Objective-C++ Dialect Options}.
4316
4317 Some options, such as @option{-Wall} and @option{-Wextra}, turn on other
4318 options, such as @option{-Wunused}, which may turn on further options,
4319 such as @option{-Wunused-value}. The combined effect of positive and
4320 negative forms is that more specific options have priority over less
4321 specific ones, independently of their position in the command-line. For
4322 options of the same specificity, the last one takes effect. Options
4323 enabled or disabled via pragmas (@pxref{Diagnostic Pragmas}) take effect
4324 as if they appeared at the end of the command-line.
4325
4326 When an unrecognized warning option is requested (e.g.,
4327 @option{-Wunknown-warning}), GCC emits a diagnostic stating
4328 that the option is not recognized. However, if the @option{-Wno-} form
4329 is used, the behavior is slightly different: no diagnostic is
4330 produced for @option{-Wno-unknown-warning} unless other diagnostics
4331 are being produced. This allows the use of new @option{-Wno-} options
4332 with old compilers, but if something goes wrong, the compiler
4333 warns that an unrecognized option is present.
4334
4335 @table @gcctabopt
4336 @item -Wpedantic
4337 @itemx -pedantic
4338 @opindex pedantic
4339 @opindex Wpedantic
4340 @opindex Wno-pedantic
4341 Issue all the warnings demanded by strict ISO C and ISO C++;
4342 reject all programs that use forbidden extensions, and some other
4343 programs that do not follow ISO C and ISO C++. For ISO C, follows the
4344 version of the ISO C standard specified by any @option{-std} option used.
4345
4346 Valid ISO C and ISO C++ programs should compile properly with or without
4347 this option (though a rare few require @option{-ansi} or a
4348 @option{-std} option specifying the required version of ISO C)@. However,
4349 without this option, certain GNU extensions and traditional C and C++
4350 features are supported as well. With this option, they are rejected.
4351
4352 @option{-Wpedantic} does not cause warning messages for use of the
4353 alternate keywords whose names begin and end with @samp{__}. This alternate
4354 format can also be used to disable warnings for non-ISO @samp{__intN} types,
4355 i.e. @samp{__intN__}.
4356 Pedantic warnings are also disabled in the expression that follows
4357 @code{__extension__}. However, only system header files should use
4358 these escape routes; application programs should avoid them.
4359 @xref{Alternate Keywords}.
4360
4361 Some users try to use @option{-Wpedantic} to check programs for strict ISO
4362 C conformance. They soon find that it does not do quite what they want:
4363 it finds some non-ISO practices, but not all---only those for which
4364 ISO C @emph{requires} a diagnostic, and some others for which
4365 diagnostics have been added.
4366
4367 A feature to report any failure to conform to ISO C might be useful in
4368 some instances, but would require considerable additional work and would
4369 be quite different from @option{-Wpedantic}. We don't have plans to
4370 support such a feature in the near future.
4371
4372 Where the standard specified with @option{-std} represents a GNU
4373 extended dialect of C, such as @samp{gnu90} or @samp{gnu99}, there is a
4374 corresponding @dfn{base standard}, the version of ISO C on which the GNU
4375 extended dialect is based. Warnings from @option{-Wpedantic} are given
4376 where they are required by the base standard. (It does not make sense
4377 for such warnings to be given only for features not in the specified GNU
4378 C dialect, since by definition the GNU dialects of C include all
4379 features the compiler supports with the given option, and there would be
4380 nothing to warn about.)
4381
4382 @item -pedantic-errors
4383 @opindex pedantic-errors
4384 Give an error whenever the @dfn{base standard} (see @option{-Wpedantic})
4385 requires a diagnostic, in some cases where there is undefined behavior
4386 at compile-time and in some other cases that do not prevent compilation
4387 of programs that are valid according to the standard. This is not
4388 equivalent to @option{-Werror=pedantic}, since there are errors enabled
4389 by this option and not enabled by the latter and vice versa.
4390
4391 @item -Wall
4392 @opindex Wall
4393 @opindex Wno-all
4394 This enables all the warnings about constructions that some users
4395 consider questionable, and that are easy to avoid (or modify to
4396 prevent the warning), even in conjunction with macros. This also
4397 enables some language-specific warnings described in @ref{C++ Dialect
4398 Options} and @ref{Objective-C and Objective-C++ Dialect Options}.
4399
4400 @option{-Wall} turns on the following warning flags:
4401
4402 @gccoptlist{-Waddress @gol
4403 -Warray-bounds=1 @r{(only with} @option{-O2}@r{)} @gol
4404 -Wbool-compare @gol
4405 -Wbool-operation @gol
4406 -Wc++11-compat -Wc++14-compat @gol
4407 -Wcatch-value @r{(C++ and Objective-C++ only)} @gol
4408 -Wchar-subscripts @gol
4409 -Wcomment @gol
4410 -Wduplicate-decl-specifier @r{(C and Objective-C only)} @gol
4411 -Wenum-compare @r{(in C/ObjC; this is on by default in C++)} @gol
4412 -Wformat @gol
4413 -Wint-in-bool-context @gol
4414 -Wimplicit @r{(C and Objective-C only)} @gol
4415 -Wimplicit-int @r{(C and Objective-C only)} @gol
4416 -Wimplicit-function-declaration @r{(C and Objective-C only)} @gol
4417 -Winit-self @r{(only for C++)} @gol
4418 -Wlogical-not-parentheses @gol
4419 -Wmain @r{(only for C/ObjC and unless} @option{-ffreestanding}@r{)} @gol
4420 -Wmaybe-uninitialized @gol
4421 -Wmemset-elt-size @gol
4422 -Wmemset-transposed-args @gol
4423 -Wmisleading-indentation @r{(only for C/C++)} @gol
4424 -Wmissing-attributes @gol
4425 -Wmissing-braces @r{(only for C/ObjC)} @gol
4426 -Wmultistatement-macros @gol
4427 -Wnarrowing @r{(only for C++)} @gol
4428 -Wnonnull @gol
4429 -Wnonnull-compare @gol
4430 -Wopenmp-simd @gol
4431 -Wparentheses @gol
4432 -Wpessimizing-move @r{(only for C++)} @gol
4433 -Wpointer-sign @gol
4434 -Wreorder @gol
4435 -Wrestrict @gol
4436 -Wreturn-type @gol
4437 -Wsequence-point @gol
4438 -Wsign-compare @r{(only in C++)} @gol
4439 -Wsizeof-pointer-div @gol
4440 -Wsizeof-pointer-memaccess @gol
4441 -Wstrict-aliasing @gol
4442 -Wstrict-overflow=1 @gol
4443 -Wswitch @gol
4444 -Wtautological-compare @gol
4445 -Wtrigraphs @gol
4446 -Wuninitialized @gol
4447 -Wunknown-pragmas @gol
4448 -Wunused-function @gol
4449 -Wunused-label @gol
4450 -Wunused-value @gol
4451 -Wunused-variable @gol
4452 -Wvolatile-register-var}
4453
4454 Note that some warning flags are not implied by @option{-Wall}. Some of
4455 them warn about constructions that users generally do not consider
4456 questionable, but which occasionally you might wish to check for;
4457 others warn about constructions that are necessary or hard to avoid in
4458 some cases, and there is no simple way to modify the code to suppress
4459 the warning. Some of them are enabled by @option{-Wextra} but many of
4460 them must be enabled individually.
4461
4462 @item -Wextra
4463 @opindex W
4464 @opindex Wextra
4465 @opindex Wno-extra
4466 This enables some extra warning flags that are not enabled by
4467 @option{-Wall}. (This option used to be called @option{-W}. The older
4468 name is still supported, but the newer name is more descriptive.)
4469
4470 @gccoptlist{-Wclobbered @gol
4471 -Wcast-function-type @gol
4472 -Wdeprecated-copy @r{(C++ only)} @gol
4473 -Wempty-body @gol
4474 -Wignored-qualifiers @gol
4475 -Wimplicit-fallthrough=3 @gol
4476 -Wmissing-field-initializers @gol
4477 -Wmissing-parameter-type @r{(C only)} @gol
4478 -Wold-style-declaration @r{(C only)} @gol
4479 -Woverride-init @gol
4480 -Wsign-compare @r{(C only)} @gol
4481 -Wredundant-move @r{(only for C++)} @gol
4482 -Wtype-limits @gol
4483 -Wuninitialized @gol
4484 -Wshift-negative-value @r{(in C++03 and in C99 and newer)} @gol
4485 -Wunused-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
4486 -Wunused-but-set-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)}}
4487
4488
4489 The option @option{-Wextra} also prints warning messages for the
4490 following cases:
4491
4492 @itemize @bullet
4493
4494 @item
4495 A pointer is compared against integer zero with @code{<}, @code{<=},
4496 @code{>}, or @code{>=}.
4497
4498 @item
4499 (C++ only) An enumerator and a non-enumerator both appear in a
4500 conditional expression.
4501
4502 @item
4503 (C++ only) Ambiguous virtual bases.
4504
4505 @item
4506 (C++ only) Subscripting an array that has been declared @code{register}.
4507
4508 @item
4509 (C++ only) Taking the address of a variable that has been declared
4510 @code{register}.
4511
4512 @item
4513 (C++ only) A base class is not initialized in the copy constructor
4514 of a derived class.
4515
4516 @end itemize
4517
4518 @item -Wchar-subscripts
4519 @opindex Wchar-subscripts
4520 @opindex Wno-char-subscripts
4521 Warn if an array subscript has type @code{char}. This is a common cause
4522 of error, as programmers often forget that this type is signed on some
4523 machines.
4524 This warning is enabled by @option{-Wall}.
4525
4526 @item -Wno-coverage-mismatch
4527 @opindex Wno-coverage-mismatch
4528 @opindex Wcoverage-mismatch
4529 Warn if feedback profiles do not match when using the
4530 @option{-fprofile-use} option.
4531 If a source file is changed between compiling with @option{-fprofile-generate}
4532 and with @option{-fprofile-use}, the files with the profile feedback can fail
4533 to match the source file and GCC cannot use the profile feedback
4534 information. By default, this warning is enabled and is treated as an
4535 error. @option{-Wno-coverage-mismatch} can be used to disable the
4536 warning or @option{-Wno-error=coverage-mismatch} can be used to
4537 disable the error. Disabling the error for this warning can result in
4538 poorly optimized code and is useful only in the
4539 case of very minor changes such as bug fixes to an existing code-base.
4540 Completely disabling the warning is not recommended.
4541
4542 @item -Wno-cpp
4543 @r{(C, Objective-C, C++, Objective-C++ and Fortran only)}
4544
4545 Suppress warning messages emitted by @code{#warning} directives.
4546
4547 @item -Wdouble-promotion @r{(C, C++, Objective-C and Objective-C++ only)}
4548 @opindex Wdouble-promotion
4549 @opindex Wno-double-promotion
4550 Give a warning when a value of type @code{float} is implicitly
4551 promoted to @code{double}. CPUs with a 32-bit ``single-precision''
4552 floating-point unit implement @code{float} in hardware, but emulate
4553 @code{double} in software. On such a machine, doing computations
4554 using @code{double} values is much more expensive because of the
4555 overhead required for software emulation.
4556
4557 It is easy to accidentally do computations with @code{double} because
4558 floating-point literals are implicitly of type @code{double}. For
4559 example, in:
4560 @smallexample
4561 @group
4562 float area(float radius)
4563 @{
4564 return 3.14159 * radius * radius;
4565 @}
4566 @end group
4567 @end smallexample
4568 the compiler performs the entire computation with @code{double}
4569 because the floating-point literal is a @code{double}.
4570
4571 @item -Wduplicate-decl-specifier @r{(C and Objective-C only)}
4572 @opindex Wduplicate-decl-specifier
4573 @opindex Wno-duplicate-decl-specifier
4574 Warn if a declaration has duplicate @code{const}, @code{volatile},
4575 @code{restrict} or @code{_Atomic} specifier. This warning is enabled by
4576 @option{-Wall}.
4577
4578 @item -Wformat
4579 @itemx -Wformat=@var{n}
4580 @opindex Wformat
4581 @opindex Wno-format
4582 @opindex ffreestanding
4583 @opindex fno-builtin
4584 @opindex Wformat=
4585 Check calls to @code{printf} and @code{scanf}, etc., to make sure that
4586 the arguments supplied have types appropriate to the format string
4587 specified, and that the conversions specified in the format string make
4588 sense. This includes standard functions, and others specified by format
4589 attributes (@pxref{Function Attributes}), in the @code{printf},
4590 @code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
4591 not in the C standard) families (or other target-specific families).
4592 Which functions are checked without format attributes having been
4593 specified depends on the standard version selected, and such checks of
4594 functions without the attribute specified are disabled by
4595 @option{-ffreestanding} or @option{-fno-builtin}.
4596
4597 The formats are checked against the format features supported by GNU
4598 libc version 2.2. These include all ISO C90 and C99 features, as well
4599 as features from the Single Unix Specification and some BSD and GNU
4600 extensions. Other library implementations may not support all these
4601 features; GCC does not support warning about features that go beyond a
4602 particular library's limitations. However, if @option{-Wpedantic} is used
4603 with @option{-Wformat}, warnings are given about format features not
4604 in the selected standard version (but not for @code{strfmon} formats,
4605 since those are not in any version of the C standard). @xref{C Dialect
4606 Options,,Options Controlling C Dialect}.
4607
4608 @table @gcctabopt
4609 @item -Wformat=1
4610 @itemx -Wformat
4611 @opindex Wformat
4612 @opindex Wformat=1
4613 Option @option{-Wformat} is equivalent to @option{-Wformat=1}, and
4614 @option{-Wno-format} is equivalent to @option{-Wformat=0}. Since
4615 @option{-Wformat} also checks for null format arguments for several
4616 functions, @option{-Wformat} also implies @option{-Wnonnull}. Some
4617 aspects of this level of format checking can be disabled by the
4618 options: @option{-Wno-format-contains-nul},
4619 @option{-Wno-format-extra-args}, and @option{-Wno-format-zero-length}.
4620 @option{-Wformat} is enabled by @option{-Wall}.
4621
4622 @item -Wno-format-contains-nul
4623 @opindex Wno-format-contains-nul
4624 @opindex Wformat-contains-nul
4625 If @option{-Wformat} is specified, do not warn about format strings that
4626 contain NUL bytes.
4627
4628 @item -Wno-format-extra-args
4629 @opindex Wno-format-extra-args
4630 @opindex Wformat-extra-args
4631 If @option{-Wformat} is specified, do not warn about excess arguments to a
4632 @code{printf} or @code{scanf} format function. The C standard specifies
4633 that such arguments are ignored.
4634
4635 Where the unused arguments lie between used arguments that are
4636 specified with @samp{$} operand number specifications, normally
4637 warnings are still given, since the implementation could not know what
4638 type to pass to @code{va_arg} to skip the unused arguments. However,
4639 in the case of @code{scanf} formats, this option suppresses the
4640 warning if the unused arguments are all pointers, since the Single
4641 Unix Specification says that such unused arguments are allowed.
4642
4643 @item -Wformat-overflow
4644 @itemx -Wformat-overflow=@var{level}
4645 @opindex Wformat-overflow
4646 @opindex Wno-format-overflow
4647 Warn about calls to formatted input/output functions such as @code{sprintf}
4648 and @code{vsprintf} that might overflow the destination buffer. When the
4649 exact number of bytes written by a format directive cannot be determined
4650 at compile-time it is estimated based on heuristics that depend on the
4651 @var{level} argument and on optimization. While enabling optimization
4652 will in most cases improve the accuracy of the warning, it may also
4653 result in false positives.
4654
4655 @table @gcctabopt
4656 @item -Wformat-overflow
4657 @itemx -Wformat-overflow=1
4658 @opindex Wformat-overflow
4659 @opindex Wno-format-overflow
4660 Level @var{1} of @option{-Wformat-overflow} enabled by @option{-Wformat}
4661 employs a conservative approach that warns only about calls that most
4662 likely overflow the buffer. At this level, numeric arguments to format
4663 directives with unknown values are assumed to have the value of one, and
4664 strings of unknown length to be empty. Numeric arguments that are known
4665 to be bounded to a subrange of their type, or string arguments whose output
4666 is bounded either by their directive's precision or by a finite set of
4667 string literals, are assumed to take on the value within the range that
4668 results in the most bytes on output. For example, the call to @code{sprintf}
4669 below is diagnosed because even with both @var{a} and @var{b} equal to zero,
4670 the terminating NUL character (@code{'\0'}) appended by the function
4671 to the destination buffer will be written past its end. Increasing
4672 the size of the buffer by a single byte is sufficient to avoid the
4673 warning, though it may not be sufficient to avoid the overflow.
4674
4675 @smallexample
4676 void f (int a, int b)
4677 @{
4678 char buf [13];
4679 sprintf (buf, "a = %i, b = %i\n", a, b);
4680 @}
4681 @end smallexample
4682
4683 @item -Wformat-overflow=2
4684 Level @var{2} warns also about calls that might overflow the destination
4685 buffer given an argument of sufficient length or magnitude. At level
4686 @var{2}, unknown numeric arguments are assumed to have the minimum
4687 representable value for signed types with a precision greater than 1, and
4688 the maximum representable value otherwise. Unknown string arguments whose
4689 length cannot be assumed to be bounded either by the directive's precision,
4690 or by a finite set of string literals they may evaluate to, or the character
4691 array they may point to, are assumed to be 1 character long.
4692
4693 At level @var{2}, the call in the example above is again diagnosed, but
4694 this time because with @var{a} equal to a 32-bit @code{INT_MIN} the first
4695 @code{%i} directive will write some of its digits beyond the end of
4696 the destination buffer. To make the call safe regardless of the values
4697 of the two variables, the size of the destination buffer must be increased
4698 to at least 34 bytes. GCC includes the minimum size of the buffer in
4699 an informational note following the warning.
4700
4701 An alternative to increasing the size of the destination buffer is to
4702 constrain the range of formatted values. The maximum length of string
4703 arguments can be bounded by specifying the precision in the format
4704 directive. When numeric arguments of format directives can be assumed
4705 to be bounded by less than the precision of their type, choosing
4706 an appropriate length modifier to the format specifier will reduce
4707 the required buffer size. For example, if @var{a} and @var{b} in the
4708 example above can be assumed to be within the precision of
4709 the @code{short int} type then using either the @code{%hi} format
4710 directive or casting the argument to @code{short} reduces the maximum
4711 required size of the buffer to 24 bytes.
4712
4713 @smallexample
4714 void f (int a, int b)
4715 @{
4716 char buf [23];
4717 sprintf (buf, "a = %hi, b = %i\n", a, (short)b);
4718 @}
4719 @end smallexample
4720 @end table
4721
4722 @item -Wno-format-zero-length
4723 @opindex Wno-format-zero-length
4724 @opindex Wformat-zero-length
4725 If @option{-Wformat} is specified, do not warn about zero-length formats.
4726 The C standard specifies that zero-length formats are allowed.
4727
4728
4729 @item -Wformat=2
4730 @opindex Wformat=2
4731 Enable @option{-Wformat} plus additional format checks. Currently
4732 equivalent to @option{-Wformat -Wformat-nonliteral -Wformat-security
4733 -Wformat-y2k}.
4734
4735 @item -Wformat-nonliteral
4736 @opindex Wformat-nonliteral
4737 @opindex Wno-format-nonliteral
4738 If @option{-Wformat} is specified, also warn if the format string is not a
4739 string literal and so cannot be checked, unless the format function
4740 takes its format arguments as a @code{va_list}.
4741
4742 @item -Wformat-security
4743 @opindex Wformat-security
4744 @opindex Wno-format-security
4745 If @option{-Wformat} is specified, also warn about uses of format
4746 functions that represent possible security problems. At present, this
4747 warns about calls to @code{printf} and @code{scanf} functions where the
4748 format string is not a string literal and there are no format arguments,
4749 as in @code{printf (foo);}. This may be a security hole if the format
4750 string came from untrusted input and contains @samp{%n}. (This is
4751 currently a subset of what @option{-Wformat-nonliteral} warns about, but
4752 in future warnings may be added to @option{-Wformat-security} that are not
4753 included in @option{-Wformat-nonliteral}.)
4754
4755 @item -Wformat-signedness
4756 @opindex Wformat-signedness
4757 @opindex Wno-format-signedness
4758 If @option{-Wformat} is specified, also warn if the format string
4759 requires an unsigned argument and the argument is signed and vice versa.
4760
4761 @item -Wformat-truncation
4762 @itemx -Wformat-truncation=@var{level}
4763 @opindex Wformat-truncation
4764 @opindex Wno-format-truncation
4765 Warn about calls to formatted input/output functions such as @code{snprintf}
4766 and @code{vsnprintf} that might result in output truncation. When the exact
4767 number of bytes written by a format directive cannot be determined at
4768 compile-time it is estimated based on heuristics that depend on
4769 the @var{level} argument and on optimization. While enabling optimization
4770 will in most cases improve the accuracy of the warning, it may also result
4771 in false positives. Except as noted otherwise, the option uses the same
4772 logic @option{-Wformat-overflow}.
4773
4774 @table @gcctabopt
4775 @item -Wformat-truncation
4776 @itemx -Wformat-truncation=1
4777 @opindex Wformat-truncation
4778 @opindex Wno-format-truncation
4779 Level @var{1} of @option{-Wformat-truncation} enabled by @option{-Wformat}
4780 employs a conservative approach that warns only about calls to bounded
4781 functions whose return value is unused and that will most likely result
4782 in output truncation.
4783
4784 @item -Wformat-truncation=2
4785 Level @var{2} warns also about calls to bounded functions whose return
4786 value is used and that might result in truncation given an argument of
4787 sufficient length or magnitude.
4788 @end table
4789
4790 @item -Wformat-y2k
4791 @opindex Wformat-y2k
4792 @opindex Wno-format-y2k
4793 If @option{-Wformat} is specified, also warn about @code{strftime}
4794 formats that may yield only a two-digit year.
4795 @end table
4796
4797 @item -Wnonnull
4798 @opindex Wnonnull
4799 @opindex Wno-nonnull
4800 Warn about passing a null pointer for arguments marked as
4801 requiring a non-null value by the @code{nonnull} function attribute.
4802
4803 @option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}. It
4804 can be disabled with the @option{-Wno-nonnull} option.
4805
4806 @item -Wnonnull-compare
4807 @opindex Wnonnull-compare
4808 @opindex Wno-nonnull-compare
4809 Warn when comparing an argument marked with the @code{nonnull}
4810 function attribute against null inside the function.
4811
4812 @option{-Wnonnull-compare} is included in @option{-Wall}. It
4813 can be disabled with the @option{-Wno-nonnull-compare} option.
4814
4815 @item -Wnull-dereference
4816 @opindex Wnull-dereference
4817 @opindex Wno-null-dereference
4818 Warn if the compiler detects paths that trigger erroneous or
4819 undefined behavior due to dereferencing a null pointer. This option
4820 is only active when @option{-fdelete-null-pointer-checks} is active,
4821 which is enabled by optimizations in most targets. The precision of
4822 the warnings depends on the optimization options used.
4823
4824 @item -Winaccessible-base @r{(C++, Objective-C++ only)}
4825 @opindex Winaccessible-base
4826 @opindex Wno-inaccessible-base
4827 Warn when a base class is inaccessible in a class derived from it due to
4828 ambiguity. The warning is enabled by default. Note the warning for virtual
4829 bases is enabled by the @option{-Wextra} option.
4830 @smallexample
4831 @group
4832 struct A @{ int a; @};
4833
4834 struct B : A @{ @};
4835
4836 struct C : B, A @{ @};
4837 @end group
4838 @end smallexample
4839
4840 @item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)}
4841 @opindex Winit-self
4842 @opindex Wno-init-self
4843 Warn about uninitialized variables that are initialized with themselves.
4844 Note this option can only be used with the @option{-Wuninitialized} option.
4845
4846 For example, GCC warns about @code{i} being uninitialized in the
4847 following snippet only when @option{-Winit-self} has been specified:
4848 @smallexample
4849 @group
4850 int f()
4851 @{
4852 int i = i;
4853 return i;
4854 @}
4855 @end group
4856 @end smallexample
4857
4858 This warning is enabled by @option{-Wall} in C++.
4859
4860 @item -Wimplicit-int @r{(C and Objective-C only)}
4861 @opindex Wimplicit-int
4862 @opindex Wno-implicit-int
4863 Warn when a declaration does not specify a type.
4864 This warning is enabled by @option{-Wall}.
4865
4866 @item -Wimplicit-function-declaration @r{(C and Objective-C only)}
4867 @opindex Wimplicit-function-declaration
4868 @opindex Wno-implicit-function-declaration
4869 Give a warning whenever a function is used before being declared. In
4870 C99 mode (@option{-std=c99} or @option{-std=gnu99}), this warning is
4871 enabled by default and it is made into an error by
4872 @option{-pedantic-errors}. This warning is also enabled by
4873 @option{-Wall}.
4874
4875 @item -Wimplicit @r{(C and Objective-C only)}
4876 @opindex Wimplicit
4877 @opindex Wno-implicit
4878 Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
4879 This warning is enabled by @option{-Wall}.
4880
4881 @item -Wimplicit-fallthrough
4882 @opindex Wimplicit-fallthrough
4883 @opindex Wno-implicit-fallthrough
4884 @option{-Wimplicit-fallthrough} is the same as @option{-Wimplicit-fallthrough=3}
4885 and @option{-Wno-implicit-fallthrough} is the same as
4886 @option{-Wimplicit-fallthrough=0}.
4887
4888 @item -Wimplicit-fallthrough=@var{n}
4889 @opindex Wimplicit-fallthrough=
4890 Warn when a switch case falls through. For example:
4891
4892 @smallexample
4893 @group
4894 switch (cond)
4895 @{
4896 case 1:
4897 a = 1;
4898 break;
4899 case 2:
4900 a = 2;
4901 case 3:
4902 a = 3;
4903 break;
4904 @}
4905 @end group
4906 @end smallexample
4907
4908 This warning does not warn when the last statement of a case cannot
4909 fall through, e.g. when there is a return statement or a call to function
4910 declared with the noreturn attribute. @option{-Wimplicit-fallthrough=}
4911 also takes into account control flow statements, such as ifs, and only
4912 warns when appropriate. E.g.@:
4913
4914 @smallexample
4915 @group
4916 switch (cond)
4917 @{
4918 case 1:
4919 if (i > 3) @{
4920 bar (5);
4921 break;
4922 @} else if (i < 1) @{
4923 bar (0);
4924 @} else
4925 return;
4926 default:
4927 @dots{}
4928 @}
4929 @end group
4930 @end smallexample
4931
4932 Since there are occasions where a switch case fall through is desirable,
4933 GCC provides an attribute, @code{__attribute__ ((fallthrough))}, that is
4934 to be used along with a null statement to suppress this warning that
4935 would normally occur:
4936
4937 @smallexample
4938 @group
4939 switch (cond)
4940 @{
4941 case 1:
4942 bar (0);
4943 __attribute__ ((fallthrough));
4944 default:
4945 @dots{}
4946 @}
4947 @end group
4948 @end smallexample
4949
4950 C++17 provides a standard way to suppress the @option{-Wimplicit-fallthrough}
4951 warning using @code{[[fallthrough]];} instead of the GNU attribute. In C++11
4952 or C++14 users can use @code{[[gnu::fallthrough]];}, which is a GNU extension.
4953 Instead of these attributes, it is also possible to add a fallthrough comment
4954 to silence the warning. The whole body of the C or C++ style comment should
4955 match the given regular expressions listed below. The option argument @var{n}
4956 specifies what kind of comments are accepted:
4957
4958 @itemize @bullet
4959
4960 @item @option{-Wimplicit-fallthrough=0} disables the warning altogether.
4961
4962 @item @option{-Wimplicit-fallthrough=1} matches @code{.*} regular
4963 expression, any comment is used as fallthrough comment.
4964
4965 @item @option{-Wimplicit-fallthrough=2} case insensitively matches
4966 @code{.*falls?[ \t-]*thr(ough|u).*} regular expression.
4967
4968 @item @option{-Wimplicit-fallthrough=3} case sensitively matches one of the
4969 following regular expressions:
4970
4971 @itemize @bullet
4972
4973 @item @code{-fallthrough}
4974
4975 @item @code{@@fallthrough@@}
4976
4977 @item @code{lint -fallthrough[ \t]*}
4978
4979 @item @code{[ \t.!]*(ELSE,? |INTENTIONAL(LY)? )?@*FALL(S | |-)?THR(OUGH|U)[ \t.!]*(-[^\n\r]*)?}
4980
4981 @item @code{[ \t.!]*(Else,? |Intentional(ly)? )?@*Fall((s | |-)[Tt]|t)hr(ough|u)[ \t.!]*(-[^\n\r]*)?}
4982
4983 @item @code{[ \t.!]*([Ee]lse,? |[Ii]ntentional(ly)? )?@*fall(s | |-)?thr(ough|u)[ \t.!]*(-[^\n\r]*)?}
4984
4985 @end itemize
4986
4987 @item @option{-Wimplicit-fallthrough=4} case sensitively matches one of the
4988 following regular expressions:
4989
4990 @itemize @bullet
4991
4992 @item @code{-fallthrough}
4993
4994 @item @code{@@fallthrough@@}
4995
4996 @item @code{lint -fallthrough[ \t]*}
4997
4998 @item @code{[ \t]*FALLTHR(OUGH|U)[ \t]*}
4999
5000 @end itemize
5001
5002 @item @option{-Wimplicit-fallthrough=5} doesn't recognize any comments as
5003 fallthrough comments, only attributes disable the warning.
5004
5005 @end itemize
5006
5007 The comment needs to be followed after optional whitespace and other comments
5008 by @code{case} or @code{default} keywords or by a user label that precedes some
5009 @code{case} or @code{default} label.
5010
5011 @smallexample
5012 @group
5013 switch (cond)
5014 @{
5015 case 1:
5016 bar (0);
5017 /* FALLTHRU */
5018 default:
5019 @dots{}
5020 @}
5021 @end group
5022 @end smallexample
5023
5024 The @option{-Wimplicit-fallthrough=3} warning is enabled by @option{-Wextra}.
5025
5026 @item -Wif-not-aligned @r{(C, C++, Objective-C and Objective-C++ only)}
5027 @opindex Wif-not-aligned
5028 @opindex Wno-if-not-aligned
5029 Control if warning triggered by the @code{warn_if_not_aligned} attribute
5030 should be issued. This is enabled by default.
5031 Use @option{-Wno-if-not-aligned} to disable it.
5032
5033 @item -Wignored-qualifiers @r{(C and C++ only)}
5034 @opindex Wignored-qualifiers
5035 @opindex Wno-ignored-qualifiers
5036 Warn if the return type of a function has a type qualifier
5037 such as @code{const}. For ISO C such a type qualifier has no effect,
5038 since the value returned by a function is not an lvalue.
5039 For C++, the warning is only emitted for scalar types or @code{void}.
5040 ISO C prohibits qualified @code{void} return types on function
5041 definitions, so such return types always receive a warning
5042 even without this option.
5043
5044 This warning is also enabled by @option{-Wextra}.
5045
5046 @item -Wignored-attributes @r{(C and C++ only)}
5047 @opindex Wignored-attributes
5048 @opindex Wno-ignored-attributes
5049 Warn when an attribute is ignored. This is different from the
5050 @option{-Wattributes} option in that it warns whenever the compiler decides
5051 to drop an attribute, not that the attribute is either unknown, used in a
5052 wrong place, etc. This warning is enabled by default.
5053
5054 @item -Wmain
5055 @opindex Wmain
5056 @opindex Wno-main
5057 Warn if the type of @code{main} is suspicious. @code{main} should be
5058 a function with external linkage, returning int, taking either zero
5059 arguments, two, or three arguments of appropriate types. This warning
5060 is enabled by default in C++ and is enabled by either @option{-Wall}
5061 or @option{-Wpedantic}.
5062
5063 @item -Wmisleading-indentation @r{(C and C++ only)}
5064 @opindex Wmisleading-indentation
5065 @opindex Wno-misleading-indentation
5066 Warn when the indentation of the code does not reflect the block structure.
5067 Specifically, a warning is issued for @code{if}, @code{else}, @code{while}, and
5068 @code{for} clauses with a guarded statement that does not use braces,
5069 followed by an unguarded statement with the same indentation.
5070
5071 In the following example, the call to ``bar'' is misleadingly indented as
5072 if it were guarded by the ``if'' conditional.
5073
5074 @smallexample
5075 if (some_condition ())
5076 foo ();
5077 bar (); /* Gotcha: this is not guarded by the "if". */
5078 @end smallexample
5079
5080 In the case of mixed tabs and spaces, the warning uses the
5081 @option{-ftabstop=} option to determine if the statements line up
5082 (defaulting to 8).
5083
5084 The warning is not issued for code involving multiline preprocessor logic
5085 such as the following example.
5086
5087 @smallexample
5088 if (flagA)
5089 foo (0);
5090 #if SOME_CONDITION_THAT_DOES_NOT_HOLD
5091 if (flagB)
5092 #endif
5093 foo (1);
5094 @end smallexample
5095
5096 The warning is not issued after a @code{#line} directive, since this
5097 typically indicates autogenerated code, and no assumptions can be made
5098 about the layout of the file that the directive references.
5099
5100 This warning is enabled by @option{-Wall} in C and C++.
5101
5102 @item -Wmissing-attributes
5103 @opindex Wmissing-attributes
5104 @opindex Wno-missing-attributes
5105 Warn when a declaration of a function is missing one or more attributes
5106 that a related function is declared with and whose absence may adversely
5107 affect the correctness or efficiency of generated code. For example,
5108 the warning is issued for declarations of aliases that use attributes
5109 to specify less restrictive requirements than those of their targets.
5110 This typically represents a potential optimization opportunity.
5111 By contrast, the @option{-Wattribute-alias=2} option controls warnings
5112 issued when the alias is more restrictive than the target, which could
5113 lead to incorrect code generation.
5114 Attributes considered include @code{alloc_align}, @code{alloc_size},
5115 @code{cold}, @code{const}, @code{hot}, @code{leaf}, @code{malloc},
5116 @code{nonnull}, @code{noreturn}, @code{nothrow}, @code{pure},
5117 @code{returns_nonnull}, and @code{returns_twice}.
5118
5119 In C++, the warning is issued when an explicit specialization of a primary
5120 template declared with attribute @code{alloc_align}, @code{alloc_size},
5121 @code{assume_aligned}, @code{format}, @code{format_arg}, @code{malloc},
5122 or @code{nonnull} is declared without it. Attributes @code{deprecated},
5123 @code{error}, and @code{warning} suppress the warning.
5124 (@pxref{Function Attributes}).
5125
5126 You can use the @code{copy} attribute to apply the same
5127 set of attributes to a declaration as that on another declaration without
5128 explicitly enumerating the attributes. This attribute can be applied
5129 to declarations of functions (@pxref{Common Function Attributes}),
5130 variables (@pxref{Common Variable Attributes}), or types
5131 (@pxref{Common Type Attributes}).
5132
5133 @option{-Wmissing-attributes} is enabled by @option{-Wall}.
5134
5135 For example, since the declaration of the primary function template
5136 below makes use of both attribute @code{malloc} and @code{alloc_size}
5137 the declaration of the explicit specialization of the template is
5138 diagnosed because it is missing one of the attributes.
5139
5140 @smallexample
5141 template <class T>
5142 T* __attribute__ ((malloc, alloc_size (1)))
5143 allocate (size_t);
5144
5145 template <>
5146 void* __attribute__ ((malloc)) // missing alloc_size
5147 allocate<void> (size_t);
5148 @end smallexample
5149
5150 @item -Wmissing-braces
5151 @opindex Wmissing-braces
5152 @opindex Wno-missing-braces
5153 Warn if an aggregate or union initializer is not fully bracketed. In
5154 the following example, the initializer for @code{a} is not fully
5155 bracketed, but that for @code{b} is fully bracketed. This warning is
5156 enabled by @option{-Wall} in C.
5157
5158 @smallexample
5159 int a[2][2] = @{ 0, 1, 2, 3 @};
5160 int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
5161 @end smallexample
5162
5163 This warning is enabled by @option{-Wall}.
5164
5165 @item -Wmissing-include-dirs @r{(C, C++, Objective-C and Objective-C++ only)}
5166 @opindex Wmissing-include-dirs
5167 @opindex Wno-missing-include-dirs
5168 Warn if a user-supplied include directory does not exist.
5169
5170 @item -Wmissing-profile
5171 @opindex Wmissing-profile
5172 @opindex Wno-missing-profile
5173 Warn if feedback profiles are missing when using the
5174 @option{-fprofile-use} option.
5175 This option diagnoses those cases where a new function or a new file is added
5176 to the user code between compiling with @option{-fprofile-generate} and with
5177 @option{-fprofile-use}, without regenerating the profiles. In these cases, the
5178 profile feedback data files do not contain any profile feedback information for
5179 the newly added function or file respectively. Also, in the case when profile
5180 count data (.gcda) files are removed, GCC cannot use any profile feedback
5181 information. In all these cases, warnings are issued to inform the user that a
5182 profile generation step is due. @option{-Wno-missing-profile} can be used to
5183 disable the warning. Ignoring the warning can result in poorly optimized code.
5184 Completely disabling the warning is not recommended and should be done only
5185 when non-existent profile data is justified.
5186
5187 @item -Wmultistatement-macros
5188 @opindex Wmultistatement-macros
5189 @opindex Wno-multistatement-macros
5190 Warn about unsafe multiple statement macros that appear to be guarded
5191 by a clause such as @code{if}, @code{else}, @code{for}, @code{switch}, or
5192 @code{while}, in which only the first statement is actually guarded after
5193 the macro is expanded.
5194
5195 For example:
5196
5197 @smallexample
5198 #define DOIT x++; y++
5199 if (c)
5200 DOIT;
5201 @end smallexample
5202
5203 will increment @code{y} unconditionally, not just when @code{c} holds.
5204 The can usually be fixed by wrapping the macro in a do-while loop:
5205 @smallexample
5206 #define DOIT do @{ x++; y++; @} while (0)
5207 if (c)
5208 DOIT;
5209 @end smallexample
5210
5211 This warning is enabled by @option{-Wall} in C and C++.
5212
5213 @item -Wparentheses
5214 @opindex Wparentheses
5215 @opindex Wno-parentheses
5216 Warn if parentheses are omitted in certain contexts, such
5217 as when there is an assignment in a context where a truth value
5218 is expected, or when operators are nested whose precedence people
5219 often get confused about.
5220
5221 Also warn if a comparison like @code{x<=y<=z} appears; this is
5222 equivalent to @code{(x<=y ? 1 : 0) <= z}, which is a different
5223 interpretation from that of ordinary mathematical notation.
5224
5225 Also warn for dangerous uses of the GNU extension to
5226 @code{?:} with omitted middle operand. When the condition
5227 in the @code{?}: operator is a boolean expression, the omitted value is
5228 always 1. Often programmers expect it to be a value computed
5229 inside the conditional expression instead.
5230
5231 For C++ this also warns for some cases of unnecessary parentheses in
5232 declarations, which can indicate an attempt at a function call instead
5233 of a declaration:
5234 @smallexample
5235 @{
5236 // Declares a local variable called mymutex.
5237 std::unique_lock<std::mutex> (mymutex);
5238 // User meant std::unique_lock<std::mutex> lock (mymutex);
5239 @}
5240 @end smallexample
5241
5242 This warning is enabled by @option{-Wall}.
5243
5244 @item -Wsequence-point
5245 @opindex Wsequence-point
5246 @opindex Wno-sequence-point
5247 Warn about code that may have undefined semantics because of violations
5248 of sequence point rules in the C and C++ standards.
5249
5250 The C and C++ standards define the order in which expressions in a C/C++
5251 program are evaluated in terms of @dfn{sequence points}, which represent
5252 a partial ordering between the execution of parts of the program: those
5253 executed before the sequence point, and those executed after it. These
5254 occur after the evaluation of a full expression (one which is not part
5255 of a larger expression), after the evaluation of the first operand of a
5256 @code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
5257 function is called (but after the evaluation of its arguments and the
5258 expression denoting the called function), and in certain other places.
5259 Other than as expressed by the sequence point rules, the order of
5260 evaluation of subexpressions of an expression is not specified. All
5261 these rules describe only a partial order rather than a total order,
5262 since, for example, if two functions are called within one expression
5263 with no sequence point between them, the order in which the functions
5264 are called is not specified. However, the standards committee have
5265 ruled that function calls do not overlap.
5266
5267 It is not specified when between sequence points modifications to the
5268 values of objects take effect. Programs whose behavior depends on this
5269 have undefined behavior; the C and C++ standards specify that ``Between
5270 the previous and next sequence point an object shall have its stored
5271 value modified at most once by the evaluation of an expression.
5272 Furthermore, the prior value shall be read only to determine the value
5273 to be stored.''. If a program breaks these rules, the results on any
5274 particular implementation are entirely unpredictable.
5275
5276 Examples of code with undefined behavior are @code{a = a++;}, @code{a[n]
5277 = b[n++]} and @code{a[i++] = i;}. Some more complicated cases are not
5278 diagnosed by this option, and it may give an occasional false positive
5279 result, but in general it has been found fairly effective at detecting
5280 this sort of problem in programs.
5281
5282 The C++17 standard will define the order of evaluation of operands in
5283 more cases: in particular it requires that the right-hand side of an
5284 assignment be evaluated before the left-hand side, so the above
5285 examples are no longer undefined. But this warning will still warn
5286 about them, to help people avoid writing code that is undefined in C
5287 and earlier revisions of C++.
5288
5289 The standard is worded confusingly, therefore there is some debate
5290 over the precise meaning of the sequence point rules in subtle cases.
5291 Links to discussions of the problem, including proposed formal
5292 definitions, may be found on the GCC readings page, at
5293 @uref{http://gcc.gnu.org/@/readings.html}.
5294
5295 This warning is enabled by @option{-Wall} for C and C++.
5296
5297 @item -Wno-return-local-addr
5298 @opindex Wno-return-local-addr
5299 @opindex Wreturn-local-addr
5300 Do not warn about returning a pointer (or in C++, a reference) to a
5301 variable that goes out of scope after the function returns.
5302
5303 @item -Wreturn-type
5304 @opindex Wreturn-type
5305 @opindex Wno-return-type
5306 Warn whenever a function is defined with a return type that defaults
5307 to @code{int}. Also warn about any @code{return} statement with no
5308 return value in a function whose return type is not @code{void}
5309 (falling off the end of the function body is considered returning
5310 without a value).
5311
5312 For C only, warn about a @code{return} statement with an expression in a
5313 function whose return type is @code{void}, unless the expression type is
5314 also @code{void}. As a GNU extension, the latter case is accepted
5315 without a warning unless @option{-Wpedantic} is used. Attempting
5316 to use the return value of a non-@code{void} function other than @code{main}
5317 that flows off the end by reaching the closing curly brace that terminates
5318 the function is undefined.
5319
5320 Unlike in C, in C++, flowing off the end of a non-@code{void} function other
5321 than @code{main} results in undefined behavior even when the value of
5322 the function is not used.
5323
5324 This warning is enabled by default in C++ and by @option{-Wall} otherwise.
5325
5326 @item -Wshift-count-negative
5327 @opindex Wshift-count-negative
5328 @opindex Wno-shift-count-negative
5329 Warn if shift count is negative. This warning is enabled by default.
5330
5331 @item -Wshift-count-overflow
5332 @opindex Wshift-count-overflow
5333 @opindex Wno-shift-count-overflow
5334 Warn if shift count >= width of type. This warning is enabled by default.
5335
5336 @item -Wshift-negative-value
5337 @opindex Wshift-negative-value
5338 @opindex Wno-shift-negative-value
5339 Warn if left shifting a negative value. This warning is enabled by
5340 @option{-Wextra} in C99 and C++11 modes (and newer).
5341
5342 @item -Wshift-overflow
5343 @itemx -Wshift-overflow=@var{n}
5344 @opindex Wshift-overflow
5345 @opindex Wno-shift-overflow
5346 Warn about left shift overflows. This warning is enabled by
5347 default in C99 and C++11 modes (and newer).
5348
5349 @table @gcctabopt
5350 @item -Wshift-overflow=1
5351 This is the warning level of @option{-Wshift-overflow} and is enabled
5352 by default in C99 and C++11 modes (and newer). This warning level does
5353 not warn about left-shifting 1 into the sign bit. (However, in C, such
5354 an overflow is still rejected in contexts where an integer constant expression
5355 is required.) No warning is emitted in C++2A mode (and newer), as signed left
5356 shifts always wrap.
5357
5358 @item -Wshift-overflow=2
5359 This warning level also warns about left-shifting 1 into the sign bit,
5360 unless C++14 mode (or newer) is active.
5361 @end table
5362
5363 @item -Wswitch
5364 @opindex Wswitch
5365 @opindex Wno-switch
5366 Warn whenever a @code{switch} statement has an index of enumerated type
5367 and lacks a @code{case} for one or more of the named codes of that
5368 enumeration. (The presence of a @code{default} label prevents this
5369 warning.) @code{case} labels outside the enumeration range also
5370 provoke warnings when this option is used (even if there is a
5371 @code{default} label).
5372 This warning is enabled by @option{-Wall}.
5373
5374 @item -Wswitch-default
5375 @opindex Wswitch-default
5376 @opindex Wno-switch-default
5377 Warn whenever a @code{switch} statement does not have a @code{default}
5378 case.
5379
5380 @item -Wswitch-enum
5381 @opindex Wswitch-enum
5382 @opindex Wno-switch-enum
5383 Warn whenever a @code{switch} statement has an index of enumerated type
5384 and lacks a @code{case} for one or more of the named codes of that
5385 enumeration. @code{case} labels outside the enumeration range also
5386 provoke warnings when this option is used. The only difference
5387 between @option{-Wswitch} and this option is that this option gives a
5388 warning about an omitted enumeration code even if there is a
5389 @code{default} label.
5390
5391 @item -Wswitch-bool
5392 @opindex Wswitch-bool
5393 @opindex Wno-switch-bool
5394 Warn whenever a @code{switch} statement has an index of boolean type
5395 and the case values are outside the range of a boolean type.
5396 It is possible to suppress this warning by casting the controlling
5397 expression to a type other than @code{bool}. For example:
5398 @smallexample
5399 @group
5400 switch ((int) (a == 4))
5401 @{
5402 @dots{}
5403 @}
5404 @end group
5405 @end smallexample
5406 This warning is enabled by default for C and C++ programs.
5407
5408 @item -Wswitch-outside-range
5409 @opindex Wswitch-outside-range
5410 @opindex Wno-switch-outside-range
5411 Warn whenever a @code{switch} case has a value that is outside of its
5412 respective type range. This warning is enabled by default for
5413 C and C++ programs.
5414
5415 @item -Wswitch-unreachable
5416 @opindex Wswitch-unreachable
5417 @opindex Wno-switch-unreachable
5418 Warn whenever a @code{switch} statement contains statements between the
5419 controlling expression and the first case label, which will never be
5420 executed. For example:
5421 @smallexample
5422 @group
5423 switch (cond)
5424 @{
5425 i = 15;
5426 @dots{}
5427 case 5:
5428 @dots{}
5429 @}
5430 @end group
5431 @end smallexample
5432 @option{-Wswitch-unreachable} does not warn if the statement between the
5433 controlling expression and the first case label is just a declaration:
5434 @smallexample
5435 @group
5436 switch (cond)
5437 @{
5438 int i;
5439 @dots{}
5440 case 5:
5441 i = 5;
5442 @dots{}
5443 @}
5444 @end group
5445 @end smallexample
5446 This warning is enabled by default for C and C++ programs.
5447
5448 @item -Wsync-nand @r{(C and C++ only)}
5449 @opindex Wsync-nand
5450 @opindex Wno-sync-nand
5451 Warn when @code{__sync_fetch_and_nand} and @code{__sync_nand_and_fetch}
5452 built-in functions are used. These functions changed semantics in GCC 4.4.
5453
5454 @item -Wunused-but-set-parameter
5455 @opindex Wunused-but-set-parameter
5456 @opindex Wno-unused-but-set-parameter
5457 Warn whenever a function parameter is assigned to, but otherwise unused
5458 (aside from its declaration).
5459
5460 To suppress this warning use the @code{unused} attribute
5461 (@pxref{Variable Attributes}).
5462
5463 This warning is also enabled by @option{-Wunused} together with
5464 @option{-Wextra}.
5465
5466 @item -Wunused-but-set-variable
5467 @opindex Wunused-but-set-variable
5468 @opindex Wno-unused-but-set-variable
5469 Warn whenever a local variable is assigned to, but otherwise unused
5470 (aside from its declaration).
5471 This warning is enabled by @option{-Wall}.
5472
5473 To suppress this warning use the @code{unused} attribute
5474 (@pxref{Variable Attributes}).
5475
5476 This warning is also enabled by @option{-Wunused}, which is enabled
5477 by @option{-Wall}.
5478
5479 @item -Wunused-function
5480 @opindex Wunused-function
5481 @opindex Wno-unused-function
5482 Warn whenever a static function is declared but not defined or a
5483 non-inline static function is unused.
5484 This warning is enabled by @option{-Wall}.
5485
5486 @item -Wunused-label
5487 @opindex Wunused-label
5488 @opindex Wno-unused-label
5489 Warn whenever a label is declared but not used.
5490 This warning is enabled by @option{-Wall}.
5491
5492 To suppress this warning use the @code{unused} attribute
5493 (@pxref{Variable Attributes}).
5494
5495 @item -Wunused-local-typedefs @r{(C, Objective-C, C++ and Objective-C++ only)}
5496 @opindex Wunused-local-typedefs
5497 @opindex Wno-unused-local-typedefs
5498 Warn when a typedef locally defined in a function is not used.
5499 This warning is enabled by @option{-Wall}.
5500
5501 @item -Wunused-parameter
5502 @opindex Wunused-parameter
5503 @opindex Wno-unused-parameter
5504 Warn whenever a function parameter is unused aside from its declaration.
5505
5506 To suppress this warning use the @code{unused} attribute
5507 (@pxref{Variable Attributes}).
5508
5509 @item -Wno-unused-result
5510 @opindex Wunused-result
5511 @opindex Wno-unused-result
5512 Do not warn if a caller of a function marked with attribute
5513 @code{warn_unused_result} (@pxref{Function Attributes}) does not use
5514 its return value. The default is @option{-Wunused-result}.
5515
5516 @item -Wunused-variable
5517 @opindex Wunused-variable
5518 @opindex Wno-unused-variable
5519 Warn whenever a local or static variable is unused aside from its
5520 declaration. This option implies @option{-Wunused-const-variable=1} for C,
5521 but not for C++. This warning is enabled by @option{-Wall}.
5522
5523 To suppress this warning use the @code{unused} attribute
5524 (@pxref{Variable Attributes}).
5525
5526 @item -Wunused-const-variable
5527 @itemx -Wunused-const-variable=@var{n}
5528 @opindex Wunused-const-variable
5529 @opindex Wno-unused-const-variable
5530 Warn whenever a constant static variable is unused aside from its declaration.
5531 @option{-Wunused-const-variable=1} is enabled by @option{-Wunused-variable}
5532 for C, but not for C++. In C this declares variable storage, but in C++ this
5533 is not an error since const variables take the place of @code{#define}s.
5534
5535 To suppress this warning use the @code{unused} attribute
5536 (@pxref{Variable Attributes}).
5537
5538 @table @gcctabopt
5539 @item -Wunused-const-variable=1
5540 This is the warning level that is enabled by @option{-Wunused-variable} for
5541 C. It warns only about unused static const variables defined in the main
5542 compilation unit, but not about static const variables declared in any
5543 header included.
5544
5545 @item -Wunused-const-variable=2
5546 This warning level also warns for unused constant static variables in
5547 headers (excluding system headers). This is the warning level of
5548 @option{-Wunused-const-variable} and must be explicitly requested since
5549 in C++ this isn't an error and in C it might be harder to clean up all
5550 headers included.
5551 @end table
5552
5553 @item -Wunused-value
5554 @opindex Wunused-value
5555 @opindex Wno-unused-value
5556 Warn whenever a statement computes a result that is explicitly not
5557 used. To suppress this warning cast the unused expression to
5558 @code{void}. This includes an expression-statement or the left-hand
5559 side of a comma expression that contains no side effects. For example,
5560 an expression such as @code{x[i,j]} causes a warning, while
5561 @code{x[(void)i,j]} does not.
5562
5563 This warning is enabled by @option{-Wall}.
5564
5565 @item -Wunused
5566 @opindex Wunused
5567 @opindex Wno-unused
5568 All the above @option{-Wunused} options combined.
5569
5570 In order to get a warning about an unused function parameter, you must
5571 either specify @option{-Wextra -Wunused} (note that @option{-Wall} implies
5572 @option{-Wunused}), or separately specify @option{-Wunused-parameter}.
5573
5574 @item -Wuninitialized
5575 @opindex Wuninitialized
5576 @opindex Wno-uninitialized
5577 Warn if an automatic variable is used without first being initialized
5578 or if a variable may be clobbered by a @code{setjmp} call. In C++,
5579 warn if a non-static reference or non-static @code{const} member
5580 appears in a class without constructors.
5581
5582 If you want to warn about code that uses the uninitialized value of the
5583 variable in its own initializer, use the @option{-Winit-self} option.
5584
5585 These warnings occur for individual uninitialized or clobbered
5586 elements of structure, union or array variables as well as for
5587 variables that are uninitialized or clobbered as a whole. They do
5588 not occur for variables or elements declared @code{volatile}. Because
5589 these warnings depend on optimization, the exact variables or elements
5590 for which there are warnings depends on the precise optimization
5591 options and version of GCC used.
5592
5593 Note that there may be no warning about a variable that is used only
5594 to compute a value that itself is never used, because such
5595 computations may be deleted by data flow analysis before the warnings
5596 are printed.
5597
5598 @item -Winvalid-memory-model
5599 @opindex Winvalid-memory-model
5600 @opindex Wno-invalid-memory-model
5601 Warn for invocations of @ref{__atomic Builtins}, @ref{__sync Builtins},
5602 and the C11 atomic generic functions with a memory consistency argument
5603 that is either invalid for the operation or outside the range of values
5604 of the @code{memory_order} enumeration. For example, since the
5605 @code{__atomic_store} and @code{__atomic_store_n} built-ins are only
5606 defined for the relaxed, release, and sequentially consistent memory
5607 orders the following code is diagnosed:
5608
5609 @smallexample
5610 void store (int *i)
5611 @{
5612 __atomic_store_n (i, 0, memory_order_consume);
5613 @}
5614 @end smallexample
5615
5616 @option{-Winvalid-memory-model} is enabled by default.
5617
5618 @item -Wmaybe-uninitialized
5619 @opindex Wmaybe-uninitialized
5620 @opindex Wno-maybe-uninitialized
5621 For an automatic (i.e.@: local) variable, if there exists a path from the
5622 function entry to a use of the variable that is initialized, but there exist
5623 some other paths for which the variable is not initialized, the compiler
5624 emits a warning if it cannot prove the uninitialized paths are not
5625 executed at run time.
5626
5627 These warnings are only possible in optimizing compilation, because otherwise
5628 GCC does not keep track of the state of variables.
5629
5630 These warnings are made optional because GCC may not be able to determine when
5631 the code is correct in spite of appearing to have an error. Here is one
5632 example of how this can happen:
5633
5634 @smallexample
5635 @group
5636 @{
5637 int x;
5638 switch (y)
5639 @{
5640 case 1: x = 1;
5641 break;
5642 case 2: x = 4;
5643 break;
5644 case 3: x = 5;
5645 @}
5646 foo (x);
5647 @}
5648 @end group
5649 @end smallexample
5650
5651 @noindent
5652 If the value of @code{y} is always 1, 2 or 3, then @code{x} is
5653 always initialized, but GCC doesn't know this. To suppress the
5654 warning, you need to provide a default case with assert(0) or
5655 similar code.
5656
5657 @cindex @code{longjmp} warnings
5658 This option also warns when a non-volatile automatic variable might be
5659 changed by a call to @code{longjmp}.
5660 The compiler sees only the calls to @code{setjmp}. It cannot know
5661 where @code{longjmp} will be called; in fact, a signal handler could
5662 call it at any point in the code. As a result, you may get a warning
5663 even when there is in fact no problem because @code{longjmp} cannot
5664 in fact be called at the place that would cause a problem.
5665
5666 Some spurious warnings can be avoided if you declare all the functions
5667 you use that never return as @code{noreturn}. @xref{Function
5668 Attributes}.
5669
5670 This warning is enabled by @option{-Wall} or @option{-Wextra}.
5671
5672 @item -Wunknown-pragmas
5673 @opindex Wunknown-pragmas
5674 @opindex Wno-unknown-pragmas
5675 @cindex warning for unknown pragmas
5676 @cindex unknown pragmas, warning
5677 @cindex pragmas, warning of unknown
5678 Warn when a @code{#pragma} directive is encountered that is not understood by
5679 GCC@. If this command-line option is used, warnings are even issued
5680 for unknown pragmas in system header files. This is not the case if
5681 the warnings are only enabled by the @option{-Wall} command-line option.
5682
5683 @item -Wno-pragmas
5684 @opindex Wno-pragmas
5685 @opindex Wpragmas
5686 Do not warn about misuses of pragmas, such as incorrect parameters,
5687 invalid syntax, or conflicts between pragmas. See also
5688 @option{-Wunknown-pragmas}.
5689
5690 @item -Wno-prio-ctor-dtor
5691 @opindex Wno-prio-ctor-dtor
5692 @opindex Wprio-ctor-dtor
5693 Do not warn if a priority from 0 to 100 is used for constructor or destructor.
5694 The use of constructor and destructor attributes allow you to assign a
5695 priority to the constructor/destructor to control its order of execution
5696 before @code{main} is called or after it returns. The priority values must be
5697 greater than 100 as the compiler reserves priority values between 0--100 for
5698 the implementation.
5699
5700 @item -Wstrict-aliasing
5701 @opindex Wstrict-aliasing
5702 @opindex Wno-strict-aliasing
5703 This option is only active when @option{-fstrict-aliasing} is active.
5704 It warns about code that might break the strict aliasing rules that the
5705 compiler is using for optimization. The warning does not catch all
5706 cases, but does attempt to catch the more common pitfalls. It is
5707 included in @option{-Wall}.
5708 It is equivalent to @option{-Wstrict-aliasing=3}
5709
5710 @item -Wstrict-aliasing=n
5711 @opindex Wstrict-aliasing=n
5712 This option is only active when @option{-fstrict-aliasing} is active.
5713 It warns about code that might break the strict aliasing rules that the
5714 compiler is using for optimization.
5715 Higher levels correspond to higher accuracy (fewer false positives).
5716 Higher levels also correspond to more effort, similar to the way @option{-O}
5717 works.
5718 @option{-Wstrict-aliasing} is equivalent to @option{-Wstrict-aliasing=3}.
5719
5720 Level 1: Most aggressive, quick, least accurate.
5721 Possibly useful when higher levels
5722 do not warn but @option{-fstrict-aliasing} still breaks the code, as it has very few
5723 false negatives. However, it has many false positives.
5724 Warns for all pointer conversions between possibly incompatible types,
5725 even if never dereferenced. Runs in the front end only.
5726
5727 Level 2: Aggressive, quick, not too precise.
5728 May still have many false positives (not as many as level 1 though),
5729 and few false negatives (but possibly more than level 1).
5730 Unlike level 1, it only warns when an address is taken. Warns about
5731 incomplete types. Runs in the front end only.
5732
5733 Level 3 (default for @option{-Wstrict-aliasing}):
5734 Should have very few false positives and few false
5735 negatives. Slightly slower than levels 1 or 2 when optimization is enabled.
5736 Takes care of the common pun+dereference pattern in the front end:
5737 @code{*(int*)&some_float}.
5738 If optimization is enabled, it also runs in the back end, where it deals
5739 with multiple statement cases using flow-sensitive points-to information.
5740 Only warns when the converted pointer is dereferenced.
5741 Does not warn about incomplete types.
5742
5743 @item -Wstrict-overflow
5744 @itemx -Wstrict-overflow=@var{n}
5745 @opindex Wstrict-overflow
5746 @opindex Wno-strict-overflow
5747 This option is only active when signed overflow is undefined.
5748 It warns about cases where the compiler optimizes based on the
5749 assumption that signed overflow does not occur. Note that it does not
5750 warn about all cases where the code might overflow: it only warns
5751 about cases where the compiler implements some optimization. Thus
5752 this warning depends on the optimization level.
5753
5754 An optimization that assumes that signed overflow does not occur is
5755 perfectly safe if the values of the variables involved are such that
5756 overflow never does, in fact, occur. Therefore this warning can
5757 easily give a false positive: a warning about code that is not
5758 actually a problem. To help focus on important issues, several
5759 warning levels are defined. No warnings are issued for the use of
5760 undefined signed overflow when estimating how many iterations a loop
5761 requires, in particular when determining whether a loop will be
5762 executed at all.
5763
5764 @table @gcctabopt
5765 @item -Wstrict-overflow=1
5766 Warn about cases that are both questionable and easy to avoid. For
5767 example the compiler simplifies
5768 @code{x + 1 > x} to @code{1}. This level of
5769 @option{-Wstrict-overflow} is enabled by @option{-Wall}; higher levels
5770 are not, and must be explicitly requested.
5771
5772 @item -Wstrict-overflow=2
5773 Also warn about other cases where a comparison is simplified to a
5774 constant. For example: @code{abs (x) >= 0}. This can only be
5775 simplified when signed integer overflow is undefined, because
5776 @code{abs (INT_MIN)} overflows to @code{INT_MIN}, which is less than
5777 zero. @option{-Wstrict-overflow} (with no level) is the same as
5778 @option{-Wstrict-overflow=2}.
5779
5780 @item -Wstrict-overflow=3
5781 Also warn about other cases where a comparison is simplified. For
5782 example: @code{x + 1 > 1} is simplified to @code{x > 0}.
5783
5784 @item -Wstrict-overflow=4
5785 Also warn about other simplifications not covered by the above cases.
5786 For example: @code{(x * 10) / 5} is simplified to @code{x * 2}.
5787
5788 @item -Wstrict-overflow=5
5789 Also warn about cases where the compiler reduces the magnitude of a
5790 constant involved in a comparison. For example: @code{x + 2 > y} is
5791 simplified to @code{x + 1 >= y}. This is reported only at the
5792 highest warning level because this simplification applies to many
5793 comparisons, so this warning level gives a very large number of
5794 false positives.
5795 @end table
5796
5797 @item -Wstringop-overflow
5798 @itemx -Wstringop-overflow=@var{type}
5799 @opindex Wstringop-overflow
5800 @opindex Wno-stringop-overflow
5801 Warn for calls to string manipulation functions such as @code{memcpy} and
5802 @code{strcpy} that are determined to overflow the destination buffer. The
5803 optional argument is one greater than the type of Object Size Checking to
5804 perform to determine the size of the destination. @xref{Object Size Checking}.
5805 The argument is meaningful only for functions that operate on character arrays
5806 but not for raw memory functions like @code{memcpy} which always make use
5807 of Object Size type-0. The option also warns for calls that specify a size
5808 in excess of the largest possible object or at most @code{SIZE_MAX / 2} bytes.
5809 The option produces the best results with optimization enabled but can detect
5810 a small subset of simple buffer overflows even without optimization in
5811 calls to the GCC built-in functions like @code{__builtin_memcpy} that
5812 correspond to the standard functions. In any case, the option warns about
5813 just a subset of buffer overflows detected by the corresponding overflow
5814 checking built-ins. For example, the option will issue a warning for
5815 the @code{strcpy} call below because it copies at least 5 characters
5816 (the string @code{"blue"} including the terminating NUL) into the buffer
5817 of size 4.
5818
5819 @smallexample
5820 enum Color @{ blue, purple, yellow @};
5821 const char* f (enum Color clr)
5822 @{
5823 static char buf [4];
5824 const char *str;
5825 switch (clr)
5826 @{
5827 case blue: str = "blue"; break;
5828 case purple: str = "purple"; break;
5829 case yellow: str = "yellow"; break;
5830 @}
5831
5832 return strcpy (buf, str); // warning here
5833 @}
5834 @end smallexample
5835
5836 Option @option{-Wstringop-overflow=2} is enabled by default.
5837
5838 @table @gcctabopt
5839 @item -Wstringop-overflow
5840 @itemx -Wstringop-overflow=1
5841 @opindex Wstringop-overflow
5842 @opindex Wno-stringop-overflow
5843 The @option{-Wstringop-overflow=1} option uses type-zero Object Size Checking
5844 to determine the sizes of destination objects. This is the default setting
5845 of the option. At this setting the option will not warn for writes past
5846 the end of subobjects of larger objects accessed by pointers unless the
5847 size of the largest surrounding object is known. When the destination may
5848 be one of several objects it is assumed to be the largest one of them. On
5849 Linux systems, when optimization is enabled at this setting the option warns
5850 for the same code as when the @code{_FORTIFY_SOURCE} macro is defined to
5851 a non-zero value.
5852
5853 @item -Wstringop-overflow=2
5854 The @option{-Wstringop-overflow=2} option uses type-one Object Size Checking
5855 to determine the sizes of destination objects. At this setting the option
5856 will warn about overflows when writing to members of the largest complete
5857 objects whose exact size is known. It will, however, not warn for excessive
5858 writes to the same members of unknown objects referenced by pointers since
5859 they may point to arrays containing unknown numbers of elements.
5860
5861 @item -Wstringop-overflow=3
5862 The @option{-Wstringop-overflow=3} option uses type-two Object Size Checking
5863 to determine the sizes of destination objects. At this setting the option
5864 warns about overflowing the smallest object or data member. This is the
5865 most restrictive setting of the option that may result in warnings for safe
5866 code.
5867
5868 @item -Wstringop-overflow=4
5869 The @option{-Wstringop-overflow=4} option uses type-three Object Size Checking
5870 to determine the sizes of destination objects. At this setting the option
5871 will warn about overflowing any data members, and when the destination is
5872 one of several objects it uses the size of the largest of them to decide
5873 whether to issue a warning. Similarly to @option{-Wstringop-overflow=3} this
5874 setting of the option may result in warnings for benign code.
5875 @end table
5876
5877 @item -Wstringop-truncation
5878 @opindex Wstringop-truncation
5879 @opindex Wno-stringop-truncation
5880 Warn for calls to bounded string manipulation functions such as @code{strncat},
5881 @code{strncpy}, and @code{stpncpy} that may either truncate the copied string
5882 or leave the destination unchanged.
5883
5884 In the following example, the call to @code{strncat} specifies a bound that
5885 is less than the length of the source string. As a result, the copy of
5886 the source will be truncated and so the call is diagnosed. To avoid the
5887 warning use @code{bufsize - strlen (buf) - 1)} as the bound.
5888
5889 @smallexample
5890 void append (char *buf, size_t bufsize)
5891 @{
5892 strncat (buf, ".txt", 3);
5893 @}
5894 @end smallexample
5895
5896 As another example, the following call to @code{strncpy} results in copying
5897 to @code{d} just the characters preceding the terminating NUL, without
5898 appending the NUL to the end. Assuming the result of @code{strncpy} is
5899 necessarily a NUL-terminated string is a common mistake, and so the call
5900 is diagnosed. To avoid the warning when the result is not expected to be
5901 NUL-terminated, call @code{memcpy} instead.
5902
5903 @smallexample
5904 void copy (char *d, const char *s)
5905 @{
5906 strncpy (d, s, strlen (s));
5907 @}
5908 @end smallexample
5909
5910 In the following example, the call to @code{strncpy} specifies the size
5911 of the destination buffer as the bound. If the length of the source
5912 string is equal to or greater than this size the result of the copy will
5913 not be NUL-terminated. Therefore, the call is also diagnosed. To avoid
5914 the warning, specify @code{sizeof buf - 1} as the bound and set the last
5915 element of the buffer to @code{NUL}.
5916
5917 @smallexample
5918 void copy (const char *s)
5919 @{
5920 char buf[80];
5921 strncpy (buf, s, sizeof buf);
5922 @dots{}
5923 @}
5924 @end smallexample
5925
5926 In situations where a character array is intended to store a sequence
5927 of bytes with no terminating @code{NUL} such an array may be annotated
5928 with attribute @code{nonstring} to avoid this warning. Such arrays,
5929 however, are not suitable arguments to functions that expect
5930 @code{NUL}-terminated strings. To help detect accidental misuses of
5931 such arrays GCC issues warnings unless it can prove that the use is
5932 safe. @xref{Common Variable Attributes}.
5933
5934 @item -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{|}cold@r{|}malloc@r{]}
5935 @opindex Wsuggest-attribute=
5936 @opindex Wno-suggest-attribute=
5937 Warn for cases where adding an attribute may be beneficial. The
5938 attributes currently supported are listed below.
5939
5940 @table @gcctabopt
5941 @item -Wsuggest-attribute=pure
5942 @itemx -Wsuggest-attribute=const
5943 @itemx -Wsuggest-attribute=noreturn
5944 @itemx -Wmissing-noreturn
5945 @itemx -Wsuggest-attribute=malloc
5946 @opindex Wsuggest-attribute=pure
5947 @opindex Wno-suggest-attribute=pure
5948 @opindex Wsuggest-attribute=const
5949 @opindex Wno-suggest-attribute=const
5950 @opindex Wsuggest-attribute=noreturn
5951 @opindex Wno-suggest-attribute=noreturn
5952 @opindex Wmissing-noreturn
5953 @opindex Wno-missing-noreturn
5954 @opindex Wsuggest-attribute=malloc
5955 @opindex Wno-suggest-attribute=malloc
5956
5957 Warn about functions that might be candidates for attributes
5958 @code{pure}, @code{const} or @code{noreturn} or @code{malloc}. The compiler
5959 only warns for functions visible in other compilation units or (in the case of
5960 @code{pure} and @code{const}) if it cannot prove that the function returns
5961 normally. A function returns normally if it doesn't contain an infinite loop or
5962 return abnormally by throwing, calling @code{abort} or trapping. This analysis
5963 requires option @option{-fipa-pure-const}, which is enabled by default at
5964 @option{-O} and higher. Higher optimization levels improve the accuracy
5965 of the analysis.
5966
5967 @item -Wsuggest-attribute=format
5968 @itemx -Wmissing-format-attribute
5969 @opindex Wsuggest-attribute=format
5970 @opindex Wmissing-format-attribute
5971 @opindex Wno-suggest-attribute=format
5972 @opindex Wno-missing-format-attribute
5973 @opindex Wformat
5974 @opindex Wno-format
5975
5976 Warn about function pointers that might be candidates for @code{format}
5977 attributes. Note these are only possible candidates, not absolute ones.
5978 GCC guesses that function pointers with @code{format} attributes that
5979 are used in assignment, initialization, parameter passing or return
5980 statements should have a corresponding @code{format} attribute in the
5981 resulting type. I.e.@: the left-hand side of the assignment or
5982 initialization, the type of the parameter variable, or the return type
5983 of the containing function respectively should also have a @code{format}
5984 attribute to avoid the warning.
5985
5986 GCC also warns about function definitions that might be
5987 candidates for @code{format} attributes. Again, these are only
5988 possible candidates. GCC guesses that @code{format} attributes
5989 might be appropriate for any function that calls a function like
5990 @code{vprintf} or @code{vscanf}, but this might not always be the
5991 case, and some functions for which @code{format} attributes are
5992 appropriate may not be detected.
5993
5994 @item -Wsuggest-attribute=cold
5995 @opindex Wsuggest-attribute=cold
5996 @opindex Wno-suggest-attribute=cold
5997
5998 Warn about functions that might be candidates for @code{cold} attribute. This
5999 is based on static detection and generally will only warn about functions which
6000 always leads to a call to another @code{cold} function such as wrappers of
6001 C++ @code{throw} or fatal error reporting functions leading to @code{abort}.
6002 @end table
6003
6004 @item -Wsuggest-final-types
6005 @opindex Wno-suggest-final-types
6006 @opindex Wsuggest-final-types
6007 Warn about types with virtual methods where code quality would be improved
6008 if the type were declared with the C++11 @code{final} specifier,
6009 or, if possible,
6010 declared in an anonymous namespace. This allows GCC to more aggressively
6011 devirtualize the polymorphic calls. This warning is more effective with
6012 link-time optimization,
6013 where the information about the class hierarchy graph is
6014 more complete.
6015
6016 @item -Wsuggest-final-methods
6017 @opindex Wno-suggest-final-methods
6018 @opindex Wsuggest-final-methods
6019 Warn about virtual methods where code quality would be improved if the method
6020 were declared with the C++11 @code{final} specifier,
6021 or, if possible, its type were
6022 declared in an anonymous namespace or with the @code{final} specifier.
6023 This warning is
6024 more effective with link-time optimization, where the information about the
6025 class hierarchy graph is more complete. It is recommended to first consider
6026 suggestions of @option{-Wsuggest-final-types} and then rebuild with new
6027 annotations.
6028
6029 @item -Wsuggest-override
6030 Warn about overriding virtual functions that are not marked with the override
6031 keyword.
6032
6033 @item -Walloc-zero
6034 @opindex Wno-alloc-zero
6035 @opindex Walloc-zero
6036 Warn about calls to allocation functions decorated with attribute
6037 @code{alloc_size} that specify zero bytes, including those to the built-in
6038 forms of the functions @code{aligned_alloc}, @code{alloca}, @code{calloc},
6039 @code{malloc}, and @code{realloc}. Because the behavior of these functions
6040 when called with a zero size differs among implementations (and in the case
6041 of @code{realloc} has been deprecated) relying on it may result in subtle
6042 portability bugs and should be avoided.
6043
6044 @item -Walloc-size-larger-than=@var{byte-size}
6045 @opindex Walloc-size-larger-than=
6046 @opindex Wno-alloc-size-larger-than
6047 Warn about calls to functions decorated with attribute @code{alloc_size}
6048 that attempt to allocate objects larger than the specified number of bytes,
6049 or where the result of the size computation in an integer type with infinite
6050 precision would exceed the value of @samp{PTRDIFF_MAX} on the target.
6051 @option{-Walloc-size-larger-than=}@samp{PTRDIFF_MAX} is enabled by default.
6052 Warnings controlled by the option can be disabled either by specifying
6053 @var{byte-size} of @samp{SIZE_MAX} or more or by
6054 @option{-Wno-alloc-size-larger-than}.
6055 @xref{Function Attributes}.
6056
6057 @item -Wno-alloc-size-larger-than
6058 @opindex Wno-alloc-size-larger-than
6059 Disable @option{-Walloc-size-larger-than=} warnings. The option is
6060 equivalent to @option{-Walloc-size-larger-than=}@samp{SIZE_MAX} or
6061 larger.
6062
6063 @item -Walloca
6064 @opindex Wno-alloca
6065 @opindex Walloca
6066 This option warns on all uses of @code{alloca} in the source.
6067
6068 @item -Walloca-larger-than=@var{byte-size}
6069 @opindex Walloca-larger-than=
6070 @opindex Wno-alloca-larger-than
6071 This option warns on calls to @code{alloca} with an integer argument whose
6072 value is either zero, or that is not bounded by a controlling predicate
6073 that limits its value to at most @var{byte-size}. It also warns for calls
6074 to @code{alloca} where the bound value is unknown. Arguments of non-integer
6075 types are considered unbounded even if they appear to be constrained to
6076 the expected range.
6077
6078 For example, a bounded case of @code{alloca} could be:
6079
6080 @smallexample
6081 void func (size_t n)
6082 @{
6083 void *p;
6084 if (n <= 1000)
6085 p = alloca (n);
6086 else
6087 p = malloc (n);
6088 f (p);
6089 @}
6090 @end smallexample
6091
6092 In the above example, passing @code{-Walloca-larger-than=1000} would not
6093 issue a warning because the call to @code{alloca} is known to be at most
6094 1000 bytes. However, if @code{-Walloca-larger-than=500} were passed,
6095 the compiler would emit a warning.
6096
6097 Unbounded uses, on the other hand, are uses of @code{alloca} with no
6098 controlling predicate constraining its integer argument. For example:
6099
6100 @smallexample
6101 void func ()
6102 @{
6103 void *p = alloca (n);
6104 f (p);
6105 @}
6106 @end smallexample
6107
6108 If @code{-Walloca-larger-than=500} were passed, the above would trigger
6109 a warning, but this time because of the lack of bounds checking.
6110
6111 Note, that even seemingly correct code involving signed integers could
6112 cause a warning:
6113
6114 @smallexample
6115 void func (signed int n)
6116 @{
6117 if (n < 500)
6118 @{
6119 p = alloca (n);
6120 f (p);
6121 @}
6122 @}
6123 @end smallexample
6124
6125 In the above example, @var{n} could be negative, causing a larger than
6126 expected argument to be implicitly cast into the @code{alloca} call.
6127
6128 This option also warns when @code{alloca} is used in a loop.
6129
6130 @option{-Walloca-larger-than=}@samp{PTRDIFF_MAX} is enabled by default
6131 but is usually only effective when @option{-ftree-vrp} is active (default
6132 for @option{-O2} and above).
6133
6134 See also @option{-Wvla-larger-than=}@samp{byte-size}.
6135
6136 @item -Wno-alloca-larger-than
6137 @opindex Wno-alloca-larger-than
6138 Disable @option{-Walloca-larger-than=} warnings. The option is
6139 equivalent to @option{-Walloca-larger-than=}@samp{SIZE_MAX} or larger.
6140
6141 @item -Warray-bounds
6142 @itemx -Warray-bounds=@var{n}
6143 @opindex Wno-array-bounds
6144 @opindex Warray-bounds
6145 This option is only active when @option{-ftree-vrp} is active
6146 (default for @option{-O2} and above). It warns about subscripts to arrays
6147 that are always out of bounds. This warning is enabled by @option{-Wall}.
6148
6149 @table @gcctabopt
6150 @item -Warray-bounds=1
6151 This is the warning level of @option{-Warray-bounds} and is enabled
6152 by @option{-Wall}; higher levels are not, and must be explicitly requested.
6153
6154 @item -Warray-bounds=2
6155 This warning level also warns about out of bounds access for
6156 arrays at the end of a struct and for arrays accessed through
6157 pointers. This warning level may give a larger number of
6158 false positives and is deactivated by default.
6159 @end table
6160
6161 @item -Wattribute-alias=@var{n}
6162 @itemx -Wno-attribute-alias
6163 @opindex Wattribute-alias
6164 @opindex Wno-attribute-alias
6165 Warn about declarations using the @code{alias} and similar attributes whose
6166 target is incompatible with the type of the alias.
6167 @xref{Function Attributes,,Declaring Attributes of Functions}.
6168
6169 @table @gcctabopt
6170 @item -Wattribute-alias=1
6171 The default warning level of the @option{-Wattribute-alias} option diagnoses
6172 incompatibilities between the type of the alias declaration and that of its
6173 target. Such incompatibilities are typically indicative of bugs.
6174
6175 @item -Wattribute-alias=2
6176
6177 At this level @option{-Wattribute-alias} also diagnoses cases where
6178 the attributes of the alias declaration are more restrictive than the
6179 attributes applied to its target. These mismatches can potentially
6180 result in incorrect code generation. In other cases they may be
6181 benign and could be resolved simply by adding the missing attribute to
6182 the target. For comparison, see the @option{-Wmissing-attributes}
6183 option, which controls diagnostics when the alias declaration is less
6184 restrictive than the target, rather than more restrictive.
6185
6186 Attributes considered include @code{alloc_align}, @code{alloc_size},
6187 @code{cold}, @code{const}, @code{hot}, @code{leaf}, @code{malloc},
6188 @code{nonnull}, @code{noreturn}, @code{nothrow}, @code{pure},
6189 @code{returns_nonnull}, and @code{returns_twice}.
6190 @end table
6191
6192 @option{-Wattribute-alias} is equivalent to @option{-Wattribute-alias=1}.
6193 This is the default. You can disable these warnings with either
6194 @option{-Wno-attribute-alias} or @option{-Wattribute-alias=0}.
6195
6196 @item -Wbool-compare
6197 @opindex Wno-bool-compare
6198 @opindex Wbool-compare
6199 Warn about boolean expression compared with an integer value different from
6200 @code{true}/@code{false}. For instance, the following comparison is
6201 always false:
6202 @smallexample
6203 int n = 5;
6204 @dots{}
6205 if ((n > 1) == 2) @{ @dots{} @}
6206 @end smallexample
6207 This warning is enabled by @option{-Wall}.
6208
6209 @item -Wbool-operation
6210 @opindex Wno-bool-operation
6211 @opindex Wbool-operation
6212 Warn about suspicious operations on expressions of a boolean type. For
6213 instance, bitwise negation of a boolean is very likely a bug in the program.
6214 For C, this warning also warns about incrementing or decrementing a boolean,
6215 which rarely makes sense. (In C++, decrementing a boolean is always invalid.
6216 Incrementing a boolean is invalid in C++17, and deprecated otherwise.)
6217
6218 This warning is enabled by @option{-Wall}.
6219
6220 @item -Wduplicated-branches
6221 @opindex Wno-duplicated-branches
6222 @opindex Wduplicated-branches
6223 Warn when an if-else has identical branches. This warning detects cases like
6224 @smallexample
6225 if (p != NULL)
6226 return 0;
6227 else
6228 return 0;
6229 @end smallexample
6230 It doesn't warn when both branches contain just a null statement. This warning
6231 also warn for conditional operators:
6232 @smallexample
6233 int i = x ? *p : *p;
6234 @end smallexample
6235
6236 @item -Wduplicated-cond
6237 @opindex Wno-duplicated-cond
6238 @opindex Wduplicated-cond
6239 Warn about duplicated conditions in an if-else-if chain. For instance,
6240 warn for the following code:
6241 @smallexample
6242 if (p->q != NULL) @{ @dots{} @}
6243 else if (p->q != NULL) @{ @dots{} @}
6244 @end smallexample
6245
6246 @item -Wframe-address
6247 @opindex Wno-frame-address
6248 @opindex Wframe-address
6249 Warn when the @samp{__builtin_frame_address} or @samp{__builtin_return_address}
6250 is called with an argument greater than 0. Such calls may return indeterminate
6251 values or crash the program. The warning is included in @option{-Wall}.
6252
6253 @item -Wno-discarded-qualifiers @r{(C and Objective-C only)}
6254 @opindex Wno-discarded-qualifiers
6255 @opindex Wdiscarded-qualifiers
6256 Do not warn if type qualifiers on pointers are being discarded.
6257 Typically, the compiler warns if a @code{const char *} variable is
6258 passed to a function that takes a @code{char *} parameter. This option
6259 can be used to suppress such a warning.
6260
6261 @item -Wno-discarded-array-qualifiers @r{(C and Objective-C only)}
6262 @opindex Wno-discarded-array-qualifiers
6263 @opindex Wdiscarded-array-qualifiers
6264 Do not warn if type qualifiers on arrays which are pointer targets
6265 are being discarded. Typically, the compiler warns if a
6266 @code{const int (*)[]} variable is passed to a function that
6267 takes a @code{int (*)[]} parameter. This option can be used to
6268 suppress such a warning.
6269
6270 @item -Wno-incompatible-pointer-types @r{(C and Objective-C only)}
6271 @opindex Wno-incompatible-pointer-types
6272 @opindex Wincompatible-pointer-types
6273 Do not warn when there is a conversion between pointers that have incompatible
6274 types. This warning is for cases not covered by @option{-Wno-pointer-sign},
6275 which warns for pointer argument passing or assignment with different
6276 signedness.
6277
6278 @item -Wno-int-conversion @r{(C and Objective-C only)}
6279 @opindex Wno-int-conversion
6280 @opindex Wint-conversion
6281 Do not warn about incompatible integer to pointer and pointer to integer
6282 conversions. This warning is about implicit conversions; for explicit
6283 conversions the warnings @option{-Wno-int-to-pointer-cast} and
6284 @option{-Wno-pointer-to-int-cast} may be used.
6285
6286 @item -Wno-div-by-zero
6287 @opindex Wno-div-by-zero
6288 @opindex Wdiv-by-zero
6289 Do not warn about compile-time integer division by zero. Floating-point
6290 division by zero is not warned about, as it can be a legitimate way of
6291 obtaining infinities and NaNs.
6292
6293 @item -Wsystem-headers
6294 @opindex Wsystem-headers
6295 @opindex Wno-system-headers
6296 @cindex warnings from system headers
6297 @cindex system headers, warnings from
6298 Print warning messages for constructs found in system header files.
6299 Warnings from system headers are normally suppressed, on the assumption
6300 that they usually do not indicate real problems and would only make the
6301 compiler output harder to read. Using this command-line option tells
6302 GCC to emit warnings from system headers as if they occurred in user
6303 code. However, note that using @option{-Wall} in conjunction with this
6304 option does @emph{not} warn about unknown pragmas in system
6305 headers---for that, @option{-Wunknown-pragmas} must also be used.
6306
6307 @item -Wtautological-compare
6308 @opindex Wtautological-compare
6309 @opindex Wno-tautological-compare
6310 Warn if a self-comparison always evaluates to true or false. This
6311 warning detects various mistakes such as:
6312 @smallexample
6313 int i = 1;
6314 @dots{}
6315 if (i > i) @{ @dots{} @}
6316 @end smallexample
6317
6318 This warning also warns about bitwise comparisons that always evaluate
6319 to true or false, for instance:
6320 @smallexample
6321 if ((a & 16) == 10) @{ @dots{} @}
6322 @end smallexample
6323 will always be false.
6324
6325 This warning is enabled by @option{-Wall}.
6326
6327 @item -Wtrampolines
6328 @opindex Wtrampolines
6329 @opindex Wno-trampolines
6330 Warn about trampolines generated for pointers to nested functions.
6331 A trampoline is a small piece of data or code that is created at run
6332 time on the stack when the address of a nested function is taken, and is
6333 used to call the nested function indirectly. For some targets, it is
6334 made up of data only and thus requires no special treatment. But, for
6335 most targets, it is made up of code and thus requires the stack to be
6336 made executable in order for the program to work properly.
6337
6338 @item -Wfloat-equal
6339 @opindex Wfloat-equal
6340 @opindex Wno-float-equal
6341 Warn if floating-point values are used in equality comparisons.
6342
6343 The idea behind this is that sometimes it is convenient (for the
6344 programmer) to consider floating-point values as approximations to
6345 infinitely precise real numbers. If you are doing this, then you need
6346 to compute (by analyzing the code, or in some other way) the maximum or
6347 likely maximum error that the computation introduces, and allow for it
6348 when performing comparisons (and when producing output, but that's a
6349 different problem). In particular, instead of testing for equality, you
6350 should check to see whether the two values have ranges that overlap; and
6351 this is done with the relational operators, so equality comparisons are
6352 probably mistaken.
6353
6354 @item -Wtraditional @r{(C and Objective-C only)}
6355 @opindex Wtraditional
6356 @opindex Wno-traditional
6357 Warn about certain constructs that behave differently in traditional and
6358 ISO C@. Also warn about ISO C constructs that have no traditional C
6359 equivalent, and/or problematic constructs that should be avoided.
6360
6361 @itemize @bullet
6362 @item
6363 Macro parameters that appear within string literals in the macro body.
6364 In traditional C macro replacement takes place within string literals,
6365 but in ISO C it does not.
6366
6367 @item
6368 In traditional C, some preprocessor directives did not exist.
6369 Traditional preprocessors only considered a line to be a directive
6370 if the @samp{#} appeared in column 1 on the line. Therefore
6371 @option{-Wtraditional} warns about directives that traditional C
6372 understands but ignores because the @samp{#} does not appear as the
6373 first character on the line. It also suggests you hide directives like
6374 @code{#pragma} not understood by traditional C by indenting them. Some
6375 traditional implementations do not recognize @code{#elif}, so this option
6376 suggests avoiding it altogether.
6377
6378 @item
6379 A function-like macro that appears without arguments.
6380
6381 @item
6382 The unary plus operator.
6383
6384 @item
6385 The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating-point
6386 constant suffixes. (Traditional C does support the @samp{L} suffix on integer
6387 constants.) Note, these suffixes appear in macros defined in the system
6388 headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}.
6389 Use of these macros in user code might normally lead to spurious
6390 warnings, however GCC's integrated preprocessor has enough context to
6391 avoid warning in these cases.
6392
6393 @item
6394 A function declared external in one block and then used after the end of
6395 the block.
6396
6397 @item
6398 A @code{switch} statement has an operand of type @code{long}.
6399
6400 @item
6401 A non-@code{static} function declaration follows a @code{static} one.
6402 This construct is not accepted by some traditional C compilers.
6403
6404 @item
6405 The ISO type of an integer constant has a different width or
6406 signedness from its traditional type. This warning is only issued if
6407 the base of the constant is ten. I.e.@: hexadecimal or octal values, which
6408 typically represent bit patterns, are not warned about.
6409
6410 @item
6411 Usage of ISO string concatenation is detected.
6412
6413 @item
6414 Initialization of automatic aggregates.
6415
6416 @item
6417 Identifier conflicts with labels. Traditional C lacks a separate
6418 namespace for labels.
6419
6420 @item
6421 Initialization of unions. If the initializer is zero, the warning is
6422 omitted. This is done under the assumption that the zero initializer in
6423 user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
6424 initializer warnings and relies on default initialization to zero in the
6425 traditional C case.
6426
6427 @item
6428 Conversions by prototypes between fixed/floating-point values and vice
6429 versa. The absence of these prototypes when compiling with traditional
6430 C causes serious problems. This is a subset of the possible
6431 conversion warnings; for the full set use @option{-Wtraditional-conversion}.
6432
6433 @item
6434 Use of ISO C style function definitions. This warning intentionally is
6435 @emph{not} issued for prototype declarations or variadic functions
6436 because these ISO C features appear in your code when using
6437 libiberty's traditional C compatibility macros, @code{PARAMS} and
6438 @code{VPARAMS}. This warning is also bypassed for nested functions
6439 because that feature is already a GCC extension and thus not relevant to
6440 traditional C compatibility.
6441 @end itemize
6442
6443 @item -Wtraditional-conversion @r{(C and Objective-C only)}
6444 @opindex Wtraditional-conversion
6445 @opindex Wno-traditional-conversion
6446 Warn if a prototype causes a type conversion that is different from what
6447 would happen to the same argument in the absence of a prototype. This
6448 includes conversions of fixed point to floating and vice versa, and
6449 conversions changing the width or signedness of a fixed-point argument
6450 except when the same as the default promotion.
6451
6452 @item -Wdeclaration-after-statement @r{(C and Objective-C only)}
6453 @opindex Wdeclaration-after-statement
6454 @opindex Wno-declaration-after-statement
6455 Warn when a declaration is found after a statement in a block. This
6456 construct, known from C++, was introduced with ISO C99 and is by default
6457 allowed in GCC@. It is not supported by ISO C90. @xref{Mixed Declarations}.
6458
6459 @item -Wshadow
6460 @opindex Wshadow
6461 @opindex Wno-shadow
6462 Warn whenever a local variable or type declaration shadows another
6463 variable, parameter, type, class member (in C++), or instance variable
6464 (in Objective-C) or whenever a built-in function is shadowed. Note
6465 that in C++, the compiler warns if a local variable shadows an
6466 explicit typedef, but not if it shadows a struct/class/enum.
6467 Same as @option{-Wshadow=global}.
6468
6469 @item -Wno-shadow-ivar @r{(Objective-C only)}
6470 @opindex Wno-shadow-ivar
6471 @opindex Wshadow-ivar
6472 Do not warn whenever a local variable shadows an instance variable in an
6473 Objective-C method.
6474
6475 @item -Wshadow=global
6476 @opindex Wshadow=local
6477 The default for @option{-Wshadow}. Warns for any (global) shadowing.
6478
6479 @item -Wshadow=local
6480 @opindex Wshadow=local
6481 Warn when a local variable shadows another local variable or parameter.
6482 This warning is enabled by @option{-Wshadow=global}.
6483
6484 @item -Wshadow=compatible-local
6485 @opindex Wshadow=compatible-local
6486 Warn when a local variable shadows another local variable or parameter
6487 whose type is compatible with that of the shadowing variable. In C++,
6488 type compatibility here means the type of the shadowing variable can be
6489 converted to that of the shadowed variable. The creation of this flag
6490 (in addition to @option{-Wshadow=local}) is based on the idea that when
6491 a local variable shadows another one of incompatible type, it is most
6492 likely intentional, not a bug or typo, as shown in the following example:
6493
6494 @smallexample
6495 @group
6496 for (SomeIterator i = SomeObj.begin(); i != SomeObj.end(); ++i)
6497 @{
6498 for (int i = 0; i < N; ++i)
6499 @{
6500 ...
6501 @}
6502 ...
6503 @}
6504 @end group
6505 @end smallexample
6506
6507 Since the two variable @code{i} in the example above have incompatible types,
6508 enabling only @option{-Wshadow=compatible-local} will not emit a warning.
6509 Because their types are incompatible, if a programmer accidentally uses one
6510 in place of the other, type checking will catch that and emit an error or
6511 warning. So not warning (about shadowing) in this case will not lead to
6512 undetected bugs. Use of this flag instead of @option{-Wshadow=local} can
6513 possibly reduce the number of warnings triggered by intentional shadowing.
6514
6515 This warning is enabled by @option{-Wshadow=local}.
6516
6517 @item -Wlarger-than=@var{byte-size}
6518 @opindex Wlarger-than=
6519 @opindex Wlarger-than-@var{byte-size}
6520 Warn whenever an object is defined whose size exceeds @var{byte-size}.
6521 @option{-Wlarger-than=}@samp{PTRDIFF_MAX} is enabled by default.
6522 Warnings controlled by the option can be disabled either by specifying
6523 @var{byte-size} of @samp{SIZE_MAX} or more or by
6524 @option{-Wno-larger-than}.
6525
6526 @item -Wno-larger-than
6527 @opindex Wno-larger-than
6528 Disable @option{-Wlarger-than=} warnings. The option is equivalent
6529 to @option{-Wlarger-than=}@samp{SIZE_MAX} or larger.
6530
6531 @item -Wframe-larger-than=@var{byte-size}
6532 @opindex Wframe-larger-than=
6533 @opindex Wno-frame-larger-than
6534 Warn if the size of a function frame exceeds @var{byte-size}.
6535 The computation done to determine the stack frame size is approximate
6536 and not conservative.
6537 The actual requirements may be somewhat greater than @var{byte-size}
6538 even if you do not get a warning. In addition, any space allocated
6539 via @code{alloca}, variable-length arrays, or related constructs
6540 is not included by the compiler when determining
6541 whether or not to issue a warning.
6542 @option{-Wframe-larger-than=}@samp{PTRDIFF_MAX} is enabled by default.
6543 Warnings controlled by the option can be disabled either by specifying
6544 @var{byte-size} of @samp{SIZE_MAX} or more or by
6545 @option{-Wno-frame-larger-than}.
6546
6547 @item -Wno-frame-larger-than
6548 @opindex Wno-frame-larger-than
6549 Disable @option{-Wframe-larger-than=} warnings. The option is equivalent
6550 to @option{-Wframe-larger-than=}@samp{SIZE_MAX} or larger.
6551
6552 @item -Wno-free-nonheap-object
6553 @opindex Wno-free-nonheap-object
6554 @opindex Wfree-nonheap-object
6555 Do not warn when attempting to free an object that was not allocated
6556 on the heap.
6557
6558 @item -Wstack-usage=@var{byte-size}
6559 @opindex Wstack-usage
6560 @opindex Wno-stack-usage
6561 Warn if the stack usage of a function might exceed @var{byte-size}.
6562 The computation done to determine the stack usage is conservative.
6563 Any space allocated via @code{alloca}, variable-length arrays, or related
6564 constructs is included by the compiler when determining whether or not to
6565 issue a warning.
6566
6567 The message is in keeping with the output of @option{-fstack-usage}.
6568
6569 @itemize
6570 @item
6571 If the stack usage is fully static but exceeds the specified amount, it's:
6572
6573 @smallexample
6574 warning: stack usage is 1120 bytes
6575 @end smallexample
6576 @item
6577 If the stack usage is (partly) dynamic but bounded, it's:
6578
6579 @smallexample
6580 warning: stack usage might be 1648 bytes
6581 @end smallexample
6582 @item
6583 If the stack usage is (partly) dynamic and not bounded, it's:
6584
6585 @smallexample
6586 warning: stack usage might be unbounded
6587 @end smallexample
6588 @end itemize
6589
6590 @option{-Wstack-usage=}@samp{PTRDIFF_MAX} is enabled by default.
6591 Warnings controlled by the option can be disabled either by specifying
6592 @var{byte-size} of @samp{SIZE_MAX} or more or by
6593 @option{-Wno-stack-usage}.
6594
6595 @item -Wno-stack-usage
6596 @opindex Wno-stack-usage
6597 Disable @option{-Wstack-usage=} warnings. The option is equivalent
6598 to @option{-Wstack-usage=}@samp{SIZE_MAX} or larger.
6599
6600 @item -Wunsafe-loop-optimizations
6601 @opindex Wunsafe-loop-optimizations
6602 @opindex Wno-unsafe-loop-optimizations
6603 Warn if the loop cannot be optimized because the compiler cannot
6604 assume anything on the bounds of the loop indices. With
6605 @option{-funsafe-loop-optimizations} warn if the compiler makes
6606 such assumptions.
6607
6608 @item -Wno-pedantic-ms-format @r{(MinGW targets only)}
6609 @opindex Wno-pedantic-ms-format
6610 @opindex Wpedantic-ms-format
6611 When used in combination with @option{-Wformat}
6612 and @option{-pedantic} without GNU extensions, this option
6613 disables the warnings about non-ISO @code{printf} / @code{scanf} format
6614 width specifiers @code{I32}, @code{I64}, and @code{I} used on Windows targets,
6615 which depend on the MS runtime.
6616
6617 @item -Waligned-new
6618 @opindex Waligned-new
6619 @opindex Wno-aligned-new
6620 Warn about a new-expression of a type that requires greater alignment
6621 than the @code{alignof(std::max_align_t)} but uses an allocation
6622 function without an explicit alignment parameter. This option is
6623 enabled by @option{-Wall}.
6624
6625 Normally this only warns about global allocation functions, but
6626 @option{-Waligned-new=all} also warns about class member allocation
6627 functions.
6628
6629 @item -Wplacement-new
6630 @itemx -Wplacement-new=@var{n}
6631 @opindex Wplacement-new
6632 @opindex Wno-placement-new
6633 Warn about placement new expressions with undefined behavior, such as
6634 constructing an object in a buffer that is smaller than the type of
6635 the object. For example, the placement new expression below is diagnosed
6636 because it attempts to construct an array of 64 integers in a buffer only
6637 64 bytes large.
6638 @smallexample
6639 char buf [64];
6640 new (buf) int[64];
6641 @end smallexample
6642 This warning is enabled by default.
6643
6644 @table @gcctabopt
6645 @item -Wplacement-new=1
6646 This is the default warning level of @option{-Wplacement-new}. At this
6647 level the warning is not issued for some strictly undefined constructs that
6648 GCC allows as extensions for compatibility with legacy code. For example,
6649 the following @code{new} expression is not diagnosed at this level even
6650 though it has undefined behavior according to the C++ standard because
6651 it writes past the end of the one-element array.
6652 @smallexample
6653 struct S @{ int n, a[1]; @};
6654 S *s = (S *)malloc (sizeof *s + 31 * sizeof s->a[0]);
6655 new (s->a)int [32]();
6656 @end smallexample
6657
6658 @item -Wplacement-new=2
6659 At this level, in addition to diagnosing all the same constructs as at level
6660 1, a diagnostic is also issued for placement new expressions that construct
6661 an object in the last member of structure whose type is an array of a single
6662 element and whose size is less than the size of the object being constructed.
6663 While the previous example would be diagnosed, the following construct makes
6664 use of the flexible member array extension to avoid the warning at level 2.
6665 @smallexample
6666 struct S @{ int n, a[]; @};
6667 S *s = (S *)malloc (sizeof *s + 32 * sizeof s->a[0]);
6668 new (s->a)int [32]();
6669 @end smallexample
6670
6671 @end table
6672
6673 @item -Wpointer-arith
6674 @opindex Wpointer-arith
6675 @opindex Wno-pointer-arith
6676 Warn about anything that depends on the ``size of'' a function type or
6677 of @code{void}. GNU C assigns these types a size of 1, for
6678 convenience in calculations with @code{void *} pointers and pointers
6679 to functions. In C++, warn also when an arithmetic operation involves
6680 @code{NULL}. This warning is also enabled by @option{-Wpedantic}.
6681
6682 @item -Wpointer-compare
6683 @opindex Wpointer-compare
6684 @opindex Wno-pointer-compare
6685 Warn if a pointer is compared with a zero character constant. This usually
6686 means that the pointer was meant to be dereferenced. For example:
6687
6688 @smallexample
6689 const char *p = foo ();
6690 if (p == '\0')
6691 return 42;
6692 @end smallexample
6693
6694 Note that the code above is invalid in C++11.
6695
6696 This warning is enabled by default.
6697
6698 @item -Wtype-limits
6699 @opindex Wtype-limits
6700 @opindex Wno-type-limits
6701 Warn if a comparison is always true or always false due to the limited
6702 range of the data type, but do not warn for constant expressions. For
6703 example, warn if an unsigned variable is compared against zero with
6704 @code{<} or @code{>=}. This warning is also enabled by
6705 @option{-Wextra}.
6706
6707 @item -Wabsolute-value @r{(C and Objective-C only)}
6708 @opindex Wabsolute-value
6709 @opindex Wno-absolute-value
6710 Warn for calls to standard functions that compute the absolute value
6711 of an argument when a more appropriate standard function is available.
6712 For example, calling @code{abs(3.14)} triggers the warning because the
6713 appropriate function to call to compute the absolute value of a double
6714 argument is @code{fabs}. The option also triggers warnings when the
6715 argument in a call to such a function has an unsigned type. This
6716 warning can be suppressed with an explicit type cast and it is also
6717 enabled by @option{-Wextra}.
6718
6719 @include cppwarnopts.texi
6720
6721 @item -Wbad-function-cast @r{(C and Objective-C only)}
6722 @opindex Wbad-function-cast
6723 @opindex Wno-bad-function-cast
6724 Warn when a function call is cast to a non-matching type.
6725 For example, warn if a call to a function returning an integer type
6726 is cast to a pointer type.
6727
6728 @item -Wc90-c99-compat @r{(C and Objective-C only)}
6729 @opindex Wc90-c99-compat
6730 @opindex Wno-c90-c99-compat
6731 Warn about features not present in ISO C90, but present in ISO C99.
6732 For instance, warn about use of variable length arrays, @code{long long}
6733 type, @code{bool} type, compound literals, designated initializers, and so
6734 on. This option is independent of the standards mode. Warnings are disabled
6735 in the expression that follows @code{__extension__}.
6736
6737 @item -Wc99-c11-compat @r{(C and Objective-C only)}
6738 @opindex Wc99-c11-compat
6739 @opindex Wno-c99-c11-compat
6740 Warn about features not present in ISO C99, but present in ISO C11.
6741 For instance, warn about use of anonymous structures and unions,
6742 @code{_Atomic} type qualifier, @code{_Thread_local} storage-class specifier,
6743 @code{_Alignas} specifier, @code{Alignof} operator, @code{_Generic} keyword,
6744 and so on. This option is independent of the standards mode. Warnings are
6745 disabled in the expression that follows @code{__extension__}.
6746
6747 @item -Wc++-compat @r{(C and Objective-C only)}
6748 @opindex Wc++-compat
6749 @opindex Wno-c++-compat
6750 Warn about ISO C constructs that are outside of the common subset of
6751 ISO C and ISO C++, e.g.@: request for implicit conversion from
6752 @code{void *} to a pointer to non-@code{void} type.
6753
6754 @item -Wc++11-compat @r{(C++ and Objective-C++ only)}
6755 @opindex Wc++11-compat
6756 @opindex Wno-c++11-compat
6757 Warn about C++ constructs whose meaning differs between ISO C++ 1998
6758 and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords
6759 in ISO C++ 2011. This warning turns on @option{-Wnarrowing} and is
6760 enabled by @option{-Wall}.
6761
6762 @item -Wc++14-compat @r{(C++ and Objective-C++ only)}
6763 @opindex Wc++14-compat
6764 @opindex Wno-c++14-compat
6765 Warn about C++ constructs whose meaning differs between ISO C++ 2011
6766 and ISO C++ 2014. This warning is enabled by @option{-Wall}.
6767
6768 @item -Wc++17-compat @r{(C++ and Objective-C++ only)}
6769 @opindex Wc++17-compat
6770 @opindex Wno-c++17-compat
6771 Warn about C++ constructs whose meaning differs between ISO C++ 2014
6772 and ISO C++ 2017. This warning is enabled by @option{-Wall}.
6773
6774 @item -Wcast-qual
6775 @opindex Wcast-qual
6776 @opindex Wno-cast-qual
6777 Warn whenever a pointer is cast so as to remove a type qualifier from
6778 the target type. For example, warn if a @code{const char *} is cast
6779 to an ordinary @code{char *}.
6780
6781 Also warn when making a cast that introduces a type qualifier in an
6782 unsafe way. For example, casting @code{char **} to @code{const char **}
6783 is unsafe, as in this example:
6784
6785 @smallexample
6786 /* p is char ** value. */
6787 const char **q = (const char **) p;
6788 /* Assignment of readonly string to const char * is OK. */
6789 *q = "string";
6790 /* Now char** pointer points to read-only memory. */
6791 **p = 'b';
6792 @end smallexample
6793
6794 @item -Wcast-align
6795 @opindex Wcast-align
6796 @opindex Wno-cast-align
6797 Warn whenever a pointer is cast such that the required alignment of the
6798 target is increased. For example, warn if a @code{char *} is cast to
6799 an @code{int *} on machines where integers can only be accessed at
6800 two- or four-byte boundaries.
6801
6802 @item -Wcast-align=strict
6803 @opindex Wcast-align=strict
6804 Warn whenever a pointer is cast such that the required alignment of the
6805 target is increased. For example, warn if a @code{char *} is cast to
6806 an @code{int *} regardless of the target machine.
6807
6808 @item -Wcast-function-type
6809 @opindex Wcast-function-type
6810 @opindex Wno-cast-function-type
6811 Warn when a function pointer is cast to an incompatible function pointer.
6812 In a cast involving function types with a variable argument list only
6813 the types of initial arguments that are provided are considered.
6814 Any parameter of pointer-type matches any other pointer-type. Any benign
6815 differences in integral types are ignored, like @code{int} vs.@: @code{long}
6816 on ILP32 targets. Likewise type qualifiers are ignored. The function
6817 type @code{void (*) (void)} is special and matches everything, which can
6818 be used to suppress this warning.
6819 In a cast involving pointer to member types this warning warns whenever
6820 the type cast is changing the pointer to member type.
6821 This warning is enabled by @option{-Wextra}.
6822
6823 @item -Wwrite-strings
6824 @opindex Wwrite-strings
6825 @opindex Wno-write-strings
6826 When compiling C, give string constants the type @code{const
6827 char[@var{length}]} so that copying the address of one into a
6828 non-@code{const} @code{char *} pointer produces a warning. These
6829 warnings help you find at compile time code that can try to write
6830 into a string constant, but only if you have been very careful about
6831 using @code{const} in declarations and prototypes. Otherwise, it is
6832 just a nuisance. This is why we did not make @option{-Wall} request
6833 these warnings.
6834
6835 When compiling C++, warn about the deprecated conversion from string
6836 literals to @code{char *}. This warning is enabled by default for C++
6837 programs.
6838
6839 @item -Wcatch-value
6840 @itemx -Wcatch-value=@var{n} @r{(C++ and Objective-C++ only)}
6841 @opindex Wcatch-value
6842 @opindex Wno-catch-value
6843 Warn about catch handlers that do not catch via reference.
6844 With @option{-Wcatch-value=1} (or @option{-Wcatch-value} for short)
6845 warn about polymorphic class types that are caught by value.
6846 With @option{-Wcatch-value=2} warn about all class types that are caught
6847 by value. With @option{-Wcatch-value=3} warn about all types that are
6848 not caught by reference. @option{-Wcatch-value} is enabled by @option{-Wall}.
6849
6850 @item -Wclobbered
6851 @opindex Wclobbered
6852 @opindex Wno-clobbered
6853 Warn for variables that might be changed by @code{longjmp} or
6854 @code{vfork}. This warning is also enabled by @option{-Wextra}.
6855
6856 @item -Wconditionally-supported @r{(C++ and Objective-C++ only)}
6857 @opindex Wconditionally-supported
6858 @opindex Wno-conditionally-supported
6859 Warn for conditionally-supported (C++11 [intro.defs]) constructs.
6860
6861 @item -Wconversion
6862 @opindex Wconversion
6863 @opindex Wno-conversion
6864 Warn for implicit conversions that may alter a value. This includes
6865 conversions between real and integer, like @code{abs (x)} when
6866 @code{x} is @code{double}; conversions between signed and unsigned,
6867 like @code{unsigned ui = -1}; and conversions to smaller types, like
6868 @code{sqrtf (M_PI)}. Do not warn for explicit casts like @code{abs
6869 ((int) x)} and @code{ui = (unsigned) -1}, or if the value is not
6870 changed by the conversion like in @code{abs (2.0)}. Warnings about
6871 conversions between signed and unsigned integers can be disabled by
6872 using @option{-Wno-sign-conversion}.
6873
6874 For C++, also warn for confusing overload resolution for user-defined
6875 conversions; and conversions that never use a type conversion
6876 operator: conversions to @code{void}, the same type, a base class or a
6877 reference to them. Warnings about conversions between signed and
6878 unsigned integers are disabled by default in C++ unless
6879 @option{-Wsign-conversion} is explicitly enabled.
6880
6881 @item -Wno-conversion-null @r{(C++ and Objective-C++ only)}
6882 @opindex Wconversion-null
6883 @opindex Wno-conversion-null
6884 Do not warn for conversions between @code{NULL} and non-pointer
6885 types. @option{-Wconversion-null} is enabled by default.
6886
6887 @item -Wzero-as-null-pointer-constant @r{(C++ and Objective-C++ only)}
6888 @opindex Wzero-as-null-pointer-constant
6889 @opindex Wno-zero-as-null-pointer-constant
6890 Warn when a literal @samp{0} is used as null pointer constant. This can
6891 be useful to facilitate the conversion to @code{nullptr} in C++11.
6892
6893 @item -Wsubobject-linkage @r{(C++ and Objective-C++ only)}
6894 @opindex Wsubobject-linkage
6895 @opindex Wno-subobject-linkage
6896 Warn if a class type has a base or a field whose type uses the anonymous
6897 namespace or depends on a type with no linkage. If a type A depends on
6898 a type B with no or internal linkage, defining it in multiple
6899 translation units would be an ODR violation because the meaning of B
6900 is different in each translation unit. If A only appears in a single
6901 translation unit, the best way to silence the warning is to give it
6902 internal linkage by putting it in an anonymous namespace as well. The
6903 compiler doesn't give this warning for types defined in the main .C
6904 file, as those are unlikely to have multiple definitions.
6905 @option{-Wsubobject-linkage} is enabled by default.
6906
6907 @item -Wdangling-else
6908 @opindex Wdangling-else
6909 @opindex Wno-dangling-else
6910 Warn about constructions where there may be confusion to which
6911 @code{if} statement an @code{else} branch belongs. Here is an example of
6912 such a case:
6913
6914 @smallexample
6915 @group
6916 @{
6917 if (a)
6918 if (b)
6919 foo ();
6920 else
6921 bar ();
6922 @}
6923 @end group
6924 @end smallexample
6925
6926 In C/C++, every @code{else} branch belongs to the innermost possible
6927 @code{if} statement, which in this example is @code{if (b)}. This is
6928 often not what the programmer expected, as illustrated in the above
6929 example by indentation the programmer chose. When there is the
6930 potential for this confusion, GCC issues a warning when this flag
6931 is specified. To eliminate the warning, add explicit braces around
6932 the innermost @code{if} statement so there is no way the @code{else}
6933 can belong to the enclosing @code{if}. The resulting code
6934 looks like this:
6935
6936 @smallexample
6937 @group
6938 @{
6939 if (a)
6940 @{
6941 if (b)
6942 foo ();
6943 else
6944 bar ();
6945 @}
6946 @}
6947 @end group
6948 @end smallexample
6949
6950 This warning is enabled by @option{-Wparentheses}.
6951
6952 @item -Wdate-time
6953 @opindex Wdate-time
6954 @opindex Wno-date-time
6955 Warn when macros @code{__TIME__}, @code{__DATE__} or @code{__TIMESTAMP__}
6956 are encountered as they might prevent bit-wise-identical reproducible
6957 compilations.
6958
6959 @item -Wdelete-incomplete @r{(C++ and Objective-C++ only)}
6960 @opindex Wdelete-incomplete
6961 @opindex Wno-delete-incomplete
6962 Warn when deleting a pointer to incomplete type, which may cause
6963 undefined behavior at runtime. This warning is enabled by default.
6964
6965 @item -Wuseless-cast @r{(C++ and Objective-C++ only)}
6966 @opindex Wuseless-cast
6967 @opindex Wno-useless-cast
6968 Warn when an expression is casted to its own type.
6969
6970 @item -Wempty-body
6971 @opindex Wempty-body
6972 @opindex Wno-empty-body
6973 Warn if an empty body occurs in an @code{if}, @code{else} or @code{do
6974 while} statement. This warning is also enabled by @option{-Wextra}.
6975
6976 @item -Wenum-compare
6977 @opindex Wenum-compare
6978 @opindex Wno-enum-compare
6979 Warn about a comparison between values of different enumerated types.
6980 In C++ enumerated type mismatches in conditional expressions are also
6981 diagnosed and the warning is enabled by default. In C this warning is
6982 enabled by @option{-Wall}.
6983
6984 @item -Wextra-semi @r{(C++, Objective-C++ only)}
6985 @opindex Wextra-semi
6986 @opindex Wno-extra-semi
6987 Warn about redundant semicolon after in-class function definition.
6988
6989 @item -Wjump-misses-init @r{(C, Objective-C only)}
6990 @opindex Wjump-misses-init
6991 @opindex Wno-jump-misses-init
6992 Warn if a @code{goto} statement or a @code{switch} statement jumps
6993 forward across the initialization of a variable, or jumps backward to a
6994 label after the variable has been initialized. This only warns about
6995 variables that are initialized when they are declared. This warning is
6996 only supported for C and Objective-C; in C++ this sort of branch is an
6997 error in any case.
6998
6999 @option{-Wjump-misses-init} is included in @option{-Wc++-compat}. It
7000 can be disabled with the @option{-Wno-jump-misses-init} option.
7001
7002 @item -Wsign-compare
7003 @opindex Wsign-compare
7004 @opindex Wno-sign-compare
7005 @cindex warning for comparison of signed and unsigned values
7006 @cindex comparison of signed and unsigned values, warning
7007 @cindex signed and unsigned values, comparison warning
7008 Warn when a comparison between signed and unsigned values could produce
7009 an incorrect result when the signed value is converted to unsigned.
7010 In C++, this warning is also enabled by @option{-Wall}. In C, it is
7011 also enabled by @option{-Wextra}.
7012
7013 @item -Wsign-conversion
7014 @opindex Wsign-conversion
7015 @opindex Wno-sign-conversion
7016 Warn for implicit conversions that may change the sign of an integer
7017 value, like assigning a signed integer expression to an unsigned
7018 integer variable. An explicit cast silences the warning. In C, this
7019 option is enabled also by @option{-Wconversion}.
7020
7021 @item -Wfloat-conversion
7022 @opindex Wfloat-conversion
7023 @opindex Wno-float-conversion
7024 Warn for implicit conversions that reduce the precision of a real value.
7025 This includes conversions from real to integer, and from higher precision
7026 real to lower precision real values. This option is also enabled by
7027 @option{-Wconversion}.
7028
7029 @item -Wno-scalar-storage-order
7030 @opindex Wno-scalar-storage-order
7031 @opindex Wscalar-storage-order
7032 Do not warn on suspicious constructs involving reverse scalar storage order.
7033
7034 @item -Wsized-deallocation @r{(C++ and Objective-C++ only)}
7035 @opindex Wsized-deallocation
7036 @opindex Wno-sized-deallocation
7037 Warn about a definition of an unsized deallocation function
7038 @smallexample
7039 void operator delete (void *) noexcept;
7040 void operator delete[] (void *) noexcept;
7041 @end smallexample
7042 without a definition of the corresponding sized deallocation function
7043 @smallexample
7044 void operator delete (void *, std::size_t) noexcept;
7045 void operator delete[] (void *, std::size_t) noexcept;
7046 @end smallexample
7047 or vice versa. Enabled by @option{-Wextra} along with
7048 @option{-fsized-deallocation}.
7049
7050 @item -Wsizeof-pointer-div
7051 @opindex Wsizeof-pointer-div
7052 @opindex Wno-sizeof-pointer-div
7053 Warn for suspicious divisions of two sizeof expressions that divide
7054 the pointer size by the element size, which is the usual way to compute
7055 the array size but won't work out correctly with pointers. This warning
7056 warns e.g.@: about @code{sizeof (ptr) / sizeof (ptr[0])} if @code{ptr} is
7057 not an array, but a pointer. This warning is enabled by @option{-Wall}.
7058
7059 @item -Wsizeof-pointer-memaccess
7060 @opindex Wsizeof-pointer-memaccess
7061 @opindex Wno-sizeof-pointer-memaccess
7062 Warn for suspicious length parameters to certain string and memory built-in
7063 functions if the argument uses @code{sizeof}. This warning triggers for
7064 example for @code{memset (ptr, 0, sizeof (ptr));} if @code{ptr} is not
7065 an array, but a pointer, and suggests a possible fix, or about
7066 @code{memcpy (&foo, ptr, sizeof (&foo));}. @option{-Wsizeof-pointer-memaccess}
7067 also warns about calls to bounded string copy functions like @code{strncat}
7068 or @code{strncpy} that specify as the bound a @code{sizeof} expression of
7069 the source array. For example, in the following function the call to
7070 @code{strncat} specifies the size of the source string as the bound. That
7071 is almost certainly a mistake and so the call is diagnosed.
7072 @smallexample
7073 void make_file (const char *name)
7074 @{
7075 char path[PATH_MAX];
7076 strncpy (path, name, sizeof path - 1);
7077 strncat (path, ".text", sizeof ".text");
7078 @dots{}
7079 @}
7080 @end smallexample
7081
7082 The @option{-Wsizeof-pointer-memaccess} option is enabled by @option{-Wall}.
7083
7084 @item -Wsizeof-array-argument
7085 @opindex Wsizeof-array-argument
7086 @opindex Wno-sizeof-array-argument
7087 Warn when the @code{sizeof} operator is applied to a parameter that is
7088 declared as an array in a function definition. This warning is enabled by
7089 default for C and C++ programs.
7090
7091 @item -Wmemset-elt-size
7092 @opindex Wmemset-elt-size
7093 @opindex Wno-memset-elt-size
7094 Warn for suspicious calls to the @code{memset} built-in function, if the
7095 first argument references an array, and the third argument is a number
7096 equal to the number of elements, but not equal to the size of the array
7097 in memory. This indicates that the user has omitted a multiplication by
7098 the element size. This warning is enabled by @option{-Wall}.
7099
7100 @item -Wmemset-transposed-args
7101 @opindex Wmemset-transposed-args
7102 @opindex Wno-memset-transposed-args
7103 Warn for suspicious calls to the @code{memset} built-in function where
7104 the second argument is not zero and the third argument is zero. For
7105 example, the call @code{memset (buf, sizeof buf, 0)} is diagnosed because
7106 @code{memset (buf, 0, sizeof buf)} was meant instead. The diagnostic
7107 is only emitted if the third argument is a literal zero. Otherwise, if
7108 it is an expression that is folded to zero, or a cast of zero to some
7109 type, it is far less likely that the arguments have been mistakenly
7110 transposed and no warning is emitted. This warning is enabled
7111 by @option{-Wall}.
7112
7113 @item -Waddress
7114 @opindex Waddress
7115 @opindex Wno-address
7116 Warn about suspicious uses of memory addresses. These include using
7117 the address of a function in a conditional expression, such as
7118 @code{void func(void); if (func)}, and comparisons against the memory
7119 address of a string literal, such as @code{if (x == "abc")}. Such
7120 uses typically indicate a programmer error: the address of a function
7121 always evaluates to true, so their use in a conditional usually
7122 indicate that the programmer forgot the parentheses in a function
7123 call; and comparisons against string literals result in unspecified
7124 behavior and are not portable in C, so they usually indicate that the
7125 programmer intended to use @code{strcmp}. This warning is enabled by
7126 @option{-Wall}.
7127
7128 @item -Waddress-of-packed-member
7129 @opindex Waddress-of-packed-member
7130 @opindex Wno-address-of-packed-member
7131 Warn when the address of packed member of struct or union is taken,
7132 which usually results in an unaligned pointer value. This is
7133 enabled by default.
7134
7135 @item -Wlogical-op
7136 @opindex Wlogical-op
7137 @opindex Wno-logical-op
7138 Warn about suspicious uses of logical operators in expressions.
7139 This includes using logical operators in contexts where a
7140 bit-wise operator is likely to be expected. Also warns when
7141 the operands of a logical operator are the same:
7142 @smallexample
7143 extern int a;
7144 if (a < 0 && a < 0) @{ @dots{} @}
7145 @end smallexample
7146
7147 @item -Wlogical-not-parentheses
7148 @opindex Wlogical-not-parentheses
7149 @opindex Wno-logical-not-parentheses
7150 Warn about logical not used on the left hand side operand of a comparison.
7151 This option does not warn if the right operand is considered to be a boolean
7152 expression. Its purpose is to detect suspicious code like the following:
7153 @smallexample
7154 int a;
7155 @dots{}
7156 if (!a > 1) @{ @dots{} @}
7157 @end smallexample
7158
7159 It is possible to suppress the warning by wrapping the LHS into
7160 parentheses:
7161 @smallexample
7162 if ((!a) > 1) @{ @dots{} @}
7163 @end smallexample
7164
7165 This warning is enabled by @option{-Wall}.
7166
7167 @item -Waggregate-return
7168 @opindex Waggregate-return
7169 @opindex Wno-aggregate-return
7170 Warn if any functions that return structures or unions are defined or
7171 called. (In languages where you can return an array, this also elicits
7172 a warning.)
7173
7174 @item -Wno-aggressive-loop-optimizations
7175 @opindex Wno-aggressive-loop-optimizations
7176 @opindex Waggressive-loop-optimizations
7177 Warn if in a loop with constant number of iterations the compiler detects
7178 undefined behavior in some statement during one or more of the iterations.
7179
7180 @item -Wno-attributes
7181 @opindex Wno-attributes
7182 @opindex Wattributes
7183 Do not warn if an unexpected @code{__attribute__} is used, such as
7184 unrecognized attributes, function attributes applied to variables,
7185 etc. This does not stop errors for incorrect use of supported
7186 attributes.
7187
7188 @item -Wno-builtin-declaration-mismatch
7189 @opindex Wno-builtin-declaration-mismatch
7190 @opindex Wbuiltin-declaration-mismatch
7191 Warn if a built-in function is declared with an incompatible signature
7192 or as a non-function, or when a built-in function declared with a type
7193 that does not include a prototype is called with arguments whose promoted
7194 types do not match those expected by the function. When @option{-Wextra}
7195 is specified, also warn when a built-in function that takes arguments is
7196 declared without a prototype. The @option{-Wno-builtin-declaration-mismatch}
7197 warning is enabled by default. To avoid the warning include the appropriate
7198 header to bring the prototypes of built-in functions into scope.
7199
7200 For example, the call to @code{memset} below is diagnosed by the warning
7201 because the function expects a value of type @code{size_t} as its argument
7202 but the type of @code{32} is @code{int}. With @option{-Wextra},
7203 the declaration of the function is diagnosed as well.
7204 @smallexample
7205 extern void* memset ();
7206 void f (void *d)
7207 @{
7208 memset (d, '\0', 32);
7209 @}
7210 @end smallexample
7211
7212 @item -Wno-builtin-macro-redefined
7213 @opindex Wno-builtin-macro-redefined
7214 @opindex Wbuiltin-macro-redefined
7215 Do not warn if certain built-in macros are redefined. This suppresses
7216 warnings for redefinition of @code{__TIMESTAMP__}, @code{__TIME__},
7217 @code{__DATE__}, @code{__FILE__}, and @code{__BASE_FILE__}.
7218
7219 @item -Wstrict-prototypes @r{(C and Objective-C only)}
7220 @opindex Wstrict-prototypes
7221 @opindex Wno-strict-prototypes
7222 Warn if a function is declared or defined without specifying the
7223 argument types. (An old-style function definition is permitted without
7224 a warning if preceded by a declaration that specifies the argument
7225 types.)
7226
7227 @item -Wold-style-declaration @r{(C and Objective-C only)}
7228 @opindex Wold-style-declaration
7229 @opindex Wno-old-style-declaration
7230 Warn for obsolescent usages, according to the C Standard, in a
7231 declaration. For example, warn if storage-class specifiers like
7232 @code{static} are not the first things in a declaration. This warning
7233 is also enabled by @option{-Wextra}.
7234
7235 @item -Wold-style-definition @r{(C and Objective-C only)}
7236 @opindex Wold-style-definition
7237 @opindex Wno-old-style-definition
7238 Warn if an old-style function definition is used. A warning is given
7239 even if there is a previous prototype.
7240
7241 @item -Wmissing-parameter-type @r{(C and Objective-C only)}
7242 @opindex Wmissing-parameter-type
7243 @opindex Wno-missing-parameter-type
7244 A function parameter is declared without a type specifier in K&R-style
7245 functions:
7246
7247 @smallexample
7248 void foo(bar) @{ @}
7249 @end smallexample
7250
7251 This warning is also enabled by @option{-Wextra}.
7252
7253 @item -Wmissing-prototypes @r{(C and Objective-C only)}
7254 @opindex Wmissing-prototypes
7255 @opindex Wno-missing-prototypes
7256 Warn if a global function is defined without a previous prototype
7257 declaration. This warning is issued even if the definition itself
7258 provides a prototype. Use this option to detect global functions
7259 that do not have a matching prototype declaration in a header file.
7260 This option is not valid for C++ because all function declarations
7261 provide prototypes and a non-matching declaration declares an
7262 overload rather than conflict with an earlier declaration.
7263 Use @option{-Wmissing-declarations} to detect missing declarations in C++.
7264
7265 @item -Wmissing-declarations
7266 @opindex Wmissing-declarations
7267 @opindex Wno-missing-declarations
7268 Warn if a global function is defined without a previous declaration.
7269 Do so even if the definition itself provides a prototype.
7270 Use this option to detect global functions that are not declared in
7271 header files. In C, no warnings are issued for functions with previous
7272 non-prototype declarations; use @option{-Wmissing-prototypes} to detect
7273 missing prototypes. In C++, no warnings are issued for function templates,
7274 or for inline functions, or for functions in anonymous namespaces.
7275
7276 @item -Wmissing-field-initializers
7277 @opindex Wmissing-field-initializers
7278 @opindex Wno-missing-field-initializers
7279 @opindex W
7280 @opindex Wextra
7281 @opindex Wno-extra
7282 Warn if a structure's initializer has some fields missing. For
7283 example, the following code causes such a warning, because
7284 @code{x.h} is implicitly zero:
7285
7286 @smallexample
7287 struct s @{ int f, g, h; @};
7288 struct s x = @{ 3, 4 @};
7289 @end smallexample
7290
7291 This option does not warn about designated initializers, so the following
7292 modification does not trigger a warning:
7293
7294 @smallexample
7295 struct s @{ int f, g, h; @};
7296 struct s x = @{ .f = 3, .g = 4 @};
7297 @end smallexample
7298
7299 In C this option does not warn about the universal zero initializer
7300 @samp{@{ 0 @}}:
7301
7302 @smallexample
7303 struct s @{ int f, g, h; @};
7304 struct s x = @{ 0 @};
7305 @end smallexample
7306
7307 Likewise, in C++ this option does not warn about the empty @{ @}
7308 initializer, for example:
7309
7310 @smallexample
7311 struct s @{ int f, g, h; @};
7312 s x = @{ @};
7313 @end smallexample
7314
7315 This warning is included in @option{-Wextra}. To get other @option{-Wextra}
7316 warnings without this one, use @option{-Wextra -Wno-missing-field-initializers}.
7317
7318 @item -Wno-multichar
7319 @opindex Wno-multichar
7320 @opindex Wmultichar
7321 Do not warn if a multicharacter constant (@samp{'FOOF'}) is used.
7322 Usually they indicate a typo in the user's code, as they have
7323 implementation-defined values, and should not be used in portable code.
7324
7325 @item -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]}
7326 @opindex Wnormalized=
7327 @opindex Wnormalized
7328 @opindex Wno-normalized
7329 @cindex NFC
7330 @cindex NFKC
7331 @cindex character set, input normalization
7332 In ISO C and ISO C++, two identifiers are different if they are
7333 different sequences of characters. However, sometimes when characters
7334 outside the basic ASCII character set are used, you can have two
7335 different character sequences that look the same. To avoid confusion,
7336 the ISO 10646 standard sets out some @dfn{normalization rules} which
7337 when applied ensure that two sequences that look the same are turned into
7338 the same sequence. GCC can warn you if you are using identifiers that
7339 have not been normalized; this option controls that warning.
7340
7341 There are four levels of warning supported by GCC@. The default is
7342 @option{-Wnormalized=nfc}, which warns about any identifier that is
7343 not in the ISO 10646 ``C'' normalized form, @dfn{NFC}. NFC is the
7344 recommended form for most uses. It is equivalent to
7345 @option{-Wnormalized}.
7346
7347 Unfortunately, there are some characters allowed in identifiers by
7348 ISO C and ISO C++ that, when turned into NFC, are not allowed in
7349 identifiers. That is, there's no way to use these symbols in portable
7350 ISO C or C++ and have all your identifiers in NFC@.
7351 @option{-Wnormalized=id} suppresses the warning for these characters.
7352 It is hoped that future versions of the standards involved will correct
7353 this, which is why this option is not the default.
7354
7355 You can switch the warning off for all characters by writing
7356 @option{-Wnormalized=none} or @option{-Wno-normalized}. You should
7357 only do this if you are using some other normalization scheme (like
7358 ``D''), because otherwise you can easily create bugs that are
7359 literally impossible to see.
7360
7361 Some characters in ISO 10646 have distinct meanings but look identical
7362 in some fonts or display methodologies, especially once formatting has
7363 been applied. For instance @code{\u207F}, ``SUPERSCRIPT LATIN SMALL
7364 LETTER N'', displays just like a regular @code{n} that has been
7365 placed in a superscript. ISO 10646 defines the @dfn{NFKC}
7366 normalization scheme to convert all these into a standard form as
7367 well, and GCC warns if your code is not in NFKC if you use
7368 @option{-Wnormalized=nfkc}. This warning is comparable to warning
7369 about every identifier that contains the letter O because it might be
7370 confused with the digit 0, and so is not the default, but may be
7371 useful as a local coding convention if the programming environment
7372 cannot be fixed to display these characters distinctly.
7373
7374 @item -Wno-attribute-warning
7375 @opindex Wno-attribute-warning
7376 @opindex Wattribute-warning
7377 Do not warn about usage of functions (@pxref{Function Attributes})
7378 declared with @code{warning} attribute. By default, this warning is
7379 enabled. @option{-Wno-attribute-warning} can be used to disable the
7380 warning or @option{-Wno-error=attribute-warning} can be used to
7381 disable the error when compiled with @option{-Werror} flag.
7382
7383 @item -Wno-deprecated
7384 @opindex Wno-deprecated
7385 @opindex Wdeprecated
7386 Do not warn about usage of deprecated features. @xref{Deprecated Features}.
7387
7388 @item -Wno-deprecated-declarations
7389 @opindex Wno-deprecated-declarations
7390 @opindex Wdeprecated-declarations
7391 Do not warn about uses of functions (@pxref{Function Attributes}),
7392 variables (@pxref{Variable Attributes}), and types (@pxref{Type
7393 Attributes}) marked as deprecated by using the @code{deprecated}
7394 attribute.
7395
7396 @item -Wno-overflow
7397 @opindex Wno-overflow
7398 @opindex Woverflow
7399 Do not warn about compile-time overflow in constant expressions.
7400
7401 @item -Wno-odr
7402 @opindex Wno-odr
7403 @opindex Wodr
7404 Warn about One Definition Rule violations during link-time optimization.
7405 Enabled by default.
7406
7407 @item -Wopenmp-simd
7408 @opindex Wopenmp-simd
7409 @opindex Wno-openmp-simd
7410 Warn if the vectorizer cost model overrides the OpenMP
7411 simd directive set by user. The @option{-fsimd-cost-model=unlimited}
7412 option can be used to relax the cost model.
7413
7414 @item -Woverride-init @r{(C and Objective-C only)}
7415 @opindex Woverride-init
7416 @opindex Wno-override-init
7417 @opindex W
7418 @opindex Wextra
7419 @opindex Wno-extra
7420 Warn if an initialized field without side effects is overridden when
7421 using designated initializers (@pxref{Designated Inits, , Designated
7422 Initializers}).
7423
7424 This warning is included in @option{-Wextra}. To get other
7425 @option{-Wextra} warnings without this one, use @option{-Wextra
7426 -Wno-override-init}.
7427
7428 @item -Woverride-init-side-effects @r{(C and Objective-C only)}
7429 @opindex Woverride-init-side-effects
7430 @opindex Wno-override-init-side-effects
7431 Warn if an initialized field with side effects is overridden when
7432 using designated initializers (@pxref{Designated Inits, , Designated
7433 Initializers}). This warning is enabled by default.
7434
7435 @item -Wpacked
7436 @opindex Wpacked
7437 @opindex Wno-packed
7438 Warn if a structure is given the packed attribute, but the packed
7439 attribute has no effect on the layout or size of the structure.
7440 Such structures may be mis-aligned for little benefit. For
7441 instance, in this code, the variable @code{f.x} in @code{struct bar}
7442 is misaligned even though @code{struct bar} does not itself
7443 have the packed attribute:
7444
7445 @smallexample
7446 @group
7447 struct foo @{
7448 int x;
7449 char a, b, c, d;
7450 @} __attribute__((packed));
7451 struct bar @{
7452 char z;
7453 struct foo f;
7454 @};
7455 @end group
7456 @end smallexample
7457
7458 @item -Wpacked-bitfield-compat
7459 @opindex Wpacked-bitfield-compat
7460 @opindex Wno-packed-bitfield-compat
7461 The 4.1, 4.2 and 4.3 series of GCC ignore the @code{packed} attribute
7462 on bit-fields of type @code{char}. This has been fixed in GCC 4.4 but
7463 the change can lead to differences in the structure layout. GCC
7464 informs you when the offset of such a field has changed in GCC 4.4.
7465 For example there is no longer a 4-bit padding between field @code{a}
7466 and @code{b} in this structure:
7467
7468 @smallexample
7469 struct foo
7470 @{
7471 char a:4;
7472 char b:8;
7473 @} __attribute__ ((packed));
7474 @end smallexample
7475
7476 This warning is enabled by default. Use
7477 @option{-Wno-packed-bitfield-compat} to disable this warning.
7478
7479 @item -Wpacked-not-aligned @r{(C, C++, Objective-C and Objective-C++ only)}
7480 @opindex Wpacked-not-aligned
7481 @opindex Wno-packed-not-aligned
7482 Warn if a structure field with explicitly specified alignment in a
7483 packed struct or union is misaligned. For example, a warning will
7484 be issued on @code{struct S}, like, @code{warning: alignment 1 of
7485 'struct S' is less than 8}, in this code:
7486
7487 @smallexample
7488 @group
7489 struct __attribute__ ((aligned (8))) S8 @{ char a[8]; @};
7490 struct __attribute__ ((packed)) S @{
7491 struct S8 s8;
7492 @};
7493 @end group
7494 @end smallexample
7495
7496 This warning is enabled by @option{-Wall}.
7497
7498 @item -Wpadded
7499 @opindex Wpadded
7500 @opindex Wno-padded
7501 Warn if padding is included in a structure, either to align an element
7502 of the structure or to align the whole structure. Sometimes when this
7503 happens it is possible to rearrange the fields of the structure to
7504 reduce the padding and so make the structure smaller.
7505
7506 @item -Wredundant-decls
7507 @opindex Wredundant-decls
7508 @opindex Wno-redundant-decls
7509 Warn if anything is declared more than once in the same scope, even in
7510 cases where multiple declaration is valid and changes nothing.
7511
7512 @item -Wno-restrict
7513 @opindex Wrestrict
7514 @opindex Wno-restrict
7515 Warn when an object referenced by a @code{restrict}-qualified parameter
7516 (or, in C++, a @code{__restrict}-qualified parameter) is aliased by another
7517 argument, or when copies between such objects overlap. For example,
7518 the call to the @code{strcpy} function below attempts to truncate the string
7519 by replacing its initial characters with the last four. However, because
7520 the call writes the terminating NUL into @code{a[4]}, the copies overlap and
7521 the call is diagnosed.
7522
7523 @smallexample
7524 void foo (void)
7525 @{
7526 char a[] = "abcd1234";
7527 strcpy (a, a + 4);
7528 @dots{}
7529 @}
7530 @end smallexample
7531 The @option{-Wrestrict} option detects some instances of simple overlap
7532 even without optimization but works best at @option{-O2} and above. It
7533 is included in @option{-Wall}.
7534
7535 @item -Wnested-externs @r{(C and Objective-C only)}
7536 @opindex Wnested-externs
7537 @opindex Wno-nested-externs
7538 Warn if an @code{extern} declaration is encountered within a function.
7539
7540 @item -Wno-inherited-variadic-ctor
7541 @opindex Winherited-variadic-ctor
7542 @opindex Wno-inherited-variadic-ctor
7543 Suppress warnings about use of C++11 inheriting constructors when the
7544 base class inherited from has a C variadic constructor; the warning is
7545 on by default because the ellipsis is not inherited.
7546
7547 @item -Winline
7548 @opindex Winline
7549 @opindex Wno-inline
7550 Warn if a function that is declared as inline cannot be inlined.
7551 Even with this option, the compiler does not warn about failures to
7552 inline functions declared in system headers.
7553
7554 The compiler uses a variety of heuristics to determine whether or not
7555 to inline a function. For example, the compiler takes into account
7556 the size of the function being inlined and the amount of inlining
7557 that has already been done in the current function. Therefore,
7558 seemingly insignificant changes in the source program can cause the
7559 warnings produced by @option{-Winline} to appear or disappear.
7560
7561 @item -Wno-invalid-offsetof @r{(C++ and Objective-C++ only)}
7562 @opindex Wno-invalid-offsetof
7563 @opindex Winvalid-offsetof
7564 Suppress warnings from applying the @code{offsetof} macro to a non-POD
7565 type. According to the 2014 ISO C++ standard, applying @code{offsetof}
7566 to a non-standard-layout type is undefined. In existing C++ implementations,
7567 however, @code{offsetof} typically gives meaningful results.
7568 This flag is for users who are aware that they are
7569 writing nonportable code and who have deliberately chosen to ignore the
7570 warning about it.
7571
7572 The restrictions on @code{offsetof} may be relaxed in a future version
7573 of the C++ standard.
7574
7575 @item -Wint-in-bool-context
7576 @opindex Wint-in-bool-context
7577 @opindex Wno-int-in-bool-context
7578 Warn for suspicious use of integer values where boolean values are expected,
7579 such as conditional expressions (?:) using non-boolean integer constants in
7580 boolean context, like @code{if (a <= b ? 2 : 3)}. Or left shifting of signed
7581 integers in boolean context, like @code{for (a = 0; 1 << a; a++);}. Likewise
7582 for all kinds of multiplications regardless of the data type.
7583 This warning is enabled by @option{-Wall}.
7584
7585 @item -Wno-int-to-pointer-cast
7586 @opindex Wno-int-to-pointer-cast
7587 @opindex Wint-to-pointer-cast
7588 Suppress warnings from casts to pointer type of an integer of a
7589 different size. In C++, casting to a pointer type of smaller size is
7590 an error. @option{Wint-to-pointer-cast} is enabled by default.
7591
7592
7593 @item -Wno-pointer-to-int-cast @r{(C and Objective-C only)}
7594 @opindex Wno-pointer-to-int-cast
7595 @opindex Wpointer-to-int-cast
7596 Suppress warnings from casts from a pointer to an integer type of a
7597 different size.
7598
7599 @item -Winvalid-pch
7600 @opindex Winvalid-pch
7601 @opindex Wno-invalid-pch
7602 Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
7603 the search path but cannot be used.
7604
7605 @item -Wlong-long
7606 @opindex Wlong-long
7607 @opindex Wno-long-long
7608 Warn if @code{long long} type is used. This is enabled by either
7609 @option{-Wpedantic} or @option{-Wtraditional} in ISO C90 and C++98
7610 modes. To inhibit the warning messages, use @option{-Wno-long-long}.
7611
7612 @item -Wvariadic-macros
7613 @opindex Wvariadic-macros
7614 @opindex Wno-variadic-macros
7615 Warn if variadic macros are used in ISO C90 mode, or if the GNU
7616 alternate syntax is used in ISO C99 mode. This is enabled by either
7617 @option{-Wpedantic} or @option{-Wtraditional}. To inhibit the warning
7618 messages, use @option{-Wno-variadic-macros}.
7619
7620 @item -Wvarargs
7621 @opindex Wvarargs
7622 @opindex Wno-varargs
7623 Warn upon questionable usage of the macros used to handle variable
7624 arguments like @code{va_start}. This is default. To inhibit the
7625 warning messages, use @option{-Wno-varargs}.
7626
7627 @item -Wvector-operation-performance
7628 @opindex Wvector-operation-performance
7629 @opindex Wno-vector-operation-performance
7630 Warn if vector operation is not implemented via SIMD capabilities of the
7631 architecture. Mainly useful for the performance tuning.
7632 Vector operation can be implemented @code{piecewise}, which means that the
7633 scalar operation is performed on every vector element;
7634 @code{in parallel}, which means that the vector operation is implemented
7635 using scalars of wider type, which normally is more performance efficient;
7636 and @code{as a single scalar}, which means that vector fits into a
7637 scalar type.
7638
7639 @item -Wno-virtual-move-assign
7640 @opindex Wvirtual-move-assign
7641 @opindex Wno-virtual-move-assign
7642 Suppress warnings about inheriting from a virtual base with a
7643 non-trivial C++11 move assignment operator. This is dangerous because
7644 if the virtual base is reachable along more than one path, it is
7645 moved multiple times, which can mean both objects end up in the
7646 moved-from state. If the move assignment operator is written to avoid
7647 moving from a moved-from object, this warning can be disabled.
7648
7649 @item -Wvla
7650 @opindex Wvla
7651 @opindex Wno-vla
7652 Warn if a variable-length array is used in the code.
7653 @option{-Wno-vla} prevents the @option{-Wpedantic} warning of
7654 the variable-length array.
7655
7656 @item -Wvla-larger-than=@var{byte-size}
7657 @opindex Wvla-larger-than=
7658 @opindex Wno-vla-larger-than
7659 If this option is used, the compiler will warn for declarations of
7660 variable-length arrays whose size is either unbounded, or bounded
7661 by an argument that allows the array size to exceed @var{byte-size}
7662 bytes. This is similar to how @option{-Walloca-larger-than=}@var{byte-size}
7663 works, but with variable-length arrays.
7664
7665 Note that GCC may optimize small variable-length arrays of a known
7666 value into plain arrays, so this warning may not get triggered for
7667 such arrays.
7668
7669 @option{-Wvla-larger-than=}@samp{PTRDIFF_MAX} is enabled by default but
7670 is typically only effective when @option{-ftree-vrp} is active (default
7671 for @option{-O2} and above).
7672
7673 See also @option{-Walloca-larger-than=@var{byte-size}}.
7674
7675 @item -Wno-vla-larger-than
7676 @opindex Wno-vla-larger-than
7677 Disable @option{-Wvla-larger-than=} warnings. The option is equivalent
7678 to @option{-Wvla-larger-than=}@samp{SIZE_MAX} or larger.
7679
7680 @item -Wvolatile-register-var
7681 @opindex Wvolatile-register-var
7682 @opindex Wno-volatile-register-var
7683 Warn if a register variable is declared volatile. The volatile
7684 modifier does not inhibit all optimizations that may eliminate reads
7685 and/or writes to register variables. This warning is enabled by
7686 @option{-Wall}.
7687
7688 @item -Wdisabled-optimization
7689 @opindex Wdisabled-optimization
7690 @opindex Wno-disabled-optimization
7691 Warn if a requested optimization pass is disabled. This warning does
7692 not generally indicate that there is anything wrong with your code; it
7693 merely indicates that GCC's optimizers are unable to handle the code
7694 effectively. Often, the problem is that your code is too big or too
7695 complex; GCC refuses to optimize programs when the optimization
7696 itself is likely to take inordinate amounts of time.
7697
7698 @item -Wpointer-sign @r{(C and Objective-C only)}
7699 @opindex Wpointer-sign
7700 @opindex Wno-pointer-sign
7701 Warn for pointer argument passing or assignment with different signedness.
7702 This option is only supported for C and Objective-C@. It is implied by
7703 @option{-Wall} and by @option{-Wpedantic}, which can be disabled with
7704 @option{-Wno-pointer-sign}.
7705
7706 @item -Wstack-protector
7707 @opindex Wstack-protector
7708 @opindex Wno-stack-protector
7709 This option is only active when @option{-fstack-protector} is active. It
7710 warns about functions that are not protected against stack smashing.
7711
7712 @item -Woverlength-strings
7713 @opindex Woverlength-strings
7714 @opindex Wno-overlength-strings
7715 Warn about string constants that are longer than the ``minimum
7716 maximum'' length specified in the C standard. Modern compilers
7717 generally allow string constants that are much longer than the
7718 standard's minimum limit, but very portable programs should avoid
7719 using longer strings.
7720
7721 The limit applies @emph{after} string constant concatenation, and does
7722 not count the trailing NUL@. In C90, the limit was 509 characters; in
7723 C99, it was raised to 4095. C++98 does not specify a normative
7724 minimum maximum, so we do not diagnose overlength strings in C++@.
7725
7726 This option is implied by @option{-Wpedantic}, and can be disabled with
7727 @option{-Wno-overlength-strings}.
7728
7729 @item -Wunsuffixed-float-constants @r{(C and Objective-C only)}
7730 @opindex Wunsuffixed-float-constants
7731 @opindex Wno-unsuffixed-float-constants
7732
7733 Issue a warning for any floating constant that does not have
7734 a suffix. When used together with @option{-Wsystem-headers} it
7735 warns about such constants in system header files. This can be useful
7736 when preparing code to use with the @code{FLOAT_CONST_DECIMAL64} pragma
7737 from the decimal floating-point extension to C99.
7738
7739 @item -Wno-designated-init @r{(C and Objective-C only)}
7740 Suppress warnings when a positional initializer is used to initialize
7741 a structure that has been marked with the @code{designated_init}
7742 attribute.
7743
7744 @item -Whsa
7745 Issue a warning when HSAIL cannot be emitted for the compiled function or
7746 OpenMP construct.
7747
7748 @end table
7749
7750 @node Debugging Options
7751 @section Options for Debugging Your Program
7752 @cindex options, debugging
7753 @cindex debugging information options
7754
7755 To tell GCC to emit extra information for use by a debugger, in almost
7756 all cases you need only to add @option{-g} to your other options.
7757
7758 GCC allows you to use @option{-g} with
7759 @option{-O}. The shortcuts taken by optimized code may occasionally
7760 be surprising: some variables you declared may not exist
7761 at all; flow of control may briefly move where you did not expect it;
7762 some statements may not be executed because they compute constant
7763 results or their values are already at hand; some statements may
7764 execute in different places because they have been moved out of loops.
7765 Nevertheless it is possible to debug optimized output. This makes
7766 it reasonable to use the optimizer for programs that might have bugs.
7767
7768 If you are not using some other optimization option, consider
7769 using @option{-Og} (@pxref{Optimize Options}) with @option{-g}.
7770 With no @option{-O} option at all, some compiler passes that collect
7771 information useful for debugging do not run at all, so that
7772 @option{-Og} may result in a better debugging experience.
7773
7774 @table @gcctabopt
7775 @item -g
7776 @opindex g
7777 Produce debugging information in the operating system's native format
7778 (stabs, COFF, XCOFF, or DWARF)@. GDB can work with this debugging
7779 information.
7780
7781 On most systems that use stabs format, @option{-g} enables use of extra
7782 debugging information that only GDB can use; this extra information
7783 makes debugging work better in GDB but probably makes other debuggers
7784 crash or
7785 refuse to read the program. If you want to control for certain whether
7786 to generate the extra information, use @option{-gstabs+}, @option{-gstabs},
7787 @option{-gxcoff+}, @option{-gxcoff}, or @option{-gvms} (see below).
7788
7789 @item -ggdb
7790 @opindex ggdb
7791 Produce debugging information for use by GDB@. This means to use the
7792 most expressive format available (DWARF, stabs, or the native format
7793 if neither of those are supported), including GDB extensions if at all
7794 possible.
7795
7796 @item -gdwarf
7797 @itemx -gdwarf-@var{version}
7798 @opindex gdwarf
7799 Produce debugging information in DWARF format (if that is supported).
7800 The value of @var{version} may be either 2, 3, 4 or 5; the default version
7801 for most targets is 4. DWARF Version 5 is only experimental.
7802
7803 Note that with DWARF Version 2, some ports require and always
7804 use some non-conflicting DWARF 3 extensions in the unwind tables.
7805
7806 Version 4 may require GDB 7.0 and @option{-fvar-tracking-assignments}
7807 for maximum benefit.
7808
7809 GCC no longer supports DWARF Version 1, which is substantially
7810 different than Version 2 and later. For historical reasons, some
7811 other DWARF-related options such as
7812 @option{-fno-dwarf2-cfi-asm}) retain a reference to DWARF Version 2
7813 in their names, but apply to all currently-supported versions of DWARF.
7814
7815 @item -gstabs
7816 @opindex gstabs
7817 Produce debugging information in stabs format (if that is supported),
7818 without GDB extensions. This is the format used by DBX on most BSD
7819 systems. On MIPS, Alpha and System V Release 4 systems this option
7820 produces stabs debugging output that is not understood by DBX@.
7821 On System V Release 4 systems this option requires the GNU assembler.
7822
7823 @item -gstabs+
7824 @opindex gstabs+
7825 Produce debugging information in stabs format (if that is supported),
7826 using GNU extensions understood only by the GNU debugger (GDB)@. The
7827 use of these extensions is likely to make other debuggers crash or
7828 refuse to read the program.
7829
7830 @item -gxcoff
7831 @opindex gxcoff
7832 Produce debugging information in XCOFF format (if that is supported).
7833 This is the format used by the DBX debugger on IBM RS/6000 systems.
7834
7835 @item -gxcoff+
7836 @opindex gxcoff+
7837 Produce debugging information in XCOFF format (if that is supported),
7838 using GNU extensions understood only by the GNU debugger (GDB)@. The
7839 use of these extensions is likely to make other debuggers crash or
7840 refuse to read the program, and may cause assemblers other than the GNU
7841 assembler (GAS) to fail with an error.
7842
7843 @item -gvms
7844 @opindex gvms
7845 Produce debugging information in Alpha/VMS debug format (if that is
7846 supported). This is the format used by DEBUG on Alpha/VMS systems.
7847
7848 @item -g@var{level}
7849 @itemx -ggdb@var{level}
7850 @itemx -gstabs@var{level}
7851 @itemx -gxcoff@var{level}
7852 @itemx -gvms@var{level}
7853 Request debugging information and also use @var{level} to specify how
7854 much information. The default level is 2.
7855
7856 Level 0 produces no debug information at all. Thus, @option{-g0} negates
7857 @option{-g}.
7858
7859 Level 1 produces minimal information, enough for making backtraces in
7860 parts of the program that you don't plan to debug. This includes
7861 descriptions of functions and external variables, and line number
7862 tables, but no information about local variables.
7863
7864 Level 3 includes extra information, such as all the macro definitions
7865 present in the program. Some debuggers support macro expansion when
7866 you use @option{-g3}.
7867
7868 If you use multiple @option{-g} options, with or without level numbers,
7869 the last such option is the one that is effective.
7870
7871 @option{-gdwarf} does not accept a concatenated debug level, to avoid
7872 confusion with @option{-gdwarf-@var{level}}.
7873 Instead use an additional @option{-g@var{level}} option to change the
7874 debug level for DWARF.
7875
7876 @item -fno-eliminate-unused-debug-symbols
7877 @opindex feliminate-unused-debug-symbols
7878 @opindex fno-eliminate-unused-debug-symbols
7879 By default, no debug information is produced for symbols that are not actually
7880 used. Use this option if you want debug information for all symbols.
7881
7882 @item -femit-class-debug-always
7883 @opindex femit-class-debug-always
7884 Instead of emitting debugging information for a C++ class in only one
7885 object file, emit it in all object files using the class. This option
7886 should be used only with debuggers that are unable to handle the way GCC
7887 normally emits debugging information for classes because using this
7888 option increases the size of debugging information by as much as a
7889 factor of two.
7890
7891 @item -fno-merge-debug-strings
7892 @opindex fmerge-debug-strings
7893 @opindex fno-merge-debug-strings
7894 Direct the linker to not merge together strings in the debugging
7895 information that are identical in different object files. Merging is
7896 not supported by all assemblers or linkers. Merging decreases the size
7897 of the debug information in the output file at the cost of increasing
7898 link processing time. Merging is enabled by default.
7899
7900 @item -fdebug-prefix-map=@var{old}=@var{new}
7901 @opindex fdebug-prefix-map
7902 When compiling files residing in directory @file{@var{old}}, record
7903 debugging information describing them as if the files resided in
7904 directory @file{@var{new}} instead. This can be used to replace a
7905 build-time path with an install-time path in the debug info. It can
7906 also be used to change an absolute path to a relative path by using
7907 @file{.} for @var{new}. This can give more reproducible builds, which
7908 are location independent, but may require an extra command to tell GDB
7909 where to find the source files. See also @option{-ffile-prefix-map}.
7910
7911 @item -fvar-tracking
7912 @opindex fvar-tracking
7913 Run variable tracking pass. It computes where variables are stored at each
7914 position in code. Better debugging information is then generated
7915 (if the debugging information format supports this information).
7916
7917 It is enabled by default when compiling with optimization (@option{-Os},
7918 @option{-O}, @option{-O2}, @dots{}), debugging information (@option{-g}) and
7919 the debug info format supports it.
7920
7921 @item -fvar-tracking-assignments
7922 @opindex fvar-tracking-assignments
7923 @opindex fno-var-tracking-assignments
7924 Annotate assignments to user variables early in the compilation and
7925 attempt to carry the annotations over throughout the compilation all the
7926 way to the end, in an attempt to improve debug information while
7927 optimizing. Use of @option{-gdwarf-4} is recommended along with it.
7928
7929 It can be enabled even if var-tracking is disabled, in which case
7930 annotations are created and maintained, but discarded at the end.
7931 By default, this flag is enabled together with @option{-fvar-tracking},
7932 except when selective scheduling is enabled.
7933
7934 @item -gsplit-dwarf
7935 @opindex gsplit-dwarf
7936 Separate as much DWARF debugging information as possible into a
7937 separate output file with the extension @file{.dwo}. This option allows
7938 the build system to avoid linking files with debug information. To
7939 be useful, this option requires a debugger capable of reading @file{.dwo}
7940 files.
7941
7942 @item -gdescribe-dies
7943 @opindex gdescribe-dies
7944 Add description attributes to some DWARF DIEs that have no name attribute,
7945 such as artificial variables, external references and call site
7946 parameter DIEs.
7947
7948 @item -gpubnames
7949 @opindex gpubnames
7950 Generate DWARF @code{.debug_pubnames} and @code{.debug_pubtypes} sections.
7951
7952 @item -ggnu-pubnames
7953 @opindex ggnu-pubnames
7954 Generate @code{.debug_pubnames} and @code{.debug_pubtypes} sections in a format
7955 suitable for conversion into a GDB@ index. This option is only useful
7956 with a linker that can produce GDB@ index version 7.
7957
7958 @item -fdebug-types-section
7959 @opindex fdebug-types-section
7960 @opindex fno-debug-types-section
7961 When using DWARF Version 4 or higher, type DIEs can be put into
7962 their own @code{.debug_types} section instead of making them part of the
7963 @code{.debug_info} section. It is more efficient to put them in a separate
7964 comdat section since the linker can then remove duplicates.
7965 But not all DWARF consumers support @code{.debug_types} sections yet
7966 and on some objects @code{.debug_types} produces larger instead of smaller
7967 debugging information.
7968
7969 @item -grecord-gcc-switches
7970 @itemx -gno-record-gcc-switches
7971 @opindex grecord-gcc-switches
7972 @opindex gno-record-gcc-switches
7973 This switch causes the command-line options used to invoke the
7974 compiler that may affect code generation to be appended to the
7975 DW_AT_producer attribute in DWARF debugging information. The options
7976 are concatenated with spaces separating them from each other and from
7977 the compiler version.
7978 It is enabled by default.
7979 See also @option{-frecord-gcc-switches} for another
7980 way of storing compiler options into the object file.
7981
7982 @item -gstrict-dwarf
7983 @opindex gstrict-dwarf
7984 Disallow using extensions of later DWARF standard version than selected
7985 with @option{-gdwarf-@var{version}}. On most targets using non-conflicting
7986 DWARF extensions from later standard versions is allowed.
7987
7988 @item -gno-strict-dwarf
7989 @opindex gno-strict-dwarf
7990 Allow using extensions of later DWARF standard version than selected with
7991 @option{-gdwarf-@var{version}}.
7992
7993 @item -gas-loc-support
7994 @opindex gas-loc-support
7995 Inform the compiler that the assembler supports @code{.loc} directives.
7996 It may then use them for the assembler to generate DWARF2+ line number
7997 tables.
7998
7999 This is generally desirable, because assembler-generated line-number
8000 tables are a lot more compact than those the compiler can generate
8001 itself.
8002
8003 This option will be enabled by default if, at GCC configure time, the
8004 assembler was found to support such directives.
8005
8006 @item -gno-as-loc-support
8007 @opindex gno-as-loc-support
8008 Force GCC to generate DWARF2+ line number tables internally, if DWARF2+
8009 line number tables are to be generated.
8010
8011 @item -gas-locview-support
8012 @opindex gas-locview-support
8013 Inform the compiler that the assembler supports @code{view} assignment
8014 and reset assertion checking in @code{.loc} directives.
8015
8016 This option will be enabled by default if, at GCC configure time, the
8017 assembler was found to support them.
8018
8019 @item -gno-as-locview-support
8020 Force GCC to assign view numbers internally, if
8021 @option{-gvariable-location-views} are explicitly requested.
8022
8023 @item -gcolumn-info
8024 @itemx -gno-column-info
8025 @opindex gcolumn-info
8026 @opindex gno-column-info
8027 Emit location column information into DWARF debugging information, rather
8028 than just file and line.
8029 This option is enabled by default.
8030
8031 @item -gstatement-frontiers
8032 @itemx -gno-statement-frontiers
8033 @opindex gstatement-frontiers
8034 @opindex gno-statement-frontiers
8035 This option causes GCC to create markers in the internal representation
8036 at the beginning of statements, and to keep them roughly in place
8037 throughout compilation, using them to guide the output of @code{is_stmt}
8038 markers in the line number table. This is enabled by default when
8039 compiling with optimization (@option{-Os}, @option{-O}, @option{-O2},
8040 @dots{}), and outputting DWARF 2 debug information at the normal level.
8041
8042 @item -gvariable-location-views
8043 @itemx -gvariable-location-views=incompat5
8044 @itemx -gno-variable-location-views
8045 @opindex gvariable-location-views
8046 @opindex gvariable-location-views=incompat5
8047 @opindex gno-variable-location-views
8048 Augment variable location lists with progressive view numbers implied
8049 from the line number table. This enables debug information consumers to
8050 inspect state at certain points of the program, even if no instructions
8051 associated with the corresponding source locations are present at that
8052 point. If the assembler lacks support for view numbers in line number
8053 tables, this will cause the compiler to emit the line number table,
8054 which generally makes them somewhat less compact. The augmented line
8055 number tables and location lists are fully backward-compatible, so they
8056 can be consumed by debug information consumers that are not aware of
8057 these augmentations, but they won't derive any benefit from them either.
8058
8059 This is enabled by default when outputting DWARF 2 debug information at
8060 the normal level, as long as there is assembler support,
8061 @option{-fvar-tracking-assignments} is enabled and
8062 @option{-gstrict-dwarf} is not. When assembler support is not
8063 available, this may still be enabled, but it will force GCC to output
8064 internal line number tables, and if
8065 @option{-ginternal-reset-location-views} is not enabled, that will most
8066 certainly lead to silently mismatching location views.
8067
8068 There is a proposed representation for view numbers that is not backward
8069 compatible with the location list format introduced in DWARF 5, that can
8070 be enabled with @option{-gvariable-location-views=incompat5}. This
8071 option may be removed in the future, is only provided as a reference
8072 implementation of the proposed representation. Debug information
8073 consumers are not expected to support this extended format, and they
8074 would be rendered unable to decode location lists using it.
8075
8076 @item -ginternal-reset-location-views
8077 @itemx -gnointernal-reset-location-views
8078 @opindex ginternal-reset-location-views
8079 @opindex gno-internal-reset-location-views
8080 Attempt to determine location views that can be omitted from location
8081 view lists. This requires the compiler to have very accurate insn
8082 length estimates, which isn't always the case, and it may cause
8083 incorrect view lists to be generated silently when using an assembler
8084 that does not support location view lists. The GNU assembler will flag
8085 any such error as a @code{view number mismatch}. This is only enabled
8086 on ports that define a reliable estimation function.
8087
8088 @item -ginline-points
8089 @itemx -gno-inline-points
8090 @opindex ginline-points
8091 @opindex gno-inline-points
8092 Generate extended debug information for inlined functions. Location
8093 view tracking markers are inserted at inlined entry points, so that
8094 address and view numbers can be computed and output in debug
8095 information. This can be enabled independently of location views, in
8096 which case the view numbers won't be output, but it can only be enabled
8097 along with statement frontiers, and it is only enabled by default if
8098 location views are enabled.
8099
8100 @item -gz@r{[}=@var{type}@r{]}
8101 @opindex gz
8102 Produce compressed debug sections in DWARF format, if that is supported.
8103 If @var{type} is not given, the default type depends on the capabilities
8104 of the assembler and linker used. @var{type} may be one of
8105 @samp{none} (don't compress debug sections), @samp{zlib} (use zlib
8106 compression in ELF gABI format), or @samp{zlib-gnu} (use zlib
8107 compression in traditional GNU format). If the linker doesn't support
8108 writing compressed debug sections, the option is rejected. Otherwise,
8109 if the assembler does not support them, @option{-gz} is silently ignored
8110 when producing object files.
8111
8112 @item -femit-struct-debug-baseonly
8113 @opindex femit-struct-debug-baseonly
8114 Emit debug information for struct-like types
8115 only when the base name of the compilation source file
8116 matches the base name of file in which the struct is defined.
8117
8118 This option substantially reduces the size of debugging information,
8119 but at significant potential loss in type information to the debugger.
8120 See @option{-femit-struct-debug-reduced} for a less aggressive option.
8121 See @option{-femit-struct-debug-detailed} for more detailed control.
8122
8123 This option works only with DWARF debug output.
8124
8125 @item -femit-struct-debug-reduced
8126 @opindex femit-struct-debug-reduced
8127 Emit debug information for struct-like types
8128 only when the base name of the compilation source file
8129 matches the base name of file in which the type is defined,
8130 unless the struct is a template or defined in a system header.
8131
8132 This option significantly reduces the size of debugging information,
8133 with some potential loss in type information to the debugger.
8134 See @option{-femit-struct-debug-baseonly} for a more aggressive option.
8135 See @option{-femit-struct-debug-detailed} for more detailed control.
8136
8137 This option works only with DWARF debug output.
8138
8139 @item -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]}
8140 @opindex femit-struct-debug-detailed
8141 Specify the struct-like types
8142 for which the compiler generates debug information.
8143 The intent is to reduce duplicate struct debug information
8144 between different object files within the same program.
8145
8146 This option is a detailed version of
8147 @option{-femit-struct-debug-reduced} and @option{-femit-struct-debug-baseonly},
8148 which serves for most needs.
8149
8150 A specification has the syntax@*
8151 [@samp{dir:}|@samp{ind:}][@samp{ord:}|@samp{gen:}](@samp{any}|@samp{sys}|@samp{base}|@samp{none})
8152
8153 The optional first word limits the specification to
8154 structs that are used directly (@samp{dir:}) or used indirectly (@samp{ind:}).
8155 A struct type is used directly when it is the type of a variable, member.
8156 Indirect uses arise through pointers to structs.
8157 That is, when use of an incomplete struct is valid, the use is indirect.
8158 An example is
8159 @samp{struct one direct; struct two * indirect;}.
8160
8161 The optional second word limits the specification to
8162 ordinary structs (@samp{ord:}) or generic structs (@samp{gen:}).
8163 Generic structs are a bit complicated to explain.
8164 For C++, these are non-explicit specializations of template classes,
8165 or non-template classes within the above.
8166 Other programming languages have generics,
8167 but @option{-femit-struct-debug-detailed} does not yet implement them.
8168
8169 The third word specifies the source files for those
8170 structs for which the compiler should emit debug information.
8171 The values @samp{none} and @samp{any} have the normal meaning.
8172 The value @samp{base} means that
8173 the base of name of the file in which the type declaration appears
8174 must match the base of the name of the main compilation file.
8175 In practice, this means that when compiling @file{foo.c}, debug information
8176 is generated for types declared in that file and @file{foo.h},
8177 but not other header files.
8178 The value @samp{sys} means those types satisfying @samp{base}
8179 or declared in system or compiler headers.
8180
8181 You may need to experiment to determine the best settings for your application.
8182
8183 The default is @option{-femit-struct-debug-detailed=all}.
8184
8185 This option works only with DWARF debug output.
8186
8187 @item -fno-dwarf2-cfi-asm
8188 @opindex fdwarf2-cfi-asm
8189 @opindex fno-dwarf2-cfi-asm
8190 Emit DWARF unwind info as compiler generated @code{.eh_frame} section
8191 instead of using GAS @code{.cfi_*} directives.
8192
8193 @item -fno-eliminate-unused-debug-types
8194 @opindex feliminate-unused-debug-types
8195 @opindex fno-eliminate-unused-debug-types
8196 Normally, when producing DWARF output, GCC avoids producing debug symbol
8197 output for types that are nowhere used in the source file being compiled.
8198 Sometimes it is useful to have GCC emit debugging
8199 information for all types declared in a compilation
8200 unit, regardless of whether or not they are actually used
8201 in that compilation unit, for example
8202 if, in the debugger, you want to cast a value to a type that is
8203 not actually used in your program (but is declared). More often,
8204 however, this results in a significant amount of wasted space.
8205 @end table
8206
8207 @node Optimize Options
8208 @section Options That Control Optimization
8209 @cindex optimize options
8210 @cindex options, optimization
8211
8212 These options control various sorts of optimizations.
8213
8214 Without any optimization option, the compiler's goal is to reduce the
8215 cost of compilation and to make debugging produce the expected
8216 results. Statements are independent: if you stop the program with a
8217 breakpoint between statements, you can then assign a new value to any
8218 variable or change the program counter to any other statement in the
8219 function and get exactly the results you expect from the source
8220 code.
8221
8222 Turning on optimization flags makes the compiler attempt to improve
8223 the performance and/or code size at the expense of compilation time
8224 and possibly the ability to debug the program.
8225
8226 The compiler performs optimization based on the knowledge it has of the
8227 program. Compiling multiple files at once to a single output file mode allows
8228 the compiler to use information gained from all of the files when compiling
8229 each of them.
8230
8231 Not all optimizations are controlled directly by a flag. Only
8232 optimizations that have a flag are listed in this section.
8233
8234 Most optimizations are completely disabled at @option{-O0} or if an
8235 @option{-O} level is not set on the command line, even if individual
8236 optimization flags are specified. Similarly, @option{-Og} suppresses
8237 many optimization passes.
8238
8239 Depending on the target and how GCC was configured, a slightly different
8240 set of optimizations may be enabled at each @option{-O} level than
8241 those listed here. You can invoke GCC with @option{-Q --help=optimizers}
8242 to find out the exact set of optimizations that are enabled at each level.
8243 @xref{Overall Options}, for examples.
8244
8245 @table @gcctabopt
8246 @item -O
8247 @itemx -O1
8248 @opindex O
8249 @opindex O1
8250 Optimize. Optimizing compilation takes somewhat more time, and a lot
8251 more memory for a large function.
8252
8253 With @option{-O}, the compiler tries to reduce code size and execution
8254 time, without performing any optimizations that take a great deal of
8255 compilation time.
8256
8257 @c Note that in addition to the default_options_table list in opts.c,
8258 @c several optimization flags default to true but control optimization
8259 @c passes that are explicitly disabled at -O0.
8260
8261 @option{-O} turns on the following optimization flags:
8262
8263 @c Please keep the following list alphabetized.
8264 @gccoptlist{-fauto-inc-dec @gol
8265 -fbranch-count-reg @gol
8266 -fcombine-stack-adjustments @gol
8267 -fcompare-elim @gol
8268 -fcprop-registers @gol
8269 -fdce @gol
8270 -fdefer-pop @gol
8271 -fdelayed-branch @gol
8272 -fdse @gol
8273 -fforward-propagate @gol
8274 -fguess-branch-probability @gol
8275 -fif-conversion @gol
8276 -fif-conversion2 @gol
8277 -finline-functions-called-once @gol
8278 -fipa-profile @gol
8279 -fipa-pure-const @gol
8280 -fipa-reference @gol
8281 -fipa-reference-addressable @gol
8282 -fmerge-constants @gol
8283 -fmove-loop-invariants @gol
8284 -fomit-frame-pointer @gol
8285 -freorder-blocks @gol
8286 -fshrink-wrap @gol
8287 -fshrink-wrap-separate @gol
8288 -fsplit-wide-types @gol
8289 -fssa-backprop @gol
8290 -fssa-phiopt @gol
8291 -ftree-bit-ccp @gol
8292 -ftree-ccp @gol
8293 -ftree-ch @gol
8294 -ftree-coalesce-vars @gol
8295 -ftree-copy-prop @gol
8296 -ftree-dce @gol
8297 -ftree-dominator-opts @gol
8298 -ftree-dse @gol
8299 -ftree-forwprop @gol
8300 -ftree-fre @gol
8301 -ftree-phiprop @gol
8302 -ftree-pta @gol
8303 -ftree-scev-cprop @gol
8304 -ftree-sink @gol
8305 -ftree-slsr @gol
8306 -ftree-sra @gol
8307 -ftree-ter @gol
8308 -funit-at-a-time}
8309
8310 @item -O2
8311 @opindex O2
8312 Optimize even more. GCC performs nearly all supported optimizations
8313 that do not involve a space-speed tradeoff.
8314 As compared to @option{-O}, this option increases both compilation time
8315 and the performance of the generated code.
8316
8317 @option{-O2} turns on all optimization flags specified by @option{-O}. It
8318 also turns on the following optimization flags:
8319
8320 @c Please keep the following list alphabetized!
8321 @gccoptlist{-falign-functions -falign-jumps @gol
8322 -falign-labels -falign-loops @gol
8323 -fcaller-saves @gol
8324 -fcode-hoisting @gol
8325 -fcrossjumping @gol
8326 -fcse-follow-jumps -fcse-skip-blocks @gol
8327 -fdelete-null-pointer-checks @gol
8328 -fdevirtualize -fdevirtualize-speculatively @gol
8329 -fexpensive-optimizations @gol
8330 -ffinite-loops @gol
8331 -fgcse -fgcse-lm @gol
8332 -fhoist-adjacent-loads @gol
8333 -finline-small-functions @gol
8334 -findirect-inlining @gol
8335 -fipa-bit-cp -fipa-cp -fipa-icf @gol
8336 -fipa-ra -fipa-sra -fipa-vrp @gol
8337 -fisolate-erroneous-paths-dereference @gol
8338 -flra-remat @gol
8339 -foptimize-sibling-calls @gol
8340 -foptimize-strlen @gol
8341 -fpartial-inlining @gol
8342 -fpeephole2 @gol
8343 -freorder-blocks-algorithm=stc @gol
8344 -freorder-blocks-and-partition -freorder-functions @gol
8345 -frerun-cse-after-loop @gol
8346 -fschedule-insns -fschedule-insns2 @gol
8347 -fsched-interblock -fsched-spec @gol
8348 -fstore-merging @gol
8349 -fstrict-aliasing @gol
8350 -fthread-jumps @gol
8351 -ftree-builtin-call-dce @gol
8352 -ftree-pre @gol
8353 -ftree-switch-conversion -ftree-tail-merge @gol
8354 -ftree-vrp}
8355
8356 Please note the warning under @option{-fgcse} about
8357 invoking @option{-O2} on programs that use computed gotos.
8358
8359 @item -O3
8360 @opindex O3
8361 Optimize yet more. @option{-O3} turns on all optimizations specified
8362 by @option{-O2} and also turns on the following optimization flags:
8363
8364 @c Please keep the following list alphabetized!
8365 @gccoptlist{-fgcse-after-reload @gol
8366 -finline-functions @gol
8367 -fipa-cp-clone
8368 -floop-interchange @gol
8369 -floop-unroll-and-jam @gol
8370 -fpeel-loops @gol
8371 -fpredictive-commoning @gol
8372 -fsplit-paths @gol
8373 -ftree-loop-distribute-patterns @gol
8374 -ftree-loop-distribution @gol
8375 -ftree-loop-vectorize @gol
8376 -ftree-partial-pre @gol
8377 -ftree-slp-vectorize @gol
8378 -funswitch-loops @gol
8379 -fvect-cost-model @gol
8380 -fversion-loops-for-strides}
8381
8382 @item -O0
8383 @opindex O0
8384 Reduce compilation time and make debugging produce the expected
8385 results. This is the default.
8386
8387 @item -Os
8388 @opindex Os
8389 Optimize for size. @option{-Os} enables all @option{-O2} optimizations
8390 except those that often increase code size:
8391
8392 @gccoptlist{-falign-functions -falign-jumps @gol
8393 -falign-labels -falign-loops @gol
8394 -fprefetch-loop-arrays -freorder-blocks-algorithm=stc}
8395
8396 It also enables @option{-finline-functions}, causes the compiler to tune for
8397 code size rather than execution speed, and performs further optimizations
8398 designed to reduce code size.
8399
8400 @item -Ofast
8401 @opindex Ofast
8402 Disregard strict standards compliance. @option{-Ofast} enables all
8403 @option{-O3} optimizations. It also enables optimizations that are not
8404 valid for all standard-compliant programs.
8405 It turns on @option{-ffast-math} and the Fortran-specific
8406 @option{-fstack-arrays}, unless @option{-fmax-stack-var-size} is
8407 specified, and @option{-fno-protect-parens}.
8408
8409 @item -Og
8410 @opindex Og
8411 Optimize debugging experience. @option{-Og} should be the optimization
8412 level of choice for the standard edit-compile-debug cycle, offering
8413 a reasonable level of optimization while maintaining fast compilation
8414 and a good debugging experience. It is a better choice than @option{-O0}
8415 for producing debuggable code because some compiler passes
8416 that collect debug information are disabled at @option{-O0}.
8417
8418 Like @option{-O0}, @option{-Og} completely disables a number of
8419 optimization passes so that individual options controlling them have
8420 no effect. Otherwise @option{-Og} enables all @option{-O1}
8421 optimization flags except for those that may interfere with debugging:
8422
8423 @gccoptlist{-fbranch-count-reg -fdelayed-branch @gol
8424 -fif-conversion -fif-conversion2 @gol
8425 -finline-functions-called-once @gol
8426 -fmove-loop-invariants -fssa-phiopt @gol
8427 -ftree-bit-ccp -ftree-pta -ftree-sra}
8428
8429 @end table
8430
8431 If you use multiple @option{-O} options, with or without level numbers,
8432 the last such option is the one that is effective.
8433
8434 Options of the form @option{-f@var{flag}} specify machine-independent
8435 flags. Most flags have both positive and negative forms; the negative
8436 form of @option{-ffoo} is @option{-fno-foo}. In the table
8437 below, only one of the forms is listed---the one you typically
8438 use. You can figure out the other form by either removing @samp{no-}
8439 or adding it.
8440
8441 The following options control specific optimizations. They are either
8442 activated by @option{-O} options or are related to ones that are. You
8443 can use the following flags in the rare cases when ``fine-tuning'' of
8444 optimizations to be performed is desired.
8445
8446 @table @gcctabopt
8447 @item -fno-defer-pop
8448 @opindex fno-defer-pop
8449 @opindex fdefer-pop
8450 For machines that must pop arguments after a function call, always pop
8451 the arguments as soon as each function returns.
8452 At levels @option{-O1} and higher, @option{-fdefer-pop} is the default;
8453 this allows the compiler to let arguments accumulate on the stack for several
8454 function calls and pop them all at once.
8455
8456 @item -fforward-propagate
8457 @opindex fforward-propagate
8458 Perform a forward propagation pass on RTL@. The pass tries to combine two
8459 instructions and checks if the result can be simplified. If loop unrolling
8460 is active, two passes are performed and the second is scheduled after
8461 loop unrolling.
8462
8463 This option is enabled by default at optimization levels @option{-O},
8464 @option{-O2}, @option{-O3}, @option{-Os}.
8465
8466 @item -ffp-contract=@var{style}
8467 @opindex ffp-contract
8468 @option{-ffp-contract=off} disables floating-point expression contraction.
8469 @option{-ffp-contract=fast} enables floating-point expression contraction
8470 such as forming of fused multiply-add operations if the target has
8471 native support for them.
8472 @option{-ffp-contract=on} enables floating-point expression contraction
8473 if allowed by the language standard. This is currently not implemented
8474 and treated equal to @option{-ffp-contract=off}.
8475
8476 The default is @option{-ffp-contract=fast}.
8477
8478 @item -fomit-frame-pointer
8479 @opindex fomit-frame-pointer
8480 Omit the frame pointer in functions that don't need one. This avoids the
8481 instructions to save, set up and restore the frame pointer; on many targets
8482 it also makes an extra register available.
8483
8484 On some targets this flag has no effect because the standard calling sequence
8485 always uses a frame pointer, so it cannot be omitted.
8486
8487 Note that @option{-fno-omit-frame-pointer} doesn't guarantee the frame pointer
8488 is used in all functions. Several targets always omit the frame pointer in
8489 leaf functions.
8490
8491 Enabled by default at @option{-O} and higher.
8492
8493 @item -foptimize-sibling-calls
8494 @opindex foptimize-sibling-calls
8495 Optimize sibling and tail recursive calls.
8496
8497 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8498
8499 @item -foptimize-strlen
8500 @opindex foptimize-strlen
8501 Optimize various standard C string functions (e.g.@: @code{strlen},
8502 @code{strchr} or @code{strcpy}) and
8503 their @code{_FORTIFY_SOURCE} counterparts into faster alternatives.
8504
8505 Enabled at levels @option{-O2}, @option{-O3}.
8506
8507 @item -fno-inline
8508 @opindex fno-inline
8509 @opindex finline
8510 Do not expand any functions inline apart from those marked with
8511 the @code{always_inline} attribute. This is the default when not
8512 optimizing.
8513
8514 Single functions can be exempted from inlining by marking them
8515 with the @code{noinline} attribute.
8516
8517 @item -finline-small-functions
8518 @opindex finline-small-functions
8519 Integrate functions into their callers when their body is smaller than expected
8520 function call code (so overall size of program gets smaller). The compiler
8521 heuristically decides which functions are simple enough to be worth integrating
8522 in this way. This inlining applies to all functions, even those not declared
8523 inline.
8524
8525 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8526
8527 @item -findirect-inlining
8528 @opindex findirect-inlining
8529 Inline also indirect calls that are discovered to be known at compile
8530 time thanks to previous inlining. This option has any effect only
8531 when inlining itself is turned on by the @option{-finline-functions}
8532 or @option{-finline-small-functions} options.
8533
8534 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8535
8536 @item -finline-functions
8537 @opindex finline-functions
8538 Consider all functions for inlining, even if they are not declared inline.
8539 The compiler heuristically decides which functions are worth integrating
8540 in this way.
8541
8542 If all calls to a given function are integrated, and the function is
8543 declared @code{static}, then the function is normally not output as
8544 assembler code in its own right.
8545
8546 Enabled at levels @option{-O3}, @option{-Os}. Also enabled
8547 by @option{-fprofile-use} and @option{-fauto-profile}.
8548
8549 @item -finline-functions-called-once
8550 @opindex finline-functions-called-once
8551 Consider all @code{static} functions called once for inlining into their
8552 caller even if they are not marked @code{inline}. If a call to a given
8553 function is integrated, then the function is not output as assembler code
8554 in its own right.
8555
8556 Enabled at levels @option{-O1}, @option{-O2}, @option{-O3} and @option{-Os},
8557 but not @option{-Og}.
8558
8559 @item -fearly-inlining
8560 @opindex fearly-inlining
8561 Inline functions marked by @code{always_inline} and functions whose body seems
8562 smaller than the function call overhead early before doing
8563 @option{-fprofile-generate} instrumentation and real inlining pass. Doing so
8564 makes profiling significantly cheaper and usually inlining faster on programs
8565 having large chains of nested wrapper functions.
8566
8567 Enabled by default.
8568
8569 @item -fipa-sra
8570 @opindex fipa-sra
8571 Perform interprocedural scalar replacement of aggregates, removal of
8572 unused parameters and replacement of parameters passed by reference
8573 by parameters passed by value.
8574
8575 Enabled at levels @option{-O2}, @option{-O3} and @option{-Os}.
8576
8577 @item -finline-limit=@var{n}
8578 @opindex finline-limit
8579 By default, GCC limits the size of functions that can be inlined. This flag
8580 allows coarse control of this limit. @var{n} is the size of functions that
8581 can be inlined in number of pseudo instructions.
8582
8583 Inlining is actually controlled by a number of parameters, which may be
8584 specified individually by using @option{--param @var{name}=@var{value}}.
8585 The @option{-finline-limit=@var{n}} option sets some of these parameters
8586 as follows:
8587
8588 @table @gcctabopt
8589 @item max-inline-insns-single
8590 is set to @var{n}/2.
8591 @item max-inline-insns-auto
8592 is set to @var{n}/2.
8593 @end table
8594
8595 See below for a documentation of the individual
8596 parameters controlling inlining and for the defaults of these parameters.
8597
8598 @emph{Note:} there may be no value to @option{-finline-limit} that results
8599 in default behavior.
8600
8601 @emph{Note:} pseudo instruction represents, in this particular context, an
8602 abstract measurement of function's size. In no way does it represent a count
8603 of assembly instructions and as such its exact meaning might change from one
8604 release to an another.
8605
8606 @item -fno-keep-inline-dllexport
8607 @opindex fno-keep-inline-dllexport
8608 @opindex fkeep-inline-dllexport
8609 This is a more fine-grained version of @option{-fkeep-inline-functions},
8610 which applies only to functions that are declared using the @code{dllexport}
8611 attribute or declspec. @xref{Function Attributes,,Declaring Attributes of
8612 Functions}.
8613
8614 @item -fkeep-inline-functions
8615 @opindex fkeep-inline-functions
8616 In C, emit @code{static} functions that are declared @code{inline}
8617 into the object file, even if the function has been inlined into all
8618 of its callers. This switch does not affect functions using the
8619 @code{extern inline} extension in GNU C90@. In C++, emit any and all
8620 inline functions into the object file.
8621
8622 @item -fkeep-static-functions
8623 @opindex fkeep-static-functions
8624 Emit @code{static} functions into the object file, even if the function
8625 is never used.
8626
8627 @item -fkeep-static-consts
8628 @opindex fkeep-static-consts
8629 Emit variables declared @code{static const} when optimization isn't turned
8630 on, even if the variables aren't referenced.
8631
8632 GCC enables this option by default. If you want to force the compiler to
8633 check if a variable is referenced, regardless of whether or not
8634 optimization is turned on, use the @option{-fno-keep-static-consts} option.
8635
8636 @item -fmerge-constants
8637 @opindex fmerge-constants
8638 Attempt to merge identical constants (string constants and floating-point
8639 constants) across compilation units.
8640
8641 This option is the default for optimized compilation if the assembler and
8642 linker support it. Use @option{-fno-merge-constants} to inhibit this
8643 behavior.
8644
8645 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8646
8647 @item -fmerge-all-constants
8648 @opindex fmerge-all-constants
8649 Attempt to merge identical constants and identical variables.
8650
8651 This option implies @option{-fmerge-constants}. In addition to
8652 @option{-fmerge-constants} this considers e.g.@: even constant initialized
8653 arrays or initialized constant variables with integral or floating-point
8654 types. Languages like C or C++ require each variable, including multiple
8655 instances of the same variable in recursive calls, to have distinct locations,
8656 so using this option results in non-conforming
8657 behavior.
8658
8659 @item -fmodulo-sched
8660 @opindex fmodulo-sched
8661 Perform swing modulo scheduling immediately before the first scheduling
8662 pass. This pass looks at innermost loops and reorders their
8663 instructions by overlapping different iterations.
8664
8665 @item -fmodulo-sched-allow-regmoves
8666 @opindex fmodulo-sched-allow-regmoves
8667 Perform more aggressive SMS-based modulo scheduling with register moves
8668 allowed. By setting this flag certain anti-dependences edges are
8669 deleted, which triggers the generation of reg-moves based on the
8670 life-range analysis. This option is effective only with
8671 @option{-fmodulo-sched} enabled.
8672
8673 @item -fno-branch-count-reg
8674 @opindex fno-branch-count-reg
8675 @opindex fbranch-count-reg
8676 Disable the optimization pass that scans for opportunities to use
8677 ``decrement and branch'' instructions on a count register instead of
8678 instruction sequences that decrement a register, compare it against zero, and
8679 then branch based upon the result. This option is only meaningful on
8680 architectures that support such instructions, which include x86, PowerPC,
8681 IA-64 and S/390. Note that the @option{-fno-branch-count-reg} option
8682 doesn't remove the decrement and branch instructions from the generated
8683 instruction stream introduced by other optimization passes.
8684
8685 The default is @option{-fbranch-count-reg} at @option{-O1} and higher,
8686 except for @option{-Og}.
8687
8688 @item -fno-function-cse
8689 @opindex fno-function-cse
8690 @opindex ffunction-cse
8691 Do not put function addresses in registers; make each instruction that
8692 calls a constant function contain the function's address explicitly.
8693
8694 This option results in less efficient code, but some strange hacks
8695 that alter the assembler output may be confused by the optimizations
8696 performed when this option is not used.
8697
8698 The default is @option{-ffunction-cse}
8699
8700 @item -fno-zero-initialized-in-bss
8701 @opindex fno-zero-initialized-in-bss
8702 @opindex fzero-initialized-in-bss
8703 If the target supports a BSS section, GCC by default puts variables that
8704 are initialized to zero into BSS@. This can save space in the resulting
8705 code.
8706
8707 This option turns off this behavior because some programs explicitly
8708 rely on variables going to the data section---e.g., so that the
8709 resulting executable can find the beginning of that section and/or make
8710 assumptions based on that.
8711
8712 The default is @option{-fzero-initialized-in-bss}.
8713
8714 @item -fthread-jumps
8715 @opindex fthread-jumps
8716 Perform optimizations that check to see if a jump branches to a
8717 location where another comparison subsumed by the first is found. If
8718 so, the first branch is redirected to either the destination of the
8719 second branch or a point immediately following it, depending on whether
8720 the condition is known to be true or false.
8721
8722 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8723
8724 @item -fsplit-wide-types
8725 @opindex fsplit-wide-types
8726 When using a type that occupies multiple registers, such as @code{long
8727 long} on a 32-bit system, split the registers apart and allocate them
8728 independently. This normally generates better code for those types,
8729 but may make debugging more difficult.
8730
8731 Enabled at levels @option{-O}, @option{-O2}, @option{-O3},
8732 @option{-Os}.
8733
8734 @item -fsplit-wide-types-early
8735 @opindex fsplit-wide-types-early
8736 Fully split wide types early, instead of very late.
8737 This option has no effect unless @option{-fsplit-wide-types} is turned on.
8738
8739 This is the default on some targets.
8740
8741 @item -fcse-follow-jumps
8742 @opindex fcse-follow-jumps
8743 In common subexpression elimination (CSE), scan through jump instructions
8744 when the target of the jump is not reached by any other path. For
8745 example, when CSE encounters an @code{if} statement with an
8746 @code{else} clause, CSE follows the jump when the condition
8747 tested is false.
8748
8749 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8750
8751 @item -fcse-skip-blocks
8752 @opindex fcse-skip-blocks
8753 This is similar to @option{-fcse-follow-jumps}, but causes CSE to
8754 follow jumps that conditionally skip over blocks. When CSE
8755 encounters a simple @code{if} statement with no else clause,
8756 @option{-fcse-skip-blocks} causes CSE to follow the jump around the
8757 body of the @code{if}.
8758
8759 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8760
8761 @item -frerun-cse-after-loop
8762 @opindex frerun-cse-after-loop
8763 Re-run common subexpression elimination after loop optimizations are
8764 performed.
8765
8766 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8767
8768 @item -fgcse
8769 @opindex fgcse
8770 Perform a global common subexpression elimination pass.
8771 This pass also performs global constant and copy propagation.
8772
8773 @emph{Note:} When compiling a program using computed gotos, a GCC
8774 extension, you may get better run-time performance if you disable
8775 the global common subexpression elimination pass by adding
8776 @option{-fno-gcse} to the command line.
8777
8778 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8779
8780 @item -fgcse-lm
8781 @opindex fgcse-lm
8782 When @option{-fgcse-lm} is enabled, global common subexpression elimination
8783 attempts to move loads that are only killed by stores into themselves. This
8784 allows a loop containing a load/store sequence to be changed to a load outside
8785 the loop, and a copy/store within the loop.
8786
8787 Enabled by default when @option{-fgcse} is enabled.
8788
8789 @item -fgcse-sm
8790 @opindex fgcse-sm
8791 When @option{-fgcse-sm} is enabled, a store motion pass is run after
8792 global common subexpression elimination. This pass attempts to move
8793 stores out of loops. When used in conjunction with @option{-fgcse-lm},
8794 loops containing a load/store sequence can be changed to a load before
8795 the loop and a store after the loop.
8796
8797 Not enabled at any optimization level.
8798
8799 @item -fgcse-las
8800 @opindex fgcse-las
8801 When @option{-fgcse-las} is enabled, the global common subexpression
8802 elimination pass eliminates redundant loads that come after stores to the
8803 same memory location (both partial and full redundancies).
8804
8805 Not enabled at any optimization level.
8806
8807 @item -fgcse-after-reload
8808 @opindex fgcse-after-reload
8809 When @option{-fgcse-after-reload} is enabled, a redundant load elimination
8810 pass is performed after reload. The purpose of this pass is to clean up
8811 redundant spilling.
8812
8813 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
8814
8815 @item -faggressive-loop-optimizations
8816 @opindex faggressive-loop-optimizations
8817 This option tells the loop optimizer to use language constraints to
8818 derive bounds for the number of iterations of a loop. This assumes that
8819 loop code does not invoke undefined behavior by for example causing signed
8820 integer overflows or out-of-bound array accesses. The bounds for the
8821 number of iterations of a loop are used to guide loop unrolling and peeling
8822 and loop exit test optimizations.
8823 This option is enabled by default.
8824
8825 @item -funconstrained-commons
8826 @opindex funconstrained-commons
8827 This option tells the compiler that variables declared in common blocks
8828 (e.g.@: Fortran) may later be overridden with longer trailing arrays. This
8829 prevents certain optimizations that depend on knowing the array bounds.
8830
8831 @item -fcrossjumping
8832 @opindex fcrossjumping
8833 Perform cross-jumping transformation.
8834 This transformation unifies equivalent code and saves code size. The
8835 resulting code may or may not perform better than without cross-jumping.
8836
8837 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8838
8839 @item -fauto-inc-dec
8840 @opindex fauto-inc-dec
8841 Combine increments or decrements of addresses with memory accesses.
8842 This pass is always skipped on architectures that do not have
8843 instructions to support this. Enabled by default at @option{-O} and
8844 higher on architectures that support this.
8845
8846 @item -fdce
8847 @opindex fdce
8848 Perform dead code elimination (DCE) on RTL@.
8849 Enabled by default at @option{-O} and higher.
8850
8851 @item -fdse
8852 @opindex fdse
8853 Perform dead store elimination (DSE) on RTL@.
8854 Enabled by default at @option{-O} and higher.
8855
8856 @item -fif-conversion
8857 @opindex fif-conversion
8858 Attempt to transform conditional jumps into branch-less equivalents. This
8859 includes use of conditional moves, min, max, set flags and abs instructions, and
8860 some tricks doable by standard arithmetics. The use of conditional execution
8861 on chips where it is available is controlled by @option{-fif-conversion2}.
8862
8863 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}, but
8864 not with @option{-Og}.
8865
8866 @item -fif-conversion2
8867 @opindex fif-conversion2
8868 Use conditional execution (where available) to transform conditional jumps into
8869 branch-less equivalents.
8870
8871 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}, but
8872 not with @option{-Og}.
8873
8874 @item -fdeclone-ctor-dtor
8875 @opindex fdeclone-ctor-dtor
8876 The C++ ABI requires multiple entry points for constructors and
8877 destructors: one for a base subobject, one for a complete object, and
8878 one for a virtual destructor that calls operator delete afterwards.
8879 For a hierarchy with virtual bases, the base and complete variants are
8880 clones, which means two copies of the function. With this option, the
8881 base and complete variants are changed to be thunks that call a common
8882 implementation.
8883
8884 Enabled by @option{-Os}.
8885
8886 @item -fdelete-null-pointer-checks
8887 @opindex fdelete-null-pointer-checks
8888 Assume that programs cannot safely dereference null pointers, and that
8889 no code or data element resides at address zero.
8890 This option enables simple constant
8891 folding optimizations at all optimization levels. In addition, other
8892 optimization passes in GCC use this flag to control global dataflow
8893 analyses that eliminate useless checks for null pointers; these assume
8894 that a memory access to address zero always results in a trap, so
8895 that if a pointer is checked after it has already been dereferenced,
8896 it cannot be null.
8897
8898 Note however that in some environments this assumption is not true.
8899 Use @option{-fno-delete-null-pointer-checks} to disable this optimization
8900 for programs that depend on that behavior.
8901
8902 This option is enabled by default on most targets. On Nios II ELF, it
8903 defaults to off. On AVR, CR16, and MSP430, this option is completely disabled.
8904
8905 Passes that use the dataflow information
8906 are enabled independently at different optimization levels.
8907
8908 @item -fdevirtualize
8909 @opindex fdevirtualize
8910 Attempt to convert calls to virtual functions to direct calls. This
8911 is done both within a procedure and interprocedurally as part of
8912 indirect inlining (@option{-findirect-inlining}) and interprocedural constant
8913 propagation (@option{-fipa-cp}).
8914 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8915
8916 @item -fdevirtualize-speculatively
8917 @opindex fdevirtualize-speculatively
8918 Attempt to convert calls to virtual functions to speculative direct calls.
8919 Based on the analysis of the type inheritance graph, determine for a given call
8920 the set of likely targets. If the set is small, preferably of size 1, change
8921 the call into a conditional deciding between direct and indirect calls. The
8922 speculative calls enable more optimizations, such as inlining. When they seem
8923 useless after further optimization, they are converted back into original form.
8924
8925 @item -fdevirtualize-at-ltrans
8926 @opindex fdevirtualize-at-ltrans
8927 Stream extra information needed for aggressive devirtualization when running
8928 the link-time optimizer in local transformation mode.
8929 This option enables more devirtualization but
8930 significantly increases the size of streamed data. For this reason it is
8931 disabled by default.
8932
8933 @item -fexpensive-optimizations
8934 @opindex fexpensive-optimizations
8935 Perform a number of minor optimizations that are relatively expensive.
8936
8937 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8938
8939 @item -free
8940 @opindex free
8941 Attempt to remove redundant extension instructions. This is especially
8942 helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit
8943 registers after writing to their lower 32-bit half.
8944
8945 Enabled for Alpha, AArch64 and x86 at levels @option{-O2},
8946 @option{-O3}, @option{-Os}.
8947
8948 @item -fno-lifetime-dse
8949 @opindex fno-lifetime-dse
8950 @opindex flifetime-dse
8951 In C++ the value of an object is only affected by changes within its
8952 lifetime: when the constructor begins, the object has an indeterminate
8953 value, and any changes during the lifetime of the object are dead when
8954 the object is destroyed. Normally dead store elimination will take
8955 advantage of this; if your code relies on the value of the object
8956 storage persisting beyond the lifetime of the object, you can use this
8957 flag to disable this optimization. To preserve stores before the
8958 constructor starts (e.g.@: because your operator new clears the object
8959 storage) but still treat the object as dead after the destructor you,
8960 can use @option{-flifetime-dse=1}. The default behavior can be
8961 explicitly selected with @option{-flifetime-dse=2}.
8962 @option{-flifetime-dse=0} is equivalent to @option{-fno-lifetime-dse}.
8963
8964 @item -flive-range-shrinkage
8965 @opindex flive-range-shrinkage
8966 Attempt to decrease register pressure through register live range
8967 shrinkage. This is helpful for fast processors with small or moderate
8968 size register sets.
8969
8970 @item -fira-algorithm=@var{algorithm}
8971 @opindex fira-algorithm
8972 Use the specified coloring algorithm for the integrated register
8973 allocator. The @var{algorithm} argument can be @samp{priority}, which
8974 specifies Chow's priority coloring, or @samp{CB}, which specifies
8975 Chaitin-Briggs coloring. Chaitin-Briggs coloring is not implemented
8976 for all architectures, but for those targets that do support it, it is
8977 the default because it generates better code.
8978
8979 @item -fira-region=@var{region}
8980 @opindex fira-region
8981 Use specified regions for the integrated register allocator. The
8982 @var{region} argument should be one of the following:
8983
8984 @table @samp
8985
8986 @item all
8987 Use all loops as register allocation regions.
8988 This can give the best results for machines with a small and/or
8989 irregular register set.
8990
8991 @item mixed
8992 Use all loops except for loops with small register pressure
8993 as the regions. This value usually gives
8994 the best results in most cases and for most architectures,
8995 and is enabled by default when compiling with optimization for speed
8996 (@option{-O}, @option{-O2}, @dots{}).
8997
8998 @item one
8999 Use all functions as a single region.
9000 This typically results in the smallest code size, and is enabled by default for
9001 @option{-Os} or @option{-O0}.
9002
9003 @end table
9004
9005 @item -fira-hoist-pressure
9006 @opindex fira-hoist-pressure
9007 Use IRA to evaluate register pressure in the code hoisting pass for
9008 decisions to hoist expressions. This option usually results in smaller
9009 code, but it can slow the compiler down.
9010
9011 This option is enabled at level @option{-Os} for all targets.
9012
9013 @item -fira-loop-pressure
9014 @opindex fira-loop-pressure
9015 Use IRA to evaluate register pressure in loops for decisions to move
9016 loop invariants. This option usually results in generation
9017 of faster and smaller code on machines with large register files (>= 32
9018 registers), but it can slow the compiler down.
9019
9020 This option is enabled at level @option{-O3} for some targets.
9021
9022 @item -fno-ira-share-save-slots
9023 @opindex fno-ira-share-save-slots
9024 @opindex fira-share-save-slots
9025 Disable sharing of stack slots used for saving call-used hard
9026 registers living through a call. Each hard register gets a
9027 separate stack slot, and as a result function stack frames are
9028 larger.
9029
9030 @item -fno-ira-share-spill-slots
9031 @opindex fno-ira-share-spill-slots
9032 @opindex fira-share-spill-slots
9033 Disable sharing of stack slots allocated for pseudo-registers. Each
9034 pseudo-register that does not get a hard register gets a separate
9035 stack slot, and as a result function stack frames are larger.
9036
9037 @item -flra-remat
9038 @opindex flra-remat
9039 Enable CFG-sensitive rematerialization in LRA. Instead of loading
9040 values of spilled pseudos, LRA tries to rematerialize (recalculate)
9041 values if it is profitable.
9042
9043 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9044
9045 @item -fdelayed-branch
9046 @opindex fdelayed-branch
9047 If supported for the target machine, attempt to reorder instructions
9048 to exploit instruction slots available after delayed branch
9049 instructions.
9050
9051 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os},
9052 but not at @option{-Og}.
9053
9054 @item -fschedule-insns
9055 @opindex fschedule-insns
9056 If supported for the target machine, attempt to reorder instructions to
9057 eliminate execution stalls due to required data being unavailable. This
9058 helps machines that have slow floating point or memory load instructions
9059 by allowing other instructions to be issued until the result of the load
9060 or floating-point instruction is required.
9061
9062 Enabled at levels @option{-O2}, @option{-O3}.
9063
9064 @item -fschedule-insns2
9065 @opindex fschedule-insns2
9066 Similar to @option{-fschedule-insns}, but requests an additional pass of
9067 instruction scheduling after register allocation has been done. This is
9068 especially useful on machines with a relatively small number of
9069 registers and where memory load instructions take more than one cycle.
9070
9071 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9072
9073 @item -fno-sched-interblock
9074 @opindex fno-sched-interblock
9075 @opindex fsched-interblock
9076 Disable instruction scheduling across basic blocks, which
9077 is normally enabled when scheduling before register allocation, i.e.@:
9078 with @option{-fschedule-insns} or at @option{-O2} or higher.
9079
9080 @item -fno-sched-spec
9081 @opindex fno-sched-spec
9082 @opindex fsched-spec
9083 Disable speculative motion of non-load instructions, which
9084 is normally enabled when scheduling before register allocation, i.e.@:
9085 with @option{-fschedule-insns} or at @option{-O2} or higher.
9086
9087 @item -fsched-pressure
9088 @opindex fsched-pressure
9089 Enable register pressure sensitive insn scheduling before register
9090 allocation. This only makes sense when scheduling before register
9091 allocation is enabled, i.e.@: with @option{-fschedule-insns} or at
9092 @option{-O2} or higher. Usage of this option can improve the
9093 generated code and decrease its size by preventing register pressure
9094 increase above the number of available hard registers and subsequent
9095 spills in register allocation.
9096
9097 @item -fsched-spec-load
9098 @opindex fsched-spec-load
9099 Allow speculative motion of some load instructions. This only makes
9100 sense when scheduling before register allocation, i.e.@: with
9101 @option{-fschedule-insns} or at @option{-O2} or higher.
9102
9103 @item -fsched-spec-load-dangerous
9104 @opindex fsched-spec-load-dangerous
9105 Allow speculative motion of more load instructions. This only makes
9106 sense when scheduling before register allocation, i.e.@: with
9107 @option{-fschedule-insns} or at @option{-O2} or higher.
9108
9109 @item -fsched-stalled-insns
9110 @itemx -fsched-stalled-insns=@var{n}
9111 @opindex fsched-stalled-insns
9112 Define how many insns (if any) can be moved prematurely from the queue
9113 of stalled insns into the ready list during the second scheduling pass.
9114 @option{-fno-sched-stalled-insns} means that no insns are moved
9115 prematurely, @option{-fsched-stalled-insns=0} means there is no limit
9116 on how many queued insns can be moved prematurely.
9117 @option{-fsched-stalled-insns} without a value is equivalent to
9118 @option{-fsched-stalled-insns=1}.
9119
9120 @item -fsched-stalled-insns-dep
9121 @itemx -fsched-stalled-insns-dep=@var{n}
9122 @opindex fsched-stalled-insns-dep
9123 Define how many insn groups (cycles) are examined for a dependency
9124 on a stalled insn that is a candidate for premature removal from the queue
9125 of stalled insns. This has an effect only during the second scheduling pass,
9126 and only if @option{-fsched-stalled-insns} is used.
9127 @option{-fno-sched-stalled-insns-dep} is equivalent to
9128 @option{-fsched-stalled-insns-dep=0}.
9129 @option{-fsched-stalled-insns-dep} without a value is equivalent to
9130 @option{-fsched-stalled-insns-dep=1}.
9131
9132 @item -fsched2-use-superblocks
9133 @opindex fsched2-use-superblocks
9134 When scheduling after register allocation, use superblock scheduling.
9135 This allows motion across basic block boundaries,
9136 resulting in faster schedules. This option is experimental, as not all machine
9137 descriptions used by GCC model the CPU closely enough to avoid unreliable
9138 results from the algorithm.
9139
9140 This only makes sense when scheduling after register allocation, i.e.@: with
9141 @option{-fschedule-insns2} or at @option{-O2} or higher.
9142
9143 @item -fsched-group-heuristic
9144 @opindex fsched-group-heuristic
9145 Enable the group heuristic in the scheduler. This heuristic favors
9146 the instruction that belongs to a schedule group. This is enabled
9147 by default when scheduling is enabled, i.e.@: with @option{-fschedule-insns}
9148 or @option{-fschedule-insns2} or at @option{-O2} or higher.
9149
9150 @item -fsched-critical-path-heuristic
9151 @opindex fsched-critical-path-heuristic
9152 Enable the critical-path heuristic in the scheduler. This heuristic favors
9153 instructions on the critical path. This is enabled by default when
9154 scheduling is enabled, i.e.@: with @option{-fschedule-insns}
9155 or @option{-fschedule-insns2} or at @option{-O2} or higher.
9156
9157 @item -fsched-spec-insn-heuristic
9158 @opindex fsched-spec-insn-heuristic
9159 Enable the speculative instruction heuristic in the scheduler. This
9160 heuristic favors speculative instructions with greater dependency weakness.
9161 This is enabled by default when scheduling is enabled, i.e.@:
9162 with @option{-fschedule-insns} or @option{-fschedule-insns2}
9163 or at @option{-O2} or higher.
9164
9165 @item -fsched-rank-heuristic
9166 @opindex fsched-rank-heuristic
9167 Enable the rank heuristic in the scheduler. This heuristic favors
9168 the instruction belonging to a basic block with greater size or frequency.
9169 This is enabled by default when scheduling is enabled, i.e.@:
9170 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
9171 at @option{-O2} or higher.
9172
9173 @item -fsched-last-insn-heuristic
9174 @opindex fsched-last-insn-heuristic
9175 Enable the last-instruction heuristic in the scheduler. This heuristic
9176 favors the instruction that is less dependent on the last instruction
9177 scheduled. This is enabled by default when scheduling is enabled,
9178 i.e.@: with @option{-fschedule-insns} or @option{-fschedule-insns2} or
9179 at @option{-O2} or higher.
9180
9181 @item -fsched-dep-count-heuristic
9182 @opindex fsched-dep-count-heuristic
9183 Enable the dependent-count heuristic in the scheduler. This heuristic
9184 favors the instruction that has more instructions depending on it.
9185 This is enabled by default when scheduling is enabled, i.e.@:
9186 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
9187 at @option{-O2} or higher.
9188
9189 @item -freschedule-modulo-scheduled-loops
9190 @opindex freschedule-modulo-scheduled-loops
9191 Modulo scheduling is performed before traditional scheduling. If a loop
9192 is modulo scheduled, later scheduling passes may change its schedule.
9193 Use this option to control that behavior.
9194
9195 @item -fselective-scheduling
9196 @opindex fselective-scheduling
9197 Schedule instructions using selective scheduling algorithm. Selective
9198 scheduling runs instead of the first scheduler pass.
9199
9200 @item -fselective-scheduling2
9201 @opindex fselective-scheduling2
9202 Schedule instructions using selective scheduling algorithm. Selective
9203 scheduling runs instead of the second scheduler pass.
9204
9205 @item -fsel-sched-pipelining
9206 @opindex fsel-sched-pipelining
9207 Enable software pipelining of innermost loops during selective scheduling.
9208 This option has no effect unless one of @option{-fselective-scheduling} or
9209 @option{-fselective-scheduling2} is turned on.
9210
9211 @item -fsel-sched-pipelining-outer-loops
9212 @opindex fsel-sched-pipelining-outer-loops
9213 When pipelining loops during selective scheduling, also pipeline outer loops.
9214 This option has no effect unless @option{-fsel-sched-pipelining} is turned on.
9215
9216 @item -fsemantic-interposition
9217 @opindex fsemantic-interposition
9218 Some object formats, like ELF, allow interposing of symbols by the
9219 dynamic linker.
9220 This means that for symbols exported from the DSO, the compiler cannot perform
9221 interprocedural propagation, inlining and other optimizations in anticipation
9222 that the function or variable in question may change. While this feature is
9223 useful, for example, to rewrite memory allocation functions by a debugging
9224 implementation, it is expensive in the terms of code quality.
9225 With @option{-fno-semantic-interposition} the compiler assumes that
9226 if interposition happens for functions the overwriting function will have
9227 precisely the same semantics (and side effects).
9228 Similarly if interposition happens
9229 for variables, the constructor of the variable will be the same. The flag
9230 has no effect for functions explicitly declared inline
9231 (where it is never allowed for interposition to change semantics)
9232 and for symbols explicitly declared weak.
9233
9234 @item -fshrink-wrap
9235 @opindex fshrink-wrap
9236 Emit function prologues only before parts of the function that need it,
9237 rather than at the top of the function. This flag is enabled by default at
9238 @option{-O} and higher.
9239
9240 @item -fshrink-wrap-separate
9241 @opindex fshrink-wrap-separate
9242 Shrink-wrap separate parts of the prologue and epilogue separately, so that
9243 those parts are only executed when needed.
9244 This option is on by default, but has no effect unless @option{-fshrink-wrap}
9245 is also turned on and the target supports this.
9246
9247 @item -fcaller-saves
9248 @opindex fcaller-saves
9249 Enable allocation of values to registers that are clobbered by
9250 function calls, by emitting extra instructions to save and restore the
9251 registers around such calls. Such allocation is done only when it
9252 seems to result in better code.
9253
9254 This option is always enabled by default on certain machines, usually
9255 those which have no call-preserved registers to use instead.
9256
9257 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9258
9259 @item -fcombine-stack-adjustments
9260 @opindex fcombine-stack-adjustments
9261 Tracks stack adjustments (pushes and pops) and stack memory references
9262 and then tries to find ways to combine them.
9263
9264 Enabled by default at @option{-O1} and higher.
9265
9266 @item -fipa-ra
9267 @opindex fipa-ra
9268 Use caller save registers for allocation if those registers are not used by
9269 any called function. In that case it is not necessary to save and restore
9270 them around calls. This is only possible if called functions are part of
9271 same compilation unit as current function and they are compiled before it.
9272
9273 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}, however the option
9274 is disabled if generated code will be instrumented for profiling
9275 (@option{-p}, or @option{-pg}) or if callee's register usage cannot be known
9276 exactly (this happens on targets that do not expose prologues
9277 and epilogues in RTL).
9278
9279 @item -fconserve-stack
9280 @opindex fconserve-stack
9281 Attempt to minimize stack usage. The compiler attempts to use less
9282 stack space, even if that makes the program slower. This option
9283 implies setting the @option{large-stack-frame} parameter to 100
9284 and the @option{large-stack-frame-growth} parameter to 400.
9285
9286 @item -ftree-reassoc
9287 @opindex ftree-reassoc
9288 Perform reassociation on trees. This flag is enabled by default
9289 at @option{-O} and higher.
9290
9291 @item -fcode-hoisting
9292 @opindex fcode-hoisting
9293 Perform code hoisting. Code hoisting tries to move the
9294 evaluation of expressions executed on all paths to the function exit
9295 as early as possible. This is especially useful as a code size
9296 optimization, but it often helps for code speed as well.
9297 This flag is enabled by default at @option{-O2} and higher.
9298
9299 @item -ftree-pre
9300 @opindex ftree-pre
9301 Perform partial redundancy elimination (PRE) on trees. This flag is
9302 enabled by default at @option{-O2} and @option{-O3}.
9303
9304 @item -ftree-partial-pre
9305 @opindex ftree-partial-pre
9306 Make partial redundancy elimination (PRE) more aggressive. This flag is
9307 enabled by default at @option{-O3}.
9308
9309 @item -ftree-forwprop
9310 @opindex ftree-forwprop
9311 Perform forward propagation on trees. This flag is enabled by default
9312 at @option{-O} and higher.
9313
9314 @item -ftree-fre
9315 @opindex ftree-fre
9316 Perform full redundancy elimination (FRE) on trees. The difference
9317 between FRE and PRE is that FRE only considers expressions
9318 that are computed on all paths leading to the redundant computation.
9319 This analysis is faster than PRE, though it exposes fewer redundancies.
9320 This flag is enabled by default at @option{-O} and higher.
9321
9322 @item -ftree-phiprop
9323 @opindex ftree-phiprop
9324 Perform hoisting of loads from conditional pointers on trees. This
9325 pass is enabled by default at @option{-O} and higher.
9326
9327 @item -fhoist-adjacent-loads
9328 @opindex fhoist-adjacent-loads
9329 Speculatively hoist loads from both branches of an if-then-else if the
9330 loads are from adjacent locations in the same structure and the target
9331 architecture has a conditional move instruction. This flag is enabled
9332 by default at @option{-O2} and higher.
9333
9334 @item -ftree-copy-prop
9335 @opindex ftree-copy-prop
9336 Perform copy propagation on trees. This pass eliminates unnecessary
9337 copy operations. This flag is enabled by default at @option{-O} and
9338 higher.
9339
9340 @item -fipa-pure-const
9341 @opindex fipa-pure-const
9342 Discover which functions are pure or constant.
9343 Enabled by default at @option{-O} and higher.
9344
9345 @item -fipa-reference
9346 @opindex fipa-reference
9347 Discover which static variables do not escape the
9348 compilation unit.
9349 Enabled by default at @option{-O} and higher.
9350
9351 @item -fipa-reference-addressable
9352 @opindex fipa-reference-addressable
9353 Discover read-only, write-only and non-addressable static variables.
9354 Enabled by default at @option{-O} and higher.
9355
9356 @item -fipa-stack-alignment
9357 @opindex fipa-stack-alignment
9358 Reduce stack alignment on call sites if possible.
9359 Enabled by default.
9360
9361 @item -fipa-pta
9362 @opindex fipa-pta
9363 Perform interprocedural pointer analysis and interprocedural modification
9364 and reference analysis. This option can cause excessive memory and
9365 compile-time usage on large compilation units. It is not enabled by
9366 default at any optimization level.
9367
9368 @item -fipa-profile
9369 @opindex fipa-profile
9370 Perform interprocedural profile propagation. The functions called only from
9371 cold functions are marked as cold. Also functions executed once (such as
9372 @code{cold}, @code{noreturn}, static constructors or destructors) are identified. Cold
9373 functions and loop less parts of functions executed once are then optimized for
9374 size.
9375 Enabled by default at @option{-O} and higher.
9376
9377 @item -fipa-cp
9378 @opindex fipa-cp
9379 Perform interprocedural constant propagation.
9380 This optimization analyzes the program to determine when values passed
9381 to functions are constants and then optimizes accordingly.
9382 This optimization can substantially increase performance
9383 if the application has constants passed to functions.
9384 This flag is enabled by default at @option{-O2}, @option{-Os} and @option{-O3}.
9385 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9386
9387 @item -fipa-cp-clone
9388 @opindex fipa-cp-clone
9389 Perform function cloning to make interprocedural constant propagation stronger.
9390 When enabled, interprocedural constant propagation performs function cloning
9391 when externally visible function can be called with constant arguments.
9392 Because this optimization can create multiple copies of functions,
9393 it may significantly increase code size
9394 (see @option{--param ipcp-unit-growth=@var{value}}).
9395 This flag is enabled by default at @option{-O3}.
9396 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9397
9398 @item -fipa-bit-cp
9399 @opindex fipa-bit-cp
9400 When enabled, perform interprocedural bitwise constant
9401 propagation. This flag is enabled by default at @option{-O2} and
9402 by @option{-fprofile-use} and @option{-fauto-profile}.
9403 It requires that @option{-fipa-cp} is enabled.
9404
9405 @item -fipa-vrp
9406 @opindex fipa-vrp
9407 When enabled, perform interprocedural propagation of value
9408 ranges. This flag is enabled by default at @option{-O2}. It requires
9409 that @option{-fipa-cp} is enabled.
9410
9411 @item -fipa-icf
9412 @opindex fipa-icf
9413 Perform Identical Code Folding for functions and read-only variables.
9414 The optimization reduces code size and may disturb unwind stacks by replacing
9415 a function by equivalent one with a different name. The optimization works
9416 more effectively with link-time optimization enabled.
9417
9418 Although the behavior is similar to the Gold Linker's ICF optimization, GCC ICF
9419 works on different levels and thus the optimizations are not same - there are
9420 equivalences that are found only by GCC and equivalences found only by Gold.
9421
9422 This flag is enabled by default at @option{-O2} and @option{-Os}.
9423
9424 @item -flive-patching=@var{level}
9425 @opindex flive-patching
9426 Control GCC's optimizations to produce output suitable for live-patching.
9427
9428 If the compiler's optimization uses a function's body or information extracted
9429 from its body to optimize/change another function, the latter is called an
9430 impacted function of the former. If a function is patched, its impacted
9431 functions should be patched too.
9432
9433 The impacted functions are determined by the compiler's interprocedural
9434 optimizations. For example, a caller is impacted when inlining a function
9435 into its caller,
9436 cloning a function and changing its caller to call this new clone,
9437 or extracting a function's pureness/constness information to optimize
9438 its direct or indirect callers, etc.
9439
9440 Usually, the more IPA optimizations enabled, the larger the number of
9441 impacted functions for each function. In order to control the number of
9442 impacted functions and more easily compute the list of impacted function,
9443 IPA optimizations can be partially enabled at two different levels.
9444
9445 The @var{level} argument should be one of the following:
9446
9447 @table @samp
9448
9449 @item inline-clone
9450
9451 Only enable inlining and cloning optimizations, which includes inlining,
9452 cloning, interprocedural scalar replacement of aggregates and partial inlining.
9453 As a result, when patching a function, all its callers and its clones'
9454 callers are impacted, therefore need to be patched as well.
9455
9456 @option{-flive-patching=inline-clone} disables the following optimization flags:
9457 @gccoptlist{-fwhole-program -fipa-pta -fipa-reference -fipa-ra @gol
9458 -fipa-icf -fipa-icf-functions -fipa-icf-variables @gol
9459 -fipa-bit-cp -fipa-vrp -fipa-pure-const -fipa-reference-addressable @gol
9460 -fipa-stack-alignment}
9461
9462 @item inline-only-static
9463
9464 Only enable inlining of static functions.
9465 As a result, when patching a static function, all its callers are impacted
9466 and so need to be patched as well.
9467
9468 In addition to all the flags that @option{-flive-patching=inline-clone}
9469 disables,
9470 @option{-flive-patching=inline-only-static} disables the following additional
9471 optimization flags:
9472 @gccoptlist{-fipa-cp-clone -fipa-sra -fpartial-inlining -fipa-cp}
9473
9474 @end table
9475
9476 When @option{-flive-patching} is specified without any value, the default value
9477 is @var{inline-clone}.
9478
9479 This flag is disabled by default.
9480
9481 Note that @option{-flive-patching} is not supported with link-time optimization
9482 (@option{-flto}).
9483
9484 @item -fisolate-erroneous-paths-dereference
9485 @opindex fisolate-erroneous-paths-dereference
9486 Detect paths that trigger erroneous or undefined behavior due to
9487 dereferencing a null pointer. Isolate those paths from the main control
9488 flow and turn the statement with erroneous or undefined behavior into a trap.
9489 This flag is enabled by default at @option{-O2} and higher and depends on
9490 @option{-fdelete-null-pointer-checks} also being enabled.
9491
9492 @item -fisolate-erroneous-paths-attribute
9493 @opindex fisolate-erroneous-paths-attribute
9494 Detect paths that trigger erroneous or undefined behavior due to a null value
9495 being used in a way forbidden by a @code{returns_nonnull} or @code{nonnull}
9496 attribute. Isolate those paths from the main control flow and turn the
9497 statement with erroneous or undefined behavior into a trap. This is not
9498 currently enabled, but may be enabled by @option{-O2} in the future.
9499
9500 @item -ftree-sink
9501 @opindex ftree-sink
9502 Perform forward store motion on trees. This flag is
9503 enabled by default at @option{-O} and higher.
9504
9505 @item -ftree-bit-ccp
9506 @opindex ftree-bit-ccp
9507 Perform sparse conditional bit constant propagation on trees and propagate
9508 pointer alignment information.
9509 This pass only operates on local scalar variables and is enabled by default
9510 at @option{-O1} and higher, except for @option{-Og}.
9511 It requires that @option{-ftree-ccp} is enabled.
9512
9513 @item -ftree-ccp
9514 @opindex ftree-ccp
9515 Perform sparse conditional constant propagation (CCP) on trees. This
9516 pass only operates on local scalar variables and is enabled by default
9517 at @option{-O} and higher.
9518
9519 @item -fssa-backprop
9520 @opindex fssa-backprop
9521 Propagate information about uses of a value up the definition chain
9522 in order to simplify the definitions. For example, this pass strips
9523 sign operations if the sign of a value never matters. The flag is
9524 enabled by default at @option{-O} and higher.
9525
9526 @item -fssa-phiopt
9527 @opindex fssa-phiopt
9528 Perform pattern matching on SSA PHI nodes to optimize conditional
9529 code. This pass is enabled by default at @option{-O1} and higher,
9530 except for @option{-Og}.
9531
9532 @item -ftree-switch-conversion
9533 @opindex ftree-switch-conversion
9534 Perform conversion of simple initializations in a switch to
9535 initializations from a scalar array. This flag is enabled by default
9536 at @option{-O2} and higher.
9537
9538 @item -ftree-tail-merge
9539 @opindex ftree-tail-merge
9540 Look for identical code sequences. When found, replace one with a jump to the
9541 other. This optimization is known as tail merging or cross jumping. This flag
9542 is enabled by default at @option{-O2} and higher. The compilation time
9543 in this pass can
9544 be limited using @option{max-tail-merge-comparisons} parameter and
9545 @option{max-tail-merge-iterations} parameter.
9546
9547 @item -ftree-dce
9548 @opindex ftree-dce
9549 Perform dead code elimination (DCE) on trees. This flag is enabled by
9550 default at @option{-O} and higher.
9551
9552 @item -ftree-builtin-call-dce
9553 @opindex ftree-builtin-call-dce
9554 Perform conditional dead code elimination (DCE) for calls to built-in functions
9555 that may set @code{errno} but are otherwise free of side effects. This flag is
9556 enabled by default at @option{-O2} and higher if @option{-Os} is not also
9557 specified.
9558
9559 @item -ffinite-loops
9560 @opindex ffinite-loops
9561 @opindex fno-finite-loops
9562 Assume that a loop with an exit will eventually take the exit and not loop
9563 indefinitely. This allows the compiler to remove loops that otherwise have
9564 no side-effects, not considering eventual endless looping as such.
9565
9566 This option is enabled by default at @option{-O2}.
9567
9568 @item -ftree-dominator-opts
9569 @opindex ftree-dominator-opts
9570 Perform a variety of simple scalar cleanups (constant/copy
9571 propagation, redundancy elimination, range propagation and expression
9572 simplification) based on a dominator tree traversal. This also
9573 performs jump threading (to reduce jumps to jumps). This flag is
9574 enabled by default at @option{-O} and higher.
9575
9576 @item -ftree-dse
9577 @opindex ftree-dse
9578 Perform dead store elimination (DSE) on trees. A dead store is a store into
9579 a memory location that is later overwritten by another store without
9580 any intervening loads. In this case the earlier store can be deleted. This
9581 flag is enabled by default at @option{-O} and higher.
9582
9583 @item -ftree-ch
9584 @opindex ftree-ch
9585 Perform loop header copying on trees. This is beneficial since it increases
9586 effectiveness of code motion optimizations. It also saves one jump. This flag
9587 is enabled by default at @option{-O} and higher. It is not enabled
9588 for @option{-Os}, since it usually increases code size.
9589
9590 @item -ftree-loop-optimize
9591 @opindex ftree-loop-optimize
9592 Perform loop optimizations on trees. This flag is enabled by default
9593 at @option{-O} and higher.
9594
9595 @item -ftree-loop-linear
9596 @itemx -floop-strip-mine
9597 @itemx -floop-block
9598 @opindex ftree-loop-linear
9599 @opindex floop-strip-mine
9600 @opindex floop-block
9601 Perform loop nest optimizations. Same as
9602 @option{-floop-nest-optimize}. To use this code transformation, GCC has
9603 to be configured with @option{--with-isl} to enable the Graphite loop
9604 transformation infrastructure.
9605
9606 @item -fgraphite-identity
9607 @opindex fgraphite-identity
9608 Enable the identity transformation for graphite. For every SCoP we generate
9609 the polyhedral representation and transform it back to gimple. Using
9610 @option{-fgraphite-identity} we can check the costs or benefits of the
9611 GIMPLE -> GRAPHITE -> GIMPLE transformation. Some minimal optimizations
9612 are also performed by the code generator isl, like index splitting and
9613 dead code elimination in loops.
9614
9615 @item -floop-nest-optimize
9616 @opindex floop-nest-optimize
9617 Enable the isl based loop nest optimizer. This is a generic loop nest
9618 optimizer based on the Pluto optimization algorithms. It calculates a loop
9619 structure optimized for data-locality and parallelism. This option
9620 is experimental.
9621
9622 @item -floop-parallelize-all
9623 @opindex floop-parallelize-all
9624 Use the Graphite data dependence analysis to identify loops that can
9625 be parallelized. Parallelize all the loops that can be analyzed to
9626 not contain loop carried dependences without checking that it is
9627 profitable to parallelize the loops.
9628
9629 @item -ftree-coalesce-vars
9630 @opindex ftree-coalesce-vars
9631 While transforming the program out of the SSA representation, attempt to
9632 reduce copying by coalescing versions of different user-defined
9633 variables, instead of just compiler temporaries. This may severely
9634 limit the ability to debug an optimized program compiled with
9635 @option{-fno-var-tracking-assignments}. In the negated form, this flag
9636 prevents SSA coalescing of user variables. This option is enabled by
9637 default if optimization is enabled, and it does very little otherwise.
9638
9639 @item -ftree-loop-if-convert
9640 @opindex ftree-loop-if-convert
9641 Attempt to transform conditional jumps in the innermost loops to
9642 branch-less equivalents. The intent is to remove control-flow from
9643 the innermost loops in order to improve the ability of the
9644 vectorization pass to handle these loops. This is enabled by default
9645 if vectorization is enabled.
9646
9647 @item -ftree-loop-distribution
9648 @opindex ftree-loop-distribution
9649 Perform loop distribution. This flag can improve cache performance on
9650 big loop bodies and allow further loop optimizations, like
9651 parallelization or vectorization, to take place. For example, the loop
9652 @smallexample
9653 DO I = 1, N
9654 A(I) = B(I) + C
9655 D(I) = E(I) * F
9656 ENDDO
9657 @end smallexample
9658 is transformed to
9659 @smallexample
9660 DO I = 1, N
9661 A(I) = B(I) + C
9662 ENDDO
9663 DO I = 1, N
9664 D(I) = E(I) * F
9665 ENDDO
9666 @end smallexample
9667 This flag is enabled by default at @option{-O3}.
9668 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9669
9670 @item -ftree-loop-distribute-patterns
9671 @opindex ftree-loop-distribute-patterns
9672 Perform loop distribution of patterns that can be code generated with
9673 calls to a library. This flag is enabled by default at @option{-O3}, and
9674 by @option{-fprofile-use} and @option{-fauto-profile}.
9675
9676 This pass distributes the initialization loops and generates a call to
9677 memset zero. For example, the loop
9678 @smallexample
9679 DO I = 1, N
9680 A(I) = 0
9681 B(I) = A(I) + I
9682 ENDDO
9683 @end smallexample
9684 is transformed to
9685 @smallexample
9686 DO I = 1, N
9687 A(I) = 0
9688 ENDDO
9689 DO I = 1, N
9690 B(I) = A(I) + I
9691 ENDDO
9692 @end smallexample
9693 and the initialization loop is transformed into a call to memset zero.
9694 This flag is enabled by default at @option{-O3}.
9695 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9696
9697 @item -floop-interchange
9698 @opindex floop-interchange
9699 Perform loop interchange outside of graphite. This flag can improve cache
9700 performance on loop nest and allow further loop optimizations, like
9701 vectorization, to take place. For example, the loop
9702 @smallexample
9703 for (int i = 0; i < N; i++)
9704 for (int j = 0; j < N; j++)
9705 for (int k = 0; k < N; k++)
9706 c[i][j] = c[i][j] + a[i][k]*b[k][j];
9707 @end smallexample
9708 is transformed to
9709 @smallexample
9710 for (int i = 0; i < N; i++)
9711 for (int k = 0; k < N; k++)
9712 for (int j = 0; j < N; j++)
9713 c[i][j] = c[i][j] + a[i][k]*b[k][j];
9714 @end smallexample
9715 This flag is enabled by default at @option{-O3}.
9716 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9717
9718 @item -floop-unroll-and-jam
9719 @opindex floop-unroll-and-jam
9720 Apply unroll and jam transformations on feasible loops. In a loop
9721 nest this unrolls the outer loop by some factor and fuses the resulting
9722 multiple inner loops. This flag is enabled by default at @option{-O3}.
9723 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9724
9725 @item -ftree-loop-im
9726 @opindex ftree-loop-im
9727 Perform loop invariant motion on trees. This pass moves only invariants that
9728 are hard to handle at RTL level (function calls, operations that expand to
9729 nontrivial sequences of insns). With @option{-funswitch-loops} it also moves
9730 operands of conditions that are invariant out of the loop, so that we can use
9731 just trivial invariantness analysis in loop unswitching. The pass also includes
9732 store motion.
9733
9734 @item -ftree-loop-ivcanon
9735 @opindex ftree-loop-ivcanon
9736 Create a canonical counter for number of iterations in loops for which
9737 determining number of iterations requires complicated analysis. Later
9738 optimizations then may determine the number easily. Useful especially
9739 in connection with unrolling.
9740
9741 @item -ftree-scev-cprop
9742 @opindex ftree-scev-cprop
9743 Perform final value replacement. If a variable is modified in a loop
9744 in such a way that its value when exiting the loop can be determined using
9745 only its initial value and the number of loop iterations, replace uses of
9746 the final value by such a computation, provided it is sufficiently cheap.
9747 This reduces data dependencies and may allow further simplifications.
9748 Enabled by default at @option{-O} and higher.
9749
9750 @item -fivopts
9751 @opindex fivopts
9752 Perform induction variable optimizations (strength reduction, induction
9753 variable merging and induction variable elimination) on trees.
9754
9755 @item -ftree-parallelize-loops=n
9756 @opindex ftree-parallelize-loops
9757 Parallelize loops, i.e., split their iteration space to run in n threads.
9758 This is only possible for loops whose iterations are independent
9759 and can be arbitrarily reordered. The optimization is only
9760 profitable on multiprocessor machines, for loops that are CPU-intensive,
9761 rather than constrained e.g.@: by memory bandwidth. This option
9762 implies @option{-pthread}, and thus is only supported on targets
9763 that have support for @option{-pthread}.
9764
9765 @item -ftree-pta
9766 @opindex ftree-pta
9767 Perform function-local points-to analysis on trees. This flag is
9768 enabled by default at @option{-O1} and higher, except for @option{-Og}.
9769
9770 @item -ftree-sra
9771 @opindex ftree-sra
9772 Perform scalar replacement of aggregates. This pass replaces structure
9773 references with scalars to prevent committing structures to memory too
9774 early. This flag is enabled by default at @option{-O1} and higher,
9775 except for @option{-Og}.
9776
9777 @item -fstore-merging
9778 @opindex fstore-merging
9779 Perform merging of narrow stores to consecutive memory addresses. This pass
9780 merges contiguous stores of immediate values narrower than a word into fewer
9781 wider stores to reduce the number of instructions. This is enabled by default
9782 at @option{-O2} and higher as well as @option{-Os}.
9783
9784 @item -ftree-ter
9785 @opindex ftree-ter
9786 Perform temporary expression replacement during the SSA->normal phase. Single
9787 use/single def temporaries are replaced at their use location with their
9788 defining expression. This results in non-GIMPLE code, but gives the expanders
9789 much more complex trees to work on resulting in better RTL generation. This is
9790 enabled by default at @option{-O} and higher.
9791
9792 @item -ftree-slsr
9793 @opindex ftree-slsr
9794 Perform straight-line strength reduction on trees. This recognizes related
9795 expressions involving multiplications and replaces them by less expensive
9796 calculations when possible. This is enabled by default at @option{-O} and
9797 higher.
9798
9799 @item -ftree-vectorize
9800 @opindex ftree-vectorize
9801 Perform vectorization on trees. This flag enables @option{-ftree-loop-vectorize}
9802 and @option{-ftree-slp-vectorize} if not explicitly specified.
9803
9804 @item -ftree-loop-vectorize
9805 @opindex ftree-loop-vectorize
9806 Perform loop vectorization on trees. This flag is enabled by default at
9807 @option{-O3} and by @option{-ftree-vectorize}, @option{-fprofile-use},
9808 and @option{-fauto-profile}.
9809
9810 @item -ftree-slp-vectorize
9811 @opindex ftree-slp-vectorize
9812 Perform basic block vectorization on trees. This flag is enabled by default at
9813 @option{-O3} and by @option{-ftree-vectorize}, @option{-fprofile-use},
9814 and @option{-fauto-profile}.
9815
9816 @item -fvect-cost-model=@var{model}
9817 @opindex fvect-cost-model
9818 Alter the cost model used for vectorization. The @var{model} argument
9819 should be one of @samp{unlimited}, @samp{dynamic} or @samp{cheap}.
9820 With the @samp{unlimited} model the vectorized code-path is assumed
9821 to be profitable while with the @samp{dynamic} model a runtime check
9822 guards the vectorized code-path to enable it only for iteration
9823 counts that will likely execute faster than when executing the original
9824 scalar loop. The @samp{cheap} model disables vectorization of
9825 loops where doing so would be cost prohibitive for example due to
9826 required runtime checks for data dependence or alignment but otherwise
9827 is equal to the @samp{dynamic} model.
9828 The default cost model depends on other optimization flags and is
9829 either @samp{dynamic} or @samp{cheap}.
9830
9831 @item -fsimd-cost-model=@var{model}
9832 @opindex fsimd-cost-model
9833 Alter the cost model used for vectorization of loops marked with the OpenMP
9834 simd directive. The @var{model} argument should be one of
9835 @samp{unlimited}, @samp{dynamic}, @samp{cheap}. All values of @var{model}
9836 have the same meaning as described in @option{-fvect-cost-model} and by
9837 default a cost model defined with @option{-fvect-cost-model} is used.
9838
9839 @item -ftree-vrp
9840 @opindex ftree-vrp
9841 Perform Value Range Propagation on trees. This is similar to the
9842 constant propagation pass, but instead of values, ranges of values are
9843 propagated. This allows the optimizers to remove unnecessary range
9844 checks like array bound checks and null pointer checks. This is
9845 enabled by default at @option{-O2} and higher. Null pointer check
9846 elimination is only done if @option{-fdelete-null-pointer-checks} is
9847 enabled.
9848
9849 @item -fsplit-paths
9850 @opindex fsplit-paths
9851 Split paths leading to loop backedges. This can improve dead code
9852 elimination and common subexpression elimination. This is enabled by
9853 default at @option{-O3} and above.
9854
9855 @item -fsplit-ivs-in-unroller
9856 @opindex fsplit-ivs-in-unroller
9857 Enables expression of values of induction variables in later iterations
9858 of the unrolled loop using the value in the first iteration. This breaks
9859 long dependency chains, thus improving efficiency of the scheduling passes.
9860
9861 A combination of @option{-fweb} and CSE is often sufficient to obtain the
9862 same effect. However, that is not reliable in cases where the loop body
9863 is more complicated than a single basic block. It also does not work at all
9864 on some architectures due to restrictions in the CSE pass.
9865
9866 This optimization is enabled by default.
9867
9868 @item -fvariable-expansion-in-unroller
9869 @opindex fvariable-expansion-in-unroller
9870 With this option, the compiler creates multiple copies of some
9871 local variables when unrolling a loop, which can result in superior code.
9872
9873 This optimization is enabled by default for PowerPC targets, but disabled
9874 by default otherwise.
9875
9876 @item -fpartial-inlining
9877 @opindex fpartial-inlining
9878 Inline parts of functions. This option has any effect only
9879 when inlining itself is turned on by the @option{-finline-functions}
9880 or @option{-finline-small-functions} options.
9881
9882 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9883
9884 @item -fpredictive-commoning
9885 @opindex fpredictive-commoning
9886 Perform predictive commoning optimization, i.e., reusing computations
9887 (especially memory loads and stores) performed in previous
9888 iterations of loops.
9889
9890 This option is enabled at level @option{-O3}.
9891 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9892
9893 @item -fprefetch-loop-arrays
9894 @opindex fprefetch-loop-arrays
9895 If supported by the target machine, generate instructions to prefetch
9896 memory to improve the performance of loops that access large arrays.
9897
9898 This option may generate better or worse code; results are highly
9899 dependent on the structure of loops within the source code.
9900
9901 Disabled at level @option{-Os}.
9902
9903 @item -fno-printf-return-value
9904 @opindex fno-printf-return-value
9905 @opindex fprintf-return-value
9906 Do not substitute constants for known return value of formatted output
9907 functions such as @code{sprintf}, @code{snprintf}, @code{vsprintf}, and
9908 @code{vsnprintf} (but not @code{printf} of @code{fprintf}). This
9909 transformation allows GCC to optimize or even eliminate branches based
9910 on the known return value of these functions called with arguments that
9911 are either constant, or whose values are known to be in a range that
9912 makes determining the exact return value possible. For example, when
9913 @option{-fprintf-return-value} is in effect, both the branch and the
9914 body of the @code{if} statement (but not the call to @code{snprint})
9915 can be optimized away when @code{i} is a 32-bit or smaller integer
9916 because the return value is guaranteed to be at most 8.
9917
9918 @smallexample
9919 char buf[9];
9920 if (snprintf (buf, "%08x", i) >= sizeof buf)
9921 @dots{}
9922 @end smallexample
9923
9924 The @option{-fprintf-return-value} option relies on other optimizations
9925 and yields best results with @option{-O2} and above. It works in tandem
9926 with the @option{-Wformat-overflow} and @option{-Wformat-truncation}
9927 options. The @option{-fprintf-return-value} option is enabled by default.
9928
9929 @item -fno-peephole
9930 @itemx -fno-peephole2
9931 @opindex fno-peephole
9932 @opindex fpeephole
9933 @opindex fno-peephole2
9934 @opindex fpeephole2
9935 Disable any machine-specific peephole optimizations. The difference
9936 between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
9937 are implemented in the compiler; some targets use one, some use the
9938 other, a few use both.
9939
9940 @option{-fpeephole} is enabled by default.
9941 @option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9942
9943 @item -fno-guess-branch-probability
9944 @opindex fno-guess-branch-probability
9945 @opindex fguess-branch-probability
9946 Do not guess branch probabilities using heuristics.
9947
9948 GCC uses heuristics to guess branch probabilities if they are
9949 not provided by profiling feedback (@option{-fprofile-arcs}). These
9950 heuristics are based on the control flow graph. If some branch probabilities
9951 are specified by @code{__builtin_expect}, then the heuristics are
9952 used to guess branch probabilities for the rest of the control flow graph,
9953 taking the @code{__builtin_expect} info into account. The interactions
9954 between the heuristics and @code{__builtin_expect} can be complex, and in
9955 some cases, it may be useful to disable the heuristics so that the effects
9956 of @code{__builtin_expect} are easier to understand.
9957
9958 It is also possible to specify expected probability of the expression
9959 with @code{__builtin_expect_with_probability} built-in function.
9960
9961 The default is @option{-fguess-branch-probability} at levels
9962 @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9963
9964 @item -freorder-blocks
9965 @opindex freorder-blocks
9966 Reorder basic blocks in the compiled function in order to reduce number of
9967 taken branches and improve code locality.
9968
9969 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9970
9971 @item -freorder-blocks-algorithm=@var{algorithm}
9972 @opindex freorder-blocks-algorithm
9973 Use the specified algorithm for basic block reordering. The
9974 @var{algorithm} argument can be @samp{simple}, which does not increase
9975 code size (except sometimes due to secondary effects like alignment),
9976 or @samp{stc}, the ``software trace cache'' algorithm, which tries to
9977 put all often executed code together, minimizing the number of branches
9978 executed by making extra copies of code.
9979
9980 The default is @samp{simple} at levels @option{-O}, @option{-Os}, and
9981 @samp{stc} at levels @option{-O2}, @option{-O3}.
9982
9983 @item -freorder-blocks-and-partition
9984 @opindex freorder-blocks-and-partition
9985 In addition to reordering basic blocks in the compiled function, in order
9986 to reduce number of taken branches, partitions hot and cold basic blocks
9987 into separate sections of the assembly and @file{.o} files, to improve
9988 paging and cache locality performance.
9989
9990 This optimization is automatically turned off in the presence of
9991 exception handling or unwind tables (on targets using setjump/longjump or target specific scheme), for linkonce sections, for functions with a user-defined
9992 section attribute and on any architecture that does not support named
9993 sections. When @option{-fsplit-stack} is used this option is not
9994 enabled by default (to avoid linker errors), but may be enabled
9995 explicitly (if using a working linker).
9996
9997 Enabled for x86 at levels @option{-O2}, @option{-O3}, @option{-Os}.
9998
9999 @item -freorder-functions
10000 @opindex freorder-functions
10001 Reorder functions in the object file in order to
10002 improve code locality. This is implemented by using special
10003 subsections @code{.text.hot} for most frequently executed functions and
10004 @code{.text.unlikely} for unlikely executed functions. Reordering is done by
10005 the linker so object file format must support named sections and linker must
10006 place them in a reasonable way.
10007
10008 This option isn't effective unless you either provide profile feedback
10009 (see @option{-fprofile-arcs} for details) or manually annotate functions with
10010 @code{hot} or @code{cold} attributes (@pxref{Common Function Attributes}).
10011
10012 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
10013
10014 @item -fstrict-aliasing
10015 @opindex fstrict-aliasing
10016 Allow the compiler to assume the strictest aliasing rules applicable to
10017 the language being compiled. For C (and C++), this activates
10018 optimizations based on the type of expressions. In particular, an
10019 object of one type is assumed never to reside at the same address as an
10020 object of a different type, unless the types are almost the same. For
10021 example, an @code{unsigned int} can alias an @code{int}, but not a
10022 @code{void*} or a @code{double}. A character type may alias any other
10023 type.
10024
10025 @anchor{Type-punning}Pay special attention to code like this:
10026 @smallexample
10027 union a_union @{
10028 int i;
10029 double d;
10030 @};
10031
10032 int f() @{
10033 union a_union t;
10034 t.d = 3.0;
10035 return t.i;
10036 @}
10037 @end smallexample
10038 The practice of reading from a different union member than the one most
10039 recently written to (called ``type-punning'') is common. Even with
10040 @option{-fstrict-aliasing}, type-punning is allowed, provided the memory
10041 is accessed through the union type. So, the code above works as
10042 expected. @xref{Structures unions enumerations and bit-fields
10043 implementation}. However, this code might not:
10044 @smallexample
10045 int f() @{
10046 union a_union t;
10047 int* ip;
10048 t.d = 3.0;
10049 ip = &t.i;
10050 return *ip;
10051 @}
10052 @end smallexample
10053
10054 Similarly, access by taking the address, casting the resulting pointer
10055 and dereferencing the result has undefined behavior, even if the cast
10056 uses a union type, e.g.:
10057 @smallexample
10058 int f() @{
10059 double d = 3.0;
10060 return ((union a_union *) &d)->i;
10061 @}
10062 @end smallexample
10063
10064 The @option{-fstrict-aliasing} option is enabled at levels
10065 @option{-O2}, @option{-O3}, @option{-Os}.
10066
10067 @item -falign-functions
10068 @itemx -falign-functions=@var{n}
10069 @itemx -falign-functions=@var{n}:@var{m}
10070 @itemx -falign-functions=@var{n}:@var{m}:@var{n2}
10071 @itemx -falign-functions=@var{n}:@var{m}:@var{n2}:@var{m2}
10072 @opindex falign-functions
10073 Align the start of functions to the next power-of-two greater than
10074 @var{n}, skipping up to @var{m}-1 bytes. This ensures that at least
10075 the first @var{m} bytes of the function can be fetched by the CPU
10076 without crossing an @var{n}-byte alignment boundary.
10077
10078 If @var{m} is not specified, it defaults to @var{n}.
10079
10080 Examples: @option{-falign-functions=32} aligns functions to the next
10081 32-byte boundary, @option{-falign-functions=24} aligns to the next
10082 32-byte boundary only if this can be done by skipping 23 bytes or less,
10083 @option{-falign-functions=32:7} aligns to the next
10084 32-byte boundary only if this can be done by skipping 6 bytes or less.
10085
10086 The second pair of @var{n2}:@var{m2} values allows you to specify
10087 a secondary alignment: @option{-falign-functions=64:7:32:3} aligns to
10088 the next 64-byte boundary if this can be done by skipping 6 bytes or less,
10089 otherwise aligns to the next 32-byte boundary if this can be done
10090 by skipping 2 bytes or less.
10091 If @var{m2} is not specified, it defaults to @var{n2}.
10092
10093 Some assemblers only support this flag when @var{n} is a power of two;
10094 in that case, it is rounded up.
10095
10096 @option{-fno-align-functions} and @option{-falign-functions=1} are
10097 equivalent and mean that functions are not aligned.
10098
10099 If @var{n} is not specified or is zero, use a machine-dependent default.
10100 The maximum allowed @var{n} option value is 65536.
10101
10102 Enabled at levels @option{-O2}, @option{-O3}.
10103
10104 @item -flimit-function-alignment
10105 If this option is enabled, the compiler tries to avoid unnecessarily
10106 overaligning functions. It attempts to instruct the assembler to align
10107 by the amount specified by @option{-falign-functions}, but not to
10108 skip more bytes than the size of the function.
10109
10110 @item -falign-labels
10111 @itemx -falign-labels=@var{n}
10112 @itemx -falign-labels=@var{n}:@var{m}
10113 @itemx -falign-labels=@var{n}:@var{m}:@var{n2}
10114 @itemx -falign-labels=@var{n}:@var{m}:@var{n2}:@var{m2}
10115 @opindex falign-labels
10116 Align all branch targets to a power-of-two boundary.
10117
10118 Parameters of this option are analogous to the @option{-falign-functions} option.
10119 @option{-fno-align-labels} and @option{-falign-labels=1} are
10120 equivalent and mean that labels are not aligned.
10121
10122 If @option{-falign-loops} or @option{-falign-jumps} are applicable and
10123 are greater than this value, then their values are used instead.
10124
10125 If @var{n} is not specified or is zero, use a machine-dependent default
10126 which is very likely to be @samp{1}, meaning no alignment.
10127 The maximum allowed @var{n} option value is 65536.
10128
10129 Enabled at levels @option{-O2}, @option{-O3}.
10130
10131 @item -falign-loops
10132 @itemx -falign-loops=@var{n}
10133 @itemx -falign-loops=@var{n}:@var{m}
10134 @itemx -falign-loops=@var{n}:@var{m}:@var{n2}
10135 @itemx -falign-loops=@var{n}:@var{m}:@var{n2}:@var{m2}
10136 @opindex falign-loops
10137 Align loops to a power-of-two boundary. If the loops are executed
10138 many times, this makes up for any execution of the dummy padding
10139 instructions.
10140
10141 Parameters of this option are analogous to the @option{-falign-functions} option.
10142 @option{-fno-align-loops} and @option{-falign-loops=1} are
10143 equivalent and mean that loops are not aligned.
10144 The maximum allowed @var{n} option value is 65536.
10145
10146 If @var{n} is not specified or is zero, use a machine-dependent default.
10147
10148 Enabled at levels @option{-O2}, @option{-O3}.
10149
10150 @item -falign-jumps
10151 @itemx -falign-jumps=@var{n}
10152 @itemx -falign-jumps=@var{n}:@var{m}
10153 @itemx -falign-jumps=@var{n}:@var{m}:@var{n2}
10154 @itemx -falign-jumps=@var{n}:@var{m}:@var{n2}:@var{m2}
10155 @opindex falign-jumps
10156 Align branch targets to a power-of-two boundary, for branch targets
10157 where the targets can only be reached by jumping. In this case,
10158 no dummy operations need be executed.
10159
10160 Parameters of this option are analogous to the @option{-falign-functions} option.
10161 @option{-fno-align-jumps} and @option{-falign-jumps=1} are
10162 equivalent and mean that loops are not aligned.
10163
10164 If @var{n} is not specified or is zero, use a machine-dependent default.
10165 The maximum allowed @var{n} option value is 65536.
10166
10167 Enabled at levels @option{-O2}, @option{-O3}.
10168
10169 @item -funit-at-a-time
10170 @opindex funit-at-a-time
10171 This option is left for compatibility reasons. @option{-funit-at-a-time}
10172 has no effect, while @option{-fno-unit-at-a-time} implies
10173 @option{-fno-toplevel-reorder} and @option{-fno-section-anchors}.
10174
10175 Enabled by default.
10176
10177 @item -fno-toplevel-reorder
10178 @opindex fno-toplevel-reorder
10179 @opindex ftoplevel-reorder
10180 Do not reorder top-level functions, variables, and @code{asm}
10181 statements. Output them in the same order that they appear in the
10182 input file. When this option is used, unreferenced static variables
10183 are not removed. This option is intended to support existing code
10184 that relies on a particular ordering. For new code, it is better to
10185 use attributes when possible.
10186
10187 @option{-ftoplevel-reorder} is the default at @option{-O1} and higher, and
10188 also at @option{-O0} if @option{-fsection-anchors} is explicitly requested.
10189 Additionally @option{-fno-toplevel-reorder} implies
10190 @option{-fno-section-anchors}.
10191
10192 @item -fweb
10193 @opindex fweb
10194 Constructs webs as commonly used for register allocation purposes and assign
10195 each web individual pseudo register. This allows the register allocation pass
10196 to operate on pseudos directly, but also strengthens several other optimization
10197 passes, such as CSE, loop optimizer and trivial dead code remover. It can,
10198 however, make debugging impossible, since variables no longer stay in a
10199 ``home register''.
10200
10201 Enabled by default with @option{-funroll-loops}.
10202
10203 @item -fwhole-program
10204 @opindex fwhole-program
10205 Assume that the current compilation unit represents the whole program being
10206 compiled. All public functions and variables with the exception of @code{main}
10207 and those merged by attribute @code{externally_visible} become static functions
10208 and in effect are optimized more aggressively by interprocedural optimizers.
10209
10210 This option should not be used in combination with @option{-flto}.
10211 Instead relying on a linker plugin should provide safer and more precise
10212 information.
10213
10214 @item -flto[=@var{n}]
10215 @opindex flto
10216 This option runs the standard link-time optimizer. When invoked
10217 with source code, it generates GIMPLE (one of GCC's internal
10218 representations) and writes it to special ELF sections in the object
10219 file. When the object files are linked together, all the function
10220 bodies are read from these ELF sections and instantiated as if they
10221 had been part of the same translation unit.
10222
10223 To use the link-time optimizer, @option{-flto} and optimization
10224 options should be specified at compile time and during the final link.
10225 It is recommended that you compile all the files participating in the
10226 same link with the same options and also specify those options at
10227 link time.
10228 For example:
10229
10230 @smallexample
10231 gcc -c -O2 -flto foo.c
10232 gcc -c -O2 -flto bar.c
10233 gcc -o myprog -flto -O2 foo.o bar.o
10234 @end smallexample
10235
10236 The first two invocations to GCC save a bytecode representation
10237 of GIMPLE into special ELF sections inside @file{foo.o} and
10238 @file{bar.o}. The final invocation reads the GIMPLE bytecode from
10239 @file{foo.o} and @file{bar.o}, merges the two files into a single
10240 internal image, and compiles the result as usual. Since both
10241 @file{foo.o} and @file{bar.o} are merged into a single image, this
10242 causes all the interprocedural analyses and optimizations in GCC to
10243 work across the two files as if they were a single one. This means,
10244 for example, that the inliner is able to inline functions in
10245 @file{bar.o} into functions in @file{foo.o} and vice-versa.
10246
10247 Another (simpler) way to enable link-time optimization is:
10248
10249 @smallexample
10250 gcc -o myprog -flto -O2 foo.c bar.c
10251 @end smallexample
10252
10253 The above generates bytecode for @file{foo.c} and @file{bar.c},
10254 merges them together into a single GIMPLE representation and optimizes
10255 them as usual to produce @file{myprog}.
10256
10257 The important thing to keep in mind is that to enable link-time
10258 optimizations you need to use the GCC driver to perform the link step.
10259 GCC automatically performs link-time optimization if any of the
10260 objects involved were compiled with the @option{-flto} command-line option.
10261 You can always override
10262 the automatic decision to do link-time optimization
10263 by passing @option{-fno-lto} to the link command.
10264
10265 To make whole program optimization effective, it is necessary to make
10266 certain whole program assumptions. The compiler needs to know
10267 what functions and variables can be accessed by libraries and runtime
10268 outside of the link-time optimized unit. When supported by the linker,
10269 the linker plugin (see @option{-fuse-linker-plugin}) passes information
10270 to the compiler about used and externally visible symbols. When
10271 the linker plugin is not available, @option{-fwhole-program} should be
10272 used to allow the compiler to make these assumptions, which leads
10273 to more aggressive optimization decisions.
10274
10275 When a file is compiled with @option{-flto} without
10276 @option{-fuse-linker-plugin}, the generated object file is larger than
10277 a regular object file because it contains GIMPLE bytecodes and the usual
10278 final code (see @option{-ffat-lto-objects}. This means that
10279 object files with LTO information can be linked as normal object
10280 files; if @option{-fno-lto} is passed to the linker, no
10281 interprocedural optimizations are applied. Note that when
10282 @option{-fno-fat-lto-objects} is enabled the compile stage is faster
10283 but you cannot perform a regular, non-LTO link on them.
10284
10285 When producing the final binary, GCC only
10286 applies link-time optimizations to those files that contain bytecode.
10287 Therefore, you can mix and match object files and libraries with
10288 GIMPLE bytecodes and final object code. GCC automatically selects
10289 which files to optimize in LTO mode and which files to link without
10290 further processing.
10291
10292 Generally, options specified at link time override those
10293 specified at compile time, although in some cases GCC attempts to infer
10294 link-time options from the settings used to compile the input files.
10295
10296 If you do not specify an optimization level option @option{-O} at
10297 link time, then GCC uses the highest optimization level
10298 used when compiling the object files. Note that it is generally
10299 ineffective to specify an optimization level option only at link time and
10300 not at compile time, for two reasons. First, compiling without
10301 optimization suppresses compiler passes that gather information
10302 needed for effective optimization at link time. Second, some early
10303 optimization passes can be performed only at compile time and
10304 not at link time.
10305
10306 There are some code generation flags preserved by GCC when
10307 generating bytecodes, as they need to be used during the final link.
10308 Currently, the following options and their settings are taken from
10309 the first object file that explicitly specifies them:
10310 @option{-fPIC}, @option{-fpic}, @option{-fpie}, @option{-fcommon},
10311 @option{-fexceptions}, @option{-fnon-call-exceptions}, @option{-fgnu-tm}
10312 and all the @option{-m} target flags.
10313
10314 Certain ABI-changing flags are required to match in all compilation units,
10315 and trying to override this at link time with a conflicting value
10316 is ignored. This includes options such as @option{-freg-struct-return}
10317 and @option{-fpcc-struct-return}.
10318
10319 Other options such as @option{-ffp-contract}, @option{-fno-strict-overflow},
10320 @option{-fwrapv}, @option{-fno-trapv} or @option{-fno-strict-aliasing}
10321 are passed through to the link stage and merged conservatively for
10322 conflicting translation units. Specifically
10323 @option{-fno-strict-overflow}, @option{-fwrapv} and @option{-fno-trapv} take
10324 precedence; and for example @option{-ffp-contract=off} takes precedence
10325 over @option{-ffp-contract=fast}. You can override them at link time.
10326
10327 If LTO encounters objects with C linkage declared with incompatible
10328 types in separate translation units to be linked together (undefined
10329 behavior according to ISO C99 6.2.7), a non-fatal diagnostic may be
10330 issued. The behavior is still undefined at run time. Similar
10331 diagnostics may be raised for other languages.
10332
10333 Another feature of LTO is that it is possible to apply interprocedural
10334 optimizations on files written in different languages:
10335
10336 @smallexample
10337 gcc -c -flto foo.c
10338 g++ -c -flto bar.cc
10339 gfortran -c -flto baz.f90
10340 g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
10341 @end smallexample
10342
10343 Notice that the final link is done with @command{g++} to get the C++
10344 runtime libraries and @option{-lgfortran} is added to get the Fortran
10345 runtime libraries. In general, when mixing languages in LTO mode, you
10346 should use the same link command options as when mixing languages in a
10347 regular (non-LTO) compilation.
10348
10349 If object files containing GIMPLE bytecode are stored in a library archive, say
10350 @file{libfoo.a}, it is possible to extract and use them in an LTO link if you
10351 are using a linker with plugin support. To create static libraries suitable
10352 for LTO, use @command{gcc-ar} and @command{gcc-ranlib} instead of @command{ar}
10353 and @command{ranlib};
10354 to show the symbols of object files with GIMPLE bytecode, use
10355 @command{gcc-nm}. Those commands require that @command{ar}, @command{ranlib}
10356 and @command{nm} have been compiled with plugin support. At link time, use the
10357 flag @option{-fuse-linker-plugin} to ensure that the library participates in
10358 the LTO optimization process:
10359
10360 @smallexample
10361 gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
10362 @end smallexample
10363
10364 With the linker plugin enabled, the linker extracts the needed
10365 GIMPLE files from @file{libfoo.a} and passes them on to the running GCC
10366 to make them part of the aggregated GIMPLE image to be optimized.
10367
10368 If you are not using a linker with plugin support and/or do not
10369 enable the linker plugin, then the objects inside @file{libfoo.a}
10370 are extracted and linked as usual, but they do not participate
10371 in the LTO optimization process. In order to make a static library suitable
10372 for both LTO optimization and usual linkage, compile its object files with
10373 @option{-flto} @option{-ffat-lto-objects}.
10374
10375 Link-time optimizations do not require the presence of the whole program to
10376 operate. If the program does not require any symbols to be exported, it is
10377 possible to combine @option{-flto} and @option{-fwhole-program} to allow
10378 the interprocedural optimizers to use more aggressive assumptions which may
10379 lead to improved optimization opportunities.
10380 Use of @option{-fwhole-program} is not needed when linker plugin is
10381 active (see @option{-fuse-linker-plugin}).
10382
10383 The current implementation of LTO makes no
10384 attempt to generate bytecode that is portable between different
10385 types of hosts. The bytecode files are versioned and there is a
10386 strict version check, so bytecode files generated in one version of
10387 GCC do not work with an older or newer version of GCC.
10388
10389 Link-time optimization does not work well with generation of debugging
10390 information on systems other than those using a combination of ELF and
10391 DWARF.
10392
10393 If you specify the optional @var{n}, the optimization and code
10394 generation done at link time is executed in parallel using @var{n}
10395 parallel jobs by utilizing an installed @command{make} program. The
10396 environment variable @env{MAKE} may be used to override the program
10397 used. The default value for @var{n} is 1.
10398
10399 You can also specify @option{-flto=jobserver} to use GNU make's
10400 job server mode to determine the number of parallel jobs. This
10401 is useful when the Makefile calling GCC is already executing in parallel.
10402 You must prepend a @samp{+} to the command recipe in the parent Makefile
10403 for this to work. This option likely only works if @env{MAKE} is
10404 GNU make.
10405
10406 @item -flto-partition=@var{alg}
10407 @opindex flto-partition
10408 Specify the partitioning algorithm used by the link-time optimizer.
10409 The value is either @samp{1to1} to specify a partitioning mirroring
10410 the original source files or @samp{balanced} to specify partitioning
10411 into equally sized chunks (whenever possible) or @samp{max} to create
10412 new partition for every symbol where possible. Specifying @samp{none}
10413 as an algorithm disables partitioning and streaming completely.
10414 The default value is @samp{balanced}. While @samp{1to1} can be used
10415 as an workaround for various code ordering issues, the @samp{max}
10416 partitioning is intended for internal testing only.
10417 The value @samp{one} specifies that exactly one partition should be
10418 used while the value @samp{none} bypasses partitioning and executes
10419 the link-time optimization step directly from the WPA phase.
10420
10421 @item -flto-compression-level=@var{n}
10422 @opindex flto-compression-level
10423 This option specifies the level of compression used for intermediate
10424 language written to LTO object files, and is only meaningful in
10425 conjunction with LTO mode (@option{-flto}). Valid
10426 values are 0 (no compression) to 9 (maximum compression). Values
10427 outside this range are clamped to either 0 or 9. If the option is not
10428 given, a default balanced compression setting is used.
10429
10430 @item -fuse-linker-plugin
10431 @opindex fuse-linker-plugin
10432 Enables the use of a linker plugin during link-time optimization. This
10433 option relies on plugin support in the linker, which is available in gold
10434 or in GNU ld 2.21 or newer.
10435
10436 This option enables the extraction of object files with GIMPLE bytecode out
10437 of library archives. This improves the quality of optimization by exposing
10438 more code to the link-time optimizer. This information specifies what
10439 symbols can be accessed externally (by non-LTO object or during dynamic
10440 linking). Resulting code quality improvements on binaries (and shared
10441 libraries that use hidden visibility) are similar to @option{-fwhole-program}.
10442 See @option{-flto} for a description of the effect of this flag and how to
10443 use it.
10444
10445 This option is enabled by default when LTO support in GCC is enabled
10446 and GCC was configured for use with
10447 a linker supporting plugins (GNU ld 2.21 or newer or gold).
10448
10449 @item -ffat-lto-objects
10450 @opindex ffat-lto-objects
10451 Fat LTO objects are object files that contain both the intermediate language
10452 and the object code. This makes them usable for both LTO linking and normal
10453 linking. This option is effective only when compiling with @option{-flto}
10454 and is ignored at link time.
10455
10456 @option{-fno-fat-lto-objects} improves compilation time over plain LTO, but
10457 requires the complete toolchain to be aware of LTO. It requires a linker with
10458 linker plugin support for basic functionality. Additionally,
10459 @command{nm}, @command{ar} and @command{ranlib}
10460 need to support linker plugins to allow a full-featured build environment
10461 (capable of building static libraries etc). GCC provides the @command{gcc-ar},
10462 @command{gcc-nm}, @command{gcc-ranlib} wrappers to pass the right options
10463 to these tools. With non fat LTO makefiles need to be modified to use them.
10464
10465 Note that modern binutils provide plugin auto-load mechanism.
10466 Installing the linker plugin into @file{$libdir/bfd-plugins} has the same
10467 effect as usage of the command wrappers (@command{gcc-ar}, @command{gcc-nm} and
10468 @command{gcc-ranlib}).
10469
10470 The default is @option{-fno-fat-lto-objects} on targets with linker plugin
10471 support.
10472
10473 @item -fcompare-elim
10474 @opindex fcompare-elim
10475 After register allocation and post-register allocation instruction splitting,
10476 identify arithmetic instructions that compute processor flags similar to a
10477 comparison operation based on that arithmetic. If possible, eliminate the
10478 explicit comparison operation.
10479
10480 This pass only applies to certain targets that cannot explicitly represent
10481 the comparison operation before register allocation is complete.
10482
10483 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
10484
10485 @item -fcprop-registers
10486 @opindex fcprop-registers
10487 After register allocation and post-register allocation instruction splitting,
10488 perform a copy-propagation pass to try to reduce scheduling dependencies
10489 and occasionally eliminate the copy.
10490
10491 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
10492
10493 @item -fprofile-correction
10494 @opindex fprofile-correction
10495 Profiles collected using an instrumented binary for multi-threaded programs may
10496 be inconsistent due to missed counter updates. When this option is specified,
10497 GCC uses heuristics to correct or smooth out such inconsistencies. By
10498 default, GCC emits an error message when an inconsistent profile is detected.
10499
10500 This option is enabled by @option{-fauto-profile}.
10501
10502 @item -fprofile-use
10503 @itemx -fprofile-use=@var{path}
10504 @opindex fprofile-use
10505 Enable profile feedback-directed optimizations,
10506 and the following optimizations, many of which
10507 are generally profitable only with profile feedback available:
10508
10509 @gccoptlist{-fbranch-probabilities -fprofile-values @gol
10510 -funroll-loops -fpeel-loops -ftracer -fvpt @gol
10511 -finline-functions -fipa-cp -fipa-cp-clone -fipa-bit-cp @gol
10512 -fpredictive-commoning -fsplit-loops -funswitch-loops @gol
10513 -fgcse-after-reload -ftree-loop-vectorize -ftree-slp-vectorize @gol
10514 -fvect-cost-model=dynamic -ftree-loop-distribute-patterns @gol
10515 -fprofile-reorder-functions}
10516
10517 Before you can use this option, you must first generate profiling information.
10518 @xref{Instrumentation Options}, for information about the
10519 @option{-fprofile-generate} option.
10520
10521 By default, GCC emits an error message if the feedback profiles do not
10522 match the source code. This error can be turned into a warning by using
10523 @option{-Wno-error=coverage-mismatch}. Note this may result in poorly
10524 optimized code. Additionally, by default, GCC also emits a warning message if
10525 the feedback profiles do not exist (see @option{-Wmissing-profile}).
10526
10527 If @var{path} is specified, GCC looks at the @var{path} to find
10528 the profile feedback data files. See @option{-fprofile-dir}.
10529
10530 @item -fauto-profile
10531 @itemx -fauto-profile=@var{path}
10532 @opindex fauto-profile
10533 Enable sampling-based feedback-directed optimizations,
10534 and the following optimizations,
10535 many of which are generally profitable only with profile feedback available:
10536
10537 @gccoptlist{-fbranch-probabilities -fprofile-values @gol
10538 -funroll-loops -fpeel-loops -ftracer -fvpt @gol
10539 -finline-functions -fipa-cp -fipa-cp-clone -fipa-bit-cp @gol
10540 -fpredictive-commoning -fsplit-loops -funswitch-loops @gol
10541 -fgcse-after-reload -ftree-loop-vectorize -ftree-slp-vectorize @gol
10542 -fvect-cost-model=dynamic -ftree-loop-distribute-patterns @gol
10543 -fprofile-correction}
10544
10545 @var{path} is the name of a file containing AutoFDO profile information.
10546 If omitted, it defaults to @file{fbdata.afdo} in the current directory.
10547
10548 Producing an AutoFDO profile data file requires running your program
10549 with the @command{perf} utility on a supported GNU/Linux target system.
10550 For more information, see @uref{https://perf.wiki.kernel.org/}.
10551
10552 E.g.
10553 @smallexample
10554 perf record -e br_inst_retired:near_taken -b -o perf.data \
10555 -- your_program
10556 @end smallexample
10557
10558 Then use the @command{create_gcov} tool to convert the raw profile data
10559 to a format that can be used by GCC.@ You must also supply the
10560 unstripped binary for your program to this tool.
10561 See @uref{https://github.com/google/autofdo}.
10562
10563 E.g.
10564 @smallexample
10565 create_gcov --binary=your_program.unstripped --profile=perf.data \
10566 --gcov=profile.afdo
10567 @end smallexample
10568 @end table
10569
10570 The following options control compiler behavior regarding floating-point
10571 arithmetic. These options trade off between speed and
10572 correctness. All must be specifically enabled.
10573
10574 @table @gcctabopt
10575 @item -ffloat-store
10576 @opindex ffloat-store
10577 Do not store floating-point variables in registers, and inhibit other
10578 options that might change whether a floating-point value is taken from a
10579 register or memory.
10580
10581 @cindex floating-point precision
10582 This option prevents undesirable excess precision on machines such as
10583 the 68000 where the floating registers (of the 68881) keep more
10584 precision than a @code{double} is supposed to have. Similarly for the
10585 x86 architecture. For most programs, the excess precision does only
10586 good, but a few programs rely on the precise definition of IEEE floating
10587 point. Use @option{-ffloat-store} for such programs, after modifying
10588 them to store all pertinent intermediate computations into variables.
10589
10590 @item -fexcess-precision=@var{style}
10591 @opindex fexcess-precision
10592 This option allows further control over excess precision on machines
10593 where floating-point operations occur in a format with more precision or
10594 range than the IEEE standard and interchange floating-point types. By
10595 default, @option{-fexcess-precision=fast} is in effect; this means that
10596 operations may be carried out in a wider precision than the types specified
10597 in the source if that would result in faster code, and it is unpredictable
10598 when rounding to the types specified in the source code takes place.
10599 When compiling C, if @option{-fexcess-precision=standard} is specified then
10600 excess precision follows the rules specified in ISO C99; in particular,
10601 both casts and assignments cause values to be rounded to their
10602 semantic types (whereas @option{-ffloat-store} only affects
10603 assignments). This option is enabled by default for C if a strict
10604 conformance option such as @option{-std=c99} is used.
10605 @option{-ffast-math} enables @option{-fexcess-precision=fast} by default
10606 regardless of whether a strict conformance option is used.
10607
10608 @opindex mfpmath
10609 @option{-fexcess-precision=standard} is not implemented for languages
10610 other than C. On the x86, it has no effect if @option{-mfpmath=sse}
10611 or @option{-mfpmath=sse+387} is specified; in the former case, IEEE
10612 semantics apply without excess precision, and in the latter, rounding
10613 is unpredictable.
10614
10615 @item -ffast-math
10616 @opindex ffast-math
10617 Sets the options @option{-fno-math-errno}, @option{-funsafe-math-optimizations},
10618 @option{-ffinite-math-only}, @option{-fno-rounding-math},
10619 @option{-fno-signaling-nans}, @option{-fcx-limited-range} and
10620 @option{-fexcess-precision=fast}.
10621
10622 This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.
10623
10624 This option is not turned on by any @option{-O} option besides
10625 @option{-Ofast} since it can result in incorrect output for programs
10626 that depend on an exact implementation of IEEE or ISO rules/specifications
10627 for math functions. It may, however, yield faster code for programs
10628 that do not require the guarantees of these specifications.
10629
10630 @item -fno-math-errno
10631 @opindex fno-math-errno
10632 @opindex fmath-errno
10633 Do not set @code{errno} after calling math functions that are executed
10634 with a single instruction, e.g., @code{sqrt}. A program that relies on
10635 IEEE exceptions for math error handling may want to use this flag
10636 for speed while maintaining IEEE arithmetic compatibility.
10637
10638 This option is not turned on by any @option{-O} option since
10639 it can result in incorrect output for programs that depend on
10640 an exact implementation of IEEE or ISO rules/specifications for
10641 math functions. It may, however, yield faster code for programs
10642 that do not require the guarantees of these specifications.
10643
10644 The default is @option{-fmath-errno}.
10645
10646 On Darwin systems, the math library never sets @code{errno}. There is
10647 therefore no reason for the compiler to consider the possibility that
10648 it might, and @option{-fno-math-errno} is the default.
10649
10650 @item -funsafe-math-optimizations
10651 @opindex funsafe-math-optimizations
10652
10653 Allow optimizations for floating-point arithmetic that (a) assume
10654 that arguments and results are valid and (b) may violate IEEE or
10655 ANSI standards. When used at link time, it may include libraries
10656 or startup files that change the default FPU control word or other
10657 similar optimizations.
10658
10659 This option is not turned on by any @option{-O} option since
10660 it can result in incorrect output for programs that depend on
10661 an exact implementation of IEEE or ISO rules/specifications for
10662 math functions. It may, however, yield faster code for programs
10663 that do not require the guarantees of these specifications.
10664 Enables @option{-fno-signed-zeros}, @option{-fno-trapping-math},
10665 @option{-fassociative-math} and @option{-freciprocal-math}.
10666
10667 The default is @option{-fno-unsafe-math-optimizations}.
10668
10669 @item -fassociative-math
10670 @opindex fassociative-math
10671
10672 Allow re-association of operands in series of floating-point operations.
10673 This violates the ISO C and C++ language standard by possibly changing
10674 computation result. NOTE: re-ordering may change the sign of zero as
10675 well as ignore NaNs and inhibit or create underflow or overflow (and
10676 thus cannot be used on code that relies on rounding behavior like
10677 @code{(x + 2**52) - 2**52}. May also reorder floating-point comparisons
10678 and thus may not be used when ordered comparisons are required.
10679 This option requires that both @option{-fno-signed-zeros} and
10680 @option{-fno-trapping-math} be in effect. Moreover, it doesn't make
10681 much sense with @option{-frounding-math}. For Fortran the option
10682 is automatically enabled when both @option{-fno-signed-zeros} and
10683 @option{-fno-trapping-math} are in effect.
10684
10685 The default is @option{-fno-associative-math}.
10686
10687 @item -freciprocal-math
10688 @opindex freciprocal-math
10689
10690 Allow the reciprocal of a value to be used instead of dividing by
10691 the value if this enables optimizations. For example @code{x / y}
10692 can be replaced with @code{x * (1/y)}, which is useful if @code{(1/y)}
10693 is subject to common subexpression elimination. Note that this loses
10694 precision and increases the number of flops operating on the value.
10695
10696 The default is @option{-fno-reciprocal-math}.
10697
10698 @item -ffinite-math-only
10699 @opindex ffinite-math-only
10700 Allow optimizations for floating-point arithmetic that assume
10701 that arguments and results are not NaNs or +-Infs.
10702
10703 This option is not turned on by any @option{-O} option since
10704 it can result in incorrect output for programs that depend on
10705 an exact implementation of IEEE or ISO rules/specifications for
10706 math functions. It may, however, yield faster code for programs
10707 that do not require the guarantees of these specifications.
10708
10709 The default is @option{-fno-finite-math-only}.
10710
10711 @item -fno-signed-zeros
10712 @opindex fno-signed-zeros
10713 @opindex fsigned-zeros
10714 Allow optimizations for floating-point arithmetic that ignore the
10715 signedness of zero. IEEE arithmetic specifies the behavior of
10716 distinct +0.0 and @minus{}0.0 values, which then prohibits simplification
10717 of expressions such as x+0.0 or 0.0*x (even with @option{-ffinite-math-only}).
10718 This option implies that the sign of a zero result isn't significant.
10719
10720 The default is @option{-fsigned-zeros}.
10721
10722 @item -fno-trapping-math
10723 @opindex fno-trapping-math
10724 @opindex ftrapping-math
10725 Compile code assuming that floating-point operations cannot generate
10726 user-visible traps. These traps include division by zero, overflow,
10727 underflow, inexact result and invalid operation. This option requires
10728 that @option{-fno-signaling-nans} be in effect. Setting this option may
10729 allow faster code if one relies on ``non-stop'' IEEE arithmetic, for example.
10730
10731 This option should never be turned on by any @option{-O} option since
10732 it can result in incorrect output for programs that depend on
10733 an exact implementation of IEEE or ISO rules/specifications for
10734 math functions.
10735
10736 The default is @option{-ftrapping-math}.
10737
10738 @item -frounding-math
10739 @opindex frounding-math
10740 Disable transformations and optimizations that assume default floating-point
10741 rounding behavior. This is round-to-zero for all floating point
10742 to integer conversions, and round-to-nearest for all other arithmetic
10743 truncations. This option should be specified for programs that change
10744 the FP rounding mode dynamically, or that may be executed with a
10745 non-default rounding mode. This option disables constant folding of
10746 floating-point expressions at compile time (which may be affected by
10747 rounding mode) and arithmetic transformations that are unsafe in the
10748 presence of sign-dependent rounding modes.
10749
10750 The default is @option{-fno-rounding-math}.
10751
10752 This option is experimental and does not currently guarantee to
10753 disable all GCC optimizations that are affected by rounding mode.
10754 Future versions of GCC may provide finer control of this setting
10755 using C99's @code{FENV_ACCESS} pragma. This command-line option
10756 will be used to specify the default state for @code{FENV_ACCESS}.
10757
10758 @item -fsignaling-nans
10759 @opindex fsignaling-nans
10760 Compile code assuming that IEEE signaling NaNs may generate user-visible
10761 traps during floating-point operations. Setting this option disables
10762 optimizations that may change the number of exceptions visible with
10763 signaling NaNs. This option implies @option{-ftrapping-math}.
10764
10765 This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
10766 be defined.
10767
10768 The default is @option{-fno-signaling-nans}.
10769
10770 This option is experimental and does not currently guarantee to
10771 disable all GCC optimizations that affect signaling NaN behavior.
10772
10773 @item -fno-fp-int-builtin-inexact
10774 @opindex fno-fp-int-builtin-inexact
10775 @opindex ffp-int-builtin-inexact
10776 Do not allow the built-in functions @code{ceil}, @code{floor},
10777 @code{round} and @code{trunc}, and their @code{float} and @code{long
10778 double} variants, to generate code that raises the ``inexact''
10779 floating-point exception for noninteger arguments. ISO C99 and C11
10780 allow these functions to raise the ``inexact'' exception, but ISO/IEC
10781 TS 18661-1:2014, the C bindings to IEEE 754-2008, does not allow these
10782 functions to do so.
10783
10784 The default is @option{-ffp-int-builtin-inexact}, allowing the
10785 exception to be raised. This option does nothing unless
10786 @option{-ftrapping-math} is in effect.
10787
10788 Even if @option{-fno-fp-int-builtin-inexact} is used, if the functions
10789 generate a call to a library function then the ``inexact'' exception
10790 may be raised if the library implementation does not follow TS 18661.
10791
10792 @item -fsingle-precision-constant
10793 @opindex fsingle-precision-constant
10794 Treat floating-point constants as single precision instead of
10795 implicitly converting them to double-precision constants.
10796
10797 @item -fcx-limited-range
10798 @opindex fcx-limited-range
10799 When enabled, this option states that a range reduction step is not
10800 needed when performing complex division. Also, there is no checking
10801 whether the result of a complex multiplication or division is @code{NaN
10802 + I*NaN}, with an attempt to rescue the situation in that case. The
10803 default is @option{-fno-cx-limited-range}, but is enabled by
10804 @option{-ffast-math}.
10805
10806 This option controls the default setting of the ISO C99
10807 @code{CX_LIMITED_RANGE} pragma. Nevertheless, the option applies to
10808 all languages.
10809
10810 @item -fcx-fortran-rules
10811 @opindex fcx-fortran-rules
10812 Complex multiplication and division follow Fortran rules. Range
10813 reduction is done as part of complex division, but there is no checking
10814 whether the result of a complex multiplication or division is @code{NaN
10815 + I*NaN}, with an attempt to rescue the situation in that case.
10816
10817 The default is @option{-fno-cx-fortran-rules}.
10818
10819 @end table
10820
10821 The following options control optimizations that may improve
10822 performance, but are not enabled by any @option{-O} options. This
10823 section includes experimental options that may produce broken code.
10824
10825 @table @gcctabopt
10826 @item -fbranch-probabilities
10827 @opindex fbranch-probabilities
10828 After running a program compiled with @option{-fprofile-arcs}
10829 (@pxref{Instrumentation Options}),
10830 you can compile it a second time using
10831 @option{-fbranch-probabilities}, to improve optimizations based on
10832 the number of times each branch was taken. When a program
10833 compiled with @option{-fprofile-arcs} exits, it saves arc execution
10834 counts to a file called @file{@var{sourcename}.gcda} for each source
10835 file. The information in this data file is very dependent on the
10836 structure of the generated code, so you must use the same source code
10837 and the same optimization options for both compilations.
10838
10839 With @option{-fbranch-probabilities}, GCC puts a
10840 @samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
10841 These can be used to improve optimization. Currently, they are only
10842 used in one place: in @file{reorg.c}, instead of guessing which path a
10843 branch is most likely to take, the @samp{REG_BR_PROB} values are used to
10844 exactly determine which path is taken more often.
10845
10846 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10847
10848 @item -fprofile-values
10849 @opindex fprofile-values
10850 If combined with @option{-fprofile-arcs}, it adds code so that some
10851 data about values of expressions in the program is gathered.
10852
10853 With @option{-fbranch-probabilities}, it reads back the data gathered
10854 from profiling values of expressions for usage in optimizations.
10855
10856 Enabled by @option{-fprofile-generate}, @option{-fprofile-use}, and
10857 @option{-fauto-profile}.
10858
10859 @item -fprofile-reorder-functions
10860 @opindex fprofile-reorder-functions
10861 Function reordering based on profile instrumentation collects
10862 first time of execution of a function and orders these functions
10863 in ascending order.
10864
10865 Enabled with @option{-fprofile-use}.
10866
10867 @item -fvpt
10868 @opindex fvpt
10869 If combined with @option{-fprofile-arcs}, this option instructs the compiler
10870 to add code to gather information about values of expressions.
10871
10872 With @option{-fbranch-probabilities}, it reads back the data gathered
10873 and actually performs the optimizations based on them.
10874 Currently the optimizations include specialization of division operations
10875 using the knowledge about the value of the denominator.
10876
10877 Enabled with @option{-fprofile-use} and @option{-fauto-profile}.
10878
10879 @item -frename-registers
10880 @opindex frename-registers
10881 Attempt to avoid false dependencies in scheduled code by making use
10882 of registers left over after register allocation. This optimization
10883 most benefits processors with lots of registers. Depending on the
10884 debug information format adopted by the target, however, it can
10885 make debugging impossible, since variables no longer stay in
10886 a ``home register''.
10887
10888 Enabled by default with @option{-funroll-loops}.
10889
10890 @item -fschedule-fusion
10891 @opindex fschedule-fusion
10892 Performs a target dependent pass over the instruction stream to schedule
10893 instructions of same type together because target machine can execute them
10894 more efficiently if they are adjacent to each other in the instruction flow.
10895
10896 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
10897
10898 @item -ftracer
10899 @opindex ftracer
10900 Perform tail duplication to enlarge superblock size. This transformation
10901 simplifies the control flow of the function allowing other optimizations to do
10902 a better job.
10903
10904 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10905
10906 @item -funroll-loops
10907 @opindex funroll-loops
10908 Unroll loops whose number of iterations can be determined at compile time or
10909 upon entry to the loop. @option{-funroll-loops} implies
10910 @option{-frerun-cse-after-loop}, @option{-fweb} and @option{-frename-registers}.
10911 It also turns on complete loop peeling (i.e.@: complete removal of loops with
10912 a small constant number of iterations). This option makes code larger, and may
10913 or may not make it run faster.
10914
10915 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10916
10917 @item -funroll-all-loops
10918 @opindex funroll-all-loops
10919 Unroll all loops, even if their number of iterations is uncertain when
10920 the loop is entered. This usually makes programs run more slowly.
10921 @option{-funroll-all-loops} implies the same options as
10922 @option{-funroll-loops}.
10923
10924 @item -fpeel-loops
10925 @opindex fpeel-loops
10926 Peels loops for which there is enough information that they do not
10927 roll much (from profile feedback or static analysis). It also turns on
10928 complete loop peeling (i.e.@: complete removal of loops with small constant
10929 number of iterations).
10930
10931 Enabled by @option{-O3}, @option{-fprofile-use}, and @option{-fauto-profile}.
10932
10933 @item -fmove-loop-invariants
10934 @opindex fmove-loop-invariants
10935 Enables the loop invariant motion pass in the RTL loop optimizer. Enabled
10936 at level @option{-O1} and higher, except for @option{-Og}.
10937
10938 @item -fsplit-loops
10939 @opindex fsplit-loops
10940 Split a loop into two if it contains a condition that's always true
10941 for one side of the iteration space and false for the other.
10942
10943 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10944
10945 @item -funswitch-loops
10946 @opindex funswitch-loops
10947 Move branches with loop invariant conditions out of the loop, with duplicates
10948 of the loop on both branches (modified according to result of the condition).
10949
10950 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10951
10952 @item -fversion-loops-for-strides
10953 @opindex fversion-loops-for-strides
10954 If a loop iterates over an array with a variable stride, create another
10955 version of the loop that assumes the stride is always one. For example:
10956
10957 @smallexample
10958 for (int i = 0; i < n; ++i)
10959 x[i * stride] = @dots{};
10960 @end smallexample
10961
10962 becomes:
10963
10964 @smallexample
10965 if (stride == 1)
10966 for (int i = 0; i < n; ++i)
10967 x[i] = @dots{};
10968 else
10969 for (int i = 0; i < n; ++i)
10970 x[i * stride] = @dots{};
10971 @end smallexample
10972
10973 This is particularly useful for assumed-shape arrays in Fortran where
10974 (for example) it allows better vectorization assuming contiguous accesses.
10975 This flag is enabled by default at @option{-O3}.
10976 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10977
10978 @item -ffunction-sections
10979 @itemx -fdata-sections
10980 @opindex ffunction-sections
10981 @opindex fdata-sections
10982 Place each function or data item into its own section in the output
10983 file if the target supports arbitrary sections. The name of the
10984 function or the name of the data item determines the section's name
10985 in the output file.
10986
10987 Use these options on systems where the linker can perform optimizations to
10988 improve locality of reference in the instruction space. Most systems using the
10989 ELF object format have linkers with such optimizations. On AIX, the linker
10990 rearranges sections (CSECTs) based on the call graph. The performance impact
10991 varies.
10992
10993 Together with a linker garbage collection (linker @option{--gc-sections}
10994 option) these options may lead to smaller statically-linked executables (after
10995 stripping).
10996
10997 On ELF/DWARF systems these options do not degenerate the quality of the debug
10998 information. There could be issues with other object files/debug info formats.
10999
11000 Only use these options when there are significant benefits from doing so. When
11001 you specify these options, the assembler and linker create larger object and
11002 executable files and are also slower. These options affect code generation.
11003 They prevent optimizations by the compiler and assembler using relative
11004 locations inside a translation unit since the locations are unknown until
11005 link time. An example of such an optimization is relaxing calls to short call
11006 instructions.
11007
11008 @item -fbranch-target-load-optimize
11009 @opindex fbranch-target-load-optimize
11010 Perform branch target register load optimization before prologue / epilogue
11011 threading.
11012 The use of target registers can typically be exposed only during reload,
11013 thus hoisting loads out of loops and doing inter-block scheduling needs
11014 a separate optimization pass.
11015
11016 @item -fbranch-target-load-optimize2
11017 @opindex fbranch-target-load-optimize2
11018 Perform branch target register load optimization after prologue / epilogue
11019 threading.
11020
11021 @item -fbtr-bb-exclusive
11022 @opindex fbtr-bb-exclusive
11023 When performing branch target register load optimization, don't reuse
11024 branch target registers within any basic block.
11025
11026 @item -fstdarg-opt
11027 @opindex fstdarg-opt
11028 Optimize the prologue of variadic argument functions with respect to usage of
11029 those arguments.
11030
11031 @item -fsection-anchors
11032 @opindex fsection-anchors
11033 Try to reduce the number of symbolic address calculations by using
11034 shared ``anchor'' symbols to address nearby objects. This transformation
11035 can help to reduce the number of GOT entries and GOT accesses on some
11036 targets.
11037
11038 For example, the implementation of the following function @code{foo}:
11039
11040 @smallexample
11041 static int a, b, c;
11042 int foo (void) @{ return a + b + c; @}
11043 @end smallexample
11044
11045 @noindent
11046 usually calculates the addresses of all three variables, but if you
11047 compile it with @option{-fsection-anchors}, it accesses the variables
11048 from a common anchor point instead. The effect is similar to the
11049 following pseudocode (which isn't valid C):
11050
11051 @smallexample
11052 int foo (void)
11053 @{
11054 register int *xr = &x;
11055 return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
11056 @}
11057 @end smallexample
11058
11059 Not all targets support this option.
11060
11061 @item --param @var{name}=@var{value}
11062 @opindex param
11063 In some places, GCC uses various constants to control the amount of
11064 optimization that is done. For example, GCC does not inline functions
11065 that contain more than a certain number of instructions. You can
11066 control some of these constants on the command line using the
11067 @option{--param} option.
11068
11069 The names of specific parameters, and the meaning of the values, are
11070 tied to the internals of the compiler, and are subject to change
11071 without notice in future releases.
11072
11073 In order to get minimal, maximal and default value of a parameter,
11074 one can use @option{--help=param -Q} options.
11075
11076 In each case, the @var{value} is an integer. The allowable choices for
11077 @var{name} are:
11078
11079 @table @gcctabopt
11080 @item predictable-branch-outcome
11081 When branch is predicted to be taken with probability lower than this threshold
11082 (in percent), then it is considered well predictable.
11083
11084 @item max-rtl-if-conversion-insns
11085 RTL if-conversion tries to remove conditional branches around a block and
11086 replace them with conditionally executed instructions. This parameter
11087 gives the maximum number of instructions in a block which should be
11088 considered for if-conversion. The compiler will
11089 also use other heuristics to decide whether if-conversion is likely to be
11090 profitable.
11091
11092 @item max-rtl-if-conversion-predictable-cost
11093 @itemx max-rtl-if-conversion-unpredictable-cost
11094 RTL if-conversion will try to remove conditional branches around a block
11095 and replace them with conditionally executed instructions. These parameters
11096 give the maximum permissible cost for the sequence that would be generated
11097 by if-conversion depending on whether the branch is statically determined
11098 to be predictable or not. The units for this parameter are the same as
11099 those for the GCC internal seq_cost metric. The compiler will try to
11100 provide a reasonable default for this parameter using the BRANCH_COST
11101 target macro.
11102
11103 @item max-crossjump-edges
11104 The maximum number of incoming edges to consider for cross-jumping.
11105 The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
11106 the number of edges incoming to each block. Increasing values mean
11107 more aggressive optimization, making the compilation time increase with
11108 probably small improvement in executable size.
11109
11110 @item min-crossjump-insns
11111 The minimum number of instructions that must be matched at the end
11112 of two blocks before cross-jumping is performed on them. This
11113 value is ignored in the case where all instructions in the block being
11114 cross-jumped from are matched.
11115
11116 @item max-grow-copy-bb-insns
11117 The maximum code size expansion factor when copying basic blocks
11118 instead of jumping. The expansion is relative to a jump instruction.
11119
11120 @item max-goto-duplication-insns
11121 The maximum number of instructions to duplicate to a block that jumps
11122 to a computed goto. To avoid @math{O(N^2)} behavior in a number of
11123 passes, GCC factors computed gotos early in the compilation process,
11124 and unfactors them as late as possible. Only computed jumps at the
11125 end of a basic blocks with no more than max-goto-duplication-insns are
11126 unfactored.
11127
11128 @item max-delay-slot-insn-search
11129 The maximum number of instructions to consider when looking for an
11130 instruction to fill a delay slot. If more than this arbitrary number of
11131 instructions are searched, the time savings from filling the delay slot
11132 are minimal, so stop searching. Increasing values mean more
11133 aggressive optimization, making the compilation time increase with probably
11134 small improvement in execution time.
11135
11136 @item max-delay-slot-live-search
11137 When trying to fill delay slots, the maximum number of instructions to
11138 consider when searching for a block with valid live register
11139 information. Increasing this arbitrarily chosen value means more
11140 aggressive optimization, increasing the compilation time. This parameter
11141 should be removed when the delay slot code is rewritten to maintain the
11142 control-flow graph.
11143
11144 @item max-gcse-memory
11145 The approximate maximum amount of memory that can be allocated in
11146 order to perform the global common subexpression elimination
11147 optimization. If more memory than specified is required, the
11148 optimization is not done.
11149
11150 @item max-gcse-insertion-ratio
11151 If the ratio of expression insertions to deletions is larger than this value
11152 for any expression, then RTL PRE inserts or removes the expression and thus
11153 leaves partially redundant computations in the instruction stream.
11154
11155 @item max-pending-list-length
11156 The maximum number of pending dependencies scheduling allows
11157 before flushing the current state and starting over. Large functions
11158 with few branches or calls can create excessively large lists which
11159 needlessly consume memory and resources.
11160
11161 @item max-modulo-backtrack-attempts
11162 The maximum number of backtrack attempts the scheduler should make
11163 when modulo scheduling a loop. Larger values can exponentially increase
11164 compilation time.
11165
11166 @item max-inline-insns-single
11167 Several parameters control the tree inliner used in GCC@.
11168 This number sets the maximum number of instructions (counted in GCC's
11169 internal representation) in a single function that the tree inliner
11170 considers for inlining. This only affects functions declared
11171 inline and methods implemented in a class declaration (C++).
11172
11173 @item max-inline-insns-auto
11174 When you use @option{-finline-functions} (included in @option{-O3}),
11175 a lot of functions that would otherwise not be considered for inlining
11176 by the compiler are investigated. To those functions, a different
11177 (more restrictive) limit compared to functions declared inline can
11178 be applied.
11179
11180 @item max-inline-insns-small
11181 This is bound applied to calls which are considered relevant with
11182 @option{-finline-small-functions}.
11183
11184 @item max-inline-insns-size
11185 This is bound applied to calls which are optimized for size. Small growth
11186 may be desirable to anticipate optimization oppurtunities exposed by inlining.
11187
11188 @item uninlined-function-insns
11189 Number of instructions accounted by inliner for function overhead such as
11190 function prologue and epilogue.
11191
11192 @item uninlined-function-time
11193 Extra time accounted by inliner for function overhead such as time needed to
11194 execute function prologue and epilogue
11195
11196 @item uninlined-thunk-insns
11197 @item uninlined-thunk-time
11198 Same as @option{--param uninlined-function-insns} and
11199 @option{--param uninlined-function-time} but applied to function thunks
11200
11201 @item inline-min-speedup
11202 When estimated performance improvement of caller + callee runtime exceeds this
11203 threshold (in percent), the function can be inlined regardless of the limit on
11204 @option{--param max-inline-insns-single} and @option{--param
11205 max-inline-insns-auto}.
11206
11207 @item large-function-insns
11208 The limit specifying really large functions. For functions larger than this
11209 limit after inlining, inlining is constrained by
11210 @option{--param large-function-growth}. This parameter is useful primarily
11211 to avoid extreme compilation time caused by non-linear algorithms used by the
11212 back end.
11213
11214 @item large-function-growth
11215 Specifies maximal growth of large function caused by inlining in percents.
11216 For example, parameter value 100 limits large function growth to 2.0 times
11217 the original size.
11218
11219 @item large-unit-insns
11220 The limit specifying large translation unit. Growth caused by inlining of
11221 units larger than this limit is limited by @option{--param inline-unit-growth}.
11222 For small units this might be too tight.
11223 For example, consider a unit consisting of function A
11224 that is inline and B that just calls A three times. If B is small relative to
11225 A, the growth of unit is 300\% and yet such inlining is very sane. For very
11226 large units consisting of small inlineable functions, however, the overall unit
11227 growth limit is needed to avoid exponential explosion of code size. Thus for
11228 smaller units, the size is increased to @option{--param large-unit-insns}
11229 before applying @option{--param inline-unit-growth}.
11230
11231 @item inline-unit-growth
11232 Specifies maximal overall growth of the compilation unit caused by inlining.
11233 For example, parameter value 20 limits unit growth to 1.2 times the original
11234 size. Cold functions (either marked cold via an attribute or by profile
11235 feedback) are not accounted into the unit size.
11236
11237 @item ipcp-unit-growth
11238 Specifies maximal overall growth of the compilation unit caused by
11239 interprocedural constant propagation. For example, parameter value 10 limits
11240 unit growth to 1.1 times the original size.
11241
11242 @item large-stack-frame
11243 The limit specifying large stack frames. While inlining the algorithm is trying
11244 to not grow past this limit too much.
11245
11246 @item large-stack-frame-growth
11247 Specifies maximal growth of large stack frames caused by inlining in percents.
11248 For example, parameter value 1000 limits large stack frame growth to 11 times
11249 the original size.
11250
11251 @item max-inline-insns-recursive
11252 @itemx max-inline-insns-recursive-auto
11253 Specifies the maximum number of instructions an out-of-line copy of a
11254 self-recursive inline
11255 function can grow into by performing recursive inlining.
11256
11257 @option{--param max-inline-insns-recursive} applies to functions
11258 declared inline.
11259 For functions not declared inline, recursive inlining
11260 happens only when @option{-finline-functions} (included in @option{-O3}) is
11261 enabled; @option{--param max-inline-insns-recursive-auto} applies instead.
11262
11263 @item max-inline-recursive-depth
11264 @itemx max-inline-recursive-depth-auto
11265 Specifies the maximum recursion depth used for recursive inlining.
11266
11267 @option{--param max-inline-recursive-depth} applies to functions
11268 declared inline. For functions not declared inline, recursive inlining
11269 happens only when @option{-finline-functions} (included in @option{-O3}) is
11270 enabled; @option{--param max-inline-recursive-depth-auto} applies instead.
11271
11272 @item min-inline-recursive-probability
11273 Recursive inlining is profitable only for function having deep recursion
11274 in average and can hurt for function having little recursion depth by
11275 increasing the prologue size or complexity of function body to other
11276 optimizers.
11277
11278 When profile feedback is available (see @option{-fprofile-generate}) the actual
11279 recursion depth can be guessed from the probability that function recurses
11280 via a given call expression. This parameter limits inlining only to call
11281 expressions whose probability exceeds the given threshold (in percents).
11282
11283 @item early-inlining-insns
11284 Specify growth that the early inliner can make. In effect it increases
11285 the amount of inlining for code having a large abstraction penalty.
11286
11287 @item max-early-inliner-iterations
11288 Limit of iterations of the early inliner. This basically bounds
11289 the number of nested indirect calls the early inliner can resolve.
11290 Deeper chains are still handled by late inlining.
11291
11292 @item comdat-sharing-probability
11293 Probability (in percent) that C++ inline function with comdat visibility
11294 are shared across multiple compilation units.
11295
11296 @item profile-func-internal-id
11297 A parameter to control whether to use function internal id in profile
11298 database lookup. If the value is 0, the compiler uses an id that
11299 is based on function assembler name and filename, which makes old profile
11300 data more tolerant to source changes such as function reordering etc.
11301
11302 @item min-vect-loop-bound
11303 The minimum number of iterations under which loops are not vectorized
11304 when @option{-ftree-vectorize} is used. The number of iterations after
11305 vectorization needs to be greater than the value specified by this option
11306 to allow vectorization.
11307
11308 @item gcse-cost-distance-ratio
11309 Scaling factor in calculation of maximum distance an expression
11310 can be moved by GCSE optimizations. This is currently supported only in the
11311 code hoisting pass. The bigger the ratio, the more aggressive code hoisting
11312 is with simple expressions, i.e., the expressions that have cost
11313 less than @option{gcse-unrestricted-cost}. Specifying 0 disables
11314 hoisting of simple expressions.
11315
11316 @item gcse-unrestricted-cost
11317 Cost, roughly measured as the cost of a single typical machine
11318 instruction, at which GCSE optimizations do not constrain
11319 the distance an expression can travel. This is currently
11320 supported only in the code hoisting pass. The lesser the cost,
11321 the more aggressive code hoisting is. Specifying 0
11322 allows all expressions to travel unrestricted distances.
11323
11324 @item max-hoist-depth
11325 The depth of search in the dominator tree for expressions to hoist.
11326 This is used to avoid quadratic behavior in hoisting algorithm.
11327 The value of 0 does not limit on the search, but may slow down compilation
11328 of huge functions.
11329
11330 @item max-tail-merge-comparisons
11331 The maximum amount of similar bbs to compare a bb with. This is used to
11332 avoid quadratic behavior in tree tail merging.
11333
11334 @item max-tail-merge-iterations
11335 The maximum amount of iterations of the pass over the function. This is used to
11336 limit compilation time in tree tail merging.
11337
11338 @item store-merging-allow-unaligned
11339 Allow the store merging pass to introduce unaligned stores if it is legal to
11340 do so.
11341
11342 @item max-stores-to-merge
11343 The maximum number of stores to attempt to merge into wider stores in the store
11344 merging pass.
11345
11346 @item max-unrolled-insns
11347 The maximum number of instructions that a loop may have to be unrolled.
11348 If a loop is unrolled, this parameter also determines how many times
11349 the loop code is unrolled.
11350
11351 @item max-average-unrolled-insns
11352 The maximum number of instructions biased by probabilities of their execution
11353 that a loop may have to be unrolled. If a loop is unrolled,
11354 this parameter also determines how many times the loop code is unrolled.
11355
11356 @item max-unroll-times
11357 The maximum number of unrollings of a single loop.
11358
11359 @item max-peeled-insns
11360 The maximum number of instructions that a loop may have to be peeled.
11361 If a loop is peeled, this parameter also determines how many times
11362 the loop code is peeled.
11363
11364 @item max-peel-times
11365 The maximum number of peelings of a single loop.
11366
11367 @item max-peel-branches
11368 The maximum number of branches on the hot path through the peeled sequence.
11369
11370 @item max-completely-peeled-insns
11371 The maximum number of insns of a completely peeled loop.
11372
11373 @item max-completely-peel-times
11374 The maximum number of iterations of a loop to be suitable for complete peeling.
11375
11376 @item max-completely-peel-loop-nest-depth
11377 The maximum depth of a loop nest suitable for complete peeling.
11378
11379 @item max-unswitch-insns
11380 The maximum number of insns of an unswitched loop.
11381
11382 @item max-unswitch-level
11383 The maximum number of branches unswitched in a single loop.
11384
11385 @item lim-expensive
11386 The minimum cost of an expensive expression in the loop invariant motion.
11387
11388 @item iv-consider-all-candidates-bound
11389 Bound on number of candidates for induction variables, below which
11390 all candidates are considered for each use in induction variable
11391 optimizations. If there are more candidates than this,
11392 only the most relevant ones are considered to avoid quadratic time complexity.
11393
11394 @item iv-max-considered-uses
11395 The induction variable optimizations give up on loops that contain more
11396 induction variable uses.
11397
11398 @item iv-always-prune-cand-set-bound
11399 If the number of candidates in the set is smaller than this value,
11400 always try to remove unnecessary ivs from the set
11401 when adding a new one.
11402
11403 @item avg-loop-niter
11404 Average number of iterations of a loop.
11405
11406 @item dse-max-object-size
11407 Maximum size (in bytes) of objects tracked bytewise by dead store elimination.
11408 Larger values may result in larger compilation times.
11409
11410 @item dse-max-alias-queries-per-store
11411 Maximum number of queries into the alias oracle per store.
11412 Larger values result in larger compilation times and may result in more
11413 removed dead stores.
11414
11415 @item scev-max-expr-size
11416 Bound on size of expressions used in the scalar evolutions analyzer.
11417 Large expressions slow the analyzer.
11418
11419 @item scev-max-expr-complexity
11420 Bound on the complexity of the expressions in the scalar evolutions analyzer.
11421 Complex expressions slow the analyzer.
11422
11423 @item max-tree-if-conversion-phi-args
11424 Maximum number of arguments in a PHI supported by TREE if conversion
11425 unless the loop is marked with simd pragma.
11426
11427 @item vect-max-version-for-alignment-checks
11428 The maximum number of run-time checks that can be performed when
11429 doing loop versioning for alignment in the vectorizer.
11430
11431 @item vect-max-version-for-alias-checks
11432 The maximum number of run-time checks that can be performed when
11433 doing loop versioning for alias in the vectorizer.
11434
11435 @item vect-max-peeling-for-alignment
11436 The maximum number of loop peels to enhance access alignment
11437 for vectorizer. Value -1 means no limit.
11438
11439 @item max-iterations-to-track
11440 The maximum number of iterations of a loop the brute-force algorithm
11441 for analysis of the number of iterations of the loop tries to evaluate.
11442
11443 @item hot-bb-count-ws-permille
11444 A basic block profile count is considered hot if it contributes to
11445 the given permillage (i.e.@: 0...1000) of the entire profiled execution.
11446
11447 @item hot-bb-frequency-fraction
11448 Select fraction of the entry block frequency of executions of basic block in
11449 function given basic block needs to have to be considered hot.
11450
11451 @item max-predicted-iterations
11452 The maximum number of loop iterations we predict statically. This is useful
11453 in cases where a function contains a single loop with known bound and
11454 another loop with unknown bound.
11455 The known number of iterations is predicted correctly, while
11456 the unknown number of iterations average to roughly 10. This means that the
11457 loop without bounds appears artificially cold relative to the other one.
11458
11459 @item builtin-expect-probability
11460 Control the probability of the expression having the specified value. This
11461 parameter takes a percentage (i.e.@: 0 ... 100) as input.
11462
11463 @item builtin-string-cmp-inline-length
11464 The maximum length of a constant string for a builtin string cmp call
11465 eligible for inlining.
11466
11467 @item align-threshold
11468
11469 Select fraction of the maximal frequency of executions of a basic block in
11470 a function to align the basic block.
11471
11472 @item align-loop-iterations
11473
11474 A loop expected to iterate at least the selected number of iterations is
11475 aligned.
11476
11477 @item tracer-dynamic-coverage
11478 @itemx tracer-dynamic-coverage-feedback
11479
11480 This value is used to limit superblock formation once the given percentage of
11481 executed instructions is covered. This limits unnecessary code size
11482 expansion.
11483
11484 The @option{tracer-dynamic-coverage-feedback} parameter
11485 is used only when profile
11486 feedback is available. The real profiles (as opposed to statically estimated
11487 ones) are much less balanced allowing the threshold to be larger value.
11488
11489 @item tracer-max-code-growth
11490 Stop tail duplication once code growth has reached given percentage. This is
11491 a rather artificial limit, as most of the duplicates are eliminated later in
11492 cross jumping, so it may be set to much higher values than is the desired code
11493 growth.
11494
11495 @item tracer-min-branch-ratio
11496
11497 Stop reverse growth when the reverse probability of best edge is less than this
11498 threshold (in percent).
11499
11500 @item tracer-min-branch-probability
11501 @itemx tracer-min-branch-probability-feedback
11502
11503 Stop forward growth if the best edge has probability lower than this
11504 threshold.
11505
11506 Similarly to @option{tracer-dynamic-coverage} two parameters are
11507 provided. @option{tracer-min-branch-probability-feedback} is used for
11508 compilation with profile feedback and @option{tracer-min-branch-probability}
11509 compilation without. The value for compilation with profile feedback
11510 needs to be more conservative (higher) in order to make tracer
11511 effective.
11512
11513 @item stack-clash-protection-guard-size
11514 Specify the size of the operating system provided stack guard as
11515 2 raised to @var{num} bytes. Higher values may reduce the
11516 number of explicit probes, but a value larger than the operating system
11517 provided guard will leave code vulnerable to stack clash style attacks.
11518
11519 @item stack-clash-protection-probe-interval
11520 Stack clash protection involves probing stack space as it is allocated. This
11521 param controls the maximum distance between probes into the stack as 2 raised
11522 to @var{num} bytes. Higher values may reduce the number of explicit probes, but a value
11523 larger than the operating system provided guard will leave code vulnerable to
11524 stack clash style attacks.
11525
11526 @item max-cse-path-length
11527
11528 The maximum number of basic blocks on path that CSE considers.
11529
11530 @item max-cse-insns
11531 The maximum number of instructions CSE processes before flushing.
11532
11533 @item ggc-min-expand
11534
11535 GCC uses a garbage collector to manage its own memory allocation. This
11536 parameter specifies the minimum percentage by which the garbage
11537 collector's heap should be allowed to expand between collections.
11538 Tuning this may improve compilation speed; it has no effect on code
11539 generation.
11540
11541 The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
11542 RAM >= 1GB@. If @code{getrlimit} is available, the notion of ``RAM'' is
11543 the smallest of actual RAM and @code{RLIMIT_DATA} or @code{RLIMIT_AS}. If
11544 GCC is not able to calculate RAM on a particular platform, the lower
11545 bound of 30% is used. Setting this parameter and
11546 @option{ggc-min-heapsize} to zero causes a full collection to occur at
11547 every opportunity. This is extremely slow, but can be useful for
11548 debugging.
11549
11550 @item ggc-min-heapsize
11551
11552 Minimum size of the garbage collector's heap before it begins bothering
11553 to collect garbage. The first collection occurs after the heap expands
11554 by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}. Again,
11555 tuning this may improve compilation speed, and has no effect on code
11556 generation.
11557
11558 The default is the smaller of RAM/8, RLIMIT_RSS, or a limit that
11559 tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
11560 with a lower bound of 4096 (four megabytes) and an upper bound of
11561 131072 (128 megabytes). If GCC is not able to calculate RAM on a
11562 particular platform, the lower bound is used. Setting this parameter
11563 very large effectively disables garbage collection. Setting this
11564 parameter and @option{ggc-min-expand} to zero causes a full collection
11565 to occur at every opportunity.
11566
11567 @item max-reload-search-insns
11568 The maximum number of instruction reload should look backward for equivalent
11569 register. Increasing values mean more aggressive optimization, making the
11570 compilation time increase with probably slightly better performance.
11571
11572 @item max-cselib-memory-locations
11573 The maximum number of memory locations cselib should take into account.
11574 Increasing values mean more aggressive optimization, making the compilation time
11575 increase with probably slightly better performance.
11576
11577 @item max-sched-ready-insns
11578 The maximum number of instructions ready to be issued the scheduler should
11579 consider at any given time during the first scheduling pass. Increasing
11580 values mean more thorough searches, making the compilation time increase
11581 with probably little benefit.
11582
11583 @item max-sched-region-blocks
11584 The maximum number of blocks in a region to be considered for
11585 interblock scheduling.
11586
11587 @item max-pipeline-region-blocks
11588 The maximum number of blocks in a region to be considered for
11589 pipelining in the selective scheduler.
11590
11591 @item max-sched-region-insns
11592 The maximum number of insns in a region to be considered for
11593 interblock scheduling.
11594
11595 @item max-pipeline-region-insns
11596 The maximum number of insns in a region to be considered for
11597 pipelining in the selective scheduler.
11598
11599 @item min-spec-prob
11600 The minimum probability (in percents) of reaching a source block
11601 for interblock speculative scheduling.
11602
11603 @item max-sched-extend-regions-iters
11604 The maximum number of iterations through CFG to extend regions.
11605 A value of 0 disables region extensions.
11606
11607 @item max-sched-insn-conflict-delay
11608 The maximum conflict delay for an insn to be considered for speculative motion.
11609
11610 @item sched-spec-prob-cutoff
11611 The minimal probability of speculation success (in percents), so that
11612 speculative insns are scheduled.
11613
11614 @item sched-state-edge-prob-cutoff
11615 The minimum probability an edge must have for the scheduler to save its
11616 state across it.
11617
11618 @item sched-mem-true-dep-cost
11619 Minimal distance (in CPU cycles) between store and load targeting same
11620 memory locations.
11621
11622 @item selsched-max-lookahead
11623 The maximum size of the lookahead window of selective scheduling. It is a
11624 depth of search for available instructions.
11625
11626 @item selsched-max-sched-times
11627 The maximum number of times that an instruction is scheduled during
11628 selective scheduling. This is the limit on the number of iterations
11629 through which the instruction may be pipelined.
11630
11631 @item selsched-insns-to-rename
11632 The maximum number of best instructions in the ready list that are considered
11633 for renaming in the selective scheduler.
11634
11635 @item sms-min-sc
11636 The minimum value of stage count that swing modulo scheduler
11637 generates.
11638
11639 @item max-last-value-rtl
11640 The maximum size measured as number of RTLs that can be recorded in an expression
11641 in combiner for a pseudo register as last known value of that register.
11642
11643 @item max-combine-insns
11644 The maximum number of instructions the RTL combiner tries to combine.
11645
11646 @item integer-share-limit
11647 Small integer constants can use a shared data structure, reducing the
11648 compiler's memory usage and increasing its speed. This sets the maximum
11649 value of a shared integer constant.
11650
11651 @item ssp-buffer-size
11652 The minimum size of buffers (i.e.@: arrays) that receive stack smashing
11653 protection when @option{-fstack-protection} is used.
11654
11655 @item min-size-for-stack-sharing
11656 The minimum size of variables taking part in stack slot sharing when not
11657 optimizing.
11658
11659 @item max-jump-thread-duplication-stmts
11660 Maximum number of statements allowed in a block that needs to be
11661 duplicated when threading jumps.
11662
11663 @item max-fields-for-field-sensitive
11664 Maximum number of fields in a structure treated in
11665 a field sensitive manner during pointer analysis.
11666
11667 @item prefetch-latency
11668 Estimate on average number of instructions that are executed before
11669 prefetch finishes. The distance prefetched ahead is proportional
11670 to this constant. Increasing this number may also lead to less
11671 streams being prefetched (see @option{simultaneous-prefetches}).
11672
11673 @item simultaneous-prefetches
11674 Maximum number of prefetches that can run at the same time.
11675
11676 @item l1-cache-line-size
11677 The size of cache line in L1 data cache, in bytes.
11678
11679 @item l1-cache-size
11680 The size of L1 data cache, in kilobytes.
11681
11682 @item l2-cache-size
11683 The size of L2 data cache, in kilobytes.
11684
11685 @item prefetch-dynamic-strides
11686 Whether the loop array prefetch pass should issue software prefetch hints
11687 for strides that are non-constant. In some cases this may be
11688 beneficial, though the fact the stride is non-constant may make it
11689 hard to predict when there is clear benefit to issuing these hints.
11690
11691 Set to 1 if the prefetch hints should be issued for non-constant
11692 strides. Set to 0 if prefetch hints should be issued only for strides that
11693 are known to be constant and below @option{prefetch-minimum-stride}.
11694
11695 @item prefetch-minimum-stride
11696 Minimum constant stride, in bytes, to start using prefetch hints for. If
11697 the stride is less than this threshold, prefetch hints will not be issued.
11698
11699 This setting is useful for processors that have hardware prefetchers, in
11700 which case there may be conflicts between the hardware prefetchers and
11701 the software prefetchers. If the hardware prefetchers have a maximum
11702 stride they can handle, it should be used here to improve the use of
11703 software prefetchers.
11704
11705 A value of -1 means we don't have a threshold and therefore
11706 prefetch hints can be issued for any constant stride.
11707
11708 This setting is only useful for strides that are known and constant.
11709
11710 @item loop-interchange-max-num-stmts
11711 The maximum number of stmts in a loop to be interchanged.
11712
11713 @item loop-interchange-stride-ratio
11714 The minimum ratio between stride of two loops for interchange to be profitable.
11715
11716 @item min-insn-to-prefetch-ratio
11717 The minimum ratio between the number of instructions and the
11718 number of prefetches to enable prefetching in a loop.
11719
11720 @item prefetch-min-insn-to-mem-ratio
11721 The minimum ratio between the number of instructions and the
11722 number of memory references to enable prefetching in a loop.
11723
11724 @item use-canonical-types
11725 Whether the compiler should use the ``canonical'' type system.
11726 Should always be 1, which uses a more efficient internal
11727 mechanism for comparing types in C++ and Objective-C++. However, if
11728 bugs in the canonical type system are causing compilation failures,
11729 set this value to 0 to disable canonical types.
11730
11731 @item switch-conversion-max-branch-ratio
11732 Switch initialization conversion refuses to create arrays that are
11733 bigger than @option{switch-conversion-max-branch-ratio} times the number of
11734 branches in the switch.
11735
11736 @item max-partial-antic-length
11737 Maximum length of the partial antic set computed during the tree
11738 partial redundancy elimination optimization (@option{-ftree-pre}) when
11739 optimizing at @option{-O3} and above. For some sorts of source code
11740 the enhanced partial redundancy elimination optimization can run away,
11741 consuming all of the memory available on the host machine. This
11742 parameter sets a limit on the length of the sets that are computed,
11743 which prevents the runaway behavior. Setting a value of 0 for
11744 this parameter allows an unlimited set length.
11745
11746 @item rpo-vn-max-loop-depth
11747 Maximum loop depth that is value-numbered optimistically.
11748 When the limit hits the innermost
11749 @var{rpo-vn-max-loop-depth} loops and the outermost loop in the
11750 loop nest are value-numbered optimistically and the remaining ones not.
11751
11752 @item sccvn-max-alias-queries-per-access
11753 Maximum number of alias-oracle queries we perform when looking for
11754 redundancies for loads and stores. If this limit is hit the search
11755 is aborted and the load or store is not considered redundant. The
11756 number of queries is algorithmically limited to the number of
11757 stores on all paths from the load to the function entry.
11758
11759 @item ira-max-loops-num
11760 IRA uses regional register allocation by default. If a function
11761 contains more loops than the number given by this parameter, only at most
11762 the given number of the most frequently-executed loops form regions
11763 for regional register allocation.
11764
11765 @item ira-max-conflict-table-size
11766 Although IRA uses a sophisticated algorithm to compress the conflict
11767 table, the table can still require excessive amounts of memory for
11768 huge functions. If the conflict table for a function could be more
11769 than the size in MB given by this parameter, the register allocator
11770 instead uses a faster, simpler, and lower-quality
11771 algorithm that does not require building a pseudo-register conflict table.
11772
11773 @item ira-loop-reserved-regs
11774 IRA can be used to evaluate more accurate register pressure in loops
11775 for decisions to move loop invariants (see @option{-O3}). The number
11776 of available registers reserved for some other purposes is given
11777 by this parameter. Default of the parameter
11778 is the best found from numerous experiments.
11779
11780 @item lra-inheritance-ebb-probability-cutoff
11781 LRA tries to reuse values reloaded in registers in subsequent insns.
11782 This optimization is called inheritance. EBB is used as a region to
11783 do this optimization. The parameter defines a minimal fall-through
11784 edge probability in percentage used to add BB to inheritance EBB in
11785 LRA. The default value was chosen
11786 from numerous runs of SPEC2000 on x86-64.
11787
11788 @item loop-invariant-max-bbs-in-loop
11789 Loop invariant motion can be very expensive, both in compilation time and
11790 in amount of needed compile-time memory, with very large loops. Loops
11791 with more basic blocks than this parameter won't have loop invariant
11792 motion optimization performed on them.
11793
11794 @item loop-max-datarefs-for-datadeps
11795 Building data dependencies is expensive for very large loops. This
11796 parameter limits the number of data references in loops that are
11797 considered for data dependence analysis. These large loops are no
11798 handled by the optimizations using loop data dependencies.
11799
11800 @item max-vartrack-size
11801 Sets a maximum number of hash table slots to use during variable
11802 tracking dataflow analysis of any function. If this limit is exceeded
11803 with variable tracking at assignments enabled, analysis for that
11804 function is retried without it, after removing all debug insns from
11805 the function. If the limit is exceeded even without debug insns, var
11806 tracking analysis is completely disabled for the function. Setting
11807 the parameter to zero makes it unlimited.
11808
11809 @item max-vartrack-expr-depth
11810 Sets a maximum number of recursion levels when attempting to map
11811 variable names or debug temporaries to value expressions. This trades
11812 compilation time for more complete debug information. If this is set too
11813 low, value expressions that are available and could be represented in
11814 debug information may end up not being used; setting this higher may
11815 enable the compiler to find more complex debug expressions, but compile
11816 time and memory use may grow.
11817
11818 @item max-debug-marker-count
11819 Sets a threshold on the number of debug markers (e.g.@: begin stmt
11820 markers) to avoid complexity explosion at inlining or expanding to RTL.
11821 If a function has more such gimple stmts than the set limit, such stmts
11822 will be dropped from the inlined copy of a function, and from its RTL
11823 expansion.
11824
11825 @item min-nondebug-insn-uid
11826 Use uids starting at this parameter for nondebug insns. The range below
11827 the parameter is reserved exclusively for debug insns created by
11828 @option{-fvar-tracking-assignments}, but debug insns may get
11829 (non-overlapping) uids above it if the reserved range is exhausted.
11830
11831 @item ipa-sra-ptr-growth-factor
11832 IPA-SRA replaces a pointer to an aggregate with one or more new
11833 parameters only when their cumulative size is less or equal to
11834 @option{ipa-sra-ptr-growth-factor} times the size of the original
11835 pointer parameter.
11836
11837 @item sra-max-scalarization-size-Ospeed
11838 @itemx sra-max-scalarization-size-Osize
11839 The two Scalar Reduction of Aggregates passes (SRA and IPA-SRA) aim to
11840 replace scalar parts of aggregates with uses of independent scalar
11841 variables. These parameters control the maximum size, in storage units,
11842 of aggregate which is considered for replacement when compiling for
11843 speed
11844 (@option{sra-max-scalarization-size-Ospeed}) or size
11845 (@option{sra-max-scalarization-size-Osize}) respectively.
11846
11847 @item tm-max-aggregate-size
11848 When making copies of thread-local variables in a transaction, this
11849 parameter specifies the size in bytes after which variables are
11850 saved with the logging functions as opposed to save/restore code
11851 sequence pairs. This option only applies when using
11852 @option{-fgnu-tm}.
11853
11854 @item graphite-max-nb-scop-params
11855 To avoid exponential effects in the Graphite loop transforms, the
11856 number of parameters in a Static Control Part (SCoP) is bounded.
11857 A value of zero can be used to lift
11858 the bound. A variable whose value is unknown at compilation time and
11859 defined outside a SCoP is a parameter of the SCoP.
11860
11861 @item loop-block-tile-size
11862 Loop blocking or strip mining transforms, enabled with
11863 @option{-floop-block} or @option{-floop-strip-mine}, strip mine each
11864 loop in the loop nest by a given number of iterations. The strip
11865 length can be changed using the @option{loop-block-tile-size}
11866 parameter.
11867
11868 @item ipa-cp-value-list-size
11869 IPA-CP attempts to track all possible values and types passed to a function's
11870 parameter in order to propagate them and perform devirtualization.
11871 @option{ipa-cp-value-list-size} is the maximum number of values and types it
11872 stores per one formal parameter of a function.
11873
11874 @item ipa-cp-eval-threshold
11875 IPA-CP calculates its own score of cloning profitability heuristics
11876 and performs those cloning opportunities with scores that exceed
11877 @option{ipa-cp-eval-threshold}.
11878
11879 @item ipa-cp-recursion-penalty
11880 Percentage penalty the recursive functions will receive when they
11881 are evaluated for cloning.
11882
11883 @item ipa-cp-single-call-penalty
11884 Percentage penalty functions containing a single call to another
11885 function will receive when they are evaluated for cloning.
11886
11887 @item ipa-max-agg-items
11888 IPA-CP is also capable to propagate a number of scalar values passed
11889 in an aggregate. @option{ipa-max-agg-items} controls the maximum
11890 number of such values per one parameter.
11891
11892 @item ipa-cp-loop-hint-bonus
11893 When IPA-CP determines that a cloning candidate would make the number
11894 of iterations of a loop known, it adds a bonus of
11895 @option{ipa-cp-loop-hint-bonus} to the profitability score of
11896 the candidate.
11897
11898 @item ipa-cp-array-index-hint-bonus
11899 When IPA-CP determines that a cloning candidate would make the index of
11900 an array access known, it adds a bonus of
11901 @option{ipa-cp-array-index-hint-bonus} to the profitability
11902 score of the candidate.
11903
11904 @item ipa-max-aa-steps
11905 During its analysis of function bodies, IPA-CP employs alias analysis
11906 in order to track values pointed to by function parameters. In order
11907 not spend too much time analyzing huge functions, it gives up and
11908 consider all memory clobbered after examining
11909 @option{ipa-max-aa-steps} statements modifying memory.
11910
11911 @item lto-partitions
11912 Specify desired number of partitions produced during WHOPR compilation.
11913 The number of partitions should exceed the number of CPUs used for compilation.
11914
11915 @item lto-min-partition
11916 Size of minimal partition for WHOPR (in estimated instructions).
11917 This prevents expenses of splitting very small programs into too many
11918 partitions.
11919
11920 @item lto-max-partition
11921 Size of max partition for WHOPR (in estimated instructions).
11922 to provide an upper bound for individual size of partition.
11923 Meant to be used only with balanced partitioning.
11924
11925 @item lto-max-streaming-parallelism
11926 Maximal number of parallel processes used for LTO streaming.
11927
11928 @item cxx-max-namespaces-for-diagnostic-help
11929 The maximum number of namespaces to consult for suggestions when C++
11930 name lookup fails for an identifier.
11931
11932 @item sink-frequency-threshold
11933 The maximum relative execution frequency (in percents) of the target block
11934 relative to a statement's original block to allow statement sinking of a
11935 statement. Larger numbers result in more aggressive statement sinking.
11936 A small positive adjustment is applied for
11937 statements with memory operands as those are even more profitable so sink.
11938
11939 @item max-stores-to-sink
11940 The maximum number of conditional store pairs that can be sunk. Set to 0
11941 if either vectorization (@option{-ftree-vectorize}) or if-conversion
11942 (@option{-ftree-loop-if-convert}) is disabled.
11943
11944 @item allow-store-data-races
11945 Allow optimizers to introduce new data races on stores.
11946 Set to 1 to allow, otherwise to 0.
11947
11948 @item case-values-threshold
11949 The smallest number of different values for which it is best to use a
11950 jump-table instead of a tree of conditional branches. If the value is
11951 0, use the default for the machine.
11952
11953 @item jump-table-max-growth-ratio-for-size
11954 The maximum code size growth ratio when expanding
11955 into a jump table (in percent). The parameter is used when
11956 optimizing for size.
11957
11958 @item jump-table-max-growth-ratio-for-speed
11959 The maximum code size growth ratio when expanding
11960 into a jump table (in percent). The parameter is used when
11961 optimizing for speed.
11962
11963 @item tree-reassoc-width
11964 Set the maximum number of instructions executed in parallel in
11965 reassociated tree. This parameter overrides target dependent
11966 heuristics used by default if has non zero value.
11967
11968 @item sched-pressure-algorithm
11969 Choose between the two available implementations of
11970 @option{-fsched-pressure}. Algorithm 1 is the original implementation
11971 and is the more likely to prevent instructions from being reordered.
11972 Algorithm 2 was designed to be a compromise between the relatively
11973 conservative approach taken by algorithm 1 and the rather aggressive
11974 approach taken by the default scheduler. It relies more heavily on
11975 having a regular register file and accurate register pressure classes.
11976 See @file{haifa-sched.c} in the GCC sources for more details.
11977
11978 The default choice depends on the target.
11979
11980 @item max-slsr-cand-scan
11981 Set the maximum number of existing candidates that are considered when
11982 seeking a basis for a new straight-line strength reduction candidate.
11983
11984 @item asan-globals
11985 Enable buffer overflow detection for global objects. This kind
11986 of protection is enabled by default if you are using
11987 @option{-fsanitize=address} option.
11988 To disable global objects protection use @option{--param asan-globals=0}.
11989
11990 @item asan-stack
11991 Enable buffer overflow detection for stack objects. This kind of
11992 protection is enabled by default when using @option{-fsanitize=address}.
11993 To disable stack protection use @option{--param asan-stack=0} option.
11994
11995 @item asan-instrument-reads
11996 Enable buffer overflow detection for memory reads. This kind of
11997 protection is enabled by default when using @option{-fsanitize=address}.
11998 To disable memory reads protection use
11999 @option{--param asan-instrument-reads=0}.
12000
12001 @item asan-instrument-writes
12002 Enable buffer overflow detection for memory writes. This kind of
12003 protection is enabled by default when using @option{-fsanitize=address}.
12004 To disable memory writes protection use
12005 @option{--param asan-instrument-writes=0} option.
12006
12007 @item asan-memintrin
12008 Enable detection for built-in functions. This kind of protection
12009 is enabled by default when using @option{-fsanitize=address}.
12010 To disable built-in functions protection use
12011 @option{--param asan-memintrin=0}.
12012
12013 @item asan-use-after-return
12014 Enable detection of use-after-return. This kind of protection
12015 is enabled by default when using the @option{-fsanitize=address} option.
12016 To disable it use @option{--param asan-use-after-return=0}.
12017
12018 Note: By default the check is disabled at run time. To enable it,
12019 add @code{detect_stack_use_after_return=1} to the environment variable
12020 @env{ASAN_OPTIONS}.
12021
12022 @item asan-instrumentation-with-call-threshold
12023 If number of memory accesses in function being instrumented
12024 is greater or equal to this number, use callbacks instead of inline checks.
12025 E.g. to disable inline code use
12026 @option{--param asan-instrumentation-with-call-threshold=0}.
12027
12028 @item use-after-scope-direct-emission-threshold
12029 If the size of a local variable in bytes is smaller or equal to this
12030 number, directly poison (or unpoison) shadow memory instead of using
12031 run-time callbacks.
12032
12033 @item max-fsm-thread-path-insns
12034 Maximum number of instructions to copy when duplicating blocks on a
12035 finite state automaton jump thread path.
12036
12037 @item max-fsm-thread-length
12038 Maximum number of basic blocks on a finite state automaton jump thread
12039 path.
12040
12041 @item max-fsm-thread-paths
12042 Maximum number of new jump thread paths to create for a finite state
12043 automaton.
12044
12045 @item parloops-chunk-size
12046 Chunk size of omp schedule for loops parallelized by parloops.
12047
12048 @item parloops-schedule
12049 Schedule type of omp schedule for loops parallelized by parloops (static,
12050 dynamic, guided, auto, runtime).
12051
12052 @item parloops-min-per-thread
12053 The minimum number of iterations per thread of an innermost parallelized
12054 loop for which the parallelized variant is preferred over the single threaded
12055 one. Note that for a parallelized loop nest the
12056 minimum number of iterations of the outermost loop per thread is two.
12057
12058 @item max-ssa-name-query-depth
12059 Maximum depth of recursion when querying properties of SSA names in things
12060 like fold routines. One level of recursion corresponds to following a
12061 use-def chain.
12062
12063 @item hsa-gen-debug-stores
12064 Enable emission of special debug stores within HSA kernels which are
12065 then read and reported by libgomp plugin. Generation of these stores
12066 is disabled by default, use @option{--param hsa-gen-debug-stores=1} to
12067 enable it.
12068
12069 @item max-speculative-devirt-maydefs
12070 The maximum number of may-defs we analyze when looking for a must-def
12071 specifying the dynamic type of an object that invokes a virtual call
12072 we may be able to devirtualize speculatively.
12073
12074 @item max-vrp-switch-assertions
12075 The maximum number of assertions to add along the default edge of a switch
12076 statement during VRP.
12077
12078 @item unroll-jam-min-percent
12079 The minimum percentage of memory references that must be optimized
12080 away for the unroll-and-jam transformation to be considered profitable.
12081
12082 @item unroll-jam-max-unroll
12083 The maximum number of times the outer loop should be unrolled by
12084 the unroll-and-jam transformation.
12085
12086 @item max-rtl-if-conversion-unpredictable-cost
12087 Maximum permissible cost for the sequence that would be generated
12088 by the RTL if-conversion pass for a branch that is considered unpredictable.
12089
12090 @item max-variable-expansions-in-unroller
12091 If @option{-fvariable-expansion-in-unroller} is used, the maximum number
12092 of times that an individual variable will be expanded during loop unrolling.
12093
12094 @item tracer-min-branch-probability-feedback
12095 Stop forward growth if the probability of best edge is less than
12096 this threshold (in percent). Used when profile feedback is available.
12097
12098 @item partial-inlining-entry-probability
12099 Maximum probability of the entry BB of split region
12100 (in percent relative to entry BB of the function)
12101 to make partial inlining happen.
12102
12103 @item max-tracked-strlens
12104 Maximum number of strings for which strlen optimization pass will
12105 track string lengths.
12106
12107 @item gcse-after-reload-partial-fraction
12108 The threshold ratio for performing partial redundancy
12109 elimination after reload.
12110
12111 @item gcse-after-reload-critical-fraction
12112 The threshold ratio of critical edges execution count that
12113 permit performing redundancy elimination after reload.
12114
12115 @item max-loop-header-insns
12116 The maximum number of insns in loop header duplicated
12117 by the copy loop headers pass.
12118
12119 @item vect-epilogues-nomask
12120 Enable loop epilogue vectorization using smaller vector size.
12121
12122 @item slp-max-insns-in-bb
12123 Maximum number of instructions in basic block to be
12124 considered for SLP vectorization.
12125
12126 @item avoid-fma-max-bits
12127 Maximum number of bits for which we avoid creating FMAs.
12128
12129 @item sms-loop-average-count-threshold
12130 A threshold on the average loop count considered by the swing modulo scheduler.
12131
12132 @item sms-dfa-history
12133 The number of cycles the swing modulo scheduler considers when checking
12134 conflicts using DFA.
12135
12136 @item hot-bb-count-fraction
12137 Select fraction of the maximal count of repetitions of basic block
12138 in program given basic block needs
12139 to have to be considered hot (used in non-LTO mode)
12140
12141 @item max-inline-insns-recursive-auto
12142 The maximum number of instructions non-inline function
12143 can grow to via recursive inlining.
12144
12145 @item graphite-allow-codegen-errors
12146 Whether codegen errors should be ICEs when @option{-fchecking}.
12147
12148 @item sms-max-ii-factor
12149 A factor for tuning the upper bound that swing modulo scheduler
12150 uses for scheduling a loop.
12151
12152 @item lra-max-considered-reload-pseudos
12153 The max number of reload pseudos which are considered during
12154 spilling a non-reload pseudo.
12155
12156 @item max-pow-sqrt-depth
12157 Maximum depth of sqrt chains to use when synthesizing exponentiation
12158 by a real constant.
12159
12160 @item max-dse-active-local-stores
12161 Maximum number of active local stores in RTL dead store elimination.
12162
12163 @item asan-instrument-allocas
12164 Enable asan allocas/VLAs protection.
12165
12166 @item max-iterations-computation-cost
12167 Bound on the cost of an expression to compute the number of iterations.
12168
12169 @item max-isl-operations
12170 Maximum number of isl operations, 0 means unlimited.
12171
12172 @item graphite-max-arrays-per-scop
12173 Maximum number of arrays per scop.
12174
12175 @item max-vartrack-reverse-op-size
12176 Max. size of loc list for which reverse ops should be added.
12177
12178 @item unlikely-bb-count-fraction
12179 The minimum fraction of profile runs a given basic block execution count
12180 must be not to be considered unlikely.
12181
12182 @item tracer-dynamic-coverage-feedback
12183 The percentage of function, weighted by execution frequency,
12184 that must be covered by trace formation.
12185 Used when profile feedback is available.
12186
12187 @item max-inline-recursive-depth-auto
12188 The maximum depth of recursive inlining for non-inline functions.
12189
12190 @item fsm-scale-path-stmts
12191 Scale factor to apply to the number of statements in a threading path
12192 when comparing to the number of (scaled) blocks.
12193
12194 @item fsm-maximum-phi-arguments
12195 Maximum number of arguments a PHI may have before the FSM threader
12196 will not try to thread through its block.
12197
12198 @item uninit-control-dep-attempts
12199 Maximum number of nested calls to search for control dependencies
12200 during uninitialized variable analysis.
12201
12202 @item max-once-peeled-insns
12203 The maximum number of insns of a peeled loop that rolls only once.
12204
12205 @item sra-max-scalarization-size-Osize
12206 Maximum size, in storage units, of an aggregate
12207 which should be considered for scalarization when compiling for size.
12208
12209 @item fsm-scale-path-blocks
12210 Scale factor to apply to the number of blocks in a threading path
12211 when comparing to the number of (scaled) statements.
12212
12213 @item sched-autopref-queue-depth
12214 Hardware autoprefetcher scheduler model control flag.
12215 Number of lookahead cycles the model looks into; at '
12216 ' only enable instruction sorting heuristic.
12217
12218 @item loop-versioning-max-inner-insns
12219 The maximum number of instructions that an inner loop can have
12220 before the loop versioning pass considers it too big to copy.
12221
12222 @item loop-versioning-max-outer-insns
12223 The maximum number of instructions that an outer loop can have
12224 before the loop versioning pass considers it too big to copy,
12225 discounting any instructions in inner loops that directly benefit
12226 from versioning.
12227
12228 @item ssa-name-def-chain-limit
12229 The maximum number of SSA_NAME assignments to follow in determining
12230 a property of a variable such as its value. This limits the number
12231 of iterations or recursive calls GCC performs when optimizing certain
12232 statements or when determining their validity prior to issuing
12233 diagnostics.
12234
12235 @end table
12236 @end table
12237
12238 @node Instrumentation Options
12239 @section Program Instrumentation Options
12240 @cindex instrumentation options
12241 @cindex program instrumentation options
12242 @cindex run-time error checking options
12243 @cindex profiling options
12244 @cindex options, program instrumentation
12245 @cindex options, run-time error checking
12246 @cindex options, profiling
12247
12248 GCC supports a number of command-line options that control adding
12249 run-time instrumentation to the code it normally generates.
12250 For example, one purpose of instrumentation is collect profiling
12251 statistics for use in finding program hot spots, code coverage
12252 analysis, or profile-guided optimizations.
12253 Another class of program instrumentation is adding run-time checking
12254 to detect programming errors like invalid pointer
12255 dereferences or out-of-bounds array accesses, as well as deliberately
12256 hostile attacks such as stack smashing or C++ vtable hijacking.
12257 There is also a general hook which can be used to implement other
12258 forms of tracing or function-level instrumentation for debug or
12259 program analysis purposes.
12260
12261 @table @gcctabopt
12262 @cindex @command{prof}
12263 @cindex @command{gprof}
12264 @item -p
12265 @itemx -pg
12266 @opindex p
12267 @opindex pg
12268 Generate extra code to write profile information suitable for the
12269 analysis program @command{prof} (for @option{-p}) or @command{gprof}
12270 (for @option{-pg}). You must use this option when compiling
12271 the source files you want data about, and you must also use it when
12272 linking.
12273
12274 You can use the function attribute @code{no_instrument_function} to
12275 suppress profiling of individual functions when compiling with these options.
12276 @xref{Common Function Attributes}.
12277
12278 @item -fprofile-arcs
12279 @opindex fprofile-arcs
12280 Add code so that program flow @dfn{arcs} are instrumented. During
12281 execution the program records how many times each branch and call is
12282 executed and how many times it is taken or returns. On targets that support
12283 constructors with priority support, profiling properly handles constructors,
12284 destructors and C++ constructors (and destructors) of classes which are used
12285 as a type of a global variable.
12286
12287 When the compiled
12288 program exits it saves this data to a file called
12289 @file{@var{auxname}.gcda} for each source file. The data may be used for
12290 profile-directed optimizations (@option{-fbranch-probabilities}), or for
12291 test coverage analysis (@option{-ftest-coverage}). Each object file's
12292 @var{auxname} is generated from the name of the output file, if
12293 explicitly specified and it is not the final executable, otherwise it is
12294 the basename of the source file. In both cases any suffix is removed
12295 (e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or
12296 @file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}).
12297 @xref{Cross-profiling}.
12298
12299 @cindex @command{gcov}
12300 @item --coverage
12301 @opindex coverage
12302
12303 This option is used to compile and link code instrumented for coverage
12304 analysis. The option is a synonym for @option{-fprofile-arcs}
12305 @option{-ftest-coverage} (when compiling) and @option{-lgcov} (when
12306 linking). See the documentation for those options for more details.
12307
12308 @itemize
12309
12310 @item
12311 Compile the source files with @option{-fprofile-arcs} plus optimization
12312 and code generation options. For test coverage analysis, use the
12313 additional @option{-ftest-coverage} option. You do not need to profile
12314 every source file in a program.
12315
12316 @item
12317 Compile the source files additionally with @option{-fprofile-abs-path}
12318 to create absolute path names in the @file{.gcno} files. This allows
12319 @command{gcov} to find the correct sources in projects where compilations
12320 occur with different working directories.
12321
12322 @item
12323 Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
12324 (the latter implies the former).
12325
12326 @item
12327 Run the program on a representative workload to generate the arc profile
12328 information. This may be repeated any number of times. You can run
12329 concurrent instances of your program, and provided that the file system
12330 supports locking, the data files will be correctly updated. Unless
12331 a strict ISO C dialect option is in effect, @code{fork} calls are
12332 detected and correctly handled without double counting.
12333
12334 @item
12335 For profile-directed optimizations, compile the source files again with
12336 the same optimization and code generation options plus
12337 @option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
12338 Control Optimization}).
12339
12340 @item
12341 For test coverage analysis, use @command{gcov} to produce human readable
12342 information from the @file{.gcno} and @file{.gcda} files. Refer to the
12343 @command{gcov} documentation for further information.
12344
12345 @end itemize
12346
12347 With @option{-fprofile-arcs}, for each function of your program GCC
12348 creates a program flow graph, then finds a spanning tree for the graph.
12349 Only arcs that are not on the spanning tree have to be instrumented: the
12350 compiler adds code to count the number of times that these arcs are
12351 executed. When an arc is the only exit or only entrance to a block, the
12352 instrumentation code can be added to the block; otherwise, a new basic
12353 block must be created to hold the instrumentation code.
12354
12355 @need 2000
12356 @item -ftest-coverage
12357 @opindex ftest-coverage
12358 Produce a notes file that the @command{gcov} code-coverage utility
12359 (@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
12360 show program coverage. Each source file's note file is called
12361 @file{@var{auxname}.gcno}. Refer to the @option{-fprofile-arcs} option
12362 above for a description of @var{auxname} and instructions on how to
12363 generate test coverage data. Coverage data matches the source files
12364 more closely if you do not optimize.
12365
12366 @item -fprofile-abs-path
12367 @opindex fprofile-abs-path
12368 Automatically convert relative source file names to absolute path names
12369 in the @file{.gcno} files. This allows @command{gcov} to find the correct
12370 sources in projects where compilations occur with different working
12371 directories.
12372
12373 @item -fprofile-dir=@var{path}
12374 @opindex fprofile-dir
12375
12376 Set the directory to search for the profile data files in to @var{path}.
12377 This option affects only the profile data generated by
12378 @option{-fprofile-generate}, @option{-ftest-coverage}, @option{-fprofile-arcs}
12379 and used by @option{-fprofile-use} and @option{-fbranch-probabilities}
12380 and its related options. Both absolute and relative paths can be used.
12381 By default, GCC uses the current directory as @var{path}, thus the
12382 profile data file appears in the same directory as the object file.
12383 In order to prevent the file name clashing, if the object file name is
12384 not an absolute path, we mangle the absolute path of the
12385 @file{@var{sourcename}.gcda} file and use it as the file name of a
12386 @file{.gcda} file. See similar option @option{-fprofile-note}.
12387
12388 When an executable is run in a massive parallel environment, it is recommended
12389 to save profile to different folders. That can be done with variables
12390 in @var{path} that are exported during run-time:
12391
12392 @table @gcctabopt
12393
12394 @item %p
12395 process ID.
12396
12397 @item %q@{VAR@}
12398 value of environment variable @var{VAR}
12399
12400 @end table
12401
12402 @item -fprofile-generate
12403 @itemx -fprofile-generate=@var{path}
12404 @opindex fprofile-generate
12405
12406 Enable options usually used for instrumenting application to produce
12407 profile useful for later recompilation with profile feedback based
12408 optimization. You must use @option{-fprofile-generate} both when
12409 compiling and when linking your program.
12410
12411 The following options are enabled:
12412 @option{-fprofile-arcs}, @option{-fprofile-values},
12413 @option{-finline-functions}, and @option{-fipa-bit-cp}.
12414
12415 If @var{path} is specified, GCC looks at the @var{path} to find
12416 the profile feedback data files. See @option{-fprofile-dir}.
12417
12418 To optimize the program based on the collected profile information, use
12419 @option{-fprofile-use}. @xref{Optimize Options}, for more information.
12420
12421 @item -fprofile-note=@var{path}
12422 @opindex fprofile-note
12423
12424 If @var{path} is specified, GCC saves @file{.gcno} file into @var{path}
12425 location. If you combine the option with multiple source files,
12426 the @file{.gcno} file will be overwritten.
12427
12428 @item -fprofile-update=@var{method}
12429 @opindex fprofile-update
12430
12431 Alter the update method for an application instrumented for profile
12432 feedback based optimization. The @var{method} argument should be one of
12433 @samp{single}, @samp{atomic} or @samp{prefer-atomic}.
12434 The first one is useful for single-threaded applications,
12435 while the second one prevents profile corruption by emitting thread-safe code.
12436
12437 @strong{Warning:} When an application does not properly join all threads
12438 (or creates an detached thread), a profile file can be still corrupted.
12439
12440 Using @samp{prefer-atomic} would be transformed either to @samp{atomic},
12441 when supported by a target, or to @samp{single} otherwise. The GCC driver
12442 automatically selects @samp{prefer-atomic} when @option{-pthread}
12443 is present in the command line.
12444
12445 @item -fprofile-filter-files=@var{regex}
12446 @opindex fprofile-filter-files
12447
12448 Instrument only functions from files where names match
12449 any regular expression (separated by a semi-colon).
12450
12451 For example, @option{-fprofile-filter-files=main.c;module.*.c} will instrument
12452 only @file{main.c} and all C files starting with 'module'.
12453
12454 @item -fprofile-exclude-files=@var{regex}
12455 @opindex fprofile-exclude-files
12456
12457 Instrument only functions from files where names do not match
12458 all the regular expressions (separated by a semi-colon).
12459
12460 For example, @option{-fprofile-exclude-files=/usr/*} will prevent instrumentation
12461 of all files that are located in @file{/usr/} folder.
12462
12463 @item -fsanitize=address
12464 @opindex fsanitize=address
12465 Enable AddressSanitizer, a fast memory error detector.
12466 Memory access instructions are instrumented to detect
12467 out-of-bounds and use-after-free bugs.
12468 The option enables @option{-fsanitize-address-use-after-scope}.
12469 See @uref{https://github.com/google/sanitizers/wiki/AddressSanitizer} for
12470 more details. The run-time behavior can be influenced using the
12471 @env{ASAN_OPTIONS} environment variable. When set to @code{help=1},
12472 the available options are shown at startup of the instrumented program. See
12473 @url{https://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run-time-flags}
12474 for a list of supported options.
12475 The option cannot be combined with @option{-fsanitize=thread}.
12476
12477 @item -fsanitize=kernel-address
12478 @opindex fsanitize=kernel-address
12479 Enable AddressSanitizer for Linux kernel.
12480 See @uref{https://github.com/google/kasan/wiki} for more details.
12481
12482 @item -fsanitize=pointer-compare
12483 @opindex fsanitize=pointer-compare
12484 Instrument comparison operation (<, <=, >, >=) with pointer operands.
12485 The option must be combined with either @option{-fsanitize=kernel-address} or
12486 @option{-fsanitize=address}
12487 The option cannot be combined with @option{-fsanitize=thread}.
12488 Note: By default the check is disabled at run time. To enable it,
12489 add @code{detect_invalid_pointer_pairs=2} to the environment variable
12490 @env{ASAN_OPTIONS}. Using @code{detect_invalid_pointer_pairs=1} detects
12491 invalid operation only when both pointers are non-null.
12492
12493 @item -fsanitize=pointer-subtract
12494 @opindex fsanitize=pointer-subtract
12495 Instrument subtraction with pointer operands.
12496 The option must be combined with either @option{-fsanitize=kernel-address} or
12497 @option{-fsanitize=address}
12498 The option cannot be combined with @option{-fsanitize=thread}.
12499 Note: By default the check is disabled at run time. To enable it,
12500 add @code{detect_invalid_pointer_pairs=2} to the environment variable
12501 @env{ASAN_OPTIONS}. Using @code{detect_invalid_pointer_pairs=1} detects
12502 invalid operation only when both pointers are non-null.
12503
12504 @item -fsanitize=thread
12505 @opindex fsanitize=thread
12506 Enable ThreadSanitizer, a fast data race detector.
12507 Memory access instructions are instrumented to detect
12508 data race bugs. See @uref{https://github.com/google/sanitizers/wiki#threadsanitizer} for more
12509 details. The run-time behavior can be influenced using the @env{TSAN_OPTIONS}
12510 environment variable; see
12511 @url{https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags} for a list of
12512 supported options.
12513 The option cannot be combined with @option{-fsanitize=address},
12514 @option{-fsanitize=leak}.
12515
12516 Note that sanitized atomic builtins cannot throw exceptions when
12517 operating on invalid memory addresses with non-call exceptions
12518 (@option{-fnon-call-exceptions}).
12519
12520 @item -fsanitize=leak
12521 @opindex fsanitize=leak
12522 Enable LeakSanitizer, a memory leak detector.
12523 This option only matters for linking of executables and
12524 the executable is linked against a library that overrides @code{malloc}
12525 and other allocator functions. See
12526 @uref{https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer} for more
12527 details. The run-time behavior can be influenced using the
12528 @env{LSAN_OPTIONS} environment variable.
12529 The option cannot be combined with @option{-fsanitize=thread}.
12530
12531 @item -fsanitize=undefined
12532 @opindex fsanitize=undefined
12533 Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector.
12534 Various computations are instrumented to detect undefined behavior
12535 at runtime. Current suboptions are:
12536
12537 @table @gcctabopt
12538
12539 @item -fsanitize=shift
12540 @opindex fsanitize=shift
12541 This option enables checking that the result of a shift operation is
12542 not undefined. Note that what exactly is considered undefined differs
12543 slightly between C and C++, as well as between ISO C90 and C99, etc.
12544 This option has two suboptions, @option{-fsanitize=shift-base} and
12545 @option{-fsanitize=shift-exponent}.
12546
12547 @item -fsanitize=shift-exponent
12548 @opindex fsanitize=shift-exponent
12549 This option enables checking that the second argument of a shift operation
12550 is not negative and is smaller than the precision of the promoted first
12551 argument.
12552
12553 @item -fsanitize=shift-base
12554 @opindex fsanitize=shift-base
12555 If the second argument of a shift operation is within range, check that the
12556 result of a shift operation is not undefined. Note that what exactly is
12557 considered undefined differs slightly between C and C++, as well as between
12558 ISO C90 and C99, etc.
12559
12560 @item -fsanitize=integer-divide-by-zero
12561 @opindex fsanitize=integer-divide-by-zero
12562 Detect integer division by zero as well as @code{INT_MIN / -1} division.
12563
12564 @item -fsanitize=unreachable
12565 @opindex fsanitize=unreachable
12566 With this option, the compiler turns the @code{__builtin_unreachable}
12567 call into a diagnostics message call instead. When reaching the
12568 @code{__builtin_unreachable} call, the behavior is undefined.
12569
12570 @item -fsanitize=vla-bound
12571 @opindex fsanitize=vla-bound
12572 This option instructs the compiler to check that the size of a variable
12573 length array is positive.
12574
12575 @item -fsanitize=null
12576 @opindex fsanitize=null
12577 This option enables pointer checking. Particularly, the application
12578 built with this option turned on will issue an error message when it
12579 tries to dereference a NULL pointer, or if a reference (possibly an
12580 rvalue reference) is bound to a NULL pointer, or if a method is invoked
12581 on an object pointed by a NULL pointer.
12582
12583 @item -fsanitize=return
12584 @opindex fsanitize=return
12585 This option enables return statement checking. Programs
12586 built with this option turned on will issue an error message
12587 when the end of a non-void function is reached without actually
12588 returning a value. This option works in C++ only.
12589
12590 @item -fsanitize=signed-integer-overflow
12591 @opindex fsanitize=signed-integer-overflow
12592 This option enables signed integer overflow checking. We check that
12593 the result of @code{+}, @code{*}, and both unary and binary @code{-}
12594 does not overflow in the signed arithmetics. Note, integer promotion
12595 rules must be taken into account. That is, the following is not an
12596 overflow:
12597 @smallexample
12598 signed char a = SCHAR_MAX;
12599 a++;
12600 @end smallexample
12601
12602 @item -fsanitize=bounds
12603 @opindex fsanitize=bounds
12604 This option enables instrumentation of array bounds. Various out of bounds
12605 accesses are detected. Flexible array members, flexible array member-like
12606 arrays, and initializers of variables with static storage are not instrumented.
12607
12608 @item -fsanitize=bounds-strict
12609 @opindex fsanitize=bounds-strict
12610 This option enables strict instrumentation of array bounds. Most out of bounds
12611 accesses are detected, including flexible array members and flexible array
12612 member-like arrays. Initializers of variables with static storage are not
12613 instrumented.
12614
12615 @item -fsanitize=alignment
12616 @opindex fsanitize=alignment
12617
12618 This option enables checking of alignment of pointers when they are
12619 dereferenced, or when a reference is bound to insufficiently aligned target,
12620 or when a method or constructor is invoked on insufficiently aligned object.
12621
12622 @item -fsanitize=object-size
12623 @opindex fsanitize=object-size
12624 This option enables instrumentation of memory references using the
12625 @code{__builtin_object_size} function. Various out of bounds pointer
12626 accesses are detected.
12627
12628 @item -fsanitize=float-divide-by-zero
12629 @opindex fsanitize=float-divide-by-zero
12630 Detect floating-point division by zero. Unlike other similar options,
12631 @option{-fsanitize=float-divide-by-zero} is not enabled by
12632 @option{-fsanitize=undefined}, since floating-point division by zero can
12633 be a legitimate way of obtaining infinities and NaNs.
12634
12635 @item -fsanitize=float-cast-overflow
12636 @opindex fsanitize=float-cast-overflow
12637 This option enables floating-point type to integer conversion checking.
12638 We check that the result of the conversion does not overflow.
12639 Unlike other similar options, @option{-fsanitize=float-cast-overflow} is
12640 not enabled by @option{-fsanitize=undefined}.
12641 This option does not work well with @code{FE_INVALID} exceptions enabled.
12642
12643 @item -fsanitize=nonnull-attribute
12644 @opindex fsanitize=nonnull-attribute
12645
12646 This option enables instrumentation of calls, checking whether null values
12647 are not passed to arguments marked as requiring a non-null value by the
12648 @code{nonnull} function attribute.
12649
12650 @item -fsanitize=returns-nonnull-attribute
12651 @opindex fsanitize=returns-nonnull-attribute
12652
12653 This option enables instrumentation of return statements in functions
12654 marked with @code{returns_nonnull} function attribute, to detect returning
12655 of null values from such functions.
12656
12657 @item -fsanitize=bool
12658 @opindex fsanitize=bool
12659
12660 This option enables instrumentation of loads from bool. If a value other
12661 than 0/1 is loaded, a run-time error is issued.
12662
12663 @item -fsanitize=enum
12664 @opindex fsanitize=enum
12665
12666 This option enables instrumentation of loads from an enum type. If
12667 a value outside the range of values for the enum type is loaded,
12668 a run-time error is issued.
12669
12670 @item -fsanitize=vptr
12671 @opindex fsanitize=vptr
12672
12673 This option enables instrumentation of C++ member function calls, member
12674 accesses and some conversions between pointers to base and derived classes,
12675 to verify the referenced object has the correct dynamic type.
12676
12677 @item -fsanitize=pointer-overflow
12678 @opindex fsanitize=pointer-overflow
12679
12680 This option enables instrumentation of pointer arithmetics. If the pointer
12681 arithmetics overflows, a run-time error is issued.
12682
12683 @item -fsanitize=builtin
12684 @opindex fsanitize=builtin
12685
12686 This option enables instrumentation of arguments to selected builtin
12687 functions. If an invalid value is passed to such arguments, a run-time
12688 error is issued. E.g.@ passing 0 as the argument to @code{__builtin_ctz}
12689 or @code{__builtin_clz} invokes undefined behavior and is diagnosed
12690 by this option.
12691
12692 @end table
12693
12694 While @option{-ftrapv} causes traps for signed overflows to be emitted,
12695 @option{-fsanitize=undefined} gives a diagnostic message.
12696 This currently works only for the C family of languages.
12697
12698 @item -fno-sanitize=all
12699 @opindex fno-sanitize=all
12700
12701 This option disables all previously enabled sanitizers.
12702 @option{-fsanitize=all} is not allowed, as some sanitizers cannot be used
12703 together.
12704
12705 @item -fasan-shadow-offset=@var{number}
12706 @opindex fasan-shadow-offset
12707 This option forces GCC to use custom shadow offset in AddressSanitizer checks.
12708 It is useful for experimenting with different shadow memory layouts in
12709 Kernel AddressSanitizer.
12710
12711 @item -fsanitize-sections=@var{s1},@var{s2},...
12712 @opindex fsanitize-sections
12713 Sanitize global variables in selected user-defined sections. @var{si} may
12714 contain wildcards.
12715
12716 @item -fsanitize-recover@r{[}=@var{opts}@r{]}
12717 @opindex fsanitize-recover
12718 @opindex fno-sanitize-recover
12719 @option{-fsanitize-recover=} controls error recovery mode for sanitizers
12720 mentioned in comma-separated list of @var{opts}. Enabling this option
12721 for a sanitizer component causes it to attempt to continue
12722 running the program as if no error happened. This means multiple
12723 runtime errors can be reported in a single program run, and the exit
12724 code of the program may indicate success even when errors
12725 have been reported. The @option{-fno-sanitize-recover=} option
12726 can be used to alter
12727 this behavior: only the first detected error is reported
12728 and program then exits with a non-zero exit code.
12729
12730 Currently this feature only works for @option{-fsanitize=undefined} (and its suboptions
12731 except for @option{-fsanitize=unreachable} and @option{-fsanitize=return}),
12732 @option{-fsanitize=float-cast-overflow}, @option{-fsanitize=float-divide-by-zero},
12733 @option{-fsanitize=bounds-strict},
12734 @option{-fsanitize=kernel-address} and @option{-fsanitize=address}.
12735 For these sanitizers error recovery is turned on by default,
12736 except @option{-fsanitize=address}, for which this feature is experimental.
12737 @option{-fsanitize-recover=all} and @option{-fno-sanitize-recover=all} is also
12738 accepted, the former enables recovery for all sanitizers that support it,
12739 the latter disables recovery for all sanitizers that support it.
12740
12741 Even if a recovery mode is turned on the compiler side, it needs to be also
12742 enabled on the runtime library side, otherwise the failures are still fatal.
12743 The runtime library defaults to @code{halt_on_error=0} for
12744 ThreadSanitizer and UndefinedBehaviorSanitizer, while default value for
12745 AddressSanitizer is @code{halt_on_error=1}. This can be overridden through
12746 setting the @code{halt_on_error} flag in the corresponding environment variable.
12747
12748 Syntax without an explicit @var{opts} parameter is deprecated. It is
12749 equivalent to specifying an @var{opts} list of:
12750
12751 @smallexample
12752 undefined,float-cast-overflow,float-divide-by-zero,bounds-strict
12753 @end smallexample
12754
12755 @item -fsanitize-address-use-after-scope
12756 @opindex fsanitize-address-use-after-scope
12757 Enable sanitization of local variables to detect use-after-scope bugs.
12758 The option sets @option{-fstack-reuse} to @samp{none}.
12759
12760 @item -fsanitize-undefined-trap-on-error
12761 @opindex fsanitize-undefined-trap-on-error
12762 The @option{-fsanitize-undefined-trap-on-error} option instructs the compiler to
12763 report undefined behavior using @code{__builtin_trap} rather than
12764 a @code{libubsan} library routine. The advantage of this is that the
12765 @code{libubsan} library is not needed and is not linked in, so this
12766 is usable even in freestanding environments.
12767
12768 @item -fsanitize-coverage=trace-pc
12769 @opindex fsanitize-coverage=trace-pc
12770 Enable coverage-guided fuzzing code instrumentation.
12771 Inserts a call to @code{__sanitizer_cov_trace_pc} into every basic block.
12772
12773 @item -fsanitize-coverage=trace-cmp
12774 @opindex fsanitize-coverage=trace-cmp
12775 Enable dataflow guided fuzzing code instrumentation.
12776 Inserts a call to @code{__sanitizer_cov_trace_cmp1},
12777 @code{__sanitizer_cov_trace_cmp2}, @code{__sanitizer_cov_trace_cmp4} or
12778 @code{__sanitizer_cov_trace_cmp8} for integral comparison with both operands
12779 variable or @code{__sanitizer_cov_trace_const_cmp1},
12780 @code{__sanitizer_cov_trace_const_cmp2},
12781 @code{__sanitizer_cov_trace_const_cmp4} or
12782 @code{__sanitizer_cov_trace_const_cmp8} for integral comparison with one
12783 operand constant, @code{__sanitizer_cov_trace_cmpf} or
12784 @code{__sanitizer_cov_trace_cmpd} for float or double comparisons and
12785 @code{__sanitizer_cov_trace_switch} for switch statements.
12786
12787 @item -fcf-protection=@r{[}full@r{|}branch@r{|}return@r{|}none@r{]}
12788 @opindex fcf-protection
12789 Enable code instrumentation of control-flow transfers to increase
12790 program security by checking that target addresses of control-flow
12791 transfer instructions (such as indirect function call, function return,
12792 indirect jump) are valid. This prevents diverting the flow of control
12793 to an unexpected target. This is intended to protect against such
12794 threats as Return-oriented Programming (ROP), and similarly
12795 call/jmp-oriented programming (COP/JOP).
12796
12797 The value @code{branch} tells the compiler to implement checking of
12798 validity of control-flow transfer at the point of indirect branch
12799 instructions, i.e.@: call/jmp instructions. The value @code{return}
12800 implements checking of validity at the point of returning from a
12801 function. The value @code{full} is an alias for specifying both
12802 @code{branch} and @code{return}. The value @code{none} turns off
12803 instrumentation.
12804
12805 The macro @code{__CET__} is defined when @option{-fcf-protection} is
12806 used. The first bit of @code{__CET__} is set to 1 for the value
12807 @code{branch} and the second bit of @code{__CET__} is set to 1 for
12808 the @code{return}.
12809
12810 You can also use the @code{nocf_check} attribute to identify
12811 which functions and calls should be skipped from instrumentation
12812 (@pxref{Function Attributes}).
12813
12814 Currently the x86 GNU/Linux target provides an implementation based
12815 on Intel Control-flow Enforcement Technology (CET).
12816
12817 @item -fstack-protector
12818 @opindex fstack-protector
12819 Emit extra code to check for buffer overflows, such as stack smashing
12820 attacks. This is done by adding a guard variable to functions with
12821 vulnerable objects. This includes functions that call @code{alloca}, and
12822 functions with buffers larger than 8 bytes. The guards are initialized
12823 when a function is entered and then checked when the function exits.
12824 If a guard check fails, an error message is printed and the program exits.
12825
12826 @item -fstack-protector-all
12827 @opindex fstack-protector-all
12828 Like @option{-fstack-protector} except that all functions are protected.
12829
12830 @item -fstack-protector-strong
12831 @opindex fstack-protector-strong
12832 Like @option{-fstack-protector} but includes additional functions to
12833 be protected --- those that have local array definitions, or have
12834 references to local frame addresses.
12835
12836 @item -fstack-protector-explicit
12837 @opindex fstack-protector-explicit
12838 Like @option{-fstack-protector} but only protects those functions which
12839 have the @code{stack_protect} attribute.
12840
12841 @item -fstack-check
12842 @opindex fstack-check
12843 Generate code to verify that you do not go beyond the boundary of the
12844 stack. You should specify this flag if you are running in an
12845 environment with multiple threads, but you only rarely need to specify it in
12846 a single-threaded environment since stack overflow is automatically
12847 detected on nearly all systems if there is only one stack.
12848
12849 Note that this switch does not actually cause checking to be done; the
12850 operating system or the language runtime must do that. The switch causes
12851 generation of code to ensure that they see the stack being extended.
12852
12853 You can additionally specify a string parameter: @samp{no} means no
12854 checking, @samp{generic} means force the use of old-style checking,
12855 @samp{specific} means use the best checking method and is equivalent
12856 to bare @option{-fstack-check}.
12857
12858 Old-style checking is a generic mechanism that requires no specific
12859 target support in the compiler but comes with the following drawbacks:
12860
12861 @enumerate
12862 @item
12863 Modified allocation strategy for large objects: they are always
12864 allocated dynamically if their size exceeds a fixed threshold. Note this
12865 may change the semantics of some code.
12866
12867 @item
12868 Fixed limit on the size of the static frame of functions: when it is
12869 topped by a particular function, stack checking is not reliable and
12870 a warning is issued by the compiler.
12871
12872 @item
12873 Inefficiency: because of both the modified allocation strategy and the
12874 generic implementation, code performance is hampered.
12875 @end enumerate
12876
12877 Note that old-style stack checking is also the fallback method for
12878 @samp{specific} if no target support has been added in the compiler.
12879
12880 @samp{-fstack-check=} is designed for Ada's needs to detect infinite recursion
12881 and stack overflows. @samp{specific} is an excellent choice when compiling
12882 Ada code. It is not generally sufficient to protect against stack-clash
12883 attacks. To protect against those you want @samp{-fstack-clash-protection}.
12884
12885 @item -fstack-clash-protection
12886 @opindex fstack-clash-protection
12887 Generate code to prevent stack clash style attacks. When this option is
12888 enabled, the compiler will only allocate one page of stack space at a time
12889 and each page is accessed immediately after allocation. Thus, it prevents
12890 allocations from jumping over any stack guard page provided by the
12891 operating system.
12892
12893 Most targets do not fully support stack clash protection. However, on
12894 those targets @option{-fstack-clash-protection} will protect dynamic stack
12895 allocations. @option{-fstack-clash-protection} may also provide limited
12896 protection for static stack allocations if the target supports
12897 @option{-fstack-check=specific}.
12898
12899 @item -fstack-limit-register=@var{reg}
12900 @itemx -fstack-limit-symbol=@var{sym}
12901 @itemx -fno-stack-limit
12902 @opindex fstack-limit-register
12903 @opindex fstack-limit-symbol
12904 @opindex fno-stack-limit
12905 Generate code to ensure that the stack does not grow beyond a certain value,
12906 either the value of a register or the address of a symbol. If a larger
12907 stack is required, a signal is raised at run time. For most targets,
12908 the signal is raised before the stack overruns the boundary, so
12909 it is possible to catch the signal without taking special precautions.
12910
12911 For instance, if the stack starts at absolute address @samp{0x80000000}
12912 and grows downwards, you can use the flags
12913 @option{-fstack-limit-symbol=__stack_limit} and
12914 @option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit
12915 of 128KB@. Note that this may only work with the GNU linker.
12916
12917 You can locally override stack limit checking by using the
12918 @code{no_stack_limit} function attribute (@pxref{Function Attributes}).
12919
12920 @item -fsplit-stack
12921 @opindex fsplit-stack
12922 Generate code to automatically split the stack before it overflows.
12923 The resulting program has a discontiguous stack which can only
12924 overflow if the program is unable to allocate any more memory. This
12925 is most useful when running threaded programs, as it is no longer
12926 necessary to calculate a good stack size to use for each thread. This
12927 is currently only implemented for the x86 targets running
12928 GNU/Linux.
12929
12930 When code compiled with @option{-fsplit-stack} calls code compiled
12931 without @option{-fsplit-stack}, there may not be much stack space
12932 available for the latter code to run. If compiling all code,
12933 including library code, with @option{-fsplit-stack} is not an option,
12934 then the linker can fix up these calls so that the code compiled
12935 without @option{-fsplit-stack} always has a large stack. Support for
12936 this is implemented in the gold linker in GNU binutils release 2.21
12937 and later.
12938
12939 @item -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]}
12940 @opindex fvtable-verify
12941 This option is only available when compiling C++ code.
12942 It turns on (or off, if using @option{-fvtable-verify=none}) the security
12943 feature that verifies at run time, for every virtual call, that
12944 the vtable pointer through which the call is made is valid for the type of
12945 the object, and has not been corrupted or overwritten. If an invalid vtable
12946 pointer is detected at run time, an error is reported and execution of the
12947 program is immediately halted.
12948
12949 This option causes run-time data structures to be built at program startup,
12950 which are used for verifying the vtable pointers.
12951 The options @samp{std} and @samp{preinit}
12952 control the timing of when these data structures are built. In both cases the
12953 data structures are built before execution reaches @code{main}. Using
12954 @option{-fvtable-verify=std} causes the data structures to be built after
12955 shared libraries have been loaded and initialized.
12956 @option{-fvtable-verify=preinit} causes them to be built before shared
12957 libraries have been loaded and initialized.
12958
12959 If this option appears multiple times in the command line with different
12960 values specified, @samp{none} takes highest priority over both @samp{std} and
12961 @samp{preinit}; @samp{preinit} takes priority over @samp{std}.
12962
12963 @item -fvtv-debug
12964 @opindex fvtv-debug
12965 When used in conjunction with @option{-fvtable-verify=std} or
12966 @option{-fvtable-verify=preinit}, causes debug versions of the
12967 runtime functions for the vtable verification feature to be called.
12968 This flag also causes the compiler to log information about which
12969 vtable pointers it finds for each class.
12970 This information is written to a file named @file{vtv_set_ptr_data.log}
12971 in the directory named by the environment variable @env{VTV_LOGS_DIR}
12972 if that is defined or the current working directory otherwise.
12973
12974 Note: This feature @emph{appends} data to the log file. If you want a fresh log
12975 file, be sure to delete any existing one.
12976
12977 @item -fvtv-counts
12978 @opindex fvtv-counts
12979 This is a debugging flag. When used in conjunction with
12980 @option{-fvtable-verify=std} or @option{-fvtable-verify=preinit}, this
12981 causes the compiler to keep track of the total number of virtual calls
12982 it encounters and the number of verifications it inserts. It also
12983 counts the number of calls to certain run-time library functions
12984 that it inserts and logs this information for each compilation unit.
12985 The compiler writes this information to a file named
12986 @file{vtv_count_data.log} in the directory named by the environment
12987 variable @env{VTV_LOGS_DIR} if that is defined or the current working
12988 directory otherwise. It also counts the size of the vtable pointer sets
12989 for each class, and writes this information to @file{vtv_class_set_sizes.log}
12990 in the same directory.
12991
12992 Note: This feature @emph{appends} data to the log files. To get fresh log
12993 files, be sure to delete any existing ones.
12994
12995 @item -finstrument-functions
12996 @opindex finstrument-functions
12997 Generate instrumentation calls for entry and exit to functions. Just
12998 after function entry and just before function exit, the following
12999 profiling functions are called with the address of the current
13000 function and its call site. (On some platforms,
13001 @code{__builtin_return_address} does not work beyond the current
13002 function, so the call site information may not be available to the
13003 profiling functions otherwise.)
13004
13005 @smallexample
13006 void __cyg_profile_func_enter (void *this_fn,
13007 void *call_site);
13008 void __cyg_profile_func_exit (void *this_fn,
13009 void *call_site);
13010 @end smallexample
13011
13012 The first argument is the address of the start of the current function,
13013 which may be looked up exactly in the symbol table.
13014
13015 This instrumentation is also done for functions expanded inline in other
13016 functions. The profiling calls indicate where, conceptually, the
13017 inline function is entered and exited. This means that addressable
13018 versions of such functions must be available. If all your uses of a
13019 function are expanded inline, this may mean an additional expansion of
13020 code size. If you use @code{extern inline} in your C code, an
13021 addressable version of such functions must be provided. (This is
13022 normally the case anyway, but if you get lucky and the optimizer always
13023 expands the functions inline, you might have gotten away without
13024 providing static copies.)
13025
13026 A function may be given the attribute @code{no_instrument_function}, in
13027 which case this instrumentation is not done. This can be used, for
13028 example, for the profiling functions listed above, high-priority
13029 interrupt routines, and any functions from which the profiling functions
13030 cannot safely be called (perhaps signal handlers, if the profiling
13031 routines generate output or allocate memory).
13032 @xref{Common Function Attributes}.
13033
13034 @item -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}
13035 @opindex finstrument-functions-exclude-file-list
13036
13037 Set the list of functions that are excluded from instrumentation (see
13038 the description of @option{-finstrument-functions}). If the file that
13039 contains a function definition matches with one of @var{file}, then
13040 that function is not instrumented. The match is done on substrings:
13041 if the @var{file} parameter is a substring of the file name, it is
13042 considered to be a match.
13043
13044 For example:
13045
13046 @smallexample
13047 -finstrument-functions-exclude-file-list=/bits/stl,include/sys
13048 @end smallexample
13049
13050 @noindent
13051 excludes any inline function defined in files whose pathnames
13052 contain @file{/bits/stl} or @file{include/sys}.
13053
13054 If, for some reason, you want to include letter @samp{,} in one of
13055 @var{sym}, write @samp{\,}. For example,
13056 @option{-finstrument-functions-exclude-file-list='\,\,tmp'}
13057 (note the single quote surrounding the option).
13058
13059 @item -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{}
13060 @opindex finstrument-functions-exclude-function-list
13061
13062 This is similar to @option{-finstrument-functions-exclude-file-list},
13063 but this option sets the list of function names to be excluded from
13064 instrumentation. The function name to be matched is its user-visible
13065 name, such as @code{vector<int> blah(const vector<int> &)}, not the
13066 internal mangled name (e.g., @code{_Z4blahRSt6vectorIiSaIiEE}). The
13067 match is done on substrings: if the @var{sym} parameter is a substring
13068 of the function name, it is considered to be a match. For C99 and C++
13069 extended identifiers, the function name must be given in UTF-8, not
13070 using universal character names.
13071
13072 @item -fpatchable-function-entry=@var{N}[,@var{M}]
13073 @opindex fpatchable-function-entry
13074 Generate @var{N} NOPs right at the beginning
13075 of each function, with the function entry point before the @var{M}th NOP.
13076 If @var{M} is omitted, it defaults to @code{0} so the
13077 function entry points to the address just at the first NOP.
13078 The NOP instructions reserve extra space which can be used to patch in
13079 any desired instrumentation at run time, provided that the code segment
13080 is writable. The amount of space is controllable indirectly via
13081 the number of NOPs; the NOP instruction used corresponds to the instruction
13082 emitted by the internal GCC back-end interface @code{gen_nop}. This behavior
13083 is target-specific and may also depend on the architecture variant and/or
13084 other compilation options.
13085
13086 For run-time identification, the starting addresses of these areas,
13087 which correspond to their respective function entries minus @var{M},
13088 are additionally collected in the @code{__patchable_function_entries}
13089 section of the resulting binary.
13090
13091 Note that the value of @code{__attribute__ ((patchable_function_entry
13092 (N,M)))} takes precedence over command-line option
13093 @option{-fpatchable-function-entry=N,M}. This can be used to increase
13094 the area size or to remove it completely on a single function.
13095 If @code{N=0}, no pad location is recorded.
13096
13097 The NOP instructions are inserted at---and maybe before, depending on
13098 @var{M}---the function entry address, even before the prologue.
13099
13100 @end table
13101
13102
13103 @node Preprocessor Options
13104 @section Options Controlling the Preprocessor
13105 @cindex preprocessor options
13106 @cindex options, preprocessor
13107
13108 These options control the C preprocessor, which is run on each C source
13109 file before actual compilation.
13110
13111 If you use the @option{-E} option, nothing is done except preprocessing.
13112 Some of these options make sense only together with @option{-E} because
13113 they cause the preprocessor output to be unsuitable for actual
13114 compilation.
13115
13116 In addition to the options listed here, there are a number of options
13117 to control search paths for include files documented in
13118 @ref{Directory Options}.
13119 Options to control preprocessor diagnostics are listed in
13120 @ref{Warning Options}.
13121
13122 @table @gcctabopt
13123 @include cppopts.texi
13124
13125 @item -Wp,@var{option}
13126 @opindex Wp
13127 You can use @option{-Wp,@var{option}} to bypass the compiler driver
13128 and pass @var{option} directly through to the preprocessor. If
13129 @var{option} contains commas, it is split into multiple options at the
13130 commas. However, many options are modified, translated or interpreted
13131 by the compiler driver before being passed to the preprocessor, and
13132 @option{-Wp} forcibly bypasses this phase. The preprocessor's direct
13133 interface is undocumented and subject to change, so whenever possible
13134 you should avoid using @option{-Wp} and let the driver handle the
13135 options instead.
13136
13137 @item -Xpreprocessor @var{option}
13138 @opindex Xpreprocessor
13139 Pass @var{option} as an option to the preprocessor. You can use this to
13140 supply system-specific preprocessor options that GCC does not
13141 recognize.
13142
13143 If you want to pass an option that takes an argument, you must use
13144 @option{-Xpreprocessor} twice, once for the option and once for the argument.
13145
13146 @item -no-integrated-cpp
13147 @opindex no-integrated-cpp
13148 Perform preprocessing as a separate pass before compilation.
13149 By default, GCC performs preprocessing as an integrated part of
13150 input tokenization and parsing.
13151 If this option is provided, the appropriate language front end
13152 (@command{cc1}, @command{cc1plus}, or @command{cc1obj} for C, C++,
13153 and Objective-C, respectively) is instead invoked twice,
13154 once for preprocessing only and once for actual compilation
13155 of the preprocessed input.
13156 This option may be useful in conjunction with the @option{-B} or
13157 @option{-wrapper} options to specify an alternate preprocessor or
13158 perform additional processing of the program source between
13159 normal preprocessing and compilation.
13160
13161 @end table
13162
13163 @node Assembler Options
13164 @section Passing Options to the Assembler
13165
13166 @c prevent bad page break with this line
13167 You can pass options to the assembler.
13168
13169 @table @gcctabopt
13170 @item -Wa,@var{option}
13171 @opindex Wa
13172 Pass @var{option} as an option to the assembler. If @var{option}
13173 contains commas, it is split into multiple options at the commas.
13174
13175 @item -Xassembler @var{option}
13176 @opindex Xassembler
13177 Pass @var{option} as an option to the assembler. You can use this to
13178 supply system-specific assembler options that GCC does not
13179 recognize.
13180
13181 If you want to pass an option that takes an argument, you must use
13182 @option{-Xassembler} twice, once for the option and once for the argument.
13183
13184 @end table
13185
13186 @node Link Options
13187 @section Options for Linking
13188 @cindex link options
13189 @cindex options, linking
13190
13191 These options come into play when the compiler links object files into
13192 an executable output file. They are meaningless if the compiler is
13193 not doing a link step.
13194
13195 @table @gcctabopt
13196 @cindex file names
13197 @item @var{object-file-name}
13198 A file name that does not end in a special recognized suffix is
13199 considered to name an object file or library. (Object files are
13200 distinguished from libraries by the linker according to the file
13201 contents.) If linking is done, these object files are used as input
13202 to the linker.
13203
13204 @item -c
13205 @itemx -S
13206 @itemx -E
13207 @opindex c
13208 @opindex S
13209 @opindex E
13210 If any of these options is used, then the linker is not run, and
13211 object file names should not be used as arguments. @xref{Overall
13212 Options}.
13213
13214 @item -flinker-output=@var{type}
13215 @opindex flinker-output
13216 This option controls code generation of the link-time optimizer. By
13217 default the linker output is automatically determined by the linker
13218 plugin. For debugging the compiler and if incremental linking with a
13219 non-LTO object file is desired, it may be useful to control the type
13220 manually.
13221
13222 If @var{type} is @samp{exec}, code generation produces a static
13223 binary. In this case @option{-fpic} and @option{-fpie} are both
13224 disabled.
13225
13226 If @var{type} is @samp{dyn}, code generation produces a shared
13227 library. In this case @option{-fpic} or @option{-fPIC} is preserved,
13228 but not enabled automatically. This allows to build shared libraries
13229 without position-independent code on architectures where this is
13230 possible, i.e.@: on x86.
13231
13232 If @var{type} is @samp{pie}, code generation produces an @option{-fpie}
13233 executable. This results in similar optimizations as @samp{exec}
13234 except that @option{-fpie} is not disabled if specified at compilation
13235 time.
13236
13237 If @var{type} is @samp{rel}, the compiler assumes that incremental linking is
13238 done. The sections containing intermediate code for link-time optimization are
13239 merged, pre-optimized, and output to the resulting object file. In addition, if
13240 @option{-ffat-lto-objects} is specified, binary code is produced for future
13241 non-LTO linking. The object file produced by incremental linking is smaller
13242 than a static library produced from the same object files. At link time the
13243 result of incremental linking also loads faster than a static
13244 library assuming that the majority of objects in the library are used.
13245
13246 Finally @samp{nolto-rel} configures the compiler for incremental linking where
13247 code generation is forced, a final binary is produced, and the intermediate
13248 code for later link-time optimization is stripped. When multiple object files
13249 are linked together the resulting code is better optimized than with
13250 link-time optimizations disabled (for example, cross-module inlining
13251 happens), but most of benefits of whole program optimizations are lost.
13252
13253 During the incremental link (by @option{-r}) the linker plugin defaults to
13254 @option{rel}. With current interfaces to GNU Binutils it is however not
13255 possible to incrementally link LTO objects and non-LTO objects into a single
13256 mixed object file. If any of object files in incremental link cannot
13257 be used for link-time optimization, the linker plugin issues a warning and
13258 uses @samp{nolto-rel}. To maintain whole program optimization, it is
13259 recommended to link such objects into static library instead. Alternatively it
13260 is possible to use H.J. Lu's binutils with support for mixed objects.
13261
13262 @item -fuse-ld=bfd
13263 @opindex fuse-ld=bfd
13264 Use the @command{bfd} linker instead of the default linker.
13265
13266 @item -fuse-ld=gold
13267 @opindex fuse-ld=gold
13268 Use the @command{gold} linker instead of the default linker.
13269
13270 @item -fuse-ld=lld
13271 @opindex fuse-ld=lld
13272 Use the LLVM @command{lld} linker instead of the default linker.
13273
13274 @cindex Libraries
13275 @item -l@var{library}
13276 @itemx -l @var{library}
13277 @opindex l
13278 Search the library named @var{library} when linking. (The second
13279 alternative with the library as a separate argument is only for
13280 POSIX compliance and is not recommended.)
13281
13282 The @option{-l} option is passed directly to the linker by GCC. Refer
13283 to your linker documentation for exact details. The general
13284 description below applies to the GNU linker.
13285
13286 The linker searches a standard list of directories for the library.
13287 The directories searched include several standard system directories
13288 plus any that you specify with @option{-L}.
13289
13290 Static libraries are archives of object files, and have file names
13291 like @file{lib@var{library}.a}. Some targets also support shared
13292 libraries, which typically have names like @file{lib@var{library}.so}.
13293 If both static and shared libraries are found, the linker gives
13294 preference to linking with the shared library unless the
13295 @option{-static} option is used.
13296
13297 It makes a difference where in the command you write this option; the
13298 linker searches and processes libraries and object files in the order they
13299 are specified. Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
13300 after file @file{foo.o} but before @file{bar.o}. If @file{bar.o} refers
13301 to functions in @samp{z}, those functions may not be loaded.
13302
13303 @item -lobjc
13304 @opindex lobjc
13305 You need this special case of the @option{-l} option in order to
13306 link an Objective-C or Objective-C++ program.
13307
13308 @item -nostartfiles
13309 @opindex nostartfiles
13310 Do not use the standard system startup files when linking.
13311 The standard system libraries are used normally, unless @option{-nostdlib},
13312 @option{-nolibc}, or @option{-nodefaultlibs} is used.
13313
13314 @item -nodefaultlibs
13315 @opindex nodefaultlibs
13316 Do not use the standard system libraries when linking.
13317 Only the libraries you specify are passed to the linker, and options
13318 specifying linkage of the system libraries, such as @option{-static-libgcc}
13319 or @option{-shared-libgcc}, are ignored.
13320 The standard startup files are used normally, unless @option{-nostartfiles}
13321 is used.
13322
13323 The compiler may generate calls to @code{memcmp},
13324 @code{memset}, @code{memcpy} and @code{memmove}.
13325 These entries are usually resolved by entries in
13326 libc. These entry points should be supplied through some other
13327 mechanism when this option is specified.
13328
13329 @item -nolibc
13330 @opindex nolibc
13331 Do not use the C library or system libraries tightly coupled with it when
13332 linking. Still link with the startup files, @file{libgcc} or toolchain
13333 provided language support libraries such as @file{libgnat}, @file{libgfortran}
13334 or @file{libstdc++} unless options preventing their inclusion are used as
13335 well. This typically removes @option{-lc} from the link command line, as well
13336 as system libraries that normally go with it and become meaningless when
13337 absence of a C library is assumed, for example @option{-lpthread} or
13338 @option{-lm} in some configurations. This is intended for bare-board
13339 targets when there is indeed no C library available.
13340
13341 @item -nostdlib
13342 @opindex nostdlib
13343 Do not use the standard system startup files or libraries when linking.
13344 No startup files and only the libraries you specify are passed to
13345 the linker, and options specifying linkage of the system libraries, such as
13346 @option{-static-libgcc} or @option{-shared-libgcc}, are ignored.
13347
13348 The compiler may generate calls to @code{memcmp}, @code{memset},
13349 @code{memcpy} and @code{memmove}.
13350 These entries are usually resolved by entries in
13351 libc. These entry points should be supplied through some other
13352 mechanism when this option is specified.
13353
13354 @cindex @option{-lgcc}, use with @option{-nostdlib}
13355 @cindex @option{-nostdlib} and unresolved references
13356 @cindex unresolved references and @option{-nostdlib}
13357 @cindex @option{-lgcc}, use with @option{-nodefaultlibs}
13358 @cindex @option{-nodefaultlibs} and unresolved references
13359 @cindex unresolved references and @option{-nodefaultlibs}
13360 One of the standard libraries bypassed by @option{-nostdlib} and
13361 @option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
13362 which GCC uses to overcome shortcomings of particular machines, or special
13363 needs for some languages.
13364 (@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
13365 Collection (GCC) Internals},
13366 for more discussion of @file{libgcc.a}.)
13367 In most cases, you need @file{libgcc.a} even when you want to avoid
13368 other standard libraries. In other words, when you specify @option{-nostdlib}
13369 or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
13370 This ensures that you have no unresolved references to internal GCC
13371 library subroutines.
13372 (An example of such an internal subroutine is @code{__main}, used to ensure C++
13373 constructors are called; @pxref{Collect2,,@code{collect2}, gccint,
13374 GNU Compiler Collection (GCC) Internals}.)
13375
13376 @item -e @var{entry}
13377 @itemx --entry=@var{entry}
13378 @opindex e
13379 @opindex entry
13380
13381 Specify that the program entry point is @var{entry}. The argument is
13382 interpreted by the linker; the GNU linker accepts either a symbol name
13383 or an address.
13384
13385 @item -pie
13386 @opindex pie
13387 Produce a dynamically linked position independent executable on targets
13388 that support it. For predictable results, you must also specify the same
13389 set of options used for compilation (@option{-fpie}, @option{-fPIE},
13390 or model suboptions) when you specify this linker option.
13391
13392 @item -no-pie
13393 @opindex no-pie
13394 Don't produce a dynamically linked position independent executable.
13395
13396 @item -static-pie
13397 @opindex static-pie
13398 Produce a static position independent executable on targets that support
13399 it. A static position independent executable is similar to a static
13400 executable, but can be loaded at any address without a dynamic linker.
13401 For predictable results, you must also specify the same set of options
13402 used for compilation (@option{-fpie}, @option{-fPIE}, or model
13403 suboptions) when you specify this linker option.
13404
13405 @item -pthread
13406 @opindex pthread
13407 Link with the POSIX threads library. This option is supported on
13408 GNU/Linux targets, most other Unix derivatives, and also on
13409 x86 Cygwin and MinGW targets. On some targets this option also sets
13410 flags for the preprocessor, so it should be used consistently for both
13411 compilation and linking.
13412
13413 @item -r
13414 @opindex r
13415 Produce a relocatable object as output. This is also known as partial
13416 linking.
13417
13418 @item -rdynamic
13419 @opindex rdynamic
13420 Pass the flag @option{-export-dynamic} to the ELF linker, on targets
13421 that support it. This instructs the linker to add all symbols, not
13422 only used ones, to the dynamic symbol table. This option is needed
13423 for some uses of @code{dlopen} or to allow obtaining backtraces
13424 from within a program.
13425
13426 @item -s
13427 @opindex s
13428 Remove all symbol table and relocation information from the executable.
13429
13430 @item -static
13431 @opindex static
13432 On systems that support dynamic linking, this overrides @option{-pie}
13433 and prevents linking with the shared libraries. On other systems, this
13434 option has no effect.
13435
13436 @item -shared
13437 @opindex shared
13438 Produce a shared object which can then be linked with other objects to
13439 form an executable. Not all systems support this option. For predictable
13440 results, you must also specify the same set of options used for compilation
13441 (@option{-fpic}, @option{-fPIC}, or model suboptions) when
13442 you specify this linker option.@footnote{On some systems, @samp{gcc -shared}
13443 needs to build supplementary stub code for constructors to work. On
13444 multi-libbed systems, @samp{gcc -shared} must select the correct support
13445 libraries to link against. Failing to supply the correct flags may lead
13446 to subtle defects. Supplying them in cases where they are not necessary
13447 is innocuous.}
13448
13449 @item -shared-libgcc
13450 @itemx -static-libgcc
13451 @opindex shared-libgcc
13452 @opindex static-libgcc
13453 On systems that provide @file{libgcc} as a shared library, these options
13454 force the use of either the shared or static version, respectively.
13455 If no shared version of @file{libgcc} was built when the compiler was
13456 configured, these options have no effect.
13457
13458 There are several situations in which an application should use the
13459 shared @file{libgcc} instead of the static version. The most common
13460 of these is when the application wishes to throw and catch exceptions
13461 across different shared libraries. In that case, each of the libraries
13462 as well as the application itself should use the shared @file{libgcc}.
13463
13464 Therefore, the G++ driver automatically adds @option{-shared-libgcc}
13465 whenever you build a shared library or a main executable, because C++
13466 programs typically use exceptions, so this is the right thing to do.
13467
13468 If, instead, you use the GCC driver to create shared libraries, you may
13469 find that they are not always linked with the shared @file{libgcc}.
13470 If GCC finds, at its configuration time, that you have a non-GNU linker
13471 or a GNU linker that does not support option @option{--eh-frame-hdr},
13472 it links the shared version of @file{libgcc} into shared libraries
13473 by default. Otherwise, it takes advantage of the linker and optimizes
13474 away the linking with the shared version of @file{libgcc}, linking with
13475 the static version of libgcc by default. This allows exceptions to
13476 propagate through such shared libraries, without incurring relocation
13477 costs at library load time.
13478
13479 However, if a library or main executable is supposed to throw or catch
13480 exceptions, you must link it using the G++ driver, or using the option
13481 @option{-shared-libgcc}, such that it is linked with the shared
13482 @file{libgcc}.
13483
13484 @item -static-libasan
13485 @opindex static-libasan
13486 When the @option{-fsanitize=address} option is used to link a program,
13487 the GCC driver automatically links against @option{libasan}. If
13488 @file{libasan} is available as a shared library, and the @option{-static}
13489 option is not used, then this links against the shared version of
13490 @file{libasan}. The @option{-static-libasan} option directs the GCC
13491 driver to link @file{libasan} statically, without necessarily linking
13492 other libraries statically.
13493
13494 @item -static-libtsan
13495 @opindex static-libtsan
13496 When the @option{-fsanitize=thread} option is used to link a program,
13497 the GCC driver automatically links against @option{libtsan}. If
13498 @file{libtsan} is available as a shared library, and the @option{-static}
13499 option is not used, then this links against the shared version of
13500 @file{libtsan}. The @option{-static-libtsan} option directs the GCC
13501 driver to link @file{libtsan} statically, without necessarily linking
13502 other libraries statically.
13503
13504 @item -static-liblsan
13505 @opindex static-liblsan
13506 When the @option{-fsanitize=leak} option is used to link a program,
13507 the GCC driver automatically links against @option{liblsan}. If
13508 @file{liblsan} is available as a shared library, and the @option{-static}
13509 option is not used, then this links against the shared version of
13510 @file{liblsan}. The @option{-static-liblsan} option directs the GCC
13511 driver to link @file{liblsan} statically, without necessarily linking
13512 other libraries statically.
13513
13514 @item -static-libubsan
13515 @opindex static-libubsan
13516 When the @option{-fsanitize=undefined} option is used to link a program,
13517 the GCC driver automatically links against @option{libubsan}. If
13518 @file{libubsan} is available as a shared library, and the @option{-static}
13519 option is not used, then this links against the shared version of
13520 @file{libubsan}. The @option{-static-libubsan} option directs the GCC
13521 driver to link @file{libubsan} statically, without necessarily linking
13522 other libraries statically.
13523
13524 @item -static-libstdc++
13525 @opindex static-libstdc++
13526 When the @command{g++} program is used to link a C++ program, it
13527 normally automatically links against @option{libstdc++}. If
13528 @file{libstdc++} is available as a shared library, and the
13529 @option{-static} option is not used, then this links against the
13530 shared version of @file{libstdc++}. That is normally fine. However, it
13531 is sometimes useful to freeze the version of @file{libstdc++} used by
13532 the program without going all the way to a fully static link. The
13533 @option{-static-libstdc++} option directs the @command{g++} driver to
13534 link @file{libstdc++} statically, without necessarily linking other
13535 libraries statically.
13536
13537 @item -symbolic
13538 @opindex symbolic
13539 Bind references to global symbols when building a shared object. Warn
13540 about any unresolved references (unless overridden by the link editor
13541 option @option{-Xlinker -z -Xlinker defs}). Only a few systems support
13542 this option.
13543
13544 @item -T @var{script}
13545 @opindex T
13546 @cindex linker script
13547 Use @var{script} as the linker script. This option is supported by most
13548 systems using the GNU linker. On some targets, such as bare-board
13549 targets without an operating system, the @option{-T} option may be required
13550 when linking to avoid references to undefined symbols.
13551
13552 @item -Xlinker @var{option}
13553 @opindex Xlinker
13554 Pass @var{option} as an option to the linker. You can use this to
13555 supply system-specific linker options that GCC does not recognize.
13556
13557 If you want to pass an option that takes a separate argument, you must use
13558 @option{-Xlinker} twice, once for the option and once for the argument.
13559 For example, to pass @option{-assert definitions}, you must write
13560 @option{-Xlinker -assert -Xlinker definitions}. It does not work to write
13561 @option{-Xlinker "-assert definitions"}, because this passes the entire
13562 string as a single argument, which is not what the linker expects.
13563
13564 When using the GNU linker, it is usually more convenient to pass
13565 arguments to linker options using the @option{@var{option}=@var{value}}
13566 syntax than as separate arguments. For example, you can specify
13567 @option{-Xlinker -Map=output.map} rather than
13568 @option{-Xlinker -Map -Xlinker output.map}. Other linkers may not support
13569 this syntax for command-line options.
13570
13571 @item -Wl,@var{option}
13572 @opindex Wl
13573 Pass @var{option} as an option to the linker. If @var{option} contains
13574 commas, it is split into multiple options at the commas. You can use this
13575 syntax to pass an argument to the option.
13576 For example, @option{-Wl,-Map,output.map} passes @option{-Map output.map} to the
13577 linker. When using the GNU linker, you can also get the same effect with
13578 @option{-Wl,-Map=output.map}.
13579
13580 @item -u @var{symbol}
13581 @opindex u
13582 Pretend the symbol @var{symbol} is undefined, to force linking of
13583 library modules to define it. You can use @option{-u} multiple times with
13584 different symbols to force loading of additional library modules.
13585
13586 @item -z @var{keyword}
13587 @opindex z
13588 @option{-z} is passed directly on to the linker along with the keyword
13589 @var{keyword}. See the section in the documentation of your linker for
13590 permitted values and their meanings.
13591 @end table
13592
13593 @node Directory Options
13594 @section Options for Directory Search
13595 @cindex directory options
13596 @cindex options, directory search
13597 @cindex search path
13598
13599 These options specify directories to search for header files, for
13600 libraries and for parts of the compiler:
13601
13602 @table @gcctabopt
13603 @include cppdiropts.texi
13604
13605 @item -iplugindir=@var{dir}
13606 @opindex iplugindir=
13607 Set the directory to search for plugins that are passed
13608 by @option{-fplugin=@var{name}} instead of
13609 @option{-fplugin=@var{path}/@var{name}.so}. This option is not meant
13610 to be used by the user, but only passed by the driver.
13611
13612 @item -L@var{dir}
13613 @opindex L
13614 Add directory @var{dir} to the list of directories to be searched
13615 for @option{-l}.
13616
13617 @item -B@var{prefix}
13618 @opindex B
13619 This option specifies where to find the executables, libraries,
13620 include files, and data files of the compiler itself.
13621
13622 The compiler driver program runs one or more of the subprograms
13623 @command{cpp}, @command{cc1}, @command{as} and @command{ld}. It tries
13624 @var{prefix} as a prefix for each program it tries to run, both with and
13625 without @samp{@var{machine}/@var{version}/} for the corresponding target
13626 machine and compiler version.
13627
13628 For each subprogram to be run, the compiler driver first tries the
13629 @option{-B} prefix, if any. If that name is not found, or if @option{-B}
13630 is not specified, the driver tries two standard prefixes,
13631 @file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}. If neither of
13632 those results in a file name that is found, the unmodified program
13633 name is searched for using the directories specified in your
13634 @env{PATH} environment variable.
13635
13636 The compiler checks to see if the path provided by @option{-B}
13637 refers to a directory, and if necessary it adds a directory
13638 separator character at the end of the path.
13639
13640 @option{-B} prefixes that effectively specify directory names also apply
13641 to libraries in the linker, because the compiler translates these
13642 options into @option{-L} options for the linker. They also apply to
13643 include files in the preprocessor, because the compiler translates these
13644 options into @option{-isystem} options for the preprocessor. In this case,
13645 the compiler appends @samp{include} to the prefix.
13646
13647 The runtime support file @file{libgcc.a} can also be searched for using
13648 the @option{-B} prefix, if needed. If it is not found there, the two
13649 standard prefixes above are tried, and that is all. The file is left
13650 out of the link if it is not found by those means.
13651
13652 Another way to specify a prefix much like the @option{-B} prefix is to use
13653 the environment variable @env{GCC_EXEC_PREFIX}. @xref{Environment
13654 Variables}.
13655
13656 As a special kludge, if the path provided by @option{-B} is
13657 @file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
13658 9, then it is replaced by @file{[dir/]include}. This is to help
13659 with boot-strapping the compiler.
13660
13661 @item -no-canonical-prefixes
13662 @opindex no-canonical-prefixes
13663 Do not expand any symbolic links, resolve references to @samp{/../}
13664 or @samp{/./}, or make the path absolute when generating a relative
13665 prefix.
13666
13667 @item --sysroot=@var{dir}
13668 @opindex sysroot
13669 Use @var{dir} as the logical root directory for headers and libraries.
13670 For example, if the compiler normally searches for headers in
13671 @file{/usr/include} and libraries in @file{/usr/lib}, it instead
13672 searches @file{@var{dir}/usr/include} and @file{@var{dir}/usr/lib}.
13673
13674 If you use both this option and the @option{-isysroot} option, then
13675 the @option{--sysroot} option applies to libraries, but the
13676 @option{-isysroot} option applies to header files.
13677
13678 The GNU linker (beginning with version 2.16) has the necessary support
13679 for this option. If your linker does not support this option, the
13680 header file aspect of @option{--sysroot} still works, but the
13681 library aspect does not.
13682
13683 @item --no-sysroot-suffix
13684 @opindex no-sysroot-suffix
13685 For some targets, a suffix is added to the root directory specified
13686 with @option{--sysroot}, depending on the other options used, so that
13687 headers may for example be found in
13688 @file{@var{dir}/@var{suffix}/usr/include} instead of
13689 @file{@var{dir}/usr/include}. This option disables the addition of
13690 such a suffix.
13691
13692 @end table
13693
13694 @node Code Gen Options
13695 @section Options for Code Generation Conventions
13696 @cindex code generation conventions
13697 @cindex options, code generation
13698 @cindex run-time options
13699
13700 These machine-independent options control the interface conventions
13701 used in code generation.
13702
13703 Most of them have both positive and negative forms; the negative form
13704 of @option{-ffoo} is @option{-fno-foo}. In the table below, only
13705 one of the forms is listed---the one that is not the default. You
13706 can figure out the other form by either removing @samp{no-} or adding
13707 it.
13708
13709 @table @gcctabopt
13710 @item -fstack-reuse=@var{reuse-level}
13711 @opindex fstack_reuse
13712 This option controls stack space reuse for user declared local/auto variables
13713 and compiler generated temporaries. @var{reuse_level} can be @samp{all},
13714 @samp{named_vars}, or @samp{none}. @samp{all} enables stack reuse for all
13715 local variables and temporaries, @samp{named_vars} enables the reuse only for
13716 user defined local variables with names, and @samp{none} disables stack reuse
13717 completely. The default value is @samp{all}. The option is needed when the
13718 program extends the lifetime of a scoped local variable or a compiler generated
13719 temporary beyond the end point defined by the language. When a lifetime of
13720 a variable ends, and if the variable lives in memory, the optimizing compiler
13721 has the freedom to reuse its stack space with other temporaries or scoped
13722 local variables whose live range does not overlap with it. Legacy code extending
13723 local lifetime is likely to break with the stack reuse optimization.
13724
13725 For example,
13726
13727 @smallexample
13728 int *p;
13729 @{
13730 int local1;
13731
13732 p = &local1;
13733 local1 = 10;
13734 ....
13735 @}
13736 @{
13737 int local2;
13738 local2 = 20;
13739 ...
13740 @}
13741
13742 if (*p == 10) // out of scope use of local1
13743 @{
13744
13745 @}
13746 @end smallexample
13747
13748 Another example:
13749 @smallexample
13750
13751 struct A
13752 @{
13753 A(int k) : i(k), j(k) @{ @}
13754 int i;
13755 int j;
13756 @};
13757
13758 A *ap;
13759
13760 void foo(const A& ar)
13761 @{
13762 ap = &ar;
13763 @}
13764
13765 void bar()
13766 @{
13767 foo(A(10)); // temp object's lifetime ends when foo returns
13768
13769 @{
13770 A a(20);
13771 ....
13772 @}
13773 ap->i+= 10; // ap references out of scope temp whose space
13774 // is reused with a. What is the value of ap->i?
13775 @}
13776
13777 @end smallexample
13778
13779 The lifetime of a compiler generated temporary is well defined by the C++
13780 standard. When a lifetime of a temporary ends, and if the temporary lives
13781 in memory, the optimizing compiler has the freedom to reuse its stack
13782 space with other temporaries or scoped local variables whose live range
13783 does not overlap with it. However some of the legacy code relies on
13784 the behavior of older compilers in which temporaries' stack space is
13785 not reused, the aggressive stack reuse can lead to runtime errors. This
13786 option is used to control the temporary stack reuse optimization.
13787
13788 @item -ftrapv
13789 @opindex ftrapv
13790 This option generates traps for signed overflow on addition, subtraction,
13791 multiplication operations.
13792 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
13793 @option{-ftrapv} @option{-fwrapv} on the command-line results in
13794 @option{-fwrapv} being effective. Note that only active options override, so
13795 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
13796 results in @option{-ftrapv} being effective.
13797
13798 @item -fwrapv
13799 @opindex fwrapv
13800 This option instructs the compiler to assume that signed arithmetic
13801 overflow of addition, subtraction and multiplication wraps around
13802 using twos-complement representation. This flag enables some optimizations
13803 and disables others.
13804 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
13805 @option{-ftrapv} @option{-fwrapv} on the command-line results in
13806 @option{-fwrapv} being effective. Note that only active options override, so
13807 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
13808 results in @option{-ftrapv} being effective.
13809
13810 @item -fwrapv-pointer
13811 @opindex fwrapv-pointer
13812 This option instructs the compiler to assume that pointer arithmetic
13813 overflow on addition and subtraction wraps around using twos-complement
13814 representation. This flag disables some optimizations which assume
13815 pointer overflow is invalid.
13816
13817 @item -fstrict-overflow
13818 @opindex fstrict-overflow
13819 This option implies @option{-fno-wrapv} @option{-fno-wrapv-pointer} and when
13820 negated implies @option{-fwrapv} @option{-fwrapv-pointer}.
13821
13822 @item -fexceptions
13823 @opindex fexceptions
13824 Enable exception handling. Generates extra code needed to propagate
13825 exceptions. For some targets, this implies GCC generates frame
13826 unwind information for all functions, which can produce significant data
13827 size overhead, although it does not affect execution. If you do not
13828 specify this option, GCC enables it by default for languages like
13829 C++ that normally require exception handling, and disables it for
13830 languages like C that do not normally require it. However, you may need
13831 to enable this option when compiling C code that needs to interoperate
13832 properly with exception handlers written in C++. You may also wish to
13833 disable this option if you are compiling older C++ programs that don't
13834 use exception handling.
13835
13836 @item -fnon-call-exceptions
13837 @opindex fnon-call-exceptions
13838 Generate code that allows trapping instructions to throw exceptions.
13839 Note that this requires platform-specific runtime support that does
13840 not exist everywhere. Moreover, it only allows @emph{trapping}
13841 instructions to throw exceptions, i.e.@: memory references or floating-point
13842 instructions. It does not allow exceptions to be thrown from
13843 arbitrary signal handlers such as @code{SIGALRM}.
13844
13845 @item -fdelete-dead-exceptions
13846 @opindex fdelete-dead-exceptions
13847 Consider that instructions that may throw exceptions but don't otherwise
13848 contribute to the execution of the program can be optimized away.
13849 This option is enabled by default for the Ada front end, as permitted by
13850 the Ada language specification.
13851 Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels.
13852
13853 @item -funwind-tables
13854 @opindex funwind-tables
13855 Similar to @option{-fexceptions}, except that it just generates any needed
13856 static data, but does not affect the generated code in any other way.
13857 You normally do not need to enable this option; instead, a language processor
13858 that needs this handling enables it on your behalf.
13859
13860 @item -fasynchronous-unwind-tables
13861 @opindex fasynchronous-unwind-tables
13862 Generate unwind table in DWARF format, if supported by target machine. The
13863 table is exact at each instruction boundary, so it can be used for stack
13864 unwinding from asynchronous events (such as debugger or garbage collector).
13865
13866 @item -fno-gnu-unique
13867 @opindex fno-gnu-unique
13868 @opindex fgnu-unique
13869 On systems with recent GNU assembler and C library, the C++ compiler
13870 uses the @code{STB_GNU_UNIQUE} binding to make sure that definitions
13871 of template static data members and static local variables in inline
13872 functions are unique even in the presence of @code{RTLD_LOCAL}; this
13873 is necessary to avoid problems with a library used by two different
13874 @code{RTLD_LOCAL} plugins depending on a definition in one of them and
13875 therefore disagreeing with the other one about the binding of the
13876 symbol. But this causes @code{dlclose} to be ignored for affected
13877 DSOs; if your program relies on reinitialization of a DSO via
13878 @code{dlclose} and @code{dlopen}, you can use
13879 @option{-fno-gnu-unique}.
13880
13881 @item -fpcc-struct-return
13882 @opindex fpcc-struct-return
13883 Return ``short'' @code{struct} and @code{union} values in memory like
13884 longer ones, rather than in registers. This convention is less
13885 efficient, but it has the advantage of allowing intercallability between
13886 GCC-compiled files and files compiled with other compilers, particularly
13887 the Portable C Compiler (pcc).
13888
13889 The precise convention for returning structures in memory depends
13890 on the target configuration macros.
13891
13892 Short structures and unions are those whose size and alignment match
13893 that of some integer type.
13894
13895 @strong{Warning:} code compiled with the @option{-fpcc-struct-return}
13896 switch is not binary compatible with code compiled with the
13897 @option{-freg-struct-return} switch.
13898 Use it to conform to a non-default application binary interface.
13899
13900 @item -freg-struct-return
13901 @opindex freg-struct-return
13902 Return @code{struct} and @code{union} values in registers when possible.
13903 This is more efficient for small structures than
13904 @option{-fpcc-struct-return}.
13905
13906 If you specify neither @option{-fpcc-struct-return} nor
13907 @option{-freg-struct-return}, GCC defaults to whichever convention is
13908 standard for the target. If there is no standard convention, GCC
13909 defaults to @option{-fpcc-struct-return}, except on targets where GCC is
13910 the principal compiler. In those cases, we can choose the standard, and
13911 we chose the more efficient register return alternative.
13912
13913 @strong{Warning:} code compiled with the @option{-freg-struct-return}
13914 switch is not binary compatible with code compiled with the
13915 @option{-fpcc-struct-return} switch.
13916 Use it to conform to a non-default application binary interface.
13917
13918 @item -fshort-enums
13919 @opindex fshort-enums
13920 Allocate to an @code{enum} type only as many bytes as it needs for the
13921 declared range of possible values. Specifically, the @code{enum} type
13922 is equivalent to the smallest integer type that has enough room.
13923
13924 @strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate
13925 code that is not binary compatible with code generated without that switch.
13926 Use it to conform to a non-default application binary interface.
13927
13928 @item -fshort-wchar
13929 @opindex fshort-wchar
13930 Override the underlying type for @code{wchar_t} to be @code{short
13931 unsigned int} instead of the default for the target. This option is
13932 useful for building programs to run under WINE@.
13933
13934 @strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate
13935 code that is not binary compatible with code generated without that switch.
13936 Use it to conform to a non-default application binary interface.
13937
13938 @item -fno-common
13939 @opindex fno-common
13940 @opindex fcommon
13941 @cindex tentative definitions
13942 In C code, this option controls the placement of global variables
13943 defined without an initializer, known as @dfn{tentative definitions}
13944 in the C standard. Tentative definitions are distinct from declarations
13945 of a variable with the @code{extern} keyword, which do not allocate storage.
13946
13947 Unix C compilers have traditionally allocated storage for
13948 uninitialized global variables in a common block. This allows the
13949 linker to resolve all tentative definitions of the same variable
13950 in different compilation units to the same object, or to a non-tentative
13951 definition.
13952 This is the behavior specified by @option{-fcommon}, and is the default for
13953 GCC on most targets.
13954 On the other hand, this behavior is not required by ISO
13955 C, and on some targets may carry a speed or code size penalty on
13956 variable references.
13957
13958 The @option{-fno-common} option specifies that the compiler should instead
13959 place uninitialized global variables in the BSS section of the object file.
13960 This inhibits the merging of tentative definitions by the linker so
13961 you get a multiple-definition error if the same
13962 variable is defined in more than one compilation unit.
13963 Compiling with @option{-fno-common} is useful on targets for which
13964 it provides better performance, or if you wish to verify that the
13965 program will work on other systems that always treat uninitialized
13966 variable definitions this way.
13967
13968 @item -fno-ident
13969 @opindex fno-ident
13970 @opindex fident
13971 Ignore the @code{#ident} directive.
13972
13973 @item -finhibit-size-directive
13974 @opindex finhibit-size-directive
13975 Don't output a @code{.size} assembler directive, or anything else that
13976 would cause trouble if the function is split in the middle, and the
13977 two halves are placed at locations far apart in memory. This option is
13978 used when compiling @file{crtstuff.c}; you should not need to use it
13979 for anything else.
13980
13981 @item -fverbose-asm
13982 @opindex fverbose-asm
13983 Put extra commentary information in the generated assembly code to
13984 make it more readable. This option is generally only of use to those
13985 who actually need to read the generated assembly code (perhaps while
13986 debugging the compiler itself).
13987
13988 @option{-fno-verbose-asm}, the default, causes the
13989 extra information to be omitted and is useful when comparing two assembler
13990 files.
13991
13992 The added comments include:
13993
13994 @itemize @bullet
13995
13996 @item
13997 information on the compiler version and command-line options,
13998
13999 @item
14000 the source code lines associated with the assembly instructions,
14001 in the form FILENAME:LINENUMBER:CONTENT OF LINE,
14002
14003 @item
14004 hints on which high-level expressions correspond to
14005 the various assembly instruction operands.
14006
14007 @end itemize
14008
14009 For example, given this C source file:
14010
14011 @smallexample
14012 int test (int n)
14013 @{
14014 int i;
14015 int total = 0;
14016
14017 for (i = 0; i < n; i++)
14018 total += i * i;
14019
14020 return total;
14021 @}
14022 @end smallexample
14023
14024 compiling to (x86_64) assembly via @option{-S} and emitting the result
14025 direct to stdout via @option{-o} @option{-}
14026
14027 @smallexample
14028 gcc -S test.c -fverbose-asm -Os -o -
14029 @end smallexample
14030
14031 gives output similar to this:
14032
14033 @smallexample
14034 .file "test.c"
14035 # GNU C11 (GCC) version 7.0.0 20160809 (experimental) (x86_64-pc-linux-gnu)
14036 [...snip...]
14037 # options passed:
14038 [...snip...]
14039
14040 .text
14041 .globl test
14042 .type test, @@function
14043 test:
14044 .LFB0:
14045 .cfi_startproc
14046 # test.c:4: int total = 0;
14047 xorl %eax, %eax # <retval>
14048 # test.c:6: for (i = 0; i < n; i++)
14049 xorl %edx, %edx # i
14050 .L2:
14051 # test.c:6: for (i = 0; i < n; i++)
14052 cmpl %edi, %edx # n, i
14053 jge .L5 #,
14054 # test.c:7: total += i * i;
14055 movl %edx, %ecx # i, tmp92
14056 imull %edx, %ecx # i, tmp92
14057 # test.c:6: for (i = 0; i < n; i++)
14058 incl %edx # i
14059 # test.c:7: total += i * i;
14060 addl %ecx, %eax # tmp92, <retval>
14061 jmp .L2 #
14062 .L5:
14063 # test.c:10: @}
14064 ret
14065 .cfi_endproc
14066 .LFE0:
14067 .size test, .-test
14068 .ident "GCC: (GNU) 7.0.0 20160809 (experimental)"
14069 .section .note.GNU-stack,"",@@progbits
14070 @end smallexample
14071
14072 The comments are intended for humans rather than machines and hence the
14073 precise format of the comments is subject to change.
14074
14075 @item -frecord-gcc-switches
14076 @opindex frecord-gcc-switches
14077 This switch causes the command line used to invoke the
14078 compiler to be recorded into the object file that is being created.
14079 This switch is only implemented on some targets and the exact format
14080 of the recording is target and binary file format dependent, but it
14081 usually takes the form of a section containing ASCII text. This
14082 switch is related to the @option{-fverbose-asm} switch, but that
14083 switch only records information in the assembler output file as
14084 comments, so it never reaches the object file.
14085 See also @option{-grecord-gcc-switches} for another
14086 way of storing compiler options into the object file.
14087
14088 @item -fpic
14089 @opindex fpic
14090 @cindex global offset table
14091 @cindex PIC
14092 Generate position-independent code (PIC) suitable for use in a shared
14093 library, if supported for the target machine. Such code accesses all
14094 constant addresses through a global offset table (GOT)@. The dynamic
14095 loader resolves the GOT entries when the program starts (the dynamic
14096 loader is not part of GCC; it is part of the operating system). If
14097 the GOT size for the linked executable exceeds a machine-specific
14098 maximum size, you get an error message from the linker indicating that
14099 @option{-fpic} does not work; in that case, recompile with @option{-fPIC}
14100 instead. (These maximums are 8k on the SPARC, 28k on AArch64 and 32k
14101 on the m68k and RS/6000. The x86 has no such limit.)
14102
14103 Position-independent code requires special support, and therefore works
14104 only on certain machines. For the x86, GCC supports PIC for System V
14105 but not for the Sun 386i. Code generated for the IBM RS/6000 is always
14106 position-independent.
14107
14108 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
14109 are defined to 1.
14110
14111 @item -fPIC
14112 @opindex fPIC
14113 If supported for the target machine, emit position-independent code,
14114 suitable for dynamic linking and avoiding any limit on the size of the
14115 global offset table. This option makes a difference on AArch64, m68k,
14116 PowerPC and SPARC@.
14117
14118 Position-independent code requires special support, and therefore works
14119 only on certain machines.
14120
14121 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
14122 are defined to 2.
14123
14124 @item -fpie
14125 @itemx -fPIE
14126 @opindex fpie
14127 @opindex fPIE
14128 These options are similar to @option{-fpic} and @option{-fPIC}, but the
14129 generated position-independent code can be only linked into executables.
14130 Usually these options are used to compile code that will be linked using
14131 the @option{-pie} GCC option.
14132
14133 @option{-fpie} and @option{-fPIE} both define the macros
14134 @code{__pie__} and @code{__PIE__}. The macros have the value 1
14135 for @option{-fpie} and 2 for @option{-fPIE}.
14136
14137 @item -fno-plt
14138 @opindex fno-plt
14139 @opindex fplt
14140 Do not use the PLT for external function calls in position-independent code.
14141 Instead, load the callee address at call sites from the GOT and branch to it.
14142 This leads to more efficient code by eliminating PLT stubs and exposing
14143 GOT loads to optimizations. On architectures such as 32-bit x86 where
14144 PLT stubs expect the GOT pointer in a specific register, this gives more
14145 register allocation freedom to the compiler.
14146 Lazy binding requires use of the PLT;
14147 with @option{-fno-plt} all external symbols are resolved at load time.
14148
14149 Alternatively, the function attribute @code{noplt} can be used to avoid calls
14150 through the PLT for specific external functions.
14151
14152 In position-dependent code, a few targets also convert calls to
14153 functions that are marked to not use the PLT to use the GOT instead.
14154
14155 @item -fno-jump-tables
14156 @opindex fno-jump-tables
14157 @opindex fjump-tables
14158 Do not use jump tables for switch statements even where it would be
14159 more efficient than other code generation strategies. This option is
14160 of use in conjunction with @option{-fpic} or @option{-fPIC} for
14161 building code that forms part of a dynamic linker and cannot
14162 reference the address of a jump table. On some targets, jump tables
14163 do not require a GOT and this option is not needed.
14164
14165 @item -ffixed-@var{reg}
14166 @opindex ffixed
14167 Treat the register named @var{reg} as a fixed register; generated code
14168 should never refer to it (except perhaps as a stack pointer, frame
14169 pointer or in some other fixed role).
14170
14171 @var{reg} must be the name of a register. The register names accepted
14172 are machine-specific and are defined in the @code{REGISTER_NAMES}
14173 macro in the machine description macro file.
14174
14175 This flag does not have a negative form, because it specifies a
14176 three-way choice.
14177
14178 @item -fcall-used-@var{reg}
14179 @opindex fcall-used
14180 Treat the register named @var{reg} as an allocable register that is
14181 clobbered by function calls. It may be allocated for temporaries or
14182 variables that do not live across a call. Functions compiled this way
14183 do not save and restore the register @var{reg}.
14184
14185 It is an error to use this flag with the frame pointer or stack pointer.
14186 Use of this flag for other registers that have fixed pervasive roles in
14187 the machine's execution model produces disastrous results.
14188
14189 This flag does not have a negative form, because it specifies a
14190 three-way choice.
14191
14192 @item -fcall-saved-@var{reg}
14193 @opindex fcall-saved
14194 Treat the register named @var{reg} as an allocable register saved by
14195 functions. It may be allocated even for temporaries or variables that
14196 live across a call. Functions compiled this way save and restore
14197 the register @var{reg} if they use it.
14198
14199 It is an error to use this flag with the frame pointer or stack pointer.
14200 Use of this flag for other registers that have fixed pervasive roles in
14201 the machine's execution model produces disastrous results.
14202
14203 A different sort of disaster results from the use of this flag for
14204 a register in which function values may be returned.
14205
14206 This flag does not have a negative form, because it specifies a
14207 three-way choice.
14208
14209 @item -fpack-struct[=@var{n}]
14210 @opindex fpack-struct
14211 Without a value specified, pack all structure members together without
14212 holes. When a value is specified (which must be a small power of two), pack
14213 structure members according to this value, representing the maximum
14214 alignment (that is, objects with default alignment requirements larger than
14215 this are output potentially unaligned at the next fitting location.
14216
14217 @strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate
14218 code that is not binary compatible with code generated without that switch.
14219 Additionally, it makes the code suboptimal.
14220 Use it to conform to a non-default application binary interface.
14221
14222 @item -fleading-underscore
14223 @opindex fleading-underscore
14224 This option and its counterpart, @option{-fno-leading-underscore}, forcibly
14225 change the way C symbols are represented in the object file. One use
14226 is to help link with legacy assembly code.
14227
14228 @strong{Warning:} the @option{-fleading-underscore} switch causes GCC to
14229 generate code that is not binary compatible with code generated without that
14230 switch. Use it to conform to a non-default application binary interface.
14231 Not all targets provide complete support for this switch.
14232
14233 @item -ftls-model=@var{model}
14234 @opindex ftls-model
14235 Alter the thread-local storage model to be used (@pxref{Thread-Local}).
14236 The @var{model} argument should be one of @samp{global-dynamic},
14237 @samp{local-dynamic}, @samp{initial-exec} or @samp{local-exec}.
14238 Note that the choice is subject to optimization: the compiler may use
14239 a more efficient model for symbols not visible outside of the translation
14240 unit, or if @option{-fpic} is not given on the command line.
14241
14242 The default without @option{-fpic} is @samp{initial-exec}; with
14243 @option{-fpic} the default is @samp{global-dynamic}.
14244
14245 @item -ftrampolines
14246 @opindex ftrampolines
14247 For targets that normally need trampolines for nested functions, always
14248 generate them instead of using descriptors. Otherwise, for targets that
14249 do not need them, like for example HP-PA or IA-64, do nothing.
14250
14251 A trampoline is a small piece of code that is created at run time on the
14252 stack when the address of a nested function is taken, and is used to call
14253 the nested function indirectly. Therefore, it requires the stack to be
14254 made executable in order for the program to work properly.
14255
14256 @option{-fno-trampolines} is enabled by default on a language by language
14257 basis to let the compiler avoid generating them, if it computes that this
14258 is safe, and replace them with descriptors. Descriptors are made up of data
14259 only, but the generated code must be prepared to deal with them. As of this
14260 writing, @option{-fno-trampolines} is enabled by default only for Ada.
14261
14262 Moreover, code compiled with @option{-ftrampolines} and code compiled with
14263 @option{-fno-trampolines} are not binary compatible if nested functions are
14264 present. This option must therefore be used on a program-wide basis and be
14265 manipulated with extreme care.
14266
14267 @item -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]}
14268 @opindex fvisibility
14269 Set the default ELF image symbol visibility to the specified option---all
14270 symbols are marked with this unless overridden within the code.
14271 Using this feature can very substantially improve linking and
14272 load times of shared object libraries, produce more optimized
14273 code, provide near-perfect API export and prevent symbol clashes.
14274 It is @strong{strongly} recommended that you use this in any shared objects
14275 you distribute.
14276
14277 Despite the nomenclature, @samp{default} always means public; i.e.,
14278 available to be linked against from outside the shared object.
14279 @samp{protected} and @samp{internal} are pretty useless in real-world
14280 usage so the only other commonly used option is @samp{hidden}.
14281 The default if @option{-fvisibility} isn't specified is
14282 @samp{default}, i.e., make every symbol public.
14283
14284 A good explanation of the benefits offered by ensuring ELF
14285 symbols have the correct visibility is given by ``How To Write
14286 Shared Libraries'' by Ulrich Drepper (which can be found at
14287 @w{@uref{https://www.akkadia.org/drepper/}})---however a superior
14288 solution made possible by this option to marking things hidden when
14289 the default is public is to make the default hidden and mark things
14290 public. This is the norm with DLLs on Windows and with @option{-fvisibility=hidden}
14291 and @code{__attribute__ ((visibility("default")))} instead of
14292 @code{__declspec(dllexport)} you get almost identical semantics with
14293 identical syntax. This is a great boon to those working with
14294 cross-platform projects.
14295
14296 For those adding visibility support to existing code, you may find
14297 @code{#pragma GCC visibility} of use. This works by you enclosing
14298 the declarations you wish to set visibility for with (for example)
14299 @code{#pragma GCC visibility push(hidden)} and
14300 @code{#pragma GCC visibility pop}.
14301 Bear in mind that symbol visibility should be viewed @strong{as
14302 part of the API interface contract} and thus all new code should
14303 always specify visibility when it is not the default; i.e., declarations
14304 only for use within the local DSO should @strong{always} be marked explicitly
14305 as hidden as so to avoid PLT indirection overheads---making this
14306 abundantly clear also aids readability and self-documentation of the code.
14307 Note that due to ISO C++ specification requirements, @code{operator new} and
14308 @code{operator delete} must always be of default visibility.
14309
14310 Be aware that headers from outside your project, in particular system
14311 headers and headers from any other library you use, may not be
14312 expecting to be compiled with visibility other than the default. You
14313 may need to explicitly say @code{#pragma GCC visibility push(default)}
14314 before including any such headers.
14315
14316 @code{extern} declarations are not affected by @option{-fvisibility}, so
14317 a lot of code can be recompiled with @option{-fvisibility=hidden} with
14318 no modifications. However, this means that calls to @code{extern}
14319 functions with no explicit visibility use the PLT, so it is more
14320 effective to use @code{__attribute ((visibility))} and/or
14321 @code{#pragma GCC visibility} to tell the compiler which @code{extern}
14322 declarations should be treated as hidden.
14323
14324 Note that @option{-fvisibility} does affect C++ vague linkage
14325 entities. This means that, for instance, an exception class that is
14326 be thrown between DSOs must be explicitly marked with default
14327 visibility so that the @samp{type_info} nodes are unified between
14328 the DSOs.
14329
14330 An overview of these techniques, their benefits and how to use them
14331 is at @uref{http://gcc.gnu.org/@/wiki/@/Visibility}.
14332
14333 @item -fstrict-volatile-bitfields
14334 @opindex fstrict-volatile-bitfields
14335 This option should be used if accesses to volatile bit-fields (or other
14336 structure fields, although the compiler usually honors those types
14337 anyway) should use a single access of the width of the
14338 field's type, aligned to a natural alignment if possible. For
14339 example, targets with memory-mapped peripheral registers might require
14340 all such accesses to be 16 bits wide; with this flag you can
14341 declare all peripheral bit-fields as @code{unsigned short} (assuming short
14342 is 16 bits on these targets) to force GCC to use 16-bit accesses
14343 instead of, perhaps, a more efficient 32-bit access.
14344
14345 If this option is disabled, the compiler uses the most efficient
14346 instruction. In the previous example, that might be a 32-bit load
14347 instruction, even though that accesses bytes that do not contain
14348 any portion of the bit-field, or memory-mapped registers unrelated to
14349 the one being updated.
14350
14351 In some cases, such as when the @code{packed} attribute is applied to a
14352 structure field, it may not be possible to access the field with a single
14353 read or write that is correctly aligned for the target machine. In this
14354 case GCC falls back to generating multiple accesses rather than code that
14355 will fault or truncate the result at run time.
14356
14357 Note: Due to restrictions of the C/C++11 memory model, write accesses are
14358 not allowed to touch non bit-field members. It is therefore recommended
14359 to define all bits of the field's type as bit-field members.
14360
14361 The default value of this option is determined by the application binary
14362 interface for the target processor.
14363
14364 @item -fsync-libcalls
14365 @opindex fsync-libcalls
14366 This option controls whether any out-of-line instance of the @code{__sync}
14367 family of functions may be used to implement the C++11 @code{__atomic}
14368 family of functions.
14369
14370 The default value of this option is enabled, thus the only useful form
14371 of the option is @option{-fno-sync-libcalls}. This option is used in
14372 the implementation of the @file{libatomic} runtime library.
14373
14374 @end table
14375
14376 @node Developer Options
14377 @section GCC Developer Options
14378 @cindex developer options
14379 @cindex debugging GCC
14380 @cindex debug dump options
14381 @cindex dump options
14382 @cindex compilation statistics
14383
14384 This section describes command-line options that are primarily of
14385 interest to GCC developers, including options to support compiler
14386 testing and investigation of compiler bugs and compile-time
14387 performance problems. This includes options that produce debug dumps
14388 at various points in the compilation; that print statistics such as
14389 memory use and execution time; and that print information about GCC's
14390 configuration, such as where it searches for libraries. You should
14391 rarely need to use any of these options for ordinary compilation and
14392 linking tasks.
14393
14394 Many developer options that cause GCC to dump output to a file take an
14395 optional @samp{=@var{filename}} suffix. You can specify @samp{stdout}
14396 or @samp{-} to dump to standard output, and @samp{stderr} for standard
14397 error.
14398
14399 If @samp{=@var{filename}} is omitted, a default dump file name is
14400 constructed by concatenating the base dump file name, a pass number,
14401 phase letter, and pass name. The base dump file name is the name of
14402 output file produced by the compiler if explicitly specified and not
14403 an executable; otherwise it is the source file name.
14404 The pass number is determined by the order passes are registered with
14405 the compiler's pass manager.
14406 This is generally the same as the order of execution, but passes
14407 registered by plugins, target-specific passes, or passes that are
14408 otherwise registered late are numbered higher than the pass named
14409 @samp{final}, even if they are executed earlier. The phase letter is
14410 one of @samp{i} (inter-procedural analysis), @samp{l}
14411 (language-specific), @samp{r} (RTL), or @samp{t} (tree).
14412 The files are created in the directory of the output file.
14413
14414 @table @gcctabopt
14415
14416 @item -d@var{letters}
14417 @itemx -fdump-rtl-@var{pass}
14418 @itemx -fdump-rtl-@var{pass}=@var{filename}
14419 @opindex d
14420 @opindex fdump-rtl-@var{pass}
14421 Says to make debugging dumps during compilation at times specified by
14422 @var{letters}. This is used for debugging the RTL-based passes of the
14423 compiler.
14424
14425 Some @option{-d@var{letters}} switches have different meaning when
14426 @option{-E} is used for preprocessing. @xref{Preprocessor Options},
14427 for information about preprocessor-specific dump options.
14428
14429 Debug dumps can be enabled with a @option{-fdump-rtl} switch or some
14430 @option{-d} option @var{letters}. Here are the possible
14431 letters for use in @var{pass} and @var{letters}, and their meanings:
14432
14433 @table @gcctabopt
14434
14435 @item -fdump-rtl-alignments
14436 @opindex fdump-rtl-alignments
14437 Dump after branch alignments have been computed.
14438
14439 @item -fdump-rtl-asmcons
14440 @opindex fdump-rtl-asmcons
14441 Dump after fixing rtl statements that have unsatisfied in/out constraints.
14442
14443 @item -fdump-rtl-auto_inc_dec
14444 @opindex fdump-rtl-auto_inc_dec
14445 Dump after auto-inc-dec discovery. This pass is only run on
14446 architectures that have auto inc or auto dec instructions.
14447
14448 @item -fdump-rtl-barriers
14449 @opindex fdump-rtl-barriers
14450 Dump after cleaning up the barrier instructions.
14451
14452 @item -fdump-rtl-bbpart
14453 @opindex fdump-rtl-bbpart
14454 Dump after partitioning hot and cold basic blocks.
14455
14456 @item -fdump-rtl-bbro
14457 @opindex fdump-rtl-bbro
14458 Dump after block reordering.
14459
14460 @item -fdump-rtl-btl1
14461 @itemx -fdump-rtl-btl2
14462 @opindex fdump-rtl-btl2
14463 @opindex fdump-rtl-btl2
14464 @option{-fdump-rtl-btl1} and @option{-fdump-rtl-btl2} enable dumping
14465 after the two branch
14466 target load optimization passes.
14467
14468 @item -fdump-rtl-bypass
14469 @opindex fdump-rtl-bypass
14470 Dump after jump bypassing and control flow optimizations.
14471
14472 @item -fdump-rtl-combine
14473 @opindex fdump-rtl-combine
14474 Dump after the RTL instruction combination pass.
14475
14476 @item -fdump-rtl-compgotos
14477 @opindex fdump-rtl-compgotos
14478 Dump after duplicating the computed gotos.
14479
14480 @item -fdump-rtl-ce1
14481 @itemx -fdump-rtl-ce2
14482 @itemx -fdump-rtl-ce3
14483 @opindex fdump-rtl-ce1
14484 @opindex fdump-rtl-ce2
14485 @opindex fdump-rtl-ce3
14486 @option{-fdump-rtl-ce1}, @option{-fdump-rtl-ce2}, and
14487 @option{-fdump-rtl-ce3} enable dumping after the three
14488 if conversion passes.
14489
14490 @item -fdump-rtl-cprop_hardreg
14491 @opindex fdump-rtl-cprop_hardreg
14492 Dump after hard register copy propagation.
14493
14494 @item -fdump-rtl-csa
14495 @opindex fdump-rtl-csa
14496 Dump after combining stack adjustments.
14497
14498 @item -fdump-rtl-cse1
14499 @itemx -fdump-rtl-cse2
14500 @opindex fdump-rtl-cse1
14501 @opindex fdump-rtl-cse2
14502 @option{-fdump-rtl-cse1} and @option{-fdump-rtl-cse2} enable dumping after
14503 the two common subexpression elimination passes.
14504
14505 @item -fdump-rtl-dce
14506 @opindex fdump-rtl-dce
14507 Dump after the standalone dead code elimination passes.
14508
14509 @item -fdump-rtl-dbr
14510 @opindex fdump-rtl-dbr
14511 Dump after delayed branch scheduling.
14512
14513 @item -fdump-rtl-dce1
14514 @itemx -fdump-rtl-dce2
14515 @opindex fdump-rtl-dce1
14516 @opindex fdump-rtl-dce2
14517 @option{-fdump-rtl-dce1} and @option{-fdump-rtl-dce2} enable dumping after
14518 the two dead store elimination passes.
14519
14520 @item -fdump-rtl-eh
14521 @opindex fdump-rtl-eh
14522 Dump after finalization of EH handling code.
14523
14524 @item -fdump-rtl-eh_ranges
14525 @opindex fdump-rtl-eh_ranges
14526 Dump after conversion of EH handling range regions.
14527
14528 @item -fdump-rtl-expand
14529 @opindex fdump-rtl-expand
14530 Dump after RTL generation.
14531
14532 @item -fdump-rtl-fwprop1
14533 @itemx -fdump-rtl-fwprop2
14534 @opindex fdump-rtl-fwprop1
14535 @opindex fdump-rtl-fwprop2
14536 @option{-fdump-rtl-fwprop1} and @option{-fdump-rtl-fwprop2} enable
14537 dumping after the two forward propagation passes.
14538
14539 @item -fdump-rtl-gcse1
14540 @itemx -fdump-rtl-gcse2
14541 @opindex fdump-rtl-gcse1
14542 @opindex fdump-rtl-gcse2
14543 @option{-fdump-rtl-gcse1} and @option{-fdump-rtl-gcse2} enable dumping
14544 after global common subexpression elimination.
14545
14546 @item -fdump-rtl-init-regs
14547 @opindex fdump-rtl-init-regs
14548 Dump after the initialization of the registers.
14549
14550 @item -fdump-rtl-initvals
14551 @opindex fdump-rtl-initvals
14552 Dump after the computation of the initial value sets.
14553
14554 @item -fdump-rtl-into_cfglayout
14555 @opindex fdump-rtl-into_cfglayout
14556 Dump after converting to cfglayout mode.
14557
14558 @item -fdump-rtl-ira
14559 @opindex fdump-rtl-ira
14560 Dump after iterated register allocation.
14561
14562 @item -fdump-rtl-jump
14563 @opindex fdump-rtl-jump
14564 Dump after the second jump optimization.
14565
14566 @item -fdump-rtl-loop2
14567 @opindex fdump-rtl-loop2
14568 @option{-fdump-rtl-loop2} enables dumping after the rtl
14569 loop optimization passes.
14570
14571 @item -fdump-rtl-mach
14572 @opindex fdump-rtl-mach
14573 Dump after performing the machine dependent reorganization pass, if that
14574 pass exists.
14575
14576 @item -fdump-rtl-mode_sw
14577 @opindex fdump-rtl-mode_sw
14578 Dump after removing redundant mode switches.
14579
14580 @item -fdump-rtl-rnreg
14581 @opindex fdump-rtl-rnreg
14582 Dump after register renumbering.
14583
14584 @item -fdump-rtl-outof_cfglayout
14585 @opindex fdump-rtl-outof_cfglayout
14586 Dump after converting from cfglayout mode.
14587
14588 @item -fdump-rtl-peephole2
14589 @opindex fdump-rtl-peephole2
14590 Dump after the peephole pass.
14591
14592 @item -fdump-rtl-postreload
14593 @opindex fdump-rtl-postreload
14594 Dump after post-reload optimizations.
14595
14596 @item -fdump-rtl-pro_and_epilogue
14597 @opindex fdump-rtl-pro_and_epilogue
14598 Dump after generating the function prologues and epilogues.
14599
14600 @item -fdump-rtl-sched1
14601 @itemx -fdump-rtl-sched2
14602 @opindex fdump-rtl-sched1
14603 @opindex fdump-rtl-sched2
14604 @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2} enable dumping
14605 after the basic block scheduling passes.
14606
14607 @item -fdump-rtl-ree
14608 @opindex fdump-rtl-ree
14609 Dump after sign/zero extension elimination.
14610
14611 @item -fdump-rtl-seqabstr
14612 @opindex fdump-rtl-seqabstr
14613 Dump after common sequence discovery.
14614
14615 @item -fdump-rtl-shorten
14616 @opindex fdump-rtl-shorten
14617 Dump after shortening branches.
14618
14619 @item -fdump-rtl-sibling
14620 @opindex fdump-rtl-sibling
14621 Dump after sibling call optimizations.
14622
14623 @item -fdump-rtl-split1
14624 @itemx -fdump-rtl-split2
14625 @itemx -fdump-rtl-split3
14626 @itemx -fdump-rtl-split4
14627 @itemx -fdump-rtl-split5
14628 @opindex fdump-rtl-split1
14629 @opindex fdump-rtl-split2
14630 @opindex fdump-rtl-split3
14631 @opindex fdump-rtl-split4
14632 @opindex fdump-rtl-split5
14633 These options enable dumping after five rounds of
14634 instruction splitting.
14635
14636 @item -fdump-rtl-sms
14637 @opindex fdump-rtl-sms
14638 Dump after modulo scheduling. This pass is only run on some
14639 architectures.
14640
14641 @item -fdump-rtl-stack
14642 @opindex fdump-rtl-stack
14643 Dump after conversion from GCC's ``flat register file'' registers to the
14644 x87's stack-like registers. This pass is only run on x86 variants.
14645
14646 @item -fdump-rtl-subreg1
14647 @itemx -fdump-rtl-subreg2
14648 @opindex fdump-rtl-subreg1
14649 @opindex fdump-rtl-subreg2
14650 @option{-fdump-rtl-subreg1} and @option{-fdump-rtl-subreg2} enable dumping after
14651 the two subreg expansion passes.
14652
14653 @item -fdump-rtl-unshare
14654 @opindex fdump-rtl-unshare
14655 Dump after all rtl has been unshared.
14656
14657 @item -fdump-rtl-vartrack
14658 @opindex fdump-rtl-vartrack
14659 Dump after variable tracking.
14660
14661 @item -fdump-rtl-vregs
14662 @opindex fdump-rtl-vregs
14663 Dump after converting virtual registers to hard registers.
14664
14665 @item -fdump-rtl-web
14666 @opindex fdump-rtl-web
14667 Dump after live range splitting.
14668
14669 @item -fdump-rtl-regclass
14670 @itemx -fdump-rtl-subregs_of_mode_init
14671 @itemx -fdump-rtl-subregs_of_mode_finish
14672 @itemx -fdump-rtl-dfinit
14673 @itemx -fdump-rtl-dfinish
14674 @opindex fdump-rtl-regclass
14675 @opindex fdump-rtl-subregs_of_mode_init
14676 @opindex fdump-rtl-subregs_of_mode_finish
14677 @opindex fdump-rtl-dfinit
14678 @opindex fdump-rtl-dfinish
14679 These dumps are defined but always produce empty files.
14680
14681 @item -da
14682 @itemx -fdump-rtl-all
14683 @opindex da
14684 @opindex fdump-rtl-all
14685 Produce all the dumps listed above.
14686
14687 @item -dA
14688 @opindex dA
14689 Annotate the assembler output with miscellaneous debugging information.
14690
14691 @item -dD
14692 @opindex dD
14693 Dump all macro definitions, at the end of preprocessing, in addition to
14694 normal output.
14695
14696 @item -dH
14697 @opindex dH
14698 Produce a core dump whenever an error occurs.
14699
14700 @item -dp
14701 @opindex dp
14702 Annotate the assembler output with a comment indicating which
14703 pattern and alternative is used. The length and cost of each instruction are
14704 also printed.
14705
14706 @item -dP
14707 @opindex dP
14708 Dump the RTL in the assembler output as a comment before each instruction.
14709 Also turns on @option{-dp} annotation.
14710
14711 @item -dx
14712 @opindex dx
14713 Just generate RTL for a function instead of compiling it. Usually used
14714 with @option{-fdump-rtl-expand}.
14715 @end table
14716
14717 @item -fdump-debug
14718 @opindex fdump-debug
14719 Dump debugging information generated during the debug
14720 generation phase.
14721
14722 @item -fdump-earlydebug
14723 @opindex fdump-earlydebug
14724 Dump debugging information generated during the early debug
14725 generation phase.
14726
14727 @item -fdump-noaddr
14728 @opindex fdump-noaddr
14729 When doing debugging dumps, suppress address output. This makes it more
14730 feasible to use diff on debugging dumps for compiler invocations with
14731 different compiler binaries and/or different
14732 text / bss / data / heap / stack / dso start locations.
14733
14734 @item -freport-bug
14735 @opindex freport-bug
14736 Collect and dump debug information into a temporary file if an
14737 internal compiler error (ICE) occurs.
14738
14739 @item -fdump-unnumbered
14740 @opindex fdump-unnumbered
14741 When doing debugging dumps, suppress instruction numbers and address output.
14742 This makes it more feasible to use diff on debugging dumps for compiler
14743 invocations with different options, in particular with and without
14744 @option{-g}.
14745
14746 @item -fdump-unnumbered-links
14747 @opindex fdump-unnumbered-links
14748 When doing debugging dumps (see @option{-d} option above), suppress
14749 instruction numbers for the links to the previous and next instructions
14750 in a sequence.
14751
14752 @item -fdump-ipa-@var{switch}
14753 @itemx -fdump-ipa-@var{switch}-@var{options}
14754 @opindex fdump-ipa
14755 Control the dumping at various stages of inter-procedural analysis
14756 language tree to a file. The file name is generated by appending a
14757 switch specific suffix to the source file name, and the file is created
14758 in the same directory as the output file. The following dumps are
14759 possible:
14760
14761 @table @samp
14762 @item all
14763 Enables all inter-procedural analysis dumps.
14764
14765 @item cgraph
14766 Dumps information about call-graph optimization, unused function removal,
14767 and inlining decisions.
14768
14769 @item inline
14770 Dump after function inlining.
14771
14772 @end table
14773
14774 Additionally, the options @option{-optimized}, @option{-missed},
14775 @option{-note}, and @option{-all} can be provided, with the same meaning
14776 as for @option{-fopt-info}, defaulting to @option{-optimized}.
14777
14778 For example, @option{-fdump-ipa-inline-optimized-missed} will emit
14779 information on callsites that were inlined, along with callsites
14780 that were not inlined.
14781
14782 By default, the dump will contain messages about successful
14783 optimizations (equivalent to @option{-optimized}) together with
14784 low-level details about the analysis.
14785
14786 @item -fdump-lang-all
14787 @itemx -fdump-lang-@var{switch}
14788 @itemx -fdump-lang-@var{switch}-@var{options}
14789 @itemx -fdump-lang-@var{switch}-@var{options}=@var{filename}
14790 @opindex fdump-lang-all
14791 @opindex fdump-lang
14792 Control the dumping of language-specific information. The @var{options}
14793 and @var{filename} portions behave as described in the
14794 @option{-fdump-tree} option. The following @var{switch} values are
14795 accepted:
14796
14797 @table @samp
14798 @item all
14799
14800 Enable all language-specific dumps.
14801
14802 @item class
14803 Dump class hierarchy information. Virtual table information is emitted
14804 unless '@option{slim}' is specified. This option is applicable to C++ only.
14805
14806 @item raw
14807 Dump the raw internal tree data. This option is applicable to C++ only.
14808
14809 @end table
14810
14811 @item -fdump-passes
14812 @opindex fdump-passes
14813 Print on @file{stderr} the list of optimization passes that are turned
14814 on and off by the current command-line options.
14815
14816 @item -fdump-statistics-@var{option}
14817 @opindex fdump-statistics
14818 Enable and control dumping of pass statistics in a separate file. The
14819 file name is generated by appending a suffix ending in
14820 @samp{.statistics} to the source file name, and the file is created in
14821 the same directory as the output file. If the @samp{-@var{option}}
14822 form is used, @samp{-stats} causes counters to be summed over the
14823 whole compilation unit while @samp{-details} dumps every event as
14824 the passes generate them. The default with no option is to sum
14825 counters for each function compiled.
14826
14827 @item -fdump-tree-all
14828 @itemx -fdump-tree-@var{switch}
14829 @itemx -fdump-tree-@var{switch}-@var{options}
14830 @itemx -fdump-tree-@var{switch}-@var{options}=@var{filename}
14831 @opindex fdump-tree-all
14832 @opindex fdump-tree
14833 Control the dumping at various stages of processing the intermediate
14834 language tree to a file. If the @samp{-@var{options}}
14835 form is used, @var{options} is a list of @samp{-} separated options
14836 which control the details of the dump. Not all options are applicable
14837 to all dumps; those that are not meaningful are ignored. The
14838 following options are available
14839
14840 @table @samp
14841 @item address
14842 Print the address of each node. Usually this is not meaningful as it
14843 changes according to the environment and source file. Its primary use
14844 is for tying up a dump file with a debug environment.
14845 @item asmname
14846 If @code{DECL_ASSEMBLER_NAME} has been set for a given decl, use that
14847 in the dump instead of @code{DECL_NAME}. Its primary use is ease of
14848 use working backward from mangled names in the assembly file.
14849 @item slim
14850 When dumping front-end intermediate representations, inhibit dumping
14851 of members of a scope or body of a function merely because that scope
14852 has been reached. Only dump such items when they are directly reachable
14853 by some other path.
14854
14855 When dumping pretty-printed trees, this option inhibits dumping the
14856 bodies of control structures.
14857
14858 When dumping RTL, print the RTL in slim (condensed) form instead of
14859 the default LISP-like representation.
14860 @item raw
14861 Print a raw representation of the tree. By default, trees are
14862 pretty-printed into a C-like representation.
14863 @item details
14864 Enable more detailed dumps (not honored by every dump option). Also
14865 include information from the optimization passes.
14866 @item stats
14867 Enable dumping various statistics about the pass (not honored by every dump
14868 option).
14869 @item blocks
14870 Enable showing basic block boundaries (disabled in raw dumps).
14871 @item graph
14872 For each of the other indicated dump files (@option{-fdump-rtl-@var{pass}}),
14873 dump a representation of the control flow graph suitable for viewing with
14874 GraphViz to @file{@var{file}.@var{passid}.@var{pass}.dot}. Each function in
14875 the file is pretty-printed as a subgraph, so that GraphViz can render them
14876 all in a single plot.
14877
14878 This option currently only works for RTL dumps, and the RTL is always
14879 dumped in slim form.
14880 @item vops
14881 Enable showing virtual operands for every statement.
14882 @item lineno
14883 Enable showing line numbers for statements.
14884 @item uid
14885 Enable showing the unique ID (@code{DECL_UID}) for each variable.
14886 @item verbose
14887 Enable showing the tree dump for each statement.
14888 @item eh
14889 Enable showing the EH region number holding each statement.
14890 @item scev
14891 Enable showing scalar evolution analysis details.
14892 @item optimized
14893 Enable showing optimization information (only available in certain
14894 passes).
14895 @item missed
14896 Enable showing missed optimization information (only available in certain
14897 passes).
14898 @item note
14899 Enable other detailed optimization information (only available in
14900 certain passes).
14901 @item all
14902 Turn on all options, except @option{raw}, @option{slim}, @option{verbose}
14903 and @option{lineno}.
14904 @item optall
14905 Turn on all optimization options, i.e., @option{optimized},
14906 @option{missed}, and @option{note}.
14907 @end table
14908
14909 To determine what tree dumps are available or find the dump for a pass
14910 of interest follow the steps below.
14911
14912 @enumerate
14913 @item
14914 Invoke GCC with @option{-fdump-passes} and in the @file{stderr} output
14915 look for a code that corresponds to the pass you are interested in.
14916 For example, the codes @code{tree-evrp}, @code{tree-vrp1}, and
14917 @code{tree-vrp2} correspond to the three Value Range Propagation passes.
14918 The number at the end distinguishes distinct invocations of the same pass.
14919 @item
14920 To enable the creation of the dump file, append the pass code to
14921 the @option{-fdump-} option prefix and invoke GCC with it. For example,
14922 to enable the dump from the Early Value Range Propagation pass, invoke
14923 GCC with the @option{-fdump-tree-evrp} option. Optionally, you may
14924 specify the name of the dump file. If you don't specify one, GCC
14925 creates as described below.
14926 @item
14927 Find the pass dump in a file whose name is composed of three components
14928 separated by a period: the name of the source file GCC was invoked to
14929 compile, a numeric suffix indicating the pass number followed by the
14930 letter @samp{t} for tree passes (and the letter @samp{r} for RTL passes),
14931 and finally the pass code. For example, the Early VRP pass dump might
14932 be in a file named @file{myfile.c.038t.evrp} in the current working
14933 directory. Note that the numeric codes are not stable and may change
14934 from one version of GCC to another.
14935 @end enumerate
14936
14937 @item -fopt-info
14938 @itemx -fopt-info-@var{options}
14939 @itemx -fopt-info-@var{options}=@var{filename}
14940 @opindex fopt-info
14941 Controls optimization dumps from various optimization passes. If the
14942 @samp{-@var{options}} form is used, @var{options} is a list of
14943 @samp{-} separated option keywords to select the dump details and
14944 optimizations.
14945
14946 The @var{options} can be divided into three groups:
14947 @enumerate
14948 @item
14949 options describing what kinds of messages should be emitted,
14950 @item
14951 options describing the verbosity of the dump, and
14952 @item
14953 options describing which optimizations should be included.
14954 @end enumerate
14955 The options from each group can be freely mixed as they are
14956 non-overlapping. However, in case of any conflicts,
14957 the later options override the earlier options on the command
14958 line.
14959
14960 The following options control which kinds of messages should be emitted:
14961
14962 @table @samp
14963 @item optimized
14964 Print information when an optimization is successfully applied. It is
14965 up to a pass to decide which information is relevant. For example, the
14966 vectorizer passes print the source location of loops which are
14967 successfully vectorized.
14968 @item missed
14969 Print information about missed optimizations. Individual passes
14970 control which information to include in the output.
14971 @item note
14972 Print verbose information about optimizations, such as certain
14973 transformations, more detailed messages about decisions etc.
14974 @item all
14975 Print detailed optimization information. This includes
14976 @samp{optimized}, @samp{missed}, and @samp{note}.
14977 @end table
14978
14979 The following option controls the dump verbosity:
14980
14981 @table @samp
14982 @item internals
14983 By default, only ``high-level'' messages are emitted. This option enables
14984 additional, more detailed, messages, which are likely to only be of interest
14985 to GCC developers.
14986 @end table
14987
14988 One or more of the following option keywords can be used to describe a
14989 group of optimizations:
14990
14991 @table @samp
14992 @item ipa
14993 Enable dumps from all interprocedural optimizations.
14994 @item loop
14995 Enable dumps from all loop optimizations.
14996 @item inline
14997 Enable dumps from all inlining optimizations.
14998 @item omp
14999 Enable dumps from all OMP (Offloading and Multi Processing) optimizations.
15000 @item vec
15001 Enable dumps from all vectorization optimizations.
15002 @item optall
15003 Enable dumps from all optimizations. This is a superset of
15004 the optimization groups listed above.
15005 @end table
15006
15007 If @var{options} is
15008 omitted, it defaults to @samp{optimized-optall}, which means to dump messages
15009 about successful optimizations from all the passes, omitting messages
15010 that are treated as ``internals''.
15011
15012 If the @var{filename} is provided, then the dumps from all the
15013 applicable optimizations are concatenated into the @var{filename}.
15014 Otherwise the dump is output onto @file{stderr}. Though multiple
15015 @option{-fopt-info} options are accepted, only one of them can include
15016 a @var{filename}. If other filenames are provided then all but the
15017 first such option are ignored.
15018
15019 Note that the output @var{filename} is overwritten
15020 in case of multiple translation units. If a combined output from
15021 multiple translation units is desired, @file{stderr} should be used
15022 instead.
15023
15024 In the following example, the optimization info is output to
15025 @file{stderr}:
15026
15027 @smallexample
15028 gcc -O3 -fopt-info
15029 @end smallexample
15030
15031 This example:
15032 @smallexample
15033 gcc -O3 -fopt-info-missed=missed.all
15034 @end smallexample
15035
15036 @noindent
15037 outputs missed optimization report from all the passes into
15038 @file{missed.all}, and this one:
15039
15040 @smallexample
15041 gcc -O2 -ftree-vectorize -fopt-info-vec-missed
15042 @end smallexample
15043
15044 @noindent
15045 prints information about missed optimization opportunities from
15046 vectorization passes on @file{stderr}.
15047 Note that @option{-fopt-info-vec-missed} is equivalent to
15048 @option{-fopt-info-missed-vec}. The order of the optimization group
15049 names and message types listed after @option{-fopt-info} does not matter.
15050
15051 As another example,
15052 @smallexample
15053 gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
15054 @end smallexample
15055
15056 @noindent
15057 outputs information about missed optimizations as well as
15058 optimized locations from all the inlining passes into
15059 @file{inline.txt}.
15060
15061 Finally, consider:
15062
15063 @smallexample
15064 gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
15065 @end smallexample
15066
15067 @noindent
15068 Here the two output filenames @file{vec.miss} and @file{loop.opt} are
15069 in conflict since only one output file is allowed. In this case, only
15070 the first option takes effect and the subsequent options are
15071 ignored. Thus only @file{vec.miss} is produced which contains
15072 dumps from the vectorizer about missed opportunities.
15073
15074 @item -fsave-optimization-record
15075 @opindex fsave-optimization-record
15076 Write a SRCFILE.opt-record.json.gz file detailing what optimizations
15077 were performed, for those optimizations that support @option{-fopt-info}.
15078
15079 This option is experimental and the format of the data within the
15080 compressed JSON file is subject to change.
15081
15082 It is roughly equivalent to a machine-readable version of
15083 @option{-fopt-info-all}, as a collection of messages with source file,
15084 line number and column number, with the following additional data for
15085 each message:
15086
15087 @itemize @bullet
15088
15089 @item
15090 the execution count of the code being optimized, along with metadata about
15091 whether this was from actual profile data, or just an estimate, allowing
15092 consumers to prioritize messages by code hotness,
15093
15094 @item
15095 the function name of the code being optimized, where applicable,
15096
15097 @item
15098 the ``inlining chain'' for the code being optimized, so that when
15099 a function is inlined into several different places (which might
15100 themselves be inlined), the reader can distinguish between the copies,
15101
15102 @item
15103 objects identifying those parts of the message that refer to expressions,
15104 statements or symbol-table nodes, which of these categories they are, and,
15105 when available, their source code location,
15106
15107 @item
15108 the GCC pass that emitted the message, and
15109
15110 @item
15111 the location in GCC's own code from which the message was emitted
15112
15113 @end itemize
15114
15115 Additionally, some messages are logically nested within other
15116 messages, reflecting implementation details of the optimization
15117 passes.
15118
15119 @item -fsched-verbose=@var{n}
15120 @opindex fsched-verbose
15121 On targets that use instruction scheduling, this option controls the
15122 amount of debugging output the scheduler prints to the dump files.
15123
15124 For @var{n} greater than zero, @option{-fsched-verbose} outputs the
15125 same information as @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2}.
15126 For @var{n} greater than one, it also output basic block probabilities,
15127 detailed ready list information and unit/insn info. For @var{n} greater
15128 than two, it includes RTL at abort point, control-flow and regions info.
15129 And for @var{n} over four, @option{-fsched-verbose} also includes
15130 dependence info.
15131
15132
15133
15134 @item -fenable-@var{kind}-@var{pass}
15135 @itemx -fdisable-@var{kind}-@var{pass}=@var{range-list}
15136 @opindex fdisable-
15137 @opindex fenable-
15138
15139 This is a set of options that are used to explicitly disable/enable
15140 optimization passes. These options are intended for use for debugging GCC.
15141 Compiler users should use regular options for enabling/disabling
15142 passes instead.
15143
15144 @table @gcctabopt
15145
15146 @item -fdisable-ipa-@var{pass}
15147 Disable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
15148 statically invoked in the compiler multiple times, the pass name should be
15149 appended with a sequential number starting from 1.
15150
15151 @item -fdisable-rtl-@var{pass}
15152 @itemx -fdisable-rtl-@var{pass}=@var{range-list}
15153 Disable RTL pass @var{pass}. @var{pass} is the pass name. If the same pass is
15154 statically invoked in the compiler multiple times, the pass name should be
15155 appended with a sequential number starting from 1. @var{range-list} is a
15156 comma-separated list of function ranges or assembler names. Each range is a number
15157 pair separated by a colon. The range is inclusive in both ends. If the range
15158 is trivial, the number pair can be simplified as a single number. If the
15159 function's call graph node's @var{uid} falls within one of the specified ranges,
15160 the @var{pass} is disabled for that function. The @var{uid} is shown in the
15161 function header of a dump file, and the pass names can be dumped by using
15162 option @option{-fdump-passes}.
15163
15164 @item -fdisable-tree-@var{pass}
15165 @itemx -fdisable-tree-@var{pass}=@var{range-list}
15166 Disable tree pass @var{pass}. See @option{-fdisable-rtl} for the description of
15167 option arguments.
15168
15169 @item -fenable-ipa-@var{pass}
15170 Enable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
15171 statically invoked in the compiler multiple times, the pass name should be
15172 appended with a sequential number starting from 1.
15173
15174 @item -fenable-rtl-@var{pass}
15175 @itemx -fenable-rtl-@var{pass}=@var{range-list}
15176 Enable RTL pass @var{pass}. See @option{-fdisable-rtl} for option argument
15177 description and examples.
15178
15179 @item -fenable-tree-@var{pass}
15180 @itemx -fenable-tree-@var{pass}=@var{range-list}
15181 Enable tree pass @var{pass}. See @option{-fdisable-rtl} for the description
15182 of option arguments.
15183
15184 @end table
15185
15186 Here are some examples showing uses of these options.
15187
15188 @smallexample
15189
15190 # disable ccp1 for all functions
15191 -fdisable-tree-ccp1
15192 # disable complete unroll for function whose cgraph node uid is 1
15193 -fenable-tree-cunroll=1
15194 # disable gcse2 for functions at the following ranges [1,1],
15195 # [300,400], and [400,1000]
15196 # disable gcse2 for functions foo and foo2
15197 -fdisable-rtl-gcse2=foo,foo2
15198 # disable early inlining
15199 -fdisable-tree-einline
15200 # disable ipa inlining
15201 -fdisable-ipa-inline
15202 # enable tree full unroll
15203 -fenable-tree-unroll
15204
15205 @end smallexample
15206
15207 @item -fchecking
15208 @itemx -fchecking=@var{n}
15209 @opindex fchecking
15210 @opindex fno-checking
15211 Enable internal consistency checking. The default depends on
15212 the compiler configuration. @option{-fchecking=2} enables further
15213 internal consistency checking that might affect code generation.
15214
15215 @item -frandom-seed=@var{string}
15216 @opindex frandom-seed
15217 This option provides a seed that GCC uses in place of
15218 random numbers in generating certain symbol names
15219 that have to be different in every compiled file. It is also used to
15220 place unique stamps in coverage data files and the object files that
15221 produce them. You can use the @option{-frandom-seed} option to produce
15222 reproducibly identical object files.
15223
15224 The @var{string} can either be a number (decimal, octal or hex) or an
15225 arbitrary string (in which case it's converted to a number by
15226 computing CRC32).
15227
15228 The @var{string} should be different for every file you compile.
15229
15230 @item -save-temps
15231 @itemx -save-temps=cwd
15232 @opindex save-temps
15233 Store the usual ``temporary'' intermediate files permanently; place them
15234 in the current directory and name them based on the source file. Thus,
15235 compiling @file{foo.c} with @option{-c -save-temps} produces files
15236 @file{foo.i} and @file{foo.s}, as well as @file{foo.o}. This creates a
15237 preprocessed @file{foo.i} output file even though the compiler now
15238 normally uses an integrated preprocessor.
15239
15240 When used in combination with the @option{-x} command-line option,
15241 @option{-save-temps} is sensible enough to avoid over writing an
15242 input source file with the same extension as an intermediate file.
15243 The corresponding intermediate file may be obtained by renaming the
15244 source file before using @option{-save-temps}.
15245
15246 If you invoke GCC in parallel, compiling several different source
15247 files that share a common base name in different subdirectories or the
15248 same source file compiled for multiple output destinations, it is
15249 likely that the different parallel compilers will interfere with each
15250 other, and overwrite the temporary files. For instance:
15251
15252 @smallexample
15253 gcc -save-temps -o outdir1/foo.o indir1/foo.c&
15254 gcc -save-temps -o outdir2/foo.o indir2/foo.c&
15255 @end smallexample
15256
15257 may result in @file{foo.i} and @file{foo.o} being written to
15258 simultaneously by both compilers.
15259
15260 @item -save-temps=obj
15261 @opindex save-temps=obj
15262 Store the usual ``temporary'' intermediate files permanently. If the
15263 @option{-o} option is used, the temporary files are based on the
15264 object file. If the @option{-o} option is not used, the
15265 @option{-save-temps=obj} switch behaves like @option{-save-temps}.
15266
15267 For example:
15268
15269 @smallexample
15270 gcc -save-temps=obj -c foo.c
15271 gcc -save-temps=obj -c bar.c -o dir/xbar.o
15272 gcc -save-temps=obj foobar.c -o dir2/yfoobar
15273 @end smallexample
15274
15275 @noindent
15276 creates @file{foo.i}, @file{foo.s}, @file{dir/xbar.i},
15277 @file{dir/xbar.s}, @file{dir2/yfoobar.i}, @file{dir2/yfoobar.s}, and
15278 @file{dir2/yfoobar.o}.
15279
15280 @item -time@r{[}=@var{file}@r{]}
15281 @opindex time
15282 Report the CPU time taken by each subprocess in the compilation
15283 sequence. For C source files, this is the compiler proper and assembler
15284 (plus the linker if linking is done).
15285
15286 Without the specification of an output file, the output looks like this:
15287
15288 @smallexample
15289 # cc1 0.12 0.01
15290 # as 0.00 0.01
15291 @end smallexample
15292
15293 The first number on each line is the ``user time'', that is time spent
15294 executing the program itself. The second number is ``system time'',
15295 time spent executing operating system routines on behalf of the program.
15296 Both numbers are in seconds.
15297
15298 With the specification of an output file, the output is appended to the
15299 named file, and it looks like this:
15300
15301 @smallexample
15302 0.12 0.01 cc1 @var{options}
15303 0.00 0.01 as @var{options}
15304 @end smallexample
15305
15306 The ``user time'' and the ``system time'' are moved before the program
15307 name, and the options passed to the program are displayed, so that one
15308 can later tell what file was being compiled, and with which options.
15309
15310 @item -fdump-final-insns@r{[}=@var{file}@r{]}
15311 @opindex fdump-final-insns
15312 Dump the final internal representation (RTL) to @var{file}. If the
15313 optional argument is omitted (or if @var{file} is @code{.}), the name
15314 of the dump file is determined by appending @code{.gkd} to the
15315 compilation output file name.
15316
15317 @item -fcompare-debug@r{[}=@var{opts}@r{]}
15318 @opindex fcompare-debug
15319 @opindex fno-compare-debug
15320 If no error occurs during compilation, run the compiler a second time,
15321 adding @var{opts} and @option{-fcompare-debug-second} to the arguments
15322 passed to the second compilation. Dump the final internal
15323 representation in both compilations, and print an error if they differ.
15324
15325 If the equal sign is omitted, the default @option{-gtoggle} is used.
15326
15327 The environment variable @env{GCC_COMPARE_DEBUG}, if defined, non-empty
15328 and nonzero, implicitly enables @option{-fcompare-debug}. If
15329 @env{GCC_COMPARE_DEBUG} is defined to a string starting with a dash,
15330 then it is used for @var{opts}, otherwise the default @option{-gtoggle}
15331 is used.
15332
15333 @option{-fcompare-debug=}, with the equal sign but without @var{opts},
15334 is equivalent to @option{-fno-compare-debug}, which disables the dumping
15335 of the final representation and the second compilation, preventing even
15336 @env{GCC_COMPARE_DEBUG} from taking effect.
15337
15338 To verify full coverage during @option{-fcompare-debug} testing, set
15339 @env{GCC_COMPARE_DEBUG} to say @option{-fcompare-debug-not-overridden},
15340 which GCC rejects as an invalid option in any actual compilation
15341 (rather than preprocessing, assembly or linking). To get just a
15342 warning, setting @env{GCC_COMPARE_DEBUG} to @samp{-w%n-fcompare-debug
15343 not overridden} will do.
15344
15345 @item -fcompare-debug-second
15346 @opindex fcompare-debug-second
15347 This option is implicitly passed to the compiler for the second
15348 compilation requested by @option{-fcompare-debug}, along with options to
15349 silence warnings, and omitting other options that would cause the compiler
15350 to produce output to files or to standard output as a side effect. Dump
15351 files and preserved temporary files are renamed so as to contain the
15352 @code{.gk} additional extension during the second compilation, to avoid
15353 overwriting those generated by the first.
15354
15355 When this option is passed to the compiler driver, it causes the
15356 @emph{first} compilation to be skipped, which makes it useful for little
15357 other than debugging the compiler proper.
15358
15359 @item -gtoggle
15360 @opindex gtoggle
15361 Turn off generation of debug info, if leaving out this option
15362 generates it, or turn it on at level 2 otherwise. The position of this
15363 argument in the command line does not matter; it takes effect after all
15364 other options are processed, and it does so only once, no matter how
15365 many times it is given. This is mainly intended to be used with
15366 @option{-fcompare-debug}.
15367
15368 @item -fvar-tracking-assignments-toggle
15369 @opindex fvar-tracking-assignments-toggle
15370 @opindex fno-var-tracking-assignments-toggle
15371 Toggle @option{-fvar-tracking-assignments}, in the same way that
15372 @option{-gtoggle} toggles @option{-g}.
15373
15374 @item -Q
15375 @opindex Q
15376 Makes the compiler print out each function name as it is compiled, and
15377 print some statistics about each pass when it finishes.
15378
15379 @item -ftime-report
15380 @opindex ftime-report
15381 Makes the compiler print some statistics about the time consumed by each
15382 pass when it finishes.
15383
15384 @item -ftime-report-details
15385 @opindex ftime-report-details
15386 Record the time consumed by infrastructure parts separately for each pass.
15387
15388 @item -fira-verbose=@var{n}
15389 @opindex fira-verbose
15390 Control the verbosity of the dump file for the integrated register allocator.
15391 The default value is 5. If the value @var{n} is greater or equal to 10,
15392 the dump output is sent to stderr using the same format as @var{n} minus 10.
15393
15394 @item -flto-report
15395 @opindex flto-report
15396 Prints a report with internal details on the workings of the link-time
15397 optimizer. The contents of this report vary from version to version.
15398 It is meant to be useful to GCC developers when processing object
15399 files in LTO mode (via @option{-flto}).
15400
15401 Disabled by default.
15402
15403 @item -flto-report-wpa
15404 @opindex flto-report-wpa
15405 Like @option{-flto-report}, but only print for the WPA phase of link-time
15406 optimization.
15407
15408 @item -fmem-report
15409 @opindex fmem-report
15410 Makes the compiler print some statistics about permanent memory
15411 allocation when it finishes.
15412
15413 @item -fmem-report-wpa
15414 @opindex fmem-report-wpa
15415 Makes the compiler print some statistics about permanent memory
15416 allocation for the WPA phase only.
15417
15418 @item -fpre-ipa-mem-report
15419 @opindex fpre-ipa-mem-report
15420 @item -fpost-ipa-mem-report
15421 @opindex fpost-ipa-mem-report
15422 Makes the compiler print some statistics about permanent memory
15423 allocation before or after interprocedural optimization.
15424
15425 @item -fprofile-report
15426 @opindex fprofile-report
15427 Makes the compiler print some statistics about consistency of the
15428 (estimated) profile and effect of individual passes.
15429
15430 @item -fstack-usage
15431 @opindex fstack-usage
15432 Makes the compiler output stack usage information for the program, on a
15433 per-function basis. The filename for the dump is made by appending
15434 @file{.su} to the @var{auxname}. @var{auxname} is generated from the name of
15435 the output file, if explicitly specified and it is not an executable,
15436 otherwise it is the basename of the source file. An entry is made up
15437 of three fields:
15438
15439 @itemize
15440 @item
15441 The name of the function.
15442 @item
15443 A number of bytes.
15444 @item
15445 One or more qualifiers: @code{static}, @code{dynamic}, @code{bounded}.
15446 @end itemize
15447
15448 The qualifier @code{static} means that the function manipulates the stack
15449 statically: a fixed number of bytes are allocated for the frame on function
15450 entry and released on function exit; no stack adjustments are otherwise made
15451 in the function. The second field is this fixed number of bytes.
15452
15453 The qualifier @code{dynamic} means that the function manipulates the stack
15454 dynamically: in addition to the static allocation described above, stack
15455 adjustments are made in the body of the function, for example to push/pop
15456 arguments around function calls. If the qualifier @code{bounded} is also
15457 present, the amount of these adjustments is bounded at compile time and
15458 the second field is an upper bound of the total amount of stack used by
15459 the function. If it is not present, the amount of these adjustments is
15460 not bounded at compile time and the second field only represents the
15461 bounded part.
15462
15463 @item -fstats
15464 @opindex fstats
15465 Emit statistics about front-end processing at the end of the compilation.
15466 This option is supported only by the C++ front end, and
15467 the information is generally only useful to the G++ development team.
15468
15469 @item -fdbg-cnt-list
15470 @opindex fdbg-cnt-list
15471 Print the name and the counter upper bound for all debug counters.
15472
15473
15474 @item -fdbg-cnt=@var{counter-value-list}
15475 @opindex fdbg-cnt
15476 Set the internal debug counter lower and upper bound. @var{counter-value-list}
15477 is a comma-separated list of @var{name}:@var{lower_bound}:@var{upper_bound}
15478 tuples which sets the lower and the upper bound of each debug
15479 counter @var{name}. The @var{lower_bound} is optional and is zero
15480 initialized if not set.
15481 All debug counters have the initial upper bound of @code{UINT_MAX};
15482 thus @code{dbg_cnt} returns true always unless the upper bound
15483 is set by this option.
15484 For example, with @option{-fdbg-cnt=dce:2:4,tail_call:10},
15485 @code{dbg_cnt(dce)} returns true only for third and fourth invocation.
15486 For @code{dbg_cnt(tail_call)} true is returned for first 10 invocations.
15487
15488 @item -print-file-name=@var{library}
15489 @opindex print-file-name
15490 Print the full absolute name of the library file @var{library} that
15491 would be used when linking---and don't do anything else. With this
15492 option, GCC does not compile or link anything; it just prints the
15493 file name.
15494
15495 @item -print-multi-directory
15496 @opindex print-multi-directory
15497 Print the directory name corresponding to the multilib selected by any
15498 other switches present in the command line. This directory is supposed
15499 to exist in @env{GCC_EXEC_PREFIX}.
15500
15501 @item -print-multi-lib
15502 @opindex print-multi-lib
15503 Print the mapping from multilib directory names to compiler switches
15504 that enable them. The directory name is separated from the switches by
15505 @samp{;}, and each switch starts with an @samp{@@} instead of the
15506 @samp{-}, without spaces between multiple switches. This is supposed to
15507 ease shell processing.
15508
15509 @item -print-multi-os-directory
15510 @opindex print-multi-os-directory
15511 Print the path to OS libraries for the selected
15512 multilib, relative to some @file{lib} subdirectory. If OS libraries are
15513 present in the @file{lib} subdirectory and no multilibs are used, this is
15514 usually just @file{.}, if OS libraries are present in @file{lib@var{suffix}}
15515 sibling directories this prints e.g.@: @file{../lib64}, @file{../lib} or
15516 @file{../lib32}, or if OS libraries are present in @file{lib/@var{subdir}}
15517 subdirectories it prints e.g.@: @file{amd64}, @file{sparcv9} or @file{ev6}.
15518
15519 @item -print-multiarch
15520 @opindex print-multiarch
15521 Print the path to OS libraries for the selected multiarch,
15522 relative to some @file{lib} subdirectory.
15523
15524 @item -print-prog-name=@var{program}
15525 @opindex print-prog-name
15526 Like @option{-print-file-name}, but searches for a program such as @command{cpp}.
15527
15528 @item -print-libgcc-file-name
15529 @opindex print-libgcc-file-name
15530 Same as @option{-print-file-name=libgcc.a}.
15531
15532 This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
15533 but you do want to link with @file{libgcc.a}. You can do:
15534
15535 @smallexample
15536 gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
15537 @end smallexample
15538
15539 @item -print-search-dirs
15540 @opindex print-search-dirs
15541 Print the name of the configured installation directory and a list of
15542 program and library directories @command{gcc} searches---and don't do anything else.
15543
15544 This is useful when @command{gcc} prints the error message
15545 @samp{installation problem, cannot exec cpp0: No such file or directory}.
15546 To resolve this you either need to put @file{cpp0} and the other compiler
15547 components where @command{gcc} expects to find them, or you can set the environment
15548 variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
15549 Don't forget the trailing @samp{/}.
15550 @xref{Environment Variables}.
15551
15552 @item -print-sysroot
15553 @opindex print-sysroot
15554 Print the target sysroot directory that is used during
15555 compilation. This is the target sysroot specified either at configure
15556 time or using the @option{--sysroot} option, possibly with an extra
15557 suffix that depends on compilation options. If no target sysroot is
15558 specified, the option prints nothing.
15559
15560 @item -print-sysroot-headers-suffix
15561 @opindex print-sysroot-headers-suffix
15562 Print the suffix added to the target sysroot when searching for
15563 headers, or give an error if the compiler is not configured with such
15564 a suffix---and don't do anything else.
15565
15566 @item -dumpmachine
15567 @opindex dumpmachine
15568 Print the compiler's target machine (for example,
15569 @samp{i686-pc-linux-gnu})---and don't do anything else.
15570
15571 @item -dumpversion
15572 @opindex dumpversion
15573 Print the compiler version (for example, @code{3.0}, @code{6.3.0} or @code{7})---and don't do
15574 anything else. This is the compiler version used in filesystem paths and
15575 specs. Depending on how the compiler has been configured it can be just
15576 a single number (major version), two numbers separated by a dot (major and
15577 minor version) or three numbers separated by dots (major, minor and patchlevel
15578 version).
15579
15580 @item -dumpfullversion
15581 @opindex dumpfullversion
15582 Print the full compiler version---and don't do anything else. The output is
15583 always three numbers separated by dots, major, minor and patchlevel version.
15584
15585 @item -dumpspecs
15586 @opindex dumpspecs
15587 Print the compiler's built-in specs---and don't do anything else. (This
15588 is used when GCC itself is being built.) @xref{Spec Files}.
15589 @end table
15590
15591 @node Submodel Options
15592 @section Machine-Dependent Options
15593 @cindex submodel options
15594 @cindex specifying hardware config
15595 @cindex hardware models and configurations, specifying
15596 @cindex target-dependent options
15597 @cindex machine-dependent options
15598
15599 Each target machine supported by GCC can have its own options---for
15600 example, to allow you to compile for a particular processor variant or
15601 ABI, or to control optimizations specific to that machine. By
15602 convention, the names of machine-specific options start with
15603 @samp{-m}.
15604
15605 Some configurations of the compiler also support additional target-specific
15606 options, usually for compatibility with other compilers on the same
15607 platform.
15608
15609 @c This list is ordered alphanumerically by subsection name.
15610 @c It should be the same order and spelling as these options are listed
15611 @c in Machine Dependent Options
15612
15613 @menu
15614 * AArch64 Options::
15615 * Adapteva Epiphany Options::
15616 * AMD GCN Options::
15617 * ARC Options::
15618 * ARM Options::
15619 * AVR Options::
15620 * Blackfin Options::
15621 * C6X Options::
15622 * CRIS Options::
15623 * CR16 Options::
15624 * C-SKY Options::
15625 * Darwin Options::
15626 * DEC Alpha Options::
15627 * FR30 Options::
15628 * FT32 Options::
15629 * FRV Options::
15630 * GNU/Linux Options::
15631 * H8/300 Options::
15632 * HPPA Options::
15633 * IA-64 Options::
15634 * LM32 Options::
15635 * M32C Options::
15636 * M32R/D Options::
15637 * M680x0 Options::
15638 * MCore Options::
15639 * MeP Options::
15640 * MicroBlaze Options::
15641 * MIPS Options::
15642 * MMIX Options::
15643 * MN10300 Options::
15644 * Moxie Options::
15645 * MSP430 Options::
15646 * NDS32 Options::
15647 * Nios II Options::
15648 * Nvidia PTX Options::
15649 * OpenRISC Options::
15650 * PDP-11 Options::
15651 * picoChip Options::
15652 * PowerPC Options::
15653 * PRU Options::
15654 * RISC-V Options::
15655 * RL78 Options::
15656 * RS/6000 and PowerPC Options::
15657 * RX Options::
15658 * S/390 and zSeries Options::
15659 * Score Options::
15660 * SH Options::
15661 * Solaris 2 Options::
15662 * SPARC Options::
15663 * SPU Options::
15664 * System V Options::
15665 * TILE-Gx Options::
15666 * TILEPro Options::
15667 * V850 Options::
15668 * VAX Options::
15669 * Visium Options::
15670 * VMS Options::
15671 * VxWorks Options::
15672 * x86 Options::
15673 * x86 Windows Options::
15674 * Xstormy16 Options::
15675 * Xtensa Options::
15676 * zSeries Options::
15677 @end menu
15678
15679 @node AArch64 Options
15680 @subsection AArch64 Options
15681 @cindex AArch64 Options
15682
15683 These options are defined for AArch64 implementations:
15684
15685 @table @gcctabopt
15686
15687 @item -mabi=@var{name}
15688 @opindex mabi
15689 Generate code for the specified data model. Permissible values
15690 are @samp{ilp32} for SysV-like data model where int, long int and pointers
15691 are 32 bits, and @samp{lp64} for SysV-like data model where int is 32 bits,
15692 but long int and pointers are 64 bits.
15693
15694 The default depends on the specific target configuration. Note that
15695 the LP64 and ILP32 ABIs are not link-compatible; you must compile your
15696 entire program with the same ABI, and link with a compatible set of libraries.
15697
15698 @item -mbig-endian
15699 @opindex mbig-endian
15700 Generate big-endian code. This is the default when GCC is configured for an
15701 @samp{aarch64_be-*-*} target.
15702
15703 @item -mgeneral-regs-only
15704 @opindex mgeneral-regs-only
15705 Generate code which uses only the general-purpose registers. This will prevent
15706 the compiler from using floating-point and Advanced SIMD registers but will not
15707 impose any restrictions on the assembler.
15708
15709 @item -mlittle-endian
15710 @opindex mlittle-endian
15711 Generate little-endian code. This is the default when GCC is configured for an
15712 @samp{aarch64-*-*} but not an @samp{aarch64_be-*-*} target.
15713
15714 @item -mcmodel=tiny
15715 @opindex mcmodel=tiny
15716 Generate code for the tiny code model. The program and its statically defined
15717 symbols must be within 1MB of each other. Programs can be statically or
15718 dynamically linked.
15719
15720 @item -mcmodel=small
15721 @opindex mcmodel=small
15722 Generate code for the small code model. The program and its statically defined
15723 symbols must be within 4GB of each other. Programs can be statically or
15724 dynamically linked. This is the default code model.
15725
15726 @item -mcmodel=large
15727 @opindex mcmodel=large
15728 Generate code for the large code model. This makes no assumptions about
15729 addresses and sizes of sections. Programs can be statically linked only.
15730
15731 @item -mstrict-align
15732 @itemx -mno-strict-align
15733 @opindex mstrict-align
15734 @opindex mno-strict-align
15735 Avoid or allow generating memory accesses that may not be aligned on a natural
15736 object boundary as described in the architecture specification.
15737
15738 @item -momit-leaf-frame-pointer
15739 @itemx -mno-omit-leaf-frame-pointer
15740 @opindex momit-leaf-frame-pointer
15741 @opindex mno-omit-leaf-frame-pointer
15742 Omit or keep the frame pointer in leaf functions. The former behavior is the
15743 default.
15744
15745 @item -mstack-protector-guard=@var{guard}
15746 @itemx -mstack-protector-guard-reg=@var{reg}
15747 @itemx -mstack-protector-guard-offset=@var{offset}
15748 @opindex mstack-protector-guard
15749 @opindex mstack-protector-guard-reg
15750 @opindex mstack-protector-guard-offset
15751 Generate stack protection code using canary at @var{guard}. Supported
15752 locations are @samp{global} for a global canary or @samp{sysreg} for a
15753 canary in an appropriate system register.
15754
15755 With the latter choice the options
15756 @option{-mstack-protector-guard-reg=@var{reg}} and
15757 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
15758 which system register to use as base register for reading the canary,
15759 and from what offset from that base register. There is no default
15760 register or offset as this is entirely for use within the Linux
15761 kernel.
15762
15763 @item -mstack-protector-guard=@var{guard}
15764 @itemx -mstack-protector-guard-reg=@var{reg}
15765 @itemx -mstack-protector-guard-offset=@var{offset}
15766 @opindex mstack-protector-guard
15767 @opindex mstack-protector-guard-reg
15768 @opindex mstack-protector-guard-offset
15769 Generate stack protection code using canary at @var{guard}. Supported
15770 locations are @samp{global} for a global canary or @samp{sysreg} for a
15771 canary in an appropriate system register.
15772
15773 With the latter choice the options
15774 @option{-mstack-protector-guard-reg=@var{reg}} and
15775 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
15776 which system register to use as base register for reading the canary,
15777 and from what offset from that base register. There is no default
15778 register or offset as this is entirely for use within the Linux
15779 kernel.
15780
15781 @item -mtls-dialect=desc
15782 @opindex mtls-dialect=desc
15783 Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
15784 of TLS variables. This is the default.
15785
15786 @item -mtls-dialect=traditional
15787 @opindex mtls-dialect=traditional
15788 Use traditional TLS as the thread-local storage mechanism for dynamic accesses
15789 of TLS variables.
15790
15791 @item -mtls-size=@var{size}
15792 @opindex mtls-size
15793 Specify bit size of immediate TLS offsets. Valid values are 12, 24, 32, 48.
15794 This option requires binutils 2.26 or newer.
15795
15796 @item -mfix-cortex-a53-835769
15797 @itemx -mno-fix-cortex-a53-835769
15798 @opindex mfix-cortex-a53-835769
15799 @opindex mno-fix-cortex-a53-835769
15800 Enable or disable the workaround for the ARM Cortex-A53 erratum number 835769.
15801 This involves inserting a NOP instruction between memory instructions and
15802 64-bit integer multiply-accumulate instructions.
15803
15804 @item -mfix-cortex-a53-843419
15805 @itemx -mno-fix-cortex-a53-843419
15806 @opindex mfix-cortex-a53-843419
15807 @opindex mno-fix-cortex-a53-843419
15808 Enable or disable the workaround for the ARM Cortex-A53 erratum number 843419.
15809 This erratum workaround is made at link time and this will only pass the
15810 corresponding flag to the linker.
15811
15812 @item -mlow-precision-recip-sqrt
15813 @itemx -mno-low-precision-recip-sqrt
15814 @opindex mlow-precision-recip-sqrt
15815 @opindex mno-low-precision-recip-sqrt
15816 Enable or disable the reciprocal square root approximation.
15817 This option only has an effect if @option{-ffast-math} or
15818 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
15819 precision of reciprocal square root results to about 16 bits for
15820 single precision and to 32 bits for double precision.
15821
15822 @item -mlow-precision-sqrt
15823 @itemx -mno-low-precision-sqrt
15824 @opindex mlow-precision-sqrt
15825 @opindex mno-low-precision-sqrt
15826 Enable or disable the square root approximation.
15827 This option only has an effect if @option{-ffast-math} or
15828 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
15829 precision of square root results to about 16 bits for
15830 single precision and to 32 bits for double precision.
15831 If enabled, it implies @option{-mlow-precision-recip-sqrt}.
15832
15833 @item -mlow-precision-div
15834 @itemx -mno-low-precision-div
15835 @opindex mlow-precision-div
15836 @opindex mno-low-precision-div
15837 Enable or disable the division approximation.
15838 This option only has an effect if @option{-ffast-math} or
15839 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
15840 precision of division results to about 16 bits for
15841 single precision and to 32 bits for double precision.
15842
15843 @item -mtrack-speculation
15844 @itemx -mno-track-speculation
15845 Enable or disable generation of additional code to track speculative
15846 execution through conditional branches. The tracking state can then
15847 be used by the compiler when expanding calls to
15848 @code{__builtin_speculation_safe_copy} to permit a more efficient code
15849 sequence to be generated.
15850
15851 @item -march=@var{name}
15852 @opindex march
15853 Specify the name of the target architecture and, optionally, one or
15854 more feature modifiers. This option has the form
15855 @option{-march=@var{arch}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}.
15856
15857 The permissible values for @var{arch} are @samp{armv8-a},
15858 @samp{armv8.1-a}, @samp{armv8.2-a}, @samp{armv8.3-a}, @samp{armv8.4-a},
15859 @samp{armv8.5-a} or @var{native}.
15860
15861 The value @samp{armv8.5-a} implies @samp{armv8.4-a} and enables compiler
15862 support for the ARMv8.5-A architecture extensions.
15863
15864 The value @samp{armv8.4-a} implies @samp{armv8.3-a} and enables compiler
15865 support for the ARMv8.4-A architecture extensions.
15866
15867 The value @samp{armv8.3-a} implies @samp{armv8.2-a} and enables compiler
15868 support for the ARMv8.3-A architecture extensions.
15869
15870 The value @samp{armv8.2-a} implies @samp{armv8.1-a} and enables compiler
15871 support for the ARMv8.2-A architecture extensions.
15872
15873 The value @samp{armv8.1-a} implies @samp{armv8-a} and enables compiler
15874 support for the ARMv8.1-A architecture extension. In particular, it
15875 enables the @samp{+crc}, @samp{+lse}, and @samp{+rdma} features.
15876
15877 The value @samp{native} is available on native AArch64 GNU/Linux and
15878 causes the compiler to pick the architecture of the host system. This
15879 option has no effect if the compiler is unable to recognize the
15880 architecture of the host system,
15881
15882 The permissible values for @var{feature} are listed in the sub-section
15883 on @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
15884 Feature Modifiers}. Where conflicting feature modifiers are
15885 specified, the right-most feature is used.
15886
15887 GCC uses @var{name} to determine what kind of instructions it can emit
15888 when generating assembly code. If @option{-march} is specified
15889 without either of @option{-mtune} or @option{-mcpu} also being
15890 specified, the code is tuned to perform well across a range of target
15891 processors implementing the target architecture.
15892
15893 @item -mtune=@var{name}
15894 @opindex mtune
15895 Specify the name of the target processor for which GCC should tune the
15896 performance of the code. Permissible values for this option are:
15897 @samp{generic}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55},
15898 @samp{cortex-a57}, @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75},
15899 @samp{cortex-a76}, @samp{ares}, @samp{exynos-m1}, @samp{emag}, @samp{falkor},
15900 @samp{neoverse-e1},@samp{neoverse-n1},@samp{qdf24xx}, @samp{saphira},
15901 @samp{phecda}, @samp{xgene1}, @samp{vulcan}, @samp{octeontx},
15902 @samp{octeontx81}, @samp{octeontx83}, @samp{thunderx}, @samp{thunderxt88},
15903 @samp{thunderxt88p1}, @samp{thunderxt81}, @samp{tsv110},
15904 @samp{thunderxt83}, @samp{thunderx2t99},
15905 @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
15906 @samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53},
15907 @samp{cortex-a75.cortex-a55}, @samp{cortex-a76.cortex-a55}
15908 @samp{native}.
15909
15910 The values @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
15911 @samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53},
15912 @samp{cortex-a75.cortex-a55}, @samp{cortex-a76.cortex-a55} specify that GCC
15913 should tune for a big.LITTLE system.
15914
15915 Additionally on native AArch64 GNU/Linux systems the value
15916 @samp{native} tunes performance to the host system. This option has no effect
15917 if the compiler is unable to recognize the processor of the host system.
15918
15919 Where none of @option{-mtune=}, @option{-mcpu=} or @option{-march=}
15920 are specified, the code is tuned to perform well across a range
15921 of target processors.
15922
15923 This option cannot be suffixed by feature modifiers.
15924
15925 @item -mcpu=@var{name}
15926 @opindex mcpu
15927 Specify the name of the target processor, optionally suffixed by one
15928 or more feature modifiers. This option has the form
15929 @option{-mcpu=@var{cpu}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where
15930 the permissible values for @var{cpu} are the same as those available
15931 for @option{-mtune}. The permissible values for @var{feature} are
15932 documented in the sub-section on
15933 @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
15934 Feature Modifiers}. Where conflicting feature modifiers are
15935 specified, the right-most feature is used.
15936
15937 GCC uses @var{name} to determine what kind of instructions it can emit when
15938 generating assembly code (as if by @option{-march}) and to determine
15939 the target processor for which to tune for performance (as if
15940 by @option{-mtune}). Where this option is used in conjunction
15941 with @option{-march} or @option{-mtune}, those options take precedence
15942 over the appropriate part of this option.
15943
15944 @item -moverride=@var{string}
15945 @opindex moverride
15946 Override tuning decisions made by the back-end in response to a
15947 @option{-mtune=} switch. The syntax, semantics, and accepted values
15948 for @var{string} in this option are not guaranteed to be consistent
15949 across releases.
15950
15951 This option is only intended to be useful when developing GCC.
15952
15953 @item -mverbose-cost-dump
15954 @opindex mverbose-cost-dump
15955 Enable verbose cost model dumping in the debug dump files. This option is
15956 provided for use in debugging the compiler.
15957
15958 @item -mpc-relative-literal-loads
15959 @itemx -mno-pc-relative-literal-loads
15960 @opindex mpc-relative-literal-loads
15961 @opindex mno-pc-relative-literal-loads
15962 Enable or disable PC-relative literal loads. With this option literal pools are
15963 accessed using a single instruction and emitted after each function. This
15964 limits the maximum size of functions to 1MB. This is enabled by default for
15965 @option{-mcmodel=tiny}.
15966
15967 @item -msign-return-address=@var{scope}
15968 @opindex msign-return-address
15969 Select the function scope on which return address signing will be applied.
15970 Permissible values are @samp{none}, which disables return address signing,
15971 @samp{non-leaf}, which enables pointer signing for functions which are not leaf
15972 functions, and @samp{all}, which enables pointer signing for all functions. The
15973 default value is @samp{none}. This option has been deprecated by
15974 -mbranch-protection.
15975
15976 @item -mbranch-protection=@var{none}|@var{standard}|@var{pac-ret}[+@var{leaf}+@var{b-key}]|@var{bti}
15977 @opindex mbranch-protection
15978 Select the branch protection features to use.
15979 @samp{none} is the default and turns off all types of branch protection.
15980 @samp{standard} turns on all types of branch protection features. If a feature
15981 has additional tuning options, then @samp{standard} sets it to its standard
15982 level.
15983 @samp{pac-ret[+@var{leaf}]} turns on return address signing to its standard
15984 level: signing functions that save the return address to memory (non-leaf
15985 functions will practically always do this) using the a-key. The optional
15986 argument @samp{leaf} can be used to extend the signing to include leaf
15987 functions. The optional argument @samp{b-key} can be used to sign the functions
15988 with the B-key instead of the A-key.
15989 @samp{bti} turns on branch target identification mechanism.
15990
15991 @item -msve-vector-bits=@var{bits}
15992 @opindex msve-vector-bits
15993 Specify the number of bits in an SVE vector register. This option only has
15994 an effect when SVE is enabled.
15995
15996 GCC supports two forms of SVE code generation: ``vector-length
15997 agnostic'' output that works with any size of vector register and
15998 ``vector-length specific'' output that allows GCC to make assumptions
15999 about the vector length when it is useful for optimization reasons.
16000 The possible values of @samp{bits} are: @samp{scalable}, @samp{128},
16001 @samp{256}, @samp{512}, @samp{1024} and @samp{2048}.
16002 Specifying @samp{scalable} selects vector-length agnostic
16003 output. At present @samp{-msve-vector-bits=128} also generates vector-length
16004 agnostic output. All other values generate vector-length specific code.
16005 The behavior of these values may change in future releases and no value except
16006 @samp{scalable} should be relied on for producing code that is portable across
16007 different hardware SVE vector lengths.
16008
16009 The default is @samp{-msve-vector-bits=scalable}, which produces
16010 vector-length agnostic code.
16011 @end table
16012
16013 @subsubsection @option{-march} and @option{-mcpu} Feature Modifiers
16014 @anchor{aarch64-feature-modifiers}
16015 @cindex @option{-march} feature modifiers
16016 @cindex @option{-mcpu} feature modifiers
16017 Feature modifiers used with @option{-march} and @option{-mcpu} can be any of
16018 the following and their inverses @option{no@var{feature}}:
16019
16020 @table @samp
16021 @item crc
16022 Enable CRC extension. This is on by default for
16023 @option{-march=armv8.1-a}.
16024 @item crypto
16025 Enable Crypto extension. This also enables Advanced SIMD and floating-point
16026 instructions.
16027 @item fp
16028 Enable floating-point instructions. This is on by default for all possible
16029 values for options @option{-march} and @option{-mcpu}.
16030 @item simd
16031 Enable Advanced SIMD instructions. This also enables floating-point
16032 instructions. This is on by default for all possible values for options
16033 @option{-march} and @option{-mcpu}.
16034 @item sve
16035 Enable Scalable Vector Extension instructions. This also enables Advanced
16036 SIMD and floating-point instructions.
16037 @item lse
16038 Enable Large System Extension instructions. This is on by default for
16039 @option{-march=armv8.1-a}.
16040 @item rdma
16041 Enable Round Double Multiply Accumulate instructions. This is on by default
16042 for @option{-march=armv8.1-a}.
16043 @item fp16
16044 Enable FP16 extension. This also enables floating-point instructions.
16045 @item fp16fml
16046 Enable FP16 fmla extension. This also enables FP16 extensions and
16047 floating-point instructions. This option is enabled by default for @option{-march=armv8.4-a}. Use of this option with architectures prior to Armv8.2-A is not supported.
16048
16049 @item rcpc
16050 Enable the RcPc extension. This does not change code generation from GCC,
16051 but is passed on to the assembler, enabling inline asm statements to use
16052 instructions from the RcPc extension.
16053 @item dotprod
16054 Enable the Dot Product extension. This also enables Advanced SIMD instructions.
16055 @item aes
16056 Enable the Armv8-a aes and pmull crypto extension. This also enables Advanced
16057 SIMD instructions.
16058 @item sha2
16059 Enable the Armv8-a sha2 crypto extension. This also enables Advanced SIMD instructions.
16060 @item sha3
16061 Enable the sha512 and sha3 crypto extension. This also enables Advanced SIMD
16062 instructions. Use of this option with architectures prior to Armv8.2-A is not supported.
16063 @item sm4
16064 Enable the sm3 and sm4 crypto extension. This also enables Advanced SIMD instructions.
16065 Use of this option with architectures prior to Armv8.2-A is not supported.
16066 @item profile
16067 Enable the Statistical Profiling extension. This option is only to enable the
16068 extension at the assembler level and does not affect code generation.
16069 @item rng
16070 Enable the Armv8.5-a Random Number instructions. This option is only to
16071 enable the extension at the assembler level and does not affect code
16072 generation.
16073 @item memtag
16074 Enable the Armv8.5-a Memory Tagging Extensions. This option is only to
16075 enable the extension at the assembler level and does not affect code
16076 generation.
16077 @item sb
16078 Enable the Armv8-a Speculation Barrier instruction. This option is only to
16079 enable the extension at the assembler level and does not affect code
16080 generation. This option is enabled by default for @option{-march=armv8.5-a}.
16081 @item ssbs
16082 Enable the Armv8-a Speculative Store Bypass Safe instruction. This option
16083 is only to enable the extension at the assembler level and does not affect code
16084 generation. This option is enabled by default for @option{-march=armv8.5-a}.
16085 @item predres
16086 Enable the Armv8-a Execution and Data Prediction Restriction instructions.
16087 This option is only to enable the extension at the assembler level and does
16088 not affect code generation. This option is enabled by default for
16089 @item sve2
16090 Enable the Armv8-a Scalable Vector Extension 2. This also enables SVE
16091 instructions.
16092 @item bitperm
16093 Enable SVE2 bitperm instructions. This also enables SVE2 instructions.
16094 @item sve2-sm4
16095 Enable SVE2 sm4 instructions. This also enables SVE2 instructions.
16096 @item sve2-aes
16097 Enable SVE2 aes instructions. This also enables SVE2 instructions.
16098 @item sve2-sha3
16099 Enable SVE2 sha3 instructions. This also enables SVE2 instructions.
16100 @option{-march=armv8.5-a}.
16101
16102 @end table
16103
16104 Feature @option{crypto} implies @option{aes}, @option{sha2}, and @option{simd},
16105 which implies @option{fp}.
16106 Conversely, @option{nofp} implies @option{nosimd}, which implies
16107 @option{nocrypto}, @option{noaes} and @option{nosha2}.
16108
16109 @node Adapteva Epiphany Options
16110 @subsection Adapteva Epiphany Options
16111
16112 These @samp{-m} options are defined for Adapteva Epiphany:
16113
16114 @table @gcctabopt
16115 @item -mhalf-reg-file
16116 @opindex mhalf-reg-file
16117 Don't allocate any register in the range @code{r32}@dots{}@code{r63}.
16118 That allows code to run on hardware variants that lack these registers.
16119
16120 @item -mprefer-short-insn-regs
16121 @opindex mprefer-short-insn-regs
16122 Preferentially allocate registers that allow short instruction generation.
16123 This can result in increased instruction count, so this may either reduce or
16124 increase overall code size.
16125
16126 @item -mbranch-cost=@var{num}
16127 @opindex mbranch-cost
16128 Set the cost of branches to roughly @var{num} ``simple'' instructions.
16129 This cost is only a heuristic and is not guaranteed to produce
16130 consistent results across releases.
16131
16132 @item -mcmove
16133 @opindex mcmove
16134 Enable the generation of conditional moves.
16135
16136 @item -mnops=@var{num}
16137 @opindex mnops
16138 Emit @var{num} NOPs before every other generated instruction.
16139
16140 @item -mno-soft-cmpsf
16141 @opindex mno-soft-cmpsf
16142 @opindex msoft-cmpsf
16143 For single-precision floating-point comparisons, emit an @code{fsub} instruction
16144 and test the flags. This is faster than a software comparison, but can
16145 get incorrect results in the presence of NaNs, or when two different small
16146 numbers are compared such that their difference is calculated as zero.
16147 The default is @option{-msoft-cmpsf}, which uses slower, but IEEE-compliant,
16148 software comparisons.
16149
16150 @item -mstack-offset=@var{num}
16151 @opindex mstack-offset
16152 Set the offset between the top of the stack and the stack pointer.
16153 E.g., a value of 8 means that the eight bytes in the range @code{sp+0@dots{}sp+7}
16154 can be used by leaf functions without stack allocation.
16155 Values other than @samp{8} or @samp{16} are untested and unlikely to work.
16156 Note also that this option changes the ABI; compiling a program with a
16157 different stack offset than the libraries have been compiled with
16158 generally does not work.
16159 This option can be useful if you want to evaluate if a different stack
16160 offset would give you better code, but to actually use a different stack
16161 offset to build working programs, it is recommended to configure the
16162 toolchain with the appropriate @option{--with-stack-offset=@var{num}} option.
16163
16164 @item -mno-round-nearest
16165 @opindex mno-round-nearest
16166 @opindex mround-nearest
16167 Make the scheduler assume that the rounding mode has been set to
16168 truncating. The default is @option{-mround-nearest}.
16169
16170 @item -mlong-calls
16171 @opindex mlong-calls
16172 If not otherwise specified by an attribute, assume all calls might be beyond
16173 the offset range of the @code{b} / @code{bl} instructions, and therefore load the
16174 function address into a register before performing a (otherwise direct) call.
16175 This is the default.
16176
16177 @item -mshort-calls
16178 @opindex short-calls
16179 If not otherwise specified by an attribute, assume all direct calls are
16180 in the range of the @code{b} / @code{bl} instructions, so use these instructions
16181 for direct calls. The default is @option{-mlong-calls}.
16182
16183 @item -msmall16
16184 @opindex msmall16
16185 Assume addresses can be loaded as 16-bit unsigned values. This does not
16186 apply to function addresses for which @option{-mlong-calls} semantics
16187 are in effect.
16188
16189 @item -mfp-mode=@var{mode}
16190 @opindex mfp-mode
16191 Set the prevailing mode of the floating-point unit.
16192 This determines the floating-point mode that is provided and expected
16193 at function call and return time. Making this mode match the mode you
16194 predominantly need at function start can make your programs smaller and
16195 faster by avoiding unnecessary mode switches.
16196
16197 @var{mode} can be set to one the following values:
16198
16199 @table @samp
16200 @item caller
16201 Any mode at function entry is valid, and retained or restored when
16202 the function returns, and when it calls other functions.
16203 This mode is useful for compiling libraries or other compilation units
16204 you might want to incorporate into different programs with different
16205 prevailing FPU modes, and the convenience of being able to use a single
16206 object file outweighs the size and speed overhead for any extra
16207 mode switching that might be needed, compared with what would be needed
16208 with a more specific choice of prevailing FPU mode.
16209
16210 @item truncate
16211 This is the mode used for floating-point calculations with
16212 truncating (i.e.@: round towards zero) rounding mode. That includes
16213 conversion from floating point to integer.
16214
16215 @item round-nearest
16216 This is the mode used for floating-point calculations with
16217 round-to-nearest-or-even rounding mode.
16218
16219 @item int
16220 This is the mode used to perform integer calculations in the FPU, e.g.@:
16221 integer multiply, or integer multiply-and-accumulate.
16222 @end table
16223
16224 The default is @option{-mfp-mode=caller}
16225
16226 @item -mno-split-lohi
16227 @itemx -mno-postinc
16228 @itemx -mno-postmodify
16229 @opindex mno-split-lohi
16230 @opindex msplit-lohi
16231 @opindex mno-postinc
16232 @opindex mpostinc
16233 @opindex mno-postmodify
16234 @opindex mpostmodify
16235 Code generation tweaks that disable, respectively, splitting of 32-bit
16236 loads, generation of post-increment addresses, and generation of
16237 post-modify addresses. The defaults are @option{msplit-lohi},
16238 @option{-mpost-inc}, and @option{-mpost-modify}.
16239
16240 @item -mnovect-double
16241 @opindex mno-vect-double
16242 @opindex mvect-double
16243 Change the preferred SIMD mode to SImode. The default is
16244 @option{-mvect-double}, which uses DImode as preferred SIMD mode.
16245
16246 @item -max-vect-align=@var{num}
16247 @opindex max-vect-align
16248 The maximum alignment for SIMD vector mode types.
16249 @var{num} may be 4 or 8. The default is 8.
16250 Note that this is an ABI change, even though many library function
16251 interfaces are unaffected if they don't use SIMD vector modes
16252 in places that affect size and/or alignment of relevant types.
16253
16254 @item -msplit-vecmove-early
16255 @opindex msplit-vecmove-early
16256 Split vector moves into single word moves before reload. In theory this
16257 can give better register allocation, but so far the reverse seems to be
16258 generally the case.
16259
16260 @item -m1reg-@var{reg}
16261 @opindex m1reg-
16262 Specify a register to hold the constant @minus{}1, which makes loading small negative
16263 constants and certain bitmasks faster.
16264 Allowable values for @var{reg} are @samp{r43} and @samp{r63},
16265 which specify use of that register as a fixed register,
16266 and @samp{none}, which means that no register is used for this
16267 purpose. The default is @option{-m1reg-none}.
16268
16269 @end table
16270
16271 @node AMD GCN Options
16272 @subsection AMD GCN Options
16273 @cindex AMD GCN Options
16274
16275 These options are defined specifically for the AMD GCN port.
16276
16277 @table @gcctabopt
16278
16279 @item -march=@var{gpu}
16280 @opindex march
16281 @itemx -mtune=@var{gpu}
16282 @opindex mtune
16283 Set architecture type or tuning for @var{gpu}. Supported values for @var{gpu}
16284 are
16285
16286 @table @samp
16287 @opindex fiji
16288 @item fiji
16289 Compile for GCN3 Fiji devices (gfx803).
16290
16291 @item gfx900
16292 Compile for GCN5 Vega 10 devices (gfx900).
16293
16294 @item gfx906
16295 Compile for GCN5 Vega 20 devices (gfx906).
16296
16297 @end table
16298
16299 @item -mstack-size=@var{bytes}
16300 @opindex mstack-size
16301 Specify how many @var{bytes} of stack space will be requested for each GPU
16302 thread (wave-front). Beware that there may be many threads and limited memory
16303 available. The size of the stack allocation may also have an impact on
16304 run-time performance. The default is 32KB when using OpenACC or OpenMP, and
16305 1MB otherwise.
16306
16307 @end table
16308
16309 @node ARC Options
16310 @subsection ARC Options
16311 @cindex ARC options
16312
16313 The following options control the architecture variant for which code
16314 is being compiled:
16315
16316 @c architecture variants
16317 @table @gcctabopt
16318
16319 @item -mbarrel-shifter
16320 @opindex mbarrel-shifter
16321 Generate instructions supported by barrel shifter. This is the default
16322 unless @option{-mcpu=ARC601} or @samp{-mcpu=ARCEM} is in effect.
16323
16324 @item -mjli-always
16325 @opindex mjli-alawys
16326 Force to call a function using jli_s instruction. This option is
16327 valid only for ARCv2 architecture.
16328
16329 @item -mcpu=@var{cpu}
16330 @opindex mcpu
16331 Set architecture type, register usage, and instruction scheduling
16332 parameters for @var{cpu}. There are also shortcut alias options
16333 available for backward compatibility and convenience. Supported
16334 values for @var{cpu} are
16335
16336 @table @samp
16337 @opindex mA6
16338 @opindex mARC600
16339 @item arc600
16340 Compile for ARC600. Aliases: @option{-mA6}, @option{-mARC600}.
16341
16342 @item arc601
16343 @opindex mARC601
16344 Compile for ARC601. Alias: @option{-mARC601}.
16345
16346 @item arc700
16347 @opindex mA7
16348 @opindex mARC700
16349 Compile for ARC700. Aliases: @option{-mA7}, @option{-mARC700}.
16350 This is the default when configured with @option{--with-cpu=arc700}@.
16351
16352 @item arcem
16353 Compile for ARC EM.
16354
16355 @item archs
16356 Compile for ARC HS.
16357
16358 @item em
16359 Compile for ARC EM CPU with no hardware extensions.
16360
16361 @item em4
16362 Compile for ARC EM4 CPU.
16363
16364 @item em4_dmips
16365 Compile for ARC EM4 DMIPS CPU.
16366
16367 @item em4_fpus
16368 Compile for ARC EM4 DMIPS CPU with the single-precision floating-point
16369 extension.
16370
16371 @item em4_fpuda
16372 Compile for ARC EM4 DMIPS CPU with single-precision floating-point and
16373 double assist instructions.
16374
16375 @item hs
16376 Compile for ARC HS CPU with no hardware extensions except the atomic
16377 instructions.
16378
16379 @item hs34
16380 Compile for ARC HS34 CPU.
16381
16382 @item hs38
16383 Compile for ARC HS38 CPU.
16384
16385 @item hs38_linux
16386 Compile for ARC HS38 CPU with all hardware extensions on.
16387
16388 @item arc600_norm
16389 Compile for ARC 600 CPU with @code{norm} instructions enabled.
16390
16391 @item arc600_mul32x16
16392 Compile for ARC 600 CPU with @code{norm} and 32x16-bit multiply
16393 instructions enabled.
16394
16395 @item arc600_mul64
16396 Compile for ARC 600 CPU with @code{norm} and @code{mul64}-family
16397 instructions enabled.
16398
16399 @item arc601_norm
16400 Compile for ARC 601 CPU with @code{norm} instructions enabled.
16401
16402 @item arc601_mul32x16
16403 Compile for ARC 601 CPU with @code{norm} and 32x16-bit multiply
16404 instructions enabled.
16405
16406 @item arc601_mul64
16407 Compile for ARC 601 CPU with @code{norm} and @code{mul64}-family
16408 instructions enabled.
16409
16410 @item nps400
16411 Compile for ARC 700 on NPS400 chip.
16412
16413 @item em_mini
16414 Compile for ARC EM minimalist configuration featuring reduced register
16415 set.
16416
16417 @end table
16418
16419 @item -mdpfp
16420 @opindex mdpfp
16421 @itemx -mdpfp-compact
16422 @opindex mdpfp-compact
16423 Generate double-precision FPX instructions, tuned for the compact
16424 implementation.
16425
16426 @item -mdpfp-fast
16427 @opindex mdpfp-fast
16428 Generate double-precision FPX instructions, tuned for the fast
16429 implementation.
16430
16431 @item -mno-dpfp-lrsr
16432 @opindex mno-dpfp-lrsr
16433 Disable @code{lr} and @code{sr} instructions from using FPX extension
16434 aux registers.
16435
16436 @item -mea
16437 @opindex mea
16438 Generate extended arithmetic instructions. Currently only
16439 @code{divaw}, @code{adds}, @code{subs}, and @code{sat16} are
16440 supported. This is always enabled for @option{-mcpu=ARC700}.
16441
16442 @item -mno-mpy
16443 @opindex mno-mpy
16444 @opindex mmpy
16445 Do not generate @code{mpy}-family instructions for ARC700. This option is
16446 deprecated.
16447
16448 @item -mmul32x16
16449 @opindex mmul32x16
16450 Generate 32x16-bit multiply and multiply-accumulate instructions.
16451
16452 @item -mmul64
16453 @opindex mmul64
16454 Generate @code{mul64} and @code{mulu64} instructions.
16455 Only valid for @option{-mcpu=ARC600}.
16456
16457 @item -mnorm
16458 @opindex mnorm
16459 Generate @code{norm} instructions. This is the default if @option{-mcpu=ARC700}
16460 is in effect.
16461
16462 @item -mspfp
16463 @opindex mspfp
16464 @itemx -mspfp-compact
16465 @opindex mspfp-compact
16466 Generate single-precision FPX instructions, tuned for the compact
16467 implementation.
16468
16469 @item -mspfp-fast
16470 @opindex mspfp-fast
16471 Generate single-precision FPX instructions, tuned for the fast
16472 implementation.
16473
16474 @item -msimd
16475 @opindex msimd
16476 Enable generation of ARC SIMD instructions via target-specific
16477 builtins. Only valid for @option{-mcpu=ARC700}.
16478
16479 @item -msoft-float
16480 @opindex msoft-float
16481 This option ignored; it is provided for compatibility purposes only.
16482 Software floating-point code is emitted by default, and this default
16483 can overridden by FPX options; @option{-mspfp}, @option{-mspfp-compact}, or
16484 @option{-mspfp-fast} for single precision, and @option{-mdpfp},
16485 @option{-mdpfp-compact}, or @option{-mdpfp-fast} for double precision.
16486
16487 @item -mswap
16488 @opindex mswap
16489 Generate @code{swap} instructions.
16490
16491 @item -matomic
16492 @opindex matomic
16493 This enables use of the locked load/store conditional extension to implement
16494 atomic memory built-in functions. Not available for ARC 6xx or ARC
16495 EM cores.
16496
16497 @item -mdiv-rem
16498 @opindex mdiv-rem
16499 Enable @code{div} and @code{rem} instructions for ARCv2 cores.
16500
16501 @item -mcode-density
16502 @opindex mcode-density
16503 Enable code density instructions for ARC EM.
16504 This option is on by default for ARC HS.
16505
16506 @item -mll64
16507 @opindex mll64
16508 Enable double load/store operations for ARC HS cores.
16509
16510 @item -mtp-regno=@var{regno}
16511 @opindex mtp-regno
16512 Specify thread pointer register number.
16513
16514 @item -mmpy-option=@var{multo}
16515 @opindex mmpy-option
16516 Compile ARCv2 code with a multiplier design option. You can specify
16517 the option using either a string or numeric value for @var{multo}.
16518 @samp{wlh1} is the default value. The recognized values are:
16519
16520 @table @samp
16521 @item 0
16522 @itemx none
16523 No multiplier available.
16524
16525 @item 1
16526 @itemx w
16527 16x16 multiplier, fully pipelined.
16528 The following instructions are enabled: @code{mpyw} and @code{mpyuw}.
16529
16530 @item 2
16531 @itemx wlh1
16532 32x32 multiplier, fully
16533 pipelined (1 stage). The following instructions are additionally
16534 enabled: @code{mpy}, @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
16535
16536 @item 3
16537 @itemx wlh2
16538 32x32 multiplier, fully pipelined
16539 (2 stages). The following instructions are additionally enabled: @code{mpy},
16540 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
16541
16542 @item 4
16543 @itemx wlh3
16544 Two 16x16 multipliers, blocking,
16545 sequential. The following instructions are additionally enabled: @code{mpy},
16546 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
16547
16548 @item 5
16549 @itemx wlh4
16550 One 16x16 multiplier, blocking,
16551 sequential. The following instructions are additionally enabled: @code{mpy},
16552 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
16553
16554 @item 6
16555 @itemx wlh5
16556 One 32x4 multiplier, blocking,
16557 sequential. The following instructions are additionally enabled: @code{mpy},
16558 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
16559
16560 @item 7
16561 @itemx plus_dmpy
16562 ARC HS SIMD support.
16563
16564 @item 8
16565 @itemx plus_macd
16566 ARC HS SIMD support.
16567
16568 @item 9
16569 @itemx plus_qmacw
16570 ARC HS SIMD support.
16571
16572 @end table
16573
16574 This option is only available for ARCv2 cores@.
16575
16576 @item -mfpu=@var{fpu}
16577 @opindex mfpu
16578 Enables support for specific floating-point hardware extensions for ARCv2
16579 cores. Supported values for @var{fpu} are:
16580
16581 @table @samp
16582
16583 @item fpus
16584 Enables support for single-precision floating-point hardware
16585 extensions@.
16586
16587 @item fpud
16588 Enables support for double-precision floating-point hardware
16589 extensions. The single-precision floating-point extension is also
16590 enabled. Not available for ARC EM@.
16591
16592 @item fpuda
16593 Enables support for double-precision floating-point hardware
16594 extensions using double-precision assist instructions. The single-precision
16595 floating-point extension is also enabled. This option is
16596 only available for ARC EM@.
16597
16598 @item fpuda_div
16599 Enables support for double-precision floating-point hardware
16600 extensions using double-precision assist instructions.
16601 The single-precision floating-point, square-root, and divide
16602 extensions are also enabled. This option is
16603 only available for ARC EM@.
16604
16605 @item fpuda_fma
16606 Enables support for double-precision floating-point hardware
16607 extensions using double-precision assist instructions.
16608 The single-precision floating-point and fused multiply and add
16609 hardware extensions are also enabled. This option is
16610 only available for ARC EM@.
16611
16612 @item fpuda_all
16613 Enables support for double-precision floating-point hardware
16614 extensions using double-precision assist instructions.
16615 All single-precision floating-point hardware extensions are also
16616 enabled. This option is only available for ARC EM@.
16617
16618 @item fpus_div
16619 Enables support for single-precision floating-point, square-root and divide
16620 hardware extensions@.
16621
16622 @item fpud_div
16623 Enables support for double-precision floating-point, square-root and divide
16624 hardware extensions. This option
16625 includes option @samp{fpus_div}. Not available for ARC EM@.
16626
16627 @item fpus_fma
16628 Enables support for single-precision floating-point and
16629 fused multiply and add hardware extensions@.
16630
16631 @item fpud_fma
16632 Enables support for double-precision floating-point and
16633 fused multiply and add hardware extensions. This option
16634 includes option @samp{fpus_fma}. Not available for ARC EM@.
16635
16636 @item fpus_all
16637 Enables support for all single-precision floating-point hardware
16638 extensions@.
16639
16640 @item fpud_all
16641 Enables support for all single- and double-precision floating-point
16642 hardware extensions. Not available for ARC EM@.
16643
16644 @end table
16645
16646 @item -mirq-ctrl-saved=@var{register-range}, @var{blink}, @var{lp_count}
16647 @opindex mirq-ctrl-saved
16648 Specifies general-purposes registers that the processor automatically
16649 saves/restores on interrupt entry and exit. @var{register-range} is
16650 specified as two registers separated by a dash. The register range
16651 always starts with @code{r0}, the upper limit is @code{fp} register.
16652 @var{blink} and @var{lp_count} are optional. This option is only
16653 valid for ARC EM and ARC HS cores.
16654
16655 @item -mrgf-banked-regs=@var{number}
16656 @opindex mrgf-banked-regs
16657 Specifies the number of registers replicated in second register bank
16658 on entry to fast interrupt. Fast interrupts are interrupts with the
16659 highest priority level P0. These interrupts save only PC and STATUS32
16660 registers to avoid memory transactions during interrupt entry and exit
16661 sequences. Use this option when you are using fast interrupts in an
16662 ARC V2 family processor. Permitted values are 4, 8, 16, and 32.
16663
16664 @item -mlpc-width=@var{width}
16665 @opindex mlpc-width
16666 Specify the width of the @code{lp_count} register. Valid values for
16667 @var{width} are 8, 16, 20, 24, 28 and 32 bits. The default width is
16668 fixed to 32 bits. If the width is less than 32, the compiler does not
16669 attempt to transform loops in your program to use the zero-delay loop
16670 mechanism unless it is known that the @code{lp_count} register can
16671 hold the required loop-counter value. Depending on the width
16672 specified, the compiler and run-time library might continue to use the
16673 loop mechanism for various needs. This option defines macro
16674 @code{__ARC_LPC_WIDTH__} with the value of @var{width}.
16675
16676 @item -mrf16
16677 @opindex mrf16
16678 This option instructs the compiler to generate code for a 16-entry
16679 register file. This option defines the @code{__ARC_RF16__}
16680 preprocessor macro.
16681
16682 @item -mbranch-index
16683 @opindex mbranch-index
16684 Enable use of @code{bi} or @code{bih} instructions to implement jump
16685 tables.
16686
16687 @end table
16688
16689 The following options are passed through to the assembler, and also
16690 define preprocessor macro symbols.
16691
16692 @c Flags used by the assembler, but for which we define preprocessor
16693 @c macro symbols as well.
16694 @table @gcctabopt
16695 @item -mdsp-packa
16696 @opindex mdsp-packa
16697 Passed down to the assembler to enable the DSP Pack A extensions.
16698 Also sets the preprocessor symbol @code{__Xdsp_packa}. This option is
16699 deprecated.
16700
16701 @item -mdvbf
16702 @opindex mdvbf
16703 Passed down to the assembler to enable the dual Viterbi butterfly
16704 extension. Also sets the preprocessor symbol @code{__Xdvbf}. This
16705 option is deprecated.
16706
16707 @c ARC700 4.10 extension instruction
16708 @item -mlock
16709 @opindex mlock
16710 Passed down to the assembler to enable the locked load/store
16711 conditional extension. Also sets the preprocessor symbol
16712 @code{__Xlock}.
16713
16714 @item -mmac-d16
16715 @opindex mmac-d16
16716 Passed down to the assembler. Also sets the preprocessor symbol
16717 @code{__Xxmac_d16}. This option is deprecated.
16718
16719 @item -mmac-24
16720 @opindex mmac-24
16721 Passed down to the assembler. Also sets the preprocessor symbol
16722 @code{__Xxmac_24}. This option is deprecated.
16723
16724 @c ARC700 4.10 extension instruction
16725 @item -mrtsc
16726 @opindex mrtsc
16727 Passed down to the assembler to enable the 64-bit time-stamp counter
16728 extension instruction. Also sets the preprocessor symbol
16729 @code{__Xrtsc}. This option is deprecated.
16730
16731 @c ARC700 4.10 extension instruction
16732 @item -mswape
16733 @opindex mswape
16734 Passed down to the assembler to enable the swap byte ordering
16735 extension instruction. Also sets the preprocessor symbol
16736 @code{__Xswape}.
16737
16738 @item -mtelephony
16739 @opindex mtelephony
16740 Passed down to the assembler to enable dual- and single-operand
16741 instructions for telephony. Also sets the preprocessor symbol
16742 @code{__Xtelephony}. This option is deprecated.
16743
16744 @item -mxy
16745 @opindex mxy
16746 Passed down to the assembler to enable the XY memory extension. Also
16747 sets the preprocessor symbol @code{__Xxy}.
16748
16749 @end table
16750
16751 The following options control how the assembly code is annotated:
16752
16753 @c Assembly annotation options
16754 @table @gcctabopt
16755 @item -misize
16756 @opindex misize
16757 Annotate assembler instructions with estimated addresses.
16758
16759 @item -mannotate-align
16760 @opindex mannotate-align
16761 Explain what alignment considerations lead to the decision to make an
16762 instruction short or long.
16763
16764 @end table
16765
16766 The following options are passed through to the linker:
16767
16768 @c options passed through to the linker
16769 @table @gcctabopt
16770 @item -marclinux
16771 @opindex marclinux
16772 Passed through to the linker, to specify use of the @code{arclinux} emulation.
16773 This option is enabled by default in tool chains built for
16774 @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets
16775 when profiling is not requested.
16776
16777 @item -marclinux_prof
16778 @opindex marclinux_prof
16779 Passed through to the linker, to specify use of the
16780 @code{arclinux_prof} emulation. This option is enabled by default in
16781 tool chains built for @w{@code{arc-linux-uclibc}} and
16782 @w{@code{arceb-linux-uclibc}} targets when profiling is requested.
16783
16784 @end table
16785
16786 The following options control the semantics of generated code:
16787
16788 @c semantically relevant code generation options
16789 @table @gcctabopt
16790 @item -mlong-calls
16791 @opindex mlong-calls
16792 Generate calls as register indirect calls, thus providing access
16793 to the full 32-bit address range.
16794
16795 @item -mmedium-calls
16796 @opindex mmedium-calls
16797 Don't use less than 25-bit addressing range for calls, which is the
16798 offset available for an unconditional branch-and-link
16799 instruction. Conditional execution of function calls is suppressed, to
16800 allow use of the 25-bit range, rather than the 21-bit range with
16801 conditional branch-and-link. This is the default for tool chains built
16802 for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets.
16803
16804 @item -G @var{num}
16805 @opindex G
16806 Put definitions of externally-visible data in a small data section if
16807 that data is no bigger than @var{num} bytes. The default value of
16808 @var{num} is 4 for any ARC configuration, or 8 when we have double
16809 load/store operations.
16810
16811 @item -mno-sdata
16812 @opindex mno-sdata
16813 @opindex msdata
16814 Do not generate sdata references. This is the default for tool chains
16815 built for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}}
16816 targets.
16817
16818 @item -mvolatile-cache
16819 @opindex mvolatile-cache
16820 Use ordinarily cached memory accesses for volatile references. This is the
16821 default.
16822
16823 @item -mno-volatile-cache
16824 @opindex mno-volatile-cache
16825 @opindex mvolatile-cache
16826 Enable cache bypass for volatile references.
16827
16828 @end table
16829
16830 The following options fine tune code generation:
16831 @c code generation tuning options
16832 @table @gcctabopt
16833 @item -malign-call
16834 @opindex malign-call
16835 Do alignment optimizations for call instructions.
16836
16837 @item -mauto-modify-reg
16838 @opindex mauto-modify-reg
16839 Enable the use of pre/post modify with register displacement.
16840
16841 @item -mbbit-peephole
16842 @opindex mbbit-peephole
16843 Enable bbit peephole2.
16844
16845 @item -mno-brcc
16846 @opindex mno-brcc
16847 This option disables a target-specific pass in @file{arc_reorg} to
16848 generate compare-and-branch (@code{br@var{cc}}) instructions.
16849 It has no effect on
16850 generation of these instructions driven by the combiner pass.
16851
16852 @item -mcase-vector-pcrel
16853 @opindex mcase-vector-pcrel
16854 Use PC-relative switch case tables to enable case table shortening.
16855 This is the default for @option{-Os}.
16856
16857 @item -mcompact-casesi
16858 @opindex mcompact-casesi
16859 Enable compact @code{casesi} pattern. This is the default for @option{-Os},
16860 and only available for ARCv1 cores. This option is deprecated.
16861
16862 @item -mno-cond-exec
16863 @opindex mno-cond-exec
16864 Disable the ARCompact-specific pass to generate conditional
16865 execution instructions.
16866
16867 Due to delay slot scheduling and interactions between operand numbers,
16868 literal sizes, instruction lengths, and the support for conditional execution,
16869 the target-independent pass to generate conditional execution is often lacking,
16870 so the ARC port has kept a special pass around that tries to find more
16871 conditional execution generation opportunities after register allocation,
16872 branch shortening, and delay slot scheduling have been done. This pass
16873 generally, but not always, improves performance and code size, at the cost of
16874 extra compilation time, which is why there is an option to switch it off.
16875 If you have a problem with call instructions exceeding their allowable
16876 offset range because they are conditionalized, you should consider using
16877 @option{-mmedium-calls} instead.
16878
16879 @item -mearly-cbranchsi
16880 @opindex mearly-cbranchsi
16881 Enable pre-reload use of the @code{cbranchsi} pattern.
16882
16883 @item -mexpand-adddi
16884 @opindex mexpand-adddi
16885 Expand @code{adddi3} and @code{subdi3} at RTL generation time into
16886 @code{add.f}, @code{adc} etc. This option is deprecated.
16887
16888 @item -mindexed-loads
16889 @opindex mindexed-loads
16890 Enable the use of indexed loads. This can be problematic because some
16891 optimizers then assume that indexed stores exist, which is not
16892 the case.
16893
16894 @item -mlra
16895 @opindex mlra
16896 Enable Local Register Allocation. This is still experimental for ARC,
16897 so by default the compiler uses standard reload
16898 (i.e.@: @option{-mno-lra}).
16899
16900 @item -mlra-priority-none
16901 @opindex mlra-priority-none
16902 Don't indicate any priority for target registers.
16903
16904 @item -mlra-priority-compact
16905 @opindex mlra-priority-compact
16906 Indicate target register priority for r0..r3 / r12..r15.
16907
16908 @item -mlra-priority-noncompact
16909 @opindex mlra-priority-noncompact
16910 Reduce target register priority for r0..r3 / r12..r15.
16911
16912 @item -mmillicode
16913 @opindex mmillicode
16914 When optimizing for size (using @option{-Os}), prologues and epilogues
16915 that have to save or restore a large number of registers are often
16916 shortened by using call to a special function in libgcc; this is
16917 referred to as a @emph{millicode} call. As these calls can pose
16918 performance issues, and/or cause linking issues when linking in a
16919 nonstandard way, this option is provided to turn on or off millicode
16920 call generation.
16921
16922 @item -mcode-density-frame
16923 @opindex mcode-density-frame
16924 This option enable the compiler to emit @code{enter} and @code{leave}
16925 instructions. These instructions are only valid for CPUs with
16926 code-density feature.
16927
16928 @item -mmixed-code
16929 @opindex mmixed-code
16930 Tweak register allocation to help 16-bit instruction generation.
16931 This generally has the effect of decreasing the average instruction size
16932 while increasing the instruction count.
16933
16934 @item -mq-class
16935 @opindex mq-class
16936 Enable @samp{q} instruction alternatives.
16937 This is the default for @option{-Os}.
16938
16939 @item -mRcq
16940 @opindex mRcq
16941 Enable @samp{Rcq} constraint handling.
16942 Most short code generation depends on this.
16943 This is the default.
16944
16945 @item -mRcw
16946 @opindex mRcw
16947 Enable @samp{Rcw} constraint handling.
16948 Most ccfsm condexec mostly depends on this.
16949 This is the default.
16950
16951 @item -msize-level=@var{level}
16952 @opindex msize-level
16953 Fine-tune size optimization with regards to instruction lengths and alignment.
16954 The recognized values for @var{level} are:
16955 @table @samp
16956 @item 0
16957 No size optimization. This level is deprecated and treated like @samp{1}.
16958
16959 @item 1
16960 Short instructions are used opportunistically.
16961
16962 @item 2
16963 In addition, alignment of loops and of code after barriers are dropped.
16964
16965 @item 3
16966 In addition, optional data alignment is dropped, and the option @option{Os} is enabled.
16967
16968 @end table
16969
16970 This defaults to @samp{3} when @option{-Os} is in effect. Otherwise,
16971 the behavior when this is not set is equivalent to level @samp{1}.
16972
16973 @item -mtune=@var{cpu}
16974 @opindex mtune
16975 Set instruction scheduling parameters for @var{cpu}, overriding any implied
16976 by @option{-mcpu=}.
16977
16978 Supported values for @var{cpu} are
16979
16980 @table @samp
16981 @item ARC600
16982 Tune for ARC600 CPU.
16983
16984 @item ARC601
16985 Tune for ARC601 CPU.
16986
16987 @item ARC700
16988 Tune for ARC700 CPU with standard multiplier block.
16989
16990 @item ARC700-xmac
16991 Tune for ARC700 CPU with XMAC block.
16992
16993 @item ARC725D
16994 Tune for ARC725D CPU.
16995
16996 @item ARC750D
16997 Tune for ARC750D CPU.
16998
16999 @end table
17000
17001 @item -mmultcost=@var{num}
17002 @opindex mmultcost
17003 Cost to assume for a multiply instruction, with @samp{4} being equal to a
17004 normal instruction.
17005
17006 @item -munalign-prob-threshold=@var{probability}
17007 @opindex munalign-prob-threshold
17008 Set probability threshold for unaligning branches.
17009 When tuning for @samp{ARC700} and optimizing for speed, branches without
17010 filled delay slot are preferably emitted unaligned and long, unless
17011 profiling indicates that the probability for the branch to be taken
17012 is below @var{probability}. @xref{Cross-profiling}.
17013 The default is (REG_BR_PROB_BASE/2), i.e.@: 5000.
17014
17015 @end table
17016
17017 The following options are maintained for backward compatibility, but
17018 are now deprecated and will be removed in a future release:
17019
17020 @c Deprecated options
17021 @table @gcctabopt
17022
17023 @item -margonaut
17024 @opindex margonaut
17025 Obsolete FPX.
17026
17027 @item -mbig-endian
17028 @opindex mbig-endian
17029 @itemx -EB
17030 @opindex EB
17031 Compile code for big-endian targets. Use of these options is now
17032 deprecated. Big-endian code is supported by configuring GCC to build
17033 @w{@code{arceb-elf32}} and @w{@code{arceb-linux-uclibc}} targets,
17034 for which big endian is the default.
17035
17036 @item -mlittle-endian
17037 @opindex mlittle-endian
17038 @itemx -EL
17039 @opindex EL
17040 Compile code for little-endian targets. Use of these options is now
17041 deprecated. Little-endian code is supported by configuring GCC to build
17042 @w{@code{arc-elf32}} and @w{@code{arc-linux-uclibc}} targets,
17043 for which little endian is the default.
17044
17045 @item -mbarrel_shifter
17046 @opindex mbarrel_shifter
17047 Replaced by @option{-mbarrel-shifter}.
17048
17049 @item -mdpfp_compact
17050 @opindex mdpfp_compact
17051 Replaced by @option{-mdpfp-compact}.
17052
17053 @item -mdpfp_fast
17054 @opindex mdpfp_fast
17055 Replaced by @option{-mdpfp-fast}.
17056
17057 @item -mdsp_packa
17058 @opindex mdsp_packa
17059 Replaced by @option{-mdsp-packa}.
17060
17061 @item -mEA
17062 @opindex mEA
17063 Replaced by @option{-mea}.
17064
17065 @item -mmac_24
17066 @opindex mmac_24
17067 Replaced by @option{-mmac-24}.
17068
17069 @item -mmac_d16
17070 @opindex mmac_d16
17071 Replaced by @option{-mmac-d16}.
17072
17073 @item -mspfp_compact
17074 @opindex mspfp_compact
17075 Replaced by @option{-mspfp-compact}.
17076
17077 @item -mspfp_fast
17078 @opindex mspfp_fast
17079 Replaced by @option{-mspfp-fast}.
17080
17081 @item -mtune=@var{cpu}
17082 @opindex mtune
17083 Values @samp{arc600}, @samp{arc601}, @samp{arc700} and
17084 @samp{arc700-xmac} for @var{cpu} are replaced by @samp{ARC600},
17085 @samp{ARC601}, @samp{ARC700} and @samp{ARC700-xmac} respectively.
17086
17087 @item -multcost=@var{num}
17088 @opindex multcost
17089 Replaced by @option{-mmultcost}.
17090
17091 @end table
17092
17093 @node ARM Options
17094 @subsection ARM Options
17095 @cindex ARM options
17096
17097 These @samp{-m} options are defined for the ARM port:
17098
17099 @table @gcctabopt
17100 @item -mabi=@var{name}
17101 @opindex mabi
17102 Generate code for the specified ABI@. Permissible values are: @samp{apcs-gnu},
17103 @samp{atpcs}, @samp{aapcs}, @samp{aapcs-linux} and @samp{iwmmxt}.
17104
17105 @item -mapcs-frame
17106 @opindex mapcs-frame
17107 Generate a stack frame that is compliant with the ARM Procedure Call
17108 Standard for all functions, even if this is not strictly necessary for
17109 correct execution of the code. Specifying @option{-fomit-frame-pointer}
17110 with this option causes the stack frames not to be generated for
17111 leaf functions. The default is @option{-mno-apcs-frame}.
17112 This option is deprecated.
17113
17114 @item -mapcs
17115 @opindex mapcs
17116 This is a synonym for @option{-mapcs-frame} and is deprecated.
17117
17118 @ignore
17119 @c not currently implemented
17120 @item -mapcs-stack-check
17121 @opindex mapcs-stack-check
17122 Generate code to check the amount of stack space available upon entry to
17123 every function (that actually uses some stack space). If there is
17124 insufficient space available then either the function
17125 @code{__rt_stkovf_split_small} or @code{__rt_stkovf_split_big} is
17126 called, depending upon the amount of stack space required. The runtime
17127 system is required to provide these functions. The default is
17128 @option{-mno-apcs-stack-check}, since this produces smaller code.
17129
17130 @c not currently implemented
17131 @item -mapcs-reentrant
17132 @opindex mapcs-reentrant
17133 Generate reentrant, position-independent code. The default is
17134 @option{-mno-apcs-reentrant}.
17135 @end ignore
17136
17137 @item -mthumb-interwork
17138 @opindex mthumb-interwork
17139 Generate code that supports calling between the ARM and Thumb
17140 instruction sets. Without this option, on pre-v5 architectures, the
17141 two instruction sets cannot be reliably used inside one program. The
17142 default is @option{-mno-thumb-interwork}, since slightly larger code
17143 is generated when @option{-mthumb-interwork} is specified. In AAPCS
17144 configurations this option is meaningless.
17145
17146 @item -mno-sched-prolog
17147 @opindex mno-sched-prolog
17148 @opindex msched-prolog
17149 Prevent the reordering of instructions in the function prologue, or the
17150 merging of those instruction with the instructions in the function's
17151 body. This means that all functions start with a recognizable set
17152 of instructions (or in fact one of a choice from a small set of
17153 different function prologues), and this information can be used to
17154 locate the start of functions inside an executable piece of code. The
17155 default is @option{-msched-prolog}.
17156
17157 @item -mfloat-abi=@var{name}
17158 @opindex mfloat-abi
17159 Specifies which floating-point ABI to use. Permissible values
17160 are: @samp{soft}, @samp{softfp} and @samp{hard}.
17161
17162 Specifying @samp{soft} causes GCC to generate output containing
17163 library calls for floating-point operations.
17164 @samp{softfp} allows the generation of code using hardware floating-point
17165 instructions, but still uses the soft-float calling conventions.
17166 @samp{hard} allows generation of floating-point instructions
17167 and uses FPU-specific calling conventions.
17168
17169 The default depends on the specific target configuration. Note that
17170 the hard-float and soft-float ABIs are not link-compatible; you must
17171 compile your entire program with the same ABI, and link with a
17172 compatible set of libraries.
17173
17174 @item -mgeneral-regs-only
17175 @opindex mgeneral-regs-only
17176 Generate code which uses only the general-purpose registers. This will prevent
17177 the compiler from using floating-point and Advanced SIMD registers but will not
17178 impose any restrictions on the assembler.
17179
17180 @item -mlittle-endian
17181 @opindex mlittle-endian
17182 Generate code for a processor running in little-endian mode. This is
17183 the default for all standard configurations.
17184
17185 @item -mbig-endian
17186 @opindex mbig-endian
17187 Generate code for a processor running in big-endian mode; the default is
17188 to compile code for a little-endian processor.
17189
17190 @item -mbe8
17191 @itemx -mbe32
17192 @opindex mbe8
17193 When linking a big-endian image select between BE8 and BE32 formats.
17194 The option has no effect for little-endian images and is ignored. The
17195 default is dependent on the selected target architecture. For ARMv6
17196 and later architectures the default is BE8, for older architectures
17197 the default is BE32. BE32 format has been deprecated by ARM.
17198
17199 @item -march=@var{name}@r{[}+extension@dots{}@r{]}
17200 @opindex march
17201 This specifies the name of the target ARM architecture. GCC uses this
17202 name to determine what kind of instructions it can emit when generating
17203 assembly code. This option can be used in conjunction with or instead
17204 of the @option{-mcpu=} option.
17205
17206 Permissible names are:
17207 @samp{armv4t},
17208 @samp{armv5t}, @samp{armv5te},
17209 @samp{armv6}, @samp{armv6j}, @samp{armv6k}, @samp{armv6kz}, @samp{armv6t2},
17210 @samp{armv6z}, @samp{armv6zk},
17211 @samp{armv7}, @samp{armv7-a}, @samp{armv7ve},
17212 @samp{armv8-a}, @samp{armv8.1-a}, @samp{armv8.2-a}, @samp{armv8.3-a},
17213 @samp{armv8.4-a},
17214 @samp{armv8.5-a},
17215 @samp{armv7-r},
17216 @samp{armv8-r},
17217 @samp{armv6-m}, @samp{armv6s-m},
17218 @samp{armv7-m}, @samp{armv7e-m},
17219 @samp{armv8-m.base}, @samp{armv8-m.main},
17220 @samp{iwmmxt} and @samp{iwmmxt2}.
17221
17222 Additionally, the following architectures, which lack support for the
17223 Thumb execution state, are recognized but support is deprecated: @samp{armv4}.
17224
17225 Many of the architectures support extensions. These can be added by
17226 appending @samp{+@var{extension}} to the architecture name. Extension
17227 options are processed in order and capabilities accumulate. An extension
17228 will also enable any necessary base extensions
17229 upon which it depends. For example, the @samp{+crypto} extension
17230 will always enable the @samp{+simd} extension. The exception to the
17231 additive construction is for extensions that are prefixed with
17232 @samp{+no@dots{}}: these extensions disable the specified option and
17233 any other extensions that may depend on the presence of that
17234 extension.
17235
17236 For example, @samp{-march=armv7-a+simd+nofp+vfpv4} is equivalent to
17237 writing @samp{-march=armv7-a+vfpv4} since the @samp{+simd} option is
17238 entirely disabled by the @samp{+nofp} option that follows it.
17239
17240 Most extension names are generically named, but have an effect that is
17241 dependent upon the architecture to which it is applied. For example,
17242 the @samp{+simd} option can be applied to both @samp{armv7-a} and
17243 @samp{armv8-a} architectures, but will enable the original ARMv7-A
17244 Advanced SIMD (Neon) extensions for @samp{armv7-a} and the ARMv8-A
17245 variant for @samp{armv8-a}.
17246
17247 The table below lists the supported extensions for each architecture.
17248 Architectures not mentioned do not support any extensions.
17249
17250 @table @samp
17251 @item armv5te
17252 @itemx armv6
17253 @itemx armv6j
17254 @itemx armv6k
17255 @itemx armv6kz
17256 @itemx armv6t2
17257 @itemx armv6z
17258 @itemx armv6zk
17259 @table @samp
17260 @item +fp
17261 The VFPv2 floating-point instructions. The extension @samp{+vfpv2} can be
17262 used as an alias for this extension.
17263
17264 @item +nofp
17265 Disable the floating-point instructions.
17266 @end table
17267
17268 @item armv7
17269 The common subset of the ARMv7-A, ARMv7-R and ARMv7-M architectures.
17270 @table @samp
17271 @item +fp
17272 The VFPv3 floating-point instructions, with 16 double-precision
17273 registers. The extension @samp{+vfpv3-d16} can be used as an alias
17274 for this extension. Note that floating-point is not supported by the
17275 base ARMv7-M architecture, but is compatible with both the ARMv7-A and
17276 ARMv7-R architectures.
17277
17278 @item +nofp
17279 Disable the floating-point instructions.
17280 @end table
17281
17282 @item armv7-a
17283 @table @samp
17284 @item +mp
17285 The multiprocessing extension.
17286
17287 @item +sec
17288 The security extension.
17289
17290 @item +fp
17291 The VFPv3 floating-point instructions, with 16 double-precision
17292 registers. The extension @samp{+vfpv3-d16} can be used as an alias
17293 for this extension.
17294
17295 @item +simd
17296 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
17297 The extensions @samp{+neon} and @samp{+neon-vfpv3} can be used as aliases
17298 for this extension.
17299
17300 @item +vfpv3
17301 The VFPv3 floating-point instructions, with 32 double-precision
17302 registers.
17303
17304 @item +vfpv3-d16-fp16
17305 The VFPv3 floating-point instructions, with 16 double-precision
17306 registers and the half-precision floating-point conversion operations.
17307
17308 @item +vfpv3-fp16
17309 The VFPv3 floating-point instructions, with 32 double-precision
17310 registers and the half-precision floating-point conversion operations.
17311
17312 @item +vfpv4-d16
17313 The VFPv4 floating-point instructions, with 16 double-precision
17314 registers.
17315
17316 @item +vfpv4
17317 The VFPv4 floating-point instructions, with 32 double-precision
17318 registers.
17319
17320 @item +neon-fp16
17321 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
17322 the half-precision floating-point conversion operations.
17323
17324 @item +neon-vfpv4
17325 The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions.
17326
17327 @item +nosimd
17328 Disable the Advanced SIMD instructions (does not disable floating point).
17329
17330 @item +nofp
17331 Disable the floating-point and Advanced SIMD instructions.
17332 @end table
17333
17334 @item armv7ve
17335 The extended version of the ARMv7-A architecture with support for
17336 virtualization.
17337 @table @samp
17338 @item +fp
17339 The VFPv4 floating-point instructions, with 16 double-precision registers.
17340 The extension @samp{+vfpv4-d16} can be used as an alias for this extension.
17341
17342 @item +simd
17343 The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions. The
17344 extension @samp{+neon-vfpv4} can be used as an alias for this extension.
17345
17346 @item +vfpv3-d16
17347 The VFPv3 floating-point instructions, with 16 double-precision
17348 registers.
17349
17350 @item +vfpv3
17351 The VFPv3 floating-point instructions, with 32 double-precision
17352 registers.
17353
17354 @item +vfpv3-d16-fp16
17355 The VFPv3 floating-point instructions, with 16 double-precision
17356 registers and the half-precision floating-point conversion operations.
17357
17358 @item +vfpv3-fp16
17359 The VFPv3 floating-point instructions, with 32 double-precision
17360 registers and the half-precision floating-point conversion operations.
17361
17362 @item +vfpv4-d16
17363 The VFPv4 floating-point instructions, with 16 double-precision
17364 registers.
17365
17366 @item +vfpv4
17367 The VFPv4 floating-point instructions, with 32 double-precision
17368 registers.
17369
17370 @item +neon
17371 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
17372 The extension @samp{+neon-vfpv3} can be used as an alias for this extension.
17373
17374 @item +neon-fp16
17375 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
17376 the half-precision floating-point conversion operations.
17377
17378 @item +nosimd
17379 Disable the Advanced SIMD instructions (does not disable floating point).
17380
17381 @item +nofp
17382 Disable the floating-point and Advanced SIMD instructions.
17383 @end table
17384
17385 @item armv8-a
17386 @table @samp
17387 @item +crc
17388 The Cyclic Redundancy Check (CRC) instructions.
17389 @item +simd
17390 The ARMv8-A Advanced SIMD and floating-point instructions.
17391 @item +crypto
17392 The cryptographic instructions.
17393 @item +nocrypto
17394 Disable the cryptographic instructions.
17395 @item +nofp
17396 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17397 @item +sb
17398 Speculation Barrier Instruction.
17399 @item +predres
17400 Execution and Data Prediction Restriction Instructions.
17401 @end table
17402
17403 @item armv8.1-a
17404 @table @samp
17405 @item +simd
17406 The ARMv8.1-A Advanced SIMD and floating-point instructions.
17407
17408 @item +crypto
17409 The cryptographic instructions. This also enables the Advanced SIMD and
17410 floating-point instructions.
17411
17412 @item +nocrypto
17413 Disable the cryptographic instructions.
17414
17415 @item +nofp
17416 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17417
17418 @item +sb
17419 Speculation Barrier Instruction.
17420
17421 @item +predres
17422 Execution and Data Prediction Restriction Instructions.
17423 @end table
17424
17425 @item armv8.2-a
17426 @itemx armv8.3-a
17427 @table @samp
17428 @item +fp16
17429 The half-precision floating-point data processing instructions.
17430 This also enables the Advanced SIMD and floating-point instructions.
17431
17432 @item +fp16fml
17433 The half-precision floating-point fmla extension. This also enables
17434 the half-precision floating-point extension and Advanced SIMD and
17435 floating-point instructions.
17436
17437 @item +simd
17438 The ARMv8.1-A Advanced SIMD and floating-point instructions.
17439
17440 @item +crypto
17441 The cryptographic instructions. This also enables the Advanced SIMD and
17442 floating-point instructions.
17443
17444 @item +dotprod
17445 Enable the Dot Product extension. This also enables Advanced SIMD instructions.
17446
17447 @item +nocrypto
17448 Disable the cryptographic extension.
17449
17450 @item +nofp
17451 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17452
17453 @item +sb
17454 Speculation Barrier Instruction.
17455
17456 @item +predres
17457 Execution and Data Prediction Restriction Instructions.
17458 @end table
17459
17460 @item armv8.4-a
17461 @table @samp
17462 @item +fp16
17463 The half-precision floating-point data processing instructions.
17464 This also enables the Advanced SIMD and floating-point instructions as well
17465 as the Dot Product extension and the half-precision floating-point fmla
17466 extension.
17467
17468 @item +simd
17469 The ARMv8.3-A Advanced SIMD and floating-point instructions as well as the
17470 Dot Product extension.
17471
17472 @item +crypto
17473 The cryptographic instructions. This also enables the Advanced SIMD and
17474 floating-point instructions as well as the Dot Product extension.
17475
17476 @item +nocrypto
17477 Disable the cryptographic extension.
17478
17479 @item +nofp
17480 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17481
17482 @item +sb
17483 Speculation Barrier Instruction.
17484
17485 @item +predres
17486 Execution and Data Prediction Restriction Instructions.
17487 @end table
17488
17489 @item armv8.5-a
17490 @table @samp
17491 @item +fp16
17492 The half-precision floating-point data processing instructions.
17493 This also enables the Advanced SIMD and floating-point instructions as well
17494 as the Dot Product extension and the half-precision floating-point fmla
17495 extension.
17496
17497 @item +simd
17498 The ARMv8.3-A Advanced SIMD and floating-point instructions as well as the
17499 Dot Product extension.
17500
17501 @item +crypto
17502 The cryptographic instructions. This also enables the Advanced SIMD and
17503 floating-point instructions as well as the Dot Product extension.
17504
17505 @item +nocrypto
17506 Disable the cryptographic extension.
17507
17508 @item +nofp
17509 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17510 @end table
17511
17512 @item armv7-r
17513 @table @samp
17514 @item +fp.sp
17515 The single-precision VFPv3 floating-point instructions. The extension
17516 @samp{+vfpv3xd} can be used as an alias for this extension.
17517
17518 @item +fp
17519 The VFPv3 floating-point instructions with 16 double-precision registers.
17520 The extension +vfpv3-d16 can be used as an alias for this extension.
17521
17522 @item +vfpv3xd-d16-fp16
17523 The single-precision VFPv3 floating-point instructions with 16 double-precision
17524 registers and the half-precision floating-point conversion operations.
17525
17526 @item +vfpv3-d16-fp16
17527 The VFPv3 floating-point instructions with 16 double-precision
17528 registers and the half-precision floating-point conversion operations.
17529
17530 @item +nofp
17531 Disable the floating-point extension.
17532
17533 @item +idiv
17534 The ARM-state integer division instructions.
17535
17536 @item +noidiv
17537 Disable the ARM-state integer division extension.
17538 @end table
17539
17540 @item armv7e-m
17541 @table @samp
17542 @item +fp
17543 The single-precision VFPv4 floating-point instructions.
17544
17545 @item +fpv5
17546 The single-precision FPv5 floating-point instructions.
17547
17548 @item +fp.dp
17549 The single- and double-precision FPv5 floating-point instructions.
17550
17551 @item +nofp
17552 Disable the floating-point extensions.
17553 @end table
17554
17555 @item armv8-m.main
17556 @table @samp
17557 @item +dsp
17558 The DSP instructions.
17559
17560 @item +nodsp
17561 Disable the DSP extension.
17562
17563 @item +fp
17564 The single-precision floating-point instructions.
17565
17566 @item +fp.dp
17567 The single- and double-precision floating-point instructions.
17568
17569 @item +nofp
17570 Disable the floating-point extension.
17571 @end table
17572
17573 @item armv8-r
17574 @table @samp
17575 @item +crc
17576 The Cyclic Redundancy Check (CRC) instructions.
17577 @item +fp.sp
17578 The single-precision FPv5 floating-point instructions.
17579 @item +simd
17580 The ARMv8-A Advanced SIMD and floating-point instructions.
17581 @item +crypto
17582 The cryptographic instructions.
17583 @item +nocrypto
17584 Disable the cryptographic instructions.
17585 @item +nofp
17586 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17587 @end table
17588
17589 @end table
17590
17591 @option{-march=native} causes the compiler to auto-detect the architecture
17592 of the build computer. At present, this feature is only supported on
17593 GNU/Linux, and not all architectures are recognized. If the auto-detect
17594 is unsuccessful the option has no effect.
17595
17596 @item -mtune=@var{name}
17597 @opindex mtune
17598 This option specifies the name of the target ARM processor for
17599 which GCC should tune the performance of the code.
17600 For some ARM implementations better performance can be obtained by using
17601 this option.
17602 Permissible names are: @samp{arm7tdmi}, @samp{arm7tdmi-s}, @samp{arm710t},
17603 @samp{arm720t}, @samp{arm740t}, @samp{strongarm}, @samp{strongarm110},
17604 @samp{strongarm1100}, 0@samp{strongarm1110}, @samp{arm8}, @samp{arm810},
17605 @samp{arm9}, @samp{arm9e}, @samp{arm920}, @samp{arm920t}, @samp{arm922t},
17606 @samp{arm946e-s}, @samp{arm966e-s}, @samp{arm968e-s}, @samp{arm926ej-s},
17607 @samp{arm940t}, @samp{arm9tdmi}, @samp{arm10tdmi}, @samp{arm1020t},
17608 @samp{arm1026ej-s}, @samp{arm10e}, @samp{arm1020e}, @samp{arm1022e},
17609 @samp{arm1136j-s}, @samp{arm1136jf-s}, @samp{mpcore}, @samp{mpcorenovfp},
17610 @samp{arm1156t2-s}, @samp{arm1156t2f-s}, @samp{arm1176jz-s}, @samp{arm1176jzf-s},
17611 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}, @samp{cortex-a8},
17612 @samp{cortex-a9}, @samp{cortex-a12}, @samp{cortex-a15}, @samp{cortex-a17},
17613 @samp{cortex-a32}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55},
17614 @samp{cortex-a57}, @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75},
17615 @samp{cortex-a76}, @samp{ares}, @samp{cortex-r4}, @samp{cortex-r4f},
17616 @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8}, @samp{cortex-r52},
17617 @samp{cortex-m0}, @samp{cortex-m0plus}, @samp{cortex-m1}, @samp{cortex-m3},
17618 @samp{cortex-m4}, @samp{cortex-m7}, @samp{cortex-m23}, @samp{cortex-m33},
17619 @samp{cortex-m1.small-multiply}, @samp{cortex-m0.small-multiply},
17620 @samp{cortex-m0plus.small-multiply}, @samp{exynos-m1}, @samp{marvell-pj4},
17621 @samp{neoverse-n1}, @samp{xscale}, @samp{iwmmxt}, @samp{iwmmxt2},
17622 @samp{ep9312}, @samp{fa526}, @samp{fa626}, @samp{fa606te}, @samp{fa626te},
17623 @samp{fmp626}, @samp{fa726te}, @samp{xgene1}.
17624
17625 Additionally, this option can specify that GCC should tune the performance
17626 of the code for a big.LITTLE system. Permissible names are:
17627 @samp{cortex-a15.cortex-a7}, @samp{cortex-a17.cortex-a7},
17628 @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
17629 @samp{cortex-a72.cortex-a35}, @samp{cortex-a73.cortex-a53},
17630 @samp{cortex-a75.cortex-a55}, @samp{cortex-a76.cortex-a55}.
17631
17632 @option{-mtune=generic-@var{arch}} specifies that GCC should tune the
17633 performance for a blend of processors within architecture @var{arch}.
17634 The aim is to generate code that run well on the current most popular
17635 processors, balancing between optimizations that benefit some CPUs in the
17636 range, and avoiding performance pitfalls of other CPUs. The effects of
17637 this option may change in future GCC versions as CPU models come and go.
17638
17639 @option{-mtune} permits the same extension options as @option{-mcpu}, but
17640 the extension options do not affect the tuning of the generated code.
17641
17642 @option{-mtune=native} causes the compiler to auto-detect the CPU
17643 of the build computer. At present, this feature is only supported on
17644 GNU/Linux, and not all architectures are recognized. If the auto-detect is
17645 unsuccessful the option has no effect.
17646
17647 @item -mcpu=@var{name}@r{[}+extension@dots{}@r{]}
17648 @opindex mcpu
17649 This specifies the name of the target ARM processor. GCC uses this name
17650 to derive the name of the target ARM architecture (as if specified
17651 by @option{-march}) and the ARM processor type for which to tune for
17652 performance (as if specified by @option{-mtune}). Where this option
17653 is used in conjunction with @option{-march} or @option{-mtune},
17654 those options take precedence over the appropriate part of this option.
17655
17656 Many of the supported CPUs implement optional architectural
17657 extensions. Where this is so the architectural extensions are
17658 normally enabled by default. If implementations that lack the
17659 extension exist, then the extension syntax can be used to disable
17660 those extensions that have been omitted. For floating-point and
17661 Advanced SIMD (Neon) instructions, the settings of the options
17662 @option{-mfloat-abi} and @option{-mfpu} must also be considered:
17663 floating-point and Advanced SIMD instructions will only be used if
17664 @option{-mfloat-abi} is not set to @samp{soft}; and any setting of
17665 @option{-mfpu} other than @samp{auto} will override the available
17666 floating-point and SIMD extension instructions.
17667
17668 For example, @samp{cortex-a9} can be found in three major
17669 configurations: integer only, with just a floating-point unit or with
17670 floating-point and Advanced SIMD. The default is to enable all the
17671 instructions, but the extensions @samp{+nosimd} and @samp{+nofp} can
17672 be used to disable just the SIMD or both the SIMD and floating-point
17673 instructions respectively.
17674
17675 Permissible names for this option are the same as those for
17676 @option{-mtune}.
17677
17678 The following extension options are common to the listed CPUs:
17679
17680 @table @samp
17681 @item +nodsp
17682 Disable the DSP instructions on @samp{cortex-m33}.
17683
17684 @item +nofp
17685 Disables the floating-point instructions on @samp{arm9e},
17686 @samp{arm946e-s}, @samp{arm966e-s}, @samp{arm968e-s}, @samp{arm10e},
17687 @samp{arm1020e}, @samp{arm1022e}, @samp{arm926ej-s},
17688 @samp{arm1026ej-s}, @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8},
17689 @samp{cortex-m4}, @samp{cortex-m7} and @samp{cortex-m33}.
17690 Disables the floating-point and SIMD instructions on
17691 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7},
17692 @samp{cortex-a8}, @samp{cortex-a9}, @samp{cortex-a12},
17693 @samp{cortex-a15}, @samp{cortex-a17}, @samp{cortex-a15.cortex-a7},
17694 @samp{cortex-a17.cortex-a7}, @samp{cortex-a32}, @samp{cortex-a35},
17695 @samp{cortex-a53} and @samp{cortex-a55}.
17696
17697 @item +nofp.dp
17698 Disables the double-precision component of the floating-point instructions
17699 on @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8}, @samp{cortex-r52} and
17700 @samp{cortex-m7}.
17701
17702 @item +nosimd
17703 Disables the SIMD (but not floating-point) instructions on
17704 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}
17705 and @samp{cortex-a9}.
17706
17707 @item +crypto
17708 Enables the cryptographic instructions on @samp{cortex-a32},
17709 @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55}, @samp{cortex-a57},
17710 @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75}, @samp{exynos-m1},
17711 @samp{xgene1}, @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
17712 @samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53} and
17713 @samp{cortex-a75.cortex-a55}.
17714 @end table
17715
17716 Additionally the @samp{generic-armv7-a} pseudo target defaults to
17717 VFPv3 with 16 double-precision registers. It supports the following
17718 extension options: @samp{mp}, @samp{sec}, @samp{vfpv3-d16},
17719 @samp{vfpv3}, @samp{vfpv3-d16-fp16}, @samp{vfpv3-fp16},
17720 @samp{vfpv4-d16}, @samp{vfpv4}, @samp{neon}, @samp{neon-vfpv3},
17721 @samp{neon-fp16}, @samp{neon-vfpv4}. The meanings are the same as for
17722 the extensions to @option{-march=armv7-a}.
17723
17724 @option{-mcpu=generic-@var{arch}} is also permissible, and is
17725 equivalent to @option{-march=@var{arch} -mtune=generic-@var{arch}}.
17726 See @option{-mtune} for more information.
17727
17728 @option{-mcpu=native} causes the compiler to auto-detect the CPU
17729 of the build computer. At present, this feature is only supported on
17730 GNU/Linux, and not all architectures are recognized. If the auto-detect
17731 is unsuccessful the option has no effect.
17732
17733 @item -mfpu=@var{name}
17734 @opindex mfpu
17735 This specifies what floating-point hardware (or hardware emulation) is
17736 available on the target. Permissible names are: @samp{auto}, @samp{vfpv2},
17737 @samp{vfpv3},
17738 @samp{vfpv3-fp16}, @samp{vfpv3-d16}, @samp{vfpv3-d16-fp16}, @samp{vfpv3xd},
17739 @samp{vfpv3xd-fp16}, @samp{neon-vfpv3}, @samp{neon-fp16}, @samp{vfpv4},
17740 @samp{vfpv4-d16}, @samp{fpv4-sp-d16}, @samp{neon-vfpv4},
17741 @samp{fpv5-d16}, @samp{fpv5-sp-d16},
17742 @samp{fp-armv8}, @samp{neon-fp-armv8} and @samp{crypto-neon-fp-armv8}.
17743 Note that @samp{neon} is an alias for @samp{neon-vfpv3} and @samp{vfp}
17744 is an alias for @samp{vfpv2}.
17745
17746 The setting @samp{auto} is the default and is special. It causes the
17747 compiler to select the floating-point and Advanced SIMD instructions
17748 based on the settings of @option{-mcpu} and @option{-march}.
17749
17750 If the selected floating-point hardware includes the NEON extension
17751 (e.g.@: @option{-mfpu=neon}), note that floating-point
17752 operations are not generated by GCC's auto-vectorization pass unless
17753 @option{-funsafe-math-optimizations} is also specified. This is
17754 because NEON hardware does not fully implement the IEEE 754 standard for
17755 floating-point arithmetic (in particular denormal values are treated as
17756 zero), so the use of NEON instructions may lead to a loss of precision.
17757
17758 You can also set the fpu name at function level by using the @code{target("fpu=")} function attributes (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
17759
17760 @item -mfp16-format=@var{name}
17761 @opindex mfp16-format
17762 Specify the format of the @code{__fp16} half-precision floating-point type.
17763 Permissible names are @samp{none}, @samp{ieee}, and @samp{alternative};
17764 the default is @samp{none}, in which case the @code{__fp16} type is not
17765 defined. @xref{Half-Precision}, for more information.
17766
17767 @item -mstructure-size-boundary=@var{n}
17768 @opindex mstructure-size-boundary
17769 The sizes of all structures and unions are rounded up to a multiple
17770 of the number of bits set by this option. Permissible values are 8, 32
17771 and 64. The default value varies for different toolchains. For the COFF
17772 targeted toolchain the default value is 8. A value of 64 is only allowed
17773 if the underlying ABI supports it.
17774
17775 Specifying a larger number can produce faster, more efficient code, but
17776 can also increase the size of the program. Different values are potentially
17777 incompatible. Code compiled with one value cannot necessarily expect to
17778 work with code or libraries compiled with another value, if they exchange
17779 information using structures or unions.
17780
17781 This option is deprecated.
17782
17783 @item -mabort-on-noreturn
17784 @opindex mabort-on-noreturn
17785 Generate a call to the function @code{abort} at the end of a
17786 @code{noreturn} function. It is executed if the function tries to
17787 return.
17788
17789 @item -mlong-calls
17790 @itemx -mno-long-calls
17791 @opindex mlong-calls
17792 @opindex mno-long-calls
17793 Tells the compiler to perform function calls by first loading the
17794 address of the function into a register and then performing a subroutine
17795 call on this register. This switch is needed if the target function
17796 lies outside of the 64-megabyte addressing range of the offset-based
17797 version of subroutine call instruction.
17798
17799 Even if this switch is enabled, not all function calls are turned
17800 into long calls. The heuristic is that static functions, functions
17801 that have the @code{short_call} attribute, functions that are inside
17802 the scope of a @code{#pragma no_long_calls} directive, and functions whose
17803 definitions have already been compiled within the current compilation
17804 unit are not turned into long calls. The exceptions to this rule are
17805 that weak function definitions, functions with the @code{long_call}
17806 attribute or the @code{section} attribute, and functions that are within
17807 the scope of a @code{#pragma long_calls} directive are always
17808 turned into long calls.
17809
17810 This feature is not enabled by default. Specifying
17811 @option{-mno-long-calls} restores the default behavior, as does
17812 placing the function calls within the scope of a @code{#pragma
17813 long_calls_off} directive. Note these switches have no effect on how
17814 the compiler generates code to handle function calls via function
17815 pointers.
17816
17817 @item -msingle-pic-base
17818 @opindex msingle-pic-base
17819 Treat the register used for PIC addressing as read-only, rather than
17820 loading it in the prologue for each function. The runtime system is
17821 responsible for initializing this register with an appropriate value
17822 before execution begins.
17823
17824 @item -mpic-register=@var{reg}
17825 @opindex mpic-register
17826 Specify the register to be used for PIC addressing.
17827 For standard PIC base case, the default is any suitable register
17828 determined by compiler. For single PIC base case, the default is
17829 @samp{R9} if target is EABI based or stack-checking is enabled,
17830 otherwise the default is @samp{R10}.
17831
17832 @item -mpic-data-is-text-relative
17833 @opindex mpic-data-is-text-relative
17834 Assume that the displacement between the text and data segments is fixed
17835 at static link time. This permits using PC-relative addressing
17836 operations to access data known to be in the data segment. For
17837 non-VxWorks RTP targets, this option is enabled by default. When
17838 disabled on such targets, it will enable @option{-msingle-pic-base} by
17839 default.
17840
17841 @item -mpoke-function-name
17842 @opindex mpoke-function-name
17843 Write the name of each function into the text section, directly
17844 preceding the function prologue. The generated code is similar to this:
17845
17846 @smallexample
17847 t0
17848 .ascii "arm_poke_function_name", 0
17849 .align
17850 t1
17851 .word 0xff000000 + (t1 - t0)
17852 arm_poke_function_name
17853 mov ip, sp
17854 stmfd sp!, @{fp, ip, lr, pc@}
17855 sub fp, ip, #4
17856 @end smallexample
17857
17858 When performing a stack backtrace, code can inspect the value of
17859 @code{pc} stored at @code{fp + 0}. If the trace function then looks at
17860 location @code{pc - 12} and the top 8 bits are set, then we know that
17861 there is a function name embedded immediately preceding this location
17862 and has length @code{((pc[-3]) & 0xff000000)}.
17863
17864 @item -mthumb
17865 @itemx -marm
17866 @opindex marm
17867 @opindex mthumb
17868
17869 Select between generating code that executes in ARM and Thumb
17870 states. The default for most configurations is to generate code
17871 that executes in ARM state, but the default can be changed by
17872 configuring GCC with the @option{--with-mode=}@var{state}
17873 configure option.
17874
17875 You can also override the ARM and Thumb mode for each function
17876 by using the @code{target("thumb")} and @code{target("arm")} function attributes
17877 (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
17878
17879 @item -mflip-thumb
17880 @opindex mflip-thumb
17881 Switch ARM/Thumb modes on alternating functions.
17882 This option is provided for regression testing of mixed Thumb/ARM code
17883 generation, and is not intended for ordinary use in compiling code.
17884
17885 @item -mtpcs-frame
17886 @opindex mtpcs-frame
17887 Generate a stack frame that is compliant with the Thumb Procedure Call
17888 Standard for all non-leaf functions. (A leaf function is one that does
17889 not call any other functions.) The default is @option{-mno-tpcs-frame}.
17890
17891 @item -mtpcs-leaf-frame
17892 @opindex mtpcs-leaf-frame
17893 Generate a stack frame that is compliant with the Thumb Procedure Call
17894 Standard for all leaf functions. (A leaf function is one that does
17895 not call any other functions.) The default is @option{-mno-apcs-leaf-frame}.
17896
17897 @item -mcallee-super-interworking
17898 @opindex mcallee-super-interworking
17899 Gives all externally visible functions in the file being compiled an ARM
17900 instruction set header which switches to Thumb mode before executing the
17901 rest of the function. This allows these functions to be called from
17902 non-interworking code. This option is not valid in AAPCS configurations
17903 because interworking is enabled by default.
17904
17905 @item -mcaller-super-interworking
17906 @opindex mcaller-super-interworking
17907 Allows calls via function pointers (including virtual functions) to
17908 execute correctly regardless of whether the target code has been
17909 compiled for interworking or not. There is a small overhead in the cost
17910 of executing a function pointer if this option is enabled. This option
17911 is not valid in AAPCS configurations because interworking is enabled
17912 by default.
17913
17914 @item -mtp=@var{name}
17915 @opindex mtp
17916 Specify the access model for the thread local storage pointer. The valid
17917 models are @samp{soft}, which generates calls to @code{__aeabi_read_tp},
17918 @samp{cp15}, which fetches the thread pointer from @code{cp15} directly
17919 (supported in the arm6k architecture), and @samp{auto}, which uses the
17920 best available method for the selected processor. The default setting is
17921 @samp{auto}.
17922
17923 @item -mtls-dialect=@var{dialect}
17924 @opindex mtls-dialect
17925 Specify the dialect to use for accessing thread local storage. Two
17926 @var{dialect}s are supported---@samp{gnu} and @samp{gnu2}. The
17927 @samp{gnu} dialect selects the original GNU scheme for supporting
17928 local and global dynamic TLS models. The @samp{gnu2} dialect
17929 selects the GNU descriptor scheme, which provides better performance
17930 for shared libraries. The GNU descriptor scheme is compatible with
17931 the original scheme, but does require new assembler, linker and
17932 library support. Initial and local exec TLS models are unaffected by
17933 this option and always use the original scheme.
17934
17935 @item -mword-relocations
17936 @opindex mword-relocations
17937 Only generate absolute relocations on word-sized values (i.e.@: R_ARM_ABS32).
17938 This is enabled by default on targets (uClinux, SymbianOS) where the runtime
17939 loader imposes this restriction, and when @option{-fpic} or @option{-fPIC}
17940 is specified. This option conflicts with @option{-mslow-flash-data}.
17941
17942 @item -mfix-cortex-m3-ldrd
17943 @opindex mfix-cortex-m3-ldrd
17944 Some Cortex-M3 cores can cause data corruption when @code{ldrd} instructions
17945 with overlapping destination and base registers are used. This option avoids
17946 generating these instructions. This option is enabled by default when
17947 @option{-mcpu=cortex-m3} is specified.
17948
17949 @item -munaligned-access
17950 @itemx -mno-unaligned-access
17951 @opindex munaligned-access
17952 @opindex mno-unaligned-access
17953 Enables (or disables) reading and writing of 16- and 32- bit values
17954 from addresses that are not 16- or 32- bit aligned. By default
17955 unaligned access is disabled for all pre-ARMv6, all ARMv6-M and for
17956 ARMv8-M Baseline architectures, and enabled for all other
17957 architectures. If unaligned access is not enabled then words in packed
17958 data structures are accessed a byte at a time.
17959
17960 The ARM attribute @code{Tag_CPU_unaligned_access} is set in the
17961 generated object file to either true or false, depending upon the
17962 setting of this option. If unaligned access is enabled then the
17963 preprocessor symbol @code{__ARM_FEATURE_UNALIGNED} is also
17964 defined.
17965
17966 @item -mneon-for-64bits
17967 @opindex mneon-for-64bits
17968 Enables using Neon to handle scalar 64-bits operations. This is
17969 disabled by default since the cost of moving data from core registers
17970 to Neon is high.
17971
17972 @item -mslow-flash-data
17973 @opindex mslow-flash-data
17974 Assume loading data from flash is slower than fetching instruction.
17975 Therefore literal load is minimized for better performance.
17976 This option is only supported when compiling for ARMv7 M-profile and
17977 off by default. It conflicts with @option{-mword-relocations}.
17978
17979 @item -masm-syntax-unified
17980 @opindex masm-syntax-unified
17981 Assume inline assembler is using unified asm syntax. The default is
17982 currently off which implies divided syntax. This option has no impact
17983 on Thumb2. However, this may change in future releases of GCC.
17984 Divided syntax should be considered deprecated.
17985
17986 @item -mrestrict-it
17987 @opindex mrestrict-it
17988 Restricts generation of IT blocks to conform to the rules of ARMv8-A.
17989 IT blocks can only contain a single 16-bit instruction from a select
17990 set of instructions. This option is on by default for ARMv8-A Thumb mode.
17991
17992 @item -mprint-tune-info
17993 @opindex mprint-tune-info
17994 Print CPU tuning information as comment in assembler file. This is
17995 an option used only for regression testing of the compiler and not
17996 intended for ordinary use in compiling code. This option is disabled
17997 by default.
17998
17999 @item -mverbose-cost-dump
18000 @opindex mverbose-cost-dump
18001 Enable verbose cost model dumping in the debug dump files. This option is
18002 provided for use in debugging the compiler.
18003
18004 @item -mpure-code
18005 @opindex mpure-code
18006 Do not allow constant data to be placed in code sections.
18007 Additionally, when compiling for ELF object format give all text sections the
18008 ELF processor-specific section attribute @code{SHF_ARM_PURECODE}. This option
18009 is only available when generating non-pic code for M-profile targets with the
18010 MOVT instruction.
18011
18012 @item -mcmse
18013 @opindex mcmse
18014 Generate secure code as per the "ARMv8-M Security Extensions: Requirements on
18015 Development Tools Engineering Specification", which can be found on
18016 @url{http://infocenter.arm.com/help/topic/com.arm.doc.ecm0359818/ECM0359818_armv8m_security_extensions_reqs_on_dev_tools_1_0.pdf}.
18017 @end table
18018
18019 @node AVR Options
18020 @subsection AVR Options
18021 @cindex AVR Options
18022
18023 These options are defined for AVR implementations:
18024
18025 @table @gcctabopt
18026 @item -mmcu=@var{mcu}
18027 @opindex mmcu
18028 Specify Atmel AVR instruction set architectures (ISA) or MCU type.
18029
18030 The default for this option is@tie{}@samp{avr2}.
18031
18032 GCC supports the following AVR devices and ISAs:
18033
18034 @include avr-mmcu.texi
18035
18036 @item -mabsdata
18037 @opindex mabsdata
18038
18039 Assume that all data in static storage can be accessed by LDS / STS
18040 instructions. This option has only an effect on reduced Tiny devices like
18041 ATtiny40. See also the @code{absdata}
18042 @ref{AVR Variable Attributes,variable attribute}.
18043
18044 @item -maccumulate-args
18045 @opindex maccumulate-args
18046 Accumulate outgoing function arguments and acquire/release the needed
18047 stack space for outgoing function arguments once in function
18048 prologue/epilogue. Without this option, outgoing arguments are pushed
18049 before calling a function and popped afterwards.
18050
18051 Popping the arguments after the function call can be expensive on
18052 AVR so that accumulating the stack space might lead to smaller
18053 executables because arguments need not be removed from the
18054 stack after such a function call.
18055
18056 This option can lead to reduced code size for functions that perform
18057 several calls to functions that get their arguments on the stack like
18058 calls to printf-like functions.
18059
18060 @item -mbranch-cost=@var{cost}
18061 @opindex mbranch-cost
18062 Set the branch costs for conditional branch instructions to
18063 @var{cost}. Reasonable values for @var{cost} are small, non-negative
18064 integers. The default branch cost is 0.
18065
18066 @item -mcall-prologues
18067 @opindex mcall-prologues
18068 Functions prologues/epilogues are expanded as calls to appropriate
18069 subroutines. Code size is smaller.
18070
18071 @item -mgas-isr-prologues
18072 @opindex mgas-isr-prologues
18073 Interrupt service routines (ISRs) may use the @code{__gcc_isr} pseudo
18074 instruction supported by GNU Binutils.
18075 If this option is on, the feature can still be disabled for individual
18076 ISRs by means of the @ref{AVR Function Attributes,,@code{no_gccisr}}
18077 function attribute. This feature is activated per default
18078 if optimization is on (but not with @option{-Og}, @pxref{Optimize Options}),
18079 and if GNU Binutils support @w{@uref{https://sourceware.org/PR21683,PR21683}}.
18080
18081 @item -mint8
18082 @opindex mint8
18083 Assume @code{int} to be 8-bit integer. This affects the sizes of all types: a
18084 @code{char} is 1 byte, an @code{int} is 1 byte, a @code{long} is 2 bytes,
18085 and @code{long long} is 4 bytes. Please note that this option does not
18086 conform to the C standards, but it results in smaller code
18087 size.
18088
18089 @item -mmain-is-OS_task
18090 @opindex mmain-is-OS_task
18091 Do not save registers in @code{main}. The effect is the same like
18092 attaching attribute @ref{AVR Function Attributes,,@code{OS_task}}
18093 to @code{main}. It is activated per default if optimization is on.
18094
18095 @item -mn-flash=@var{num}
18096 @opindex mn-flash
18097 Assume that the flash memory has a size of
18098 @var{num} times 64@tie{}KiB.
18099
18100 @item -mno-interrupts
18101 @opindex mno-interrupts
18102 Generated code is not compatible with hardware interrupts.
18103 Code size is smaller.
18104
18105 @item -mrelax
18106 @opindex mrelax
18107 Try to replace @code{CALL} resp.@: @code{JMP} instruction by the shorter
18108 @code{RCALL} resp.@: @code{RJMP} instruction if applicable.
18109 Setting @option{-mrelax} just adds the @option{--mlink-relax} option to
18110 the assembler's command line and the @option{--relax} option to the
18111 linker's command line.
18112
18113 Jump relaxing is performed by the linker because jump offsets are not
18114 known before code is located. Therefore, the assembler code generated by the
18115 compiler is the same, but the instructions in the executable may
18116 differ from instructions in the assembler code.
18117
18118 Relaxing must be turned on if linker stubs are needed, see the
18119 section on @code{EIND} and linker stubs below.
18120
18121 @item -mrmw
18122 @opindex mrmw
18123 Assume that the device supports the Read-Modify-Write
18124 instructions @code{XCH}, @code{LAC}, @code{LAS} and @code{LAT}.
18125
18126 @item -mshort-calls
18127 @opindex mshort-calls
18128
18129 Assume that @code{RJMP} and @code{RCALL} can target the whole
18130 program memory.
18131
18132 This option is used internally for multilib selection. It is
18133 not an optimization option, and you don't need to set it by hand.
18134
18135 @item -msp8
18136 @opindex msp8
18137 Treat the stack pointer register as an 8-bit register,
18138 i.e.@: assume the high byte of the stack pointer is zero.
18139 In general, you don't need to set this option by hand.
18140
18141 This option is used internally by the compiler to select and
18142 build multilibs for architectures @code{avr2} and @code{avr25}.
18143 These architectures mix devices with and without @code{SPH}.
18144 For any setting other than @option{-mmcu=avr2} or @option{-mmcu=avr25}
18145 the compiler driver adds or removes this option from the compiler
18146 proper's command line, because the compiler then knows if the device
18147 or architecture has an 8-bit stack pointer and thus no @code{SPH}
18148 register or not.
18149
18150 @item -mstrict-X
18151 @opindex mstrict-X
18152 Use address register @code{X} in a way proposed by the hardware. This means
18153 that @code{X} is only used in indirect, post-increment or
18154 pre-decrement addressing.
18155
18156 Without this option, the @code{X} register may be used in the same way
18157 as @code{Y} or @code{Z} which then is emulated by additional
18158 instructions.
18159 For example, loading a value with @code{X+const} addressing with a
18160 small non-negative @code{const < 64} to a register @var{Rn} is
18161 performed as
18162
18163 @example
18164 adiw r26, const ; X += const
18165 ld @var{Rn}, X ; @var{Rn} = *X
18166 sbiw r26, const ; X -= const
18167 @end example
18168
18169 @item -mtiny-stack
18170 @opindex mtiny-stack
18171 Only change the lower 8@tie{}bits of the stack pointer.
18172
18173 @item -mfract-convert-truncate
18174 @opindex mfract-convert-truncate
18175 Allow to use truncation instead of rounding towards zero for fractional fixed-point types.
18176
18177 @item -nodevicelib
18178 @opindex nodevicelib
18179 Don't link against AVR-LibC's device specific library @code{lib<mcu>.a}.
18180
18181 @item -Waddr-space-convert
18182 @opindex Waddr-space-convert
18183 @opindex Wno-addr-space-convert
18184 Warn about conversions between address spaces in the case where the
18185 resulting address space is not contained in the incoming address space.
18186
18187 @item -Wmisspelled-isr
18188 @opindex Wmisspelled-isr
18189 @opindex Wno-misspelled-isr
18190 Warn if the ISR is misspelled, i.e.@: without __vector prefix.
18191 Enabled by default.
18192 @end table
18193
18194 @subsubsection @code{EIND} and Devices with More Than 128 Ki Bytes of Flash
18195 @cindex @code{EIND}
18196 Pointers in the implementation are 16@tie{}bits wide.
18197 The address of a function or label is represented as word address so
18198 that indirect jumps and calls can target any code address in the
18199 range of 64@tie{}Ki words.
18200
18201 In order to facilitate indirect jump on devices with more than 128@tie{}Ki
18202 bytes of program memory space, there is a special function register called
18203 @code{EIND} that serves as most significant part of the target address
18204 when @code{EICALL} or @code{EIJMP} instructions are used.
18205
18206 Indirect jumps and calls on these devices are handled as follows by
18207 the compiler and are subject to some limitations:
18208
18209 @itemize @bullet
18210
18211 @item
18212 The compiler never sets @code{EIND}.
18213
18214 @item
18215 The compiler uses @code{EIND} implicitly in @code{EICALL}/@code{EIJMP}
18216 instructions or might read @code{EIND} directly in order to emulate an
18217 indirect call/jump by means of a @code{RET} instruction.
18218
18219 @item
18220 The compiler assumes that @code{EIND} never changes during the startup
18221 code or during the application. In particular, @code{EIND} is not
18222 saved/restored in function or interrupt service routine
18223 prologue/epilogue.
18224
18225 @item
18226 For indirect calls to functions and computed goto, the linker
18227 generates @emph{stubs}. Stubs are jump pads sometimes also called
18228 @emph{trampolines}. Thus, the indirect call/jump jumps to such a stub.
18229 The stub contains a direct jump to the desired address.
18230
18231 @item
18232 Linker relaxation must be turned on so that the linker generates
18233 the stubs correctly in all situations. See the compiler option
18234 @option{-mrelax} and the linker option @option{--relax}.
18235 There are corner cases where the linker is supposed to generate stubs
18236 but aborts without relaxation and without a helpful error message.
18237
18238 @item
18239 The default linker script is arranged for code with @code{EIND = 0}.
18240 If code is supposed to work for a setup with @code{EIND != 0}, a custom
18241 linker script has to be used in order to place the sections whose
18242 name start with @code{.trampolines} into the segment where @code{EIND}
18243 points to.
18244
18245 @item
18246 The startup code from libgcc never sets @code{EIND}.
18247 Notice that startup code is a blend of code from libgcc and AVR-LibC.
18248 For the impact of AVR-LibC on @code{EIND}, see the
18249 @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC user manual}}.
18250
18251 @item
18252 It is legitimate for user-specific startup code to set up @code{EIND}
18253 early, for example by means of initialization code located in
18254 section @code{.init3}. Such code runs prior to general startup code
18255 that initializes RAM and calls constructors, but after the bit
18256 of startup code from AVR-LibC that sets @code{EIND} to the segment
18257 where the vector table is located.
18258 @example
18259 #include <avr/io.h>
18260
18261 static void
18262 __attribute__((section(".init3"),naked,used,no_instrument_function))
18263 init3_set_eind (void)
18264 @{
18265 __asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
18266 "out %i0,r24" :: "n" (&EIND) : "r24","memory");
18267 @}
18268 @end example
18269
18270 @noindent
18271 The @code{__trampolines_start} symbol is defined in the linker script.
18272
18273 @item
18274 Stubs are generated automatically by the linker if
18275 the following two conditions are met:
18276 @itemize @minus
18277
18278 @item The address of a label is taken by means of the @code{gs} modifier
18279 (short for @emph{generate stubs}) like so:
18280 @example
18281 LDI r24, lo8(gs(@var{func}))
18282 LDI r25, hi8(gs(@var{func}))
18283 @end example
18284 @item The final location of that label is in a code segment
18285 @emph{outside} the segment where the stubs are located.
18286 @end itemize
18287
18288 @item
18289 The compiler emits such @code{gs} modifiers for code labels in the
18290 following situations:
18291 @itemize @minus
18292 @item Taking address of a function or code label.
18293 @item Computed goto.
18294 @item If prologue-save function is used, see @option{-mcall-prologues}
18295 command-line option.
18296 @item Switch/case dispatch tables. If you do not want such dispatch
18297 tables you can specify the @option{-fno-jump-tables} command-line option.
18298 @item C and C++ constructors/destructors called during startup/shutdown.
18299 @item If the tools hit a @code{gs()} modifier explained above.
18300 @end itemize
18301
18302 @item
18303 Jumping to non-symbolic addresses like so is @emph{not} supported:
18304
18305 @example
18306 int main (void)
18307 @{
18308 /* Call function at word address 0x2 */
18309 return ((int(*)(void)) 0x2)();
18310 @}
18311 @end example
18312
18313 Instead, a stub has to be set up, i.e.@: the function has to be called
18314 through a symbol (@code{func_4} in the example):
18315
18316 @example
18317 int main (void)
18318 @{
18319 extern int func_4 (void);
18320
18321 /* Call function at byte address 0x4 */
18322 return func_4();
18323 @}
18324 @end example
18325
18326 and the application be linked with @option{-Wl,--defsym,func_4=0x4}.
18327 Alternatively, @code{func_4} can be defined in the linker script.
18328 @end itemize
18329
18330 @subsubsection Handling of the @code{RAMPD}, @code{RAMPX}, @code{RAMPY} and @code{RAMPZ} Special Function Registers
18331 @cindex @code{RAMPD}
18332 @cindex @code{RAMPX}
18333 @cindex @code{RAMPY}
18334 @cindex @code{RAMPZ}
18335 Some AVR devices support memories larger than the 64@tie{}KiB range
18336 that can be accessed with 16-bit pointers. To access memory locations
18337 outside this 64@tie{}KiB range, the content of a @code{RAMP}
18338 register is used as high part of the address:
18339 The @code{X}, @code{Y}, @code{Z} address register is concatenated
18340 with the @code{RAMPX}, @code{RAMPY}, @code{RAMPZ} special function
18341 register, respectively, to get a wide address. Similarly,
18342 @code{RAMPD} is used together with direct addressing.
18343
18344 @itemize
18345 @item
18346 The startup code initializes the @code{RAMP} special function
18347 registers with zero.
18348
18349 @item
18350 If a @ref{AVR Named Address Spaces,named address space} other than
18351 generic or @code{__flash} is used, then @code{RAMPZ} is set
18352 as needed before the operation.
18353
18354 @item
18355 If the device supports RAM larger than 64@tie{}KiB and the compiler
18356 needs to change @code{RAMPZ} to accomplish an operation, @code{RAMPZ}
18357 is reset to zero after the operation.
18358
18359 @item
18360 If the device comes with a specific @code{RAMP} register, the ISR
18361 prologue/epilogue saves/restores that SFR and initializes it with
18362 zero in case the ISR code might (implicitly) use it.
18363
18364 @item
18365 RAM larger than 64@tie{}KiB is not supported by GCC for AVR targets.
18366 If you use inline assembler to read from locations outside the
18367 16-bit address range and change one of the @code{RAMP} registers,
18368 you must reset it to zero after the access.
18369
18370 @end itemize
18371
18372 @subsubsection AVR Built-in Macros
18373
18374 GCC defines several built-in macros so that the user code can test
18375 for the presence or absence of features. Almost any of the following
18376 built-in macros are deduced from device capabilities and thus
18377 triggered by the @option{-mmcu=} command-line option.
18378
18379 For even more AVR-specific built-in macros see
18380 @ref{AVR Named Address Spaces} and @ref{AVR Built-in Functions}.
18381
18382 @table @code
18383
18384 @item __AVR_ARCH__
18385 Build-in macro that resolves to a decimal number that identifies the
18386 architecture and depends on the @option{-mmcu=@var{mcu}} option.
18387 Possible values are:
18388
18389 @code{2}, @code{25}, @code{3}, @code{31}, @code{35},
18390 @code{4}, @code{5}, @code{51}, @code{6}
18391
18392 for @var{mcu}=@code{avr2}, @code{avr25}, @code{avr3}, @code{avr31},
18393 @code{avr35}, @code{avr4}, @code{avr5}, @code{avr51}, @code{avr6},
18394
18395 respectively and
18396
18397 @code{100},
18398 @code{102}, @code{103}, @code{104},
18399 @code{105}, @code{106}, @code{107}
18400
18401 for @var{mcu}=@code{avrtiny},
18402 @code{avrxmega2}, @code{avrxmega3}, @code{avrxmega4},
18403 @code{avrxmega5}, @code{avrxmega6}, @code{avrxmega7}, respectively.
18404 If @var{mcu} specifies a device, this built-in macro is set
18405 accordingly. For example, with @option{-mmcu=atmega8} the macro is
18406 defined to @code{4}.
18407
18408 @item __AVR_@var{Device}__
18409 Setting @option{-mmcu=@var{device}} defines this built-in macro which reflects
18410 the device's name. For example, @option{-mmcu=atmega8} defines the
18411 built-in macro @code{__AVR_ATmega8__}, @option{-mmcu=attiny261a} defines
18412 @code{__AVR_ATtiny261A__}, etc.
18413
18414 The built-in macros' names follow
18415 the scheme @code{__AVR_@var{Device}__} where @var{Device} is
18416 the device name as from the AVR user manual. The difference between
18417 @var{Device} in the built-in macro and @var{device} in
18418 @option{-mmcu=@var{device}} is that the latter is always lowercase.
18419
18420 If @var{device} is not a device but only a core architecture like
18421 @samp{avr51}, this macro is not defined.
18422
18423 @item __AVR_DEVICE_NAME__
18424 Setting @option{-mmcu=@var{device}} defines this built-in macro to
18425 the device's name. For example, with @option{-mmcu=atmega8} the macro
18426 is defined to @code{atmega8}.
18427
18428 If @var{device} is not a device but only a core architecture like
18429 @samp{avr51}, this macro is not defined.
18430
18431 @item __AVR_XMEGA__
18432 The device / architecture belongs to the XMEGA family of devices.
18433
18434 @item __AVR_HAVE_ELPM__
18435 The device has the @code{ELPM} instruction.
18436
18437 @item __AVR_HAVE_ELPMX__
18438 The device has the @code{ELPM R@var{n},Z} and @code{ELPM
18439 R@var{n},Z+} instructions.
18440
18441 @item __AVR_HAVE_MOVW__
18442 The device has the @code{MOVW} instruction to perform 16-bit
18443 register-register moves.
18444
18445 @item __AVR_HAVE_LPMX__
18446 The device has the @code{LPM R@var{n},Z} and
18447 @code{LPM R@var{n},Z+} instructions.
18448
18449 @item __AVR_HAVE_MUL__
18450 The device has a hardware multiplier.
18451
18452 @item __AVR_HAVE_JMP_CALL__
18453 The device has the @code{JMP} and @code{CALL} instructions.
18454 This is the case for devices with more than 8@tie{}KiB of program
18455 memory.
18456
18457 @item __AVR_HAVE_EIJMP_EICALL__
18458 @itemx __AVR_3_BYTE_PC__
18459 The device has the @code{EIJMP} and @code{EICALL} instructions.
18460 This is the case for devices with more than 128@tie{}KiB of program memory.
18461 This also means that the program counter
18462 (PC) is 3@tie{}bytes wide.
18463
18464 @item __AVR_2_BYTE_PC__
18465 The program counter (PC) is 2@tie{}bytes wide. This is the case for devices
18466 with up to 128@tie{}KiB of program memory.
18467
18468 @item __AVR_HAVE_8BIT_SP__
18469 @itemx __AVR_HAVE_16BIT_SP__
18470 The stack pointer (SP) register is treated as 8-bit respectively
18471 16-bit register by the compiler.
18472 The definition of these macros is affected by @option{-mtiny-stack}.
18473
18474 @item __AVR_HAVE_SPH__
18475 @itemx __AVR_SP8__
18476 The device has the SPH (high part of stack pointer) special function
18477 register or has an 8-bit stack pointer, respectively.
18478 The definition of these macros is affected by @option{-mmcu=} and
18479 in the cases of @option{-mmcu=avr2} and @option{-mmcu=avr25} also
18480 by @option{-msp8}.
18481
18482 @item __AVR_HAVE_RAMPD__
18483 @itemx __AVR_HAVE_RAMPX__
18484 @itemx __AVR_HAVE_RAMPY__
18485 @itemx __AVR_HAVE_RAMPZ__
18486 The device has the @code{RAMPD}, @code{RAMPX}, @code{RAMPY},
18487 @code{RAMPZ} special function register, respectively.
18488
18489 @item __NO_INTERRUPTS__
18490 This macro reflects the @option{-mno-interrupts} command-line option.
18491
18492 @item __AVR_ERRATA_SKIP__
18493 @itemx __AVR_ERRATA_SKIP_JMP_CALL__
18494 Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit
18495 instructions because of a hardware erratum. Skip instructions are
18496 @code{SBRS}, @code{SBRC}, @code{SBIS}, @code{SBIC} and @code{CPSE}.
18497 The second macro is only defined if @code{__AVR_HAVE_JMP_CALL__} is also
18498 set.
18499
18500 @item __AVR_ISA_RMW__
18501 The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT).
18502
18503 @item __AVR_SFR_OFFSET__=@var{offset}
18504 Instructions that can address I/O special function registers directly
18505 like @code{IN}, @code{OUT}, @code{SBI}, etc.@: may use a different
18506 address as if addressed by an instruction to access RAM like @code{LD}
18507 or @code{STS}. This offset depends on the device architecture and has
18508 to be subtracted from the RAM address in order to get the
18509 respective I/O@tie{}address.
18510
18511 @item __AVR_SHORT_CALLS__
18512 The @option{-mshort-calls} command line option is set.
18513
18514 @item __AVR_PM_BASE_ADDRESS__=@var{addr}
18515 Some devices support reading from flash memory by means of @code{LD*}
18516 instructions. The flash memory is seen in the data address space
18517 at an offset of @code{__AVR_PM_BASE_ADDRESS__}. If this macro
18518 is not defined, this feature is not available. If defined,
18519 the address space is linear and there is no need to put
18520 @code{.rodata} into RAM. This is handled by the default linker
18521 description file, and is currently available for
18522 @code{avrtiny} and @code{avrxmega3}. Even more convenient,
18523 there is no need to use address spaces like @code{__flash} or
18524 features like attribute @code{progmem} and @code{pgm_read_*}.
18525
18526 @item __WITH_AVRLIBC__
18527 The compiler is configured to be used together with AVR-Libc.
18528 See the @option{--with-avrlibc} configure option.
18529
18530 @end table
18531
18532 @node Blackfin Options
18533 @subsection Blackfin Options
18534 @cindex Blackfin Options
18535
18536 @table @gcctabopt
18537 @item -mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]}
18538 @opindex mcpu=
18539 Specifies the name of the target Blackfin processor. Currently, @var{cpu}
18540 can be one of @samp{bf512}, @samp{bf514}, @samp{bf516}, @samp{bf518},
18541 @samp{bf522}, @samp{bf523}, @samp{bf524}, @samp{bf525}, @samp{bf526},
18542 @samp{bf527}, @samp{bf531}, @samp{bf532}, @samp{bf533},
18543 @samp{bf534}, @samp{bf536}, @samp{bf537}, @samp{bf538}, @samp{bf539},
18544 @samp{bf542}, @samp{bf544}, @samp{bf547}, @samp{bf548}, @samp{bf549},
18545 @samp{bf542m}, @samp{bf544m}, @samp{bf547m}, @samp{bf548m}, @samp{bf549m},
18546 @samp{bf561}, @samp{bf592}.
18547
18548 The optional @var{sirevision} specifies the silicon revision of the target
18549 Blackfin processor. Any workarounds available for the targeted silicon revision
18550 are enabled. If @var{sirevision} is @samp{none}, no workarounds are enabled.
18551 If @var{sirevision} is @samp{any}, all workarounds for the targeted processor
18552 are enabled. The @code{__SILICON_REVISION__} macro is defined to two
18553 hexadecimal digits representing the major and minor numbers in the silicon
18554 revision. If @var{sirevision} is @samp{none}, the @code{__SILICON_REVISION__}
18555 is not defined. If @var{sirevision} is @samp{any}, the
18556 @code{__SILICON_REVISION__} is defined to be @code{0xffff}.
18557 If this optional @var{sirevision} is not used, GCC assumes the latest known
18558 silicon revision of the targeted Blackfin processor.
18559
18560 GCC defines a preprocessor macro for the specified @var{cpu}.
18561 For the @samp{bfin-elf} toolchain, this option causes the hardware BSP
18562 provided by libgloss to be linked in if @option{-msim} is not given.
18563
18564 Without this option, @samp{bf532} is used as the processor by default.
18565
18566 Note that support for @samp{bf561} is incomplete. For @samp{bf561},
18567 only the preprocessor macro is defined.
18568
18569 @item -msim
18570 @opindex msim
18571 Specifies that the program will be run on the simulator. This causes
18572 the simulator BSP provided by libgloss to be linked in. This option
18573 has effect only for @samp{bfin-elf} toolchain.
18574 Certain other options, such as @option{-mid-shared-library} and
18575 @option{-mfdpic}, imply @option{-msim}.
18576
18577 @item -momit-leaf-frame-pointer
18578 @opindex momit-leaf-frame-pointer
18579 Don't keep the frame pointer in a register for leaf functions. This
18580 avoids the instructions to save, set up and restore frame pointers and
18581 makes an extra register available in leaf functions.
18582
18583 @item -mspecld-anomaly
18584 @opindex mspecld-anomaly
18585 When enabled, the compiler ensures that the generated code does not
18586 contain speculative loads after jump instructions. If this option is used,
18587 @code{__WORKAROUND_SPECULATIVE_LOADS} is defined.
18588
18589 @item -mno-specld-anomaly
18590 @opindex mno-specld-anomaly
18591 @opindex mspecld-anomaly
18592 Don't generate extra code to prevent speculative loads from occurring.
18593
18594 @item -mcsync-anomaly
18595 @opindex mcsync-anomaly
18596 When enabled, the compiler ensures that the generated code does not
18597 contain CSYNC or SSYNC instructions too soon after conditional branches.
18598 If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined.
18599
18600 @item -mno-csync-anomaly
18601 @opindex mno-csync-anomaly
18602 @opindex mcsync-anomaly
18603 Don't generate extra code to prevent CSYNC or SSYNC instructions from
18604 occurring too soon after a conditional branch.
18605
18606 @item -mlow64k
18607 @opindex mlow64k
18608 When enabled, the compiler is free to take advantage of the knowledge that
18609 the entire program fits into the low 64k of memory.
18610
18611 @item -mno-low64k
18612 @opindex mno-low64k
18613 Assume that the program is arbitrarily large. This is the default.
18614
18615 @item -mstack-check-l1
18616 @opindex mstack-check-l1
18617 Do stack checking using information placed into L1 scratchpad memory by the
18618 uClinux kernel.
18619
18620 @item -mid-shared-library
18621 @opindex mid-shared-library
18622 Generate code that supports shared libraries via the library ID method.
18623 This allows for execute in place and shared libraries in an environment
18624 without virtual memory management. This option implies @option{-fPIC}.
18625 With a @samp{bfin-elf} target, this option implies @option{-msim}.
18626
18627 @item -mno-id-shared-library
18628 @opindex mno-id-shared-library
18629 @opindex mid-shared-library
18630 Generate code that doesn't assume ID-based shared libraries are being used.
18631 This is the default.
18632
18633 @item -mleaf-id-shared-library
18634 @opindex mleaf-id-shared-library
18635 Generate code that supports shared libraries via the library ID method,
18636 but assumes that this library or executable won't link against any other
18637 ID shared libraries. That allows the compiler to use faster code for jumps
18638 and calls.
18639
18640 @item -mno-leaf-id-shared-library
18641 @opindex mno-leaf-id-shared-library
18642 @opindex mleaf-id-shared-library
18643 Do not assume that the code being compiled won't link against any ID shared
18644 libraries. Slower code is generated for jump and call insns.
18645
18646 @item -mshared-library-id=n
18647 @opindex mshared-library-id
18648 Specifies the identification number of the ID-based shared library being
18649 compiled. Specifying a value of 0 generates more compact code; specifying
18650 other values forces the allocation of that number to the current
18651 library but is no more space- or time-efficient than omitting this option.
18652
18653 @item -msep-data
18654 @opindex msep-data
18655 Generate code that allows the data segment to be located in a different
18656 area of memory from the text segment. This allows for execute in place in
18657 an environment without virtual memory management by eliminating relocations
18658 against the text section.
18659
18660 @item -mno-sep-data
18661 @opindex mno-sep-data
18662 @opindex msep-data
18663 Generate code that assumes that the data segment follows the text segment.
18664 This is the default.
18665
18666 @item -mlong-calls
18667 @itemx -mno-long-calls
18668 @opindex mlong-calls
18669 @opindex mno-long-calls
18670 Tells the compiler to perform function calls by first loading the
18671 address of the function into a register and then performing a subroutine
18672 call on this register. This switch is needed if the target function
18673 lies outside of the 24-bit addressing range of the offset-based
18674 version of subroutine call instruction.
18675
18676 This feature is not enabled by default. Specifying
18677 @option{-mno-long-calls} restores the default behavior. Note these
18678 switches have no effect on how the compiler generates code to handle
18679 function calls via function pointers.
18680
18681 @item -mfast-fp
18682 @opindex mfast-fp
18683 Link with the fast floating-point library. This library relaxes some of
18684 the IEEE floating-point standard's rules for checking inputs against
18685 Not-a-Number (NAN), in the interest of performance.
18686
18687 @item -minline-plt
18688 @opindex minline-plt
18689 Enable inlining of PLT entries in function calls to functions that are
18690 not known to bind locally. It has no effect without @option{-mfdpic}.
18691
18692 @item -mmulticore
18693 @opindex mmulticore
18694 Build a standalone application for multicore Blackfin processors.
18695 This option causes proper start files and link scripts supporting
18696 multicore to be used, and defines the macro @code{__BFIN_MULTICORE}.
18697 It can only be used with @option{-mcpu=bf561@r{[}-@var{sirevision}@r{]}}.
18698
18699 This option can be used with @option{-mcorea} or @option{-mcoreb}, which
18700 selects the one-application-per-core programming model. Without
18701 @option{-mcorea} or @option{-mcoreb}, the single-application/dual-core
18702 programming model is used. In this model, the main function of Core B
18703 should be named as @code{coreb_main}.
18704
18705 If this option is not used, the single-core application programming
18706 model is used.
18707
18708 @item -mcorea
18709 @opindex mcorea
18710 Build a standalone application for Core A of BF561 when using
18711 the one-application-per-core programming model. Proper start files
18712 and link scripts are used to support Core A, and the macro
18713 @code{__BFIN_COREA} is defined.
18714 This option can only be used in conjunction with @option{-mmulticore}.
18715
18716 @item -mcoreb
18717 @opindex mcoreb
18718 Build a standalone application for Core B of BF561 when using
18719 the one-application-per-core programming model. Proper start files
18720 and link scripts are used to support Core B, and the macro
18721 @code{__BFIN_COREB} is defined. When this option is used, @code{coreb_main}
18722 should be used instead of @code{main}.
18723 This option can only be used in conjunction with @option{-mmulticore}.
18724
18725 @item -msdram
18726 @opindex msdram
18727 Build a standalone application for SDRAM. Proper start files and
18728 link scripts are used to put the application into SDRAM, and the macro
18729 @code{__BFIN_SDRAM} is defined.
18730 The loader should initialize SDRAM before loading the application.
18731
18732 @item -micplb
18733 @opindex micplb
18734 Assume that ICPLBs are enabled at run time. This has an effect on certain
18735 anomaly workarounds. For Linux targets, the default is to assume ICPLBs
18736 are enabled; for standalone applications the default is off.
18737 @end table
18738
18739 @node C6X Options
18740 @subsection C6X Options
18741 @cindex C6X Options
18742
18743 @table @gcctabopt
18744 @item -march=@var{name}
18745 @opindex march
18746 This specifies the name of the target architecture. GCC uses this
18747 name to determine what kind of instructions it can emit when generating
18748 assembly code. Permissible names are: @samp{c62x},
18749 @samp{c64x}, @samp{c64x+}, @samp{c67x}, @samp{c67x+}, @samp{c674x}.
18750
18751 @item -mbig-endian
18752 @opindex mbig-endian
18753 Generate code for a big-endian target.
18754
18755 @item -mlittle-endian
18756 @opindex mlittle-endian
18757 Generate code for a little-endian target. This is the default.
18758
18759 @item -msim
18760 @opindex msim
18761 Choose startup files and linker script suitable for the simulator.
18762
18763 @item -msdata=default
18764 @opindex msdata=default
18765 Put small global and static data in the @code{.neardata} section,
18766 which is pointed to by register @code{B14}. Put small uninitialized
18767 global and static data in the @code{.bss} section, which is adjacent
18768 to the @code{.neardata} section. Put small read-only data into the
18769 @code{.rodata} section. The corresponding sections used for large
18770 pieces of data are @code{.fardata}, @code{.far} and @code{.const}.
18771
18772 @item -msdata=all
18773 @opindex msdata=all
18774 Put all data, not just small objects, into the sections reserved for
18775 small data, and use addressing relative to the @code{B14} register to
18776 access them.
18777
18778 @item -msdata=none
18779 @opindex msdata=none
18780 Make no use of the sections reserved for small data, and use absolute
18781 addresses to access all data. Put all initialized global and static
18782 data in the @code{.fardata} section, and all uninitialized data in the
18783 @code{.far} section. Put all constant data into the @code{.const}
18784 section.
18785 @end table
18786
18787 @node CRIS Options
18788 @subsection CRIS Options
18789 @cindex CRIS Options
18790
18791 These options are defined specifically for the CRIS ports.
18792
18793 @table @gcctabopt
18794 @item -march=@var{architecture-type}
18795 @itemx -mcpu=@var{architecture-type}
18796 @opindex march
18797 @opindex mcpu
18798 Generate code for the specified architecture. The choices for
18799 @var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
18800 respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX@.
18801 Default is @samp{v0} except for cris-axis-linux-gnu, where the default is
18802 @samp{v10}.
18803
18804 @item -mtune=@var{architecture-type}
18805 @opindex mtune
18806 Tune to @var{architecture-type} everything applicable about the generated
18807 code, except for the ABI and the set of available instructions. The
18808 choices for @var{architecture-type} are the same as for
18809 @option{-march=@var{architecture-type}}.
18810
18811 @item -mmax-stack-frame=@var{n}
18812 @opindex mmax-stack-frame
18813 Warn when the stack frame of a function exceeds @var{n} bytes.
18814
18815 @item -metrax4
18816 @itemx -metrax100
18817 @opindex metrax4
18818 @opindex metrax100
18819 The options @option{-metrax4} and @option{-metrax100} are synonyms for
18820 @option{-march=v3} and @option{-march=v8} respectively.
18821
18822 @item -mmul-bug-workaround
18823 @itemx -mno-mul-bug-workaround
18824 @opindex mmul-bug-workaround
18825 @opindex mno-mul-bug-workaround
18826 Work around a bug in the @code{muls} and @code{mulu} instructions for CPU
18827 models where it applies. This option is active by default.
18828
18829 @item -mpdebug
18830 @opindex mpdebug
18831 Enable CRIS-specific verbose debug-related information in the assembly
18832 code. This option also has the effect of turning off the @samp{#NO_APP}
18833 formatted-code indicator to the assembler at the beginning of the
18834 assembly file.
18835
18836 @item -mcc-init
18837 @opindex mcc-init
18838 Do not use condition-code results from previous instruction; always emit
18839 compare and test instructions before use of condition codes.
18840
18841 @item -mno-side-effects
18842 @opindex mno-side-effects
18843 @opindex mside-effects
18844 Do not emit instructions with side effects in addressing modes other than
18845 post-increment.
18846
18847 @item -mstack-align
18848 @itemx -mno-stack-align
18849 @itemx -mdata-align
18850 @itemx -mno-data-align
18851 @itemx -mconst-align
18852 @itemx -mno-const-align
18853 @opindex mstack-align
18854 @opindex mno-stack-align
18855 @opindex mdata-align
18856 @opindex mno-data-align
18857 @opindex mconst-align
18858 @opindex mno-const-align
18859 These options (@samp{no-} options) arrange (eliminate arrangements) for the
18860 stack frame, individual data and constants to be aligned for the maximum
18861 single data access size for the chosen CPU model. The default is to
18862 arrange for 32-bit alignment. ABI details such as structure layout are
18863 not affected by these options.
18864
18865 @item -m32-bit
18866 @itemx -m16-bit
18867 @itemx -m8-bit
18868 @opindex m32-bit
18869 @opindex m16-bit
18870 @opindex m8-bit
18871 Similar to the stack- data- and const-align options above, these options
18872 arrange for stack frame, writable data and constants to all be 32-bit,
18873 16-bit or 8-bit aligned. The default is 32-bit alignment.
18874
18875 @item -mno-prologue-epilogue
18876 @itemx -mprologue-epilogue
18877 @opindex mno-prologue-epilogue
18878 @opindex mprologue-epilogue
18879 With @option{-mno-prologue-epilogue}, the normal function prologue and
18880 epilogue which set up the stack frame are omitted and no return
18881 instructions or return sequences are generated in the code. Use this
18882 option only together with visual inspection of the compiled code: no
18883 warnings or errors are generated when call-saved registers must be saved,
18884 or storage for local variables needs to be allocated.
18885
18886 @item -mno-gotplt
18887 @itemx -mgotplt
18888 @opindex mno-gotplt
18889 @opindex mgotplt
18890 With @option{-fpic} and @option{-fPIC}, don't generate (do generate)
18891 instruction sequences that load addresses for functions from the PLT part
18892 of the GOT rather than (traditional on other architectures) calls to the
18893 PLT@. The default is @option{-mgotplt}.
18894
18895 @item -melf
18896 @opindex melf
18897 Legacy no-op option only recognized with the cris-axis-elf and
18898 cris-axis-linux-gnu targets.
18899
18900 @item -mlinux
18901 @opindex mlinux
18902 Legacy no-op option only recognized with the cris-axis-linux-gnu target.
18903
18904 @item -sim
18905 @opindex sim
18906 This option, recognized for the cris-axis-elf, arranges
18907 to link with input-output functions from a simulator library. Code,
18908 initialized data and zero-initialized data are allocated consecutively.
18909
18910 @item -sim2
18911 @opindex sim2
18912 Like @option{-sim}, but pass linker options to locate initialized data at
18913 0x40000000 and zero-initialized data at 0x80000000.
18914 @end table
18915
18916 @node CR16 Options
18917 @subsection CR16 Options
18918 @cindex CR16 Options
18919
18920 These options are defined specifically for the CR16 ports.
18921
18922 @table @gcctabopt
18923
18924 @item -mmac
18925 @opindex mmac
18926 Enable the use of multiply-accumulate instructions. Disabled by default.
18927
18928 @item -mcr16cplus
18929 @itemx -mcr16c
18930 @opindex mcr16cplus
18931 @opindex mcr16c
18932 Generate code for CR16C or CR16C+ architecture. CR16C+ architecture
18933 is default.
18934
18935 @item -msim
18936 @opindex msim
18937 Links the library libsim.a which is in compatible with simulator. Applicable
18938 to ELF compiler only.
18939
18940 @item -mint32
18941 @opindex mint32
18942 Choose integer type as 32-bit wide.
18943
18944 @item -mbit-ops
18945 @opindex mbit-ops
18946 Generates @code{sbit}/@code{cbit} instructions for bit manipulations.
18947
18948 @item -mdata-model=@var{model}
18949 @opindex mdata-model
18950 Choose a data model. The choices for @var{model} are @samp{near},
18951 @samp{far} or @samp{medium}. @samp{medium} is default.
18952 However, @samp{far} is not valid with @option{-mcr16c}, as the
18953 CR16C architecture does not support the far data model.
18954 @end table
18955
18956 @node C-SKY Options
18957 @subsection C-SKY Options
18958 @cindex C-SKY Options
18959
18960 GCC supports these options when compiling for C-SKY V2 processors.
18961
18962 @table @gcctabopt
18963
18964 @item -march=@var{arch}
18965 @opindex march=
18966 Specify the C-SKY target architecture. Valid values for @var{arch} are:
18967 @samp{ck801}, @samp{ck802}, @samp{ck803}, @samp{ck807}, and @samp{ck810}.
18968 The default is @samp{ck810}.
18969
18970 @item -mcpu=@var{cpu}
18971 @opindex mcpu=
18972 Specify the C-SKY target processor. Valid values for @var{cpu} are:
18973 @samp{ck801}, @samp{ck801t},
18974 @samp{ck802}, @samp{ck802t}, @samp{ck802j},
18975 @samp{ck803}, @samp{ck803h}, @samp{ck803t}, @samp{ck803ht},
18976 @samp{ck803f}, @samp{ck803fh}, @samp{ck803e}, @samp{ck803eh},
18977 @samp{ck803et}, @samp{ck803eht}, @samp{ck803ef}, @samp{ck803efh},
18978 @samp{ck803ft}, @samp{ck803eft}, @samp{ck803efht}, @samp{ck803r1},
18979 @samp{ck803hr1}, @samp{ck803tr1}, @samp{ck803htr1}, @samp{ck803fr1},
18980 @samp{ck803fhr1}, @samp{ck803er1}, @samp{ck803ehr1}, @samp{ck803etr1},
18981 @samp{ck803ehtr1}, @samp{ck803efr1}, @samp{ck803efhr1}, @samp{ck803ftr1},
18982 @samp{ck803eftr1}, @samp{ck803efhtr1},
18983 @samp{ck803s}, @samp{ck803st}, @samp{ck803se}, @samp{ck803sf},
18984 @samp{ck803sef}, @samp{ck803seft},
18985 @samp{ck807e}, @samp{ck807ef}, @samp{ck807}, @samp{ck807f},
18986 @samp{ck810e}, @samp{ck810et}, @samp{ck810ef}, @samp{ck810eft},
18987 @samp{ck810}, @samp{ck810v}, @samp{ck810f}, @samp{ck810t}, @samp{ck810fv},
18988 @samp{ck810tv}, @samp{ck810ft}, and @samp{ck810ftv}.
18989
18990 @item -mbig-endian
18991 @opindex mbig-endian
18992 @itemx -EB
18993 @opindex EB
18994 @itemx -mlittle-endian
18995 @opindex mlittle-endian
18996 @itemx -EL
18997 @opindex EL
18998
18999 Select big- or little-endian code. The default is little-endian.
19000
19001 @item -mhard-float
19002 @opindex mhard-float
19003 @itemx -msoft-float
19004 @opindex msoft-float
19005
19006 Select hardware or software floating-point implementations.
19007 The default is soft float.
19008
19009 @item -mdouble-float
19010 @itemx -mno-double-float
19011 @opindex mdouble-float
19012 When @option{-mhard-float} is in effect, enable generation of
19013 double-precision float instructions. This is the default except
19014 when compiling for CK803.
19015
19016 @item -mfdivdu
19017 @itemx -mno-fdivdu
19018 @opindex mfdivdu
19019 When @option{-mhard-float} is in effect, enable generation of
19020 @code{frecipd}, @code{fsqrtd}, and @code{fdivd} instructions.
19021 This is the default except when compiling for CK803.
19022
19023 @item -mfpu=@var{fpu}
19024 @opindex mfpu=
19025 Select the floating-point processor. This option can only be used with
19026 @option{-mhard-float}.
19027 Values for @var{fpu} are
19028 @samp{fpv2_sf} (equivalent to @samp{-mno-double-float -mno-fdivdu}),
19029 @samp{fpv2} (@samp{-mdouble-float -mno-divdu}), and
19030 @samp{fpv2_divd} (@samp{-mdouble-float -mdivdu}).
19031
19032 @item -melrw
19033 @itemx -mno-elrw
19034 @opindex melrw
19035 Enable the extended @code{lrw} instruction. This option defaults to on
19036 for CK801 and off otherwise.
19037
19038 @item -mistack
19039 @itemx -mno-istack
19040 @opindex mistack
19041 Enable interrupt stack instructions; the default is off.
19042
19043 The @option{-mistack} option is required to handle the
19044 @code{interrupt} and @code{isr} function attributes
19045 (@pxref{C-SKY Function Attributes}).
19046
19047 @item -mmp
19048 @opindex mmp
19049 Enable multiprocessor instructions; the default is off.
19050
19051 @item -mcp
19052 @opindex mcp
19053 Enable coprocessor instructions; the default is off.
19054
19055 @item -mcache
19056 @opindex mcache
19057 Enable coprocessor instructions; the default is off.
19058
19059 @item -msecurity
19060 @opindex msecurity
19061 Enable C-SKY security instructions; the default is off.
19062
19063 @item -mtrust
19064 @opindex mtrust
19065 Enable C-SKY trust instructions; the default is off.
19066
19067 @item -mdsp
19068 @opindex mdsp
19069 @itemx -medsp
19070 @opindex medsp
19071 @itemx -mvdsp
19072 @opindex mvdsp
19073 Enable C-SKY DSP, Enhanced DSP, or Vector DSP instructions, respectively.
19074 All of these options default to off.
19075
19076 @item -mdiv
19077 @itemx -mno-div
19078 @opindex mdiv
19079 Generate divide instructions. Default is off.
19080
19081 @item -msmart
19082 @itemx -mno-smart
19083 @opindex msmart
19084 Generate code for Smart Mode, using only registers numbered 0-7 to allow
19085 use of 16-bit instructions. This option is ignored for CK801 where this
19086 is the required behavior, and it defaults to on for CK802.
19087 For other targets, the default is off.
19088
19089 @item -mhigh-registers
19090 @itemx -mno-high-registers
19091 @opindex mhigh-registers
19092 Generate code using the high registers numbered 16-31. This option
19093 is not supported on CK801, CK802, or CK803, and is enabled by default
19094 for other processors.
19095
19096 @item -manchor
19097 @itemx -mno-anchor
19098 @opindex manchor
19099 Generate code using global anchor symbol addresses.
19100
19101 @item -mpushpop
19102 @itemx -mno-pushpop
19103 @opindex mpushpop
19104 Generate code using @code{push} and @code{pop} instructions. This option
19105 defaults to on.
19106
19107 @item -mmultiple-stld
19108 @itemx -mstm
19109 @itemx -mno-multiple-stld
19110 @itemx -mno-stm
19111 @opindex mmultiple-stld
19112 Generate code using @code{stm} and @code{ldm} instructions. This option
19113 isn't supported on CK801 but is enabled by default on other processors.
19114
19115 @item -mconstpool
19116 @itemx -mno-constpool
19117 @opindex mconstpool
19118 Create constant pools in the compiler instead of deferring it to the
19119 assembler. This option is the default and required for correct code
19120 generation on CK801 and CK802, and is optional on other processors.
19121
19122 @item -mstack-size
19123 @item -mno-stack-size
19124 @opindex mstack-size
19125 Emit @code{.stack_size} directives for each function in the assembly
19126 output. This option defaults to off.
19127
19128 @item -mccrt
19129 @itemx -mno-ccrt
19130 @opindex mccrt
19131 Generate code for the C-SKY compiler runtime instead of libgcc. This
19132 option defaults to off.
19133
19134 @item -mbranch-cost=@var{n}
19135 @opindex mbranch-cost=
19136 Set the branch costs to roughly @code{n} instructions. The default is 1.
19137
19138 @item -msched-prolog
19139 @itemx -mno-sched-prolog
19140 @opindex msched-prolog
19141 Permit scheduling of function prologue and epilogue sequences. Using
19142 this option can result in code that is not compliant with the C-SKY V2 ABI
19143 prologue requirements and that cannot be debugged or backtraced.
19144 It is disabled by default.
19145
19146 @end table
19147
19148 @node Darwin Options
19149 @subsection Darwin Options
19150 @cindex Darwin options
19151
19152 These options are defined for all architectures running the Darwin operating
19153 system.
19154
19155 FSF GCC on Darwin does not create ``fat'' object files; it creates
19156 an object file for the single architecture that GCC was built to
19157 target. Apple's GCC on Darwin does create ``fat'' files if multiple
19158 @option{-arch} options are used; it does so by running the compiler or
19159 linker multiple times and joining the results together with
19160 @file{lipo}.
19161
19162 The subtype of the file created (like @samp{ppc7400} or @samp{ppc970} or
19163 @samp{i686}) is determined by the flags that specify the ISA
19164 that GCC is targeting, like @option{-mcpu} or @option{-march}. The
19165 @option{-force_cpusubtype_ALL} option can be used to override this.
19166
19167 The Darwin tools vary in their behavior when presented with an ISA
19168 mismatch. The assembler, @file{as}, only permits instructions to
19169 be used that are valid for the subtype of the file it is generating,
19170 so you cannot put 64-bit instructions in a @samp{ppc750} object file.
19171 The linker for shared libraries, @file{/usr/bin/libtool}, fails
19172 and prints an error if asked to create a shared library with a less
19173 restrictive subtype than its input files (for instance, trying to put
19174 a @samp{ppc970} object file in a @samp{ppc7400} library). The linker
19175 for executables, @command{ld}, quietly gives the executable the most
19176 restrictive subtype of any of its input files.
19177
19178 @table @gcctabopt
19179 @item -F@var{dir}
19180 @opindex F
19181 Add the framework directory @var{dir} to the head of the list of
19182 directories to be searched for header files. These directories are
19183 interleaved with those specified by @option{-I} options and are
19184 scanned in a left-to-right order.
19185
19186 A framework directory is a directory with frameworks in it. A
19187 framework is a directory with a @file{Headers} and/or
19188 @file{PrivateHeaders} directory contained directly in it that ends
19189 in @file{.framework}. The name of a framework is the name of this
19190 directory excluding the @file{.framework}. Headers associated with
19191 the framework are found in one of those two directories, with
19192 @file{Headers} being searched first. A subframework is a framework
19193 directory that is in a framework's @file{Frameworks} directory.
19194 Includes of subframework headers can only appear in a header of a
19195 framework that contains the subframework, or in a sibling subframework
19196 header. Two subframeworks are siblings if they occur in the same
19197 framework. A subframework should not have the same name as a
19198 framework; a warning is issued if this is violated. Currently a
19199 subframework cannot have subframeworks; in the future, the mechanism
19200 may be extended to support this. The standard frameworks can be found
19201 in @file{/System/Library/Frameworks} and
19202 @file{/Library/Frameworks}. An example include looks like
19203 @code{#include <Framework/header.h>}, where @file{Framework} denotes
19204 the name of the framework and @file{header.h} is found in the
19205 @file{PrivateHeaders} or @file{Headers} directory.
19206
19207 @item -iframework@var{dir}
19208 @opindex iframework
19209 Like @option{-F} except the directory is a treated as a system
19210 directory. The main difference between this @option{-iframework} and
19211 @option{-F} is that with @option{-iframework} the compiler does not
19212 warn about constructs contained within header files found via
19213 @var{dir}. This option is valid only for the C family of languages.
19214
19215 @item -gused
19216 @opindex gused
19217 Emit debugging information for symbols that are used. For stabs
19218 debugging format, this enables @option{-feliminate-unused-debug-symbols}.
19219 This is by default ON@.
19220
19221 @item -gfull
19222 @opindex gfull
19223 Emit debugging information for all symbols and types.
19224
19225 @item -mmacosx-version-min=@var{version}
19226 The earliest version of MacOS X that this executable will run on
19227 is @var{version}. Typical values of @var{version} include @code{10.1},
19228 @code{10.2}, and @code{10.3.9}.
19229
19230 If the compiler was built to use the system's headers by default,
19231 then the default for this option is the system version on which the
19232 compiler is running, otherwise the default is to make choices that
19233 are compatible with as many systems and code bases as possible.
19234
19235 @item -mkernel
19236 @opindex mkernel
19237 Enable kernel development mode. The @option{-mkernel} option sets
19238 @option{-static}, @option{-fno-common}, @option{-fno-use-cxa-atexit},
19239 @option{-fno-exceptions}, @option{-fno-non-call-exceptions},
19240 @option{-fapple-kext}, @option{-fno-weak} and @option{-fno-rtti} where
19241 applicable. This mode also sets @option{-mno-altivec},
19242 @option{-msoft-float}, @option{-fno-builtin} and
19243 @option{-mlong-branch} for PowerPC targets.
19244
19245 @item -mone-byte-bool
19246 @opindex mone-byte-bool
19247 Override the defaults for @code{bool} so that @code{sizeof(bool)==1}.
19248 By default @code{sizeof(bool)} is @code{4} when compiling for
19249 Darwin/PowerPC and @code{1} when compiling for Darwin/x86, so this
19250 option has no effect on x86.
19251
19252 @strong{Warning:} The @option{-mone-byte-bool} switch causes GCC
19253 to generate code that is not binary compatible with code generated
19254 without that switch. Using this switch may require recompiling all
19255 other modules in a program, including system libraries. Use this
19256 switch to conform to a non-default data model.
19257
19258 @item -mfix-and-continue
19259 @itemx -ffix-and-continue
19260 @itemx -findirect-data
19261 @opindex mfix-and-continue
19262 @opindex ffix-and-continue
19263 @opindex findirect-data
19264 Generate code suitable for fast turnaround development, such as to
19265 allow GDB to dynamically load @file{.o} files into already-running
19266 programs. @option{-findirect-data} and @option{-ffix-and-continue}
19267 are provided for backwards compatibility.
19268
19269 @item -all_load
19270 @opindex all_load
19271 Loads all members of static archive libraries.
19272 See man ld(1) for more information.
19273
19274 @item -arch_errors_fatal
19275 @opindex arch_errors_fatal
19276 Cause the errors having to do with files that have the wrong architecture
19277 to be fatal.
19278
19279 @item -bind_at_load
19280 @opindex bind_at_load
19281 Causes the output file to be marked such that the dynamic linker will
19282 bind all undefined references when the file is loaded or launched.
19283
19284 @item -bundle
19285 @opindex bundle
19286 Produce a Mach-o bundle format file.
19287 See man ld(1) for more information.
19288
19289 @item -bundle_loader @var{executable}
19290 @opindex bundle_loader
19291 This option specifies the @var{executable} that will load the build
19292 output file being linked. See man ld(1) for more information.
19293
19294 @item -dynamiclib
19295 @opindex dynamiclib
19296 When passed this option, GCC produces a dynamic library instead of
19297 an executable when linking, using the Darwin @file{libtool} command.
19298
19299 @item -force_cpusubtype_ALL
19300 @opindex force_cpusubtype_ALL
19301 This causes GCC's output file to have the @samp{ALL} subtype, instead of
19302 one controlled by the @option{-mcpu} or @option{-march} option.
19303
19304 @item -allowable_client @var{client_name}
19305 @itemx -client_name
19306 @itemx -compatibility_version
19307 @itemx -current_version
19308 @itemx -dead_strip
19309 @itemx -dependency-file
19310 @itemx -dylib_file
19311 @itemx -dylinker_install_name
19312 @itemx -dynamic
19313 @itemx -exported_symbols_list
19314 @itemx -filelist
19315 @need 800
19316 @itemx -flat_namespace
19317 @itemx -force_flat_namespace
19318 @itemx -headerpad_max_install_names
19319 @itemx -image_base
19320 @itemx -init
19321 @itemx -install_name
19322 @itemx -keep_private_externs
19323 @itemx -multi_module
19324 @itemx -multiply_defined
19325 @itemx -multiply_defined_unused
19326 @need 800
19327 @itemx -noall_load
19328 @itemx -no_dead_strip_inits_and_terms
19329 @itemx -nofixprebinding
19330 @itemx -nomultidefs
19331 @itemx -noprebind
19332 @itemx -noseglinkedit
19333 @itemx -pagezero_size
19334 @itemx -prebind
19335 @itemx -prebind_all_twolevel_modules
19336 @itemx -private_bundle
19337 @need 800
19338 @itemx -read_only_relocs
19339 @itemx -sectalign
19340 @itemx -sectobjectsymbols
19341 @itemx -whyload
19342 @itemx -seg1addr
19343 @itemx -sectcreate
19344 @itemx -sectobjectsymbols
19345 @itemx -sectorder
19346 @itemx -segaddr
19347 @itemx -segs_read_only_addr
19348 @need 800
19349 @itemx -segs_read_write_addr
19350 @itemx -seg_addr_table
19351 @itemx -seg_addr_table_filename
19352 @itemx -seglinkedit
19353 @itemx -segprot
19354 @itemx -segs_read_only_addr
19355 @itemx -segs_read_write_addr
19356 @itemx -single_module
19357 @itemx -static
19358 @itemx -sub_library
19359 @need 800
19360 @itemx -sub_umbrella
19361 @itemx -twolevel_namespace
19362 @itemx -umbrella
19363 @itemx -undefined
19364 @itemx -unexported_symbols_list
19365 @itemx -weak_reference_mismatches
19366 @itemx -whatsloaded
19367 @opindex allowable_client
19368 @opindex client_name
19369 @opindex compatibility_version
19370 @opindex current_version
19371 @opindex dead_strip
19372 @opindex dependency-file
19373 @opindex dylib_file
19374 @opindex dylinker_install_name
19375 @opindex dynamic
19376 @opindex exported_symbols_list
19377 @opindex filelist
19378 @opindex flat_namespace
19379 @opindex force_flat_namespace
19380 @opindex headerpad_max_install_names
19381 @opindex image_base
19382 @opindex init
19383 @opindex install_name
19384 @opindex keep_private_externs
19385 @opindex multi_module
19386 @opindex multiply_defined
19387 @opindex multiply_defined_unused
19388 @opindex noall_load
19389 @opindex no_dead_strip_inits_and_terms
19390 @opindex nofixprebinding
19391 @opindex nomultidefs
19392 @opindex noprebind
19393 @opindex noseglinkedit
19394 @opindex pagezero_size
19395 @opindex prebind
19396 @opindex prebind_all_twolevel_modules
19397 @opindex private_bundle
19398 @opindex read_only_relocs
19399 @opindex sectalign
19400 @opindex sectobjectsymbols
19401 @opindex whyload
19402 @opindex seg1addr
19403 @opindex sectcreate
19404 @opindex sectobjectsymbols
19405 @opindex sectorder
19406 @opindex segaddr
19407 @opindex segs_read_only_addr
19408 @opindex segs_read_write_addr
19409 @opindex seg_addr_table
19410 @opindex seg_addr_table_filename
19411 @opindex seglinkedit
19412 @opindex segprot
19413 @opindex segs_read_only_addr
19414 @opindex segs_read_write_addr
19415 @opindex single_module
19416 @opindex static
19417 @opindex sub_library
19418 @opindex sub_umbrella
19419 @opindex twolevel_namespace
19420 @opindex umbrella
19421 @opindex undefined
19422 @opindex unexported_symbols_list
19423 @opindex weak_reference_mismatches
19424 @opindex whatsloaded
19425 These options are passed to the Darwin linker. The Darwin linker man page
19426 describes them in detail.
19427 @end table
19428
19429 @node DEC Alpha Options
19430 @subsection DEC Alpha Options
19431
19432 These @samp{-m} options are defined for the DEC Alpha implementations:
19433
19434 @table @gcctabopt
19435 @item -mno-soft-float
19436 @itemx -msoft-float
19437 @opindex mno-soft-float
19438 @opindex msoft-float
19439 Use (do not use) the hardware floating-point instructions for
19440 floating-point operations. When @option{-msoft-float} is specified,
19441 functions in @file{libgcc.a} are used to perform floating-point
19442 operations. Unless they are replaced by routines that emulate the
19443 floating-point operations, or compiled in such a way as to call such
19444 emulations routines, these routines issue floating-point
19445 operations. If you are compiling for an Alpha without floating-point
19446 operations, you must ensure that the library is built so as not to call
19447 them.
19448
19449 Note that Alpha implementations without floating-point operations are
19450 required to have floating-point registers.
19451
19452 @item -mfp-reg
19453 @itemx -mno-fp-regs
19454 @opindex mfp-reg
19455 @opindex mno-fp-regs
19456 Generate code that uses (does not use) the floating-point register set.
19457 @option{-mno-fp-regs} implies @option{-msoft-float}. If the floating-point
19458 register set is not used, floating-point operands are passed in integer
19459 registers as if they were integers and floating-point results are passed
19460 in @code{$0} instead of @code{$f0}. This is a non-standard calling sequence,
19461 so any function with a floating-point argument or return value called by code
19462 compiled with @option{-mno-fp-regs} must also be compiled with that
19463 option.
19464
19465 A typical use of this option is building a kernel that does not use,
19466 and hence need not save and restore, any floating-point registers.
19467
19468 @item -mieee
19469 @opindex mieee
19470 The Alpha architecture implements floating-point hardware optimized for
19471 maximum performance. It is mostly compliant with the IEEE floating-point
19472 standard. However, for full compliance, software assistance is
19473 required. This option generates code fully IEEE-compliant code
19474 @emph{except} that the @var{inexact-flag} is not maintained (see below).
19475 If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
19476 defined during compilation. The resulting code is less efficient but is
19477 able to correctly support denormalized numbers and exceptional IEEE
19478 values such as not-a-number and plus/minus infinity. Other Alpha
19479 compilers call this option @option{-ieee_with_no_inexact}.
19480
19481 @item -mieee-with-inexact
19482 @opindex mieee-with-inexact
19483 This is like @option{-mieee} except the generated code also maintains
19484 the IEEE @var{inexact-flag}. Turning on this option causes the
19485 generated code to implement fully-compliant IEEE math. In addition to
19486 @code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
19487 macro. On some Alpha implementations the resulting code may execute
19488 significantly slower than the code generated by default. Since there is
19489 very little code that depends on the @var{inexact-flag}, you should
19490 normally not specify this option. Other Alpha compilers call this
19491 option @option{-ieee_with_inexact}.
19492
19493 @item -mfp-trap-mode=@var{trap-mode}
19494 @opindex mfp-trap-mode
19495 This option controls what floating-point related traps are enabled.
19496 Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
19497 The trap mode can be set to one of four values:
19498
19499 @table @samp
19500 @item n
19501 This is the default (normal) setting. The only traps that are enabled
19502 are the ones that cannot be disabled in software (e.g., division by zero
19503 trap).
19504
19505 @item u
19506 In addition to the traps enabled by @samp{n}, underflow traps are enabled
19507 as well.
19508
19509 @item su
19510 Like @samp{u}, but the instructions are marked to be safe for software
19511 completion (see Alpha architecture manual for details).
19512
19513 @item sui
19514 Like @samp{su}, but inexact traps are enabled as well.
19515 @end table
19516
19517 @item -mfp-rounding-mode=@var{rounding-mode}
19518 @opindex mfp-rounding-mode
19519 Selects the IEEE rounding mode. Other Alpha compilers call this option
19520 @option{-fprm @var{rounding-mode}}. The @var{rounding-mode} can be one
19521 of:
19522
19523 @table @samp
19524 @item n
19525 Normal IEEE rounding mode. Floating-point numbers are rounded towards
19526 the nearest machine number or towards the even machine number in case
19527 of a tie.
19528
19529 @item m
19530 Round towards minus infinity.
19531
19532 @item c
19533 Chopped rounding mode. Floating-point numbers are rounded towards zero.
19534
19535 @item d
19536 Dynamic rounding mode. A field in the floating-point control register
19537 (@var{fpcr}, see Alpha architecture reference manual) controls the
19538 rounding mode in effect. The C library initializes this register for
19539 rounding towards plus infinity. Thus, unless your program modifies the
19540 @var{fpcr}, @samp{d} corresponds to round towards plus infinity.
19541 @end table
19542
19543 @item -mtrap-precision=@var{trap-precision}
19544 @opindex mtrap-precision
19545 In the Alpha architecture, floating-point traps are imprecise. This
19546 means without software assistance it is impossible to recover from a
19547 floating trap and program execution normally needs to be terminated.
19548 GCC can generate code that can assist operating system trap handlers
19549 in determining the exact location that caused a floating-point trap.
19550 Depending on the requirements of an application, different levels of
19551 precisions can be selected:
19552
19553 @table @samp
19554 @item p
19555 Program precision. This option is the default and means a trap handler
19556 can only identify which program caused a floating-point exception.
19557
19558 @item f
19559 Function precision. The trap handler can determine the function that
19560 caused a floating-point exception.
19561
19562 @item i
19563 Instruction precision. The trap handler can determine the exact
19564 instruction that caused a floating-point exception.
19565 @end table
19566
19567 Other Alpha compilers provide the equivalent options called
19568 @option{-scope_safe} and @option{-resumption_safe}.
19569
19570 @item -mieee-conformant
19571 @opindex mieee-conformant
19572 This option marks the generated code as IEEE conformant. You must not
19573 use this option unless you also specify @option{-mtrap-precision=i} and either
19574 @option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}. Its only effect
19575 is to emit the line @samp{.eflag 48} in the function prologue of the
19576 generated assembly file.
19577
19578 @item -mbuild-constants
19579 @opindex mbuild-constants
19580 Normally GCC examines a 32- or 64-bit integer constant to
19581 see if it can construct it from smaller constants in two or three
19582 instructions. If it cannot, it outputs the constant as a literal and
19583 generates code to load it from the data segment at run time.
19584
19585 Use this option to require GCC to construct @emph{all} integer constants
19586 using code, even if it takes more instructions (the maximum is six).
19587
19588 You typically use this option to build a shared library dynamic
19589 loader. Itself a shared library, it must relocate itself in memory
19590 before it can find the variables and constants in its own data segment.
19591
19592 @item -mbwx
19593 @itemx -mno-bwx
19594 @itemx -mcix
19595 @itemx -mno-cix
19596 @itemx -mfix
19597 @itemx -mno-fix
19598 @itemx -mmax
19599 @itemx -mno-max
19600 @opindex mbwx
19601 @opindex mno-bwx
19602 @opindex mcix
19603 @opindex mno-cix
19604 @opindex mfix
19605 @opindex mno-fix
19606 @opindex mmax
19607 @opindex mno-max
19608 Indicate whether GCC should generate code to use the optional BWX,
19609 CIX, FIX and MAX instruction sets. The default is to use the instruction
19610 sets supported by the CPU type specified via @option{-mcpu=} option or that
19611 of the CPU on which GCC was built if none is specified.
19612
19613 @item -mfloat-vax
19614 @itemx -mfloat-ieee
19615 @opindex mfloat-vax
19616 @opindex mfloat-ieee
19617 Generate code that uses (does not use) VAX F and G floating-point
19618 arithmetic instead of IEEE single and double precision.
19619
19620 @item -mexplicit-relocs
19621 @itemx -mno-explicit-relocs
19622 @opindex mexplicit-relocs
19623 @opindex mno-explicit-relocs
19624 Older Alpha assemblers provided no way to generate symbol relocations
19625 except via assembler macros. Use of these macros does not allow
19626 optimal instruction scheduling. GNU binutils as of version 2.12
19627 supports a new syntax that allows the compiler to explicitly mark
19628 which relocations should apply to which instructions. This option
19629 is mostly useful for debugging, as GCC detects the capabilities of
19630 the assembler when it is built and sets the default accordingly.
19631
19632 @item -msmall-data
19633 @itemx -mlarge-data
19634 @opindex msmall-data
19635 @opindex mlarge-data
19636 When @option{-mexplicit-relocs} is in effect, static data is
19637 accessed via @dfn{gp-relative} relocations. When @option{-msmall-data}
19638 is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
19639 (the @code{.sdata} and @code{.sbss} sections) and are accessed via
19640 16-bit relocations off of the @code{$gp} register. This limits the
19641 size of the small data area to 64KB, but allows the variables to be
19642 directly accessed via a single instruction.
19643
19644 The default is @option{-mlarge-data}. With this option the data area
19645 is limited to just below 2GB@. Programs that require more than 2GB of
19646 data must use @code{malloc} or @code{mmap} to allocate the data in the
19647 heap instead of in the program's data segment.
19648
19649 When generating code for shared libraries, @option{-fpic} implies
19650 @option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.
19651
19652 @item -msmall-text
19653 @itemx -mlarge-text
19654 @opindex msmall-text
19655 @opindex mlarge-text
19656 When @option{-msmall-text} is used, the compiler assumes that the
19657 code of the entire program (or shared library) fits in 4MB, and is
19658 thus reachable with a branch instruction. When @option{-msmall-data}
19659 is used, the compiler can assume that all local symbols share the
19660 same @code{$gp} value, and thus reduce the number of instructions
19661 required for a function call from 4 to 1.
19662
19663 The default is @option{-mlarge-text}.
19664
19665 @item -mcpu=@var{cpu_type}
19666 @opindex mcpu
19667 Set the instruction set and instruction scheduling parameters for
19668 machine type @var{cpu_type}. You can specify either the @samp{EV}
19669 style name or the corresponding chip number. GCC supports scheduling
19670 parameters for the EV4, EV5 and EV6 family of processors and
19671 chooses the default values for the instruction set from the processor
19672 you specify. If you do not specify a processor type, GCC defaults
19673 to the processor on which the compiler was built.
19674
19675 Supported values for @var{cpu_type} are
19676
19677 @table @samp
19678 @item ev4
19679 @itemx ev45
19680 @itemx 21064
19681 Schedules as an EV4 and has no instruction set extensions.
19682
19683 @item ev5
19684 @itemx 21164
19685 Schedules as an EV5 and has no instruction set extensions.
19686
19687 @item ev56
19688 @itemx 21164a
19689 Schedules as an EV5 and supports the BWX extension.
19690
19691 @item pca56
19692 @itemx 21164pc
19693 @itemx 21164PC
19694 Schedules as an EV5 and supports the BWX and MAX extensions.
19695
19696 @item ev6
19697 @itemx 21264
19698 Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
19699
19700 @item ev67
19701 @itemx 21264a
19702 Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
19703 @end table
19704
19705 Native toolchains also support the value @samp{native},
19706 which selects the best architecture option for the host processor.
19707 @option{-mcpu=native} has no effect if GCC does not recognize
19708 the processor.
19709
19710 @item -mtune=@var{cpu_type}
19711 @opindex mtune
19712 Set only the instruction scheduling parameters for machine type
19713 @var{cpu_type}. The instruction set is not changed.
19714
19715 Native toolchains also support the value @samp{native},
19716 which selects the best architecture option for the host processor.
19717 @option{-mtune=native} has no effect if GCC does not recognize
19718 the processor.
19719
19720 @item -mmemory-latency=@var{time}
19721 @opindex mmemory-latency
19722 Sets the latency the scheduler should assume for typical memory
19723 references as seen by the application. This number is highly
19724 dependent on the memory access patterns used by the application
19725 and the size of the external cache on the machine.
19726
19727 Valid options for @var{time} are
19728
19729 @table @samp
19730 @item @var{number}
19731 A decimal number representing clock cycles.
19732
19733 @item L1
19734 @itemx L2
19735 @itemx L3
19736 @itemx main
19737 The compiler contains estimates of the number of clock cycles for
19738 ``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
19739 (also called Dcache, Scache, and Bcache), as well as to main memory.
19740 Note that L3 is only valid for EV5.
19741
19742 @end table
19743 @end table
19744
19745 @node FR30 Options
19746 @subsection FR30 Options
19747 @cindex FR30 Options
19748
19749 These options are defined specifically for the FR30 port.
19750
19751 @table @gcctabopt
19752
19753 @item -msmall-model
19754 @opindex msmall-model
19755 Use the small address space model. This can produce smaller code, but
19756 it does assume that all symbolic values and addresses fit into a
19757 20-bit range.
19758
19759 @item -mno-lsim
19760 @opindex mno-lsim
19761 Assume that runtime support has been provided and so there is no need
19762 to include the simulator library (@file{libsim.a}) on the linker
19763 command line.
19764
19765 @end table
19766
19767 @node FT32 Options
19768 @subsection FT32 Options
19769 @cindex FT32 Options
19770
19771 These options are defined specifically for the FT32 port.
19772
19773 @table @gcctabopt
19774
19775 @item -msim
19776 @opindex msim
19777 Specifies that the program will be run on the simulator. This causes
19778 an alternate runtime startup and library to be linked.
19779 You must not use this option when generating programs that will run on
19780 real hardware; you must provide your own runtime library for whatever
19781 I/O functions are needed.
19782
19783 @item -mlra
19784 @opindex mlra
19785 Enable Local Register Allocation. This is still experimental for FT32,
19786 so by default the compiler uses standard reload.
19787
19788 @item -mnodiv
19789 @opindex mnodiv
19790 Do not use div and mod instructions.
19791
19792 @item -mft32b
19793 @opindex mft32b
19794 Enable use of the extended instructions of the FT32B processor.
19795
19796 @item -mcompress
19797 @opindex mcompress
19798 Compress all code using the Ft32B code compression scheme.
19799
19800 @item -mnopm
19801 @opindex mnopm
19802 Do not generate code that reads program memory.
19803
19804 @end table
19805
19806 @node FRV Options
19807 @subsection FRV Options
19808 @cindex FRV Options
19809
19810 @table @gcctabopt
19811 @item -mgpr-32
19812 @opindex mgpr-32
19813
19814 Only use the first 32 general-purpose registers.
19815
19816 @item -mgpr-64
19817 @opindex mgpr-64
19818
19819 Use all 64 general-purpose registers.
19820
19821 @item -mfpr-32
19822 @opindex mfpr-32
19823
19824 Use only the first 32 floating-point registers.
19825
19826 @item -mfpr-64
19827 @opindex mfpr-64
19828
19829 Use all 64 floating-point registers.
19830
19831 @item -mhard-float
19832 @opindex mhard-float
19833
19834 Use hardware instructions for floating-point operations.
19835
19836 @item -msoft-float
19837 @opindex msoft-float
19838
19839 Use library routines for floating-point operations.
19840
19841 @item -malloc-cc
19842 @opindex malloc-cc
19843
19844 Dynamically allocate condition code registers.
19845
19846 @item -mfixed-cc
19847 @opindex mfixed-cc
19848
19849 Do not try to dynamically allocate condition code registers, only
19850 use @code{icc0} and @code{fcc0}.
19851
19852 @item -mdword
19853 @opindex mdword
19854
19855 Change ABI to use double word insns.
19856
19857 @item -mno-dword
19858 @opindex mno-dword
19859 @opindex mdword
19860
19861 Do not use double word instructions.
19862
19863 @item -mdouble
19864 @opindex mdouble
19865
19866 Use floating-point double instructions.
19867
19868 @item -mno-double
19869 @opindex mno-double
19870
19871 Do not use floating-point double instructions.
19872
19873 @item -mmedia
19874 @opindex mmedia
19875
19876 Use media instructions.
19877
19878 @item -mno-media
19879 @opindex mno-media
19880
19881 Do not use media instructions.
19882
19883 @item -mmuladd
19884 @opindex mmuladd
19885
19886 Use multiply and add/subtract instructions.
19887
19888 @item -mno-muladd
19889 @opindex mno-muladd
19890
19891 Do not use multiply and add/subtract instructions.
19892
19893 @item -mfdpic
19894 @opindex mfdpic
19895
19896 Select the FDPIC ABI, which uses function descriptors to represent
19897 pointers to functions. Without any PIC/PIE-related options, it
19898 implies @option{-fPIE}. With @option{-fpic} or @option{-fpie}, it
19899 assumes GOT entries and small data are within a 12-bit range from the
19900 GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets
19901 are computed with 32 bits.
19902 With a @samp{bfin-elf} target, this option implies @option{-msim}.
19903
19904 @item -minline-plt
19905 @opindex minline-plt
19906
19907 Enable inlining of PLT entries in function calls to functions that are
19908 not known to bind locally. It has no effect without @option{-mfdpic}.
19909 It's enabled by default if optimizing for speed and compiling for
19910 shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an
19911 optimization option such as @option{-O3} or above is present in the
19912 command line.
19913
19914 @item -mTLS
19915 @opindex mTLS
19916
19917 Assume a large TLS segment when generating thread-local code.
19918
19919 @item -mtls
19920 @opindex mtls
19921
19922 Do not assume a large TLS segment when generating thread-local code.
19923
19924 @item -mgprel-ro
19925 @opindex mgprel-ro
19926
19927 Enable the use of @code{GPREL} relocations in the FDPIC ABI for data
19928 that is known to be in read-only sections. It's enabled by default,
19929 except for @option{-fpic} or @option{-fpie}: even though it may help
19930 make the global offset table smaller, it trades 1 instruction for 4.
19931 With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4,
19932 one of which may be shared by multiple symbols, and it avoids the need
19933 for a GOT entry for the referenced symbol, so it's more likely to be a
19934 win. If it is not, @option{-mno-gprel-ro} can be used to disable it.
19935
19936 @item -multilib-library-pic
19937 @opindex multilib-library-pic
19938
19939 Link with the (library, not FD) pic libraries. It's implied by
19940 @option{-mlibrary-pic}, as well as by @option{-fPIC} and
19941 @option{-fpic} without @option{-mfdpic}. You should never have to use
19942 it explicitly.
19943
19944 @item -mlinked-fp
19945 @opindex mlinked-fp
19946
19947 Follow the EABI requirement of always creating a frame pointer whenever
19948 a stack frame is allocated. This option is enabled by default and can
19949 be disabled with @option{-mno-linked-fp}.
19950
19951 @item -mlong-calls
19952 @opindex mlong-calls
19953
19954 Use indirect addressing to call functions outside the current
19955 compilation unit. This allows the functions to be placed anywhere
19956 within the 32-bit address space.
19957
19958 @item -malign-labels
19959 @opindex malign-labels
19960
19961 Try to align labels to an 8-byte boundary by inserting NOPs into the
19962 previous packet. This option only has an effect when VLIW packing
19963 is enabled. It doesn't create new packets; it merely adds NOPs to
19964 existing ones.
19965
19966 @item -mlibrary-pic
19967 @opindex mlibrary-pic
19968
19969 Generate position-independent EABI code.
19970
19971 @item -macc-4
19972 @opindex macc-4
19973
19974 Use only the first four media accumulator registers.
19975
19976 @item -macc-8
19977 @opindex macc-8
19978
19979 Use all eight media accumulator registers.
19980
19981 @item -mpack
19982 @opindex mpack
19983
19984 Pack VLIW instructions.
19985
19986 @item -mno-pack
19987 @opindex mno-pack
19988
19989 Do not pack VLIW instructions.
19990
19991 @item -mno-eflags
19992 @opindex mno-eflags
19993
19994 Do not mark ABI switches in e_flags.
19995
19996 @item -mcond-move
19997 @opindex mcond-move
19998
19999 Enable the use of conditional-move instructions (default).
20000
20001 This switch is mainly for debugging the compiler and will likely be removed
20002 in a future version.
20003
20004 @item -mno-cond-move
20005 @opindex mno-cond-move
20006
20007 Disable the use of conditional-move instructions.
20008
20009 This switch is mainly for debugging the compiler and will likely be removed
20010 in a future version.
20011
20012 @item -mscc
20013 @opindex mscc
20014
20015 Enable the use of conditional set instructions (default).
20016
20017 This switch is mainly for debugging the compiler and will likely be removed
20018 in a future version.
20019
20020 @item -mno-scc
20021 @opindex mno-scc
20022
20023 Disable the use of conditional set instructions.
20024
20025 This switch is mainly for debugging the compiler and will likely be removed
20026 in a future version.
20027
20028 @item -mcond-exec
20029 @opindex mcond-exec
20030
20031 Enable the use of conditional execution (default).
20032
20033 This switch is mainly for debugging the compiler and will likely be removed
20034 in a future version.
20035
20036 @item -mno-cond-exec
20037 @opindex mno-cond-exec
20038
20039 Disable the use of conditional execution.
20040
20041 This switch is mainly for debugging the compiler and will likely be removed
20042 in a future version.
20043
20044 @item -mvliw-branch
20045 @opindex mvliw-branch
20046
20047 Run a pass to pack branches into VLIW instructions (default).
20048
20049 This switch is mainly for debugging the compiler and will likely be removed
20050 in a future version.
20051
20052 @item -mno-vliw-branch
20053 @opindex mno-vliw-branch
20054
20055 Do not run a pass to pack branches into VLIW instructions.
20056
20057 This switch is mainly for debugging the compiler and will likely be removed
20058 in a future version.
20059
20060 @item -mmulti-cond-exec
20061 @opindex mmulti-cond-exec
20062
20063 Enable optimization of @code{&&} and @code{||} in conditional execution
20064 (default).
20065
20066 This switch is mainly for debugging the compiler and will likely be removed
20067 in a future version.
20068
20069 @item -mno-multi-cond-exec
20070 @opindex mno-multi-cond-exec
20071
20072 Disable optimization of @code{&&} and @code{||} in conditional execution.
20073
20074 This switch is mainly for debugging the compiler and will likely be removed
20075 in a future version.
20076
20077 @item -mnested-cond-exec
20078 @opindex mnested-cond-exec
20079
20080 Enable nested conditional execution optimizations (default).
20081
20082 This switch is mainly for debugging the compiler and will likely be removed
20083 in a future version.
20084
20085 @item -mno-nested-cond-exec
20086 @opindex mno-nested-cond-exec
20087
20088 Disable nested conditional execution optimizations.
20089
20090 This switch is mainly for debugging the compiler and will likely be removed
20091 in a future version.
20092
20093 @item -moptimize-membar
20094 @opindex moptimize-membar
20095
20096 This switch removes redundant @code{membar} instructions from the
20097 compiler-generated code. It is enabled by default.
20098
20099 @item -mno-optimize-membar
20100 @opindex mno-optimize-membar
20101 @opindex moptimize-membar
20102
20103 This switch disables the automatic removal of redundant @code{membar}
20104 instructions from the generated code.
20105
20106 @item -mtomcat-stats
20107 @opindex mtomcat-stats
20108
20109 Cause gas to print out tomcat statistics.
20110
20111 @item -mcpu=@var{cpu}
20112 @opindex mcpu
20113
20114 Select the processor type for which to generate code. Possible values are
20115 @samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450},
20116 @samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}.
20117
20118 @end table
20119
20120 @node GNU/Linux Options
20121 @subsection GNU/Linux Options
20122
20123 These @samp{-m} options are defined for GNU/Linux targets:
20124
20125 @table @gcctabopt
20126 @item -mglibc
20127 @opindex mglibc
20128 Use the GNU C library. This is the default except
20129 on @samp{*-*-linux-*uclibc*}, @samp{*-*-linux-*musl*} and
20130 @samp{*-*-linux-*android*} targets.
20131
20132 @item -muclibc
20133 @opindex muclibc
20134 Use uClibc C library. This is the default on
20135 @samp{*-*-linux-*uclibc*} targets.
20136
20137 @item -mmusl
20138 @opindex mmusl
20139 Use the musl C library. This is the default on
20140 @samp{*-*-linux-*musl*} targets.
20141
20142 @item -mbionic
20143 @opindex mbionic
20144 Use Bionic C library. This is the default on
20145 @samp{*-*-linux-*android*} targets.
20146
20147 @item -mandroid
20148 @opindex mandroid
20149 Compile code compatible with Android platform. This is the default on
20150 @samp{*-*-linux-*android*} targets.
20151
20152 When compiling, this option enables @option{-mbionic}, @option{-fPIC},
20153 @option{-fno-exceptions} and @option{-fno-rtti} by default. When linking,
20154 this option makes the GCC driver pass Android-specific options to the linker.
20155 Finally, this option causes the preprocessor macro @code{__ANDROID__}
20156 to be defined.
20157
20158 @item -tno-android-cc
20159 @opindex tno-android-cc
20160 Disable compilation effects of @option{-mandroid}, i.e., do not enable
20161 @option{-mbionic}, @option{-fPIC}, @option{-fno-exceptions} and
20162 @option{-fno-rtti} by default.
20163
20164 @item -tno-android-ld
20165 @opindex tno-android-ld
20166 Disable linking effects of @option{-mandroid}, i.e., pass standard Linux
20167 linking options to the linker.
20168
20169 @end table
20170
20171 @node H8/300 Options
20172 @subsection H8/300 Options
20173
20174 These @samp{-m} options are defined for the H8/300 implementations:
20175
20176 @table @gcctabopt
20177 @item -mrelax
20178 @opindex mrelax
20179 Shorten some address references at link time, when possible; uses the
20180 linker option @option{-relax}. @xref{H8/300,, @code{ld} and the H8/300,
20181 ld, Using ld}, for a fuller description.
20182
20183 @item -mh
20184 @opindex mh
20185 Generate code for the H8/300H@.
20186
20187 @item -ms
20188 @opindex ms
20189 Generate code for the H8S@.
20190
20191 @item -mn
20192 @opindex mn
20193 Generate code for the H8S and H8/300H in the normal mode. This switch
20194 must be used either with @option{-mh} or @option{-ms}.
20195
20196 @item -ms2600
20197 @opindex ms2600
20198 Generate code for the H8S/2600. This switch must be used with @option{-ms}.
20199
20200 @item -mexr
20201 @opindex mexr
20202 Extended registers are stored on stack before execution of function
20203 with monitor attribute. Default option is @option{-mexr}.
20204 This option is valid only for H8S targets.
20205
20206 @item -mno-exr
20207 @opindex mno-exr
20208 @opindex mexr
20209 Extended registers are not stored on stack before execution of function
20210 with monitor attribute. Default option is @option{-mno-exr}.
20211 This option is valid only for H8S targets.
20212
20213 @item -mint32
20214 @opindex mint32
20215 Make @code{int} data 32 bits by default.
20216
20217 @item -malign-300
20218 @opindex malign-300
20219 On the H8/300H and H8S, use the same alignment rules as for the H8/300.
20220 The default for the H8/300H and H8S is to align longs and floats on
20221 4-byte boundaries.
20222 @option{-malign-300} causes them to be aligned on 2-byte boundaries.
20223 This option has no effect on the H8/300.
20224 @end table
20225
20226 @node HPPA Options
20227 @subsection HPPA Options
20228 @cindex HPPA Options
20229
20230 These @samp{-m} options are defined for the HPPA family of computers:
20231
20232 @table @gcctabopt
20233 @item -march=@var{architecture-type}
20234 @opindex march
20235 Generate code for the specified architecture. The choices for
20236 @var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
20237 1.1, and @samp{2.0} for PA 2.0 processors. Refer to
20238 @file{/usr/lib/sched.models} on an HP-UX system to determine the proper
20239 architecture option for your machine. Code compiled for lower numbered
20240 architectures runs on higher numbered architectures, but not the
20241 other way around.
20242
20243 @item -mpa-risc-1-0
20244 @itemx -mpa-risc-1-1
20245 @itemx -mpa-risc-2-0
20246 @opindex mpa-risc-1-0
20247 @opindex mpa-risc-1-1
20248 @opindex mpa-risc-2-0
20249 Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively.
20250
20251 @item -mcaller-copies
20252 @opindex mcaller-copies
20253 The caller copies function arguments passed by hidden reference. This
20254 option should be used with care as it is not compatible with the default
20255 32-bit runtime. However, only aggregates larger than eight bytes are
20256 passed by hidden reference and the option provides better compatibility
20257 with OpenMP.
20258
20259 @item -mjump-in-delay
20260 @opindex mjump-in-delay
20261 This option is ignored and provided for compatibility purposes only.
20262
20263 @item -mdisable-fpregs
20264 @opindex mdisable-fpregs
20265 Prevent floating-point registers from being used in any manner. This is
20266 necessary for compiling kernels that perform lazy context switching of
20267 floating-point registers. If you use this option and attempt to perform
20268 floating-point operations, the compiler aborts.
20269
20270 @item -mdisable-indexing
20271 @opindex mdisable-indexing
20272 Prevent the compiler from using indexing address modes. This avoids some
20273 rather obscure problems when compiling MIG generated code under MACH@.
20274
20275 @item -mno-space-regs
20276 @opindex mno-space-regs
20277 @opindex mspace-regs
20278 Generate code that assumes the target has no space registers. This allows
20279 GCC to generate faster indirect calls and use unscaled index address modes.
20280
20281 Such code is suitable for level 0 PA systems and kernels.
20282
20283 @item -mfast-indirect-calls
20284 @opindex mfast-indirect-calls
20285 Generate code that assumes calls never cross space boundaries. This
20286 allows GCC to emit code that performs faster indirect calls.
20287
20288 This option does not work in the presence of shared libraries or nested
20289 functions.
20290
20291 @item -mfixed-range=@var{register-range}
20292 @opindex mfixed-range
20293 Generate code treating the given register range as fixed registers.
20294 A fixed register is one that the register allocator cannot use. This is
20295 useful when compiling kernel code. A register range is specified as
20296 two registers separated by a dash. Multiple register ranges can be
20297 specified separated by a comma.
20298
20299 @item -mlong-load-store
20300 @opindex mlong-load-store
20301 Generate 3-instruction load and store sequences as sometimes required by
20302 the HP-UX 10 linker. This is equivalent to the @samp{+k} option to
20303 the HP compilers.
20304
20305 @item -mportable-runtime
20306 @opindex mportable-runtime
20307 Use the portable calling conventions proposed by HP for ELF systems.
20308
20309 @item -mgas
20310 @opindex mgas
20311 Enable the use of assembler directives only GAS understands.
20312
20313 @item -mschedule=@var{cpu-type}
20314 @opindex mschedule
20315 Schedule code according to the constraints for the machine type
20316 @var{cpu-type}. The choices for @var{cpu-type} are @samp{700}
20317 @samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}. Refer
20318 to @file{/usr/lib/sched.models} on an HP-UX system to determine the
20319 proper scheduling option for your machine. The default scheduling is
20320 @samp{8000}.
20321
20322 @item -mlinker-opt
20323 @opindex mlinker-opt
20324 Enable the optimization pass in the HP-UX linker. Note this makes symbolic
20325 debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9
20326 linkers in which they give bogus error messages when linking some programs.
20327
20328 @item -msoft-float
20329 @opindex msoft-float
20330 Generate output containing library calls for floating point.
20331 @strong{Warning:} the requisite libraries are not available for all HPPA
20332 targets. Normally the facilities of the machine's usual C compiler are
20333 used, but this cannot be done directly in cross-compilation. You must make
20334 your own arrangements to provide suitable library functions for
20335 cross-compilation.
20336
20337 @option{-msoft-float} changes the calling convention in the output file;
20338 therefore, it is only useful if you compile @emph{all} of a program with
20339 this option. In particular, you need to compile @file{libgcc.a}, the
20340 library that comes with GCC, with @option{-msoft-float} in order for
20341 this to work.
20342
20343 @item -msio
20344 @opindex msio
20345 Generate the predefine, @code{_SIO}, for server IO@. The default is
20346 @option{-mwsio}. This generates the predefines, @code{__hp9000s700},
20347 @code{__hp9000s700__} and @code{_WSIO}, for workstation IO@. These
20348 options are available under HP-UX and HI-UX@.
20349
20350 @item -mgnu-ld
20351 @opindex mgnu-ld
20352 Use options specific to GNU @command{ld}.
20353 This passes @option{-shared} to @command{ld} when
20354 building a shared library. It is the default when GCC is configured,
20355 explicitly or implicitly, with the GNU linker. This option does not
20356 affect which @command{ld} is called; it only changes what parameters
20357 are passed to that @command{ld}.
20358 The @command{ld} that is called is determined by the
20359 @option{--with-ld} configure option, GCC's program search path, and
20360 finally by the user's @env{PATH}. The linker used by GCC can be printed
20361 using @samp{which `gcc -print-prog-name=ld`}. This option is only available
20362 on the 64-bit HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
20363
20364 @item -mhp-ld
20365 @opindex mhp-ld
20366 Use options specific to HP @command{ld}.
20367 This passes @option{-b} to @command{ld} when building
20368 a shared library and passes @option{+Accept TypeMismatch} to @command{ld} on all
20369 links. It is the default when GCC is configured, explicitly or
20370 implicitly, with the HP linker. This option does not affect
20371 which @command{ld} is called; it only changes what parameters are passed to that
20372 @command{ld}.
20373 The @command{ld} that is called is determined by the @option{--with-ld}
20374 configure option, GCC's program search path, and finally by the user's
20375 @env{PATH}. The linker used by GCC can be printed using @samp{which
20376 `gcc -print-prog-name=ld`}. This option is only available on the 64-bit
20377 HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
20378
20379 @item -mlong-calls
20380 @opindex mno-long-calls
20381 @opindex mlong-calls
20382 Generate code that uses long call sequences. This ensures that a call
20383 is always able to reach linker generated stubs. The default is to generate
20384 long calls only when the distance from the call site to the beginning
20385 of the function or translation unit, as the case may be, exceeds a
20386 predefined limit set by the branch type being used. The limits for
20387 normal calls are 7,600,000 and 240,000 bytes, respectively for the
20388 PA 2.0 and PA 1.X architectures. Sibcalls are always limited at
20389 240,000 bytes.
20390
20391 Distances are measured from the beginning of functions when using the
20392 @option{-ffunction-sections} option, or when using the @option{-mgas}
20393 and @option{-mno-portable-runtime} options together under HP-UX with
20394 the SOM linker.
20395
20396 It is normally not desirable to use this option as it degrades
20397 performance. However, it may be useful in large applications,
20398 particularly when partial linking is used to build the application.
20399
20400 The types of long calls used depends on the capabilities of the
20401 assembler and linker, and the type of code being generated. The
20402 impact on systems that support long absolute calls, and long pic
20403 symbol-difference or pc-relative calls should be relatively small.
20404 However, an indirect call is used on 32-bit ELF systems in pic code
20405 and it is quite long.
20406
20407 @item -munix=@var{unix-std}
20408 @opindex march
20409 Generate compiler predefines and select a startfile for the specified
20410 UNIX standard. The choices for @var{unix-std} are @samp{93}, @samp{95}
20411 and @samp{98}. @samp{93} is supported on all HP-UX versions. @samp{95}
20412 is available on HP-UX 10.10 and later. @samp{98} is available on HP-UX
20413 11.11 and later. The default values are @samp{93} for HP-UX 10.00,
20414 @samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11
20415 and later.
20416
20417 @option{-munix=93} provides the same predefines as GCC 3.3 and 3.4.
20418 @option{-munix=95} provides additional predefines for @code{XOPEN_UNIX}
20419 and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}.
20420 @option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX},
20421 @code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and
20422 @code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}.
20423
20424 It is @emph{important} to note that this option changes the interfaces
20425 for various library routines. It also affects the operational behavior
20426 of the C library. Thus, @emph{extreme} care is needed in using this
20427 option.
20428
20429 Library code that is intended to operate with more than one UNIX
20430 standard must test, set and restore the variable @code{__xpg4_extended_mask}
20431 as appropriate. Most GNU software doesn't provide this capability.
20432
20433 @item -nolibdld
20434 @opindex nolibdld
20435 Suppress the generation of link options to search libdld.sl when the
20436 @option{-static} option is specified on HP-UX 10 and later.
20437
20438 @item -static
20439 @opindex static
20440 The HP-UX implementation of setlocale in libc has a dependency on
20441 libdld.sl. There isn't an archive version of libdld.sl. Thus,
20442 when the @option{-static} option is specified, special link options
20443 are needed to resolve this dependency.
20444
20445 On HP-UX 10 and later, the GCC driver adds the necessary options to
20446 link with libdld.sl when the @option{-static} option is specified.
20447 This causes the resulting binary to be dynamic. On the 64-bit port,
20448 the linkers generate dynamic binaries by default in any case. The
20449 @option{-nolibdld} option can be used to prevent the GCC driver from
20450 adding these link options.
20451
20452 @item -threads
20453 @opindex threads
20454 Add support for multithreading with the @dfn{dce thread} library
20455 under HP-UX@. This option sets flags for both the preprocessor and
20456 linker.
20457 @end table
20458
20459 @node IA-64 Options
20460 @subsection IA-64 Options
20461 @cindex IA-64 Options
20462
20463 These are the @samp{-m} options defined for the Intel IA-64 architecture.
20464
20465 @table @gcctabopt
20466 @item -mbig-endian
20467 @opindex mbig-endian
20468 Generate code for a big-endian target. This is the default for HP-UX@.
20469
20470 @item -mlittle-endian
20471 @opindex mlittle-endian
20472 Generate code for a little-endian target. This is the default for AIX5
20473 and GNU/Linux.
20474
20475 @item -mgnu-as
20476 @itemx -mno-gnu-as
20477 @opindex mgnu-as
20478 @opindex mno-gnu-as
20479 Generate (or don't) code for the GNU assembler. This is the default.
20480 @c Also, this is the default if the configure option @option{--with-gnu-as}
20481 @c is used.
20482
20483 @item -mgnu-ld
20484 @itemx -mno-gnu-ld
20485 @opindex mgnu-ld
20486 @opindex mno-gnu-ld
20487 Generate (or don't) code for the GNU linker. This is the default.
20488 @c Also, this is the default if the configure option @option{--with-gnu-ld}
20489 @c is used.
20490
20491 @item -mno-pic
20492 @opindex mno-pic
20493 Generate code that does not use a global pointer register. The result
20494 is not position independent code, and violates the IA-64 ABI@.
20495
20496 @item -mvolatile-asm-stop
20497 @itemx -mno-volatile-asm-stop
20498 @opindex mvolatile-asm-stop
20499 @opindex mno-volatile-asm-stop
20500 Generate (or don't) a stop bit immediately before and after volatile asm
20501 statements.
20502
20503 @item -mregister-names
20504 @itemx -mno-register-names
20505 @opindex mregister-names
20506 @opindex mno-register-names
20507 Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for
20508 the stacked registers. This may make assembler output more readable.
20509
20510 @item -mno-sdata
20511 @itemx -msdata
20512 @opindex mno-sdata
20513 @opindex msdata
20514 Disable (or enable) optimizations that use the small data section. This may
20515 be useful for working around optimizer bugs.
20516
20517 @item -mconstant-gp
20518 @opindex mconstant-gp
20519 Generate code that uses a single constant global pointer value. This is
20520 useful when compiling kernel code.
20521
20522 @item -mauto-pic
20523 @opindex mauto-pic
20524 Generate code that is self-relocatable. This implies @option{-mconstant-gp}.
20525 This is useful when compiling firmware code.
20526
20527 @item -minline-float-divide-min-latency
20528 @opindex minline-float-divide-min-latency
20529 Generate code for inline divides of floating-point values
20530 using the minimum latency algorithm.
20531
20532 @item -minline-float-divide-max-throughput
20533 @opindex minline-float-divide-max-throughput
20534 Generate code for inline divides of floating-point values
20535 using the maximum throughput algorithm.
20536
20537 @item -mno-inline-float-divide
20538 @opindex mno-inline-float-divide
20539 Do not generate inline code for divides of floating-point values.
20540
20541 @item -minline-int-divide-min-latency
20542 @opindex minline-int-divide-min-latency
20543 Generate code for inline divides of integer values
20544 using the minimum latency algorithm.
20545
20546 @item -minline-int-divide-max-throughput
20547 @opindex minline-int-divide-max-throughput
20548 Generate code for inline divides of integer values
20549 using the maximum throughput algorithm.
20550
20551 @item -mno-inline-int-divide
20552 @opindex mno-inline-int-divide
20553 @opindex minline-int-divide
20554 Do not generate inline code for divides of integer values.
20555
20556 @item -minline-sqrt-min-latency
20557 @opindex minline-sqrt-min-latency
20558 Generate code for inline square roots
20559 using the minimum latency algorithm.
20560
20561 @item -minline-sqrt-max-throughput
20562 @opindex minline-sqrt-max-throughput
20563 Generate code for inline square roots
20564 using the maximum throughput algorithm.
20565
20566 @item -mno-inline-sqrt
20567 @opindex mno-inline-sqrt
20568 Do not generate inline code for @code{sqrt}.
20569
20570 @item -mfused-madd
20571 @itemx -mno-fused-madd
20572 @opindex mfused-madd
20573 @opindex mno-fused-madd
20574 Do (don't) generate code that uses the fused multiply/add or multiply/subtract
20575 instructions. The default is to use these instructions.
20576
20577 @item -mno-dwarf2-asm
20578 @itemx -mdwarf2-asm
20579 @opindex mno-dwarf2-asm
20580 @opindex mdwarf2-asm
20581 Don't (or do) generate assembler code for the DWARF line number debugging
20582 info. This may be useful when not using the GNU assembler.
20583
20584 @item -mearly-stop-bits
20585 @itemx -mno-early-stop-bits
20586 @opindex mearly-stop-bits
20587 @opindex mno-early-stop-bits
20588 Allow stop bits to be placed earlier than immediately preceding the
20589 instruction that triggered the stop bit. This can improve instruction
20590 scheduling, but does not always do so.
20591
20592 @item -mfixed-range=@var{register-range}
20593 @opindex mfixed-range
20594 Generate code treating the given register range as fixed registers.
20595 A fixed register is one that the register allocator cannot use. This is
20596 useful when compiling kernel code. A register range is specified as
20597 two registers separated by a dash. Multiple register ranges can be
20598 specified separated by a comma.
20599
20600 @item -mtls-size=@var{tls-size}
20601 @opindex mtls-size
20602 Specify bit size of immediate TLS offsets. Valid values are 14, 22, and
20603 64.
20604
20605 @item -mtune=@var{cpu-type}
20606 @opindex mtune
20607 Tune the instruction scheduling for a particular CPU, Valid values are
20608 @samp{itanium}, @samp{itanium1}, @samp{merced}, @samp{itanium2},
20609 and @samp{mckinley}.
20610
20611 @item -milp32
20612 @itemx -mlp64
20613 @opindex milp32
20614 @opindex mlp64
20615 Generate code for a 32-bit or 64-bit environment.
20616 The 32-bit environment sets int, long and pointer to 32 bits.
20617 The 64-bit environment sets int to 32 bits and long and pointer
20618 to 64 bits. These are HP-UX specific flags.
20619
20620 @item -mno-sched-br-data-spec
20621 @itemx -msched-br-data-spec
20622 @opindex mno-sched-br-data-spec
20623 @opindex msched-br-data-spec
20624 (Dis/En)able data speculative scheduling before reload.
20625 This results in generation of @code{ld.a} instructions and
20626 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
20627 The default setting is disabled.
20628
20629 @item -msched-ar-data-spec
20630 @itemx -mno-sched-ar-data-spec
20631 @opindex msched-ar-data-spec
20632 @opindex mno-sched-ar-data-spec
20633 (En/Dis)able data speculative scheduling after reload.
20634 This results in generation of @code{ld.a} instructions and
20635 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
20636 The default setting is enabled.
20637
20638 @item -mno-sched-control-spec
20639 @itemx -msched-control-spec
20640 @opindex mno-sched-control-spec
20641 @opindex msched-control-spec
20642 (Dis/En)able control speculative scheduling. This feature is
20643 available only during region scheduling (i.e.@: before reload).
20644 This results in generation of the @code{ld.s} instructions and
20645 the corresponding check instructions @code{chk.s}.
20646 The default setting is disabled.
20647
20648 @item -msched-br-in-data-spec
20649 @itemx -mno-sched-br-in-data-spec
20650 @opindex msched-br-in-data-spec
20651 @opindex mno-sched-br-in-data-spec
20652 (En/Dis)able speculative scheduling of the instructions that
20653 are dependent on the data speculative loads before reload.
20654 This is effective only with @option{-msched-br-data-spec} enabled.
20655 The default setting is enabled.
20656
20657 @item -msched-ar-in-data-spec
20658 @itemx -mno-sched-ar-in-data-spec
20659 @opindex msched-ar-in-data-spec
20660 @opindex mno-sched-ar-in-data-spec
20661 (En/Dis)able speculative scheduling of the instructions that
20662 are dependent on the data speculative loads after reload.
20663 This is effective only with @option{-msched-ar-data-spec} enabled.
20664 The default setting is enabled.
20665
20666 @item -msched-in-control-spec
20667 @itemx -mno-sched-in-control-spec
20668 @opindex msched-in-control-spec
20669 @opindex mno-sched-in-control-spec
20670 (En/Dis)able speculative scheduling of the instructions that
20671 are dependent on the control speculative loads.
20672 This is effective only with @option{-msched-control-spec} enabled.
20673 The default setting is enabled.
20674
20675 @item -mno-sched-prefer-non-data-spec-insns
20676 @itemx -msched-prefer-non-data-spec-insns
20677 @opindex mno-sched-prefer-non-data-spec-insns
20678 @opindex msched-prefer-non-data-spec-insns
20679 If enabled, data-speculative instructions are chosen for schedule
20680 only if there are no other choices at the moment. This makes
20681 the use of the data speculation much more conservative.
20682 The default setting is disabled.
20683
20684 @item -mno-sched-prefer-non-control-spec-insns
20685 @itemx -msched-prefer-non-control-spec-insns
20686 @opindex mno-sched-prefer-non-control-spec-insns
20687 @opindex msched-prefer-non-control-spec-insns
20688 If enabled, control-speculative instructions are chosen for schedule
20689 only if there are no other choices at the moment. This makes
20690 the use of the control speculation much more conservative.
20691 The default setting is disabled.
20692
20693 @item -mno-sched-count-spec-in-critical-path
20694 @itemx -msched-count-spec-in-critical-path
20695 @opindex mno-sched-count-spec-in-critical-path
20696 @opindex msched-count-spec-in-critical-path
20697 If enabled, speculative dependencies are considered during
20698 computation of the instructions priorities. This makes the use of the
20699 speculation a bit more conservative.
20700 The default setting is disabled.
20701
20702 @item -msched-spec-ldc
20703 @opindex msched-spec-ldc
20704 Use a simple data speculation check. This option is on by default.
20705
20706 @item -msched-control-spec-ldc
20707 @opindex msched-spec-ldc
20708 Use a simple check for control speculation. This option is on by default.
20709
20710 @item -msched-stop-bits-after-every-cycle
20711 @opindex msched-stop-bits-after-every-cycle
20712 Place a stop bit after every cycle when scheduling. This option is on
20713 by default.
20714
20715 @item -msched-fp-mem-deps-zero-cost
20716 @opindex msched-fp-mem-deps-zero-cost
20717 Assume that floating-point stores and loads are not likely to cause a conflict
20718 when placed into the same instruction group. This option is disabled by
20719 default.
20720
20721 @item -msel-sched-dont-check-control-spec
20722 @opindex msel-sched-dont-check-control-spec
20723 Generate checks for control speculation in selective scheduling.
20724 This flag is disabled by default.
20725
20726 @item -msched-max-memory-insns=@var{max-insns}
20727 @opindex msched-max-memory-insns
20728 Limit on the number of memory insns per instruction group, giving lower
20729 priority to subsequent memory insns attempting to schedule in the same
20730 instruction group. Frequently useful to prevent cache bank conflicts.
20731 The default value is 1.
20732
20733 @item -msched-max-memory-insns-hard-limit
20734 @opindex msched-max-memory-insns-hard-limit
20735 Makes the limit specified by @option{msched-max-memory-insns} a hard limit,
20736 disallowing more than that number in an instruction group.
20737 Otherwise, the limit is ``soft'', meaning that non-memory operations
20738 are preferred when the limit is reached, but memory operations may still
20739 be scheduled.
20740
20741 @end table
20742
20743 @node LM32 Options
20744 @subsection LM32 Options
20745 @cindex LM32 options
20746
20747 These @option{-m} options are defined for the LatticeMico32 architecture:
20748
20749 @table @gcctabopt
20750 @item -mbarrel-shift-enabled
20751 @opindex mbarrel-shift-enabled
20752 Enable barrel-shift instructions.
20753
20754 @item -mdivide-enabled
20755 @opindex mdivide-enabled
20756 Enable divide and modulus instructions.
20757
20758 @item -mmultiply-enabled
20759 @opindex multiply-enabled
20760 Enable multiply instructions.
20761
20762 @item -msign-extend-enabled
20763 @opindex msign-extend-enabled
20764 Enable sign extend instructions.
20765
20766 @item -muser-enabled
20767 @opindex muser-enabled
20768 Enable user-defined instructions.
20769
20770 @end table
20771
20772 @node M32C Options
20773 @subsection M32C Options
20774 @cindex M32C options
20775
20776 @table @gcctabopt
20777 @item -mcpu=@var{name}
20778 @opindex mcpu=
20779 Select the CPU for which code is generated. @var{name} may be one of
20780 @samp{r8c} for the R8C/Tiny series, @samp{m16c} for the M16C (up to
20781 /60) series, @samp{m32cm} for the M16C/80 series, or @samp{m32c} for
20782 the M32C/80 series.
20783
20784 @item -msim
20785 @opindex msim
20786 Specifies that the program will be run on the simulator. This causes
20787 an alternate runtime library to be linked in which supports, for
20788 example, file I/O@. You must not use this option when generating
20789 programs that will run on real hardware; you must provide your own
20790 runtime library for whatever I/O functions are needed.
20791
20792 @item -memregs=@var{number}
20793 @opindex memregs=
20794 Specifies the number of memory-based pseudo-registers GCC uses
20795 during code generation. These pseudo-registers are used like real
20796 registers, so there is a tradeoff between GCC's ability to fit the
20797 code into available registers, and the performance penalty of using
20798 memory instead of registers. Note that all modules in a program must
20799 be compiled with the same value for this option. Because of that, you
20800 must not use this option with GCC's default runtime libraries.
20801
20802 @end table
20803
20804 @node M32R/D Options
20805 @subsection M32R/D Options
20806 @cindex M32R/D options
20807
20808 These @option{-m} options are defined for Renesas M32R/D architectures:
20809
20810 @table @gcctabopt
20811 @item -m32r2
20812 @opindex m32r2
20813 Generate code for the M32R/2@.
20814
20815 @item -m32rx
20816 @opindex m32rx
20817 Generate code for the M32R/X@.
20818
20819 @item -m32r
20820 @opindex m32r
20821 Generate code for the M32R@. This is the default.
20822
20823 @item -mmodel=small
20824 @opindex mmodel=small
20825 Assume all objects live in the lower 16MB of memory (so that their addresses
20826 can be loaded with the @code{ld24} instruction), and assume all subroutines
20827 are reachable with the @code{bl} instruction.
20828 This is the default.
20829
20830 The addressability of a particular object can be set with the
20831 @code{model} attribute.
20832
20833 @item -mmodel=medium
20834 @opindex mmodel=medium
20835 Assume objects may be anywhere in the 32-bit address space (the compiler
20836 generates @code{seth/add3} instructions to load their addresses), and
20837 assume all subroutines are reachable with the @code{bl} instruction.
20838
20839 @item -mmodel=large
20840 @opindex mmodel=large
20841 Assume objects may be anywhere in the 32-bit address space (the compiler
20842 generates @code{seth/add3} instructions to load their addresses), and
20843 assume subroutines may not be reachable with the @code{bl} instruction
20844 (the compiler generates the much slower @code{seth/add3/jl}
20845 instruction sequence).
20846
20847 @item -msdata=none
20848 @opindex msdata=none
20849 Disable use of the small data area. Variables are put into
20850 one of @code{.data}, @code{.bss}, or @code{.rodata} (unless the
20851 @code{section} attribute has been specified).
20852 This is the default.
20853
20854 The small data area consists of sections @code{.sdata} and @code{.sbss}.
20855 Objects may be explicitly put in the small data area with the
20856 @code{section} attribute using one of these sections.
20857
20858 @item -msdata=sdata
20859 @opindex msdata=sdata
20860 Put small global and static data in the small data area, but do not
20861 generate special code to reference them.
20862
20863 @item -msdata=use
20864 @opindex msdata=use
20865 Put small global and static data in the small data area, and generate
20866 special instructions to reference them.
20867
20868 @item -G @var{num}
20869 @opindex G
20870 @cindex smaller data references
20871 Put global and static objects less than or equal to @var{num} bytes
20872 into the small data or BSS sections instead of the normal data or BSS
20873 sections. The default value of @var{num} is 8.
20874 The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
20875 for this option to have any effect.
20876
20877 All modules should be compiled with the same @option{-G @var{num}} value.
20878 Compiling with different values of @var{num} may or may not work; if it
20879 doesn't the linker gives an error message---incorrect code is not
20880 generated.
20881
20882 @item -mdebug
20883 @opindex mdebug
20884 Makes the M32R-specific code in the compiler display some statistics
20885 that might help in debugging programs.
20886
20887 @item -malign-loops
20888 @opindex malign-loops
20889 Align all loops to a 32-byte boundary.
20890
20891 @item -mno-align-loops
20892 @opindex mno-align-loops
20893 Do not enforce a 32-byte alignment for loops. This is the default.
20894
20895 @item -missue-rate=@var{number}
20896 @opindex missue-rate=@var{number}
20897 Issue @var{number} instructions per cycle. @var{number} can only be 1
20898 or 2.
20899
20900 @item -mbranch-cost=@var{number}
20901 @opindex mbranch-cost=@var{number}
20902 @var{number} can only be 1 or 2. If it is 1 then branches are
20903 preferred over conditional code, if it is 2, then the opposite applies.
20904
20905 @item -mflush-trap=@var{number}
20906 @opindex mflush-trap=@var{number}
20907 Specifies the trap number to use to flush the cache. The default is
20908 12. Valid numbers are between 0 and 15 inclusive.
20909
20910 @item -mno-flush-trap
20911 @opindex mno-flush-trap
20912 Specifies that the cache cannot be flushed by using a trap.
20913
20914 @item -mflush-func=@var{name}
20915 @opindex mflush-func=@var{name}
20916 Specifies the name of the operating system function to call to flush
20917 the cache. The default is @samp{_flush_cache}, but a function call
20918 is only used if a trap is not available.
20919
20920 @item -mno-flush-func
20921 @opindex mno-flush-func
20922 Indicates that there is no OS function for flushing the cache.
20923
20924 @end table
20925
20926 @node M680x0 Options
20927 @subsection M680x0 Options
20928 @cindex M680x0 options
20929
20930 These are the @samp{-m} options defined for M680x0 and ColdFire processors.
20931 The default settings depend on which architecture was selected when
20932 the compiler was configured; the defaults for the most common choices
20933 are given below.
20934
20935 @table @gcctabopt
20936 @item -march=@var{arch}
20937 @opindex march
20938 Generate code for a specific M680x0 or ColdFire instruction set
20939 architecture. Permissible values of @var{arch} for M680x0
20940 architectures are: @samp{68000}, @samp{68010}, @samp{68020},
20941 @samp{68030}, @samp{68040}, @samp{68060} and @samp{cpu32}. ColdFire
20942 architectures are selected according to Freescale's ISA classification
20943 and the permissible values are: @samp{isaa}, @samp{isaaplus},
20944 @samp{isab} and @samp{isac}.
20945
20946 GCC defines a macro @code{__mcf@var{arch}__} whenever it is generating
20947 code for a ColdFire target. The @var{arch} in this macro is one of the
20948 @option{-march} arguments given above.
20949
20950 When used together, @option{-march} and @option{-mtune} select code
20951 that runs on a family of similar processors but that is optimized
20952 for a particular microarchitecture.
20953
20954 @item -mcpu=@var{cpu}
20955 @opindex mcpu
20956 Generate code for a specific M680x0 or ColdFire processor.
20957 The M680x0 @var{cpu}s are: @samp{68000}, @samp{68010}, @samp{68020},
20958 @samp{68030}, @samp{68040}, @samp{68060}, @samp{68302}, @samp{68332}
20959 and @samp{cpu32}. The ColdFire @var{cpu}s are given by the table
20960 below, which also classifies the CPUs into families:
20961
20962 @multitable @columnfractions 0.20 0.80
20963 @item @strong{Family} @tab @strong{@samp{-mcpu} arguments}
20964 @item @samp{51} @tab @samp{51} @samp{51ac} @samp{51ag} @samp{51cn} @samp{51em} @samp{51je} @samp{51jf} @samp{51jg} @samp{51jm} @samp{51mm} @samp{51qe} @samp{51qm}
20965 @item @samp{5206} @tab @samp{5202} @samp{5204} @samp{5206}
20966 @item @samp{5206e} @tab @samp{5206e}
20967 @item @samp{5208} @tab @samp{5207} @samp{5208}
20968 @item @samp{5211a} @tab @samp{5210a} @samp{5211a}
20969 @item @samp{5213} @tab @samp{5211} @samp{5212} @samp{5213}
20970 @item @samp{5216} @tab @samp{5214} @samp{5216}
20971 @item @samp{52235} @tab @samp{52230} @samp{52231} @samp{52232} @samp{52233} @samp{52234} @samp{52235}
20972 @item @samp{5225} @tab @samp{5224} @samp{5225}
20973 @item @samp{52259} @tab @samp{52252} @samp{52254} @samp{52255} @samp{52256} @samp{52258} @samp{52259}
20974 @item @samp{5235} @tab @samp{5232} @samp{5233} @samp{5234} @samp{5235} @samp{523x}
20975 @item @samp{5249} @tab @samp{5249}
20976 @item @samp{5250} @tab @samp{5250}
20977 @item @samp{5271} @tab @samp{5270} @samp{5271}
20978 @item @samp{5272} @tab @samp{5272}
20979 @item @samp{5275} @tab @samp{5274} @samp{5275}
20980 @item @samp{5282} @tab @samp{5280} @samp{5281} @samp{5282} @samp{528x}
20981 @item @samp{53017} @tab @samp{53011} @samp{53012} @samp{53013} @samp{53014} @samp{53015} @samp{53016} @samp{53017}
20982 @item @samp{5307} @tab @samp{5307}
20983 @item @samp{5329} @tab @samp{5327} @samp{5328} @samp{5329} @samp{532x}
20984 @item @samp{5373} @tab @samp{5372} @samp{5373} @samp{537x}
20985 @item @samp{5407} @tab @samp{5407}
20986 @item @samp{5475} @tab @samp{5470} @samp{5471} @samp{5472} @samp{5473} @samp{5474} @samp{5475} @samp{547x} @samp{5480} @samp{5481} @samp{5482} @samp{5483} @samp{5484} @samp{5485}
20987 @end multitable
20988
20989 @option{-mcpu=@var{cpu}} overrides @option{-march=@var{arch}} if
20990 @var{arch} is compatible with @var{cpu}. Other combinations of
20991 @option{-mcpu} and @option{-march} are rejected.
20992
20993 GCC defines the macro @code{__mcf_cpu_@var{cpu}} when ColdFire target
20994 @var{cpu} is selected. It also defines @code{__mcf_family_@var{family}},
20995 where the value of @var{family} is given by the table above.
20996
20997 @item -mtune=@var{tune}
20998 @opindex mtune
20999 Tune the code for a particular microarchitecture within the
21000 constraints set by @option{-march} and @option{-mcpu}.
21001 The M680x0 microarchitectures are: @samp{68000}, @samp{68010},
21002 @samp{68020}, @samp{68030}, @samp{68040}, @samp{68060}
21003 and @samp{cpu32}. The ColdFire microarchitectures
21004 are: @samp{cfv1}, @samp{cfv2}, @samp{cfv3}, @samp{cfv4} and @samp{cfv4e}.
21005
21006 You can also use @option{-mtune=68020-40} for code that needs
21007 to run relatively well on 68020, 68030 and 68040 targets.
21008 @option{-mtune=68020-60} is similar but includes 68060 targets
21009 as well. These two options select the same tuning decisions as
21010 @option{-m68020-40} and @option{-m68020-60} respectively.
21011
21012 GCC defines the macros @code{__mc@var{arch}} and @code{__mc@var{arch}__}
21013 when tuning for 680x0 architecture @var{arch}. It also defines
21014 @code{mc@var{arch}} unless either @option{-ansi} or a non-GNU @option{-std}
21015 option is used. If GCC is tuning for a range of architectures,
21016 as selected by @option{-mtune=68020-40} or @option{-mtune=68020-60},
21017 it defines the macros for every architecture in the range.
21018
21019 GCC also defines the macro @code{__m@var{uarch}__} when tuning for
21020 ColdFire microarchitecture @var{uarch}, where @var{uarch} is one
21021 of the arguments given above.
21022
21023 @item -m68000
21024 @itemx -mc68000
21025 @opindex m68000
21026 @opindex mc68000
21027 Generate output for a 68000. This is the default
21028 when the compiler is configured for 68000-based systems.
21029 It is equivalent to @option{-march=68000}.
21030
21031 Use this option for microcontrollers with a 68000 or EC000 core,
21032 including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
21033
21034 @item -m68010
21035 @opindex m68010
21036 Generate output for a 68010. This is the default
21037 when the compiler is configured for 68010-based systems.
21038 It is equivalent to @option{-march=68010}.
21039
21040 @item -m68020
21041 @itemx -mc68020
21042 @opindex m68020
21043 @opindex mc68020
21044 Generate output for a 68020. This is the default
21045 when the compiler is configured for 68020-based systems.
21046 It is equivalent to @option{-march=68020}.
21047
21048 @item -m68030
21049 @opindex m68030
21050 Generate output for a 68030. This is the default when the compiler is
21051 configured for 68030-based systems. It is equivalent to
21052 @option{-march=68030}.
21053
21054 @item -m68040
21055 @opindex m68040
21056 Generate output for a 68040. This is the default when the compiler is
21057 configured for 68040-based systems. It is equivalent to
21058 @option{-march=68040}.
21059
21060 This option inhibits the use of 68881/68882 instructions that have to be
21061 emulated by software on the 68040. Use this option if your 68040 does not
21062 have code to emulate those instructions.
21063
21064 @item -m68060
21065 @opindex m68060
21066 Generate output for a 68060. This is the default when the compiler is
21067 configured for 68060-based systems. It is equivalent to
21068 @option{-march=68060}.
21069
21070 This option inhibits the use of 68020 and 68881/68882 instructions that
21071 have to be emulated by software on the 68060. Use this option if your 68060
21072 does not have code to emulate those instructions.
21073
21074 @item -mcpu32
21075 @opindex mcpu32
21076 Generate output for a CPU32. This is the default
21077 when the compiler is configured for CPU32-based systems.
21078 It is equivalent to @option{-march=cpu32}.
21079
21080 Use this option for microcontrollers with a
21081 CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
21082 68336, 68340, 68341, 68349 and 68360.
21083
21084 @item -m5200
21085 @opindex m5200
21086 Generate output for a 520X ColdFire CPU@. This is the default
21087 when the compiler is configured for 520X-based systems.
21088 It is equivalent to @option{-mcpu=5206}, and is now deprecated
21089 in favor of that option.
21090
21091 Use this option for microcontroller with a 5200 core, including
21092 the MCF5202, MCF5203, MCF5204 and MCF5206.
21093
21094 @item -m5206e
21095 @opindex m5206e
21096 Generate output for a 5206e ColdFire CPU@. The option is now
21097 deprecated in favor of the equivalent @option{-mcpu=5206e}.
21098
21099 @item -m528x
21100 @opindex m528x
21101 Generate output for a member of the ColdFire 528X family.
21102 The option is now deprecated in favor of the equivalent
21103 @option{-mcpu=528x}.
21104
21105 @item -m5307
21106 @opindex m5307
21107 Generate output for a ColdFire 5307 CPU@. The option is now deprecated
21108 in favor of the equivalent @option{-mcpu=5307}.
21109
21110 @item -m5407
21111 @opindex m5407
21112 Generate output for a ColdFire 5407 CPU@. The option is now deprecated
21113 in favor of the equivalent @option{-mcpu=5407}.
21114
21115 @item -mcfv4e
21116 @opindex mcfv4e
21117 Generate output for a ColdFire V4e family CPU (e.g.@: 547x/548x).
21118 This includes use of hardware floating-point instructions.
21119 The option is equivalent to @option{-mcpu=547x}, and is now
21120 deprecated in favor of that option.
21121
21122 @item -m68020-40
21123 @opindex m68020-40
21124 Generate output for a 68040, without using any of the new instructions.
21125 This results in code that can run relatively efficiently on either a
21126 68020/68881 or a 68030 or a 68040. The generated code does use the
21127 68881 instructions that are emulated on the 68040.
21128
21129 The option is equivalent to @option{-march=68020} @option{-mtune=68020-40}.
21130
21131 @item -m68020-60
21132 @opindex m68020-60
21133 Generate output for a 68060, without using any of the new instructions.
21134 This results in code that can run relatively efficiently on either a
21135 68020/68881 or a 68030 or a 68040. The generated code does use the
21136 68881 instructions that are emulated on the 68060.
21137
21138 The option is equivalent to @option{-march=68020} @option{-mtune=68020-60}.
21139
21140 @item -mhard-float
21141 @itemx -m68881
21142 @opindex mhard-float
21143 @opindex m68881
21144 Generate floating-point instructions. This is the default for 68020
21145 and above, and for ColdFire devices that have an FPU@. It defines the
21146 macro @code{__HAVE_68881__} on M680x0 targets and @code{__mcffpu__}
21147 on ColdFire targets.
21148
21149 @item -msoft-float
21150 @opindex msoft-float
21151 Do not generate floating-point instructions; use library calls instead.
21152 This is the default for 68000, 68010, and 68832 targets. It is also
21153 the default for ColdFire devices that have no FPU.
21154
21155 @item -mdiv
21156 @itemx -mno-div
21157 @opindex mdiv
21158 @opindex mno-div
21159 Generate (do not generate) ColdFire hardware divide and remainder
21160 instructions. If @option{-march} is used without @option{-mcpu},
21161 the default is ``on'' for ColdFire architectures and ``off'' for M680x0
21162 architectures. Otherwise, the default is taken from the target CPU
21163 (either the default CPU, or the one specified by @option{-mcpu}). For
21164 example, the default is ``off'' for @option{-mcpu=5206} and ``on'' for
21165 @option{-mcpu=5206e}.
21166
21167 GCC defines the macro @code{__mcfhwdiv__} when this option is enabled.
21168
21169 @item -mshort
21170 @opindex mshort
21171 Consider type @code{int} to be 16 bits wide, like @code{short int}.
21172 Additionally, parameters passed on the stack are also aligned to a
21173 16-bit boundary even on targets whose API mandates promotion to 32-bit.
21174
21175 @item -mno-short
21176 @opindex mno-short
21177 Do not consider type @code{int} to be 16 bits wide. This is the default.
21178
21179 @item -mnobitfield
21180 @itemx -mno-bitfield
21181 @opindex mnobitfield
21182 @opindex mno-bitfield
21183 Do not use the bit-field instructions. The @option{-m68000}, @option{-mcpu32}
21184 and @option{-m5200} options imply @w{@option{-mnobitfield}}.
21185
21186 @item -mbitfield
21187 @opindex mbitfield
21188 Do use the bit-field instructions. The @option{-m68020} option implies
21189 @option{-mbitfield}. This is the default if you use a configuration
21190 designed for a 68020.
21191
21192 @item -mrtd
21193 @opindex mrtd
21194 Use a different function-calling convention, in which functions
21195 that take a fixed number of arguments return with the @code{rtd}
21196 instruction, which pops their arguments while returning. This
21197 saves one instruction in the caller since there is no need to pop
21198 the arguments there.
21199
21200 This calling convention is incompatible with the one normally
21201 used on Unix, so you cannot use it if you need to call libraries
21202 compiled with the Unix compiler.
21203
21204 Also, you must provide function prototypes for all functions that
21205 take variable numbers of arguments (including @code{printf});
21206 otherwise incorrect code is generated for calls to those
21207 functions.
21208
21209 In addition, seriously incorrect code results if you call a
21210 function with too many arguments. (Normally, extra arguments are
21211 harmlessly ignored.)
21212
21213 The @code{rtd} instruction is supported by the 68010, 68020, 68030,
21214 68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
21215
21216 The default is @option{-mno-rtd}.
21217
21218 @item -malign-int
21219 @itemx -mno-align-int
21220 @opindex malign-int
21221 @opindex mno-align-int
21222 Control whether GCC aligns @code{int}, @code{long}, @code{long long},
21223 @code{float}, @code{double}, and @code{long double} variables on a 32-bit
21224 boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
21225 Aligning variables on 32-bit boundaries produces code that runs somewhat
21226 faster on processors with 32-bit busses at the expense of more memory.
21227
21228 @strong{Warning:} if you use the @option{-malign-int} switch, GCC
21229 aligns structures containing the above types differently than
21230 most published application binary interface specifications for the m68k.
21231
21232 @item -mpcrel
21233 @opindex mpcrel
21234 Use the pc-relative addressing mode of the 68000 directly, instead of
21235 using a global offset table. At present, this option implies @option{-fpic},
21236 allowing at most a 16-bit offset for pc-relative addressing. @option{-fPIC} is
21237 not presently supported with @option{-mpcrel}, though this could be supported for
21238 68020 and higher processors.
21239
21240 @item -mno-strict-align
21241 @itemx -mstrict-align
21242 @opindex mno-strict-align
21243 @opindex mstrict-align
21244 Do not (do) assume that unaligned memory references are handled by
21245 the system.
21246
21247 @item -msep-data
21248 Generate code that allows the data segment to be located in a different
21249 area of memory from the text segment. This allows for execute-in-place in
21250 an environment without virtual memory management. This option implies
21251 @option{-fPIC}.
21252
21253 @item -mno-sep-data
21254 Generate code that assumes that the data segment follows the text segment.
21255 This is the default.
21256
21257 @item -mid-shared-library
21258 Generate code that supports shared libraries via the library ID method.
21259 This allows for execute-in-place and shared libraries in an environment
21260 without virtual memory management. This option implies @option{-fPIC}.
21261
21262 @item -mno-id-shared-library
21263 Generate code that doesn't assume ID-based shared libraries are being used.
21264 This is the default.
21265
21266 @item -mshared-library-id=n
21267 Specifies the identification number of the ID-based shared library being
21268 compiled. Specifying a value of 0 generates more compact code; specifying
21269 other values forces the allocation of that number to the current
21270 library, but is no more space- or time-efficient than omitting this option.
21271
21272 @item -mxgot
21273 @itemx -mno-xgot
21274 @opindex mxgot
21275 @opindex mno-xgot
21276 When generating position-independent code for ColdFire, generate code
21277 that works if the GOT has more than 8192 entries. This code is
21278 larger and slower than code generated without this option. On M680x0
21279 processors, this option is not needed; @option{-fPIC} suffices.
21280
21281 GCC normally uses a single instruction to load values from the GOT@.
21282 While this is relatively efficient, it only works if the GOT
21283 is smaller than about 64k. Anything larger causes the linker
21284 to report an error such as:
21285
21286 @cindex relocation truncated to fit (ColdFire)
21287 @smallexample
21288 relocation truncated to fit: R_68K_GOT16O foobar
21289 @end smallexample
21290
21291 If this happens, you should recompile your code with @option{-mxgot}.
21292 It should then work with very large GOTs. However, code generated with
21293 @option{-mxgot} is less efficient, since it takes 4 instructions to fetch
21294 the value of a global symbol.
21295
21296 Note that some linkers, including newer versions of the GNU linker,
21297 can create multiple GOTs and sort GOT entries. If you have such a linker,
21298 you should only need to use @option{-mxgot} when compiling a single
21299 object file that accesses more than 8192 GOT entries. Very few do.
21300
21301 These options have no effect unless GCC is generating
21302 position-independent code.
21303
21304 @item -mlong-jump-table-offsets
21305 @opindex mlong-jump-table-offsets
21306 Use 32-bit offsets in @code{switch} tables. The default is to use
21307 16-bit offsets.
21308
21309 @end table
21310
21311 @node MCore Options
21312 @subsection MCore Options
21313 @cindex MCore options
21314
21315 These are the @samp{-m} options defined for the Motorola M*Core
21316 processors.
21317
21318 @table @gcctabopt
21319
21320 @item -mhardlit
21321 @itemx -mno-hardlit
21322 @opindex mhardlit
21323 @opindex mno-hardlit
21324 Inline constants into the code stream if it can be done in two
21325 instructions or less.
21326
21327 @item -mdiv
21328 @itemx -mno-div
21329 @opindex mdiv
21330 @opindex mno-div
21331 Use the divide instruction. (Enabled by default).
21332
21333 @item -mrelax-immediate
21334 @itemx -mno-relax-immediate
21335 @opindex mrelax-immediate
21336 @opindex mno-relax-immediate
21337 Allow arbitrary-sized immediates in bit operations.
21338
21339 @item -mwide-bitfields
21340 @itemx -mno-wide-bitfields
21341 @opindex mwide-bitfields
21342 @opindex mno-wide-bitfields
21343 Always treat bit-fields as @code{int}-sized.
21344
21345 @item -m4byte-functions
21346 @itemx -mno-4byte-functions
21347 @opindex m4byte-functions
21348 @opindex mno-4byte-functions
21349 Force all functions to be aligned to a 4-byte boundary.
21350
21351 @item -mcallgraph-data
21352 @itemx -mno-callgraph-data
21353 @opindex mcallgraph-data
21354 @opindex mno-callgraph-data
21355 Emit callgraph information.
21356
21357 @item -mslow-bytes
21358 @itemx -mno-slow-bytes
21359 @opindex mslow-bytes
21360 @opindex mno-slow-bytes
21361 Prefer word access when reading byte quantities.
21362
21363 @item -mlittle-endian
21364 @itemx -mbig-endian
21365 @opindex mlittle-endian
21366 @opindex mbig-endian
21367 Generate code for a little-endian target.
21368
21369 @item -m210
21370 @itemx -m340
21371 @opindex m210
21372 @opindex m340
21373 Generate code for the 210 processor.
21374
21375 @item -mno-lsim
21376 @opindex mno-lsim
21377 Assume that runtime support has been provided and so omit the
21378 simulator library (@file{libsim.a)} from the linker command line.
21379
21380 @item -mstack-increment=@var{size}
21381 @opindex mstack-increment
21382 Set the maximum amount for a single stack increment operation. Large
21383 values can increase the speed of programs that contain functions
21384 that need a large amount of stack space, but they can also trigger a
21385 segmentation fault if the stack is extended too much. The default
21386 value is 0x1000.
21387
21388 @end table
21389
21390 @node MeP Options
21391 @subsection MeP Options
21392 @cindex MeP options
21393
21394 @table @gcctabopt
21395
21396 @item -mabsdiff
21397 @opindex mabsdiff
21398 Enables the @code{abs} instruction, which is the absolute difference
21399 between two registers.
21400
21401 @item -mall-opts
21402 @opindex mall-opts
21403 Enables all the optional instructions---average, multiply, divide, bit
21404 operations, leading zero, absolute difference, min/max, clip, and
21405 saturation.
21406
21407
21408 @item -maverage
21409 @opindex maverage
21410 Enables the @code{ave} instruction, which computes the average of two
21411 registers.
21412
21413 @item -mbased=@var{n}
21414 @opindex mbased=
21415 Variables of size @var{n} bytes or smaller are placed in the
21416 @code{.based} section by default. Based variables use the @code{$tp}
21417 register as a base register, and there is a 128-byte limit to the
21418 @code{.based} section.
21419
21420 @item -mbitops
21421 @opindex mbitops
21422 Enables the bit operation instructions---bit test (@code{btstm}), set
21423 (@code{bsetm}), clear (@code{bclrm}), invert (@code{bnotm}), and
21424 test-and-set (@code{tas}).
21425
21426 @item -mc=@var{name}
21427 @opindex mc=
21428 Selects which section constant data is placed in. @var{name} may
21429 be @samp{tiny}, @samp{near}, or @samp{far}.
21430
21431 @item -mclip
21432 @opindex mclip
21433 Enables the @code{clip} instruction. Note that @option{-mclip} is not
21434 useful unless you also provide @option{-mminmax}.
21435
21436 @item -mconfig=@var{name}
21437 @opindex mconfig=
21438 Selects one of the built-in core configurations. Each MeP chip has
21439 one or more modules in it; each module has a core CPU and a variety of
21440 coprocessors, optional instructions, and peripherals. The
21441 @code{MeP-Integrator} tool, not part of GCC, provides these
21442 configurations through this option; using this option is the same as
21443 using all the corresponding command-line options. The default
21444 configuration is @samp{default}.
21445
21446 @item -mcop
21447 @opindex mcop
21448 Enables the coprocessor instructions. By default, this is a 32-bit
21449 coprocessor. Note that the coprocessor is normally enabled via the
21450 @option{-mconfig=} option.
21451
21452 @item -mcop32
21453 @opindex mcop32
21454 Enables the 32-bit coprocessor's instructions.
21455
21456 @item -mcop64
21457 @opindex mcop64
21458 Enables the 64-bit coprocessor's instructions.
21459
21460 @item -mivc2
21461 @opindex mivc2
21462 Enables IVC2 scheduling. IVC2 is a 64-bit VLIW coprocessor.
21463
21464 @item -mdc
21465 @opindex mdc
21466 Causes constant variables to be placed in the @code{.near} section.
21467
21468 @item -mdiv
21469 @opindex mdiv
21470 Enables the @code{div} and @code{divu} instructions.
21471
21472 @item -meb
21473 @opindex meb
21474 Generate big-endian code.
21475
21476 @item -mel
21477 @opindex mel
21478 Generate little-endian code.
21479
21480 @item -mio-volatile
21481 @opindex mio-volatile
21482 Tells the compiler that any variable marked with the @code{io}
21483 attribute is to be considered volatile.
21484
21485 @item -ml
21486 @opindex ml
21487 Causes variables to be assigned to the @code{.far} section by default.
21488
21489 @item -mleadz
21490 @opindex mleadz
21491 Enables the @code{leadz} (leading zero) instruction.
21492
21493 @item -mm
21494 @opindex mm
21495 Causes variables to be assigned to the @code{.near} section by default.
21496
21497 @item -mminmax
21498 @opindex mminmax
21499 Enables the @code{min} and @code{max} instructions.
21500
21501 @item -mmult
21502 @opindex mmult
21503 Enables the multiplication and multiply-accumulate instructions.
21504
21505 @item -mno-opts
21506 @opindex mno-opts
21507 Disables all the optional instructions enabled by @option{-mall-opts}.
21508
21509 @item -mrepeat
21510 @opindex mrepeat
21511 Enables the @code{repeat} and @code{erepeat} instructions, used for
21512 low-overhead looping.
21513
21514 @item -ms
21515 @opindex ms
21516 Causes all variables to default to the @code{.tiny} section. Note
21517 that there is a 65536-byte limit to this section. Accesses to these
21518 variables use the @code{%gp} base register.
21519
21520 @item -msatur
21521 @opindex msatur
21522 Enables the saturation instructions. Note that the compiler does not
21523 currently generate these itself, but this option is included for
21524 compatibility with other tools, like @code{as}.
21525
21526 @item -msdram
21527 @opindex msdram
21528 Link the SDRAM-based runtime instead of the default ROM-based runtime.
21529
21530 @item -msim
21531 @opindex msim
21532 Link the simulator run-time libraries.
21533
21534 @item -msimnovec
21535 @opindex msimnovec
21536 Link the simulator runtime libraries, excluding built-in support
21537 for reset and exception vectors and tables.
21538
21539 @item -mtf
21540 @opindex mtf
21541 Causes all functions to default to the @code{.far} section. Without
21542 this option, functions default to the @code{.near} section.
21543
21544 @item -mtiny=@var{n}
21545 @opindex mtiny=
21546 Variables that are @var{n} bytes or smaller are allocated to the
21547 @code{.tiny} section. These variables use the @code{$gp} base
21548 register. The default for this option is 4, but note that there's a
21549 65536-byte limit to the @code{.tiny} section.
21550
21551 @end table
21552
21553 @node MicroBlaze Options
21554 @subsection MicroBlaze Options
21555 @cindex MicroBlaze Options
21556
21557 @table @gcctabopt
21558
21559 @item -msoft-float
21560 @opindex msoft-float
21561 Use software emulation for floating point (default).
21562
21563 @item -mhard-float
21564 @opindex mhard-float
21565 Use hardware floating-point instructions.
21566
21567 @item -mmemcpy
21568 @opindex mmemcpy
21569 Do not optimize block moves, use @code{memcpy}.
21570
21571 @item -mno-clearbss
21572 @opindex mno-clearbss
21573 This option is deprecated. Use @option{-fno-zero-initialized-in-bss} instead.
21574
21575 @item -mcpu=@var{cpu-type}
21576 @opindex mcpu=
21577 Use features of, and schedule code for, the given CPU.
21578 Supported values are in the format @samp{v@var{X}.@var{YY}.@var{Z}},
21579 where @var{X} is a major version, @var{YY} is the minor version, and
21580 @var{Z} is compatibility code. Example values are @samp{v3.00.a},
21581 @samp{v4.00.b}, @samp{v5.00.a}, @samp{v5.00.b}, @samp{v6.00.a}.
21582
21583 @item -mxl-soft-mul
21584 @opindex mxl-soft-mul
21585 Use software multiply emulation (default).
21586
21587 @item -mxl-soft-div
21588 @opindex mxl-soft-div
21589 Use software emulation for divides (default).
21590
21591 @item -mxl-barrel-shift
21592 @opindex mxl-barrel-shift
21593 Use the hardware barrel shifter.
21594
21595 @item -mxl-pattern-compare
21596 @opindex mxl-pattern-compare
21597 Use pattern compare instructions.
21598
21599 @item -msmall-divides
21600 @opindex msmall-divides
21601 Use table lookup optimization for small signed integer divisions.
21602
21603 @item -mxl-stack-check
21604 @opindex mxl-stack-check
21605 This option is deprecated. Use @option{-fstack-check} instead.
21606
21607 @item -mxl-gp-opt
21608 @opindex mxl-gp-opt
21609 Use GP-relative @code{.sdata}/@code{.sbss} sections.
21610
21611 @item -mxl-multiply-high
21612 @opindex mxl-multiply-high
21613 Use multiply high instructions for high part of 32x32 multiply.
21614
21615 @item -mxl-float-convert
21616 @opindex mxl-float-convert
21617 Use hardware floating-point conversion instructions.
21618
21619 @item -mxl-float-sqrt
21620 @opindex mxl-float-sqrt
21621 Use hardware floating-point square root instruction.
21622
21623 @item -mbig-endian
21624 @opindex mbig-endian
21625 Generate code for a big-endian target.
21626
21627 @item -mlittle-endian
21628 @opindex mlittle-endian
21629 Generate code for a little-endian target.
21630
21631 @item -mxl-reorder
21632 @opindex mxl-reorder
21633 Use reorder instructions (swap and byte reversed load/store).
21634
21635 @item -mxl-mode-@var{app-model}
21636 Select application model @var{app-model}. Valid models are
21637 @table @samp
21638 @item executable
21639 normal executable (default), uses startup code @file{crt0.o}.
21640
21641 @item -mpic-data-is-text-relative
21642 @opindex mpic-data-is-text-relative
21643 Assume that the displacement between the text and data segments is fixed
21644 at static link time. This allows data to be referenced by offset from start of
21645 text address instead of GOT since PC-relative addressing is not supported.
21646
21647 @item xmdstub
21648 for use with Xilinx Microprocessor Debugger (XMD) based
21649 software intrusive debug agent called xmdstub. This uses startup file
21650 @file{crt1.o} and sets the start address of the program to 0x800.
21651
21652 @item bootstrap
21653 for applications that are loaded using a bootloader.
21654 This model uses startup file @file{crt2.o} which does not contain a processor
21655 reset vector handler. This is suitable for transferring control on a
21656 processor reset to the bootloader rather than the application.
21657
21658 @item novectors
21659 for applications that do not require any of the
21660 MicroBlaze vectors. This option may be useful for applications running
21661 within a monitoring application. This model uses @file{crt3.o} as a startup file.
21662 @end table
21663
21664 Option @option{-xl-mode-@var{app-model}} is a deprecated alias for
21665 @option{-mxl-mode-@var{app-model}}.
21666
21667 @end table
21668
21669 @node MIPS Options
21670 @subsection MIPS Options
21671 @cindex MIPS options
21672
21673 @table @gcctabopt
21674
21675 @item -EB
21676 @opindex EB
21677 Generate big-endian code.
21678
21679 @item -EL
21680 @opindex EL
21681 Generate little-endian code. This is the default for @samp{mips*el-*-*}
21682 configurations.
21683
21684 @item -march=@var{arch}
21685 @opindex march
21686 Generate code that runs on @var{arch}, which can be the name of a
21687 generic MIPS ISA, or the name of a particular processor.
21688 The ISA names are:
21689 @samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4},
21690 @samp{mips32}, @samp{mips32r2}, @samp{mips32r3}, @samp{mips32r5},
21691 @samp{mips32r6}, @samp{mips64}, @samp{mips64r2}, @samp{mips64r3},
21692 @samp{mips64r5} and @samp{mips64r6}.
21693 The processor names are:
21694 @samp{4kc}, @samp{4km}, @samp{4kp}, @samp{4ksc},
21695 @samp{4kec}, @samp{4kem}, @samp{4kep}, @samp{4ksd},
21696 @samp{5kc}, @samp{5kf},
21697 @samp{20kc},
21698 @samp{24kc}, @samp{24kf2_1}, @samp{24kf1_1},
21699 @samp{24kec}, @samp{24kef2_1}, @samp{24kef1_1},
21700 @samp{34kc}, @samp{34kf2_1}, @samp{34kf1_1}, @samp{34kn},
21701 @samp{74kc}, @samp{74kf2_1}, @samp{74kf1_1}, @samp{74kf3_2},
21702 @samp{1004kc}, @samp{1004kf2_1}, @samp{1004kf1_1},
21703 @samp{i6400}, @samp{i6500},
21704 @samp{interaptiv},
21705 @samp{loongson2e}, @samp{loongson2f}, @samp{loongson3a}, @samp{gs464},
21706 @samp{gs464e}, @samp{gs264e},
21707 @samp{m4k},
21708 @samp{m14k}, @samp{m14kc}, @samp{m14ke}, @samp{m14kec},
21709 @samp{m5100}, @samp{m5101},
21710 @samp{octeon}, @samp{octeon+}, @samp{octeon2}, @samp{octeon3},
21711 @samp{orion},
21712 @samp{p5600}, @samp{p6600},
21713 @samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400},
21714 @samp{r4600}, @samp{r4650}, @samp{r4700}, @samp{r5900},
21715 @samp{r6000}, @samp{r8000},
21716 @samp{rm7000}, @samp{rm9000},
21717 @samp{r10000}, @samp{r12000}, @samp{r14000}, @samp{r16000},
21718 @samp{sb1},
21719 @samp{sr71000},
21720 @samp{vr4100}, @samp{vr4111}, @samp{vr4120}, @samp{vr4130}, @samp{vr4300},
21721 @samp{vr5000}, @samp{vr5400}, @samp{vr5500},
21722 @samp{xlr} and @samp{xlp}.
21723 The special value @samp{from-abi} selects the
21724 most compatible architecture for the selected ABI (that is,
21725 @samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@.
21726
21727 The native Linux/GNU toolchain also supports the value @samp{native},
21728 which selects the best architecture option for the host processor.
21729 @option{-march=native} has no effect if GCC does not recognize
21730 the processor.
21731
21732 In processor names, a final @samp{000} can be abbreviated as @samp{k}
21733 (for example, @option{-march=r2k}). Prefixes are optional, and
21734 @samp{vr} may be written @samp{r}.
21735
21736 Names of the form @samp{@var{n}f2_1} refer to processors with
21737 FPUs clocked at half the rate of the core, names of the form
21738 @samp{@var{n}f1_1} refer to processors with FPUs clocked at the same
21739 rate as the core, and names of the form @samp{@var{n}f3_2} refer to
21740 processors with FPUs clocked a ratio of 3:2 with respect to the core.
21741 For compatibility reasons, @samp{@var{n}f} is accepted as a synonym
21742 for @samp{@var{n}f2_1} while @samp{@var{n}x} and @samp{@var{b}fx} are
21743 accepted as synonyms for @samp{@var{n}f1_1}.
21744
21745 GCC defines two macros based on the value of this option. The first
21746 is @code{_MIPS_ARCH}, which gives the name of target architecture, as
21747 a string. The second has the form @code{_MIPS_ARCH_@var{foo}},
21748 where @var{foo} is the capitalized value of @code{_MIPS_ARCH}@.
21749 For example, @option{-march=r2000} sets @code{_MIPS_ARCH}
21750 to @code{"r2000"} and defines the macro @code{_MIPS_ARCH_R2000}.
21751
21752 Note that the @code{_MIPS_ARCH} macro uses the processor names given
21753 above. In other words, it has the full prefix and does not
21754 abbreviate @samp{000} as @samp{k}. In the case of @samp{from-abi},
21755 the macro names the resolved architecture (either @code{"mips1"} or
21756 @code{"mips3"}). It names the default architecture when no
21757 @option{-march} option is given.
21758
21759 @item -mtune=@var{arch}
21760 @opindex mtune
21761 Optimize for @var{arch}. Among other things, this option controls
21762 the way instructions are scheduled, and the perceived cost of arithmetic
21763 operations. The list of @var{arch} values is the same as for
21764 @option{-march}.
21765
21766 When this option is not used, GCC optimizes for the processor
21767 specified by @option{-march}. By using @option{-march} and
21768 @option{-mtune} together, it is possible to generate code that
21769 runs on a family of processors, but optimize the code for one
21770 particular member of that family.
21771
21772 @option{-mtune} defines the macros @code{_MIPS_TUNE} and
21773 @code{_MIPS_TUNE_@var{foo}}, which work in the same way as the
21774 @option{-march} ones described above.
21775
21776 @item -mips1
21777 @opindex mips1
21778 Equivalent to @option{-march=mips1}.
21779
21780 @item -mips2
21781 @opindex mips2
21782 Equivalent to @option{-march=mips2}.
21783
21784 @item -mips3
21785 @opindex mips3
21786 Equivalent to @option{-march=mips3}.
21787
21788 @item -mips4
21789 @opindex mips4
21790 Equivalent to @option{-march=mips4}.
21791
21792 @item -mips32
21793 @opindex mips32
21794 Equivalent to @option{-march=mips32}.
21795
21796 @item -mips32r3
21797 @opindex mips32r3
21798 Equivalent to @option{-march=mips32r3}.
21799
21800 @item -mips32r5
21801 @opindex mips32r5
21802 Equivalent to @option{-march=mips32r5}.
21803
21804 @item -mips32r6
21805 @opindex mips32r6
21806 Equivalent to @option{-march=mips32r6}.
21807
21808 @item -mips64
21809 @opindex mips64
21810 Equivalent to @option{-march=mips64}.
21811
21812 @item -mips64r2
21813 @opindex mips64r2
21814 Equivalent to @option{-march=mips64r2}.
21815
21816 @item -mips64r3
21817 @opindex mips64r3
21818 Equivalent to @option{-march=mips64r3}.
21819
21820 @item -mips64r5
21821 @opindex mips64r5
21822 Equivalent to @option{-march=mips64r5}.
21823
21824 @item -mips64r6
21825 @opindex mips64r6
21826 Equivalent to @option{-march=mips64r6}.
21827
21828 @item -mips16
21829 @itemx -mno-mips16
21830 @opindex mips16
21831 @opindex mno-mips16
21832 Generate (do not generate) MIPS16 code. If GCC is targeting a
21833 MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE@.
21834
21835 MIPS16 code generation can also be controlled on a per-function basis
21836 by means of @code{mips16} and @code{nomips16} attributes.
21837 @xref{Function Attributes}, for more information.
21838
21839 @item -mflip-mips16
21840 @opindex mflip-mips16
21841 Generate MIPS16 code on alternating functions. This option is provided
21842 for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
21843 not intended for ordinary use in compiling user code.
21844
21845 @item -minterlink-compressed
21846 @itemx -mno-interlink-compressed
21847 @opindex minterlink-compressed
21848 @opindex mno-interlink-compressed
21849 Require (do not require) that code using the standard (uncompressed) MIPS ISA
21850 be link-compatible with MIPS16 and microMIPS code, and vice versa.
21851
21852 For example, code using the standard ISA encoding cannot jump directly
21853 to MIPS16 or microMIPS code; it must either use a call or an indirect jump.
21854 @option{-minterlink-compressed} therefore disables direct jumps unless GCC
21855 knows that the target of the jump is not compressed.
21856
21857 @item -minterlink-mips16
21858 @itemx -mno-interlink-mips16
21859 @opindex minterlink-mips16
21860 @opindex mno-interlink-mips16
21861 Aliases of @option{-minterlink-compressed} and
21862 @option{-mno-interlink-compressed}. These options predate the microMIPS ASE
21863 and are retained for backwards compatibility.
21864
21865 @item -mabi=32
21866 @itemx -mabi=o64
21867 @itemx -mabi=n32
21868 @itemx -mabi=64
21869 @itemx -mabi=eabi
21870 @opindex mabi=32
21871 @opindex mabi=o64
21872 @opindex mabi=n32
21873 @opindex mabi=64
21874 @opindex mabi=eabi
21875 Generate code for the given ABI@.
21876
21877 Note that the EABI has a 32-bit and a 64-bit variant. GCC normally
21878 generates 64-bit code when you select a 64-bit architecture, but you
21879 can use @option{-mgp32} to get 32-bit code instead.
21880
21881 For information about the O64 ABI, see
21882 @uref{http://gcc.gnu.org/@/projects/@/mipso64-abi.html}.
21883
21884 GCC supports a variant of the o32 ABI in which floating-point registers
21885 are 64 rather than 32 bits wide. You can select this combination with
21886 @option{-mabi=32} @option{-mfp64}. This ABI relies on the @code{mthc1}
21887 and @code{mfhc1} instructions and is therefore only supported for
21888 MIPS32R2, MIPS32R3 and MIPS32R5 processors.
21889
21890 The register assignments for arguments and return values remain the
21891 same, but each scalar value is passed in a single 64-bit register
21892 rather than a pair of 32-bit registers. For example, scalar
21893 floating-point values are returned in @samp{$f0} only, not a
21894 @samp{$f0}/@samp{$f1} pair. The set of call-saved registers also
21895 remains the same in that the even-numbered double-precision registers
21896 are saved.
21897
21898 Two additional variants of the o32 ABI are supported to enable
21899 a transition from 32-bit to 64-bit registers. These are FPXX
21900 (@option{-mfpxx}) and FP64A (@option{-mfp64} @option{-mno-odd-spreg}).
21901 The FPXX extension mandates that all code must execute correctly
21902 when run using 32-bit or 64-bit registers. The code can be interlinked
21903 with either FP32 or FP64, but not both.
21904 The FP64A extension is similar to the FP64 extension but forbids the
21905 use of odd-numbered single-precision registers. This can be used
21906 in conjunction with the @code{FRE} mode of FPUs in MIPS32R5
21907 processors and allows both FP32 and FP64A code to interlink and
21908 run in the same process without changing FPU modes.
21909
21910 @item -mabicalls
21911 @itemx -mno-abicalls
21912 @opindex mabicalls
21913 @opindex mno-abicalls
21914 Generate (do not generate) code that is suitable for SVR4-style
21915 dynamic objects. @option{-mabicalls} is the default for SVR4-based
21916 systems.
21917
21918 @item -mshared
21919 @itemx -mno-shared
21920 Generate (do not generate) code that is fully position-independent,
21921 and that can therefore be linked into shared libraries. This option
21922 only affects @option{-mabicalls}.
21923
21924 All @option{-mabicalls} code has traditionally been position-independent,
21925 regardless of options like @option{-fPIC} and @option{-fpic}. However,
21926 as an extension, the GNU toolchain allows executables to use absolute
21927 accesses for locally-binding symbols. It can also use shorter GP
21928 initialization sequences and generate direct calls to locally-defined
21929 functions. This mode is selected by @option{-mno-shared}.
21930
21931 @option{-mno-shared} depends on binutils 2.16 or higher and generates
21932 objects that can only be linked by the GNU linker. However, the option
21933 does not affect the ABI of the final executable; it only affects the ABI
21934 of relocatable objects. Using @option{-mno-shared} generally makes
21935 executables both smaller and quicker.
21936
21937 @option{-mshared} is the default.
21938
21939 @item -mplt
21940 @itemx -mno-plt
21941 @opindex mplt
21942 @opindex mno-plt
21943 Assume (do not assume) that the static and dynamic linkers
21944 support PLTs and copy relocations. This option only affects
21945 @option{-mno-shared -mabicalls}. For the n64 ABI, this option
21946 has no effect without @option{-msym32}.
21947
21948 You can make @option{-mplt} the default by configuring
21949 GCC with @option{--with-mips-plt}. The default is
21950 @option{-mno-plt} otherwise.
21951
21952 @item -mxgot
21953 @itemx -mno-xgot
21954 @opindex mxgot
21955 @opindex mno-xgot
21956 Lift (do not lift) the usual restrictions on the size of the global
21957 offset table.
21958
21959 GCC normally uses a single instruction to load values from the GOT@.
21960 While this is relatively efficient, it only works if the GOT
21961 is smaller than about 64k. Anything larger causes the linker
21962 to report an error such as:
21963
21964 @cindex relocation truncated to fit (MIPS)
21965 @smallexample
21966 relocation truncated to fit: R_MIPS_GOT16 foobar
21967 @end smallexample
21968
21969 If this happens, you should recompile your code with @option{-mxgot}.
21970 This works with very large GOTs, although the code is also
21971 less efficient, since it takes three instructions to fetch the
21972 value of a global symbol.
21973
21974 Note that some linkers can create multiple GOTs. If you have such a
21975 linker, you should only need to use @option{-mxgot} when a single object
21976 file accesses more than 64k's worth of GOT entries. Very few do.
21977
21978 These options have no effect unless GCC is generating position
21979 independent code.
21980
21981 @item -mgp32
21982 @opindex mgp32
21983 Assume that general-purpose registers are 32 bits wide.
21984
21985 @item -mgp64
21986 @opindex mgp64
21987 Assume that general-purpose registers are 64 bits wide.
21988
21989 @item -mfp32
21990 @opindex mfp32
21991 Assume that floating-point registers are 32 bits wide.
21992
21993 @item -mfp64
21994 @opindex mfp64
21995 Assume that floating-point registers are 64 bits wide.
21996
21997 @item -mfpxx
21998 @opindex mfpxx
21999 Do not assume the width of floating-point registers.
22000
22001 @item -mhard-float
22002 @opindex mhard-float
22003 Use floating-point coprocessor instructions.
22004
22005 @item -msoft-float
22006 @opindex msoft-float
22007 Do not use floating-point coprocessor instructions. Implement
22008 floating-point calculations using library calls instead.
22009
22010 @item -mno-float
22011 @opindex mno-float
22012 Equivalent to @option{-msoft-float}, but additionally asserts that the
22013 program being compiled does not perform any floating-point operations.
22014 This option is presently supported only by some bare-metal MIPS
22015 configurations, where it may select a special set of libraries
22016 that lack all floating-point support (including, for example, the
22017 floating-point @code{printf} formats).
22018 If code compiled with @option{-mno-float} accidentally contains
22019 floating-point operations, it is likely to suffer a link-time
22020 or run-time failure.
22021
22022 @item -msingle-float
22023 @opindex msingle-float
22024 Assume that the floating-point coprocessor only supports single-precision
22025 operations.
22026
22027 @item -mdouble-float
22028 @opindex mdouble-float
22029 Assume that the floating-point coprocessor supports double-precision
22030 operations. This is the default.
22031
22032 @item -modd-spreg
22033 @itemx -mno-odd-spreg
22034 @opindex modd-spreg
22035 @opindex mno-odd-spreg
22036 Enable the use of odd-numbered single-precision floating-point registers
22037 for the o32 ABI. This is the default for processors that are known to
22038 support these registers. When using the o32 FPXX ABI, @option{-mno-odd-spreg}
22039 is set by default.
22040
22041 @item -mabs=2008
22042 @itemx -mabs=legacy
22043 @opindex mabs=2008
22044 @opindex mabs=legacy
22045 These options control the treatment of the special not-a-number (NaN)
22046 IEEE 754 floating-point data with the @code{abs.@i{fmt}} and
22047 @code{neg.@i{fmt}} machine instructions.
22048
22049 By default or when @option{-mabs=legacy} is used the legacy
22050 treatment is selected. In this case these instructions are considered
22051 arithmetic and avoided where correct operation is required and the
22052 input operand might be a NaN. A longer sequence of instructions that
22053 manipulate the sign bit of floating-point datum manually is used
22054 instead unless the @option{-ffinite-math-only} option has also been
22055 specified.
22056
22057 The @option{-mabs=2008} option selects the IEEE 754-2008 treatment. In
22058 this case these instructions are considered non-arithmetic and therefore
22059 operating correctly in all cases, including in particular where the
22060 input operand is a NaN. These instructions are therefore always used
22061 for the respective operations.
22062
22063 @item -mnan=2008
22064 @itemx -mnan=legacy
22065 @opindex mnan=2008
22066 @opindex mnan=legacy
22067 These options control the encoding of the special not-a-number (NaN)
22068 IEEE 754 floating-point data.
22069
22070 The @option{-mnan=legacy} option selects the legacy encoding. In this
22071 case quiet NaNs (qNaNs) are denoted by the first bit of their trailing
22072 significand field being 0, whereas signaling NaNs (sNaNs) are denoted
22073 by the first bit of their trailing significand field being 1.
22074
22075 The @option{-mnan=2008} option selects the IEEE 754-2008 encoding. In
22076 this case qNaNs are denoted by the first bit of their trailing
22077 significand field being 1, whereas sNaNs are denoted by the first bit of
22078 their trailing significand field being 0.
22079
22080 The default is @option{-mnan=legacy} unless GCC has been configured with
22081 @option{--with-nan=2008}.
22082
22083 @item -mllsc
22084 @itemx -mno-llsc
22085 @opindex mllsc
22086 @opindex mno-llsc
22087 Use (do not use) @samp{ll}, @samp{sc}, and @samp{sync} instructions to
22088 implement atomic memory built-in functions. When neither option is
22089 specified, GCC uses the instructions if the target architecture
22090 supports them.
22091
22092 @option{-mllsc} is useful if the runtime environment can emulate the
22093 instructions and @option{-mno-llsc} can be useful when compiling for
22094 nonstandard ISAs. You can make either option the default by
22095 configuring GCC with @option{--with-llsc} and @option{--without-llsc}
22096 respectively. @option{--with-llsc} is the default for some
22097 configurations; see the installation documentation for details.
22098
22099 @item -mdsp
22100 @itemx -mno-dsp
22101 @opindex mdsp
22102 @opindex mno-dsp
22103 Use (do not use) revision 1 of the MIPS DSP ASE@.
22104 @xref{MIPS DSP Built-in Functions}. This option defines the
22105 preprocessor macro @code{__mips_dsp}. It also defines
22106 @code{__mips_dsp_rev} to 1.
22107
22108 @item -mdspr2
22109 @itemx -mno-dspr2
22110 @opindex mdspr2
22111 @opindex mno-dspr2
22112 Use (do not use) revision 2 of the MIPS DSP ASE@.
22113 @xref{MIPS DSP Built-in Functions}. This option defines the
22114 preprocessor macros @code{__mips_dsp} and @code{__mips_dspr2}.
22115 It also defines @code{__mips_dsp_rev} to 2.
22116
22117 @item -msmartmips
22118 @itemx -mno-smartmips
22119 @opindex msmartmips
22120 @opindex mno-smartmips
22121 Use (do not use) the MIPS SmartMIPS ASE.
22122
22123 @item -mpaired-single
22124 @itemx -mno-paired-single
22125 @opindex mpaired-single
22126 @opindex mno-paired-single
22127 Use (do not use) paired-single floating-point instructions.
22128 @xref{MIPS Paired-Single Support}. This option requires
22129 hardware floating-point support to be enabled.
22130
22131 @item -mdmx
22132 @itemx -mno-mdmx
22133 @opindex mdmx
22134 @opindex mno-mdmx
22135 Use (do not use) MIPS Digital Media Extension instructions.
22136 This option can only be used when generating 64-bit code and requires
22137 hardware floating-point support to be enabled.
22138
22139 @item -mips3d
22140 @itemx -mno-mips3d
22141 @opindex mips3d
22142 @opindex mno-mips3d
22143 Use (do not use) the MIPS-3D ASE@. @xref{MIPS-3D Built-in Functions}.
22144 The option @option{-mips3d} implies @option{-mpaired-single}.
22145
22146 @item -mmicromips
22147 @itemx -mno-micromips
22148 @opindex mmicromips
22149 @opindex mno-mmicromips
22150 Generate (do not generate) microMIPS code.
22151
22152 MicroMIPS code generation can also be controlled on a per-function basis
22153 by means of @code{micromips} and @code{nomicromips} attributes.
22154 @xref{Function Attributes}, for more information.
22155
22156 @item -mmt
22157 @itemx -mno-mt
22158 @opindex mmt
22159 @opindex mno-mt
22160 Use (do not use) MT Multithreading instructions.
22161
22162 @item -mmcu
22163 @itemx -mno-mcu
22164 @opindex mmcu
22165 @opindex mno-mcu
22166 Use (do not use) the MIPS MCU ASE instructions.
22167
22168 @item -meva
22169 @itemx -mno-eva
22170 @opindex meva
22171 @opindex mno-eva
22172 Use (do not use) the MIPS Enhanced Virtual Addressing instructions.
22173
22174 @item -mvirt
22175 @itemx -mno-virt
22176 @opindex mvirt
22177 @opindex mno-virt
22178 Use (do not use) the MIPS Virtualization (VZ) instructions.
22179
22180 @item -mxpa
22181 @itemx -mno-xpa
22182 @opindex mxpa
22183 @opindex mno-xpa
22184 Use (do not use) the MIPS eXtended Physical Address (XPA) instructions.
22185
22186 @item -mcrc
22187 @itemx -mno-crc
22188 @opindex mcrc
22189 @opindex mno-crc
22190 Use (do not use) the MIPS Cyclic Redundancy Check (CRC) instructions.
22191
22192 @item -mginv
22193 @itemx -mno-ginv
22194 @opindex mginv
22195 @opindex mno-ginv
22196 Use (do not use) the MIPS Global INValidate (GINV) instructions.
22197
22198 @item -mloongson-mmi
22199 @itemx -mno-loongson-mmi
22200 @opindex mloongson-mmi
22201 @opindex mno-loongson-mmi
22202 Use (do not use) the MIPS Loongson MultiMedia extensions Instructions (MMI).
22203
22204 @item -mloongson-ext
22205 @itemx -mno-loongson-ext
22206 @opindex mloongson-ext
22207 @opindex mno-loongson-ext
22208 Use (do not use) the MIPS Loongson EXTensions (EXT) instructions.
22209
22210 @item -mloongson-ext2
22211 @itemx -mno-loongson-ext2
22212 @opindex mloongson-ext2
22213 @opindex mno-loongson-ext2
22214 Use (do not use) the MIPS Loongson EXTensions r2 (EXT2) instructions.
22215
22216 @item -mlong64
22217 @opindex mlong64
22218 Force @code{long} types to be 64 bits wide. See @option{-mlong32} for
22219 an explanation of the default and the way that the pointer size is
22220 determined.
22221
22222 @item -mlong32
22223 @opindex mlong32
22224 Force @code{long}, @code{int}, and pointer types to be 32 bits wide.
22225
22226 The default size of @code{int}s, @code{long}s and pointers depends on
22227 the ABI@. All the supported ABIs use 32-bit @code{int}s. The n64 ABI
22228 uses 64-bit @code{long}s, as does the 64-bit EABI; the others use
22229 32-bit @code{long}s. Pointers are the same size as @code{long}s,
22230 or the same size as integer registers, whichever is smaller.
22231
22232 @item -msym32
22233 @itemx -mno-sym32
22234 @opindex msym32
22235 @opindex mno-sym32
22236 Assume (do not assume) that all symbols have 32-bit values, regardless
22237 of the selected ABI@. This option is useful in combination with
22238 @option{-mabi=64} and @option{-mno-abicalls} because it allows GCC
22239 to generate shorter and faster references to symbolic addresses.
22240
22241 @item -G @var{num}
22242 @opindex G
22243 Put definitions of externally-visible data in a small data section
22244 if that data is no bigger than @var{num} bytes. GCC can then generate
22245 more efficient accesses to the data; see @option{-mgpopt} for details.
22246
22247 The default @option{-G} option depends on the configuration.
22248
22249 @item -mlocal-sdata
22250 @itemx -mno-local-sdata
22251 @opindex mlocal-sdata
22252 @opindex mno-local-sdata
22253 Extend (do not extend) the @option{-G} behavior to local data too,
22254 such as to static variables in C@. @option{-mlocal-sdata} is the
22255 default for all configurations.
22256
22257 If the linker complains that an application is using too much small data,
22258 you might want to try rebuilding the less performance-critical parts with
22259 @option{-mno-local-sdata}. You might also want to build large
22260 libraries with @option{-mno-local-sdata}, so that the libraries leave
22261 more room for the main program.
22262
22263 @item -mextern-sdata
22264 @itemx -mno-extern-sdata
22265 @opindex mextern-sdata
22266 @opindex mno-extern-sdata
22267 Assume (do not assume) that externally-defined data is in
22268 a small data section if the size of that data is within the @option{-G} limit.
22269 @option{-mextern-sdata} is the default for all configurations.
22270
22271 If you compile a module @var{Mod} with @option{-mextern-sdata} @option{-G
22272 @var{num}} @option{-mgpopt}, and @var{Mod} references a variable @var{Var}
22273 that is no bigger than @var{num} bytes, you must make sure that @var{Var}
22274 is placed in a small data section. If @var{Var} is defined by another
22275 module, you must either compile that module with a high-enough
22276 @option{-G} setting or attach a @code{section} attribute to @var{Var}'s
22277 definition. If @var{Var} is common, you must link the application
22278 with a high-enough @option{-G} setting.
22279
22280 The easiest way of satisfying these restrictions is to compile
22281 and link every module with the same @option{-G} option. However,
22282 you may wish to build a library that supports several different
22283 small data limits. You can do this by compiling the library with
22284 the highest supported @option{-G} setting and additionally using
22285 @option{-mno-extern-sdata} to stop the library from making assumptions
22286 about externally-defined data.
22287
22288 @item -mgpopt
22289 @itemx -mno-gpopt
22290 @opindex mgpopt
22291 @opindex mno-gpopt
22292 Use (do not use) GP-relative accesses for symbols that are known to be
22293 in a small data section; see @option{-G}, @option{-mlocal-sdata} and
22294 @option{-mextern-sdata}. @option{-mgpopt} is the default for all
22295 configurations.
22296
22297 @option{-mno-gpopt} is useful for cases where the @code{$gp} register
22298 might not hold the value of @code{_gp}. For example, if the code is
22299 part of a library that might be used in a boot monitor, programs that
22300 call boot monitor routines pass an unknown value in @code{$gp}.
22301 (In such situations, the boot monitor itself is usually compiled
22302 with @option{-G0}.)
22303
22304 @option{-mno-gpopt} implies @option{-mno-local-sdata} and
22305 @option{-mno-extern-sdata}.
22306
22307 @item -membedded-data
22308 @itemx -mno-embedded-data
22309 @opindex membedded-data
22310 @opindex mno-embedded-data
22311 Allocate variables to the read-only data section first if possible, then
22312 next in the small data section if possible, otherwise in data. This gives
22313 slightly slower code than the default, but reduces the amount of RAM required
22314 when executing, and thus may be preferred for some embedded systems.
22315
22316 @item -muninit-const-in-rodata
22317 @itemx -mno-uninit-const-in-rodata
22318 @opindex muninit-const-in-rodata
22319 @opindex mno-uninit-const-in-rodata
22320 Put uninitialized @code{const} variables in the read-only data section.
22321 This option is only meaningful in conjunction with @option{-membedded-data}.
22322
22323 @item -mcode-readable=@var{setting}
22324 @opindex mcode-readable
22325 Specify whether GCC may generate code that reads from executable sections.
22326 There are three possible settings:
22327
22328 @table @gcctabopt
22329 @item -mcode-readable=yes
22330 Instructions may freely access executable sections. This is the
22331 default setting.
22332
22333 @item -mcode-readable=pcrel
22334 MIPS16 PC-relative load instructions can access executable sections,
22335 but other instructions must not do so. This option is useful on 4KSc
22336 and 4KSd processors when the code TLBs have the Read Inhibit bit set.
22337 It is also useful on processors that can be configured to have a dual
22338 instruction/data SRAM interface and that, like the M4K, automatically
22339 redirect PC-relative loads to the instruction RAM.
22340
22341 @item -mcode-readable=no
22342 Instructions must not access executable sections. This option can be
22343 useful on targets that are configured to have a dual instruction/data
22344 SRAM interface but that (unlike the M4K) do not automatically redirect
22345 PC-relative loads to the instruction RAM.
22346 @end table
22347
22348 @item -msplit-addresses
22349 @itemx -mno-split-addresses
22350 @opindex msplit-addresses
22351 @opindex mno-split-addresses
22352 Enable (disable) use of the @code{%hi()} and @code{%lo()} assembler
22353 relocation operators. This option has been superseded by
22354 @option{-mexplicit-relocs} but is retained for backwards compatibility.
22355
22356 @item -mexplicit-relocs
22357 @itemx -mno-explicit-relocs
22358 @opindex mexplicit-relocs
22359 @opindex mno-explicit-relocs
22360 Use (do not use) assembler relocation operators when dealing with symbolic
22361 addresses. The alternative, selected by @option{-mno-explicit-relocs},
22362 is to use assembler macros instead.
22363
22364 @option{-mexplicit-relocs} is the default if GCC was configured
22365 to use an assembler that supports relocation operators.
22366
22367 @item -mcheck-zero-division
22368 @itemx -mno-check-zero-division
22369 @opindex mcheck-zero-division
22370 @opindex mno-check-zero-division
22371 Trap (do not trap) on integer division by zero.
22372
22373 The default is @option{-mcheck-zero-division}.
22374
22375 @item -mdivide-traps
22376 @itemx -mdivide-breaks
22377 @opindex mdivide-traps
22378 @opindex mdivide-breaks
22379 MIPS systems check for division by zero by generating either a
22380 conditional trap or a break instruction. Using traps results in
22381 smaller code, but is only supported on MIPS II and later. Also, some
22382 versions of the Linux kernel have a bug that prevents trap from
22383 generating the proper signal (@code{SIGFPE}). Use @option{-mdivide-traps} to
22384 allow conditional traps on architectures that support them and
22385 @option{-mdivide-breaks} to force the use of breaks.
22386
22387 The default is usually @option{-mdivide-traps}, but this can be
22388 overridden at configure time using @option{--with-divide=breaks}.
22389 Divide-by-zero checks can be completely disabled using
22390 @option{-mno-check-zero-division}.
22391
22392 @item -mload-store-pairs
22393 @itemx -mno-load-store-pairs
22394 @opindex mload-store-pairs
22395 @opindex mno-load-store-pairs
22396 Enable (disable) an optimization that pairs consecutive load or store
22397 instructions to enable load/store bonding. This option is enabled by
22398 default but only takes effect when the selected architecture is known
22399 to support bonding.
22400
22401 @item -mmemcpy
22402 @itemx -mno-memcpy
22403 @opindex mmemcpy
22404 @opindex mno-memcpy
22405 Force (do not force) the use of @code{memcpy} for non-trivial block
22406 moves. The default is @option{-mno-memcpy}, which allows GCC to inline
22407 most constant-sized copies.
22408
22409 @item -mlong-calls
22410 @itemx -mno-long-calls
22411 @opindex mlong-calls
22412 @opindex mno-long-calls
22413 Disable (do not disable) use of the @code{jal} instruction. Calling
22414 functions using @code{jal} is more efficient but requires the caller
22415 and callee to be in the same 256 megabyte segment.
22416
22417 This option has no effect on abicalls code. The default is
22418 @option{-mno-long-calls}.
22419
22420 @item -mmad
22421 @itemx -mno-mad
22422 @opindex mmad
22423 @opindex mno-mad
22424 Enable (disable) use of the @code{mad}, @code{madu} and @code{mul}
22425 instructions, as provided by the R4650 ISA@.
22426
22427 @item -mimadd
22428 @itemx -mno-imadd
22429 @opindex mimadd
22430 @opindex mno-imadd
22431 Enable (disable) use of the @code{madd} and @code{msub} integer
22432 instructions. The default is @option{-mimadd} on architectures
22433 that support @code{madd} and @code{msub} except for the 74k
22434 architecture where it was found to generate slower code.
22435
22436 @item -mfused-madd
22437 @itemx -mno-fused-madd
22438 @opindex mfused-madd
22439 @opindex mno-fused-madd
22440 Enable (disable) use of the floating-point multiply-accumulate
22441 instructions, when they are available. The default is
22442 @option{-mfused-madd}.
22443
22444 On the R8000 CPU when multiply-accumulate instructions are used,
22445 the intermediate product is calculated to infinite precision
22446 and is not subject to the FCSR Flush to Zero bit. This may be
22447 undesirable in some circumstances. On other processors the result
22448 is numerically identical to the equivalent computation using
22449 separate multiply, add, subtract and negate instructions.
22450
22451 @item -nocpp
22452 @opindex nocpp
22453 Tell the MIPS assembler to not run its preprocessor over user
22454 assembler files (with a @samp{.s} suffix) when assembling them.
22455
22456 @item -mfix-24k
22457 @itemx -mno-fix-24k
22458 @opindex mfix-24k
22459 @opindex mno-fix-24k
22460 Work around the 24K E48 (lost data on stores during refill) errata.
22461 The workarounds are implemented by the assembler rather than by GCC@.
22462
22463 @item -mfix-r4000
22464 @itemx -mno-fix-r4000
22465 @opindex mfix-r4000
22466 @opindex mno-fix-r4000
22467 Work around certain R4000 CPU errata:
22468 @itemize @minus
22469 @item
22470 A double-word or a variable shift may give an incorrect result if executed
22471 immediately after starting an integer division.
22472 @item
22473 A double-word or a variable shift may give an incorrect result if executed
22474 while an integer multiplication is in progress.
22475 @item
22476 An integer division may give an incorrect result if started in a delay slot
22477 of a taken branch or a jump.
22478 @end itemize
22479
22480 @item -mfix-r4400
22481 @itemx -mno-fix-r4400
22482 @opindex mfix-r4400
22483 @opindex mno-fix-r4400
22484 Work around certain R4400 CPU errata:
22485 @itemize @minus
22486 @item
22487 A double-word or a variable shift may give an incorrect result if executed
22488 immediately after starting an integer division.
22489 @end itemize
22490
22491 @item -mfix-r10000
22492 @itemx -mno-fix-r10000
22493 @opindex mfix-r10000
22494 @opindex mno-fix-r10000
22495 Work around certain R10000 errata:
22496 @itemize @minus
22497 @item
22498 @code{ll}/@code{sc} sequences may not behave atomically on revisions
22499 prior to 3.0. They may deadlock on revisions 2.6 and earlier.
22500 @end itemize
22501
22502 This option can only be used if the target architecture supports
22503 branch-likely instructions. @option{-mfix-r10000} is the default when
22504 @option{-march=r10000} is used; @option{-mno-fix-r10000} is the default
22505 otherwise.
22506
22507 @item -mfix-r5900
22508 @itemx -mno-fix-r5900
22509 @opindex mfix-r5900
22510 Do not attempt to schedule the preceding instruction into the delay slot
22511 of a branch instruction placed at the end of a short loop of six
22512 instructions or fewer and always schedule a @code{nop} instruction there
22513 instead. The short loop bug under certain conditions causes loops to
22514 execute only once or twice, due to a hardware bug in the R5900 chip. The
22515 workaround is implemented by the assembler rather than by GCC@.
22516
22517 @item -mfix-rm7000
22518 @itemx -mno-fix-rm7000
22519 @opindex mfix-rm7000
22520 Work around the RM7000 @code{dmult}/@code{dmultu} errata. The
22521 workarounds are implemented by the assembler rather than by GCC@.
22522
22523 @item -mfix-vr4120
22524 @itemx -mno-fix-vr4120
22525 @opindex mfix-vr4120
22526 Work around certain VR4120 errata:
22527 @itemize @minus
22528 @item
22529 @code{dmultu} does not always produce the correct result.
22530 @item
22531 @code{div} and @code{ddiv} do not always produce the correct result if one
22532 of the operands is negative.
22533 @end itemize
22534 The workarounds for the division errata rely on special functions in
22535 @file{libgcc.a}. At present, these functions are only provided by
22536 the @code{mips64vr*-elf} configurations.
22537
22538 Other VR4120 errata require a NOP to be inserted between certain pairs of
22539 instructions. These errata are handled by the assembler, not by GCC itself.
22540
22541 @item -mfix-vr4130
22542 @opindex mfix-vr4130
22543 Work around the VR4130 @code{mflo}/@code{mfhi} errata. The
22544 workarounds are implemented by the assembler rather than by GCC,
22545 although GCC avoids using @code{mflo} and @code{mfhi} if the
22546 VR4130 @code{macc}, @code{macchi}, @code{dmacc} and @code{dmacchi}
22547 instructions are available instead.
22548
22549 @item -mfix-sb1
22550 @itemx -mno-fix-sb1
22551 @opindex mfix-sb1
22552 Work around certain SB-1 CPU core errata.
22553 (This flag currently works around the SB-1 revision 2
22554 ``F1'' and ``F2'' floating-point errata.)
22555
22556 @item -mr10k-cache-barrier=@var{setting}
22557 @opindex mr10k-cache-barrier
22558 Specify whether GCC should insert cache barriers to avoid the
22559 side effects of speculation on R10K processors.
22560
22561 In common with many processors, the R10K tries to predict the outcome
22562 of a conditional branch and speculatively executes instructions from
22563 the ``taken'' branch. It later aborts these instructions if the
22564 predicted outcome is wrong. However, on the R10K, even aborted
22565 instructions can have side effects.
22566
22567 This problem only affects kernel stores and, depending on the system,
22568 kernel loads. As an example, a speculatively-executed store may load
22569 the target memory into cache and mark the cache line as dirty, even if
22570 the store itself is later aborted. If a DMA operation writes to the
22571 same area of memory before the ``dirty'' line is flushed, the cached
22572 data overwrites the DMA-ed data. See the R10K processor manual
22573 for a full description, including other potential problems.
22574
22575 One workaround is to insert cache barrier instructions before every memory
22576 access that might be speculatively executed and that might have side
22577 effects even if aborted. @option{-mr10k-cache-barrier=@var{setting}}
22578 controls GCC's implementation of this workaround. It assumes that
22579 aborted accesses to any byte in the following regions does not have
22580 side effects:
22581
22582 @enumerate
22583 @item
22584 the memory occupied by the current function's stack frame;
22585
22586 @item
22587 the memory occupied by an incoming stack argument;
22588
22589 @item
22590 the memory occupied by an object with a link-time-constant address.
22591 @end enumerate
22592
22593 It is the kernel's responsibility to ensure that speculative
22594 accesses to these regions are indeed safe.
22595
22596 If the input program contains a function declaration such as:
22597
22598 @smallexample
22599 void foo (void);
22600 @end smallexample
22601
22602 then the implementation of @code{foo} must allow @code{j foo} and
22603 @code{jal foo} to be executed speculatively. GCC honors this
22604 restriction for functions it compiles itself. It expects non-GCC
22605 functions (such as hand-written assembly code) to do the same.
22606
22607 The option has three forms:
22608
22609 @table @gcctabopt
22610 @item -mr10k-cache-barrier=load-store
22611 Insert a cache barrier before a load or store that might be
22612 speculatively executed and that might have side effects even
22613 if aborted.
22614
22615 @item -mr10k-cache-barrier=store
22616 Insert a cache barrier before a store that might be speculatively
22617 executed and that might have side effects even if aborted.
22618
22619 @item -mr10k-cache-barrier=none
22620 Disable the insertion of cache barriers. This is the default setting.
22621 @end table
22622
22623 @item -mflush-func=@var{func}
22624 @itemx -mno-flush-func
22625 @opindex mflush-func
22626 Specifies the function to call to flush the I and D caches, or to not
22627 call any such function. If called, the function must take the same
22628 arguments as the common @code{_flush_func}, that is, the address of the
22629 memory range for which the cache is being flushed, the size of the
22630 memory range, and the number 3 (to flush both caches). The default
22631 depends on the target GCC was configured for, but commonly is either
22632 @code{_flush_func} or @code{__cpu_flush}.
22633
22634 @item mbranch-cost=@var{num}
22635 @opindex mbranch-cost
22636 Set the cost of branches to roughly @var{num} ``simple'' instructions.
22637 This cost is only a heuristic and is not guaranteed to produce
22638 consistent results across releases. A zero cost redundantly selects
22639 the default, which is based on the @option{-mtune} setting.
22640
22641 @item -mbranch-likely
22642 @itemx -mno-branch-likely
22643 @opindex mbranch-likely
22644 @opindex mno-branch-likely
22645 Enable or disable use of Branch Likely instructions, regardless of the
22646 default for the selected architecture. By default, Branch Likely
22647 instructions may be generated if they are supported by the selected
22648 architecture. An exception is for the MIPS32 and MIPS64 architectures
22649 and processors that implement those architectures; for those, Branch
22650 Likely instructions are not be generated by default because the MIPS32
22651 and MIPS64 architectures specifically deprecate their use.
22652
22653 @item -mcompact-branches=never
22654 @itemx -mcompact-branches=optimal
22655 @itemx -mcompact-branches=always
22656 @opindex mcompact-branches=never
22657 @opindex mcompact-branches=optimal
22658 @opindex mcompact-branches=always
22659 These options control which form of branches will be generated. The
22660 default is @option{-mcompact-branches=optimal}.
22661
22662 The @option{-mcompact-branches=never} option ensures that compact branch
22663 instructions will never be generated.
22664
22665 The @option{-mcompact-branches=always} option ensures that a compact
22666 branch instruction will be generated if available. If a compact branch
22667 instruction is not available, a delay slot form of the branch will be
22668 used instead.
22669
22670 This option is supported from MIPS Release 6 onwards.
22671
22672 The @option{-mcompact-branches=optimal} option will cause a delay slot
22673 branch to be used if one is available in the current ISA and the delay
22674 slot is successfully filled. If the delay slot is not filled, a compact
22675 branch will be chosen if one is available.
22676
22677 @item -mfp-exceptions
22678 @itemx -mno-fp-exceptions
22679 @opindex mfp-exceptions
22680 Specifies whether FP exceptions are enabled. This affects how
22681 FP instructions are scheduled for some processors.
22682 The default is that FP exceptions are
22683 enabled.
22684
22685 For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
22686 64-bit code, then we can use both FP pipes. Otherwise, we can only use one
22687 FP pipe.
22688
22689 @item -mvr4130-align
22690 @itemx -mno-vr4130-align
22691 @opindex mvr4130-align
22692 The VR4130 pipeline is two-way superscalar, but can only issue two
22693 instructions together if the first one is 8-byte aligned. When this
22694 option is enabled, GCC aligns pairs of instructions that it
22695 thinks should execute in parallel.
22696
22697 This option only has an effect when optimizing for the VR4130.
22698 It normally makes code faster, but at the expense of making it bigger.
22699 It is enabled by default at optimization level @option{-O3}.
22700
22701 @item -msynci
22702 @itemx -mno-synci
22703 @opindex msynci
22704 Enable (disable) generation of @code{synci} instructions on
22705 architectures that support it. The @code{synci} instructions (if
22706 enabled) are generated when @code{__builtin___clear_cache} is
22707 compiled.
22708
22709 This option defaults to @option{-mno-synci}, but the default can be
22710 overridden by configuring GCC with @option{--with-synci}.
22711
22712 When compiling code for single processor systems, it is generally safe
22713 to use @code{synci}. However, on many multi-core (SMP) systems, it
22714 does not invalidate the instruction caches on all cores and may lead
22715 to undefined behavior.
22716
22717 @item -mrelax-pic-calls
22718 @itemx -mno-relax-pic-calls
22719 @opindex mrelax-pic-calls
22720 Try to turn PIC calls that are normally dispatched via register
22721 @code{$25} into direct calls. This is only possible if the linker can
22722 resolve the destination at link time and if the destination is within
22723 range for a direct call.
22724
22725 @option{-mrelax-pic-calls} is the default if GCC was configured to use
22726 an assembler and a linker that support the @code{.reloc} assembly
22727 directive and @option{-mexplicit-relocs} is in effect. With
22728 @option{-mno-explicit-relocs}, this optimization can be performed by the
22729 assembler and the linker alone without help from the compiler.
22730
22731 @item -mmcount-ra-address
22732 @itemx -mno-mcount-ra-address
22733 @opindex mmcount-ra-address
22734 @opindex mno-mcount-ra-address
22735 Emit (do not emit) code that allows @code{_mcount} to modify the
22736 calling function's return address. When enabled, this option extends
22737 the usual @code{_mcount} interface with a new @var{ra-address}
22738 parameter, which has type @code{intptr_t *} and is passed in register
22739 @code{$12}. @code{_mcount} can then modify the return address by
22740 doing both of the following:
22741 @itemize
22742 @item
22743 Returning the new address in register @code{$31}.
22744 @item
22745 Storing the new address in @code{*@var{ra-address}},
22746 if @var{ra-address} is nonnull.
22747 @end itemize
22748
22749 The default is @option{-mno-mcount-ra-address}.
22750
22751 @item -mframe-header-opt
22752 @itemx -mno-frame-header-opt
22753 @opindex mframe-header-opt
22754 Enable (disable) frame header optimization in the o32 ABI. When using the
22755 o32 ABI, calling functions will allocate 16 bytes on the stack for the called
22756 function to write out register arguments. When enabled, this optimization
22757 will suppress the allocation of the frame header if it can be determined that
22758 it is unused.
22759
22760 This optimization is off by default at all optimization levels.
22761
22762 @item -mlxc1-sxc1
22763 @itemx -mno-lxc1-sxc1
22764 @opindex mlxc1-sxc1
22765 When applicable, enable (disable) the generation of @code{lwxc1},
22766 @code{swxc1}, @code{ldxc1}, @code{sdxc1} instructions. Enabled by default.
22767
22768 @item -mmadd4
22769 @itemx -mno-madd4
22770 @opindex mmadd4
22771 When applicable, enable (disable) the generation of 4-operand @code{madd.s},
22772 @code{madd.d} and related instructions. Enabled by default.
22773
22774 @end table
22775
22776 @node MMIX Options
22777 @subsection MMIX Options
22778 @cindex MMIX Options
22779
22780 These options are defined for the MMIX:
22781
22782 @table @gcctabopt
22783 @item -mlibfuncs
22784 @itemx -mno-libfuncs
22785 @opindex mlibfuncs
22786 @opindex mno-libfuncs
22787 Specify that intrinsic library functions are being compiled, passing all
22788 values in registers, no matter the size.
22789
22790 @item -mepsilon
22791 @itemx -mno-epsilon
22792 @opindex mepsilon
22793 @opindex mno-epsilon
22794 Generate floating-point comparison instructions that compare with respect
22795 to the @code{rE} epsilon register.
22796
22797 @item -mabi=mmixware
22798 @itemx -mabi=gnu
22799 @opindex mabi=mmixware
22800 @opindex mabi=gnu
22801 Generate code that passes function parameters and return values that (in
22802 the called function) are seen as registers @code{$0} and up, as opposed to
22803 the GNU ABI which uses global registers @code{$231} and up.
22804
22805 @item -mzero-extend
22806 @itemx -mno-zero-extend
22807 @opindex mzero-extend
22808 @opindex mno-zero-extend
22809 When reading data from memory in sizes shorter than 64 bits, use (do not
22810 use) zero-extending load instructions by default, rather than
22811 sign-extending ones.
22812
22813 @item -mknuthdiv
22814 @itemx -mno-knuthdiv
22815 @opindex mknuthdiv
22816 @opindex mno-knuthdiv
22817 Make the result of a division yielding a remainder have the same sign as
22818 the divisor. With the default, @option{-mno-knuthdiv}, the sign of the
22819 remainder follows the sign of the dividend. Both methods are
22820 arithmetically valid, the latter being almost exclusively used.
22821
22822 @item -mtoplevel-symbols
22823 @itemx -mno-toplevel-symbols
22824 @opindex mtoplevel-symbols
22825 @opindex mno-toplevel-symbols
22826 Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly
22827 code can be used with the @code{PREFIX} assembly directive.
22828
22829 @item -melf
22830 @opindex melf
22831 Generate an executable in the ELF format, rather than the default
22832 @samp{mmo} format used by the @command{mmix} simulator.
22833
22834 @item -mbranch-predict
22835 @itemx -mno-branch-predict
22836 @opindex mbranch-predict
22837 @opindex mno-branch-predict
22838 Use (do not use) the probable-branch instructions, when static branch
22839 prediction indicates a probable branch.
22840
22841 @item -mbase-addresses
22842 @itemx -mno-base-addresses
22843 @opindex mbase-addresses
22844 @opindex mno-base-addresses
22845 Generate (do not generate) code that uses @emph{base addresses}. Using a
22846 base address automatically generates a request (handled by the assembler
22847 and the linker) for a constant to be set up in a global register. The
22848 register is used for one or more base address requests within the range 0
22849 to 255 from the value held in the register. The generally leads to short
22850 and fast code, but the number of different data items that can be
22851 addressed is limited. This means that a program that uses lots of static
22852 data may require @option{-mno-base-addresses}.
22853
22854 @item -msingle-exit
22855 @itemx -mno-single-exit
22856 @opindex msingle-exit
22857 @opindex mno-single-exit
22858 Force (do not force) generated code to have a single exit point in each
22859 function.
22860 @end table
22861
22862 @node MN10300 Options
22863 @subsection MN10300 Options
22864 @cindex MN10300 options
22865
22866 These @option{-m} options are defined for Matsushita MN10300 architectures:
22867
22868 @table @gcctabopt
22869 @item -mmult-bug
22870 @opindex mmult-bug
22871 Generate code to avoid bugs in the multiply instructions for the MN10300
22872 processors. This is the default.
22873
22874 @item -mno-mult-bug
22875 @opindex mno-mult-bug
22876 Do not generate code to avoid bugs in the multiply instructions for the
22877 MN10300 processors.
22878
22879 @item -mam33
22880 @opindex mam33
22881 Generate code using features specific to the AM33 processor.
22882
22883 @item -mno-am33
22884 @opindex mno-am33
22885 Do not generate code using features specific to the AM33 processor. This
22886 is the default.
22887
22888 @item -mam33-2
22889 @opindex mam33-2
22890 Generate code using features specific to the AM33/2.0 processor.
22891
22892 @item -mam34
22893 @opindex mam34
22894 Generate code using features specific to the AM34 processor.
22895
22896 @item -mtune=@var{cpu-type}
22897 @opindex mtune
22898 Use the timing characteristics of the indicated CPU type when
22899 scheduling instructions. This does not change the targeted processor
22900 type. The CPU type must be one of @samp{mn10300}, @samp{am33},
22901 @samp{am33-2} or @samp{am34}.
22902
22903 @item -mreturn-pointer-on-d0
22904 @opindex mreturn-pointer-on-d0
22905 When generating a function that returns a pointer, return the pointer
22906 in both @code{a0} and @code{d0}. Otherwise, the pointer is returned
22907 only in @code{a0}, and attempts to call such functions without a prototype
22908 result in errors. Note that this option is on by default; use
22909 @option{-mno-return-pointer-on-d0} to disable it.
22910
22911 @item -mno-crt0
22912 @opindex mno-crt0
22913 Do not link in the C run-time initialization object file.
22914
22915 @item -mrelax
22916 @opindex mrelax
22917 Indicate to the linker that it should perform a relaxation optimization pass
22918 to shorten branches, calls and absolute memory addresses. This option only
22919 has an effect when used on the command line for the final link step.
22920
22921 This option makes symbolic debugging impossible.
22922
22923 @item -mliw
22924 @opindex mliw
22925 Allow the compiler to generate @emph{Long Instruction Word}
22926 instructions if the target is the @samp{AM33} or later. This is the
22927 default. This option defines the preprocessor macro @code{__LIW__}.
22928
22929 @item -mno-liw
22930 @opindex mno-liw
22931 Do not allow the compiler to generate @emph{Long Instruction Word}
22932 instructions. This option defines the preprocessor macro
22933 @code{__NO_LIW__}.
22934
22935 @item -msetlb
22936 @opindex msetlb
22937 Allow the compiler to generate the @emph{SETLB} and @emph{Lcc}
22938 instructions if the target is the @samp{AM33} or later. This is the
22939 default. This option defines the preprocessor macro @code{__SETLB__}.
22940
22941 @item -mno-setlb
22942 @opindex mno-setlb
22943 Do not allow the compiler to generate @emph{SETLB} or @emph{Lcc}
22944 instructions. This option defines the preprocessor macro
22945 @code{__NO_SETLB__}.
22946
22947 @end table
22948
22949 @node Moxie Options
22950 @subsection Moxie Options
22951 @cindex Moxie Options
22952
22953 @table @gcctabopt
22954
22955 @item -meb
22956 @opindex meb
22957 Generate big-endian code. This is the default for @samp{moxie-*-*}
22958 configurations.
22959
22960 @item -mel
22961 @opindex mel
22962 Generate little-endian code.
22963
22964 @item -mmul.x
22965 @opindex mmul.x
22966 Generate mul.x and umul.x instructions. This is the default for
22967 @samp{moxiebox-*-*} configurations.
22968
22969 @item -mno-crt0
22970 @opindex mno-crt0
22971 Do not link in the C run-time initialization object file.
22972
22973 @end table
22974
22975 @node MSP430 Options
22976 @subsection MSP430 Options
22977 @cindex MSP430 Options
22978
22979 These options are defined for the MSP430:
22980
22981 @table @gcctabopt
22982
22983 @item -masm-hex
22984 @opindex masm-hex
22985 Force assembly output to always use hex constants. Normally such
22986 constants are signed decimals, but this option is available for
22987 testsuite and/or aesthetic purposes.
22988
22989 @item -mmcu=
22990 @opindex mmcu=
22991 Select the MCU to target. This is used to create a C preprocessor
22992 symbol based upon the MCU name, converted to upper case and pre- and
22993 post-fixed with @samp{__}. This in turn is used by the
22994 @file{msp430.h} header file to select an MCU-specific supplementary
22995 header file.
22996
22997 The option also sets the ISA to use. If the MCU name is one that is
22998 known to only support the 430 ISA then that is selected, otherwise the
22999 430X ISA is selected. A generic MCU name of @samp{msp430} can also be
23000 used to select the 430 ISA. Similarly the generic @samp{msp430x} MCU
23001 name selects the 430X ISA.
23002
23003 In addition an MCU-specific linker script is added to the linker
23004 command line. The script's name is the name of the MCU with
23005 @file{.ld} appended. Thus specifying @option{-mmcu=xxx} on the @command{gcc}
23006 command line defines the C preprocessor symbol @code{__XXX__} and
23007 cause the linker to search for a script called @file{xxx.ld}.
23008
23009 This option is also passed on to the assembler.
23010
23011 @item -mwarn-mcu
23012 @itemx -mno-warn-mcu
23013 @opindex mwarn-mcu
23014 @opindex mno-warn-mcu
23015 This option enables or disables warnings about conflicts between the
23016 MCU name specified by the @option{-mmcu} option and the ISA set by the
23017 @option{-mcpu} option and/or the hardware multiply support set by the
23018 @option{-mhwmult} option. It also toggles warnings about unrecognized
23019 MCU names. This option is on by default.
23020
23021 @item -mcpu=
23022 @opindex mcpu=
23023 Specifies the ISA to use. Accepted values are @samp{msp430},
23024 @samp{msp430x} and @samp{msp430xv2}. This option is deprecated. The
23025 @option{-mmcu=} option should be used to select the ISA.
23026
23027 @item -msim
23028 @opindex msim
23029 Link to the simulator runtime libraries and linker script. Overrides
23030 any scripts that would be selected by the @option{-mmcu=} option.
23031
23032 @item -mlarge
23033 @opindex mlarge
23034 Use large-model addressing (20-bit pointers, 32-bit @code{size_t}).
23035
23036 @item -msmall
23037 @opindex msmall
23038 Use small-model addressing (16-bit pointers, 16-bit @code{size_t}).
23039
23040 @item -mrelax
23041 @opindex mrelax
23042 This option is passed to the assembler and linker, and allows the
23043 linker to perform certain optimizations that cannot be done until
23044 the final link.
23045
23046 @item mhwmult=
23047 @opindex mhwmult=
23048 Describes the type of hardware multiply supported by the target.
23049 Accepted values are @samp{none} for no hardware multiply, @samp{16bit}
23050 for the original 16-bit-only multiply supported by early MCUs.
23051 @samp{32bit} for the 16/32-bit multiply supported by later MCUs and
23052 @samp{f5series} for the 16/32-bit multiply supported by F5-series MCUs.
23053 A value of @samp{auto} can also be given. This tells GCC to deduce
23054 the hardware multiply support based upon the MCU name provided by the
23055 @option{-mmcu} option. If no @option{-mmcu} option is specified or if
23056 the MCU name is not recognized then no hardware multiply support is
23057 assumed. @code{auto} is the default setting.
23058
23059 Hardware multiplies are normally performed by calling a library
23060 routine. This saves space in the generated code. When compiling at
23061 @option{-O3} or higher however the hardware multiplier is invoked
23062 inline. This makes for bigger, but faster code.
23063
23064 The hardware multiply routines disable interrupts whilst running and
23065 restore the previous interrupt state when they finish. This makes
23066 them safe to use inside interrupt handlers as well as in normal code.
23067
23068 @item -minrt
23069 @opindex minrt
23070 Enable the use of a minimum runtime environment - no static
23071 initializers or constructors. This is intended for memory-constrained
23072 devices. The compiler includes special symbols in some objects
23073 that tell the linker and runtime which code fragments are required.
23074
23075 @item -mcode-region=
23076 @itemx -mdata-region=
23077 @opindex mcode-region
23078 @opindex mdata-region
23079 These options tell the compiler where to place functions and data that
23080 do not have one of the @code{lower}, @code{upper}, @code{either} or
23081 @code{section} attributes. Possible values are @code{lower},
23082 @code{upper}, @code{either} or @code{any}. The first three behave
23083 like the corresponding attribute. The fourth possible value -
23084 @code{any} - is the default. It leaves placement entirely up to the
23085 linker script and how it assigns the standard sections
23086 (@code{.text}, @code{.data}, etc) to the memory regions.
23087
23088 @item -msilicon-errata=
23089 @opindex msilicon-errata
23090 This option passes on a request to assembler to enable the fixes for
23091 the named silicon errata.
23092
23093 @item -msilicon-errata-warn=
23094 @opindex msilicon-errata-warn
23095 This option passes on a request to the assembler to enable warning
23096 messages when a silicon errata might need to be applied.
23097
23098 @end table
23099
23100 @node NDS32 Options
23101 @subsection NDS32 Options
23102 @cindex NDS32 Options
23103
23104 These options are defined for NDS32 implementations:
23105
23106 @table @gcctabopt
23107
23108 @item -mbig-endian
23109 @opindex mbig-endian
23110 Generate code in big-endian mode.
23111
23112 @item -mlittle-endian
23113 @opindex mlittle-endian
23114 Generate code in little-endian mode.
23115
23116 @item -mreduced-regs
23117 @opindex mreduced-regs
23118 Use reduced-set registers for register allocation.
23119
23120 @item -mfull-regs
23121 @opindex mfull-regs
23122 Use full-set registers for register allocation.
23123
23124 @item -mcmov
23125 @opindex mcmov
23126 Generate conditional move instructions.
23127
23128 @item -mno-cmov
23129 @opindex mno-cmov
23130 Do not generate conditional move instructions.
23131
23132 @item -mext-perf
23133 @opindex mext-perf
23134 Generate performance extension instructions.
23135
23136 @item -mno-ext-perf
23137 @opindex mno-ext-perf
23138 Do not generate performance extension instructions.
23139
23140 @item -mext-perf2
23141 @opindex mext-perf2
23142 Generate performance extension 2 instructions.
23143
23144 @item -mno-ext-perf2
23145 @opindex mno-ext-perf2
23146 Do not generate performance extension 2 instructions.
23147
23148 @item -mext-string
23149 @opindex mext-string
23150 Generate string extension instructions.
23151
23152 @item -mno-ext-string
23153 @opindex mno-ext-string
23154 Do not generate string extension instructions.
23155
23156 @item -mv3push
23157 @opindex mv3push
23158 Generate v3 push25/pop25 instructions.
23159
23160 @item -mno-v3push
23161 @opindex mno-v3push
23162 Do not generate v3 push25/pop25 instructions.
23163
23164 @item -m16-bit
23165 @opindex m16-bit
23166 Generate 16-bit instructions.
23167
23168 @item -mno-16-bit
23169 @opindex mno-16-bit
23170 Do not generate 16-bit instructions.
23171
23172 @item -misr-vector-size=@var{num}
23173 @opindex misr-vector-size
23174 Specify the size of each interrupt vector, which must be 4 or 16.
23175
23176 @item -mcache-block-size=@var{num}
23177 @opindex mcache-block-size
23178 Specify the size of each cache block,
23179 which must be a power of 2 between 4 and 512.
23180
23181 @item -march=@var{arch}
23182 @opindex march
23183 Specify the name of the target architecture.
23184
23185 @item -mcmodel=@var{code-model}
23186 @opindex mcmodel
23187 Set the code model to one of
23188 @table @asis
23189 @item @samp{small}
23190 All the data and read-only data segments must be within 512KB addressing space.
23191 The text segment must be within 16MB addressing space.
23192 @item @samp{medium}
23193 The data segment must be within 512KB while the read-only data segment can be
23194 within 4GB addressing space. The text segment should be still within 16MB
23195 addressing space.
23196 @item @samp{large}
23197 All the text and data segments can be within 4GB addressing space.
23198 @end table
23199
23200 @item -mctor-dtor
23201 @opindex mctor-dtor
23202 Enable constructor/destructor feature.
23203
23204 @item -mrelax
23205 @opindex mrelax
23206 Guide linker to relax instructions.
23207
23208 @end table
23209
23210 @node Nios II Options
23211 @subsection Nios II Options
23212 @cindex Nios II options
23213 @cindex Altera Nios II options
23214
23215 These are the options defined for the Altera Nios II processor.
23216
23217 @table @gcctabopt
23218
23219 @item -G @var{num}
23220 @opindex G
23221 @cindex smaller data references
23222 Put global and static objects less than or equal to @var{num} bytes
23223 into the small data or BSS sections instead of the normal data or BSS
23224 sections. The default value of @var{num} is 8.
23225
23226 @item -mgpopt=@var{option}
23227 @itemx -mgpopt
23228 @itemx -mno-gpopt
23229 @opindex mgpopt
23230 @opindex mno-gpopt
23231 Generate (do not generate) GP-relative accesses. The following
23232 @var{option} names are recognized:
23233
23234 @table @samp
23235
23236 @item none
23237 Do not generate GP-relative accesses.
23238
23239 @item local
23240 Generate GP-relative accesses for small data objects that are not
23241 external, weak, or uninitialized common symbols.
23242 Also use GP-relative addressing for objects that
23243 have been explicitly placed in a small data section via a @code{section}
23244 attribute.
23245
23246 @item global
23247 As for @samp{local}, but also generate GP-relative accesses for
23248 small data objects that are external, weak, or common. If you use this option,
23249 you must ensure that all parts of your program (including libraries) are
23250 compiled with the same @option{-G} setting.
23251
23252 @item data
23253 Generate GP-relative accesses for all data objects in the program. If you
23254 use this option, the entire data and BSS segments
23255 of your program must fit in 64K of memory and you must use an appropriate
23256 linker script to allocate them within the addressable range of the
23257 global pointer.
23258
23259 @item all
23260 Generate GP-relative addresses for function pointers as well as data
23261 pointers. If you use this option, the entire text, data, and BSS segments
23262 of your program must fit in 64K of memory and you must use an appropriate
23263 linker script to allocate them within the addressable range of the
23264 global pointer.
23265
23266 @end table
23267
23268 @option{-mgpopt} is equivalent to @option{-mgpopt=local}, and
23269 @option{-mno-gpopt} is equivalent to @option{-mgpopt=none}.
23270
23271 The default is @option{-mgpopt} except when @option{-fpic} or
23272 @option{-fPIC} is specified to generate position-independent code.
23273 Note that the Nios II ABI does not permit GP-relative accesses from
23274 shared libraries.
23275
23276 You may need to specify @option{-mno-gpopt} explicitly when building
23277 programs that include large amounts of small data, including large
23278 GOT data sections. In this case, the 16-bit offset for GP-relative
23279 addressing may not be large enough to allow access to the entire
23280 small data section.
23281
23282 @item -mgprel-sec=@var{regexp}
23283 @opindex mgprel-sec
23284 This option specifies additional section names that can be accessed via
23285 GP-relative addressing. It is most useful in conjunction with
23286 @code{section} attributes on variable declarations
23287 (@pxref{Common Variable Attributes}) and a custom linker script.
23288 The @var{regexp} is a POSIX Extended Regular Expression.
23289
23290 This option does not affect the behavior of the @option{-G} option, and
23291 the specified sections are in addition to the standard @code{.sdata}
23292 and @code{.sbss} small-data sections that are recognized by @option{-mgpopt}.
23293
23294 @item -mr0rel-sec=@var{regexp}
23295 @opindex mr0rel-sec
23296 This option specifies names of sections that can be accessed via a
23297 16-bit offset from @code{r0}; that is, in the low 32K or high 32K
23298 of the 32-bit address space. It is most useful in conjunction with
23299 @code{section} attributes on variable declarations
23300 (@pxref{Common Variable Attributes}) and a custom linker script.
23301 The @var{regexp} is a POSIX Extended Regular Expression.
23302
23303 In contrast to the use of GP-relative addressing for small data,
23304 zero-based addressing is never generated by default and there are no
23305 conventional section names used in standard linker scripts for sections
23306 in the low or high areas of memory.
23307
23308 @item -mel
23309 @itemx -meb
23310 @opindex mel
23311 @opindex meb
23312 Generate little-endian (default) or big-endian (experimental) code,
23313 respectively.
23314
23315 @item -march=@var{arch}
23316 @opindex march
23317 This specifies the name of the target Nios II architecture. GCC uses this
23318 name to determine what kind of instructions it can emit when generating
23319 assembly code. Permissible names are: @samp{r1}, @samp{r2}.
23320
23321 The preprocessor macro @code{__nios2_arch__} is available to programs,
23322 with value 1 or 2, indicating the targeted ISA level.
23323
23324 @item -mbypass-cache
23325 @itemx -mno-bypass-cache
23326 @opindex mno-bypass-cache
23327 @opindex mbypass-cache
23328 Force all load and store instructions to always bypass cache by
23329 using I/O variants of the instructions. The default is not to
23330 bypass the cache.
23331
23332 @item -mno-cache-volatile
23333 @itemx -mcache-volatile
23334 @opindex mcache-volatile
23335 @opindex mno-cache-volatile
23336 Volatile memory access bypass the cache using the I/O variants of
23337 the load and store instructions. The default is not to bypass the cache.
23338
23339 @item -mno-fast-sw-div
23340 @itemx -mfast-sw-div
23341 @opindex mno-fast-sw-div
23342 @opindex mfast-sw-div
23343 Do not use table-based fast divide for small numbers. The default
23344 is to use the fast divide at @option{-O3} and above.
23345
23346 @item -mno-hw-mul
23347 @itemx -mhw-mul
23348 @itemx -mno-hw-mulx
23349 @itemx -mhw-mulx
23350 @itemx -mno-hw-div
23351 @itemx -mhw-div
23352 @opindex mno-hw-mul
23353 @opindex mhw-mul
23354 @opindex mno-hw-mulx
23355 @opindex mhw-mulx
23356 @opindex mno-hw-div
23357 @opindex mhw-div
23358 Enable or disable emitting @code{mul}, @code{mulx} and @code{div} family of
23359 instructions by the compiler. The default is to emit @code{mul}
23360 and not emit @code{div} and @code{mulx}.
23361
23362 @item -mbmx
23363 @itemx -mno-bmx
23364 @itemx -mcdx
23365 @itemx -mno-cdx
23366 Enable or disable generation of Nios II R2 BMX (bit manipulation) and
23367 CDX (code density) instructions. Enabling these instructions also
23368 requires @option{-march=r2}. Since these instructions are optional
23369 extensions to the R2 architecture, the default is not to emit them.
23370
23371 @item -mcustom-@var{insn}=@var{N}
23372 @itemx -mno-custom-@var{insn}
23373 @opindex mcustom-@var{insn}
23374 @opindex mno-custom-@var{insn}
23375 Each @option{-mcustom-@var{insn}=@var{N}} option enables use of a
23376 custom instruction with encoding @var{N} when generating code that uses
23377 @var{insn}. For example, @option{-mcustom-fadds=253} generates custom
23378 instruction 253 for single-precision floating-point add operations instead
23379 of the default behavior of using a library call.
23380
23381 The following values of @var{insn} are supported. Except as otherwise
23382 noted, floating-point operations are expected to be implemented with
23383 normal IEEE 754 semantics and correspond directly to the C operators or the
23384 equivalent GCC built-in functions (@pxref{Other Builtins}).
23385
23386 Single-precision floating point:
23387 @table @asis
23388
23389 @item @samp{fadds}, @samp{fsubs}, @samp{fdivs}, @samp{fmuls}
23390 Binary arithmetic operations.
23391
23392 @item @samp{fnegs}
23393 Unary negation.
23394
23395 @item @samp{fabss}
23396 Unary absolute value.
23397
23398 @item @samp{fcmpeqs}, @samp{fcmpges}, @samp{fcmpgts}, @samp{fcmples}, @samp{fcmplts}, @samp{fcmpnes}
23399 Comparison operations.
23400
23401 @item @samp{fmins}, @samp{fmaxs}
23402 Floating-point minimum and maximum. These instructions are only
23403 generated if @option{-ffinite-math-only} is specified.
23404
23405 @item @samp{fsqrts}
23406 Unary square root operation.
23407
23408 @item @samp{fcoss}, @samp{fsins}, @samp{ftans}, @samp{fatans}, @samp{fexps}, @samp{flogs}
23409 Floating-point trigonometric and exponential functions. These instructions
23410 are only generated if @option{-funsafe-math-optimizations} is also specified.
23411
23412 @end table
23413
23414 Double-precision floating point:
23415 @table @asis
23416
23417 @item @samp{faddd}, @samp{fsubd}, @samp{fdivd}, @samp{fmuld}
23418 Binary arithmetic operations.
23419
23420 @item @samp{fnegd}
23421 Unary negation.
23422
23423 @item @samp{fabsd}
23424 Unary absolute value.
23425
23426 @item @samp{fcmpeqd}, @samp{fcmpged}, @samp{fcmpgtd}, @samp{fcmpled}, @samp{fcmpltd}, @samp{fcmpned}
23427 Comparison operations.
23428
23429 @item @samp{fmind}, @samp{fmaxd}
23430 Double-precision minimum and maximum. These instructions are only
23431 generated if @option{-ffinite-math-only} is specified.
23432
23433 @item @samp{fsqrtd}
23434 Unary square root operation.
23435
23436 @item @samp{fcosd}, @samp{fsind}, @samp{ftand}, @samp{fatand}, @samp{fexpd}, @samp{flogd}
23437 Double-precision trigonometric and exponential functions. These instructions
23438 are only generated if @option{-funsafe-math-optimizations} is also specified.
23439
23440 @end table
23441
23442 Conversions:
23443 @table @asis
23444 @item @samp{fextsd}
23445 Conversion from single precision to double precision.
23446
23447 @item @samp{ftruncds}
23448 Conversion from double precision to single precision.
23449
23450 @item @samp{fixsi}, @samp{fixsu}, @samp{fixdi}, @samp{fixdu}
23451 Conversion from floating point to signed or unsigned integer types, with
23452 truncation towards zero.
23453
23454 @item @samp{round}
23455 Conversion from single-precision floating point to signed integer,
23456 rounding to the nearest integer and ties away from zero.
23457 This corresponds to the @code{__builtin_lroundf} function when
23458 @option{-fno-math-errno} is used.
23459
23460 @item @samp{floatis}, @samp{floatus}, @samp{floatid}, @samp{floatud}
23461 Conversion from signed or unsigned integer types to floating-point types.
23462
23463 @end table
23464
23465 In addition, all of the following transfer instructions for internal
23466 registers X and Y must be provided to use any of the double-precision
23467 floating-point instructions. Custom instructions taking two
23468 double-precision source operands expect the first operand in the
23469 64-bit register X. The other operand (or only operand of a unary
23470 operation) is given to the custom arithmetic instruction with the
23471 least significant half in source register @var{src1} and the most
23472 significant half in @var{src2}. A custom instruction that returns a
23473 double-precision result returns the most significant 32 bits in the
23474 destination register and the other half in 32-bit register Y.
23475 GCC automatically generates the necessary code sequences to write
23476 register X and/or read register Y when double-precision floating-point
23477 instructions are used.
23478
23479 @table @asis
23480
23481 @item @samp{fwrx}
23482 Write @var{src1} into the least significant half of X and @var{src2} into
23483 the most significant half of X.
23484
23485 @item @samp{fwry}
23486 Write @var{src1} into Y.
23487
23488 @item @samp{frdxhi}, @samp{frdxlo}
23489 Read the most or least (respectively) significant half of X and store it in
23490 @var{dest}.
23491
23492 @item @samp{frdy}
23493 Read the value of Y and store it into @var{dest}.
23494 @end table
23495
23496 Note that you can gain more local control over generation of Nios II custom
23497 instructions by using the @code{target("custom-@var{insn}=@var{N}")}
23498 and @code{target("no-custom-@var{insn}")} function attributes
23499 (@pxref{Function Attributes})
23500 or pragmas (@pxref{Function Specific Option Pragmas}).
23501
23502 @item -mcustom-fpu-cfg=@var{name}
23503 @opindex mcustom-fpu-cfg
23504
23505 This option enables a predefined, named set of custom instruction encodings
23506 (see @option{-mcustom-@var{insn}} above).
23507 Currently, the following sets are defined:
23508
23509 @option{-mcustom-fpu-cfg=60-1} is equivalent to:
23510 @gccoptlist{-mcustom-fmuls=252 @gol
23511 -mcustom-fadds=253 @gol
23512 -mcustom-fsubs=254 @gol
23513 -fsingle-precision-constant}
23514
23515 @option{-mcustom-fpu-cfg=60-2} is equivalent to:
23516 @gccoptlist{-mcustom-fmuls=252 @gol
23517 -mcustom-fadds=253 @gol
23518 -mcustom-fsubs=254 @gol
23519 -mcustom-fdivs=255 @gol
23520 -fsingle-precision-constant}
23521
23522 @option{-mcustom-fpu-cfg=72-3} is equivalent to:
23523 @gccoptlist{-mcustom-floatus=243 @gol
23524 -mcustom-fixsi=244 @gol
23525 -mcustom-floatis=245 @gol
23526 -mcustom-fcmpgts=246 @gol
23527 -mcustom-fcmples=249 @gol
23528 -mcustom-fcmpeqs=250 @gol
23529 -mcustom-fcmpnes=251 @gol
23530 -mcustom-fmuls=252 @gol
23531 -mcustom-fadds=253 @gol
23532 -mcustom-fsubs=254 @gol
23533 -mcustom-fdivs=255 @gol
23534 -fsingle-precision-constant}
23535
23536 Custom instruction assignments given by individual
23537 @option{-mcustom-@var{insn}=} options override those given by
23538 @option{-mcustom-fpu-cfg=}, regardless of the
23539 order of the options on the command line.
23540
23541 Note that you can gain more local control over selection of a FPU
23542 configuration by using the @code{target("custom-fpu-cfg=@var{name}")}
23543 function attribute (@pxref{Function Attributes})
23544 or pragma (@pxref{Function Specific Option Pragmas}).
23545
23546 @end table
23547
23548 These additional @samp{-m} options are available for the Altera Nios II
23549 ELF (bare-metal) target:
23550
23551 @table @gcctabopt
23552
23553 @item -mhal
23554 @opindex mhal
23555 Link with HAL BSP. This suppresses linking with the GCC-provided C runtime
23556 startup and termination code, and is typically used in conjunction with
23557 @option{-msys-crt0=} to specify the location of the alternate startup code
23558 provided by the HAL BSP.
23559
23560 @item -msmallc
23561 @opindex msmallc
23562 Link with a limited version of the C library, @option{-lsmallc}, rather than
23563 Newlib.
23564
23565 @item -msys-crt0=@var{startfile}
23566 @opindex msys-crt0
23567 @var{startfile} is the file name of the startfile (crt0) to use
23568 when linking. This option is only useful in conjunction with @option{-mhal}.
23569
23570 @item -msys-lib=@var{systemlib}
23571 @opindex msys-lib
23572 @var{systemlib} is the library name of the library that provides
23573 low-level system calls required by the C library,
23574 e.g.@: @code{read} and @code{write}.
23575 This option is typically used to link with a library provided by a HAL BSP.
23576
23577 @end table
23578
23579 @node Nvidia PTX Options
23580 @subsection Nvidia PTX Options
23581 @cindex Nvidia PTX options
23582 @cindex nvptx options
23583
23584 These options are defined for Nvidia PTX:
23585
23586 @table @gcctabopt
23587
23588 @item -m32
23589 @itemx -m64
23590 @opindex m32
23591 @opindex m64
23592 Generate code for 32-bit or 64-bit ABI.
23593
23594 @item -misa=@var{ISA-string}
23595 @opindex march
23596 Generate code for given the specified PTX ISA (e.g.@: @samp{sm_35}). ISA
23597 strings must be lower-case. Valid ISA strings include @samp{sm_30} and
23598 @samp{sm_35}. The default ISA is sm_30.
23599
23600 @item -mmainkernel
23601 @opindex mmainkernel
23602 Link in code for a __main kernel. This is for stand-alone instead of
23603 offloading execution.
23604
23605 @item -moptimize
23606 @opindex moptimize
23607 Apply partitioned execution optimizations. This is the default when any
23608 level of optimization is selected.
23609
23610 @item -msoft-stack
23611 @opindex msoft-stack
23612 Generate code that does not use @code{.local} memory
23613 directly for stack storage. Instead, a per-warp stack pointer is
23614 maintained explicitly. This enables variable-length stack allocation (with
23615 variable-length arrays or @code{alloca}), and when global memory is used for
23616 underlying storage, makes it possible to access automatic variables from other
23617 threads, or with atomic instructions. This code generation variant is used
23618 for OpenMP offloading, but the option is exposed on its own for the purpose
23619 of testing the compiler; to generate code suitable for linking into programs
23620 using OpenMP offloading, use option @option{-mgomp}.
23621
23622 @item -muniform-simt
23623 @opindex muniform-simt
23624 Switch to code generation variant that allows to execute all threads in each
23625 warp, while maintaining memory state and side effects as if only one thread
23626 in each warp was active outside of OpenMP SIMD regions. All atomic operations
23627 and calls to runtime (malloc, free, vprintf) are conditionally executed (iff
23628 current lane index equals the master lane index), and the register being
23629 assigned is copied via a shuffle instruction from the master lane. Outside of
23630 SIMD regions lane 0 is the master; inside, each thread sees itself as the
23631 master. Shared memory array @code{int __nvptx_uni[]} stores all-zeros or
23632 all-ones bitmasks for each warp, indicating current mode (0 outside of SIMD
23633 regions). Each thread can bitwise-and the bitmask at position @code{tid.y}
23634 with current lane index to compute the master lane index.
23635
23636 @item -mgomp
23637 @opindex mgomp
23638 Generate code for use in OpenMP offloading: enables @option{-msoft-stack} and
23639 @option{-muniform-simt} options, and selects corresponding multilib variant.
23640
23641 @end table
23642
23643 @node OpenRISC Options
23644 @subsection OpenRISC Options
23645 @cindex OpenRISC Options
23646
23647 These options are defined for OpenRISC:
23648
23649 @table @gcctabopt
23650
23651 @item -mboard=@var{name}
23652 @opindex mboard
23653 Configure a board specific runtime. This will be passed to the linker for
23654 newlib board library linking. The default is @code{or1ksim}.
23655
23656 @item -mnewlib
23657 @opindex mnewlib
23658 For compatibility, it's always newlib for elf now.
23659
23660 @item -mhard-div
23661 @opindex mhard-div
23662 Generate code for hardware which supports divide instructions. This is the
23663 default.
23664
23665 @item -mhard-mul
23666 @opindex mhard-mul
23667 Generate code for hardware which supports multiply instructions. This is the
23668 default.
23669
23670 @item -mcmov
23671 @opindex mcmov
23672 Generate code for hardware which supports the conditional move (@code{l.cmov})
23673 instruction.
23674
23675 @item -mror
23676 @opindex mror
23677 Generate code for hardware which supports rotate right instructions.
23678
23679 @item -msext
23680 @opindex msext
23681 Generate code for hardware which supports sign-extension instructions.
23682
23683 @item -msfimm
23684 @opindex msfimm
23685 Generate code for hardware which supports set flag immediate (@code{l.sf*i})
23686 instructions.
23687
23688 @item -mshftimm
23689 @opindex mshftimm
23690 Generate code for hardware which supports shift immediate related instructions
23691 (i.e. @code{l.srai}, @code{l.srli}, @code{l.slli}, @code{1.rori}). Note, to
23692 enable generation of the @code{l.rori} instruction the @option{-mror} flag must
23693 also be specified.
23694
23695 @item -msoft-div
23696 @opindex msoft-div
23697 Generate code for hardware which requires divide instruction emulation.
23698
23699 @item -msoft-mul
23700 @opindex msoft-mul
23701 Generate code for hardware which requires multiply instruction emulation.
23702
23703 @end table
23704
23705 @node PDP-11 Options
23706 @subsection PDP-11 Options
23707 @cindex PDP-11 Options
23708
23709 These options are defined for the PDP-11:
23710
23711 @table @gcctabopt
23712 @item -mfpu
23713 @opindex mfpu
23714 Use hardware FPP floating point. This is the default. (FIS floating
23715 point on the PDP-11/40 is not supported.) Implies -m45.
23716
23717 @item -msoft-float
23718 @opindex msoft-float
23719 Do not use hardware floating point.
23720
23721 @item -mac0
23722 @opindex mac0
23723 Return floating-point results in ac0 (fr0 in Unix assembler syntax).
23724
23725 @item -mno-ac0
23726 @opindex mno-ac0
23727 Return floating-point results in memory. This is the default.
23728
23729 @item -m40
23730 @opindex m40
23731 Generate code for a PDP-11/40. Implies -msoft-float -mno-split.
23732
23733 @item -m45
23734 @opindex m45
23735 Generate code for a PDP-11/45. This is the default.
23736
23737 @item -m10
23738 @opindex m10
23739 Generate code for a PDP-11/10. Implies -msoft-float -mno-split.
23740
23741 @item -mint16
23742 @itemx -mno-int32
23743 @opindex mint16
23744 @opindex mno-int32
23745 Use 16-bit @code{int}. This is the default.
23746
23747 @item -mint32
23748 @itemx -mno-int16
23749 @opindex mint32
23750 @opindex mno-int16
23751 Use 32-bit @code{int}.
23752
23753 @item -msplit
23754 @opindex msplit
23755 Target has split instruction and data space. Implies -m45.
23756
23757 @item -munix-asm
23758 @opindex munix-asm
23759 Use Unix assembler syntax.
23760
23761 @item -mdec-asm
23762 @opindex mdec-asm
23763 Use DEC assembler syntax.
23764
23765 @item -mgnu-asm
23766 @opindex mgnu-asm
23767 Use GNU assembler syntax. This is the default.
23768
23769 @item -mlra
23770 @opindex mlra
23771 Use the new LRA register allocator. By default, the old ``reload''
23772 allocator is used.
23773 @end table
23774
23775 @node picoChip Options
23776 @subsection picoChip Options
23777 @cindex picoChip options
23778
23779 These @samp{-m} options are defined for picoChip implementations:
23780
23781 @table @gcctabopt
23782
23783 @item -mae=@var{ae_type}
23784 @opindex mcpu
23785 Set the instruction set, register set, and instruction scheduling
23786 parameters for array element type @var{ae_type}. Supported values
23787 for @var{ae_type} are @samp{ANY}, @samp{MUL}, and @samp{MAC}.
23788
23789 @option{-mae=ANY} selects a completely generic AE type. Code
23790 generated with this option runs on any of the other AE types. The
23791 code is not as efficient as it would be if compiled for a specific
23792 AE type, and some types of operation (e.g., multiplication) do not
23793 work properly on all types of AE.
23794
23795 @option{-mae=MUL} selects a MUL AE type. This is the most useful AE type
23796 for compiled code, and is the default.
23797
23798 @option{-mae=MAC} selects a DSP-style MAC AE. Code compiled with this
23799 option may suffer from poor performance of byte (char) manipulation,
23800 since the DSP AE does not provide hardware support for byte load/stores.
23801
23802 @item -msymbol-as-address
23803 Enable the compiler to directly use a symbol name as an address in a
23804 load/store instruction, without first loading it into a
23805 register. Typically, the use of this option generates larger
23806 programs, which run faster than when the option isn't used. However, the
23807 results vary from program to program, so it is left as a user option,
23808 rather than being permanently enabled.
23809
23810 @item -mno-inefficient-warnings
23811 Disables warnings about the generation of inefficient code. These
23812 warnings can be generated, for example, when compiling code that
23813 performs byte-level memory operations on the MAC AE type. The MAC AE has
23814 no hardware support for byte-level memory operations, so all byte
23815 load/stores must be synthesized from word load/store operations. This is
23816 inefficient and a warning is generated to indicate
23817 that you should rewrite the code to avoid byte operations, or to target
23818 an AE type that has the necessary hardware support. This option disables
23819 these warnings.
23820
23821 @end table
23822
23823 @node PowerPC Options
23824 @subsection PowerPC Options
23825 @cindex PowerPC options
23826
23827 These are listed under @xref{RS/6000 and PowerPC Options}.
23828
23829 @node PRU Options
23830 @subsection PRU Options
23831 @cindex PRU Options
23832
23833 These command-line options are defined for PRU target:
23834
23835 @table @gcctabopt
23836 @item -minrt
23837 @opindex minrt
23838 Link with a minimum runtime environment, with no support for static
23839 initializers and constructors. Using this option can significantly reduce
23840 the size of the final ELF binary. Beware that the compiler could still
23841 generate code with static initializers and constructors. It is up to the
23842 programmer to ensure that the source program will not use those features.
23843
23844 @item -mmcu=@var{mcu}
23845 @opindex mmcu
23846 Specify the PRU MCU variant to use. Check Newlib for the exact list of
23847 supported MCUs.
23848
23849 @item -mno-relax
23850 @opindex mno-relax
23851 Make GCC pass the @option{--no-relax} command-line option to the linker
23852 instead of the @option{--relax} option.
23853
23854 @item -mloop
23855 @opindex mloop
23856 Allow (or do not allow) GCC to use the LOOP instruction.
23857
23858 @item -mabi=@var{variant}
23859 @opindex mabi
23860 Specify the ABI variant to output code for. @option{-mabi=ti} selects the
23861 unmodified TI ABI while @option{-mabi=gnu} selects a GNU variant that copes
23862 more naturally with certain GCC assumptions. These are the differences:
23863
23864 @table @samp
23865 @item Function Pointer Size
23866 TI ABI specifies that function (code) pointers are 16-bit, whereas GNU
23867 supports only 32-bit data and code pointers.
23868
23869 @item Optional Return Value Pointer
23870 Function return values larger than 64 bits are passed by using a hidden
23871 pointer as the first argument of the function. TI ABI, though, mandates that
23872 the pointer can be NULL in case the caller is not using the returned value.
23873 GNU always passes and expects a valid return value pointer.
23874
23875 @end table
23876
23877 The current @option{-mabi=ti} implementation simply raises a compile error
23878 when any of the above code constructs is detected. As a consequence
23879 the standard C library cannot be built and it is omitted when linking with
23880 @option{-mabi=ti}.
23881
23882 Relaxation is a GNU feature and for safety reasons is disabled when using
23883 @option{-mabi=ti}. The TI toolchain does not emit relocations for QBBx
23884 instructions, so the GNU linker cannot adjust them when shortening adjacent
23885 LDI32 pseudo instructions.
23886
23887 @end table
23888
23889 @node RISC-V Options
23890 @subsection RISC-V Options
23891 @cindex RISC-V Options
23892
23893 These command-line options are defined for RISC-V targets:
23894
23895 @table @gcctabopt
23896 @item -mbranch-cost=@var{n}
23897 @opindex mbranch-cost
23898 Set the cost of branches to roughly @var{n} instructions.
23899
23900 @item -mplt
23901 @itemx -mno-plt
23902 @opindex plt
23903 When generating PIC code, do or don't allow the use of PLTs. Ignored for
23904 non-PIC. The default is @option{-mplt}.
23905
23906 @item -mabi=@var{ABI-string}
23907 @opindex mabi
23908 Specify integer and floating-point calling convention. @var{ABI-string}
23909 contains two parts: the size of integer types and the registers used for
23910 floating-point types. For example @samp{-march=rv64ifd -mabi=lp64d} means that
23911 @samp{long} and pointers are 64-bit (implicitly defining @samp{int} to be
23912 32-bit), and that floating-point values up to 64 bits wide are passed in F
23913 registers. Contrast this with @samp{-march=rv64ifd -mabi=lp64f}, which still
23914 allows the compiler to generate code that uses the F and D extensions but only
23915 allows floating-point values up to 32 bits long to be passed in registers; or
23916 @samp{-march=rv64ifd -mabi=lp64}, in which no floating-point arguments will be
23917 passed in registers.
23918
23919 The default for this argument is system dependent, users who want a specific
23920 calling convention should specify one explicitly. The valid calling
23921 conventions are: @samp{ilp32}, @samp{ilp32f}, @samp{ilp32d}, @samp{lp64},
23922 @samp{lp64f}, and @samp{lp64d}. Some calling conventions are impossible to
23923 implement on some ISAs: for example, @samp{-march=rv32if -mabi=ilp32d} is
23924 invalid because the ABI requires 64-bit values be passed in F registers, but F
23925 registers are only 32 bits wide. There is also the @samp{ilp32e} ABI that can
23926 only be used with the @samp{rv32e} architecture. This ABI is not well
23927 specified at present, and is subject to change.
23928
23929 @item -mfdiv
23930 @itemx -mno-fdiv
23931 @opindex mfdiv
23932 Do or don't use hardware floating-point divide and square root instructions.
23933 This requires the F or D extensions for floating-point registers. The default
23934 is to use them if the specified architecture has these instructions.
23935
23936 @item -mdiv
23937 @itemx -mno-div
23938 @opindex mdiv
23939 Do or don't use hardware instructions for integer division. This requires the
23940 M extension. The default is to use them if the specified architecture has
23941 these instructions.
23942
23943 @item -march=@var{ISA-string}
23944 @opindex march
23945 Generate code for given RISC-V ISA (e.g.@: @samp{rv64im}). ISA strings must be
23946 lower-case. Examples include @samp{rv64i}, @samp{rv32g}, @samp{rv32e}, and
23947 @samp{rv32imaf}.
23948
23949 @item -mtune=@var{processor-string}
23950 @opindex mtune
23951 Optimize the output for the given processor, specified by microarchitecture
23952 name. Permissible values for this option are: @samp{rocket},
23953 @samp{sifive-3-series}, @samp{sifive-5-series}, @samp{sifive-7-series},
23954 and @samp{size}.
23955
23956 When @option{-mtune=} is not specified, the default is @samp{rocket}.
23957
23958 The @samp{size} choice is not intended for use by end-users. This is used
23959 when @option{-Os} is specified. It overrides the instruction cost info
23960 provided by @option{-mtune=}, but does not override the pipeline info. This
23961 helps reduce code size while still giving good performance.
23962
23963 @item -mpreferred-stack-boundary=@var{num}
23964 @opindex mpreferred-stack-boundary
23965 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
23966 byte boundary. If @option{-mpreferred-stack-boundary} is not specified,
23967 the default is 4 (16 bytes or 128-bits).
23968
23969 @strong{Warning:} If you use this switch, then you must build all modules with
23970 the same value, including any libraries. This includes the system libraries
23971 and startup modules.
23972
23973 @item -msmall-data-limit=@var{n}
23974 @opindex msmall-data-limit
23975 Put global and static data smaller than @var{n} bytes into a special section
23976 (on some targets).
23977
23978 @item -msave-restore
23979 @itemx -mno-save-restore
23980 @opindex msave-restore
23981 Do or don't use smaller but slower prologue and epilogue code that uses
23982 library function calls. The default is to use fast inline prologues and
23983 epilogues.
23984
23985 @item -mstrict-align
23986 @itemx -mno-strict-align
23987 @opindex mstrict-align
23988 Do not or do generate unaligned memory accesses. The default is set depending
23989 on whether the processor we are optimizing for supports fast unaligned access
23990 or not.
23991
23992 @item -mcmodel=medlow
23993 @opindex mcmodel=medlow
23994 Generate code for the medium-low code model. The program and its statically
23995 defined symbols must lie within a single 2 GiB address range and must lie
23996 between absolute addresses @minus{}2 GiB and +2 GiB. Programs can be
23997 statically or dynamically linked. This is the default code model.
23998
23999 @item -mcmodel=medany
24000 @opindex mcmodel=medany
24001 Generate code for the medium-any code model. The program and its statically
24002 defined symbols must be within any single 2 GiB address range. Programs can be
24003 statically or dynamically linked.
24004
24005 @item -mexplicit-relocs
24006 @itemx -mno-exlicit-relocs
24007 Use or do not use assembler relocation operators when dealing with symbolic
24008 addresses. The alternative is to use assembler macros instead, which may
24009 limit optimization.
24010
24011 @item -mrelax
24012 @itemx -mno-relax
24013 Take advantage of linker relaxations to reduce the number of instructions
24014 required to materialize symbol addresses. The default is to take advantage of
24015 linker relaxations.
24016
24017 @item -memit-attribute
24018 @itemx -mno-emit-attribute
24019 Emit (do not emit) RISC-V attribute to record extra information into ELF
24020 objects. This feature requires at least binutils 2.32.
24021 @end table
24022
24023 @node RL78 Options
24024 @subsection RL78 Options
24025 @cindex RL78 Options
24026
24027 @table @gcctabopt
24028
24029 @item -msim
24030 @opindex msim
24031 Links in additional target libraries to support operation within a
24032 simulator.
24033
24034 @item -mmul=none
24035 @itemx -mmul=g10
24036 @itemx -mmul=g13
24037 @itemx -mmul=g14
24038 @itemx -mmul=rl78
24039 @opindex mmul
24040 Specifies the type of hardware multiplication and division support to
24041 be used. The simplest is @code{none}, which uses software for both
24042 multiplication and division. This is the default. The @code{g13}
24043 value is for the hardware multiply/divide peripheral found on the
24044 RL78/G13 (S2 core) targets. The @code{g14} value selects the use of
24045 the multiplication and division instructions supported by the RL78/G14
24046 (S3 core) parts. The value @code{rl78} is an alias for @code{g14} and
24047 the value @code{mg10} is an alias for @code{none}.
24048
24049 In addition a C preprocessor macro is defined, based upon the setting
24050 of this option. Possible values are: @code{__RL78_MUL_NONE__},
24051 @code{__RL78_MUL_G13__} or @code{__RL78_MUL_G14__}.
24052
24053 @item -mcpu=g10
24054 @itemx -mcpu=g13
24055 @itemx -mcpu=g14
24056 @itemx -mcpu=rl78
24057 @opindex mcpu
24058 Specifies the RL78 core to target. The default is the G14 core, also
24059 known as an S3 core or just RL78. The G13 or S2 core does not have
24060 multiply or divide instructions, instead it uses a hardware peripheral
24061 for these operations. The G10 or S1 core does not have register
24062 banks, so it uses a different calling convention.
24063
24064 If this option is set it also selects the type of hardware multiply
24065 support to use, unless this is overridden by an explicit
24066 @option{-mmul=none} option on the command line. Thus specifying
24067 @option{-mcpu=g13} enables the use of the G13 hardware multiply
24068 peripheral and specifying @option{-mcpu=g10} disables the use of
24069 hardware multiplications altogether.
24070
24071 Note, although the RL78/G14 core is the default target, specifying
24072 @option{-mcpu=g14} or @option{-mcpu=rl78} on the command line does
24073 change the behavior of the toolchain since it also enables G14
24074 hardware multiply support. If these options are not specified on the
24075 command line then software multiplication routines will be used even
24076 though the code targets the RL78 core. This is for backwards
24077 compatibility with older toolchains which did not have hardware
24078 multiply and divide support.
24079
24080 In addition a C preprocessor macro is defined, based upon the setting
24081 of this option. Possible values are: @code{__RL78_G10__},
24082 @code{__RL78_G13__} or @code{__RL78_G14__}.
24083
24084 @item -mg10
24085 @itemx -mg13
24086 @itemx -mg14
24087 @itemx -mrl78
24088 @opindex mg10
24089 @opindex mg13
24090 @opindex mg14
24091 @opindex mrl78
24092 These are aliases for the corresponding @option{-mcpu=} option. They
24093 are provided for backwards compatibility.
24094
24095 @item -mallregs
24096 @opindex mallregs
24097 Allow the compiler to use all of the available registers. By default
24098 registers @code{r24..r31} are reserved for use in interrupt handlers.
24099 With this option enabled these registers can be used in ordinary
24100 functions as well.
24101
24102 @item -m64bit-doubles
24103 @itemx -m32bit-doubles
24104 @opindex m64bit-doubles
24105 @opindex m32bit-doubles
24106 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
24107 or 32 bits (@option{-m32bit-doubles}) in size. The default is
24108 @option{-m32bit-doubles}.
24109
24110 @item -msave-mduc-in-interrupts
24111 @itemx -mno-save-mduc-in-interrupts
24112 @opindex msave-mduc-in-interrupts
24113 @opindex mno-save-mduc-in-interrupts
24114 Specifies that interrupt handler functions should preserve the
24115 MDUC registers. This is only necessary if normal code might use
24116 the MDUC registers, for example because it performs multiplication
24117 and division operations. The default is to ignore the MDUC registers
24118 as this makes the interrupt handlers faster. The target option -mg13
24119 needs to be passed for this to work as this feature is only available
24120 on the G13 target (S2 core). The MDUC registers will only be saved
24121 if the interrupt handler performs a multiplication or division
24122 operation or it calls another function.
24123
24124 @end table
24125
24126 @node RS/6000 and PowerPC Options
24127 @subsection IBM RS/6000 and PowerPC Options
24128 @cindex RS/6000 and PowerPC Options
24129 @cindex IBM RS/6000 and PowerPC Options
24130
24131 These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
24132 @table @gcctabopt
24133 @item -mpowerpc-gpopt
24134 @itemx -mno-powerpc-gpopt
24135 @itemx -mpowerpc-gfxopt
24136 @itemx -mno-powerpc-gfxopt
24137 @need 800
24138 @itemx -mpowerpc64
24139 @itemx -mno-powerpc64
24140 @itemx -mmfcrf
24141 @itemx -mno-mfcrf
24142 @itemx -mpopcntb
24143 @itemx -mno-popcntb
24144 @itemx -mpopcntd
24145 @itemx -mno-popcntd
24146 @itemx -mfprnd
24147 @itemx -mno-fprnd
24148 @need 800
24149 @itemx -mcmpb
24150 @itemx -mno-cmpb
24151 @itemx -mhard-dfp
24152 @itemx -mno-hard-dfp
24153 @opindex mpowerpc-gpopt
24154 @opindex mno-powerpc-gpopt
24155 @opindex mpowerpc-gfxopt
24156 @opindex mno-powerpc-gfxopt
24157 @opindex mpowerpc64
24158 @opindex mno-powerpc64
24159 @opindex mmfcrf
24160 @opindex mno-mfcrf
24161 @opindex mpopcntb
24162 @opindex mno-popcntb
24163 @opindex mpopcntd
24164 @opindex mno-popcntd
24165 @opindex mfprnd
24166 @opindex mno-fprnd
24167 @opindex mcmpb
24168 @opindex mno-cmpb
24169 @opindex mhard-dfp
24170 @opindex mno-hard-dfp
24171 You use these options to specify which instructions are available on the
24172 processor you are using. The default value of these options is
24173 determined when configuring GCC@. Specifying the
24174 @option{-mcpu=@var{cpu_type}} overrides the specification of these
24175 options. We recommend you use the @option{-mcpu=@var{cpu_type}} option
24176 rather than the options listed above.
24177
24178 Specifying @option{-mpowerpc-gpopt} allows
24179 GCC to use the optional PowerPC architecture instructions in the
24180 General Purpose group, including floating-point square root. Specifying
24181 @option{-mpowerpc-gfxopt} allows GCC to
24182 use the optional PowerPC architecture instructions in the Graphics
24183 group, including floating-point select.
24184
24185 The @option{-mmfcrf} option allows GCC to generate the move from
24186 condition register field instruction implemented on the POWER4
24187 processor and other processors that support the PowerPC V2.01
24188 architecture.
24189 The @option{-mpopcntb} option allows GCC to generate the popcount and
24190 double-precision FP reciprocal estimate instruction implemented on the
24191 POWER5 processor and other processors that support the PowerPC V2.02
24192 architecture.
24193 The @option{-mpopcntd} option allows GCC to generate the popcount
24194 instruction implemented on the POWER7 processor and other processors
24195 that support the PowerPC V2.06 architecture.
24196 The @option{-mfprnd} option allows GCC to generate the FP round to
24197 integer instructions implemented on the POWER5+ processor and other
24198 processors that support the PowerPC V2.03 architecture.
24199 The @option{-mcmpb} option allows GCC to generate the compare bytes
24200 instruction implemented on the POWER6 processor and other processors
24201 that support the PowerPC V2.05 architecture.
24202 The @option{-mhard-dfp} option allows GCC to generate the decimal
24203 floating-point instructions implemented on some POWER processors.
24204
24205 The @option{-mpowerpc64} option allows GCC to generate the additional
24206 64-bit instructions that are found in the full PowerPC64 architecture
24207 and to treat GPRs as 64-bit, doubleword quantities. GCC defaults to
24208 @option{-mno-powerpc64}.
24209
24210 @item -mcpu=@var{cpu_type}
24211 @opindex mcpu
24212 Set architecture type, register usage, and
24213 instruction scheduling parameters for machine type @var{cpu_type}.
24214 Supported values for @var{cpu_type} are @samp{401}, @samp{403},
24215 @samp{405}, @samp{405fp}, @samp{440}, @samp{440fp}, @samp{464}, @samp{464fp},
24216 @samp{476}, @samp{476fp}, @samp{505}, @samp{601}, @samp{602}, @samp{603},
24217 @samp{603e}, @samp{604}, @samp{604e}, @samp{620}, @samp{630}, @samp{740},
24218 @samp{7400}, @samp{7450}, @samp{750}, @samp{801}, @samp{821}, @samp{823},
24219 @samp{860}, @samp{970}, @samp{8540}, @samp{a2}, @samp{e300c2},
24220 @samp{e300c3}, @samp{e500mc}, @samp{e500mc64}, @samp{e5500},
24221 @samp{e6500}, @samp{ec603e}, @samp{G3}, @samp{G4}, @samp{G5},
24222 @samp{titan}, @samp{power3}, @samp{power4}, @samp{power5}, @samp{power5+},
24223 @samp{power6}, @samp{power6x}, @samp{power7}, @samp{power8},
24224 @samp{power9}, @samp{future}, @samp{powerpc}, @samp{powerpc64},
24225 @samp{powerpc64le}, @samp{rs64}, and @samp{native}.
24226
24227 @option{-mcpu=powerpc}, @option{-mcpu=powerpc64}, and
24228 @option{-mcpu=powerpc64le} specify pure 32-bit PowerPC (either
24229 endian), 64-bit big endian PowerPC and 64-bit little endian PowerPC
24230 architecture machine types, with an appropriate, generic processor
24231 model assumed for scheduling purposes.
24232
24233 Specifying @samp{native} as cpu type detects and selects the
24234 architecture option that corresponds to the host processor of the
24235 system performing the compilation.
24236 @option{-mcpu=native} has no effect if GCC does not recognize the
24237 processor.
24238
24239 The other options specify a specific processor. Code generated under
24240 those options runs best on that processor, and may not run at all on
24241 others.
24242
24243 The @option{-mcpu} options automatically enable or disable the
24244 following options:
24245
24246 @gccoptlist{-maltivec -mfprnd -mhard-float -mmfcrf -mmultiple @gol
24247 -mpopcntb -mpopcntd -mpowerpc64 @gol
24248 -mpowerpc-gpopt -mpowerpc-gfxopt @gol
24249 -mmulhw -mdlmzb -mmfpgpr -mvsx @gol
24250 -mcrypto -mhtm -mpower8-fusion -mpower8-vector @gol
24251 -mquad-memory -mquad-memory-atomic -mfloat128 -mfloat128-hardware}
24252
24253 The particular options set for any particular CPU varies between
24254 compiler versions, depending on what setting seems to produce optimal
24255 code for that CPU; it doesn't necessarily reflect the actual hardware's
24256 capabilities. If you wish to set an individual option to a particular
24257 value, you may specify it after the @option{-mcpu} option, like
24258 @option{-mcpu=970 -mno-altivec}.
24259
24260 On AIX, the @option{-maltivec} and @option{-mpowerpc64} options are
24261 not enabled or disabled by the @option{-mcpu} option at present because
24262 AIX does not have full support for these options. You may still
24263 enable or disable them individually if you're sure it'll work in your
24264 environment.
24265
24266 @item -mtune=@var{cpu_type}
24267 @opindex mtune
24268 Set the instruction scheduling parameters for machine type
24269 @var{cpu_type}, but do not set the architecture type or register usage,
24270 as @option{-mcpu=@var{cpu_type}} does. The same
24271 values for @var{cpu_type} are used for @option{-mtune} as for
24272 @option{-mcpu}. If both are specified, the code generated uses the
24273 architecture and registers set by @option{-mcpu}, but the
24274 scheduling parameters set by @option{-mtune}.
24275
24276 @item -mcmodel=small
24277 @opindex mcmodel=small
24278 Generate PowerPC64 code for the small model: The TOC is limited to
24279 64k.
24280
24281 @item -mcmodel=medium
24282 @opindex mcmodel=medium
24283 Generate PowerPC64 code for the medium model: The TOC and other static
24284 data may be up to a total of 4G in size. This is the default for 64-bit
24285 Linux.
24286
24287 @item -mcmodel=large
24288 @opindex mcmodel=large
24289 Generate PowerPC64 code for the large model: The TOC may be up to 4G
24290 in size. Other data and code is only limited by the 64-bit address
24291 space.
24292
24293 @item -maltivec
24294 @itemx -mno-altivec
24295 @opindex maltivec
24296 @opindex mno-altivec
24297 Generate code that uses (does not use) AltiVec instructions, and also
24298 enable the use of built-in functions that allow more direct access to
24299 the AltiVec instruction set. You may also need to set
24300 @option{-mabi=altivec} to adjust the current ABI with AltiVec ABI
24301 enhancements.
24302
24303 When @option{-maltivec} is used, the element order for AltiVec intrinsics
24304 such as @code{vec_splat}, @code{vec_extract}, and @code{vec_insert}
24305 match array element order corresponding to the endianness of the
24306 target. That is, element zero identifies the leftmost element in a
24307 vector register when targeting a big-endian platform, and identifies
24308 the rightmost element in a vector register when targeting a
24309 little-endian platform.
24310
24311 @item -mvrsave
24312 @itemx -mno-vrsave
24313 @opindex mvrsave
24314 @opindex mno-vrsave
24315 Generate VRSAVE instructions when generating AltiVec code.
24316
24317 @item -msecure-plt
24318 @opindex msecure-plt
24319 Generate code that allows @command{ld} and @command{ld.so}
24320 to build executables and shared
24321 libraries with non-executable @code{.plt} and @code{.got} sections.
24322 This is a PowerPC
24323 32-bit SYSV ABI option.
24324
24325 @item -mbss-plt
24326 @opindex mbss-plt
24327 Generate code that uses a BSS @code{.plt} section that @command{ld.so}
24328 fills in, and
24329 requires @code{.plt} and @code{.got}
24330 sections that are both writable and executable.
24331 This is a PowerPC 32-bit SYSV ABI option.
24332
24333 @item -misel
24334 @itemx -mno-isel
24335 @opindex misel
24336 @opindex mno-isel
24337 This switch enables or disables the generation of ISEL instructions.
24338
24339 @item -mvsx
24340 @itemx -mno-vsx
24341 @opindex mvsx
24342 @opindex mno-vsx
24343 Generate code that uses (does not use) vector/scalar (VSX)
24344 instructions, and also enable the use of built-in functions that allow
24345 more direct access to the VSX instruction set.
24346
24347 @item -mcrypto
24348 @itemx -mno-crypto
24349 @opindex mcrypto
24350 @opindex mno-crypto
24351 Enable the use (disable) of the built-in functions that allow direct
24352 access to the cryptographic instructions that were added in version
24353 2.07 of the PowerPC ISA.
24354
24355 @item -mhtm
24356 @itemx -mno-htm
24357 @opindex mhtm
24358 @opindex mno-htm
24359 Enable (disable) the use of the built-in functions that allow direct
24360 access to the Hardware Transactional Memory (HTM) instructions that
24361 were added in version 2.07 of the PowerPC ISA.
24362
24363 @item -mpower8-fusion
24364 @itemx -mno-power8-fusion
24365 @opindex mpower8-fusion
24366 @opindex mno-power8-fusion
24367 Generate code that keeps (does not keeps) some integer operations
24368 adjacent so that the instructions can be fused together on power8 and
24369 later processors.
24370
24371 @item -mpower8-vector
24372 @itemx -mno-power8-vector
24373 @opindex mpower8-vector
24374 @opindex mno-power8-vector
24375 Generate code that uses (does not use) the vector and scalar
24376 instructions that were added in version 2.07 of the PowerPC ISA. Also
24377 enable the use of built-in functions that allow more direct access to
24378 the vector instructions.
24379
24380 @item -mquad-memory
24381 @itemx -mno-quad-memory
24382 @opindex mquad-memory
24383 @opindex mno-quad-memory
24384 Generate code that uses (does not use) the non-atomic quad word memory
24385 instructions. The @option{-mquad-memory} option requires use of
24386 64-bit mode.
24387
24388 @item -mquad-memory-atomic
24389 @itemx -mno-quad-memory-atomic
24390 @opindex mquad-memory-atomic
24391 @opindex mno-quad-memory-atomic
24392 Generate code that uses (does not use) the atomic quad word memory
24393 instructions. The @option{-mquad-memory-atomic} option requires use of
24394 64-bit mode.
24395
24396 @item -mfloat128
24397 @itemx -mno-float128
24398 @opindex mfloat128
24399 @opindex mno-float128
24400 Enable/disable the @var{__float128} keyword for IEEE 128-bit floating point
24401 and use either software emulation for IEEE 128-bit floating point or
24402 hardware instructions.
24403
24404 The VSX instruction set (@option{-mvsx}, @option{-mcpu=power7},
24405 @option{-mcpu=power8}), or @option{-mcpu=power9} must be enabled to
24406 use the IEEE 128-bit floating point support. The IEEE 128-bit
24407 floating point support only works on PowerPC Linux systems.
24408
24409 The default for @option{-mfloat128} is enabled on PowerPC Linux
24410 systems using the VSX instruction set, and disabled on other systems.
24411
24412 If you use the ISA 3.0 instruction set (@option{-mpower9-vector} or
24413 @option{-mcpu=power9}) on a 64-bit system, the IEEE 128-bit floating
24414 point support will also enable the generation of ISA 3.0 IEEE 128-bit
24415 floating point instructions. Otherwise, if you do not specify to
24416 generate ISA 3.0 instructions or you are targeting a 32-bit big endian
24417 system, IEEE 128-bit floating point will be done with software
24418 emulation.
24419
24420 @item -mfloat128-hardware
24421 @itemx -mno-float128-hardware
24422 @opindex mfloat128-hardware
24423 @opindex mno-float128-hardware
24424 Enable/disable using ISA 3.0 hardware instructions to support the
24425 @var{__float128} data type.
24426
24427 The default for @option{-mfloat128-hardware} is enabled on PowerPC
24428 Linux systems using the ISA 3.0 instruction set, and disabled on other
24429 systems.
24430
24431 @item -m32
24432 @itemx -m64
24433 @opindex m32
24434 @opindex m64
24435 Generate code for 32-bit or 64-bit environments of Darwin and SVR4
24436 targets (including GNU/Linux). The 32-bit environment sets int, long
24437 and pointer to 32 bits and generates code that runs on any PowerPC
24438 variant. The 64-bit environment sets int to 32 bits and long and
24439 pointer to 64 bits, and generates code for PowerPC64, as for
24440 @option{-mpowerpc64}.
24441
24442 @item -mfull-toc
24443 @itemx -mno-fp-in-toc
24444 @itemx -mno-sum-in-toc
24445 @itemx -mminimal-toc
24446 @opindex mfull-toc
24447 @opindex mno-fp-in-toc
24448 @opindex mno-sum-in-toc
24449 @opindex mminimal-toc
24450 Modify generation of the TOC (Table Of Contents), which is created for
24451 every executable file. The @option{-mfull-toc} option is selected by
24452 default. In that case, GCC allocates at least one TOC entry for
24453 each unique non-automatic variable reference in your program. GCC
24454 also places floating-point constants in the TOC@. However, only
24455 16,384 entries are available in the TOC@.
24456
24457 If you receive a linker error message that saying you have overflowed
24458 the available TOC space, you can reduce the amount of TOC space used
24459 with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
24460 @option{-mno-fp-in-toc} prevents GCC from putting floating-point
24461 constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
24462 generate code to calculate the sum of an address and a constant at
24463 run time instead of putting that sum into the TOC@. You may specify one
24464 or both of these options. Each causes GCC to produce very slightly
24465 slower and larger code at the expense of conserving TOC space.
24466
24467 If you still run out of space in the TOC even when you specify both of
24468 these options, specify @option{-mminimal-toc} instead. This option causes
24469 GCC to make only one TOC entry for every file. When you specify this
24470 option, GCC produces code that is slower and larger but which
24471 uses extremely little TOC space. You may wish to use this option
24472 only on files that contain less frequently-executed code.
24473
24474 @item -maix64
24475 @itemx -maix32
24476 @opindex maix64
24477 @opindex maix32
24478 Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
24479 @code{long} type, and the infrastructure needed to support them.
24480 Specifying @option{-maix64} implies @option{-mpowerpc64},
24481 while @option{-maix32} disables the 64-bit ABI and
24482 implies @option{-mno-powerpc64}. GCC defaults to @option{-maix32}.
24483
24484 @item -mxl-compat
24485 @itemx -mno-xl-compat
24486 @opindex mxl-compat
24487 @opindex mno-xl-compat
24488 Produce code that conforms more closely to IBM XL compiler semantics
24489 when using AIX-compatible ABI@. Pass floating-point arguments to
24490 prototyped functions beyond the register save area (RSA) on the stack
24491 in addition to argument FPRs. Do not assume that most significant
24492 double in 128-bit long double value is properly rounded when comparing
24493 values and converting to double. Use XL symbol names for long double
24494 support routines.
24495
24496 The AIX calling convention was extended but not initially documented to
24497 handle an obscure K&R C case of calling a function that takes the
24498 address of its arguments with fewer arguments than declared. IBM XL
24499 compilers access floating-point arguments that do not fit in the
24500 RSA from the stack when a subroutine is compiled without
24501 optimization. Because always storing floating-point arguments on the
24502 stack is inefficient and rarely needed, this option is not enabled by
24503 default and only is necessary when calling subroutines compiled by IBM
24504 XL compilers without optimization.
24505
24506 @item -mpe
24507 @opindex mpe
24508 Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@. Link an
24509 application written to use message passing with special startup code to
24510 enable the application to run. The system must have PE installed in the
24511 standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
24512 must be overridden with the @option{-specs=} option to specify the
24513 appropriate directory location. The Parallel Environment does not
24514 support threads, so the @option{-mpe} option and the @option{-pthread}
24515 option are incompatible.
24516
24517 @item -malign-natural
24518 @itemx -malign-power
24519 @opindex malign-natural
24520 @opindex malign-power
24521 On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
24522 @option{-malign-natural} overrides the ABI-defined alignment of larger
24523 types, such as floating-point doubles, on their natural size-based boundary.
24524 The option @option{-malign-power} instructs GCC to follow the ABI-specified
24525 alignment rules. GCC defaults to the standard alignment defined in the ABI@.
24526
24527 On 64-bit Darwin, natural alignment is the default, and @option{-malign-power}
24528 is not supported.
24529
24530 @item -msoft-float
24531 @itemx -mhard-float
24532 @opindex msoft-float
24533 @opindex mhard-float
24534 Generate code that does not use (uses) the floating-point register set.
24535 Software floating-point emulation is provided if you use the
24536 @option{-msoft-float} option, and pass the option to GCC when linking.
24537
24538 @item -mmultiple
24539 @itemx -mno-multiple
24540 @opindex mmultiple
24541 @opindex mno-multiple
24542 Generate code that uses (does not use) the load multiple word
24543 instructions and the store multiple word instructions. These
24544 instructions are generated by default on POWER systems, and not
24545 generated on PowerPC systems. Do not use @option{-mmultiple} on little-endian
24546 PowerPC systems, since those instructions do not work when the
24547 processor is in little-endian mode. The exceptions are PPC740 and
24548 PPC750 which permit these instructions in little-endian mode.
24549
24550 @item -mupdate
24551 @itemx -mno-update
24552 @opindex mupdate
24553 @opindex mno-update
24554 Generate code that uses (does not use) the load or store instructions
24555 that update the base register to the address of the calculated memory
24556 location. These instructions are generated by default. If you use
24557 @option{-mno-update}, there is a small window between the time that the
24558 stack pointer is updated and the address of the previous frame is
24559 stored, which means code that walks the stack frame across interrupts or
24560 signals may get corrupted data.
24561
24562 @item -mavoid-indexed-addresses
24563 @itemx -mno-avoid-indexed-addresses
24564 @opindex mavoid-indexed-addresses
24565 @opindex mno-avoid-indexed-addresses
24566 Generate code that tries to avoid (not avoid) the use of indexed load
24567 or store instructions. These instructions can incur a performance
24568 penalty on Power6 processors in certain situations, such as when
24569 stepping through large arrays that cross a 16M boundary. This option
24570 is enabled by default when targeting Power6 and disabled otherwise.
24571
24572 @item -mfused-madd
24573 @itemx -mno-fused-madd
24574 @opindex mfused-madd
24575 @opindex mno-fused-madd
24576 Generate code that uses (does not use) the floating-point multiply and
24577 accumulate instructions. These instructions are generated by default
24578 if hardware floating point is used. The machine-dependent
24579 @option{-mfused-madd} option is now mapped to the machine-independent
24580 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
24581 mapped to @option{-ffp-contract=off}.
24582
24583 @item -mmulhw
24584 @itemx -mno-mulhw
24585 @opindex mmulhw
24586 @opindex mno-mulhw
24587 Generate code that uses (does not use) the half-word multiply and
24588 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
24589 These instructions are generated by default when targeting those
24590 processors.
24591
24592 @item -mdlmzb
24593 @itemx -mno-dlmzb
24594 @opindex mdlmzb
24595 @opindex mno-dlmzb
24596 Generate code that uses (does not use) the string-search @samp{dlmzb}
24597 instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
24598 generated by default when targeting those processors.
24599
24600 @item -mno-bit-align
24601 @itemx -mbit-align
24602 @opindex mno-bit-align
24603 @opindex mbit-align
24604 On System V.4 and embedded PowerPC systems do not (do) force structures
24605 and unions that contain bit-fields to be aligned to the base type of the
24606 bit-field.
24607
24608 For example, by default a structure containing nothing but 8
24609 @code{unsigned} bit-fields of length 1 is aligned to a 4-byte
24610 boundary and has a size of 4 bytes. By using @option{-mno-bit-align},
24611 the structure is aligned to a 1-byte boundary and is 1 byte in
24612 size.
24613
24614 @item -mno-strict-align
24615 @itemx -mstrict-align
24616 @opindex mno-strict-align
24617 @opindex mstrict-align
24618 On System V.4 and embedded PowerPC systems do not (do) assume that
24619 unaligned memory references are handled by the system.
24620
24621 @item -mrelocatable
24622 @itemx -mno-relocatable
24623 @opindex mrelocatable
24624 @opindex mno-relocatable
24625 Generate code that allows (does not allow) a static executable to be
24626 relocated to a different address at run time. A simple embedded
24627 PowerPC system loader should relocate the entire contents of
24628 @code{.got2} and 4-byte locations listed in the @code{.fixup} section,
24629 a table of 32-bit addresses generated by this option. For this to
24630 work, all objects linked together must be compiled with
24631 @option{-mrelocatable} or @option{-mrelocatable-lib}.
24632 @option{-mrelocatable} code aligns the stack to an 8-byte boundary.
24633
24634 @item -mrelocatable-lib
24635 @itemx -mno-relocatable-lib
24636 @opindex mrelocatable-lib
24637 @opindex mno-relocatable-lib
24638 Like @option{-mrelocatable}, @option{-mrelocatable-lib} generates a
24639 @code{.fixup} section to allow static executables to be relocated at
24640 run time, but @option{-mrelocatable-lib} does not use the smaller stack
24641 alignment of @option{-mrelocatable}. Objects compiled with
24642 @option{-mrelocatable-lib} may be linked with objects compiled with
24643 any combination of the @option{-mrelocatable} options.
24644
24645 @item -mno-toc
24646 @itemx -mtoc
24647 @opindex mno-toc
24648 @opindex mtoc
24649 On System V.4 and embedded PowerPC systems do not (do) assume that
24650 register 2 contains a pointer to a global area pointing to the addresses
24651 used in the program.
24652
24653 @item -mlittle
24654 @itemx -mlittle-endian
24655 @opindex mlittle
24656 @opindex mlittle-endian
24657 On System V.4 and embedded PowerPC systems compile code for the
24658 processor in little-endian mode. The @option{-mlittle-endian} option is
24659 the same as @option{-mlittle}.
24660
24661 @item -mbig
24662 @itemx -mbig-endian
24663 @opindex mbig
24664 @opindex mbig-endian
24665 On System V.4 and embedded PowerPC systems compile code for the
24666 processor in big-endian mode. The @option{-mbig-endian} option is
24667 the same as @option{-mbig}.
24668
24669 @item -mdynamic-no-pic
24670 @opindex mdynamic-no-pic
24671 On Darwin and Mac OS X systems, compile code so that it is not
24672 relocatable, but that its external references are relocatable. The
24673 resulting code is suitable for applications, but not shared
24674 libraries.
24675
24676 @item -msingle-pic-base
24677 @opindex msingle-pic-base
24678 Treat the register used for PIC addressing as read-only, rather than
24679 loading it in the prologue for each function. The runtime system is
24680 responsible for initializing this register with an appropriate value
24681 before execution begins.
24682
24683 @item -mprioritize-restricted-insns=@var{priority}
24684 @opindex mprioritize-restricted-insns
24685 This option controls the priority that is assigned to
24686 dispatch-slot restricted instructions during the second scheduling
24687 pass. The argument @var{priority} takes the value @samp{0}, @samp{1},
24688 or @samp{2} to assign no, highest, or second-highest (respectively)
24689 priority to dispatch-slot restricted
24690 instructions.
24691
24692 @item -msched-costly-dep=@var{dependence_type}
24693 @opindex msched-costly-dep
24694 This option controls which dependences are considered costly
24695 by the target during instruction scheduling. The argument
24696 @var{dependence_type} takes one of the following values:
24697
24698 @table @asis
24699 @item @samp{no}
24700 No dependence is costly.
24701
24702 @item @samp{all}
24703 All dependences are costly.
24704
24705 @item @samp{true_store_to_load}
24706 A true dependence from store to load is costly.
24707
24708 @item @samp{store_to_load}
24709 Any dependence from store to load is costly.
24710
24711 @item @var{number}
24712 Any dependence for which the latency is greater than or equal to
24713 @var{number} is costly.
24714 @end table
24715
24716 @item -minsert-sched-nops=@var{scheme}
24717 @opindex minsert-sched-nops
24718 This option controls which NOP insertion scheme is used during
24719 the second scheduling pass. The argument @var{scheme} takes one of the
24720 following values:
24721
24722 @table @asis
24723 @item @samp{no}
24724 Don't insert NOPs.
24725
24726 @item @samp{pad}
24727 Pad with NOPs any dispatch group that has vacant issue slots,
24728 according to the scheduler's grouping.
24729
24730 @item @samp{regroup_exact}
24731 Insert NOPs to force costly dependent insns into
24732 separate groups. Insert exactly as many NOPs as needed to force an insn
24733 to a new group, according to the estimated processor grouping.
24734
24735 @item @var{number}
24736 Insert NOPs to force costly dependent insns into
24737 separate groups. Insert @var{number} NOPs to force an insn to a new group.
24738 @end table
24739
24740 @item -mcall-sysv
24741 @opindex mcall-sysv
24742 On System V.4 and embedded PowerPC systems compile code using calling
24743 conventions that adhere to the March 1995 draft of the System V
24744 Application Binary Interface, PowerPC processor supplement. This is the
24745 default unless you configured GCC using @samp{powerpc-*-eabiaix}.
24746
24747 @item -mcall-sysv-eabi
24748 @itemx -mcall-eabi
24749 @opindex mcall-sysv-eabi
24750 @opindex mcall-eabi
24751 Specify both @option{-mcall-sysv} and @option{-meabi} options.
24752
24753 @item -mcall-sysv-noeabi
24754 @opindex mcall-sysv-noeabi
24755 Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
24756
24757 @item -mcall-aixdesc
24758 @opindex m
24759 On System V.4 and embedded PowerPC systems compile code for the AIX
24760 operating system.
24761
24762 @item -mcall-linux
24763 @opindex mcall-linux
24764 On System V.4 and embedded PowerPC systems compile code for the
24765 Linux-based GNU system.
24766
24767 @item -mcall-freebsd
24768 @opindex mcall-freebsd
24769 On System V.4 and embedded PowerPC systems compile code for the
24770 FreeBSD operating system.
24771
24772 @item -mcall-netbsd
24773 @opindex mcall-netbsd
24774 On System V.4 and embedded PowerPC systems compile code for the
24775 NetBSD operating system.
24776
24777 @item -mcall-openbsd
24778 @opindex mcall-netbsd
24779 On System V.4 and embedded PowerPC systems compile code for the
24780 OpenBSD operating system.
24781
24782 @item -mtraceback=@var{traceback_type}
24783 @opindex mtraceback
24784 Select the type of traceback table. Valid values for @var{traceback_type}
24785 are @samp{full}, @samp{part}, and @samp{no}.
24786
24787 @item -maix-struct-return
24788 @opindex maix-struct-return
24789 Return all structures in memory (as specified by the AIX ABI)@.
24790
24791 @item -msvr4-struct-return
24792 @opindex msvr4-struct-return
24793 Return structures smaller than 8 bytes in registers (as specified by the
24794 SVR4 ABI)@.
24795
24796 @item -mabi=@var{abi-type}
24797 @opindex mabi
24798 Extend the current ABI with a particular extension, or remove such extension.
24799 Valid values are @samp{altivec}, @samp{no-altivec},
24800 @samp{ibmlongdouble}, @samp{ieeelongdouble},
24801 @samp{elfv1}, @samp{elfv2}@.
24802
24803 @item -mabi=ibmlongdouble
24804 @opindex mabi=ibmlongdouble
24805 Change the current ABI to use IBM extended-precision long double.
24806 This is not likely to work if your system defaults to using IEEE
24807 extended-precision long double. If you change the long double type
24808 from IEEE extended-precision, the compiler will issue a warning unless
24809 you use the @option{-Wno-psabi} option. Requires @option{-mlong-double-128}
24810 to be enabled.
24811
24812 @item -mabi=ieeelongdouble
24813 @opindex mabi=ieeelongdouble
24814 Change the current ABI to use IEEE extended-precision long double.
24815 This is not likely to work if your system defaults to using IBM
24816 extended-precision long double. If you change the long double type
24817 from IBM extended-precision, the compiler will issue a warning unless
24818 you use the @option{-Wno-psabi} option. Requires @option{-mlong-double-128}
24819 to be enabled.
24820
24821 @item -mabi=elfv1
24822 @opindex mabi=elfv1
24823 Change the current ABI to use the ELFv1 ABI.
24824 This is the default ABI for big-endian PowerPC 64-bit Linux.
24825 Overriding the default ABI requires special system support and is
24826 likely to fail in spectacular ways.
24827
24828 @item -mabi=elfv2
24829 @opindex mabi=elfv2
24830 Change the current ABI to use the ELFv2 ABI.
24831 This is the default ABI for little-endian PowerPC 64-bit Linux.
24832 Overriding the default ABI requires special system support and is
24833 likely to fail in spectacular ways.
24834
24835 @item -mgnu-attribute
24836 @itemx -mno-gnu-attribute
24837 @opindex mgnu-attribute
24838 @opindex mno-gnu-attribute
24839 Emit .gnu_attribute assembly directives to set tag/value pairs in a
24840 .gnu.attributes section that specify ABI variations in function
24841 parameters or return values.
24842
24843 @item -mprototype
24844 @itemx -mno-prototype
24845 @opindex mprototype
24846 @opindex mno-prototype
24847 On System V.4 and embedded PowerPC systems assume that all calls to
24848 variable argument functions are properly prototyped. Otherwise, the
24849 compiler must insert an instruction before every non-prototyped call to
24850 set or clear bit 6 of the condition code register (@code{CR}) to
24851 indicate whether floating-point values are passed in the floating-point
24852 registers in case the function takes variable arguments. With
24853 @option{-mprototype}, only calls to prototyped variable argument functions
24854 set or clear the bit.
24855
24856 @item -msim
24857 @opindex msim
24858 On embedded PowerPC systems, assume that the startup module is called
24859 @file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
24860 @file{libc.a}. This is the default for @samp{powerpc-*-eabisim}
24861 configurations.
24862
24863 @item -mmvme
24864 @opindex mmvme
24865 On embedded PowerPC systems, assume that the startup module is called
24866 @file{crt0.o} and the standard C libraries are @file{libmvme.a} and
24867 @file{libc.a}.
24868
24869 @item -mads
24870 @opindex mads
24871 On embedded PowerPC systems, assume that the startup module is called
24872 @file{crt0.o} and the standard C libraries are @file{libads.a} and
24873 @file{libc.a}.
24874
24875 @item -myellowknife
24876 @opindex myellowknife
24877 On embedded PowerPC systems, assume that the startup module is called
24878 @file{crt0.o} and the standard C libraries are @file{libyk.a} and
24879 @file{libc.a}.
24880
24881 @item -mvxworks
24882 @opindex mvxworks
24883 On System V.4 and embedded PowerPC systems, specify that you are
24884 compiling for a VxWorks system.
24885
24886 @item -memb
24887 @opindex memb
24888 On embedded PowerPC systems, set the @code{PPC_EMB} bit in the ELF flags
24889 header to indicate that @samp{eabi} extended relocations are used.
24890
24891 @item -meabi
24892 @itemx -mno-eabi
24893 @opindex meabi
24894 @opindex mno-eabi
24895 On System V.4 and embedded PowerPC systems do (do not) adhere to the
24896 Embedded Applications Binary Interface (EABI), which is a set of
24897 modifications to the System V.4 specifications. Selecting @option{-meabi}
24898 means that the stack is aligned to an 8-byte boundary, a function
24899 @code{__eabi} is called from @code{main} to set up the EABI
24900 environment, and the @option{-msdata} option can use both @code{r2} and
24901 @code{r13} to point to two separate small data areas. Selecting
24902 @option{-mno-eabi} means that the stack is aligned to a 16-byte boundary,
24903 no EABI initialization function is called from @code{main}, and the
24904 @option{-msdata} option only uses @code{r13} to point to a single
24905 small data area. The @option{-meabi} option is on by default if you
24906 configured GCC using one of the @samp{powerpc*-*-eabi*} options.
24907
24908 @item -msdata=eabi
24909 @opindex msdata=eabi
24910 On System V.4 and embedded PowerPC systems, put small initialized
24911 @code{const} global and static data in the @code{.sdata2} section, which
24912 is pointed to by register @code{r2}. Put small initialized
24913 non-@code{const} global and static data in the @code{.sdata} section,
24914 which is pointed to by register @code{r13}. Put small uninitialized
24915 global and static data in the @code{.sbss} section, which is adjacent to
24916 the @code{.sdata} section. The @option{-msdata=eabi} option is
24917 incompatible with the @option{-mrelocatable} option. The
24918 @option{-msdata=eabi} option also sets the @option{-memb} option.
24919
24920 @item -msdata=sysv
24921 @opindex msdata=sysv
24922 On System V.4 and embedded PowerPC systems, put small global and static
24923 data in the @code{.sdata} section, which is pointed to by register
24924 @code{r13}. Put small uninitialized global and static data in the
24925 @code{.sbss} section, which is adjacent to the @code{.sdata} section.
24926 The @option{-msdata=sysv} option is incompatible with the
24927 @option{-mrelocatable} option.
24928
24929 @item -msdata=default
24930 @itemx -msdata
24931 @opindex msdata=default
24932 @opindex msdata
24933 On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
24934 compile code the same as @option{-msdata=eabi}, otherwise compile code the
24935 same as @option{-msdata=sysv}.
24936
24937 @item -msdata=data
24938 @opindex msdata=data
24939 On System V.4 and embedded PowerPC systems, put small global
24940 data in the @code{.sdata} section. Put small uninitialized global
24941 data in the @code{.sbss} section. Do not use register @code{r13}
24942 to address small data however. This is the default behavior unless
24943 other @option{-msdata} options are used.
24944
24945 @item -msdata=none
24946 @itemx -mno-sdata
24947 @opindex msdata=none
24948 @opindex mno-sdata
24949 On embedded PowerPC systems, put all initialized global and static data
24950 in the @code{.data} section, and all uninitialized data in the
24951 @code{.bss} section.
24952
24953 @item -mreadonly-in-sdata
24954 @opindex mreadonly-in-sdata
24955 @opindex mno-readonly-in-sdata
24956 Put read-only objects in the @code{.sdata} section as well. This is the
24957 default.
24958
24959 @item -mblock-move-inline-limit=@var{num}
24960 @opindex mblock-move-inline-limit
24961 Inline all block moves (such as calls to @code{memcpy} or structure
24962 copies) less than or equal to @var{num} bytes. The minimum value for
24963 @var{num} is 32 bytes on 32-bit targets and 64 bytes on 64-bit
24964 targets. The default value is target-specific.
24965
24966 @item -mblock-compare-inline-limit=@var{num}
24967 @opindex mblock-compare-inline-limit
24968 Generate non-looping inline code for all block compares (such as calls
24969 to @code{memcmp} or structure compares) less than or equal to @var{num}
24970 bytes. If @var{num} is 0, all inline expansion (non-loop and loop) of
24971 block compare is disabled. The default value is target-specific.
24972
24973 @item -mblock-compare-inline-loop-limit=@var{num}
24974 @opindex mblock-compare-inline-loop-limit
24975 Generate an inline expansion using loop code for all block compares that
24976 are less than or equal to @var{num} bytes, but greater than the limit
24977 for non-loop inline block compare expansion. If the block length is not
24978 constant, at most @var{num} bytes will be compared before @code{memcmp}
24979 is called to compare the remainder of the block. The default value is
24980 target-specific.
24981
24982 @item -mstring-compare-inline-limit=@var{num}
24983 @opindex mstring-compare-inline-limit
24984 Compare at most @var{num} string bytes with inline code.
24985 If the difference or end of string is not found at the
24986 end of the inline compare a call to @code{strcmp} or @code{strncmp} will
24987 take care of the rest of the comparison. The default is 64 bytes.
24988
24989 @item -G @var{num}
24990 @opindex G
24991 @cindex smaller data references (PowerPC)
24992 @cindex .sdata/.sdata2 references (PowerPC)
24993 On embedded PowerPC systems, put global and static items less than or
24994 equal to @var{num} bytes into the small data or BSS sections instead of
24995 the normal data or BSS section. By default, @var{num} is 8. The
24996 @option{-G @var{num}} switch is also passed to the linker.
24997 All modules should be compiled with the same @option{-G @var{num}} value.
24998
24999 @item -mregnames
25000 @itemx -mno-regnames
25001 @opindex mregnames
25002 @opindex mno-regnames
25003 On System V.4 and embedded PowerPC systems do (do not) emit register
25004 names in the assembly language output using symbolic forms.
25005
25006 @item -mlongcall
25007 @itemx -mno-longcall
25008 @opindex mlongcall
25009 @opindex mno-longcall
25010 By default assume that all calls are far away so that a longer and more
25011 expensive calling sequence is required. This is required for calls
25012 farther than 32 megabytes (33,554,432 bytes) from the current location.
25013 A short call is generated if the compiler knows
25014 the call cannot be that far away. This setting can be overridden by
25015 the @code{shortcall} function attribute, or by @code{#pragma
25016 longcall(0)}.
25017
25018 Some linkers are capable of detecting out-of-range calls and generating
25019 glue code on the fly. On these systems, long calls are unnecessary and
25020 generate slower code. As of this writing, the AIX linker can do this,
25021 as can the GNU linker for PowerPC/64. It is planned to add this feature
25022 to the GNU linker for 32-bit PowerPC systems as well.
25023
25024 On PowerPC64 ELFv2 and 32-bit PowerPC systems with newer GNU linkers,
25025 GCC can generate long calls using an inline PLT call sequence (see
25026 @option{-mpltseq}). PowerPC with @option{-mbss-plt} and PowerPC64
25027 ELFv1 (big-endian) do not support inline PLT calls.
25028
25029 On Darwin/PPC systems, @code{#pragma longcall} generates @code{jbsr
25030 callee, L42}, plus a @dfn{branch island} (glue code). The two target
25031 addresses represent the callee and the branch island. The
25032 Darwin/PPC linker prefers the first address and generates a @code{bl
25033 callee} if the PPC @code{bl} instruction reaches the callee directly;
25034 otherwise, the linker generates @code{bl L42} to call the branch
25035 island. The branch island is appended to the body of the
25036 calling function; it computes the full 32-bit address of the callee
25037 and jumps to it.
25038
25039 On Mach-O (Darwin) systems, this option directs the compiler emit to
25040 the glue for every direct call, and the Darwin linker decides whether
25041 to use or discard it.
25042
25043 In the future, GCC may ignore all longcall specifications
25044 when the linker is known to generate glue.
25045
25046 @item -mpltseq
25047 @itemx -mno-pltseq
25048 @opindex mpltseq
25049 @opindex mno-pltseq
25050 Implement (do not implement) -fno-plt and long calls using an inline
25051 PLT call sequence that supports lazy linking and long calls to
25052 functions in dlopen'd shared libraries. Inline PLT calls are only
25053 supported on PowerPC64 ELFv2 and 32-bit PowerPC systems with newer GNU
25054 linkers, and are enabled by default if the support is detected when
25055 configuring GCC, and, in the case of 32-bit PowerPC, if GCC is
25056 configured with @option{--enable-secureplt}. @option{-mpltseq} code
25057 and @option{-mbss-plt} 32-bit PowerPC relocatable objects may not be
25058 linked together.
25059
25060 @item -mtls-markers
25061 @itemx -mno-tls-markers
25062 @opindex mtls-markers
25063 @opindex mno-tls-markers
25064 Mark (do not mark) calls to @code{__tls_get_addr} with a relocation
25065 specifying the function argument. The relocation allows the linker to
25066 reliably associate function call with argument setup instructions for
25067 TLS optimization, which in turn allows GCC to better schedule the
25068 sequence.
25069
25070 @item -mrecip
25071 @itemx -mno-recip
25072 @opindex mrecip
25073 This option enables use of the reciprocal estimate and
25074 reciprocal square root estimate instructions with additional
25075 Newton-Raphson steps to increase precision instead of doing a divide or
25076 square root and divide for floating-point arguments. You should use
25077 the @option{-ffast-math} option when using @option{-mrecip} (or at
25078 least @option{-funsafe-math-optimizations},
25079 @option{-ffinite-math-only}, @option{-freciprocal-math} and
25080 @option{-fno-trapping-math}). Note that while the throughput of the
25081 sequence is generally higher than the throughput of the non-reciprocal
25082 instruction, the precision of the sequence can be decreased by up to 2
25083 ulp (i.e.@: the inverse of 1.0 equals 0.99999994) for reciprocal square
25084 roots.
25085
25086 @item -mrecip=@var{opt}
25087 @opindex mrecip=opt
25088 This option controls which reciprocal estimate instructions
25089 may be used. @var{opt} is a comma-separated list of options, which may
25090 be preceded by a @code{!} to invert the option:
25091
25092 @table @samp
25093
25094 @item all
25095 Enable all estimate instructions.
25096
25097 @item default
25098 Enable the default instructions, equivalent to @option{-mrecip}.
25099
25100 @item none
25101 Disable all estimate instructions, equivalent to @option{-mno-recip}.
25102
25103 @item div
25104 Enable the reciprocal approximation instructions for both
25105 single and double precision.
25106
25107 @item divf
25108 Enable the single-precision reciprocal approximation instructions.
25109
25110 @item divd
25111 Enable the double-precision reciprocal approximation instructions.
25112
25113 @item rsqrt
25114 Enable the reciprocal square root approximation instructions for both
25115 single and double precision.
25116
25117 @item rsqrtf
25118 Enable the single-precision reciprocal square root approximation instructions.
25119
25120 @item rsqrtd
25121 Enable the double-precision reciprocal square root approximation instructions.
25122
25123 @end table
25124
25125 So, for example, @option{-mrecip=all,!rsqrtd} enables
25126 all of the reciprocal estimate instructions, except for the
25127 @code{FRSQRTE}, @code{XSRSQRTEDP}, and @code{XVRSQRTEDP} instructions
25128 which handle the double-precision reciprocal square root calculations.
25129
25130 @item -mrecip-precision
25131 @itemx -mno-recip-precision
25132 @opindex mrecip-precision
25133 Assume (do not assume) that the reciprocal estimate instructions
25134 provide higher-precision estimates than is mandated by the PowerPC
25135 ABI. Selecting @option{-mcpu=power6}, @option{-mcpu=power7} or
25136 @option{-mcpu=power8} automatically selects @option{-mrecip-precision}.
25137 The double-precision square root estimate instructions are not generated by
25138 default on low-precision machines, since they do not provide an
25139 estimate that converges after three steps.
25140
25141 @item -mveclibabi=@var{type}
25142 @opindex mveclibabi
25143 Specifies the ABI type to use for vectorizing intrinsics using an
25144 external library. The only type supported at present is @samp{mass},
25145 which specifies to use IBM's Mathematical Acceleration Subsystem
25146 (MASS) libraries for vectorizing intrinsics using external libraries.
25147 GCC currently emits calls to @code{acosd2}, @code{acosf4},
25148 @code{acoshd2}, @code{acoshf4}, @code{asind2}, @code{asinf4},
25149 @code{asinhd2}, @code{asinhf4}, @code{atan2d2}, @code{atan2f4},
25150 @code{atand2}, @code{atanf4}, @code{atanhd2}, @code{atanhf4},
25151 @code{cbrtd2}, @code{cbrtf4}, @code{cosd2}, @code{cosf4},
25152 @code{coshd2}, @code{coshf4}, @code{erfcd2}, @code{erfcf4},
25153 @code{erfd2}, @code{erff4}, @code{exp2d2}, @code{exp2f4},
25154 @code{expd2}, @code{expf4}, @code{expm1d2}, @code{expm1f4},
25155 @code{hypotd2}, @code{hypotf4}, @code{lgammad2}, @code{lgammaf4},
25156 @code{log10d2}, @code{log10f4}, @code{log1pd2}, @code{log1pf4},
25157 @code{log2d2}, @code{log2f4}, @code{logd2}, @code{logf4},
25158 @code{powd2}, @code{powf4}, @code{sind2}, @code{sinf4}, @code{sinhd2},
25159 @code{sinhf4}, @code{sqrtd2}, @code{sqrtf4}, @code{tand2},
25160 @code{tanf4}, @code{tanhd2}, and @code{tanhf4} when generating code
25161 for power7. Both @option{-ftree-vectorize} and
25162 @option{-funsafe-math-optimizations} must also be enabled. The MASS
25163 libraries must be specified at link time.
25164
25165 @item -mfriz
25166 @itemx -mno-friz
25167 @opindex mfriz
25168 Generate (do not generate) the @code{friz} instruction when the
25169 @option{-funsafe-math-optimizations} option is used to optimize
25170 rounding of floating-point values to 64-bit integer and back to floating
25171 point. The @code{friz} instruction does not return the same value if
25172 the floating-point number is too large to fit in an integer.
25173
25174 @item -mpointers-to-nested-functions
25175 @itemx -mno-pointers-to-nested-functions
25176 @opindex mpointers-to-nested-functions
25177 Generate (do not generate) code to load up the static chain register
25178 (@code{r11}) when calling through a pointer on AIX and 64-bit Linux
25179 systems where a function pointer points to a 3-word descriptor giving
25180 the function address, TOC value to be loaded in register @code{r2}, and
25181 static chain value to be loaded in register @code{r11}. The
25182 @option{-mpointers-to-nested-functions} is on by default. You cannot
25183 call through pointers to nested functions or pointers
25184 to functions compiled in other languages that use the static chain if
25185 you use @option{-mno-pointers-to-nested-functions}.
25186
25187 @item -msave-toc-indirect
25188 @itemx -mno-save-toc-indirect
25189 @opindex msave-toc-indirect
25190 Generate (do not generate) code to save the TOC value in the reserved
25191 stack location in the function prologue if the function calls through
25192 a pointer on AIX and 64-bit Linux systems. If the TOC value is not
25193 saved in the prologue, it is saved just before the call through the
25194 pointer. The @option{-mno-save-toc-indirect} option is the default.
25195
25196 @item -mcompat-align-parm
25197 @itemx -mno-compat-align-parm
25198 @opindex mcompat-align-parm
25199 Generate (do not generate) code to pass structure parameters with a
25200 maximum alignment of 64 bits, for compatibility with older versions
25201 of GCC.
25202
25203 Older versions of GCC (prior to 4.9.0) incorrectly did not align a
25204 structure parameter on a 128-bit boundary when that structure contained
25205 a member requiring 128-bit alignment. This is corrected in more
25206 recent versions of GCC. This option may be used to generate code
25207 that is compatible with functions compiled with older versions of
25208 GCC.
25209
25210 The @option{-mno-compat-align-parm} option is the default.
25211
25212 @item -mstack-protector-guard=@var{guard}
25213 @itemx -mstack-protector-guard-reg=@var{reg}
25214 @itemx -mstack-protector-guard-offset=@var{offset}
25215 @itemx -mstack-protector-guard-symbol=@var{symbol}
25216 @opindex mstack-protector-guard
25217 @opindex mstack-protector-guard-reg
25218 @opindex mstack-protector-guard-offset
25219 @opindex mstack-protector-guard-symbol
25220 Generate stack protection code using canary at @var{guard}. Supported
25221 locations are @samp{global} for global canary or @samp{tls} for per-thread
25222 canary in the TLS block (the default with GNU libc version 2.4 or later).
25223
25224 With the latter choice the options
25225 @option{-mstack-protector-guard-reg=@var{reg}} and
25226 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
25227 which register to use as base register for reading the canary, and from what
25228 offset from that base register. The default for those is as specified in the
25229 relevant ABI. @option{-mstack-protector-guard-symbol=@var{symbol}} overrides
25230 the offset with a symbol reference to a canary in the TLS block.
25231
25232 @item -mpcrel
25233 @itemx -mno-pcrel
25234 @opindex mpcrel
25235 @opindex mno-pcrel
25236 Generate (do not generate) pc-relative addressing when the option
25237 @option{-mcpu=future} is used.
25238 @end table
25239
25240 @node RX Options
25241 @subsection RX Options
25242 @cindex RX Options
25243
25244 These command-line options are defined for RX targets:
25245
25246 @table @gcctabopt
25247 @item -m64bit-doubles
25248 @itemx -m32bit-doubles
25249 @opindex m64bit-doubles
25250 @opindex m32bit-doubles
25251 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
25252 or 32 bits (@option{-m32bit-doubles}) in size. The default is
25253 @option{-m32bit-doubles}. @emph{Note} RX floating-point hardware only
25254 works on 32-bit values, which is why the default is
25255 @option{-m32bit-doubles}.
25256
25257 @item -fpu
25258 @itemx -nofpu
25259 @opindex fpu
25260 @opindex nofpu
25261 Enables (@option{-fpu}) or disables (@option{-nofpu}) the use of RX
25262 floating-point hardware. The default is enabled for the RX600
25263 series and disabled for the RX200 series.
25264
25265 Floating-point instructions are only generated for 32-bit floating-point
25266 values, however, so the FPU hardware is not used for doubles if the
25267 @option{-m64bit-doubles} option is used.
25268
25269 @emph{Note} If the @option{-fpu} option is enabled then
25270 @option{-funsafe-math-optimizations} is also enabled automatically.
25271 This is because the RX FPU instructions are themselves unsafe.
25272
25273 @item -mcpu=@var{name}
25274 @opindex mcpu
25275 Selects the type of RX CPU to be targeted. Currently three types are
25276 supported, the generic @samp{RX600} and @samp{RX200} series hardware and
25277 the specific @samp{RX610} CPU. The default is @samp{RX600}.
25278
25279 The only difference between @samp{RX600} and @samp{RX610} is that the
25280 @samp{RX610} does not support the @code{MVTIPL} instruction.
25281
25282 The @samp{RX200} series does not have a hardware floating-point unit
25283 and so @option{-nofpu} is enabled by default when this type is
25284 selected.
25285
25286 @item -mbig-endian-data
25287 @itemx -mlittle-endian-data
25288 @opindex mbig-endian-data
25289 @opindex mlittle-endian-data
25290 Store data (but not code) in the big-endian format. The default is
25291 @option{-mlittle-endian-data}, i.e.@: to store data in the little-endian
25292 format.
25293
25294 @item -msmall-data-limit=@var{N}
25295 @opindex msmall-data-limit
25296 Specifies the maximum size in bytes of global and static variables
25297 which can be placed into the small data area. Using the small data
25298 area can lead to smaller and faster code, but the size of area is
25299 limited and it is up to the programmer to ensure that the area does
25300 not overflow. Also when the small data area is used one of the RX's
25301 registers (usually @code{r13}) is reserved for use pointing to this
25302 area, so it is no longer available for use by the compiler. This
25303 could result in slower and/or larger code if variables are pushed onto
25304 the stack instead of being held in this register.
25305
25306 Note, common variables (variables that have not been initialized) and
25307 constants are not placed into the small data area as they are assigned
25308 to other sections in the output executable.
25309
25310 The default value is zero, which disables this feature. Note, this
25311 feature is not enabled by default with higher optimization levels
25312 (@option{-O2} etc) because of the potentially detrimental effects of
25313 reserving a register. It is up to the programmer to experiment and
25314 discover whether this feature is of benefit to their program. See the
25315 description of the @option{-mpid} option for a description of how the
25316 actual register to hold the small data area pointer is chosen.
25317
25318 @item -msim
25319 @itemx -mno-sim
25320 @opindex msim
25321 @opindex mno-sim
25322 Use the simulator runtime. The default is to use the libgloss
25323 board-specific runtime.
25324
25325 @item -mas100-syntax
25326 @itemx -mno-as100-syntax
25327 @opindex mas100-syntax
25328 @opindex mno-as100-syntax
25329 When generating assembler output use a syntax that is compatible with
25330 Renesas's AS100 assembler. This syntax can also be handled by the GAS
25331 assembler, but it has some restrictions so it is not generated by default.
25332
25333 @item -mmax-constant-size=@var{N}
25334 @opindex mmax-constant-size
25335 Specifies the maximum size, in bytes, of a constant that can be used as
25336 an operand in a RX instruction. Although the RX instruction set does
25337 allow constants of up to 4 bytes in length to be used in instructions,
25338 a longer value equates to a longer instruction. Thus in some
25339 circumstances it can be beneficial to restrict the size of constants
25340 that are used in instructions. Constants that are too big are instead
25341 placed into a constant pool and referenced via register indirection.
25342
25343 The value @var{N} can be between 0 and 4. A value of 0 (the default)
25344 or 4 means that constants of any size are allowed.
25345
25346 @item -mrelax
25347 @opindex mrelax
25348 Enable linker relaxation. Linker relaxation is a process whereby the
25349 linker attempts to reduce the size of a program by finding shorter
25350 versions of various instructions. Disabled by default.
25351
25352 @item -mint-register=@var{N}
25353 @opindex mint-register
25354 Specify the number of registers to reserve for fast interrupt handler
25355 functions. The value @var{N} can be between 0 and 4. A value of 1
25356 means that register @code{r13} is reserved for the exclusive use
25357 of fast interrupt handlers. A value of 2 reserves @code{r13} and
25358 @code{r12}. A value of 3 reserves @code{r13}, @code{r12} and
25359 @code{r11}, and a value of 4 reserves @code{r13} through @code{r10}.
25360 A value of 0, the default, does not reserve any registers.
25361
25362 @item -msave-acc-in-interrupts
25363 @opindex msave-acc-in-interrupts
25364 Specifies that interrupt handler functions should preserve the
25365 accumulator register. This is only necessary if normal code might use
25366 the accumulator register, for example because it performs 64-bit
25367 multiplications. The default is to ignore the accumulator as this
25368 makes the interrupt handlers faster.
25369
25370 @item -mpid
25371 @itemx -mno-pid
25372 @opindex mpid
25373 @opindex mno-pid
25374 Enables the generation of position independent data. When enabled any
25375 access to constant data is done via an offset from a base address
25376 held in a register. This allows the location of constant data to be
25377 determined at run time without requiring the executable to be
25378 relocated, which is a benefit to embedded applications with tight
25379 memory constraints. Data that can be modified is not affected by this
25380 option.
25381
25382 Note, using this feature reserves a register, usually @code{r13}, for
25383 the constant data base address. This can result in slower and/or
25384 larger code, especially in complicated functions.
25385
25386 The actual register chosen to hold the constant data base address
25387 depends upon whether the @option{-msmall-data-limit} and/or the
25388 @option{-mint-register} command-line options are enabled. Starting
25389 with register @code{r13} and proceeding downwards, registers are
25390 allocated first to satisfy the requirements of @option{-mint-register},
25391 then @option{-mpid} and finally @option{-msmall-data-limit}. Thus it
25392 is possible for the small data area register to be @code{r8} if both
25393 @option{-mint-register=4} and @option{-mpid} are specified on the
25394 command line.
25395
25396 By default this feature is not enabled. The default can be restored
25397 via the @option{-mno-pid} command-line option.
25398
25399 @item -mno-warn-multiple-fast-interrupts
25400 @itemx -mwarn-multiple-fast-interrupts
25401 @opindex mno-warn-multiple-fast-interrupts
25402 @opindex mwarn-multiple-fast-interrupts
25403 Prevents GCC from issuing a warning message if it finds more than one
25404 fast interrupt handler when it is compiling a file. The default is to
25405 issue a warning for each extra fast interrupt handler found, as the RX
25406 only supports one such interrupt.
25407
25408 @item -mallow-string-insns
25409 @itemx -mno-allow-string-insns
25410 @opindex mallow-string-insns
25411 @opindex mno-allow-string-insns
25412 Enables or disables the use of the string manipulation instructions
25413 @code{SMOVF}, @code{SCMPU}, @code{SMOVB}, @code{SMOVU}, @code{SUNTIL}
25414 @code{SWHILE} and also the @code{RMPA} instruction. These
25415 instructions may prefetch data, which is not safe to do if accessing
25416 an I/O register. (See section 12.2.7 of the RX62N Group User's Manual
25417 for more information).
25418
25419 The default is to allow these instructions, but it is not possible for
25420 GCC to reliably detect all circumstances where a string instruction
25421 might be used to access an I/O register, so their use cannot be
25422 disabled automatically. Instead it is reliant upon the programmer to
25423 use the @option{-mno-allow-string-insns} option if their program
25424 accesses I/O space.
25425
25426 When the instructions are enabled GCC defines the C preprocessor
25427 symbol @code{__RX_ALLOW_STRING_INSNS__}, otherwise it defines the
25428 symbol @code{__RX_DISALLOW_STRING_INSNS__}.
25429
25430 @item -mjsr
25431 @itemx -mno-jsr
25432 @opindex mjsr
25433 @opindex mno-jsr
25434 Use only (or not only) @code{JSR} instructions to access functions.
25435 This option can be used when code size exceeds the range of @code{BSR}
25436 instructions. Note that @option{-mno-jsr} does not mean to not use
25437 @code{JSR} but instead means that any type of branch may be used.
25438 @end table
25439
25440 @emph{Note:} The generic GCC command-line option @option{-ffixed-@var{reg}}
25441 has special significance to the RX port when used with the
25442 @code{interrupt} function attribute. This attribute indicates a
25443 function intended to process fast interrupts. GCC ensures
25444 that it only uses the registers @code{r10}, @code{r11}, @code{r12}
25445 and/or @code{r13} and only provided that the normal use of the
25446 corresponding registers have been restricted via the
25447 @option{-ffixed-@var{reg}} or @option{-mint-register} command-line
25448 options.
25449
25450 @node S/390 and zSeries Options
25451 @subsection S/390 and zSeries Options
25452 @cindex S/390 and zSeries Options
25453
25454 These are the @samp{-m} options defined for the S/390 and zSeries architecture.
25455
25456 @table @gcctabopt
25457 @item -mhard-float
25458 @itemx -msoft-float
25459 @opindex mhard-float
25460 @opindex msoft-float
25461 Use (do not use) the hardware floating-point instructions and registers
25462 for floating-point operations. When @option{-msoft-float} is specified,
25463 functions in @file{libgcc.a} are used to perform floating-point
25464 operations. When @option{-mhard-float} is specified, the compiler
25465 generates IEEE floating-point instructions. This is the default.
25466
25467 @item -mhard-dfp
25468 @itemx -mno-hard-dfp
25469 @opindex mhard-dfp
25470 @opindex mno-hard-dfp
25471 Use (do not use) the hardware decimal-floating-point instructions for
25472 decimal-floating-point operations. When @option{-mno-hard-dfp} is
25473 specified, functions in @file{libgcc.a} are used to perform
25474 decimal-floating-point operations. When @option{-mhard-dfp} is
25475 specified, the compiler generates decimal-floating-point hardware
25476 instructions. This is the default for @option{-march=z9-ec} or higher.
25477
25478 @item -mlong-double-64
25479 @itemx -mlong-double-128
25480 @opindex mlong-double-64
25481 @opindex mlong-double-128
25482 These switches control the size of @code{long double} type. A size
25483 of 64 bits makes the @code{long double} type equivalent to the @code{double}
25484 type. This is the default.
25485
25486 @item -mbackchain
25487 @itemx -mno-backchain
25488 @opindex mbackchain
25489 @opindex mno-backchain
25490 Store (do not store) the address of the caller's frame as backchain pointer
25491 into the callee's stack frame.
25492 A backchain may be needed to allow debugging using tools that do not understand
25493 DWARF call frame information.
25494 When @option{-mno-packed-stack} is in effect, the backchain pointer is stored
25495 at the bottom of the stack frame; when @option{-mpacked-stack} is in effect,
25496 the backchain is placed into the topmost word of the 96/160 byte register
25497 save area.
25498
25499 In general, code compiled with @option{-mbackchain} is call-compatible with
25500 code compiled with @option{-mmo-backchain}; however, use of the backchain
25501 for debugging purposes usually requires that the whole binary is built with
25502 @option{-mbackchain}. Note that the combination of @option{-mbackchain},
25503 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
25504 to build a linux kernel use @option{-msoft-float}.
25505
25506 The default is to not maintain the backchain.
25507
25508 @item -mpacked-stack
25509 @itemx -mno-packed-stack
25510 @opindex mpacked-stack
25511 @opindex mno-packed-stack
25512 Use (do not use) the packed stack layout. When @option{-mno-packed-stack} is
25513 specified, the compiler uses the all fields of the 96/160 byte register save
25514 area only for their default purpose; unused fields still take up stack space.
25515 When @option{-mpacked-stack} is specified, register save slots are densely
25516 packed at the top of the register save area; unused space is reused for other
25517 purposes, allowing for more efficient use of the available stack space.
25518 However, when @option{-mbackchain} is also in effect, the topmost word of
25519 the save area is always used to store the backchain, and the return address
25520 register is always saved two words below the backchain.
25521
25522 As long as the stack frame backchain is not used, code generated with
25523 @option{-mpacked-stack} is call-compatible with code generated with
25524 @option{-mno-packed-stack}. Note that some non-FSF releases of GCC 2.95 for
25525 S/390 or zSeries generated code that uses the stack frame backchain at run
25526 time, not just for debugging purposes. Such code is not call-compatible
25527 with code compiled with @option{-mpacked-stack}. Also, note that the
25528 combination of @option{-mbackchain},
25529 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
25530 to build a linux kernel use @option{-msoft-float}.
25531
25532 The default is to not use the packed stack layout.
25533
25534 @item -msmall-exec
25535 @itemx -mno-small-exec
25536 @opindex msmall-exec
25537 @opindex mno-small-exec
25538 Generate (or do not generate) code using the @code{bras} instruction
25539 to do subroutine calls.
25540 This only works reliably if the total executable size does not
25541 exceed 64k. The default is to use the @code{basr} instruction instead,
25542 which does not have this limitation.
25543
25544 @item -m64
25545 @itemx -m31
25546 @opindex m64
25547 @opindex m31
25548 When @option{-m31} is specified, generate code compliant to the
25549 GNU/Linux for S/390 ABI@. When @option{-m64} is specified, generate
25550 code compliant to the GNU/Linux for zSeries ABI@. This allows GCC in
25551 particular to generate 64-bit instructions. For the @samp{s390}
25552 targets, the default is @option{-m31}, while the @samp{s390x}
25553 targets default to @option{-m64}.
25554
25555 @item -mzarch
25556 @itemx -mesa
25557 @opindex mzarch
25558 @opindex mesa
25559 When @option{-mzarch} is specified, generate code using the
25560 instructions available on z/Architecture.
25561 When @option{-mesa} is specified, generate code using the
25562 instructions available on ESA/390. Note that @option{-mesa} is
25563 not possible with @option{-m64}.
25564 When generating code compliant to the GNU/Linux for S/390 ABI,
25565 the default is @option{-mesa}. When generating code compliant
25566 to the GNU/Linux for zSeries ABI, the default is @option{-mzarch}.
25567
25568 @item -mhtm
25569 @itemx -mno-htm
25570 @opindex mhtm
25571 @opindex mno-htm
25572 The @option{-mhtm} option enables a set of builtins making use of
25573 instructions available with the transactional execution facility
25574 introduced with the IBM zEnterprise EC12 machine generation
25575 @ref{S/390 System z Built-in Functions}.
25576 @option{-mhtm} is enabled by default when using @option{-march=zEC12}.
25577
25578 @item -mvx
25579 @itemx -mno-vx
25580 @opindex mvx
25581 @opindex mno-vx
25582 When @option{-mvx} is specified, generate code using the instructions
25583 available with the vector extension facility introduced with the IBM
25584 z13 machine generation.
25585 This option changes the ABI for some vector type values with regard to
25586 alignment and calling conventions. In case vector type values are
25587 being used in an ABI-relevant context a GAS @samp{.gnu_attribute}
25588 command will be added to mark the resulting binary with the ABI used.
25589 @option{-mvx} is enabled by default when using @option{-march=z13}.
25590
25591 @item -mzvector
25592 @itemx -mno-zvector
25593 @opindex mzvector
25594 @opindex mno-zvector
25595 The @option{-mzvector} option enables vector language extensions and
25596 builtins using instructions available with the vector extension
25597 facility introduced with the IBM z13 machine generation.
25598 This option adds support for @samp{vector} to be used as a keyword to
25599 define vector type variables and arguments. @samp{vector} is only
25600 available when GNU extensions are enabled. It will not be expanded
25601 when requesting strict standard compliance e.g.@: with @option{-std=c99}.
25602 In addition to the GCC low-level builtins @option{-mzvector} enables
25603 a set of builtins added for compatibility with AltiVec-style
25604 implementations like Power and Cell. In order to make use of these
25605 builtins the header file @file{vecintrin.h} needs to be included.
25606 @option{-mzvector} is disabled by default.
25607
25608 @item -mmvcle
25609 @itemx -mno-mvcle
25610 @opindex mmvcle
25611 @opindex mno-mvcle
25612 Generate (or do not generate) code using the @code{mvcle} instruction
25613 to perform block moves. When @option{-mno-mvcle} is specified,
25614 use a @code{mvc} loop instead. This is the default unless optimizing for
25615 size.
25616
25617 @item -mdebug
25618 @itemx -mno-debug
25619 @opindex mdebug
25620 @opindex mno-debug
25621 Print (or do not print) additional debug information when compiling.
25622 The default is to not print debug information.
25623
25624 @item -march=@var{cpu-type}
25625 @opindex march
25626 Generate code that runs on @var{cpu-type}, which is the name of a
25627 system representing a certain processor type. Possible values for
25628 @var{cpu-type} are @samp{z900}/@samp{arch5}, @samp{z990}/@samp{arch6},
25629 @samp{z9-109}, @samp{z9-ec}/@samp{arch7}, @samp{z10}/@samp{arch8},
25630 @samp{z196}/@samp{arch9}, @samp{zEC12}, @samp{z13}/@samp{arch11},
25631 @samp{z14}/@samp{arch12}, and @samp{native}.
25632
25633 The default is @option{-march=z900}.
25634
25635 Specifying @samp{native} as cpu type can be used to select the best
25636 architecture option for the host processor.
25637 @option{-march=native} has no effect if GCC does not recognize the
25638 processor.
25639
25640 @item -mtune=@var{cpu-type}
25641 @opindex mtune
25642 Tune to @var{cpu-type} everything applicable about the generated code,
25643 except for the ABI and the set of available instructions.
25644 The list of @var{cpu-type} values is the same as for @option{-march}.
25645 The default is the value used for @option{-march}.
25646
25647 @item -mtpf-trace
25648 @itemx -mno-tpf-trace
25649 @opindex mtpf-trace
25650 @opindex mno-tpf-trace
25651 Generate code that adds (does not add) in TPF OS specific branches to trace
25652 routines in the operating system. This option is off by default, even
25653 when compiling for the TPF OS@.
25654
25655 @item -mfused-madd
25656 @itemx -mno-fused-madd
25657 @opindex mfused-madd
25658 @opindex mno-fused-madd
25659 Generate code that uses (does not use) the floating-point multiply and
25660 accumulate instructions. These instructions are generated by default if
25661 hardware floating point is used.
25662
25663 @item -mwarn-framesize=@var{framesize}
25664 @opindex mwarn-framesize
25665 Emit a warning if the current function exceeds the given frame size. Because
25666 this is a compile-time check it doesn't need to be a real problem when the program
25667 runs. It is intended to identify functions that most probably cause
25668 a stack overflow. It is useful to be used in an environment with limited stack
25669 size e.g.@: the linux kernel.
25670
25671 @item -mwarn-dynamicstack
25672 @opindex mwarn-dynamicstack
25673 Emit a warning if the function calls @code{alloca} or uses dynamically-sized
25674 arrays. This is generally a bad idea with a limited stack size.
25675
25676 @item -mstack-guard=@var{stack-guard}
25677 @itemx -mstack-size=@var{stack-size}
25678 @opindex mstack-guard
25679 @opindex mstack-size
25680 If these options are provided the S/390 back end emits additional instructions in
25681 the function prologue that trigger a trap if the stack size is @var{stack-guard}
25682 bytes above the @var{stack-size} (remember that the stack on S/390 grows downward).
25683 If the @var{stack-guard} option is omitted the smallest power of 2 larger than
25684 the frame size of the compiled function is chosen.
25685 These options are intended to be used to help debugging stack overflow problems.
25686 The additionally emitted code causes only little overhead and hence can also be
25687 used in production-like systems without greater performance degradation. The given
25688 values have to be exact powers of 2 and @var{stack-size} has to be greater than
25689 @var{stack-guard} without exceeding 64k.
25690 In order to be efficient the extra code makes the assumption that the stack starts
25691 at an address aligned to the value given by @var{stack-size}.
25692 The @var{stack-guard} option can only be used in conjunction with @var{stack-size}.
25693
25694 @item -mhotpatch=@var{pre-halfwords},@var{post-halfwords}
25695 @opindex mhotpatch
25696 If the hotpatch option is enabled, a ``hot-patching'' function
25697 prologue is generated for all functions in the compilation unit.
25698 The funtion label is prepended with the given number of two-byte
25699 NOP instructions (@var{pre-halfwords}, maximum 1000000). After
25700 the label, 2 * @var{post-halfwords} bytes are appended, using the
25701 largest NOP like instructions the architecture allows (maximum
25702 1000000).
25703
25704 If both arguments are zero, hotpatching is disabled.
25705
25706 This option can be overridden for individual functions with the
25707 @code{hotpatch} attribute.
25708 @end table
25709
25710 @node Score Options
25711 @subsection Score Options
25712 @cindex Score Options
25713
25714 These options are defined for Score implementations:
25715
25716 @table @gcctabopt
25717 @item -meb
25718 @opindex meb
25719 Compile code for big-endian mode. This is the default.
25720
25721 @item -mel
25722 @opindex mel
25723 Compile code for little-endian mode.
25724
25725 @item -mnhwloop
25726 @opindex mnhwloop
25727 Disable generation of @code{bcnz} instructions.
25728
25729 @item -muls
25730 @opindex muls
25731 Enable generation of unaligned load and store instructions.
25732
25733 @item -mmac
25734 @opindex mmac
25735 Enable the use of multiply-accumulate instructions. Disabled by default.
25736
25737 @item -mscore5
25738 @opindex mscore5
25739 Specify the SCORE5 as the target architecture.
25740
25741 @item -mscore5u
25742 @opindex mscore5u
25743 Specify the SCORE5U of the target architecture.
25744
25745 @item -mscore7
25746 @opindex mscore7
25747 Specify the SCORE7 as the target architecture. This is the default.
25748
25749 @item -mscore7d
25750 @opindex mscore7d
25751 Specify the SCORE7D as the target architecture.
25752 @end table
25753
25754 @node SH Options
25755 @subsection SH Options
25756
25757 These @samp{-m} options are defined for the SH implementations:
25758
25759 @table @gcctabopt
25760 @item -m1
25761 @opindex m1
25762 Generate code for the SH1.
25763
25764 @item -m2
25765 @opindex m2
25766 Generate code for the SH2.
25767
25768 @item -m2e
25769 Generate code for the SH2e.
25770
25771 @item -m2a-nofpu
25772 @opindex m2a-nofpu
25773 Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
25774 that the floating-point unit is not used.
25775
25776 @item -m2a-single-only
25777 @opindex m2a-single-only
25778 Generate code for the SH2a-FPU, in such a way that no double-precision
25779 floating-point operations are used.
25780
25781 @item -m2a-single
25782 @opindex m2a-single
25783 Generate code for the SH2a-FPU assuming the floating-point unit is in
25784 single-precision mode by default.
25785
25786 @item -m2a
25787 @opindex m2a
25788 Generate code for the SH2a-FPU assuming the floating-point unit is in
25789 double-precision mode by default.
25790
25791 @item -m3
25792 @opindex m3
25793 Generate code for the SH3.
25794
25795 @item -m3e
25796 @opindex m3e
25797 Generate code for the SH3e.
25798
25799 @item -m4-nofpu
25800 @opindex m4-nofpu
25801 Generate code for the SH4 without a floating-point unit.
25802
25803 @item -m4-single-only
25804 @opindex m4-single-only
25805 Generate code for the SH4 with a floating-point unit that only
25806 supports single-precision arithmetic.
25807
25808 @item -m4-single
25809 @opindex m4-single
25810 Generate code for the SH4 assuming the floating-point unit is in
25811 single-precision mode by default.
25812
25813 @item -m4
25814 @opindex m4
25815 Generate code for the SH4.
25816
25817 @item -m4-100
25818 @opindex m4-100
25819 Generate code for SH4-100.
25820
25821 @item -m4-100-nofpu
25822 @opindex m4-100-nofpu
25823 Generate code for SH4-100 in such a way that the
25824 floating-point unit is not used.
25825
25826 @item -m4-100-single
25827 @opindex m4-100-single
25828 Generate code for SH4-100 assuming the floating-point unit is in
25829 single-precision mode by default.
25830
25831 @item -m4-100-single-only
25832 @opindex m4-100-single-only
25833 Generate code for SH4-100 in such a way that no double-precision
25834 floating-point operations are used.
25835
25836 @item -m4-200
25837 @opindex m4-200
25838 Generate code for SH4-200.
25839
25840 @item -m4-200-nofpu
25841 @opindex m4-200-nofpu
25842 Generate code for SH4-200 without in such a way that the
25843 floating-point unit is not used.
25844
25845 @item -m4-200-single
25846 @opindex m4-200-single
25847 Generate code for SH4-200 assuming the floating-point unit is in
25848 single-precision mode by default.
25849
25850 @item -m4-200-single-only
25851 @opindex m4-200-single-only
25852 Generate code for SH4-200 in such a way that no double-precision
25853 floating-point operations are used.
25854
25855 @item -m4-300
25856 @opindex m4-300
25857 Generate code for SH4-300.
25858
25859 @item -m4-300-nofpu
25860 @opindex m4-300-nofpu
25861 Generate code for SH4-300 without in such a way that the
25862 floating-point unit is not used.
25863
25864 @item -m4-300-single
25865 @opindex m4-300-single
25866 Generate code for SH4-300 in such a way that no double-precision
25867 floating-point operations are used.
25868
25869 @item -m4-300-single-only
25870 @opindex m4-300-single-only
25871 Generate code for SH4-300 in such a way that no double-precision
25872 floating-point operations are used.
25873
25874 @item -m4-340
25875 @opindex m4-340
25876 Generate code for SH4-340 (no MMU, no FPU).
25877
25878 @item -m4-500
25879 @opindex m4-500
25880 Generate code for SH4-500 (no FPU). Passes @option{-isa=sh4-nofpu} to the
25881 assembler.
25882
25883 @item -m4a-nofpu
25884 @opindex m4a-nofpu
25885 Generate code for the SH4al-dsp, or for a SH4a in such a way that the
25886 floating-point unit is not used.
25887
25888 @item -m4a-single-only
25889 @opindex m4a-single-only
25890 Generate code for the SH4a, in such a way that no double-precision
25891 floating-point operations are used.
25892
25893 @item -m4a-single
25894 @opindex m4a-single
25895 Generate code for the SH4a assuming the floating-point unit is in
25896 single-precision mode by default.
25897
25898 @item -m4a
25899 @opindex m4a
25900 Generate code for the SH4a.
25901
25902 @item -m4al
25903 @opindex m4al
25904 Same as @option{-m4a-nofpu}, except that it implicitly passes
25905 @option{-dsp} to the assembler. GCC doesn't generate any DSP
25906 instructions at the moment.
25907
25908 @item -mb
25909 @opindex mb
25910 Compile code for the processor in big-endian mode.
25911
25912 @item -ml
25913 @opindex ml
25914 Compile code for the processor in little-endian mode.
25915
25916 @item -mdalign
25917 @opindex mdalign
25918 Align doubles at 64-bit boundaries. Note that this changes the calling
25919 conventions, and thus some functions from the standard C library do
25920 not work unless you recompile it first with @option{-mdalign}.
25921
25922 @item -mrelax
25923 @opindex mrelax
25924 Shorten some address references at link time, when possible; uses the
25925 linker option @option{-relax}.
25926
25927 @item -mbigtable
25928 @opindex mbigtable
25929 Use 32-bit offsets in @code{switch} tables. The default is to use
25930 16-bit offsets.
25931
25932 @item -mbitops
25933 @opindex mbitops
25934 Enable the use of bit manipulation instructions on SH2A.
25935
25936 @item -mfmovd
25937 @opindex mfmovd
25938 Enable the use of the instruction @code{fmovd}. Check @option{-mdalign} for
25939 alignment constraints.
25940
25941 @item -mrenesas
25942 @opindex mrenesas
25943 Comply with the calling conventions defined by Renesas.
25944
25945 @item -mno-renesas
25946 @opindex mno-renesas
25947 Comply with the calling conventions defined for GCC before the Renesas
25948 conventions were available. This option is the default for all
25949 targets of the SH toolchain.
25950
25951 @item -mnomacsave
25952 @opindex mnomacsave
25953 Mark the @code{MAC} register as call-clobbered, even if
25954 @option{-mrenesas} is given.
25955
25956 @item -mieee
25957 @itemx -mno-ieee
25958 @opindex mieee
25959 @opindex mno-ieee
25960 Control the IEEE compliance of floating-point comparisons, which affects the
25961 handling of cases where the result of a comparison is unordered. By default
25962 @option{-mieee} is implicitly enabled. If @option{-ffinite-math-only} is
25963 enabled @option{-mno-ieee} is implicitly set, which results in faster
25964 floating-point greater-equal and less-equal comparisons. The implicit settings
25965 can be overridden by specifying either @option{-mieee} or @option{-mno-ieee}.
25966
25967 @item -minline-ic_invalidate
25968 @opindex minline-ic_invalidate
25969 Inline code to invalidate instruction cache entries after setting up
25970 nested function trampolines.
25971 This option has no effect if @option{-musermode} is in effect and the selected
25972 code generation option (e.g.@: @option{-m4}) does not allow the use of the @code{icbi}
25973 instruction.
25974 If the selected code generation option does not allow the use of the @code{icbi}
25975 instruction, and @option{-musermode} is not in effect, the inlined code
25976 manipulates the instruction cache address array directly with an associative
25977 write. This not only requires privileged mode at run time, but it also
25978 fails if the cache line had been mapped via the TLB and has become unmapped.
25979
25980 @item -misize
25981 @opindex misize
25982 Dump instruction size and location in the assembly code.
25983
25984 @item -mpadstruct
25985 @opindex mpadstruct
25986 This option is deprecated. It pads structures to multiple of 4 bytes,
25987 which is incompatible with the SH ABI@.
25988
25989 @item -matomic-model=@var{model}
25990 @opindex matomic-model=@var{model}
25991 Sets the model of atomic operations and additional parameters as a comma
25992 separated list. For details on the atomic built-in functions see
25993 @ref{__atomic Builtins}. The following models and parameters are supported:
25994
25995 @table @samp
25996
25997 @item none
25998 Disable compiler generated atomic sequences and emit library calls for atomic
25999 operations. This is the default if the target is not @code{sh*-*-linux*}.
26000
26001 @item soft-gusa
26002 Generate GNU/Linux compatible gUSA software atomic sequences for the atomic
26003 built-in functions. The generated atomic sequences require additional support
26004 from the interrupt/exception handling code of the system and are only suitable
26005 for SH3* and SH4* single-core systems. This option is enabled by default when
26006 the target is @code{sh*-*-linux*} and SH3* or SH4*. When the target is SH4A,
26007 this option also partially utilizes the hardware atomic instructions
26008 @code{movli.l} and @code{movco.l} to create more efficient code, unless
26009 @samp{strict} is specified.
26010
26011 @item soft-tcb
26012 Generate software atomic sequences that use a variable in the thread control
26013 block. This is a variation of the gUSA sequences which can also be used on
26014 SH1* and SH2* targets. The generated atomic sequences require additional
26015 support from the interrupt/exception handling code of the system and are only
26016 suitable for single-core systems. When using this model, the @samp{gbr-offset=}
26017 parameter has to be specified as well.
26018
26019 @item soft-imask
26020 Generate software atomic sequences that temporarily disable interrupts by
26021 setting @code{SR.IMASK = 1111}. This model works only when the program runs
26022 in privileged mode and is only suitable for single-core systems. Additional
26023 support from the interrupt/exception handling code of the system is not
26024 required. This model is enabled by default when the target is
26025 @code{sh*-*-linux*} and SH1* or SH2*.
26026
26027 @item hard-llcs
26028 Generate hardware atomic sequences using the @code{movli.l} and @code{movco.l}
26029 instructions only. This is only available on SH4A and is suitable for
26030 multi-core systems. Since the hardware instructions support only 32 bit atomic
26031 variables access to 8 or 16 bit variables is emulated with 32 bit accesses.
26032 Code compiled with this option is also compatible with other software
26033 atomic model interrupt/exception handling systems if executed on an SH4A
26034 system. Additional support from the interrupt/exception handling code of the
26035 system is not required for this model.
26036
26037 @item gbr-offset=
26038 This parameter specifies the offset in bytes of the variable in the thread
26039 control block structure that should be used by the generated atomic sequences
26040 when the @samp{soft-tcb} model has been selected. For other models this
26041 parameter is ignored. The specified value must be an integer multiple of four
26042 and in the range 0-1020.
26043
26044 @item strict
26045 This parameter prevents mixed usage of multiple atomic models, even if they
26046 are compatible, and makes the compiler generate atomic sequences of the
26047 specified model only.
26048
26049 @end table
26050
26051 @item -mtas
26052 @opindex mtas
26053 Generate the @code{tas.b} opcode for @code{__atomic_test_and_set}.
26054 Notice that depending on the particular hardware and software configuration
26055 this can degrade overall performance due to the operand cache line flushes
26056 that are implied by the @code{tas.b} instruction. On multi-core SH4A
26057 processors the @code{tas.b} instruction must be used with caution since it
26058 can result in data corruption for certain cache configurations.
26059
26060 @item -mprefergot
26061 @opindex mprefergot
26062 When generating position-independent code, emit function calls using
26063 the Global Offset Table instead of the Procedure Linkage Table.
26064
26065 @item -musermode
26066 @itemx -mno-usermode
26067 @opindex musermode
26068 @opindex mno-usermode
26069 Don't allow (allow) the compiler generating privileged mode code. Specifying
26070 @option{-musermode} also implies @option{-mno-inline-ic_invalidate} if the
26071 inlined code would not work in user mode. @option{-musermode} is the default
26072 when the target is @code{sh*-*-linux*}. If the target is SH1* or SH2*
26073 @option{-musermode} has no effect, since there is no user mode.
26074
26075 @item -multcost=@var{number}
26076 @opindex multcost=@var{number}
26077 Set the cost to assume for a multiply insn.
26078
26079 @item -mdiv=@var{strategy}
26080 @opindex mdiv=@var{strategy}
26081 Set the division strategy to be used for integer division operations.
26082 @var{strategy} can be one of:
26083
26084 @table @samp
26085
26086 @item call-div1
26087 Calls a library function that uses the single-step division instruction
26088 @code{div1} to perform the operation. Division by zero calculates an
26089 unspecified result and does not trap. This is the default except for SH4,
26090 SH2A and SHcompact.
26091
26092 @item call-fp
26093 Calls a library function that performs the operation in double precision
26094 floating point. Division by zero causes a floating-point exception. This is
26095 the default for SHcompact with FPU. Specifying this for targets that do not
26096 have a double precision FPU defaults to @code{call-div1}.
26097
26098 @item call-table
26099 Calls a library function that uses a lookup table for small divisors and
26100 the @code{div1} instruction with case distinction for larger divisors. Division
26101 by zero calculates an unspecified result and does not trap. This is the default
26102 for SH4. Specifying this for targets that do not have dynamic shift
26103 instructions defaults to @code{call-div1}.
26104
26105 @end table
26106
26107 When a division strategy has not been specified the default strategy is
26108 selected based on the current target. For SH2A the default strategy is to
26109 use the @code{divs} and @code{divu} instructions instead of library function
26110 calls.
26111
26112 @item -maccumulate-outgoing-args
26113 @opindex maccumulate-outgoing-args
26114 Reserve space once for outgoing arguments in the function prologue rather
26115 than around each call. Generally beneficial for performance and size. Also
26116 needed for unwinding to avoid changing the stack frame around conditional code.
26117
26118 @item -mdivsi3_libfunc=@var{name}
26119 @opindex mdivsi3_libfunc=@var{name}
26120 Set the name of the library function used for 32-bit signed division to
26121 @var{name}.
26122 This only affects the name used in the @samp{call} division strategies, and
26123 the compiler still expects the same sets of input/output/clobbered registers as
26124 if this option were not present.
26125
26126 @item -mfixed-range=@var{register-range}
26127 @opindex mfixed-range
26128 Generate code treating the given register range as fixed registers.
26129 A fixed register is one that the register allocator cannot use. This is
26130 useful when compiling kernel code. A register range is specified as
26131 two registers separated by a dash. Multiple register ranges can be
26132 specified separated by a comma.
26133
26134 @item -mbranch-cost=@var{num}
26135 @opindex mbranch-cost=@var{num}
26136 Assume @var{num} to be the cost for a branch instruction. Higher numbers
26137 make the compiler try to generate more branch-free code if possible.
26138 If not specified the value is selected depending on the processor type that
26139 is being compiled for.
26140
26141 @item -mzdcbranch
26142 @itemx -mno-zdcbranch
26143 @opindex mzdcbranch
26144 @opindex mno-zdcbranch
26145 Assume (do not assume) that zero displacement conditional branch instructions
26146 @code{bt} and @code{bf} are fast. If @option{-mzdcbranch} is specified, the
26147 compiler prefers zero displacement branch code sequences. This is
26148 enabled by default when generating code for SH4 and SH4A. It can be explicitly
26149 disabled by specifying @option{-mno-zdcbranch}.
26150
26151 @item -mcbranch-force-delay-slot
26152 @opindex mcbranch-force-delay-slot
26153 Force the usage of delay slots for conditional branches, which stuffs the delay
26154 slot with a @code{nop} if a suitable instruction cannot be found. By default
26155 this option is disabled. It can be enabled to work around hardware bugs as
26156 found in the original SH7055.
26157
26158 @item -mfused-madd
26159 @itemx -mno-fused-madd
26160 @opindex mfused-madd
26161 @opindex mno-fused-madd
26162 Generate code that uses (does not use) the floating-point multiply and
26163 accumulate instructions. These instructions are generated by default
26164 if hardware floating point is used. The machine-dependent
26165 @option{-mfused-madd} option is now mapped to the machine-independent
26166 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
26167 mapped to @option{-ffp-contract=off}.
26168
26169 @item -mfsca
26170 @itemx -mno-fsca
26171 @opindex mfsca
26172 @opindex mno-fsca
26173 Allow or disallow the compiler to emit the @code{fsca} instruction for sine
26174 and cosine approximations. The option @option{-mfsca} must be used in
26175 combination with @option{-funsafe-math-optimizations}. It is enabled by default
26176 when generating code for SH4A. Using @option{-mno-fsca} disables sine and cosine
26177 approximations even if @option{-funsafe-math-optimizations} is in effect.
26178
26179 @item -mfsrra
26180 @itemx -mno-fsrra
26181 @opindex mfsrra
26182 @opindex mno-fsrra
26183 Allow or disallow the compiler to emit the @code{fsrra} instruction for
26184 reciprocal square root approximations. The option @option{-mfsrra} must be used
26185 in combination with @option{-funsafe-math-optimizations} and
26186 @option{-ffinite-math-only}. It is enabled by default when generating code for
26187 SH4A. Using @option{-mno-fsrra} disables reciprocal square root approximations
26188 even if @option{-funsafe-math-optimizations} and @option{-ffinite-math-only} are
26189 in effect.
26190
26191 @item -mpretend-cmove
26192 @opindex mpretend-cmove
26193 Prefer zero-displacement conditional branches for conditional move instruction
26194 patterns. This can result in faster code on the SH4 processor.
26195
26196 @item -mfdpic
26197 @opindex fdpic
26198 Generate code using the FDPIC ABI.
26199
26200 @end table
26201
26202 @node Solaris 2 Options
26203 @subsection Solaris 2 Options
26204 @cindex Solaris 2 options
26205
26206 These @samp{-m} options are supported on Solaris 2:
26207
26208 @table @gcctabopt
26209 @item -mclear-hwcap
26210 @opindex mclear-hwcap
26211 @option{-mclear-hwcap} tells the compiler to remove the hardware
26212 capabilities generated by the Solaris assembler. This is only necessary
26213 when object files use ISA extensions not supported by the current
26214 machine, but check at runtime whether or not to use them.
26215
26216 @item -mimpure-text
26217 @opindex mimpure-text
26218 @option{-mimpure-text}, used in addition to @option{-shared}, tells
26219 the compiler to not pass @option{-z text} to the linker when linking a
26220 shared object. Using this option, you can link position-dependent
26221 code into a shared object.
26222
26223 @option{-mimpure-text} suppresses the ``relocations remain against
26224 allocatable but non-writable sections'' linker error message.
26225 However, the necessary relocations trigger copy-on-write, and the
26226 shared object is not actually shared across processes. Instead of
26227 using @option{-mimpure-text}, you should compile all source code with
26228 @option{-fpic} or @option{-fPIC}.
26229
26230 @end table
26231
26232 These switches are supported in addition to the above on Solaris 2:
26233
26234 @table @gcctabopt
26235 @item -pthreads
26236 @opindex pthreads
26237 This is a synonym for @option{-pthread}.
26238 @end table
26239
26240 @node SPARC Options
26241 @subsection SPARC Options
26242 @cindex SPARC options
26243
26244 These @samp{-m} options are supported on the SPARC:
26245
26246 @table @gcctabopt
26247 @item -mno-app-regs
26248 @itemx -mapp-regs
26249 @opindex mno-app-regs
26250 @opindex mapp-regs
26251 Specify @option{-mapp-regs} to generate output using the global registers
26252 2 through 4, which the SPARC SVR4 ABI reserves for applications. Like the
26253 global register 1, each global register 2 through 4 is then treated as an
26254 allocable register that is clobbered by function calls. This is the default.
26255
26256 To be fully SVR4 ABI-compliant at the cost of some performance loss,
26257 specify @option{-mno-app-regs}. You should compile libraries and system
26258 software with this option.
26259
26260 @item -mflat
26261 @itemx -mno-flat
26262 @opindex mflat
26263 @opindex mno-flat
26264 With @option{-mflat}, the compiler does not generate save/restore instructions
26265 and uses a ``flat'' or single register window model. This model is compatible
26266 with the regular register window model. The local registers and the input
26267 registers (0--5) are still treated as ``call-saved'' registers and are
26268 saved on the stack as needed.
26269
26270 With @option{-mno-flat} (the default), the compiler generates save/restore
26271 instructions (except for leaf functions). This is the normal operating mode.
26272
26273 @item -mfpu
26274 @itemx -mhard-float
26275 @opindex mfpu
26276 @opindex mhard-float
26277 Generate output containing floating-point instructions. This is the
26278 default.
26279
26280 @item -mno-fpu
26281 @itemx -msoft-float
26282 @opindex mno-fpu
26283 @opindex msoft-float
26284 Generate output containing library calls for floating point.
26285 @strong{Warning:} the requisite libraries are not available for all SPARC
26286 targets. Normally the facilities of the machine's usual C compiler are
26287 used, but this cannot be done directly in cross-compilation. You must make
26288 your own arrangements to provide suitable library functions for
26289 cross-compilation. The embedded targets @samp{sparc-*-aout} and
26290 @samp{sparclite-*-*} do provide software floating-point support.
26291
26292 @option{-msoft-float} changes the calling convention in the output file;
26293 therefore, it is only useful if you compile @emph{all} of a program with
26294 this option. In particular, you need to compile @file{libgcc.a}, the
26295 library that comes with GCC, with @option{-msoft-float} in order for
26296 this to work.
26297
26298 @item -mhard-quad-float
26299 @opindex mhard-quad-float
26300 Generate output containing quad-word (long double) floating-point
26301 instructions.
26302
26303 @item -msoft-quad-float
26304 @opindex msoft-quad-float
26305 Generate output containing library calls for quad-word (long double)
26306 floating-point instructions. The functions called are those specified
26307 in the SPARC ABI@. This is the default.
26308
26309 As of this writing, there are no SPARC implementations that have hardware
26310 support for the quad-word floating-point instructions. They all invoke
26311 a trap handler for one of these instructions, and then the trap handler
26312 emulates the effect of the instruction. Because of the trap handler overhead,
26313 this is much slower than calling the ABI library routines. Thus the
26314 @option{-msoft-quad-float} option is the default.
26315
26316 @item -mno-unaligned-doubles
26317 @itemx -munaligned-doubles
26318 @opindex mno-unaligned-doubles
26319 @opindex munaligned-doubles
26320 Assume that doubles have 8-byte alignment. This is the default.
26321
26322 With @option{-munaligned-doubles}, GCC assumes that doubles have 8-byte
26323 alignment only if they are contained in another type, or if they have an
26324 absolute address. Otherwise, it assumes they have 4-byte alignment.
26325 Specifying this option avoids some rare compatibility problems with code
26326 generated by other compilers. It is not the default because it results
26327 in a performance loss, especially for floating-point code.
26328
26329 @item -muser-mode
26330 @itemx -mno-user-mode
26331 @opindex muser-mode
26332 @opindex mno-user-mode
26333 Do not generate code that can only run in supervisor mode. This is relevant
26334 only for the @code{casa} instruction emitted for the LEON3 processor. This
26335 is the default.
26336
26337 @item -mfaster-structs
26338 @itemx -mno-faster-structs
26339 @opindex mfaster-structs
26340 @opindex mno-faster-structs
26341 With @option{-mfaster-structs}, the compiler assumes that structures
26342 should have 8-byte alignment. This enables the use of pairs of
26343 @code{ldd} and @code{std} instructions for copies in structure
26344 assignment, in place of twice as many @code{ld} and @code{st} pairs.
26345 However, the use of this changed alignment directly violates the SPARC
26346 ABI@. Thus, it's intended only for use on targets where the developer
26347 acknowledges that their resulting code is not directly in line with
26348 the rules of the ABI@.
26349
26350 @item -mstd-struct-return
26351 @itemx -mno-std-struct-return
26352 @opindex mstd-struct-return
26353 @opindex mno-std-struct-return
26354 With @option{-mstd-struct-return}, the compiler generates checking code
26355 in functions returning structures or unions to detect size mismatches
26356 between the two sides of function calls, as per the 32-bit ABI@.
26357
26358 The default is @option{-mno-std-struct-return}. This option has no effect
26359 in 64-bit mode.
26360
26361 @item -mlra
26362 @itemx -mno-lra
26363 @opindex mlra
26364 @opindex mno-lra
26365 Enable Local Register Allocation. This is the default for SPARC since GCC 7
26366 so @option{-mno-lra} needs to be passed to get old Reload.
26367
26368 @item -mcpu=@var{cpu_type}
26369 @opindex mcpu
26370 Set the instruction set, register set, and instruction scheduling parameters
26371 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
26372 @samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{hypersparc},
26373 @samp{leon}, @samp{leon3}, @samp{leon3v7}, @samp{sparclite}, @samp{f930},
26374 @samp{f934}, @samp{sparclite86x}, @samp{sparclet}, @samp{tsc701}, @samp{v9},
26375 @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
26376 @samp{niagara3}, @samp{niagara4}, @samp{niagara7} and @samp{m8}.
26377
26378 Native Solaris and GNU/Linux toolchains also support the value @samp{native},
26379 which selects the best architecture option for the host processor.
26380 @option{-mcpu=native} has no effect if GCC does not recognize
26381 the processor.
26382
26383 Default instruction scheduling parameters are used for values that select
26384 an architecture and not an implementation. These are @samp{v7}, @samp{v8},
26385 @samp{sparclite}, @samp{sparclet}, @samp{v9}.
26386
26387 Here is a list of each supported architecture and their supported
26388 implementations.
26389
26390 @table @asis
26391 @item v7
26392 cypress, leon3v7
26393
26394 @item v8
26395 supersparc, hypersparc, leon, leon3
26396
26397 @item sparclite
26398 f930, f934, sparclite86x
26399
26400 @item sparclet
26401 tsc701
26402
26403 @item v9
26404 ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4,
26405 niagara7, m8
26406 @end table
26407
26408 By default (unless configured otherwise), GCC generates code for the V7
26409 variant of the SPARC architecture. With @option{-mcpu=cypress}, the compiler
26410 additionally optimizes it for the Cypress CY7C602 chip, as used in the
26411 SPARCStation/SPARCServer 3xx series. This is also appropriate for the older
26412 SPARCStation 1, 2, IPX etc.
26413
26414 With @option{-mcpu=v8}, GCC generates code for the V8 variant of the SPARC
26415 architecture. The only difference from V7 code is that the compiler emits
26416 the integer multiply and integer divide instructions which exist in SPARC-V8
26417 but not in SPARC-V7. With @option{-mcpu=supersparc}, the compiler additionally
26418 optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
26419 2000 series.
26420
26421 With @option{-mcpu=sparclite}, GCC generates code for the SPARClite variant of
26422 the SPARC architecture. This adds the integer multiply, integer divide step
26423 and scan (@code{ffs}) instructions which exist in SPARClite but not in SPARC-V7.
26424 With @option{-mcpu=f930}, the compiler additionally optimizes it for the
26425 Fujitsu MB86930 chip, which is the original SPARClite, with no FPU@. With
26426 @option{-mcpu=f934}, the compiler additionally optimizes it for the Fujitsu
26427 MB86934 chip, which is the more recent SPARClite with FPU@.
26428
26429 With @option{-mcpu=sparclet}, GCC generates code for the SPARClet variant of
26430 the SPARC architecture. This adds the integer multiply, multiply/accumulate,
26431 integer divide step and scan (@code{ffs}) instructions which exist in SPARClet
26432 but not in SPARC-V7. With @option{-mcpu=tsc701}, the compiler additionally
26433 optimizes it for the TEMIC SPARClet chip.
26434
26435 With @option{-mcpu=v9}, GCC generates code for the V9 variant of the SPARC
26436 architecture. This adds 64-bit integer and floating-point move instructions,
26437 3 additional floating-point condition code registers and conditional move
26438 instructions. With @option{-mcpu=ultrasparc}, the compiler additionally
26439 optimizes it for the Sun UltraSPARC I/II/IIi chips. With
26440 @option{-mcpu=ultrasparc3}, the compiler additionally optimizes it for the
26441 Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips. With
26442 @option{-mcpu=niagara}, the compiler additionally optimizes it for
26443 Sun UltraSPARC T1 chips. With @option{-mcpu=niagara2}, the compiler
26444 additionally optimizes it for Sun UltraSPARC T2 chips. With
26445 @option{-mcpu=niagara3}, the compiler additionally optimizes it for Sun
26446 UltraSPARC T3 chips. With @option{-mcpu=niagara4}, the compiler
26447 additionally optimizes it for Sun UltraSPARC T4 chips. With
26448 @option{-mcpu=niagara7}, the compiler additionally optimizes it for
26449 Oracle SPARC M7 chips. With @option{-mcpu=m8}, the compiler
26450 additionally optimizes it for Oracle M8 chips.
26451
26452 @item -mtune=@var{cpu_type}
26453 @opindex mtune
26454 Set the instruction scheduling parameters for machine type
26455 @var{cpu_type}, but do not set the instruction set or register set that the
26456 option @option{-mcpu=@var{cpu_type}} does.
26457
26458 The same values for @option{-mcpu=@var{cpu_type}} can be used for
26459 @option{-mtune=@var{cpu_type}}, but the only useful values are those
26460 that select a particular CPU implementation. Those are
26461 @samp{cypress}, @samp{supersparc}, @samp{hypersparc}, @samp{leon},
26462 @samp{leon3}, @samp{leon3v7}, @samp{f930}, @samp{f934},
26463 @samp{sparclite86x}, @samp{tsc701}, @samp{ultrasparc},
26464 @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2}, @samp{niagara3},
26465 @samp{niagara4}, @samp{niagara7} and @samp{m8}. With native Solaris
26466 and GNU/Linux toolchains, @samp{native} can also be used.
26467
26468 @item -mv8plus
26469 @itemx -mno-v8plus
26470 @opindex mv8plus
26471 @opindex mno-v8plus
26472 With @option{-mv8plus}, GCC generates code for the SPARC-V8+ ABI@. The
26473 difference from the V8 ABI is that the global and out registers are
26474 considered 64 bits wide. This is enabled by default on Solaris in 32-bit
26475 mode for all SPARC-V9 processors.
26476
26477 @item -mvis
26478 @itemx -mno-vis
26479 @opindex mvis
26480 @opindex mno-vis
26481 With @option{-mvis}, GCC generates code that takes advantage of the UltraSPARC
26482 Visual Instruction Set extensions. The default is @option{-mno-vis}.
26483
26484 @item -mvis2
26485 @itemx -mno-vis2
26486 @opindex mvis2
26487 @opindex mno-vis2
26488 With @option{-mvis2}, GCC generates code that takes advantage of
26489 version 2.0 of the UltraSPARC Visual Instruction Set extensions. The
26490 default is @option{-mvis2} when targeting a cpu that supports such
26491 instructions, such as UltraSPARC-III and later. Setting @option{-mvis2}
26492 also sets @option{-mvis}.
26493
26494 @item -mvis3
26495 @itemx -mno-vis3
26496 @opindex mvis3
26497 @opindex mno-vis3
26498 With @option{-mvis3}, GCC generates code that takes advantage of
26499 version 3.0 of the UltraSPARC Visual Instruction Set extensions. The
26500 default is @option{-mvis3} when targeting a cpu that supports such
26501 instructions, such as niagara-3 and later. Setting @option{-mvis3}
26502 also sets @option{-mvis2} and @option{-mvis}.
26503
26504 @item -mvis4
26505 @itemx -mno-vis4
26506 @opindex mvis4
26507 @opindex mno-vis4
26508 With @option{-mvis4}, GCC generates code that takes advantage of
26509 version 4.0 of the UltraSPARC Visual Instruction Set extensions. The
26510 default is @option{-mvis4} when targeting a cpu that supports such
26511 instructions, such as niagara-7 and later. Setting @option{-mvis4}
26512 also sets @option{-mvis3}, @option{-mvis2} and @option{-mvis}.
26513
26514 @item -mvis4b
26515 @itemx -mno-vis4b
26516 @opindex mvis4b
26517 @opindex mno-vis4b
26518 With @option{-mvis4b}, GCC generates code that takes advantage of
26519 version 4.0 of the UltraSPARC Visual Instruction Set extensions, plus
26520 the additional VIS instructions introduced in the Oracle SPARC
26521 Architecture 2017. The default is @option{-mvis4b} when targeting a
26522 cpu that supports such instructions, such as m8 and later. Setting
26523 @option{-mvis4b} also sets @option{-mvis4}, @option{-mvis3},
26524 @option{-mvis2} and @option{-mvis}.
26525
26526 @item -mcbcond
26527 @itemx -mno-cbcond
26528 @opindex mcbcond
26529 @opindex mno-cbcond
26530 With @option{-mcbcond}, GCC generates code that takes advantage of the UltraSPARC
26531 Compare-and-Branch-on-Condition instructions. The default is @option{-mcbcond}
26532 when targeting a CPU that supports such instructions, such as Niagara-4 and
26533 later.
26534
26535 @item -mfmaf
26536 @itemx -mno-fmaf
26537 @opindex mfmaf
26538 @opindex mno-fmaf
26539 With @option{-mfmaf}, GCC generates code that takes advantage of the UltraSPARC
26540 Fused Multiply-Add Floating-point instructions. The default is @option{-mfmaf}
26541 when targeting a CPU that supports such instructions, such as Niagara-3 and
26542 later.
26543
26544 @item -mfsmuld
26545 @itemx -mno-fsmuld
26546 @opindex mfsmuld
26547 @opindex mno-fsmuld
26548 With @option{-mfsmuld}, GCC generates code that takes advantage of the
26549 Floating-point Multiply Single to Double (FsMULd) instruction. The default is
26550 @option{-mfsmuld} when targeting a CPU supporting the architecture versions V8
26551 or V9 with FPU except @option{-mcpu=leon}.
26552
26553 @item -mpopc
26554 @itemx -mno-popc
26555 @opindex mpopc
26556 @opindex mno-popc
26557 With @option{-mpopc}, GCC generates code that takes advantage of the UltraSPARC
26558 Population Count instruction. The default is @option{-mpopc}
26559 when targeting a CPU that supports such an instruction, such as Niagara-2 and
26560 later.
26561
26562 @item -msubxc
26563 @itemx -mno-subxc
26564 @opindex msubxc
26565 @opindex mno-subxc
26566 With @option{-msubxc}, GCC generates code that takes advantage of the UltraSPARC
26567 Subtract-Extended-with-Carry instruction. The default is @option{-msubxc}
26568 when targeting a CPU that supports such an instruction, such as Niagara-7 and
26569 later.
26570
26571 @item -mfix-at697f
26572 @opindex mfix-at697f
26573 Enable the documented workaround for the single erratum of the Atmel AT697F
26574 processor (which corresponds to erratum #13 of the AT697E processor).
26575
26576 @item -mfix-ut699
26577 @opindex mfix-ut699
26578 Enable the documented workarounds for the floating-point errata and the data
26579 cache nullify errata of the UT699 processor.
26580
26581 @item -mfix-ut700
26582 @opindex mfix-ut700
26583 Enable the documented workaround for the back-to-back store errata of
26584 the UT699E/UT700 processor.
26585
26586 @item -mfix-gr712rc
26587 @opindex mfix-gr712rc
26588 Enable the documented workaround for the back-to-back store errata of
26589 the GR712RC processor.
26590 @end table
26591
26592 These @samp{-m} options are supported in addition to the above
26593 on SPARC-V9 processors in 64-bit environments:
26594
26595 @table @gcctabopt
26596 @item -m32
26597 @itemx -m64
26598 @opindex m32
26599 @opindex m64
26600 Generate code for a 32-bit or 64-bit environment.
26601 The 32-bit environment sets int, long and pointer to 32 bits.
26602 The 64-bit environment sets int to 32 bits and long and pointer
26603 to 64 bits.
26604
26605 @item -mcmodel=@var{which}
26606 @opindex mcmodel
26607 Set the code model to one of
26608
26609 @table @samp
26610 @item medlow
26611 The Medium/Low code model: 64-bit addresses, programs
26612 must be linked in the low 32 bits of memory. Programs can be statically
26613 or dynamically linked.
26614
26615 @item medmid
26616 The Medium/Middle code model: 64-bit addresses, programs
26617 must be linked in the low 44 bits of memory, the text and data segments must
26618 be less than 2GB in size and the data segment must be located within 2GB of
26619 the text segment.
26620
26621 @item medany
26622 The Medium/Anywhere code model: 64-bit addresses, programs
26623 may be linked anywhere in memory, the text and data segments must be less
26624 than 2GB in size and the data segment must be located within 2GB of the
26625 text segment.
26626
26627 @item embmedany
26628 The Medium/Anywhere code model for embedded systems:
26629 64-bit addresses, the text and data segments must be less than 2GB in
26630 size, both starting anywhere in memory (determined at link time). The
26631 global register %g4 points to the base of the data segment. Programs
26632 are statically linked and PIC is not supported.
26633 @end table
26634
26635 @item -mmemory-model=@var{mem-model}
26636 @opindex mmemory-model
26637 Set the memory model in force on the processor to one of
26638
26639 @table @samp
26640 @item default
26641 The default memory model for the processor and operating system.
26642
26643 @item rmo
26644 Relaxed Memory Order
26645
26646 @item pso
26647 Partial Store Order
26648
26649 @item tso
26650 Total Store Order
26651
26652 @item sc
26653 Sequential Consistency
26654 @end table
26655
26656 These memory models are formally defined in Appendix D of the SPARC-V9
26657 architecture manual, as set in the processor's @code{PSTATE.MM} field.
26658
26659 @item -mstack-bias
26660 @itemx -mno-stack-bias
26661 @opindex mstack-bias
26662 @opindex mno-stack-bias
26663 With @option{-mstack-bias}, GCC assumes that the stack pointer, and
26664 frame pointer if present, are offset by @minus{}2047 which must be added back
26665 when making stack frame references. This is the default in 64-bit mode.
26666 Otherwise, assume no such offset is present.
26667 @end table
26668
26669 @node SPU Options
26670 @subsection SPU Options
26671 @cindex SPU options
26672
26673 These @samp{-m} options are supported on the SPU:
26674
26675 @table @gcctabopt
26676 @item -mwarn-reloc
26677 @itemx -merror-reloc
26678 @opindex mwarn-reloc
26679 @opindex merror-reloc
26680
26681 The loader for SPU does not handle dynamic relocations. By default, GCC
26682 gives an error when it generates code that requires a dynamic
26683 relocation. @option{-mno-error-reloc} disables the error,
26684 @option{-mwarn-reloc} generates a warning instead.
26685
26686 @item -msafe-dma
26687 @itemx -munsafe-dma
26688 @opindex msafe-dma
26689 @opindex munsafe-dma
26690
26691 Instructions that initiate or test completion of DMA must not be
26692 reordered with respect to loads and stores of the memory that is being
26693 accessed.
26694 With @option{-munsafe-dma} you must use the @code{volatile} keyword to protect
26695 memory accesses, but that can lead to inefficient code in places where the
26696 memory is known to not change. Rather than mark the memory as volatile,
26697 you can use @option{-msafe-dma} to tell the compiler to treat
26698 the DMA instructions as potentially affecting all memory.
26699
26700 @item -mbranch-hints
26701 @opindex mbranch-hints
26702
26703 By default, GCC generates a branch hint instruction to avoid
26704 pipeline stalls for always-taken or probably-taken branches. A hint
26705 is not generated closer than 8 instructions away from its branch.
26706 There is little reason to disable them, except for debugging purposes,
26707 or to make an object a little bit smaller.
26708
26709 @item -msmall-mem
26710 @itemx -mlarge-mem
26711 @opindex msmall-mem
26712 @opindex mlarge-mem
26713
26714 By default, GCC generates code assuming that addresses are never larger
26715 than 18 bits. With @option{-mlarge-mem} code is generated that assumes
26716 a full 32-bit address.
26717
26718 @item -mstdmain
26719 @opindex mstdmain
26720
26721 By default, GCC links against startup code that assumes the SPU-style
26722 main function interface (which has an unconventional parameter list).
26723 With @option{-mstdmain}, GCC links your program against startup
26724 code that assumes a C99-style interface to @code{main}, including a
26725 local copy of @code{argv} strings.
26726
26727 @item -mfixed-range=@var{register-range}
26728 @opindex mfixed-range
26729 Generate code treating the given register range as fixed registers.
26730 A fixed register is one that the register allocator cannot use. This is
26731 useful when compiling kernel code. A register range is specified as
26732 two registers separated by a dash. Multiple register ranges can be
26733 specified separated by a comma.
26734
26735 @item -mea32
26736 @itemx -mea64
26737 @opindex mea32
26738 @opindex mea64
26739 Compile code assuming that pointers to the PPU address space accessed
26740 via the @code{__ea} named address space qualifier are either 32 or 64
26741 bits wide. The default is 32 bits. As this is an ABI-changing option,
26742 all object code in an executable must be compiled with the same setting.
26743
26744 @item -maddress-space-conversion
26745 @itemx -mno-address-space-conversion
26746 @opindex maddress-space-conversion
26747 @opindex mno-address-space-conversion
26748 Allow/disallow treating the @code{__ea} address space as superset
26749 of the generic address space. This enables explicit type casts
26750 between @code{__ea} and generic pointer as well as implicit
26751 conversions of generic pointers to @code{__ea} pointers. The
26752 default is to allow address space pointer conversions.
26753
26754 @item -mcache-size=@var{cache-size}
26755 @opindex mcache-size
26756 This option controls the version of libgcc that the compiler links to an
26757 executable and selects a software-managed cache for accessing variables
26758 in the @code{__ea} address space with a particular cache size. Possible
26759 options for @var{cache-size} are @samp{8}, @samp{16}, @samp{32}, @samp{64}
26760 and @samp{128}. The default cache size is 64KB.
26761
26762 @item -matomic-updates
26763 @itemx -mno-atomic-updates
26764 @opindex matomic-updates
26765 @opindex mno-atomic-updates
26766 This option controls the version of libgcc that the compiler links to an
26767 executable and selects whether atomic updates to the software-managed
26768 cache of PPU-side variables are used. If you use atomic updates, changes
26769 to a PPU variable from SPU code using the @code{__ea} named address space
26770 qualifier do not interfere with changes to other PPU variables residing
26771 in the same cache line from PPU code. If you do not use atomic updates,
26772 such interference may occur; however, writing back cache lines is
26773 more efficient. The default behavior is to use atomic updates.
26774
26775 @item -mdual-nops
26776 @itemx -mdual-nops=@var{n}
26777 @opindex mdual-nops
26778 By default, GCC inserts NOPs to increase dual issue when it expects
26779 it to increase performance. @var{n} can be a value from 0 to 10. A
26780 smaller @var{n} inserts fewer NOPs. 10 is the default, 0 is the
26781 same as @option{-mno-dual-nops}. Disabled with @option{-Os}.
26782
26783 @item -mhint-max-nops=@var{n}
26784 @opindex mhint-max-nops
26785 Maximum number of NOPs to insert for a branch hint. A branch hint must
26786 be at least 8 instructions away from the branch it is affecting. GCC
26787 inserts up to @var{n} NOPs to enforce this, otherwise it does not
26788 generate the branch hint.
26789
26790 @item -mhint-max-distance=@var{n}
26791 @opindex mhint-max-distance
26792 The encoding of the branch hint instruction limits the hint to be within
26793 256 instructions of the branch it is affecting. By default, GCC makes
26794 sure it is within 125.
26795
26796 @item -msafe-hints
26797 @opindex msafe-hints
26798 Work around a hardware bug that causes the SPU to stall indefinitely.
26799 By default, GCC inserts the @code{hbrp} instruction to make sure
26800 this stall won't happen.
26801
26802 @end table
26803
26804 @node System V Options
26805 @subsection Options for System V
26806
26807 These additional options are available on System V Release 4 for
26808 compatibility with other compilers on those systems:
26809
26810 @table @gcctabopt
26811 @item -G
26812 @opindex G
26813 Create a shared object.
26814 It is recommended that @option{-symbolic} or @option{-shared} be used instead.
26815
26816 @item -Qy
26817 @opindex Qy
26818 Identify the versions of each tool used by the compiler, in a
26819 @code{.ident} assembler directive in the output.
26820
26821 @item -Qn
26822 @opindex Qn
26823 Refrain from adding @code{.ident} directives to the output file (this is
26824 the default).
26825
26826 @item -YP,@var{dirs}
26827 @opindex YP
26828 Search the directories @var{dirs}, and no others, for libraries
26829 specified with @option{-l}.
26830
26831 @item -Ym,@var{dir}
26832 @opindex Ym
26833 Look in the directory @var{dir} to find the M4 preprocessor.
26834 The assembler uses this option.
26835 @c This is supposed to go with a -Yd for predefined M4 macro files, but
26836 @c the generic assembler that comes with Solaris takes just -Ym.
26837 @end table
26838
26839 @node TILE-Gx Options
26840 @subsection TILE-Gx Options
26841 @cindex TILE-Gx options
26842
26843 These @samp{-m} options are supported on the TILE-Gx:
26844
26845 @table @gcctabopt
26846 @item -mcmodel=small
26847 @opindex mcmodel=small
26848 Generate code for the small model. The distance for direct calls is
26849 limited to 500M in either direction. PC-relative addresses are 32
26850 bits. Absolute addresses support the full address range.
26851
26852 @item -mcmodel=large
26853 @opindex mcmodel=large
26854 Generate code for the large model. There is no limitation on call
26855 distance, pc-relative addresses, or absolute addresses.
26856
26857 @item -mcpu=@var{name}
26858 @opindex mcpu
26859 Selects the type of CPU to be targeted. Currently the only supported
26860 type is @samp{tilegx}.
26861
26862 @item -m32
26863 @itemx -m64
26864 @opindex m32
26865 @opindex m64
26866 Generate code for a 32-bit or 64-bit environment. The 32-bit
26867 environment sets int, long, and pointer to 32 bits. The 64-bit
26868 environment sets int to 32 bits and long and pointer to 64 bits.
26869
26870 @item -mbig-endian
26871 @itemx -mlittle-endian
26872 @opindex mbig-endian
26873 @opindex mlittle-endian
26874 Generate code in big/little endian mode, respectively.
26875 @end table
26876
26877 @node TILEPro Options
26878 @subsection TILEPro Options
26879 @cindex TILEPro options
26880
26881 These @samp{-m} options are supported on the TILEPro:
26882
26883 @table @gcctabopt
26884 @item -mcpu=@var{name}
26885 @opindex mcpu
26886 Selects the type of CPU to be targeted. Currently the only supported
26887 type is @samp{tilepro}.
26888
26889 @item -m32
26890 @opindex m32
26891 Generate code for a 32-bit environment, which sets int, long, and
26892 pointer to 32 bits. This is the only supported behavior so the flag
26893 is essentially ignored.
26894 @end table
26895
26896 @node V850 Options
26897 @subsection V850 Options
26898 @cindex V850 Options
26899
26900 These @samp{-m} options are defined for V850 implementations:
26901
26902 @table @gcctabopt
26903 @item -mlong-calls
26904 @itemx -mno-long-calls
26905 @opindex mlong-calls
26906 @opindex mno-long-calls
26907 Treat all calls as being far away (near). If calls are assumed to be
26908 far away, the compiler always loads the function's address into a
26909 register, and calls indirect through the pointer.
26910
26911 @item -mno-ep
26912 @itemx -mep
26913 @opindex mno-ep
26914 @opindex mep
26915 Do not optimize (do optimize) basic blocks that use the same index
26916 pointer 4 or more times to copy pointer into the @code{ep} register, and
26917 use the shorter @code{sld} and @code{sst} instructions. The @option{-mep}
26918 option is on by default if you optimize.
26919
26920 @item -mno-prolog-function
26921 @itemx -mprolog-function
26922 @opindex mno-prolog-function
26923 @opindex mprolog-function
26924 Do not use (do use) external functions to save and restore registers
26925 at the prologue and epilogue of a function. The external functions
26926 are slower, but use less code space if more than one function saves
26927 the same number of registers. The @option{-mprolog-function} option
26928 is on by default if you optimize.
26929
26930 @item -mspace
26931 @opindex mspace
26932 Try to make the code as small as possible. At present, this just turns
26933 on the @option{-mep} and @option{-mprolog-function} options.
26934
26935 @item -mtda=@var{n}
26936 @opindex mtda
26937 Put static or global variables whose size is @var{n} bytes or less into
26938 the tiny data area that register @code{ep} points to. The tiny data
26939 area can hold up to 256 bytes in total (128 bytes for byte references).
26940
26941 @item -msda=@var{n}
26942 @opindex msda
26943 Put static or global variables whose size is @var{n} bytes or less into
26944 the small data area that register @code{gp} points to. The small data
26945 area can hold up to 64 kilobytes.
26946
26947 @item -mzda=@var{n}
26948 @opindex mzda
26949 Put static or global variables whose size is @var{n} bytes or less into
26950 the first 32 kilobytes of memory.
26951
26952 @item -mv850
26953 @opindex mv850
26954 Specify that the target processor is the V850.
26955
26956 @item -mv850e3v5
26957 @opindex mv850e3v5
26958 Specify that the target processor is the V850E3V5. The preprocessor
26959 constant @code{__v850e3v5__} is defined if this option is used.
26960
26961 @item -mv850e2v4
26962 @opindex mv850e2v4
26963 Specify that the target processor is the V850E3V5. This is an alias for
26964 the @option{-mv850e3v5} option.
26965
26966 @item -mv850e2v3
26967 @opindex mv850e2v3
26968 Specify that the target processor is the V850E2V3. The preprocessor
26969 constant @code{__v850e2v3__} is defined if this option is used.
26970
26971 @item -mv850e2
26972 @opindex mv850e2
26973 Specify that the target processor is the V850E2. The preprocessor
26974 constant @code{__v850e2__} is defined if this option is used.
26975
26976 @item -mv850e1
26977 @opindex mv850e1
26978 Specify that the target processor is the V850E1. The preprocessor
26979 constants @code{__v850e1__} and @code{__v850e__} are defined if
26980 this option is used.
26981
26982 @item -mv850es
26983 @opindex mv850es
26984 Specify that the target processor is the V850ES. This is an alias for
26985 the @option{-mv850e1} option.
26986
26987 @item -mv850e
26988 @opindex mv850e
26989 Specify that the target processor is the V850E@. The preprocessor
26990 constant @code{__v850e__} is defined if this option is used.
26991
26992 If neither @option{-mv850} nor @option{-mv850e} nor @option{-mv850e1}
26993 nor @option{-mv850e2} nor @option{-mv850e2v3} nor @option{-mv850e3v5}
26994 are defined then a default target processor is chosen and the
26995 relevant @samp{__v850*__} preprocessor constant is defined.
26996
26997 The preprocessor constants @code{__v850} and @code{__v851__} are always
26998 defined, regardless of which processor variant is the target.
26999
27000 @item -mdisable-callt
27001 @itemx -mno-disable-callt
27002 @opindex mdisable-callt
27003 @opindex mno-disable-callt
27004 This option suppresses generation of the @code{CALLT} instruction for the
27005 v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850
27006 architecture.
27007
27008 This option is enabled by default when the RH850 ABI is
27009 in use (see @option{-mrh850-abi}), and disabled by default when the
27010 GCC ABI is in use. If @code{CALLT} instructions are being generated
27011 then the C preprocessor symbol @code{__V850_CALLT__} is defined.
27012
27013 @item -mrelax
27014 @itemx -mno-relax
27015 @opindex mrelax
27016 @opindex mno-relax
27017 Pass on (or do not pass on) the @option{-mrelax} command-line option
27018 to the assembler.
27019
27020 @item -mlong-jumps
27021 @itemx -mno-long-jumps
27022 @opindex mlong-jumps
27023 @opindex mno-long-jumps
27024 Disable (or re-enable) the generation of PC-relative jump instructions.
27025
27026 @item -msoft-float
27027 @itemx -mhard-float
27028 @opindex msoft-float
27029 @opindex mhard-float
27030 Disable (or re-enable) the generation of hardware floating point
27031 instructions. This option is only significant when the target
27032 architecture is @samp{V850E2V3} or higher. If hardware floating point
27033 instructions are being generated then the C preprocessor symbol
27034 @code{__FPU_OK__} is defined, otherwise the symbol
27035 @code{__NO_FPU__} is defined.
27036
27037 @item -mloop
27038 @opindex mloop
27039 Enables the use of the e3v5 LOOP instruction. The use of this
27040 instruction is not enabled by default when the e3v5 architecture is
27041 selected because its use is still experimental.
27042
27043 @item -mrh850-abi
27044 @itemx -mghs
27045 @opindex mrh850-abi
27046 @opindex mghs
27047 Enables support for the RH850 version of the V850 ABI. This is the
27048 default. With this version of the ABI the following rules apply:
27049
27050 @itemize
27051 @item
27052 Integer sized structures and unions are returned via a memory pointer
27053 rather than a register.
27054
27055 @item
27056 Large structures and unions (more than 8 bytes in size) are passed by
27057 value.
27058
27059 @item
27060 Functions are aligned to 16-bit boundaries.
27061
27062 @item
27063 The @option{-m8byte-align} command-line option is supported.
27064
27065 @item
27066 The @option{-mdisable-callt} command-line option is enabled by
27067 default. The @option{-mno-disable-callt} command-line option is not
27068 supported.
27069 @end itemize
27070
27071 When this version of the ABI is enabled the C preprocessor symbol
27072 @code{__V850_RH850_ABI__} is defined.
27073
27074 @item -mgcc-abi
27075 @opindex mgcc-abi
27076 Enables support for the old GCC version of the V850 ABI. With this
27077 version of the ABI the following rules apply:
27078
27079 @itemize
27080 @item
27081 Integer sized structures and unions are returned in register @code{r10}.
27082
27083 @item
27084 Large structures and unions (more than 8 bytes in size) are passed by
27085 reference.
27086
27087 @item
27088 Functions are aligned to 32-bit boundaries, unless optimizing for
27089 size.
27090
27091 @item
27092 The @option{-m8byte-align} command-line option is not supported.
27093
27094 @item
27095 The @option{-mdisable-callt} command-line option is supported but not
27096 enabled by default.
27097 @end itemize
27098
27099 When this version of the ABI is enabled the C preprocessor symbol
27100 @code{__V850_GCC_ABI__} is defined.
27101
27102 @item -m8byte-align
27103 @itemx -mno-8byte-align
27104 @opindex m8byte-align
27105 @opindex mno-8byte-align
27106 Enables support for @code{double} and @code{long long} types to be
27107 aligned on 8-byte boundaries. The default is to restrict the
27108 alignment of all objects to at most 4-bytes. When
27109 @option{-m8byte-align} is in effect the C preprocessor symbol
27110 @code{__V850_8BYTE_ALIGN__} is defined.
27111
27112 @item -mbig-switch
27113 @opindex mbig-switch
27114 Generate code suitable for big switch tables. Use this option only if
27115 the assembler/linker complain about out of range branches within a switch
27116 table.
27117
27118 @item -mapp-regs
27119 @opindex mapp-regs
27120 This option causes r2 and r5 to be used in the code generated by
27121 the compiler. This setting is the default.
27122
27123 @item -mno-app-regs
27124 @opindex mno-app-regs
27125 This option causes r2 and r5 to be treated as fixed registers.
27126
27127 @end table
27128
27129 @node VAX Options
27130 @subsection VAX Options
27131 @cindex VAX options
27132
27133 These @samp{-m} options are defined for the VAX:
27134
27135 @table @gcctabopt
27136 @item -munix
27137 @opindex munix
27138 Do not output certain jump instructions (@code{aobleq} and so on)
27139 that the Unix assembler for the VAX cannot handle across long
27140 ranges.
27141
27142 @item -mgnu
27143 @opindex mgnu
27144 Do output those jump instructions, on the assumption that the
27145 GNU assembler is being used.
27146
27147 @item -mg
27148 @opindex mg
27149 Output code for G-format floating-point numbers instead of D-format.
27150 @end table
27151
27152 @node Visium Options
27153 @subsection Visium Options
27154 @cindex Visium options
27155
27156 @table @gcctabopt
27157
27158 @item -mdebug
27159 @opindex mdebug
27160 A program which performs file I/O and is destined to run on an MCM target
27161 should be linked with this option. It causes the libraries libc.a and
27162 libdebug.a to be linked. The program should be run on the target under
27163 the control of the GDB remote debugging stub.
27164
27165 @item -msim
27166 @opindex msim
27167 A program which performs file I/O and is destined to run on the simulator
27168 should be linked with option. This causes libraries libc.a and libsim.a to
27169 be linked.
27170
27171 @item -mfpu
27172 @itemx -mhard-float
27173 @opindex mfpu
27174 @opindex mhard-float
27175 Generate code containing floating-point instructions. This is the
27176 default.
27177
27178 @item -mno-fpu
27179 @itemx -msoft-float
27180 @opindex mno-fpu
27181 @opindex msoft-float
27182 Generate code containing library calls for floating-point.
27183
27184 @option{-msoft-float} changes the calling convention in the output file;
27185 therefore, it is only useful if you compile @emph{all} of a program with
27186 this option. In particular, you need to compile @file{libgcc.a}, the
27187 library that comes with GCC, with @option{-msoft-float} in order for
27188 this to work.
27189
27190 @item -mcpu=@var{cpu_type}
27191 @opindex mcpu
27192 Set the instruction set, register set, and instruction scheduling parameters
27193 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
27194 @samp{mcm}, @samp{gr5} and @samp{gr6}.
27195
27196 @samp{mcm} is a synonym of @samp{gr5} present for backward compatibility.
27197
27198 By default (unless configured otherwise), GCC generates code for the GR5
27199 variant of the Visium architecture.
27200
27201 With @option{-mcpu=gr6}, GCC generates code for the GR6 variant of the Visium
27202 architecture. The only difference from GR5 code is that the compiler will
27203 generate block move instructions.
27204
27205 @item -mtune=@var{cpu_type}
27206 @opindex mtune
27207 Set the instruction scheduling parameters for machine type @var{cpu_type},
27208 but do not set the instruction set or register set that the option
27209 @option{-mcpu=@var{cpu_type}} would.
27210
27211 @item -msv-mode
27212 @opindex msv-mode
27213 Generate code for the supervisor mode, where there are no restrictions on
27214 the access to general registers. This is the default.
27215
27216 @item -muser-mode
27217 @opindex muser-mode
27218 Generate code for the user mode, where the access to some general registers
27219 is forbidden: on the GR5, registers r24 to r31 cannot be accessed in this
27220 mode; on the GR6, only registers r29 to r31 are affected.
27221 @end table
27222
27223 @node VMS Options
27224 @subsection VMS Options
27225
27226 These @samp{-m} options are defined for the VMS implementations:
27227
27228 @table @gcctabopt
27229 @item -mvms-return-codes
27230 @opindex mvms-return-codes
27231 Return VMS condition codes from @code{main}. The default is to return POSIX-style
27232 condition (e.g.@: error) codes.
27233
27234 @item -mdebug-main=@var{prefix}
27235 @opindex mdebug-main=@var{prefix}
27236 Flag the first routine whose name starts with @var{prefix} as the main
27237 routine for the debugger.
27238
27239 @item -mmalloc64
27240 @opindex mmalloc64
27241 Default to 64-bit memory allocation routines.
27242
27243 @item -mpointer-size=@var{size}
27244 @opindex mpointer-size=@var{size}
27245 Set the default size of pointers. Possible options for @var{size} are
27246 @samp{32} or @samp{short} for 32 bit pointers, @samp{64} or @samp{long}
27247 for 64 bit pointers, and @samp{no} for supporting only 32 bit pointers.
27248 The later option disables @code{pragma pointer_size}.
27249 @end table
27250
27251 @node VxWorks Options
27252 @subsection VxWorks Options
27253 @cindex VxWorks Options
27254
27255 The options in this section are defined for all VxWorks targets.
27256 Options specific to the target hardware are listed with the other
27257 options for that target.
27258
27259 @table @gcctabopt
27260 @item -mrtp
27261 @opindex mrtp
27262 GCC can generate code for both VxWorks kernels and real time processes
27263 (RTPs). This option switches from the former to the latter. It also
27264 defines the preprocessor macro @code{__RTP__}.
27265
27266 @item -non-static
27267 @opindex non-static
27268 Link an RTP executable against shared libraries rather than static
27269 libraries. The options @option{-static} and @option{-shared} can
27270 also be used for RTPs (@pxref{Link Options}); @option{-static}
27271 is the default.
27272
27273 @item -Bstatic
27274 @itemx -Bdynamic
27275 @opindex Bstatic
27276 @opindex Bdynamic
27277 These options are passed down to the linker. They are defined for
27278 compatibility with Diab.
27279
27280 @item -Xbind-lazy
27281 @opindex Xbind-lazy
27282 Enable lazy binding of function calls. This option is equivalent to
27283 @option{-Wl,-z,now} and is defined for compatibility with Diab.
27284
27285 @item -Xbind-now
27286 @opindex Xbind-now
27287 Disable lazy binding of function calls. This option is the default and
27288 is defined for compatibility with Diab.
27289 @end table
27290
27291 @node x86 Options
27292 @subsection x86 Options
27293 @cindex x86 Options
27294
27295 These @samp{-m} options are defined for the x86 family of computers.
27296
27297 @table @gcctabopt
27298
27299 @item -march=@var{cpu-type}
27300 @opindex march
27301 Generate instructions for the machine type @var{cpu-type}. In contrast to
27302 @option{-mtune=@var{cpu-type}}, which merely tunes the generated code
27303 for the specified @var{cpu-type}, @option{-march=@var{cpu-type}} allows GCC
27304 to generate code that may not run at all on processors other than the one
27305 indicated. Specifying @option{-march=@var{cpu-type}} implies
27306 @option{-mtune=@var{cpu-type}}.
27307
27308 The choices for @var{cpu-type} are:
27309
27310 @table @samp
27311 @item native
27312 This selects the CPU to generate code for at compilation time by determining
27313 the processor type of the compiling machine. Using @option{-march=native}
27314 enables all instruction subsets supported by the local machine (hence
27315 the result might not run on different machines). Using @option{-mtune=native}
27316 produces code optimized for the local machine under the constraints
27317 of the selected instruction set.
27318
27319 @item x86-64
27320 A generic CPU with 64-bit extensions.
27321
27322 @item i386
27323 Original Intel i386 CPU@.
27324
27325 @item i486
27326 Intel i486 CPU@. (No scheduling is implemented for this chip.)
27327
27328 @item i586
27329 @itemx pentium
27330 Intel Pentium CPU with no MMX support.
27331
27332 @item lakemont
27333 Intel Lakemont MCU, based on Intel Pentium CPU.
27334
27335 @item pentium-mmx
27336 Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support.
27337
27338 @item pentiumpro
27339 Intel Pentium Pro CPU@.
27340
27341 @item i686
27342 When used with @option{-march}, the Pentium Pro
27343 instruction set is used, so the code runs on all i686 family chips.
27344 When used with @option{-mtune}, it has the same meaning as @samp{generic}.
27345
27346 @item pentium2
27347 Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set
27348 support.
27349
27350 @item pentium3
27351 @itemx pentium3m
27352 Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction
27353 set support.
27354
27355 @item pentium-m
27356 Intel Pentium M; low-power version of Intel Pentium III CPU
27357 with MMX, SSE and SSE2 instruction set support. Used by Centrino notebooks.
27358
27359 @item pentium4
27360 @itemx pentium4m
27361 Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support.
27362
27363 @item prescott
27364 Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction
27365 set support.
27366
27367 @item nocona
27368 Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE,
27369 SSE2 and SSE3 instruction set support.
27370
27371 @item core2
27372 Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
27373 instruction set support.
27374
27375 @item nehalem
27376 Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
27377 SSE4.1, SSE4.2 and POPCNT instruction set support.
27378
27379 @item westmere
27380 Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
27381 SSE4.1, SSE4.2, POPCNT, AES and PCLMUL instruction set support.
27382
27383 @item sandybridge
27384 Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
27385 SSE4.1, SSE4.2, POPCNT, AVX, AES and PCLMUL instruction set support.
27386
27387 @item ivybridge
27388 Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
27389 SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C
27390 instruction set support.
27391
27392 @item haswell
27393 Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27394 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27395 BMI, BMI2 and F16C instruction set support.
27396
27397 @item broadwell
27398 Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27399 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27400 BMI, BMI2, F16C, RDSEED, ADCX and PREFETCHW instruction set support.
27401
27402 @item skylake
27403 Intel Skylake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27404 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27405 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC and
27406 XSAVES instruction set support.
27407
27408 @item bonnell
27409 Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3
27410 instruction set support.
27411
27412 @item silvermont
27413 Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27414 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL and RDRND instruction set support.
27415
27416 @item goldmont
27417 Intel Goldmont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27418 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL, RDRND, XSAVE, XSAVEOPT and FSGSBASE
27419 instruction set support.
27420
27421 @item goldmont-plus
27422 Intel Goldmont Plus CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
27423 SSSE3, SSE4.1, SSE4.2, POPCNT, AES, PCLMUL, RDRND, XSAVE, XSAVEOPT, FSGSBASE,
27424 PTWRITE, RDPID, SGX and UMIP instruction set support.
27425
27426 @item tremont
27427 Intel Tremont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27428 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL, RDRND, XSAVE, XSAVEOPT, FSGSBASE, PTWRITE,
27429 RDPID, SGX, UMIP, GFNI-SSE, CLWB and ENCLV instruction set support.
27430
27431 @item knl
27432 Intel Knight's Landing CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
27433 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27434 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER and
27435 AVX512CD instruction set support.
27436
27437 @item knm
27438 Intel Knights Mill CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
27439 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27440 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER, AVX512CD,
27441 AVX5124VNNIW, AVX5124FMAPS and AVX512VPOPCNTDQ instruction set support.
27442
27443 @item skylake-avx512
27444 Intel Skylake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
27445 SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27446 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,
27447 CLWB, AVX512VL, AVX512BW, AVX512DQ and AVX512CD instruction set support.
27448
27449 @item cannonlake
27450 Intel Cannonlake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
27451 SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
27452 RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
27453 XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
27454 AVX512IFMA, SHA and UMIP instruction set support.
27455
27456 @item icelake-client
27457 Intel Icelake Client CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
27458 SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
27459 RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
27460 XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
27461 AVX512IFMA, SHA, CLWB, UMIP, RDPID, GFNI, AVX512VBMI2, AVX512VPOPCNTDQ,
27462 AVX512BITALG, AVX512VNNI, VPCLMULQDQ, VAES instruction set support.
27463
27464 @item icelake-server
27465 Intel Icelake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
27466 SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
27467 RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
27468 XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
27469 AVX512IFMA, SHA, CLWB, UMIP, RDPID, GFNI, AVX512VBMI2, AVX512VPOPCNTDQ,
27470 AVX512BITALG, AVX512VNNI, VPCLMULQDQ, VAES, PCONFIG and WBNOINVD instruction
27471 set support.
27472
27473 @item cascadelake
27474 Intel Cascadelake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27475 SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI,
27476 BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F, CLWB,
27477 AVX512VL, AVX512BW, AVX512DQ, AVX512CD and AVX512VNNI instruction set support.
27478
27479 @item k6
27480 AMD K6 CPU with MMX instruction set support.
27481
27482 @item k6-2
27483 @itemx k6-3
27484 Improved versions of AMD K6 CPU with MMX and 3DNow!@: instruction set support.
27485
27486 @item athlon
27487 @itemx athlon-tbird
27488 AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow!@: and SSE prefetch instructions
27489 support.
27490
27491 @item athlon-4
27492 @itemx athlon-xp
27493 @itemx athlon-mp
27494 Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow!@: and full SSE
27495 instruction set support.
27496
27497 @item k8
27498 @itemx opteron
27499 @itemx athlon64
27500 @itemx athlon-fx
27501 Processors based on the AMD K8 core with x86-64 instruction set support,
27502 including the AMD Opteron, Athlon 64, and Athlon 64 FX processors.
27503 (This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow!@: and 64-bit
27504 instruction set extensions.)
27505
27506 @item k8-sse3
27507 @itemx opteron-sse3
27508 @itemx athlon64-sse3
27509 Improved versions of AMD K8 cores with SSE3 instruction set support.
27510
27511 @item amdfam10
27512 @itemx barcelona
27513 CPUs based on AMD Family 10h cores with x86-64 instruction set support. (This
27514 supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit
27515 instruction set extensions.)
27516
27517 @item bdver1
27518 CPUs based on AMD Family 15h cores with x86-64 instruction set support. (This
27519 supersets FMA4, AVX, XOP, LWP, AES, PCLMUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
27520 SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)
27521 @item bdver2
27522 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
27523 supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCLMUL, CX16, MMX,
27524 SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set
27525 extensions.)
27526 @item bdver3
27527 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
27528 supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES,
27529 PCLMUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and
27530 64-bit instruction set extensions.
27531 @item bdver4
27532 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
27533 supersets BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP,
27534 AES, PCLMUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,
27535 SSE4.2, ABM and 64-bit instruction set extensions.
27536
27537 @item znver1
27538 AMD Family 17h core based CPUs with x86-64 instruction set support. (This
27539 supersets BMI, BMI2, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED, MWAITX,
27540 SHA, CLZERO, AES, PCLMUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3,
27541 SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, and 64-bit
27542 instruction set extensions.
27543 @item znver2
27544 AMD Family 17h core based CPUs with x86-64 instruction set support. (This
27545 supersets BMI, BMI2, ,CLWB, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED,
27546 MWAITX, SHA, CLZERO, AES, PCLMUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A,
27547 SSSE3, SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, and 64-bit
27548 instruction set extensions.)
27549
27550
27551 @item btver1
27552 CPUs based on AMD Family 14h cores with x86-64 instruction set support. (This
27553 supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit
27554 instruction set extensions.)
27555
27556 @item btver2
27557 CPUs based on AMD Family 16h cores with x86-64 instruction set support. This
27558 includes MOVBE, F16C, BMI, AVX, PCLMUL, AES, SSE4.2, SSE4.1, CX16, ABM,
27559 SSE4A, SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set extensions.
27560
27561 @item winchip-c6
27562 IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction
27563 set support.
27564
27565 @item winchip2
27566 IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and 3DNow!@:
27567 instruction set support.
27568
27569 @item c3
27570 VIA C3 CPU with MMX and 3DNow!@: instruction set support.
27571 (No scheduling is implemented for this chip.)
27572
27573 @item c3-2
27574 VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support.
27575 (No scheduling is implemented for this chip.)
27576
27577 @item c7
27578 VIA C7 (Esther) CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
27579 (No scheduling is implemented for this chip.)
27580
27581 @item samuel-2
27582 VIA Eden Samuel 2 CPU with MMX and 3DNow!@: instruction set support.
27583 (No scheduling is implemented for this chip.)
27584
27585 @item nehemiah
27586 VIA Eden Nehemiah CPU with MMX and SSE instruction set support.
27587 (No scheduling is implemented for this chip.)
27588
27589 @item esther
27590 VIA Eden Esther CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
27591 (No scheduling is implemented for this chip.)
27592
27593 @item eden-x2
27594 VIA Eden X2 CPU with x86-64, MMX, SSE, SSE2 and SSE3 instruction set support.
27595 (No scheduling is implemented for this chip.)
27596
27597 @item eden-x4
27598 VIA Eden X4 CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
27599 AVX and AVX2 instruction set support.
27600 (No scheduling is implemented for this chip.)
27601
27602 @item nano
27603 Generic VIA Nano CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
27604 instruction set support.
27605 (No scheduling is implemented for this chip.)
27606
27607 @item nano-1000
27608 VIA Nano 1xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
27609 instruction set support.
27610 (No scheduling is implemented for this chip.)
27611
27612 @item nano-2000
27613 VIA Nano 2xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
27614 instruction set support.
27615 (No scheduling is implemented for this chip.)
27616
27617 @item nano-3000
27618 VIA Nano 3xxx CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
27619 instruction set support.
27620 (No scheduling is implemented for this chip.)
27621
27622 @item nano-x2
27623 VIA Nano Dual Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
27624 instruction set support.
27625 (No scheduling is implemented for this chip.)
27626
27627 @item nano-x4
27628 VIA Nano Quad Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
27629 instruction set support.
27630 (No scheduling is implemented for this chip.)
27631
27632 @item geode
27633 AMD Geode embedded processor with MMX and 3DNow!@: instruction set support.
27634 @end table
27635
27636 @item -mtune=@var{cpu-type}
27637 @opindex mtune
27638 Tune to @var{cpu-type} everything applicable about the generated code, except
27639 for the ABI and the set of available instructions.
27640 While picking a specific @var{cpu-type} schedules things appropriately
27641 for that particular chip, the compiler does not generate any code that
27642 cannot run on the default machine type unless you use a
27643 @option{-march=@var{cpu-type}} option.
27644 For example, if GCC is configured for i686-pc-linux-gnu
27645 then @option{-mtune=pentium4} generates code that is tuned for Pentium 4
27646 but still runs on i686 machines.
27647
27648 The choices for @var{cpu-type} are the same as for @option{-march}.
27649 In addition, @option{-mtune} supports 2 extra choices for @var{cpu-type}:
27650
27651 @table @samp
27652 @item generic
27653 Produce code optimized for the most common IA32/@/AMD64/@/EM64T processors.
27654 If you know the CPU on which your code will run, then you should use
27655 the corresponding @option{-mtune} or @option{-march} option instead of
27656 @option{-mtune=generic}. But, if you do not know exactly what CPU users
27657 of your application will have, then you should use this option.
27658
27659 As new processors are deployed in the marketplace, the behavior of this
27660 option will change. Therefore, if you upgrade to a newer version of
27661 GCC, code generation controlled by this option will change to reflect
27662 the processors
27663 that are most common at the time that version of GCC is released.
27664
27665 There is no @option{-march=generic} option because @option{-march}
27666 indicates the instruction set the compiler can use, and there is no
27667 generic instruction set applicable to all processors. In contrast,
27668 @option{-mtune} indicates the processor (or, in this case, collection of
27669 processors) for which the code is optimized.
27670
27671 @item intel
27672 Produce code optimized for the most current Intel processors, which are
27673 Haswell and Silvermont for this version of GCC. If you know the CPU
27674 on which your code will run, then you should use the corresponding
27675 @option{-mtune} or @option{-march} option instead of @option{-mtune=intel}.
27676 But, if you want your application performs better on both Haswell and
27677 Silvermont, then you should use this option.
27678
27679 As new Intel processors are deployed in the marketplace, the behavior of
27680 this option will change. Therefore, if you upgrade to a newer version of
27681 GCC, code generation controlled by this option will change to reflect
27682 the most current Intel processors at the time that version of GCC is
27683 released.
27684
27685 There is no @option{-march=intel} option because @option{-march} indicates
27686 the instruction set the compiler can use, and there is no common
27687 instruction set applicable to all processors. In contrast,
27688 @option{-mtune} indicates the processor (or, in this case, collection of
27689 processors) for which the code is optimized.
27690 @end table
27691
27692 @item -mcpu=@var{cpu-type}
27693 @opindex mcpu
27694 A deprecated synonym for @option{-mtune}.
27695
27696 @item -mfpmath=@var{unit}
27697 @opindex mfpmath
27698 Generate floating-point arithmetic for selected unit @var{unit}. The choices
27699 for @var{unit} are:
27700
27701 @table @samp
27702 @item 387
27703 Use the standard 387 floating-point coprocessor present on the majority of chips and
27704 emulated otherwise. Code compiled with this option runs almost everywhere.
27705 The temporary results are computed in 80-bit precision instead of the precision
27706 specified by the type, resulting in slightly different results compared to most
27707 of other chips. See @option{-ffloat-store} for more detailed description.
27708
27709 This is the default choice for non-Darwin x86-32 targets.
27710
27711 @item sse
27712 Use scalar floating-point instructions present in the SSE instruction set.
27713 This instruction set is supported by Pentium III and newer chips,
27714 and in the AMD line
27715 by Athlon-4, Athlon XP and Athlon MP chips. The earlier version of the SSE
27716 instruction set supports only single-precision arithmetic, thus the double and
27717 extended-precision arithmetic are still done using 387. A later version, present
27718 only in Pentium 4 and AMD x86-64 chips, supports double-precision
27719 arithmetic too.
27720
27721 For the x86-32 compiler, you must use @option{-march=@var{cpu-type}}, @option{-msse}
27722 or @option{-msse2} switches to enable SSE extensions and make this option
27723 effective. For the x86-64 compiler, these extensions are enabled by default.
27724
27725 The resulting code should be considerably faster in the majority of cases and avoid
27726 the numerical instability problems of 387 code, but may break some existing
27727 code that expects temporaries to be 80 bits.
27728
27729 This is the default choice for the x86-64 compiler, Darwin x86-32 targets,
27730 and the default choice for x86-32 targets with the SSE2 instruction set
27731 when @option{-ffast-math} is enabled.
27732
27733 @item sse,387
27734 @itemx sse+387
27735 @itemx both
27736 Attempt to utilize both instruction sets at once. This effectively doubles the
27737 amount of available registers, and on chips with separate execution units for
27738 387 and SSE the execution resources too. Use this option with care, as it is
27739 still experimental, because the GCC register allocator does not model separate
27740 functional units well, resulting in unstable performance.
27741 @end table
27742
27743 @item -masm=@var{dialect}
27744 @opindex masm=@var{dialect}
27745 Output assembly instructions using selected @var{dialect}. Also affects
27746 which dialect is used for basic @code{asm} (@pxref{Basic Asm}) and
27747 extended @code{asm} (@pxref{Extended Asm}). Supported choices (in dialect
27748 order) are @samp{att} or @samp{intel}. The default is @samp{att}. Darwin does
27749 not support @samp{intel}.
27750
27751 @item -mieee-fp
27752 @itemx -mno-ieee-fp
27753 @opindex mieee-fp
27754 @opindex mno-ieee-fp
27755 Control whether or not the compiler uses IEEE floating-point
27756 comparisons. These correctly handle the case where the result of a
27757 comparison is unordered.
27758
27759 @item -m80387
27760 @itemx -mhard-float
27761 @opindex 80387
27762 @opindex mhard-float
27763 Generate output containing 80387 instructions for floating point.
27764
27765 @item -mno-80387
27766 @itemx -msoft-float
27767 @opindex no-80387
27768 @opindex msoft-float
27769 Generate output containing library calls for floating point.
27770
27771 @strong{Warning:} the requisite libraries are not part of GCC@.
27772 Normally the facilities of the machine's usual C compiler are used, but
27773 this cannot be done directly in cross-compilation. You must make your
27774 own arrangements to provide suitable library functions for
27775 cross-compilation.
27776
27777 On machines where a function returns floating-point results in the 80387
27778 register stack, some floating-point opcodes may be emitted even if
27779 @option{-msoft-float} is used.
27780
27781 @item -mno-fp-ret-in-387
27782 @opindex mno-fp-ret-in-387
27783 @opindex mfp-ret-in-387
27784 Do not use the FPU registers for return values of functions.
27785
27786 The usual calling convention has functions return values of types
27787 @code{float} and @code{double} in an FPU register, even if there
27788 is no FPU@. The idea is that the operating system should emulate
27789 an FPU@.
27790
27791 The option @option{-mno-fp-ret-in-387} causes such values to be returned
27792 in ordinary CPU registers instead.
27793
27794 @item -mno-fancy-math-387
27795 @opindex mno-fancy-math-387
27796 @opindex mfancy-math-387
27797 Some 387 emulators do not support the @code{sin}, @code{cos} and
27798 @code{sqrt} instructions for the 387. Specify this option to avoid
27799 generating those instructions.
27800 This option is overridden when @option{-march}
27801 indicates that the target CPU always has an FPU and so the
27802 instruction does not need emulation. These
27803 instructions are not generated unless you also use the
27804 @option{-funsafe-math-optimizations} switch.
27805
27806 @item -malign-double
27807 @itemx -mno-align-double
27808 @opindex malign-double
27809 @opindex mno-align-double
27810 Control whether GCC aligns @code{double}, @code{long double}, and
27811 @code{long long} variables on a two-word boundary or a one-word
27812 boundary. Aligning @code{double} variables on a two-word boundary
27813 produces code that runs somewhat faster on a Pentium at the
27814 expense of more memory.
27815
27816 On x86-64, @option{-malign-double} is enabled by default.
27817
27818 @strong{Warning:} if you use the @option{-malign-double} switch,
27819 structures containing the above types are aligned differently than
27820 the published application binary interface specifications for the x86-32
27821 and are not binary compatible with structures in code compiled
27822 without that switch.
27823
27824 @item -m96bit-long-double
27825 @itemx -m128bit-long-double
27826 @opindex m96bit-long-double
27827 @opindex m128bit-long-double
27828 These switches control the size of @code{long double} type. The x86-32
27829 application binary interface specifies the size to be 96 bits,
27830 so @option{-m96bit-long-double} is the default in 32-bit mode.
27831
27832 Modern architectures (Pentium and newer) prefer @code{long double}
27833 to be aligned to an 8- or 16-byte boundary. In arrays or structures
27834 conforming to the ABI, this is not possible. So specifying
27835 @option{-m128bit-long-double} aligns @code{long double}
27836 to a 16-byte boundary by padding the @code{long double} with an additional
27837 32-bit zero.
27838
27839 In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as
27840 its ABI specifies that @code{long double} is aligned on 16-byte boundary.
27841
27842 Notice that neither of these options enable any extra precision over the x87
27843 standard of 80 bits for a @code{long double}.
27844
27845 @strong{Warning:} if you override the default value for your target ABI, this
27846 changes the size of
27847 structures and arrays containing @code{long double} variables,
27848 as well as modifying the function calling convention for functions taking
27849 @code{long double}. Hence they are not binary-compatible
27850 with code compiled without that switch.
27851
27852 @item -mlong-double-64
27853 @itemx -mlong-double-80
27854 @itemx -mlong-double-128
27855 @opindex mlong-double-64
27856 @opindex mlong-double-80
27857 @opindex mlong-double-128
27858 These switches control the size of @code{long double} type. A size
27859 of 64 bits makes the @code{long double} type equivalent to the @code{double}
27860 type. This is the default for 32-bit Bionic C library. A size
27861 of 128 bits makes the @code{long double} type equivalent to the
27862 @code{__float128} type. This is the default for 64-bit Bionic C library.
27863
27864 @strong{Warning:} if you override the default value for your target ABI, this
27865 changes the size of
27866 structures and arrays containing @code{long double} variables,
27867 as well as modifying the function calling convention for functions taking
27868 @code{long double}. Hence they are not binary-compatible
27869 with code compiled without that switch.
27870
27871 @item -malign-data=@var{type}
27872 @opindex malign-data
27873 Control how GCC aligns variables. Supported values for @var{type} are
27874 @samp{compat} uses increased alignment value compatible uses GCC 4.8
27875 and earlier, @samp{abi} uses alignment value as specified by the
27876 psABI, and @samp{cacheline} uses increased alignment value to match
27877 the cache line size. @samp{compat} is the default.
27878
27879 @item -mlarge-data-threshold=@var{threshold}
27880 @opindex mlarge-data-threshold
27881 When @option{-mcmodel=medium} is specified, data objects larger than
27882 @var{threshold} are placed in the large data section. This value must be the
27883 same across all objects linked into the binary, and defaults to 65535.
27884
27885 @item -mrtd
27886 @opindex mrtd
27887 Use a different function-calling convention, in which functions that
27888 take a fixed number of arguments return with the @code{ret @var{num}}
27889 instruction, which pops their arguments while returning. This saves one
27890 instruction in the caller since there is no need to pop the arguments
27891 there.
27892
27893 You can specify that an individual function is called with this calling
27894 sequence with the function attribute @code{stdcall}. You can also
27895 override the @option{-mrtd} option by using the function attribute
27896 @code{cdecl}. @xref{Function Attributes}.
27897
27898 @strong{Warning:} this calling convention is incompatible with the one
27899 normally used on Unix, so you cannot use it if you need to call
27900 libraries compiled with the Unix compiler.
27901
27902 Also, you must provide function prototypes for all functions that
27903 take variable numbers of arguments (including @code{printf});
27904 otherwise incorrect code is generated for calls to those
27905 functions.
27906
27907 In addition, seriously incorrect code results if you call a
27908 function with too many arguments. (Normally, extra arguments are
27909 harmlessly ignored.)
27910
27911 @item -mregparm=@var{num}
27912 @opindex mregparm
27913 Control how many registers are used to pass integer arguments. By
27914 default, no registers are used to pass arguments, and at most 3
27915 registers can be used. You can control this behavior for a specific
27916 function by using the function attribute @code{regparm}.
27917 @xref{Function Attributes}.
27918
27919 @strong{Warning:} if you use this switch, and
27920 @var{num} is nonzero, then you must build all modules with the same
27921 value, including any libraries. This includes the system libraries and
27922 startup modules.
27923
27924 @item -msseregparm
27925 @opindex msseregparm
27926 Use SSE register passing conventions for float and double arguments
27927 and return values. You can control this behavior for a specific
27928 function by using the function attribute @code{sseregparm}.
27929 @xref{Function Attributes}.
27930
27931 @strong{Warning:} if you use this switch then you must build all
27932 modules with the same value, including any libraries. This includes
27933 the system libraries and startup modules.
27934
27935 @item -mvect8-ret-in-mem
27936 @opindex mvect8-ret-in-mem
27937 Return 8-byte vectors in memory instead of MMX registers. This is the
27938 default on VxWorks to match the ABI of the Sun Studio compilers until
27939 version 12. @emph{Only} use this option if you need to remain
27940 compatible with existing code produced by those previous compiler
27941 versions or older versions of GCC@.
27942
27943 @item -mpc32
27944 @itemx -mpc64
27945 @itemx -mpc80
27946 @opindex mpc32
27947 @opindex mpc64
27948 @opindex mpc80
27949
27950 Set 80387 floating-point precision to 32, 64 or 80 bits. When @option{-mpc32}
27951 is specified, the significands of results of floating-point operations are
27952 rounded to 24 bits (single precision); @option{-mpc64} rounds the
27953 significands of results of floating-point operations to 53 bits (double
27954 precision) and @option{-mpc80} rounds the significands of results of
27955 floating-point operations to 64 bits (extended double precision), which is
27956 the default. When this option is used, floating-point operations in higher
27957 precisions are not available to the programmer without setting the FPU
27958 control word explicitly.
27959
27960 Setting the rounding of floating-point operations to less than the default
27961 80 bits can speed some programs by 2% or more. Note that some mathematical
27962 libraries assume that extended-precision (80-bit) floating-point operations
27963 are enabled by default; routines in such libraries could suffer significant
27964 loss of accuracy, typically through so-called ``catastrophic cancellation'',
27965 when this option is used to set the precision to less than extended precision.
27966
27967 @item -mstackrealign
27968 @opindex mstackrealign
27969 Realign the stack at entry. On the x86, the @option{-mstackrealign}
27970 option generates an alternate prologue and epilogue that realigns the
27971 run-time stack if necessary. This supports mixing legacy codes that keep
27972 4-byte stack alignment with modern codes that keep 16-byte stack alignment for
27973 SSE compatibility. See also the attribute @code{force_align_arg_pointer},
27974 applicable to individual functions.
27975
27976 @item -mpreferred-stack-boundary=@var{num}
27977 @opindex mpreferred-stack-boundary
27978 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
27979 byte boundary. If @option{-mpreferred-stack-boundary} is not specified,
27980 the default is 4 (16 bytes or 128 bits).
27981
27982 @strong{Warning:} When generating code for the x86-64 architecture with
27983 SSE extensions disabled, @option{-mpreferred-stack-boundary=3} can be
27984 used to keep the stack boundary aligned to 8 byte boundary. Since
27985 x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and
27986 intended to be used in controlled environment where stack space is
27987 important limitation. This option leads to wrong code when functions
27988 compiled with 16 byte stack alignment (such as functions from a standard
27989 library) are called with misaligned stack. In this case, SSE
27990 instructions may lead to misaligned memory access traps. In addition,
27991 variable arguments are handled incorrectly for 16 byte aligned
27992 objects (including x87 long double and __int128), leading to wrong
27993 results. You must build all modules with
27994 @option{-mpreferred-stack-boundary=3}, including any libraries. This
27995 includes the system libraries and startup modules.
27996
27997 @item -mincoming-stack-boundary=@var{num}
27998 @opindex mincoming-stack-boundary
27999 Assume the incoming stack is aligned to a 2 raised to @var{num} byte
28000 boundary. If @option{-mincoming-stack-boundary} is not specified,
28001 the one specified by @option{-mpreferred-stack-boundary} is used.
28002
28003 On Pentium and Pentium Pro, @code{double} and @code{long double} values
28004 should be aligned to an 8-byte boundary (see @option{-malign-double}) or
28005 suffer significant run time performance penalties. On Pentium III, the
28006 Streaming SIMD Extension (SSE) data type @code{__m128} may not work
28007 properly if it is not 16-byte aligned.
28008
28009 To ensure proper alignment of this values on the stack, the stack boundary
28010 must be as aligned as that required by any value stored on the stack.
28011 Further, every function must be generated such that it keeps the stack
28012 aligned. Thus calling a function compiled with a higher preferred
28013 stack boundary from a function compiled with a lower preferred stack
28014 boundary most likely misaligns the stack. It is recommended that
28015 libraries that use callbacks always use the default setting.
28016
28017 This extra alignment does consume extra stack space, and generally
28018 increases code size. Code that is sensitive to stack space usage, such
28019 as embedded systems and operating system kernels, may want to reduce the
28020 preferred alignment to @option{-mpreferred-stack-boundary=2}.
28021
28022 @need 200
28023 @item -mmmx
28024 @opindex mmmx
28025 @need 200
28026 @itemx -msse
28027 @opindex msse
28028 @need 200
28029 @itemx -msse2
28030 @opindex msse2
28031 @need 200
28032 @itemx -msse3
28033 @opindex msse3
28034 @need 200
28035 @itemx -mssse3
28036 @opindex mssse3
28037 @need 200
28038 @itemx -msse4
28039 @opindex msse4
28040 @need 200
28041 @itemx -msse4a
28042 @opindex msse4a
28043 @need 200
28044 @itemx -msse4.1
28045 @opindex msse4.1
28046 @need 200
28047 @itemx -msse4.2
28048 @opindex msse4.2
28049 @need 200
28050 @itemx -mavx
28051 @opindex mavx
28052 @need 200
28053 @itemx -mavx2
28054 @opindex mavx2
28055 @need 200
28056 @itemx -mavx512f
28057 @opindex mavx512f
28058 @need 200
28059 @itemx -mavx512pf
28060 @opindex mavx512pf
28061 @need 200
28062 @itemx -mavx512er
28063 @opindex mavx512er
28064 @need 200
28065 @itemx -mavx512cd
28066 @opindex mavx512cd
28067 @need 200
28068 @itemx -mavx512vl
28069 @opindex mavx512vl
28070 @need 200
28071 @itemx -mavx512bw
28072 @opindex mavx512bw
28073 @need 200
28074 @itemx -mavx512dq
28075 @opindex mavx512dq
28076 @need 200
28077 @itemx -mavx512ifma
28078 @opindex mavx512ifma
28079 @need 200
28080 @itemx -mavx512vbmi
28081 @opindex mavx512vbmi
28082 @need 200
28083 @itemx -msha
28084 @opindex msha
28085 @need 200
28086 @itemx -maes
28087 @opindex maes
28088 @need 200
28089 @itemx -mpclmul
28090 @opindex mpclmul
28091 @need 200
28092 @itemx -mclflushopt
28093 @opindex mclflushopt
28094 @need 200
28095 @itemx -mclwb
28096 @opindex mclwb
28097 @need 200
28098 @itemx -mfsgsbase
28099 @opindex mfsgsbase
28100 @need 200
28101 @itemx -mptwrite
28102 @opindex mptwrite
28103 @need 200
28104 @itemx -mrdrnd
28105 @opindex mrdrnd
28106 @need 200
28107 @itemx -mf16c
28108 @opindex mf16c
28109 @need 200
28110 @itemx -mfma
28111 @opindex mfma
28112 @need 200
28113 @itemx -mpconfig
28114 @opindex mpconfig
28115 @need 200
28116 @itemx -mwbnoinvd
28117 @opindex mwbnoinvd
28118 @need 200
28119 @itemx -mfma4
28120 @opindex mfma4
28121 @need 200
28122 @itemx -mprfchw
28123 @opindex mprfchw
28124 @need 200
28125 @itemx -mrdpid
28126 @opindex mrdpid
28127 @need 200
28128 @itemx -mprefetchwt1
28129 @opindex mprefetchwt1
28130 @need 200
28131 @itemx -mrdseed
28132 @opindex mrdseed
28133 @need 200
28134 @itemx -msgx
28135 @opindex msgx
28136 @need 200
28137 @itemx -mxop
28138 @opindex mxop
28139 @need 200
28140 @itemx -mlwp
28141 @opindex mlwp
28142 @need 200
28143 @itemx -m3dnow
28144 @opindex m3dnow
28145 @need 200
28146 @itemx -m3dnowa
28147 @opindex m3dnowa
28148 @need 200
28149 @itemx -mpopcnt
28150 @opindex mpopcnt
28151 @need 200
28152 @itemx -mabm
28153 @opindex mabm
28154 @need 200
28155 @itemx -madx
28156 @opindex madx
28157 @need 200
28158 @itemx -mbmi
28159 @opindex mbmi
28160 @need 200
28161 @itemx -mbmi2
28162 @opindex mbmi2
28163 @need 200
28164 @itemx -mlzcnt
28165 @opindex mlzcnt
28166 @need 200
28167 @itemx -mfxsr
28168 @opindex mfxsr
28169 @need 200
28170 @itemx -mxsave
28171 @opindex mxsave
28172 @need 200
28173 @itemx -mxsaveopt
28174 @opindex mxsaveopt
28175 @need 200
28176 @itemx -mxsavec
28177 @opindex mxsavec
28178 @need 200
28179 @itemx -mxsaves
28180 @opindex mxsaves
28181 @need 200
28182 @itemx -mrtm
28183 @opindex mrtm
28184 @need 200
28185 @itemx -mhle
28186 @opindex mhle
28187 @need 200
28188 @itemx -mtbm
28189 @opindex mtbm
28190 @need 200
28191 @itemx -mmwaitx
28192 @opindex mmwaitx
28193 @need 200
28194 @itemx -mclzero
28195 @opindex mclzero
28196 @need 200
28197 @itemx -mpku
28198 @opindex mpku
28199 @need 200
28200 @itemx -mavx512vbmi2
28201 @opindex mavx512vbmi2
28202 @need 200
28203 @itemx -mavx512bf16
28204 @opindex mavx512bf16
28205 @need 200
28206 @itemx -mgfni
28207 @opindex mgfni
28208 @need 200
28209 @itemx -mvaes
28210 @opindex mvaes
28211 @need 200
28212 @itemx -mwaitpkg
28213 @opindex mwaitpkg
28214 @need 200
28215 @itemx -mvpclmulqdq
28216 @opindex mvpclmulqdq
28217 @need 200
28218 @itemx -mavx512bitalg
28219 @opindex mavx512bitalg
28220 @need 200
28221 @itemx -mmovdiri
28222 @opindex mmovdiri
28223 @need 200
28224 @itemx -mmovdir64b
28225 @opindex mmovdir64b
28226 @need 200
28227 @itemx -menqcmd
28228 @opindex menqcmd
28229 @need 200
28230 @itemx -mavx512vpopcntdq
28231 @opindex mavx512vpopcntdq
28232 @need 200
28233 @itemx -mavx512vp2intersect
28234 @opindex mavx512vp2intersect
28235 @need 200
28236 @itemx -mavx5124fmaps
28237 @opindex mavx5124fmaps
28238 @need 200
28239 @itemx -mavx512vnni
28240 @opindex mavx512vnni
28241 @need 200
28242 @itemx -mavx5124vnniw
28243 @opindex mavx5124vnniw
28244 @need 200
28245 @itemx -mcldemote
28246 @opindex mcldemote
28247 These switches enable the use of instructions in the MMX, SSE,
28248 SSE2, SSE3, SSSE3, SSE4, SSE4A, SSE4.1, SSE4.2, AVX, AVX2, AVX512F, AVX512PF,
28249 AVX512ER, AVX512CD, AVX512VL, AVX512BW, AVX512DQ, AVX512IFMA, AVX512VBMI, SHA,
28250 AES, PCLMUL, CLFLUSHOPT, CLWB, FSGSBASE, PTWRITE, RDRND, F16C, FMA, PCONFIG,
28251 WBNOINVD, FMA4, PREFETCHW, RDPID, PREFETCHWT1, RDSEED, SGX, XOP, LWP,
28252 3DNow!@:, enhanced 3DNow!@:, POPCNT, ABM, ADX, BMI, BMI2, LZCNT, FXSR, XSAVE,
28253 XSAVEOPT, XSAVEC, XSAVES, RTM, HLE, TBM, MWAITX, CLZERO, PKU, AVX512VBMI2,
28254 GFNI, VAES, WAITPKG, VPCLMULQDQ, AVX512BITALG, MOVDIRI, MOVDIR64B, AVX512BF16,
28255 ENQCMD, AVX512VPOPCNTDQ, AVX5124FMAPS, AVX512VNNI, AVX5124VNNIW, or CLDEMOTE
28256 extended instruction sets. Each has a corresponding @option{-mno-} option to
28257 disable use of these instructions.
28258
28259 These extensions are also available as built-in functions: see
28260 @ref{x86 Built-in Functions}, for details of the functions enabled and
28261 disabled by these switches.
28262
28263 To generate SSE/SSE2 instructions automatically from floating-point
28264 code (as opposed to 387 instructions), see @option{-mfpmath=sse}.
28265
28266 GCC depresses SSEx instructions when @option{-mavx} is used. Instead, it
28267 generates new AVX instructions or AVX equivalence for all SSEx instructions
28268 when needed.
28269
28270 These options enable GCC to use these extended instructions in
28271 generated code, even without @option{-mfpmath=sse}. Applications that
28272 perform run-time CPU detection must compile separate files for each
28273 supported architecture, using the appropriate flags. In particular,
28274 the file containing the CPU detection code should be compiled without
28275 these options.
28276
28277 @item -mdump-tune-features
28278 @opindex mdump-tune-features
28279 This option instructs GCC to dump the names of the x86 performance
28280 tuning features and default settings. The names can be used in
28281 @option{-mtune-ctrl=@var{feature-list}}.
28282
28283 @item -mtune-ctrl=@var{feature-list}
28284 @opindex mtune-ctrl=@var{feature-list}
28285 This option is used to do fine grain control of x86 code generation features.
28286 @var{feature-list} is a comma separated list of @var{feature} names. See also
28287 @option{-mdump-tune-features}. When specified, the @var{feature} is turned
28288 on if it is not preceded with @samp{^}, otherwise, it is turned off.
28289 @option{-mtune-ctrl=@var{feature-list}} is intended to be used by GCC
28290 developers. Using it may lead to code paths not covered by testing and can
28291 potentially result in compiler ICEs or runtime errors.
28292
28293 @item -mno-default
28294 @opindex mno-default
28295 This option instructs GCC to turn off all tunable features. See also
28296 @option{-mtune-ctrl=@var{feature-list}} and @option{-mdump-tune-features}.
28297
28298 @item -mcld
28299 @opindex mcld
28300 This option instructs GCC to emit a @code{cld} instruction in the prologue
28301 of functions that use string instructions. String instructions depend on
28302 the DF flag to select between autoincrement or autodecrement mode. While the
28303 ABI specifies the DF flag to be cleared on function entry, some operating
28304 systems violate this specification by not clearing the DF flag in their
28305 exception dispatchers. The exception handler can be invoked with the DF flag
28306 set, which leads to wrong direction mode when string instructions are used.
28307 This option can be enabled by default on 32-bit x86 targets by configuring
28308 GCC with the @option{--enable-cld} configure option. Generation of @code{cld}
28309 instructions can be suppressed with the @option{-mno-cld} compiler option
28310 in this case.
28311
28312 @item -mvzeroupper
28313 @opindex mvzeroupper
28314 This option instructs GCC to emit a @code{vzeroupper} instruction
28315 before a transfer of control flow out of the function to minimize
28316 the AVX to SSE transition penalty as well as remove unnecessary @code{zeroupper}
28317 intrinsics.
28318
28319 @item -mprefer-avx128
28320 @opindex mprefer-avx128
28321 This option instructs GCC to use 128-bit AVX instructions instead of
28322 256-bit AVX instructions in the auto-vectorizer.
28323
28324 @item -mprefer-vector-width=@var{opt}
28325 @opindex mprefer-vector-width
28326 This option instructs GCC to use @var{opt}-bit vector width in instructions
28327 instead of default on the selected platform.
28328
28329 @table @samp
28330 @item none
28331 No extra limitations applied to GCC other than defined by the selected platform.
28332
28333 @item 128
28334 Prefer 128-bit vector width for instructions.
28335
28336 @item 256
28337 Prefer 256-bit vector width for instructions.
28338
28339 @item 512
28340 Prefer 512-bit vector width for instructions.
28341 @end table
28342
28343 @item -mcx16
28344 @opindex mcx16
28345 This option enables GCC to generate @code{CMPXCHG16B} instructions in 64-bit
28346 code to implement compare-and-exchange operations on 16-byte aligned 128-bit
28347 objects. This is useful for atomic updates of data structures exceeding one
28348 machine word in size. The compiler uses this instruction to implement
28349 @ref{__sync Builtins}. However, for @ref{__atomic Builtins} operating on
28350 128-bit integers, a library call is always used.
28351
28352 @item -msahf
28353 @opindex msahf
28354 This option enables generation of @code{SAHF} instructions in 64-bit code.
28355 Early Intel Pentium 4 CPUs with Intel 64 support,
28356 prior to the introduction of Pentium 4 G1 step in December 2005,
28357 lacked the @code{LAHF} and @code{SAHF} instructions
28358 which are supported by AMD64.
28359 These are load and store instructions, respectively, for certain status flags.
28360 In 64-bit mode, the @code{SAHF} instruction is used to optimize @code{fmod},
28361 @code{drem}, and @code{remainder} built-in functions;
28362 see @ref{Other Builtins} for details.
28363
28364 @item -mmovbe
28365 @opindex mmovbe
28366 This option enables use of the @code{movbe} instruction to implement
28367 @code{__builtin_bswap32} and @code{__builtin_bswap64}.
28368
28369 @item -mshstk
28370 @opindex mshstk
28371 The @option{-mshstk} option enables shadow stack built-in functions
28372 from x86 Control-flow Enforcement Technology (CET).
28373
28374 @item -mcrc32
28375 @opindex mcrc32
28376 This option enables built-in functions @code{__builtin_ia32_crc32qi},
28377 @code{__builtin_ia32_crc32hi}, @code{__builtin_ia32_crc32si} and
28378 @code{__builtin_ia32_crc32di} to generate the @code{crc32} machine instruction.
28379
28380 @item -mrecip
28381 @opindex mrecip
28382 This option enables use of @code{RCPSS} and @code{RSQRTSS} instructions
28383 (and their vectorized variants @code{RCPPS} and @code{RSQRTPS})
28384 with an additional Newton-Raphson step
28385 to increase precision instead of @code{DIVSS} and @code{SQRTSS}
28386 (and their vectorized
28387 variants) for single-precision floating-point arguments. These instructions
28388 are generated only when @option{-funsafe-math-optimizations} is enabled
28389 together with @option{-ffinite-math-only} and @option{-fno-trapping-math}.
28390 Note that while the throughput of the sequence is higher than the throughput
28391 of the non-reciprocal instruction, the precision of the sequence can be
28392 decreased by up to 2 ulp (i.e.@: the inverse of 1.0 equals 0.99999994).
28393
28394 Note that GCC implements @code{1.0f/sqrtf(@var{x})} in terms of @code{RSQRTSS}
28395 (or @code{RSQRTPS}) already with @option{-ffast-math} (or the above option
28396 combination), and doesn't need @option{-mrecip}.
28397
28398 Also note that GCC emits the above sequence with additional Newton-Raphson step
28399 for vectorized single-float division and vectorized @code{sqrtf(@var{x})}
28400 already with @option{-ffast-math} (or the above option combination), and
28401 doesn't need @option{-mrecip}.
28402
28403 @item -mrecip=@var{opt}
28404 @opindex mrecip=opt
28405 This option controls which reciprocal estimate instructions
28406 may be used. @var{opt} is a comma-separated list of options, which may
28407 be preceded by a @samp{!} to invert the option:
28408
28409 @table @samp
28410 @item all
28411 Enable all estimate instructions.
28412
28413 @item default
28414 Enable the default instructions, equivalent to @option{-mrecip}.
28415
28416 @item none
28417 Disable all estimate instructions, equivalent to @option{-mno-recip}.
28418
28419 @item div
28420 Enable the approximation for scalar division.
28421
28422 @item vec-div
28423 Enable the approximation for vectorized division.
28424
28425 @item sqrt
28426 Enable the approximation for scalar square root.
28427
28428 @item vec-sqrt
28429 Enable the approximation for vectorized square root.
28430 @end table
28431
28432 So, for example, @option{-mrecip=all,!sqrt} enables
28433 all of the reciprocal approximations, except for square root.
28434
28435 @item -mveclibabi=@var{type}
28436 @opindex mveclibabi
28437 Specifies the ABI type to use for vectorizing intrinsics using an
28438 external library. Supported values for @var{type} are @samp{svml}
28439 for the Intel short
28440 vector math library and @samp{acml} for the AMD math core library.
28441 To use this option, both @option{-ftree-vectorize} and
28442 @option{-funsafe-math-optimizations} have to be enabled, and an SVML or ACML
28443 ABI-compatible library must be specified at link time.
28444
28445 GCC currently emits calls to @code{vmldExp2},
28446 @code{vmldLn2}, @code{vmldLog102}, @code{vmldPow2},
28447 @code{vmldTanh2}, @code{vmldTan2}, @code{vmldAtan2}, @code{vmldAtanh2},
28448 @code{vmldCbrt2}, @code{vmldSinh2}, @code{vmldSin2}, @code{vmldAsinh2},
28449 @code{vmldAsin2}, @code{vmldCosh2}, @code{vmldCos2}, @code{vmldAcosh2},
28450 @code{vmldAcos2}, @code{vmlsExp4}, @code{vmlsLn4},
28451 @code{vmlsLog104}, @code{vmlsPow4}, @code{vmlsTanh4}, @code{vmlsTan4},
28452 @code{vmlsAtan4}, @code{vmlsAtanh4}, @code{vmlsCbrt4}, @code{vmlsSinh4},
28453 @code{vmlsSin4}, @code{vmlsAsinh4}, @code{vmlsAsin4}, @code{vmlsCosh4},
28454 @code{vmlsCos4}, @code{vmlsAcosh4} and @code{vmlsAcos4} for corresponding
28455 function type when @option{-mveclibabi=svml} is used, and @code{__vrd2_sin},
28456 @code{__vrd2_cos}, @code{__vrd2_exp}, @code{__vrd2_log}, @code{__vrd2_log2},
28457 @code{__vrd2_log10}, @code{__vrs4_sinf}, @code{__vrs4_cosf},
28458 @code{__vrs4_expf}, @code{__vrs4_logf}, @code{__vrs4_log2f},
28459 @code{__vrs4_log10f} and @code{__vrs4_powf} for the corresponding function type
28460 when @option{-mveclibabi=acml} is used.
28461
28462 @item -mabi=@var{name}
28463 @opindex mabi
28464 Generate code for the specified calling convention. Permissible values
28465 are @samp{sysv} for the ABI used on GNU/Linux and other systems, and
28466 @samp{ms} for the Microsoft ABI. The default is to use the Microsoft
28467 ABI when targeting Microsoft Windows and the SysV ABI on all other systems.
28468 You can control this behavior for specific functions by
28469 using the function attributes @code{ms_abi} and @code{sysv_abi}.
28470 @xref{Function Attributes}.
28471
28472 @item -mforce-indirect-call
28473 @opindex mforce-indirect-call
28474 Force all calls to functions to be indirect. This is useful
28475 when using Intel Processor Trace where it generates more precise timing
28476 information for function calls.
28477
28478 @item -mmanual-endbr
28479 @opindex mmanual-endbr
28480 Insert ENDBR instruction at function entry only via the @code{cf_check}
28481 function attribute. This is useful when used with the option
28482 @option{-fcf-protection=branch} to control ENDBR insertion at the
28483 function entry.
28484
28485 @item -mcall-ms2sysv-xlogues
28486 @opindex mcall-ms2sysv-xlogues
28487 @opindex mno-call-ms2sysv-xlogues
28488 Due to differences in 64-bit ABIs, any Microsoft ABI function that calls a
28489 System V ABI function must consider RSI, RDI and XMM6-15 as clobbered. By
28490 default, the code for saving and restoring these registers is emitted inline,
28491 resulting in fairly lengthy prologues and epilogues. Using
28492 @option{-mcall-ms2sysv-xlogues} emits prologues and epilogues that
28493 use stubs in the static portion of libgcc to perform these saves and restores,
28494 thus reducing function size at the cost of a few extra instructions.
28495
28496 @item -mtls-dialect=@var{type}
28497 @opindex mtls-dialect
28498 Generate code to access thread-local storage using the @samp{gnu} or
28499 @samp{gnu2} conventions. @samp{gnu} is the conservative default;
28500 @samp{gnu2} is more efficient, but it may add compile- and run-time
28501 requirements that cannot be satisfied on all systems.
28502
28503 @item -mpush-args
28504 @itemx -mno-push-args
28505 @opindex mpush-args
28506 @opindex mno-push-args
28507 Use PUSH operations to store outgoing parameters. This method is shorter
28508 and usually equally fast as method using SUB/MOV operations and is enabled
28509 by default. In some cases disabling it may improve performance because of
28510 improved scheduling and reduced dependencies.
28511
28512 @item -maccumulate-outgoing-args
28513 @opindex maccumulate-outgoing-args
28514 If enabled, the maximum amount of space required for outgoing arguments is
28515 computed in the function prologue. This is faster on most modern CPUs
28516 because of reduced dependencies, improved scheduling and reduced stack usage
28517 when the preferred stack boundary is not equal to 2. The drawback is a notable
28518 increase in code size. This switch implies @option{-mno-push-args}.
28519
28520 @item -mthreads
28521 @opindex mthreads
28522 Support thread-safe exception handling on MinGW. Programs that rely
28523 on thread-safe exception handling must compile and link all code with the
28524 @option{-mthreads} option. When compiling, @option{-mthreads} defines
28525 @option{-D_MT}; when linking, it links in a special thread helper library
28526 @option{-lmingwthrd} which cleans up per-thread exception-handling data.
28527
28528 @item -mms-bitfields
28529 @itemx -mno-ms-bitfields
28530 @opindex mms-bitfields
28531 @opindex mno-ms-bitfields
28532
28533 Enable/disable bit-field layout compatible with the native Microsoft
28534 Windows compiler.
28535
28536 If @code{packed} is used on a structure, or if bit-fields are used,
28537 it may be that the Microsoft ABI lays out the structure differently
28538 than the way GCC normally does. Particularly when moving packed
28539 data between functions compiled with GCC and the native Microsoft compiler
28540 (either via function call or as data in a file), it may be necessary to access
28541 either format.
28542
28543 This option is enabled by default for Microsoft Windows
28544 targets. This behavior can also be controlled locally by use of variable
28545 or type attributes. For more information, see @ref{x86 Variable Attributes}
28546 and @ref{x86 Type Attributes}.
28547
28548 The Microsoft structure layout algorithm is fairly simple with the exception
28549 of the bit-field packing.
28550 The padding and alignment of members of structures and whether a bit-field
28551 can straddle a storage-unit boundary are determine by these rules:
28552
28553 @enumerate
28554 @item Structure members are stored sequentially in the order in which they are
28555 declared: the first member has the lowest memory address and the last member
28556 the highest.
28557
28558 @item Every data object has an alignment requirement. The alignment requirement
28559 for all data except structures, unions, and arrays is either the size of the
28560 object or the current packing size (specified with either the
28561 @code{aligned} attribute or the @code{pack} pragma),
28562 whichever is less. For structures, unions, and arrays,
28563 the alignment requirement is the largest alignment requirement of its members.
28564 Every object is allocated an offset so that:
28565
28566 @smallexample
28567 offset % alignment_requirement == 0
28568 @end smallexample
28569
28570 @item Adjacent bit-fields are packed into the same 1-, 2-, or 4-byte allocation
28571 unit if the integral types are the same size and if the next bit-field fits
28572 into the current allocation unit without crossing the boundary imposed by the
28573 common alignment requirements of the bit-fields.
28574 @end enumerate
28575
28576 MSVC interprets zero-length bit-fields in the following ways:
28577
28578 @enumerate
28579 @item If a zero-length bit-field is inserted between two bit-fields that
28580 are normally coalesced, the bit-fields are not coalesced.
28581
28582 For example:
28583
28584 @smallexample
28585 struct
28586 @{
28587 unsigned long bf_1 : 12;
28588 unsigned long : 0;
28589 unsigned long bf_2 : 12;
28590 @} t1;
28591 @end smallexample
28592
28593 @noindent
28594 The size of @code{t1} is 8 bytes with the zero-length bit-field. If the
28595 zero-length bit-field were removed, @code{t1}'s size would be 4 bytes.
28596
28597 @item If a zero-length bit-field is inserted after a bit-field, @code{foo}, and the
28598 alignment of the zero-length bit-field is greater than the member that follows it,
28599 @code{bar}, @code{bar} is aligned as the type of the zero-length bit-field.
28600
28601 For example:
28602
28603 @smallexample
28604 struct
28605 @{
28606 char foo : 4;
28607 short : 0;
28608 char bar;
28609 @} t2;
28610
28611 struct
28612 @{
28613 char foo : 4;
28614 short : 0;
28615 double bar;
28616 @} t3;
28617 @end smallexample
28618
28619 @noindent
28620 For @code{t2}, @code{bar} is placed at offset 2, rather than offset 1.
28621 Accordingly, the size of @code{t2} is 4. For @code{t3}, the zero-length
28622 bit-field does not affect the alignment of @code{bar} or, as a result, the size
28623 of the structure.
28624
28625 Taking this into account, it is important to note the following:
28626
28627 @enumerate
28628 @item If a zero-length bit-field follows a normal bit-field, the type of the
28629 zero-length bit-field may affect the alignment of the structure as whole. For
28630 example, @code{t2} has a size of 4 bytes, since the zero-length bit-field follows a
28631 normal bit-field, and is of type short.
28632
28633 @item Even if a zero-length bit-field is not followed by a normal bit-field, it may
28634 still affect the alignment of the structure:
28635
28636 @smallexample
28637 struct
28638 @{
28639 char foo : 6;
28640 long : 0;
28641 @} t4;
28642 @end smallexample
28643
28644 @noindent
28645 Here, @code{t4} takes up 4 bytes.
28646 @end enumerate
28647
28648 @item Zero-length bit-fields following non-bit-field members are ignored:
28649
28650 @smallexample
28651 struct
28652 @{
28653 char foo;
28654 long : 0;
28655 char bar;
28656 @} t5;
28657 @end smallexample
28658
28659 @noindent
28660 Here, @code{t5} takes up 2 bytes.
28661 @end enumerate
28662
28663
28664 @item -mno-align-stringops
28665 @opindex mno-align-stringops
28666 @opindex malign-stringops
28667 Do not align the destination of inlined string operations. This switch reduces
28668 code size and improves performance in case the destination is already aligned,
28669 but GCC doesn't know about it.
28670
28671 @item -minline-all-stringops
28672 @opindex minline-all-stringops
28673 By default GCC inlines string operations only when the destination is
28674 known to be aligned to least a 4-byte boundary.
28675 This enables more inlining and increases code
28676 size, but may improve performance of code that depends on fast
28677 @code{memcpy} and @code{memset} for short lengths.
28678 The option enables inline expansion of @code{strlen} for all
28679 pointer alignments.
28680
28681 @item -minline-stringops-dynamically
28682 @opindex minline-stringops-dynamically
28683 For string operations of unknown size, use run-time checks with
28684 inline code for small blocks and a library call for large blocks.
28685
28686 @item -mstringop-strategy=@var{alg}
28687 @opindex mstringop-strategy=@var{alg}
28688 Override the internal decision heuristic for the particular algorithm to use
28689 for inlining string operations. The allowed values for @var{alg} are:
28690
28691 @table @samp
28692 @item rep_byte
28693 @itemx rep_4byte
28694 @itemx rep_8byte
28695 Expand using i386 @code{rep} prefix of the specified size.
28696
28697 @item byte_loop
28698 @itemx loop
28699 @itemx unrolled_loop
28700 Expand into an inline loop.
28701
28702 @item libcall
28703 Always use a library call.
28704 @end table
28705
28706 @item -mmemcpy-strategy=@var{strategy}
28707 @opindex mmemcpy-strategy=@var{strategy}
28708 Override the internal decision heuristic to decide if @code{__builtin_memcpy}
28709 should be inlined and what inline algorithm to use when the expected size
28710 of the copy operation is known. @var{strategy}
28711 is a comma-separated list of @var{alg}:@var{max_size}:@var{dest_align} triplets.
28712 @var{alg} is specified in @option{-mstringop-strategy}, @var{max_size} specifies
28713 the max byte size with which inline algorithm @var{alg} is allowed. For the last
28714 triplet, the @var{max_size} must be @code{-1}. The @var{max_size} of the triplets
28715 in the list must be specified in increasing order. The minimal byte size for
28716 @var{alg} is @code{0} for the first triplet and @code{@var{max_size} + 1} of the
28717 preceding range.
28718
28719 @item -mmemset-strategy=@var{strategy}
28720 @opindex mmemset-strategy=@var{strategy}
28721 The option is similar to @option{-mmemcpy-strategy=} except that it is to control
28722 @code{__builtin_memset} expansion.
28723
28724 @item -momit-leaf-frame-pointer
28725 @opindex momit-leaf-frame-pointer
28726 Don't keep the frame pointer in a register for leaf functions. This
28727 avoids the instructions to save, set up, and restore frame pointers and
28728 makes an extra register available in leaf functions. The option
28729 @option{-fomit-leaf-frame-pointer} removes the frame pointer for leaf functions,
28730 which might make debugging harder.
28731
28732 @item -mtls-direct-seg-refs
28733 @itemx -mno-tls-direct-seg-refs
28734 @opindex mtls-direct-seg-refs
28735 Controls whether TLS variables may be accessed with offsets from the
28736 TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
28737 or whether the thread base pointer must be added. Whether or not this
28738 is valid depends on the operating system, and whether it maps the
28739 segment to cover the entire TLS area.
28740
28741 For systems that use the GNU C Library, the default is on.
28742
28743 @item -msse2avx
28744 @itemx -mno-sse2avx
28745 @opindex msse2avx
28746 Specify that the assembler should encode SSE instructions with VEX
28747 prefix. The option @option{-mavx} turns this on by default.
28748
28749 @item -mfentry
28750 @itemx -mno-fentry
28751 @opindex mfentry
28752 If profiling is active (@option{-pg}), put the profiling
28753 counter call before the prologue.
28754 Note: On x86 architectures the attribute @code{ms_hook_prologue}
28755 isn't possible at the moment for @option{-mfentry} and @option{-pg}.
28756
28757 @item -mrecord-mcount
28758 @itemx -mno-record-mcount
28759 @opindex mrecord-mcount
28760 If profiling is active (@option{-pg}), generate a __mcount_loc section
28761 that contains pointers to each profiling call. This is useful for
28762 automatically patching and out calls.
28763
28764 @item -mnop-mcount
28765 @itemx -mno-nop-mcount
28766 @opindex mnop-mcount
28767 If profiling is active (@option{-pg}), generate the calls to
28768 the profiling functions as NOPs. This is useful when they
28769 should be patched in later dynamically. This is likely only
28770 useful together with @option{-mrecord-mcount}.
28771
28772 @item -minstrument-return=@var{type}
28773 @opindex minstrument-return
28774 Instrument function exit in -pg -mfentry instrumented functions with
28775 call to specified function. This only instruments true returns ending
28776 with ret, but not sibling calls ending with jump. Valid types
28777 are @var{none} to not instrument, @var{call} to generate a call to __return__,
28778 or @var{nop5} to generate a 5 byte nop.
28779
28780 @item -mrecord-return
28781 @itemx -mno-record-return
28782 @opindex mrecord-return
28783 Generate a __return_loc section pointing to all return instrumentation code.
28784
28785 @item -mfentry-name=@var{name}
28786 @opindex mfentry-name
28787 Set name of __fentry__ symbol called at function entry for -pg -mfentry functions.
28788
28789 @item -mfentry-section=@var{name}
28790 @opindex mfentry-section
28791 Set name of section to record -mrecord-mcount calls (default __mcount_loc).
28792
28793 @item -mskip-rax-setup
28794 @itemx -mno-skip-rax-setup
28795 @opindex mskip-rax-setup
28796 When generating code for the x86-64 architecture with SSE extensions
28797 disabled, @option{-mskip-rax-setup} can be used to skip setting up RAX
28798 register when there are no variable arguments passed in vector registers.
28799
28800 @strong{Warning:} Since RAX register is used to avoid unnecessarily
28801 saving vector registers on stack when passing variable arguments, the
28802 impacts of this option are callees may waste some stack space,
28803 misbehave or jump to a random location. GCC 4.4 or newer don't have
28804 those issues, regardless the RAX register value.
28805
28806 @item -m8bit-idiv
28807 @itemx -mno-8bit-idiv
28808 @opindex m8bit-idiv
28809 On some processors, like Intel Atom, 8-bit unsigned integer divide is
28810 much faster than 32-bit/64-bit integer divide. This option generates a
28811 run-time check. If both dividend and divisor are within range of 0
28812 to 255, 8-bit unsigned integer divide is used instead of
28813 32-bit/64-bit integer divide.
28814
28815 @item -mavx256-split-unaligned-load
28816 @itemx -mavx256-split-unaligned-store
28817 @opindex mavx256-split-unaligned-load
28818 @opindex mavx256-split-unaligned-store
28819 Split 32-byte AVX unaligned load and store.
28820
28821 @item -mstack-protector-guard=@var{guard}
28822 @itemx -mstack-protector-guard-reg=@var{reg}
28823 @itemx -mstack-protector-guard-offset=@var{offset}
28824 @opindex mstack-protector-guard
28825 @opindex mstack-protector-guard-reg
28826 @opindex mstack-protector-guard-offset
28827 Generate stack protection code using canary at @var{guard}. Supported
28828 locations are @samp{global} for global canary or @samp{tls} for per-thread
28829 canary in the TLS block (the default). This option has effect only when
28830 @option{-fstack-protector} or @option{-fstack-protector-all} is specified.
28831
28832 With the latter choice the options
28833 @option{-mstack-protector-guard-reg=@var{reg}} and
28834 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
28835 which segment register (@code{%fs} or @code{%gs}) to use as base register
28836 for reading the canary, and from what offset from that base register.
28837 The default for those is as specified in the relevant ABI.
28838
28839 @item -mgeneral-regs-only
28840 @opindex mgeneral-regs-only
28841 Generate code that uses only the general-purpose registers. This
28842 prevents the compiler from using floating-point, vector, mask and bound
28843 registers.
28844
28845 @item -mindirect-branch=@var{choice}
28846 @opindex mindirect-branch
28847 Convert indirect call and jump with @var{choice}. The default is
28848 @samp{keep}, which keeps indirect call and jump unmodified.
28849 @samp{thunk} converts indirect call and jump to call and return thunk.
28850 @samp{thunk-inline} converts indirect call and jump to inlined call
28851 and return thunk. @samp{thunk-extern} converts indirect call and jump
28852 to external call and return thunk provided in a separate object file.
28853 You can control this behavior for a specific function by using the
28854 function attribute @code{indirect_branch}. @xref{Function Attributes}.
28855
28856 Note that @option{-mcmodel=large} is incompatible with
28857 @option{-mindirect-branch=thunk} and
28858 @option{-mindirect-branch=thunk-extern} since the thunk function may
28859 not be reachable in the large code model.
28860
28861 Note that @option{-mindirect-branch=thunk-extern} is incompatible with
28862 @option{-fcf-protection=branch} since the external thunk cannot be modified
28863 to disable control-flow check.
28864
28865 @item -mfunction-return=@var{choice}
28866 @opindex mfunction-return
28867 Convert function return with @var{choice}. The default is @samp{keep},
28868 which keeps function return unmodified. @samp{thunk} converts function
28869 return to call and return thunk. @samp{thunk-inline} converts function
28870 return to inlined call and return thunk. @samp{thunk-extern} converts
28871 function return to external call and return thunk provided in a separate
28872 object file. You can control this behavior for a specific function by
28873 using the function attribute @code{function_return}.
28874 @xref{Function Attributes}.
28875
28876 Note that @option{-mcmodel=large} is incompatible with
28877 @option{-mfunction-return=thunk} and
28878 @option{-mfunction-return=thunk-extern} since the thunk function may
28879 not be reachable in the large code model.
28880
28881
28882 @item -mindirect-branch-register
28883 @opindex mindirect-branch-register
28884 Force indirect call and jump via register.
28885
28886 @end table
28887
28888 These @samp{-m} switches are supported in addition to the above
28889 on x86-64 processors in 64-bit environments.
28890
28891 @table @gcctabopt
28892 @item -m32
28893 @itemx -m64
28894 @itemx -mx32
28895 @itemx -m16
28896 @itemx -miamcu
28897 @opindex m32
28898 @opindex m64
28899 @opindex mx32
28900 @opindex m16
28901 @opindex miamcu
28902 Generate code for a 16-bit, 32-bit or 64-bit environment.
28903 The @option{-m32} option sets @code{int}, @code{long}, and pointer types
28904 to 32 bits, and
28905 generates code that runs on any i386 system.
28906
28907 The @option{-m64} option sets @code{int} to 32 bits and @code{long} and pointer
28908 types to 64 bits, and generates code for the x86-64 architecture.
28909 For Darwin only the @option{-m64} option also turns off the @option{-fno-pic}
28910 and @option{-mdynamic-no-pic} options.
28911
28912 The @option{-mx32} option sets @code{int}, @code{long}, and pointer types
28913 to 32 bits, and
28914 generates code for the x86-64 architecture.
28915
28916 The @option{-m16} option is the same as @option{-m32}, except for that
28917 it outputs the @code{.code16gcc} assembly directive at the beginning of
28918 the assembly output so that the binary can run in 16-bit mode.
28919
28920 The @option{-miamcu} option generates code which conforms to Intel MCU
28921 psABI. It requires the @option{-m32} option to be turned on.
28922
28923 @item -mno-red-zone
28924 @opindex mno-red-zone
28925 @opindex mred-zone
28926 Do not use a so-called ``red zone'' for x86-64 code. The red zone is mandated
28927 by the x86-64 ABI; it is a 128-byte area beyond the location of the
28928 stack pointer that is not modified by signal or interrupt handlers
28929 and therefore can be used for temporary data without adjusting the stack
28930 pointer. The flag @option{-mno-red-zone} disables this red zone.
28931
28932 @item -mcmodel=small
28933 @opindex mcmodel=small
28934 Generate code for the small code model: the program and its symbols must
28935 be linked in the lower 2 GB of the address space. Pointers are 64 bits.
28936 Programs can be statically or dynamically linked. This is the default
28937 code model.
28938
28939 @item -mcmodel=kernel
28940 @opindex mcmodel=kernel
28941 Generate code for the kernel code model. The kernel runs in the
28942 negative 2 GB of the address space.
28943 This model has to be used for Linux kernel code.
28944
28945 @item -mcmodel=medium
28946 @opindex mcmodel=medium
28947 Generate code for the medium model: the program is linked in the lower 2
28948 GB of the address space. Small symbols are also placed there. Symbols
28949 with sizes larger than @option{-mlarge-data-threshold} are put into
28950 large data or BSS sections and can be located above 2GB. Programs can
28951 be statically or dynamically linked.
28952
28953 @item -mcmodel=large
28954 @opindex mcmodel=large
28955 Generate code for the large model. This model makes no assumptions
28956 about addresses and sizes of sections.
28957
28958 @item -maddress-mode=long
28959 @opindex maddress-mode=long
28960 Generate code for long address mode. This is only supported for 64-bit
28961 and x32 environments. It is the default address mode for 64-bit
28962 environments.
28963
28964 @item -maddress-mode=short
28965 @opindex maddress-mode=short
28966 Generate code for short address mode. This is only supported for 32-bit
28967 and x32 environments. It is the default address mode for 32-bit and
28968 x32 environments.
28969 @end table
28970
28971 @node x86 Windows Options
28972 @subsection x86 Windows Options
28973 @cindex x86 Windows Options
28974 @cindex Windows Options for x86
28975
28976 These additional options are available for Microsoft Windows targets:
28977
28978 @table @gcctabopt
28979 @item -mconsole
28980 @opindex mconsole
28981 This option
28982 specifies that a console application is to be generated, by
28983 instructing the linker to set the PE header subsystem type
28984 required for console applications.
28985 This option is available for Cygwin and MinGW targets and is
28986 enabled by default on those targets.
28987
28988 @item -mdll
28989 @opindex mdll
28990 This option is available for Cygwin and MinGW targets. It
28991 specifies that a DLL---a dynamic link library---is to be
28992 generated, enabling the selection of the required runtime
28993 startup object and entry point.
28994
28995 @item -mnop-fun-dllimport
28996 @opindex mnop-fun-dllimport
28997 This option is available for Cygwin and MinGW targets. It
28998 specifies that the @code{dllimport} attribute should be ignored.
28999
29000 @item -mthread
29001 @opindex mthread
29002 This option is available for MinGW targets. It specifies
29003 that MinGW-specific thread support is to be used.
29004
29005 @item -municode
29006 @opindex municode
29007 This option is available for MinGW-w64 targets. It causes
29008 the @code{UNICODE} preprocessor macro to be predefined, and
29009 chooses Unicode-capable runtime startup code.
29010
29011 @item -mwin32
29012 @opindex mwin32
29013 This option is available for Cygwin and MinGW targets. It
29014 specifies that the typical Microsoft Windows predefined macros are to
29015 be set in the pre-processor, but does not influence the choice
29016 of runtime library/startup code.
29017
29018 @item -mwindows
29019 @opindex mwindows
29020 This option is available for Cygwin and MinGW targets. It
29021 specifies that a GUI application is to be generated by
29022 instructing the linker to set the PE header subsystem type
29023 appropriately.
29024
29025 @item -fno-set-stack-executable
29026 @opindex fno-set-stack-executable
29027 @opindex fset-stack-executable
29028 This option is available for MinGW targets. It specifies that
29029 the executable flag for the stack used by nested functions isn't
29030 set. This is necessary for binaries running in kernel mode of
29031 Microsoft Windows, as there the User32 API, which is used to set executable
29032 privileges, isn't available.
29033
29034 @item -fwritable-relocated-rdata
29035 @opindex fno-writable-relocated-rdata
29036 @opindex fwritable-relocated-rdata
29037 This option is available for MinGW and Cygwin targets. It specifies
29038 that relocated-data in read-only section is put into the @code{.data}
29039 section. This is a necessary for older runtimes not supporting
29040 modification of @code{.rdata} sections for pseudo-relocation.
29041
29042 @item -mpe-aligned-commons
29043 @opindex mpe-aligned-commons
29044 This option is available for Cygwin and MinGW targets. It
29045 specifies that the GNU extension to the PE file format that
29046 permits the correct alignment of COMMON variables should be
29047 used when generating code. It is enabled by default if
29048 GCC detects that the target assembler found during configuration
29049 supports the feature.
29050 @end table
29051
29052 See also under @ref{x86 Options} for standard options.
29053
29054 @node Xstormy16 Options
29055 @subsection Xstormy16 Options
29056 @cindex Xstormy16 Options
29057
29058 These options are defined for Xstormy16:
29059
29060 @table @gcctabopt
29061 @item -msim
29062 @opindex msim
29063 Choose startup files and linker script suitable for the simulator.
29064 @end table
29065
29066 @node Xtensa Options
29067 @subsection Xtensa Options
29068 @cindex Xtensa Options
29069
29070 These options are supported for Xtensa targets:
29071
29072 @table @gcctabopt
29073 @item -mconst16
29074 @itemx -mno-const16
29075 @opindex mconst16
29076 @opindex mno-const16
29077 Enable or disable use of @code{CONST16} instructions for loading
29078 constant values. The @code{CONST16} instruction is currently not a
29079 standard option from Tensilica. When enabled, @code{CONST16}
29080 instructions are always used in place of the standard @code{L32R}
29081 instructions. The use of @code{CONST16} is enabled by default only if
29082 the @code{L32R} instruction is not available.
29083
29084 @item -mfused-madd
29085 @itemx -mno-fused-madd
29086 @opindex mfused-madd
29087 @opindex mno-fused-madd
29088 Enable or disable use of fused multiply/add and multiply/subtract
29089 instructions in the floating-point option. This has no effect if the
29090 floating-point option is not also enabled. Disabling fused multiply/add
29091 and multiply/subtract instructions forces the compiler to use separate
29092 instructions for the multiply and add/subtract operations. This may be
29093 desirable in some cases where strict IEEE 754-compliant results are
29094 required: the fused multiply add/subtract instructions do not round the
29095 intermediate result, thereby producing results with @emph{more} bits of
29096 precision than specified by the IEEE standard. Disabling fused multiply
29097 add/subtract instructions also ensures that the program output is not
29098 sensitive to the compiler's ability to combine multiply and add/subtract
29099 operations.
29100
29101 @item -mserialize-volatile
29102 @itemx -mno-serialize-volatile
29103 @opindex mserialize-volatile
29104 @opindex mno-serialize-volatile
29105 When this option is enabled, GCC inserts @code{MEMW} instructions before
29106 @code{volatile} memory references to guarantee sequential consistency.
29107 The default is @option{-mserialize-volatile}. Use
29108 @option{-mno-serialize-volatile} to omit the @code{MEMW} instructions.
29109
29110 @item -mforce-no-pic
29111 @opindex mforce-no-pic
29112 For targets, like GNU/Linux, where all user-mode Xtensa code must be
29113 position-independent code (PIC), this option disables PIC for compiling
29114 kernel code.
29115
29116 @item -mtext-section-literals
29117 @itemx -mno-text-section-literals
29118 @opindex mtext-section-literals
29119 @opindex mno-text-section-literals
29120 These options control the treatment of literal pools. The default is
29121 @option{-mno-text-section-literals}, which places literals in a separate
29122 section in the output file. This allows the literal pool to be placed
29123 in a data RAM/ROM, and it also allows the linker to combine literal
29124 pools from separate object files to remove redundant literals and
29125 improve code size. With @option{-mtext-section-literals}, the literals
29126 are interspersed in the text section in order to keep them as close as
29127 possible to their references. This may be necessary for large assembly
29128 files. Literals for each function are placed right before that function.
29129
29130 @item -mauto-litpools
29131 @itemx -mno-auto-litpools
29132 @opindex mauto-litpools
29133 @opindex mno-auto-litpools
29134 These options control the treatment of literal pools. The default is
29135 @option{-mno-auto-litpools}, which places literals in a separate
29136 section in the output file unless @option{-mtext-section-literals} is
29137 used. With @option{-mauto-litpools} the literals are interspersed in
29138 the text section by the assembler. Compiler does not produce explicit
29139 @code{.literal} directives and loads literals into registers with
29140 @code{MOVI} instructions instead of @code{L32R} to let the assembler
29141 do relaxation and place literals as necessary. This option allows
29142 assembler to create several literal pools per function and assemble
29143 very big functions, which may not be possible with
29144 @option{-mtext-section-literals}.
29145
29146 @item -mtarget-align
29147 @itemx -mno-target-align
29148 @opindex mtarget-align
29149 @opindex mno-target-align
29150 When this option is enabled, GCC instructs the assembler to
29151 automatically align instructions to reduce branch penalties at the
29152 expense of some code density. The assembler attempts to widen density
29153 instructions to align branch targets and the instructions following call
29154 instructions. If there are not enough preceding safe density
29155 instructions to align a target, no widening is performed. The
29156 default is @option{-mtarget-align}. These options do not affect the
29157 treatment of auto-aligned instructions like @code{LOOP}, which the
29158 assembler always aligns, either by widening density instructions or
29159 by inserting NOP instructions.
29160
29161 @item -mlongcalls
29162 @itemx -mno-longcalls
29163 @opindex mlongcalls
29164 @opindex mno-longcalls
29165 When this option is enabled, GCC instructs the assembler to translate
29166 direct calls to indirect calls unless it can determine that the target
29167 of a direct call is in the range allowed by the call instruction. This
29168 translation typically occurs for calls to functions in other source
29169 files. Specifically, the assembler translates a direct @code{CALL}
29170 instruction into an @code{L32R} followed by a @code{CALLX} instruction.
29171 The default is @option{-mno-longcalls}. This option should be used in
29172 programs where the call target can potentially be out of range. This
29173 option is implemented in the assembler, not the compiler, so the
29174 assembly code generated by GCC still shows direct call
29175 instructions---look at the disassembled object code to see the actual
29176 instructions. Note that the assembler uses an indirect call for
29177 every cross-file call, not just those that really are out of range.
29178 @end table
29179
29180 @node zSeries Options
29181 @subsection zSeries Options
29182 @cindex zSeries options
29183
29184 These are listed under @xref{S/390 and zSeries Options}.
29185
29186
29187 @c man end
29188
29189 @node Spec Files
29190 @section Specifying Subprocesses and the Switches to Pass to Them
29191 @cindex Spec Files
29192
29193 @command{gcc} is a driver program. It performs its job by invoking a
29194 sequence of other programs to do the work of compiling, assembling and
29195 linking. GCC interprets its command-line parameters and uses these to
29196 deduce which programs it should invoke, and which command-line options
29197 it ought to place on their command lines. This behavior is controlled
29198 by @dfn{spec strings}. In most cases there is one spec string for each
29199 program that GCC can invoke, but a few programs have multiple spec
29200 strings to control their behavior. The spec strings built into GCC can
29201 be overridden by using the @option{-specs=} command-line switch to specify
29202 a spec file.
29203
29204 @dfn{Spec files} are plain-text files that are used to construct spec
29205 strings. They consist of a sequence of directives separated by blank
29206 lines. The type of directive is determined by the first non-whitespace
29207 character on the line, which can be one of the following:
29208
29209 @table @code
29210 @item %@var{command}
29211 Issues a @var{command} to the spec file processor. The commands that can
29212 appear here are:
29213
29214 @table @code
29215 @item %include <@var{file}>
29216 @cindex @code{%include}
29217 Search for @var{file} and insert its text at the current point in the
29218 specs file.
29219
29220 @item %include_noerr <@var{file}>
29221 @cindex @code{%include_noerr}
29222 Just like @samp{%include}, but do not generate an error message if the include
29223 file cannot be found.
29224
29225 @item %rename @var{old_name} @var{new_name}
29226 @cindex @code{%rename}
29227 Rename the spec string @var{old_name} to @var{new_name}.
29228
29229 @end table
29230
29231 @item *[@var{spec_name}]:
29232 This tells the compiler to create, override or delete the named spec
29233 string. All lines after this directive up to the next directive or
29234 blank line are considered to be the text for the spec string. If this
29235 results in an empty string then the spec is deleted. (Or, if the
29236 spec did not exist, then nothing happens.) Otherwise, if the spec
29237 does not currently exist a new spec is created. If the spec does
29238 exist then its contents are overridden by the text of this
29239 directive, unless the first character of that text is the @samp{+}
29240 character, in which case the text is appended to the spec.
29241
29242 @item [@var{suffix}]:
29243 Creates a new @samp{[@var{suffix}] spec} pair. All lines after this directive
29244 and up to the next directive or blank line are considered to make up the
29245 spec string for the indicated suffix. When the compiler encounters an
29246 input file with the named suffix, it processes the spec string in
29247 order to work out how to compile that file. For example:
29248
29249 @smallexample
29250 .ZZ:
29251 z-compile -input %i
29252 @end smallexample
29253
29254 This says that any input file whose name ends in @samp{.ZZ} should be
29255 passed to the program @samp{z-compile}, which should be invoked with the
29256 command-line switch @option{-input} and with the result of performing the
29257 @samp{%i} substitution. (See below.)
29258
29259 As an alternative to providing a spec string, the text following a
29260 suffix directive can be one of the following:
29261
29262 @table @code
29263 @item @@@var{language}
29264 This says that the suffix is an alias for a known @var{language}. This is
29265 similar to using the @option{-x} command-line switch to GCC to specify a
29266 language explicitly. For example:
29267
29268 @smallexample
29269 .ZZ:
29270 @@c++
29271 @end smallexample
29272
29273 Says that .ZZ files are, in fact, C++ source files.
29274
29275 @item #@var{name}
29276 This causes an error messages saying:
29277
29278 @smallexample
29279 @var{name} compiler not installed on this system.
29280 @end smallexample
29281 @end table
29282
29283 GCC already has an extensive list of suffixes built into it.
29284 This directive adds an entry to the end of the list of suffixes, but
29285 since the list is searched from the end backwards, it is effectively
29286 possible to override earlier entries using this technique.
29287
29288 @end table
29289
29290 GCC has the following spec strings built into it. Spec files can
29291 override these strings or create their own. Note that individual
29292 targets can also add their own spec strings to this list.
29293
29294 @smallexample
29295 asm Options to pass to the assembler
29296 asm_final Options to pass to the assembler post-processor
29297 cpp Options to pass to the C preprocessor
29298 cc1 Options to pass to the C compiler
29299 cc1plus Options to pass to the C++ compiler
29300 endfile Object files to include at the end of the link
29301 link Options to pass to the linker
29302 lib Libraries to include on the command line to the linker
29303 libgcc Decides which GCC support library to pass to the linker
29304 linker Sets the name of the linker
29305 predefines Defines to be passed to the C preprocessor
29306 signed_char Defines to pass to CPP to say whether @code{char} is signed
29307 by default
29308 startfile Object files to include at the start of the link
29309 @end smallexample
29310
29311 Here is a small example of a spec file:
29312
29313 @smallexample
29314 %rename lib old_lib
29315
29316 *lib:
29317 --start-group -lgcc -lc -leval1 --end-group %(old_lib)
29318 @end smallexample
29319
29320 This example renames the spec called @samp{lib} to @samp{old_lib} and
29321 then overrides the previous definition of @samp{lib} with a new one.
29322 The new definition adds in some extra command-line options before
29323 including the text of the old definition.
29324
29325 @dfn{Spec strings} are a list of command-line options to be passed to their
29326 corresponding program. In addition, the spec strings can contain
29327 @samp{%}-prefixed sequences to substitute variable text or to
29328 conditionally insert text into the command line. Using these constructs
29329 it is possible to generate quite complex command lines.
29330
29331 Here is a table of all defined @samp{%}-sequences for spec
29332 strings. Note that spaces are not generated automatically around the
29333 results of expanding these sequences. Therefore you can concatenate them
29334 together or combine them with constant text in a single argument.
29335
29336 @table @code
29337 @item %%
29338 Substitute one @samp{%} into the program name or argument.
29339
29340 @item %i
29341 Substitute the name of the input file being processed.
29342
29343 @item %b
29344 Substitute the basename of the input file being processed.
29345 This is the substring up to (and not including) the last period
29346 and not including the directory.
29347
29348 @item %B
29349 This is the same as @samp{%b}, but include the file suffix (text after
29350 the last period).
29351
29352 @item %d
29353 Marks the argument containing or following the @samp{%d} as a
29354 temporary file name, so that that file is deleted if GCC exits
29355 successfully. Unlike @samp{%g}, this contributes no text to the
29356 argument.
29357
29358 @item %g@var{suffix}
29359 Substitute a file name that has suffix @var{suffix} and is chosen
29360 once per compilation, and mark the argument in the same way as
29361 @samp{%d}. To reduce exposure to denial-of-service attacks, the file
29362 name is now chosen in a way that is hard to predict even when previously
29363 chosen file names are known. For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
29364 might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}. @var{suffix} matches
29365 the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
29366 treated exactly as if @samp{%O} had been preprocessed. Previously, @samp{%g}
29367 was simply substituted with a file name chosen once per compilation,
29368 without regard to any appended suffix (which was therefore treated
29369 just like ordinary text), making such attacks more likely to succeed.
29370
29371 @item %u@var{suffix}
29372 Like @samp{%g}, but generates a new temporary file name
29373 each time it appears instead of once per compilation.
29374
29375 @item %U@var{suffix}
29376 Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
29377 new one if there is no such last file name. In the absence of any
29378 @samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
29379 the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s}
29380 involves the generation of two distinct file names, one
29381 for each @samp{%g.s} and another for each @samp{%U.s}. Previously, @samp{%U} was
29382 simply substituted with a file name chosen for the previous @samp{%u},
29383 without regard to any appended suffix.
29384
29385 @item %j@var{suffix}
29386 Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
29387 writable, and if @option{-save-temps} is not used;
29388 otherwise, substitute the name
29389 of a temporary file, just like @samp{%u}. This temporary file is not
29390 meant for communication between processes, but rather as a junk
29391 disposal mechanism.
29392
29393 @item %|@var{suffix}
29394 @itemx %m@var{suffix}
29395 Like @samp{%g}, except if @option{-pipe} is in effect. In that case
29396 @samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
29397 all. These are the two most common ways to instruct a program that it
29398 should read from standard input or write to standard output. If you
29399 need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
29400 construct: see for example @file{gcc/fortran/lang-specs.h}.
29401
29402 @item %.@var{SUFFIX}
29403 Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args
29404 when it is subsequently output with @samp{%*}. @var{SUFFIX} is
29405 terminated by the next space or %.
29406
29407 @item %w
29408 Marks the argument containing or following the @samp{%w} as the
29409 designated output file of this compilation. This puts the argument
29410 into the sequence of arguments that @samp{%o} substitutes.
29411
29412 @item %o
29413 Substitutes the names of all the output files, with spaces
29414 automatically placed around them. You should write spaces
29415 around the @samp{%o} as well or the results are undefined.
29416 @samp{%o} is for use in the specs for running the linker.
29417 Input files whose names have no recognized suffix are not compiled
29418 at all, but they are included among the output files, so they are
29419 linked.
29420
29421 @item %O
29422 Substitutes the suffix for object files. Note that this is
29423 handled specially when it immediately follows @samp{%g, %u, or %U},
29424 because of the need for those to form complete file names. The
29425 handling is such that @samp{%O} is treated exactly as if it had already
29426 been substituted, except that @samp{%g, %u, and %U} do not currently
29427 support additional @var{suffix} characters following @samp{%O} as they do
29428 following, for example, @samp{.o}.
29429
29430 @item %p
29431 Substitutes the standard macro predefinitions for the
29432 current target machine. Use this when running @command{cpp}.
29433
29434 @item %P
29435 Like @samp{%p}, but puts @samp{__} before and after the name of each
29436 predefined macro, except for macros that start with @samp{__} or with
29437 @samp{_@var{L}}, where @var{L} is an uppercase letter. This is for ISO
29438 C@.
29439
29440 @item %I
29441 Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
29442 @option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}),
29443 @option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
29444 and @option{-imultilib} as necessary.
29445
29446 @item %s
29447 Current argument is the name of a library or startup file of some sort.
29448 Search for that file in a standard list of directories and substitute
29449 the full name found. The current working directory is included in the
29450 list of directories scanned.
29451
29452 @item %T
29453 Current argument is the name of a linker script. Search for that file
29454 in the current list of directories to scan for libraries. If the file
29455 is located insert a @option{--script} option into the command line
29456 followed by the full path name found. If the file is not found then
29457 generate an error message. Note: the current working directory is not
29458 searched.
29459
29460 @item %e@var{str}
29461 Print @var{str} as an error message. @var{str} is terminated by a newline.
29462 Use this when inconsistent options are detected.
29463
29464 @item %(@var{name})
29465 Substitute the contents of spec string @var{name} at this point.
29466
29467 @item %x@{@var{option}@}
29468 Accumulate an option for @samp{%X}.
29469
29470 @item %X
29471 Output the accumulated linker options specified by @option{-Wl} or a @samp{%x}
29472 spec string.
29473
29474 @item %Y
29475 Output the accumulated assembler options specified by @option{-Wa}.
29476
29477 @item %Z
29478 Output the accumulated preprocessor options specified by @option{-Wp}.
29479
29480 @item %a
29481 Process the @code{asm} spec. This is used to compute the
29482 switches to be passed to the assembler.
29483
29484 @item %A
29485 Process the @code{asm_final} spec. This is a spec string for
29486 passing switches to an assembler post-processor, if such a program is
29487 needed.
29488
29489 @item %l
29490 Process the @code{link} spec. This is the spec for computing the
29491 command line passed to the linker. Typically it makes use of the
29492 @samp{%L %G %S %D and %E} sequences.
29493
29494 @item %D
29495 Dump out a @option{-L} option for each directory that GCC believes might
29496 contain startup files. If the target supports multilibs then the
29497 current multilib directory is prepended to each of these paths.
29498
29499 @item %L
29500 Process the @code{lib} spec. This is a spec string for deciding which
29501 libraries are included on the command line to the linker.
29502
29503 @item %G
29504 Process the @code{libgcc} spec. This is a spec string for deciding
29505 which GCC support library is included on the command line to the linker.
29506
29507 @item %S
29508 Process the @code{startfile} spec. This is a spec for deciding which
29509 object files are the first ones passed to the linker. Typically
29510 this might be a file named @file{crt0.o}.
29511
29512 @item %E
29513 Process the @code{endfile} spec. This is a spec string that specifies
29514 the last object files that are passed to the linker.
29515
29516 @item %C
29517 Process the @code{cpp} spec. This is used to construct the arguments
29518 to be passed to the C preprocessor.
29519
29520 @item %1
29521 Process the @code{cc1} spec. This is used to construct the options to be
29522 passed to the actual C compiler (@command{cc1}).
29523
29524 @item %2
29525 Process the @code{cc1plus} spec. This is used to construct the options to be
29526 passed to the actual C++ compiler (@command{cc1plus}).
29527
29528 @item %*
29529 Substitute the variable part of a matched option. See below.
29530 Note that each comma in the substituted string is replaced by
29531 a single space.
29532
29533 @item %<S
29534 Remove all occurrences of @code{-S} from the command line. Note---this
29535 command is position dependent. @samp{%} commands in the spec string
29536 before this one see @code{-S}, @samp{%} commands in the spec string
29537 after this one do not.
29538
29539 @item %:@var{function}(@var{args})
29540 Call the named function @var{function}, passing it @var{args}.
29541 @var{args} is first processed as a nested spec string, then split
29542 into an argument vector in the usual fashion. The function returns
29543 a string which is processed as if it had appeared literally as part
29544 of the current spec.
29545
29546 The following built-in spec functions are provided:
29547
29548 @table @code
29549 @item @code{getenv}
29550 The @code{getenv} spec function takes two arguments: an environment
29551 variable name and a string. If the environment variable is not
29552 defined, a fatal error is issued. Otherwise, the return value is the
29553 value of the environment variable concatenated with the string. For
29554 example, if @env{TOPDIR} is defined as @file{/path/to/top}, then:
29555
29556 @smallexample
29557 %:getenv(TOPDIR /include)
29558 @end smallexample
29559
29560 expands to @file{/path/to/top/include}.
29561
29562 @item @code{if-exists}
29563 The @code{if-exists} spec function takes one argument, an absolute
29564 pathname to a file. If the file exists, @code{if-exists} returns the
29565 pathname. Here is a small example of its usage:
29566
29567 @smallexample
29568 *startfile:
29569 crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
29570 @end smallexample
29571
29572 @item @code{if-exists-else}
29573 The @code{if-exists-else} spec function is similar to the @code{if-exists}
29574 spec function, except that it takes two arguments. The first argument is
29575 an absolute pathname to a file. If the file exists, @code{if-exists-else}
29576 returns the pathname. If it does not exist, it returns the second argument.
29577 This way, @code{if-exists-else} can be used to select one file or another,
29578 based on the existence of the first. Here is a small example of its usage:
29579
29580 @smallexample
29581 *startfile:
29582 crt0%O%s %:if-exists(crti%O%s) \
29583 %:if-exists-else(crtbeginT%O%s crtbegin%O%s)
29584 @end smallexample
29585
29586 @item @code{replace-outfile}
29587 The @code{replace-outfile} spec function takes two arguments. It looks for the
29588 first argument in the outfiles array and replaces it with the second argument. Here
29589 is a small example of its usage:
29590
29591 @smallexample
29592 %@{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)@}
29593 @end smallexample
29594
29595 @item @code{remove-outfile}
29596 The @code{remove-outfile} spec function takes one argument. It looks for the
29597 first argument in the outfiles array and removes it. Here is a small example
29598 its usage:
29599
29600 @smallexample
29601 %:remove-outfile(-lm)
29602 @end smallexample
29603
29604 @item @code{pass-through-libs}
29605 The @code{pass-through-libs} spec function takes any number of arguments. It
29606 finds any @option{-l} options and any non-options ending in @file{.a} (which it
29607 assumes are the names of linker input library archive files) and returns a
29608 result containing all the found arguments each prepended by
29609 @option{-plugin-opt=-pass-through=} and joined by spaces. This list is
29610 intended to be passed to the LTO linker plugin.
29611
29612 @smallexample
29613 %:pass-through-libs(%G %L %G)
29614 @end smallexample
29615
29616 @item @code{print-asm-header}
29617 The @code{print-asm-header} function takes no arguments and simply
29618 prints a banner like:
29619
29620 @smallexample
29621 Assembler options
29622 =================
29623
29624 Use "-Wa,OPTION" to pass "OPTION" to the assembler.
29625 @end smallexample
29626
29627 It is used to separate compiler options from assembler options
29628 in the @option{--target-help} output.
29629 @end table
29630
29631 @item %@{S@}
29632 Substitutes the @code{-S} switch, if that switch is given to GCC@.
29633 If that switch is not specified, this substitutes nothing. Note that
29634 the leading dash is omitted when specifying this option, and it is
29635 automatically inserted if the substitution is performed. Thus the spec
29636 string @samp{%@{foo@}} matches the command-line option @option{-foo}
29637 and outputs the command-line option @option{-foo}.
29638
29639 @item %W@{S@}
29640 Like %@{@code{S}@} but mark last argument supplied within as a file to be
29641 deleted on failure.
29642
29643 @item %@{S*@}
29644 Substitutes all the switches specified to GCC whose names start
29645 with @code{-S}, but which also take an argument. This is used for
29646 switches like @option{-o}, @option{-D}, @option{-I}, etc.
29647 GCC considers @option{-o foo} as being
29648 one switch whose name starts with @samp{o}. %@{o*@} substitutes this
29649 text, including the space. Thus two arguments are generated.
29650
29651 @item %@{S*&T*@}
29652 Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options
29653 (the order of @code{S} and @code{T} in the spec is not significant).
29654 There can be any number of ampersand-separated variables; for each the
29655 wild card is optional. Useful for CPP as @samp{%@{D*&U*&A*@}}.
29656
29657 @item %@{S:X@}
29658 Substitutes @code{X}, if the @option{-S} switch is given to GCC@.
29659
29660 @item %@{!S:X@}
29661 Substitutes @code{X}, if the @option{-S} switch is @emph{not} given to GCC@.
29662
29663 @item %@{S*:X@}
29664 Substitutes @code{X} if one or more switches whose names start with
29665 @code{-S} are specified to GCC@. Normally @code{X} is substituted only
29666 once, no matter how many such switches appeared. However, if @code{%*}
29667 appears somewhere in @code{X}, then @code{X} is substituted once
29668 for each matching switch, with the @code{%*} replaced by the part of
29669 that switch matching the @code{*}.
29670
29671 If @code{%*} appears as the last part of a spec sequence then a space
29672 is added after the end of the last substitution. If there is more
29673 text in the sequence, however, then a space is not generated. This
29674 allows the @code{%*} substitution to be used as part of a larger
29675 string. For example, a spec string like this:
29676
29677 @smallexample
29678 %@{mcu=*:--script=%*/memory.ld@}
29679 @end smallexample
29680
29681 @noindent
29682 when matching an option like @option{-mcu=newchip} produces:
29683
29684 @smallexample
29685 --script=newchip/memory.ld
29686 @end smallexample
29687
29688 @item %@{.S:X@}
29689 Substitutes @code{X}, if processing a file with suffix @code{S}.
29690
29691 @item %@{!.S:X@}
29692 Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}.
29693
29694 @item %@{,S:X@}
29695 Substitutes @code{X}, if processing a file for language @code{S}.
29696
29697 @item %@{!,S:X@}
29698 Substitutes @code{X}, if not processing a file for language @code{S}.
29699
29700 @item %@{S|P:X@}
29701 Substitutes @code{X} if either @code{-S} or @code{-P} is given to
29702 GCC@. This may be combined with @samp{!}, @samp{.}, @samp{,}, and
29703 @code{*} sequences as well, although they have a stronger binding than
29704 the @samp{|}. If @code{%*} appears in @code{X}, all of the
29705 alternatives must be starred, and only the first matching alternative
29706 is substituted.
29707
29708 For example, a spec string like this:
29709
29710 @smallexample
29711 %@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
29712 @end smallexample
29713
29714 @noindent
29715 outputs the following command-line options from the following input
29716 command-line options:
29717
29718 @smallexample
29719 fred.c -foo -baz
29720 jim.d -bar -boggle
29721 -d fred.c -foo -baz -boggle
29722 -d jim.d -bar -baz -boggle
29723 @end smallexample
29724
29725 @item %@{S:X; T:Y; :D@}
29726
29727 If @code{S} is given to GCC, substitutes @code{X}; else if @code{T} is
29728 given to GCC, substitutes @code{Y}; else substitutes @code{D}. There can
29729 be as many clauses as you need. This may be combined with @code{.},
29730 @code{,}, @code{!}, @code{|}, and @code{*} as needed.
29731
29732
29733 @end table
29734
29735 The switch matching text @code{S} in a @samp{%@{S@}}, @samp{%@{S:X@}}
29736 or similar construct can use a backslash to ignore the special meaning
29737 of the character following it, thus allowing literal matching of a
29738 character that is otherwise specially treated. For example,
29739 @samp{%@{std=iso9899\:1999:X@}} substitutes @code{X} if the
29740 @option{-std=iso9899:1999} option is given.
29741
29742 The conditional text @code{X} in a @samp{%@{S:X@}} or similar
29743 construct may contain other nested @samp{%} constructs or spaces, or
29744 even newlines. They are processed as usual, as described above.
29745 Trailing white space in @code{X} is ignored. White space may also
29746 appear anywhere on the left side of the colon in these constructs,
29747 except between @code{.} or @code{*} and the corresponding word.
29748
29749 The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
29750 handled specifically in these constructs. If another value of
29751 @option{-O} or the negated form of a @option{-f}, @option{-m}, or
29752 @option{-W} switch is found later in the command line, the earlier
29753 switch value is ignored, except with @{@code{S}*@} where @code{S} is
29754 just one letter, which passes all matching options.
29755
29756 The character @samp{|} at the beginning of the predicate text is used to
29757 indicate that a command should be piped to the following command, but
29758 only if @option{-pipe} is specified.
29759
29760 It is built into GCC which switches take arguments and which do not.
29761 (You might think it would be useful to generalize this to allow each
29762 compiler's spec to say which switches take arguments. But this cannot
29763 be done in a consistent fashion. GCC cannot even decide which input
29764 files have been specified without knowing which switches take arguments,
29765 and it must know which input files to compile in order to tell which
29766 compilers to run).
29767
29768 GCC also knows implicitly that arguments starting in @option{-l} are to be
29769 treated as compiler output files, and passed to the linker in their
29770 proper position among the other output files.
29771
29772 @node Environment Variables
29773 @section Environment Variables Affecting GCC
29774 @cindex environment variables
29775
29776 @c man begin ENVIRONMENT
29777 This section describes several environment variables that affect how GCC
29778 operates. Some of them work by specifying directories or prefixes to use
29779 when searching for various kinds of files. Some are used to specify other
29780 aspects of the compilation environment.
29781
29782 Note that you can also specify places to search using options such as
29783 @option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}). These
29784 take precedence over places specified using environment variables, which
29785 in turn take precedence over those specified by the configuration of GCC@.
29786 @xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint,
29787 GNU Compiler Collection (GCC) Internals}.
29788
29789 @table @env
29790 @item LANG
29791 @itemx LC_CTYPE
29792 @c @itemx LC_COLLATE
29793 @itemx LC_MESSAGES
29794 @c @itemx LC_MONETARY
29795 @c @itemx LC_NUMERIC
29796 @c @itemx LC_TIME
29797 @itemx LC_ALL
29798 @findex LANG
29799 @findex LC_CTYPE
29800 @c @findex LC_COLLATE
29801 @findex LC_MESSAGES
29802 @c @findex LC_MONETARY
29803 @c @findex LC_NUMERIC
29804 @c @findex LC_TIME
29805 @findex LC_ALL
29806 @cindex locale
29807 These environment variables control the way that GCC uses
29808 localization information which allows GCC to work with different
29809 national conventions. GCC inspects the locale categories
29810 @env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do
29811 so. These locale categories can be set to any value supported by your
29812 installation. A typical value is @samp{en_GB.UTF-8} for English in the United
29813 Kingdom encoded in UTF-8.
29814
29815 The @env{LC_CTYPE} environment variable specifies character
29816 classification. GCC uses it to determine the character boundaries in
29817 a string; this is needed for some multibyte encodings that contain quote
29818 and escape characters that are otherwise interpreted as a string
29819 end or escape.
29820
29821 The @env{LC_MESSAGES} environment variable specifies the language to
29822 use in diagnostic messages.
29823
29824 If the @env{LC_ALL} environment variable is set, it overrides the value
29825 of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE}
29826 and @env{LC_MESSAGES} default to the value of the @env{LANG}
29827 environment variable. If none of these variables are set, GCC
29828 defaults to traditional C English behavior.
29829
29830 @item TMPDIR
29831 @findex TMPDIR
29832 If @env{TMPDIR} is set, it specifies the directory to use for temporary
29833 files. GCC uses temporary files to hold the output of one stage of
29834 compilation which is to be used as input to the next stage: for example,
29835 the output of the preprocessor, which is the input to the compiler
29836 proper.
29837
29838 @item GCC_COMPARE_DEBUG
29839 @findex GCC_COMPARE_DEBUG
29840 Setting @env{GCC_COMPARE_DEBUG} is nearly equivalent to passing
29841 @option{-fcompare-debug} to the compiler driver. See the documentation
29842 of this option for more details.
29843
29844 @item GCC_EXEC_PREFIX
29845 @findex GCC_EXEC_PREFIX
29846 If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
29847 names of the subprograms executed by the compiler. No slash is added
29848 when this prefix is combined with the name of a subprogram, but you can
29849 specify a prefix that ends with a slash if you wish.
29850
29851 If @env{GCC_EXEC_PREFIX} is not set, GCC attempts to figure out
29852 an appropriate prefix to use based on the pathname it is invoked with.
29853
29854 If GCC cannot find the subprogram using the specified prefix, it
29855 tries looking in the usual places for the subprogram.
29856
29857 The default value of @env{GCC_EXEC_PREFIX} is
29858 @file{@var{prefix}/lib/gcc/} where @var{prefix} is the prefix to
29859 the installed compiler. In many cases @var{prefix} is the value
29860 of @code{prefix} when you ran the @file{configure} script.
29861
29862 Other prefixes specified with @option{-B} take precedence over this prefix.
29863
29864 This prefix is also used for finding files such as @file{crt0.o} that are
29865 used for linking.
29866
29867 In addition, the prefix is used in an unusual way in finding the
29868 directories to search for header files. For each of the standard
29869 directories whose name normally begins with @samp{/usr/local/lib/gcc}
29870 (more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries
29871 replacing that beginning with the specified prefix to produce an
29872 alternate directory name. Thus, with @option{-Bfoo/}, GCC searches
29873 @file{foo/bar} just before it searches the standard directory
29874 @file{/usr/local/lib/bar}.
29875 If a standard directory begins with the configured
29876 @var{prefix} then the value of @var{prefix} is replaced by
29877 @env{GCC_EXEC_PREFIX} when looking for header files.
29878
29879 @item COMPILER_PATH
29880 @findex COMPILER_PATH
29881 The value of @env{COMPILER_PATH} is a colon-separated list of
29882 directories, much like @env{PATH}. GCC tries the directories thus
29883 specified when searching for subprograms, if it cannot find the
29884 subprograms using @env{GCC_EXEC_PREFIX}.
29885
29886 @item LIBRARY_PATH
29887 @findex LIBRARY_PATH
29888 The value of @env{LIBRARY_PATH} is a colon-separated list of
29889 directories, much like @env{PATH}. When configured as a native compiler,
29890 GCC tries the directories thus specified when searching for special
29891 linker files, if it cannot find them using @env{GCC_EXEC_PREFIX}. Linking
29892 using GCC also uses these directories when searching for ordinary
29893 libraries for the @option{-l} option (but directories specified with
29894 @option{-L} come first).
29895
29896 @item LANG
29897 @findex LANG
29898 @cindex locale definition
29899 This variable is used to pass locale information to the compiler. One way in
29900 which this information is used is to determine the character set to be used
29901 when character literals, string literals and comments are parsed in C and C++.
29902 When the compiler is configured to allow multibyte characters,
29903 the following values for @env{LANG} are recognized:
29904
29905 @table @samp
29906 @item C-JIS
29907 Recognize JIS characters.
29908 @item C-SJIS
29909 Recognize SJIS characters.
29910 @item C-EUCJP
29911 Recognize EUCJP characters.
29912 @end table
29913
29914 If @env{LANG} is not defined, or if it has some other value, then the
29915 compiler uses @code{mblen} and @code{mbtowc} as defined by the default locale to
29916 recognize and translate multibyte characters.
29917 @end table
29918
29919 @noindent
29920 Some additional environment variables affect the behavior of the
29921 preprocessor.
29922
29923 @include cppenv.texi
29924
29925 @c man end
29926
29927 @node Precompiled Headers
29928 @section Using Precompiled Headers
29929 @cindex precompiled headers
29930 @cindex speed of compilation
29931
29932 Often large projects have many header files that are included in every
29933 source file. The time the compiler takes to process these header files
29934 over and over again can account for nearly all of the time required to
29935 build the project. To make builds faster, GCC allows you to
29936 @dfn{precompile} a header file.
29937
29938 To create a precompiled header file, simply compile it as you would any
29939 other file, if necessary using the @option{-x} option to make the driver
29940 treat it as a C or C++ header file. You may want to use a
29941 tool like @command{make} to keep the precompiled header up-to-date when
29942 the headers it contains change.
29943
29944 A precompiled header file is searched for when @code{#include} is
29945 seen in the compilation. As it searches for the included file
29946 (@pxref{Search Path,,Search Path,cpp,The C Preprocessor}) the
29947 compiler looks for a precompiled header in each directory just before it
29948 looks for the include file in that directory. The name searched for is
29949 the name specified in the @code{#include} with @samp{.gch} appended. If
29950 the precompiled header file cannot be used, it is ignored.
29951
29952 For instance, if you have @code{#include "all.h"}, and you have
29953 @file{all.h.gch} in the same directory as @file{all.h}, then the
29954 precompiled header file is used if possible, and the original
29955 header is used otherwise.
29956
29957 Alternatively, you might decide to put the precompiled header file in a
29958 directory and use @option{-I} to ensure that directory is searched
29959 before (or instead of) the directory containing the original header.
29960 Then, if you want to check that the precompiled header file is always
29961 used, you can put a file of the same name as the original header in this
29962 directory containing an @code{#error} command.
29963
29964 This also works with @option{-include}. So yet another way to use
29965 precompiled headers, good for projects not designed with precompiled
29966 header files in mind, is to simply take most of the header files used by
29967 a project, include them from another header file, precompile that header
29968 file, and @option{-include} the precompiled header. If the header files
29969 have guards against multiple inclusion, they are skipped because
29970 they've already been included (in the precompiled header).
29971
29972 If you need to precompile the same header file for different
29973 languages, targets, or compiler options, you can instead make a
29974 @emph{directory} named like @file{all.h.gch}, and put each precompiled
29975 header in the directory, perhaps using @option{-o}. It doesn't matter
29976 what you call the files in the directory; every precompiled header in
29977 the directory is considered. The first precompiled header
29978 encountered in the directory that is valid for this compilation is
29979 used; they're searched in no particular order.
29980
29981 There are many other possibilities, limited only by your imagination,
29982 good sense, and the constraints of your build system.
29983
29984 A precompiled header file can be used only when these conditions apply:
29985
29986 @itemize
29987 @item
29988 Only one precompiled header can be used in a particular compilation.
29989
29990 @item
29991 A precompiled header cannot be used once the first C token is seen. You
29992 can have preprocessor directives before a precompiled header; you cannot
29993 include a precompiled header from inside another header.
29994
29995 @item
29996 The precompiled header file must be produced for the same language as
29997 the current compilation. You cannot use a C precompiled header for a C++
29998 compilation.
29999
30000 @item
30001 The precompiled header file must have been produced by the same compiler
30002 binary as the current compilation is using.
30003
30004 @item
30005 Any macros defined before the precompiled header is included must
30006 either be defined in the same way as when the precompiled header was
30007 generated, or must not affect the precompiled header, which usually
30008 means that they don't appear in the precompiled header at all.
30009
30010 The @option{-D} option is one way to define a macro before a
30011 precompiled header is included; using a @code{#define} can also do it.
30012 There are also some options that define macros implicitly, like
30013 @option{-O} and @option{-Wdeprecated}; the same rule applies to macros
30014 defined this way.
30015
30016 @item If debugging information is output when using the precompiled
30017 header, using @option{-g} or similar, the same kind of debugging information
30018 must have been output when building the precompiled header. However,
30019 a precompiled header built using @option{-g} can be used in a compilation
30020 when no debugging information is being output.
30021
30022 @item The same @option{-m} options must generally be used when building
30023 and using the precompiled header. @xref{Submodel Options},
30024 for any cases where this rule is relaxed.
30025
30026 @item Each of the following options must be the same when building and using
30027 the precompiled header:
30028
30029 @gccoptlist{-fexceptions}
30030
30031 @item
30032 Some other command-line options starting with @option{-f},
30033 @option{-p}, or @option{-O} must be defined in the same way as when
30034 the precompiled header was generated. At present, it's not clear
30035 which options are safe to change and which are not; the safest choice
30036 is to use exactly the same options when generating and using the
30037 precompiled header. The following are known to be safe:
30038
30039 @gccoptlist{-fmessage-length= -fpreprocessed -fsched-interblock @gol
30040 -fsched-spec -fsched-spec-load -fsched-spec-load-dangerous @gol
30041 -fsched-verbose=@var{number} -fschedule-insns -fvisibility= @gol
30042 -pedantic-errors}
30043
30044 @end itemize
30045
30046 For all of these except the last, the compiler automatically
30047 ignores the precompiled header if the conditions aren't met. If you
30048 find an option combination that doesn't work and doesn't cause the
30049 precompiled header to be ignored, please consider filing a bug report,
30050 see @ref{Bugs}.
30051
30052 If you do use differing options when generating and using the
30053 precompiled header, the actual behavior is a mixture of the
30054 behavior for the options. For instance, if you use @option{-g} to
30055 generate the precompiled header but not when using it, you may or may
30056 not get debugging information for routines in the precompiled header.